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ABSTRACT 

The greenback flounder Rhombosolea tapirina (Pleuronectidae) is distributed around 

Southern Australia and New Zealand. There is growing interest in developing an 

aquaculture industry for greenback flounder in Tasmania and pilot aquaculture schemes 

are already underway, however, current programs are limited by unreliable egg 

production. This study provided baseline information on reproductive events under 

normal reproductive conditions in wild greenback flounder, the stress response of 

greenback flounder to common husbandry and laboratory aquaculture practices, 

developed induced ovulation protocols, examined the mechanism of action of hormone 

treatment and assessed in vitro effectiveness of putative maturational steroids on 

ovarian tissue. 

Oocyte size frequency distributions showed that female greenback flounder are 

multiple ovulators and have group synchronous oocyte development. Plasma and 

ovarian levels of testosterone (T) and 1713-estradiol (E2) were elevated in association 

with vitellogenesis. Plasma levels of 17a20I3-dihydroxy-4-pregnen-3-one (17,20I3P), 

and 17,203P-sulphate but not 17,203P-glucuronide were significantly elevated in 

ovulated females, whereas ovarian levels of 17,20I3P were elevated in association with 

final oocyte maturation (FOM) and ovulation. 

Changes in macroscopic testis stage were characterised by few changes in proportions 

of gamete types between gonad stages, indicating low milt production, even in mature 

fish. Plasma levels of T were elevated in association with spermatogenesis, but not 

spermiation. No significant changes in plasma 11-ketotestosterone (11KT ), 17,203P, 

17,20BP-sulphate and 17,203P-glucuronide were detected with change in gonad stage 

of males. 

The latency of the plasma cortisol response to stress was approximately 10 min. 

Plasma levels of cortisol were significantly higher in wild fish sampled after capture, 

confinement and transport, and some routine husbandry practices had the capacity to 

stimulate elevated cortisol levels for up to 48 h. Hematocrit (Hct) did not change 

significantly in response to stress, suggesting that either Hct is not effected by stress in 

this species, or changes in Hct were not detected within the sampling protocol. After 
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exercise, muscle lactate did not significantly change, however, plasma lactate and 

muscle [11 +] significantly increased and plasma [H+] significantly decreased, indicating 

that muscle and blood physiology of greenback flounder do change in response to 

exercise, but unlike other flatfish, there was little evidence for in situ glycogenesis 

within white muscle tissue. 

Female greenback flounder were induced to repeat ovulate using a range of exogenous 

hormone treatments. Des Gly l°  [D-Alal LHRH ethylamide (LHRH-a) and human 

chorionic gonadotropin (hCG), significantly increased the number of ovulations above 

control levels. Co-administration of LHRH-a and the dopamine antagonist PIM 

provided no significant advantage over treatment with LHRH-a alone. Dopamine 

appeared to have an inconsistent effect on reproductive function in greenback flounder. 

Co-treatment of LHRH-a + T significantly enhanced the ovulatory effects of LHRH-a, 

suggesting steroid feedback enhances pituitary responsiveness to GnRH. 

In vitro bioassays indicated that ovarian fragments required pre-treatment with hCG 

before they were receptive to steroids. In most cases, the maturational response to 

steroids after priming with hCG exceeded the maturational response to hCG treatment 

alone. Ovarian fragments were receptive to all steroids at all concentrations tested. 

There was considerable inconsistency in maturational responses to each steroid and 

each dose, however, 20a and 2013- hydroxylated steroids were most effective at 

inducing maturation, and 5-pregnene and 5I3-pregnane steroids were least effective. 
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Chapter 1 

General Introduction. 



1. General Introduction. 

1.1. Requirement for marine fish farming in Australia 

There is growing demand for fish products world wide, and there are worrying 

predictions that fisheries resources will not be able to supply future requirements (FAO 

1996). Australia has one of the most diverse marine faunas and largest fishing zones in 

the world, however, due to low nutrient conditions, this is not reflected in fishing 

resource abundance or productivity (Kailola et al., 1993). Many Australian fisheries 

species are fully or heavily exploited, and the fishing industry can no longer expect to 

rely on increased catches. The alternatives are to increase the value of existing stocks, 

or develop farming of seafoods. Aquaculture is a growth industry in Australia and 

already contributes to 25% of the national fisheries production (ABARE, 1996), 

however, almost all of this aquaculture input is derived from 5 industries, pearl oysters, 

Atlantic salmon, rainbow trout, Pacific and Sydney rockoysters and ornamental fish 

(Kailola et al., 1993). With continued development of existing species, but also new 

species, Australia will be well placed to, compete on the international export market, 

supply the domestic market which is heavily subsidised by imports at present (Kailola 

et al., 1993) and contribute to stock enhancement programs. 

1.2. Marine fish farming in Tasmania 

Aquaculture has become a major growth industry in Tasmania and in 1994/95, supplied 

12% of Australia's total fisheries production, 51% of Tasmania's total seafood 

production contributing $110 million (ABARE, 1996) and employed about 1500 

people (SDAC, 1996). Most of the farmed seafood in Tasmania in the past 6 years has 

been Atlantic salmon and Pacific oysters, however, among the 142 marine farms 

operating in the state, some are for new species, albeit in the experimental stage 

(SDAC, 1996). 

1.3. Current status of greenback flounder culture 

1.3.1. General biology 

Greenback flounder (Rhombosolea tapirina) is a right eyed flounder belonging the 

family Pleuronectidae and is distributed around southern Australia and New Zealand, in 



estuaries, marine embayments and inshore coastal waters to depths of 100m (KaiIola et 

al., 1993). It has a prolonged spawning season (March to October), shows serial 

spawning and probably spawns in deeper coastal waters (Kurth, 1957; Crawford, 

1984a). Wild fish attain a length of 31-34 cm (400-500g) in 3+ years (Kurth, 1957), 

but cultured fish grow considerably faster in captivity (Purser, 1996). Greenback 

flounder forms a minor fishery of approximately 140 t per annum in Southern Australia 

(KaiIola et al., 1993) and is largely caught by inshore trawl and gill nets (SDAC, 1996). 

1.3.2. Aquaculture potential 

A good aquaculture species should be biologically manageable, have a suitable growth 

profile, realistic promise of financial return, and have existing markets and routes of 

commercialisation identified. In Tasmania the infrastructure base for aquaculture 

research at the Department of Aquaculture, University of Tasmania and Department of 

Primary Industries and Fisheries, Marine Research Laboratories, Taroona, Tasmania, 

provide suitable environments to critically assess the aquaculture potential of a species 

before considerable finances are allocated to aquaculture development. Many of the 

characteristics essential for aquaculture development of a species have already been 

investigated in greenback flounder, and to date, indicate that greenback flounder is a 

suitable candidate for aquaculture. 

• Biologically manageable: The life cycle has been closed. Larvae are highly amenable 

to hatchery conditions, show high survival and ween early (Crawford, 1984b, 1986; 

Hart, 1991, 1994). Growout has been successfully demonstrated at the Department 

of Aquaculture, University of Tasmania and Department of Primary Industries and 

Fisheries, Marine Research Laboratories, Taroona, Tasmania, 

• Desirable biological characteristics: Greenback flounder have a prolonged spawning 

season (Kurth, 1957; Crawford, 1984a), if spawning periods can be manipulated by 

photoperiod control, then year round production will be possible. Market size fish 

can be produced within 20 months of hatching and improvements are expected with 

triplody and /or sterilisation (Purser, 1996). Cultured fish show a better condition 

factor than wild fish and recovery rates from whole fish to gutted (gill and gonad 

included) are around 95% (Purser 19967). Greenback flounder show extreme 
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tolerance of low salinity (Girling, 1997) and preliminary live transport experiments 

indicated that flounder can be chilled for 24 h with 100% survival (Purser, 1996). 

• Taste: Sensory test results were favourable and on parr with the imported New 

Zealand flounder species Rhombosolea plebia (Purser, 1996). 

• Stocking density: There was no significant increases in variability in food 

consumption, or growth rates when fish were held at stocking densities 

approximating aquaculture conditions, suggesting social interactions did not 

influence individual rates of food consumption (Shelverton, 1995). 

• Market assessment: The Australian flatfish market is estimated at 735 t and valued 

at $4.4m, however, New Zealand imports (mostly trawled frozen product) supply 

90% of the market. Wholesale prices for fresh fish range from $6-10.ke however 

preliminary market enquires indicate prices for live fish ranging from $12-25.kg -1 . 

There is considerable potential for Australian contribution to the Asian market, as in 

1994, 83,440 t of flatfish was imported to Japan, with prices for live product 

ranging from A$10-15 kg -1  (Hart, 1993; Purser, 1996). 

• Technology transfer of culture techniques: There is worldwide interest in the culture 

of pleuronectid species, therefore, existing technology and information is potentially 

applicable to culture of greenback flounder. 

• Supportive research: There is a considerable research history on greenback flounder 

relevant to the aquaculture development of this species, including studies on the 

general biology (Kurth, 1957; Crawford, 1984a), early lifestages of hatchery-reared 

greenback flounder (Crawford, 1986; Hart, 1991, 1994; Hart and Purser, 1995), 

feeding behaviour of larvae (Cox, 1997), nutritional and disease studies (Pattie, 

1995) and osmoregulation (Girling, 1997). Other research projects on greenback 

flounder have been funded by the Australian Research Council (awarded to 

Professor Pankhurst, University of Tasmania) and the Fisheries Research and 

Development Corporation (awarded to Dr Purser, University of Tasmania). 

Collectively, these research projects provide an essential groundwork for continuing 

research and development of greenback flounder as an aquaculture species. 
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• Industry involvement: Two growers are involved in pilot scale growout assessment 

in Tasmania, and a small hatchery and growout facility is operating in Victoria. In 

addition, there are further calls of interest in Tasmania, and South Australia (Purser, 

1996) 

1.3.3. Further research requirements 

• Market potential: No aquaculture product is currently sold , therefore all figures are 

based on wild caught fish (Hart, 1993; Purser, 1996). 

• Product quality: A small proportion of fish in each batch show mal-pigmentation 

and skeletal deformities (bent spinal cord and shortened gill coverings) (Purser, 

1996). This problem may be eliminated by further investigation of nutritional 

requirements. 

• Disease: In some instances Trichodinosis , Flexibacter maritimus, Vibriosis 

anguillarum, Aeromonas salmonicida and microsporidium have been identified in 

cultured fish (Pattie, 1995; Whittington et al., 1995; Munday, 1996; Soltani et al., 

1996; Handlinger et al., 1997). There is a requirement for improved understanding 

of transmission pathways and treatment of diseases. 

• Stress response: Most fish species in captivity show some degree of stress response 

to aquaculture practices, including poor water quality, capture, handling, sorting, 

grading, transport and confinement (reviewed in Barton and Iwama, 1991; Barton, 

1997; Wendelaar Bonga, 1997). An evaluation of greenback flounders stress 

response to husbandry and laboratory practices is required so that appropriate 

husbandry techniques can be implemented and potential effects of stress on 

experimental results can be clarified. 

• Gamete supply: Cultured fish readily undergo vitellogenesis, but do not reliably 

ovulate without hormonal induction and current induced ovulation protocols 

frequently result in variable egg production and quality (Crawford, 1984b; Hart, 

1991). Wild fish do not acclimate easily to captivity, but good quality eggs can be 

obtained from freshly caught wild fish, however, this practice may not be suitable 

for commercial practice due to disease risks. 



• Maturation: High levels of maturation were recorded in 1 year old fish. Triploidy 

should overcome this problem, and high triploid rates have been achieved 

experimentally, although grow-out trials are yet to be conducted (Purser, 1996). 

Fish rarely spawn spontaneously in captivity and ovulation normally results in egg 

retention and even peritonitis if eggs are not regularly stripped. Improved 

understanding of gonadal development and the associated endocrine changes should 

contribute to controlled reproduction of viable eggs. 

1.4. Objectives of this study 

• Examine endocrine correlates of reproduction in wild flounder. 

• Examine the stress response to common husbandry and experimental practices in 

cultured fish. 

• Develop techniques for artificial induction and control of ovarian development and 

ovulation. 

• Assess the effect of induced ovulation protocols on ovarian development and 

plasma levels of gonadal steroids with view to assessing the mechanism of action of 

hormone treatment. 

• Examine the in vitro effectiveness of putative maturational steroids on ovarian 

tissue. 

1.4.1. Control of reproduction 

In order for reproduction to occur in captive fish, they have to undergo gonadal 

development and maturation, undergo gamete final maturation resulting in ovulation in 

females (release of eggs into the oviduct) and sperm production in males, and spawn 

(behavioural interaction between males and females during which eggs and sperm are 

released and fertilised) (Pankhurst, 1998). Bottlenecks can occur at any of these 

stages, possibly as a result of inappropriate environmental conditions (social and 

physical) and/or chronic stress imposed by the conditions of captivity (Pankhurst, 

1998). Controlled approaches to managed reproduction rely on a solid understanding 

of the pattern of gamete development, duration and frequency of spawning events, and 



associated endocrine changes. Armed with this information, potential bottlenecks can 

be identified and management strategies implemented. 

The process of gamete growth in females is marked by germinal tissue differentiation 

to oogonia followed by proliferation via mitotic division to form primary or pre-

vitellogenic oocytes. Ovaries arrested at this stage are referred to as immature, but 

regressed ovaries will also contain only pre-vitellogenic oocytes. Primary oocytes grow 

via the process of vitellogenesis involving accumulation of yolk proteins synthesised by 

the liver. There is a considerable increase in size of oocytes and ovarian follicles during 

this second growth phase (vitellogenesis). The transition to the tertiary growth stage is 

marked by the resumption of meiosis resulting in final oocyte maturation (FOM) which 

is characterised by nuclear migration and breakdown, lipid and yolk droplet 

coalescence, large increase in oocyte size due to hydration and oil droplet formation. 

Oocytes that have completed FOM, rupture from the maternal follicle and are expelled 

into the ovarian lumen, or in salmonids the body cavity (reviews given in Wallace and 

Selman, 1981; deVlaming, 1983; Pankhurst, 1998). 

Ovarian development can be classified into 3 basic types, (I) synchronous - species 

that spawn once then die such as Pacific salmon, are characterised by a single clutch of 

oocytes that grow in unison. (2) Group synchronous and multiple group synchronous-

at least two clutches of oocytes can be distinguished in the ovary at the same time, 

hence, these species are capable of spawning more than once. Group synchronous 

species spawn more than once in a life time, but typically once per season whereas 

multiple group synchronous species have multiple spawning episodes within a single 

reproductive season. (3) Asynchronous - in these species, oocytes are at a mixture of 

stages and no distinct clutches can be identified, although, asynchronous development 

is most likely an extreme case of multiple group synchrony (reviews given in Wallace 

and Selman, 1981; deVlaming, 1983; Pankhurst, 1998). The pattern of male gamete 

development broadly reflects gamete synchrony shown in females (Pankhurst, 1998). 

Fish respond to changes in the environment, so that reproduction is timed to coincide 

with environmental conditions that are most favourable for reproduction. In many 

species gonad growth is commonly influenced by changes in temperature and 

photoperiod because collectively, they are reliable cues which foretell the advent of the 

appropriate time for spawning (Lam and Munro, 1987). Close to the time of gamete 



final maturation appropriate physical cues (such as water flow or level, availability of 

suitable physical space and availability of spawning substrate) are often required for 

ovulation and/spawning (Stacey, 1984). Knowledge of environmental factors can be 

used to advance, induce, or inhibit gonad growth, spawning and recrudescence (Lam, 

1982). 

Internal and external factors collectively govern the process of gonadal development. 

External factors such as temperature and photoperiod, determine when endogenous 

factors will be initiated and endogenous factors, mainly circulating hormones, initiate 

and mediate gonadal development (Stacey, 1984). Endocrine control of reproduction is 

regulated via the hypothalamic-pituitary-gonad axis (HPG). The release of 

gonadotropins (GtHs) from the pituitary, is regulated by the stimulatory actions of 

gonadotropin releasing hormone (GnRH) and in most species, but not all, the 

inhibitory actions of dopamine (DA). Gonadotropins are released into circulation and 

exert their actions by binding to membrane-bound receptors in the ovary and testes, 

stimulating the production of steroids involved in gonadal development. Many different 

forms of immunoreactive GnRH have been identified in brains of teleosts (reviewed in 

Peter and Yu, 1997). Two GtHs have been identified (GtH-I and GtH-II), which have 

temporally separated actions, GtH-I being present during gametogenesis and GtH-II 

being predominate during maturation. The HPG axis is not simply a 1-way process that 

ends with steroid production. Feedback mechanisms exist whereby steroids feedback 

via central action to regulate their own production in a positive or negative fashion. T 

and E2 for example are important feedback regulators of GtH release in goldfish and 

exert positive effects to increase pituitary responsiveness to LHRH-a, but basal serum 

GtH levels are maintained by steroid enhanced increases in DA (reviews given in 

Pankhurst, 1998; Peter et al., 1991; Peter and Yu, 1997). 

The role of the steroids T and E2 is standard among teleost species. T is a precursor to 

E2 (Kagawa et al., 1984; Matsuyama et al., 1988) and E2 stimulates synthesis of the 

yolk precursor vitellogenin which is incorporated into the growing oocyte during 

vitellogenesis (reviewed in Specker and Sullivan, 1993). 17a2013-dihydroxy-4- 

pregnen-3-one (17,20(3P) is the maturation inducing steroid (MIS) in most species in 

which it has been investigated (Scott and Canario, 1987). In sciaenid fish however, 



17a2013,21-trihydroxy-4-pregnen-3-one (20f3S) has been identified as the main MIS 

(Thomas, 1994). 

In male teleosts, plasma T levels tend to be highest during spermatogenesis (transition 

from spermatogonia to spermatids), and drop off prior to spermiation sperm release) 

(Wingfield and Grimm, 1977; Scott et al., 1984; Fostier et al., 1987; Pankhurst and 

Conroy, 1987; Harmin et al., 1995b; Carolsfeld et al., 1996). In many species 11- 

ketotestosterone (11KT) is elevated during spermatogenesis and the early stages of 

spermiation (release of spermatozoa into the sperm ducts), (Scott et al., 1984; Fostier 

et al., 1987; Dedual and Pankhurst, 1992; Methven et al., 1992; Barnett and 

Pankhurst, 1994; Borg, 1994; Harmin et al., 1995b; Carolsfeld et al., 1996) and is 

thought to be more effective than T at stimulating spermatogenesis, secondary sexual 

characteristics, and stimulating reproductive behaviour (Borg, 1994). 17,2013P appears 

to have a role in stimulating spermiation and milt production (Fostier et al., 1987; 

Pankhurst, 1994; Carolsfeld et al., 1996). 

Steroids are often metabolised or conjugated quite rapidly after production. 

Conjugated steroids are formed when hydroxyl groups of steroids are conjugated with 

glucuronic acid (glucuronides) or sulphuric acid (sulphates). These steroid derivatives 

are more water soluble than the parent steroids, and are therefore readily excreted in 

the bile and /or urine (Scott and Vermeirssen 1993). Conjugated steroids can be 

measured from blood plasma or urine and may provide information regarding key 

biologically active steroids that are difficult to detect in blood plasma because they are 

released in a pulsatle fashion, or in small amounts, or are rapidly metabolised (Scott 

and Vermeirssen 1993). 

In the absence of normal gonadal development in captivity, various exogenous 

hormones can be administered to induce reproductive processes (Donaldson and 

Hunter, 1983; Peter and Yu, 1997). Classically, fish were treated with pituitary 

preparations of piscine or mammalian GtH. Piscine gonadotropins are now less 

favoured mainly due to their expense, limited supply, lack of standardisation and 

species specificity (reviwed in Donaldson and Hunter, 1983; Lam, 1982; Zohar, 1988). 

In contrast, the mammalian gonadotropin, human chorionic gonadotropin (hCG) is 

relatively cheap, readily obtainable, its biological activity is readily standardised, but it 
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may have lower biopotency (Pankhurst, 1998). The preferred exogenous hormone 

treatments are synthetic analogues of fish GnRH (GnRH-a) and analogues of 

mammalian GnRH referred to in this volume as luteinising hormone releasing hormone 

analogue (LHRH-a) (Peter and Yu, 1997; Zohar, 1988), particularly in the presence of 

a dopamine antagonist such as pimozide, to block the inhibitory action of dopamine 

(Chang and Peter, 1983; DeLeeuw et al., 1985, 1987; Lin et al., 1985; Peter et al., 

1988;). LHRH-a or GnRH-a in the form of an injection or slow release pellet is highly 

effective at inducing ovulation in fish which have completed vitellogenesis, but failed to 

undergo FOM (Peter and Yu, 1997) and stimulates milt hydration and sperrniation in 

males (Pankhurst, 1994). LHRH-a or GnRH-a pellet implants sustain elevated GtH 

levels over long periods and have proven to be effective at inducing multiple ovulations 

in some species (Almendras et al., 1988; Mylonas and Zohar 1995; Berlinsky and King 

1996; Mylonas et al., 1996) and ovarian development in immature fish (Crim et al., 

1988; Harmin et al., 1995a; Holland et al., 1995). 

Male greenback flounder will reliably undergo sperm production in captivity, although 

the potential to enhance sperm volume and quality has not been thoroughly assessed. 

Female greenback flounder undergo maturation in captivity, but do not reliably 

ovulate. Previous studies successfully induced ovulation with the exogenous hormone 

treatment hCG and the commercially available hormone mixture ovaprim (containing 

[D-Arg6, Pro9  NEt]-sGnRH and a dopamine antagonist (domperidone) (Peter et al, 

1993)), although, egg quality and subsequent larval survival were variable (Crawford, 

1984b; Hart, 1991; Hart and Purser,1995). In the absence of any information on the 

reproductive endocrinology of this species, we examined the relationship between 

patterns of gonadal development and endocrine changes in reproductive steroids and 

steroid conjugates in wild greenback flounder. The outcomes of this provided a 

framework for developing our understanding of the status of oocyte MIS/s in this 

species, and the development and interpretation of induced ovulation protocols in the 

absence of spontaneous ovulation in this species. 

The actions of hCG and a range of C21 steroids on FOM were investigated by means of 

in vitro bioassay techniques. Steroids were chosen depending on their position in the 

steroid pathway, proven effectiveness as a MIS in other species (Scott and Canario, 



1987; Thomas, 1994) and/or presence in vitro and in vivo in other species (Scott and 

Canario, 1987; Canario 1991; Scott and Canario, 1992). 

The potential for inducing ovulation and the physiological mechanisms involved, were 

investigated by examining the effectiveness of a range of induced ovulation protocols. 

This study assessed whether greenback flounder were differentially sensitive to 

hypothalamic versus pituitary hormones by comparing the effectiveness of hCG and 

luteinising hormone releasing hormone analogue (LHRH-a), and the effectiveness of 

delivery mode of LHRH-a by comparing LHRH-a injections with slow release pellets. 

This study also assessed the potential for enhancing ovulatory success by co-treating 

with LHRH-a and the DA antagonist pimozide to reduce the inhibitory actions of DA 

on GtH secretion, and in the absence of a gonadotropin assay for this species, 

examined the role of positive steroid feedback actions on GnRH release, by assessing 

the potentiating effects of T on ovulation and steroid profiles in the absence and 

presence of LHRH-a. 

1.4.2. Stress and aquaculture 

There is by no means an established definition of stress (Barton ,1997), however, in the 

context of this study, stress refers to heightened metabolic or physiological function in 

response to environmental factors. Fish have a natural capacity to cope with 

environmental disturbances, although if response mechanisms are forced beyond 

normal limits, the response becomes detrimental (Barton and Iwama, 1991; Barton, 

1997). Stress results in a series of physiological processes which are often classified as 

primary, secondary and tertiary, depending on when they are elicited, and the 

mechanisms involved. These responses can be measured to give an indication of the 

severity and duration of stress. The primary stress responses are largely catecholamine 

(adrenaline and noradrenaline) and corticosteroid (cortisol) regulated, and are generally 

considered adaptive responses, because they enable the animal to cope with the 

stressful situation imposed upon them (Barton and Iwama 1991; Sumpter 1997; 

Wendelaar Bonga 1997). The catecholaminergic response is difficult to measure 

because it is so quick (latency of seconds to minutes and resolution to normal levels 

within 10 min) (Mazeaud et al., 1977; Barton and Iwama 1991; Sumpter, 1997). The 

corticosteroid response latency is considerably more generous, generally <15 min 

(Laidley and Letherland, 1988; Robertson et al., 1988; Young and Cech, 1993), and 
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therefore provides a window during which basal levels can be established. In most 

situations, cortisol remains elevated as long as the stressor remains (Barton, 1997; 

Sumpter, 1997), consequently, the corticosteroid response provides a useful indicator 

of the duration of the stress. The fact that cortisol remains elevated with the stressor, 

means fish can be exposed to chronic elevation of cortisol if held in stressful situations. 

There is a considerable array of secondary stress responses that can be used as 

indicators of stress in fish, examples include haematology (haematocrit, leucocrit, 

erythrocyte and leucocyte numbers), metabolic (plasma glucose and lactic acid 

dissociation to lactate -  and I-1+), hydromineral (plasma chloride, sodium, potassium, 

protein and osmolality), and structural parameters (interrenal cell size, number and 

diameter) (reviewed in Barton, 1997). Tertiary stress responses generally occur at the 

whole animal and even population level, and can have profound effects on fish 

performance and health (Barton, 1997). Some of these responses have particular 

relevance to aquaculture, ie. detrimental effects on immunocompetence, energy 

metabolism, potentially affecting growth rates, and inhibition of various reproductive 

processes (reviewed in Barton, 1997; Pankhurst and Van Der ICraak, 1997; Wendelaar 

Bonga, 1997) 

Common causes of stress in aquaculture can be capture, handling, sorting, grading, 

transport and confinement (Barton and Iwama, 1991; Barton, 1997; Wendelaar Bonga, 

1997), which are unavoidable components of husbandry and experimental procedures. 

In this study, we established a baseline of stress indicators in normal unstressed fish 

and evaluated the impact of common husbandry and experimental practices on the 

stress response. An evaluation of the extent to which aquaculture practices impact on 

physiological processes provides some indication of the species biological 

manageability, requirement for improved husbandry techniques and potential for 

impact on other biological processes. 

1.5. Thesis structure 

Chapters 2 - 6 have been, or will be submitted for publication, hence there is some 

planned overlap of introduction and methods sections. 



Chapter 2 - Barnett, C.W. and Pankhurst, N.W., 1998. The effects of common 

laboratory and husbandry practices on the stress response of greenback flounder 

Rhombosolea tapirina (Gunther, 1862). Aquaculture. In Press. 

Chapter 3 - Barnett, C.W. and Pankhurst, N.W., 1998. Reproductive biology and 

endocrinology of greenback flounder Rhombosolea tapirina (Gunther, 1862). Marine 

and Freshwater Research. In Press. 

Chapter 4 - Barnett, C.W. and Pankhurst, N.W., 1998. Effect of treatment with LHRH 

analogue and hCG on ovulation, plasma and ovarian levels of gonadal steroids in 

greenback flounder Rhombosolea tapirina (Giinther, 1862). Journal of the World 

Aquaculture Society. Under review. 

Chapter 5 - Barnett, C.W. and Pankhurst, N.W., 1998. Potential for steroid feedback 

and dopamine inhibition on GtH release in greenback flounder Rhombosolea tapirina 

(G0nther, 1862): indirect assessment by measurement of gonadal steroids and 

ovulation. In preparation. To be submitted to Gen. and Comp. Endocrinol. 

Chapter 6 - Barnett, C.W. and Pankhurst, N.W., 1998. Effects of gonadal steroids and 

hCG on final oocyte maturation in vitro in the greenback flounder Rhombosolea 

tapirina (Gunther, 1862). In preparation. To be submitted to Mar. Freswater Res. 
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2. The effects of common laboratory and husbandry practices on the 

stress response of greenback flounder Rhombosolea tapirina (Gunther, 

1862). 

2.1. Summary 

This study examined the stress response of the greenback flounder Rhombosolea 

tapirina to common laboratory and aquaculture practices. Plasma levels of cortisol in 

wild fish sampled within 2 min of capture were comparable with plasma cortisol values 

in other species captured from the wild and sampled immediately. Plasma levels of 

cortisol were significantly higher in wild fish sampled after capture, confinement and 

transport. The latency of the plasma cortisol response to stress was approximately 10 

min. Cultured greenback flounder, exposed to normal husbandry conditions had low 

plasma cortisol levels. Three hours of crowding combined with 5 mm chasing 

(simulated grading) resulted in significantly elevated cortisol levels for up to 48 h. 

Plasma cortisol was significantly higher in fish held at medium and high stocking 

density than at low density. The plasma cortisol stress response of greenback flounder 

is similar to that shown by other marine teleosts. Hematocrit (Hct) did not change 

significantly in response to stress, suggesting that either Hct is not affected by stress in 

this species, or changes in Hct were not detected within the sampling protocol. Plasma 

lactate levels in wild fish sampled after capture, confinement and transport, were 

considerably higher than levels in fish sampled within 3 min of capture, or exposed to 

30 min exercise. No significant changes in muscle lactate were observed in response to 

exercise, however, there were significant increases in plasma lactate, and muscle [H +] 

and a significant decrease in plasma [H+] following exercise, indicating that muscle and 

blood physiology of greenback flounder do change in response to exercise. Unlike 

other flatfish, there was little evidence for in situ glycogenesis within white muscle 

tissue after exercise and there was some indication that greenback flounder have higher 

aerobic scope than other flatfish studied to date. This study showed that some routine 

husbandry practices have the capacity to stress greenback flounder. 
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2. 2. Introduction 

It is well established that fish are stressed by capture and handling (Billard et al., 1981; 

Barton and Iwama, 1991; Pickering, 1992; Wendelaar Bonga, 1997) and that the 

stress response is characterised by disturbances in biochemistry and physiology, which 

may appear within seconds and can persist for hours or days (Mazeaud et al., 1977). 

The perturbations resulting from stress are often classified as primary, secondary or 

tertiary, depending on when they are elicited, and the mechanism involved. Primary 

responses include rapid changes in plasma levels of catecholamines and 

corticosteroids, and are generally considered adaptive responses because they enable 

the animal to cope with -stressful conditions imposed upon them. However, response 

mechanisms may be pushed beyond their normal limits leading to a cascade of 

detrimental secondary and tertiary effects (Mazeaud et al., 1977). Stress has been 

demonstrated to affect energy metabolism, potentially affecting growth rates, suppress 

the immune response, inhibit various reproductive processes (reviewed in Barton and 

Iwama, 1991; Wendelaar Bonga, 1997; Pankhurst and Van Der Kraak, 1997), and 

influence flesh quality post-mortem (Wells et al., 1986; Watanabe et al., 1991; Lowe et 

al., 1993). Capture, handling, crowding, confinement, transport and anaesthesia, are all 

components of aquaculture and laboratory practice that can stress fish. Therefore, in 

any aquaculture species, it is important to establish the nature and time course of the 

stress response, so that husbandry practices can be managed to minimise the effects of 

stress. 

