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Summary 

The molecular phylogenetic relationships within three of the five cirrhitoid fish families were 

reconstructed from mitochondrial DNA cytochrome b, cytochrome oxidase I, and D-loop 

sequences. 

Analysis of the Cheilodactylidae provided evidence that much taxonomic revision is required. 

The molecular data suggest that this family should be restricted to the two South African 

Cheilodactylus, as they are highly divergent from the other cheilodactylids and one member 

is the type species. The remaining 25 cheilodactylids should be transferred to the Latridae. 

Nine of the non South African Cheilodactylus can be allocated to three new genera; 

Goniistius (elevated to generic rank), Zeodrius (resurrected), and Morwong (resurrected), 

while the placement of three species is uncertain. The three South African Chirodactylus 

should revert to Palunolepis, as they are distinct from the South American type species 

Chirodact_vlus variegatus. Acantholatris clusters within Nemadactylus, ar;d the former should 

be synonymised. Cryptic speciation has occurred within Cheilodactylus (Goniistius) vittatus. 

The generic allocation of the four latrid species is sound, although this family should be 

expanded to encompass all but two cheilodactylids. Relative levels of genetic divergence 

within the Aplodactylidae support the most recent revision of this family, during which the 

monotypic genus Crinodus was synonymised with Aplodactylus. 

Mokcular phylogenetic relationships and estimates of divergence time obtained from 

molecular clock calibrations suggest a dominant role of long distance dispersal for the present 

distribution of cheilodactylid and aplodactylid fishes. Suggestions that ancestral taxa were 

vicariantly isolated during the fragmentation of Gondwana are rejected, as estimated 

divergence times appreciably postdate this event. Dispersal and radiation of Nemadactylus 

and Acantholatris throughout the Southern Ocean was particularly recent, occurring within 

the last 0.6-2.6 Myr. The waters of Australia and New Zealand represent a likely origin for 

this dispersal, and at least two events are identified, one eastward. Similarly, it appears that 
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aplodactylids also originated in the waters of Australia and New Zealand, but in this instance 

the majority of radiation was undertaken prior to colonisation of the southeastern Pacific. 

Ocean currents and long duration offshore pelagic larvae probably facilitated dispersal. 

Phylogeographic analysis of the antitropically-distributed cheilodactylid subgenus Goniistius 

identified three transequatorial divergences, rather than a minimum of two as inferred from 

the distributions of individual taxa. The identified divergences also occurred during two 

distinct periods, the mid Miocene and mid to late Pliocene, and are best explained by chance 

dispersal or vicariance resulting from biotic interactions or temperature changes. 

The levels of genetic separation for three cirrhitoid species pairs with east-west allopatric 

distributions across southern Australia reject the possibility that the members of each pair 

diverged simultaneously during a shared vicariance event. Although the levels of genetic 

separation were similar for Goniistius and Aplodactylus pairs, separate north and south coast 
" 

vicariance events are invoked based on likely thermal tolerances. Speciation resulting from 

chance dispersal and the founding of new populations is rejected due to the absence of 

barriers sufficiently large to isolate taxa with such high dispersal capabilities. Estimated 

divergence times fall between the late Miocene and mid Pliocene, and fail to implicate recent 

· Pleistocene glaciations. 

Seven microsatellite loci were characterised for Nemadactylus macropterus in an effort to 

resolve its stock structure in Australian waters and to assess the resolving power of different 

molecular techniques. Microsatellites did not identify any stock structuring in the waters of 

southern Australia. Divergence was also absent between Australian and New Zealand 

populations, which contrasted the findings from allozyme and mitochondrial DNA studies. 

Homoplasy of alleles at highly polymorphic loci is offered as a possible explanation for the 

lower resolution of stock structure obtained with microsatellites. 
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The microsatellites characterised for N. macropterus were also employed to examine the 

taxonomic status of the morphologically similar S0uth American species N. bergi. Separate 

status was supported by divergence at a single locus. Microsatellites also provided evidence 

for a recent bottleneck in the effective population size of N. bergi, but not N. macropterus or 

A. monodactylus. Based on this observation, the mitochondrial DNA lineage monophyly 

observed for N. hergi, but not N. macropterus or A. monodactylus, may reflect the influence 

of effective population size on the time required for complete sorting of mitochondrial 

lineages. 
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CHAPTER 1: General introduction. 

General biology 

Cirrhitoids are a group of marine fishes comprising five families and approximately 76 

species: Cirrhitidae, Chironemidae, Aplodactylidae, Cheilodactylidae, and Latridae. The 

Cirrhitidae is widely represented in tropical waters, particularly those of the Indo-Pacific 

(Randall, 1963), while the other cirrhitoid families predominantly occupy temperate waters of 

the Southern Hemisphere, with greatest diversity around Australia and New Zealand (Lamb, 

1990; Melendez, 1990; Russell, 2000). Most cirrhitoids are sedentary over nearshore reef 

substrates as adults (Randall, 1963; Last et al., 1983; Sano and Moyer, 1985; Cappo 1995, 

Stepien, 199C; Lowry and Suthers, 1998), and feed on small benthic invertebrates (Andrew 

and Hecht, 1992; Wohler and Sanchez, 1994; McCormick, 1998), although aplodactylids are 

almost completely herbivorous (Benavides et al., 1994). Larvae occur pelagically in offshore 

waters for durations of up to 12 months (Annala, 1987; Andrew etal., 1995). Maximum ages 

can exceed 25 years, with generation times typically of 2-10 years (Fran9is, 1981; Annala, 

1987; Andrew et al., 1995). Cheilodactylids and latrids are commonly exploited for human 

consumption, while cirrhitids are targeted for the aquarium market. 

Taxonomy 

There are a number of problems regarding cirrhitoid taxonomy, at the family, genus and 

species levels. The majority of problems involve generic allocation within the 

Cheilodactylidae, and these have not been resolved despite numerous morphological studies 

(Allen and Heemstra, 1976; Smith, 1980; Randall, 1983; Lamb, 1990). 

The species composition of Cheilodactylus and Chirodactylus are questionable. These groups 

presently encompass 18 of the 27 recognised cheilodactylids. In the most recent review of 

cheilodactylid taxonomy, Lamb (1990) suggested that Cheilodactylus should be restricted to 

the South African members of this genus, as these were equally divergent from the remaining 

Cheilodactylus as any other genus. Regarding the generic placement of non South African 

Cheilodactylus, Lamb (1990) suggested elevating the subgenus Goniistius to generic rank, 



1. General introduction 

and resurrecting Morwong for the remainder. However, the distinction of Goniistius and 

Morwong from Chirodactylus is dubious (Lamb, 1990). 

The separate status of the South American cheilodactylid species Nemadactylus bergi is 

questionable. This species is morphologically similar to the Australian and New Zealand 

species N. macropterus, and distinguishing features are inconsistent among the holotype and 

paratypes of N. bergi (R.W.G. White, University of Tasmania, Australia, 1995, pers. comm.). 

The taxonomy of the Latridae was considered sound, with three genera and four species 

recognised (Gon and Heemstra, 1987; Lamb, 1990). However, there has been a recent 

suggestion that the chcilodactylid genera Nemadactylus and Acantholatris should be 

transferred to the Latridae based on urohyal form (Greenwood, 1995). This is in conflict with 

the predominant external features used to distinguish the two families, namely the presence of 

thickened lower pectoral rays which are also produced beyond the fin membrane (Lamb, ,, 

1990). 

The taxonomy of the Aplodactylidae has undergone considerable change despite comprising 

a small number of taxa. The most recent revision recognised five species and one genus, 

synonymising the monotypic Crinodus with Aplodactylus (Russell, 2000). The Chironemidae 

comprises six species and two genera, Chironemus and the monotypic Threpterius. The only 

recent change to this group was the transfer of Cheilodactylus bicornis from the 

Cheilodactylidae to Chironemus (Melendez, 1990). 

The most recent revision of the Cirrhitidae was conducted by Randall (1963), during which 

six new species and one new genus were described, and a total of 34 species and 10 genera 

were recognised. One monotypic genus was later transferred to the Serranidae (Randall and 

Heemstra, 1978), another two species were synonymised with existing cirrhitids (Randall, 

1973, 1997), and three new species were described (Lavenberg and Yanez 1972; Kotthaus, 

1976; Lubbock, 1977). The species identified by Lavenberg and Yanez (1972) from Easter 
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1. General introduction 

Island is problematic. It contains features in common with both Cirrhitus and Amblycirrhitus, 

and may comprise a new genus (J.E. Randall, B.P. Bishop Museum, Hawaii, 1996 pers. 

comm.). Additional questions of cirrhitid taxonomy include the specific status of colour 

mor-phs observed for Paracirrhitesforsteri, P. mnztus, and P. hemistictus. 

Historical biogeography 

There are a number of interesting questions regarding the historical biogeography of 

cirrhitoid fishes. The majority of these involve possible explanations for widespread and 

disjunct distributions. 

The four temperate ciiThitoid families are each widespread in the Southern Hemisphere, and 

their distributions may be explained by vicariant isolation accompanying the fragmentation of 

Gondwana, chance oceanic dispersal, or a combination of both. The occupation of multiple 

Southern Hemisphere continents is consistent with Gondwanan origins, and such distributions 
"· 

are observed for the Aplodactylidae and Cheilodactylidae. However, a role of dispersal in 

widespread cirrhitoid distributions is implicated by the occupation of isolated islands and 

seamounts, and high dispersal capabilities are suggested by the 7-12 month offshore pelagic 

larval stage observed for several taxa (Annala, 1987; Andrew et al., 1995). As the sequence 

and timing of Gondwana fragmentation is well understood (Lawver et al., 1992), dispersal 

and vicariance hypotheses may be discriminated by the reconstruction of species-area 

(phylogeographic) relationships and the estimation of lineage divergence times. 

The Cheilodactylidae is unique among cirrhitoids in that this family is antitropically 

distributed (Randall, 1981, 1983). The subgenus Goniistius is represented in subtropical and 

temperate waters both north and south of the equator, yet not in the intervening tropical 

waters. Antitropical and other similar disjunct distributions have long intrigued 

biogeographers, and several dispersal and vicariance hypotheses have been offered as 

possible explanations (Hubbs, 1952; Ekman, 1953; Rehder, 1980; Valentine, 1984; Nelson, 

1985). Several of these theories invoke climatic and geological events of known age, such as 
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1. General introduction 

glaciations and continental fragmentation. Consequently, such theories can be assessed as 

explanations for the anti tropical distribution of Goniistius by the estimation of lineage 

divergence time. The antitropical distribution of Goniistius is also particularly interesting as 

multiple transequatorial divergences are suggested, but knowledge of the frequency and 

direction of these events requires a resolved species phylogeny. 

Similar east-west allopatric and parapatric distributions are observed for several putatively 

geminate taxa in the marine waters of southern Australia (Knox, 1980; Edgar, 1986; 

Hutchins, 1987). It has been suggested that many of these distributions have a common 

vicariant origin, with ancestral taxa isolated by decreases in water temperature or sea level 

(Edgar, 1986; Hutchins, 1987). Alternatively, east-west allopatric and parapatric distributions 

of geminate taxa may ref1ect chance dispersal across large expanses of inhospitable habitat 

and the founding of new populations. There are four cirrhitoid species pairs with east-west 

allopatric distributions across southern Australia. Evidence for a shared vicariant history 
'•I 

would comprise confirmed geminate status and similar estimates of divergence time for the 

members of each pair. Estimates of divergence time can also be compared to known climatic 

transitions, such as Pleistocene glaciations, which have been commonly implicated for 

vicariance along the south coast (Knox, 1980; Edgar, 1986; Hutchins, 1987). 

Population genetics 

Several cirrhitoids are commercially exploited, and as such they should be managed in an 

effort to maintain sustainable yields and genetic variation. As populations in different regions 

are often genetically and demographically independent, even in continuously distributed 

species, separate management of distinct populations or "stocks" is desirable for the 

maintenance of genetic variation and to avoid regional over-exploitation (Carvalho and 

Hauser, 1995). 

Nemadactylus macropterus is a commercially exploited cheilodactylid of New Zealand and 

southern Australia. The stock structure of this species has been the subject of both genetic and 
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1. General introduction 

non-genetic studies for management purposes. Allozyme electromorph and mitochondrial 

DNA (mtDNA) characters did not detect stock structuring in Australian waters, and identified 

only slight but significant divergence between Australian and New Zealand populations 

(Elliott and Ward, 1994: Grewe et al., 1994). In contrast, otolith microchemistry and larval 

advection studies proposed three stocks within the waters of southeast Australia alone 

(Thresher et al., 1994; Bruce et al., 1996). A comparatively new class of molecular 

characters, called microsatellites, have identified stock structure in marine species not 

detected by other molecular techniques (Bentzen et al., 1996; Ruzzante et al., 1996, 1998; 

Shaw et al., 1999a, b). As both allozyme and mtDNA data have been collected for N. 

macropterus, the application of microsatellites to this species offers additional information on 

both stock structure and the relative resolving power of different molecular techniques. 

Aims 

The first aim of this study is to examine cirrhitoid taxonomy by reconstructing phylogenetic ,, 

relationships from mitochondrial DNA sequence data. The majority of taxonomic studies 

conducted on cirrhi to ids have been restricted to external features (Randall, 1963; Allen and 

Heemstra, 1976; Randall. 1983; Lamb, 1990; Russell, 2000), and they have often been 

somewhat reserved in their conclusions clue to the low number of characters analysed and 

disagreement among thsm. A greater number of characters can be readily scored during 

molecular studies, and specific characters can be chosen which are more likely to be 

informative for the question under investigation (Meyer, 1994). Molecular studies can also 

test for reproduction isolation of taxa which differ only in subtle features, such as colouration 

(e.g. Smith et al., 1996). 

The second aim of this study is to address questions relating to the historical biogeography of 

cirrhitoids. Addressing questions of historical biogeography often requires information of 

phylogeographic relationships and lineage divergence times (A vise, 1992; Bowen and Grant, 

1997; Waters and Burridge, 1999). In addition to the advantages of molecular data for the 

reconstruction of phylogenetic relationships outlined above, molecular variation can also be 
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1. General introduction 

used as a proxy for divergence time. If the accumulation of molecular variation is observed to 

be clock-like among lineages, the levels of variation can be considered relative measures of 

lineage divergence time (Vawter et al., 1980). In addition, if molecular clock calibrations are 

available, the levels of genetic variation can be translated into geological dates (Vawter et al., 

1980; Bermingham et al., 1997). 

The third aim of this study is to examine the stock structure of Nemadactylus macropterus 

based on microsatellite characters, and to compare the resolving power of those molecular 

techniques applied to this species. 

Due to the requirement of suitably preserved material for DNA analysis, the phylogenetic 

components of this study will be largely restricted to those groups for which fresh material is 

readily collectable. These groups comprise the Aplodactylidae, Cheilodactylidae, and 

Latridae. 
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CHAPTER 2: General molecular systematic methods 

DNA extraction 

Genomic DNA was extracted from frozen or ethanol preserved muscle tissue using a 

modified CfAB protocol (Hillis et al., 1990). For each DNA extraction performed a small 

sample of tissue, approximately 40 mg, was isolated and partially macerated with a sterile 

scalpel blade. Samples were then incubated for 2h at 60°C in 600 f.LL of CT AB buffer ( 100 

mM Tris-HCl pH 8.0, 20 mM EDTA, 1.4 M NaCl, 55 mM hexadecyltrimethylammonium 

bromide, 0.002% 2-mercaptoethanol [v/v]) with 5 ~LL of proteinase K (20 mg/mL). Samples 

were homogenised further during incubation using power pestles and occasional vortex-

m1xmg. 

DNA was purified by successive extraction. An initial extraction was performed with an 

equal volume of chloroform-iso-amyl alcohol (24: 1 v/v) and centrifugation at 12 000 G for 20 

min, followed by two extractions of the supernatant with equal volumes of phenol-
·,:,, 

chloroform-iso-amyl alcohol (25:24: 1 v/v) at 12 000 G for 10 minutes. A brief extraction was 

performed again with chloroform-iso-amyl alcohol to remove any trace of phenol. The 

resultant supernatant was mixed with 1.5 volumes of iso-propanol and incubated overnight at 

-20°C. DNA was pelleted by centrifugation at 12 000 G for 20 min, washed twice with 500 

f.LL of 70% ethanol, and then dried under vacuum. DNA was eluted in dH20 to give a final 

concentration of 20-100 ng/f.LL. 

PCR primers 

The mitochondrial genome comprises a variety of different sequence types which many be 

employed for phylogenetic inference. These sequences differ in their length (base pairs) and 

rate of nucleotide substitution (variability). Consequently, specific regions within the 

mitochondrial genome are favoured for phylogenetic studies depending on the degree to 

which the subject taxa have diverged. During this study the cytochrome b region was first 

targeted for phylogenetic analysis. Within the mitochondrial genome, protein-coding genes 

such as cytochrome b exhibit median levels of variation. Consequently, if there was 
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2. General molecular systematic methods 

insufficient variation detected with cytochrome b, the more variable non-coding D-loop 

region could be targeted. Alternatively, if there was too much variation within cytochrome b, 

resulting in extensive homoplasy from superimposed nucleotide substitutions, less variable 

rRNA or tRNA genes could be analysed. If the level of variability for cytochrome b was 

adequate, but more characters were required to reliably resolve phylogenetic relationships, 

other protein coding sequences could be analysed, such as cytochrome oxidase I. 

During this study polymerase chain reaction (PCR) amplifications of mitochondrial DNA 

fragments employed the universal oligonucleotide primers L6586 and H7086, flanking a 

region of the cytochrome c oxidase subunit I gene (Palumbi et al., 1991), and L14841 and 

H15149, flanking a region of the cytochrome b gene (Kocher et al., 1989). Primer L14724 

(Paabo, 1990) was used to amplify cytochrome b sequences when there was inadequate 

amplification with Ll4841. Sequences corresponding to the left domain of the D-loop were 

obtained using the primers proline-light (5' AACTC TCACC CCTAR CTCCC AAAG 3') 

and D-loop-heavy (5' GGCCC TGAAR TAGGA ACCAR ATG 3'). 

PCR amplification and sequencing 

A~plifications were conducted in 50 ~lL volumes, containing reaction buffer and 1.0 units of 

Taq DNA polymerase (Fisher Biotech), 200 ~M dNTPs, 0.5 ~M of each oligonucleotide 

primer, 1.5-2.5 mM MgCl2, and 25-100 ng of genomic DNA. Thermal cycling conditions for 

cytochrome oxidase I were 10 cycles of 94°C/30 sec, 65°C/30 sec, and 72°C/60 sec, followed 

by 25 cycles with annealing at 55°C instead of 65°C. Conditions for the amplification of 

cytochrome b sequences were identical with the exception that annealing was conducted at 

45°C for the first ten cycles, while D-loop sequences were amplified with all annealing at 

60°C. An initial denaturation of 94 °C/5 min and a final extension of 72 oc/1 0 min were 

employed for all sequences. 

The results of PCR were assessed by 1.0% agarose gel electrophoresis, with visualisatioin 

under UV radiation after ethidium bromide staining. Templates were gel purified using the 
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2. General molecular systematic methods 

QIAquick Gel Extraction Kit (Qiagen). DNA sequences were determined using either the 

fmol DNA sequencing system (Promega) with [y33P]ATP end-labelled primers, or the ABI 

PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems 

Inc.). Both light and heavy strands were sequenced for each template, enabling the 

verification of character-states. 

Data analysis 

The majority of analyses were conducted using PAUP 3.1.1 (Swofford, 1993), demonstration 

and beta versions ofPAUP*4.0 (Swofford, 1999), and components of the PHYLIP 3.573 

package (Felsenstein, 1993). 

Where combined analysis of different gene sequences was desired, phylogenetic congruence 

of datasets was investigated using the partition homogeneity test of Farris et al. (1995), as 

implemented by PAUP*. Two-hundred partition replicates were analysed by the heuristic 

(fOO random sequence addition replicates) or branch and bound search algorithm. Pairwise 

homogeneity chi-squared analysis was performed to identify any significant difference in the 

nucleotide composition of sites variable among taxa. 

An approximate indication of phylogenetic information content was derived from the 

skewness of tree length-frequency distributions (Hillis and Huelsenbeck, 1992). Skewness 

was quantified by g 1 values, which were either calculated for the entire tree-length frequency 

distibution (exhaustive parsimony search), or estimated from the construction of 1,000,000 

random trees using the RANDOM TREES and GENERATE TREES options of PA UP 3 .1.1 

and PAUP* respectively. 

Maximum parsimony analysis (Cavalli-Sforza and Edwards, 1967) was conducted using the 

exhaustive, branch and bound (Hendy and Penny, 1982), or heuristic search algorithms of 

PAUP, depending on the number of taxa analysed. Accelerated character-state optimisation 
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2. General molecular systematic methods 

(ACCTRAN) and tree bisection-reconnection (TBR) branch swapping were employed. Four 

weighting schemes were used for transition (TI) and transversion (TV) nucleotide 

substitutions. These were equal weighting, exclusion of transitions, exclusion of transitions at 

third codon positions, and increased weighting of transversions in accordance with the 

reciprocal of the observed frequencies, the optimum TI/TV from maximum likelihood 

analysis (see below), or by an arbitrary value. Consistency (Kluge and Farris, 1969) and 

retention (Farris, 1989) indices were calculated based on all characters. Measures of support 

for tree nodes were obtained from nonparametric bootstrap analysis (Felsenstein, 1985a), 

based on 2000 replicate data sets and retaining groups compatible with the 50% majority-rule 

consensus. 

Neighbour-joining analysis (Saitou and Nei, 1987) was performed using components of 

PHYLIP. DNADIST was used to calculate pairwise sequence distances, corrected for 

multiple substitutions by the Kimura ( 1980) two-parameter model using a TI/TV of 2.0 or 

that obtained from maximum likelihood analysis (see below). Clustering of pairwise distances 

was conducted using NEIGHBOR. Bootstrap analysis was performed on 2000 replicate data 

sets created by SEQBOOT, and consensus trees were calculated by CONSENSE. 

Maximum likelihood analysis was conducted using DNAML of PHYLIP, with. empirical base 

frequencies, one category of substitution rate, global rearrangements, and ten randomisations 

of sequence input order. The expected TI/TV nucleotide substitution ratio was either 

optimised to achieve a near-asymptotic likelihood value, or a value of 2.0 was used. 

The number of additional steps required to achieve alternative topologies was determined 

using the CONSTRAINTS option of PAUP. Significantly different topologies were identified 

by the nonparametric two-tailed Wilcoxon signed ranks test (Templeton, 1983; Felsenstein, 

1985b). When n was greater than 20 a normal approximation of the test statistic with 

correction for ties was calculated by SYSTAT 5.2 (SPSS Inc.). The parametric Kishino and 
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2. General molecular systematic methods 

Hasegawa (1989) test implemented by DNAML was used to identify significant differences 

in the likelihoods of alternative topologies. 

The two-cluster and branch-length tests of Takezaki et al. ( 1995) were employed to identify 

significant deviation from nucleotide substitution rate constancy, using programs distributed 

by the authors (iubio.bio.indiana.edu/soft/molbio/evolve/lintre ). Tests were conducted on 

third codon positions only, using the Kimura (1980) two-parameter model. Branch lengths 

were also calculated under the assumption of clock-like evolution for the estimation of 

lineage divergence times. 

Two-dimensional scaling was performed to enable the visualisation of relative genetic 

distances between sequences. The Kruskal loss function and monotonic regression were 

employed, implemented by SYSTAT 5.2. 

11 



CHAPTER 3: Molecular phylogeny of Nemadactylus and Acantholatris 

{Cheilodactylidae), with implications for taxonomy and biogeography. 

Abstract 

Mitochondrial DNA sequences were obtained from all five species of Nemadactylus, two of the 

three Acantholatris species, and several outgroup taxa. Analysis of cytochrome h sequences 

placed A. monodactylus and A. gayi within a clade otherwise composed of all Nemadactylus 

clade, suggesting that these genera are synonymous. The Acantholatris sequences were also 

very similar to those from three of the Nemadactylus species, despite their geographic 

separation. Analysis of D-loop sequences paralleled the cytochrome h results, but provided 

greater resolution of species relationships. Nemadactylus sp. and A. gayi are transoceanic sister 

taxa. Polytypic clades observed for N. macropterus and A. monoda;;tylus most likely ref1ect 

incomplete sorting of mitochondrial DNA lineages. It is proposed that these taxa dispersed and 

radiated during the last 0.3-0.6 million years, and the·possible mechanisms of this process are 

discussed. 
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3. Molecular phylogeny of Nemadactylus and Acantholatris 

Introduction 

The species of Nemadactylus Richardson and Acantholatris Gill are marine perciforms that 

occur in subtropical to cool-temperate waters throughout the Southern Hemisphere (Figure 

3.1). Juveniles and adults occur around reefs, at depths of 1-350 m (Annala, 1987; Wohler and 

Sanchez, 1994; Andrew et al., 1995). A common trait of these and related taxa is an offshore 

pelagic larval phase of 7-12 months in duration, which implies high dispersal capabilities 

(Annala, 1987; Andrew et al., 1995). These species mature at 2-6 years, and serially spawn 

large numbers of small eggs (Annala, 1987; Andrew et al., 1995; Jordan, 1997); maximum 

ages exceed 25 years (Andrew et al., 1995; Jordan, 1997). 

There are five recognised species of Nemadactylus. Four of these are restricted to the waters of 

Australia and New Zealand, and the remaining species occurs along the east coast of South 

America (Figure 3.1). One species, commonly called "king tarakihi", was recently proposed 

(Roberts, 1993; Smith et al., 1996). The record of N. macropterus (Bloch and Schneider) at 

Saint Paul and Amsterdam Island by Agnot ( 1951) was a false identification according to 

Duhamel ( 1989). Acantlwlatris is not represented in the waters of Australia or New Zealand. 

