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INTRODUCTION 

 

The changing coastal and estuary environment 

Marine bivalve molluscs populate shallow coastal waters and estuaries, where 

phytoplankton for feeding is most abundant (Dame 2012). In coastal waters and 

estuaries bivalves, such as oysters, have adapted to changing environmental 

conditions, including exposure to air, seasonal changes in ambient air and water 

temperature and variations in salinity (Dame 2012). Temperature and salinity are two 

of the dominant environmental factors which influence bivalve mollusc physiology 

(Shumway 1996; Kim and Powell 2009; Dame 2012). There are many additional 

seasonal changes, closely related to temperature and salinity, which also affect 

oyster physiology, including nutrient abundance, tidal patterns (Cheney et al. 2000), 

suspended sediment (Ropert et al. 2008) and oxygen saturation in the water 

(Shumway and Koehn 1982). 

 

Temperature 

Bivalve molluscs are poikilotherms and temperature controls the rate of many key 

physiological processes (Galtsoff 1964). For example, temperature is the major 

controlling factor for feeding, growth rate,  (Chavez-Villalba et al. 2005; Dame 2012) 

respiration rate (Shumway and Koehn 1982), oxygen consumption (Dunphy et al. 

2006; Dame 2012) and excretion, in marine bivalve molluscs (Dame 2012). 

Temperature also influences oyster haemocyte function and numbers (Samian and 

McCombie 2008). In triploid Pacific oysters (C. gigas), which were acclimatized to 

either 12 or 18oC, there was corresponding acceleration in metabolism and higher 

haemocyte activity, including higher phagocytosis rate, greater synthesis of reactive 

oxygen species (ROS) by granulocyte haemocytes and increased numbers of 

circulating haemocytes as the ambient temperature increased (Samain and 

McCombie 2008). However in diploid Pacific oysters (C. gigas) once temperatures 

reached 21oC there was a decrease in haemocyte phagocytic activity and numbers 

of circulating haemocytes (Samain and McCombie 2008). After incubation of 

haemocytes at 35-40oC for four hours (similar to conditions for inter-tidal oysters out 

of water, in summer in France, where the research was conducted) there was 

degradation of haemocyte function including increased haemocyte mortality, and 
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lower haemocyte amino peptidase and esterase activity (Samain and McCombie 

2008). 

 

Salinity 

Variation in salinity in the estuarine environment is another key environmental factor 

which affects a range of physiological processes and structural properties of 

bivalves, including oyster species (Shumway 1996, Dame 2012). Oysters are 

osmoconformers and changes in water salinity directly influence the osmotic 

concentrations of their extracellular fluids, the relative proportions of solutes in their 

extracellular fluids and the density and viscosity of extracellular fluids (Kinne 1964; 

Gullian and Aguirre-Macedo 2010). In addition, salinity affects the adsorption and 

saturation of dissolved gases in water (Dame 2012). By this means, salinity indirectly 

influences respiration rate (Dame 2012). The stress of abruptly changing salinity can 

directly affect bivalves by depressing their respiration for up to 2 days as they adapt 

and osmoconform to the new salinity (Berger and Kharazova 1997). Salinity can also 

directly and indirectly affect the immune system. Very low salinity (5ppt) and hyper 

salinity (41ppt) will suppress haemocyte phagocytosis rate (Gagnaire et al. 2006). 

Salinity will also indirectly influence the immune system. For example 32ppt favoured 

the proliferation and viability of Listonella anguillarum (a bacterial pathogen of Ostrea 

edulis) and there was corresponding increase in circulating granular haemocyte and 

haemolymph hydrogen peroxide concentration in O. edulis (Hauton et al. 2000). 

When the salinity dropped to levels unfavourable for L. anguillarum there was no 

appreciable rise in haemocyte numbers or haemolymph hydrogen peroxide 

concentrations compared to control oysters (Hauton et al. 2000). 

 

In combination, temperature and salinity can often act synergistically on bivalve 

physiology (Kinne 1964; Dame 2012), including oysters (Galtsoff 1964). Together 

temperature and salinity directly affect processes governing ingestion, growth, 

filtration rate, respiration rate, oxygen consumption and the division of assimilation 

into somatic and gametic growth (Powell et al. 1992; Powell et al. 1994; Kobayashi 

et al. 1997; DiGialleonardo et al. 2005; La Peyre et al. 2009). For example, as 

temperature and salinity increase, gill activity increases resulting in a higher rate of 

filtration and ingestion of food (Powell et al. 1992). Temperature and salinity are two 



3 

 

factors which influence dissolved oxygen concentration in seawater uptake of 

dissolved oxygen by bivalve molluscs (Dame 2012) but their effects on oxygen 

consumption are not always equal. In the case of Eastern oysters (C. virginica), 

changing temperature influenced oxygen uptake more than changing salinity 

(Shumway and Koehn 1982). Temperature and rainfall (and subsequent changes in 

salinity) leading to nutrient input and phytoplankton production in coastal waters and 

estuaries, play a role in seasonal division or partitioning of somatic and gametic 

growth in preparation for spawning (Powell et al. 1992; De La Parra et al. 2005) . 

 

Seasonal changes in temperature and salinity (which is often influenced by rainfall 

and river flows) will directly and indirectly, through phytoplankton availability for 

oyster nutrition, influence seasonal changes in oysters such as spawning (Westley 

1964) . Phytoplankton (primary source of nutrition for oysters) concentrations in the 

water (which can also be measured indirectly by chlorophyll a concentrations 

(Soletchnick et al. 2006)) are determined by temperature and nutrient flows from 

rivers. These nutrient flows are enhanced by rainfall (Ropert et al. 2008). 

Temperature, salinity and phytoplankton levels influence the progression of leydig 

tissue production (glycogenesis), gametogenesis and finally spawning (De La Parra 

et al. 2005). The level of available phytoplankton contributes to the glycogen stores 

in oysters (Soniat et al. 1998). Glycogen production is closely related to the 

reproductive cycle (Hofmann et al. 1994) and once glycogen stores are maximised, 

gametogenesis begins in preparation for spawning (Soletchnick et al. 2006). 

 

Significant variations in salinity and temperature in estuarine environments can also 

lead to a trade-off for oysters between growth rate, disease prevalence and predator 

numbers (Levinton et al. 2011). Influxes of freshwater can be beneficial to oysters by 

killing pests or predators such as gastropods, flatworms and starfish (Galtsoff 1964). 

Short periods of freshwater flushing (after high and intense rainfall events) and lower 

temperatures also limit infectious diseases such as Haplosporidiosis (Haskin and 

Ford 1982) and Perkinsiosis in Eastern oysters (Craig et al. 1989; Cook et al. 1998). 

The control of these parasites is often most evident in oysters which are resident at 

the head of a bay (closest to the river mouth) where the fall in salinity is greatest, 

rather than oysters closer to the mouth of the bay where the freshwater influx is 
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diluted by the tidal effect of the incoming sea water (Galtsoff 1964). Prolonged 

freshwater flooding will hinder the return of pathogens and predators for oysters but 

will also limit oyster growth because the oysters will remain closed longer and the 

phytoplankton load will be diluted (Levinton et al. 2011). 

 

Oyster mortality events  

 

The host – environment-pathogen interaction 

Oyster mortality events can be grouped broadly in to a) non-infectious and b) 

infectious disease events. Mortality events due to non-infectious processes involve 

temporal and spatial correlations between external risk factors (e.g. environmental, 

nutritional or toxic factors), and host susceptibility factors (e.g. age) (Lower 1983) 

(Evans 1976). For example, multiple Eastern oyster (Crassostrea virginica) 

mortalities on the eastern and gulf coasts of the United States occurred after 

freshwater flooding in spring (environmental factors), when oysters had a higher 

metabolic rate and demand for glycogen production and later gamete production (all 

host factors) (Gunter 1950; Butler 1952; Shumway 1996). Sydney Rock oyster 

(Saccostrea glomerata) mortalities occurred after summer freshwater flooding with 

runoff of acid sulphate soils, and low water pH in the Hastings estuary NSW, 

Australia (Steen 1996). In both spring and summer oysters have higher metabolic 

rates and demands as they produce glycogen stores and later, gametes (Shumway 

1996).  

 

In the case of mortality events due to infectious processes, there are temporal and 

spatial correlations between infectious organisms or viruses with both external 

environmental risk factors and host susceptibility factors (Evans 1976; Lower 1983). 

For example Ostreid Herpesvirus 1 caused mortalities in Pacific oysters (C. gigas) 

larvae (age as host factor) during summer (environmental factor) in New Zealand 

(Hine et al. 1992). Differentiation between infectious and non-infectious causes of 

mortality is based on environmental monitoring, oyster mortality patterns (the 

correlation or lack of correlation between temporal and spatial mortalities events with 

environmental factors) and testing for the presence or absence of infectious 

pathogens in the affected and non-affected oysters, using tests such as 
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histopathology, microbiology or molecular biology (Cheney et al. 2000; Berthe 2008; 

Chaney and Gracey 2011).  

 

Infectious causes of oyster mortalities 

The interactions of infectious pathogens, environmental factors (which are either 

favourable for pathogen replication or cause stress in the oysters) and host oyster 

factors (such as age), associated with oyster mortalities are varied. For example in 

Tomales Bay, on the West coast of the United States when water temperatures rose 

above 20oC (environmental risk factor) mortalities occurred most commonly among 

juvenile (host susceptibility factor) Pacific oysters (C. gigas) following Ostreid 

Herpesvirus 1 infection (Friedman et al. 2005). On the other hand, in France, 

mortalities of Pacific oyster (C. gigas) spat were associated with temperatures above 

16 oC and infection with Ostreid Herpesvirus 1 micro variant, (Schikorski et al. 2011). 

On the east coast of the United States of America, the prevalence of Haplosporidium 

nelsoni infection in Eastern oysters (C. virginica), and the rate of mortalities 

increased as salinity increased (Haskin and Ford 1982). The prevalence of 

Perkinsus marinus infection, also in Eastern oysters, and rate of mortalities, 

increased as the water temperature increased (Cook et al. 1998). In Washington 

State, USA, and British Colombia, Canada, elevated water temperature along with 

increased nutrient levels were associated with outbreaks of Nocardiosis causing 

summer Pacific oyster (C. gigas) mortalities (Friedman 1990).  

 

Non-infectious risk factors associated with oyster mortalities 

Summer mortality syndromes 

Although oysters adapt and respond to seasonal variations in temperature, salinity 

and nutrient in-put (De La Parra et al. 2005; Soletchnick et al. 2006) dramatic and 

sudden changes in multiple environmental factors, in the absence of evidence of 

infectious pathogens (using diagnostic tests available at the time of the investigation) 

are associated with oyster mortalities. The interaction of these multiple 

environmental stressors is often complex and it is generally the combined effect of 

these stress factors which are associated with oyster, such as Pacific oyster (C. 

gigas), mortalities (Cheney et al 2000, Berthe 2008, Chaney and Gracey 2011). For 

example, elevated summer temperatures, neap tides and associated oxygen 
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depleted water were risk factors for summer mortalities of Pacific  oysters (C. gigas) 

in Puget Sound, Washington State, USA and pathogens were not identified by 

histopathology (Cheney et al. 2000; Cheney et al. 2001). In France, increasing water 

temperature (above 19oC), high chlorophyll a levels , and intrinsic Pacific oyster (C. 

gigas) factors including well developed gonads, high glycogen condition and 

predisposing genetic susceptibility in oysters were risk factors for summer mortality. 

Surveys for Ostreid Herpesvirus 1 (OsHV1) by PCR were conducted during these 

mortality events in France but there was no statistical association between Pacific 

oyster (C. gigas) mortalities and OsHV1 prevalence, in the years up to 2008 (Samain 

and McCombie 2008). Elevated summer temperatures and high water nutrient loads 

influenced the onset of summer mortalities of Pacific oysters (C. gigas) at Bannow 

Bay and Dungarvan Harbour in Ireland and the Menai Strait and Inland Sea in Wales 

in 2003, however there was no record of diagnostic histopathology or molecular 

biology testing to exclude concurrent infectious pathogens (Malham et al. 2009). 

Summer mortality of Pacific oysters (C. gigas) in Matsushima Bay was associated 

with eutrophication and elevated summer temperatures (Mori 1979). On 

histopathology there were no bacterial, protozoal or micro-cell pathogens and fatty 

accumulations in digestive glands, an inefficient source of energy (compared to 

glycogen), was believed to have caused metabolic stress in pre-spawning oysters 

and subsequent mortalities (Mori 1979). 

 

Flood events associated with oyster mortalities 

Oyster mortalities associated with freshwater floods, are another example of 

environmental factors leading to oyster deaths. The effect of freshwater floods, and 

subsequent abrupt change to low salinity, on mortality rate in Eastern oysters (C. 

virginica) is highly dependent on ambient temperature (Galtsoff 1972). While 

estuarine oysters can tolerate freshwater during the winter, abrupt changes to very 

low salinities (5-10ppt) cause physiological stress under spring and summer 

temperature conditions because they coincide with increased metabolic demand of 

leydig tissue proliferation and gonad development prior to spawning (Shumway 

1996). Specific areas in the USA where oyster mortalities occurred following spring 

or summer floods included the mouth of the Mississippi river (Gunter 1950; Butler 

1952), upper reaches of Chesapeake Bay (Engle 1946; Andrews et al. 1959), 
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Santee River in South Carolina (Burrell 1977) and areas of Louisiana (Dugas and 

Perret 1973). Furthermore, freshwater floods were associated with Pearl oyster 

(Pinctada imbricata) mortalities at Port Macquarie on the north coast of NSW, 

Australia (O'Connor and Lawler 2004), and Pacific oyster (C. gigas) mortalities on 

Atlantic coast of France (Bodoy et al. 1990). 

 

Freshwater floods consist of multiple factors. Along with temperature and abrupt fall 

in salinity, a range of substances transported in the freshwater, such as sediment, 

excess nutrients, for example phosphates and nitrates (which can lead to 

eutrophication), pesticides, hydrocarbons, and heavy metals are potential additional 

stress factors contributing to oyster deaths (Ropert et al. 2008). For example, the 

combination of high temperature, abrupt low salinity and eutrophication, after 

freshwater flooding in summer, contributed to Pacific oyster (C. gigas) mortalities in 

Geoje Bay, South Korea (Cho and Kim 1977). Eutrophication can occur after 

freshwater flooding, when excess nutrients and organic matter flow into estuarine or 

coastal seawater. The excess nutrients can result in toxic algal blooms and dramatic 

falls in dissolved oxygen leading to hypoxic injury to oysters and oyster mortalities 

(Guillaud et al. 1992; Gray et al. 2002; Van Beusekom and De Jonge 2002). Water 

catchment disturbances such as farming, fertilizer application and discharge of 

wastewater will increase the risk of eutrophication associated with freshwater 

flooding (Wu and Levings 1980; Paterson et al. 2003). 

 

Mortalities in Tasmanian farmed oysters 

In late January 2004 (summer) there was an unseasonal massive flood event (the 

largest flood since records began in 1968) into Georges and Moulting Bays, on the 

east coast of Tasmania and just 8 days later, significant Pacific oyster (C. gigas) 

mortalities (up to 90% on some leases) occurred (DPIWE Tasmania 2004a). 

Following the flood event there were prolonged low salinity conditions in the surface 

water. The farmed Pacific oyster (C. gigas) mortalities in the Georges and Moulting 

Bay MFDP (Marine Farm Development Plan) area were restricted to intertidal marine 

farming zones in western Georges Bay and Moulting Bay, which were closest to the 

river mouth. On the farmed leases pesticides and ammonia was not elevated. At one 

lease the concentration of dissolved zinc was raised in one of three serial samples 
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from that lease. All other leases had low or undetectable concentrations of zinc. 

Because there was only one elevated zinc result this may have been an anomaly 

and could not be conclusively correlated to the mortalities. There were detectable 

rises in concentrations of dissolved aluminium, iron, magnesium and manganese but 

the concentrations were well below toxic levels. The histopathological findings in 

oysters from oysters across Moulting and Georges Bay were consistent with 

environmental stressors, including osmoregulatory changes(expanded intercellular 

spaces in the renal and alimentary tissue) and subsequent mobilisation of energy 

reserves and necrosis associated with gastrointestinal insults (haemocyte infiltrate 

into the alimentary tract, and leydig tissue breakdown and necrosis) (DPIWE 

Tasmania 2004a). Freshwater flooding and oyster mortalities also occurred at the 

same time in Great Oyster Bay MFDP oyster leases (which are also on the east 

coast of Tasmania, approximately 150km south of Georges and Moulting Bays) but 

extensive investigation and sampling of oysters and water, similar to Georges and 

Moulting Bays, was not completed (DPIWE Tasmania 2004a). 