In the present study, the stress response of the greenback flounder Rhombosolea 

tapirina (Pleuronectidae) was examined in both wild and cultured fish, in response to 

common laboratory and husbandry practices. The greenback flounder is distributed 

throughout the waters surrounding southern Australia and New Zealand (Ayling and 

Cox, 1982). There is currently considerable interest in greenback flounder as a 

potential aquaculture species, as it is amenable to culture conditions, has a fast growth 

rate, and has a developing market profile (Hart, 1993). 	, 

In order to fully assess the suitability of a species for aquaculture, a range of stress 

indices should be measured in response to common aquaculture practices. Plasma 

cortisol is the most commonly measured indicator of stress, and usually provides a 

good reflection of the severity and duration of the stress (Donaldson, 1981; Barton 
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and Iwama, 1991; Sumpter, 1997), however, the lack of a cortisol response may not 

always indicate the absence of stress (Wendelaar Bonga, 1997).Toxic substances 

which may cause death or impair fish health do not necessarily evoke cortisol increases 

(Grant and Mehrle, 1973; Schreck et al., 1989), and poor water quality and pollutants 

can suppress the corticosteroid response to subsequent stress (Pickering and Pottinger, 

1987). Fish health can also influence the cortisol response; for example, experimentally 

induced blood parasite infection in rainbow trout (Oncorhynchus mykiss) did not elicit 

a cortisol response (Laidley et al., 1988), and diseased chinook salmon were less able 

to elevate plasma cortisol after three successive disturbances than healthy fish (Barton 

et al., 1986). Given these findings, it would therefore seem wise to measure a number 

of different variables when determining the stress response of an animal. 

Hematological features such as red blood cell numbers, blood hemoglobin or Hct are 

sensitive to impaired osmoregulation and provide useful indicators of stress in fish 

(Morgan and Iwama, 1997). These variables can increase following stress due to 

increased red blood cell numbers resulting from splenic release or erythrocyte swelling 

through the actions of epinephrine to enhance 02 binding affinity (Ling and Wells, 

1985; Nilcinmaa, 1990). 

Exercise is an unavoidable component of capture and handling and during strenuous 

activity, fish exceed their capacity to cope aerobically and begin exercising 

anaerobically (Wood and Perry, 1985; Heisler, 1986). Under extreme conditions, 

strenuous activity can result in post-capture mortality (Graham et al., 1982; Ferguson 

and Tuft, 1992). Exercise generates large amounts of lactate and H ions within muscle 

tissue, much of which may enter into the bloodstream. Elevated lactate and low pH in 

both muscle and plasma have been measured in association with stress and exercise in 

a range of teleost species (Dando, 1969; Turner et al., 1983a, b; Schwalme and 

Mackay, 1985; Girard and Milligan, 1992), and are useful to measure as additional 

stress indicators. 

Before investigating the stress response of domestic or captive fish stocks, it is 

essential to determine the levels of parameters to be used as stress indicators in 

normally active fish. Studies are potentially misleading without such information 

(reviewed in Pankhurst and Sharples, 1992). In this study, basal plasma cortisol and 

lactate levels were determined in wild greenback flounder, caught and blood sampled 
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within 2 min of capture. For comparison, blood samples were collected from wild fish 

after capture, confinement and transportation to shore. These data were then 

compared with plasma or muscle parameters in domesticated fish exposed to a range 

of normal husbandry practices, or maintained for short periods at differential stocking 

densities. 

2.3. Materials and Methods 

2.3.1. Fish collection and husbandry 

Wild fish were hand speared while snorkelling or hand-netted by scuba divers from 

George's Bay (148° 16' E, 41° 19' S), and Bicheno (148° 18' E, 41° 52' S) on the east 

coast of Tasmania in September 1995, and April and June 1996 respectively. Blood 

samples were collected by caudal puncture within 2 min of capture. Fish caught while 

snorkelling were sampled on the boat, whereas fish caught by scuba divers were 

sampled underwater using the technique given by Pankhurst, (1990). These samples 

were used as an indicator of pre-stress condition. Blood samples were also collected 

from wild fish after capture in a gill net (6-12 h set time), transportation to shore by 

boat (15 min) and transportation to the sampling site by truck (15 min). Fish were 

transported in a 501 container with partial water changes every 15 min. All blood 

samples were transported to the laboratory on ice for centrifugation and then frozen 

for storage at -20°C. The average body weight was 458 -± 52 g. 

Cultured fish were either bred at Department of Primary Industries and Fisheries, 

Marine Research Laboratories, Taroona, Tasmania, or the Department of Aquaculture 

aquatic facility at the University of Tasmania in Launceston. Fish were subsequently 

maintained in Launceston at ambient temperature and photoperiod in recirculating 

systems incorporating a biofilter, coarse solids filter and aeration system. Fish were 

routinely exposed to normal recirculation system maintenance, where tank 

disturbances included flushing of sumps and tank cleaning. All tanks were covered 

with shade cloth, and disturbances in the tank room were minimised. The average body 

weight was 105 -± 12 g, age ranged from 1-2 years and all fish used in experiments 

were reproductively regressed. 
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2.3.2. Experiment 1 protocol: Effect of simulated grading (capture, transfer and 

confinement) 

Fish were held in a 4000 1 community tank at a stocking density of 4 kg.m -3 . Blood 

samples were collected from 10 fish as an indicator of 'resting condition,'. Removal 

and blood sampling of these fish from the community tank took 25 min. Another 70 

fish were then removed from the community tank, and transferred to a 380 1 tank at a 

stocking density of 19 kg.m -3  and blood samples were collected from ten different fish 

at 0.5, 1 and 3 h after transfer. After 3 h confinement, the remaining 40 fish were 

placed into 380 1 tanks at a stocking density of 3.9 kg.m -3. Further blood samples were 

taken at 24 h, 2, 4 and 6 days after start of confinement. In this and all following 

experiments (except experiment 5), blood samples were taken by caudal puncture from 

fish anaesthetised in 0.05% 2-phenoxy ethanol and transferred to the laboratory on ice 

for centrifugation and then frozen for storage at -20°C. 

2.3.3. Experiment 2 protocol: Effect of simulated grading (capture, transfer, 

crowding and chasing) 

Fish were held at nominal low density (3.8 kg.rn -3) for 14 days prior to the start of the 

experiment. Blood samples were taken from 8 fish as an indicator of resting condition. 

Capture and blood sampling of these fish took 5 min. Forty fish were then captured 

and transferred to a 380 1 tank at a stocking density of 11 kg.rn -3, chased with a net for 

5 min and then left confined in crowded conditions for 3 h. Eight different fish were 

removed and blood sampled at 0.5, 1 and 3 h after transfer. After 3 h of crowding, the 

remaining fish were placed into 380 1 tanks at a stocking density of 2.5 kg.m -3 . Further 

samples were collected at 24 h, and 2 days after the initial transfer. The exact 

experimental protocol was repeated with collection of blood samples 0, 0.5 h, 4, 6, 8, 

10 and 12 days after transfer. Due to limited holding facilities, it was not possible to 

conduct both parts of the experiment simultaneously. 

2.3.4. Experiment 3 protocol: Effect of repeat sampling 

Blood samples were collected from 12 fish as they were removed from a 4000 1 

community tank (0.7 kg.m -3  stocking density) and transfered to a 1000 1 aerated tank 

(3 kg.m -3  stocking density). The fish were confined for 3 h, and blood samples were 

collected at 0.5, 1 and 3h. 
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2.3.5. Experiment 4 protocol: Effect of stocking density 

Fish were removed from a 4000 1 community tank (4.1 kg.m -3) and placed into 380 1 

tanks at 4.8 kg.m -3, 9.6 kg.m -3  or 14.4 kg.m -3, which we nominated as low, medium or 

high relative stocking density respectively (2 replicates per stocking density). Stocking 

densities were chosen to span the range currently used in pilot growout systems. Fish 

were held at these stocking densities for 14 days, and fed at 3% body weight 

once/day. Blood samples were collected and body weight recorded from 8 fish per 

tank. 

2.3.6. Experiment 5 protocol: Effect of stress and exercise 

Seven fish were removed from a 500 1 tank (stocking density 2.6 kg.n1 3), killed by a 

blow to the head and measurements and samples were collected immediately as an 

indicator of the pre-stress and exercise condition. The remaining fish were vigorously 

chased for 30 min and seven different fish were then sampled at 0.5, 1, 3, 6 and 24 h 

after the start of exercise. At each sample period approximately 0.5 g of muscle was 

removed, frozen in liquid nitrogen then transferred to -80 °C for frozen storage, blood 

samples were collected and extracellular muscle pH was measured by cutting a narrow 

slit in the muscle tissue and inserting a glass spear pH probe (HANNA 9025) (Sigholt 

et al., 1997). 

2.3.7. Analytical methods 

Plasma cortisol was measured from samples collected during experiments 1-5. Cortisol 

was extracted from 100 [11 aliquots of plasma using 1 ml ethyl acetate, and 50p1 

aliquots of the ethyl acetate extract were transferred to assay tubes for evaporation. 

Extraction efficiency was calculated as recovery of 3H-labelled steroid extracted with 

plasma was on average 85%, and assay values were corrected accordingly. Cortisol 

was measured using (1,2,6,7- 3H) cortisol (Amersham) and an antiserum to cortisol 

from Bioanalysis Ltd, Cardiff. Assay protocol was as described in Pankhurst and 

Conroy (1987). Assay detection limit was 0.6 ng.m1 -1  plasma. Hematocrit (Hct) (% 

red blood cell packed volume) was measured after 3 min centrifugation in micro 

haematocrit tubes from blood samples collected during experiment 2. Levels of plasma 

lactate were measured from plasma samples collected during experiments 2 and 5. 

Plasma lactate was extracted from 50 pl aliquots of plasma, using 100 pl of cold 0.6 
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M perchloric acid (PCA), followed by 5 minutes on ice and centrifugation at 8000 g 

for 3 mm. Muscle samples collected during experiment 5 were trimmed, weighed and 

approximately 0.25 g was homogenised for 45 sec in 1.5 ml of cold PCA. The 

homogenate was centrifuged for 10 min at 3000 rpm. Fifty seven 111 aliquots of muscle 

lactate supematant or plasma lactate extracts were analysed enzymatically using a 

Sigma 826-UV kit. Prior to measurement of plasma pH during experiment 5, plasma 

samples were left in uncapped vials for 3 h, to allow release of respiratory CO2. 

2.3.8. Statistical analysis 

T-tests, analysis of variance (ANOVA), repeated measures ANOVA, nested ANOVA, 

and Tukey-HSD mean comparison tests were performed using the computer package 

SPSS for Windows. Data were log or square root transformed to satisfy normality and 

homogeneity of variance requirements. A significance level of a < 0.05 was used for 

all statistical tests. Plasma and muscle pH values were converted to [W] for numerical 

analysis. 

2.4. Results 

2.4.1. Plasma cortisol and lactate levels in wild fish 

Wild fish sampled within 2 min of capture had (mean ±- S.E. (n)) plasma cortisol and 

lactate levels of 3.9 ± 2.5 (10) ng.m1 -1  and 0.25 ± 0.09 (10) mmo1.1 -1  respectively. In 

contrast, wild fish exposed to net capture and transport to shore had significantly 

elevated plasma levels of both cortisol and lactate of 61.9 ± 3.1 (20) ng.m1 -1  and 7.15 

± 0.50 (20) mmo1.11  respectively. 
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2.4.2. Experiment 1: Effect of simulated grading (capture, transfer and 

confinement) 

Plasma cortisol levels were already high (47 ng.m1 -1) at first sampling and remained 

high for at least 2 days, albeit with a decreasing trend. Plasma cortisol levels in fish 

sampled from 2-6 days were lower than fish sampled at 0.5 h, and levels in fish 

sampled at 4-6 days were lower than those sampled at 0, 0.5 and lh (Fig. 2.1). 

2.4.3. Experiment 2: Effect of simulated grading (capture, transfer, crowding 

and chasing) 

Resting plasma cortisol levels were uniformly low (1.6 ng.m1 -1) (Fig. 2.2a). Plasma 

cortisol levels were significantly higher than resting levels at 0.5, 1, and 24 h after the 

start of crowding, with maximum plasma cortisol levels of (72 ng.m1 -1). Plasma Hct did 

not change significantly throughout the experiment (14.29 ± 0.47, total mean ± SE). 

Resting plasma lactate levels were undetectable, but increased significantly 0.5 h after 

start of crowding and were significantly higher than resting levels at all other time 

periods except 8 and 12 days after start of crowding (Fig. 2.2b). Maximum plasma 

lactate levels (0.8 mmo1.1 -1) were recorded at 1 h. 

2.4.4. Experiment 3: Effect of repeat sampling 

Plasma levels of cortisol were close to non detectable limits in fish sampled within 10 

min of first disturbance, but increased considerably in fish sampled after 13 min (Fig. 

2.3a), indicating a response latency period of 10-13 min. Plasma levels of cortisol in 

the same fish were significantly higher than resting levels 1 and 3 h after start of 

confinement (Fig. 2.3b). 

2.4.5. Experiment 4: Effect of stocking density 

Plasma levels of cortisol were significantly higher in fish held at medium and high 

stocking density than in fish held at low stocking density, but did not vary significantly 

between medium and high stocking density (Fig. 2.4a). The order tanks were sampled 

from, or the order in which fish were sampled in those tanks, did not appear to 

influence the results, with no evidence that fish sampled last had higher cortisol levels 

(Fig. 2.4b). There was no relationship between plasma cortisol and body weight (r 2  = 

0.02, 0.06, 0.19, for low, medium and high stocking density respectively). 
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2.4.6. Experiment 5: Effect of stress and exercise 

Plasma cortisol was significantly elevated above resting levels at all other sample times 

(Fig. 2.5a). Maximum plasma cortisol levels (22 ng.m1 -1 ) were recorded 3 h after the 

start of exercise, and there was a decrease thereafter. Plasma lactate was significantly 

elevated above resting levels 0.5 and 1 h after start of exercise (Fig. 2.5b). Plasma [H1 

was significantly different from resting values 12 h after the start of exercise (Fig. 

2.5c). Muscle lactate and [H1 were not significantly elevated above resting levels at 

any time; however, the muscle [H +] recorded 0.5 h after the start of exercise, was 

significantly higher than muscle [H1 recorded from 3-12 h, post-exercise, and muscle 

[W] at 1 h was higher than levels at 3 and 12 h post exercise (Fig. 2.6). 
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Fig. 2.1. Plasma levels of cortisol in relation to a 3 h period of confmement 

(experiment 1, simulated grading). Values are mean ± S.E. (n = 10). Values that are 

not significantly different (P>0.05) share common superscripts. 
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Fig. 2.2. Plasma levels of a) cortisol and b) lactate in relation to a 3 h period of 

crowding and 5 min chasing (experiment 2, simulated grading). First trial (*), second 

trial (o). Values are mean ± S.E. (n = 8). Values that are not significantly different 

(P>0.05) share common superscripts. Statistical comparisons are within each trial 

only. 
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Fig. 2.3. Plasma levels of a) cortisol in fish sampled at '0 h', in relation to time from 

first disturbance of the tank until sampling (experiment 3, effect of serial sampling) 

and b) cortisol in the same fish serially sampled over 3 h (experiment 3). Values are 

for individual fish in a) and mean ± S.E. (n = 12) in b). (o) = mean of '0 h' samples 

taken from fish sampled within 10 minutes of first disturbance. Values that are not 

significantly different (P>0.05), share common superscripts. 
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Fig. 2.4. Plasma levels of a) cortisol in fish held at low, medium or high stocking 

density (numbers denote order in which tAnks were sampled) and b) cortisol in 

individual fish from these tanks in the order that fish were sampled. Values in a) are 

mean ± S.E. (n = 8). Values that are not significantly different (P>0.05) share 

common superscripts. 
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Fig. 2.5. Plasma levels of a) cortisol, b) lactate and c) [HI, in relation to 0.5 h 

exercise (experiment 5, effect of exercise). Values are mean ± S.E. (n = 7). Values 

that are not significantly different (P>0.05) share common superscripts. 
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Fig. 2.6. Muscle concentrations of a) lactate and b [HI, in relation to 0.5 h exercise 

(experiment 5, effect of exercise). Values are mean ± S.E. (n = 7). Values that are 

not significantly different (P>0.05) share common superscripts. 
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2.5. Discussion 

Plasma cortisol levels in wild fish sampled within 2 mm of capture, were assumed to 

represent basal cortisol concentrations in unstressed fish. These levels are similar to 

plasma cortisol values in other species captured from the wild and sampled 

immediately (typically < 5 ng.rn1 -1), and notably lower than levels in fish caught from 

the wild and sampled with some delay (reviewed in Pankhurst and Sharples, 1992). 

Plasma levels of cortisol were significantly higher in netted wild greenback flounder 

exposed to capture, confinement and transport, than in unstressed fish, indicating that 

commercial capture is highly stressful. Similarly, post stress plasma cortisol levels were 

high in wild plaice (Pleuronectes platessa) (158 ng.m1 -1) (White and Fletcher, 1989) 

and wild winter flounder (Pseudopleuronectes americanus) (83 ng.m1 -1) (Campbell. et  

al., 1976) caught from the wild and sampled after some delay. Reported pre-stress 

plasma cortisol levels in other teleosts are extremely variable, ranging from < 1 to 544 

ng.m1 -1  (Barton and Iwama 1991). It is now clear that plasma cortisol levels at the 

higher end of the range are most likely to be a reflection of fish being stressed at the 

time of sampling, rather than real variation between species in basal cortisol levels 

(Wendelaar Bonga, 1997). Pre-confinement plasma cortisol levels obtained from 

greenback flounder during simulated grading with confinement (Fig. 1) were much 

higher than those recorded from fish in the second grading experiment (Fig. 2a), or 

resting levels measured in wild fish. Sampling of fish in experiment 1 took 25 min due 

to the difficulty of removing fish from the 4000 1 community tank, and this appears to 

have generated the high cortisol levels recorded. This is confirmed by the subsequent 

pre-stress plasma cortisol levels measured during the repeat sampling experiment (Fig. 

3), which indicated that serial sampling from a common tank induced a cortisol 

response in the remaining fish 10-13 minutes after first disturbance. This is similar to 

the response latency found in most other teleosts. Serial sampling from a common tank 

induced a stress response in <15 min in cultured red drum (Sciaenops ocellatus) 

(Robertson et al., 1988), 12-14 mm in rainbow trout (Laidley and Leatherland, 1988), 

15 min in young-of-the-year striped bass (Marone saxatilis) (Young and Cech, 1993) 

and 1-2 h in the sea raven (Hemitriptrerus americanus) (Vijayan and Moon, 1994). 

This indicates that appropriate measurement of resting cortisol levels in greenback 

flounder requires blood samples to be collected within 10 min of first disturbance. 

Sampling of resting fish in experiment 2, where low basal cortisol levels were recorded 
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took 5 min, and plasma cortisol levels were consistent with cortisol levels measured in 

unstressed wild greenback flounder and other species. This shows that domesticated 

greenback flounder exposed to maintenance conditions have low plasma cortisol levels 

and are presumably unstressed. Our results further demonstrate the necessity to 

critically evaluate sampling procedures designed to measure cortisol as a stress 

parameter. 

Differential cortisol profiles were found in fish in the present study according to the 

type of stress imposed. Similarly other studies have shown that plasma cortisol 

response profiles can vary for a single species depending on severity and duration of 

the stress and experimental procedures used (Pickering and Pottinger, 1989; Barton 

and Iwama, 1991; Pankhurst and Sharples, 1992; Sumpter, 1997). Greenback flounder 

showed a slow return (48h) of cortisol to basal levels following a stress episode. This 

is towards the end of the range of recovery periods reported for other species. Plasma 

cortisol recovery profiles can vary between species and even strain, and tend to be 

related to the severity and type of stress (Pickering and Pottinger, 1989; Barton and 

Iwama, 1991; Sumpter 1997). Plasma cortisol levels returned to resting levels 1 h after 

90 sec of net confinement in young-of-the -year-striped-bass (Young and Cech, 1993), 

4 h after 30 sec emersion stress in brown trout (Salmo trutta) and rainbow trout 

(Pickering and Pottinger, 1989), 48 h in Atlantic salmon (Salmo salar), 24 h in the 

flounder (Platichthys flesus) and turbot (Scophthalamus maximus) after capture and 9 

min net confinement (Waring et al., 1992, 1996), 8h for brown trout and 24 h for 

rainbow trout after handling and 1 h confinement (Pickering and Pottinger, 1989), 24 h 

after capture from the wild in rainbow trout (Pankhurst and Dedual, 1994), 24 h in 

domesticated brown trout following capture and handling (Pickering et al., 1982), 24 h 

in the sea raven after air exposure and chasing (Vijayan and Moon, 1994), and 48 h in 

snapper after capture from the wild and transport to the laboratory (Pankhurst and 

Sharples, 1992). In general terms, theses studies indicate that recovery from an acute 

stress takes place within 48 h, and even less if the stress is of short duration (minutes). 

In contrast, chronic stress such as long term confinement can result in significantly 

elevated plasma cortisol levels for periods of up to 4 weeks before acclimation occurs 

(Pickering and Pottinger, 1989). 
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The fact that crowding and confinement generated increases in plasma cortisol in 

greenback flounder suggests that as well as being stressed by husbandry practices, 

flounder could suffer stress from maintenance at inappropriate stocking densities. This 

was confirmed by demonstration that plasma cortisol levels were significantly lower in 

fish held at low stocking density, than in fish held at medium and high stocking density. 

Plasma cortisol also increased with increasing stocking density in chinook salmon 

(Oncorhynchus tshawytscha) (Mazur and Iwama 1993) and brown trout (Pickering 

and Pottinger, 1985), and plasma cortisol was significantly higher in red drum held at 

medium and high density, than at low density (Robertson et al., 1987). In the present 

study plasma cortisol levels did not vary significantly between medium and high 

stocking density. High plasma cortisol levels found in one or two fish in both medium 

density tanks. This response could not be attributed to the order that fish were 

sampled, but may have been related to the development of behavioural hierarchies in 

the tanks, at medium stocking density. A previous study on juvenile greenback 

flounder demonstrated the existence of feeding dominance hierarchies in fish held in 

small groups, even at high feeding rations, whereas feeding hierarchy strength was low 

at high stocking density (Shelverton, 1995). Studies on other species have 

demonstrated that plasma cortisol is negatively correlated with increasing social 

dominance in coho salmon (Oncorhynchus kisutch) (Ejike and Schreck, 1980) and 

European eels (Anguilla anguilla) (Hyde and Perry, 1990). Studies on rainbow trout 

have clearly demonstrated that plasma cortisol levels are significantly higher when fish 

are stocked in pairs, than in isolation or larger groups, apparently due to intense social 

interactions under such conditions (Laidley and Leatherland, 1988; Pottinger and 

Pickering, 1992). Brown trout and red drum acclimate to high population densities and 

this is accompanied by decreasing plasma cortisol levels (Pickering and Stewart, 1984; 

Robertson et al., 1987), and acclimation is faster at high stocking density than medium 

stocking density in red drum. Acclimation to stocking density in greenback flounder 

cannot be determined from our experiment because multiple samples were not taken 

during the 14 day confinement period, but in brown trout and red drum crowding 

resulted in significant elevation of cortisol levels for 25 and 48 days respectively 

(Pickering and Stewart, 1984; Robertson et al., 1987). Because the previous studies 

on greenback flounder showed that food acquisition was positively correlated with 

body size (Shelverton 1995), we tested whether smaller animals were characterised by 

having higher plasma cortisol levels. However, there was no correlation between 
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plasma cortisol and body weight, suggesting that if differential cortisol levels did arise 

from dominance interactions, these were not primarily related to fish size. 

In other species, the effect of elevated cortisol on various physiological parameters is 

often inconsistent. Cortisol treatment decreased growth rates in channel catfish, 

Ictalurus punctatus and rainbow trout, whereas a handling protocol used to acutely 

elevate endogenous plasma cortisol daily, was insufficient to affect the growth rate of 

rainbow trout over a 10 week period (reviewed in Barton and Iwama, 1991). Both 

positive and negative effects of elevated cortisol levels on growth hormone (GH) have 

been reported (Barton and Iwama, 1991; Pankhurst and Van der Kraak, 1997; 

Wendalaar Bonga, 1997), hence the interaction between cortisol and GH requires 

further study. Many studies have reported that stress induced elevation in cortisol 

impaired reproductive function (reviewed in Barton and Iwama, 1991; Pankhurst and 

Van der Kraak, 1997; Wendalaar Bonga, 1997). However, there is conflicting 

evidence as to whether cortisol is responsible for the decrease in egg quality 

demonstrated by stressed fish, and the lack of a consistent effect of cortisol on ovarian 

steroidogenesis suggests that the effects of cortisol on reproductive function are 

indirect, possibly via cortisol-induced changes in metabolism or immunocompetence 

(reviewed in Pankhurst and Van der ICraak, 1997). Cortisol has generally been 

implicated in having inhibitory effects on the immune response. Stress induced 

elevation in plasma cortisol levels have been associated with reduced lymphocyte 

levels and antibody production and increased susceptibility to disease (reviewed in 

Barton and Iwama, 1991; Wendalaar Bonga, 1997), hence the negative effects of 

elevated cortisol on the immune response should not be ignored by the aquaculturist. 

The precise mechanisms of stress on growth and reproduction still requires further 

study. However, whether cortisol is the culprit or not, the important issue for 

aquaculturist, is that stressful husbandry practices do affect reproduction, growth and 

the immune response (reviewed in Barton and Iwama, 1991; Pankhurst and Van der 

Kraak, 1997; Wendalaar Bonga, 1997). 

In common with the blue mao mao (Scorpis violaceus) (Pankhurst et al., 1992), 

greenback flounder showed no significant changes in Hct in response to stress. This is 

in contrast to a range of other species such as Parore (Girella tricuspidata) (Ling and 

Wells 1985), rainbow trout (Wells and Weber 1991), and young-of-the-year striped 
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bass (Young and Cech 1993), which showed significant increases in Hct in response to 

stress. As suggested with blue mao mao, this may indicate that adrenergic effects occur 

rapidly and Hct values already show some adrenergic effect which is maintained 

throughout the experiment (Pankhurst et al., 1992). Alternatively, stress may have 

limited impact on red blood cell size or splenic release in greenback flounder, possibly 

because enhanced 0 2  carrying capacity and and/or hemoconcentration associated with 

high Hct, are of little consequence in less active, benthic dwelling species. This is 

supported by low Hct values prior to and following stress in flathead sole 

(Hippoglossides elassodon) (Turner et al., 1983) and starry flounder (Platichthys 

stellatus) (Wood et al., 1977) versus non-flatfish species (Ling and Wells 1985; Wells 

and Weber, 1991; Pankhurst et al., 1992;Young and Cech 1993). These results 

suggests that Hct is not a useful stress indicator in greenback flounder and possibly 

other flatfish species. 

Plasma lactate in rested wild greenback flounder and unstressed or exercised cultured 

greenback flounder were within the range of resting levels found in other flatfish 

species (Dando, 1969; Wood et al., 1977; Wardle, 1978; Girard and Milligan, 1992; 

Waring et al., 1992, 1996). Exercise induced significant increases in plasma lactate 

levels 0.5 and 1 h post exercise, but the values were lower than plasma lactate 

increases after exercise protocols found in starry flounder (Wood et al., 1977), plaice 

(Wardle, 1978), and winter flounder (Girard and Milligan, 1992), but higher than post 

exercise plasma lactate increases found in flounder (Platichthys flesus L.) (Waring et 

al., 1992), and net confined turbot (Waring et al., 1996). Plasma levels of lactate in 

commercially caught greenback flounder were significantly higher than lactate levels in 

resting wild fish, approximately 10 fold higher than maximum plasma lactate levels 

measured in response to simulated grading and exercise, considerably higher than 

levels reported in other flatfish species after exercise protocols (Wood et al., 1977; 

Girard and Milligan, 1992; Waring et al., 1992) higher than plaice sampled 

immediately after trawling in one study (Dando, 1969), and similar to levels after 

trawling in another (Wardle (1978). The exact period of capture of greenback flounder 

in the seine net cannot be determined, but may have been up to 12 h, suggesting that 

extreme exercise conditions can induce considerable increases in plasma lactate. It has 

been reported that trout acclimated to 18 °C have blood lactate levels approximately 

twofold higher than trout acclimated to 5 °C (Kiefer et al., 1994). Wild greenback 
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flounder were caught from sea temperatures of 16 -i.- 1 °C which is higher than water 

temperatures in studies on other flatfish species (Wood et al., 1977; Wardle, 1978; 

Girard and Milligan, 1992), and may explain interspecific differences. 

Greenback flounder that were chased for 30 min had plasma lactate levels of similar 

magnitude to fish exposed to 5 min of chasing and crowding, but post exercise 

recovery was more rapid. It is possible that fish became hypoxic during crowding and 

chasing, which in combination with anaesthesia (fish were not anaesthetised after 30 

minutes of chasing) resulted in greater hypoxic stress. Fish exposed to simulated 

grading had considerably higher plasma cortisol levels than fish that were chased but 

not confined for 30 min. Cortisol is often associated with hyperglycemia (reviewed in 

Pankhurst and Van Der Kraak, 1997), and it is possible that the energy mobilising 

properties of cortisol increased the availability of blood glucose for lactate production 

during anaerobic respiration. 

