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ABSTRACT 

This thesis is concerned with the effects of vibronic coupling in 

inorganic spectroscopy. The thesis is divided into two: a theoretical 

section which approaches the topic in general terms and an experimen­

tal section where examples of the phenomena described in the first 

section are taken from electron spin resonance and vibronic absorption 

spectroscopy of inorganic compounds. 

The theoretical section examines the possible spectroscopic 

effects due to vibronic interaction. A numerical approach using the 

variational method has been employed to model these systems, although 

where ever possible simple _approximate formulae are also given. Many 

illustrative calculations are given to test the validity of such 

formulae and several new expressions are presented. 

The experimental section can be subdivided into investigations of 

ground state and excited state properties. In both cases the easiest 

way to study vibronic interactions is to vary the occupation of the 

vibronic levels by varying the temperature. This then leads to the 

temperature dependence of the physical properties that depend on the 

electronic character and geometry of the system. 

The ground state properties of six coordinate Cu(II) complexes 

have been examined from the temperature dependent behaviour of their 

g-values. The experimental data of Cu (II) doped K
2

ZnF 
4

, zinc Tutt on 

salts, and NH 4Cl were reexamined, and interpreted in terms of the 

usual cubic Jahn-Teller Hamiltonian with additional strain terms 

included to account for the low symmetry of these systems. 

The excited state properties were examined from the point of view 

of electronic absorption spectroscopy. The spectrum of square planar 
2-CuCl 4 shows an unusual temperature dependence of both the intensity 

and band maxima which was rationalised in terms of the ground and 

excited state potentials respectively. 

Vibronic interactions were found to be essential to the inter­

pretation of the the molec~lar properties of the above metal 

complexes. They could also play an important role in biological 

molecules, as the active site in protein molecules often involves the 

change in geometry and/or electronic character around a transition 

metal centre. 
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PRELIMINARIES: 

0.1 KEY TO COMMONLY USED SYMBOLS 

Unless otherwise stipulated, the commonly occurring symbols below 

will have the following meanings: 

Oki = 'l'k~i . . The total vibronic wavefunction, Oki; a product of the 

kth electronic, 'l'k' and the ith vibrational, ~i' 

wavefunctions. 

The kth electronic wavefunction, 'l'k; a linear combina­

tion of the i electronic basis functions ~i' 

~1. = L a.klj> ... The ith vibrational wavefunction, ~.; a linear 
l l l 

combination of the i vibrational basis functions lj> •• 
l 

S, Q ..... The symmetry and normal coordinates. 

s ........ The dimensionless symmetry coordinates. 

p, 4> ..... The dimensionless polar coordinates. 

Q9, Qe The dimensionless components of the eg vibration. 

A1, A2 The first and second order Jahn-Teller coupling constants. 

The harmonic and anharmonic force constants. 

e ........ The adiabatic potential surfaces. 

I 9>, I e> .. The tetragonal and orthorhombic components of a doubly 

degenerate electronic state. 

~ ........ The warping parameter of the Jahn-Teller potential surface. 

( 0 .1) 



0.2 ABRREVIATIONS USED 

AA Adiabatic Approximation. 

AOM Angular Overlap Model. 

A&B Abragam and Bleaney (1970). 

A&S Abramowitz and Stegun (1972) . 

CDL Cohen-Tannoudji, Diu and Laloe (1977) . 

ESR Electron Spin Resonance. 

HWHH Half Width at Half Height. 

JT Jahn-Teller. 

LCAO Linear Combination of Atomic Orbitals. 

LF Ligand Field. 

RMS Root-Mean-Square. 

SHO Simple Harmonic Oscillator. 

S&G Silver and Getz (1974). 

WDC Wilson, Decius and Cross (1955) . 

0.3 THESIS ORGANISATION 

This thesis is divided into two parts; a theoretical section 

where vibronic theory is considered quite generally, and an experimen­

tal section where the theory is applied to the spectroscopy of 

transition metal compounds. Appendices occur at the end of each chap­

ter, and the references are organised in alphabetical order by author 

at the end of the thesis. 

Within each chapter the equations, figures and tables are num­

bered so, for example, the first equation, figure and table of chapter 

8, are referred to as (8.1), figure 8.1, and table 8.1 respectively. 

Note that equations are distinguished by brackets. Only pages contain­

ing text are numbered. 

( 0. 2) 



CHAPTER 1: INTRODUCTION 

1.1 VIBRONIC APPROXIMATIONS 

1.1.l The Adiabatic Approximation. 

The Schrodinger equation for a polyatomic system can be written 

as: 

(1.1) 

where nK(q,Q) denotes the Kth solution to the total Hamiltonian: 

HT(q,Q) = T (Q) + T (q) + V(q,Q) n e (1. 2) 

Here Tn (Q) and Te (q) are the kinetic energy operators of the nuclei 

and electrons respectively and V(q,Q) is the total potential energy of 

the system. In (1.2) it is assumed that rotation and translation of 

the molecule has been eliminated and the effects of spin are 

neglected. 

Since this vibration al-electronic, or "vibronic", Hamiltonian 

is a three or more body problem for molecules, analytic solutions are 

not possible. For molecules with a large number of electrons numerical 

solutions, (possible in principle) are usually not accessible. Quite 

early on in the development of quantum mechanics Born and Oppenheimer 

(1927) made an approximation that decouples the motions of the nuclei 

and electrons and greatly simplifies the problem . 

This adiabatic approximation is based on the fact that the nuclei 

are much heavier than the electrons, and this results in a large 

difference in their velocities. The electrons can be pictured as 

moving so much faster than the nuclei that the latter appear to be 

stationary. Approximately then, the "fast" electrons instantaneously 

attain a stationary electronic state for every position of the "slow" 

nuclei; or the electrons adiabatically follow the motions of the 

nuclei. To gain an idea of the magnitudes involved, the nuclei in the 

H; ion move approximately one millimetre for every metre the electrons 

(1.1) 



travel (Atkins 1982 pg 470). For other molecules with heavier nuclei 

this approximation is likely to be even better. 

Mathematically, the adiabatic approximation assumes that the 

wavefunctions of (1.1) can be written as: 

(1. 3) 

where 'Pk (q, Q) is the kth electronic wavefunct ion that depends 

only parametrically on Q, and ~ki(Q) is the ith vibrational wavefunc­

tion which is independent of q, seeing the average field of the 

electrons in the kth electronic state. 

Equation (1. 3) represents the basic assumption of the adiabatic 

approximation; any wavefunction that can be written in this form can 

be said to belong to an adiabatic model (Ballhausen and Hansen 1972). 

It is important when considering various vibronic schemes to distin­

guish between the cases where the electronic state is well separated 

from others and ( 1. 3) is a good approximation, and the cases of 

degeneracy or pseudo-degeneracy where it is not. 