 

Research objectives 

This thesis will not attempt to explain in depth the processes for mortality 

investigation because this has been done extensively (Cheney et al. 2000; Samain 

and McCombie 2008; Chaney and Gracey 2011). This work will focus on the 

influence of environmental risk factors for farmed Pacific oysters and their host 

response. Where infectious diseases were investigated these methods and results 

will be outlined.  

 

The objectives of the first part of the project were to undertake a retrospective study 

of the histopathological slides from Pacific oysters sampled during the Georges and 

Moulting Bay oyster mortality event of February 2004 and compare the 

histopathological changes to Pacific oysters in February 2003 and October 2005, 

from similar leases which were not part of a mortality event but were sampled at part 

of the Tasmanian Pacific Oyster Health Surveillance Program.  

 

The second project then explored the capacity of oysters to adjust to one 

environmental stressor associated with freshwater floods, abrupt fall to low salinity, 



9 

 

by describing the histopathological changes, and interpreting these in conjunction 

with biochemical changes in the oyster. The influences of grading, family line and 

season on oysters’ response to abrupt change to low salinity were observed. 

Describing the histopathological changes due to low salinity, a common 

environmental stressors, will aid interpretation of molluscan histopathology for 

diagnosticians. 

 

This retrospective study was based on the research proposals from the report 

“Georges Bay Oyster ill thrift & mortality: DPIWE AH&W comments on future 

investigation”. 
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Chapter 1 

 

Oyster stock losses on estuarine 

farms during summer freshwater 

flooding: A 3 year retrospective 

study 
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INTRODUCTION 

Tasmanian Pacific oyster (Crassostrea gigas) growers have not suffered significant 

industry-wide stock losses such as those experienced on the East coast of the 

United States (Chaney and Gracey 2011) and the Atlantic coast of France 

(Soletchnik et al. 2005; Schikorski et al. 2011) . However, in February 2004 following 

summer freshwater flooding there was a Pacific oyster (Crassostrea gigas) mortality 

event reported by oyster farmers in the Georges Bay / Moulting Bay Marine Farming 

Development Plan (MFDP) area on the east coast of Tasmania (Figure 1). The 

oysters ranged in size from 30 to 90 mm. 

 

 

Figure 1: George River Catchment in north-eastern Tasmania (source: TASMAP, 

https://www.tasmap.tas.gov.au/do/product/25000TOPO/6042, accessed 18/9/13) 

 

The flooding was due to the highest rainfall event in the George River catchment 

since records started in 1968. The George River flows into Georges and Moulting 

Bays near the town of St Helens. Pacific oyster mortalities (up to 90% on some 

leases) were localised to intertidal leases in western Moulting Bay and Georges Bay, 

nearest to the mouth of the George River, and no significant mortalities were 

observed in stock held on sub-tidal or intertidal leases in eastern Georges Bay near 

https://www.tasmap.tas.gov.au/do/product/25000TOPO/6042
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the Barway, closest to the ocean (DPIWE Tasmania 2004a). Mortalities resolved 

after a period of approximately 10 days, when salinity returned to levels at 28 parts 

per thousand (ppt) (DPIWE Tasmania 2004a). 

 

There are multiple pluviometric risk factors, along with the change in salinity, 

associated with freshwater input and in particular freshwater flooding (Ropert et al. 

2008). Anthropogenic freshwater factors that could have contributed to oyster 

mortalities in the Georges and Moulting Bays, included acid sulphate soil run off 

(precipitated by land clearing), pesticides, herbicides, heavy metals, eutrophication 

and petroleum products or hydrocarbons (Percival and Ellard 2004). Other factors, 

unrelated to human endeavours, included increased suspended sediment 

concentration and low dissolved oxygen unrelated to eutrophication (Ropert et al 

2008). Secondary bacterial infections (such as vibriosis) in oysters, challenged or 

stressed by freshwater flooded estuaries, could potentially also have contributed to 

on-going stock losses (Percival and Ellard 2004).  

 

Because of the complexity of multiple potential stress factors, extensive water data 

records, which were measured during the flood event of February 2004 in Georges 

and Moulting Bay, were reviewed. These archived results were then compared with 

pre and post flood event water data records, to assess how the freshwater flood 

differed from the normal water environment. Many of the parameters measured 

during the floods were monitored at regular intervals throughout the year by the 

Tasmanian Shellfish Quality Assurance Program (TSQAP). These included 

pesticides, herbicides, heavy metals (in both the water and oyster meat) 

concentration of algal species, salinity and water temperature. This extensive testing 

is undertaken by TSQAP to maintain the product integrity of Tasmania oysters for 

human consumption (TSQAP www.dhhs.tas.gov.au, accessed 31/8/11).  

 

Histopathological surveys of populations of oysters and other marine bivalve mollusc 

(such as mussel) are important components of bio-monitoring studies and are useful 

for understanding the response of oysters and mussels to environmental stressors 

(Yevich and Yevich 1994; Kim and Powell 2009). This study was a retrospective 

assessment of the freshwater flooding and oyster mortality event in February 2004, 

http://www.dhhs.tas.gov.au/
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in Georges and Moulting Bay. Histopathological slides were the most easily 

accessible archived material for assessing and comparing effects of environmental 

factors, associated with flood waters, on the oysters and identifying oysters’ 

response to potential flood water stressors because extensive histopathological 

material was collected from oysters during the flood event. In addition, archived 

material was available at the Animal Health Laboratory from before and after the 

flood event from the Georges and Moulting Bay oyster leases. This material was part 

of the Tasmanian Pacific Oyster Health Surveillance Program, an annual program 

supported by the Tasmanian Oyster Research Council and oyster farmers, to 

monitor for infectious diseases which are exotic to Tasmania. The diseases surveyed 

include Iridovirus, Herpesvirus, Marteiliosis, Haplosporidiosis, Perkinsiosis, 

Nocardiosis, Mikrocytosis and the endemic infectious disease Bonamiosis, which is 

only found to cause disease in native Tasmanian flat oysters (Ostrea angasi) but 

which can potentially be carried in Pacific Oysters. Records and histopathological 

slides from February 2003, before the flood event, during the flood event in February 

2004 and after the flood event in October / November 2005 were reviewed. 

 

The specific objectives of this research were: 

To determine if the effect of freshwater stress factors in February 2004 (in particular, 

abrupt change in low salinity) were reflected in histopathological findings in oysters, 

most importantly those on high mortality leases; and compare these 

histopathological changes to oysters before and after the flood event. 

 

 

METHOD 

 

Lease descriptions 

Seven commercial oyster leases were included in this investigation. The oysters 

were grown in baskets suspended on lines. The leases were identified by letters (in 

order to keep the identity of the leases anonymous) and described by their a) type 

(inter-tidal / sub-tidal) and b) location in Georges and Moulting bays (Figure 2). 
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Figure 2: Location of oyster leases sampled in Georges Bay and Moulting Bay (Map 

from “Oyster Health in Georges Bay, collation and analysis of historical data” 

Percival and Ellard 2004). The lease numbers have been deleted with blue lines to 

maintain the anonymity of the leaseholders. 

 

Leases A to C were inter-tidal leases in western Moulting and Georges Bays. Leases 

D and E were sub-tidal leases in central Georges Bay. Leases F and G were inter-

tidal leases in eastern Georges Bay and were the closest leases to the Barway at the 

mouth of the bay leading to the sea (see Table 1). 
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Lease Location 

A 

Western Moulting  and Georges Bays B 

C 

D 
Central Georges Bay 

E 

F 
Eastern Georges bay, near the mouth of the bay, closest to the sea 

G 

Table 1: Leases and their location in Georges and Moulting bays 

 

Case histories, gross reports and microbiology results 

All cases used in this study were from oyster farms in Georges Bay and Moulting 

Bay MFDP (Marine Farming Development Plan) area. Case histories from oyster 

farmers and gross descriptions by veterinary officers of DPIWE Tasmania (Dept. 

Primary Industries, Water and Environment) were accessed from archives at the 

Animal Health Laboratory Mt Pleasant, Tasmania, on the Laboratory Information 

Management System (LIMS). For this retrospective study records came from  

a) February 2003 lease C and D as part of the annual TPOHSP 

b) February 2004 leases A-F as part of the February mortality event investigation 

c) October to November 2005; leases A-G as part of the TPOHSP 

The time line of events and sampling times is recorded in Table 2. 

  



16 

 

 

Date 

Rainfall 

event 

Oyster 

sampling 

by DPIWE 

Water 

sampling 

by DPIWE 

for water 

quality 

testing 

Water 

quality 

sampling 

by 

TASQAP 

Water 

sampling  

by DPIWE 

for algal 

tests by 

Phycotech 

Mortality 

counts 

2/02/2003    All leases    
18/02/2003  Lease C     
11/02/2003    All leases    
26/02/2003  Lease D     

        

27/01/2004 to 

30/01/2004 

 Rainfall 

(226mm) 

and flood 

event 

     

31/01/2004 to 

4/2/2004 

      

5/02/2004 DPIWE 

advised of 

mortality 

event 

Leases A, 

B, C,E, F 

and G 

Leases A-

G and 

George 

river 

mouth 

  Leases 

A, B, C, D 

and G and 

mouth 

George 

River 

 

6/02/2004       
7/02/2004     Leases A, 

B, C, D 

and G the 

mouth of 

the 

George 

River 

 

8/02/2004      Lease B 

9/02/2004      Lease B 

10/02/2004      Lease B 

11/02/2004      Lease B 

12/02/2004   Leases B, 

C  

  Leases A, 

B, C and 

D 

13/02/2004  Leases B, 

D and F 

Lease A 

and D 

   

Table 2: Chronological chart of events and samples taken during February 2003, 
February 2004 and October to November 2005 
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Date 

Rainfall 

event 

Oyster 

sampling 

by DPIWE 

Water 

sampling 

by DPIWE 

for water 

quality 

testing 

Water 

quality 

sampling 

by 

TASQAP 

Water 

sampling  

by DPIWE 

for algal 

tests by 

Phycotech 

Mortality 

counts 

10/10/2005  Leases 

A-F 

    

12/10/2005    All leases 

in Georges 

and 

Moulting 

Bays 

  

17/10/2005  Leases 

A-F 

    

21-22/10/2005 129.8mm 

over 

48hrs 

     

24/10/2005  Leases 

A-F 

    

1/11/2005  Leases 

A-F 

    

3/11/2005    All leases 

in Georges 

and 

Moulting 

Bays 

  

 
Table 2 continued 
 

The laboratory records:  

a) Mortality rates were estimated on leases by sampling 10-11 random 

representative units (double basket, mesh bags or mesh envelopes) across each 

lease and counting the numbers of live and dead oysters. The mortality rate for each 

lease was the average mortality across all units (DPIWE 2004a).  

 

b) Gross characteristics of the shell and meat of the oysters. These descriptions 

included abnormal conformation / shape of the shell (e.g. abnormal fluting), 

significant defects, which affected the integrity of the shell and the shell seal, and the 

colour and distribution of any other abnormalities. Gross lesions in the oyster meat 
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were described including the colour, distribution / pattern, shape / contour, size, 

organ or site and change in texture. 

 

c) Microbiology; Oyster haemolymph was sampled from a subset of oysters during 

the February 2004 flood event. Haemolymph was sampled from 6 oysters, from 

leases E, F and G and 10 oysters from lease C. Additionally oyster meat was 

sampled from 4 dead oysters from lease C and a shell abscess from lease E. The 

haemolymph and meat were cultured on TBC and sorbitol SBA plates at the Animal 

Health Laboratory, Mt Pleasant, DPIPWE Tasmania.  

 

Environmental records 

Environmental records and water data (such as water salinity, water temperature, 

thermo tolerant coliform counts, and algal counts) for all commercial oyster leases in 

Tasmania are archived by the Tasmanian Shellfish Quality Assurance Program 

(TSQAP), Department of Human Health and Human Services Tasmania. For this 

study, records for the periods February 2003, February 2004 and October to 

November 2005 were obtained. Thermo-tolerant coliforms (colony forming units / 

100ml) were conducted by Tasmanian Laboratory Services (Launceston Tasmania) 

for the TSQAP. Algal counts were conducted by the analytical laboratory Phycotech 

Pty Ltd, Hobart Tasmania for the TSQAP. In addition, near leases F and G (zone 6A) 

there was permanently anchored automated water testing devices recording 

continuous surface water salinity and temperature (data provided by TSQAP) (See 

Figure 3).  

 

There were additional environmental water data records for 5th, 7th and 12th February 

2004 during the flood event. Water quality analysis was undertaken by Analytical 

Services Tasmania, University of Tasmania, for a wide range of chemicals and 

elements (Table 3). Oyster meat was tested for tributyl tin, also at Analytical Services 

Tasmania. All these records were published in the “DPIWE Final Report – Oyster 

Mortalities in the Georges Bay Marine Farming Development Plan Area, February 

2004” (DPIWE Tasmania 2004a). 
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Analyte Test method 

pH in Water APHA Method 4500-H  

Conductivity APHA Method 2510  

Total Dissolved solids APHA Method 2540C  

Alkalinity APHA Method 2320/4500-CO2  

Anions 

Ion Chromatography APHA  

Method 4110B 

Hardness APHA Method 2340  

Dissolved Nutrients  APHA Method 4500  

Metals in Water APHA Method 3030/3120  

Major Cations in Water APHA Method 3030/3120  

Alkyl tin Compounds in Water GCMS  

Semi volatile Organics (pesticides) in 

Water GCMS  

Pesticides in Biota, Water & Soil HPLC 

Alkyl tin Compounds in Biota GCMS  

Pesticides in Biota GCMS  

Pesticides in Biota HPLC 

Semi volatile Organics in Biota - OC & OP 

Pesticides  GCMS  
 

Table 3: List of analytical tests for water (DPIWE 2004a); the tests, calibrations or 

measurements were performed in accordance with NATA requirements which include 

the requirements of ISO/IEC 17025 and were traceable to national standards of 

measurement. (APHA = American Public Health Association, GCMS = Gas 

Chromatography and Mass Spectrometry, HPLC = High Performance Liquid 

Chromatography).  
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Figure 3: Sites for TSQAP water sampling and zones for leases (Source, TSQAP).  

Zone 1 includes inter-tidal lease C; Zone 2 sub-tidal leases D and E; Zone 4 inter-

tidal leases A and B; and Zone 6 inter-tidal leases F and G; site 5 is the effluent 

outflow and site 13 George River. The data logger was anchored at zone 6A 

 

 

 

 

The monthly rainfall data for St Helens aerodrome (the closet rainfall measurement 

site to Georges and Moulting bays) was obtained from the Bureau of Meteorology, 

Australian Government website: http://www.bom.gov.au/climate/data/index.shtml (accessed on 

31/8/11). 
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Histopathology 

Archived haematoxylin and eosin stained slides (processed from 10% buffered 

seawater formalin fixed tissues, embedded in paraffin using standard techniques, cut 

at 5µm thickness) from the Animal Health Laboratory, Mt Pleasant, DPIPWE, were 

reviewed by one pathologist, the author. To ensure reproducible results and uniform 

interpretation a subset of slides from each year was independently reviewed by two 

other pathologists. The agreement between descriptions and grades was calculated 

as a percentage of descriptions and grades, given by the second pathologist, which 

correlated with the descriptions and grades of the author. 

 

Kidney (with the exception of 2003), heart, mantle, interstitium / leydig tissue, gonad, 

ganglia, gill, stomach, intestine, digestive gland and palp were examined. 

Histopathological findings were recorded and graded using a four point grading 

scale; 0=normal tissue with no microscopic changes evident, 1=minor alteration to 

organ architecture, < 1/3 of the organ, 2=changes affected and/or disrupted > 1/2 of 

the organ architecture, 3=severe changes with marked disruption or effacement of 

the majority of the organ architecture.  

 

Statistical analysis 

Chi–squared (2) test of independence was used to determine if the relative 

frequency of oysters with histopathological changes differed a) across the years 

2003 to 2005 due to the factor years and b) during the flood event of 2004 due to the 

factor mortality. The oysters sections examined from the flood event of 2004 were 

divided into 3 groups a)high mortality leases in Western Moulting Bay and Georges 

Bay (inter-tidal leases A-C) and the two low mortality leases b) Central Georges Bay 

(subtidal leases D & E) and c) Eastern Georges Bay (inter-tidal leases) (refer to 

Table 1). If the 2 analysis result was significant the standardised difference between 

the expected frequency and the observed frequency was used to interpret the 

frequencies.  

 

Using a multivariate ANOVA test differences in the means of a) water quality 

variables in 2004 were analysed by the factors a) individual lease and b) lease group 
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(Table 1). The assumptions of homogeneity of variance were tested using Levene's 

Test. All tests were conducted at significance level P equal to or less than 0.05. All 

data were analysed using SPSS v18 (R). 
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RESULTS 

 

Rainfall, George River flow and water salinity in Georges and Moulting Bay 

In late January 226 mm of rain fell in just 3 days (from midnight 27th January 2004 to 

midnight 30th January) at St Helens aerodrome, on the eastern shore of Georges 

Bay. Upstream at Pyengana (the site of tributaries which flow into the George River) 

197mm of rain fell for the 24 hours to 9am at 29th January 2004 (DPIWE 2004a). The 

estimated flow for the George River (which flows in to Georges Bay) was 675 

cumecs (cubic metres per second) on 29th January 2004 and 30th January 2004. 