Instead, its three members occur around isolated islands and seamounts such as Juan Fernandez 

and the Desventuradas in the southeastern Pacific, and those which form a loose chain from 

Tristan da Cunha and Gough Island in the South Atlantic, to Saint Paul and Amsterdam Islands 

in the Indian Ocean (Figure 3.1). 

The taxonomy of these species as based on external characteristics has been problematic. 

Although Allen and Heemstra (1976) synonymised Acantholatris with Cheilodactylus 

Lace pede, the characters described by Gill ( 1862) and Smith ( 1980), particularly the presence 

of a relatively long and narrow anal fin, distinguish Acantholatris from the cheilodactylid genera 

Cheilodactylus, Chirodactylus Gill and Dactylophora De Vis (Lamb, 1990). While the 

remaining cheilodactylid genus Nemadactylus shares the majority of characteristics which 

define Acantholatris, including the long narrow anal fin, these genera have been separated 
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3. Molecular phylogeny of Nemadactylus and Acantholatris 

primarily on the number of anal fin rays, with the former having 14-19, and the latter 10-12 

(Gill, 1862; Lamb, 1990). 

AUSTRALIA 

90 OE 

~Saint Paul 
'C./ Amsterdam 

@Austral Seamount 

@Walters Shoals 

Vema 
Seamount 

~ "! 30 os AFRICA 
oo 

Nm'Ns Nd 180° 
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Nm Ns Nd 
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(§9 Chatham 

NEW ZEALAND 
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§ Tristran da Cunha 

9 .... _ ......... ....~.,..._1...aj00 km 
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Fernandez/' 
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Figure 3.1. Distribution of Nemadactylus and Acantholatris species. Ns::::Nemadactylus sp., Nm=N, 

macropterus, Nb=N. bergi, Nd=N. douglasii, Nv=N. valenciennesi, Am=A. monodactylus, Av=A. vemae, Ag=A. 

gayi; ?=possible records of A. gayi (R. Melendez C., Museo Nacional de Historia Natural, Santiago, Chile, 1998, 

pers. comm.). 

Nemadactylus bergi (Norman) and A. gayi (Kner) have been called Cheilodactylus in recent 

non-systematic literature (e.g. Melendez and Villalba, 1992; Wohler and Sanchez, 1994), and 

were also indexed as Acantholatris in the systematic work by Greenwood (1995). These 

species are obviously not members of Cheilodactylus given their relatively long and narrow 
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3. Molecular phylogeny of Nemadactylus and Acantholatris 

anal fins, and since they have anal fin ray counts of 14-15 and 12 they should be referred to as 

Nemadactylus and Acantholatris respectively (Lamb, 1990). 

Nemadactylus bergi and N. macropterus are morphologically similar, but have been 

distinguished by the width of the supra-cleithrum relative to the diameter of the eye, the relative 

lengths of their thickened pectoral fin rays, and lateral line scale counts (Norman, 1937; Lamb, 

1990). However, two of these differences are not consistent among the holotype and paratypes 

of N. bergi (R.W.G. White, University of Tasmania, Australia, 1995, pers. comm.), and the 

separate status of this species requires justification. 

In addition to their taxonomic uncertainties, the distribution patterns and potentially high 

dispersal capabilities of Nemadactylus and Acantholatris makes them interesting subjects for a 

molecular phylogenetic study. The biogeography and radiation of these and similarly distributed 

fishes has attracted some attention (Eschmeyer and Hureau, 1971; Briggs, 1974; Wilson and 
\l, 

Kaufmann. 1987; Collette and Parin, 1991; Andrew et al., 1995), but no molecular studies 

have been conducted. Members of the rock lobster genus Jasus have distributions and dispersal 

capabilities similar to Nemadactylus and Acantholatris, and their radiation have, together with 

that of the related genus Parzulirus, received much attention (Pollock, 1990, 1992, 1993; 

George, 1997), including two molecular phylogenetic studies (Brasher et al., 1992; Ovenden et· 

al., 1997). The theories regarding the radiation of these rock lobsters may well be applicable for 

much of the Southern Hemisphere marine fauna with similar species distributions and dispersal 

capabilities. 

The aim of this study was to obtain molecular data from species of Nemadactylus and 

Acantholatris that would clarify their taxonomy, and provide phylogenetic infmmation about 

their radiation with respect to biogeographic processes and events. 
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3. Molecular phylogeny of Nemadactylus and Acantholatrls 

Materials and methods 

Frozen or ethanol preserved muscle and liver tissues were obtained from all species of 

Nemadactylus and Acantholatris with the exception of A. vemae Penrith, for which only 

formalin--fixed material was easily accessible (Table 3.1). The technique of Shedlock et al. 

( 1997) was employed for formalin-fixed material. Tissues from representatives of the 

remaining cheilodactylid genera, and Cirrhitus splendens Ogilby (Cirrhitidae) were also 

obtained for use as outgroups. The Cirrhitidae is considered the most plesiomorphic of the five 

cirrhitoid families (Greenwood, 1995). 

Table 3.1. Collection details of Acantholatris and Nemadactylus individuals analysed. 

Species Collection site Month/Year 

A. monodactylus (Carmichael) Tristan Island /1994 

A. monodactylus (Carmichael) Gough Island /1994 

A. monodactylus (Carmichael) Saint Paul Island 3/1997 

A. monodactylus (Carrnichael) Amsterdam Island 2-3/W97 

A. gayi (Kner) Juan Fernandez 2-3/1997 

A. vemae Penrith Vema Seamount a 6/1966 

N. macropterus (Bloch & Schneider) Albany, Australia 10/1991 -2/1992 

N. macropterus (Bloch & Schneider) Tasman Island, Tasmania 9/1991 

N. macropterus (Bloch & Schneider) New Zealand 4/1992 

Nemadactylus sp. Kiama, Australia b 6/1994 

Nemadacty/us sp. Three Kings Islands, N. Z. 4/1994 

N. bergi (Norman) Mar del Plata, Argentina 8/1996 

N. douglasii (Hector) Colts Harbour, Australia b 6/1994 

N. valenciennesi (Whitley) Port Lincoln, Australia 5/1995 

a South African Museum specimen 25030 (formalin-fixed). 

Individuals 

3 

3 

9 

7 

3 

32 

2 

51 

b Australian Museum frozen tissue collection (Nemadactylus sp. 1.34845-001, N. douglasii 1.34844-001 ). 

D-loop sequences were aligned using CLUSTALW 1.7 (Thompson et al., 1994). Gaps were 

treated as missing data or analysed as a separate character-state. D-loop nucleotide diversities 

(n:) and their standard deviations were calculated using DnaSP 2.52 (Rozas and Rozas, 1997), 

according to equations 10.5 and 10.7 of Nei (1987). D-loop haplotype diversities (h) were 

calculated using equation 8.5 of Nei (1987). 
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3. Molecular phylogeny of Nemadactylus and Acantholatris 

To test for the presence of certain character-states, PCR amplified D-loop fragments were 

digested with Dpn II and Hinc II restriction endonucleases. Digests were conducted in 10 J..LL 

volumes, containing 5 J..LL of amplified DNA, 0.5 units of either enzyme, and 1 J..LL of the 

appropriate concentrated buffer (New England Biolabs). Digests were incubated at 37 oc for 

l h, and the results were visualised as for PCR amplification, using a 100 bp increment size 

standard (Promega). 

Results 

The protocol of Shedlock et al. ( 1997) was successful in obtaining DNA fragments of up to 

450 bp in length from formalin-fixed A. vemae material. However, attempts at the amplification 

of cytochrome band D-loop sequences from this DNA were not successful. 

Cytochrome b 

With the exception of A vemae, cytochrome b sequences were obtained from one individual of 

each Nemadactylus and Acantholatris species and several outgroup taxa (Genbank accession 

numbers AF067084 - AF067095). Among the species of Nemadactylus and Acantholatris, 

substitutions were observed at 27 of the 307 nucleotide positions analysed, and the variation 

was phylogenetically informative at 10 of these. The majority of the substitutions observed in 

the entire dataset were transitions at third codon positions, and this pattern, combined with the 

absence of length mutations, suggested that orthologous sequences were obtained. The 

estimated tree length-frequency distribution for these sequences was significantly skewed (gl=-

0. 61, P<O. 0 1), suggesting the presence of phylogenetic signal. 

Unweighted maximum parsimony analysis recovered a single most-parsimonious tree of 172 

steps (Figure 3.2). The sequences from A. monodactylus and A. gayi clustered within an 

otherwise entirely Nemadactylus clade. The Acantholatris sequences were also very similar to 

those from Nemadactylus sp., N. macropterus, and N. bergi, forming a single clade with a 

maximum of only three transition substitutions, or 0.98% corrected sequence divergence, 
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3. Molecular phylogeny of Nemadactylus and Acantholatrls 

between any of these five taxa (Table 3.2). The sister clade of this group comprised N. 

douglasii and N. valenciennesi. The sequences of these two clades differed by 14-18 transitions 

and two to three transversions, corresponding to 5.39-7.15% sequence divergence (Table 3.2). 

High bootstrap values (> 70%) were observed for the entire Nemadactylus-Acantholatris clade, 

the N. valenciennesi and N. douglasii clade, and the clade containing the five most similar 

Nemadactylus and Acantholatris sequences (Figure 3.2). The low bootstrap value for the 

relationship between the Nemadactylus ·-Acantholatris clade and that containing other 

cheilodactylids reflects variation in the composition of the latter. 

Both maximum likelihood and neighbour-joining analyses produced topologies identical to that 

from unweighted parsimony analysis. Parsimony analysis with increased weighting of 

transversions over transitions in accordance with the reciprocal of their observed frequencies 

also recovered the same topology. The bootstrap values from this weighted parsimony and the 

neighbour-joining analysis were similar to those from unweighted parsimony. Parsimony 
'· 

analysis restricted to transversion substitutions produced a slightly different topology, but this 

was probably due to the small number of informative characters. 

The two-cluster test did not reveal third codon position nucleotide substitution rate 

heterogeneity when nodes were analysed individually (CP<95% ), or when nodes were 

analysed simultaneously (X2=14.23, df=lO, 0.50>? >0.25). The branch-length test also did 

not detect significant rate heterogeneity (CP<95% ). 
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3. Molecular phylogeny of Nemadactylus and Acantholatrls 
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Figure 3.2. Single most-parsimonious cladogram from the analysis of 307 bp partial mitochondrial DNA 

cytochrome b sequences from Nemadactylus and Acantholatris species. Cirrhitus sp!endens (Cirrhitidae) and 

representatives of the other cheilodactylid genera were included as outgroups. The Branch and Bound algorithm 

was employed and all character-state changes were equally weighted. Branch lengths are proportional to the 

number of substitutions, quantified by the numbers below the branches. Bootstrap proportions for the taxa in 

each clade, as derived from i 000 replicates, are indicated by the numbers above the braches at each node. Tree 

length=172 steps, Cl=0.744, Rl=0.651. 

0-loop 

0-loop 

Sequences representing the left domain of the D-loop were obtained from the outgroup C. 

spectabilis and 1-7 individuals per species of Nemadactylus and Acantholatris, excluding A. 
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3. Molecular phylogeny of Nemadactylus and Acantholatris 

vemae (Genbank accession numbers AF067096- AF067120, AF072876- AF072877). The 

sequences analysed varied in length between 360 and 366 base pairs, and the favoured 

alignment was 373 characters long (Figure 3.3). A total of 150 characters were variable among 

Nemadactylus and Acantholatris, and 91 of these were phylogenetically informative. Transition 

substitutions were observed at 125 of the variable sites, while transversions were observed at 

62. Gaps were inserted at 19 positions for sequence alignment, with nine of these positions 

representing otherwise invariant sites. No identical sequences were identified for the 0-loop 

region, and intraspecific nucleotide diversities ranged from 0.018 to 0.054 (Table 3.2). The 

estimated tree length-frequency distribution of all sequences was significantly skewed (g 1=-

1.25, P<O.O 1 ), suggesting the presence of phylogenetic signal. The amplified fragments also 

contained 28 bp of the tRNA proline gene and a putative termination associated sequence 

(TAS). These were invariant among taxa, suggesting that orthologous sequences were 

obtained. 

Unweighted maximum parsimony analysis of sequences, as aligned in Figure 3.3 with gaps 

treated as missing data, produced a single most-parsimonious tree of 311 (Figure 3.4a). As 

observed from the analysis of cytochrome b, A. monodactylus and A. gayi sequences clustered 

within an otherwise entirely Nemadactylus clade. The Acantholatris sequences were again 

closest to those of Nemadactylus sp., N. macropterus, and N. bergi, but the D-loop sequences 

provided greater resolution amongst these taxa. 

Nemadactylus sp. and A. gayi sequences were structured as sister clades, with predominantly 

high bootstrap values for their relationships (Figure 3.4a). The sequences from N. 

macropterus, N. bergi, and A. monodactylus were structured into four clades. Three of these 

were polytypic, individually containing both N. macropterus and A. monodactylus sequences, 

while the remaining clade was monotypic for N. bergi. TheN. macropterus (Western Australia) 

and A. monodactylus (Amsterdam Island 1) sequence clade was distinguished due to its 

distance from other sequences. Although the bootstrap values representing three of these four 

clades were quite high, the inferred relationships between these clades received only moderate 
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3. Molecular phylogeny of Nemadactylus and Acantholatrls 

( 50-70%) bootstrap values. The sequences from N. douglasii and N. valenciennesi again 

formed the sister clade to the other Nemadactylus and Acantholatris sequences. 

Table 3.2. Interspecific variation of partial cytochrome b and 0-loop sequences and measures of intraspecific 

partial 0-loop sequence variation. Values above the diagonal represent observed substitutions, while those 

below the diagonal are Kimura (1980) corrected percentage sequence divergences obtained with a transition/ 

transversion ratio of 2.0. For each pairwise comparison the upper value represents cytochrome b, and the lower 

value is 0-loop. Nucleotide diversities (n), their standard deviations, and haplotype diversities (h) were 

calculated using equations 1 0.5, 1 0.7, and 8.5 of Nei (1987) respectively. 

INTERSPECIFIC VARIATION 

1 Acantholatris monodactylus 3 19 16 35 
30 22 31 20 90 86 82 

2 Acantholatris gayi 0.33 0 0 2 19 16 36 
8.76 24 17 23 92 81 75 

3 Nemadactylus macropterus 0.33 0.00 0 2 19 16 36 
6.36 6.97 28 19 94 88 82 

4 Nemadactylus sp. 0.33 0.00 0.00 2 19 16 36 
9.10 4.84 8.18 29 91 83 81 

5 Nemadactylus bergi 0.98 0.65 0.65 0.65 21 18 36 
5.71 6.62 5.44 8.44 87 82 78 

6 Nemadacty/us douglasii 6.45 6.45 6.45 6.45 7.15 11 38 
31.74 32.78 33.51 32.44 30.43 67 101 

7 Nemadacty/us va/enciennesi 5.39 5.39 5.39 5.39 6.08 3.66 36 
29.32 27.58 30.19 28.43 27.69 21.43 100 

8 Cheilodacty/us spectabilis 12.32 12.70 12.70 12.70 12.70 13.55 12.76 
28.33 25.68 28.37 27.9 26.74 38.01 36.92 

INTRASPECIFIC 0-LOOP VARIATION 

Haplotypes discerned (n) 6 3 5 3 7 
Maximum sequence divergence (%) 10.33 3.38 6.96 2.24 2.8 
Minimum sequence divergence (%) 0.83 0.83 2.79 1.39 1.38 
Haplotype diversity (h) 1.00 1.00 1.00 1.00 1.00 
Nucleotide diversity (rc) 0.054 0.024 0.050 0.018 0.022 
Standard deviation of rc 0.012 0.008 0.008 0.005 0.003 
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3. Molecular phylogeny of Nemadactylus and Acantholatris 

The trees recovered by neighbour-joining (Figure 3.4b) and maximum likelihood (not shown) 

analyses differed slightly in topology from each other, and also in comparison to that of 

unweighted parsimony. Although the same polytyp-,c N. macropterus-A. monodactylus and 

monotypic N. hergi clades were produced by all truee methods, there were differences in the 

inferred relationships between these clades, and also relative to the Nemadactylus sp.-A. gayi 

clade. It is these same relationships which do not receive high bootstrap values from parsimony 

and neighbour-joining analyses. Similar differences in topology and low bootstrap values were 

also observed during parsimony analysis when including gaps as a character-state, when 

differentially weighting character-state changes, and during the analysis of alternative sequence 

alignments (not shown). 

The tree lengths obtained during the enforcement of maximum likelihood and neighbour~oining 

topologies during parsimony analysis were only one and two steps longer than that of 

unconstrained parsimony (311 steps) respectively. These three topologies were not significantly 

different as determined by the Templeton and Kishino-Hasegawa tests (P>0.05). Simultaneous 

enforcement of N. nzacropterus and A. monodactylus sequence monophyly during parsimony 

analysis produced 15 trees of 330 steps in length, 19 steps longer than the most parsimonious 

tree. Individual monophyly of either N. macropterus (11 trees) or A. monodactylus (5 trees) 

sequences required327 steps. These enforced monophyly topologies were significantly inferior 

than the maximum parsimony, neighbour-joining, and maximum likelihood topologies 

(?<0.05). Basal placement of theN. hergi clade relative to the polytypic N. macropterus-A. 

monodactylus clades increased tree length by two steps (313 steps) relative to the most 

parsimonious topology, but this tree was not significantly inferior than the maximum 

parsimony, neighbour-joining, or maximum likelihood topologies (?>0.05). 

Two dimensional scaling of pairwise genetic distances provided another representation of the 

relationships between D-loop sequences (Figure 3.5). Nemadactylus sp. and A. gayi sequences 

were represented as distinct clusters. TheN. hergi sequences also formed a tight cluster, which 

was surrounded, but not interspersed, by N. macropterus and A. monodactylus sequences. The 
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3. Molecular phylogeny of Nemadactylus and Acantholatrls 

intraspecific distances observed for N. macropterus and A. monodactylus often exceeded 

interspecific distances (see also Table 3.2). 

The restnction enzymes Dpn II and Hinc II were used to identify any divergent D-loop 

sequences within N. bergi, or alternatively, N. bergi-like sequences within N. macropterus or 

A. monodactylus. These two enzymes had recognition sites diagnostic for three of the five 

character-states associated with theN. bergi clade (Figure 3.3). All of 48 additional N. bergi 

individuals screened possessed the Dpn II site, but nine lacked the Hinc II site. Four of these 

nine individuals were sequenced (N. bergi 4-7, Figure 3.3), as the Dpn II site may not have 

been restricted toN. bergi-like sequences. However, in each instance at least four of the five 

defining character-states of theN. bergi clade were present. Thirty-one individuals of N. 

macropterus and 16 individuals of A. monodactylus were similarly screened for N. hergi-like 

sequences. Each A. monodactylus individual lacked both the Dpn II and Hinc II diagnostic 

restriction sites. All of theN. macropterus individuals also lacked the Hinc II site, but five 

individuals were digested by Dpn II. Two of these individuals were sequenced (Western 

Australia 2 and 3, Figure 3.3), but neither possessed N. hergi-like character-states at more than 

one of the five N. hergi clade defining positions. 

Discussion 

Phylogenetic analysis of cytochrome h sequences clustered Acantholatris monodactylus and A. 

gayi within a clade otherwise comprising exclusively Nemadactylus. The Acantholatris 

sequences were also very similar to those from Nemadactylus sp., N. macropterus, and N. 

bergi, forming a single clade with a maximum of only three transition substitutions, or 0.98% 

corrected sequence divergence, between any of these five taxa. The sequences from N. 

valenciennesi and N. douglasii formed the sister clade to these five taxa. 
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3. Molecular phylogeny of Nemadactylus and Acantholatris 
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Figure 3.4. (a) Single most-parsimonious cladogram from the analysis of partial mitochondrial DNA D-loop 

sequences from Acantholatris and Nemadactylus species. Cheilodactylus spectabilis was employed as the 

outgroup. The Heuristic search algorithm was used (1 00 random sequence stepwise additions), all character­

state changes were equally weighted, and characters containing gaps were ignored. Branch lengths are 

proportional to the number of substitutions, quantified by the numbers below the branches. Tree length=311 

steps, Cl=0.740, Rl=0.704. (b) Corresponding neighbour joining phenogram. Branch lengths are proportional to 

Kimura (1980) genetic distance, measured relative to the scale bar. Regions of topological difference between 

the two trees are indicated by broken lines. In both trees the bootstrap proportions for the taxa in each clade, as 

derived from 1 000 replicates, are indicated by the numbers above the braches at each node. Branches leading to 

C. spectabilis, N. valenciennesi, and N. douglasii have been omitted from the neighbour joining phenogram, but 

do not differ in topology or support from (a). 
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3. Molecular phylogeny of Nemadactylus and Acantholatris 

Phylogenetic analysis of D-loop sequences produced similar results to that of cytochrome b, but 

with greater resolution of the relationships between the five closest taxa. The sequences from 

Nemadactylus sp. and A. gayi clustered as sister clades. Those from N. macropterus, N. bergi, 

and A. monodactylus were structured into four chides, three of which were polytypic, 

individually containing both N. macropterus and A. monodactylus sequences, while the fourth 

was monotypic for N. bergi. Consistent relationships between these four clades, and relative to 

the Nemadactylus sp.-A. gayi clade, were not recovered, although the topologies obtained were 

not significantly different. In contrast, significantly poorer topologies were observed when 

enforcing the monophyly of N. macropterus and A. monodactylus sequences. The levels of 

intraspecific D-loop sequence divergence for N. macropterus and A. monodactylus were as 

large as some of the interspecific sequence divergences within Nemadactylus and Acantholatris. 
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Figure 3.5. Two-dimensional scaling of Kimura (1980) genetic distances between Acantholatris and 

Nemadactylus partial mitochondrial DNA D-loop sequences, using the Kruskal loss function and monotonic 

scaling. Circles=A. monodactylus, open diamonds=A. gayi, closed diamonds=Nemadactylus sp., triangles=N. 

macropterus, squares=N. bergi. The polytypic clades obseNed during phylogenetic analysis are circled. Stress 

of configuration=0.088. Nemadactylus douglasii and N. valenciennesi were excluded from scaling so as to 

facilitate maximum resolution of the remaining sequences. 
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3. Molecular phylogeny of Nemadactylus and Acantholatris 

Taxonomy 

Analysis of cytochrome band D-loop sequences placed A. monodactylus and A. gayi within 

clades otherwise composed entirely of Nemadactylus clades (Figures 3.2 and 3.4). These 

results suggest that Nemadactylus and Acantholatris are synonymous, with the nmne 

Nemadactylus having priority. Although there are no molecular data for the third species of 

Acantholatris, A. venuze, it is most likely that this species would cluster within Nemadactylus. 

Acantholatris vemae is similar in morphology to A. monodactylus, and these species are 

sympatric at Vema Seamount (Penrith, 1967; Lamb, 1990). 

The suggestion of synonymy for Nemadactylus and Acantholatris is supported by 

morphological data. The distinction of Nemadactylus and Acantholatris is based predominantly 

on the number of anal fin rays, with Nemadactylus possessing 14-19, and Acantholatris having 

10-12 (Gill, 1862; Lamb, 1990). However, the recently identified "king tarakihi" species, 

considered to be Nemadactylus because of its sympatry and almost identic;;al appearance with N. 

macropterus. possesses only 12 anal fin rays (Roberts, 1993). Therefore, conflict exists 

between the expected placement of this new species and the dominant characteristic used to 

separate Nemadactylus and Acantholatris. 

The analysis of D-loop sequences indicates that Nemadactylus sp. is most closely related to A. 

gayi from Juan Fernandez (Figure 3.4). This accords with their identical anal fin ray counts 

(Lamb, 1990; Roberts, 1993 ). Because Roberts ( 1993) and Smith et al. ( 1996) only compared 

their specimens of Nemadactylus sp. with N. macropterus, it is possible that Nemadactylus sp. 

may simply represent the first record of A. gayi in the waters of Australia and New Zealand; it 

may not comprise a new species. There are insufficient morphological data available to 

distinguish these two forms, but the genetic results from this study suggest that separation at 

some level is warranted (Figures 3.4 and 3.5). However, more material should be analysed. 

It is possible that N. bergi may be a junior synonym of N. macropterus, as the characters used 

to distinguish these taxa are not consistent among the holotype and paratypes of N. bergi 
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3. Molecular phylogeny of Nemadacty/us and Acantholatrls 

(R.W.G. White, University of Tasmania, Australia, 1995, pers. comm.). The D-loop 

sequences obtained from three N. bergi individuals formed a monotypic clade, distinct from the 

N. macropterus sequences (Figure 3.4). However, given the high level of intraspecific 

divergence within N. macropterus (Table 3.2, Figure 3.5), restriction enzyme analysis was 

employed to test for the presence of N. macropterus-like sequences within additional N. bergi 

individuals, and vice versa, but no such instances were identified. Although theN. bergi clade 

was not placed basal to the polytypic N. macropterus-A. monodactylus clades, the enforcement 

of such a topology required only two more steps than the most parsimonious tree, and was not 

significantly inferior than the maximum parsimony, neighbour-joining, or maximum likelihood 

topologies. T:1esc results suggest that some distinction of N. bergi is warranted. 

The species A. monodactylus, A. gayi, Nemadactylus sp., N. macropterus, and N. bergi 

appear to be very closely related, and it is expected that sequence data would place A. vemae 

close to these taxa as well. In contrast. N. douglasii and N. valenciennesi form a divergent 

sister clade to this group (Figures 3.2 and 3.4). These results suggest that some systematic 

modification may be warranted in addition to synonymising Acantholatris with Nemadactylus. 