1.1.2 Non-Degenerate Electronic States. 

There are many ways to use (1. 3) in the solution of ( 1. 1) and a 

number of different terminologies are used in the literature. This can 

cause some confusion, and for this reason the definitions of 

Ballhausen and Hansen (1972) are strictly followed. The four common 

adiabatic schemes are given below in order of increasing approxima­

tion. Equation (1.2) can be rewritten as: 

HT(q,Q) = T (Q) + H (q,Q) n e (1. 4) 

where He(q,Q) is the electronic Hamiltonian, of which 'Pk(q,Q) is 

the kth eigenfunction. 

ie (1. 5) 

Substituting (1.4) into (1.1), the equation for nuclear motion is: 

(1. 6) 

(1.2) 



Here the fact that ~ commutes with He' but '¥ does not commute 

with Tn (Q), has been used (Longuet-Higgins 1961, equations 11,12;· 

Fischer 1981, section 3.1). Equation (1.3) with'¥ and~ determined by 

(1.5) and (1.6) represents the Born-Huang adiabatic approximation. 

with 

If the additional approximation is made that 

T (Q) (Piepho and Schatz 1983, section 3.2): 
n 

Tn(Q)'i'(q,Q)~(Q) = 'i'(q,Q)Tn(Q)~(Q) 
then the matrix element in (1.6) disappears: 

'i'(q,Q) does commute 

(1. 7) 

(1. 8) 

Equation (1.3) together with (1.5), (1.8) is called the Born­

Oppenheimer adiabatic approximation. The consequences of the 

approximation in ( 1. 7) have recently been investigated in detail 

(Strickler 1976, Marechal 1985). It is concluded that 'i'(q,Q) should be 

a slowly varying function of Q for (1. 7) to be valid. In this ap­

proximation, (1.5) is solved for the pertinent range of Q, and the 

electronic energy e(Q) then plays the role of a potential surface for 

the nuclear motion in (1.8). This was the approximation made in the 

original work of Born and Oppenheimer (1927). 

The electronic Hamiltonian of (1.4) can be written as: 

= H0 (q) + V' (Q) e 

= [T (q) + V(q,Q )] e o 

where V(q,Q) has been expanded as a Taylor series about an equi­

librium nuclear geometry Q . The electronic wavefunctions of (1.3) can 
0 

then be approximated by: 
0 0 'i'k(q,Q) = 'i'k(q) + r '¥1(q)clk(Q) (1.10) 

l:t:k 
where 'i'~(q,Q) are the solutions to the electronic Hamiltonian H~ 

frozen at the equilibrium nuclear geometry (equation (1.13)), and the 

coefficients c1k(Q) can be found from first order perturbation theory 

using V' of (1.9) as the perturbation operator. The potential to be 

used in (1.8) is then the perturbation energy: 

(1.3) 



(1.11) 

Equations (1.3), (1.10) that are found from (1.5), (1.8), (1.11) repre­

sent the Herzberg-Teller adiabatic approximation. 

If only the first term of (1.10) is kept then we have: 
0 

~ki(q,Q) = ~k(q)~ki(Q) 

which is found from the solutions of 

(1.12) 

( 1.13) 

(1.14) 

Equations (1.12)-(1.14) constitutes the crude adiabatic approximation, 

and is the adiabatic approximation most commonly used in the 1 it er a -

ture. 

The above four adiabatic schemes can be visualised as fallows 

(Longuet-Higgins 1961) : 

i) In the Born-Huang approximation, the electronic wavefunctions 

are dependent both on the momenta and positions of the nuclei. 

ii) In the Born-Oppenheimer approximation, the electronic 

wavefunctions are dependent only on the positions of the nuclei. 

iii) In the Herzberg-Teller approximation, they depend on the 

nuclei only in a linear fashion. 

iv) In the crude adiabatic approximation they are independent of 

the positions of the nuclei, which are assumed fixed at an equi­

librium geometry. 

All of the above adiabatic schemes are only valid when the potential 

surface ek(Q) is well separated from those of other electronic states. 

If this is not the case, then the adiabatic separation implied in 

(1.3) is not a good approximation and the idea of a potential surface 

representing the geometry of a molecule loses its meaning. In this 

case" ... the notion of spatial structure of a polyatomic system loses 

(1. 4) 



its physical sense." (Bersuker and Polinger 1982), or in the words of 

Woolley (1981): "Molecular structure is a metaphor.". 

1.1.3 Degenerate Electronic States. 

The general criterion for which the adiabatic schemes of the 

previous section are obeyed is given by: 

hv << I Em- Ek I (1.15) 

where hv is the energy of the vibrations of the electronic state 

'Pk at energy Ek and Em is the energy of any other electronic state. 

If an electronic state 'I'm is close in energy to that of 'Pk' then the 

adiabatic approximation breaks down. The most dramatic example of this 

is the "Jahn-Teller" effect, when two or more electronic states are 

degenerate. 

The following degenerate scheme is taken from Bersuker (1984a). 

Firstly the potential energy operator is expanded in terms of the 

normal coordinates Q about an equilibrium geometry. 

V(q,Q) = V(q,Q
0

) + L (~~ ) Q
0 

+ 
n n o 

It should be noted that terms higher than second order are only 

qualitatively correct in view of the adiabatic approximation to be 

made (see Englman 1972 pg13) . 

The electronic Hamiltonian in the crude adiabatic approximation, 

(1.13), is then solved for the number (d) of degenerate (or near 

degenerate) states at the equilibrium geometry. The total wavefunction 

is then expressed as a linear combination of adiabatic vibronic 

wavefunctions: 
d 

fl(q,Q) l 'I'k(q)cl>ki(Q) (1.17) 
k=l 

When substituted into (1.1), a system of d coupled equations are 

obtained for the nuclear motion: 

(1.18) 

k=l, ... d. 

(1. 5) 



When vibronic coupling is absent then all of the matrix elements ukm 

are zero, and the equations in (1.18) decouple. The crude adiabatic 

approx~mation of the previous section is then recovered, as the 

wavefunctions of (1.17) will consist of single terms. When vibronic 

coupling is present, as will be the case for close lying states, then 

the equations of (1.18) remain coupled. 

The ukrn terms in (1.18) are called vibronic coupling constants 

(or Jahn-Teller coupling constants in the case of degeneracy) .As a 

consequence of the breakdown of the adiabatic approximation ( ie the 

inability to express the wavefunctions in the form of eqution (1.3)), 

the vibronic equations in (1.18) must be solved numerically. However 

in some cases, where the coupling constants are large, the adiabatic 

approximation can again be recovered by making the electronic basis a 

varying function of the Jahn-Teller active coordinates (chapter 4). 

The derivation of (1.18) has used a linear combination of crude 

adiabatic wavefunctions as a basis and will be a good approximation as 

long as any electronic states that are not included are far away in 

energy (McLachlan 1961) . 

Finally it should be noted that the adiabatic approximation is 

not confined to systems of nuclei and electrons, but is a general 

principle used to separate fast and slow subsystems. For example it 

can also be applied to the separation of low and high frequency 

molecular vibrations (Mills 1984) . 
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1.2 THE ADIABATIC POTENTIAL ENERGY SURFACES. 

' "What is the use of a book", thought Alice, 

"without pictures or conversation?" ' - Lewis Carroll. 

The concept of potential energy surfaces arises out of the ap­

proximate description that the total wavefunction of the system can be 

written as a single product of the form given in equation (1.3). This 

equation implies that a vibronic state can be associated with a single 

potential potential surface which then determines its vibrational 

properties. As mentioned in the previous section this is not quite 

true in general, but is often a good approximation. 

To illustrate some effects of vibronic coupling the electronic 

Hamiltonian is expanded in a Taylor series about a reference nuclear 

geometry as in (1.9), and the electronic wavefunctions are expanded as 

a linear combination of the crude adiabatic states '¥
0 of equation 

(1.13) which are the solutions of the electronic Hamiltonian at the 

reference geometry: 
0 

'¥ k ( Q) = I: cki 'I' i ( 1. 19) 
i 

Rather than using per~urbation theory, as in the Herzberg-Teller 

approach, the coefficients ck. are found by diagonalising the secular 
l . 

equation made from the matrix elements of the perturbation part of the 

electronic Hamiltonian, V' (Q) in (1.9), in the crude adiabatic basis. 