Comparing monthly average rainfalls  in January and February across years, the late 

January rainfall in 2004 was significantly higher than that for most years from 2001 to 

2008 (Figure 4a).  

 

 

 

Figure 4a: Monthly rainfall for January and February from 2001 to 2010 (from 

Bureau of Meterology, Australia) 
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There was a high monthly rainfall in February 2008 but this was due to multiple 

rainfall events distributed through the month, including 45mm on 5th February, 29mm 

on 6th February and 70mm on 27th February. Comparing monthly rainfalls across the 

whole year from 2003 to 2005 the monthly rainfall in January 2004 was the highest 

over this period. There was a high monthly rainfall peak (208mm) in October 2005 

(during the oyster sampling period)  (Figure 4b) but this was spread over 2 weeks 

including peaks of 40mm from 9-10th October and 129.8mm, over 21st to 22nd 

October 2005.  

 

 

Figure 4b: Monthly rainfall (mm) for the years 2003 to 2005 at St Helens 

aerodrome (Bureau of Meteorology, Australia) 

 

In late January and early February 2004 the substantial rainfall and greater than 

normal river flow resulted in freshwater flooding downstream into Georges Bay and 

Moulting Bay. On 30th January 2004 the automated TSQAP data logger from zone 

6A/B (on leases F and G in eastern Georges Bay near the bay mouth) showed an 

abrupt decline in surface water salinity to 2ppt (Figure 5). 
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Figure 5: Salinity (ppt) and temperature (oC) (the vertical axis has units for both 

temperature and salinity) measured by TSQAP data logger at Zone 6A/B (Leases F 

and G) (From DPIWE 2004a) 

 

Tidal influences, post the flood event, elevated salinity to approximately 28 to 30ppt, 

but salinity quickly declined on outgoing tides. Depressed daily salinity conditions 

were recorded until 8th February, when minimum salinity was 28ppt and minor 

oscillations in values persisted at zone 6A/B until 16th February (DPIWE Tasmania 

2004). There were no continuous salinity data available for the periods February 

2003 and October to November 2005 but fortnightly salinity did not fall markedly and 

7 day cumulative rainfall did not show any sudden high rainfall even similar to late 

January 2004 (Table 3).  
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Number of 

sites (n) 

sampled 

on each 

date 

Water salinity (ppt) 

(mean ± SD) 

Water 

temperature 

(
o
C) (mean ± 

SD) 

MF 

Thermotolerant 

coliform per 

100ml across 

leases (mean ± 

SD) 

MF 

Thermotolerant 

coliform per 

100ml at 

sewage 

outflow 

Rainfall 

past 7 

days 

(mm) 

Tide at 

time of 

sampling 

2/02/2003 

(n=15) 

34.8 ± 0.5 20.1 ± 1.0 3 ± 0 3 30.8 mid 

falling 

11/02/2003 

(n=15) 

34.7 ± 0.7 19.5 ± 0.5 3.5 ± 1.8 19 1.8 low 

falling 

30/01/2004 

(zone 6A, 

n=1) 

2 16 not recorded not recorded 226 low 

falling 

17/02/2004 

(n=15) 

32.2 ± 1.4 20.2 ± 0.5 0.9 ± 0.04 1 6.6 low 

falling 

12/10/2005 

(n=15) 

30.3 ± 2.2 14.4 ± 0.5 1.2 ± 0.9 4 53.8 low 

rising 

24/10/2005 

(n=8) 

19.3 ± 3(shallow 

water) 24.2± 

4.4(bay floor) 

15.8 ± 0.7 not recorded not recorded 129.8 not 

recorded 

3/11/2005 

(n=15) 

25.0 ± 4.0 18.0 ± 1.0 4.7 ± 2.8 5 26 mid 

falling 

Table 4: Water quality data, including water salinity, temperature and 

thermotolerant coliform counts across the 3 periods, 2003 to 2005, of sampling 

(Source of data TSQAP) 

 

Pacific oyster mortalities and other history 

During the freshwater flood event of 2004, significant mortalities of Pacific oysters 

occurred at the inter-tidal leases A-C in western Moulting Bay, near the mouth of the 

George river and oysters which were originally on inter-tidal lease C when the 

freshwater flooding began but were moved to sub-tidal lease D (in central Georges 

Bay) on 5th February. Histopathology samples were not taken of the oysters 

transferred from lease C to D. There were negligible mortalities amongst oysters set 

stocked (resident) on sub-tidal lease D, lease E, the other lease in central Georges 
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Bay, and inter-tidal leases F and G in eastern Georges Bay closest to the Barway at 

the mouth of the bay closest to the sea. There were no mortalities in 2003 on sub-

tidal leases C and D, sampled as part of the annual TPOHSP. These stock (mean 

oyster size 55mm ± 5, SD) were transferred from Northwest Tasmania 2-3 months 

prior to sampling. There were no mortalities on leases A-G during the sampling 

program from October to November 2005 (mean oyster size 90mm ± 1, SD). 

Cumulative mortalities for each lease are shown in Table 5.  

 

Lease Location   

Mean 

mortality 

± SD 

(%) 

Lease 

type 

Oyster 

size 

(mm) 

A Western 

Moulting 

Bay and 

Georges 

Bay 

High 

mortality 

57 ± 18 
inter-

tidal 
30-90 

B 84 ± 31 
inter-

tidal 
30-50 

C 69 ± 26 
inter-

tidal 
50-70 

D* 

Central 

Georges 

Bay 

High 

mortality 
87 ± 6 

sub-

tidal 
50-60 

D^ 
Low 

mortality 

0.25 ± 

0.25 

sub-

tidal 
NR 

E 0 
sub-

tidal 
NR 

F Eastern 

Georges 

Bay 

Low 

mortality 

0 
inter-

tidal 
NR 

G 0 
inter-

tidal 
NR 

Table 5: A summary of the cumulative mortalities (counted on 12th and 13th February 

2004) during the flood event 2004 by lease (data from DPIWE Tasmania 2004); 

NR=not recorded  

 

*Racks transferred from lease C on 5th February 2004 to lease D. 

^The balance of racks from lease D. 
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The cumulative mortality rates ranged from 49 to 95% at inter-tidal leases A-C in 

western Moulting Bay. Oysters which had been on lease C up until 5th February and 

then transferred to sub-tidal lease D (eastern Georges Bay), had similar high mean 

cumulative mortality of 87% ± 6 (mean ± SD). The cumulative mortality of all other 

oysters held only on lease D (in central Georges Bay) was very low, 0.25% ± 0.25 

(mean ± SD). Mortalities were not recorded on the other sub-tidal lease in central 

Georges Bay, lease E, and inter-tidal leases F and G in eastern Georges Bay.  

 

Environmental monitoring 

 

In February 2004 the mean aluminium (F=0.005, df=3, 13 P=1.000), manganese 

(F=1.715, df=3, 13 P=0.214) and iron (F=0.866, df=3, 13 P=0.483) concentrations 

were all elevated across all lease groups and the mouth of the George River, 

compared to normal freshwater and marine levels (ANZGFMWQ 2000) (Table 6).  
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 Location Marine water  Freshwater 

Water parameter 

High mortality intertidal 

leases A-C  5, 7 and 

12th Feb 2004 (n=9), 

mean ±SD 

Low mortality subtidal 

leases D, E  7th and 

12th (n=3) mean ±SD 

Low mortality inter tidal 

leases F,G  7th Feb 

2004 (n=3) mean ±SD 

Near George river 

mouth 7th & 12th Feb 

2004 (n=2) mean ±SD 

normal 

parameters 

levels reported 

to cause toxic 

effects in 

aquatic species 

normal 

parameters 

levels reported 

to cause toxic 

effects in 

aquatic species 

Water pH 7.4 ±0.3 7.7 ±0.2 7.5 ±0.2 7.7 ±0.4 8.2 

 

6.5-8.0 

 Water conductivity (uS/cm) 28833 ±7833 39067 ±4852 28300 ±12644 34750 ±11243 

  

100-5000 

 Water Total Dissolved Solids (mg/L) 20421 ±6897 25150 ±4455 18780 ±8792 21700 ±6647 

    Water Alkalinity CO3 (mg CaCO3/L) <1 

 

<1 

 

<1 

 

<1 

     Alkalinity HCO3 mg CaCO3/L 67 ±20 86 ±10 64 ±23 79 ±28 

    Alkalinity Total 68 ±19 86 ±11 65 ±24 80 ±29 

  

>20 

 Water Chloride (mg/L) 11311 ±3535 16000 ±2646 11367 ±5631 14000 ±5657 

    Sulphate mg/L 1300 ±394 1867 ±321 1300 ±624 1650 ±636 

    Water Hardness (mg CaCO3/L) 3488 ±1199 5243 ±999 3717 ±1066 4650 ±1584 

    

Water Ammonia (mg-N/L) 0.248 ±0.259 0.213 ±0.145 0.148 ±0.076 0.086 ±0.001 <0.1 

 

<0.3 (> 16 

degrees C) 

 Nitrate + Nitrite (mg-N/L) 0.057 ±0.062 0.047 ±0.030 0.066 ±0.037 0.109 ±0.103 <100 

 

<50 

 Nitrate + Nitrite (mg-N/L) 0.06 ±0.062 0.049 ±0.032 0.069 ±0.038 0.111 ±0.104 

    Nitrite mg-N/L 0.003 ±0.002 0.003 ±0.001 0.003 ±0.001 0.002 

     Phosphorus, Dissolved Reactive mg-

P/L 0.01 ±0.01 0.01 ±0.00 0.01 ±0.01 0.01 

 

<0.05 

 

<0.1 

 

Al Dissolved (µg/L) 50 ±15 51 ±17 50 ±26 52 ±15 <10 >2440 <30 

>2300 (pH > 

6.5) 

Al Total µg/L 308 ±151 123 ±48 164 ±20 222 ±140 

    As Dissolved µg/L <5 

 

<5 

 

<5 

 

<5 

 

<50 >893 <50 >961 

As Total µg/L <5 

 

<5 

 

<5 

 

<5 

     Cd Dissolved ug/L <1 

 

<1 

 

<1 

 

<1 

 

<5 

 

<5 

 Cd Total µg/L <1 

 

<1 

 

<1 

 

<1 

     Co Dissolved µg/L <1 

 

<1 

 

<1 

 

<1 

  

>45 

 

>2.8 

Co Total µg/L <1 

 

<1 

 

<1 

 

<1 
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1301-Water Cr Dissolved (ug/L) <1 

 

<1 

 

<1 

 

<1 

  

> 10300 

 

>430 

Cr Total µg/L <1 

 

<1 

 

<1 

 

<1 

     Cu Dissolved µg/L <1 

 

<1 

 

<1 

 

<1 

 

<5 > 0.4 to 20000^ <5 > 1.64 

Cu Total µg/L <1 

 

<1 

 

<1 

 

<1 

     Fe Dissolved µg/L 30 ±12 20 0 29 ±16 20 0 <10   <10 > 300 

Fe Total µg/L 364 ±235 107 ±56 148 ±28 225 ±195 

    Mn Dissolved µg/L 27 ±11 11 ±8 20 ±8 18 ±18 <10   <10   

Mn Total µg/L 37 ±19 21 ±11 43 ±26 35 ±18 

    Ni Dissolved µg/L <2 

 

<2 

 

<2 

 

<2 

 

<100 

 

<100 

 Ni Total µg/L <2 

 

<2 

 

<2 

 

<2 

     Pb Dissolved µg/L <10 

 

<10 

 

<10 

 

<10 

 

<10 

 

<10 

 Pb Total µg/L <10 

 

<10 

 

<10 

 

<10 

  

>25 

 

>28 

Zn Dissolved µg/L 340 ±1098 4 ±3 4 ±3 4 ±3 <6 > 400-1760 > 5 to 15   

Zn Total µg/L 5 ±4 5 ±3 5 ±2 4 ±2 

    1302-Water Ca Dissolved (mg/L) 210 ±75 322 ±65 223 ±±66 284 ±103 

    Ca Total mg/L 248 ±79 368 ±78 275 ±75 320 ±108 

    K Total mg/L 222 ±75 340 ±75 249 ±70 283 ±118 

    Mg Dissolved mg/L 720 ±246 1078 ±204 767 ±219 955 ±319 <15   <15   

Mg Total mg/L 748 ±253 1133 ±2±51 826 ±248 973 ±350 

    Na Total mg/L 6306 ±2046 9240 ±1565 7047 ±1822 7830 ±2659 

    Table 6: Water quality data by lease including heavy metals, Water quality data for 5th to 12th February (source of data DPIWE 2004a; normal parameters and 

toxicity levels were from ANZGFMWQ 2000) 
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The mean rises in aluminium, manganese and iron were not at levels reported to 

cause toxicity in aquatic organisms (ANZGFMWQ2000). Normal dissolved 

aluminium levels for both marine and freshwater for continuous exposure range from 

<10µg/L (Meade, 1989 cited in ANZGFMWQ 2000) to <30µg/L at pH levels of 

greater than 6.5 (ANZGFMWQ 2000).  

 

The concentration of dissolved zinc on one lease, lease C (western Georges Bay 

near the mouth of the George River) on 5th February was 3560 µg/L. This was 

significantly higher than any other site sampled. The means for the other intertidal 

leases near the river mouth (leases A and B), intertidal and sub tidal leases and the 

mouth of the George River were all 4±3 µg/L (mean ± SD). By 7th February dissolved 

zinc levels reduced to 50µg/L. All this time there was no elevation in dissolved zinc 

other leases.  By 12th February dissolved zinc on lease C was 3µg/L.  

 

Pesticides (including tributyl tin) and heavy metal levels in the water during the flood 

event of 2004 were below recommended levels (ANZGFMWQ 2000) (Appendix 

Table A1 and A2). Heavy metal concentrations in oyster meat from 2003 and 2005 

were not above recommended levels (personal communications TSQAP) (Appendix 

Table A3). 

 

Algal species, representing the natural flora for Georges Bay and at lower than 

normal micro algal cell abundance, was identified from water samples collected 

across multiple leases on 5th to 12th February 2004 are listed in the Appendix in 

Table A4 (DPIWE Tasmania 2004). The only potentially harmful species present 

included Prorocentrum rathymumn, which is normally present in far greater 

abundances than at the time of sampling” (DPIWE Tasmania 2004). Algal results for 

2005 were also unremarkable, (A. Turnbull pers. comm.) (Appendix Table A5). For 

February 2003 algal samples were not collected for Georges and Moulting Bay. 

 

Gross findings and Microbiology 

Gaping shells were found on leases A –D (refer to mortality rates recorded Table 4). 

Eight oysters sampled from lease E had raised 1-2 cm diameter raised fluid filled 

blisters on the inner surface of the shell lined by fragile nacre. Another oyster from 
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lease E had a shell blister, a 1cm diameter yellow fluid filled raised defect on the 

inner shell lined by fragile nacre. In 2003 and 2005 there were no abnormal shells or 

significant defects, which affected the integrity of the shell and the shell seal or gross 

lesions such as changes in colour, shape or texture of the oyster meat. 

 

During the 2004 flood event no significant aquatic bacterial pathogens were isolated. 

From lease E mixed Vibrio spp. were isolated from shell abscess in one oyster. Four 

oyster meat samples from lease C grew mixed bacteria including Clostridium spp, 

Bacteroides spp and Porphyromonas spp. There was no bacterial growth from 6 

oyster haemolymph sampled from each lease E, F and G and 10 haemolymph 

samples from lease C. Microbiology samples were not taken for oysters from 2003 or 

2005 (DPIWE Tasmania 2004). 

 

Histopathology 

There were microscopic changes in the stomach and intestines (2=99.347, df 2; 

P<0.001), digestive gland (2=213.856, df 2; P<0.001), interstitium  and leydig tissue 

(2=225.414, df 2; P<0.001), mantle (2=183.129, df 2; P<0.001), kidney (2=29.254, 

df 2; P<0.001), gonads (2=30.422, df 2; P<0.001) in oysters sampled during the 

February 2004 freshwater flood and these were significantly more common in 

February 2004 than 2003 or 2005 (Table 7 & Table A6). In the stomach and 

intestines there were diffuse mild intramural infiltrating haemocytes (diapedesis) and 

expanded intercellular spaces (interstitial oedema) distending the gastric (Figure 6b 

and 6c) and intestinal walls and many epithelial cells contained intracytoplasmic 

vacuoles (grade 1-2). In the digestive glands there were expanded intercellular 

spaces (grade 1) and dilated digestive gland tubules (grade 1) (Figure 6e). 