The two groups could be distinguished by allocation to separate subgenera within the expanded 

Nemadactylus. However, the overall degree of genetic divergence between these groups is low 

compared to that observed within other cirrhitoid genera (Chapters 3, 4, and 5; Burridge, 

unpubl. data). The very close relationships between at least five Nemadactylus and 

Acantholatris species, and in some cases their questionable separate status, may be better 

emphasised by reallocating these taxa, and probably A. vemae, as variants of a single species. 

A morphological revision of Nemadactylus is being conducted by C.D. Roberts (Museum of 

New Zealand), which will hopefully resolve the taxonomic questions outstanding. 

Divergence time 

The levels of cytochrome b sequence variation among the five most closely related species of 

Nemadactylus and Acantholatris suggest that they diverged within the last 0.3-0.6 million 

years, based on mitochondrial protein four-fold degenerate site molecular clock calibrations of 
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3. Molecular phylogeny of Nemadacty/us and Acantholatris 

2.3% and 3.3% sequence divergence Myr-" 1 (Martinet al., 1992; Bermingham et al., 1997). 

These estimates of divergence time must be treated cautiously, given the assumptions made 

when applying molecular clock calibrations (Rand, 1994). Faster and slower calibrations have 

been reported for other taxa, and those employed here are considered "median" values. 

However, a similar estimate of divergence time, 0.5 Myr ago, has been proposed for some 

members of the rock lobster genus Jasus, which overlap in distribution with Nemadactylus and 

Acantholatris (Ovenden et al., 1997). In addition, none of these divergence estimates predate 

the ages of the oldest islands and seamounts occupied by each species (Miller, 1964; 

McDougall and Ollier, 1982; Stuessy et al., 1984). 

Zoogeography 

It appears that Nemadacty!us and Acantholatris have dispersed throughout the temperate 

Southern Hemisphere from the waters of Australia and New Zealand. Both of the main clades 

observed for these :;pecies have representatives in these waters, and those'taxa which occur 

elsewhere exhibited only limited genetic divergence from Nemadactylus sp. and N. 

macropterus. Dispersal from Australia or New Zealand may have proceeded in either an easterly 

or westerly direction, and presumably occured during their 7-12 month pelagic larval stages 

(Annala, 1987; Andrew et al., 1995). 

Any dispersal in an easterly direction would most likely have been mediated by the West Wind 

Drift Current. Dispersal by this current has been proposed for several fishes, including 

cheilodactylids (Eschmeyer and Hureau, 1971; Briggs, 1974; Andrew et al., 1995), and a 

number of invertebrates (Fell, 1962; Newman, 1979; Lutjeharms and Heydorn, 1981; Pollock, 

1990). In a stepwise manner, the West Wind Drift could have transported Nemadactylus and 

Acantholatris from Australia or New Zealand to the southeastern Pacific and the east coast of 

South America, and then along the chain of islands and seamounts from Tristan da Cunha and 

Gough Island in the South Atlantic, to Saint Paul and Amsterdam Island in the Indian Ocean. 

During the Pleistocene glaciations this current also flowed faster and at slightly lower latitudes 

(CLIMAP members, 1976; Howard and Prell, 1992), which would have made dispersal by this 
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mechanism easier. As the glacial periods were approximately ten times longer in duration than 

the interglacials, the former are most likely to have regulated these species (Pollock, 1990). 

Westward dispersal of temperate fishes in the Southem Hemisphere is most likely to have been 

facilitated by the northem components of anticyclonic current gyres (Kensley, 1981; Collette 

and Parin, 1991; Pollock, 1993), but such movement of Nemadactylus andAcantholatris from 

Australia may have been limited. Recruitment from southwestern Australia into the Southem 

Indian Ocean Anticyclonic Gyre would have been impeded during interglacial periods by the 

south-flowing Leeuwin current and its associated offshore eddies (Figure 3.6a; CLIMAP 

members, 19/6; Pollock, 1993). Although recruitment into this gyre would have been easier 

during glacial periods, transport around southern Africa at these times would have been 

hindered by the retroflective effects of stronger westerly winds and ~he shoaling of the Southern 

Madagascar Ridge (Figure 3.6b; CLIMAP members, 1976: Pollock, 1993). Therefore, only 

Indian Ocean locations may have been colonised by westward movement from Australia. If 

larvae did pass into the South Atlantic and establish a population, perhaps at Vema Seamount, 

dispersal throughout this basin could have been facilitated by the corresponding anticyclonic 

gyre. However, any dispersal into the Pacific would have been against the prevailing currents 

and most difficult. The use of these anticyclonic gyres is also questionable, as it would require 

that larvae could survive the warm temperatures at the northem extents of these systems. The 

temperatures at these low latitudes would have been only slightly abated, if at all, during 

Pleistocene glaciations (CLIMAP members, 1976; Prell et al., 1980). 
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Figure 3.6. Approximate oceanographic conditions at present (a) and during a Pleistocene glacial maxima (b). 

Major differences during glaciations comprise the breakdown of the Leeuwin current and its associated offshore 

eddies, and the retroflective effects in the western Indian Ocean of the stronger westerly winds and the shoaling 

of the Southern Madagascar Ridge. Circles indicate islands and seamounts occupied by Acantholatris. 

Given the observed sister-taxa relationship between Nemadactylus sp. and A. gayi, and the 

prevailing currents, it appears that dispersal eastward from Australia or New Zealand was 

responsible for the founding of A. gayi in the southeastern Pacific. However, as Nemadactylus 

sp. and A. gayi formed a monophyletic clade, it does not appear that Juan Fernandez or 

Desventuradas populations acted as a source for any movement into the South Atlantic. The 

north-flowing Humboldt current also prevails around these islands. Therefore, the South 

Atlantic and Indian Ocean populations of Nemadactylus and Acantholatris were either founded 
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3. Molecular phylogeny of Nemadactylus and Acantholatris 

by a separate movement east from Australia or New Zealand, a movement west from Australia, 

or a combination of both. The phylogenetic information obtained from this study is insufficient 

to suggest by which method the populations of N. bergi, A. monodactylus, and A. vemae were 

founded. However, dispersal east from Australia and New Zealand is favoured as it was 

presumably faster and more direct. 

Although dispersal of Nemadactylus and Acantholatris from Australia or New Zealand probably 

proceeded in a stepwise manner, speciation may not have immediately accompamed the 

founding of populations. Gene t1ow among even the most isolated populations may have been 

sufficient to prevent speciation, and therefore it is possible that individual ancestral species had 

widespread distributions in the temperate Southern Hemisphere. SpeciQtion may have then 

resulted from a change in dispersal capabilities or oceanographic conditions that increased the 

isolation of populations. The transition to decreased West Wind Drift flow when proceeding 

from glacial to interglacial periods may represent such an isolating mechaqism. The widespread 

distributions of the latricls Mendosoma lineatum and Latris lineata suggest that a similar 

distribution was possible for ancestral species of Nemadactylus or Acantholatris, given the 

cognate dispersal capabilities of these families (Andrew et al., 1995). 

Polytypic clades · 

The presence of polytypic N. macropterus and A. monodactylus clades (Figure 3.4) may be 

explained in terms of introgressive hybridisation or incomplete lineage sorting. The 

morphological separation of these taxa (Lamb, 1990) does not favour an alternate suggestion 

that they may be synonymous. 

Although the spawning periods of N. macropterus and A. monodactylus overlap (Annala, 

1987; Andrew et al., 1995), there are no records of sympatry for these two species or natural 

hybridisation between any cirrhitoids. Therefore, mitochondrial DNA sequence exchange 

between N. macropterus and A. monodactylus appears unlikely. In addition, if introgressive 

hybridisation did take place between these two species it might be expected that a maximum of 
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two polytypic clades would be observed (introgression in both directions). Analysis of D-loop 

sequences suggested that three such clades exist (Fi.gures 3.4 and 3.5), although the arbitrary 

distinction of two of these would be rejected if individuals of intermediate relatedness were 

identified. 

Incomplete lineage sorting is the favoured explanation for the observed polytypic clades. 

During speciation. ancestral mitochondrial DNA lineages may not sort congruently with respect 

to species boundaries, and individuals can possess haplotypes more similar to those of non­

conspecifics than individuals of the same species (A vise, 1986). That is, the gene tree for sister 

taxa may not be reciprocally monophyletic. The simulations of Neigel and A vise (1986) suggest 

that the probability of sister taxa possessing reciprocally monophyletic mitochondrial DNA 

lineages (complete lineage sorting) is only high after 4N generations of genetic isolation, where 

N is the number of females. Assuming female population sizes in excess of 50,000 individuals 

and an average generation time of 3 years, the minimum divergence time ~uggested for N. 

macropterus and A. monodactylus is too recent for a high probability of reciprocal lineage 

monophyly. The female population sizes of these species undoubtably exceed 50,000, given 

their total annual catches and average fish weights (Annala, 1987; Andrew et al., 1995; Jordan, 

1997). However, sweepstakes recruitment and bottlenecks in effective population size will 

reduce the amount of time required to achieve lineage monophyly, although the high levels of 

nucleotide and haplotype diversity observed within these two species (see also Grewe et al., 

1994) suggest that the latter has not occurred (A vise, 1989). 

Despite its similarly recent divergence and undoubtably large female population size, lineage 

monophyly and a comparatively small level nucleotide diversity were observed for N. hergi in 

comparison with N. macropterus and A. monodactylus (Figure 3.4, Table 3.2). These could be 

the result of one or more bottlenecks inN. hergi female population size, such as the dramatic 

decline in the stocks of this species resulting from over-fishing during the 1960's (Cotrina, 

1971; see Chapter 8 for supporting evidence). Similarly, this species may have been founded 

by only a small range of mitochondrial DNA lineages, or there could be a high variance in 

35 



3. Molecular phylogeny of Nemadactylus and Acantholatrls 

reproductive success (Hedgecock, 1994). Because of their linked inheritance, selection for 

particular coding sequences within the mitochondrial genome can also reduce the nucleotide 

diversity of D-loop sequences (Chenoweth et al., 1998). However, the degree of coding 

sequence non-synonymous variation within N. bergi would not be large, and therefore is 

unlikely to have influenced fitness. The lineage monophyly and similarly small levels of 

nucleotide diversity observed for Nemadactylus sp. and A. gayi could also be explained in 

terms of population size. 

Conclusions 

The molecular data obtained suggest that Acantholatris and Nemadactylus should be 

synonymised, with Nemadactylus having priority. At least five of these species are very closely 

related, and have probably dispersed and radiated throughout the Southern Hemisphere within 

the last 0.3-0.6 Myr, facilitated by their long larval durations. Sorting of mitochondrial DNA 

lineages among two of these taxa appears incomplete. Further studies are t:equired to determine 

some of the dispersal directions, and to resolve questions of specific status. 
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CHAPTER 4: Molecular phylogeny of the antitropical subgenus 

Goniistius (Cheilodactylidae: Cheilodactylus): evidence for multiple 

transequatorial divergences and non-monophyly. 

Abstract 

The subgenus Goniistius comprises eight species of marine nearshore fishes that are 

anti tropically distributed. The molecular phylogeny of these and other cheilodactylids was 

reconstructed from mitochondrial DNA cytochrome oxidase I and cytochrome b sequences. The 

placement within Goniistius of the morphologically divergent species Cheilodactylus (G.) 

nigripes was not supported. The remaining seven species are sufficiently divergent from other 

cheilodactylids to be designated as a separate genus. The antitropical distribution of Goniistius 

is the result of three transequatorial divergences, which occurred during two periods. Based on 

molecular clock calibrations, these periods are suggested to be the mid Miocene, and late 

Miocene to early Ptiocene. Hypotheses of transequatorial dispersal, or vicariance resulting from 

interspecific interactions or climate change are favoured for the antitropical distribution of 

Goniistius, and hypotheses of Mesozoic or Pleistocene separations can be discounted. The 

degree of genetic divergence between North and South Pacific populations of C. (G.) vittatus 

Garrett indicates that they have undergone cryptic speciation. 
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Introduction 

Several hypotheses have been offered for antitropic1l distributions of mmine taxa. Species 

intolerant of tropical temperatures may have disper~ed across equatorial waters at shallow 

depths during periods of climatic cooling, such as Pleistocene glaciations, or by isothermal 

submergence at any time (Darwin, 1859; Hubbs, 1952; Ekman, 1953; Randall, 1981; 

Lindberg, 1991 ). The islands occupied by antitropical taxa may have also moved across 

equatorial waters by ancient tectonic processes (Rotondo et al., 1981 ). Alternatively, a mid 

Miocene rise in equatorial temperatures (Valentine, 1984; White, 1986), competition with 

younger, supe:·ior tropical species (Briggs, 1987a), or the submergence of equatorial islands 

(Rehder, 1980; Springer, 1982) may have vicariantly isolated Northern and Southern 

Hemisphere populations. More ancient vicariant events proposed include the fragmentation of 

Pangea or Pacifica (Nelson, 1985; Crame, 1993). 

The application of molecular genetic techniques is attractive to studies of antitropical taxa. These 

techniques may better resolve phylogenetic relationships, particularly when taxa are 

morphologically conserved, so that the location, frequency, and direction of transequatorial 

divergences may be determined (Bowen and Grant, 1997; Grant and Bowen, 1998; 

Koufopanou et al., 1999). In addition, levels of molecular variation can provide relative and 

absolute estimates of divergence time (Stepien and Rosenblatt, 1996; Bowen and Grant, 1997; 

Koufopanou et al., 1999), further facilitating the evaluation of specific dispersal and vicariance 

hypotheses. 

The distribution of Goniistius Gill is antitropical distribution (Figure 4.1; Randall, 1981; 

Randall, 1983). Three species are restricted to the waters of southern Japan, southern Korea, 

China, and Taiwan: Cheilodactylus (G.) zonatus Cuvier and Valenciennes, C. (G.) 

quadricornis GUnther, C. (G.) zebra Doderlein. Another three species occur around Australia 

and New Zealand: C. (G.) gibbosus Richm·dson, C. (G.) vestitus Castelnau, C. (G.) nigripes 

Richardson. A single species, C. (G.) plessisi Randall is endemic to Easter Island and Rapa. 

The remaining species, C. (G.) vittatus Garrett is itself antitropical, occurring between Midway 
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and the Hawaiian Islands in the North Pacific, and at Lord Howe, New Caledonia, and the 

Kermadecs in the South Pacific. This distribution implies at least two transequatorial 

divergences within Goniistius, one between the antitropical populations of C. (G.) vittatus, and 

another for the remaining Northem and Southern Hemisphere taxa respectively. 
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Figure 4.1. The antitropical distribution of Goniistius, based on Randall (1983) and Francis (i 993). 

The taxonomic rank of Goniistius is questionable. Initially erected at the generic level by Gill 

(1862), Goniistius was synonymised with Cheilodactylus by Allen and Heemstra (1976). 

Randall (1983) recognised Goniistius for eight species, including those previously allocated, 

based on the presence of a dark brown or black banding pattern on the head and body, a highly 

arched nape, and a pronounced fourth dorsal spine. However, he followed Allen and Heemstra 

(1976) in designating Goniistius as a subgenus within Cheilodactylus, but noted that generic 

rank would be warranted were it not for C. fuscus Castelnau and, in particular, C. ephippium 

McCulloch and Waite, which link the species of Goniistius to more typical cheilodactylids. The 
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rank of Goniistius is one of several problematic aspects of cheilodactylid taxonomy (Allen and 

Heemstra, 1976; Smith, 1980; Lamb, 1990; Green vood, 1995; Chapters 3 and 5). 

The objective of this study was to address questions relating to the taxonomy and antitropical 

biogeography of the cheilodactylid subgenus Goniistius. Specifically, what were the frequency, 

direction, timing, and possible mechanisms of transequatorial divergences, and does Goniistius 

wanant generic rather than subgeneric ranking? The analysis of mitochondrial DNA sequence 

data was adopted as external characters among cheilodactylids are insufficient to provide a 

conclusive phylogeny (Lamb, 1990). 

Materials and methods 

Genomic DNA was extracted from one individual of each species in Table 4.1 with the 

exception of C. (G.) vittatus, for which North and South Pacific individuals were sampled. 

Representatives of other cirrhitoid families were also analysed as potential outgroups. 

Table 4.1. Species of Goniistius, Cheilodacty!us, Nemadactylus, and the three potential outgroups analysed. 

Species 

C. (G.) nigripes Richardson 

C. (G.) zonatus Cuvier and Valenciennes 

C. (G.) quadricornis Gunther 

C. (G.) zebra Di:iderlein 

C. (G.) p/essisi Randall 

C. (G.) vittatus Garrett 

C. (G.) vestitus (Castelnau) 

C. (G.) gibbosus Richardson 

C. rubrolabiatus Allen and Heemstra 

C. spectabilis (Hutton) 

C. fuscus Castelnau 

C. ephippium McCulloch and Waite 

N. macropterus (Bloch and Schneider) 

N. valenciennesi (Whitley) 

Aplodacty/us arctidens Richardson 

Chironemus marmoratus Gunther 

Cirrhitus splendens (Ogilby) 

Family 

Cheilodactylidae 

Cheilodactylidae 

Cheilodactylidae 

Cheilodactylidae 

Cheilodactylidae 

Cheilodactylidae 

Cheilodactylidae 

Cheilodactylidae 

Cheilodactylidae 

Cheilodactylidae 

Cheilodactylidae 

Cheilodactylidae 

Cheilodactylidae 

Cheilodactylidae 

Aplodactylidae 

Chironemidae 

Cirrhitidae 

a Australian Museum frozen tissue collection (1.31253048). 
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Collection site 

Horseshoe Island, Tasmania 

Shimoda Bay, Japan 

Misaki, Japan 

Misaki, Japan 

Easter Island 

Lord Howe and Midway Islands 

southern Queensland, Australia 

Two Rocks, Western Australia 

Two Rocks, Western Australia 

southeastern Tasmania 

Sydney Harbour, Australia 

Norfolk Island 

Tasman Island, Tasmania 

Port Lincoln, Australia 

Maria Island, Tasmania 

Diamond Head, NSW, Australia a 

Lord Howe Island 



Table 4.2. Genetic distances for partial mitochondrial DNA cytochrome c oxidase subunit I and cytochrome b sequences when combined. Values are Kimura (1980) two-
parameter corrected percentage sequence divergences, obtained using a transition-transversion nucleotide substitution ratio of 5.5. The suffixes LH and MW correspond to 
Lord Howe and Midway Island respectively. 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Cirrhitus splendens 

2 Chironemus marmoratus 25.0 

3 Apfodactylus arctidens 23.3 20.9 

4 Cheilodactylus (G.) vittatus LH 22.5 20.9 19.7 

5 Chei!odactylus (G.) vittatus MW 22.4 22.4 18.0 5.8 

6 Cheilodactylus (G.) plessisi 21.2 22.3 19.0 6.1 5.4 

7 Cheilodactylus (G.) zebra 22.0 22.1 18.2 5.3 4.8 4.5 

8 Cheilodactylus (G.) gibbosus 22.6 21.1 19.8 9.5 10.2 9.4 8.9 

9 Cheilodactylus (G.) vestitus 24.6 21.4 19.2 9. 7 10.7 10.4 9.8 7.2 

1 0 Cheilodactylus (G.) quadricomis 23.9 20.8 19.0 11.8 12.6 12.1 ii.O 11.7 12.8 

11 Cheilodactylus (G.) zonatus 23.9 19.3 19.2 11.6 13.3 12.5 11.6 11.6 12.4 5.9 

12 Cheilodactylus (G.) nigripes 24.0 21.1 17.2 13.2 11.9 12.2 11.0 10.3 i 1.6 10.3 11.2 

13 Cheilodactylus spectabilis 23.2 20.2 19.1 12.1 12.7 11.2 10.6 10.3 1 i .5 11.3 10.6 8.0 

14 Cheilodactylus fuscus 22.7 20.8 19.9 12.5 11.1 11.0 9.8 11.5 12.4 11.8 11.3 9.1 8.0 

15 Cheilodactylus ephippium 22.9 19.7 17.6 10.7 10.1 10.1 9.4 11.0 12.4 11.4 10.7 8.4 8.4 6.1 

16 Cheifodactylus rubrolabiatus 22.8 19.4 19.3 12.8 12.3 12.3 11 .1 11.8 13.5 11.0 11.4 12.0 12.9 12.3 13.7 

17 Nemadactyfus macropterus 23. i 21.4 18.6 14.1 13.9 14.0 13.5 i 2.1 12.0 12. 7 12.1 10.0 10.6 11. 1 12.5 12.3 

18 Nemadacty!us valenciennesi 25.2 22.2 19.6 15.0 14.3 14.3 13.7 12. 8 13.2 13.0 12.6 10.1 11.2 12.2 12.4 14.0 4.9 
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Results 

All sequences were deposited in GenBank (accession numbers AF067084-AF067086, 

AF067089, AF067091, AF092140-AF092167, AF092909, AF10251-AF102512). The 

cytochrome c oxidase subunit I and cytochrome b sequences analysed were 499 and 307 bp in 

length respectively. Among the cheilodactylids, 220 characters were variable, of which 178 

were phylogenetically informative. Transition nucleotide substitutions were observed at 211 

sites, while transversions were observed at 45. Twelve of the variable sites represented first or 

second codon positions, and five codons exhibited amino acid variation amongst the 

cheilodactylids. This pattern of variation, combined with the absence of length mutations, 

suggested that orthologous sequences were obtained. 

Kimura ( 1980) two-parameter genetic distances among Goniistius species ranged from 4.5 to 

13.3% sequence divergence, and distances between Goniistius and other cheilodactylids ranged 

from 8.0 to 15.0% (Table 4.2). Distances between thecheilodactylids andpotential outgroups 

Cirrhitus splendens, Chironemus marmoratus, and Aplodactylus arctidens, ranged between 

17.2 and 25.2% (Table 4.2). The cytochrome b region analysed was approximately 1.2 times 

more variable than the cytochrome oxidase I region, although the latter contributed the greater 

amount of variation to the study due to the larger number of characters analysed. 

As the familial relationships between the Cheilodactylidae and the other four cirrhitoid families 

are not well resolved (Greenwood, 1995), outgroup selection was based on nucleotide 

composition and observed substitution pattern, in order to minimise random root placement 

(Wheeler, 1990; Lockhart et al., 1994 ). A latrid was not assessed as the separation of this 

family from the majority of cheilodactylids is questionable (Chapter 5). During pairwise 

comparisons of each potential outgroup with the cheilodactylids, significant heterogeneity of 

variable site nucleotide composition was observed only for Chironemus marmoratus with C. 

(G.) zebra and C. (G.) plessisi (X2=9.614 and 8.881 respectively, d.f.=3, P<O.OS). Saturation 

of sequence evolution was evidenced by significantly lower TI!fV ratios than that derived from 

42 



4. Molecular phylogeny of Goniistius 

comparisons among the cheilodactylids (Figure 4.2; ?<0.001, d.f.=3, one-way ANOVA with 

Tukey's HSD post hoc tests). The degree of saturation was smallest for Aplodactylus arctidens, 

and consequently this species was chosen as the outgroup for phylogenetic analyses. 
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Figure 4.2. The pattern of observed nucleotide substitution accumulation at third codon positions for partial 

mitochondrial DNA cytochrome c oxidase subunit I and cytochrome b sequences when combined. Triangles 

represent pairwise comparisons among cheilodactylids. Squares, circles and diamonds represent comparisons 

of Aplodactylus arctidens (Aplodactylidae), Chironemus marmoratus (Chironemidae), and Cirrhitus sp/endens 

(Cirrhitidae) against the cheilodactylids respectively. The mean observed transition-transversion nucleotide 

substitution ratio and its standard deviation are listed for each set of comparisons. 

The partition homogeneity test (200 partition replicates, Heuristic search algorithm with 100 

replicates of random sequence stepwise addition) indicated phylogenetic congruence between 

cytochrome oxidase I and cytochrome b sequences, both for all characters (?=0.90) and third 

codon positions alone (P.=-0.97), allowing the combination of genes during phylogenetic 

analyses. Estimated tree length-frequency distributions were significantly skewed, both when 

all sequences (gl=-0.659, P<O.Ol) and those of Goniistius alone (gl=-0.890, P<O.Ol) were 

analysed, suggesting the presence of phylogenetic signal. 
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4. Molecular phylogeny of Goniistius 

Figure 4.3 (previous page). Results from the phylogenetic analysis of cheilodactylid mitochondrial partial 

DNA cytochrome c oxidase subunit I and cytochrome b sequences when combined. Broken lines indicate regions 

of topological difference between the trees with respect to Gcniistius species. The numbers above the branches 

at each node represent the bootstrap proportions for the taxa in each clade, as derived from 2000 replicate data 

sets. (a) Neighbour-joining analysis; (b) Maximum likelihood analysis, 10 randomisations of sequence input 

order, ml=-4195.6, optimum (near asymptotic) expected TI!TV nucleotide substitution ratio was 5.5, all branch 

lengths significantly positive (P<0.05); (c) One of the two equally most-parsimonious trees obtained from 

unweighted parsimony analysis (Heuristic search algorithm, 100 random stepwise sequence additions). Tree 

length=641 steps, Cl=0.482, RI::::0.467. The alternative topology was identical to b; (d) Strict consensus of five 

equally most-parsimonious trees obtained when giving transversion nucleotide substitutions increased weight in 

accordance to the •Jptimum TI!TV ratio from maximum likelihood analysis. Tree length=2159 steps. 

With respect to Goniistius, the topologies from neighbour-joining, maximum likelihood, and 

maximum parsimony <Jnalyses differed only at nodes that received less than 60% bootstrap 

support (Figure 4.3). Goniistius was not clustered as a monophyletis group in each of these 

analyses. Five species formed one clade that received high (>70%) bootstrap support: C. (G.) 

plessisi, C. (G.) ::.ehra, C. (G.) vittatus, C. (G.) gihhosus, C. (G.) vestitus. Strong bootstrap 

support was observed for a sister relationship between C. (G.) zonatus and C. (G.) 

quadricomis. but the placement of this clade varied between analyses and did not receive high 

bootstrap support. The remaining Goniistius species, C. (G.) nigripes, consistently clustered 

with three non-Goniistius species of Cheilodactylus and two representatives of Nemadactylus. 