In teleost fish the major fate of lactate during recovery from exercise is via in situ 

glycogenesis within the white muscle, as opposed to the mammalian pattern of 

releasing lactate into the plasma for oxidative glyconeogenesis via the Cori cycle in the 

liver. In flatfish, the post exercise plasma lactate increase is small when compared to 

other more active teleost species (with the proviso that most of the data are from 

salmonids) (Turner et al., 1983a, b; Waring et al., 1992; Carragher and Rees, 1994; 

Pankhurst and Dedual, 1994), and in situ glycogenesis seems to be much more 

significant in flatfish species than in the more active teleost species (Wardle, 1978; 

Batty and Wardle, 1979; Turner et al., 1983b; Milligan and McDonald, 1988; Girard 

and Milligan, 1992). The proposed advantage of retaining lactate in the muscle rather 

than releasing it to the plasma, is to avoid possible loss of new glucose formed in the 

muscle, to other tissues, which may be important for sedentary species with a lower 

aerobic capacity. Retention of muscle lactate and in situ glycogenesis in most flatfish is 

associated with marked post-exercise increases in muscle lactate. This was not the case 

in greenback flounder where muscle lactate was not elevated above resting levels 

following stress and exercise. It is possible that the exercise protocol in this experiment 

was not sufficient to produce an anaerobic response, however, it was considerably 

longer than those used on plaice (Wardle, 1978) and winter flounder (Girard and 

Milligan, 1992). Resting levels of muscle lactate in greenback flounder appear to be 
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higher than resting levels reported in other flatfish species (Dando, 1969; Wardle, 

1978; Girard and Milligan, 1992). It is also possible that the fish used in our 

experiment were exercised prior to the start of the experiment, and that muscle lactate 

levels were not indicative of real resting muscle lactate levels, but we consider this 

unlikely. Greenback flounder are most active at night time and during feeding, as 

indicated by increased oxygen consumption (personal communication, B. Crear, 

Department of Aquaculture, University of Tasmania), but it is unlikely that this activity 

would be sufficient to significantly elevate muscle lactate levels. Even if this were the 

case, we would have expected to see recovery of muscle lactate over the time course 

of the experiment (as in other flatfish species eg Girard and Milligan, 1992), and this 

did not occur. 

The fact that muscle lactate did not increase post-exercise in greenback flounder, 

suggests that the low plasma lactate response was perhaps not due to muscle 

accumulation of lactate, and may mean that greenback flounder have quite high 

aerobic scope. This is supported by the fact that plasma lactate does increase to high 

levels under very extreme exercise or stress conditions as it did in netted wild fish. 

High aerobic scope is a promising characteristic for aquaculture of greenback flounder, 

as lactate accumulation due to anaerobic exercise has been linked to post-capture 

mortality (Graham et al., 1982; Ferguson and Tuft, 1992) and poor flesh quality in 

other species (Wells et al., 1986; Watabe et al., 1991; Lowe et al., 1993). 

Alternatively, fish size is reported to affect exercise metabolism in rainbow trout, with 

larger fish producing more muscle lactate post-exercise than small fish (Pearson et al., 

1990). Laboratory fish used in our experiment were considerably smaller than the wild 

greenback flounder and wild fish used in other flatfish studies (Wood et al., 1977; 

Wardle, 1978; Girard and Milligan, 1992). It is also possible that cultured greenback 

flounder react differently to exercise conditions than wild fish. Studies on wild 

populations of salmonids have reported low mortality following capture, whereas 

exercise in laboratory stocks result in much higher mortality (reviewed in Pankhurst 

and Dedual, 1994). 

Plasma [H +] gradually decreased following stress and exercise and was significantly 

lower than pre-exercise levels 12 h after exercise in greenback flounder. These results 

are in contrast to studies on other flatfish, in which there were significant increases in 
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plasma [1-11 after exercise in the flathead sole (Turner et al., 1983b) and starry 

flounder (Wood et al., 1977). A number of teleost species show differential release of 

protons and lactate from muscle (Turner et al., 1983b; Schwalme and Mackay, 1985; 

Waring et al., 1992). For example, in the flathead sole, metabolic plasma [H1 was 

much higher than plasma lactate, indicating that protons were released to the plasma at 

a faster rate than lactate, suggesting that lactate was retained in the muscle for in situ 

recycling. The reverse appears to occur in greenback flounder, with muscle [W] 

peaking in concert with post-exercise increases in plasma lactate. 

This study indicates that some routine husbandry procedures elicit stress responses in 

greenback flounder. Whether or not this has an impact on productivity has yet to be 

determined. Further studies need to be carried out to determine the impact of stressful 

husbandry practices on growth, reproduction and the immune response of greenback 

flounder. Until this information becomes available, stress management should be 

considered an important component of technology development for this emerging 

aquaculture species. 
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3. Reproductive biology and endocrinology of greenback flounder 

Rhombosolea tapirina (Gunther, 1862). 

3.1. Summary 

The relationship between patterns of gonadal development and endocrine changes 

during reproductive development was examined in the greenback flounder 

(Rhombosolea tapirina). Different female macroscopic gonad stages were 

characterised by statistically significant differences in GSI. Oocyte size frequency 

distributions and histological examinations showed that female greenback flounder 

have group synchronous oocyte development, and that there are multiple ovulations. 

Plasma and ovarian levels of testosterone (T) and 1713-estradiol (E2) were elevated in 

association with vitellogenesis. Plasma levels of 17a2013-dihydroxy-4-pregnen-3-one 

(17,2013P) were significantly elevated in ovulated females, whereas ovarian levels of 

17,2013P were elevated in association with final oocyte maturation (FOM) and 

ovulation. Plasma levels of 17,2013P-sulphate but not 17,2013P-glucuronide were 

elevated in association with FOM and ovulation. Changes in macroscopic testis stage 

were not accompanied by significant changes in GSI, and histological examination of 

testes showed very few changes in proportions of gamete types between gonad stages. 

Plasma levels of T were elevated in spermatogenic and partially spermiated males. No 

significant changes in plasma 11-ketotestosterone (11KT), 17,2013P, 17,2013P-sulphate 

and 17,2013P-glucuronide were detected with change in gonad stage of males. 

3.2. Introduction 

The greenback flounder Rhomobosolea tapirina (Pleuronectidae) is distributed 

throughout the waters surrounding southern Australia and New Zealand (Ayling and 

Cox 1982). Approximately 140 t per annum are harvested commercially in southern 

Australia (Kailola et al., 1993). Although there is considerable interest in developing 

aquaculture of greenback flounder in Tasmania (Hart 1993) and pilot aquaculture 

schemes are underway, egg production and egg quality have been variable (Crawford, 

1984; Hart, 1991; Hart and Purser, 1995). Successful management depends on an 

understanding of the physiological mechanisms initiating and mediating gonadal 
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development. Previous studies have indicated that the species has a prolonged 

reproductive season, from March to October (Kurth 1957; Crawford 1984), is a 

multiple spawner and has a fecundity per gram body weight ranging from 4343 - 5250 

(Crawford 1984); however, nothing is known about the reproductive endocrinology of 

greenback flounder. 

Changes in reproductive condition were examined in relation to plasma levels of the 

gonadal steroids testosterone (T), 1713-estradiol (E2), 17a2013-dihydroxy-4-pregnen-3- 

one (17,2013P), and 11-ketotestosterone (11KT). These steroids were chosen for 

measurement because they are markers of reproductive events in other teleost species. 

E2 and T are commonly measured in females as indicators of ovarian development 

(Pankhurst and Carragher 1991), whereas 17,2013P is the maturation inducing steroid 

in a number of teleost species (reviewed in Scott and Canario 1987). In male teleosts, 

elevated plasma levels of T are often associated with spermatogenesis (Fostier et al., 

1987; Pankhurst and Conroy 1987, 1988; Harmin et al., 1995). 11KT is also suggested 

to play a role in spermatogenesis (Scott et al., 1984; Dedual and Pankhurst 1992; Borg 

1994; Harmin et al., 1995) and possibly spermiation (Fostier et al., 1987; Pankhurst 

and Conroy 1987; Carolsfeld et al., 1996). 17,2013P is often elevated in association 

with spermiation (Scott et al., 1984; Fostier et al., 1987; Carolsfeld et al., 1996), and 

treatment of males of some species with 17,2013P generates an increase in milt volume 

(reviewed in Pankhurst 1994). 

Steroids may be metabolised or conjugated soon after production with the result that 

free steroids may be difficult to detect (Scott and Vermeirssen 1993). Conjugated 

steroids are formed when hydroxyl groups of steroids are conjugated with glucuronic 

acid (glucuronides) or sulphuric acid (sulphates). These steroid derivatives are more 

water soluble than the parent steroids, and are therefore readily excreted in the bile and 

/or urine (Scott and Vermeirssen 1993). Conjugated steroids can be measured from 

blood plasma or urine and may provide information regarding key biologically active 

steroids that are difficult to detect in blood plasma because they are released in a 

pulsatle fashion, or in small amounts, or are rapidly metabolised (Scott and 

Vermeirssen 1993). Accordingly, we also measured plasma levels of the steroid 

conjugates 17,2013P-sulphate and 17,2013P-glucuronide, for comparison with changes 

in plasma 17,2013P and reproductive condition. 



Most studies that investigate reproductive steroid cycles in teleosts measure levels of 

steroids from the plasma (reviewed in Pankhurst and Carragher, 1991). A few studies, 

however, have demonstrated that plasma and ovarian steroid levels are not always 

correlated (Bradford and Taylor 1987; Singh and Singh 1987; Hobby and Pankhurst 

1997), probably because of the potential for metabolism and conjugation of free steroid 

by the processes discussed above. To provide a more thorough assessment of 

reproductive events in greenback flounder, in this study we measured both plasma and 

ovarian levels of T, E2, and 17,2013P. 

It is well established that fish are stressed by capture and handling (Billard et al., 1981; 

Barton and Iwama 1991; Pickering 1992) and stress has the capacity to suppress 

plasma levels of E2 and T (Canagher and Pankhurst 1991; Clearwater and Pankhurst 

1997). Plasma cortisol is commonly measured as an indicator of physiological stress 

(Donaldson 1981; Barton and Iwama 1991). In this study, to evaluate the possible 

effect of capture stress on plasma steroid levels, we measured plasma levels of cortisol, 

E2 , T and 17,2013P in a subsample of fish sampled within 2 mins of capture (assumed 

to represent resting cortisol levels) for comparison with values from the majority of 

fish, which experienced commercial capture. 

3.3. Materials and Methods 

Fish were obtained by commercial gill netting from George's Bay (148 °  16' E, 41 ° 19' 

S) and the Tamar River (147 ° 45' E, 41 0  19' S), on the east and north coast of 

Tasmania respectively. Additional fish were obtained by hand spear while snorkelling 

or hand netted by scuba divers from Georges Bay and Bicheno (148 ° 18' E, 410  52' S) 

on the east coast of Tasmania. Fish caught while snorkelling were sampled on the boat, 

and fish sampled by scuba divers were sampled under water using the technique given 

by Pankhurst (1990), both within 2 mins of capture. Blood samples were collected by 

caudal puncture. Fish were collected between July 1994 and September 1996 (Table 

3.1). Total body weight, gonad weight, liver weight and macroscopic gonad stage 

were recorded for all fish. Gonadosomatic index (GSI) was calculated as (gonad 

weight / body weight) x 100. Oocyte diameters, histological samples and blood 

samples were collected from fish deemed representative of the population. 
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3.3.1. Gonad staging 

Criteria for staging of whole gonads are given in Table 3.2. Oocyte diameters were 

measured from fresh ovarian tissue randomly selected from the ovaries (oocyte 

diameters did not differ significantly between left and right gonads, or between 

anterior, middle and posterior positions in the left and right gonad, data not shown). 

The tissue was separated by gentle aspiration through a glass pipette and spread 

throughout a sorting tray. Oocytes were classified as primary, cortical alveoli, 

vitellogenic, germinal vesicle migration (GVM) and germinal vesicle breakdown 

(GVBD), hydrated or atretic. Primary and cortical alveoli oocytes were very abundant 

but were not sampled representatively. Instead, a standard sample of 100 primary and 

cortical alveoli oocytes was measured under a dissecting microscope, whereas two 

hundred and fifty vitellogenic and mature oocytes were measured as encountered. 

Classifications of oocyte staging were verified by clearing oocytes of each type in sera 

solution (ethanol:foramlin:acetic acid, 6:3:1 v/v), to determine the presence or position 

of the germinal vesicle (GV). Vitellogenic oocytes had a centrally located GV, mature 

oocytes had an eccentric GV or had undergone GV migration and breakdown. Atretic 

oocytes did not clear in sera solution. Macroscopic staging of gonads was verified by 

examination of ovarian and testicular sections prepared using standard paraffin wax 

histology (Fig. 3.1). Hisological sections were stained with haemotoxin eosin stain. 

Oocyte stages were assigned according to criteria derived from Wallace and Selman 

(1981), Janssen et al., (1985) and Clearwater and Pankhurst (1997) (Table 3.3). 

Spermatogenic stages were assigned according to criteria derived from Grier (1981) 

(Table 3.3), and frequency of male gamete types were recorded from under the 

intercepts of a 64 point grid (640 measurements per section). 

3.3.2. Steroid measurement 

Plasma levels of cortisol, T, and 17,2013P, were measured for males and females, 

11KT for males and E2 for females by radioimmunoassay (RIA). One hundred 

microlitres of plasma were extracted with 1 ml of ethyl acetate and 100p1 of extract 

were added to each assay tube for evaporation and resuspension in assay buffer, using 

the reagents and protocol given in Pankhurst and Conroy(1987). Extraction efficiency 

was determined by recovery of {3H]-.labelled steroid extracted with plasma, and was on 

average 95%, 92%, 95%, 82% and 84% for cortisol, T, 17,208P, 11KT and E2 

respectively. Assay values were corrected accordingly. Assay detection limits were 0.6, 
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0.28, 0.29, 0.25 and 0.25 ng.m1 -1  plasma for cortisol, T, 17,2013P, 11KT and E2 

respectively. Steroid levels in ovarian tissue were measured by homogenising 0.125 g 

of tissue in 1 ml of ethyl acetate, and centrifuging the homogenate at 3000 g for 10 

minutes. One hundred microlitres of extract were measured in assays as before. 

Glucuronide and sulphate conjugates, were measured by mixing 100 pl of plasma with 

1 ml of ethyl acetate in a stoppered test tube, shaking, centrifuging for ten minutes at 

800 g, freezing at -80°C for 1 hr and pouring off the solvent fraction. 17,2013P-

glucuronide was determined by treating the aqueous residue with 50 pl of 13- 

glucuronidase (Sigma) (10,000 U.mL -1) and incubating for 24 hr at 37 °C. A further 50 

pl of 13-glucuronidase were added to the residue and the mixture incubated for another 

24 hr at 37°C. Free steroid liberated was extracted with ethyl acetate and measured as 

before. 17,2013P-sulphate was determined by acid solvolysis using reagents and 

protocols given in Scott and Canario (1992), except HC1Jethyl acetate (1/100, v/v) was 

used instead of trifluroacetic acid/ ethyl acetate. The residue was redissolved in 100 pl 

of assay buffer and free steroid was measured as before. Interassay variability was 

measured using a 100 pl pooled steroid standard giving %CV's of 9% (n=4), 9% 

(n=5), 18.5% (n=9) and 12% (n=5) for cortisol, T, 17,2013P and E2 respectively. 11KT 

was measured in a single assay. 

3.3.3. Statistical analysis 

Analysis of variance, mutivariate analysis of variance (MANOVA), mean comparison 

tests and correlations were performed using the computer package SPSS for Windows 

and JMP for Macintosh. Data were log or square root transformed to satisfy normality 

and homogeneity of variance requirements. A significance level of a<0.05 was used for 

all statistical test 
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Table 3. 1. Date of capture and number of fish collected of each macroscopic gonad 
stage.stage. 

Date of capture 
Sex Stage July Aug Sept Oct Aug April June Aug Sept 

94 94 94 94 95 96 96 96 96 
Female 1 1 

2 2 
3 18 12 8 5 2 6 2 2 
4 4 1 3 
5 5 7 
6 3 11 4 3 3 

Male 1 1 
2 3 2 3 2 1 
3 1 8 2 2 
4 2 3 1 2 1 
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Table 3. 2. Criteria for macroscopic staging of greenback flounder gonads 

Modified from Crawford 1984; Scott et al., 1993; Barnett and Pankhurst 1994. 

Sex Stage Classification Macroscopic appearance 
Female 1 Immature Ovary clear thread 

2 Regressed Ovary small, semi-firm, grey-orange 
3 Vitellogenic Ovary large, yellow-orange, vitellogenic 

oocytes may be visible through the 
epithelium 

4 Final oocyte 
maturation 

Ovary large and plump, yellow-orange. 
Vitellogenic and hyaline oocytes visible 

through the epithelium 
5 Ovulated Oocytes can be freely expelled from the 

oviduct with gentle pressure. 
6 Spent Ovary flaccid, grey, degenerating 

ooctyes or no oocytes visible 

Male 1 Immature Testis translucent thread 
2 Spermatogenic Testis small firm white thread 
3 Partially spermiated Testis firm, white and viscous milt 

expressible under pressure 
4 Fully spermiated Testis plump, firm, white and milt flows 

freely under gentle pressure 
5 Spent Testis bloody and flaccid, no milt 

expressible 
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Fig. 3.1. Micrographs of histological sections from greenback flounder ovaries and 

testes, showing (a and b) stage 3 ovary, (c) stage 4 ovary, (d) stage 3 testis. CA = 

cortical alveolar, CN = chromatin nucleolar, GVM = germinal vesicle migration, n = 

nucleus, PN = perinucleolar, SC1 = primary spermatocytes, SC2 = secondary 

spermatocytes, SPD = spermatids, SPZ = spermatozoa, V — vitellogenic. Scale bars 

(a-c) = 100 pm, (d) = 10 pm. 
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Table 3. 3. Criteria for histological staging of greenback flounder gonads modified 

from Grier 1981; Wallace and Selman 1981; Janssen et al., 1995; Clearwater and 

Pankhurst 1997. 

FEMALES 

Cell classification 	Diameter (gm) 
	

Description 

Chromatin nucleolar 

Vitellogenic 

Germinal vesicle 
migration 

Hydrated 

	

10-60 	 Low cytoplasm: nucleus ratio. Single dark staining 
nucleolus within light staining nucleus. Cytoplasm stains 

dark purple. 

	

50-120 	Nucleus contains multiple dark staining nucleoli around 
the periphery. Cytoplasm stains light purple. 

	

120-240 	 Nucleoli are closely associated with the nuclear 
membrane. Yolk vesicles appear within the cytoplasm. 
Zona radiata becomes visible beneath the follicle layer. 

	

200-450 	Oocyte increases in size. Red yolk granules increase in 
size and number within the cytoplasm. Zona radiata 

becomes thicker and stains red. 

	

350-490 
	

Nucleus moving towards animal pole. 

	

470-600 	Oocyte much enlarged, no nucleus present, but single oil 
droplet may be visible. Cytoplasm appears red-pink, 

follicle layer stretched to a thin layer. 

A single layer of granulosa cells may appear as a thin 
strip or an irregularly shaped mass. 

Loss of cellular organisation and spherical shape. 
Granular inclusions and vacuoles in cytoplasm. 

Perinucleolar 

Cortical alveolar 

Postovulatory follicles 

Atretic 

MALES 

Cell classification 	Diameter (gm) 
	

Description 

Spermatogonia 

Primary spermatocytes 

Secondary spermatocytes 

Spermatids 

Spermatozoa 

5-7 	Largest cell visible in the testis, light staining with visible 
nucleus. 

3-4 	 Light staining, granular appearance. 

3-4 	 Dark staining with dense nucleus. 

1.5 	 Small cell with dense staining nucleus and clear 
cytoplasm. 

<1 	Small dense staining heads, tails often visible. Found in 
luminal ducts in the testis. 
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3.4. Results 

Seventy four percent of the fish collected were females. Most of the female fish 

collected were stage 3 (vitellogenic), and stage 6 (spent) females were next most 

abundant. Very few stage 4 (final oocyte maturation (F0M)) or stage 5 (hydrated) 

females were encountered, and only during September 1994 and August-September 

1996. Only two stage 2 (resting) females and one stage 1 (immature) female were 

captured. Most of the male fish were stage 3 (partially spermiated). Stage 2 

(spermatogenic) males were next most abundant followed by stage 4 (fully spermiated) 

males. Only one immature male, and no spent males were found. 

The mean GSIs for stage 3, 4 and 5 females (mean ± S.E. of 13.2 ± 0.6, 18.3 ± 3.5 

and 15.3 ± 2.9 respectively) were significantly higher than the mean GSI for stage 6 

females (4.3 ± 0.3), and the mean GSI for stage 4 females was significantly higher than 

the mean GSI for stage 3 females, but there was no difference in GSI between stage 4 

and 5 females. There were no significant differences in mean GSI between male gonad 

stages (mean ± S.E. of 1.16 ± 0.18, 1.21 ± 0.07 and 1.43 ± 0.14) for stage 2, 3 and 4 

males respectively. 

Size-frequency distributions of oocytes showed that oocyte development is group 

synchronous (Fig. 3.2). Stage 3 ovaries were characterised by the highest proportions 

of vitellogenic oocytes which were recruited into FOM in stage 4 and 5 ovaries. Stage 

4 ovaries contained some hydrated oocytes, and were the only ovarian stage to contain 

oocytes undergoing GVM and GVBD. Stage 5 ovaries were characterised by high 

proportions of hydrated oocytes. Both stage 4 and 5 ovaries contained only small 

numbers of vitellogenic oocytes. Stage 6 ovaries contained a large population of 

degenerating vitellogenic oocytes undergoing atresia. All ovarian stages had large 

proportions of primary and cortical alveoli stage oocytes. 

Changes in macroscopic stages of ovaries from female greenback flounder were 

accompanied by significant changes in the proportions of oocyte types recorded from 

histological sections (MANOVA - Pillais trace statistic: Prob>F = 0.0001) (Fig. 3.3). 

Proportions of oocyte stages from histological sections were similar to proportions of 

oocytes from fresh tissue and also indicated group synchronous oocyte development. 

Stage 3 ovaries were characterised by the highest proportions of vitellogenic oocytes, 
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stage 4 ovaries contained small proportions of pre-vitellogenic and vitellogenic 

oocytes, large proportions of hydrated oocytes and were the only stage to contain 

oocytes undergoing GVM. Stage 5 ovaries were characterised by hydrated oocytes and 

stage 6 ovaries were characterised by higher proportions of atretic oocytes. All ovarian 

stages contained pre-vitellogenic and vitellogenic stage oocytes. 

There were no statistically significant changes in the proportions of gamete stages 

between male gonad stages (MANOVA - Pillais trace statistic: Prob>F = 0.4486), 

(Fig. 3.4). 

Different macroscopic stages of gonads in female greenback flounder were 

characterised by significant changes in plasma and ovarian levels of T, E2 and 17,2013P 

(Fig. 3.5) and plasma levels of 17,208P-sulphate, but not 17,208P-glucuronide (Fig. 

3.6a). Stage 3 females had significantly higher plasma and ovarian tissue levels of T 

and E2 than stage 4, 5 or 6 females. There were no significant differences in plasma or 

ovarian tissue levels of T or E2 between stage 4, 5 and 6 females. Plasma levels of 

17,208P were significantly higher in stage 5 females, than in stage 3, 4 or 6 females, 

but there were no significant differences in plasma levels of 17,2081 3  between stage 3, 

4, and 6 females (Fig. 3.5a) . Ovarian levels of 17,208P were significantly higher in 

stage 4 and 5 females than stage 3 females, but there was no significant difference in 

ovarian levels of 17,2013P between stage 4, 5 and 6 females or between stage 3 and 6 

females (Fig. 3.5b). Stage 4 and 5 females had significantly higher plasma levels of 

17,2013P-sulphate, than stage 3 or 6 females, and there was no significant difference in 

plasma levels of 17,2013P-sulphate between stage 3 and 6 females and stage 4 and 5 

females. 

Changes in male gonad stage were accompanied by significant changes in T, but not 

11KT, 17,208P (Fig. 3.7), 17,2013P-sulphate or 17,208P-glucuronide (Fig. 3.6b). 

Plasma levels of T were significantly higher in stage 3 males than stage 4 males, but 

there was no significant difference in plasma levels of T between stage 2 and 3 or stage 

2 and 4 males. 

Plasma levels of cortisol were lower in stage 3 and 6 females sampled within 2 mins of 

capture compared with commercial capture (Table 3.4). Plasma levels of T, E2 and 
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17,2013P were higher in rapidly sampled stage 3, but not stage 6 females than 

commercially caught stage 3 females. 



Fig. 3.2. Frequency of oocyte diameters from each macroscopic ovarian stage (see 

materials and methods for details on sampling procedure). Sample sizes are shown in 

parentheses. 
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Figure 3.3. Frequency of oocyte stages in histological sections of each macroscopic 

ovarian stage. Values are means + S.E. Sample sizes are shown in parentheses. AT = 

atretic, CA = cortical alveolar, CN = chromatin nucleolar, EF = evacuated follicles, 

GM = germinal vesicle migration, HY = hydrated, PN = perinucleolar, V = 

vitellogenic. Oocyte types are described in Table 3.3. 
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Fig. 3.4. Frequency of male gamete stages in histological sections of each macroscopic 

testicular stage. Values are means + S.E. SC1 = primary spermatocytes, SC2 = 

secondary spermatocytes, SPD = spermatids, SPZ = spermatozoa. Gonad stages are 

described in Table 2. 
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Fig. 3.5. (a) Plasma and (b) ovarian levels of reproductive steroids in relation to female 

gonad stage. Values are mean + S.E. F3, F4, F5 and F6 = female gonad stages three (n 

= 42), four (n = 7), five (n = 12) and six (n = 18) respectively. Gonad stages are 

described in Table 2. Values that are not significantly different (P>0.05) share common 

superscripts. 
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Fig. 3.6. Plasma levels of 17,20I5P conjugates in relation to a) female and b) male 

gonad stage. Values are mean + S.E. F3, F4, F5 and F6 = female gonad stages three (n 

= 42), four (n = 7), five (n = 12) and six (n = 18) respectively. M2, M3 and M4 = male 

gonad stages two (n = 8), dime ( n = 10) and four (n =9) respectively. Gonad stages 

are described in Table 2. Values that are not significantly different (P>0.05) share 

common superscripts. 
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Fig. 3.7. Plasma levels of reproductive steroids in relation to male gonad stage. 

Values are mean + S.E. M2, M3 and M4 = male gonad stages two (n = 8), three ( n 

= 10) and four (n =9) respectively. Gonad stages are described in Table 2. Values 

that are not significantly different (P>0.05) share common superscripts. 
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Table 3. 4. Plasma levels of steroids in female fish sampled within 2 mins of capture, 

compared with commercial capture. Values show means ± S.E. 

Gonad stage 	Steroid 

3 	cortisol 
T 
E2 

17,2013P 

6 	cortisol 
T 
E2 

17,2013P 

2 mins of capture 
(n=3) 

0.6± 0.17 
7.9± 1.22 
9.9 ± 0.94 
0.5 ± 0.06 

(n=4) 
4.8 ± 3.35 
0.5 ± 0.04 
0.5 ± 0.03 
0.4 ± 0.03 

commercial capture 
(n=42) 

25.9 ± 2.33 
3.2 ± 0.48 
3.5 ± 0.48 
0.3 ± 0.01 

(n=18) 
24.3 ± 5.14 
0.6 ± 0.05 
0.75 ± 0.06 
0.32 ± 0.01 
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3.5. Discussion 

Previous studies on greenback flounder showed that the reproductive season was very 

prolonged (March to October), and that females were more abundant in shallow water 

(<10 m), whereas males were more abundant in deep water (10-25 m) (Kurth 1957; 

Crawford 1984). It was also observed that the highest percentage of mature females 

sampled in any one month occurred in deeper waters, and greater abundances of larvae 

were found near the mouths than further up estuaries, suggesting that spawning occurs 

in deeper water and that females move into deeper offshore waters for spawning 

(Crawford 1984). In our study, fish were collected in shallow water by gill net, which 

may explain why females were more commonly caught than males, and why there were 

relatively few stage 4 males or stage 4 and 5 females. Crawford (1984) did report that 

there were very few running ripe females sampled at any depths, suggesting that FOM 

and hydration and spawning occupy relatively short periods (Crawford 1984). 

GSI was shown to increase with maturity in female greenback flounder. GS! has also 

been found to increase in association with ovarian development in other teleost species 

(deVlaming 1983; Singh and Singh 1987; Johnson et al., 1991; Carragher and 

Pankhurst 1993; Clearwater and Pankhurst 1994) and provides a useful basic 

measurement of gonadal anabolism. Changes in oocyte diameters and oocyte types 

during gonadal development indicated that female greenback flounder have distinct 

groups of oocyte stages. This indicates that oocyte development is group synchronous 

with a capacity for multiple ovulations within a reproductive season. Hatchery fish 

induced to ovulate with exogenous hormones will ovulate on a daily basis after 

stripping (Barnett and Pankhurst, 1998a and b, chapters 4 and 5 this volume). Our 

unpublished observations show that naturally ovulating hatchery fish, naturally 

ovulated wild fish brought into captivity and wild fish brought into captivity and 

induced to ovulate with exogenous hormones, also ovulate daily after stripping, for a 

period of 3-5 days. We assume that this also occurs in the wild. In the absence of 

information on short term changes in ovarian cycling from individual fish, it is not clear 

whether oocytes are recruited from a batch of cortical alveoli, vitellogenic or mature 

stage oocytes. The likelihood of daily ovulations from cortical alveoli stage oocytes is 

not known, however, in repeat ovulating striped trumpeter (Latris lineata), oocytes 

progress from cortical alveolus stage to ovulation every 3 days (Morehead et al., 
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1998). This is in contrast to species such as the New Zealand snapper (Pagrus 

auratus) which ovulates on a daily basis for most of the spawning period, and this is 

reflected in asynchronous ovarian development with a complete range of vitellogenic 

oocyte sizes present in the ovary at any one time (Scott, et al., 1993). The fact that 

plasma levels of T and E2 were not elevated in stage 4 and 5 females suggests that 

oocytes were most likely recruited on a daily basis from a clutch of mature oocytes, 

however, examination of short term (< 24 hours) biopsy samples would be required to 

fully establish the nature of the greenback flounder ovulatory cycle. 

Male greenback flounder differ from many other species in which GSI and proportions 

of gamete stages were reported to change during testicular development (Dedual and 

Pankhurst 1992; Carragher and Pankhurst 1993; Harmin et al., 1995; Carolsfeld et al., 

1996). The absence of statistical differences in GSI or histological (cell type) 

differences between male gonad stages, indicates that seasonal changes in testis 

condition are small. This suggests that either testis development occurs early in the 

season and there are no subsequent changes as a result of spawning activity, or there is 

continuous recruitment of male gametes with periodic spawning of low volumes of 

milt. Although we have no information on the gonadal cycling of individual male 

greenback flounder, a previous study shows that a very high proportion of the male 

population is spermiated throughout the entire reproductive season (Crawford 1984). 