Intercellular spaces and haemolymph vessels in interstitial tissues were expanded 

(grade 1) in the mantle and leydig tissue. There was leydig cell necrosis with 

occasional haemocyte infiltrate (grade 1-2) and multifocal mantle erosion (grade 1-2) 

(Figure 6g). Within the gonad of female oysters intercellular spaces were expanded 

and there was haemocyte infiltrate (often associated with post spawning) (grade 1). 

Many oysters had spawned and there was necrosis of ova in the gonads of some 

oysters. In the kidney there were expanded intercellular spaces, intracytoplasmic 

vacuoles in epithelial cells or dilated renal tubules (grade 1) (Figure 6i). As the 
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frequency of grades 1 and 2 for histopathological changes did not differ between 

treatment groups based on year, lease group or individual lease (P > 0.05), grades 1 

and 2 were pooled for each histopathological description (Tables 7 and 8, Appendix 

Tables A6 and A7). 
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Histopathological findings 

2003 

(n=0) 

2004 

(n=178) 

2005 

(n=288) 

Kidney 

   Expanded intercellular spaces, intracytoplasmic 

vacuolation of epithelia cells or dilated tubules 

NA  25 

Histopathological findings 

2003 

(n=63) 

2004 

(n=178) 

2005 

(n=288) 

Stomach and intestines 

   Expanded intercellular spaces in stomach and 

intestines walls and intracytoplasmic vacuoles and 

haemocyte infiltrate into wall 

0  0 

Digestive glands 

   Atrophied digestive gland tubules lined by low 

cuboidal cells, expanded extracellular spaces /  

tubular necrosis 

0  0 

Gonad 

   Expanded intercellular spaces and haemocyte 

infiltrate  of gonad / ova necrosis 

0  0 

Post spawn 0  0 

Mantle 

   Multifocal erosion of the mantle 0  0 

Interstitium 

   Expanded intercellular spaces of the interstitium / 

necrosis of leydig cells with occasional haemocyte 

infiltrate 

0  2 

Table 7: The numbers of Pacific oysters from each year, with significant 
histopathological findings; Arrows indicate if observed values are above or below 
expected values. The numbers listed below are total numbers for each year and 
combine grades 1 to 2 for histopathological changes. NA = not applicable; there 
were no kidney sections available in 2003. 
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Figure 6a: Normal stomach from lease A in 2005 

 

 

 

Figure 6b: Expanded intercellular spaces with haemocyte infiltrate  

in the stomach, grade 1 (lease A, 2004) 
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Figure 6c Expanded intercellular spaces with haemocyte infiltrate 
in the stomach, grade 2 (lease A, 2004) 

 
 

 
Figure 6d: Digestive gland with normal digestive tubules (DT), 

 from lease D 2004 
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Figure 6e: Atrophied digestive tubules with expanded intercellular spaces 

 (arrow head) and intracytoplasmic vacuoles (arrow), grade 1, lease A 2004 

 

 

 

Figure 6f: Normal mantle epithelium, lease C 2003, 
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Figure 6g: Mantle erosion with loss of epithelium, grade I (lease B, 2004) 

 

 

Figure 6h: Normal kidney from lease C 2005 
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Figure 6i: Expanded intercellular spaces (arrows) in kidney, grade 1 (lease A, 2004) 
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During the 2004 flood event significantly more oysters sampled from high mortality 

western leases A-C showed expanded intercellular spaces, intracytoplasmic 

vacuoles and dilated tubules in the kidneys (2=25.333, df 2; P=0.001) and multifocal 

mantle erosions (2=17.707, df 2; P<0.001) than oysters across the other leases with 

low mortalities (Table 8). Leydig cell necrosis was seen across all leases but most 

frequently in sub-tidal leases in eastern Georges Bays. Sub-tidal oysters in eastern 

Georges Bay (leases D and E) had more frequently interstitial oedema (2 =12.957, 

df 2, P=0.002), oedema and haemocyte infiltrate in the gonad (2 =52.533, df 2, P< 

0.0001) and expanded intercellular spaces with haemocyte infiltrate in the stomach 

and intestines (2 =96.983, df 2, P<0.0001). Inter-tidal oysters from Georges Bay 

(leases D and E) had more frequent digestive gland atrophy with expanded 

intercellular spaces, intracytoplasmic vacuoles and haemocyte infiltrate (2 =12.372, 

df 2, P=0.002). Within groups of leases, there was no significant difference in the 

frequency of histopathological findings between individual leases in February 2004 

(P> 0.05). 
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Histopathological findings 

Intertidal Western 

Moulting /Georges 

Bay (Leases A-C) 

(n=109) 

Intertidal Georges 

Bay (Leases D & E) 

(n=37) 

Sub tidal Eastern 

Georges Bay (Leases 

F & G) (n=32) 

Kidney 

   Expanded intercellular spaces, 

intracytoplasmic vacuolation of 

epithelia cells or dilated tubules 

44  5 

Stomach and intestines 

   Expanded intercellular spaces in 

stomach and intestines walls and 

increased numbers of 

intracytoplasmic vacuoles and 

haemocyte infiltrate into wall 

16  30  

Digestive glands 

   Atrophied digestive gland tubules 

lined by low cuboidal cells, 

expanded intercellular spaces / 

tubular necrosis 

53  10 

Table 8: The numbers of Pacific oysters from lease groups with histopathological 

findings during 2004 flood event. Arrows indicate if observed values are above or 

below expected values. The numbers listed below are total numbers for each lease 

group and combine grades 1to 3 histopathological changes. 
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Histopathological findings 

Intertidal Western 

Moulting /Georges 

Bay (Leases A-C) 

(n=109) 

Intertidal Georges 

Bay (Leases D & E) 

(n=37) 

Sub tidal Eastern 

Georges Bay (Leases 

F & G) (n=32) 

Gonad 

   Expanded intercellular spaces and 

haemocyte infiltrate  of gonad / 

ova necrosis 

1  13 

Post spawn 0  0 

Mantle 

   Multifocal erosion of the mantle 70  17 

Interstitium 

   Expanded intercellular spaces of 

the interstitium / necrosis of 

leydig cells with occasional 

haemocyte infiltrate 

56  25 

Table 8 continued 

 

For 100% of slides reviewed by both the author and second pathologist there was 

agreement in descriptions and grades. 

 

There were no histopathological findings consistent with iridovirus, marteiliosis, 

bonamiosis, haplosporidiosis, perkinsiosis, nocardiosis and mikrocytosis in oysters 

from the retrospective study.  

 

DISCUSSION 

 

Mortalities of Pacific oyster, after freshwater flooding, can be the result of multiple 

pluviometric (water borne) factors (Ropert et al. 2008). These factors include sudden 

fall in salinity, increased suspended sediment, decreased dissolved oxygen, 

pesticides, heavy metals, eutrophication and acid sulphate soil run off (Dove 2003; 

Ropert et al. 2008). Often a combination of two or more of these stressors 
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overwhelms oysters during freshwater flooding and lead to mortality events (Ropert 

et al 2008). Finally additional inter-current seasonal stressors, such as warmer water 

temperature in summer, may be the final factors that determines if the oysters 

survive freshwater flooding or die (Shumway 1996). 

 

A key stress factor for oysters during the February 2004 flood event in Georges and 

Moulting Bay was the abrupt fall in salinity. The magnitude of the flood event and 

sudden fall in salinity was uncommon for this region which usually had stable salinity 

(DPIWE Tasmania 2004). During a year-long study, April 1993 to February 1994 the 

variation in salinity across sites in Georges and Moulting bays was limited to 3ppt. 

The lowest salinity record (31.5ppt) generally occurred near the George river mouth. 

The sites near the eastern mouth of the Georges Bay had very little variation in 

salinity, persistently 34-35ppt (Crawford and Mitchell 1999). 

 

In oysters sampled during the February 2004 floods there were histopathological 

changes such as leydig tissue breakdown and necrosis suggesting metabolic stress 

(Galtsoff 1964). Oysters and other marine bivalve molluscs withstand sudden falls in 

salinity by closing their shell valves to protect themselves from sudden exposure to 

extreme falls in salinity (Hoyaux et al. 1976; Hand and Stickle 1977; Davenport 

1981). These processes are initiated by the sudden change in intracellular sodium 

concentration (Natochin et al. 1979) because oysters have an open circulation 

system (Galtsoff 1964). Because leydig tissue contains abundant stored glycogen 

(Grizel 2003) leydig tissue necrosis in oysters during the flood event most likely 

indicated limited filter feeding and increased catabolism of metabolic energy stores 

(Galtsoff 1964) due to their shells being closed. Leydig cell necrosis was more 

common in subtidal low mortality leases in eastern Georges Bay suggesting these 

oysters remained closed longer than oysters on high mortality leases.  

 

In February 2004, many oysters had atrophied digestive gland tubules lined by low 

cuboidal cells and dilated lumens (particularly on subtidal leases D and E), which 

were also consistent with closed shells and fasting, during the initial insult of 

freshwater (Winstead 1995). Similar digestive gland atrophy was described in 

Eastern oysters (C. virginica) following prolonged (3 week) freshwater flooding in 
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Apalachicola Bay, Florida (Winstead 1995). Although the oysters were sampled just 

7-9 days post flooding, in Georges and Moulting Bay, the environmental stressor 

was the same and fasting for as short as 48 hours will produce digestive gland 

atrophy (Winstead 1995). Similarly, digestive gland atrophy was associated with 

fasting or lack of feeding caused by seasonal decrease in phytoplankton, measured 

by chlorophyll a concentration in sea water, in Pacific oysters in Gamakman Bay of 

the South Korean coast (Kang et al. 2010), and regional shifts in temperature 

(extrapolated to decreased phytoplankton numbers and fasting) associated with 

population declines in surf clams (Spisula solidissima) off the Delmarva Peninsula, 

near Delaware, USA (Kim and Powell 2004). Chlorophyll a was not measured in the 

waters around the leases during the mortality investigation at Georges and Moulting 

Bay in 2004. Other environmental factors which cause digestive gland atrophy in 

marine bivalves but can be excluded from the Georges and Moulting bay mortalities, 

based on water testing, include exposure to P. rhathymum (a harmful algae) in 

Pacific oysters (C. gigas) (Pearce et al. 2005) (P. rhathymum was not detected in 

elevated numbers or concentrations during the Georges and Moulting Bay floods of 

2004), oil spills in mussels (M. edulis) (Neff and Haensley 1982; Widdows et al. 

1982) (no oil spills were reported associated with the oyster mortalities at Georges 

Bay) or suspected pollutants in water discharged from iron and steel factories, also 

in mussels (M. edulis)) (Sunila 1987) (there are no iron or steel factories in the 

Georges and Moulting Bay areas or along the George river).  

 

In some oysters during the February 2004 flood there was digestive gland necrosis 

but a cause for this was not identified based on water data results. Digestive gland 

necrosis in Mytilus edulis has been associated with heated water effluent from power 

stations (Gonzalez and Yevich 1976) or high levels of cadmium (Gold-Bouchot et al. 

1995) but there were no power plants in the area and no rise in cadmium on water 

testing in Georges and Moulting Bays.  

 

Overtime oysters and other marine bivalve molluscs (such as Mytilus edulis, 

Scrobicularia plana, Glycymeris glycymeris) will eventually open in low salinity due to 

metabolic and respiratory demands and will osmoconform (Hoyaux et al. 1976; Hand 

and Stickle 1977; Davenport 1981). In high mortality leases (A-C) oysters had 
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expanded intercellular spaces between renal epithelium more often than oysters 

from low mortality leases (D-G). In Mytilus sp. challenged with sudden low salinity 

water similar expanded intercellular spaces in the kidney occurred (Khan and 

Saleuddin 1986) as the mussels osmoconformed. This suggests the renal changes 

in oysters from leases A-C were associated with osmoconformation. During the 

February 2004 flood event there were similar osmoconforming changes in the 

alimentary tract and interstitium. There were expanded intercellular spaces in the 

stomach, intestine, digestive gland and interstitium across all leases. 

 

In oysters from the February 2004 floods intracytoplasmic vacuolations in epithelial 

cells and mural haemocyte infiltrate (diapedesis) in the intestines and stomach were 

more abundant and prominent than oysters from 2003 and 2005. Intracytoplasmic 

lysosomal vacuoles are part of the normal digestion process for bivalve molluscs 

(Florey 1966). Low salinity water elevates metabolic demand in oysters such as C. 

virginica (Shumway 1996). Taking this into account, increased numbers or more 

prominent intracytoplasmic vacuoles in oysters extracted from flooded Georges and 

Moulting Bays in 2004, suggested increased metabolic demand and activity. 

 

The dispersion of freshwater across Georges Bay and Moulting Bay is dependent on 

wind direction and tidal stage (Brown 1998). If these off shore winds and tides 

resulted in uneven distribution of the freshwater stress factors through the estuary, 

for example, persistent lower salinity (or other freshwater associated stress factors) 

near the river mouth close to intertidal leases A-C, this may partially explain the 

higher mortalities across inter-tidal leases A-C in western Moulting Bay (see figure 

2). Unfortunately, extensive measurements comparing salinity and other factors such 

as suspended sediment across the various leases during the flood event were not 

available to support this hypothesis.  

 

There is insufficient environmental data to explain why not all microscopic changes 

were most commonly associated with mortality in 2004. Other concurrent 

environmental stress factors, associated with flooding, such as low dissolved oxygen 

or temperature variation at different depths, which were not measured during the 

investigation, may have contributed to some changes being more common in sub-
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tidal compared to inter-tidal leases or low mortality compared to high mortality 

leases. For example, osmoconforming changes in the alimentary tract were common 

in low mortality compared to high mortality leases possibly because of variations in 

dissolved oxygen (influenced by floodwaters, and tidal patterns) across different 

leases in the bays. On the other hand, breakdown and necrosis of leydig tissue may 

have been more common in sub-tidal leases than inter-tidal leases because water 

temperature and salinity, post flooding, varied with depth. The sub-tidal oysters were 

kept deeper in the water (up to 6 to 10 metres below the water’s surface at high tide). 

 

In February 2004, in addition to the abrupt fall in salinity there was seasonal 

elevation in water temperature. During summer, oysters, which are poikilotherms, 

have high metabolic and respiratory rates (Galtsoff 1964). For this reason the 

metabolic and respiratory rates of oysters would have been high, during the 

February 2004. As mentioned before, exposure to low salinity also elevates 

metabolic demand (Shumway 1996). This combined effect of low salinity and 

increased temperature on metabolic rate may have forced some oysters, particularly 

those which were inter-tidal (and exposed to higher temperatures and lower salinities 

– because they were higher in the water - than sub-tidal oysters), to open their shells 

in the low salinity water to feed and obtain oxygen. 

 

An additional potential freshwater stress factor identified during the February 2004 

floods was zinc. Zinc was markedly increased (dissolved zinc 3560 µg /L) on lease C 

on 5th February 2004. However there was a rapid reduction in dissolved zinc levels 

to 50 micrograms/L on 7th February. Pacific oysters (C. gigas) are sensitive to high 

levels of zinc (10000 µg /L) over short periods of time (7 days) and will die but they 

accommodate to moderate levels (5000 µg /L) of zinc (Mottin et al. 2012). Based on 

these published results the short term peak on lease C, which was below 10000ug/L 

probably didn’t cause the mortalities alone. Zinc can enter surface waters as a result 

of run off from mining enterprises (ANZGFMWQ 2000), however, no active mines 

are found around Georges or Moulting Bays or George River. Another source of zinc 

is acid sulphate soil run-off from agricultural land. Acid sulphate soils are found in the 

George River catchment (DPIPWE 2010). 
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Acid sulphate soils are present in coastal lands near the mouth of the George River 

(DPIPWE 2010) and run off from acid sulphate soils was potentially a risk factor for 

oyster mortalities during the freshwater flood in February 2004. Elevated iron, zinc 

and aluminium in the flood waters, which can be associated with sulphuric acid 

release from the soil following heavy rains (Dove 2003; DPIPWE 2010), were 

recorded during the flood (DPIWE 2004a). However, characteristic microscopic 

changes in oysters in response to acid sulphate soil run off, such as inflammation of 

the gills and mantle (Dove 2003), were not found in oysters from Georges Bay in 

February 2004. In summary, there were some water quality changes, including 

increases in aluminium, zinc and irons, suggestive of acid sulphate soil runoff but no 

microscopic changes in the oysters to confirm the mortalities were related to acid 

sulphate soil run-off.  