For simplicity just three basis functions are considered and only 2nd 

order diagonal and lst order off-diagonal terms are kept. The secular 

equation is then: 

I: a 0 + a ab - e(Q) a =O u21Qa £2 I: u22Qa+ I: u22QaQb I: u23Qa c2 
a a a,b a 

a a 0 + I: a ab 
I; u31Qa I: u32Qa E3 u33Qa+ I:bu33QaQb - e(Q) C3 
a a a a, 

a 0 

I (~~Ji 0 ab (a2
v l 0 where uij = <'If i 'l'f' uij = <'If~ I aoaaQb I '1'j> (1.20) 

( 1. 7) 
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This electronic secular equation is symmetric (strictly Hermitian) and 

the summations are over the 3N-6 coordinates of the molecule. Solving 

the secular equation will give three roots of a third order polynomial 

in e(Q). These roots are functions of the coordinates Q and represent 

the adiabatic potential surfaces. 

Consider first the case where there are no off-diagonal terms in 

the secular equation. The diagonal terms are then solutions for the 

adiabatic potential surfaces. Notice that the ~~ state, which is taken 

as the ground electronic state, has no terms linear in Q, nor any 

cross terms of the form QaQb. This is because, as will be shown in 

section 2. 2, the equilibrium geometry and norm a 1 coordinates can 

always be chosen in a manner to eliminate these terms. The concept of 

normal coordinates also allows group theory to be used in determining 

which of the terms in the adiabatic potentials of the other states 

will be non-zero. 

The one dimensional potential surfaces in figure 1. la are shown 

for a totally symmetric mode and a non-totally symmetric mode. As 

shown in chapter 3, the totally symmetric mode is allowed to have 

terms of any order in its potential, while the non-totally symmetric 

coordinate is allowed terms of even order only. This means that~a 

potential energy surface can only be displaced with respect to the 

ground state equilibrium geometry along totally symmetric coordinates. 

If the problem, is now considered in two dimensions, there may be 

the addition a 1 non-zero cross quadratic terms in the excited state 

potentials. This situation is examined in section 3. 7, and will only 

occur when the two coordinates are of the same symmetry and leads to 

the rotation of the excited state normal coordinates with respect to 

the ground state as shown in figure 1.2c. 

The potential surfaces in the above cases will be true adiabatic 

functions and the electronic states may be labelled by the crude 

adiabatic basis functions as shown in figure la. The vibronic 

wavefunctions will then belong to only one of these potential sur­

faces, and can be found by simply adding the kinetic energy operator 

to the potential of each surface, which will then quantise the energy 

levels within the surface. Calculations of this sort are performed for 

many different potential surfaces in section 2.2. 

However in general there will be off-diagonal terms in the 

secular equation (1.20) that will mix these crude adiabatic basis 

(1. 8) 
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functions. The coefficients involved u~j (i:;t:j) are called the first 

order vibronic coupling coefficients. Again, as discussed in section 

3.4, group theory can be used to determine which of these coefficients 

are non-zero. 

The dotted lines in figure 1.la show the effect of weak coupling 

near a point of intersection, which leads to "avoided crossings". 

Figure 1.lb shows the same potentials with strong vibronic coupling. 

The lower surface of the non-totally symmetric mode forms a double 

minimum, and this is sometimes called the pseudo Jahn-Teller effect . 

The Jahn-Teller effect occurs in electronic states that are orbitally 

degenerate at a reference geometry (chapter 4). The adiabatic poten­

tial surfaces in the case of a doubly degenerate electronic state 

coupled by a doubly degenerate vibration (Exe) and two non-degenerate 

vibrations (Ex(b+b)) are shown in figures 1.2 a and b respectively. 

The adiabatic potential surfaces given above will be for an 

electronic state that is a linear combination of the basis functions 

which will vary with the molecular geometry. These electronic func­

tions are indicated by ~(Q) in figures lb, 2a,b and they can be found 

by diagonalising the secular equation (1.20). 

Since the electronic off-diagonal terms are functions of the 

nuclear coordinates, as well as the vibrational subsystem of the 

molecule, it follows that each vibrational state will couple the 

electronic basis functions to a different degree. This is then the 

breakdown of the adiabatic approximation. The electronic and vibra­

tional parts of the Hamiltonian cannot be solved consecutively; the 

energy levels and wavefunctions are not simply the sum and product 

respectively of the two subsystems. Rather the secular equation must 

be solved in a vibronic basis. 

The above point is not obvious but is extremely important to the 

topic of the thesis. A question that may be asked is: why is it not 

possible for the kinetic energy operator to be added to the adiabatic 

potential and the vibrational problem solved? This would lead to 

vibronic wavefunctions associated with only one particular potent i a 1 

surf ace that could be writ ten as a single adiabatic product. The 

answer is: the act of diagonalising the electronic functions in the 

secular equation (1.20) to obtain an adiabatic potential, introduces 

off-diagonal kinetic energy terms. This is discussed in more detail in 

section 4 . 3. In general the only way to avoid this is to include the 

(1. 9) 
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kinetic energy operator in the secular equation and numerically 

diagonalise all terms simultaneously in what now must be a vibronic 

basis. The vibronic wavefunctions will not then be expressible as a 

simple adiabatic product of electronic and vibrational parts as in 

equation (1.3), but will be a linear combination of such products. 

Such an approach is better than any of the adiabatic approxima­

tions given in the previous section. However, the importance of the 

adiabatic approximation is that it gives a physical meaning to 

electronic potential surfaces which form such an important concept in 

chemistry. Often the off-diagonal kinetic energy terms are small when 

the electronic states are well separated, and can be ignored. In this 

case the vibronic functions are expressible as an adiabatic product, 

and the potential surface determines their form. Sometimes even an 

electronic secular equation (1.20) need not be considered, and the 

electronic part of the wavefunction can be approximated as depending 

linearly on the coordinates, as is assumed in Herzberg-Teller theory 

(see section 3.4). It is important however, to realise when the 

adiabatic approximation is unrealistic and chapter 4 examines in 

detail some methods of going beyond the adiabatic approximation in the 

case of near or exact electronic degeneracy. 

Chapter 2 will briefly discuss the electronic and vibrational 

subsystems, while chapter 3 will work within the framework of the 

adiabatic approximation to discuss the total vibronic system in the 

case of weak interaction. Chapter 4 will be concerned with calcula­

tions that go beyond the adiabatic approximation and chapter 5 will 

conclude the theoretical first half of the thesis with some discussion 

of electron spin resonance which is relevant to the studies in the 

experimental second half of this thesis. 

(1.10) 
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CHAPTER 2 NO VIBRONIC INTERACTION: THE SUBSYSTEMS 

The main concern of this thesis, introduced in the previous 

chapter, is the non-separability of the nuclear and electronic coor­

dinates. However, it is constructive to first examine the two 

subsystems separately. This is then the assumption that the adiabatic 

approximation expressed by equation (1. 3) holds, and that the vibra­

tional and electronic equations can be solved separately. 

In this chapter the electronic states are first considered with 

the nuclei assumed fixed at their equilibrium values. Following this, 

the vibrational states are then considered within a potential surface 

which corresponds simply to the energy of a single electronic state as 

a function of the nuclear coordinates. The electronic and vibrational 

problems are then separate as they are dependent on only their own 

coordinates. The electronic states "see" a fixed nuclear geometry, 

while the vibrational states "see" the average field of the electrons 

of a particular electronic state. 

Such a description is only valid when there is no interaction 

between the two subsystems. The effects of vibrational-electronic, or 

vibronic, interactions will be considered in the following chapters . 

The description of the vibrational and electronic states here will be 

very brief, but should serve to introduce some of the mathematical 

formalism which is to be used in this thesis. 