Elevated levels of plasma and ovarian T and E2 in vitellogenic female greenback 

flounder are consistent with changes in T and E2 in other species. E2 controls synthesis 

of the yolk precursor vitellogenin, which is incorporated into the growing oocyte 

during vitellogenesis (reviewed in Specker and Sullivan 1994). T acts as a precursor 

for the synthesis of E2 (Kagawa et al., 1984; Matsuyama et al., 1988) and is also 

involved in positive feedback stimulation of the pituitary synthesis of gonadotrophin 

(GtH) (Crim et al., 1981; Trudeau et al., 1993). 

Plasma levels of T and E2 were a good reflection of concurrent production of T and E2 

in the ovary in greenback flounder. Similar relationships existed between plasma and 

ovarian levels of T and E2 in the demoiselle (Chromis dispilus), but not for plasma and 

ovarian levels of T and E2 in the New Zealand snapper (Hobby and Pankhurst 1997), 

for E2 in the killifish (Bradford and Taylor 1987), and T in the catfish (Clarias 

batrachus) (Singh and Singh 1987). Suggestions provided to explain the poor 
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correlations between ovarian and plasma T and E2 were high retention of steroids in 

the plasma by binding proteins (Bradford and Taylor 1987), and indistinct steroid 

peaks if the ovarian cycle is of short duration as in the daily ovulating New Zealand 

snapper (Hobby and Pankhurst 1997). Greenback flounder also ovulate daily, however, 

plasma and ovarian levels of T and E2 are still correlated, probably because of the 

distinct separation of the developing oocyte clutches. 

Plasma and ovarian levels of 17,20I3P in female greenback flounder were significantly 

elevated in association with ovulation or FOM and ovulation respectively, however, 

levels were always low. In many marine species, particularly pleuronectiformes and 

partial ovulators, plasma 17,20I3P levels often show similar lack of variation in 

association with FOM (Pankhurst and Conroy 1987; Scott and Canario 1987; Dedual 

and Pankhurst 1992; Carragher and Pankhurst 1993; Barnett and Pankhurst 1994). 

There are several suggestions explaining low or non-significant changes in 17,201W in 

relation to oocyte maturation; (1) changes in plasma levels of 17,20I3P are pulsatile, 

and are not detected in the sampling regime; (2) 17,20I3P is synthesised and utilised in 

the ovarian follicle but very little is released into the plasma without either conjugation 

or further metabolism; (3) 17,2013P is rapidly deactivated by reduction and/or 

conjugation; (4) 17,2013P is not the maturational inducing steroid in greenback 

flounder. There is good evidence to suggest that 17a2013P,21-trihydroxy-4-pregnen-3- 

one (20I3-S) is the major maturation inducing steroid in the spotted sea trout 

(Cynoscion nebulosus) and Atlantic sea trout (Micropogonias undulatus) (Thomas and 

Trant 1989; Thomas 1994). Our unpublished observations on the effects of steroids 

and human chorionic gonadotrophin on in vitro opcyte maturation in greenback 

flounder indicate that greenback flounder oocytes are receptive to a broad range of C21 

steroids including 17,201W and 20I3-S. 

Plasma levels of 17,20I3P-sulphate were significantly elevated during FOM in the 

absence of significant increases in plasma 17,20I3P at this time. This suggests that 

plasma levels of 17,20I3P were not always representative of events in the ovary, most 

likely as a result of different rates of metabolism and conjugation. Similarly, plasma and 

ovarian 17,2013P levels were poorly correlated in the New Zealand snapper and the 

demoiselle (Hobby and Pankhurst 1997). 



Plasma levels of 17,20BP-sulphate but not 17,20BP-glucuronide were significantly 

elevated in females undergoing FOM and hydration, however, levels were considerably 

lower than plasma levels reported in plaice (Pleuronectes platessa). Plaice ovaries 

contain very active reducing and conjugating enzymes (Scott and Canario 1990), hence 

plasma levels of 17,201W in mature female plaice were < 1 ng. m1 -1 , whereas plasma 

and urine levels of 17,201W-sulphate were 11 ng. mi l  and 1500 ng. m1-1  respectively 

(Scott and Canario 1992). A recent study indicates that 17,20BP-sulphate is not the 

most abundant sulphated C2 1  steroid metabolite in plasma and urine of females plaice 

undergoing FOM (Scott et al., 1997). It is quite possible that female greenback 

flounder produce high levels of some other sulphated metabolite. 

In some male teleosts, plasma T levels tend to be highest throughout spermatogenesis, 

and drop off just before spermiation (Wingfield and Grimm 1977; Scott et al., 1984; 

Fostier et al., 1987; Pankhurst and Conroy 1987, 1988; Harmin et al., 1995; Carolsfeld 

et al., 1996). This is consistent with the results of our study, indicating that T probably 

plays a role in the earlier stages of testis development. 

Plasma 11KT and 17,201W did not change with gonadal stage in male greenback 

flounder. In many studies, plasma 11KT levels are elevated during spermatogenesis, 

(Scott et al., 1984; Fostier et al., 1987; Dedual and Pankhurst 1992; Methven et al., 

1992; Barnett and Pankhurst 1994; Borg 1994; Harmin et al., 1995; Carolsfeld et al., 

1996), and levels often remain elevated into the early stages of spermiation (Campbell 

et al., 1976; Fostier et al., 1987; Methven et al., 1992; Carolsfeld et al., 1996). 

Elevated levels of 17,201W are associated with spermiation in some teleosts (Scott et 

al., 1984; Fostier et al., 1987; Carolsfeld et al., 1996), and treatment with exogenous 

17,20I3P stimulates an increase in milt volume in snapper, and a range of other species 

(reviewed in Pankhurst 1994). There are several possibilities that may explain non-

significant changes in plasma levels of 11KT and 17,2013P in male greenback flounder. 

(1) Changes in plasma levels of 11KT and 17,20BP are pulsatile, and are not detected 

in the sampling regime. (2) 11KT and 17,2013P are synthesised and utilised in the testis 

but very little is released into the plasma without either conjugation or further 

metabolism. In future studies it would be interesting to assess testis levels of 

reproductive steroids. (3) 11KT and 17,2013P are rapidly deactivated by reduction 

and/or conjugation. Neither plasma 17,2013P-sulphate nor 17,201W-glucuronide were 
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significantly elevated at any stage in male greenback flounder. This is in contrast to 

male plaice in which high levels of 17,203P-sulphate and 17,2013P-glucuronide were 

detected in the plasma (Scott and Canario 1992). As suggested for females, it is 

possible that male greenback flounder produce high levels of some other conjugated 

metabolite. (4) 11KT does not play a role in spermatogenesis and 17,2013P is not the 

maturational inducing steroid in male greenback flounder. Studies on a range of other 

species showed that 11KT did not change with gonadal stage (reviewed in Pankhurst 

and Canagher, 1991). In addition, there is good evidence for some species that 11 KT 

is more strongly associated with morphological and behavioural changes than 

spermatogenesis and spermiation (reviewed in Pankhurst and Carragher 1991; Barnett 

and Pankhurst 1994; Borg 1994; Thorarensen et al., 1996). This calls into question the 

assertion based on correlational data that 11KT plays a role in spermatogenesis in 

teleosts generally. In other species, plasma 17,208P is often not detectable or at very 

low levels in spermiated fish (Pankhurst and Conroy 1987, 1988; Pankhurst and 

Canagher 1991; Pankhurst and Kime 1991; Dedual and Pankhurst 1992; Barnett and 

Pankhurst 1994). (5) 11KT and 17,20I3P may not need to be elevated much to induce 

spermatogenesis or spermiation. As previously described, male greenback flounder 

have small testes, and during gonadal development only low proportions of gamete 

stages advance into sperm production. If 11KT and 17,208P mediate these processes 

in greenback flounder as in some other species (reviewed in Pankhurst 1994), then low 

11KT and 17,208P levels may be sufficient to maintain spermatogenesis and 

spermiation. 

Plasma levels of cortisol were significantly higher in wild greenback flounder caught in 

gill nets, than in fish sampled within 2 minutes of capture, indicating that commercial 

capture is highly stressful. Stress is known to inhibit reproduction in some species 

probably by suppressing levels of sex steroids (Sumpter et al., 1987; Maule et al., 

1989; Carragher and Pankhurst 1991; Clearwater and Pankhurst 1997). The effects of 

capture stress on plasma T and E2 were evident as early as 1h after the onset of the 

stress in wild New Zealand snapper (Carragher and Pankhurst 1991), and at the first 

sample time (24 h) in wild red gumard (Chelidonichthys kumu) (Clearwater and 

Pankhurst 1997). In greenback flounder, plasma levels of T, E2 and 17,2013P were 

lower in commercially caught than rapidly sampled stage 3 females, but appeared 

unaffected by commercial capture in stage 6 females. The latter is not suprising as 

I I 



stage 6 females would not be expected to have the elevated plasma gonadal steroid 

levels. With the proviso that for logistical reasons we were only able to sample a small 

number of fish soon after capture, these results suggest that plasma levels of T, E2 and 

17,2013P may have been underestimated in commercially caught females. We are 

assuming that the effects are not differentially expressed on stage 3, 4 or 5 fish and that 

relative changes in hormone levels remain unaffected. This further emphasizes the 

sensitivity of reproductive processes in wildfish to the stress imposed by capture. 
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Chapter 4 

Effect of treatment with LHRH analogue 
and hCG on ovulation, plasma and 

ovarian levels of gonadal steroids in 
greenback flounder Rhombosolea 

tapirina (Gunther, 1862). 
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4. Effect of treatment with "HRH analogue and hCG on ovulation, 

plasma and ovarian levels of gonadal steroids in greenback flounder 

Rhombosolea tapirina (Gunther, 1862). 

4.1. Summary 

Female greenback flounder Rhombosolea tapirina were induced to ovulate using either 

des Glyio [D-Alal LHRH ethylamide (LHRH-a) at 50 p.g.kg 1  or 100 Kg.kg -1  

intraperitoneal injection (ipi), 100 p.g.kg-1  cholesterol pellet (LHRH-a pellet) implanted 

intraperitoneally, or human chorionic gonadotropin (hCG) 1000 IU.kg t  ipi. Treatment 

with hCG, LHRH-a (50 Kg.kg -1) ipi and LHRH-a pellet increased the total number of 

ovulations and repeat ovulations above control levels, and LHRH-a pellet induced 

more ovulations and repeat ovulations than LHRH-a (100 tig.kg -1) ipi. Oocyte 

diameters increased and oocyte stages significantly advanced in response to all 

exogenous hormone treatments, and this was accompanied by increases in plasma and 

ovarian levels of 1713-estradiol (E2), in most cases plasma and ovarian levels of 

testosterone (T). Plasma and ovarian levels of 17a203-dihydroxy-4-pregnen-3-one 

(17,20I3P) were not consistently elevated in association with reproductive events, 

hence, the role of 17,203P as a marker of impending ovulation was unclear. 

4.2. Introduction 

Greenback flounder Rhombosolea tapirina (Pleuronectidae) occurs around Southern 

Australia and New Zealand (Ayling and Cox, 1982) and is the only flatfish in Southern 

Australia that is large and abundant enough to be harvested commercially (Edger, 

1997). There is growing interest in developing an aquaculture industry for greenback 

flounder in Tasmania, as it is amenable to culture conditions, it has a fast growth rate, 

an expanding market profile (Hart, 1993), and pilot aquaculture schemes are already 

underway, however, current programs are limited by unreliable and variable egg 

production (Crawford, 1984; Hart, 1991, 1993; Hart and Purser, 1995). Continued 

expansion of greenback flounder culture is dependent on the development of suitable 

induced ovulation protocols to control the timing and production of eggs for larval .  

production. 
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The reproductive endocrine system in teleosts is regulated by the hypothalamic-

pituitary-gonad axis (HPG). Pituitary release of gonadotropin (GtH) stimulates the 

gonad to synthesise steroids which in turn regulate gonadal development. Two forms 

of GtH have been identified in most species in which it has been investigated (GtH-I 

and GtH-II), with GtH-I present during gametogenesis while GtH-II predominates 

during maturation (reviewed in Pankhurst, 1998; Peter and Yu, 1997). Gonadotropin 

release is regulated at the hypothalamic level by the stimulatory effects of gonadotropin 

releasing hormone (GnRH), and in most species where it has been examined, the 

inhibitory actions of dopamine (DA) on gonadotrophs and GnRH release (reviewed in 

Peter and Yu, 1997). 

Reproductive development in captive fish is often impeded because some levels in the 

endocrine cascade are sensitive to modification by exogenous factors associated with 

husbandry (reviewed in Pankhurst and Van Der Kraak, 1997). Various exogenous 

hormone treatments acting at different levels in the HPG axis, can be administered to 

override the detrimental effects of captivity on reproduction (reviewed in Donaldson 

and Hunter 1983; Donaldson and Devlin 1996; Peter and Yu 1997). Injection of 

piscine and/or mammalian gonadotropins (hypophysation) has successfully been used 

to induce ovulation in a wide range of species (reviewed in Lam 1982; Donaldson and 

Hunter 1983). Piscine GtHs have restricted usefulness because they are expensive, 

supply can be limiting, dose is difficult to standardise and they have relatively high 

species specificity (Lam, 1982; Donaldson and Hunter, 1983; Zohar, 1988). In 

contrast, the mammalian gonadotropin, human chorionic gonadotropin (hCG) can be 

readily obtained and biological activity is readily standardised, although hCG has low 

biopotency in some species (Pankhurst, 1998), resulting in the need for high doses 

and/or multiple injections (Smigielski 1975; Lam, 1982; Saidin et al., 1988). Use of 

GtH preparations have now been largely superseded by fish GnRH analogues (GnRH-

a) or mammalian GnRH analogues refered to in this volume as luteinising hormone 

releasing hormone analgoues (LHRH-a). These analogues stimulate the release of the 

native 0tH (reviewed in Zohar 1988). GnRH-a or LHRH-a are substantially more 

potent than their parent peptide due to structural modifications which render them 

more resistant to enzyme degradation (Goren et al., 1987; Zohar et al., 1990) and 

enhance binding affinity (Donaldson and Hunter, 1983; Zohar et al., 1990; Peter and 

Yu, 1997). GnRH-a or LHRH-a are particularly successful when administered in the 



form of slow release systems which sustain elevated gonadotropin levels over long 

periods. Not only does sustained GnRH-a or LHRH-a release stimulate multiple 

ovulation (Almendras et al., 1988; Mylonas and Zohar, 1995; Berlinsky and King, 

1996; Mylonas et al., 1996), but in some species it can also stimulate ovarian 

development in immature fish (Crim et al., 1988; Matsuyama et al., 1993; Harmin et 

al., 1995a; Holland et al., 1995). 

In the absence of reliable natural ovulation in captivity, egg production is currently 

dependent on induced ovulation using exogenous hormones, hence it is important to 

characterise the response to these treatments. The aim of this study was to determine 

the potential for inducing ovulation in greenback flounder using the exogenous 

hormones, hCG and LHRH-a, and to assess whether greenback flounder are 

differentially responsive to hCG, LHRH-a or the dose and/or delivery mode of LHRH-

a. The exogenous hormone doses were chosen based on their success at inducing 

ovulation in other species (Almendras et al, 1988; Peter et al, 1988; Harmin et al, 

1995; Berlinsky et al, 1996; Morehead et al, 1998). The efficacy of induced ovulation 

protocols was assessed by examining incidence and frequency of ovulation and the 

associated changes in oocyte diameters and plasma and ovarian sex steroid levels. 

In the absence of specific GtH-II assays for most species, gonadal steroids remain the 

most useful endocrine markers. E2 and T are commonly measured as indicators of 

ovarian development (Pankhurst and Carragher, 1991) and 17a200-dihydroxy-4- 

pregnen-3-one (17,20(3P) is often measured as the potential MIS as it has been 

identified as the MIS in many marine and freshwater species (Scott and Canario, 

1987). In wild greenback flounder, plasma and ovarian levels of testosterone (1') and 

1713-estradiol (E2) were elevated in association with vitellogenesis (Barnett and 

Pankhurst, 1998b, chapter 3 this volume). It has not been established whether 17,2013P 

is the maturational inducing steroid in greenback flounder, however, plasma levels of 

17,2013P were significantly elevated in ovulated females, whereas ovarian levels of 

17,2013P were elevated in association with (final oocyte maturation) FOM and 

ovulation. Our observations of captive greenback flounder indicate that oocyte 

development is arrested at the final stages of vitellogenesis, just prior to final oocyte 

maturation and ovulation. 



4.3. Materials and methods 

4.3.1. Fish and fish maintenance 

Fish used in these experiments were obtained from either Camerons of Tasmania PTY 

LTD Dunalley, Tasmania, or the Department of Primary Industries and Fisheries, 

Marine Research Laboratories, Taroona, Tasmania. Fish were maintained at the 

Department of Aquaculture aquatic facility at the University of Tasmania in 

Launceston, in recirculating systems incorporating a biofilter, coarse solids filter and 

aeration system. Fish with ovaries at the vitellogenic stage of development were 

chosen for the experiments, these fish had large firm ovaries, bulging above the 

musculature, extending to the caudal peduncle and no oocytes were released upon 

gentle pressure on the abdomen. Fish used were fed at 3% body weight daily and body 

weight ranged from 105-370 g in body weight. Water temperature was 12 °C and LD 

10:14 h during both experiments. 

4.3.2. Experiment 1 

Fish used in this experiment were collected from Camerons of Tasmania PTY LTD and 

were hormone treated and first sampled on site. Time of treatment was 1030 h. Fish 

were divided into four treatment groups (n=7), anaesthetised in a 0.02% 2- 

phenoxyethanol (Sigma) water bath, and treated with either (1) saline, (2) hCG at 1000 

IU. kg - ' body weight, (3) LHRH-a at 50 pg.kg -1  body weight or (4) LHRH-a at 100 

vg.kg -1  body weight. All treatments were administered by intraperitoneal injection (ipi) 

in an injection volume of 100 tAL.kg -1 . After recovery from anaesthesia, fish were 

placed in oxygenated seawater in 50 L plastic bags, transported to Launceston and 

transferred to 1000 L tanks in a recirculating system for the remainder of the 

experiment. Each fish was anaesthetised then bled 0, 24, 48, and 72 h after treatment 

and checked for ovulation by gentle pressure on the abdomen 0, 24, 48, 72, 96,120, 

144, and 168 h after treatment. Any ovulated eggs were stripped at each sample time 

and visually examined for opacity, shape and the presence of single or multiple oil 

droplets. 

4.3.3. Experiment 2 

Fish used in this experiment were transported in an 800 L oxygenated portable tank 

from the Department of Primary Industries and Fisheries, Marine Research 



Laboratories, Taroona, to Launceston. Fish were first sampled and hormone treated at 

1500 h, immediately upon arrival at the Launceston facility. Fish were divided into four 

treatment groups (n=7) and treated with either (1) saline ipi (2) hCG ipi at 1000 IU. 

kg- ' body weight (3) LHRH-a ipi at 1001,1g.kg -1  body or (4) LHRH-a 100 pg.kg -1  in a 

95 % cholesterol + 5 % cocoa butter pellet (Lee et al., 1986), implanted 

intraperitoneally. Injections were administered in a volume of 100111.kg -1 . Each fish 

was anaesthetised, bled and ovarian biopsied at 0, 6, 24, 48, 72 and 96 h after 

treatment and checked for ovulation at 0, 6, 24, 48, 72, 96,120, 144, 168 and 192 h 

after treatment. Ovarian biopsies were collected by inserting a catheter ("Endometrial 

biopsy" - Laboratoire CCD 60, Paris) through the genital pore and into the gonad. 

Entry into the gonad was narrow and convoluted and the entrance to the genital pore 

was shared by the rectal opening, therefore sampling sometimes resulted in 

misadventure into the gut and occasionally rupture of the gut wall, hence this 

procedure was limited to experiment 2 only. Ovarian tissue was separated by gentle 

aspiration through a glass pipette and spread throughout a sorting tray in an acidified 

saline solution. One hundred oocytes were measured as encountered under a dissecting 

microscope, and classified as vitellogenic, undergoing germinal vesicle migration and 

breakdown, or hydrated, from representative fish in each treatment. Classification of 

oocyte stage was verified by clearing oocytes of each type in sera solution 

(ethanol:foramlin:acetic acid, 6:3:1 v/v), to determine the presence or position of the 

germinal vesicle. For logistical reasons, this experiment did not include a blank pellet 

control, and although we have statistically compared responses from unpelleted control 

fish with LHRH-a pellet treated fish, our results do not account for potential pellet 

implant effects. 

4.3.4. Steroid measurement 

Blood samples were collected by caudal puncture, and plasma concentrations of E2, 

testosterone T and 17,2013P were measured by radioimmunoassay (RIA). One hundred 

microlitres of plasma were extracted with 1 mL of ethyl acetate and added to each 

assay tube for evaporation and resuspension in assay buffer, using the reagents and 

protocol given in (Pankhurst and Conroy, 1987). Extraction efficiency was determined 

by recovery of [311]-labelled steroid extracted with plasma, and was on average 93%, 

96%, and 93% for E2, T and 17,2013P respectively. Assay values were corrected 

accordingly. Assay detection limits were 0.28, 0.29 and 0.28 ng.mL -1  for E2, T and 
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17,201313. Ovarian concentrations of E2, T and 17,200P were measured by 

homogenising 0.125 g of ovarian tissue in 1 mL of ethyl acetate, and centrifuging the 

homogenate at 3000 rpm for 10 minutes. One hundred microlitres of extract were 

measured in assays as before. Interassay variability was measured using a pooled 

steroid standard giving %CVs of 10% (n=10), 12% (n=10), 14% (n=10) for E2, T and 

17,2011P respectively. 

4.3.5. Statistical analysis 

Repeated measures analysis of variance (ANOVA), mean comparison tests, planned 

contrasts and logistic analysis and curve fits were performed using the computer 

packages SAS, JMP for Macintosh and Curve fit for DOS. Data were log or square 

root transformed to satisfy normality and homogeneity of variance requirements. A 

significance level of (<0.05 was used for all statistical tests. In some instances, 

variances were still heterogeneous after transformation, however, the data was also 

assessed by multivariate analysis of variance and canonical discriminant analysis, and in 

all cases the outcomes were unchanged. We chose to present ANOVA results because 

of the utility of mean comparison tests and the familiarity of these tests within the 

literature. 

4.4. Results 

Spontaneous ovulation occurred during experiment 1 (as indicated by the ovulation of 

3 control fish). Logistic analysis indicated that treatment with hCG and LHRH-a ipi 

(50 Rg.kg-1) significantly increased the total number of ovulations above control levels 

(Fig. 4.1). Treatment with LHRH-a ipi (100 ng.kg -1) did not significantly increase the 

total number of ovulations above control levels, however, there was no significant 

difference in the total number of ovulations between fish treated with either hCG, 

LHRH-a ipi (50 lig.kg-i) or (100 lig.kg-1). Fish treated with exogenous hormones 

ovulated at each time period between 24 - 168 h after treatment. All but one fish that 

ovulated in response to exogenous hormones ovulated more than once, most of these 

fish ovulated more than twice and most ovulations occured at daily intervals. There 

were four mortalities during this experiment. 

During experiment 2, only 1 control fish ovulated, and logistic analysis indicated that 

treatment with hCG, LHRH-a ipi (100 vg.kg -1) and LHRH-a pellet all significantly 
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increased the total number of ovulations (Fig. 4.2). Treatment with LHRH-a pellet, 

stimulated more ovulations than treatment with LHRH-a ipi (100 t.t.g.kg1) but there 

was no significant difference in the total number of ovulations between fish treated 

with hCG and LHRH-a (100 Rg.kg-1), or hCG and LHRH-a pellet. The majority of fish 

ovulated between 72 and 192 h after treatment. All fish that ovulated in response to 

exogenous hormones ovulated more than once, most of these fish ovulated more than 

twice and most ovulations occured at daily intervals. There were three mortalities 

during this experiment. 

In both experiments, stripped eggs were clear in appearance, and although some eggs 

contained multiple oil droplets, trial fertilisations indicated that these eggs were fertile. 

Oocyte diameter distributions measured from a randomly selected control fish did not 

significantly change from 0 - 96 h (Fig. 4.3), and logistic analysis indicated that there 

was no significant change in oocyte types throughout the experiment. In contrast, all 

exogenous hormone treatments induced significant increases in oocyte diameters and 

advancement of vitellogenic oocytes to germinal vesicle migration (GVM) and 

breakdown (GVBD) followed by oocyte hydration (Figs 4.4-4.6). Ovaries from 

ovulated fish were characterised by high proportions oocytes undergoing GVM , 

GVBD and hydration and few remaining vitellogenic oocytes. 

During experiment 1, exogenous hormone treatment significantly increased plasma 

levels of E2 above control levels from 24 - 72h (Fig. 4.7a), and treatment with LHRH-a 

ipi (50 pg.kg -1) significantly increased plasma levels of T above control levels from 24 

and 48h after treatment (Fig. 4.7b). Exogenous hormone treatment did not stimulate 

significant increases in plasma levels of 17,208P (Fig. 4.7c). 

During experiment 2, exogenous hormone treatment significantly increased plasma and 

ovarian levels of E2 from 24 - 96h (Figs 4.8a and 4.9a), plasma levels of T from 6-96 h, 

(except fish treated with hCG 48 h after treatment ) (Fig. 4.8b) and ovarian levels of T 

from 6-96 h, (except fish treated with hCG and LHRH-a pellet 72 h after treatment and 

hCG 96 h after treatment) (Fig. 4.9b). In fish treated with exogenous hormones, 

plasma levels of 17,20I3P were significantly elevated above control levels at 24 h (Fig. 

4.8c). Plasma levels of 17,20I3P were significantly elevated above pre-treatment levels 

in control fish and fish treated with exogenous hormones 48 h after treatment, but 
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levels were higher in fish treated with hCG than control fish. Ovarian levels of 17,20P 

were not significantly elevated by treatment with exogenous hormones (Fig. 4.9c). 

Plasma and ovarian levels of E2 and plasma levels of T significantly decreased from 

pre-treatment levels in control fish throughout experiments 1 and 2 (Figs 4.7 and 4.8). 
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Fig. 4.1. Percentage of fish that ovulated in each treatment group at each sample time 

during experiment 1. Treatments that are not significantly different (P>0.05) share 

common superscript letters. Fish are labelled 1-7 within each treatment group and 

numbers denote which fish ovulated within each treatment at each sample time. 
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Fig. 4.2. Percentage of fish that ovulated in each treatment group at each sample time 

during experiment 2. Treatments that are not significantly different (P>0.05) share 

common superscript letters. Fish are labelled 1-7 within each treatment group and 

numbers denote which fish ovulated within each treatment at each sample time. 
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Fig. 4.3. Frequency of oocyte diameters at each sample time from a randomly selected 

fish treated with saline during experiment 2. 
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Fig. 4.4. Frequency of oocyte diameters at each sample time from a randomly selected 

fish treated with hCG during experiment 2. Asterisks indicate when the fish ovulated. 
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Fig. 4.5. Frequency of oocyte diameters at each sample time from a randomly selected 

fish treated with LHRH-a 100 pg.kg -1  ipi during experiment 2. Asterisks indicate when 

the fish ovulated. 
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Fig. 4.6. Frequency of oocyte diameters at each sample time from a randomly selected 

fish treated with LHRH-a pellet during experiment 2. Asterisks indicate when the fish 

ovulated. 
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Fig. 4.7. Plasma levels of (a) E2, (b) T and (c) 17,20BP in each treatment group at 

each sample time during experiment 1. Values are mean + S.E. Values that are not 

significantly different (P>0.05) share common superscripts. Superscript letters show 

comparisons within times between groups, asterisks show controls that are 

significantly different from pre-treatment control levels, n=7 per treatment. 



aaaa 

 

a ab b ab 

        

   

a ab b ab 

     

     

aaaba 

  

(b) 

       

	I 

        

17,20BP 

Control 
hCG 
LHRH-a 
50pg.kgl  
LHRH-a 
100pg.ke 

(a) 

.001•11%, 

aaa 

.25 - 

0.00 

aaaa 
aaaa 

aaaa 

(c) 

.75 - 

.50 - 

72 24 	48 
Time (h) 

nn 



Fig. 4.8. Plasma levels of (a) Ez (b) T and (c) 17,2013P in each treatment group at 

each sample time during experiment 2. Values are mean + S.E. Values that are not 

significantly different (P>0.05) share common superscripts. Superscript letters show 

comparisons within times between groups, asterisks show controls that are 

significantly different from pre-treatment control levels, n=7 per treatment. 
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Fig. 4.9. Ovarian levels of (a) E2, (b) T and (c) 17,2013P in each treatment group at 

each sample time during experiment 2. Values that are not significantly different 

(P>0.05) share common superscripts. Superscript letters show comparisons within 

times between groups, asterisks show controls that are significantly different from 

pre-treatment control levels, n=7 per treatment. 
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4.5. Discussion 

HCG and LHRH-a successfully induced repeat ovulations on a daily basis in greenback 

flounder which was accompanied by significant increases in oocyte diameters and the 

proportions of maturing oocytes. Oocyte size frequency profiles obtained from wild 

greenback flounder (Barnett and PanIchurst, 1998b, chapter 3, this volume), 

unpublished observations on naturally ovulating cultured fish and the ovulatory 

response and pattern of oocyte growth after exogenous hormone treatment in this 

study, confirmed that female greenback flounder are multiple ovulators and have group 

synchronous oocyte development. The summer flounder (Paralichthys dentatus) also 

demonstrated group synchronous oocyte development and ovulated daily after 

stripping for a period of 3-8 days, with recruitment of oocytes from a vitellogenic 

clutch in response to treatment with LHRH-a (Berlinsky et al., 1997). Sea bass 

(Dicentrarchus labrax) (Alvarino et al., 1992) and striped trumpeter (Latris lineata) 

(Morehead et al 1998) also demonstrated multiple spawning with group synchronous 

oocyte development after treatment with LHRH-a, however, the interval between 

consecutive spawnings in sea bass and striped trumpeter was approximately 3 days 

rather than daily as in greenback flounder. Sea bass recruited successive clutches from 

a vitellogenic population, whereas striped trumpeter demonstrated multiple clutch 

recruitment from cortical alveoli oocytes. In the absence of information on short term 

changes (<24 h) in ovarian cycling from individual fish, it is not clear whether oocytes 

are recruited from a batch of cortical alveoli, vitellogenic or mature stage oocytes. 