 

Acute mantle erosion was another significant microscopic finding and was seen 

more commonly in oysters on high mortality inter-tidal leases A-C, than on other 

leases. The mantle primarily acts as a barrier against chemical and physical injury, 

secretes shell and ligament and along with other organs mediates the conversion 

from aerobic to anaerobic metabolism (Grizel 2003). For these reasons the acute 

mantle erosion in oysters from the February 2004 flood event not only caused a 

break down in the physical barrier to freshwater but also may have compromised 

oysters' ability to adapt to changes in metabolism and feeding when they opened 

again. Mortalities (up to 90%) of pearl oysters (Pinctada maxima) were reported in 

October 2006 in Exmouth Gulf, Western Australia and mantle erosion was a 

common finding in the majority of the moribund oysters but unfortunately the cause 

for the mortalities was not identified (Jones et al. 2010). A possible cause for mantle 

erosion in Pacific oysters (C. gigas) from the February 2004 floods, which was not 

identified by environmental monitoring, was mechanical damage due to fine 

suspended sediment, washed down by the flooded George River.  

 

When assessing microscopic changes in oysters it is important to exclude, as far as 

practical, the contribution of infectious pathogens. In the oysters from 2003 to 2005 

there were no histopathological findings consistent with infectious diseases such as 

Iridovirus (Elston and Wilkinson 1985), Marteiliosis (Thebault et al. 2005) 
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Haplosporidiosis (Perkins 1968), Perkinsiosis (Villalba et al. 2004), Nocardiosis 

(Friedman 1990), Mikrocytosis (Hervio et al. 1996) and Bonamiosis (Hine et al. 2001) 

which is endemic in Tasmanian flat oysters (O. angasi) in the oysters from Georges 

and Moulting Bays. At the time of the mortality event in February 2004 samples were 

not tested for Ostreid Herpesvirus 1 (OsHV1) by PCR. Subsequently, in 2011 a 

state-wide survey of all Pacific oyster growing areas in Tasmania detected no 

evidence of OsHV1 by PCR (Ellard 2011). Additional state-wide surveys in 2012 and 

2013 also have not detected OsHV1 by PCR in Pacific oysters (Ellard 2012; Ellard 

2013). 

 

Conclusion 

The purpose of this retrospective study was only to assess the histopathological 

changes in light of water quality data. This was a limited investigation and could not 

identify all the multiple causes leading to the oyster mortality for many reasons. For 

example, sudden physiological stressors, which cause very little histopathological 

changes, such as sudden falls to low dissolved oxygen, could not be interpreted by 

histopathology. In addition dead, autolysed oysters, which were obviously 

susceptible to the freshwater associated lethal stressors, were unsuitable for 

histopathology and thus unable to be assessed. 

 

In summary, based on the retrospective review of histopathology slides, associated 

with the stress of abrupt change to low salinity and summer temperatures, there 

were osmoconforming (expanded intercellular spaces in the kidney and alimentary 

tract) and metabolic stress (leydig tissue necrosis) related changes in Pacific 

oysters, during the February 2004 floods. 
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APPENDIX 

 

 
Location 

Water parameter 

High mortality 
intertidal leases 
5, 7 and 12th 

Feb 2004 (n=9) 

Low mortality 
intertidal leases  

7th and 12th 
(n=3) 

Low mortality 
subtidal leases  
7th Feb 2004 

(n=3) 

Near George 
river mouth 7th 

& 12th Feb 2004 
(n=2) 

Water pH 7.4 ±0.3 7.7 ±0.2 7.5 ±0.2 7.7 ±0.4 

Water conductivity 28833 ±7833 39067 ±4852 28300 ±12644 34750 ±11243 

Water Total Dissolved Solids (mg/L) 20421 ±6897 25150 ±4455 18780 ±8792 21700 ±6647 

Water Alkalinity CO3 (mg CaCO3/L) <1 
 

<1 
 

<1 
 

<1 
 Alkalinity HCO3 mg CaCO3/L 67 ±20 86 ±10 64 ±23 79 ±28 

Alkalinity Total 68 ±19 86 ±11 65 ±24 80 ±29 

Water Chloride (mg/L) 11311 ±3535 16000 ±2646 11367 ±5631 14000 ±5657 

Sulphate mg/L 1300 ±394 1867 ±321 1300 ±624 1650 ±636 

1109-Water 3488 ±1199 5243 ±999 3717 ±1066 4650 ±1584 

Water Ammonia (mg-N/L) 0.248 ±0.259 0.213 ±0.145 0.148 ±0.076 0.086 ±0.001 

Nitrate + Nitrite (mg-N/L) 0.057 ±0.062 0.047 ±0.030 0.066 ±0.037 0.109 ±0.103 

Nitrate + Nitrite (mg-N/L) 0.060 ±0.062 0.049 ±0.032 0.069 ±0.038 0.111 ±0.104 

Nitrite mg-N/L 0.003 ±0.002 0.003 ±0.001 0.003 ±0.001 0.002 
 Phosphorus, Dissolved Reactive mg-

P/L 0.01 ±0.01 0.01 ±0.00 0.01 ±0.01 0.01 
 Al Dissolved (µg/L) 50 ±15 51 ±17 50 ±26 52 ±15 

Al Total ug/L 308 ±151 123 ±48 164 ±20 222 ±140 

As Dissolved ug/L <5 
 

<5 
 

<5 
 

<5 
 As Total ug/L <5 

 
<5 

 
<5 

 
<5 

 Cd Dissolved ug/L <1 
 

<1 
 

<1 
 

<1 
 Cd Total ug/L <1 

 
<1 

 
<1 

 
<1 

 Co Dissolved ug/L <1 
 

<1 
 

<1 
 

<1 
 Co Total ug/L <1 

 
<1 

 
<1 

 
<1 

 1301-Water Cr Dissolved (ug/L) <1 
 

<1 
 

<1 
 

<1 
 Cr Total ug/L <1 

 
<1 

 
<1 

 
<1 

 Cu Dissolved ug/L <1 
 

<1 
 

<1 
 

<1 
 Cu Total ug/L <1 

 
<1 

 
<1 

 
<1 

 Fe Dissolved ug/L 30 ±12 20 0 29 ±16 20 0 

Fe Total ug/L 364 ±235 107 ±56 148 ±28 225 ±195 

Mn Dissolved ug/L 27 ±11 11 ±8 20 ±8 18 ±18 

Mn Total ug/L 37 ±19 21 ±11 43 ±26 35 ±18 

Ni Dissolved ug/L <2 
 

<2 
 

<2 
 

<2 
 Ni Total ug/L <2 

 
<2 

 
<2 

 
<2 

 Pb Dissolved ug/L <10 
 

<10 
 

<10 
 

<10 
 Pb Total ug/L <10 

 
<10 

 
<10 

 
<10 

 Zn Dissolved ug/L 4 ±3 4 ±3 4 ±3 4 ±3 

Zn Total ug/L 5 ±4 5 ±3 5 ±2 4 ±2 

1302-Water Ca Dissolved (mg/L) 210 ±75 322 ±65 223 ±±66 284 ±103 

Ca Total mg/L 248 ±79 368 ±78 275 ±75 320 ±108 

K Total mg/L 222 ±75 340 ±75 249 ±70 283 ±118 

Mg Dissolved mg/L 720 ±246 1078 ±204 767 ±219 955 ±319 

Mg Total mg/L 748 ±253 1133 ±2±51 826 ±248 973 ±350 

Na Total mg/L 6306 ±2046 9240 ±1565 7047 ±1822 7830 ±2659 

Table A1 Water parameters by lease including heavy metals, Water parameters for 
5th to 12th February (source of data DPIWE 2004a) 
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  Water parameter n=17 

1420-Water Dibutyltin (ng 
Sn/L) <2.0 

Tributyltin ng Sn/L <2.0 

a-BHC ug/L <0.1 

Aldrin ug/L <0.1 

Alphamethrin ug/L <0.1 

b-BHC ug/L <0.2 

Chlordane ug/L <0.5 

Chlorpyrifos  ug/L <0.1 

d-BHC ug/L <0.2 

Diazinon ug/L <0.1 

Dieldrin ug/L <0.2 

Dimethoate ug/L <0.1 

Disulfoton ug/L <0.2 

Endosulfan I ug/L <0.1 

Endosulfan II ug/L <0.4 

Endosulfan sulphate ug/L <0.1 

Endrin ug/L <0.1 

Endrinaldehyde ug/L <0.1 

Ethylparathion ug/L <0.1 

Famphur ug/L <0.1 

g-BHC ug/L <0.1 

Heptachlor ug/L <0.1 

Heptachlor epoxide ug/L <0.1 

Hexachlorobenzene ug/L <0.2 

Malathion ug/L <0.2 

Methyl parathion ug/L <0.1 

p,p'-DDD ug/L <0.1 

p,p'-DDE ug/L <0.2 

p,p'-DDT ug/L <0.1 

Phorate ug/L <0.2 

Sulfotep ug/L <0.1 

Thionazin ug/L <0.2 

Spinosad ug/L <0.1 

Table A2 Pesticide levels in leases across Georges Bay / Moulting Bay 5th to 12th 
February 2004 (source of data DPIWE 2004a) 
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 Date 

  14/05/2003 
(n=1) 

5/10/2005 to 
9/11/2005 

(n=4) 

Pacific oysters size  (mm) 90-100 not available 
Arsenic Inorganic (mg/kg) 0.26 

 Total Arsenic (mg/kg) 1.53 3.3 ± 0.7 
Cadmium (mg/kg) 0.1 0.1 
Chromium (mg/kg) 0.6 0.5 ± 0.4 
Cobalt (mg/kg) <0.1 <0.1 
Copper(mg/kg) 3.1 5.6 ± 1.5 
Iron (mg/kg) 47 46 ± 13 
Lead (mg/kg) <0.1 0.09 
Manganese (mg/kg) 2.2 4.3 ± 1.5 
Mercury (mg/kg) <0.2 0.019 
Nickel (mg/kg) 1.3 1.3 ± 0 
Zinc (mg/kg) 53 3 ± 0 

Table A3: Heavy metal assay of oyster meat from leases in Georges Bay / Moulting 
Bay as part of PSQAP monitoring during 2003 and 2005 (source of data TSQAP) 
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Subtidal lease 
B Western 
Moulting Bay 

Intertidal 
lease B 
Western 
Moulting 
Bay 

Intertidal lease 
A Western 
Moulting Bay 

Mouth of 
George 
River 

Subtidal lease D 
Eastern Georges 
Bay 

Variable Vertical net tow Horizontal 
net tow 10m 
over 
seagrass  

Horizontal net 
tow 10m over 
seagrass  

Horizontal 
net tow  

Vertical net tow  

Depth 5m 0.5m 0.5m 2m  10m 

Tide Dead low Dead low Dead low Dead low not recorded 

Temp 
(degrees 
Celsius) 

19.5 20.5 20 10.1 19 

Salinity 28.7 27 27.6 18.3 14.7 

      

 

Diatoms Diatoms 
(very 
sparse) 

Diatoms Diatoms  
(very 
sparse) 

Diatoms 

 

Amphora sp. Navicula sp. Guinardia sp. Navicula sp. Amphora sp. 

 

Guinardia sp. Nitzchia 
closterium 

Navicula sp. Pleurosigma Navicula sp. 

 

Leptocylindrus 
danicus 

Pleurosigma Pleurosigma  Pleurosigma 

 

Navicula sp.    Coscinodiscus sp.  

 

Nitzchia 
closterium 

 Dinoflagellates Jellyfish  

 

Pleurosigma  Ceratium fusus  Dinoflagellates 

 

  Prorocentrum 
rathymumn 

 Gymnodinium sp. 

 

Dinoflagellates    Gyrodinium 
lachryma 

 

Ceratium furca    Noctiluca scintillans 

 

Ceratium fusus    Ostreopsis sp. 

 

Dinophysis fortii    Protoperidinium sp. 

 

Noctiluca 
scintillans 

   Prorocentrum 
gracile 

 

Ostreopsis sp.     

 

Protoperidinium 
sp. 

    

 

Prorocentrum 
gracile 

    

 

Prorocentrum 
rathymumn 

    

 

     

 

Flagellates     

 

Dictyocha 
speculum 

    

Table A4: Algology for 5th February 2004 (source of data, DPIWE 2004a) 
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  Intertidal lease A 

Western 
Moulting Bay 

Intertidal lease 
D Eastern 
Georges Bay 

Medea 
Cove 
Bridge 

Tidal windrows 

Variable Horizontal net 
tow 10m over 
seagrass  

Horizontal net 
tow 10m  

Horizontal 
net tow 
10m over 
seagrass  

 

Depth 1.0m 0.5m 0.5m  

Tide not recorded not recorded incoming  

Temp 
(degrees 
Celsius) 

19.4 20.2 21  

Salinity 25.7 23.2 22.1  

 

    

 

Diatoms Diatoms Diatoms Dinoflagellates 

 

Amphora sp. Navicula sp. Navicula 
sp. 

Noctiluca 
scintillans 

 

Guinardia sp. Dinoflagellates   

 

Navicula sp. Ceratium 
fusus 

  

 

Pleurosigma Noctiluca 
scintillans 
(abundant) 

  

 

Coscinodiscus 
sp.  

   

 

    

 

    

 

    

 

Dinoflagellates    

 

Prorocentrum 
gracile 

   

Table A4 continued with additional sample sites 
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Lease type in Moulting Bay intertidal subtidal subtidal subtidal intertidal 

Date 17/10/2005 12/10/2005 02/11/2005 16/11/2005 14/11/2005 

Depthm (m) 0.5 10 4 4 0.5 

Method of Sampling Bottle Integrated Integrated Integrated Bottle 

Tide 0.9 low 4 hours in Flood 4hr flood Outgoing High 

Ceratium_furca 

 

3800 0 

  Ceratium_fusus 

 

1900 0 

  Chaetoceros_affinis 

    

15000 

Chaetoceros_danicus 22000 

   

3800 

Chaetoceros_debilis 

 

23000 

 

530000 950000 

Chaetoceros_decipens 

   

130000 100000 

Chaetoceros_lorenzianus 

 

13000 

  

21000 

Chaetoceros_peruvianus 

   

1900 

 Chaetoceros_pseudocrinitus 

 

25000 

   Chaetoceros_radicans 

 

34000 

   Chaetoceros_socialis 

    

5700 

Dictyocha_speculum 

    

1900 

Dinophysis_acuminata 

 

95 

   Ditylum_brigthwellii 

   

1900 1900 

Eucampia_zodiacus 

 

1300 

 

93000 44000 

Guinardia_delicatula 

   

9500 

 Guinardia_flaccida 

 

9500 

 

11000 59000 

Gymnodinium_catenatum 

 

2100 

   Leptocylindrus_danicus 

     Leptocylindrus_mediterraneus 6000 100000 0 110000 36000 

Navicula_sp 

 

1900 

   Nitzschia_closterium 

     Nitzschia_sp 

    

1900 

Proboscia_alata 

   

9500 1900 

Protoperidinium_sp 

  

0 1900 

 Pseudo_nitzschia_seriata_group 4100 6600 

  

1000 

Psuedo_nitzschia_delicatissima_group 20000 120000 7000 140000 66000 

Rhizosolenia_fallax 

 

7600 

   Rhizosolenia_setigera 

 

1900 

   Skeletonema_costatum 160000 28000 

   Striatella_sp 

 

1900 0 

  Thalassionema_nitzschoides 

 

7600 

   Thalassiosira_gravida 0 

   

3800 

Table A5: Algology for October and November 2005 in Moulting Bay, the unit is algal 
cells per ml (source of data, Analytical Services Tasmania report to TSQAP) 
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Histopathological findings 

2003 

(n=0) 

2004 

(n=178) 

2005 

(n=288) 

Kidney 

   Expanded intercellular spaces, intracytoplasmic 

vacuolation of epithelia cells or dilated tubules 

 (31) 25 

    

Histopathological findings 

2003 

(n=63) 

2004 

(n=178) 

2005 

(n=288) 

Stomach and intestines 

   Expanded intercellular spaces in stomach and 

intestines walls and intracytoplasmic vacuoles and 

haemocyte infiltrate into wall 

0 (16) 0 

Digestive glands 

   Atrophied digestive gland tubules lined by low 

cuboidal cells, expanded extracellular spaces /  

tubular necrosis 

0 (30) 0 

Gonad 

   Expanded intercellular spaces and haemocyte 

infiltrate  of gonad / ova necrosis 

0 (5) 0 

Post spawn 0 (17) 0 

Mantle 

   Multifocal erosion of the mantle 0 (32) 0 

Interstitium 

   Expanded intercellular spaces of the interstitium / 

necrosis of leydig cells with occasional haemocyte 

infiltrate 

0 (32) 2 

Table A6 
The numbers of Pacific oysters from lease groups with histopathological findings 
during 2004 flood event. Arrows indicate if observed values are above or below 
expected values. The numbers listed below are total numbers for each lease group 
and combine grades 1to 3 histopathological changes.The expected values are in 

parentheses. The expected values are calculated from 2 analysis of year groups for 
each histopathological finding. 
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Histopathological findings 

Intertidal 

Western 

Moulting 

/Georges Bay 

(Leases A-C) 

(n=109) 

Intertidal 

Eastern Georges 

Bay (Leases D & 

E) (n=37) 

Sub tidal Central 

Georges Bay 

(Leases F & G) 

(n=32) 

Kidney 

   Expanded intercellular spaces, 

intracytoplasmic vacuolation of epithelia 

cells or dilated tubules 

44(30)  5 

Stomach and intestines 

   Expanded intercellular spaces in stomach 

and intestines walls and increased 

numbers of intracytoplasmic vacuoles 

and haemocyte infiltrate into wall 

16  30(8) 

Digestive glands 

   Atrophied digestive gland tubules lined 

by low cuboidal cells, expanded 

intercellular spaces / tubular necrosis 

53 (19) 10 

Table A7: The numbers of Pacific oysters from lease groups with histopathological 

findings during 2004 flood event. Arrows indicate if observed values are above or 

below expected values. The numbers listed below are total numbers for each lease 

group and combine grades 1to 3 histopathological changes. 