The relationships among these six taxa varied among analyses, and the bootstrap support for 

this clade and the placement of C. (G.) nigripes were low. There were insufficient 

trans versions for the majority of relationships to be resolved when parsimony analysis was 

restricted to these character state changes. 

The maximum likelihood, unweighted maximum parsimony, and neighbour-joining topologies 

were not significantly different according to the Templeton (1983) and Kishino and Hasegawa 

(1989) tests (Table 4.3). The most parsimonious topology obtained when enforcing Goniistius 

monophyly was significantly inferior to the maximum likelihood and unweighted maximum 

parsimony topologies, but not the neighbour-joining topology (Table 4.3). The topology 

obtained when enforcing monophyly of all Goniistius species except C. (G.) nigripes was not 
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significantly inferior to any alternative (Table 4.3). Enforcing monophyly of the Asian species, 

C. (G.) quadricornis, C. (G.) zonatus, and C. (G.) zebra, produced a topology significantly 

inferior than the majority of alternatives (Table 4.3). 

Table 4.3. Probabilities that alternative cheilodactylid topologies are not significantly different. For each 

comparison the upper value represents the Templeton (1983) test, while the lower value represents the Kishino 

and Hasegawa (1989) test. The topologies compared were those obtained from maximum likelihood, unweighted 

maximum parsimony, and neighbour-joining analyses (Figure 4.3), and also three topologies obtained from the 

enforcement of topological constraints: Goniistius monophyly, Goniistius without C. (G.) nigripes monophyly, 

monophyly of the Asian species C. (G.) quadricornis, C. (G.) zonatus and C. (G.) zebra. Asterisks denote 

P<0.05. 

Topology 

1. First unweighted parsimony and maximum 

likelihood; 641 steps, ml=-4195.6 (Figure 4.3b) 

2. Second unweighted parsimony; 

641 steps, ml=-4196.2 (Figure 4.3c) 

3. Goniistius without nigripes monophyly 

(similar to 2:11 TI!TV weighted parsimony, 

Figure 4.3d); 647 steps, ml=-4202.5 

1. 

1.000 

0.865 

>0.500 

0.238 

4. Neighbour joining; 0.086 

651 steps, ml=-4209.5 (Figure 4.3a) 0.271 

5. Goniistius monophyly; 0.011 * 

655 steps, ml=-4227.5 0.026* 

6. Monophyly of C. (G.) quadricornis, zonatus, 0.000* 

and zebra; 665 steps, ml=-4265.1 0.000* 

2. 

0.058 

0.379 

0.086 

0.294 

0.016* 

0.035* 

0.000* 

0.000* 

3. 4. 5. 

0.493 

0.596 

0.102 0.546 

0.042* 0.263 

0.000* 0.057 0.140 

0.000* 0.006* 0.066 

The two-cluster test revealed third codon position nucleotide substitution rate heterogeneity at 

the 5% level amongst C. (G.) zebra, C. (G.) plessisi, and C. (G.) vittatus when nodes were 

analysed individually (CP=96.7% ), but no heterogeneity was observed for all nodes when 

analysed simultaneously (0.50>? >0.25). The branch-length test did not detect significant rate 

heterogeneity. 
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Discussion 

Non-monophyly of Goniistius 

4. Molecular phylogeny of Gonilstius 

The results suggest that taxonomic modification of Goniistius is required. Cheilodactylus (G.) 

nigripes should be excluded from Goniistius, since it is not the type species and the topologies 

obtained do not favour its inclusion within this group (Figure 4.3; Table 4.3). It is readily 

distinguished from the other Goniistius by dorsal and anal fin ray counts, a more anterior 

position of the mouth, and broader black bars on the body (Randall, 1983). Rather than C. (G.) 

nigripes representing the most plesiomorphic member of Goniistius (Randall, 1983), it appears 

to be a member of a divergent cheilodactylid group. For the purpose of this discussion, it will 

be considered that Goniistius consists of only the remaining seven species. 

Although only weighted parsimony analysis clustered the remaining seven Goniistius as 

monophyletic, the levels of bootstrap support for alternative relationships were low, and the 

topology recovered when enforcing monophyly was not significantly infe~ior to any alternative 

(Figure 4.3, Table 4.3). Therefore, the hypothesis of monophyly for these taxa cannot be 

rejected. 

Rank of Goniistius 

The levels of genetic divergence between Goniistius and non-Goniistius species of 

Cheilodactylus (8.0-13.5%) are of similar magnitude to that observed during comparisons 

between cheilodactylid genera (10.0-15.0%, Table 4.2; see also Chapter 5). This suggests that 

Goniistius warrants generic rather than subgeneric rank. In addition, none of the seven 

Goniistius appear closely related to C. fuse us or C. ephippium, the species that prevented 

Goniistius (with the inclusion of nigripes) attaining generic rank according to Randall (1983). 

The levels of divergence among C. (G.) zonatus, C. (G.) quadricornis, and the other five 

Goniistius (11.0-13.3%) are also of similar magnitude to that observed between any Goniistius 

and the other cheilodactylids (Table 4.2; Chapter 5). Therefore, these two divergent and well­

supported Goniistius groups may warrant individual generic distinction. This separation would 

also highlight the non-monophyly of the three Asian cheilodactylids (Figure 4.3; Table 4.3). 
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Cryptic speciation 

Levels of genetic divergence suggest that speciation has occurred within C. (G.) vittatus 

without the development of obvious morphological differentiation (cryptic speciation). The 

Lord Howe and Midway Island individuals of C. (G.) vittatus differed by 5.8% sequence 

divergence, while the interspecific divergences among these individuals, C. (G.) zebra, and C. 

(G.) plessisi ranged from 4.7 to 6.1% (Table 4.2). Each of these three species can be clearly 

distinguished morphologically, yet the divergence observed between northern and southern C. 

(G.) vittatus individuals is of similar magnitude to values of interspecfic divergence. Due to the 

difficulty of cbtaining material from C. (G.) vittatus, it was not possible to assess the level of 

variability within North and South Pacific populations, and therefore reJect the possibility of 

one single, highly variable species. However, high genetic variatior: is considered unlikely for 

C. (G.) vittatus given the presently small and geographically restricted nature of its populations. 

Randall ( 1981, 1983) provisional! y recognised C. (G.) vittatus from the South Pacific, based 

on live photographs taken at Lord Howe Island and New Caledonia. Kermadec and Lord Howe 

Island specimens were later identified as C. (G.) vittatus following Randall's (1983) 

classification (Francis et al. 1987; M.P. Francis, NIW A, New Zealand 1998 pers. comm.; 

M.A. McGrouther, Australian Museum 1998 pers. comm.), but further morphological 

examination of specimens may identify differences across the tropics. 

Frequency, direction, and timing of transequatorial divergences 

The distribution of Goniistius suggests that two transequatorial divergences have occurred, one 

between the populations of C. (G.) vittatus, and another for the remaining Northern and 

Southern Hemisphere taxa. However, the molecular phylogeny of Goniistius indicates three 

transequatorial divergences, as the Asian species are not monophyletic (Figure 4.3; Table 4.3). 

The first divergence involved the separation of the C. (G.) zonatus-C. (G.) quadricornis lineage 

from that of a Southern Hemisphere cheilodactylid, most likely the ancestor of the remaining 

Goniistius. Two transequatorial divergences are then evident for C. (G.) zebra, C. (G.) 
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plessisi, and the antitropical populations of C. (G.) vittatus, given that a Northern or Southern 

Hemisphere monophyletic group was not observed among these taxa (Figure 4.3). 

If the antitropical distribution of Goniistius is entirely the result of dispersal (see below), the 

direction of two of the three transequatorial events is known. Firstly, the divergence of C. (G.) 

zonatus and C. (G.) quadricomis from a Southern Hemisphere cheilodactylid represents a 

south-to-north event. Movement in the same direction is required to account for C. (G.) zebra 

in the other Goniistius clade, but as this clade is not fully resolved it is not known whether the 

divergence of C. (G.) vittatus populations was a south-to-north or north-to-south event. 

Levels of genetic divergence suggest that the three transequatorial divergences of Goniistius 

occurred during two distinct periods. Genetic divergences among C. (G.) vittatus, C. (G.) 

zebra, and C. (G.) plessisi were similar, ranging from 4.5-6.1 %, while those between C. (G.) 

zonatus or C. (G.) quadricomis and any other cheilodacty lid were distinctly larger, ranging 
·,~ 

from 10.3-13.3% (Table 4.2). Estimated times for these periods of equatorial divergence are 

4.8-6.9 Myr ago (late Miocene to early Pliocene) and 12.7 - 18.3 Myr ago (mid Miocene), 

based on mitochondrial protein four-fold degenerate site molecular clock calibrations of 2.3% 

and 3.3% sequence divergence My( 1 (Martinet al., 1992; Bermingham et al., 1997). These 

absolute estimates of divergence time should be considered with caution, given the number of 

assumptions made when employing molecular clock calibrations (Rand, 1994), and as marginal 

substitution rate heterogeneity was observed among some lineages. Faster and slower 

calibrations have been reported for other taxa, and those employed here are considered 

"median" values. 

Mechanisms for transequatorial divergences 

Hypotheses involving Mesozoic biogeographic events for the development of anti tropical 

distributions, such as island integration (Rotondo et al., 1981) and the fragmentation of Pangea 

or Pacifica (Nelson, 1985; Crame, 1993), can be rejected for Goniistius based on the estimated 

divergence times. These and other similarly ancient events have been discounted for the 
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majority of marine anti tropical taxa (Briggs, 1987 a; Cox, 1990; Lindberg, 1991 ). 

Consequently, the transequatorial divergences within Goniistius may be explained by chance 

dispersal across equatorial waters, or by vicariant isolation caused by interspecific competition 

or a mid Miocene rise in temperatures. 

A proposed mid Miocene equatorial warming event, and other climatic changes of that period, 

may represent a common vicariant origin for many antitropical distributions (Valentine, 1984; 

White, 1986). The earliest transequatorial divergence involving Goniistius species is suggested 

to have occurred during the mid Miocene, and therefore equatorial warming may be invoked in 

this case. However, there is ongoing debate as to whether the required climatic transitions for 

this method of vicariance did in fact occur (Springer, 1982; Briggs, 1987a, b; White, 1989; 

Adams et al., 1990), and the mid Miocene is too early to explain the other transequatorial 

eli vergences within Goniistius (but see Crame 1993 for more recent phases of global warming). 

Briggs (l987a) suggested a vicariance mechanism with extinction in equatorial waters resulting 

from interspecific interactions, predominantly competition with younger taxa. This mechanism 

can be widely applied but is difficult to test, and hence remains plausible for most antitropical 

taxa unless equatorial habitat is not available. 

Chance dispersal across equatorial waters, particularly during periods of climatic cooling such 

as the Pleistocene glaciations, has been suggested by several authors for the establishment of 

antitropical distributions (Darwin, 1859; Hubbs, 1952; Ekman, 1953; Randall, 1981; Lindberg, 

1991). Although the juveniles and adults of Goniistius are predominantly sedentary around 

nearshore reefs (Randall, 1983; Sano and Moyer, 1985; Cappo, 1995), their larvae may have 

high dispersal capabilities given the 9-12 month offshore pelagic phase observed for other 

cheilodactylids (Annala, 1987; Andrew et al., 1995), and evidence of recent gene flow between 

geographically distant populations of Nemadactylus andAcantholatris (Elliott and Ward, 1994; 

Grewe et al., 1994; Chapter 3). The occupation of the isolated Hawaiian and Easter Island 

regions by Goniistius also suggests high dispersal capabilities for this group. Divergence time 
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estimates within Goniistius are not sufficiently recent to be allied with Pleistocene glaciations, 

but this does not discount chance dispersal during other epochs. The habits of these taxa make 

them unlikely candidates for isothermal submergence. 

While the exact mechanisms responsible for the antitropical distribution of Goniistius have not 

been identified, such is often difficult to achieve (Stepien and Rosenblatt, 1996; Bowen and 

Grant, 1997; Koufopanou et al., 1999). However, with respect to Goniistius several 

mechanisms and epochs can be discounted based on the results of this study. 
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CHAPTER 5: Molecular phylogeny of the Cheilodactylidae and 

Latridae. 

Abstract 

Cheilodactylid and latrid fishes are nearshore species, which arc widely distributed in the 

Southern Hemisphere. The phylogenetic relationships of these taxa were reconstmcted from 

mitochondrial DNA sequences and their taxonomy and biogeography was examined. The 

classification of cheilodactylids requires much modification. The two South African 

Cheilodactylus warrant familial distinction from all other cheilodactylids. As one of the South 

African Cheilodactylus is the type species, the remaining 25 cheilodactylids require familial 

reassignment, and the i2 non-African Cheilodactylus require generic reassignment. At the 

familial level, transfer to the Latridae is suggested for these 25 cheilodactylids. At the generic 

level, Goniistius, Zeodrius, and Morwong can be resurrected for at least nine species of 

Cheilodactylus. In 'lddition, the South African members of Chirodactylus,,should revert to 

Palunolepis, and Acantholatris is synonymous with Nemadactylus. Divergence time estimates 

indicate that chance dispersal rather than vicariance accompanying Gondwana fragmentation 

best explains the present distribution of cheilodactylids. 
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Introduction 

The Cheilodactylidae and Latridae comprise conspicuous components of the temperate coastal 

reef fish faunas of the Southern Hemisphere. They have greatest diversity in the waters of 

Australia and New Zealand, but also occur around South Africa, South America, and several 

oceanic islands (Figure 5.1 ). The Cheilodactylidae is also represented in the North Pacific; and 

is thus an antitropically-distributed taxon (Randall, 1981 ). The majority of species are solitary, 

occurring demersally over inshore rocky reefs and feeding on small benthic invertebrates (S<mo 

and Moyer, 1985: Annala, 1987; Cappo, 1995; McCormick. 1998). 

There are five genera and 27 species recognised in the Family Cheilodactylidae (Table 5.1 ). A 

number of problems ha'/e been identified regarding their taxonomy. It appears that the South 

African Cheilodactylus Lacepede merits generic distinction from the remaining members of this 

genus (Allen and Heemstra, 1976; Lamb, 1990). There are also questions regarding the status 

of Chirodactylus Gill (Lamb, 1990). Further, it has been suggested that N,emadactylus 

Richardson and Acantholatris Gill should be re-allocated in the Latridae (Greenwood, 1995). In 

contrast. only three genera and four species of latrids are recognised (Table 5.1), and their 

taxonomy is considered robust (Lamb, 1990). 

There are a number of interesting questions regarding cheilodactylid and latrid biogeography. 

Cheilodactylid distribution is typically Gondwanan, with representation around Australia, New 

Zealand, South America, and Africa, suggesting vicariant isolation of taxa during continent 

fragmentation. However, the occupation of isolated islands and seamounts by Nemadactylus 

and Acantholatris indicates some chance dispersal for their present distribution. Dispersal and 

vicariance hypotheses may be discriminated in this case by species-area relationships and 

estimates of lineage divergence times, as the order and timing of Gondwana fragmentation is 

well understood (Lawver et al. 1992). 
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Figure 5.1. Distribution of cheilodactylid and latrid species. Hatched areas mark the overall distribution of both groups, with numbers 

corresponding to individual taxa as listed in Table 5.1. 
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Table 5.1. Present taxonomy of the Cheilodactylidae and Latridae, proposed changes, and sources of material analysed. Species are numbered in 

accordance to their distribution in Figure 5.1. 

Present allocation Proposed change Additional reference Source material 

Cheilodactylidae 

Cheilodactylus fasciatus Lacepede Tsitsikamma, South Africa 

2 Cheifodactylus pixi Smith Port Elizabeth, South Africa 

Latridae 

3 Cheilodactylus (Goniistius) zonatus Cuvier Goniistius zonatus Chapter 4 Shimoda Bay, Japan 

4 Cheilodactylus (Goniistius) quadricornis (Gunther) Goniistius quadricornis Chapter 4 Misaki, Japan 

5 Cheilodactylus (Goniistius) zebra (Di:iderlein) Zeodrius zebra Chapter 4 Misaki, Japan 

6 Cheilodactylus (Goniistius) vittatus Garrett, Zeodrius vittatus Chapter 4 Midway Island 

7 Cheilodactylus (Goniistius) plessisi Randall Zeodrius plessisi Chapter4 Easter Island 

8 Cheilodactylus (Goniistius) vestitus (Castelnau) Zeodrius vestitus Chapter4 southern Queensland, Australia 

9 Cheilodactylus (Goniistius) gibbosus Richardson Zeodrius gibbosus Chapter 4 Two Rocks, Western Australia 

10 Cheilodactylus (Goniistius) nigripes Richardson generic re-allocation required Chapter 4 Horseshoe Island, Tasmania 

11 Cheilodactylus fuscus Castelnau Morwong fuscus Sydney Harbour, Australia 

12 Chei!odactylus ephippium McCulloch and Waite Morwong ephippium Norfolk Island 

13 Cheilodactylus spectabilis Hutton generic re-allocation required southeastern Tasmania 

14 Cheilodactyfus rubrolabiatus Allen and Heemstra generic re-allocation required Two Rocks, Western Australia 

15 Chirodactylus variegatus (Valenciennes) Las Cruces, Chile 

16 Chirodactylus grandis (Gunther) Pa/unolepis grandis Cape Seal, South Africa 
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Present allocation Proposed change 

17 Chirodactylus brachydactylus (Cuvier) Palunolepis brach ydactylus 

18 Chirodactylus jessicalenorum Smith Paluno!epis jessica/enorum 

19 Dactylophora nigricans (Richardson) 

20 Nemadactylus macropterus (Bloch and Schneider) -

21 Nemadactylus sp. 2' 
3 

22 Nemadactylus bergi (Norman) 3 

23 Nemadactylus douglasii (Hector) 

24 Nemadactylus valenciennesi (Whitley) 

25 Acantholatris monodactylus (Carmichael) Nemadactylus monodactylus 

26 Acantholatris vemae Penrith Nemadactylus vemae 

27 Acanthofatris gayi (Kner) 3 Nemadactylus gayi 

Latridae 

28 Latridopsis ciliaris (Bloch and Schneider) 

29 Latridopsis forsteri (Cas!elnau) 

30 Latris lineata (Bloch and Schneider) 

31 Mendosoma lineatum Guichenot 

1 South Pacific C. (G.) vittatus appears worthy of separate specific status (Chapter 4) 
2 Roberts (1993), Smith eta!. (1996) 
3 Excluded from study, but see Chapter 3 for their analysis 

Additional reference 

Chapter 3 

Chapter 3 

Chapter 3 

Chapter 3 

Chapter 3 

Chapter 3 

Chapter 3 

Chapter 3 

4 Australian Museum frozen tissue collection (Nemadactylus sp. 1.34845-001, N. douglasii 1.34844-001) 
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Source material 

Kenton-on-sea, South Africa 

Durban, South Africa 

Port Phillip Bay, Australia 

Tasman Island, Tasmania 

Kiama, Australia 4 

Mar del Plata, Argentina 

Coffs Harbour, Australia 4 

Port Lincoln, South Australia 

Tristan Island, Tristan da Cunha 

not analysed 

Juan Fernandez 

Portobello, New Zealand 

Derwent Estuary, Tasmania 

southeastern Tasmania 

Gough Island 



5. Molecular phylogeny of the Cheilodactylidae and Latridae 

The aims of this study are to reconstruct the phylogeny of cheilodactylids and latrids, address 

their taxonomic uncertainties, and test biogeographical hypotheses. As external characters are 

variable but largely phylogenetically uninformative among these taxa (Lamb, 1990), the 

analysis of molecular data is employed. Molecular approaches to systematic studies are often 

successful in addressing problems left unresolved by morphological analyses (A vise, 1994 ). In 

addition, the application of a molecular clock calibration enables the estimation of lineage 

divergence time (Vawter et al. 1980), facilitating the examination of alternative biogeographical 

hypotheses. 

Materials an:::l methods 

DNA was extracted from one individual of each cheilodactylid and latrid species listed in Table 

5.1, with exception of several Nemadactylus and Acantholatris which were analysed previously 

(Chapter 3), and A. vemae which was not available. DNA also was extracted from 

representatives of the other three cirrhitoid families, for use as outgroups; Cirrhitus splendens 

(Ogilby) (Cirrhitidae), Clzironemus marmoratus GUnther (Chironemidae), and Aplodactylus 

arctidens Richardson (Aplodactylidae). 

Homogeneity chi-squared analysis was used to identify significant difference in the nucleotide 

composition of variable sites during comparisons of taxa. Nucleotide composition pairwise 

distances also were calculated according to Gillespie (1986), and subjected to minimum 

evolution analysis (see below) for comparison against reconstructed phylogenies. The presence 

of nucleotide substitution saturation was examined from the relative accumulation of observed 

transition (TI) and transversion (TV) substitutions during pairwise comparisons of taxa. 

Minimum evolution analysis of DNA sequences was performed by PAUP* using the heuristic 

search algorithm (200 replicates). Starting trees were obtained by neighbour-joining, and 

pairwise distances were calculated under the Kimura ( 1980) two-parameter model. 
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Results 

All sequences are deposited in GenBank (accession nos. AF067084-AF067091, AF067094, 

AF092140-AF092149, AF092151-AF092160, AF092162-AF092167, AF092909, AF 102511-

AF102512, AF133064, AF133069, AF136267, AF156229-AF156247). The cytochrome c 

oxidase subunit I and cytochrome h sequences analysed were 499 and 307 bp in length 

respectively. Among the cheilodactylids and latrids 273 characters were variable. of which 250 

were phylogenetically informative. Transition nucleotide substitutions were observed at 257 

sites, while TV s occutTed at 10 l. Twenty-nine of the variable sites represented first or second 

codon positions, and 14 codons exhibited amino acid variation. Length mutations were absent. 

This pattern of variation, also observed for the outgroups, suggested that orthologous 

sequences were obtained. 

The partition homogeneity test indicated phylogenetic congruence between genes, both for all 

characters (?=0.070) and third codon positions (?=0.320), allowing their combination during 

phylogenetic analyses. The estimated tree length-frequency distribution of the dataset was 

significantly skewed (g 1 ==-0.96, P<O.O 1 ), suggesting the presence of phylogenetic signal. 

Heterogeneity of nucleotide composition at variable sites was observed from 22 of the 435 

pairwise comparisons of taxa (?<0.05). Eighteen of these comparisons involved Latris lineata, 

Latridopsis ciliaris, and Latridopsis forsteri, three were between the outgroups and 

cheilodactylids, and one was within the cheilodactylids. The topology obtained from clustering 

of nucleotide composition distances had little resemblance to those from phylogenetic analysis, 

indicating minimal influence of nucleotide composition on phylogenetic reconstruction. 

Saturation of transition substitutions was indicated by a reduction in their observed rate of 

accumulation relative to transversions (Figure 5.2). 

The results from minimum evolution analysis and the consensus of four minimum length trees 

(1267 steps) from unweighted maximum parsimony analysis are depicted in Figure 5.3. The 

topologies differ only where bootstrap support values are less than 63%. Largely congruent 

topologies and levels of bootstrap support were obtained from 3: 1 TV !ri weighted parsimony 
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analysis (three trees, 1731 steps), but relationships were poorly defined from parsimony 

analysis when excluding transitions at all (11 trees, 238 steps) or third (97 trees, 308 steps) 

codon positions, due to the large reduction of informative character state changes. 

120 

100 

80 
(/) 
c 
.g 
'(/j 60 c 
~ 

1-

40 

20 

0 
0 20 40 60 80 

Transversions 

Figure 5.2. Frequency of observed transition and transversion nucleotide substitutions during pairwise 

comparisons of partial cytochrome c oxidase subunit I and cytochrome b mitochondrial DNA sequences 

Comparisons were performed among cheilodactylids and latrids (circles), and between these taxa and the 

outgroups Cirrhitus splendens (Cirrhitidae), Chironemus marmoratus (Chironemidae), and Aplodactylus arctidens 

(Aplodactylidae) (squares). 

The two South African Cheilodactylus were clustered as sister taxa with high bootstrap 

support, but these species were divergent from the non-African Cheilodactylus and other 

cheilodactylids (Figure 5.3). The levels of sequence divergence between the South African and 

non-African Cheilodactylus were appreciably greater than those between the non-African 

Cheilodactylus and other cheilodactylid genera, and were more similar to the those observed 

during comparisons with other cirrhitoid families (Table 5.2). Minimum length trees recovered 

when enforcing Cheilodactylus monophyly were significantly inferior to those from 

unconstrained analysis ( 1301 steps, P=0.002), but not when excluding the South African 

Cheilodactylus (1276 steps, ?=0.107). Cheilodactylid monophyly minimum length trees were 
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also significantly inferior to those from unconstrained analysis ( 1293 steps, P=O.O 19), but not 

without the South African Cheilodactylus (1271 st~ps, ?=0.366). 

Table 5.2. Range of pairwise Kimura (1980) percentage genetic distances among cheilodactylid species 

groups and against the outgroup taxa. 

group 

1. South African Cheilodactylus 

2. non South African Chei/odactylus 19.49-22.28 

3. Nemadactylus, Acantholatris, 20.59-22.34 4.74-14.40 

Chirodacty/us, :Jactylophora 

4. Aplodactylidae, Chironemidae, Cirrhitidae 20.31-22.80 16.32-22.91 16.85-23.23 

Ten of the 12 non-African Cheilodactylus were stmctured into four moderate (50-70% 

bootstrap) to highly(> 70% bootstrap) supported clades (Figure 5.3). The largest of these 

contained five of the eight members of the subgenus Goniistius. Cheilodactylus (G.) zonatus 

and C. (G.) quadricornis were clustered as another clade with high support, while the 

placement of the remaining Goniistius, C. (G.) nigripes, was variable between analyses and 

received low support. Enforced Goniistius monophyly produced trees which were not 

significantly inferior to those from unconstrained analysis (1277 steps, ?=0.371). 