In many teleost species, mammalian GtHs have orders of magnitude lower potency 

than teleost GtHs (reviewed in Pankhurst, 1998) and treatment with hCG may be 

ineffective, or large and repeat doses are required to induce ovulation (Smigielski, 

1975; Lam, 1982; Donaldson and Hunter, 1983; Saidin et al., 1988; Berlinsky et al., 

1997). However, in some teleost species, hCG will effectively induce ovulation 

(reviewed in Lam, 1982; Peter et al., 1988; Suzuki et al., 1991) and is often more 

successful when ovarian development is more advanced (Zohar and Gordin, 1979; 

Ramos, 1986; Mylonas et al., 1996; Berlinsky et al., 1997). Greenback flounder belong 

to the latter group, indicating that receptor recognition is at least 'good enough' to 

stimulate ovulation and steroid production, with the proviso that the effect may be 

dependent on oocytes being quite advanced at the time of treatment. Our unpublished 
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observations of in vitro oocyte maturation in greenback flounder, show that ovaries 

dominated by early stage vitellogenic oocytes do not respond to hCG and a range of 

C2 1  steroids, whereas more mature ovaries do. 

LHRH-a (100 [tg.kg-1) ipi resulted in fewer ovulations and repeat ovulations than 

treatment with hCG, LHRH-a (50 vg.kg-1) ipi and LHRH-a pellet. Other studies 

suggest that the optimal effective dose of GnRH-a or LHRH-a varies considerably 

between species, (although it is worth pointing out that time to ovulation and 

ovulatory success may in part be related to the degree of maturity at time of treatment 

and the GnRH-a or LHRH-a pellet matrix (Sherwood et al, 1988)). The minimum 

effective dose determined for grey mullet was 300-400 vg.kg -1  (Lee et al., 1987) but 

was as low as 1-5 Rg.kg-1  LHRH-a in milkfish (Tamaru et al., 1988). In the sea bass, 

low doses of pelleted LHRH-a resulted in higher spawning and fertilisation success 

than high doses (Garcia, 1989), only an intermediate dose of LHRH-a significantly 

increased serum gonadotropin in mature male goldfish (Carassius auratus) (Peter, 

1980) and in striped trumpeter no advantage was attained by using 200 Rg.kg -idose 

over 100 [ig.kg-l of pelleted LHRH-a (Morehead et al 1998). In goldfish, continuous 

administration of GnRH (Habibi, 1991) and multiple injections of LHRH and LHRH-a 

at high doses (Peter, 1980) resulted in desensitisation of pituitary GtH release. It is 

possible that a similar effect occurred in response to treatment with LHRH-a (100 

p.g.kg-1) ipi during the present study, although the lack of difference in the steroid 

profiles between exogenous hormone treatments argues not. 

In some species, GnRH-a or LHRH-a sustained delivery systems in the form of a 

cholesterol pellet or the more recently developed polyanhydride microspheres, 

stimulate long term gonadotropin production, and provide a desirable alternative to 

injected GnRH, GnRH-a, or GtH which are rapidly cleared from the blood stream 

(Cook and Peter, 1980; Sherwood and Harvey, 1986). In this study, LHRH-a pellet 

provided no significant advantage over LHRH-a (50 vg.kg-1) ipi or hCG ipi. Given that 

the clearance rate of injected injected GnRH, GnRH-a or GtH is rapid in other species, 

this may indicate that a transient increase in GtH was sufficient to stimulate the 

processes of FOM, ovulation and self perpetuation of the maturation processes 

following clearance of injected hormones from the bloodstream in greenback flounder. 

Sustained LHRH-a delivery may be superfluous when vitellogenesis is well advanced, 
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but may be advantageous for inducing gonadal development in immature or regressed 

greenback flounder. LHRH-a copolymer pellets were used to induce gonadal 

maturation and spawning in completely immature red sea bream (Pagrus major) 

(Matsuyama et al., 1993). 

It is well established from other studies that C19 and C18 steroids are secreted during 

ovarian development (Hirohiko et al., 1984; Matsuyama et al., 1988; Specker and 

Sullivan, 1993) and C21 steroids are secreted during gonadal maturation (Canario, 

1991). In this study, plasma and ovarian levels of E2 and T were significantly elevated 

in fish that had ovaries containing ovulated oocytes. This may have been a function of 

steroidogenic activity of maturing vitellogenic oocytes co-existing with unspawned 

ovulated oocytes, which is consistent with the suggestion that greenback flounder have 

group synchronous oocyte development, ovulate daily, but do not spawn 

spontaneously in captivity. Daily ovulations in red sea bream were accompanied by 

diurnal fluctuations in plasma E2 and T with a periodicity associated with the 

developmental state of the ovary (Matsuyama, 1988) and similar diurnal steroid 

rhythms may also occur in greenback flounder. It is not known whether the periodicity 

of the steroid profiles was dictated by the time that the exogenous hormone treatment 

was administered. Plasma and ovarian levels of E2 and T were lower in wild greenback 

flounder undergoing FOM and ovulation than in fish undergoing vitellogenesis (Barnett 

and Pankhurst, 1998b, chapter 3, this volume). However, wild fish were sampled at 

various times during the day, and sampling may have missed periods of steroidogenie 

activity. Alternatively, exogenous hormone treatments may have stimulated higher than 

normal plasma and ovarian steroid levels than normally occur in wild fish. Similarly, 

plasma levels of E2 and T were significantly higher in winter flounder induced to 

ovulate using GnRH-a (Harmin et al., 1995a) than naturally ovulating winter flounder 

(Harmin et al., 1995b) 

When either GnRH or GtH are administered by ipi, they are cleared from the blood 

stream quite rapidly. Plasma concentration of exogenous GnRH were halved in 12 and 

12.5 min in goldfish and seabream respectively (Sherwood and Harvey, 1986; Gothilf 

and Zohar, 1991), the half life times of two different LHRH analogs were 18 and 22 

mins (Gothilf and Z,ohar, 1991), and the half-disappearance time of exogenous 0tH 

was 13 min in goldfish at 12 °C (Cook and Peter, 1980). In the present study, plasma 
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and ovarian levels of E2 and T remained elevated in fish treated with exogenous 

hormones for the duration of the experiments. Given that clearance of exogenous 

hormones is probably equally rapid in greenback flounder, this suggests that elevated 

endogenous GtH or steroids persisted after the clearance of exogenous GnRH or GtH 

respectively. In other species, GtH-II secretion is regulated by steroid feedback. In 

goldfish for example, positive steroid feedback enhances pituitary responsiveness to 

GnRH, but basal serum GtH-II levels are maintained by an increase in pituitary DA 

turnover rates (Trudeau et al., 1991b, 1993a, b). Exogenous estrogens or aromatisable 

androgens increase pituitary GtH levels in juvenile rainbow trout (Oncorhynchus 

mykiss), (Crim et al., 1981, Crim and Evans, 1983), Atlantic salmon (Salmo salar), 

(Crim and Peter, 1978), European eel (Anguilla anguilla) (Dufour et al., 1983, 1989) 

and goldfish (Trudeau et al., 1993a, b), and T treatment enhances pituitary 

responsiveness to exogenous GnRH-a or LHRH-a, resulting in enhanced serum GtH 

release in juvenile rainbow trout, goldfish, common carp and Chinese loach (Crim and 

Evans, 1983; Trudeau et al., 1991a, 1993a, b). Positive steroid feedback resulting from 

initial plasma T and E2 increases caused by exogenous hormone treatment, may 

function in a similar manner in greenback flounder. 

Plasma T did not significantly increase in response to exogenous hormone treatment 

during experiment 1, although this may have been a result of rapid aromatisation of T 

and/or detrimental effects of stress on plasma steroid levels which was clearly 

demonstrated by decreasing plasma levels of E2 and T and ovarian levels of E2 in 

control fish. Stress has been reported to depress plasma levels of gonadal steroids in 

many other species (reviewed in Pankhurst and Van Der ICraak, 1997) and a previous 

study on greenback flounder indicates that experimental sampling protocols and 

routine husbandry practices have the capacity to stress greenback flounder (Barnett 

and Pankhurst, 1998c, chapter 2, this volume). 

Plasma and ovarian levels of 17,2013P in wild female greenback flounder, were 

significantly elevated in association with ovulation or FOM and ovulation respectively, 

but levels were always low (Barnett and Pankhurst, 1998b, chapter 3, this volume). 

This seems to be common in many marine species, particularly in pleuronectiformes 

and partial ovulators (Scott and Canario, 1987). Plasma levels of 17,20I3P changed 

very little throughout experiment 1, although, plasma 17,20P increased to levels far in 



excess of values we have previously found in greenback flounder (Barnett and 

Pankhurst, 1998b) during experiment 2. It is not clear why a similar response was not 

recorded during experiment 1, however, fish in the 2 experiments were sampled at 

different times of the day (1030 and 1500 h respectively). Diurnal changes in plasma 

levels of 17,2013P during the spawning season in red sea bream indicated low plasma 

steroid levels at 2000 h, maximal steroid levels at 0400 h and minimal steroid levels at 

1600 h (Kagawa et al., 1991). If changes in plasma levels of 17,203P in greenback 

flounder are short lived as in red sea bream, then sampling in experiment 1 may have 

missed peaks in 17,2013P. We currently have limited information on the precise timing 

of ovulation in this species and do not know what diel changes in plasma 17,2013P in 

wild or hormone treated fish might be. 

In common with our previous work on induced ovulation in greenback flounder 

(Barnett and Pankhurst, 1998a; chapter 5 this volume), in some cases plasma levels of 

17,2013P were significantly elevated above pre-treatment levels in all treatment groups 

including the control, but levels were not consistently elevated in association with 

reproductive events. 17,20I3P therefore appears to be an ambiguous marker of 

impending ovulation. Plasma increases in 17,203P levels may have been of interrenal 

origin and/or associated with a stress response; this is discussed in more detail in 

Barnett and Pankhurst, 1998a; chapter 5 this volume. 

The average time to ovulation in this study and another study (Barnett and Pankhurst 

1998a; chapter 5 this volume) was 48-72 h, and time to ovulation did not differ 

depending on the type of exogenous hormone treatment used. This is prolonged in 

comparison to the majority of species in which induced ovulation protocols have been 

investigated (Lam, 1982; Peter et al., 1987), however, it should be acknowledged that 

time to ovulation after treatment will depend on ovarian condition prior to treatment, 

which is variable between studies. The delay between hormone treatment and ovulation 

may result from indirect hormone action of the type suggested earlier. Alternatively, 

reproductive processes may simply be slower at lower temperatures, as a result of 

slower biochemical and physiological rates at lower temperatures (Withers, 1992). 

Studies on goldfish have indicated stimulatory effects of warm temperatures on 

pituitary secretion GtH rates, plasma GtH levels, and metabolic clearance rate of 

exogenous GtH in sexually regressed goldfish (Cook and Peter, 1980a, b, c). An 

examination of published literature detailing the use of exogenous hormones to induce 

1U I 



ovulation, indicates that time to ovulation is negatively correlated with holding 

temperature in a wide range of species (See Table 4.1 and Fig. 4.10) and greenback 

flounder are in fact similar to other species held at low temperatures. This does not 

preclude the possiblity that ovulation is also delayed by indirect effects of exogenous 

hormone treatment via steroid feedback in greenback flounder and other species. 

Because different exogenous hormone treatments act at different levels of the HPG 

axis, and some also regulate the actions of DA inhibition, we may expect some 

treatments to induce ovulation more rapidly than others. In other species, there is some 

indication that gonadotropin releasing hormones + dopamine antagonists induce 

ovulation more rapidly than other treatments at holding temperatures > 10 °C (Fig. 

4.9). However, there was insufficient data from studies on cold water species to make 

conclusions across the full temperature spectrum. 

4.6. Acknowledgments 

This study was funded by Australian Research Council Infrastructure and Large Grants 

awarded to N.W.P., and University of Tasmania School of Science and Technology 

and Australian Postgraduate Awards to C.W.B. 

Ws 



Table 4. 1. Time to ovulation following exogenous hormone treatment vs holding 
temperature. Exogenous hormone treatments as follows: 1 = pituitary extracts, 2 = 
gonadotropin releasing hormone and analogue injections, 3 = gonadotropin releasing 
hormone/analogue + dopamine antagonist injections, 4= gonadotropin releasing 
hormone pellet implants. In the case of multiple injection protocols, time to ovulation 
was calculated from the first injection. Data in the form of graphical summaries, was 
summarised as time to 50% ovulation, data in the form of tables was summarised as 
average time to ovulation. (See Appendix 1 for references). 

Species Time 
h 

Temperature 
°C 

Treatment Reference 

African catfish Clarias 
gariepinus 

11 
12.5 
16 

25 
25 
25 

1 
3 
1 

(Bromage and Roberts, 
1995) 

sea bass Dicentrarchus labrax 60 
60 

12 
12 

1 
2 

(Bromage and Roberts, 
1995) 

gilt head sea bream Sparus 
auratus 

60 18.5 2 (Bromage and Roberts, 
1995) 

trumpeter Latris lineata 96 13 4 (Morehead et al., 1997) 
goldfish Carassius auratus 24 19 3 (Sokolowska et al., 1984) 
sea Bass Lates calcarifer 42 

24 
27.5 
27.5 

2 
4 

(Almendras et al., 1988) 

dab Limanda limanda 127 7.5 1 (Canario and Scott, 1990) 
ayu Plecoglossus altivelis 48 16.5 3 (Hirose et al., 1983) 
grass carp Ctenopharyngodon 
idellus 

17 23.5 2 (Donaldson and Hunter, 
1983) 

common carp Cyprinus carpio 30 24 2 (Drori et al., 1994) 
loach Paramisgurnus 
Dabryanus 

24 18.5 3 (Lin et al., 1985) 

Chinese loach Paramisgurnus 
dabryanus 

12.5 23 3 (Lin et al., 1991) 

winter flounder 
Pseudopleuronectes americanus 

312 5 4 (Harmin and Crim, 1992) 

grey mullet Mugil cephalus 41 27 2 (Lee et al., 1987) 
catfish Clarias macrocephalus 15.5 28.5 1 (Mollah and Tan, 1983) 
golden Pearch Macquaria 
ambigua 

31 23 1 (Rowland, 1983) 

ayu Plecoglossus altivehs 48 16 1 (Hirose et al., 1977) 
red snapper Lutjanus 
campechanus 

49 26 1 (Minton et al., 1983) 

snapper Pagrua auratus 24 17 1 (Pankhurst, 1994) 
greenback flounder 
Rhombosolea tapirina 

60 
60 
60 
60 

12 
12 
12 
12 

,---■
 CN1

 (4") 'I'  

(Barnett and Pankhurst, 
1998) and this study 
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Table 4.1 continued 
Indian major carps 9.5 27.5 1 (Lam, 1982) 
koi Cyprinus carpio 11.5 25.8 1 (Lam, 1982) 
Chinese carps 11.5 27.5 (Lam, 1982) 

11.5 31 

1
-4

  

11.5 28.8 
33.5 24 

European catfish Silurus glanis 39.5 22 1 (Lam, 1982) 
34 23 1 
21 23.5 1 

danube salmon Hucho hucho 152 6 1 (Lam, 1982) 
summer flounder Paralichthys 
dentatus 

120 15 1 (Lam, 1982) 

grey mullet Mugil cephalus 40 22 1 (Lam, 1982) 
rabbitfish Siganus oramin 47.5 26 1 (Lam, 1982) 
rabbitfish Siganus rivulatus 36 24.5 1 (Lam, 1982) 
sea bass Dicentrarchus labrax 48 13.5 2 (Alvarifio et al., 1992) 
Asian catfish Clarias batrachus 19.5 25 3 (Manickam and Joy, 1989) 
Japanese flounder Limanda 
yokohamae 

72 12.5 1 (Lam, 1982) 

sea bass Dicentrarchus labrax 72.5 15 1 (Lam, 1982) 
yellowfin porgy Acanthopagrus 
latus 

56 21.5 1 (Leu and Chou, 1996) 

white bass Marone chrysops 48 22 4 (Mylonas et al., 1996) 
southern flounder Paralichthys 
lethostigma 

88 17 4 (Berlinsky and King, 1996) 

sea bass Dicentrarchus labrax 33 30 2 (Garcia, 1989) 
grass carp Ctenopharyngodon 
idellus 

18.25 25 2 (Rottmann and Shireman, 
1985) 

Japanese flounder Limanda 72 12 1 (Hirose et al., 1979) 
yokohomae 72 12 2 
carp Cyprinus carpio 33 18.5 3 (Bieniarz et al., 1986) 
common sole Solea solea 48 18 2 (Ramos, 1986) 
goldfish Carrassius auratus 60 12 2 (Chang and Peter, 1983) 

60 12 3 
silver carp Hypophthalmichthys 12 20.5 (Peter et al., 1987) 
molitrix 9 27 

Cr) 

9 26.5 
8.5 29 

mud carp Cirhinus molitorella 24 (Peter et al., 1987) 
26 

r-- 27 

Cc) 

28 
bream Parabramis pekinenis 9.5 24.5 

Cr)
 Cr)
 Cr)
 Cr) 

(Peter et al., 1987) 
7 26.5 

nu 



Table 4.1 continued 
grass carp Ctenopharyngodon 
idellus 

12 
9 
8 
8 

20.5 
26.5 
27.5 
26.5 

M
rn

rn  
Cn  

(Peter et al., 1987) 

bighead carp Aristichthys 12 23 3 (Peter et al., 1987) 
nobilis 8 26 3 
black carp Mylopharyngodon 
piceus 

7 27 3 (Peter et al., 1987) 

Thailand mud carp 8 29 3 (Peter et al., 1987) 
7.5 26 3 

African catfish Clarias 
gariepinus 

9.5 30.5 3 (Peter et al., 1987) 

english sole Parophrys vetulus 192 10.5 1 (Sanborn and Misitano, 
1991) 

horse mackerel Trachurus 
japonicus 

36 20.5 1 (Kurnuma and Fukusho, 
1984) 

yellowtail Seriola 
quinqueradiata 

17.4 48 1 (Mushiake et al., 1994) 

summer flounder Paralichthys 
dentatus 

125 15 1 (Smigielski, 1975) 

coho salmon Oncorhynchus 
kisutch 

216 10 2 (Van Der Kraak et al., 
1985) 

rainbow trout Sabno gairdneri 582 2 4 (Crim et al., 1983) 
rainbow trout Salmo gairdneri 144 12 3 (Pankhurst and Thomas, 

1997) 
rainbow trout Salmo gairdneri 192 11 2 (Billard et al., 1984) 
brown trout Salmo trutta 144 5.5 2 (Billard et al., 1984) 

120 5.5 3 
180 5.5 4 

coho salmon Oncorhynchus 
kisutch 

504 8.7 2 (Van Der Kraak et al., 
1984) 

sablefish Anoplopoma fimbria 288 10 2 (Solar et al., 1987) 
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Figure 4.10. Time to ovulation following exogenous hormone treatment vs holding 

temperature. Exogenous hormone treatments as follows:1 = pituitary extracts and GtH 

preparations, 2= gonadotropin releasing hormone and analogue injections,3 = 

gonadotropin releasing hormone/analogue + dopamine antagonist injections, 4 = 

gonadotropin releasing hormone pellet implants. 1\ represents greenback flounder. 

Inset shows curve fits of time to ovulation vs holding temperature for each exogenous 

hormone treatment, curve fit equations given in appendix 2. 
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Chapter 5 

Potential for steroid feedback and 
dopamine inhibition on GtH release in 

greenback flounder Rhombosolea 
tapirina (Gunther, 1862): indirect 

assessment by measurement of gonadal 
steroids and ovulation. 
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5. Potential for steroid feedback and dopamine inhibition on GtH 

release in greenback flounder Rhombosolea tapirina (Gunther, 1862): 

indirect assessment by measurement of gonadal steroids and 

ovulation. 

5.1. Summary 

Greenback flounder were treated with either des Gly l° 	LHRH ethylamide 

(LHRH-a), pimozide (PIM), testosterone (T), LHRH-a + PIM or LHRH-a + T. 

LHRH-a and PIM were administered by intraperitoneal injection (ipi) and T was 

implanted intraperitoneally as a silastic pellet. Treatment with LHRH-a, LHRH-a + 

PIM and LHRH-a + T significantly increased the number of ovulations above control 

levels. LHRH-a was more effective than LHRH-a + PIM and PIM in 1 out of 2 

experiments. LHRH-a + T was more effective than LHRH-a and T in both 

experiments. PIM significantly increased the total number of ovulations in 1 out of 2 

experiments, but treatment with T alone had no effect. 

LHRH-a, PIM, LHRH-a + PIM and LHRH-a + T significantly increased the 

percentage of fertilised eggs that developed through to 4 cell stage above control 

levels, and treatment with LHRH-a resulted in significantly more eggs surviving to the 

4 cell stage than fish treated with PIM and LHRH-a + PIM. Fish treated with LHRH-a 

and LHRH-a + PIM had higher plasma 1713-estradiol (E 2) and T levels than control fish 

or fish treated with PIM. Plasma E2 levels were significantly higher in fish treated with 

LHRH-a and LHRH-a + T than in control fish or fish treated with T. Plasma levels of 

17a2013-dihydroxy-4-pregnen-3-one (17,208P) were not elevated above control levels 

in fish treated with exogenous hormones, but were elevated above pre-treatment levels 

in all treatment groups in some cases. These results suggest that dopamine has an 

inconsistent effect on reproductive function in greenback flounder and T potentiates 

the ovulatory effects of LHRH-a, possibly by enhancing pituitary responsiveness to 

GnRH. 

122 



5.2. Introduction 

A common problem in fish culture is the failure of fish to undergo final oocyte 

maturation, ovulation and spawning, and consequently, a range of reproductive 

management techniques have been developed which act on various levels of the 

endocrine cascade to induce these processes (Donaldson and Hunter, 1983; Fauvel et 

al., 1993; Peter and Yu, 1997). Gonadotropin-II is the pituitary hormone primarily 

responsible for stimulating maturational steroid synthesis by the gonad (Kawauchi et 

al., 1989), it is secreted under stimulation by gonadotropin-releasing hormone (GiIRH) 

and in most species examined to date, secretion is inhibited by dopamine (DA) 

(reviewed in Trudeau and Peter, 1995; Peter and Yu, 1997). Co-treatment of a 

superactive analog of fish GnRH (GnRH-a) or a mammalian GnRH analogue (referred 

to in this volume as luteinising hormone relasing hormone (LHRH-a)) to stimulate 

GtH-II release and a DA receptor antagonist such as pimozide (PIM) to reduce the 

inhibitory tone imposed by DA action, is very successful for inducing ovulation in most 

species in which it has been trialed. Examples include the Chinese loach 

(Paramisgurnus dabryanus) (Lin et al., 1985, 1986a), goldfish (Carassius auratus) 

(Chang and Peter, 1983b; Sokolowska et al., 1984), African catfish (Clarias lazera) 

(DeLeeuw et al., 1985, 1987), common carp (Cyprinus carpio) (Bieniarz et al., 1986) 

and many other freshwater species in China (Lin et al., 1986b; Peter et al., 1987, 

1988). In the coho salmon (Oncorhynchus kisutch), gilthead seabream (Sparus aurata) 

and Atlantic croaker (Micropogonias undulatus) however, DA inhibition of GtH 

secretion is weak or non-existent (Van der Kraak et al., 1986; Zohar et al., 1987; 

Copeland and Thomas, 1989) and in the gilthead seabream and Atlantic croaker, co-

treatment of GnRH-a and a DA receptor antagonist offers no significant advantage 

over GnRH-a treatment alone. 

The greenback flounder Rhornbosolea tapirina (Pleuronectidae) is a potential 

aquaculture species in Tasmania (Hart, 1993), however, egg production is variable and 

further development of the industry is reliant on the development of reliable induced 

ovulation techniques (Crawford, 1994; Hart, 1991, 1993; Hart and Purser, 1995). In a 

previous study (Barnett and Pankhurst, 1998b; chapter 4 this volume), greenback 

flounder with ovaries at the vitellogenic stage of development treated with human 
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chorionic gonadotropin (hCG) or luteinising-hormone-releasing-hormone analogue 

(LHRH-a) underwent ovulation, and plasma and ovarian levels of E2 and T remained 

elevated in ovulating fish from 24-96 h post treatment. This suggested to us that 

elevated steroids persisted after the clearance of exogenous LHRH or hCG 

respectively and that hormone treatment had resulted in prolonged elevation of 

endogenous GtH. Steroid feedback via central action plays a role in regulating 

gonadotropin in other species. In goldfish for example, E2 and T exert a combination of 

positive and negative feedback actions, whereby pituitary responsiveness to GnRH is 

enhanced, but basal serum GtH-II levels are maintained by an increase in pituitary DA 

turnover rates (Trudeau et al., 1991b, 1993a, b). Treatment with estrogens or 

aromatisable T increases pituitary GtH content and pituitary responsiveness to 

exogenous GnRH-a or LHRH-a in a number of species (Crim and Peter, 1978; Crim et 

al., 1981, Crim and Evans, 1983; Dufour et al., 1983, 1989; Trudeau et al., 1993a, b). 

Steroid feedback may also function in a similar fashion in greenback flounder, which 

suggests potential for exogenous steroid treatment in enhancing the ovulatory 

response to LHRH-a.. 

In this study, we tested the potential of the DA antagonist PIM to further enhance 

ovulatory success in the presence of LHRH-a, and also examined the potentiating 

effects of T on ovulation and LHRH-a induced ovulation. In the absence of a GtH 

assay for greenback flounder we chose to assess the efficacy of hormone treatments by 

examining incidence and frequency of ovulation and the associated changes in plasma 

sex steroid levels. As the point of induced ovulation is to provide viable eggs, the 

fertility of eggs produced using various treatments was also assessed. 

5.3. Materials and methods 

5.3.1. Fish and fish maintenance 

Experiments were conducted on second generation cultured fish produced by either the 

Department of Primary Industries and Fisheries, Marine Research Laboratories, 

Taroona, Tasmania or the Department of Aquaculture aquatic facility at the University 

of Tasmania in Launceston. Fish were maintained at the Launceston facility, in 

recirculating systems incorporating a biofilter, coarse solids filter and aeration system. 

Fish with ovaries at the vitellogenic stage of development were chosen for the 
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experiments. These fish had large firm ovaries, bulging above the musculature, 

extending to the caudal peduncle but no oocytes were released upon gentle pressure on 

the abdomen. In all experiments, fish were fed at 3% body weight daily, body weights 

ranged from 95-285 g, water temperature was 10-12 °C, daylength was 10 h (lights on 

0645 h), and all experiments commenced at 0900 h. 

5.3.2. Experimental protocols 

Experiments 1 and 2: Fish were divided into four treatment groups (n=7) anaesthetised 

and treated with either (1) saline and pimozide (PIM) vehicle (0.7% NaCl / 1 g1 1  

sodium metabisulphite / 0.2 m1.1 1  acetic acid (Chang and Peter, 1983a)) (2) des Glyio 

[D-A1a6] LHRH ethylamide (LHRH-a) and PIM vehicle (3) saline and PIM, or (4) 

LHRH-a and PIM. LHRH-a and PIM were administered at a dose of 100 pg.kg -1  and 

10mg.kg -1  respectively and each treatment was administered in an injection volume of 

100pl.kg-1  by intraperitoneal injection (ipi). Each fish was anaesthetised then bled 0, 

24, 48, 72 and 96 h after treatment and checked for ovulation by gentle pressure on the 

abdomen 0, 24, 48, 72, 96, 120, 144, 168 and 192 h after treatment. Any ovulated 

eggs were stripped. 

Experiments 3 and 4: Fish were divided into four treatment groups (n=7), 

anaesthetised, and treated with either (1) an injection of saline and a blank silastic 

pellet (2) an injection of LHRH-a and a blank silastic pellet (3) an injection of saline 

and T in a silastic pellet (4) an injection of LHRH-a and T in a silastic pellet. Silastic 

pellets were made with 1 g Silastic 382 unpolymerised medical grade elastomer (Dow 

Corning Corporation), + 20 il of accelerator and crystalline T (200 mg.g 1  elastomer) 

spread into 2 x 2 x 30 mm moulds to give 0.8 mg T. mm -l silastic strip. The mixture 

was left to set and pellets were cut to the appropriate length to give a dose of 100 

mg.kg -1  body weight. Pellets were inserted into the intraperitoneal cavity using a 12G 

hypodermic needle. LHRH-a was administered at a dose of 100 pg.kg -I  and LHRH-a 

and saline were administered as before. Each fish was anaesthetised, bled and stripped 

as for experiments 1 and 2. 

5.3.3. Egg fertilisation 

During experiments 2 and 3, sperm was collected from 3 - 4 spermiated males held 

separately from females, at each sample period in a 3 ml syringe, and stored on ice. 



Ovulated females were stripped and 500 pl of eggs were mixed with 50p1 sperm and 

500 pl of sterilised seawater by gentle agitation for 3 min, after which the mixture was 

washed by additions of clean sea water, the fertilised eggs were incubated in 50 ml of 

clean seawater at 12°C (Hart and Purser, 1995) and examined for embryonic cleavage 

to 4 or more cells, 5 h after fertilisation. 

5.3.4. Steroid measurement 

Blood samples were collected by caudal puncture and plasma concentrations of E2, T 

and 17,201W were measured by radioimmunoassay (RIA). One hundred microlitres of 

plasma were extracted with 1 ml of ethyl acetate and added to each assay tube for 

evaporation and resuspension in assay buffer, using the reagents and protocol given in 

(Panldiurst and Conroy, 1987). Extraction efficiency was determined by recovery of 

[3H]-labelled steroid extracted with plasma, and was on average 94%, 93%, and 93% 

for E2, T and 17,203P respectively. Assay values were corrected accordingly. Assay 

detection limits were 0.28 ng.m1 -1  for E2, T and 17,208P. Interassay variability was 

measured using a pooled steroid standard giving %CVs of 9% (n=10), 13% (n=10), 

7% (n=10) for E2, T and 17,201W respectively. 

5.3.5. Statistical analysis 

Repeated measures analysis of variance, mean comparison tests, planned contrasts and 

logistic analysis were performed using the computer packages SAS or SPSS for 

Windows. Data were log or square root transformed to satisfy normality and 

homogeneity of variance requirements. A significance level of a < 0.05 was used for all 

statistical tests. Homogeneity of variance was not satisfied in all instances, however, 

the data were also assessed by multivariate analysis of variance and canonical 

discriminant analysis, and in all cases the outcomes were consistent. We have presented 

ANOVA results because of the utility of mean comparison tests and the familiarity of 

these tests within the literature. 