The expected values are in parentheses. The expected values are calculated from 2 

analysis of lease groups for each histopathological finding. 
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Histopathological findings 

Intertidal 

Western 

Moulting 

/Georges Bay 

(Leases A-C) 

(n=109) 

Intertidal 

Eastern 

Georges Bay 

(Leases D & 

E) (n=37) 

Sub tidal Central 

Georges Bay 

(Leases F & G) 

(n=32) 

Gonad 

   Expanded intercellular spaces and 

haemocyte infiltrate  of gonad / ova 

necrosis 

1  13(3) 

Post spawn 0 (22) (8) 0 (7) 

Mantle 

   Multifocal erosion of the mantle 70(59)  17 

Interstitium 

   Expanded intercellular spaces of the 

interstitium / necrosis of leydig cells with 

occasional haemocyte infiltrate 

56  25(17) 

Table A7: The numbers of Pacific oysters from lease groups with histopathological 

findings during 2004 flood event. Arrows indicate if observed values are above or 

below expected values. The numbers listed below are total numbers for each lease 

group and combine grades 1to 3 histopathological changes. 

The expected values are in parentheses. The expected values are calculated from 2 

analysis of lease groups for each histopathological finding. 
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Chapter 2 

 

Biochemical and histopathological 

changes in oysters in response to 

low salinity stress 
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INTRODUCTION 

 

Oysters are robust aquatic bivalve molluscs that adapt to highly variable inter-tidal 

and estuarine environments (Galtsoff 1964) and similar to other marine bivalves in 

this ecosystem they tolerate a broad range of salinities and temperatures (Dame 

2012). Oysters are euryhyaline and osmoconform to gradual changes in salinity 

(Kinne 1964) (Gullian and Aguirre-Macedo 2010) which allows oysters to adapt to a 

broad range of temperatures and salinities associated with seasonal change. 

However, oysters cannot adapt quickly to rapid changes in salinity while 

experiencing elevated environmental temperature in spring or summer, when they 

have a high metabolic rate (Galtsoff 1964; Shumway 1996). Oysters will respond to 

unfavourable environmental conditions, like other bivalves such as mussels, by 

initially shutting their shells (Davenport 1981), but if the fall in salinity is marked and 

persistent, feeding and respiration will cease and mortalities can occur (Galtsoff 

1964). Significant oyster mortalities were recorded in Georges and Moulting Bays, 

north eastern Tasmania, Australia, after severe freshwater flooding (1 in 50 year 

event) in February 2004 (summer), with up to 90% oyster stock losses in leases 

closest to the river mouth as it flowed in to Georges Bay (DPIWE Tasmania 2004). 

 

An additional source of stress for farmed oysters, aside from environmental factors 

such as raised temperatures, occurs during and after grading (Lacoste et al. 2001; Li 

and Vanderpeer 2002; Percival and Ellard 2004; Zhang and Li 2006). Grading 

involves removing oysters from the water and subjecting them to mechanical 

rumbling and automated size sorting along a stainless trough or barrel (Zhang and Li 

2006). Grading is an integral part of stock management, which facilitates faster 

oyster growth rates, because oysters appear to grow better when similar sized 

animals are grown together in baskets or trays, and it also encourages new shell 

growth by removing old shell (Zhang and Li 2006). Tasmania oyster growers often 

report variable stock losses following grading, particularly when they are associated 

with other stress factors such as high rainfall and freshwater flooding (Batley et al. 

2010). Oysters’ physiological responses to grading include abrupt spikes in 

haemolymph catecholamines (Lacoste et al. 2001) and decreased haemocyte 
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phagocytosis, the latter can lead to lower host protection against pathogens (Zhang 

and Li 2006). 

 

Alongside elevated temperature, and management factors such as grading, genetic 

oyster traits are potential predisposing risk factors associated with freshwater oyster 

mortality events (Percival and Ellard 2004). Survival attributes are more heritable 

than other commercial selection traits (Evans and Langdon 2006), such as growth 

and condition, which are common selection traits for farmed oysters (CSIRO 2002) 

(CSIRO 2002). For these reasons family lines may respond differently to freshwater 

stress, just as some family lines had better survival rates than others during summer 

mortality events in France (Huvet et al. 2010). 

 

Histopathology, is commonly used as part of oyster health surveillance programs, 

disease diagnosis, mortality investigations (Ellis et al. 1998; DPIWE Tasmania 2004 

b; Kim and Powell 2006) and for bio-monitoring (Kim and Powell 2007) because it 

has potential to explore the interaction of oysters with pathogens or the environment 

(Yevich and Yevich 1994; Grizel 2003; Myers and McGavin 2007; Berthe 2008; Kim 

and Powell 2009). In the absence of infectious pathogens, water data and 

physiological changes are important for interpreting microscopic changes (DPIWE 

Tasmania 2004a; Bignell et al. 2008; Kim and Powell 2009). For these reasons, 

additional information, including water quality data on oyster leases and, where 

practical physiological biochemical parameters contribute to interpretation of 

histopathological changes, particularly following mortalities (Bignell et al. 2008). The 

aim of this study was to explore the biochemical and histopathological response of 

Pacific oysters (Crassostrea gigas) to an abrupt fall in salinity. 

 

MATERIALS AND METHODS 

Experimental Design and Setup 

A three factor orthogonal experimental design was used to examine differences in 

histopathology of Pacific oysters (Crassostrea gigas) in response to water salinity 

(normal salinity 35ppt and low salinity 9ppt), grading (graded and ungraded oysters), 

and breeding (two family lines). Salinity and grading were fixed factors, while family 

line was a random factor (Table 1). Three replicate tanks (3 x low salinity 9ppt and 3 
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x normal salinity 35ppt) were used for every combination of the three factors. A 

salinity of 9ppt was used in this experiment because it is at the lower end of the 

mesohyaline range for oysters and we wished to examine for reversible and 

irreversible histopathological changes in oysters, not mortalities in response to 

salinity. 

 

 

 
  

 
Family A 

 
Family B 

    Graded not graded Graded not Graded 

Salinity ppt 35 10 10 10 10 

 
9 10 10 10 10 

Table 1: The orthogonal design for both the summer and winter experiments. The 

numbers of oysters for each factor (family, grading, salinity). Tanks were run in 

triplicate, that is, there were 3 tanks at 9ppt and another 3 at 35ppt with the same 

combination of oysters from the respectively families or history of grading. 

 

The experiment was run twice, once in summer (February 2010) and once in winter 

(July 2009) to determine if the oyster response depended on water temperatures. 

Pacific oysters were collected from a commercial oyster farm in north-western 

Tasmania and sent by overnight courier to the Animal Health Laboratory DPIPWE 

Tasmania, Launceston. In summer the oysters were sent with a small shipment of 

ice bricks to ensure they did not overheat during transport. Ice bricks were not 

required for transport during winter. The oysters were transferred to the experimental 

tanks (at salinity either 9ppt or 35ppt) on the day they arrived at the laboratory. In the 

winter experiment family lines YC06-22E and YC06-4A were used, while the summer 

experiment used lines PI 1 and PI 3. Different family lines were used because the 

family lines used in the winter experiment were all harvested and unavailable for the 

summer experiment. The mean length of Pacific oysters for the winter experiment 

was 97 ± 8 mm (mean ± SD, n=80) and for the summer experiment 75 ± 6 mm 

(n=77). Half the oysters from each family line were graded at the farm before being 

sent to the laboratory. 

 

At the oyster lease in north-western Tasmania the water temperature and salinity 

were recorded by the farmer using an alcohol thermometer and refractometer 
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(Vitalsine, Model SR-6) respectively, on the day the oysters were collected. On the 

day of collection for oysters for the winter experiment surface water salinity was 

35ppt and temperature was 8oC so water temperature in tanks was maintained at 

8oC and the control tanks had salinity at 35ppt. For the summer experiment, on the 

day of collection, surface water salinity was 35ppt and temperature was 18oC on the 

oyster lease so water temperature was maintained at 18oC in all tanks and control 

tanks had salinity at 35ppt.  

 

Two independent re-circulating seawater systems were set up. Each system was 

held at either salinity 9ppt or 35ppt. De-ionised water was used to dilute the 35ppt 

seawater to 9ppt. Each seawater system had three 60L tanks and a biofilter with 

aeration provided by movement of water through the system and a water stone in 

each tank. Daily water ammonia/ammonium was tested with an NH3/NH4 API (R) test 

kit and water temperature was measured three times daily with an alcohol 

thermometer. Ammonium / ammonia levels were maintained at or below 0.25mg/L 

through daily partial water changes. Salinity was measured daily using a 

refractometer (Vitalsine, Model SR-6). In each of the six tanks, four oyster baskets 

were suspended, containing 13-14 oysters, which were from one of the four 

combinations of family line and grading. The oyster farm provided three fewer 

oysters for the summer experiment than for the winter experiment. 

 

The experiment ran for 10 days and 40 oysters were randomly sampled on Day 3 

and another 40 on Day 10, from each treatment group. It was decided not to feed 

oysters during the 10 day experiment as the microalgae usually used to feed Pacific 

oysters in culture would have lysed in the 9ppt salinity tanks. Oyster shells were 

examined for abnormal conformation, shape and defects (e.g. fluting) at the 

beginning of the experiment and when sampled on Days 3 and 10. Each oyster was 

opened by removing the flat shell valve and examined for the presence of gross 

lesions in the oyster meat and the colour, distribution, pattern, shape, contour, size, 

organ or site and change in texture of any lesions was recorded. From each oyster 

pallial cavity 0.2-0.4ml of fluid (free water in the closed oyster shell) was collected 

using a single use disposable plastic 1ml pipette and 0.2-0.4ml of haemolymph, from 
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the pericardial sac, was collected using a 1ml syringe and 21G needle (Becton 

Dickson (R)). Then the whole oyster was fixed in 10% seawater buffered formalin. 

 

Analytical methods and histopathology 

Concentrations of sodium and potassium in the oyster haemolymph were determined 

using a Konelab (R) automated biochemical analyser. Samples were diluted 1 in 2 or 

1 in 3 with distilled water so concentrations were not above the limit of detection of 

the Konelab. Pallial cavity fluid salinity was measured using a refractometer 

(Vitalsine, Model SR-6), and pH was measured with a pH meter (MiniLab pH meter 

with ISFET solid state sensor, model IQ125 manufactured by IQ Instruments, 

Carlsbad, California, USA).  

 

The formalin fixed tissues (preserved in 10% buffered saline formalin) were 

embedded in paraffin using standard techniques, cut at 5µm thickness and stained 

with haematoxylin and eosin. All the slides were read by one pathologist and each 

organ or anatomical site (kidney, heart, mantle, interstitium, gonad, ganglia, gill, 

stomach, intestine, digestive gland) of the oyster was examined. Histopathological 

changes were recorded and graded using a four point grading scale; 0=normal tissue 

and no microscopic changes, 1=mild changes with minor alteration to organ 

architecture, 2=moderate changes that affected and/or disrupted > ½ of the organ 

architecture, 3=severe changes with marked disruption or effacement of the majority 

of the organ architecture. A subset of 20 slides was independently read by a second 

pathologist to confirm reproducibility of results and uniform interpretation. The 

agreement between descriptions and grades was measured as the percentage of 

descriptions and grades given by the second pathologist who correlated with the 

descriptions and grades of the author. 

 

Statistical analyses 

 

Differences in mean haemolymph potassium and sodium concentration, pallial cavity 

fluid salinity and pH were examined as a function of salinity (normal or low salinity), 

grading (graded or ungraded), family line, season, and sampling day (Day 3 and 10) 

using a factorial ANOVA. Assumptions of homogeneity of variance were tested using 
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Levene's Test and data were log transformed where necessary. Significant sources 

of variability were examined with “a posteriori” Tukey’s HSD test.  

 

Chi–squared (2) test of independence was used to determine if the relative 

frequency of oysters with histopathological changes for each organ or anatomical 

site differed as a function of salinity (normal or low salinity), grading (graded or 

ungraded), season (winter or summer water temperature), family line and day 

sampled (day 3 and 10). The test of independence assumed that the number of 

individuals in the different histopathological categories were the same for all 

treatments. If the 2 analysis was significant the standardised difference between the 

expected frequency and the observed frequency was used to identify where 

differences had occurred. All tests were conducted at significance level <0.05 and all 

data were analysed using SPSS v18 (R). 

 

In the winter experiment one ungraded oyster at normal salinity sampled on day 3 

had insufficient haemolymph in the pericardial sac for testing. During the summer 

experiment in a low salinity tank one ungraded oyster died at day 5 and results from 

this animal were not included in the statistical analysis. 

 

RESULTS 

 

At the beginning of winter and summer experiments there was no evidence that any 

of the oysters in the experiments had defects or abnormalities in their shells and 

there was no chipping or break of oyster shell seals in either graded or ungraded 

oysters. In both experiments on Days 3 and 10 there were no gross abnormalities or 

lesions evident. 

 

The factors grading and family lines did not contributed to statistically significant 

variability in any of the response variables (P > 0.05).  

 

Mean pallial cavity salinity differed between groups of oysters that experienced 

different salinity and was dependent on season and day of sampling 

(F(season*salinity*day)=62.670, df 7,147; P<0.001). Winter experiment oysters held at 
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salinity 9 ppt had mean pallial cavity salinity by day 10 that was 21.0% below the 

mean for oysters held at 35 ppt (Table 2). In contrast, in summer mean pallial cavity 

salinity in oysters held at salinity 9 ppt at day 3 and 10 were 56.3% and 65.6% below 

that of the oysters held at 35 ppt. All these differences in mean values for pallial 

cavity salinity were statistically significant based on “a posteriori” testing (Tukey’s 

HSD) 

 

Similarly mean hemolymph sodium (F(season*salinity*day)=170.373, df 7,147; P<0.001) 

and hemolymph potassium (F(season*salinity*day)=62.670, df 7,147; P<0.001) differed 

between groups of oysters that experienced different salinity and was dependent on 

the season and day of sampling. In the winter, by day 10, mean hemolymph sodium 

and potassium of experimental oysters held at 9 ppt were 23% and 21.0%, 

respectively, below the mean for oysters held at 35 ppt (Table 2). In summer, mean 

hemolymph sodium in oysters held at salinity 9 ppt at day 3 and 10 were 63.7% and 

72.3% below that of the oysters held at 35 ppt. Similarly mean hemolymph 

potassium for oysters at salinity 9 ppt on day 3 and 10 was 47.5% and 63.7% less 

than oysters at salinity 35 ppt.) 

 

In summer and winter hemolymph pH was on average 7.3 with a range of 7.2 to 7.4 

and there was no evidence that the variability in pH among the oysters was 

explained by any of the experimental factors (all terms in ANOVA had P > 0.05).  
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  Winter Summer 

  Water salinity 9 ppt Water salinity 35 ppt Water salinity 9 ppt Water salinity 35 ppt 

 Variable Day 3  Day 10  Day 3 Day 10 Day 3  Day 10  Day 3 Day 10 

  (n=20) (n=20)  (n=20) (n=20) (n=19) (n=17)  (n=20) (n=20 ) 

Pallial cavity salinity 
(ppt) mean  ± SE 29 ± 0.4

a 
22.7 ± 0.4

b 
29.4 ± 0.4

a 
28.7 ±0.4

a 
15.4 ± 0.7

d 
13.1 ± 0.7

d 
35.2 ± 0.5

c 
38 ±0.7

c 

Haemolymph 
potassium (mmol/L) 
mean  ± SE 10 ± 0.4

e 
8.5 ± 0.4

f 
9.5 ± 0.4

e 
10.7 ± 0.4

e 
6.3 ± 0.4

h 
4.5 ± 0.4

h 
12.0 ± 0.4

g 
12.4 ± 0.4

g 

Haemolymph sodium 
(mmol/L) mean  ± SE 347.1 ± 4.6

i 
263.7 ± 4.6

j 
350.5 ± 4.7

i 
344 ± 4.6

i 
170± 15

l 
134 ± 15

l 
468.1 ± 15

k 
484.4 ± 15

k 

Table 2 Oyster pallial cavity salinity and haemolymph potassium and sodium results due to season, salinity and day of sampling. 