Cheilodactylus fuscus and C. ephippium were placed as sister-taxa with high support. A sister 

relationship between C. spectabilis and Chirodactylus variegatus received moderate and high 

support from unweighted parsimony and minimum evolution analysis respectively, but such a 

relationship was not observed from 3: 1 TV fTI weighted parsimony analysis. Cheilodactylus 

rubrolabiatus was clustered with the majority of Goniistius, although its placement varied and 

received only moderate support at best. 

The South African Chirodactylus were clustered as a monophyletic clade with high support, but 

the genus was not monophyletic given placement of the South American Chirodactylus 

variegatus. Enforced Chirodactylus monophyly produced trees not significantly inferior to 

those from unconstrained analysis (1270 steps, ?=0.683). 
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With the exception of the South African Cheilodact;Jlus, Dactylophora nigricans was placed 

most basal of the cheilodactylids in minimum evolmion and unweighted parsimony analysis 

(Figure 5.3), and also in two of the three trees obtained from 3:1 TV!fl weighted parsimony 

analysis. Representatives of Nemadactylus and Acantholatris formed a highly supported clade, 

with Nemadactylus paraphyletic relative to Acantholatris. 

The latrids were placed in a highly supported clade containing all cheilodactylids with exception 

of the South African Cheilodactylus. Latris lineata and the two species of Latridopsis fanned a 

similarly supported clade, but placement of the remaining latrid, Mendosoma lineatum, varied 

between analyses and did not receive high bootstrap support. Enforced latrid monophyly 

produced trees not signific;mtly inferior to those from unconstrained analysis ( 1268 steps, 

P= 1.000). Enforcing monophyly of Nemadactylus, Acantholatris, and the Latridae also 

produced trees not significantly inferior to those from unconstrained analysis (1272 steps, 

?=0.461 ). 

The two-cluster test revealed third codon position nucleotide substitution rate heterogeneity 

among taxa when nodes were analysed simultaneously (X2=42.156, df=28, P<0.05). When 

analysed individually, rate heterogeneity was observed at five nodes, encompassing 16 taxa 

(CP>95% ). The branch-length test also revealed rate heterogeneity above the 95% level for four 

of these taxa. 

Discussion 

South African Cheilodactylus 

This study supports previous suggestions that the South African species of Cheilodactylus, C. 

fasciatus and C. pixi, are as divergent from the non-African Cheilodactylus as they are from 

members of the other cheilodactylid genera (Table 5.2; Allen and Heemstra 1976; Lamb 1990). 

However, these two South African species are actually as divergent from the other 

cheilodactylids as members of the Cinhitidae, Chironemidae, and Aplodactylidae (Table 5.2, 
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Figure 5.3). Therefore, rather than the South African Cheilodactylus simply requiring generic 

distinction from the non-African Cheilodactylus as .>uggested by Lamb (1990), it appears that 

these two South African species also require familial distinction from all other cheilodactylids. 

The South African Cheilodactylus are distinguished from all other cheilodactylids by a higher 

lateral line scale count, the lack of a swim bladder, and the presence of scales on the 

postcleithrum (Lamb, 1990). 

Familial reassignment 

Based on the suggestion that Cheilodactylusfasciatus and C. pixi be given familial distinction 

from all other cirrhitoids, and as C. fasciatus is the type species, the remaining 25 

cheilodactylids require familial re-assignment. These remaining cheilodactylids were clustered 

with the latrids at high bootstrap support, and no major division wm; observed among them 

(Figure 5. 3, Figure 5.4). Therefore, it is suggested those cheilodacty lids requiring familial 

reassignment should be transferred to the Latridae. This approach will obscure the common ,, 

phyletic relationships of Nernadactylus, Acantholatris and the latrids proposed by Greenwood 

( 1995) based on urohyal morphology, although this could be rectified, if warranted, by 

subfamilial distinction. While Nernadactylus, Acantholatris, and the Latridae did not cluster 

together as suggested by Greenwood (1995), enforced monophyly failed to produce 

significantly inferior minimum length topologies. 

Figure 5.3 (next page). Results from phylogenetic analysis of cheilodactylid and latrid partial cytochrome c 

oxidase subunit I and cytochrome b mitochondrial DNA sequences. (a) Minimum evolution analysis. Branch 

lengths are proportional to Kimura (1980) two parameter distances, as measured relative to the scale bar. Tree 

length=1.45732. (b) Strict consensus of four equally-most parsimonious trees of 1267 steps (CI=0.362, 

Rl=0.505). Cirrhitus splendens was employed as the basal outgroup, as the Cirrhitidae appears most 

plesiomorphic of the five cirrhitoid families (Greenwood 1995). Bootstrap values at each node are indicated when 

greater than 50%. 
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a 
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Figure 5.4. Two-dimensional scaling of Kimura (1980) genetic distances between cheilodactylid and latrid 

partial cytochrome c oxidase subunit I and cytochrome b mitochondrial DNA sequences. The Kruskal loss 

function and monotonic scaling were employed. Stress of configuration=0.148. The Sot!th African Cheifodactyfus 

were excluded from scaling to facilitate maximum resolution of the remaining sequences. Closed squares, 

subgenus Goniistius; open square, remaining Cheifodactyfus; circles, Chirodactyfus; diamond, Dactyfophora; 

open triangles, Nemadactyfus and Acantholatris; closed triangles, Latridae. 

Re-allocation of non-African Chei!odacty!us 

Anticipating generic distinction of the South African Cheilodactylus, Lamb (1990) identified 

two groups among the non-African Cheilodactylus, which could be given generic status, 

although he was unable to distinguish them from Chirodactylus. These two groups were the 

eight species which Randall (1983) allocated to the subgenus Goniistius, and the remaining 

four species which would be called Morwong. While the majority of non-African 

Cheilodactylus are divergent from Chirodactylus spp. (Figure 5.3, Figure 5.4), it appears that 

some modification of Lamb's (1990) proposed generic allocation is required. 

The eight species of Goniistius were not clustered as a monophyletic clade (Figure 5.3), but 

enforced monophyly did not produce significantly inferior minimum length topologies. This 

result contradicts that obtained from a subset of taxa, which suggested that C. (G.) nigripes be 
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excluded from Goniistius (Chapter 4). This species is the most morphologically divergent 

member of Goniistius, distinguished by dorsal and ;mal fin ray counts, a more anterior position 

of the mouth, and broader black bars on the body CRandall, 1983). With exclusion of C. (G.) 

nigripes, the remaining Goniistius are distinct from C. ephippium, C. fuscus, and 

Chirodactylus (Figure 5.3, Figure 5.4), the species which have prevented Goniistius attaining 

generic rank (Randall, 1983; Lamb, 1990). However, another species of Cheilodactylus, C. 

ruhrolabiatus, appears to have affinities with these Goniistius (Figure 5.3, Figure 5.4). 

Cheilodactylus rubrolabiatus shares only one of three features used by Randall (1983) to define 

Goniistius, namely the presence of dark brown to black bars or diagonal bands on the body. 

The characteL~ of a highly arched nape and pronounced fourth dorsal spine are absent. 

Given the need for generic reassignment of the subgenus Goniistius, but in light of potential 

errors associated with elevating the entire group to the genus level, a conservative and 

temporary assignm~nt is suggested. As two distinct and highly supported p1onophyletic clades 

are observed for seven of the Goniistius (Figure 5.3, Figure 5.4), it would be conservative to 

nominate these as separate genera until the placement of C. (G.) nigripes and C. rubrolahiatus 

are resolved. Cheilodactylus (G.) zonatus and C. (G.) quadricornis would retain the name 

Goniistius, as the former is the type species, while Zeodrius Castelnau has priority for the 

remaining five species. The only character observed at present to distinguish these two groups 

is a higher dorsal spine count for C. (G.) zonatus and C. (G.) quadricornis. 

The species which Lamb (1990) suggested for the genus Morwong, C. fuscus, C. ephippium, 

C. ruhrolahiatus, and C. spectabilis, did not cluster as a monophyletic clade (Figure 5.3), and 

enforced monophyly produced a significantly inferior minimum length topology (1288 steps, 

P=O.OOl). Cheilodactylusjitscus and C. ephippium clustered as sister taxa with high support, 

although they were not particularly divergent from other cheilodactylids (Figure 5.3, Figure 

5.4). As C.fuscus is the type for Morwong, it is suggested that this name be restricted to C. 

juscus and C. ephippium until placement of remaining taxa is resolved. The combined presence 
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of six lower thickened pectoral rays and four prominent bony protuberances in front of the eyes 

and on the snout can be used to define Morwong. 

Status of Chirodactylus 

Lamb ( 1990) was unable to distinguish Chirodactylus from non-African Cheilodactylus using 

external features. A highly supported monophyletic clade was observed for the three South 

African members of Chirodactylus, but the South American C. variegatus predominantly 

clustered with Cheilodactylus spectabilis at moderate to high support (Figure 5.3). Although 

enforced monophyly of Chirodactylus did not produce significantly inferior minimum length 

topologies, the same result is likely for the inclusion of a non-African Cheilodactylus instead of 

C. variegatus. It is sugg~sted that the South African Chirodactylus be distinguished from C. 

variegatus until placement of the latter is resolved. As C. variegatus is the type species, the 

South African Chirodactylus reveti to Palunolepis Barnard, distinguished by relatively longer 

ventral rays of the pectoral fin and a lower lateral line scale count (Smith, J 980). Cheilodactylus 

spectahilis may require congeneric placement with Chirodactylus variegatus; these species are 

closest relatives based on meristic and genetic data. 

Oactylophora, Nemadactylus and Acantholatris 

The divergent and predominantly basal placement of Dactylophora nigricans (Figure 5.3) agrees 

with the morphological distinctiveness and monotypic status of this genus (Lamb, 1990). 

Representatives of Nemadactylus and Acantholatris clustered together with high bootstrap 

support, but Nemadactylus was paraphyletic with respect to Acantholatris. Synonymy of 

Acantholatris with Nemadactylus was identified during a more detailed study of these taxa 

(Chapter 5.3). 

Taxonomic summary 

A summary of the suggested taxonomic changes is given in Table 5.1. The proposed scheme is 

conservative, as only those taxa clustered in well supported monophyletic clades have 

undergone generic reallocation. The most important questions remaining to be addressed are the 
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placement of Cheilodactylus rubrolabiatus, C. spectabilis, C. (G.) nigripes, and Chirodactylus 

variegatus. 

Cirrhitoid familial relationships 

Greenwood ( 1995) produced a provisional scheme of cirrhitoid family relationships in which 

the Cinhitidae was most plesiomorphic, followed by the Chironemidae, and then an unresolved 

trichotomy containing the Aplodactylidae, Cheilodactylidae, and Latridae. Although not 

conducted as a study of familial relationships, this work indicates that the latricls are more 

closely related to the majority of cheilodactylids than the aplodactylids, and that distinct 

placement of the South African Cheilodactylus in such a scheme is required (Figure 5.3). The 

remaining familial relationships inferred from this study were inconsistent and not supported, 

even when restricting analysis to less frequent character state changes. 

Non resolution of higher-level cheilodactylid and latrid relationships 

The lack of consistent and supported higher-level relationships among cheilodactylids and 

latrids may be explained by a period of more rapid species radiation and saturation of transition 

nucleotide substitutions (A vise et al., 1994 ). The lengths of unsupported internodes were 

relatively short (Figure 5.3a), indicating a period of more rapid species radiation. 

Consequently, there was comparatively little phylogenetic signal present for the resolution of 

higher level relationships among cheilodactylids and latrids. Saturation of transitions was also 

evident during comparisons among cheilodactylids and latrids at these levels (Figure 5.2). 

Although increased weighting of transversions can reduce any influence of saturated transitions 

on phylogeny reconstruction, transversions were too infrequent to confidently resolve 

branching order. Analysis of more characters may facilitate better resolution of branching order 

at short internodes. If saturation is problematic, analysis of a large number of low variability 

characters will be required. Such characters are unlikely to become saturated, but a large 

number will need to be scored as only a small proportion will have undergone informative 

changes during the periods of interest (A vise eta!., 1994 ). 
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Zoogeography 

Vicariant isolation of cheilodactylids accompanying Gondwana fragmentation could not be 

assessed by species-area relationships, as the majority of higher-level relationships were poorly 

supported (Figure 5.3). However, it appears that Gondwanan continental land masses became 

isolated prior to the divergence of corresponding cheilodactylids, based on mitochondrial 

protein four-fold degenerate site molecular clock calibrations of 2.3% and 3.3% sequence 

divergence per million years (Martinet al., 1992; Bermingham et al., 1997). The South African 

Cheilodactylus diverged from other cirrhitoids approximately 24-39 Myr ago, while the 

corresponding divergence of South African Chirodactylus from other members of the 

cheilodactylid-latrid clade (excludes South African Cheilodactylus) occurred 7-21 Myr ago. In 

contrast, Africa was isolated from the other Gondwanan continents at least 90 Myr ago (Lawver 

et al., 1992). Similarly, the South American Chirodactylus variegatvts diverged from its 

probable sister taxon, the Australian-New Zealand Cheilodactylus spectabilis, approximately 4-

7 Myr ago, yet their corresponding continents were isolated 30-40 Myr ago (Lawver et al., 

1992). 

Absolute estimates of divergence time based on molecular clock calibrations should be treated 

cautiously, given the number of untested assumptions (Rand, 1994). Substitution rate 

heterogeneity was also observed among some lineages in this study. Faster and slower 

calibrations have also been reported for other fish taxa, and those employed here are considered 

"median" values. Regardless, the divergence time estimates obtained are sufficiently recent to 

discount vicariant isolation during Gondwana fragmentation. Therefore, the distribution of 

continent-inhabiting cheilodactylids is best explained by chance dispersal. This mechanism has 

been previously invoked from genetic studies of other fishes with similar distributions, namely 

populations of Sardinops (Grant and Leslie 1996; Bowen and Grant, 1997), the diadromous 

Galaxias maculatus (Waters and Burridge, 1999), and the aplodactylids (Chapter 6). 

Chance dispersal of cheilodactylids across large expanses of open water probably occurred 

during their pelagic larval phase, as juveniles and adults are predominantly demersal in 
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nearshore waters (Sano and Moyer, 1985; Annala, 1987; Cappo, 1995; McCormick, 1998). 

High dispersal capabilities of cheilodactylid larvae are suggested by the offshore larval phase of 

9-12 months duration inN. macropterus and A. monodactylus (Annala, 1987; Andrew et al., 

1995). Molecular genetic studies also suggest larval gene flow among geographically isolated 

cheilodactylid populations (Elliott and Ward, 1994; Grewe et al., 1994; Chapter 3). As the 

majority of higher-level relationships among cheilodactylids and latrids were poorly defined it is 

difficult to determine the direction of chance dispersal events. However, an origin in the waters 

of Southern Australia appears likely for these and other temperate cirrhitoid groups (Briggs, 

1974; Chapter 3; Chapter 6). 
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CHAPTER 6: Molecular phylogeny of the Aplodactylidae. 

Abstract 

Aplodactylids are temperate marine nearshore fishes of New Zealand, southern Australia. 

several southwest Pacific islands, and western South America. The molecular phylogeny of the 

five aplodactylid species was reconstructed from mitochondrial DNA sequences. The observed 

relationships and levels of genetic variation supports the most recent review of the 

Aplodactylidae in which the monotypic Crinodus is synonymised with Aplodactylus, the only 

recognised genus. Phylogenetic relationships indicate that the Aplodactylidae originated in the 

approximate region of Australia m1d New Zealand, with the majority of radiation occurring 

prior to this family reaching South America. The disjunct trans-Pacific distribution of this 

family was the resulted from chance dispersal rather than vicariance accompanying Gondwana 

fragmentation. Such dispersal most likely occurred during the larval phases, via the West Wind 

Drift current. 
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6. Molecular phylogeny of the Aplodactylldae 

Introduction 

The Aplodactylidae comprises five primarily herbiv0rous Southern Hemisphere temperate 

marine fishes. These species occupy shallow nearshore reefs, and often dominate numerical 

and in biomass where macroalgae are abundant (Hutchins and Swainston, 1986; Stepien, 1990; 

Cole et al., 1992; Francis, 1996). The distribution of the Aplodactylidae is similar to that of the 

other temperate cirrhitoid families (Cheilodactylidae, Chironemidae, Latridae), in that diversity 

centres in Australia and New Zealand, and they also are represented in the eastern Pacific 

(Figure 6.1). Members of this family are commonly known as "jerguilla" in South America and 

"marblefish" in Australia and New Zealand. 

The taxonomy of the Aplodactylidae has undergone much change, as summarised in the recent 

review by Russell (2000). Only five species and a single genus were recognised by Russell 

(2000). Crinodus Gill, monotypic for C. lophodon (Giinther) from eastern Australia, was 

synonymised with Aplodactylus Valenciennes as only scale size and the p1;esence of vomerine 

teeth distinguish these two groups. The remaining species are A. arctidens Richardson from 

New Zealand and southeastern Australia, A. westralis Russell from southwestern Australia. A. 

etheridgii (Ogilby) from northern New Zealand, Lord Howe, Norfolk, and the Ketmadec 

Islands, and the type species A punctatus Richardson from the west coast of South America. 

There are three questions about aplodactylid biogeography. First, where did this group 

originate, South America or in the vicinity of Australia and New Zealand? Second, when did 

aploJactylids radiate to both sides of the Pacific? Third, did their disjunct trans-Pacific 

distribution result from chance dispersal or vicariance accompanying Gondwana fragmentation? 

The reconstruction of aplodactylid phylogeny and the estimation of lineage divergence times can 

address these questions. 
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Figure 6.1. Distribution of Aplodactylus species. Obtained from Russell (2000). 
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6. Molecular phylogeny of the Aplodactylidae 

The objectives of this study were to reconstruct the phylogeny of the Aplodactylidae and to 

address the questions relating to the taxonomy and biogeography of this family. Phylogenetic 

analysis of mitochondrial DNA sequences was undertaken to complement the recent 

morphological analysis of these taxa by Russell (2000). As there is no fossil record of the 

Aplodactylidae, this molecular approach also enables the estimation of lineage divergence times 

by applying molecular clock calibrations (Vawter et al., 1980). 

Materials and methods 

Genomic DNA was extracted from one individual of each aplodactylid species recognised by 

Russell (2000) and representative taxa from three other cirrhitoid families (Table 6.1 ). 

Table 6.1. Species of aplodactylids and outgroups from other cirrhitoid families analysed. Names of 

aplodactylids follow the revision by Russell (2000). 

Species 

Aplodactylus arctidens Richardson 

Aplodactylus etheridgii (Ogilby) 

Aplodactylus lophodon (Gunther) 

Ap/odactylus punctatus Valenciennes 

Aplodactylus westralis Russell 

Chironemus marmoratus Gunther 

Chei!odactylus fasciatus Lacepede 

Cirrhitus splendens (Ogilby) 

Family 

Aplodactylidae 

Aplodactylidae 

Aplodactylidae 

Aplodactylidae 

Aplodactylidae 

Chironemidae 

Cheilodactylidae 

Cirrhitidae 

Collection site 

Maria Island, Tasmania 

Norfolk Island 

Camden Head, NSW, Australia" 

Punta de Tralca, Chile 

Rottnest Island, Western Australia 

Diamond Head, NSW, Australia a 

Tsitsikamma National Park, South Africa 

Lord Howe Island 

a Australian Museum frozen tissue collection (A. /ophodon I 31252023 Nl 252; C. marmoratus I 31253048 Nl 330). 

Results 

DNA sequences analysed were deposited in GenBank (AF067084, AF092140, AF092155-

AF092157, AF092167, AF133060-AF133069). The mitochondrial partial cytochrome c 

oxidase subunit I and cytochrome b sequences analysed were 499 and 402 bp in length 

respectively. Among the aplodactylids 164 characters were variable, and 82 of these were 

phylogenetically informative. Transition nucleotide substitutions were observed at 153 sites, 

while trans versions were observed at 25. Only six of the variable sites were not third codon 

positions. Length mutations were absent. This pattern of sequence evolution, also observed for 
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the outgroup taxa, indicates that orthologous protein coding sequences were obtained. The 

cytochrome b region was approximately 1.2 times more variable than the cytochrome oxidase I 

region, but both fragments contributed similar amounts of variation to the study due to the 

larger number of cytochrome oxidase I characters analysed. 

The partition homogeneity test (200 partition replicates, Branch and Bound search algorithm) 

indicated phylogenetic congruence between cytochrome oxidase I and cytochrome b sequences, 

both for all characters (?=0.36) and only third codon positions (?=0.65), allowing the 

combination of genes during phylogenetic analyses. Tree length-frequency distributions were 

significantly ~.kewed for all taxa (gl=-0.60, P<O.Ol) and the aplodactylids alone (g1=-1.09, 

P<O.O 1), suggesting the presence of phylogenetic signal. Visual inspection did not reveal any 

nucleotide substitution saturation amongst the aplodactylids, evidenced by the linear 

accumulation of transitions relative to transversions (Figure 6.2). The transition-transversion 

ratio observed during comparisons between the aplodactylids and each of the three outgroups 

were significantly lower than that observed during comparisons among the aplodactylids 

(Figure 6.2, P<O.OO 1, d.f.=3, one-way AN OVA with Tukey HSD post hoc tests), indicating 

substitution saturation during the former. 

Kimura (1980) two-parameter genetic distances among the aplodactylids ranged from 6.1 to 

12.4% sequence divergence (Table 6.2). Distances between the aplodactylids and the three 

cirrhitoid outgroups, and among these outgroups, ranged from 18.3 to 23.1% (Table 6.2). The 

levels of intraspecific variation were not assessed, but are typically less than 1.0% for protein 

coding genes in other cirrhitoids (Chapter 3; Burridge, unpubl.). 
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Figure 6.2. The pattern of observed transition and transversion nucleotide substitution accumulation at third 

codon positions for mitochondrial DNA partial cytochrome c oxidase subunit I and cytochrome b sequences when 

combined. Squares represent pairwise comparisons among aplodactylids. Diamonds, circles and triangles 

represent comparisons of Chironemus marmoratus (Chironemidae), Chei/odactylus fasciatus (Cheilodactylidae), 

and Cirrhitus splendens (Cirrhitidae) against the aplodactylids respectively. The mean observed transition­

transversion nucleotide substitution ratio and its standard deviation are listed for each set of comparisons. 

The neighbour-joining and unweighted maximum parsimony topologies clustered the 

aplodactylids as monophyletic, with high (> 70%) bootstrap support (Figure 6.3a). 

Aplodactylus arctidens and A. punctatus were clustered together, with A. westralis as sister 

taxon to this clade. Aplodactylus lophodon and then A. etheridgii were successively removed. 

The~e relationships received high bootstrap support from neighbour-joining analysis, but 

moderate support (70-50%) from unweighted parsimony analysis. Increased weighting of 

transversions during parsimony analysis, according to the optimum TI:TV of 3.0 from 

maximum likelihood analysis, produced the same topology as unweighted analysis, with 

similar bootstrap values (not shown). Monophyly of the aplodactylids was also supported by 

parsimony analysis restricted to transversion substitutions, but the relationships among these 

taxa were not well defined due to the small number of informative character-state changes (not 

shown). 
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6. Molecular phylogeny of the Aplodactylidae 

Table 6.2. Genetic distances for mitochondrial DNA partial cytochrome c oxidase subunit I and cytochrome b 

sequences when combined. Values are Kimura (1980) two-parameter percentage sequence divergences, 

obtained when using the optimum expected transition-transversion nucleotide substitution ratio of 3.0 from 

maximum likelihood analysis (Figure 6.3). 

2 3 5 

1 Aplodactylus arctidens 

2 Aplodactylus punctatus 6.1 

3 Aplodactylus vvestralis 7.8 7.6 

4 Aplodactylus etheridgii 10.0 10.3 10.0 

5 Aplodactylus lophodon 11.8 11. g 12.4 11 .1 

6 Chironemus marmoratus 20.0 18.7 18.3 19.3 19.5 

7 Chei/odacty/us fasciatus 21.8 21.0 20.5 22.6 20.2 21.2 

8 Cirrhitus splendens 22.6 20.7 21.0 23.1 22.0 23.1 22.8 

The maximum like1ihood topology differed from the neighbour-joining and unweighted 

maximum parsimony topology in root placement among the aplodactylids (Figure 6.3b). The 

root was placed on the branch leading to A. lophodon and A. etheridgii, rather than that leading 

to A. lophodon alone. Enforcing the maximum likelihood topology during parsimony analysis 

produced a minimum length tree only one step longer than the most parsimonious 

unconstrained topology. Neither topology was significantly superior according to the 

Templeton (P=0.86) or Kishino and Hasegawa (P=0.75) tests. Choosing Chironemus 

marmoratus or Cheilodactylus fasciatus as the most basal outgroup had no effect on the inferred 

relationships among aplodactylids or the levels of bootstrap support from any method of 

analysis. Removing one or two outgroup taxa occasionally altered aplodactylid relationships 

inferred by a given method of analysis, but only in such a manner as observed for different 

methods of analysis when all outgroups were analysed. 