5.4. Results 

Logistic analysis indicated that treatment with LHRH-a and LHRH-a + PIM 

significantly increased the number of ovulations above control levels during 

experiments 1 and 2, and LHRH-a induced more ovulations than LHRH-a + PIM in 

experiment 2 (Figs 5.1 and 5.2). Treatment with PIM significantly increased the total 
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number of ovulations above control levels in experiment 2, but not experiment 1. 

During experiment 1, all but one fish that ovulated in response to exogenous hormones 

ovulated more than once, most of these fish ovulated more than twice and most 

ovulations occured at daily intervals. During experiment 2, all fish that ovulated in 

response to exogenous hormones ovulated more than once, most of these fish ovulated 

more than twice and most ovulations occured at daily intervals. 

Treatment with LHRH-a and LHRH-a + T, significantly increased the total number of 

ovulations above control levels, and LHRH-a + T induced significantly more 

ovulations than LHRH-a alone in experiments 3 and 4 (Figs 5.3 and 5.4). Treatment 

with T alone did not significantly increase the number of ovulations above control 

levels. The majority of ovulations were recorded 48 - 144 h, 96 - 168 h, 120 - 168 h 

and 96 - 168 h after exogenous hormone treatment for experiments 1 - 4 respectively. 

During experiments 3 and 4, all but one fish that ovulated in response to exogenous 

hormones ovulated more than once, most of these fish ovulated more than twice and 

most ovulations occured at daily intervals. 

Logistic analysis indicated that, treatment with LHRH-a, PIM and LHRH-a + PIM 

significantly increased the percentage of fertilised eggs that developed through to 4 cell 

stage of embryonic development and treatment with LHRH-a resulted in significantly 

more eggs surviving to the 4 cell stage than fish treated with PIM or LHRH-a + PIM 

(Fig. 5.5a). Treatment with LHRH-a and LHRH-a + T both increased the percentage 

of fertilised eggs that developed through to 4 cell stage above control levels and fish 

treated with T. There was no difference between LHRH-a and LHRH-a + T (Fig. 

5.5b). 

Fish treated with LHRH-a + PIM and LHRH-a had significantly higher plasma levels 

of E2 than control fish and fish treated with PIM during experiments 1 and 2 (Figs 5.6a 

and 5.7a), and fish treated with LHRH-a + PIM had significantly higher levels of E2 

than fish treated with LHRH-a at 24 h during experiment 1. Those fish treated with 

PIM showed no significant increases in plasma levels of E2 above control levels during 

experiments 1 and 2. Plasma levels of T were significantly higher in fish treated with 

LHRH-a at 96 h in experiment 1 and 24-72 h in experiment 2, than in control fish or 

fish treated with PIM (Figs 5.6b and 5.7b). Plasma levels of T were also significantly 

higher than controls or fish treated with PIM, in fish treated with LHRH-a + PIM at 
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48- 96 h in experiment 1 and 24-96 h in experiment 2. Fish treated with LHRH-a + 

PIM had significantly higher levels of T than fish treated with LHRH-a at 48 h during 

experiment 1. Fish treated with FIM showed no significant changes in plasma T levels 

during both experiments 1 and 2. 

Treatment with LHRH-a and LHRH-a + T resulted in significantly higher plasma levels 

of E2, 72 and 96 hours after treatment during experiments 3 and 4 than in control fish 

and fish treated with T (Figs 5.8a and 5.9a). Fish treated with T showed no significant 

changes in plasma in E2 during experiments 3 and 4. Plasma T was significantly higher 

at 24 -96 h in fish treated with T and LHRH-a + T than in control fish and fish treated 

with LHRH-a during experiments 3 and 4 (Figs 5.8b and 5.9b). Plasma levels of T did 

not differ between fish treated with T and LHRH-a + T throughout experiments 3 and 

4. 

Plasma levels of 17,2013P were not elevated above control levels in any fish treated 

with exogenous hormones throughout experiments 1 - 4 (Figs 5.6c-5.9c), although, 

plasma levels of 17,20f3P were significantly elevated above pre-treatment levels in 

control fish and fish treated with exogenous hormones, 24 and 48 h after treatment 

during experiment 2. 



Fig. 5.1. Percentage of fish that ovulated in each treatment group at each sample time 

during experiment 1. Treatments that are not significantly different (P>0.05) share 

common superscript letters. Fish are labelled 1-7 within each treatment group and 

numbers denote which fish ovulated within each treatment at each sample time. 
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Fig. 5.2. Percentage of fish that ovulated in each treatment group at each sample time 

during experiment 2. Treatments that are not significantly different (P>0.05) share 

common superscript letters. Fish are labelled 1-7 within each treatment group and 

numbers denote which fish ovulated within each treatment at each sample time. 
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Fig. 5.3. Percentage of fish that Ovulated in each treatment group at each sample time 

during experiment 3. Treatments that are not significantly different (P>0.05) share 

common superscript letters. Fish are labelled 1-7 within each treatment group and 

numbers denote which fish ovulated within each treatment at each sample time. 
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Fig. 5.4. Percentage of fish that ovulated in each treatment group at each sample time 

during experiment 4. Treatments that are not significantly different (P>0.05) share 

common superscript letters. Fish are labelled 1-7 within each treatment group and 

numbers denote which fish ovulated within each treatment at each sample time. ' 
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Fig.5.5. Percentage of eggs that were stripped and fertilised from fish in each treatment 

group, and developed through to the 4-cell stage of embryonic development (a) 

Experiment 2 (b) experiment 3. Treatments that are not significantly different (P>0.05) 

share common superscripts. 
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Fig. 5.6. Plasma levels of (a) E2, (b) T and (c) 17,208P in each treatment group at each 

sample time during experiment 1. Values are mean + S.E. Values that are not 

significantly different (P>0.05) share common superscripts, comparisons are within 

times between groups, n=7 per treatment. 
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Fig. 5.7. Plasma levels of (a) E2, (b) T and (c) 17,2013P in each treatment group at each 

sample time during experiment 2. Values are mean + S.E. Values that are not 

significantly different (P>0.05) share common superscripts, comparisons are within 

times between groups, n=7 per treatment. 
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Fig. 5.8. Plasma levels of (a) E2, (b) T and (c) 17,20BP in each treatment group at each 

sample time during experiment 3. Values are mean + S.E. Values that are not 

significantly different (P>0.05) share common superscripts, comparisons are within 

times between groups, n=7 per treatment. 
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Fig. 5.9. Plasma levels of (a) E2, (b) T and (c) 17,208P in each treatment group at each 

sample time during experiment 4. Values are mean + S.E. Values that are not 

significantly different (P>0.05) share common superscripts, comparisons are within 

times between groups, n=7 per treatment. 
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5.5. Discussion 

As in many other species and consistent with our earlier work on greenback flounder 

(Barnett and Pankhurst 1998b, chapter 4, this volume), LHRH-a was effective at 

inducing ovulation in greenback flounder. Co-treatment with LHRH-a and PIM did not 

improve the efficacy of LHRH-a in inducing ovulation. Similarly, fish treated with 

LHRH-a showed persistent elevation of plasma T and E2, but in most cases, this 

increase was not further augmented by co-treatment with PIM and LHRH-a. With the 

proviso that plasma levels of gonadal steroids only provide indirect evidence of GtH 

release, it appears that DA may not have strong inhibitory action on GtH release in 

greenback flounder. Although there is a strong body of literature demonstrating DA 

inhibition of GtH release (reviewed in Trudeau and Peter, 1995; Peter and Yu, 1997), 

a smaller number of studies indicate that DA inhibitory action on GtH release may be 

limited or even absent in some species. A study on coho salmon concluded that DA 

had a minor role in the regulation of gonadotropin in comparison to cyprinids (Van 

Der Kraak et al., 1986). DA antagonists did not enhance GnRH-a induced 0tH release 

in the gilthead seabream (Zohar et al., 1987), and in Atlantic croaker, there was no 

evidence for the inhibitory effects of DA or DA agonists on GtH secretion, and some 

evidence that DA antagonists suppressed the effects of LHRH-a on GtH (Copeland 

and Thomas, 1989). 

T treatment stimulates GtH release into the plasma of immature rainbow trout 

(Oncorhynchus mykiss), and sexually regressed female goldfish exposed to 

environmental conditions conducive for spawning (Crim and Evans, 1983; Kobayashi, 

et al., 1989). T treatment alone had no effect on ovulation in greenback flounder, 

however, T treatment potentiated the stimulatory effect of LHRH-a on ovulation, 

suggesting that T treatment enhances pituitary responsiveness to LHRH-a. Increased 

pituitary GtH content occurs following treatment with estrogens or aromatisable T in 

juvenile rainbow trout (Crim et al., 1981, Crim and Evans, 1983), Atlantic salmon 

(Salmo salar), (Crim and Peter, 1978), European eel (Anguilla anguilla) (Dufour et 

al., 1983, 1989) and goldfish (Trudeau et al., 1993a, b). T treatment also enhanced 

pituitary responsiveness to exogenous GnRH-a or LHRH-a resulting in serum GtH 

release in juvenile rainbow trout, goldfish, common carp and Chinese loach (Crim and 
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Evans, 1983; Trudeau et al., 1991a, 1993a, b). It is reasonable to conclude from this 

study, that positive steroid feedback in greenback flounder (where DA inhibition is 

inconsistent) will involve stimulation of pituitary GtH but not GtH release. 

Time to ovulation was negatively correlated with holding temperature in a wide range 

of species examined, and greenback flounder were similar to other species held at low 

temperatures (Reviewed in Barnett and Pankhurst, 1998b, chapter 4 this volume). In 

addition to the effects of temperature on delayed time to ovulation in greenback 

flounder, results from this study indicate that the indirect effects of exogenous 

hormone treatment on ovulation via steroid feedback, may, also delay ovulation. 

Considerable, progress has been made in identifying other neuropeptides and 

neurohormones which may also have stimulatory and inhibitory actions on 0tH release. 

Melatonin has stimulatory effects GtH release in Atlantic croaker with fully developed 

gonads (Khan and Thomas, 1996) and serotonin (5-hydroxytryptamine, 5-HT) 

stimulates GtH release in goldfish (Somoza and Peter, 1991) and the Atlantic croaker 

(Khan and Thomas 1991, 1994). The neurotransmitter y-aminobutyric acid (GABA) 

has prominent stimulatory actions on GtH release in gonadally regressed goldfish (Kah 

et al., 1991; Trudeau and Peter 1995) and gonadally regressed Atlantic croaker, and 

inhibitory effects in mature Atlantic croaker (Khan and Thomas 1995; Trudeau and 

Peter 1995). It has been hypothesised that the regulation of GtH release may be under 

the combined effects of GnRH (stimulatory), DA (inhibitory) and GABA (modulatory) 

and the differential effects of GABA may in turn be modulated by gonadal steroids 

(Khan and Thomas 1995; Trudeau and Peter 1995). Positive and negative steroid 

feedback may also modulate GABA's actions on GtH-II release in greenback flounder 

and the role of DA inhibition may in part be superseded by the modulatory effects of 

GABA on GnRH. 

At 72 and 96 h post treatment, plasma levels of E2 in fish that were treated with T + 

LHRH-a and LHRH-a, were far in excess of values we have previously found in wild 

greenback flounder (Barnett and Pankhurst, 1998c, chapter 3 this volume) or 

greenback flounder induced to ovulate with exogenous hormones (Barnett and 

Pankhurst 1998b, chapter 4 this volume). The fact that similar increases in E2 were not 

observed in fish treated with T alone, suggests that this was not a result of 

aromatisation of exogenous T to E2. Other studies however, indicate that exogenous 
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steroids can pass relatively freely in and out of fish and can be detected by untreated 

fish (Budworth and Senger, 1993; Vermeirssen and Scott 1996). This raises the 

possibility that exogenous T was taken up by fish in all treatments, but was only 

aromatised to E2 in the presence of GtH stimulated by treatment with LHRH-a. There 

were however, no significant increases in T in fish treated with LHRH-a alone and 

significant increases in plasma E2 were delayed until 72 and 96 hours after treatment. 

Plasma levels of 17,2013P were not significantly elevated above control levels during 

this study, although, in some cases plasma 17,2013P levels were significantly elevated 

above pre-treatment levels in all treatment groups. This response was infrequent and 

wasn't clearly associated with reproductive events. Similar observations have been 

made in another study on greenback flounder (Barnett and Pankhurst, 1998b; chapter 4 

this volume), which implies that 17,2013P is an ambiguous marker of impending 

ovulation. This indicates a requirement to assess the production 17,2013P by maturing 

oocytes in vitro, and the role of 17,20f3P in FOM in vitro. 

In previous studies, we demonstrated that some husbandry and laboratory practices 

can induce a stress response in greenback flounder (Barnett and Pankhurst, 1998a; 

chapter 2 this volume), and reproductive processes are sensitive to stress. Plasma 

levels of T and E2, but not 17,2013P significantly decreased in control fish in response 

to experimental procedures (Barnett and Pankhurst, 1998b, chapter 4, this volume), 

suggesting gonadal steroids are differentially sensitive to stress. Increases in plasma 

17,203P levels observed in this study and a previous study (Barnett and Pankhurst, 

1998b, chapter 4, this volume), may have been of interrenal origin and/or associated 

with a stress response. A study on in vitro biosynthesis of 17,2013P in Atlantic salmon 

indicated that among other tissues, the interrenal is an excellent cellular source of 

17,20PP (Sangalang and Freeman, 1988). Increases in 17,200P have been associated 

with increased cortisol levels (Carragher and Pankhurst, 1991), 17, 2013P is an 

excellent substrate for cortisol production by the rainbow trout interrenl (Barrt et al., 

1997) and cortisol potentiated GtH-stimulated production of 17,2013P in rainbow trout 

(Jalabert and Fostier, 1984). 

In other studies on greenback flounder, intraperitoneal injections of the commercially 

available hormone mixture ovaprim (containing [D-Arg 6, Pro9 NEt]-sGnRH and a 
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dopamine antagonist (domperidone) (Peter et al, 1993)), resulted in mean fertilisation 

rates of 49% (Hart, 1994) and up to 93% (Hart and Purser, 1995), although, LHRH-a 

treatment alone was not assessed in these studies. In this study fertilisation rates were 

within this range, and were consistent between experiments for the same treatment. 

Egg fertility was higher than levels reported for summer flounder (Paralichthys 

dentatus) treated with GnRH-a pellet implants (Berlinsky et al., 1997) and within the 

range of fertility reported for Southern flounder (Paralichthys lethostigma) and winter 

flounder (Pseudopluronectes americanus) treated with GnRH- pellet implants (Harmin 

and Crim, 1992; Berlinsky and King, 1996). Stress can have detrimental effects on egg 

quality in some species (reviewed in Pankhurst and Van Der Kraak, 1997), and the fact 

that some laboratory and husbandry procedures have the capacity to induce periods of 

acute stress in greenback flounder (Barnett and Pankhurst, 1998a; chapter 2 this 

volume ), suggests that the experimental protocol in this study may have compromised 

egg quality. In the absence of experimental sampling, induced ovulation protocols may 

result in even higher fertilisation rates. 

Treatment with LHRH-a and LHRH-a + T resulted in equivalent egg fertility. 

Frequency of egg fertility and % ovulations were significantly higher in fish treated 

with LHRH-a, than fish treated with LHRH-a + PIM or PIM, suggesting that PIM had 

an inhibitory effect on ovulation and egg quality during this experiment. Similarly, poor 

egg quality was observed in rainbow trout treated with PIM and LHRH-a + PIM, 

whereas egg quality was higher and less variable in fish treated with LHRH-a alone 

(Billard et al., 1984). Both LHRH-a alone and LHRH-a + T are the most effective 

treatments in terms of egg fertility, however, LHRH-a + T stimulated more ovulations 

than LHRH-a alone, and is therefore the most effective treatment in terms of egg 

production. 
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6. Effects of gonadal steroids and human chorionic gonadotropin on in 

vitro final oocyte maturation in the greenback flounder Rhombosolea 

tapirina (Gunther, 1862). 

6.1. Summary 

This study investigated the effect of reproductive steroids and human chorionic 

gonadotropin (hCG) on final oocyte maturation (FOM) in the greenback flounder 

(Rhombosolea tapirina). Fragments of ovarian lamellae containing vitellogenic oocytes 

were incubated with varying concentrations of steroids and hCG, and the maturational 

effect of these hormones was assessed by examining the percentage of oocytes that 

underwent FOM. Ovarian fragments required pre-treatment with hCG before they 

were receptive to steroids, and in most cases, the maturational response to steroids 

after priming with hCG exceeded the maturational response to hCG treatment alone. 

Ovarian fragments primed with hCG were receptive to all steroids at all concentrations 

tested, although there was considerable inconsistency in maturational responses to each 

steroid and each dose. 17a,20a-dihydroxy-4-pregnen-3-one (17,20aP) was most 

frequently ranked as the most effective MIS, but was closely followed by 2013- 

hydroxy-4-pregnen-3-one (2013P), 17a2013-dihydroxy-4-pregnen-3-one (17,2013P) and 

17a,2013, 21-trihydroxy-4-pregnen-3-one (2013S). The least effective steroids were the 

steroid precursor 17P followed by 17-Preg and 3a,17, 20a-P-513. These results 

suggests that 20a and 2013- hydroxylated steroids were most effective at inducing 

maturation in greenback flounder, and 5-pregnene and 58-pregnane steroids were least 

effective. 

6.2. Introduction 

Some studies have investigated the actions of C21 steroids on final oocyte maturation 

(FOM) (the resumption of meiosis after prophase arrest) in teleosts, by means of in 

vitro bioassay techniques (reviewed in Scott and Canario, 1987). This approach 

involves incubating oocytes in culture in the presence of known amounts of steroids 

and measuring the proportion of oocytes that undergo FOM. Bioassays are often not 
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specific enough to provide the exact identify of the true MIS, but will generally provide 

information regarding the structural requirements for maturational activity. 

There is good evidence that 17a,2013, 21-trihydroxy-4-pregnen-3-one (2013S), is the 

major maturation inducing steroid in the spotted sea trout (Cynoscion nebulosus) and 

Atlantic croaker (Micropogonias undulatus) (Thomas and Trant, 1989; Thomas, 1994) 

and some evidence for its action in turbot (Scophalmus maximus) (Mugnier et al., 

1995) and tbinumeri-dragonet (Repomucenus beniteguri) (Asahina et al., 1991). 

17a2013-dihydroxy-4-pregnen-3-one (17,2013P) is however, the most active MIS in 

most other species in which it has been tested (reviewed in Scott and Canario, 1987). 

Recently we have described changes in plasma and ovarian levels of 17,208P and 

plasma levels of the conjugates 17,2013P-sulphate and 17,2013P-glucuronide in 

greenback flounder Rhombosolea tapirina, on the basis of 17,208P being the main 

MIS in some other species (Barnett and Pankhurst, 1998b, chapter 3 this volume). 

Plasma levels of 17,208P were significantly elevated in ovulated females, whereas 

ovarian levels were elevated in association with final oocyte maturation (FOM) and 

ovulation. Plasma levels of 17,2013P-sulphate but not 17,2013P-glucuronide were 

elevated in association with FOM and ovulation. This suggests that 17,2013P might 

play a role in FOM in greenback flounder. The aim of the present study was to assess 

whether 17,201W was effective at inducing FOM in vitro. In vitro biopotency was 

assessed against other C21 steroids at a range of doses. 

The steroids chosen were based on their presence and proven effectiveness in vitro and 

in vivo in other species, and also their position in the steroid biosynthesis pathway. Dab 

(Limanda limanda) ovaries for example, have very active 20a-hydroxy-steroid 

dehydrogenase (20a-HSD) activity, plaice (Pleuronectes platessa) have very active 

21-hydroxlylase and conjugating activity and both species have strong 513-reductase 

activity (Canario, 1991; Scott and Canario, 1992). Therefore, we also measured the 

effectiveness of 20a- and 208- hydroxylated, and 513-pregnane steroids. 

There is some evidence suggesting that gonadotropin (GtH) stimulates maturational 

competence (Kobayashi et al., 1988; Canario and Scott, 1990; Thomas and Patin°, 

1991; Degani and Boker, 1992; Kagawa et al., 1994; Zhu et al., 1994). We therefore 

tested the effectiveness of steroids on FOM in the presence or absence of human 
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chorionic gonadotropin (hCG). We do not have a homologous preparation of 

greenback flounder GtH, however, we have previously used hCG to successfully 

induce ovulation in greenback flounder in vivo (Barnett and Pankhurst, 1998a, chapter 

4, this volume). 

6.3. Materials and Methods 

6.3.1. Fish capture and maintenance 

Experiments were conducted on second generation cultured fish or wild fish. Cultured 

fish were produced by either the Department of Primary Industries and Fisheries, 

Marine Research Laboratories, Taroona, Tasmania or the Department of Aquaculture 

aquatic facility at the University of Tasmania in Launceston, and were maintained at 

the Launceston facility, in recirculating systems incorporating a biofilter, coarse solids 

filter and aeration system. Wild fish were either caught in hand nets by scuba divers at 

Bicheno (148 0  18' E, 41 °  52' S) on the east coast of Tasmania from June-September 

1996 or by commercial gill netting from Georges Bay (148 °  16' E, 41 °  19' S) on the 

east coast of Tasmania from September-October 1996. Fish 1, 2, 3, 7 and 13 were 

cultured fish, all remaining fish were wild fish. 

6.3.2. Tissue preparation 

Fish were anaesthetised in 0.05% 2-phenoxy-ethanol, killed by spinal transection and 

ovaries immediately dissected and placed into ice cold Leibowitz L15 medium (Sigma) 

adjusted to 405 mOs.kg -1  (an approximation of the osmolality of marine teleost 

plasma) and pH of 7.6. Ovaries from Launceston fish were immediately transported to 

the laboratory for processing, whereas, ovaries from wild fish were transported in L15 

on ice to Launceston by road (1.5 and 2 h for Bicheno and Georges Bay respectively). 

Not all gonads were at the same stage, and ranged from vitellogenic through late 

vitellogenic with a scattering of hydrated oocytes. Fragments of ovarian lamellae 

containing 20-50 vitellogenic oocytes were dissected out and incubated in tissue 

culture plates (Corning) in a final volume of 1 ml of L15 medium and varying 

concentrations of steroids and hCG, with 4 replicates per treatment. 
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6.3.3. Incubation protocol 

Steroids were dissolved in ethanol and added to the incubation medium in a volume of 

10 t.t.1, and 101.11 ethanol was added to the control incubates. HCG was dissolved in 

L15 medium and added in a volume of 100121. The potency of 17P was measured due 

to it's role as a precursor to 17,20I3P (Richter et al., 1987) and the effectiveness of 17- 

Preg was measured so as to assess the potency of 5-pregnen steroids versus 4-pregnen 

steroids. The steroids tested were :17a-hydroxy-4-pregnene-3,20-dione (17P), 

17a,208-dihydroxy-4-pregnen-3-one (17,2013P), 17a.,20a-dihydroxy-4-pregnen-3-one 

(17,20aP), 17a,2013, 21-trihydroxy-4-pregnen-3-one (2013S), 2013-hydroxy-4-pregnen-

3-one (2013P), 313,17a- hydroxy-5-pregnen-20-one (17-preg) and 3a,17a, 20a-

trihydroxy-513-pregnane (3a,17, 20a-P-513). All steroids were purchased from Sigma. 

Experiments were performed sequentially and the experimental protocols were 

modified on the basis of outcomes from preceding experiments (details are given in 

Table 6.1). Experiment 1 (fish 1-6): Ovarian fragments were incubated with either L15 

alone (controls), hCG at 1, 10 and 100 IU.m1 -1 , steroids or steroids + hCG 100 IU.m1 -1 . 

Experiment 2 (fish 7-9): Ovarian fragments were incubated with either L15 alone, 

hCG at 10 and 100 IU.m1 -1 , 17P, 17-Preg, 17P + hCG and 17-Preg + hCG at 100 

IU.m1 -1 . The remaining ovarian fragments were incubated with hCG 100 IU.m1 -1  for 24 

h, then treated with either 17P, 17-Preg, 17,2013P or 20I3S. Experiments 3 and 4 (fish 

10-16): Ovarian fragments were incubated with hCG 100 IU.m1 -1  for 24 h, then treated 

with either 17P, 17,208P, 17,20aP, 208S, 208P, 17-Preg, 3a,17, 20a-P-58 or hCG at 

100 IU.m1 -1 . 

Ovarian fragments were incubated at 12 °C and at each sample time the incubation 

medium and hormones were replaced. Before treatment, and at each sample time the 

developmental stage of all oocytes was identified as vitellogenic or mature. 

Vitellogenic oocytes had an opaque white or fine granular appearance, some maturing 

oocytes had a coarse granular appearance but most were clear with a single oil droplet. 

Oocyte staging was verified by clearing approximately 60 oocytes from each of 4 fish 

in sera solution (ethanol: formalin: glacial acetic acid (6 : 3 : 1 v/v)) to determine the 

presence or position of the germinal vesicle (GV). Vitellogenic oocytes had a centrally 

located or eccentric located GV, maturing oocytes with a coarse granular appearance 



had a peripheral GV or had undergone GV breakdown (GVBD), all remaining mature 

oocytes had undergone GVBD. The maturity status of granular oocytes with a 

peripheral GV, is ambiguous and may not be considered equivalent in terms of 

endocrine status and maturity to oocytes that have undergone GVBD (Goetz, 1983; 

Billard and Jensen, 1996). However, very few maturing oocytes with a peripheral GV 

were observed (<6% of maturing oocytes), indicating oocytes underwent GV 

migration relatively quickly. 

Table 6. 1.Details of different experiments carried out in vitro with greenback flounder 

ovarian fragments, with various steroids at different concentrations, in the presence (+) 

or absence (-) of hCG, with (+) or withou (-) 24 h of hCG priming. 

Experiment 	Steroids 	Concentration Presence 	hCG 	Sample 	Incubation 

(ng.m1 -1) 	of hCG 
primed frequency 	time (h) 

(h) 

1 (fish 1-6) 	17P, 17,208P, 	1, 10, 100 	+ and — 	 24 	72-120 

2013S, 

2 (fish 7-9) 	17P, 17,201W, 	10, 100 	+ and — 	+ 	24 	72-120 

17,20aP, 208S, 

201W, 17-preg 

3 (fish 10-13) 
	

17P, 17,201W, 	1, 10, 100, 	 24 	72 

	

17,20aP, 2013S, 	1000 

201W, 17-preg 

3a,17, 20a-P-513 

3 (fish 14-16) 	17P, 17,208P, 	0.01, 0.1, 1, 	 6 	42-58 

	

17,20aP, 208S, 	10 

201W, 17-preg 

3a,17, 20a-P-58 
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6.3.4. Statistical analysis 

Repeated measures analysis of variance and mean comparison tests were performed 

using the computer package JMP for Macintosh. Data were transformed to satisfy 

normality and homogeneity of variance requirements. A significance level of a < 0.05 

was used for all statistical tests. Percent maturation responses to steroids during 

experiments 2, 3 and 4 were ranked 9 = best response, 1 = lowest response for each 

fish and each dose, from the steepest part of response curve which was 72, 48, 48, 72, 

48, 36, 18 and 30 h for fish 7, 8, 9, 10, 11, 12, 14 and 15 respectively. 

6.4. Results 

Spontaneous maturation in control fish was _- 5% (excluding initial counts). Oocytes 

from fish 3, 13 and 16, showed no response to treatment with hCG or steroids (ie. 

maximal % maturation was < 8% excluding initial counts). Although these oocytes 

appeared normal in appearance, some of these oocytes failed to clear in sera solution. 

Percentage maturation was significantly enhanced by treatment with 10 IU.m1 1  hCG at 

48 h, 100 IU.m1 -1  hCG at 24 and 48 h and 100 IU.m1 -1  hCG + steroids at 24 and 48 h 

post treatment in fish 1-6 during experiment 1 (Fig. 6.1). Treatment with steroids and 

hCG were no more effective than treatment with 100 IU.m1 -1  hCG alone. One IU.m1 -1  

hCG and steroids alone had no effect on oocyte maturation. 

During experiment 2, % maturation was significantly enhanced by treatment with 100 

IU.m1 1  hCG (Figs 6.2-6.4. and Tables 6.2-6.4.). In all cases, pre-treatment with 100 

IU.m1 -1  hCG followed by 208S significantly enhanced % maturation. and in most cases 

co-treatment or pre-treatment with hCG followed by 17P, 17-Preg or 17,20BP also 

significantly enhanced % maturation. Pre-treatment with hCG followed by steroids was 

not statistically more effective than hCG alone. Steroid treatment alone or 10 IU.m1 -1  

hCG did not significantly enhance % maturation. 

Ovarian fragments were receptive to all steroids, however, there was no indication of a 

dose response to steroids over the range of doses tested. Steroid effectiveness was not 

consistent between doses within fish and between fish in any experiments, hence, dose 

response curves were incoherent (data not shown). Comparative steroid effectiveness 

was assessed by ranking treatments in decreasing order of effectiveness during the 
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steepest part of the response curve (Table 6.5.). 2013S and 17P were the most effective 

treatments at 10 ng.m1 -1  and 20I3S and 17,2013P were the most effective treatments at 

100 ng.m1 -1 . HCG at 10IU.m1 1  and steroid treatments administered without hCG were 

the least effective treatments. 

During experiment 3, pre-treatment with 100 IU.m1 -1  hCG followed by steroids 

significantly enhanced % maturation in fish 10 and 11, and in some cases in fish 12 

(Figs 6.5-6.7. and Tables 6.6-6.8.). Percentage maturation was not significantly 

enhanced by treatment with 100 IU.m1 -1  hCG alone, and in most cases, pre-treatment 

with hCG followed by steroids was statistically more effective than treatment with 

hCG alone. 

Pre-treatment with 100 IU.m1 -1  hCG followed by steroids during experiment 4, 

significantly enhanced % maturation in fish 14 and 15 (Figs 6.8-6.9. and Tables 6.9- 

6.10.). Percentage maturation was significantly enhanced by treatment with 100 IU.ml -

1  hCG alone, and in many cases, pre-treatment with hCG followed by steroids was 

statistically more effective than treatment with hCG alone. 

During experiments 3 and 4, ovarian fragments were receptive to all steroids, however, 

there was no indication of a dose response to steroids over the range of doses tested. 

Comparative steroid effectiveness was assessed by ranking treatments in decreasing 

order of effectiveness during the steepest part of the response curve (Tables 6.11.). 