2.1 ELECTRONIC STATES: "FIXED NUCLEI" 

2.1.1 The problem. 

The theoretical description of the electronic structure of tran­

sition metal complexes can be conveniently divided into two areas; 

ligand field theory and molecular orbital theory. In this chapter 

ligand field (LF) theory is briefly described; a full description is 

to be found in the texts of Ballhausen (1962), Figgis (1966), Gerloch 

(1983) and Lever (1984). LF theory can be thought of as a special case 

of MO theory, where the basis is truncated to include only the d­

orbitals and the free ion parameters (ie Racah and zeta) are reduced 
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to compensate for the expansion of the d-orbitals on complexation, and 

covalency effects. 

The many variants of LF theory differ in the way they 

parameterise the ligand field, and the earliest example of which was 

given by Bethe (1929) in what is now termed crystal field theory. 

Since then the usage of LF theory has become widespread among inor­

ganic chemists and pervades much of the chemical thinking about 

transition metal ions. This popularity is due both to the simplicity 

of the model and the fact that it can explain a wide range of physical 

phenomena. The reasons why LF theory appears to work so well is 

usually rationalised (Gerlach and Slade 1973, ppl-16) as follows. i) 

First 1 y, group theory can be used to describe the form of the split­

ting of the d-orbitals exactly, and the magnitude of this can be 

easily parameterised. ii) The bonding in a metal complex is usually 

based on the one centre, and the perturbation to the atomic cl-orbitals 

is only slight when compared to atomic orbitals in more covalent 

compounds. 

For the above reasons it is customary to start with the 

Hamiltonian of the free ion and then add to this the ef feet of the 

ligands. This Hamiltonian for i electrons in dimensionless units is 

(Lever 1984, pg2): 

H + L ~.l.s. + V(x.,y.,z.) 
'lll l l l 
l 

H (2 .1) 

Here HKE is the kinetic energy operator of the electrons, 

HPE is the potential energy operator of the electrons in a 

central field of a nucleus with an effective charge z, 
HIR the inter-electron repulsion operator, 

H80 the spin-orbit coupling operator, and 

H1F the ligand field operator, describing the potential due to 

the nature and geometry of the ligands. 

The first two terms of (2.1) are neglected in LF theory since it 

only adds a constant energy term whereas it is the energy differences 

that are of interest. Higher order terms can be included in (2.1), and 

Harriman (1978, appendix F) lists 35 such additional terms. 

(2. 2) 



2.1.2 Variational and LCAO Methods. 

Like the vibronic Hamiltonian, it is easy to write down the 

electronic Hamiltonian of a molecule, but its solution is usually 

impossible. The H; ion can be solved exactly within the adiabatic 

approximation (CDL, pp1148-99), but for all other cases additional 

approximations must be made. The variational method is a common ap­

proach that can be used to approximately solve the Hamiltonian (2.1). 

The energy of a system whose wavefunction is ~, is given by: 

E = <~IHl~>/<~I~> (2.2) 

where the bra-ket notation introduced by Dirac (1958, sect.6) is used, 
00 J * <~IHI~> ~ H ~ d~ . 

-oo 

Supposing now that H is a Hamiltonian for which the Schrodinger equa­

tion cannot be solved. The variational theorem (Weis sbl u th 19 7 8, 

pp2 9 0- 4; CD L, pp 114 8 -5 5) states that the energy calculated from a 

guessed wavefunction (~g) is equal to or higher than the true energy: 

E ~ <~ IHI~>/<~ I~> (2.3) g g g g 
This is very useful as ~ can be varied to give the "best guess" g 

wavefunction that minimizes the energy in (2.3). A common guess is to 

use a linear combination of the one electron orbitals or as it is 

better known, a linear ~ombination of ~tomic Qrbitals (LCAO). However: 

" .. it must be emphasized that molecular electronic wavefunctions are 

not really linear combinations of atomic orbitals." (Harris and 

Bertolucci 1978), but is only a "good" guess. 

Following Weissbluth (1978, pg293), the variational method is now 

applied to n LCAO basis functions. 
n 

~= L a.'!'. (2. 4) 
' l l 
l 

where the n 'l'i are the antisymmetrised one electron wavefunctions 

of (2 .2) and ai are coefficients to be varied. Equation (2.2) is now 

rewritten as: 

n 
E L 

i,j 

where Hij 

and sij 
Differentiating 

* cient, ak say: 

* a. a .s .. l J lJ 

n 
L 

i,j 
* a. a .H .. l J lJ (2 .5) 

<'!f. IHl'!f.> is usually called a matrix element (ME), 
l J 

<'!f. l'!f.> an overlap integral. 
l J 

both sides of (2.5) with respect to a single coeffi-

(2. 3) 



oE * n 
* :E a . a . s . . + E :E a . sk . 

aa k i,j l J l] j J J 

oE 

n 
:E a.Hk. 
j J J 

For the energy to be a minimum-*= O, and (2.6) becomes: 
aak 

n 
:E a. (Hk. - ESkJ') 
j J J 

0 

(2. 6) 

(2. 7) 

This is repeated for all other coefficients and a system of n 

homogeneous linear equations are obtained, the solutions for which 

only exist when (Spiegel 1971, pg348) : 

I H - ES I = 0 (2. 8) 

This is called the secular equation, which is a polynomial of 

degree n in E. If the basis in (2.4) is orthonormal, then S .. = o., and 
l] l] 

(2.9) becomes: 

H
11

-E 

H21 

H -E 
nn 

0 (2. 9) 

Analytic solutions for the roots of polynomials are available 

only up to fourth order, however the solutions to cubics and quartics 

are especially difficult, (A&S, eq.3.8.2,3). Equation (2.9) is there­

fore usually solved (ie diagonalised) numerically, unless the symmetry 

of the system allows the determinant to be blocked along the diagonal 

( i e the basis wave functions were a good guess to the real 

wavefunctions) . 

2.1.3 Similarity Transforms and Bases. 

The matrix forming the secular equation (2.9) is Hermitian (CDL, 

pg 12 0) • A 

conjugate of 

consequences 

square matrix is Hermitian if it is equal to the complex 
t * its own transpose, A= (A) . Some of the mathematical 

of this are (Spiegel 1971, pp 342-50) : 

The eigenvalues (energies) are real. 

The eigenvectors (wavefunctions) can be complex. 

The basis may be changed by: 

'I' = C'!f' 

(2. 4) 
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where v, v' are column vectors of dimension n of the old and new bases 

respectively: and C is a (nxn) unitary matrix that expresses the old 

matrix in terms of the new. A matrix C is unitary if its inverse is 

equal to the complex conjugate of its transpose, C-l = (Ct) *. This 

means that if vis orthonormal, then so will be v'. Equation (2. 9) 

then becomes: 

Hl'J' - E1'1' <v. IHlv.> - E.' (2.11) 
l -1 J l.l 

<'!f~C IHIC'!f~> - E.' 
l J ll 

<'!'~ I H, I 'I''· > - E ' ' 
l J l.l 1 

( H~ , - E. , ) , H' = C- HC 
l] ll 

The eigenvalues of (2.11) are exactly the same as those in (2.9), 

while the eigenvectors are now in terms of the new basis '!''. (See 

Pease 1965, ppllS-30.) The transformation of H to H' is called a 

similarity transform: 

H' = C-lHC (2.12) 

If a particular similarity transform diagonalises (2.9): 

B-1HB = diag(E1,E2 , .. ,En) (2.13) 

then E 1 , .. En are the n ·eigenvalues, and the eigenvectors (the 

coefficients of the linear combination of basis functions) are con­

tained in the n columns of B. 

Similarity transforms are very useful as a Hamiltonian may be 

composed of different parts whose matrix elements are most easily 

calculated in different bases. If this is the case, then matrix ele­

ments of each part of the Hamiltonian can be calculated in the most 

convenient basis, and then transformed into a common basis by (2 . 12) . 