The two-cluster and branch-length tests did not reveal significant nucleotide substitution rate 

heterogeneity for third codon positions at the 5% level, when nodes and branches were 
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analysed individually. Significant rate heterogeneity was also not observed when nodes were 

analysed simultaneously by the two-cluster test (X2=8.03, df=6, P>O.IO). 

a 

71/64 

97/100 

52/71 

A. arctidens 
NZ and SE Australia 

A. punctatus 
South America 

SW Australia 

L.....-- A. lophodon E Australia 

~------ Chironemus marmoratus 
(Chironemidae) 

L.....---- Cheilodactylus fasciatus (Cheilodactylidae) 
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Figure 6.3. Results from the phylogenetic analysis of aplodactylid and outgroup mitochondrial DNA partial 

cytochrome c oxidase subunit I and cytochrome b sequences when combined. Cirrhitus splendens was used to 

root all phylogenies, as the Cirrhitidae appears the most plesiomorphic of the five cirrhitoid families 

(Greenwood, 1995). (a) Single most-parsimonious topology obtained from unweighted parsimony analysis 

(exhaustive search). Tree length=558 steps, CI=0.685, RI=0.413, based on all characters. The topology recovered 

from neighbour-joining analysis is identical to a. The numbers above the branches at each node represent the 

bootstrap proportions for the taxa in each clade, as derived from 2000 replicate data sets (unweighted maximum 

parsimony/neighbour-joining). (b) Maximum likelihood topology from 20 replicates of random sequence input 

order using the optimum expected TI:TV of3.0. ml=-3691.3. All branches are significantly positive (P<O.Ol). 
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Discussion 

Two topologies were recovered from phylogenetic analysis of aplodactylid and outgroup 

mitochondrial DNA cytochrome oxidase I and cytochrome b sequences. These varied in the 

placement of the root among the aplodactylids, <md neither was significantly superior. The New 

Zeali.md and southeastem Australian species Aplodactylus arctidens and the westem South 

American species A punctatus were placed as sister taxa, in a monophyletic clade with the 

southwest Australian species A. westralis. The inconsistency in root placement influenced the 

relationships among the remaining aplodactylids, A. lophodon from eastern Australia and A. 

etheridgii from northern New Zealand and several southwest Pacific islands. These species 

were either clustered as sister taxa, or were successively removed from the other three 

aplodactylids with A lophodon located basally. Bootstrap support for aplodactylid monophyly 

and the inferred relationships were moderate to high. There was no evidence of nucleotide 

substitution saturation among the aplodactylids, although saturation was present during 

comparisons with the outgroups. This may explain the variability in root placement (Smith, 

1994 ). 

Taxonomy 

The genus Crinodus, monotypic for C. lophodon, is only distinguished from Aplodactylus by 

larger scales and the absence of vomerine teeth, and has been relegated to the synonymy of 

Aplodactylus by Russell (2000). Genetic data provides support for this revision. Crinodus 

lophodon does not appear sufficiently divergent from species of Aplodactylus to be given 

distinct generic status; it is only slightly more divergent from A punctatus, A. arctidens, and A 

westralis than is A. etheridgii (Table 6.2). The placement of C. lophodon is also uncertain, as 

two topologies were recovered and neither was significantly superior. If C. lophodon is the 

sister taxon to Aplodactylus (Figure 6.3a), retention of Crinodus at the generic level could be 

argued despite of the limited molecular and morphological divergence. However, if C. 

lophodon and A etheridgii are sister taxa (Figure 6.3b ), then Aplodactylus is paraphyletic. 

Given the absence of marked genetic distinction, and the possibility that Aplodactylus is 
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6. Molecular phylogeny of the Aplodactylidae 

paraphyletic, Russell's (2000) hypothesis in which Crinodus is synonymised with 

Aplodactylus is supported. 

Most aplodactylids recognised by Russell (2000) have widespread distributions and encompass 

several previously described species. While Russell (2000) examined many specimens 

throughout the ranges of the taxa he recognised, the possibility exists that speciation has 

occurred in some of these without the development of readily apparent morphologic features. 

While genetic studies often identify such instances of cryptic speciation (Knowlton, 1993), this 

study has not been sufficiently intensive to test the status of species recognised by Russell 

(2000). 

Zoogeography 

The recovered phylogenies suggest that the Aplodactylidae originated in the vicinity of Australia 

and New Zealand, with the majority of radiation occurring prior to this fa!l1ily achieving 

representation in South America. This is evidenced by the basal positions of the Australian, 

New Zealand, and southwest Pacific island aplodactylids relative to the South American A. 

punctatus (Figure 6.3). An Australian-New Zealand origin and subsequent movement east has 

also been proposed for the cheilodactylids of Nemadactylus and Acantholatris (Chapter 3). 

Mitochondrial third codon position molecular clock calibrations of 2.3% and 3.3% sequence 

divergence My- 1 (Mxartin et al., 1992; Bermingham et al., 1997) suggest that the aplodactylids 

shared a common ancestor 12.8 to 18.5 Myr ago. Similarly, the disjunct trans-Pacific species 

pair A. arctidens and A. punctatus diverged 6.2 to 9.0 Myr ago. While estimates of divergence 

time from molecular clock calibrations should be treated cautiously given the number of 

untested assumptions and the range of calibrations available (Rand, 1994 ), these values 

appreciably post-date the isolation of Australia and South America from Antarctica during the 

fragmentation of Gondwana (40-30 Myr ago; Lawver et al., 1992). In addition, the presence of 

conspecific populations in Australia and New Zealand (A arctidens), but the location of their 

sister species in South America (A punctatus), also argues against a distribution based entirely 
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on vicariance accompanying Gondwana fragmentation, as New Zealand was the first of these 

land masses to become isolated (Lawver et al., 1992). Therefore, the disjunct transoceanic 

distribution of aplodactylids is best explained by chance dispersal. Chance dispersal rather than 

Gondwanan vicariance was also inferred for the similarly distributed diadromous species 

Galaxias maculatus (Jenyns 1842), based on intraspecific relationships and levels of molecular 

divergence (Waters and Burridge, 1999). 

Chance dispersal of aplodactylids across the Pacific was most likely undertaken during their 

larval phase, as juveniles and adults are restricted to nearshore habitats (Stepien, 1990; Cole et 

al., 1992; Hutchins and Swainston, 1986; Francis, 1996). Although little is known of 

aplodactylid larval dispersal capabilities (B. Bruce, CSIRO Marine L1boratories, Hobart, pers. 

comm.), high dispersal capabilities have been suggested for other cirrhitoid larvae. The 

cheilodactylids N. macropterus and A. monodactylus possess a 9-12 month offshore pelagic 

larval phase (Annal a, 1987; Andrew et al., 1995), and molecular genetic studies on members of 

these genera suggest gene t1ow across distances in excess of 1000 km (Elliott and Ward, 1994; 

Grewe et al., 1994; Chapter 3). Particularly relevant is the species pair Nemadactylus sp. and 

A. gayi, which are similar in distribution to A. arctidens and A. punctatus and exhibit negligible 

cytochrome b sequence variation (Chapter 3)'. 
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CHAPTER 7: Biogeographic history of geminate cirrhitoids with east-west 

allopatric distributions across southern Australia, based on molecular data 

Abstract 

The biogeographic history of three cirrhitcid species pairs with east-west allopatric 

distributions across southern Australia was examined by determining levels of mitochondrial 

DNA sequence divergence and applying molecular clock calibrations. Similar levels of 

genetic divergence were observed for Aplodactylus Valenciennes and Goniistius Gill species 

pairs, but these were more than twice that observed for a Nemadactylus Richardson pair. 

Molecular clock calibrations suggested divergences occurred during the late Miocene and 

mid Pliocene, respectively. Given evidence of high dispersal capabilities, the habitat and 

climatic barriers of the Australian south coast appear too small to have facilitated speciation 

of the cirrhitoids examined. A mechanism is proposed by which ancestral cirrhitoids were 

vicariantly isolated into east and west coast populations during periods o'f climate change. 

Although Aplodactylus and Goniistius divergences occurred during the same period, separate 

vicariant events across the Australian north and south coasts are invoked. 
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Introduction 

East-west allopatric and parapatric distributions across southern Australia have been observed 

for several marine and putatively geminate populations and species (DartnalL 1974; Knox, 

1980; Edgar, 1986; Hutchins, 1987). Such distributions may have resulted from chance 

movement across a pre-existing barrier and the founding of a new population (dispersal). 

Large expanses of the southern Australian coast are devoid of reef substrate, and these 

represent barriers to obligate reef-dwelling taxa (Edgar, 1986; J. B. Hutchins, personal 

communication). Similarly, water temperatures in Bass Strait are also lower than those that 

may be tolerated by taxa occurring to the east and west (J. B. Hutchins, personal 

communication). Alternatively, east-west allopatric and parapatric distributions of geminate 

taxa may have resulted from the development of a barrier between populations not previously 

isolated (vicariance). During periods of climatic cooling, such as the Pleistocene glaciations, 

species previously widespread across the south coast may have been forced north and 

vicariantly isolated into east and west coast populations (Knox, 1980; Edgar, 1986; Hutchins, 

1987; Gomon and Johnson, 1999). The emergence of Bass Strait during periods of lower sea 

level may have also vicariantly isolated eastern and western populations (Collette, 1974; 

Dartnall, 1974; Knox, 1980; Hutchins, 1987). Such vicariant events may have int1uenced 

several taxa simultaneously. 

Previous studies have compared levels of DNA sequence divergence of geminate taxa to 

identify shared biogeographic histories (A vise, 1992; MacMillan and Palumbi, 1995; 

Bermingham and Martin, 1998; Knowlton and Weigt, 1998; Schneider et al., 1998; Taberlet 

et al., 1998; Tringali et al., 1999). Levels of DNA sequence difference between taxa can be 

considered measures of divergence time if mutations have accumulated in a clock-like 

manner (Vawter et al., 1980), and similar levels of genetic divergence provide support for a 

shared biogeographic history. Although mutation rate can vary between lineages (Martinet 

al., 1992), the extent is likely to be small in taxonomically, ecologically, and physiologically 

similar taxa (Martin and Palumbi, 1993; Rand, 1994). By applying a mutation rate calibration 

it is possible to estimate the geological period of lineage divergence (Vawter et al., 1980; 
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7. Biogeographic of southern Australian geminate cirrhitoids 

Martinet al., 1992; Bermingham et al., 1997), which may correspond to past events such as 

the Pleistocene glaciations. 

East-west allopatric distributions across southern Australia are observed for four ecologically 

similar reef-dwelling cirrhitoid species pairs. These are the aplodactylids Aplodactylus 

arctidens Richardson and A. westralis Russell (Russell, 2000), the chironemids Chironemus 

marmoratus Gunther and C. georgianus Cuvier (Gomon et al., 1994), and the cheilodactylids 

Nemadactylus ciouglasii (Hector) and N. valenciennesi (Whitley) (Lamb, 1990; Gomon et al., 

1994), and Cheilodactylus (Goniistius) vestitus (Castelnau) and C. (G.) gibbosus Richardson 

(Randall, 1983; Lamb, 1990) (Figure 7.1). The members of each pair are morphologically 

distinguished as listed in Table 7.1, and their relationships with congeners have been 

investigated previously (Chapters 3,4, and 6). 

Aplodactylus westralis A. arctidens 

Chironemus georgianus 

Nemadactylus valenciennesi 

Cheilodactylus (Goniistius) gibbosus 

C. marmoratus .......... 
N. douglasii 

C. (G.) vestitus .......... 

Figure 7.1. East-west allopatric distributions of cirrhitoid species pairs across southern Australia. Species ranges 

are measured relative to the solid bars below the map, and comprise the nearshore waters bordered by the lines 

intersecting the coast. 

The aim of this study is to examine the biogeographic history of cirrhitoid species pairs with 

east-west allopatric distributions across southern Australia. Questions to be addressed include 

at what period did divergences occur, was dispersal or vicariance responsible, and is 
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biogeographic history shared among these similar taxa? Molecular data were employed to 

provide relative and absolute estimates of diverger~ce time for the members of each allopatric 

pair, and information on dispersal capabilities was used to examine whether habitat and 

climatic barriers of the Australian south coast were sufficiently large to facilitate speciation. 

Table 7.1. Morphological distinction of cirrhitoid species with east-west allopatric distributions across southern 

Australia. 

Genus, character Western species 

Ap/odactylus A. westralis 

Vomerine teeth Absent 

Lateral line scales 72-82 

Cheilodactylus C. (G.) gibbosus 

(Goniistius) 

Dorsal fin XVI-XVII, 34-37 

Anal fin Ill, 8-9 

Lateral line scales 61-65 

Nemadactylus N. valenciennesi 

Dorsal fin XVI-XVIII, 30-32 

Anal fin Ill, 17-19 

Lateral line scales 62-68 

Chironemus C. georgianus 

Dorsal fin XV-XVI, 14-18 

Dorsal spine cirri Usually present 

Lateral line scales 46-48 

Materials and methods 

Eastern species 

A. 

Present 

100-120 

C. (G.) vestitus 

XVI-XVII, 32-35 

Ill, 8-9 (usually 8) 

58-65 

N. douglasii 

XVII-XVIII, 27-28 

Ill, 16-17 

53-62 

C. marmoratus 

XIV, 19-20 

Usually absent 

55-58 

Reference 

Russell 

Randall (1983), Lamb (1990) 

Lamb (1990), Gomon eta/. (1994) 

Last eta/. (1983), Gomon eta/. (1994) 

Mitochondrial DNA partial cytochrome c oxidase subunit I and cytochrome b sequence data 

were obtained for three of the four east-west allopatric cirrhitoid species pairs during wider 

phylogenetic studies of Nemadactylus, Goniistius, and Aplodactylus (Chapters 3, 4, and 6). 

Sequences from New Zealand individuals of N. douglasii and A. arctidens were obtained 

specifically for this study. Appropriately preserved tissues from Chironemus georgianus were 
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not available for DNA sequence analysis, and therefore the remaining east-west allopatric 

cirrhitoid species pair could not be included in this study. Logical outgroups were chosen for 

each allopatric species pair based on the phylogenetic studies listed above. 

Results 

All DNA sequences analysed are deposited in GenBank (AF067084-AF067085, AF067089-

AF067091, AF092140, AF092145-AF092147, AF092149, AF092151, AF092153-AF092155, 

AF092157, AF092160, AF092162, AF092164, AF092166, AF133060-AF133063, 

AF133065-AF133068, AF136267, AF202545-AF202548). The cytochrome c oxidase subunit 

I and cytochrome b sequences analysed were 499 and 402 bp in length respectively. The 

partition homogeneity test indicated phylogenetic congruence between cytochrome oxidase I 

and cytochrome h sequences, for all characters (P=0.89) and third codon positions (P=0.78), 

and therefore the genes were combined during subsequent analyses. 

As observed during previous studies (Chapters 3, 4, and 6), sister taxa relationships were 

evident from neighbour-joining analysis for the Nemadactylus and Goniistius species pairs 

with east-west allopatric distributions across southern Australia (Figure 7.2). Although 

Aplodactylus westralis and A. arctidens were not clustered as immediate sister taxa, they can 

be considered sister taxa for the purpose of this southern Australian biogeographic analysis as 

the only other derivative of their common ancestor is endemic to South America (Figure 7.2). 

The inferred relationships for the east-west allopatric species pairs each received high (>88%) 

bootstrap support. New Zealand individuals of N. douglasii and A. arctidens exhibited only 

slight sequence divergence from southeast Australian conspecifics ( <0.5% ). 

Neither the two-cluster or branch-length test revealed significant nucleotide substitution rate 

heterogeneity for third codon positions among species pairs with east-west allopatric 

distributions across southern Australia, when nodes and branches were analysed individually 

(CP<95% ). Rate heterogeneity was also not observed from the two-cluster test when 

analysing nodes simultaneously Cl=l5.46, df=l4, P>0.05). The only evidence of substitution 
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rate heterogeneity among taxa was for the branches leading to N. macropterus and the N. 

douglasii-N. valenciennesi clade (CP=98.64%, two-cluster test). 

I I 
0 2 

Figure 7.2 
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Figure 7.2 (previous page). Neighbour-joining topology from the analysis of mitochondrial partial cytochrome c 

oxidase subunit I and cytochrome b DNA sequences when combined. Branch lengths are proportional to Kimura 

(1980) two-parameter sequence divergence TlfTV=2.0), as mt:Jasured relative to the scale bar. The numbers 

above the branches at each node represent bootstrap proportions for the taxa in each clade, as derived from 

2000 replicate data sets. Cirrhitus sp/endens was chosen as the outgroup, as the Cirrhitidae appears the most 

plesiomorphic of the five cirrhitoid families (Greenwood, 1995). Species pairs with east-west allopatric 

distributions across southern Australia are indicated by asterisks, and linked by thickened branches. For each 

east-west allopatric species pair the levels of genetic separation and estimated divergence times are also 

indicated (see text). 

Kimura ( 1980) ;:wo-parameter corrected genetic distances were similar for the Goniistius and 

Aplodactylus east-west allopatric species pairs, 6.83 and 7.42-7.79% respectively, while that 

for the Nemadactylus pair was 2.82-2.93% (Figure 7.2). Corresponding levels of sequence 

divergence at third codon positions, calculated under the constraint of clock-like sequence 

evolution, were 23.07% for the Goniistius pair, 25.78% for the Aplodactylus pair, and 8.85% 

for the Nemadactylus pair (Figure 7.2). 

Discussion 

Mitochondrial DNA partial cytochrome c oxidase subunit I and cytochrome b sequences were 

obtained from three cirrhitoid species pairs with east-west allopatric distributions across 

southern Australia, and logical outgroup taxa. Well supported sister taxa relationships were 

observed for Nemadactylus and Goniistius species pairs (Figure 7.2). Although Aplodactylus 

arctidens and A. westralis were not placed as sister taxa, it is apparent that they diverged from 

a common ancestor in the waters of Australia as the only additional species derived from their 

common ancestor is endemic to South America (Figure 7.2). Levels of DNA sequence 

divergence based on all codon positions were similar for Goniistius (6.83%) and Aplodactylus 

(7 .42-7. 79%) species pairs, but these were more than twice as large as that for the 

corresponding Nemadactylus species pair (2.82-2.93% ). There was no evidence of nucleotide 

substitution rate heterogeneity at third codons among these three species pairs, and 

corresponding levels of divergence calculated when enforcing clock-like sequence evolution 

were 23.07% for Goniistius, 25.78% for Aplodactylus, and 8.85% for Nemadactylus. 
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East-west allopatric distributions of geminate pop-ulations and species along the southern 

Australian coast may have resulted from chance dispersal across habitat and climatic barriers. 

Although the habitat and climatic barriers along the Australian south coast are expansive, 

particularly the reef-devoid areas of the Coorong and the Nullarbor (Edgar. 1986; J. B. 

Hutchins, personal communication), they me probably insufficient to restrict gene flow in 

cirrhitoids below the levels required for speciation. Cirrhitoids are predominantly sedentary 

as adults (Sana and Moyer, 1985; Annala, 1987; Cappo, 1995; Francis, 1996), but high 

dispersal capabilities are suggested for their larvae. The cheilodactylids N. macropterus 

(Bloch and Schneider) and Acantholatris monodactylus (Carmichael) possess a 9-12 month 

offshore pelagic larval phase (Annala 1987; Andrew et al., 1995), and both cheilodactylid 

distribution and the results from molecular genetic studies suggest high dispersal capabilities 

for these taxa (Elliott and Ward, 1994; Grewe, Smolenski and Ward, 1994; Chapters 3 and 4). 

High larval dispersal capabilities are also suggested for aplodactylids, as,the divergence of the 

Australian-New Zealand A. arctidens from the South American A. punctatus postdates the 

geographic isolation of these continents (Chapter 6). Ocean currents would promote larval 

dispersal throughout southern Australia, particularly the Leeuwin Current that flows from 

west to e·ast. Consequently, it is more likely that the differentiation of east and west coast 

cirrhitoids resulted from vicariant isolation during periods of climate or sea level change. 

While vicariance is favoured to explain cirrhitoid east-west allopatric distributions, it is 

unlikely that these taxa share a biogeographic history. Clock-like DNA sequence evolution 

was observed for the three species pairs examined, and therefore the levels of sequence 

difference can be considered relative measures of divergence time. Only two of the three 

cirrhitoid species pairs exhibited similar levels of genetic divergence, Aplodactylus and 

Goniistius, and therefore these must have a history distinct from the Nemadactylus pair. 

However, it is also unlikely that Aplodactylus and Goniistius species pairs share a 

biogeographic history, as their ancestral taxa would not have possessed broadly overlapping 

distributions if contemporary latitudinal ranges are assumed. 
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A mechanism by which the east-west allopatric distributions of Aplodactylus and Goniistius 

species pairs could have arisen vicariantly at approximately the same period, but across the 

Australian south and north coasts respectively, is depicted in Figure 7.3. Under climatic 

conditions similar to the present an ancestral Aplodactylus taxon inhabited the south coast, 

and an ancestral Goniistius was found on either the east or the west coast (Figure 7 .3a). 

During climatic cooling, the Aplodactylus ancestral taxon was vicariantly isolated into east 

(arctidens-punctatus) and west ( westralis) coast lineages, while the ancestral Goniistius 

relocated to northern Australia (Figure 7 .3b ). During subsequent warming to conditions 

similar to the present clay, the ancestral Goniistius became vicariantly isolated into east 

( vestitus) and west (gibbosus) coast populations, while the Aplodactvlus species attained 

contemporary-like distributions (Figure 7 .3c ). This hypothesis suggests that the Aplodactylus 

lineage diverged prior to Goniistius, which agrees with the levels of genetic variation 

observed (Figure 7.2). It is more likely that the Nemadactylus and Chironemus Cuvier species 

pair divergences proceeded by the mechanism proposed for the Aplodactylus pair rather than 

that for the Goniistius pair, based on contemporary distributions. As the divergence of 

Nemadactylus species was somewhat more recent, a second event of climatic cooling is 

invoked. A similar mechanism combining north and south coast vicariance events has been 

proposed for the stargazer genus Ichthyscopus Swainston (Gomon and Johnson, 1999). 

It is unlikely that the emergence of Bass Strait appreciably contributed to the isolation of 

eastern and western cirrhitoicl populations. Receding sea level was commonly associated with 

periods of climatic cooling, and therefore cirrhitoids occupying the south coast would have 

been forced north and isolated prior to the emergence of Bass Strait (Edgar, 1986). Tectonic 

processes capable of isolating eastern and western populations are also unlikely in Bass Strait, 

as this region has been geologically stable for the last 60 Myr (Quilty, 1994 ). 

Lamb (1990) previously suggested a northern Australian divergence for C. (G.) vestitus and 

C. (G.) gibhosus. The subgenus Goniistius is also antitropical in distribution, and three 
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transequatorial divergence events have been identified for this group (Chapter 4), indicating 

that ancestral taxa have occupied equatorial latitudes at certaip. periods. Hutchins ( 1987) also 

raised the possibility of a northern divergence for members of Paraplesiops Bleeker similar 

in distribution to C. (G.) vestitus and C. (G.) gihbosus. Vicariance across northern Australia 

has been commonly suggested for tropical taxa, but predominantly as the result of Pleistocene 

sea level fluctuation in Torres Strait rather than temperature changes (Chenoweth et al., 1998; 

Duke et al., 1998; and references therein). 

ancestral 
Aplodactylus 

C. (G.) gibbosus 

ancestral 
Goniistius 

A. arctidens-punctatus 

C. (G.) vestitus 

A. punctatus 
--~>~ Sth. America 

A. arctidens 

Figure 7.3. Possible mechanism for the vicariant isolation of Aplodactylus and Goniistius ancestral populations. 

(a) Distribution of ancestral taxa during conditions similar to present. The ancestral Goniistius may have been 

distributed on either the east or west coast. (b) Northward movement of ancestral taxa with climatic cooling, 

resulting in the vicariant isolation of Aplodactylus populations. (c) Southward movement during climatic warming, 

resulting in the vicariant isolation of Goniistius populations. It is suggested that the divergences of Nemadactylus 

and Chironemus species followed that depicted for Aplodactylus. 
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Pleistocene glacial-interglacial changes in temperature and sea level have been implicated for 

the vicariant formation of east-west allopatric and ;Jarapatric distributions of geminate 

populations and species across Australia (Dartnall, 197 4; Knox, 1980; Edgar, 1986; Hutchins, 

1987; Chenoweth et al., 1998; Duke et al., 1998; and references therein). However, when 

employing mitochondrial third codon substitution calibrations of 2.3% divergence My{ 1 

(Martinet al., 1992) and 3.3% divergence My{ 1 (Bermingham et al., 1997), separation time 

estimates for both the Goniistius and Aplodactylus species pairs range from 7.8 to 11.2 Myr 

ago (late Miocene), while those for Nemadactylus are 2.7-3.8 Myr ago (mid Pliocene) (Figure 

7.2). Although absolute estimates of divergence time obtained from molecular data should be 

treated cautiously (Rand. 1994), the values for these taxa suggest that glaciations and climatic 

transitions prior to the Pleistocene should also be considered for the development of east-west 

allopatric and parapatric distributions of geminate populations and species across Australia. 

The proposed biogeographic history of east-west allopatric cirrhitoid spc;cies pairs differs 

from that suggested for another marine fish, Pomatomus saltatrix Linnaeus. Populations of P. 

saltatrix are similar in distribution to the Goniistius species pair, and have high dispersal 

potentials during both adult and early life history stages (Goodbred and Graves, 1996). 

Genetic studies revealed low but significant genetic divergence between east and west coast 

populations, and suggested recent separation, during the last 0.2-1.1 Myr (Nm1hen et al. 

1992; Goodbred and Graves, 1996). Lower genetic variability of the east coast population is 

consistent with founding from the west, and it has been proposed that dispersal occurred 

across the south coast during a period of elevated water temperature (Graves, 1998). 

The results of this study indicate that three cirrhitoid species pairs with east-west allopatric 

distributions across southern Australia each diverged from common ancestors during two 

distinct periods, the late Miocene and mid Pliocene. In the instance where divergences 

occurred during the same period (Aplodactylus and Goniistius, 7.8-11.2 Myr ago, late 

Miocene), different vicariance mechanisms are suggested by likely ancestral distributions. 