Total ranks were 17,20aP, 2013P, 17,2013P and 2013S equally, 17-preg and 17P 

equally, 3a,17, 20a-P-513, hCG, and control respectively, in decreasing order, 

however, the total score of the ranks indicates that 17,20aP, 2013P, 17,20I3P, 2013S 

were similarly effective. 
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Fig.6.1. Percentage maturation in oocytes from fish 4 (representative of experiment 1), 

for each hormone dose at each sample time. Oocytes were treated with either (a) 17P, 

(b) 2013S or (c) 17,20[3P, in the absence or presence of hCG or (d) hCG alone. Values 

are mean ± s.e., n=4 per treatment dose. Asterisks shows means that are significantly 

different between treatments and across times (P>0.05). 
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Fig 6.2. Percentage maturation in oocytes from fish 7, for each hormone at each 

sample time. Hormones were administered at (a) 10 ng.m1 4  steroid, 10 or 100 IU.m1 -1  

hCG (b) 100 ng.m1-1  steroid, 10 or 100 IU.m14  hCG or (c) 100 ng.m14  steroid + hCG 

100 IU.m1 -1 , 10 or 100 IU.mr 1  hCG, see Table 6.1. for details Asterisks indicate 

incubations that were not primed with hCG 100 IU.m1 -1 , n=4 per treatment dose. 
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Table 6.2. Statistical results for Fig. 6.2. Different superscripts show significant 

differences in percentage maturation in oocytes from fish 7, for each hormone at each 

dose and at each sample time. See Table 6.1. for details of experimental protocol. 

Asterisks indicate steroid treatments that were not primed with hCG 100 IU.m1 -1 , n=4 

per treatment dose. 

Treatment Dose Oh 24h 48h 72h 96h 

* 17P lOng.m1 -1  a a a a a 
17P lOng.m1 -1  a a a a b 
* 17-Preg lOng.m1 -1  a a a a a 
17-Preg lOng.m1 -1  a a a a a 
17,208P lOng.ml -1  a a a a a 
20I3S lOng.m1 -1  a a a a b 
hCG 10 IU.m1 -1  a a a a ab 
hCG 100 IU.m1 -1  a a a a ab 
control control a a a a a 

* 17P 10Ong.m1 1  a a a a a 
17P 10Ong.m1 .1  a a a ab ab 
* 17-Preg 10Ong.m1 -1  a a a a a 
17-Preg 10Ong.m1 -1  a a a a a 
17,203P 10Ong.m1 -1  a a a b ab 
20138 100ng.m1 -1  a a a ab b 
hCG , 
hCG 

10 IU.m1 -1  
100 IU.ml d  

a 
a 

a 
a 

a 
a 

ab 
ab 

ab 
ab 

control control a a a a a 

* 17P 10Ong.m1 -1  + 
hCG 100 IU.m1 1  

a a a a bc 

17P 10Ong.m1 -1  + 
hCG 100 IU.m1 -1  

a a a a ab 

* 17-Preg 10Ong.m1 -1  + 
hCG 100 IU.m1 -1  

a a a a bc 

17-Preg 100ng.m1 -1  + 
hCG 100 IU.m1 -1  

a a a a a 

17,20I3P 10Ong.m1 -1  + 
hCG 100 IU.m1 -1  

a a a a b 

20138 10Ong.ml -1  + 
hCG 100 IU.rn1 .3  

a a a a bc 

hCG 10 IU.m1 -1  a a a a be 
hCG 100 IU.rn1 -1  a a a a bc 
control control a a a a a 



Fig 6.3. Percentage maturation in oocytes from fish 8, for each hormone at each 

sample time. Hormones were administered at (a) 10 ng.m1 -1  steroid, 10 or 100 IU.m1-1  

hCG (b) 100 ng.m1-1  steroid, 10 or 100 IU.m1-1  hCG or (c) 100 ng.m1 1  steroid + hCG 

100 IU.m1-1 , 10 or 100 IU.m1-1  hCG, see Table 6.1. for details. Asterisks indicate 

incubations that were not primed with hCG 100 IU.m1 -1 , n=4 per treatment dose. 
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Table 6.3. Statistical results for Fig. 6.3. Different superscripts show significant 

differences in percentage maturation in oocytes from fish 8, for each hormone at each 

dose and at each sample time. See Table 6.1. for details of experimental protocol. 

Asterisks indicate steroid treatments that were not primed with hCG 100 IU.m1 -1 , n=4 

per treatment dose. 

Treatment Dose 0 h 24 h 48 h 72 h 

* 17P lOng.m1 -1  a a a a 
17P lOng.mi l  a a b b 
* 17-Preg lOng.m1 -1  a a a a 
17-Preg 10ng.m1 -1  a a b b 
17,201W lOng.m1 -1  a a b b 
2013S lOng.m1 -1  a a b b 
hCG 10 IU.m1 -1  a a a a 
hCG 100 IU.m1 -1  a a ab b 
control control a a a a 

* 17P 100ng.m1 -1  a a a a 
17P 10Ong.m1 -1  a a a a 
* 17-Preg 100ng.m1 -1  a a a a 
17-Preg 10Ong.m1 -1  a a b b 
17,20BP 10Ong.m1 .1  a a b b 
2013S 10Ong.m1 -1  a a ab b 
hCG 10 IU.m1 -1  a a a a 
hCG 100 IU.m1 -1  a a ab b 
control control a a a a 

* 17P 100ng.m1 -1  + 
hCG 100 IU.m1 - 

a a ab ab 

17P 10Ong.m1 -1  + 
hCG 100 IU.m1 -  

a a bc c 

* 17-Preg 10Ong.m1 1  + 
hCG 100 IU.m1 -  

a a bc bc 

17-Preg 10Ong.m1 -1  + 
hCG 100 IU.mP 

a a c c 

17,2013P 100ng.m1 -  + 
hCG 100 IU.m1 - 

a a bc c 

2013S 10Ong.m1 4  + 
hCG 100 IU.ml - 

a a c c 

hCG 10 IU.m1 .1  a a ab ab 
hCG 100 IU.m1 -1  a a abc bc 
control control a a a a 
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Fig. 6.4. Percentage maturation in oocytes from fish 9, for each hormone at each 

sample time. Hormones were administered at (a) 10 ng.m1 -1  steroid, 10 or 100 IU.m1 -1  

hCG (b) 100 ng.m1-1  steroid, 10 or 100 IU.mr 1  hCG or (c) 100 ng.mr 1 steroid + hCG 

100 TU.m1 -1 , 10 or 100 IU.mr 1  hCG, see Table 6.1. for details. Asterisks indicate 

incubations that were not primed with hCG 100 IU.m1 -1 , n=4 per treatment dose. 
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Table 6.4. Statistical results for Fig. 6.4. Different superscripts show significant 

differences in percentage maturation in oocytes from fish 9, for each hormone at each 

dose and at each sample time. See Table 6.1. for details of experimental protocol. 

Asterisks indicate steroid treatments that were not primed with hCG 100 IU.m1 -1 , n=4 

per treatment dose. 

Treatment Dose 0 h 24 h 48 h 72 h 

* 17P lOng.m1-1  a a a a 
17P lOng.m1 1  a a b b 
* 17-Preg lOng.mr 1  a a a a 
17-Preg lOng.mr 1  a a b b 
17,2013P lOng.mr 1  a a b b 
20I3S lOng.mr 1  a a b b 
hCG 10 IU.mr 1  a a a a 
hCG 100 IU.mr 1  a a ab b 
control control a a a a 

* 17P 10Ong.mr 1  a a a a 
17P 10Ong.mr 1  a a b b 
* 17-Preg 10Ong.mr 1  a a a a 
17-Preg 10Ong.mr 1  a a b b 
17,201W 10Ong.mr 1  a a b b 
2013S 10Ong.m1 1  a a b b 
hCG 10 IU.m1-1  a a a a 
hCG 100 IU.m1-1  a a b b 
control control a a a a 

* 17P 10Ong.mr 1  + hCG a a b b 
100 IU.mr 1  

17P 10Ong.m1 -1  + hCG a a b b 
100 IU.m1 -1  

* 17-Preg 10Ong.mr 1  + hCG a a b b 
100 IU.m1 -1  

17-Preg 10Ong.m1-1  + hCG a a b b 
100 IU.m1 -1  

17,2013P 10Ong.mr 1  + hCG a a b b 
100 IU.mr 1  

2013S 10Ong.mr 1  + hCG a a b b 
100 IU.m1-1  

hCG 10 IU.m1-1  a a a 
hCG 100 IU.m1 -1  a a b b 
control control a a a a 



Table 6. 5. Rank of hormone effectiveness on % maturation ( 9 = best and 1 = worst) for 

each fish during experiment 2. Ranks were assigned from the steepest part of the curve. 
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Fig. 6.5. Percentage maturation in oocytes from fish 10, for each hormone at each 

sample time. Steroids were administered after 24 h priming with hCG 100 IU.m1-1 . 

Hormones were then administered at (a) 1 ng.m1-1  steroid or hCG 100 IU.m1-1  (b) 

lOng.m1-1  steroid or hCG 100 IU.m1 -1  (c) 100 ng.mf l steroid or hCG 100 IU.m1-1  or (d) 

1000 ng.m1-1  steroid or hCG 100 IU.m1 -1 , see Table 6.1. for details, n=4 per treatment 

dose. 
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Table 6.6. Statistical results for Fig. 6.5. Different superscripts show significant 

differences in percentage maturation in oocytes from fish 10, for each hormone at each 

dose and at each sample time. See Table 6.1. for details of experimental protocol. 

Asterisks indicate steroid treatments that were not primed with hCG 100 IU.rn1 -1 , n=4 

per treatment dose. 

Treatment Dose Oh 24h 48h 72h 

17P lng.m1 -1  a a a a 
17,2013P lng.m1 .1  a a a b 
17,20aP lng.m1 -1  a a a b 
2013S lng.m1 -1  a a a b 
2013P lng.m1 -1  a a a b 
17-Preg lng.m1 -1  a a a b 
3a,17,20a-P-513 1 ng.m1 -1  a a a b 
hCG 100 IU.m1 -1  a a a a 
control control a a a a 

17P 1Ong.m1 -1  a a a a 
17,2013P lOng.m1 .1  a a a b 
17,20aP lOng.m1 -1  a a a b 
2013S lOng.m1 -1  a a a b 
2013P lOng.m1 -1  a a a b 
17-Preg lOng.m1 -1  a a a b 
3a,17,20a-P-513 lOng.m1 .1  a a a b 
hCG 100 IU.m1 1  a a a a 
control control a a a a 

17P 10Ong.m1 -  a a a b 
17,2013P 10Ong.m1 -  a a a b 
17,20aP 10Ong.ml -  a a a b 
2013S 10Ong.m1 .  a a a b 
2013P 10Ong.ml -  a a a b 
17-Preg 10Ong.m1 -  a a a b 
3a,17,20a-P-513 10Ong.m1 -  a a a b 
hCG 100 IU.m1 1  a a a a 
control control a a a a 

17P 1000ng.m1 -1  a a a b 
17,20BP 1000ng.m1 -1  a a a b 
17,20aP 1000ng.m1 -1  a a a b 
2013S 1000ng.m1 -1  a a a b 
20BP 1000ng.m1 -1  a a a b 
17-Preg 1000ng.m1 -1  a a a b 
3a,17,20a-P-513 1000ng.m1 -1  a a a b 
hCG 100 IU.m1 -1  a a a a 
control control a a a a 



Fig. 6.6. Percentage maturation in oocytes from fish 11, for each hormone at each 

sample time. Steroids were administered after 24 h priming with hCG 100 1U.m1 -1 . 

Hormones were then administered at (a) 1 ng.m1 1  steroid or hCG 100 IU.m1 1  (b) 

lOng.m14  steroid or hCG 100 IU.m1 -1  (c) 100 ng.mi l  steroid or hCG 100 IU.m1 -1  or (d) 

1000 ng.m14  steroid or hCG 100 IU.m1 -1 , see Table 6.1. for details, n=4 per treatment 

dose. 
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Table 6.7. Statistical results for Fig. 6.6. Different superscripts show significant 

differences in percentage maturation in oocytes from fish 11, for each hormone at each 

dose and at each sample time. See Table 6.1. for details of experimental protocol. 

Asterisks indicate steroid treatments that were not primed with hCG 100 IU.m1 -1 , n=4 

per treatment dose. 

Treatment Dose 0 h 24 h 48 h 72 h 

17P 1 ng.m1 -1  a a ab b 
17,2013P lng.m1 1  a a bc b 
17,20c(13  1ng.m1 -1  a a bc b 
2013S 1 ng.m1 -1  a a bc b 
20I3P lng.m1 -1  a a bc b 
17-Preg lng.m1 -1  a a bc b 
3a,17,20a-P-513 lng.m1 -1  a a c b 
hCG 100 IU.m1 -1  a a a a 
control control a a a a 

17P lOng.m1 -1  a a b d 
17,2013P lOng.m1 -1  a a b cd 
17,20cxP lOng.m1 1  a a b d 
2013S lOng.mi l  a a b bc 
20I3P lOng.m1 -1  a a b cd 
17-Preg lOng.m1 -1  a a b cd 
3a,17,20a-P-5I3 lOng.m1 -1  a a b cd 
hCG 100 IU.m1 -1  a a a ab 
control control a a a a 

17P 10Ong.m1 -1  a a b c 
17,20I3P 10Ong.m1 -1  a a b c 
17,20aP 10Ong.m1 -1  a a b c 
2013S 10Ong.m1 1  a a b bc 
201W 10Ong.m1 1  a a b c 
17-Preg 10Ong.m1 -1  a a b c 
3a,17,20a-P-513 10Ong.m1 -1  a a b c 
hCG 100 IU.m1 -1  a a a ab 
control control a a a a 

17P 1000ng.m1 -1  a a b d 
17,20EP 1000ng.m1 -1  a a b bc 
17,20aP 1000ng.m1 -1  a a b cd 
2013S 1000ng.m1 -1  a a b cd 
20I3P 1000ng.m1 -1  a a b cd 
17-Preg 1000ng.m1 -1  a a b cd 
3a,17,20a-P-513 1000ng.m1 -1  a a b cd 
hCG 100 IU.m1 -1  a a a ab 
control control a a a a 

lb/ 



Fig. 6.7. Percentage maturation in oocytes from fish 12, for each hormone at each 

sample time. Steroids were administered after 24 h priming with hCG 100 1U.m1 -1 . 

Hormones were then administered at (a)1 ng.m1 1  steroid or hCG 100 1U.m1-1  (b) 10 

ng.mr1  steroid or hCG 100 IU.mr 1  (c) 100 ng.mr l steroid or hCG 100 IU.m1-1  or (d) 

1000 ng.m1-1  steroid or hCG 100 IU.m1 -1 , see Table 6.1. for details, n=4 per treatment 

dose. 
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Table 6.8. Statistical results for Fig. 6.7. Different superscripts show significant 

differences in percentage maturation in oocytes from fish 12, for each hormone at each 

dose and at each sample time. See Table 6.1. for details of experimental protocol. 

Asterisks indicate steroid treatments that were not primed with hCG 100 IU.m1 -1 , n=4 

per treatment dose. 

Treatment Dose Dose 0 - 30 h 36 h 42 h 

17P 1 ng.m1 -1  0.01ng.m1 -1  a ab ab 
17,2013P lng.m1 -1  0.01ng.m1 .1  a b b 
17,20aP lng.m1 -1  0.01ng.m1 -1  a ab ab 
2013S lng.m1 -1  0.01ng.m1 -1  a ab ab 
2013P lng.m1 1  0.01ng.m1 -1  a ab ab 
17-Preg lng.m1 .1  0.01ng.m1 1  a ab ab 
3a,17,20a-P-513 lng.m1 -1  0.01ng.m1 4  a ab ab 
hCG 100 IU.m1 -1  100 IU.m1 -1  a ab a 
control control control a a a 

17P lOng.ml .  0.1ng.m1 -1  a b b 
17,2013P 10ng.m1 -1  0.1ng.m1 1  a ab ab 
17,20aP lOng.m1 .1  0.1ng.m1 -1  a ab ab 
2013S lOng.m1 -1  0.1ng.m1 -1  a ab ab 
2013P lOng.m1 -1  0.1ng.m1 -1  a ab b 
17-Preg lOng.m1 -1  0.1ng.m1 -1  a ab ab 
3a,17,20a-P-513 lOng.m1 -1  0.1ng.m11  a ab ab 
hCG 100 IU.m1 -1  100 IU.m1 .1  a a ab 
control control control a ab a 

17P 10Ong.m1 -1  1ng.m1 -1  a ab bc 
17,2011P 10Ong.m1 -1  lng.m1 -1  a ab ab 
17,20aP 10Ong.m1 -1  lng.m1 -1  a ab bc 
208S 10Ong.ra l  1 ng.m1 -1  a b d 
2013P 100ng.mi l  lng.m1 -1  a ab bc 
17-Preg 10Ong.m1 -1  1ng.m1 -1  a b cd 
3a,17,20a-P-513 10Ong.m1 -1  lng.m1 -1  a ab abc 
hCG 100 IU.m1 .1  100 IU.m1 .1  a a a 
control control control a a a 

17P 1000ng.m1 -1  lOng.m1 .1  a a a 
17,2013P 1000ng.m1 -1  lOng.m1 -1  a ab c 
17,20c(13  1000ng.m1 -1  lOng.m1 .1  a a ab 
2013S 1000ng.m1 1  lOng.m1 -1  a b c 
2013P 1000ng.m1 -1  10ng.m1 -1  a a b 
17-Preg 1000ng.mr i  lOng.m1 -1  a a ab 
3a,17,20a-P-513 1000ng.m1 -1  10ng.m1 .1  a a b 
hCG 100 1U.m1 -1  100 IU.m1 .1  a a a 
control control control a a a 
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Fig. 6.8. Percentage maturation in oocytes from fish 14, for each hormone at each 

sample time. Steroids were administered after 24 h priming with hCG 100 IU.m1 -1 . 

Hormones were then administered at (a) 0.01 ng.m1 -1  steroid or hCG 100 IU.m1-1  (b) 

0.1 ng.m1-1  steroid or hCG 100 IU.m1 -1  (c) 1 ng.rn1-1  steroid or hCG 100 IU.m1-1  or (d) 

10 ng.mrl steroid or hCG 100 IU.m1 -1 , see Table 6.1. for details, n=4 per treatment 

dose. 
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Table 6.9. Statistical results for Fig. 6.8. Different superscripts show significant 

differences in percentage maturation in oocytes from fish 14, for each hormone at each 

dose and at each sample time. See Table 6.1. for details of experimental protocol. 

Asterisks indicate steroid treatments that were not primed with hCG 100 IU.m1 -1 , n=4 

per treatment dose. 

Treatment Dose 0 h 12 h 18 h 24 h 30 h 36 h 42 h 

17P 0.01ng.m1 -1  a a ab be be c be 
17,2013P 0.01ng.m1-1  a a ab be be bc be 
17,20aP 0.01ng.m1 -1  a a ab c c c c 
2013S 0.01ng.m1 -1  a a ab ab c c be 
2013P 0.01ng.m1-1  a a ab c c bc bc 
17-Preg 0.01ng.m1 -1  a a b c c c c 
3a,17,20a-P-513 0.01ng.m1-1  a a b c c bc be 
hCG 100 IU.m1 -1  a a ab ab b b b 
control control a a a a a a a 

17P 0.1ng.m1 -1  a a ab be c bc be 
17,2013P 0.1ng.m1 -1  a a ab c be bc bc 
17,20aP 0.1ng.m1 1  a a ab be c bc be 
2013S 0.1ng.m1 -1  a a b c c c c 
2013P 0.1ng.m1 -1  a a ab be be be be 
17-Preg 0.1ng.m1 -1  a a ab c c c c 
3a,17,20a-P-513 0.1ng.m1 -1  a a ab bc be be be 
hCG 100 IU.m1 -1  a a ab ab b b b 
control control a a a a a a a 

17P lng.m1 -1  a a ab c c c c 
17,2013P lng.m1 -1  a a ab c be be be 
17,20c(P lng.m1 -1  a a b c c be be 
2013S lng.m1 1  a a b c c c c 
2013P 1ng.m1 -1  a a b c c be be 
17-Preg lng.m1 -1  a a ab c c c c 
3a,17,20a-P-513 1 ng.m1 -1  a a ab be be be be 
hCG 100 IU.m1 -1  a a ab ab b b b 
control control a a a a a a a 

17P lOng.m1 -1  a a be c c be dc 
17,2013P lOng.m1 -1  a a ab be be be dc 
17,20aP lOng.m1 -1  a a c be be be dc 
20138 lOng.m1 -1  a a c c c c d 
201W lOng.mr 1  a a ab be b b be 
17-Preg lOng.ml i  a a be be be be dc 
3a,17,20a-P-513 lOng.m1 -1  a a ab be be be dc 
hCG 100 IU.m1 -1  a a ab ab c b b 
control control a a a a a a a 

1/I 



Fig. 6.9. Percentage maturation in oocytes from fish 15, for each hormone at each 

sample time. Steroids were administered after 24 h priming with hCG 100 IU.m1 -1 . 

Hormones were then administered at (a) 0.01 ng.m1 -1  steroid or hCG 100 IU.m1 -1  (b) 

0.1 ng.m1 -1  steroid or hCG 100 IU.m1-1  (c) 1 ng.m1 -1  steroid or hCG 100 IU.m1 -1  or (d) 

10 ng.m11  steroid or hCG 100 IU.m1 -1 , see Table 6.1. for details, n=4 per treatment 

dose. 
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Table 6.10. Statistical results for Fig. 6.9. Different superscripts show significant 

differences in percentage maturation in oocytes from fish 15, for each hormone at each 

dose and at each sample time. See Table 6.1. for details of experimental protocol. 

Asterisks indicate steroid treatments that were not primed with hCG 100 IU.m1 -1 , n=4 

per treatment dose. 

Treatment Dose 0 h 24 h 30 h 40 h 46 h 52 h 58 h 

17P 0.01ng.mr 1  a a a b b b b 
17,2013P 0.01ng.m1 1  a a a b b b b 
17,20aP 0.01ng.m1 -1  a a a ab b b b 
2013S 0.01ng.m1 -1  a a a b b b b 
2013P 0.01ng.m1 -1  a a a b b b b 
17-Preg 0.01ng.m1 1  a a a b b b b 
3a,17,20a-P-513 0.01ng.m1 -1  a a a b b b b 
hCG 100 IU.m1 1  a a a b b b b 
control control a a a a a a a 

17P 0.1ng.m1 -1  a a b b b b b 
17,2013P 0.1ng.m1-1  a a ab a b b b 
17,200(P 0.1ng.m1 -1  a a ab ab b b b 
20138 0.1ng.m1 -1  a a ab a b b b 
2013P 0.1ng.m1 -1  a a a ab b b b 
17-Preg 0.1ng.m1 -1  a a ab ab b b b 
3a,17,20cx-P-513 0.1ng.m1 -1  a a a a b b b 
hCG 100 IU.m1 1  a a ab ab b b b 
control control 	. a a b a a a a 

17P lng.m1 -1  a a b c d b b 
17,2013P lng.m1 -1  a a ab be cd b b 
17,20aP lng.m1 -1  a a ab be d b b 
20138 lng.m1 -1  a a ab ab be b b 
201W lng.m1 1  a a ab be cd b b 
17-Preg lng.m1 1  a a ab ab b b b 
3a,17,20a-P-511 lng.m1 -1  a a ab be bcd b b 
hCG 100 IU.m1 1  a a ab be be b b 
control control a a a a a a a 

17P lOng.m1 -1  a a a b b b b 
17,20BP lOng.m1 -1  a a a b b b b 
17,20aP lOng.m1 -1  a a a b b b b 
2013S lOng.m1 -1  a a a b b b b 
2011P lOng.m1-1  a a a b b b b 
17-Preg lOng.m1 -1  a a a b b b b 
3a,17,20a-P-513 lOng.m1 -1  a a a b b b b 
hCG 100 IU.mr 1  a a a b b b b 
control control a a a a a a a 

113 



Table 6. 11. Rank of hormone effectiveness on % maturation ( 9 = best and 1 = worst) for 

each fish during experiments 3 and 4. Ranks were assigned from the steepest part of the 
curve. 
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6.5. Discussion 

Ovarian fragments from greenback flounder, matured in response to steroids, but only 

in the presence of hCG. In most cases, the maturation response to steroids after 

priming with hCG, exceeded the maturation response to hCG treatment alone, 

indicating that the effect was not simply due to hCG stimulus of endogenous MIS 

production. The capacity to respond to MIS is dependent on having MIS receptors. In 

salmonids, the maturation inducing action of 17,2013P in reinitiating meiosis is through 

binding to specific membrane receptors (Weisbart et al., 1991). Studies on spotted sea 

trout (Thomas and Path* 1991), kisu (Sillago japonica) (Kobayashi et al., 1988; Zhu 

et al., 1994), Tobinumeri-dragonet (Zhu et al., 1994), blue gourami (Trichogaster 

trichopterus) (Degani and Boker, 1992), red sea bream (Pagrus major) (Kagawa et al., 

1994) dab and plaice (Canario and Scott, 1990), suggest that induction of MIS 

receptors and receptor activity is stimulated by GtH. GtH increases MIS receptor 

concentrations (Thomas and Patifio, 1991), induces RNA and protein synthesis related 

to the development of maturational competence (Patifio and Thomas, 1990; Kagawa et 

al., 1994) and possibly plays a role in the synthesis of steroid converting enzymes in 

some species (ICagawa et al., 1994; Nagahama et al., 1985; Planas et al., 1995; Yaron 

et al., 1995; Pankhurst, 1998). 

Ovarian fragments that did not respond to hormone treatments were apparently normal 

in external appearance, although, some of these oocytes failed to clear in sera solution, 

suggesting that the oocytes were entering a state of atresia. A non response to 

hormones did not appear to be related to state of maturity before incubation. In 

another study, outwardly normal looking oocytes from some plaice and dab, also failed 

to respond to hCG and steroids, and did not clear in sera solution (Canario and Scott, 

1990). Follicles from cultured fish in the present study tended to show a poorer 

response to treatment with hCG or steroids than wild fish, which suggests that culture 

conditions may effect oocyte quality. Broodstock nutrition is an important factor in 

determining egg quality in gilthead seabream (Sparus auratus) and European sea bass 

(Dicentrarchus labrax) (Harel et al., 1995; Navas et al., 1995). Acute and chronic 

stress can have subtle effects on gamete quality (reviewed in Pankhurst and Van der 

Kraak, 1997), and a previous study indicated that some routine husbandry practices 
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have the capacity to stress greenback flounder (Barnett and Pankhurst, 1998c, chapter 

2 this volume). 

Ovarian fragments primed with hCG were receptive to all steroids at all concentrations 

tested and the most effective treatments were not consistent between doses within fish 

or between fish. This suggests that the receptors had broad specificity and/or steroids 

were metabolised into a more biologically active form. If the latter were the case, we 

may have expected the most likely MIS to stimulate maturation more rapidly, and at 

lower concentration than other steroids. For example, in the New Zealand snapper 

(Pagrus auratus) there was window of time (<10 h) in which the authentic MIS 

17,2013P, was clearly more effective at lower doses (Ventling and Pankhurst, 1995) 

than a range of other steroids. However, if steroids are quickly metabolised into the 

biologically active form, such a pattern may not have been detected within this 

sampling protocol. There is evidence that in situ metabolism can be quite rapid. When 

ovarian homogenates from the European eel (Anguilla anguilla) were incubated with 

the radiolabeled precursor pregnenolone (25 °C), 92% of the precursor was 

metabolised within 30 min (Lambert et al., 1991). If steroids were rapidly metabolised 

within the sampling intervals of this study (6-24 h), then less effective steroids could be 

converted to active forms and hence have a similar measured effect at the same 

endpoint. 

There are suggestions from studies on other species that steroid converting enzyme 

activity may in part be GtH dependent (Nagahama et al., 1985; Kagawa et al., 1994; 

Planas et al., 1995; Yaron et al., 1995; Pankhurst, 1998). This suggests that hCG 

treatment may have enhanced the activity of steroid converting enzymes, whereby 

steroids were converted into the biologically active MIS before the true maturational 

effect of the added steroids could be detected. 

The fact that greenback flounder ovarian fragments were receptive to a broad range of 

steroids is not unusual as virtually any steroid will induce FOM in vitro if administered 

at a high enough dose (Scott and Canario, 1987). We would however, expect some 

steroids to be effective only at high doses. In vitro incubations of New Zealand snapper 

oocytes were responsive to 17,2013P over a range of doses, but were only responsive 

to 2013S, 2013P, and 17P at high doses (Ventling and Pankhurst, 1995). In this study, 

all steroids were effective at the range of doses tested, and this raises the possibility 
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that we did not test a sufficiently wide range of steroid doses, although, the doses 

tested were within the upper range of other studies and lower than doses tested in 

turbot (1.5-250 ng.m1 -1)(Mugnier, et al., 1995), Japanesese flounder (0.1-1000 ng.m1 -1) 

(Limanda yokohamae) (Hirose et al., 1987) dab and plaice (>3 and <1700 ng.m1 -1) 

(Canario and Scott, 1990). It is possible that flounder ovarian follicles are far more 

sensitive to steroids than that of most other species in which it has been investigated. 

Despite the inconsistency in maturational responses to each steroid, 17,20aP was most 

frequently ranked as the most effective MIS in vitro, but was closely followed by 

2013P, 17,2013P and 20135, the least effective steroids were the steroid precursor 17P 

followed by 17-Preg and 3a,17, 20a-P-513. This suggests that 20a and 2013- 

hydroxylated steroids were most effective at inducing maturation in greenback 

flounder, and 5-pregnene and 513-pregnane steroids were least effective. In most 

teleosts there seems to be a common pattern in the biological activity of steroids 

depending on the conformation of the A/B rings junction, whereby 4-pregnene steroids 

are more biologically active, than 5-pregnen or 513-pregnane steroids, and addition of a 

hydroxyl group at the 17 and 2013 positions further augments biopotency (Nagahama et 

al., 1983; Scott and Canario, 1987; Canario and Scott, 1988; Canario and Scott 1990). 