A similarity transform can also be used to construct a basis that 

removes a large off-diagonal matrix element, and such an approach is 

often used in Jahn-Teller problems (chapter 4) . 

LF theory solves (2.1) using the variational method with a LCAO 

of the valence shell orbitals as a basis. These are either the d or f 

one electron orbitals which form an orthonormal basis so the problem 

becomes that of calculating the matrix elements and diagonalising the 

secular equation (2.9). This last point can be quite a difficult 

"number-crunching" exercise for a computer when the basis size is 

large. The basis size is given by (Weissbluth 1978, pg 422): 

[ 
n ] n! 
k = (n-k) !k! (2 .14) 
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where n is the number of spin orbitals (10 for a d , and 14 for an f 

orbital basis), and k is the number of electrons present. For a d5 (f7 ) 

configuration this gives a basis size of 252(3432). 

Given these potentially large basis sizes, much ingenuity has 

been devoted to using group theoretical techniques to chose a basis 

that has the largest matrix elements on the diagonal of the secular 

equation. This allows the secular equation to be broken up into 

smaller matrices that can be diagonalised separately, small off­

diagonal elements being either ignored or treated by perturbation 

theory. In this formalism the best basis to use is determined by the 

relative sizes of the terms in the Hamiltonian (2.1): 

HLF > HIR > Hso strong field scheme (2 .15a) 

HIR > Hso > HLF weak field scheme ( j j-coupling) (2 .15b) 

HIR > HLF > Hso 
II (Russell-Saunders coupling) (2.15c) 

It should be emphasised that when the complete basis is used, all 

these schemes are equivalent, and will give identical results. 

2.1.4 The calculation. 

Formulae for evaluating the matrix elements in the above three 

schemes have been given by Koning and Kremer (1977) and Piepho and 

Schatz (1983) in terms of irreducible tensor methods. Gerloch and 

McMeeking (1975) have made freely available a program called CAMMAG, 

which performs ligand field calculations in a weak field IJMJ> basis. 

Apart from the irreducible tensor method, calculations in ligand 

field theory can also use the older methods of Condon and Shortley 

(1935). While this makes no elegant use of group theory, so in general 

a full basis must be used, it is conceptually simpler and easier to 

implement as computer program. 

Programs were developed for the d 8 and d9 cases using the methods 

of Condon and Shortley in a real d-orbi tal basis. This basis is used 

because it is the natural basis with which to parameterise the ligand 

field operator. With the angular overlap model, real analytic func­

tions are available for any arrangement of ligands. Conversion of the 

AOM ligand field operator to other bases requires the use of spherical 

harmonics (Gerloch and McMeeking 1975). As well as this, it is easier 

to picture the spatial distribution of the electrons using real basis 
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functions, and "chemical intuition" from simple bonding arguments can 

be used. 

The first step in solving the Hamiltonian (2.1) is to recognise 

that the operators involved are either one electron operators (HLF' 

Hsol or two electron operators (H1R). All possible one electron and 

two electron matrix elements must be calculated at least once. This 

can be done in the most convenient basis, then, by the use of 

similarity transforms, these can be transformed into the required d­

orbi tal basis. The matrix elements of the one electron spin-orbit 

coupling operator has been given by McGarvey (1966, pg144), the one 

electron angular overlap ligand field operator by Schaffer (1970), and 

the two electron interelectron repulsion operator by Griffith ( 1 9 61, 

section 9.2), all in a real d-orbital basis. 

The real d-orbital basis is really in the form of antisymmetrised 

products (or Slater determinants) of the one electron spin orbitals 

(Weissbluth 1978, chapter 11). The matrix elements of the secular 

equation in this many electron basis can be evaluated using the 

straightforward rules of one and two electron operators, (Condon and 

Shortley 1935, pp169-73; Golding 1969, pp25-38). 

Diagonalisation of this matrix will· give the eigenvalues (to 

compare with transition energies) and eigenvectors (to compare with 

transition intensities, magnetics, etc). The empirical parameters can 

then be varied to fit the experimental data. In general such 

parameters that fit experiment can be found and ligand field theory 

can then then be said to provide a good working model to account for 

those particular experimental properties. An immense amount of ex -

perimental work and ligand field analysis has been done to verify 

this, and in this sense it could be said that the "d" electronic 

properties of transition metal complexes are well understood. 
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2.2 VIBRATIONAL STATES: "AVERAGED ELECTRONS" 

In studying the vibrations of a polyatomic molecule, it is im­

plicitly assumed that the molecule can be described by point masses 

(the atoms) connected by forces (the bonds) that keep these atoms near 

their equilibrium position (the equilibrium molecular geometry). This 

description is essentially classical in nature, and indeed molecular 

vibrations can be studied by the analysis of the resonance frequencies 

of mechanical models (WDC, pg232). 

In this section only vibrational coordinates are considered, ie 

it is assumed that there is no coupling with either electronic or 

rotational coordinates. Classical ideas a re used to introduce the 

concept of normal coordinates, followed by the quantum mechanical 

description of the simple harmonic oscillator. The variational method 

is is then used to investigate systems with non-harmonic potentials. 

2.2.1 Classical Concepts. 

Normal Coordinates: 

A non-linear(linear) molecule is said to be at equilibrium when 

all forces along all n=3N-6(5) vibrational degrees of freedom on the 

system vanish: 

(~~il 0 0 (2.16) 

where V is the potential energy of the system and the equilibrium 

can be either stable or unstable (Goldstein 1980, pg243). If the 

potential energy is expanded in a Taylor series about this equilibrium 

geometry: 

V=V(qi'"" 

The first two 

energy origin: 

,qn) + ~ (~~.)qi 
1. 1. 0 

terms can be made 

+ ~ . L . (~:. ~q , l qi qj + 
1., J 1. J 0 

(2 .17) 

zero from (2.17) and a shift in the 

v = ! L (
02 

] q q + i, j = 1, .. n (2 .18) 
2 ' ' (Jq ' (Jq ' i j l.,J 1. J 0 

If the first term in (2 .18) is positive the equilibrium is 

stable, and if the subsequent terms in the expansion are zero then the 

potential is harmonic. The contrary case, where the quadratic term is 

negative and higher terms are non-zero, occurs for example with a 

double minima potential. Here there is the paradoxic a 1 situation of 

(2. 8) 



an equilibrium geometry which is classically unstable, yet is the 

quantum mechanical expectation value of the geometry (see section 

2 .2. 3). 

Assuming for the moment small harmonic vibrations about a stable 

equilibrium geometry, the classical energy the system is given by: 

E =I. [ T .. + V .. ] 
. . l] l] l,J 

(2 .19) 

where T .. = 2! q.q., and v .. = 2! (~2v 0 l q.q., represent the 
l J l J l] qi qj ,1 l J 

kinetic and potential energy of the system respectively. 

Equation (2.19) can be written in matrix form (Weissbluth 1978, 

pg632), and diagonalised by a similarity transform, defining both the 

normal vibrational frequencies and the normal coordinates Q. 