Although this study finds little evidence of a shared biogeographic history for geminate taxa 
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with east-west allopatric or parapatric distributions across southern Australia, it is hoped that 

it will encourage comprehensive studies of this topic. Such studies would examine genetic 

variation in taxa with different distributional ranges, habitat requirements, and dispersal 

capabilities. Other geminate taxa may also exhib1t levels of genetic variation more consistent 

with isolation during Pleistocene glaciations. 
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CHAPTER 8: Microsatellite analysis of Nemadactylus macropterus and related 

taxa (Cheilodactylidae). 

Abstract 

Variation at seven microsatellite loci was scored for the marine fish Nemadactylus 

macropterus in an effort to resolve population stock structure and provide infmmation on the 

performance of this technique. Stock structuring was not detected among Australian 

populations, or between Australian and New Zealand populations. The latter is incongruent 

with allozyme and mitochondrial DNA studies, which detected slight but significant 

divergence across the Tasman Sea. The highly polymorphic nature of the microsatellite loci 

analysed may have hindered the resolution of population structure. Microsatellites were also 

scored for a morphologically similar .South American species, N. bergi, and differentiation 

from N. rnacroptems was observed at one locus. A morphologically distinct species, 

Acantholatris (=Nemadactylus) monodactylus, differed from both N. macropterus and N. 

bergi at all loci. Analysis of expected heterozygosities suggested a recent reduction in the 

effective population size of N. bergi but not N. macropterus or A. monodactylus, consistent 

with observations from mitochondrial DNA. 

Introduction 

Measures of population divergence are useful for the management of fisheries. Populations in 

different regions are often demographically and genetically independent, even in 

continuously distributed species. Consequently, separate management of distinct populations, 

or "stocks", is desirable for the maintenance of genetic variation and avoidance of regional 

over-exploitation. Measures of population divergence may be provided by a variety of 

molecular, morphological, and ecological characters. 
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8. Microsatellite analysis of Nemadactylus macropterus and related taxa 

Two classes of molecular genetic characters have been commonly employed during studies of 

population divergence and fisheries management, allozyme electromorphs and mitochondrial 

DNA (mtDNA). Studies of marine taxa employing these characters have generally observed 

only limited population divergence (Gyllensten, 1985: Wm·d et al., 1994). Recently, 

microsatellite characters have been increasingly used, which exhibit more variation than 

either allozymes or mtDN A (O'Connell and Wright, 1997). Consequently, microsatellite 

analyses conducted on marine taxa have often identified population divergence not evident 

from other molecular characters (Bentzen et al., 1996; O'Connell et al., 1998; Shaw et al., 

1999a, b). 

The morwong or tarakihi, Nemadactylus macropterus Bloch and Schneider 

(Cheilodactylidae), is an abundant and commercially important marine fish of New Zealand 

and southern Australia (Figure 8.1). This species occurs demersally in nearshore and 

continental shelf waters :.lt depths of 10-200 m (Annala, 1987). Maximum ages exceed 35 yr, 

yet maturity is attained within 3-6 yr (Annala, 1987). Fecundity is high, and spawning occurs 

serially during late summer and autumn (Annala, 1987; Jordan, 1997). This species has 

potentially high dispersal capabilities, indicated by an offshore pelagic larval stage of 8-12 

months in duration (Annala, 1987; Bruce et al., 1996). Adult movements of up to 300 km 

have also been observed (Annala, 1987, 1993; Smith 1989). 

Four population genetic studies have been conducted on N. macropterus in an effort to 

resolve its stock structure for management purposes, using the techniques of allozyme 

electrophoresis (Gauldie and Johnston, 1980; Richardson, 1982; Elliott and Ward, 1994), and 

mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP; Grewe et al., 

1994). The studies of Richardson (1982), Elliott and Ward (1994), and Grewe etal. (1994) 

did not identify population divergence in southern Australia despite its range of over 3000 km 

of coastline. Small but significant divergence were detected between Australia and New 

Zealand. The first find is in contrast with the results of non-genetic studies based on otolith 

microchemistry (Thresher et al., 1994) and larval advection (Bruce et al., 1996), which 

93 



8. Microsatellite analysis of Nemadactylus macropterus and related taxa 

proposed that up to three stocks exist within southeast Australian waters alone. Gauldie and 

Johnston (1980) identified seven genetically defined stocks in New Zealand waters, although 

differences in allelic frequencies appeared attributable to selection rather than genetic 

isolation. 

Nemadactylus macropterus resembles N. bergi, and the latter occurs along the temperate east 

coast of South America. These taxa differ in lateral line scale counts, the width of the 

supracleithrum ,_.elative to the diameter of the eye, and the relative lengths of thickened 

pectoral fin rays (Norman, 1937; Lamb, 1990). However, these characters vary among the 

holotype and paratypes of N. bergi (R.W.G. White, University of Tasmania, 1995, pers. 

comm.), and its separate status requires justification. Although Acantholatris monodactylus 

(=N. monodactylus) and N. macropterus can be readily identified, chey do not possess 

separate monophyletic mtDNA lineages (Chapter 3). 

The aim of this project was to develop microsatellite markers for Nemadactylus macropterus 

and assess the levels of genetic divergence among Australian and New Zealand samples 

relative to those observed from allozyme and mtDNA RFLP studies. Individuals from the 

investigations of Elliott and Ward (1994) and Grewe et al. (1994) were analysed, facilitating 

comparison of the three molecular techniques in resolving stock structure. As microsatellite 

loci developed for one taxon may be applied to other closely related species (McConnell et 

al., 1995), N. bergi and A. monodactylus were also analysed. 

Materials and methods 

Partial genomic library construction 

Total genomic DNA was extracted from frozen liver tissue of Nemadactylus macropterus. A 

standard CT AB phenol-chloroform protocol (Hillis et al. 1990) was employed, and extracted 

DNA was tested for the presence of high molecular weight (>20 kb) fragments by agarose gel 

electrophoresis. Approximately 20 J.Lg of genomic DNA was digested with 50 units of Dpn II 
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and Hae III at 37°C for 16 h. The entire digest was subjected to agarose gel electrophoresis, 

and 400-600 bp fragments were excised and purified using the GENECLEAN Spin Kit (BIO 

101, Inc.). pUC 19 vector was similarly digested with BamH I and Hinc II, dephosphorylated 

with 10 units of calf intestinal alkaline phosphatase at 37oc for 1 h, and gel purified. The 

ligation of genomic DNA fragments into digested vector was performed in approximately 

equal molar ratios (400 ng vector, 67 ng insert) with 120 units ofT4 DNA ligase at l4°C for 

16 h. Approximately 100 ng of ligated DNA was transformed into XL1-Blue heat competent 

cells (Stratagene). Cells were grown on LB plates containing 50 ~g/mL ampicillin, 40 ~g/mL 

X-gal, and 120 ~g/mL IPTG. 

Microsatellite characterisation 

(AC) 16T oligonucleotide was 3' end-labelled with digoxygenin-11-ddUTP using the DIG 

Oligonucleotide 3' End Labelling Kit (Boehringer Mannheim). Colony lifts were performed 

using Hybond-N nylon membranes (Amersham), and treated following t~e instmctions for 

the DIG Luminescent Detection Kit (Boehringer Mannheim). Hybridisation was conducted at 

sooc for 6-12 h with a probe concentration of 10 pmol/mL, and chemiluminescent detection 

employed CSPD substrate. Plasmids from positive colonies were purified using a miniprep 

protocol (Sambrook et al., 1989). Insert sequences were PCR amplified using M13 universal 

primers, gel purified with the GENECLEAN Spin Kit, and sequenced with the ABI PRISM 

Dye Primer Cycle Sequencing Ready Reaction Kit (Perkin Elmer). 

Microsatellite amplification and electrophoresis 

Oligonucleotide primers for the PCR amplification of microsatellites were designed using the 

PrimerSelect program of the Lasergene package (DNASTAR). One primer for each locus was 

5' end-labelled with either FAM or HEX dye. Amplifications were conducted in 20 ~L 

volumes comprising 67 mM Tris-HCl (pH 8.8), 16.6 mM (NH4)2S04, 0.45% Triton X-100, 

0.2 mg/mL gelatin, 0.2 mM dNTPs, 1.5 mM MgCl2, 0.5 units Taq Fl DNA polymerase 

(Fisher Biotech), 0.15-0.4 mM of each oligonucleotide primer, and approximately 20 ng 

DNA. Thermal cycling conditions for each locus comprised 35 cycles of 94°C/30 sec, 
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62.5°C/30 sec, and 72°C/60 sec. An initial denaturation of 94°C/5 min and a final extension of 

72°CI10 min were employed. PCR products for each locus were mixed in appropriate ratios to 

achieve even peak heights when multiplexed on an ABI 377. Alleles were scored relative to 

the GS 500 size standard. 

Material analysed 

Nemadactylus macropterus DNA and frozen tissue samples from the studies of Elliott and 

Ward (1994) and Grewe et al. (1994) were analysed. Only four of the nine abundantly 

sampled populations were included in this study, although those chosen demarcate the 

majority of tLe species range (Figure 8.1). DNA was also extracted from ethanol preserved 

muscle tissues of 51 Nemadactylus bergi individuals (Mar del Plata, Argentina) and 29 

Acantholatris monodactylus individuals (Saint Paul and Amsterdam Islands, Indian Ocean, 

Figure 8.1 ). Total genomic DNA was extracted as for N. macropterus library construction. 

The ages of individuals were not known. 
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Figure 8.1. Species range, collection sites ("•"), and sample sizes for Nemadactylus macropterus 

(WA, Tasman, Eden, NZ), N. bergi (Mar del Plata), and Acantholatris monodactylus (Saint Paul and 

Amsterdam). 

Data analysis 

Genetic variability was measured in terms of the number of alleles per locus, the observed 

heterozygosity (H
0
), and the Hardy-Weinberg expected heterozygosity (He, gene diversity), 

calculated by Genepop 3.1c (Raymond and Rousset, 1995). Genepop was also used to 

calculate F 15 for the quantification of heterozygosity deficiency or excess, and to perform 

tests for Hardy-Weinberg equilibrium, genotypic linkage disequilibrium, and sample 

divergence. Fisher's exact test was used when there were less than five alleles per locus, 
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otherwise an unbiased estimate of the exact test statistic was calculated using a Marchov 

chain procedure. Critical significance levels were adjusted for simultaneous tests using the 

sequential Bonferroni procedure (Rice, 1989). 

Sample divergence was quantified by the calculation of FsT (Wright, 1951) and RsT (Slatkin, 

1995), using the programs FST AT (Goudet, 1995) and R5T-calc (Goodman, 1997) 

respectively. These measures differ in their assumptions of allele mutation. F5T assumes the 

infinite allele model (IAM), where mutations only produce new allelic states (Kimura and 

Crow, 1964), while RsT assumes a stepwise mutation model (SMM), where mutation changes 

the state of an allele by one step forward or backward, with equal probability (Ohta and 

Kimura, 1973). Multilocus estimates of both measures were obtained by averaging the 

variance components across loci (Weir and Cockerham, 1984; Slatkin, 1995). One thousand 

replicates of permutation were used to determine whether divergence was significantly 

greater than zero. The presence of an isolation-by-distance relationship between genetic 

divergence and shortest sea distance between populations was assessed using Mantel's ( 1967) 

test. Estimates of migration per area per generation (Nem) were obtained from FsT and RsT 

according to the equation of Wright (1943), assuming an island model and migration-drift 

equilibrium. 

Evidence for a recent bottleneck in effective population size (Ne) was assessed by determining 

the average heterozygosity excess across loci, using BOTTLENECK 1.1 (Piry et al., 1999). 

This program calculates the difference between the Hardy-Weinberg expected heterozygosity 

(He, gene diversity) and the expected heterozygosity based on the number of alleles and 

sample size assuming mutation-drift equilibrium (Heq). Three models of allele mutation were 

employed when calculating heterozygosity; IAM, SMM, and a two-phase model (TPM, 

DiRienzo et al., 1994) incorporating 95% single-step mutations and a 12% variance of 

multiple step mutations. 
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The relative divergence of populations and species was visualised using components of the 

PHYLIP 3.573 package (Felsenstein, 1993). Cavalli-Sforza and Edwards ( 1967) chord 

distances were calculated using GENDIST, and clustered by the neighbour-joining algorithm 

(Saitou and Nei, 1987) implemented with NEIGHBOR. Support for tree nodes was assessed 

by bootstrapping (Felsenstein, 1985a). Allele frequencies were resampled 1000 times using 

SEQBOOT, trees were constructed for each replicate dataset as above, and the consensus 

topology and bootstrap proportions were calculated using CONSENSE. 

Results 

Approximately 5000 clones were screened for the presence of (TG)n microsatellite repeat 

sequences, and 105 positive colonies were identified. Thirty-one positive clones were 

sequenced, containing a total of 46 microsatellite repeats, mostly of the type (TG)n. PCR 

primers were designed for seven loci, encompassing a range of microsatellite types (perfect, 

imperfect, compound: Weber, 1990), motifs, and number of repeats (Table 8.1). Two loci, 

Nnw 187 and Nnw 245, were developed from the same clone, their repeat sequences 

separated by 95 bp and amplified in a non-overlapping manner. The 3' thymine-rich primer 

for locus Nma 106 produced a non-specific product of approximately 180 bp in length, and 

therefore the opposite primer was chosen for dye-labelling. Other clone sequences that could 

be used for the design of microsatellite-amplifying PCR primers are deposited in GenBank 

(accession numbers AF125121-AF125138). 

The PCR primers successfully amplified each locus in the three species analysed, and all 

were polymorphic (Table 8.2). Nemadactylus macropterus exhibited 8-42 alleles per locus, 

with a gene diversities (He, expected heterozygosity) of 0.56-0.93 (Table 8.2). Nemadactylus 

bergi exhibited similar levels of polymorphism as N. macropterus (6-27 alleles per locus, He 

= 0.56-0.94 ), while A. monodactylus exhibited less variation ( 4-14 alleles per locus, He = 
0.10-0.77, Table 8.2). Allele size ranges for each locus overlapped between species and 
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among populations of N. macropterus (Table 8.2). A total of 30 private alleles were observed, 

but all were at low frequencies ( <0.034, Appendix 8.1 ). 

Table 8.1. Repeat sequence, GenBank accession. and PCR primers for each of the seven 

microsatellite loci developed for Nemadactylus macropterus. Locus names correspond to the species 

in which they were characterised and the length of the amplified product in the plasmid clone. 

Locus Repeat sequence GenBank ace. Primer sequences 

Nma 106 (AC),6 AF125115 GCACTTCATGT ACATGCAGGGTTTT 

TAAGCGGCATCTTGAGTGTCTGG 1 

Nma 118 (TCA)
9 

AF125116 CAAAAAGCAGCTCTACAGTGACAG 2 

CAGAGACAGTTTAGGGAAGTGAAGAC 

Nma 187 (AC)
13

(AG)
4 

AF125117 GCAACTTCCCCGAGCATCATTA 

AGAGCCTGCAATT AGAGTCAACCAA 2 

Nma230 (GT),s AF125118 AGTTTCCCCCTGCCTACA 

CCTGAACCACTGCGACACTG 1 

Nma 245 (GT)2, AF125117 TTCTTAAAGGGCGAGf:GATGCT A 2 

ATGAAAGATGAAGTGATGGAAACAGAC 

Nma 305 (GT) 
7
AT(GT)

9 
AF125119 GATCAGGCTCTTCCAGTTGTCATTCC 1 

GTGTCGGCGTTCAGAGGCATCC 

Nma 311 (AT)
8 

AF125120 ACTCCGTCTGTACTCTTTGTTGA 

CTCAGGCTGCAGGTGGTC 2 

' 5' end-labelled with FAM dye 
2 5' end-labelled with HEX dye 

Within populations, significant deviation from Hardy-Weinberg expected genotype 

frequencies were observed in nine instances after applying sequential Bonferroni corrections 

(Table 8.2). Each deviation involved heterozygote deficiency (F1s>O). Four significant 

deviations occurred at locus Nma 106, three at Nma 311, and two at Nma 305 (Table 8.2). 

Significant deviation was also observed at these three loci when pooling N. macropterus 

populations. Significant genotypic linkage disequilibrium was only observed during one 

comparison of loci after Bonferroni correction, involving the adjacent loci Nma 187 and Nma 

230 in A. monodactylus (P<O.OOl). 
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Table 8.2. Variation at seven microsatellite loci in populations of Nemadactylus macropterus, N. bergi, 
and Acantholatris monodactylus. Population sample size (n), number of alleles (A), size range, 
observed heterozygosity (H0 ), Hardy-Weinberg expected heterozygosity(H6 , gene diversity), Rs (Weir 
and Cockerham, 1984), and the probability of deviation from Hardy-Weinberg equilibrium based on 
exact tests. 

macropterus N. bergi A. monodactylus 
WA Eden 

n 49 50 51 29 

Nma 106 (AC), 6 

A 25 30 33 29 42 27 10 

range 91-147 93-190 91-185 91-177 91-190 95-195 93-153 

H0 , H., 0.61' 0.91 0.82, 0.94 0.65, 0.91 0.66, 0.95 0.69, 0.93 0.82, 0.94 0.24, 0.69 

F,s 0.331 0.125 0.283 0.309 0.263 0.126 0.655 

p 0.0000* 0.0929 0.0006* 0.0000* 0.0041' 0.0748 0.0000* 

Nma 118 (TCA) 9 

A 7 7 7 8 8 6 4 

range 112-133 112-130 112-133 112-133 112-133 109-127 118-130 

Ho, He 0.57, 0.1'31 0.50, 0.54 0.42, 0.50 0.56, 0.59 0.51' 0.56 0.55, 0.59 0.34, 0.35 

F,s 0.063 0.068 0.173 0.054 0.083 0.076 0.019 

p 0.6573 0.4478 0.2056 0.6153 0.359(:1 0.1194 1.0000 

Nma 187 (CA), 4 (GA) 4 

A 20 16 19 21 24 18 10 

range 179-223 185-215 181-219 177-227 177-227 179-223 181-211 

Ho, He 0.92, 0.90 0.92, 0.93 0.96, 0.93 0.92, 0.92 0.93, 0.92 0.941 0.93 0.76, 0.77 

F,s -0.016 0.01 -0.035 0.011 -0.009 -0.016 0.012 
p 0.6226 0.964 0.8989 0.2874 0.6275 0.66?9 0.3142 

Nma 230 (GT), 5 

A 21 19 21 20 25 19 13 

range 221-265 229-265 219-267 215-263 215-267 229-2?3 233-273 

Ho, He 0.92, 0.91 0.88, 0.92 0.91' 0.91 0.95, 0.94 0.92, 0.92 0.90, 0.91 0.69, 0.72 

F,s 0.049 0.08 0.143 0.089 0.089 0.101 0.28 
p 0.6379 0.0938 0.1238 0.5153 0.5375 0.2504 0.2923 

Nma 245 (GT) 2 , 

A 19 18 18 16 23 15 9 

range 217-257 219-261 219-259 217-251 217-261 219-253 221-245 

H0 , H. 0.88, 0.92 0.84, 0.91 0.69, 0.80 0.83, 0.91 0.81' 0.89 0.75, 0.83 0.38, 0.52 

F,s -0.006 0.04 0.005 -0.011 0.008 0.005 0.041 
p 0.4171 0.8054 0.1047 0.6061 0.0187 0.0692 0.0451 

Nma 305 (GT) 7AT(GT) 9 

A 21 19 23 21 27 17 14 

range 291-345 289-345 289-343 291-357 289-357 295-327 291-347 

H0 , H. 0.78, 0.94 0.74, 0.85 0.84, 0.95 0.81, 0.92 0.79, 0.92 0.92, 0.92 0.28, 0.73 

F,s 0.387 0.315 0.193 0.12 0.242 0.231 -0.022 
p 0.0000* 0.0141* 0.0064 0.0785 0.0000' 0.0233 1.0000 

Nma 311 (AT)8 

A 7 6 8 10 11 7 4 

Range 297-313 297-307 297-328 297-328 297-328 291-313 301-311 

H0 , H. 0.37, 0.60 0.38, 0.55 0.45, 0.56 0.56, 0.63 0.45, 0.59 0.43, 0.56 0.10, 0.10 

F,s 0.181 0.136 0.118 0.113 0.135 -0.001 0.626 
p 0.0425 0.0065* 0.0083* 0.0548 o.oooo· 0.2679 0.0000* 

*significant after sequential Bonferroni correction for simultaneous tests. 
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Significant allelic frequency differences were not observed during comparisons of N. 

macropterus populations at any locus following Bonferroni correction (Table 8.3). One locus, 

Nma 245, differentiated N. bergi from N. macropterus, while each locus differentiated A. 

monodactylus from N. macropterus and N. bergi (Table 8.3). 

When excluding those loci shown to deviate from Hardy-Weinberg expectations (Nma 106, 

Nma 305, Nma 311), FsT and R5T forN. macropterus were -0.001 and 0.00095 respectively, 

and neither was significantly greater than zero (?>0.528). Values for pairwise comparisons of 

individual populations did not exceed 0.00943, and were not significantly greater than zero 

(?>0.099, Table 8.4). Larger FsT and R5T were observed for the comparison of N. bergi and N. 

macropterus, 0.0075 and 0.02992 respectively, and these were significantly greater than zero 

(?<0.001 Table 8.4). Pairwise FsT and Rsr values involvingA. monodactylus exceeded 0.0581 

and 0.01331 respectively, and were significantly greater than zero (?<0.037) with exception 

of Rsr for the comparison against N. bergi (?<0.15100, Table 8.4). 

There was no evidence of an isolation by distance relationship among N. macropterus 

populations based on Mantel's test (FsT ?=0.401, RsT P=0.586, one-tailed Spearman rank 

correlation coefficient). Estimates of migration per area per generation (Nem) for N. 

macropterus were -250 individuals based on F 5T, and -264 based on RsT' Negative sign of 

estimates indicates greater within population variance than between population variance, and 

effectively unlimited exchange. 
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Table 8.3. Probabilities of homogeneity in allelic frequencies between populations of Nemadactylus 

macropterus, and among N. macropterus, N. bergi, and Acantholatris monodactylus, based on exact 

tests. The Australia population comprises the WA, Eden1, and Tasman populations combined. 

WA Eden Tasman Australia macropterus N. bergi 

Nma 106 

Eden 0.21728 Nma 106 

Tasman 0.70219 0.19998 N. bergi 0.07579 

NZ 0.87096 0.08239 0.92245 0.8255 A. monodactylus 0.00000* 0.00000* 

Nma 118 

Eden 0.901 i'6 Nma 118 

Tasman 0.90127 0.91157 N. bergi 0.10528 

NZ 0.60275 0.75697 0.78151 0.37778 A. monodactylus 0.00036* 0.00000* 

Nma187 

Eden 0.34003 Nma 187 

Tasman 0.38245 0.27945 N. bergi 0.17567 

NZ 0.79078 0.59866 0.73159 0.74278 A. monoda.ctylus 0.80000* 0.00000* 

Nma. 230 

Eden 0.61966 Nma230 

Tasman 0.87245 0.44222 N. bergi 0.0491 

NZ 0.28602 0.50699 0.03298 0.13198 A. monoda.cty!us 0.000001 0.00071* 

Nma. 245 

Eden 0.12551 Nma. 245 

Tasman 0.67207 0.95392 N. bergi 0.00000* 

NZ 0.30034 0.48608 0.23884 0.167 A. monoda.ctylus 0.00000* 0.00000* 

Nma. 305 

Eden 0.91083 Nma. 305 

Tasman 0.03528 0.05086 N. bergi 0.05741 

NZ Q.07479 0.089 0.60376 0.06886 A. monoda.ctylus 0.00000* 0.00000* 

Nma. 311 

Eden 0.52763 Nma 311 

Tasman 0.411 0.42766 N. bergi 0.14036 

NZ 0.03125 0.10875 0.45654 0.05654 A. monoda.ctylus 0.00000* 0.00000* 

*significant after sequential Bonferroni correction for simultaneous tests 
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Table 8.4. Pairwise measures of genetic divergence between populations of Nemadactylus 

macropterus, and among N. macropterus, N. bergi, and Acantholatris monodacty/us (FsT below 

diagonal, RsT above diagonal) based on loci Nma 118, Nma 187, Nma 230 and Nma 245. The 

probabilitv that values are greater than zero was assessed by i 000 replicates of permutation. 

macropterus Australia 

WA -0.00783 -0.00537 -0.00006 

Eden 0.0013 -0.00118 -0.00329 

Tasman -0.0034 -0.0009 0.00943 

NZ -0.0016 -0.0022 -0.0007 0.00408 

Australia -0.001 

A. monodactylus N. bergi N. macropterus 

A. monodactylus 0.01331 0.02257* 

N. bergi 0.0641 * 0.02992* 

N. macropterus 0.0581 * 0.0075* 

* P<0.05 

A significant exce:;;s of Hardy-Weinberg expected heterozygosity was o~served for N. bergi 

under the infinite allele model (?=0.03125), but no such excess was observed for any other 

population or mutation model (Table 8.5). 

A representation of genetic divergence among samples and species was obtained by 

clustering Cavalli-Sforza and Edwards (1967) pairwise chord distances (Figure 8.2). 

Acantholatris monodactylus was divergent from the samples of N. macropterus and N. bergi. 

Nemadactylus bergi clustered immediately adjacent to samples of N. macropterus, although 

the level of divergence was only slightly greater than the interpopulation divergences for N. 

macropterus. TheN. macropterus populations appeared equally divergent from one another. 