For each of the three variables, treatment means with different letters are significantly different from one another 
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There were microscopic changes in the stomach and intestines (2=80.896, df 7; 

P<0.001), digestive gland tubules (2=94.883, df 7; P<0.001) and kidney (2=20.741, 

df 7; P=0.004) in oysters and the frequency of these changes was associated with 

salinity, season and day of sampling (Table 3 & Appendix Table A1). These 

microscopic changes in oysters (which were either grade 1 or 2; no grade 3 changes 

were seen) were more common in low salinity compared to normal salinity and this 

was particularly the case in summer. Expanded intercellular spaces, intracytoplasmic 

vacuoles in epithelial cells (taking up greater than 70-80% of the cytoplasm and 

moderately expanding the cell) and hemocyte infiltrate (diapedesis) in the walls of 

the stomach (Fig. 2), digestive gland tubules (Fig. 4), and intestines (all grade 1 to 2 

for each organ) were observed. In the kidney there were expanded intercellular 

spaces in tubules and intracytoplasmic vacuoles in epithelial cells (taking up greater 

than 70-80% of the cytoplasm and moderately expanding the cell) lining the renal 

tubules (grade 1 to 2) (Fig. 6).Oysters in winter at low salinity had only limited 

microscopic changes in the kidney. These changes were mild (grade 1) 

intracytoplasmic vacuoles in renal cells and intercellular expanded spaces in the 

kidney and other kidneys showed no microscopic findings (Fig. 5). There were no 

severe (grade 3) changes in any organs. As the frequency of grades 1 and 2 for 

histopathological changes did not differ between treatment groups based on salinity, 

season, day, family or grading (P > 0.05), grades 1 and 2 were pooled for each 

histopathological description (Table 2).Oysters in winter at normal salinity showed no 

microscopic changes in the alimentary tract (normal stomach, Fig 1 and normal 

digestive gland, Fig. 3). Family line and grading did not affect the frequency of 

histopathological changes due to low salinity in either summer or winter.  

 

The most significant histopathological findings from the oyster which died in low 

salinity in the summer experiment were mild (grade 1) diffuse infiltrate of haemocytes 

into the wall of the stomach, intestines and digestive gland tubules (grade 2) and 

dilation of digestive gland tubules (grade 1). Haemolymph potassium was 

13.8mmol/L and sodium was 136mmol/L, these were within a range to the other 

oysters at salinity 9ppt.  
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For 95% of slides reviewed by both the author and second pathologist there was 

agreement in descriptions and grades. For 5% of cases (2 cases in total) there was a 

discrepancy between grade 1 and 2 intracytoplasmic vacuoles in renal epithelium. All 

other histopathological findings for the oysters were in agreement. Given that grades 

1 and 2 were pooled this was a minor discrepancy and the author’s grade was 

agreed, after discussion with the second pathologist, to be included in the results for 

the research report. 
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Winter Summer 

 Water salinity 9 Water salinity 35 Water salinity 9 Water salinity 35 

Histopathological finding Day 3  

(n=20) 

Day 10 

(n=20) 

Day 3 

 (n=20) 

Day 10 

(n=20) 

Day 3  

(n=19) 

Day 10 

(n=17) 

Day 3 

 (n=20) 

Day 10 

(n=20) 

kidney – expanded intercellular 

spaces and intracytoplasmic 

vacuolation 

5 7 6 3 13 8 4 3 

Digestive gland  - expanded 

intercellular spaces  

intracytoplasmic vacuolation and 

haemocyte infiltrate 

0 0 0 0 14 13 1 2 

Stomach and intestines  - 

expanded intercellular spaces, 

intracytoplasmic vacuolation and 

haemocyte infiltrate 

0 0 0 0 11 10 0 0 

Table 3: The number of oysters with histopathological changes in the kidney, 

digestive gland, stomach and intestines (combining grade 1 and 2) on day 3 and 10, 

in either low, 9 ppt, or normal, 35 ppt, salinity, for each season. Arrows indicate if 

observed values are above or below expected values (based on chi-squared 

analysis). 
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Figure 1: The normal stomach wall (W) consists of tall epithelial cells 
with small round nucleus set in the median part of the cell. The gastric 

lumen (L) and underlying interstitium (I) are labelled also 
 

 
 

 

Figure 2: The stomach wall is moderately diffusely expanded 
by intercellular spaces (arrows) in low salinity, day 10 in summer 

L 

W 

I 

L 

I 
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Figure 3: Normal digestive glands consist of digestive ducts (DD) and  
digestive tubules (DT). 

 

 

 
Figure 4 Expanded intercellular spaces, and haemocyte infiltrate (arrow)  

within the digestive tubular wall and intracytoplasmic vacuolation of  
epithelial cells (arrow head) in an oyster at low salinity, day 10 in summer 
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Figure 5: Normal renal tubule lined by closely packed 
columnar epithelium (E) with clear apical poles. There is a 

tubular lumen (L) and supporting interstitium (I). 
 

 

 

 

Figure 6 There are abundant intracytoplasmic vacuoles 
(arrowhead) and the intercellular spaces are expanded (arrow) in 

the kidney tubule (grade 1) from oyster at low salinity in summer, day 10 

E 

I 

L 
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DISCUSSION 

This experiment demonstrated that elevated summer temperature and low salinity 

working together were associated with adaptive renal and alimentary changes in 

osmoconforming oysters. This is consistent with the influential roles of temperature 

and salinity on physiological processes in oysters, such as Eastern oyster (C. 

virginica) (Galtsoff 1964, Shumway 1996). 

 

In summer oysters at low salinity (9ppt) opened their shells and osmoconformed to 

low salinity sooner than those in winter. In the summer experiment increased 

respiratory demand at higher temperatures (Shumway and Koehn 1982) most likely 

over-rode the intracellular signals from sodium ion receptors (Natochin et al. 1979) to 

maintain the shells closed. Higher summer water temperature increases respiration 

rate and oxygen demand (While their shells are shut bivalves cannot feed or take in 

oxygen (Dame 2012). Warmer water temperatures increase respiration rate and 

oxygen demand in oysters (like other bivalves) (Shumway and Koehn 1982) and limit 

how long oysters can remain closed (Loosanoff 1953; Galtsoff 1964). In the summer 

experiment it is possible that increased respiratory demand at higher temperatures 

(Shumway and Koehn 1982) most likely over-rode the intracellular signals from ion 

receptors to maintain the shell closed (Natochin et al 1979). After bivalves open their 

shells, the extracellular fluid osmoconforms to the surrounding water ((Berger and 

Kharazova 1997). In the low salinity tanks in summer haemolymph sodium and 

potassium was lower in low salinity compared to normal salinity at day 3, as oysters 

opened their shells to low salinity water, 9ppt (Loosanoff 1953, Galtsoff 1964).  

 

In winter the pallial cavity salinities in oysters held in 35ppt tanks were 29ppt and not 

35ppt. If the oysters were fed and respired with an open shell the salinity in the pallial 

cavity would be the same as in the surrounding water. It is possible that pallial cavity 

salinity was 29ppt and not 35ppt because when and oysters were removed from their 

baskets in the water on the farm lease and sealed their valves the surrounding water 

was at salinity 29ppt, and this water was retained in the pallial cavity throughout the 

experiment. Records on the day, when oysters were collected from the farm, 

suggested that the salinity was 35ppt, however, localised variation in salinity on the 
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estuarine farm lease may explain this discrepancy in reported salinity. While it was 

expected that oysters at salinity 9ppt would remain shut, it was expected that 

animals in salinity of 35ppt would open and metabolise aerobically. However, the 

cool water temperature (8oC) of the winter experiment, may have slowed metabolic 

rates such that animals did not need to open their shells for respiration (Loosanoff 

1953), and over the ten days did not exchange their original of pallial cavity fluid with 

tank water and their cavity salinity did not conform to the 35ppt salinity in the tanks. 

 

Accumulation of anaerobic metabolites is another reason why oysters, such as C. 

virginica and other bivalves such as M. edulis, cannot keep their shells closed 

(Zubkoff and Ho 1982) after persistent stressful environmental challenges such as 

low salinity. When bivalve molluscs are closed they accumulate anaerobic metabolic 

by-products such as succinate and fatty acids (Wijsman 1976; Zubkoff and Ho 1982) 

from the incomplete oxidation of glycogen for adenosine triphosphate generation 

through the tricarboxylic acid pathway (de Zwaan 1977). To extend the period they 

can remain shut under anaerobic conditions (closed shell) bivalves decrease their 

rate of metabolism (de Zwaan and Wijsman 1976; Hawkins and Bayne 1992; 

Hochachka and Somero 2002). In winter oysters at Day 3 in low salinity 

demonstrated this metabolic adaptability by remaining closed but with no significant 

decrease in pallial cavity fluid pH, suggesting decreased metabolic rate with minimal 

production of acidic metabolic by-products (de Zwaan 1977).  

 

 

One of the key microscopic changes associated with low salinity and elevated 

summer temperature in osmoconforming oysters were expanded intercellular spaces 

and significantly vacuolated cells in the kidney. Similar changes have been reported 

in Mytilus sp. when challenged by abrupt low salinity (Khan and Saleuddin 1986). 

and when the remaining mussels were returned to seawater the renal changes 

resolved. Based on this evidence and the fact there was necrosis of renal cells or 

irreversible damage to renal cell integrity or intercellular structures (Myers and 

McGavin 2007), the expanded intercellular spaces and vacuolated renal cells in the 

Pacific oysters, during the experiment, may also be reversible. 

 



76 

 

Significant intracellular vacuolation distending epithelial cells was common in both 

renal and alimentary epithelial cells in oysters at low salinity. The roles of renal cells 

include low grade partial osmoregulation (along with the gills) of haemolymph, 

excretion of nitrogenous waste and phagocytosis and pinocytosis of excreted 

product through lysosomal intracytoplasmic vacuoles (Florey 1966; Grizel 2003). As 

low salinity and elevated temperature increased, osmotic stress and respiratory 

demand, may have increased not only the osmoregulatory role of the kidney (which it 

shares with the gills) but the demand and production of phagocytic lysosomal 

vacuoles. Similarly the significant intracytoplasmic vacuoles in the digestive gland 

may reflect the increased metabolic demand due to low salinity and increased 

temperature. Intracytoplasmic lysosomes are one of the key processes for digestion 

in bivalve molluscs (Owen 1972; Pal et al. 1990; Weinstein 1995). Stomach and 

intestines do not play a primary role in intracellular digestion however, vacuolation in 

osmoconforming oysters at summer may reflect the accumulation of breakdown 

metabolic products retained within lysosomal vacuoles for release into the lumens 

(Galtsoff 1964). 

 

Pollution can also cause intracytoplasmic vacuolation. It should be noted that 

intracytoplasmic vacuolation of digestive glands were found in Mytilus edulis 

exposed to polluted waters in Tvarminne area Gulf of Finland (Baltic sea) (Sunila 

1987), Crenomytilus grayanus exposed to polluted waters in Peter the Great Bay, 

Sea of Japan (Usheva et al. 2006) and Mytilus edulis exposed to metals such as 

copper and cadmium (Sarasquete et al. 1992). However, pollutants or heavy metals 

were unlikely to have contributed to the vacuolation in the experimental oysters in 

this trial because these oysters were from leases which were tested negative for 

heavy metals (including copper, zinc, cadmium, lead, aluminium) and pesticides 

(including Endosulfan, Tributyltin, Malathion) by water testing and oyster meat 

testing, overseen by the Tasmanian Shellfish Quality Assurance Program (TSQAP) 

for public health (A. Turnbull, TSQAP, pers. comm.). In addition distilled water, which 

is very unlikely to be the source of pollutants, which was unlikely to be the source of 

pollutants, was used in the trials to dilute the sea water.  
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Along with intracytoplasmic vacuolation of gastric and intestinal epithelial cells, there 

was mural transmigration of haemocytes, known as diapedesis (Onstad et al. 2006) 

(Jones 2010) between the expanded intercellular spaces in oysters at low salinity in 

summer. Diapedesis through the alimentary tract (and other organs) can be a normal 

finding in aquatic bivalve molluscs, such a Mytilus edulis (Sunila 1988; Onstad et al. 

2006; Jones 2010). However, diapedesis was observed more commonly at low 

salinity in summer along with expanded extracellular spaces in the alimentary tract. 

Mural diapedesis through the alimentary tract wall can be due to pathogenic or 

benign environmental bacterial chemotactic factors (Cheng and Howland 1979). 

Diapedesis is also seen when heavy metals are transferred to the alimentary tract 

lumen by haemocytes within intracytoplasmic tertiary lysosomes (George 1983). As 

discussed above, heavy metal contamination of the oysters or the water used in the 

experiment was very unlikely. 

 

When assessing microscopic changes in oysters it is important to exclude, as far as 

possible, the contribution of infectious pathogens. In the experimental oysters there 

were no histopathological findings consistent with infectious diseases such as 

iridovirus (Elston and Wilkinson 1985), marteiliosis (Thebault et al. 2005) 

haplosporidiosis (Perkins 1968), perkinsiosis (Villalba et al. 2004) nocardiosis 

(Friedman 1990) and mikrocytosis (Hervio et al. 1996) and infection with Bonamia 

sp., (Hine et al. 2001) the latter is common in endemic Tasmanian Ostrea angasi. 

Ostreid Herpesvirus 1, a significant pathogen of Pacific oysters is rarely reported to 

cause pathognomonic intranuclear viral inclusions but can cause variable 

histopathological changes, such as haemocytes with pyknotic nuclei or fragmented 

nucleus, mantle epithelium necrosis or haemocytosis in the interstitium of digestive 

gland tubules (Friedman et al. 2005). None of these changes were seen in 

experimental oysters. Because a diagnostic test for Ostreid Herpesvirus was not 

available in Tasmania, the experimental oysters could not be tested free of OsHV1 

but subsequently in 2011, 2012 and 2013 state-wide testing of all Pacific oyster 

growing areas in Tasmania, conducted by DPIPWE Tasmania in conjunction with the 

Tasmanian Oyster Research Council demonstrated no evidence of OsHV1 by PCR 

testing (Ellard 2011, 2012, 2013.). In summary, infectious pathogens were not 

identified on histopathology, which could have contributed to the microscopic 
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changes. Taking into account OsHV1 has not to date been detected in farmed 

Tasmanian Pacific oysters, OsHV1, also is unlikely to have contributed to the 

microscopic findings in the experimental oysters. 

 

In this experiment there was no evidence that differences among the variables 

measured were attributable to the oysters’ breeding history or their exposure to 

grading stress just prior to arriving at the laboratory for the experiment. They did not 

appear to influencing the time oysters opened (change in pallial cavity salinity) 

osmoconformed or the microscopic changes associated with osmoconformation, at 

low salinity. Grading would directly affect the response to an abrupt change in low 

salinity if the shell seal was broken during grading (Loosanoff 1953). Although the 

oyster’s mantle will cover any hole in the shell (Loosanoff 1953) the mantle is not an 

impermeable barrier and there should have been changes in pallial cavity salinity if 

the seals were broken during grading. Because there were no significant chips or 

breaks in the shell seals or valves after grading it appeared that the oysters had a 

complete seal when exposed to low salinity water and as a result grading had no 

effect. The oysters of all four families had a similar response to abrupt change to low 

salinity suggesting there is little significant genetic variation in this trait between the 

four family lines. 

 

In summary the stress effects of elevated summer temperature and abrupt change to 

persistent low salinity caused reversible microscopic changes in the kidney and 

alimentary tract of osmoconforming oysters. Describing these microscopic changes 

will aid diagnosticians in their interpretation of molluscan histopathology. These 

results will also enable better management of stress events experienced by oysters 

in culture conditions and ultimately inform industry of the nature of mortality events 

due to environmental challenges. 

 

Further research is required to compare these microscopic changes in oysters 

challenged at the lower end of mesohyaline salinity (9ppt) to oysters challenged by 

freshwater in summer.  
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Appendix 

 

 

Winter Summer 

 Water salinity 9 Water salinity 35 Water salinity 9 Water salinity 35 

Histopathological finding Day 3  

(n=20) 

Day 10 

(n=20) 

Day 3 

 (n=20) 

Day 10 

(n=20) 

Day 3  

(n=19) 

Day 10 

(n=17) 

Day 3 

 (n=20) 

Day 10 

(n=20) 

kidney – expanded intercellular 

spaces and intracytoplasmic 

vacuolation 

5 (6) 7(6) 6(6) 3(6) 13(6) 8(6) 4 3 

Digestive gland  - expanded 

intercellular spaces  

intracytoplasmic vacuolation and 

haemocyte infiltrate 

0(3) 0(3) 0(3) 0(3) 14(3) 13(3) 1(3) 2(3) 

Stomach and intestines  - 

expanded intercellular spaces, 

intracytoplasmic vacuolation and 

haemocyte infiltrate 

0(3) 0(3) 0(3) 0(3) 11(3) 10(3) 0(3) 0(3) 

Table A1. Histopathological effects of abrupt salinity changes at winter and summer. 