A - l (T+V) A = D, q = AQ ( 2 . 2 0) 

where D = diag(rof,ro~, .. ) is the diagonal matrix of the squares 

of the frequencies. Such a transform must simultaneously diagonalise 

both the kinetic and potential energy terms, and the existence of such 

a transform A is shown by Goldstein (1980, chapter 6). The number of 

coordinates may be over specified, but this will only result in modes 

of zero frequency (WDC, pp22-25). Using the normal coordinates, (2.19) 

becomes: 

1 n ·2 1 2 2 
E = 

2
- I. [ Q. + 2- ro.Q. ] (2.21) 

. l l l 
l 

Assuming for simplicity that all the modes are non-degenerate, 

then (2.21) becomes a set of n separate simple harmonic oscillator 

equations. Group theory can be used to determine the symmetries of the 

vibrations based on the point group symmetry of the equilibrium 

molecular geometry. This involves finding the irreducible repre­

sentations from a set of characters found by performing the symmetry 

operations of the point group on a basis. This method is given in many 

texts (Vincent 1977, Harris and Bertolucci 1978). The normal coor­

dinates are classified into the irreducible representations of the 

equilibrium geometry point group, even though at any instant in time 

the molecule will usually have no symmetry at all. For small displace­

ments from the equilibrium geometry, these 1abe1 s hold we 11, but 

bee ome meaningless for large amplitudes (Landau and Lifshitz 1977, 

pg396). 

(2. 9) 



The validity of normal coordinates only holds within the harmonic 

approximation, but is extremely useful as it allows the complex motion 

of a vibrating molecule to be described as a superposition of vibra­

tional modes, each having a fixed frequency. It allows a 3N- 6 

dimensional problem to be separated into one dimensional problems. 

Normal Coordinate Analysis: 

The standard method of treating molecular vibrations is called 

the GF matrix method and is well documented in the texts of Wilson 

etal (1955) and Cyvin (1968). Computer programs implementing this 

method are available (Fuhrer etal 1976). A brief outline is given 

here as the notation will be referred to at later stages. For a 

molecule of N atoms the vibrational Hamiltonian corresponding to 

(2.19) in matrix notation is: 

H 1 [ .t . t ] (2 22) =2 xMx+xVx . 

in terms of the 3N cartesian displacement vector x. Here M is the 3N x 

3N diagonal matrix of the masses of the atoms, and V is the 3N x 3N 
a2 

matrix of the quadratic force constants: V .. = (ax.ax.)
0

. 
l] l J 

If the redundant coordinates are now removed by a transformation 

to the n (=3N-6) internal coordinates: 

S = B x (2. 23) 

by the n x 3N transformation matrix B. Here the internal coordinates S 

may be symmetry coordinates which will block diagonalise the GF 

matrix. Substituting into (2.22) one has (Cyvin 1968, pp54-62): 
2H [ st(B-1)tM B-1s + st(B-1)tVB-1 s J (2.24) 

[ StG-1$ + StF s ] 

where G is the n x n symmetrised kinetic energy matrix: 
G = B M-lBt (2.25) 

1 * G .. = r. - B.kB'k lJ k mk i J 
and F is the n x n symmetrised force constant matrix: 

a2 v 
Fij = (as.as.lo (2 · 26 l 

l J 
By definition, the n normal coordinates Q are those which make 

(2.24) diagonal. Let these be related to the internal coordinates by 

an n x n transformation 1: 

S = L Q (2 .27) 

Substitution into (2.24) one gets: 
2H = [ QtLtG-lL Q + QtLtF L Q ] 

(2 .10) 



(2 .28) 

where I is the n x n identity matrix and A. is diagonal. This then 

reduces to: 
LtG-lL = I, Lt= L-lG 

LtF L = A. or G F L = A. L (2 .29) 

This is in the form of an eigenvalue equation, where A. are the n 

eigenvalues, and the columns of L contain the eigenvectors which will 

be the normal coordinates expressed in terms of the symmetry coor­

dinates. Equation (2 .29) can be solved by diagonalising then x n 

matrix, GF (Cyvin 1968, Fuhrer 1976). For force constants given in 
o-1 -1 mdyneA , the vibrational frequencies vk (in cm ) are related to the 

eigenvalues ~ by (Fuhrer etal 1976, pg 187): 
'i/2 

vk = 2ic = (~J 112x 1302.8 (2.30) 

2.2.2 Quantum Concepts. 

Schrodinger Formulation: 

The Schrodinger equation corresponding to (2.21) for a one dimen­

sional harmonic oscillator is given by (Cyvin 1968, pg 75) : 

1 ( a
2 

2 J E H(s)$(sl = - - --- + s $(sl = ~ $(sl 
2 as2 hv 

(2 .31) 

whose nth eigenvalue is: 

1 
En = ( n + 2 ) hv (2 .32) 

and nth eigenvector: 

(2. 33) 

H (s) is the nth Hermite polynomial, which can be defined by the 
n 

following recurrence relationship (Schiff 1968, pg 70) : 

H +l= 2s.H (sl - 2n.H 1 (~) n n n- (2 .34) 

H0 (s) = 1, H1 (sl = 2s 
The dimensionless coordinate~ has been used for convenience. The 

relationships between the dimensionless coordinate, ~' symmetry coor-

dinate, S, and normal coordinate, Q, are given by Cyvin (1968, pg75) : 

(2.11) 



!; = xS = x/m Q (2. 35) 

x = 4mncro/h = 1.722 x 10-3 (M.h~) 1 / 2pm-l 

The symbol M in the constant x is the mass from the inverse of the 

appropriate G matrix element (equation 2.25) in amu, and hv is the 
. -1 energy of the harmonic vibration 1n cm 

The solutions of the Schrodinger equation, (2.31), given in 

(2.32), (2.33) have been derived in many texts, usually by the polyno­

mial method (Schiff 1968, pp66-72; Flugge 1974, pp68-71). The 

Schrodinger equation and eigenvectors in terms of other coordinates 

are obtained by the appropriate substitution of (2.35). The eigen­

values remain the same for all coordinate systems. 

Matrix Formulation: 

A convenient geometric picture of a basis function is a vector in 

an infinite dimensional Hilbert space (Schiff 1968, pp163-4). Each 

dimension corresponds to a row in a column vector, the magnitude of 

which corresponds to the component of the vector along that axis in 

Hilbert space. Different orientations of the axes corresponds to 

different representations of the basis functions. If the axes are 

chosen so that each basis function is oriented directly along them, 

then the basis functions are eigenvectors of that particular 

Hamiltonian. The orthonorrnality of the basis functions can be inter­

preted as a set of unit vectors that are orthonormal in the geometric 

sense. 

A unitary transform corresponds to a rotation of the axes in 

Hilbert space, rather than a change in the basis functions. An 

operator A can be thought of as a rotation of a basis function a. so 
1 

that it becomes the different basis function Aa .. 
1 

A matrix element, 

<a. !Ala.>, is then the overlap of the two functions <a. IAa.>. 
1 J 1 J 

The variational method can be used in Hilbert space where the 

exp 1 i c it form of the basis functions need not be known. As shown in 

section 2.1.2, the solutions to a variational problem are found by the 

following three steps: 

1) Expanding the unknown wavefunctions in terms of the known 

basis functions. 

2) Calculating the matrix elements of the Hamiltonian. 

(2 .12) 



3) Diagonalising the secular equation. 

The rest of this chapter examines the energy levels and wavefunctions 

of several sorts of non-harmonic potentials. The wavefunctions of 

these potentials are expanded as a linear combination of simple har­

monic oscillator (SHO) basis functions, and solved with the 

variational method. The necessary matrix elements in a SHO basis are 

given in appendix 2. Al. After the secular equation is diagonalised 

numerically, the resulting ei~envalues will be in units of hv, and the 

eigenvectors will be linear combinations of the simple harmonic oscil­

lator basis functions. A different basis could have equally well been 

used, for example, Davis and Heller (1979) have used Gaussian basis 

functions. Here a SHO basis is used for the convenience in which the 

matrix elements can be calculated. 