Low bootstrap support ( <70%) was observed for the inferred relationships among N. 

macropterus sampling sites, while high support was observed for the placement of N. bergi 

and A. monodactylus. 
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Table 8.5. Probability that Hardy-Weinberg expected heterozygosity (H., gene diversity) does not 

exceed the heterozygosity expected from the number of alleles and sample size when assuming 

mutation-drift equilibrium (H.q). averaged across loci. Wilcoxon signed-ranks tests were conducted for 

infinite allele (lAM), stepwise (SMM), and two-phase (TPM, 95% single step, 12% variance of 

multistep) mutation models. Those loci exhibiting significant deviation from Hardy-Weinberg expected 

genotype frequencies were excluded from analysis, leaving Nma 118, Nma 187, Nma 230, and Nma 

245. 

Species/populatior lAM TPM SMM 

A. monodactylus 0.43750 0.96875 0.96875 

N. bergi 0.03125* 0.15625 0.56250 

N. macropterus 0.06250 0.90625 1.00000 

New Zealand 0.06250 0.56250 0.84375 

Albany 0.06250 0.90625 1.00000 

Eden 0.06250 0.90625 0.90625 

Tasman 0.06250 0.90625 0.90625 

'P<0.05 

Discussi.on 

Allelic divergence was not observed among sampling sites of Nemadactylus macropterus in 

the waters of New Zealand and southern Australia (Table 8.3). Measures of genetic 

divergence were small, and not significantly greater than zero CFsT = -0.001, RsT = -0.00095, 

P>0.528), as were the values obtained during pairwise comparisons of populations 

(FsT<0.0014, R5T<0.00944, P>0.099, Table 8.4). Estimates of migration per area per 

generation indicated unlimited exchange. The South American species N. bergi differed from 

N. macropterus only at Nma 245 (P<O.OOOOl, Table 8.3). Pairwise FsT and RsT for this 

comparison were small, 0.0075 and 0.02992 respectively, but significantly greater than zero 

(P<0.001, Table 8.4). Acantholatris monodactylus diverged from N. macropterus and N. 

bergi, with significantly different allele frequencies at all loci (?<0.00071, Table 8.3). 

Genetic divergence of A. monodactylus was also comparatively high (FsT = 0.0581-0.0641, 

105 



8. Microsatellite analysis of Nemadactylus macropterus and related taxa 

RsT = 0.01331-0.02257, Table 8.4), and significantly greater than zero (P<0.037) with 

exception of the RsT with N. bergi (P=0.151 00) 

New Zealand 

N. bergi 
Tasman 

Albany 

----0.005 

A. monodactylus 

Figure 8.2. Neighbour-joining phenogram of pairwise Cavalli-Sforza and Edwards (1967) chord 

distances derived from microsatellite allele frequency data (Appendix 8.1 ). Support for tree nodes is 

indicated by bootstrap percentages, based on 1000 replicate datasets. Those loci exhibiting significant 

deviation from Hardy-Weinberg expected genotype frequencies were excluded from analysis, leaving 

Nma 118, Nma 187, Nma 230, and Nma 245. 
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Deviation from Hardy-Weinberg expectations 

Significant deviation from Hardy-Weinberg expected genotype frequencies, involving 

heterozygote deficiency, were observed for nine population-locus combinations. Four of these 

involved Nrna 106, three were for Nrna 311, and two were at Nrna 305 (Table 8.2). Each of 

these loci was out of equilibrium for two or three samples of N. rnacropterus (Table 8.2). 

They were also out of equilibrium when all four N. rnacropterus samples were pooled, and 

for A. rnonodactylus, but not N. bergi (Table 8.2). 

Interpretations of population divergences based on loci not conforming to Hardy-Weinberg 

expectations can be misleading, as any differences observed may not be entirely the result of 

genetic drift. Three instances of significant Hardy-Weinberg disequilibrium were observed at 

loci which differentiated populations or species, involving comparisons between N. 

rnacropterus and A. rnonodactylus at Nrna 106, Nrna 305, and Nrna 311. However, these 

species diverged a~ the remaining four loci which were in Hardy-Weinberg equilibrium, and 
' 

Fs1 and RsT values also were significantly greater than zero for this comparison when 

excluding the potentially problematic loci. 

Deviation from Hardy-Weinberg expected frequencies in the form of heterozygote deficiency 

could be explained by several factors relating to the microsatellite markers themselves. The 

presence of non-amplifying (null) alleles is a commonly invoked explanation (Garda de 

Leon, 1997; Rico et al., 1997). Allele size homoplasy, a situation where alleles of the same 

size differ in sequence composition, may be particularly predominant at highly variable loci. 

Scoring errors can also lead to the underestimation of heterozygote frequencies, especially as 

the shorter allele of microsatellite heterozygotes is often preferentially amplified, making the 

larger allele comparatively difficult to detect. Another alternative is non Mendelian 

inheritance, although the absence of significant heterozygote deficiency for every population 

at any single locus makes this unlikely for N. macropterus and A. rnonodactylus (Table 8.2). 
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Factors relating to the biology of the species can also cause heterozygote deficiencies, such as 

Wahlund effect, inbreeding, selection, and non-random mating. Wahlund effect is unlikely 

for N. macropterus and A. monodactylus given the low values of FsT· Similarly, inbreeding is 

unlikely given the large population sizes for these species. Although microsatellites are 

considered to be non-coding sequences, they may be closely linked to loci which are under 

selection (Jarne and Lagoda, 1996). Little is known about the reproductive behaviour of these 

species, and therefore non-random mating is a possibility. 

Comparison of microsatellites with allozyme and mtDNA RFLP studies of Nemadactylus macropterus 

The results obtained from the analysis of microsatellite data concur with the previous 

allozyme and mtDNA RFLP studies (Richardson, 1982; Elliott and Ward, 1994; Grewe et al., 

1994 ), in that there was little suggestion of population divergences within southern Australia. 

The microsatellite values of FsT and RsT for the Australian populations were low and not 

significantly greater than zero (-0.001 and -0.00095 respectively, P>0.528), as was the ,, 

homologous measure obtained from allozymes (GsT=0.0052, P=0.269; Elliott and Ward, 

1994; no homologous value was calculated for mtDNA). 

The allozyme and mtDNA RFLP studies found slight but significant divergence between 

New Zealand and Australian populations (Elliott and Ward, 1994;·Grewe et al., 1994). No 

such differences were observed for any of seven microsatellite loci, even with pooling of the 

Australian samples (P>0.031, Table 8.3). Similarly, Trans-Tasman Sea microsatellite FsT and 

RsT were small and not significantly greater than zero, both during pairwise comparisons of 

individual samples (FsT<-0.0007, P>0.584; R5T<0.00943, P>0.099;, Table 8.4), or when 

pooling Australian samples (F5T=-O.OO 1, P=O. 7 60; R5T=0.00408, P=0.161 ). Trans-Tasman 

Sea values of G5T from the allozyme and mtDNA RFLP studies were also small, but larger 

than the homologous measures obtained for rnicrosatellites and significantly greater than that 

attributable to sampling error alone (GsTallazymes=0.0046, P=0.002, Elliott and Ward, 1994; GsT 

mtDNA=0.013, P=0.024, Grewe et al., 1994). 
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Several microsatellite studies of marine species have identified small but significant 

population differences that were not revealed from the analysis of allozyme or mtDNA data 

(Bentzen et al., 1996; O'Connell et al., 1998; Shaw et al., l999a, b). In contrast, this study 

did not identify stock structuring in N. macropterus from southern Australia, and also failed 

to distinguish Australian and New Zealand populations despite divergence detected by other 

molecular techniques (Elliott and Ward, 1994; Grewe et al., 1994). It has been suggested that 

reduced levels of population difference detected by microsatellites relative to allozymes and 

mtDNA might result from homoplasy in allele sizes at highly polymorphic microsatellite loci 

(Hauser and Ward, 1998; Shaw et al., 1999a, b). This explanation may be particularly 

applicable toN. macropterus, as the effects of allelic homoplasy will be most pronounced in 

species with large effective population sizes due to the greater influence of mutation relative 

to drift (Nauta and Weissing, 1996; Shaw et al., 1999b). Direct sequencing, single strand 

conformation polymorphism (SSCP), or heteroduplex analysis can detect allelic homoplasy. 

Conclusions for Nemadactylus macropterus 

The absence of genetically detectable stock structuring in N. macropterus of southern 

Australia has been previously ascribed to dispersal (Elliott and Ward, 1994; Grewe et al., 

1994). This species possesses an offshore pelagic larval phase of 8-12 months in duration, 

suggestive of high dispersal capabilities, and adult movements of up to 300 km within a year 

have been recorded (Annala, 1987, 1993; Smith 1989; Bruce et al., 1996). Molecular 

phylogenetic analysis of Nemadactylus also suggests high dispersal capabilities within this 

group (Chapter 3). Larval dispersal of N. macropterus appears linked with surface circulation 

patterns (Bruce et al., 1996), and the principal ocean currents operating within the Australian 

range of this species, the Leeuwin and East Australian Currents, could facilitate movement 

throughout much of this region. 

Alternatively, dispersal may be low inN. macropterus, and stock structuring may not have 

existed long enough for any genetic signal to develop. A recent origin of N. macropterus is 
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inferred from the molecular phylogenetic analysis of Nemadactylus (Chapter 3), and the large 

population sizes of this species may result in slow genetic drift. 

It is poignant to note that the levels of gene flow required to homogenise populations 

genetically are somewhat lower than the levels of migration at which managers would 

consider stocks distinct (Carvalho and Hauser, 1995). Although the estimates of migration 

provided by this and the previous genetic studies of N. macropterus are high from an 

evolutionary pe;-spective. in management terms they suggest that recovery of populations 

after regional over-exploitation will be slow, although there should be little loss of genetic 

diversity. Otolith microchemistry and larval advection studies of N. macropterus suggested 

three stocks within southeast Australia alone, and as these techniques are less sensitive to the 

effects of dispersal their findings may be considered better representations of the true stock 

structure (Thresher et al. 1994; Bruce et al., 1996). However, an appreciation of their 

sensitivity to fluctuations in environmental conditions is required. 

Species-level comparisons 

The separate status of N. bergi is questionable, as the morphological characters used to 

distinguish this species from N. macropterus are inconsistent·. A previous mtDNA analysis 

revealed lineage monophyly for N. bergi, suggesting that separate status at some level was 

warranted (Chapter 3). In contrast, polytypic clades were observed for N. macropterus and A. 

monodactylus despite clear morphological difference (Chapter 3). Microsatellite allele 

frequencies distinguished N. bergi and N. macropterus at one locus, Nma 245, while A. 

monodactylus differed from both N. macropterus and N. bergi at all seven microsatellite loci 

(Table 8.3). Consequently, the separate taxonomic status of these species is supported. 

Incomplete lineage sorting was offered as an explanation for the presence polytypic clades in 

N. macropterus and A. monodactylus, given the recent origins and large population sizes of 

these species (Chapter 3). Given a similarly recent origin and presently large population size, 

the absence of polytypic clades for N. hergi was explained in terms of a historical reduction 
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in effective population size, which decreased the number of generations required for complete 

lineage sorting (Chapter 3; A vise 1986). This hypothesis is supported by comparisons of 

Hardy-Weinberg expected heterozygosity (He) and mutation-drift equilibrium heterozygosity 

(Hcq), which suggest a recent reduction in the effective population size of N. bergi, but not in 

the other taxa (Table 8.5). Founder effect, population bottlenecks, and variance in 

reproductive success (Hedgecock, 1994) could each have reduced the effective population 

size of N. bergi. A candidate for a population bottleneck is the over-fishing of this species 

during the 1960's (Cotrina, 1971 ). 

111 



8. Microsatellite analysis of Nemadactylus macropterus and related taxa 

Appendix 8.1. Microsatellite allele frequencies at seven loci in populations of Nemadactylus 

macropterus, N. bergi, and A. monodactylus. 

N. macropterus A. monodactylus 

Locus/AIIe!.e Tasman Is. Eden New Zealand 

n 55 50 59 51 29 

Nma 106 

91 0.021 0.028 0.034 

93 0.021 0.028 0.071 0.025 0.276 

95 0.021 0.028 0.040 0.029 

97 0.064 0.057 0.020 0.034 0.069 0.017 

98 0.008 

99 0.032 0.019 0.030 0.051 0.098 

100 0.009 

101 0.032 0.066 0.061 0.042 0.118 0.483 

103 0.021 0.038 0.121 0.059 0.088 

105 0.043 0.028 0.040 0.059 0.118 0.034 

107 0.117 0.057 0.040 0.085 0.039 0.086 

109 0.106 0.057 0.061 0.068 0.049 

111 0.074 0.038 0.040 0.059 0.020 

1 12 0.008 

1 13 0.064 0.038 0.081 0.025 0.069 

115 0.064 0.075 0.071 0.102 0.020 
Y, 

0.034 

117 0.043 0.075 0.010 0,076 0.049 

119 0.043 0.066 0.040 0.042 0.049 

121 0.032 0.066 0.030 0.034 0.020 

123 0.032 0.028 0.010 0.042 O.Q10 

125 0.021 0.019 0.010 0.008 0.029 

127 0.032 0.019 0.030 0.017 0.029 

129 0.011 0.019 0.040 0.025 0.010 

131 0.053 0.030 0.017 0.010 0.017 

133 0.011 0.009 0.010 0.008 0.010 

135 0.019 0.008 

137 0.01 1 0.020 0.010 0.017 

139 0.009 0.008 0.010 

141 0.017 0.010 

143 0.021 0.009 0.010 0.017 0.010 

145 0.020 0.010 

147 0.011 0.009 0.010 

149 0.009 

151 0.028 0.010 0.008 0.010 0.017 

153 0.009 0.017 

157 0.010 

161 0.010 

163 0.010 

175 0.009 

177 0.009 0.008 

183 0.009 

185 0.009 
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macropterus N. bergi A. monodactylus 

Locus/ Allele Tasman Is. Eden New Zealand 

190 0.010 

195 0.010 

missing 0.041 0.036 0.010 0.362 

Nma 118 

109 0.010 

112 0.020 0.010 0.010 0.025 0.010 

115 0.020 0.010 0.020 0.042 

118 0.582 0.594 0.650 0.593 0.520 0.793 

121 0.214 0.260 0.200 0.237 0.350 0.034 

124 0.071 0.073 0.060 0.051 0.080 0.155 

127 0.082 0.042 0.050 0.025 0.030 

130 0.010 0.008 0.017 

133 O.Q10 0.010 0.017 

missing 0.127 0.020 

Nma 187 

177 0.008 

179 0.010 0.008 0.029 

181 0.009 0.008 0.010 0.121 

183 0.031 0.027 0.008 0.010 

185 0.055 0.040 0.017 0.020 0.017 

187 0.063 0.045 0.070 0.025 0.078 

189 0.042 0.045 0.060 0.076 0.108 0.052 

191 0.125 0.055 0.100 0.110 0.098 0.448 

193 0.073 0.100 0.110 0.068 0.137 0.121 

195 0.146 0.091 0.100 0. i 10 0.078 0.069 

197 0.104 0.136 0.060 0.110 0.088 

199 0.115 0.109 0.140 0.136 0.088 

201 0.083 0.064 0.070 0.068 0.088 0.034 

203 0.052 0.073 0.030 0.076 0.020 

205 0.010 0.027 0.060 0.025 0.052 

207 0.021 0.055 0.040 0.059 0.049 0.034 

209 0.031 0.064 0.020 0.017 0.029 

211 0.042 0.009 0.030 0.017 0.039 0.052 

213 0.010 0.018 0.040 0.034 

215 0.010 0.030 0.010 

217 0.010 0.009 

219 0.010 0.009 

223 0.010 0.008 0.020 

227 0.008 

missing 0.020 

Nma230 

215 0.008 

219 0.009 

221 0.010 
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N. macropterus N. bergi A. monodactylus 

Locus/Allele Tasman Is. Eden f\iew Zealand 

225 

227 0.021 0.009 0.034 

229 0.009 0.010 0.017 0.051 

231 0.021 0.009 0.020 0.068 

233 0.052 0.027 0.040 0.034 0.010 0.167 

235 0.073 0.055 0.050 0.085 0.051 

237 0.052 0.064 0.090 0.102 0.082 0.271 

239 0.042 0.082 0.130 0.102 0.071 0.146 

241 0.135 0.164 0.080 0.076 0.092 0.042 

243 0.115 0.145 0.090 0.085 0.031 0.021 

245 0.094 0.091 0.110 0.051 0.051 

247 0.073 0.127 0.170 0.093 0.061 

249 0.104 0.045 0.030 0.042 0.041 0.021 

251 0.031 0.055 0.070 0.042 0.092 

253 0.021 0.027 0.030 0.059 0.102 0.063 

255 0.063 0.009 0.010 0.042 0.051 0.063 

257 0.042 0.027 0.030 0.017 0.041 0.125 

259 0.010 0.018 0.010 0.008 0.041 

261 0.010 0.009 0.010 0.017 0.071 0.021 

263 0.010 0.009 0.010 0.017 0.020 

265 0.010 O.Q10 0.031 

267 0.009 0.021 

271 0.021 

273 0.010 0.021 

missing 0.020 0.039 0.172 

Nma 245 

217 0.010 0.008 

219 0.020 0.031 0.010 0.008 0.011 

221 0.010 0.021 0.040 0.008 0.011 0.135 

223 0.051 0.010 0.050 0.085 0.128 0.135 

225 0.071 0.062 0.080 0.085 0.085 0.054 

227 0.102 0.052 0.070 0.076 0.053 0.027 

229 0.092 0.113 0.200 0.161 0.032 

231 0.163 0.155 0.080 0.127 0.191 0.189 

233 0.092 0.082 0.110 0.110 0.170 

235 0.092 0.144 0.100 0.068 0.085 0.054 

237 0.102 0.072 0.080 0.068 0.053 0.027 

239 0.051 0.072 0.050 0.102 0.064 

241 0.031 0.041 0.050 0.042 0.032 0.081 

243 0.041 0.031 0.010 0.043 0.135 

245 0.020 0.021 0.010 0.032 0.162 

247 0.034 

249 0.020 0.031 0.020 0.008 

251 0.010 0.031 0.010 0.008 

253 0.010 0.011 

255 0.020 

257 0.010 
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N. macropterus N. bergi A. monodactylus 

Locus/ Allele Eden New Zealand 

259 

261 0.010 0.010 

0.118 0.078 0.229 
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N. macropterus N. bergi A. monodactylus 

Tasman Is. Eden New Zealand 

289 0.018 0.011 

291 0.010 0.009 0.365 

293 0.009 0.011 0.043 0.019 

295 0.082 0.064 0.063 0.034 0.010 

297 0.102 0.045 0.116 0.026 0.127 0.115 

299 0.041 0.027 0.074 0.026 0.098 0.058 

301 0.061 0.091 0.063 0.095 0.098 

303 0.102 0.091 0.158 0.112 0.088 0.077 

305 0.041 0.100 0.074 0.112 0.108 

307 0.061 0.082 0.084 0.129 0.108 

309 0.092 0.055 0.021 0.078 0.039 

311 0.071 0.045 0.053 0.069 0.069 0.058 

313 0.041 0.036 0.063 0.060 0.108 0.038 

315 0.071 0.036 0.042 0.043 0.020 0.038 

317 0.031 0.036 0.063 0.043 0.020 

319 0.031 0.073 0.042 0.017 0.029 0.077 

321 0.020 0.055 0.032 0.017 0.029 0.058 

323 0.041 0.045 0.011 0.026 0.010 

325 0.009 0.017 0.029 

327 0.020 0.009 0.011 0.010 

329 0.010 0.009 0.038 

331 0.020 0.027 0.019 

333 0.019 

335 0.018 0.017 

341 0.020 

343 0.018 0.009 

345 0.031 0.011 

347 0.019 

357 0.017 

missing 0.050 0.017 0.103 

Nma 311 

291 0.010 

297 0.020 0.037 0.010 0.026 

299 0.010 0.010 0.009 

301 0.019 0.026 0.020 

303 0.061 0.102 0.070 0.068 0.020 

305 0.602 0.639 0.640 0.564 0.627 0.020 

307 0.163 0.074 0.160 0.145 0.127 0.940 

309 0.122 0.074 0.110 0.077 0.186 

311 0.037 0.068 0.020 0.020 

313 0.020 0.010 

315 0.009 

328 0.019 0.009 

missing 0.018 0.008 0.138 
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The use of molecular phylogenetic analysis to examine aspects of cirrhitoid taxonomy was 

largely successful. With respect to the Cheilodact;.;lidae, the results from this study were in 

general agreement with the taxonomic revisions suggested by Lamb ( 1990) based on the 

analysis of morphological features. Distinct placement of the two South African 

Cheilodactylus was supported, but at the familial rather than generic level (Chapter 5). 

Remaining members of Cheilodactylus are sufficiently divergent from one another and 

Chirodactylus for separate generic allocation, although it appears that the composition of 

Goniisitus and Morwong should differ slightly from that suggested by Lamb (1990) (Chapters 

4 and 5). In contrast, this study identified taxonomic problems not previously suggested by 

morphology. These include the synonymy of Nemadactylus and Acantholatris (Chapter 3), 

and the doubtful monophyly of Chirodactylus (Chapter 5). The ability to statistically compare 

alternative classifications by the enforcement of topological constraints during phylogenetic 

analysis was highly useful. 

The advantages of molecular techniques for systematic studies of morphologically similar 

taxa were clearly evident during aspects of this study. Cryptic speciation was identified in C. 

(G.) vittatus based on relative levels of molecular divergence, and given the molecular data 

there can be confidence in the use of subtle external features to distinguish Northern and 

Southern Hemisphere groups as species (Chapter 4). Molecular phylogenetic analysis of 

Nemadactylus and Acantholatris suggested that formal recognition of the king tarakihi, 

Nemadactylus sp., requires morphological and perhaps molecular comparison with A. gayi 

(Chapter 3). Microsatellites clearly distinguished N. bergi, N. macropterus, and A. 

monodactylus (Chapter 8). Conflicting results for N. macropterus and A. monodactylus from 

the analysis of mtDNA demonstrate the need for thorough interpretation of molecular data 

(Chapter 3). 

The advantages of molecular phylogenetic analyses for investigations of historical 

biogeography were readily apparent during this study. Reconstructed phylogeographic 
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relationships provided information regarding the frequency, direction, and origins of dispersal 

events within Nemadactylus, Acantholatris, and Aplodactylus, and also the frequency of 

transequatorial divergences within Goniisitus (Chapters 3, 4, and 6). In the case of 

Nemadactylus and Acantholatris, at least two dispersal events from the region of Australia 

and New Zealand were identified, rather than a minimum of one suggested by distributions 

alone (Chapter 3 ). Similarly, three transequatorial divergences were identified for Goniistius, 

rather than a minimum of two (Chapter 4). 

The presence of clock-like sequence evolution and the conservative application of rate 

calibrations also proved highly useful for the reconstruction of cirrhitoid historical 

biogeography. Levels of molecular variation indicated that the three transequatorial 

divergences within Goniistius occurred during two separate periods (Chapter 4). Similarly, 

different ages were inferred for the divergences of geminate cirrhitoids with similar east-west 

allopatric distributions across southern Australia, indicating separate biogeographic histories 

(Chapter 7). Absolute estimates of divergence time for members of the Cheilodactylidae and 

Aplodactylidae appreciably postdated periods of continental fragmentation, confidently 

rejecting this mechanism of vicariant isolation as an explanation for the observed 

distributions of these taxa (Chapters 4, 5 and 6). 

Pleistocene glaciations have been widely promoted as causes for disjunct distribution patterns 

(Knox, 1980; Edgar, 1986; Hutchins, 1987; Lindberg, 1991). However, there was little 

evidence of divergence during this period for the antitropically distributed Goniistius 

(Chapter 4), or for those cirrhitoids with east-west allopatric distributions across southern 

Australia (Chapter 7). While Pleistocene glaciations have undoubtedly influenced the 

radiation and present distribution of taxa, they may be too readily applied as explanations in 

many instances, perhaps somewhat encouraged by the comparative paucity of climatic 

reconstructions for more ancient periods. 
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This study revealed synergistic benefit from the combined application of molecular 

systematic and population genetic analyses (Chapters 3 and 8). The recent origin of N. 

macropterus identified from molecular phylogenetic analysis suggested that the absence of 

genetically detectable stock structuring in the waters of southern Australia could be because 

there has been insufficient time for any genetic signal of structure to develop. Species ages 

may be estimated from DNA sequence divergence, and comprise useful information for 

population genetic studies in which stock structuring is not observed, yet such information is 

rarely collected. Analysis of microsatellites supported the suggestion that stochastic lineage 

sorting and differences in historical effective population sizes were responsible for the 

distribution of polytypic mtDNA clades among N. macropterus, N. bergi, and A. 

monodactylus, rather than interbreeding. 

This study was not successful in achieving some of its goals, and there are several directions 

for future research. Relationships among Nemadactyius and Acantholatris were not 

completely resolved from the mtDNA sequences apparently due to incomplete lineage sorting 

(Chapter 3). Phylogenetic analysis based on microsatellite allele frequencies may resolve 

these relationships (Takezaki and Nei, 1996), and reveal the pathways of dispersal throughout 

the Southern Ocean. Higher-level relationships among the Cheilodactylidae also were poorly 

supported (Chapter 5). This may have been due to a rapid burst of radiation, obscuring 

phylogenetic signal. The analysis of large quantities of low variability characters may resolve 

higher-level cheilodactylid relationships (A vise et al., 1994), and this would assist the generic 

allocation of three species that could not be classified during this study (Chapter 5). The 

absence of N. macropterus stock structuring as suggested by microsatellites was unexpected 

given the results from previous genetic analyses (Chapter 8). The suggestion that 

microsatellite allelic homoplasy hindered stock divergence in this species requires 

investigation, to confirm the presence of homoplasy and quantify its consequences. 
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