Establishing the potency of steroids on FOM in vitro is by no means the endpoint in 

establishing the identity of the MIS, particularly given that so many species undergo 

FOM in response to a range of steroids (Canario, 1991). More convincing evidence is 

provided when bioassays are used in combination with chromatographic, chemical or 

mass spectrometric techniques to identify steroids produced in the presence of neutral 

and/or radiolabeled precursors, or radioimmunassay to measure levels of C21 steroids 

produced in vitro and in vivo. However, even after extensive investigation, the answers 

may not always be straight forward. For example, in dab and plaice, 17,2013P has been 

established as the MIS, and both 17,2013P and 2013S are the most potent steroids to 

induce FOM in vitro (Canario and Scott, 1990). However, the major steroids 

synthesised in vitro by dab ovaries are 17,20aP and 313,17a, 20a-trihydroxy-513- 

pregnane, and by plaice ovaries 17,21-dihydroxy-4-pregnene-3,20dione and 3a,17, 21- 

trihydroxy-513-pregnane-20-one (Canario, 1991), and blood levels of 17,20BP are not 

clearly correlated with maturation. Canario and Scott, (1987 and 1989), have shown 
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that 17,208P has a high capacity for conjugation and reduction and can be found at 

high levels in blood and urine in the conjugated form. 

It was established in a previous study that plasma and ovarian levels of 17,208P and 

plasma levels of 17,208P-sulphate are elevated in association with maturation events in 

vivo in wild greenback flounder (Barnett and Pankhurst, 1998b, chapter 3 this 

volume).Given that greenback flounder oocytes did not respond to steroids in a dose 

dependent manner, despite a wide range of doses being tested, suggests in vitro 

bioassay techniques may not be useful for assessing the potency of MIS/s on FOM in 

greenback flounder. However, this study has at least indicated that 20a and 20B-

hydroxylated steroids are more potent at inducing FOM in vitro than 5-pregnene and 

58-pregnane steroids. We need to establish what other C21 steroids and conjugates 

greenback flounder are capable of producing in vivo and in vitro before we can 

speculate the identity of the MIS in this species. 
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7. General discussion and overall summary 

7.1. Background of this study 

Greenback flounder is being investigated as a potential aquaculture species in 

Tasmania, and looks to have many desirable aquaculture characteristics (reviewed in 

chapter 1, this volume), however, there are some essential requirements for 

propagation that have not been assessed in greenback flounder, which were addressed 

by this study. 

7.2. The stress response to common laboratory and husbandry practices: 

implications for management. 

Stress induced inhibition of reproduction, growth and the immune response can have 

severe consequences for the management of wild and domestic populations of fish. 

Stressors are an unavoidable component of aquaculture, however, the extent to which 

stress impacts on physiological function in a species, can have huge implications on the 

success of an aquaculture programme. Stress has been shown to inhibit plasma levels 

of gonadotropin (GtH) in the white sucker (Catostomus commersoni) and plasma 

levels of androgens and 1713-estradio1 (E2) in brown trout (Salmo trutta), rainbow trout 

(Oncorhynchus mykiss), snapper (Pagrus auratus), red gumurd (Chelidonichthys 

kumu) and spotted sea trout (Cynoscion nebulosis) (reviewed in Pankhurst and Van 

Der 1Craak, 1997). Hence, stress often inhibits reproduction at the level of 

gametogenesis. Chronic stress from inappropriate maintenance can be reflected in 

increased susceptibility to disease as demonstrated in salmonids (Pickering and 

Pottinger, 1987; Maule et al., 1989) and winter flounder (Pleuronectes americanus) 

(Carlson et al., 1993), and there is evidence suggesting cortisol may be in part 

responsible for the suppression of immunocompetence in response to stress in red 

drum (Sciaenops ocellata) and winter flounder (Thomas and Lewis, 1987; Carlson et 

al., 1993). Stress is also known to inhibit various parts of the growth-regulating 

endocrine cascade (reviewed in Barton and Iwama, 1991; Pankhurst and Van Der 

Kraak, 1997) and results in suppressed growth rates in brown trout and rainbow trout 

(Peters and Schwarzer, 1985; Pickering and Stewart, 1985). 
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The stress response to common husbandry and experimental practices was investigated 

in this study by examining a range of stress parameters (Barnett and Pankhurst, 1998e, 

chapter 2, this volume). Our results show that some routine husbandry practices have 

the capacity to stress greenback flounder, although, normal maintenance should not 

cause chronic stress, provided that stocking densities are appropriate. The plasma 

cortisol response to acute stressors such as capture, confinement and transport, in 

greenback flounder is consistent with the response seen in a range of other species 

(reviewed in Barnett and Pankhurst, 1998e, chapter 3, this volume). Unlike many other 

species (Ling and Wells 1985; Wells and Weber 1991;Young and Cech 1993), 

hematocrit (Hct) did not change significantly in response to stress, indicating that 

either changes in Hct were rapid and not detected by the sampling protocol ,or that 

Hct is not affected by stress in this species. The latter appears to be a characteristic 

shared by flathead sole (Hippoglossides elassodon) (Turner et al., 1983) and starry 

flounder (Platichthys stellatus) (Wood et al., 1977), suggesting, enhanced 02 carrying 

capacity and and/or hemoconcentration associated with high Hct, are of little 

consequence in less active, benthic dwelling species. Muscle and blood physiology of 

greenback flounder change in response to exercise, but unlike other flatfish, there was 

little evidence for in situ glycogenesis within white muscle tissue after exercise and 

some indication that greenback flounder have higher aerobic scope than other flatfish 

studied to date. 

Plasma levels of 17a2013-dihydroxy-4-pregnen-3-one (17,2013P) are generally not 

affected by stress, and in some cases increase during stressful periods (reviewed in 

Pankhurst and Van Der Kraak, 1997). Inhibition of final oocyte maturation (FOM) and 

spawning generally results from inappropriate environmental conditions (e.g. rising or 

decreasing temperature, lack of social interaction and spawning substratum, and 

inappropriate holding volumes) (reviewed in Pankhurst and Van Der Kraak, 1997). 

The fact that greenback flounder reliably undergo gametogenesis, but not FOM in 

captivity, suggests that environmental conditions essential to normal FOM and 

spawning are missing in captivity. However, this does not preclude the possibility that 

stress also inhibits FOM. Some experimental procedures resulted in significant 

decreases in plasma levels of testosterone (T) and E2 (Barnett and Pankhurst, 1998b 

and d, chapters 4 and 5, this volume). Given that T positive feedback is probably an 

essential component of stimulation of pituitary GtH synthesis in this species (Barnett, 



1998d, chapter 5, this volume), stress induced inhibition of circulating T levels could 

well contribute to failure of FOM in captivity. 

Failure to undergo FOM in captivity is not unusual in aquaculture species, hence the 

development of techniques to artificially induce FOM and ovulation (reviewed in 

Pankhurst, 1998). However, induced ovulation protocols can be stressful for 

broodstock, and don't guarantee spontaneous spawning, resulting in the need for 

manual egg stripping. This procedure in itself, can be stressful for broodstock, 

particularly if the appropriate time for stripping is unknown, requiring the need to 

check for ovulation frequently. Given that stress is known to effect egg quality in some 

species (reviewed in Pankhurst and Van Der Kraak, 1997), it is desirable to limit 

handling procedures as much as possible, and better still, strive for natural spawning. 

Percentage fertilisation in greenback flounder treated with exogenous hormones was 

comparable to fertilisation rates in other species after exogenous hormone treatment 

(Harmin and Crim, 1992; Berlinsky and King, 1996; Berlinsky et al., 1997). However, 

in the absence of experimental sampling, induced ovulation protocols may result in 

even higher fertilisation rates. 

This study established a baseline of stress indicators in normal unstressed fish, 

evaluated the impact of common husbandry and experimental practices on the stress 

response and concluded that some routine husbandry practices elicit stress responses in 

greenback flounder. This is by no means uncommon in an aquaculture species (Barton 

and Iwama, 1991), and should not impede the development of this emerging 

aquaculture species. Future studies however, need to assess the extent to which 

stressful husbandry practices impact on productivity (growth, reproduction and 

immune response). Meanwhile, stress management should not be ignored in 

experimental design and technology development for greenback flounder. 

7.3. Controlled reproduction 

Exogenous hormones such as the mammalian gonadotropin-hormone-releasing 

hormone analogue (LHRH-a) can sometimes be used to induced gametogenesis and 

ovulation in immature fish (Matsuyama et al., 1993), but are most effective at inducing 

ovulation and sometimes spawning in fish that have completed gametogenesis 

(reviewed in Peter and Yu, 1997; Pankhurst, 1998). Even when fish do spawn 
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spontaneously in captivity, exogenous hormone treatments allow greater control of 

reproductive events, resulting in more efficient and effective use of hatchery and grow-

out facilities. In the absence of spontaneous FOM in captive greenback flounder, we 

developed techniques for artificial induction and control of ovarian development and 

ovulation. Successful reproductive management depends on an understanding of the 

physiological mechanisms initiating and mediating gonadal development, hence, we 

examined endocrine correlates of reproduction in wild flounder, and then went on to 

examine the effects of induced ovulation protocols on ovarian development and plasma 

levels of gonadal steroids with view to assessing the mechanism of action of hormone 

treatment. 

In wild fish, changes in oocyte stages and diameters indicated group synchronous 

oocyte development and multiple ovulations (Barnett and Pankhurst, 1998c, chapter 3, 

this volume). Elevated plasma and ovarian levels of T and E2 were found to be good 

indicators of vitellogenesis, levels of both steroids were significantly lower in fish 

undergoing FOM and ovulation. Plasma levels of 17,2013P were significantly elevated 

during ovulation but not FOM. Ovarian levels of 17,2013P were significantly elevated 

during FOM and ovulation, hence plasma levels of 17,20BP were not always 

representative of events at the ovary. This was most likely a result of steroid 

metabolism and conjugation, as suggested by significantly elevated levels of plasma 

17,2013P-sulphate during FOM and ovulation. 

In male greenback flounder, there was little variation in testis morphology and levels of 

the classical steroids 11 KT and 17,2013P remained low. In many male teleosts plasma 

11KT levels are elevated during spermatogenesis, (Scott et al., 1984; Fostier et al., 

1987; Dedual and Pankhurst 1992; Methven et al., 1992; Barnett and Pankhurst 1994; 

Borg 1994; Harmin et al., 1995; Carolsfeld et al., 1996), and levels often remain 

elevated into the early stages of spermiation (Campbell et al., 1976; Fostier et al., 

1987; Methven et al., 1992; Carolsfeld et al., 1996). Plasma 11KT did not change with 

gonadal stage in male greenback flounder. Similar observations have been made in 

some other species. 11 KT was not detected in male Gulf killifish (Fundulus grandis) 

(Greeley et al., 1988) or R. saba (Yeung and Chan, 1987) and in bluecod (Parapercis 

colias) and demoiselles (Chromis dispilus) changes in plasma 11KT levels were not 

related to gonadal condition (Pankhurst and Kime, 1991, Barnett and Pankhurst, 

1625 



1994). There is good evidence for some species that 11 KT is more strongly associated 

with morphological and behavioural changes than spermatogenesis and spermiation 

(reviewed in Pankhurst and Carragher, 1991; Barnett and Pankhurst, 1994; Borg, 

1994; Thoranensen et al., 1996). For example, in stoplight parrotfish (Sparisoma 

viride) and male blue cod plasma levels of 11KT were more strongly associated with 

territorial occupation (Liley et al., 1987; Pankhurst and Kime, 1991) and in male 

demoiselles, plasma levels of 11KT were elevated in association with spawning 

behaviour and territorial occupation and levels were higher in males in areas of high 

population density (Barnett and Pankhurst 1994, 1995). The role of 11KT could be 

further investigated in greenback flounder by assessing: the effect of exogenous 11KT 

on spermatogenesis or spermiation in vitro and in vivo, GtH stimulated 11KT 

production from testis tissue in vitro, the effect of exogenous 11KT on behavioural 

status, production of 11KT from testis tissue in vivo and the potential for conjugation 

and metabolism of 11KT. 

Plasma levels of 17,201313  are associated with spermiation in some teleosts (Scott et al., 

1984; Fostier et al., 1987; Carolsfeld et al., 1996), and treatment with exogenous 

17,20I3P stimulates an increase in milt volume in snapper, and a range of other species 

(reviewed in Pankhurst 1994). In contrast, plasma levels of 17,2013P did not change in 

relation to gonadal condition in greenback flounder. This is not unusual, as low or 

undetectable plasma levels of 17,2013P have been found in association with testis 

condition in many other species (Pankhurst and Conroy 1987, 1988; Pankhurst and 

Carragher 1991; Pankhurst and Kime 1991; Dedual and Pankhurst 1992; Barnett and 

Pankhurst 1994). We have already established that the fate of plasma 17,2013P is not 

conjugation into the form of 17,2013P-sulphate or 17,2013P-glucuronide conjugates, 

however, this does not preclude the possibility that plasma 17,20I3P is metabolised into 

some other unmeasured conjugate in male greenback flounder. A further possiblilty is 

that 17,2013P may not need to be elevated much to induce spermiation. We have 

established that male greenback flounder have small testes, and during gonadal 

development only low proportions of gamete stages advance into sperm production 

(Barnett and Pankhurst 1998c, chapter 3 this volume). If 17,201W mediates this 

process in greenback flounder as in some other species (reviewed in Pankhurst 1994), 

then low 17,20I3P levels may be sufficient to maintain spermiation. Future studies 

could assess the effect of exogenous 17,208P on spermiation in vitro and in vivo, GtH 
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stimulated 17,2013P production from testis tissue in vitro, and the potential for 

conjugation and metabolism of 17,2013P into other steroid conjugates. 

Human chorionic gonadotropin (hCG), luteinising-hormone-releasing-hormone 

analogue (LHRH-a) intraperitoneal injections (ipi), LHRH-a slow release pellets and 

co-administration of LHRH-a + pimozide (PIM) and LHRH-a + T, successfully 

induced repeat ovulations in greenback flounder (Barnett and Pankhurst, 1998b and d, 

chapters 4 and 5, this volume). This was accompanied by significant increases in 

oocyte diameters and proportions of maturing oocytes, in a manner consistent with 

group synchronous oocyte development and multiple ovulations predicted from the 

examination of wild fish. In common with wild greenback flounder, these events were 

accompanied by significant increases in plasma and ovarian levels of E2, and in most 

cases plasma and ovarian levels of T. Ovarian levels of 17,20I3P did not change in 

response to exogenous hormone treatments, although in some cases, plasma levels of 

17,20I3P increased quite markedly. However, levels were not consistently elevated in 

association with reproductive events, hence, neither plasma or ovarian levels could be 

used as a marker of impending ovulation. Plasma increases in 17,20I3P levels may have 

been of interrenal origin and/or stimulated by a stress response. 

Greenback flounder were not differentially responsive to hCG, LHRH-a or the delivery 

mode of LHRH-a (Barnett and Pankhurst, 1998b, chapter 4, this volume). This 

indicates that both hypothalamic and pituitary hormones have the same effect on 

ovulatory success, and sustained delivery provided no significant advantage over 

injections, suggesting that a transient increase in exogenous GtH is sufficient to 

stimulate repeat ovulations. If we accept that clearance of exogenous hormones is as 

rapid in greenback flounder as it is in other species (< 25 min, (reviewed in Barnett and 

Pankhurst, 1998b, chapter 4, this volume)), then the fact that steroids and probably 

endogenous GtH persisted after the clearance of exogenous hormones, suggests that 

exogenous hormone treatments have an indirect effect on ovulation. 

In some species, steroids have a positive feedback effect on pituitary responsiveness to 

exogenous fish gonadotropin relasing hormone analogue (GnRH-a) or LHRH-a, 

resulting in serum GtH release (Crim and Evans, 1983; Trudeau et al., 1991, 1993a, b). 

T treatment potentiated the stimulatory effect of LHRH-a on ovulation in greenback 

flounder (Barnett and Pankhurst, 1998d, chapter 5, this volume), suggesting that 
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exogenous T enhanced pituitary responsiveness to LHRH-a. Positive steroid feedback 

resulting from initial plasma T and E2 increases caused by exogenous hormone 

treatment, may enhance pituitary GtH-II production in greenback flounder. 

We did not assess the effects of HCG on fertilisation rate, but of the other exogenous 

hormone treatments, both LHRH-a and LHRH-a + T produced the highest % 

fertilisation, however, LHRH-a + T stimulated more ovulations than LHRH-a alone, 

and was therefore the most effective treatment in terms of egg production. Better 

fertilisation rates may be possible in the absence of experimental sampling or 

occurrence of natural ovulation and spawning. Fertilisation rates are quite acceptable 

as they stand, however, this study has laid the groundwork for future studies to achieve 

spontaneous FOM and spawning in captivity, which may result in even better 

fertilisation. 

There is considerable interest in aquaculture development of flatfish species worldwide, 

and the most advanced industries are for Atlantic halibut (Hippoglossus hippoglossus) 

and turbot (Scophthalmus maximus). Ovulation occurs naturally in these species and 

gamete production is dependent on stripping. Egg viability after ovulation is extremely 

time dependent, however, by establishing ovulatory rhythms for individual fish, 

fertilisation rates of 100% can be achieved (McEvoy, 1984; Bromage and Roberts, 

1995). In Chilean flounder (Paralichthys microps) fertilisation rates from natural 

spawning were 33.4% and 7.6% for groups 1 and 2 respectively (Silvia, 1994). It is 

hoped that improved understanding of temperature control and diet will improve egg 

production and fertilisation success in this species. Gamete production in other flatfish 

is generally dependent on induced ovulation with exogenous hormones. Fertilisation 

rates of 95% have been achieved in Japanese flounder (Limanda yokohamae) treated 

with hCG or salmon gonadotropin (Hirose et al., 1979). Egg fertility in this study was 

higher than levels reported for summer flounder (Paralichthys dentatus) in which 

fertility rates were on average 8%, 19% and 8% after treatment with GnRH-a pellets, 

carp pituitary extract (CPE) or hCG respectively (Berlinsky et al., 1997). In general, 

fertilisation success in this study is within the range of fertility reported for other 

flatfish species. Fertility reported for Southern flounder (Paralichthys lethostigma) 

treated with GnRH-a pellet was on average 64% (Berlinsky and King, 1996). Fertility 

in winter flounder treated with GnRH- pellet implants was on average 71% (Harmin 
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and Crim, 1992). Fertility results for English sole (Parophrys vetulus) injected with 

LHRH-a or CPE were on average 58% and 73%, respectively (Sanborn and Misitano, 

1990). 

The average time to ovulation in greenback flounder was prolonged in comparison to 

the majority of non-flatfish species in which induced ovulation protocols have been 

investigated, whereas the average time to ovulation was generally faster in comparison 

to other flatfish species (Lam, 1982; Peter et al., 1987, Barnett and Pankhurst, 1998b, 

chapter 4, this volume). An examination of published literature detailing the use of 

exogenous hormones to induce ovulation, indicates that time to ovulation is negatively 

correlated with holding temperature in a wide range of species (Barnett and Pankhurst, 

1998b, chapter 4, this volume). Since flatfish are generally confined to cooler 

temperate waters, the time to ovulation is more prolonged. 

Many of the founding principles of teleost endocrinology have historically been based 

on studies of salmonids and cyprinids. It is becoming increasingly apparent, that some 

aspects of endocrine regulation are not directly transferable between species. Examples 

include the role of 17,20I3P as the maturation inducing steroid (MIS) and the role of 

dopamine (DA) on GtH-II regulation. There is a large body of literature mostly 

dominated by studies on cyprinids, which demonstrates strong DA inhibition of GtH 

release (reviewed in Trudeau and Peter, 1995; Peter and Yu, 1997), but a smaller 

number of studies indicate that DA inhibitory action on GtH release may be limited or 

even absent in some species (Van Der Kraak et al., 1986; Zohar et al., 1987; Copeland 

and Thomas, 1989). Greenback flounder appear to fall into the latter category, i.e. DA 

may not have strong inhibitory action on GtH release in greenback (Barnett and 

Pankhurst, 1998d, chapter 5, this volume), with the proviso that ovulation and not 

plasma GtH per se, was measured here. The significance of this finding for greenback 

flounder culture is that induced ovulation procedures don't require DA antagonists. 

In other species considerable progress has been made in identifying other 

neuropeptides and neurohormones which may also have stimulatory and inhibitory 

actions on GtH release. Examples include melatonin which has stimulatory effects on 

GtH release in Atlantic croaker (Micropogonias undulatus) with fully developed 

gonads (Khan and Thomas, 1996) and serotonin (5-hydroxytryptamine, 5-HT) which 

stimulates GtH release in goldfish (Somoza and Peter, 1991) and the Atlantic croaker 
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(Khan and Thomas 1991, 1994). The neurotransmitter y-aminobutyric acid (GABA) 

has prominent stimulatory actions on GtH release in gonadally regressed goldfish (Kah 

et al., 1991; Trudeau and Peter 1995) and gonadally regressed Atlantic croaker, and 

inhibitory effects in mature Atlantic croaker (Khan and Thomas 1995; Trudeau and 

Peter 1995). If a 0tH-II assay could be developed for greenback flounder, in future 

studies it would be interesting to establish whether the role of DA inhibition on 0tH-II, 

may in part be superseded by other neuropeptides and neurohormones in combination 

with steroid feedback in greenback flounder. 

17,208P is the most active MIS in most species in which it has been tested (reviewed 

in Scott and Canario, 1987). However, there is good evidence that 17a,208, 21- 

trihydroxy-4-pregnen-3-one (2013S), is the major maturation inducing steroid in the 

spotted sea trout (Cynoscion nebulosus) and Atlantic croaker (Thomas and Trant, 

1989; Thomas, 1994) and some evidence for its action in turbot (Mugnier et al., 1995) 

and tbinumeri-dragonet (Repomucenus beniteguri) (Asahina et al., 1991). In other 

species, evidence for the identify of the MIS has been provided from combined studies 

using in vitro bioassays assessing the potency of steroids on FOM, chromatographic, 

chemical or mass spectrometric techniques to identify steroids produced in the 

presence of neutral and/or radiolabelled precursors, and radioimmunassay to measure 

levels of C21 steroids produced in vitro and in vivo (Canario, 1991). To date, we know 

that plasma levels of 17,2013P were significantly elevated in ovulated females, and 

ovarian levels of 17,20813  were elevated in association with FOM and ovulation 

(Barnett and Pankhurst, 1998c, chapter 3, this volume). However, plasma and ovarian 

levels were not consistently elevated in association with reproductive events in fish 

induced to ovulate using exogenous hormones (Barnett and Pankhurst, 1998b and d), 

chapters 4 and 5, this volume), and although 17,2013P significantly enhanced FOM in 

vitro, 17,2013P was not consistently more effective than any of the other 20a and 208- 

hydroxylated steroids tested (Barnett and Pankhurst, 1998a, chapter 6, this volume). 

Ovarian fragments may have very broad sensitivity or very low threshold, hence, in 

vitro bioassay techniques may not be useful for assessing the potency of MIS/s on 

FOM in greenback flounder. The identity of the MIS in greenback flounder is still not 

apparent, and future studies need to establish what other C21 steroids and conjugates 

1 9.3 



greenback flounder are capable of producing in vivo and in vitro before we can 

speculate on the nature of the MIS in this species. 

In many marine fish species, particularly pleuronectiformes and partial ovulators, 

plasma 17,20BP levels often show similar lack of variation in association with FOM 

(reviewed in Barnett and Pankhurst 1994, chapter 3, this volume). Although it is now 

accepted that 17,2013P is the MIS in dab (Limanda limanda) and plaice (Pleuronectes 

platessa), the evidence is not as obvious as that provided for salmonids and cyprinids. 

The most convincing explanation for low levels of 17,20I3P in these species, is that 

17,2013P is rapidly deactivated by reduction and/or conjugation (Canario and Scott, 

1987; 1989; 1990; Scott et al, 1998). Although plasma levels of 17,20BP-sulphate 

were significantly elevated in female greenback flounder undergoing FOM and 

hydration, levels were considerably lower than plasma levels reported in plaice. A 

recent study indicates that 17,201W-sulphate is not the most abundant sulphated C21 

steroid metabolite in plasma and urine of female plaice undergoing FOM (Scott et al., 

1997). It is quite possible that female greenback flounder also produce high levels of 

some other sulphated metabolite. 

The behavioural act of spawning can be the hardest part of the reproductive process to 

achieve under artificial conditions, yet it is the key to reliable production of high quality 

gametes, and the real control of managed reproduction in aquaculture. Evidence from 

other studies strongly suggest that for many aquaculture species, the appropriate 

hormonal, behavioral and social cues that occur during normal reproduction are 

missing. Recently there has been an increase in the number of studies relating 

reproductive endocrine status to reproductive behavioral and social events in teleosts 

(Liley & Stacey, 1983; Liley et al, 1987; Pankhurst & Barnett, 1993; Pankhurst, 1995). 

These studies strongly indicate that reproductive control is not a one-way system, 

whereby hormones regulate all reproductive processes, but a more complex system in 

which social, environmental and behavioral interactions also play a role in regulating 

reproduction (Liley et al, 1987; Pankhurst, 1995). There is also evidence that many 

freshwater teleost species release odors or pheromones that can affect the sexual 

behavior and reproductive physiology of conspecifics. Studies on goldfish have 

demonstrated that a primer pheromone synchronizes male - female spawning readiness, 

and that a releaser pheromone stimulates spawning behaviour (Stacey, 1989, 1991; 
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Stacey & Cardwell, 1995). Interactions between endocrine status, environment and 

behaviour are complex, and a thorough understanding of these relationships is 

dependent on a complete understanding of the animals' basic reproductive biology and 

endocrinology. This study has provided a good knowledge base of the reproductive 

biology and endocrinology of the greenback flounder, which provides the basic 

framework for future studies to investigate the social-behavioral-endocrine 

mechanisms that regulate and synchronize reproductive events and stimulate natural 

spawning of greenback flounder. 

7.4. Summary 

1. Cultured greenback flounder exposed to normal husbandry conditions had low 

plasma cortisol levels, however, some routine husbandry practices have the capacity 

to stress greenback flounder. 

• The plasma cortisol stress response of greenback flounder is similar to that 

shown by other marine teleosts. 

• The latency of the plasma cortisol response to stress was approximately 10 

min. 

• Plasma levels of cortisol were significantly elevated in wild fish sampled 

after capture, and in cultured fish after simulated grading. 

• Plasma cortisol was significantly higher in fish held at medium and high 

stocking density than at low density. 

• Hematocrit did not change significantly in response to stress. 

• Muscle and blood physiology of greenback flounder changed in response to 

exercise, although there was little evidence for in situ glycogenesis within 

white muscle tissue after exercise and some indication that greenback 

flounder have higher aerobic scope than other flatfish studied to date. 

2. Ovarian development in wild fish was characterised by significant changes in 

gonadal morphology and gonadal steroid levels, whereas testis development showed 
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very little variation in testis morphology and plasma levels of classical steroids 

remained low. 

• Female greenback flounder demonstrated group synchronous oocyte 

development, with multiple ovulations. 

• Plasma and ovarian levels of T and E2 were elevated in association with 

vitellogenesis. 

• Plasma levels of 17,2013P were significantly elevated in ovulated females. 

• Ovarian levels of 17,2013P were elevated in association with FOM and 

ovulation. 

• Plasma levels of 17,2013P-sulphate but not 17,201313-glucuronide were 

elevated in association with FOM and ovulation. 

3. Exogenous hormone treatments successfully induced repeat ovulations which were 

accompanied by changes in gonadal morphology and gonadal steroid levels similar 

to those found in wild fish. 

• Treatment with hCG, LHRH-a (50 and 100m.kg -1) ipi and LHRH-a pellet 

increased the total number of ovulations and repeat ovulations above control 

levels, and LHRH-a pellet was more effective than LHRH-a (100n.kg -1) 

ipi. 

• In another study, treatment with LHRH-a, LHRH-a + PIM, PIM and 

LHRH-a + T, significantly increased the number of ovulations above control 

levels. LHRH-a was more effective than LHRH-a + PIM and PIM in 1 out 

of 2 experiments, and LHRH-a + T was more effective than LHRH-a and T 

in both experiments. PIM significantly increased the total number of 

ovulations in 1 out of 2 experiments, but treatment with T alone had no 

effect. 

• Co-treatment with LHRH-a and PIM did not improve the efficacy of 

LHRH-a, suggesting dopamine has weak inhibitory action on GtH release in 

greenback flounder. 



• T potentiates the ovulatory effects of LHRH-a. It is reasonable to conclude 

that positive steroid feedback in greenback flounder stimulates pituitary GtH 

but not GtH release. 

• Exogenous hormone treatment stimulated increases in oocyte diameters and 

advances in oocyte stages, and this was accompanied by increases in plasma 

and ovarian levels of E2, and in most cases plasma and ovarian levels of T. 

• Plasma and ovarian levels of 17,2013P were not consistently elevated in 

association with reproductive events. Plasma increases in 17,20P levels 

may have been of interrenal origin and/or associated with a stress response 

• LHRH-a, PIM, LHRH-a + PIM and LHRH-a + T significantly increased % 

fertilisation above control levels, and treatment with LHRH-a was more 

effective than PIM and LHRH-a + PIM. 

• In greenback flounder, and a range of other species, time to ovulation was 

negatively correlated with holding temperature, and the type of exogenous 

hormone treatment had no influence on the time to ovulation. 

4. Ovarian fragments required pre-treatment with hCG before they were receptive to 

steroids, however, the effect was not simply due to hCG stimulus of endogenous 

MIS production, as in most cases, the maturational response to steroids after 

priming with hCG exceeded the maturational response to hCG treatment alone. 

• Although ovarian fragments primed with hCG were receptive to all steroids 

at all concentrations tested, there was considerable inconsistency in 

maturational responses to each steroid and each dose. 

• 20a and 2013- hydroxylated steroids were most effective at inducing 

maturation in greenback flounder, and 5-pregnene and 513-pregnane steroids 

were least effective. 
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8. Appendices 

8.1. Appendix 1 
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8.2. Appendix 2 

Curve fit equations for Fig. 4.9. Exogenous hormone treatments as follows: 1 = 

pituitary extracts, 2= gonadotropin releasing hormone and analogue injections, 3 = 

gonadotropin releasing hormone/analogue + dopamine antagonist injections, 4= 

gonadotropin releasing hormone pellet implants. 

Treatment equation A B C r value 

combined y=A•e^((lnX-B)^2/C) 27.1221 1.8410 -9.3395 0.75 

1 y=A*BA(1/X)*XAC 335.8000 0.00009914 0.7004 0.71 

2 y=A*B A(lix)*x^C 48.4148 605.3296 -0.3083 0.63 

3 y=A.e^(011X-B)^2/C) 30.9837 0.6069 -13.9426 0.85 

4 y=A•e^((X-B)^2/C) 1.5917 464.0030 67665.3 0.96 
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