2.2.3 Geometric Properties of the Wavefunctions. 

As well as the energies of vibrational systems, other properties 

of the wavefunctions can also be of interest. In particular, geometric 

information about a particular vibrational state can be calculated 

from the wavefunction. A geometric quantity R is calculated as an 

expectation value or quantum mechanical average value of R in ~ : 
n 

<R> = <~ IRI~ > (2.36) n n n 
The equilibrium geometry defined in (2 .16) is the geometry where 

the potential is an extremum, usually a minimum. However the mean 

geometry as defined above in (2. 36) need not necessarily be at the 

minimum of the potential. For a simple harmonic oscillator centred 

about s=O, the matrix elements in appendix 2.Al show that the mean 

geometry <s> will be zero in all vibrational levels. For a displaced 
n 

SHO the mean geometry will be <s+s > = <s> + <s > = s for all e n n e n e 
energy levels. Therefore in a SHO the equilibrium geometry always 

corresponds to the minimum in the potential, whereas for an anharmonic 

oscillator this need not be the case. If the anharmonic wavefunction 

is expressed as linear combination of N SHO basis functions then the 

expression for the geometry becomes: 
N 

~ = L a. Ii> 
n i=O i,n 

<s> = <~ 1s1~ > n n n 

N 
L 

i=l 
(2 ') 1/2 i a. a. 

1 i,n 1- ,n (2. 37) 

(2 .13) 



The fact that SHO wavefunctions always have a mean geometry 

identical to the potential energy minima is also obvious from their 

symmetric nature and will also be true for any even order potential. 

However for higher vibronic levels this mean geometry becomes increas­

ingly the least probable geometry in the sense that the maximum of the 

probability density of the wavefunction move further away from the 

mean value. Indeed, in the odd numbered SHO wavefunctions there is a 

zero probability of finding the vibrational state at the equilibrium 

geometry. 

A better measure of the amount of time that the wavefunction 

spends away from the mean geometry is the root-mean-squared (RMS) 

amplitude of the vibration. As above, this quantity is given as: 

<s2>112 = <~ 1;21~ >112 (2.38) 
n n n 

For a SHO the mean-squared amplitude is given bylthe appropriate 

matrix element from table 2.Al: 

<s
2

>n= (n + ~) (2.39) 

For a displaced SHO it is: 

<(s+sel
2

> = ((n + ~) + ;e) (2.40) 

In an anha rmonic oscillator, the mean-squared geometry roust be found 

from a variational calculation: 

N-2 
L a. a. 2 ~(i+l) (i+2) + 

i=O i,n i+ ,n 

N 
L 

i=O 
2 (' 1) a. i + -i,n 2 (2 .41) 

Examples of the use of the above equations are made in the following 

sections with wavefunctions from anharmonic potentials. As a word of 

warning, it should be remembered that it is the squared geometry that 

is calculated as an expectation value. For temperature dependent 

calculations, it is the square root of the Boltzmann average of the 

mean square values that should be taken, not the Boltzmann average of 

the RMS values which in general will give a different (and wrong) 

answer. 

(2 .14) 



2.2.4 Anharmonic Potentials. 

In this section one dimensional anharmonic potentials are con­

sidered, where the higher order terms in ( 2 . 18) a re restricted to 

being wholly within the one coordinate: 

V(~) (2. 42) 

The case where cross terms cause anharmonic coupling between 

the two modes, will be considered in section 3.7. The solution of the 

vibrational Hamiltonian with the potential given by (2.42) can be made 

either by perturbation theory or the variational method. Perturbation 

theory gives algebraic approximate expressions for the energies and 

wavefunctions (appendix 2.A2), but is suitable only for small anhar­

monic terms. The variational method gives answers to arbitrary 

accuracy, but must be solved numerically. Here both methods are inves­

tigated to see under what conditions perturbation theory holds. 

Numerical test data is given in appendix 2.A2. 

Cubic anharmonicity: Cubic anharmonicity is a common correction made 

to normal coordinates involving bond stretching. This is simply due to 

the potential energy of a molecule increasing more for a bond compres­

sion than for a bond elongation (Harris and Bertolucci 1978, pgl06). A 

negative cubic anharmonicity then approximates the behaviour of the 

more realistic Morse potential (Herzberg 1950, pg90) for the lowest 

few levels. With both kinetic and potential energy operators, the 

vibrational Hamiltonian is then: 

n = ~ PISl
2 

+ ~ s2 
+ k3s

3
, PISl

2 = - ~2 12.431 

Figure 2.la shows the energies obtained both from the variational 

method and perturbation theory. Similarly, the mean and root-mean­

squared values of the coordinate are shown in figures 2 . 1 b, c . As is 

well known the vibrational energy intervals become smaller both with 

increasing anharmonicity, and with increasing quantum number. The 

energies calculated from perturbation theory are a good approximation 

up to k3= -0.04, but the wavefunction properties show poorer agree­

ment. In the unlikely case of a positive cubic anharmonicity, the 

(2 .15) 
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energies and RMS values will remain the same, while the mean values 

will be negative. 

Care must be used when calculating for large values of k 3 , or 

when large basis sizes are used, as the cubic term in (2.43) will 

eventually cause the potential to turn over. In this case, "unbound 

states" w i 11 be calculated outside the potential. They can be iden­

tified either by varying the basis size, in which case they will shift 

in energy (as they try to approach negative infinity), or by calculat­

ing the RMS value of the coordinate which will be unreasonably large. 

This situation can be avoided by adding a quartic term to (2.43). 

Quartic anharmonicity: Quartic anharmonicity is the lowest non-zero 

anharmonicity that can occur in "even" vibrations. An "even" vibration 

can be defined as a vibration where a positive displacement along the 

normal mode is equal to a negative displacement, within a rotation of 

the molecule. For example, the orthorhombic component of the oc­

t ahedra 1 e vibration (figure 4. 2) is an even vibration, while the 
g 

tetragonal component is not. Thus while the tetragonal component can 

have any power of anharmonicity, the orthorhombic or "even" component 

can only have even orders of anharrnonicity. 

For quartic anharmonicity the Hamiltonian is then: 

H = 1P(~)2+1 ~2 + k ~4 
2 2 4 

(2. 44) 

The energy and RMS amplitudes as a function of the quartic anhar­

monicity k4 are shown in figures 2.2a,b. The mean geometry will always 

be zero due to the symmetry of the wavefunctions. When k4 is negative 

the energy levels become closer, corresponding to a softening of the 

potential. A positive k4 corresponds to a "stiffening" of the poten­

tial, which causes increasing energy intervals and decreasing RMS 

amplitudes. Perturbation theory holds well only for k
4 

in the range 

-0.01 ~ 0.01, for the lowest levels, but again the energies are a 

better approximation than the RMS values. As in the cubic case, a 

large negative quartic anharmonicity will cause the potential to turn 

over. The potential of k4= -0.01 is shown in figure 2.3 along with the 

vibronic probability functions which identify the fifth level as an 

"unbound state". In practise, care must be taken in all cases where 

the highest order anharmonicity is negative, whether even or odd. 

(2 .16) 



a) 

~ 
~ 

'-.... 
~ 
b.O 
S-i 
a> 
~ 

r:r:! 

6 

5 

4 

3 

2 

1 

0 
-0.01 

..,,. b) 3 
..,,. ..,,. 

./ 
./ 

./ 
; 

/ ; 
~ ,. / ,. ,. / ,. ,. ,. ,. 

-- ---- -

0.01 0.03 
Anharmonicity / h11 

./ 
a> ..,,. 

"C 2 
; ,. 

~ ; 

+J -•..-f 
r-i 

Ai -- ~ --------
rn ------
~ 1 
~ 

0.05 
0 

-0.01 0.01 0.03 0.05 
Anharmonicity / h11 

Figure 2.2 Quartic anharmonicity: 

-Variational method. - --Perturbation theory. 

a) Energy levels, b) RMS geometry, 



"> 
..c 

" 

6 

5 

4 

~ 3 
Q) 

c w 

2 

1 

0 
-10 -5 0 

Di.mensionless Coordinate 
5 

Figure 2.3 A potential surface with quartic anharmonicity. 