Arrows indicate if observed values are above or below expected values (based on 

chi-squared analysis). The numbers listed below are total numbers for each day and 

combined grade 1 and 2 histopathological changes. The expected values (values are 

round to the nearest whole number) are in parentheses. 
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DISCUSSION 

 

This was a retrospective study of histopathological findings from the Georges Bay 

oyster mortality event February 2004, which were interpreted in the light of 

environmental water data, and compared to findings in oysters collected outside the 

period of the flood event. Because of the limited scope of this retrospective study, 

not all the interacting factors which caused the oyster mortality event could be 

investigated. Some key histopathological findings in oysters affected by the 

freshwater flooding included changes in the kidney and alimentary tract which were 

consistent with osmoconformation to the abrupt low water salinity recorded during 

the flooding. Experimental trials replicated these histopathological changes 

associated with abrupt fall in salinity and osmoconformation and the interactive effect 

of season (primarily elevated summer temperature) and day of sampling, on the 

oysters’ response to low salinity. 

 

The experimental findings from this research project are important because they 

demonstrate, through biochemical changes in haemolymph, and histopathology, 

pathophysiological host responses to abrupt fall to low salinity, such as during the 

February 2004 floods. In oysters from the Georges Bay and Moulting Bay mortality 

event in February 2004 there were markedly expanded intercellular spaces in the 

walls of the stomach, intestines and digestive glands, significant intracytoplasmic 

vacuolation and moderate diffuse intramural haemocyte infiltrate (diapedesis). In 

addition there were expanded intercellular spaces in the kidneys. All these changes 

were replicated in oysters exposed to abrupt change to low salinity in experimental 

tanks in summer. 

 

Abrupt change to low salinity is a stress for bivalves, including oysters (Galtsoff 

1964) and freshwater flooding, often when the water temperature is elevated, are 

associated with a number of mortality events of wild endemic bivalves, such as S. 

corneus, Macoma litoralis in Swatzkops estuary near Port Elizabeth in South Africa 

(McLachlan and Erasmus 1974), Flaviolanatus subtorta and Notospisula trigonella in 

the lower reaches of the Hawkesbury river of NSW, (Jones 1989), Soletellina alba 

and Arhtritica helmsi in mouth of the Hopkins River, Victoria, Australia (Matthews 
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and Constable 2004) , and Pinctada imbricata at the mouth of the Hastings River, 

NSW, Australia (O'Connor and Lawler 2004) and cultured oysters Eastern oysters 

(C. virginica) on the east coast of the USA (Gunter 1950; Andrews et al. 1959). 

Previous experimental trials replicated mortalities in adult Soletellina alba following 

abrupt change to low salinity (Matthews and Fairweather 2004) and changes in 

physiological behaviours, such as decreased pallial fluid pumping in Eastern oysters 

after abrupt change to low salinity (C. virginica) (Loosanoff 1953). However the 

experiments included in this thesis are one of the few studies, along with Khan and 

Saleuddin (Khan and Saleuddin 1986) which assessed microscopic changes and 

interpreted these in the light of physiological osmoconformation. 

 

In oysters from the Georges Bay and Moulting Bay mortality event in February 2004, 

along with the findings described above in the alimentary tract (including markedly 

expanded intercellular spaces, haemocyte diapedesis in the walls of the stomach, 

intestines and increased vacuolation in the epithelial cells) there was epithelial 

necrosis. There was no significant cell necrosis evident in the alimentary tract of 

oysters in the summer experiment at low salinity. The absence of necrosis was 

consistent with the lack of a rise in potassium haemolymph level at low salinity in 

summer experiment. Elevated haemolymph potassium reflects cell rupture and death 

in molluscs (Turgeon 1976; Natochin et al. 1979). A possible reason for the lack of 

necrosis was that the oysters opened their shells a) by day 3 in summer and b) by 

day 10 in winter, when their metabolic rate was presumably lower than in summer. 

 

Additional microscopic changes seen in oysters from Georges Bay 2004 and not in 

the experimental oysters at low salinity in summer or winter included, gonad 

necrosis, leydig tissue necrosis, adductor myositis and expanded extracellular 

spaces and haemolymph vessels in the mantle. There were no water data findings to 

confirm the causes for these changes but prolonged shell closure and high metabolic 

demand could have contributed to leydig tissue necrosis (Galtsoff 1964). The lack of 

explanations for other microscopic findings show how complicated inter-related, 

multiple freshwater factors are, and limitations of water data testing for identification 

of all lethal environmental factors which caused microscopic oyster host responses. 
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The causes of many oyster mortality events are complicated because there are often 

multiple interacting risk factors. A simplification is to group them roughly in to 

infectious and non-infectious mortality events. For both groups there will be external / 

environmental risk factors and host susceptibility which will lead to onset of disease 

and mortalities and in the case of infectious events, a pathogens which interact both 

with external/environmental and host factors. Nocardiosis in western Australian 

Pinctada maxima (Pass et al. 1987) and C. gigas on the west coast of the USA 

(Friedman 1990) and Ostreid Herpesvirus micro variant 1 (OsHV1 micro variant) in 

C. gigas in France (Schikorski et al 2011) are well known examples of infectious 

pathogens causing mortality events in farmed oysters. Host factors such as age, in 

some herpes virus outbreaks in France, spat were more susceptible than other ages 

of oysters, and environmental factors such as rising water temperature predispose to 

mortalities due to OsHV1 (Schikorski et al 2011). Mortalities related to flood events 

during spring, directly correlated to oyster losses by both location and time frame 

(spatial and temporal correlation), and are examples of a non-infectious process 

(Andrews et al. 1959, Burrell 1977).  

 

For completeness, when investigating oyster mortalities, infectious pathogens should 

be excluded as risk factors by diagnostic tests. This was done by histopathological 

examination of oysters for this project. Environmental risk factors (non-infectious) 

were most likely responsible for the February 2004 mortality event because a) no 

oysters, which were examined histopathologically, from the Georges Bay flood event 

of 2004, had findings consistent with infectious pathogens and b) the oyster 

mortalities followed very quickly after the floods and c) losses were mainly around 

the western areas of the bays, closest to the George River mouth in intertidal and not 

subtidal leases (the latter were exposed some of the day to deeper waters where the 

salinity may have been higher than surface water). There were no histopathological 

findings consistent with infectious diseases such as Iridovirus (Elston and Wilkinson 

1985), Marteiliosis (Thebault et al 2005) Haplosporidiosis (Perkins 1968), 

Perkinsiosis (Villalba et al 2004) Nocardiosis (Friedman 1990) Mikrocytosis (Hervio 

et al 1996) and endemic Bonamia sp. (Hine et al. 2001) which commonly infect 

Tasmanian Ostrea angasi. Ostreid Herpesvirus PCR was not available in Tasmania 

at the time of the mortality event and there were no archived samples available for 
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retrospective PCR testing. Nevertheless there is no evidence based on oyster 

mortality monitoring through the Tasmania Pacific Oyster Health Surveillance 

Program (which has been in place since 1994; pers. communications K Ellard) of 

Ostreid Herpesvirus 1 associated oyster mortality events in Tasmania. This was 

supported by state-wide surveys of all oyster growing regions of Tasmania in 2011, 

2012 and 2013 for OsHV 1 by quantitative polymerase chain reaction testing (Ellard 

2011, 2012, 2013). 

 

Surveillance of oysters through testing, such a histopathology, and matching these 

changes with seasonal and climatic data is important because oyster production and 

oyster mortalities are influenced by multiple interacting environmental factors. This 

study demonstrated the interaction of season (water temperature) and salinity was 

important. In experimental trials, oysters in winter resisted the osmotic effects 

caused by change to low salinity longer because their shells were closed. Oysters in 

summer opened sooner and responded by osmoconforming. Seasonal factors, in 

particular water temperature, were major contributing factors for Pacific oyster (C. 

gigas) mortalities in France (Samain and McCombie 2008), Japan (Mori 1979) and 

USA (Washington State) (Cheney et al 2000). In Australia, mortalities of wild and 

farmed bivalves following freshwater flooding are more common in summer than in 

winter (DPIWE Tasmania 2004, Matthews and Constable 2004, O’Connor and 

Lawler 2004). Farmers commonly manage seasonal factors as part of their 

husbandry and production of oysters for market, for example moving Pacific oysters 

from inter-tidal to subtidal leases to minimise the effects of summer heat stress 

(White 2001). This research has identified that Tasmanian farmers should be more 

concerned about the risks associated with freshwater floods during summer than 

winter, for their farmed oysters. 

 

Oysters are collected and examined by histopathology for oyster health surveys such 

as the Tasmania Pacific Oyster Health Surveillance Program (Ellard 2012, 2013). 

These long term studies have the capacity to compare and interpret 

histopathological changes in oysters from different regional populations in 

conjunction with seasonal and climatic trends. For example, physiological indicators 

such as digestive gland atrophy and reproductive stage in Eastern oysters (C. 
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virginica) showed temporal trends across the Gulf and East coasts of USA which 

correlated to climatic changes related to El Nino (Southern Oscillation index) and 

North Atlantic Oscillation index (Kim and Powell 2009). In a similar way oysters could 

potentially be used as sentinels for invertebrate populations and their response to 

climate change. This study demonstrated the correlation between short term 

microscopic changes in kidney and alimentary tract (such as expanded intercellular 

spaces and significant intracellular vacuolation) and abrupt change to low salinity, 

due to significant local rainfall. Similar localised, time specific climate data could in 

the future be compared at multiple sites across Tasmania over a year to assess 

trends related to rainfall patterns and river inflows and their effects on oysters in 

farmed estuaries. Because slides and paraffin blocks from histopathological surveys, 

such as from the “Tasmanian Pacific Oyster Health Surveillance Program” (Ellard 

2011, 2012) and “Mussel Watch Program” in the USA (Kim and Powell 2009), are 

archived, they are accessible for retrospective reviews. This retrospective review of 

histopathological changes was a very useful and reliable tool in conjunction with 

environmental data to understand how oysters responded to historic events. In 

addition, future programed oyster sampling for histopathology, in conjunction with 

climatic data, specific to the location and time of oyster sampling, could be to monitor 

the response of invertebrate communities to changes in climate over time (Kim and 

Powell 2009). In addition multiplexed assays (such as multiplex PCRs) could be 

used to screen sentinel bivalves for infectious pathogens (Berthe 2008). All this 

information could then be combined with multi-layered environmental data for 

potential real-time health management at the ecosystem level (Berthe 2008). 

 

By running a tank trial with a known stressor factor, abrupt change to low salinity, 

which was associated with the February 2004 flood event, the histopathology related 

to low salinity was clarified. This study offered another non-toxic (i.e. low salinity) 

cause for significant intracytoplasmic vacuolation of digestive glands, in addition to 

other reported causes in other bivalves such as M. edulis exposed to polluted waters 

(Sunila 1987, Usheva et al. 2006) or copper and cadmium (Sarasquete et al. 1992).  

 

Temporal factors as well as spatial distribution of freshwater will influence the degree 

of decrease in salinity and molluscan response to low salinity (Loosanoff 1953, Khan 
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and Saleuddin 1986). For example, the minimum salinity at high tide and the number 

of consecutive days below a specific salinity threshold are significant risk factors for 

mollusc mortality events in the Ulla river estuary, Galicia northwest Spain (Parada et 

al. 2012). Unfortunately detailed salinity data, across multiple sites in Georges and 

Moulting Bays were not recorded during the mortality event of February 2004. 

Nevertheless there was a history of mildly uneven, but not dramatically different, 

distribution of salinity across Georges and Moulting Bays, with leases near the 

Barway (eastern Georges Bay) having generally slightly higher salinity than those 

near the river mouth (western Georges Bay) (Brown 1998). This difference may have 

been more marked during the flood. Osmoconforming histopathology findings varied 

across the lease groups with those intertidal leases nearer the George river mouth 

having more osmoconforming changes in both kidney and alimentary tract. For these 

reasons, during the February 2004 flood event, low salinity floodwater was most 

likely not evenly distributed throughout the Georges and Moulting Bays. A 

recommendation from this research is that Tasmania oyster farmers, researchers 

and regulatory officers who investigate future freshwater flooding events, should take 

extensive salinity readings including each different lease site in an estuary, and at 

both low and high tide. 

 

This study did not identify all interacting factors which caused the oyster mortalities 

in 2004. Because only histopathological changes were assessed in oysters from the 

February 2004 flood event, environmental factors which did not cause 

histopathological changes, such as abrupt falls in dissolved oxygen (which is 

associated with freshwater flooding and eutrophication), could not be assessed. In 

addition the tank experiments were not mortality experiments and for this reason, 

abrupt low salinity cannot be confirmed as the sole cause for the mortalities during 

the flood event of February 2004.  

 

Having identified the effect of abrupt low salinity and water temperature (summer) as 

interacting stress factors, the next step will be to identify other stress factors which 

may also have occurred during the flood event of 2004 in Georges and Moulting 

Bays. The oysters closest to the mouth of the George River (in Western Georges 

and Moulting Bays) along with osmoconformation changes in the alimentary tract 
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and kidney, had a higher rate of mantle erosion. One possible cause for the mantle 

erosion was direct injury to the mantle by suspended sediment washed down with 

the flood waters (Shumway 1996). Suspended sediment initially stimulates oysters to 

close their shells and protect the fragile mantle and gills but once oysters re-open 

their shell physical damage to the mantle and gills can be extensive (Shumway 

1996). Damage to the mantle will disrupt physiological functions such as 

osmoregulation and feeding and multifocal mantle necrosis was a characteristic 

finding in pearl oyster (Pinctada maxima) mortalities (Jones et al. 2010). For these 

reasons trials to assess histopathological changes in response to various sizes of 

suspended sediment on oyster mantle will help to clarify the effect of sediment on 

oyster mortalities during flood events. 

 

The experimental tank trials correlated microscopic changes with osmoconformation 

but did not investigate physiological changes at the molecular level. Assessing gene 

expression for key adaptive processes designed to protect bivalves against osmotic 

shock, such as intracellular protein transport and synthesis and cell membrane ion 

channel activation, in conjunction with the microscopic changes in alimentary tract 

and kidneys will help to better understand the physiological response to abrupt 

change to low salinity on oysters. For example M. edulis and M. galloprovincialis, 

which are relatively susceptible to low salinity stress and better suited to stable 

salinity environments, up regulated genes associated with cell membrane ion 

channels (Kcna10), and amino acid transport (Slc17a5, Glyt2, Atp1a and Mct) when 

challenged by abrupt low salinity. These are both key components for protecting cell 

integrity in changing salinity (Boutet et al. 2005; Lockwood and Somero 2011). By 

comparison M. trossulus, which better adapts to fluctuating salinities or persistently 

low salinities, down regulated protein synthesis genes, such as ornithine 

decarboxylase (Odc), and up regulated translation genes, e.g. eukaryotic initiation 

factor 4A-III (Eif4a3), eukaryotic peptide chain release factor subunit 1 (Erf1) 

(Lockwood and Somero 2011), when challenged by abrupt low salinity. In a similar 

way understanding which genes are expressed by farmed Pacific oysters challenged 

by low salinity, will help to explain pathophysiology of mortality events and also offer 

potential non-lethal tissue biopsy testing for gene expression monitoring as part of a 

process to predict mortality events (Cheney and Gracey 2011). 
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Summary 

The retrospective assessment of histopathological findings from the Georges Bay 

oyster mortality event, 2004, in light of environmental data and oysters collected 

outside the period of the flood event identified osmoconforming changes in the 

kidney and alimentary tract, as key findings, which were supported by water salinity 

readings. Experimental trials replicated these histopathological changes associated 

with abrupt fall in salinity and osmoconformation and the interactive effect of season 

(primarily elevated temperature and spawning associated with summer) on the 

oysters’ response to low salinity. Recommendations from this work are that 

extensive salinity and dissolved oxygen readings, where practical, be taken at 

multiple lease sites across flooded estuaries during any future oyster mortality 

events. These should be supplemented by extensive water testing, similar to the 

range of tests taken during the Georges and Moulting bay flood event of 2004. 

Those oysters closest to the river mouth on inter-tidal leases were at greatest risk of 

mortality following summer flood event in February 2004. Therefore to minimise 

mortalities protective actions such as dropping the baskets, if they are inter-tidal, to 

lower rungs deeper in the water and higher salinity levels may be considered on, at 

risk, leases. Further recommended research on freshwater flooding and its effect on 

farmed oysters include controlled trials on the histopathological impact of sediment 

on oysters and the changes in the gene expression during low salinity stress. 
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