The fifth highest level is "unbound". 

10 



The gua rt i c oscillator: The pure quartic oscillator has been studied 

by Chan and Stelman (1963a), who proposed that while such a potential 

is unlikely to be found in nature, it may provide better basis func­

tions than the SHO for some systems. To this end, they calculated the 

matrix elements of ~' ~2 , ~ 3 , ... with the eigenvectors found from 

solving the quartic oscillator. However, when repeating their calcula­

tion it was found that while the same eigenvalues were reproduced, the 

wavefunctions were not. Exhaustive tests in double precision on two 

different computers with two different diagonalisation routines gave 

consistent eigenvectors that were different from those of Chan and 

Stelman ( 1963 a) . It is concluded that the Jacobi rotation method of 

diagonalisation that they used was the source of their inaccurate 

eigenvectors. 

Double Minima Potentials: Often the potential a long a v ib rat i ona 1 

coordinate cannot even be approximately described by a harmonic 

parabola. While anharmonicity implies a small perturbation to the 

harmonic potential, completely non-harmonic potentials may also be 

encountered. This situation can occur in molecules which undergo 

inversion, large amplitude motions or hindered rotation (Papousek and 

Aliev 1982; Maruani and Serre 1983). Other phenomena related to such 

potentials are hydrogen bonding (Somorjai and Hornig 1962) and 

spectroscopic properties of metalloproteins (Bacci 1984) . 

The general potential considered here is given by: 
6 i 2 

V(~) = L ~ +a exp( -~~ ) (2.45) 
i=O 

and must be solved by the variational method, as these potentials will 

be far from harmonic. 

Double minima potentials have been studied thoroughly by Somorjai 

and Hornig ( 19 62) . Potential 1 of their work is shown in figure 2 . 4 a 

and is used here as a test case. It is obtained by using the potential 

parameters k2= -2.63; k4= 0.32875 in equation (2.45). Note the very 

small separation of the first two vibrational levels and the 

symmetric/antisymmetric nature of the wave functions. This is the s o 

called "inversion" splitting, as found in ammonia, the magnitude of 

which depends on the barrier height. 

If a very small linear term (k 1 = 0. 01) is added to the potential 

to make the minima inequivalent in figure 2.4b. The energy levels are 

only slightly perturbed, but the wavefunctions are greatly changed, 

(2.17) 
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each state becoming localised in one of the two minima._ This is ex­

actly analogous to the "vibronic enhancement of small perturbations" 

found in Jahn-Teller systems (see chapter 4) . 

Alternatively a double minimum potential may be constructed from 

a quadratic term and the Gaussian in (2.45). Chan and Stelman (1963b) 

have given methods of ea lculating the matrix elements between SHO 

functions and Gaussians. Exact agreement was found with their pub­

lished results except for large (100 x 100) basis sizes. In this case 

round off errors caused unpredictable results when their recursive 

method of calculating matrix elements was used. Their other suggested 

method, of calculating the diagonal elements explicitly by their 

equation 5 and using their "diamond rule" for off-diagonal elements, 

was used with no problems in round off error. 

(2 .18) 



APPENDIX 2.Al HARMONIC OSCILLATOR MATRIX ELEMENTS (HOMEs) 

B_armonic Oscillator M_atrix E_lements of powers of the normal 

coordinate are an often calculated quantity and methods for doing this 

can be found in almost any quantum mechanical text. Some of the 

methods that have been used are: 

1.) direct integration (Flugge 1974, pp80-84), 

2.) the use of generating functions (Schiff 1968, pg72), 

and 3.) the use of ladder operators (CDL, pp496-505). 

However, the above methods have the disadvantage that they become 

increasingly difficult for HOMEs of higher orders of the normal coor­

dinate. Shaffer and Krohn (1976) give the HOMEs <nlsplm> up to p=7. 

Here, a new method is presented based on a recursive relation and 

HOMEs up to p=30 have been calculated. A list of the non-zero HOMEs up 

to p=lO is given in Table 2.Al. 

The general HOME to be evaluated is: 

<nlsPlm> p~O (2 .Al) 

Here s is the dimensionless coordinate introduced in section 2.2.2. In 

anticipation of a recursive relation the HOME's for p=0,1,2 are calcu­

lated. For p=O we have: 

<nlm> = 1 n=m 

0 n:tm (2 .A2) 

from the orthonormal properties of harmonic oscillator wavefunctions. 

Following method 3 above, the creation (a+) and annihilation (a) 

operators (CDL pp481-503) are introduced: 

a+ ~(!;-ip) 
a ..J2(s+ip) 

where p is the conjugate momentum to 

lowing properties: 
1 + s = ..J2 (a + a ) 

a In> = -friln-1> 
+ a In> = 

+ [a , a ] 

--/n+lln+l> 

1 

(2 .A3) 

s. Equation (2 .A3) has the f o 1-

(2 .Ma) 

(2.A4b) 

(2 .A4c) 

(2.A4d) 
+ It can be seen that the effect of the operator a (a ) is to 

annihilate (create) a quantum when acting on In>. They are also known 

(2 .19) 



as step or ladder operators in the literature. It is a simple matter 

to calculate HOMEs for lower powers of p: 
1 + p=l: <nlslm> <nl.,12(a +a) Im> (from (2.A4a)) 

ff72 <nla+lm> + "1/2 <nla Im> 

"(m+l)/2 <nlm+l> + "m/2 <nlm-1> (from (2.A4b,c)) 

.J(m+l)/2 

"m/2 

for m=n-1, 

for m=n+l. 

2 1 + + + + 

(2 .AS) 

<nls Im>= 2 <nl (a a+ a a+ aa + aa ) Im> 

~ "(m+l) (m+2) <nlm+2> + (m+~)<nlm> + ~ "m(m-1) <nlm-2> 

2 "(m+l) (m+2) for m=n-2, 
1 

(m+2) for m=n, 

~ "m(m-1) for m=n+2. (2 .A6) 

However to calculate 

must be expanded into 

<n I s 8 Im> becomes very tedious as ( a++ a ) 8 

256 terms because the order of operation is 

important as by (2.A4d) these terms do not commute. 

Since the functions In> are a complete set we have the closure 

identity: 

:E ln><nl = 1 
n 

and applying this to (2.Al) we get: 

<nlsPlm> = <nlsp-~( :E lr><rl) -slm> 
r 

from (2.AS), this HOME is non-zero only when r = m ± 1. 

HOME <nlsp-ll. (lm-l><m-11 + lm+l><m+ll) -slm> 

= <nlsp-llm-l><m-llslm> + <nlsp-llm+l><m+llslm> 

which leads to the desired recursive relationship: 

(2 .A7) 

(2 .AS) 

(2.A9) 

With this simple expression, a HOME of Sp can easily be calcu-
p-1 lated from the HOMEs of s . This is a far simpler method of 

calculating matrix elements than has been given previously in the 

literature. 

To find explicit expressions for the higher order matrix elements 

still involves a certain amount of manipulation as the expression must 

be s imp 1 if ied at each step by collecting terms. To do this a program 

(2 .20) 



was written using REDUCE, a symbolic language for algebraic manipula­

tion, the results up to p=30 were obtained. It is probably unlikely 

that HOMEs for p=30 are actually needed, however when simulating 

spectra it is useful to fit the potential to a power series. In this 

situation higher order HOMEs than those published (up to p=7, Shaffer 

and Krohn 1976) may well be necessary. 

Closed formulas have recently been developed (Morales etal 1984) 

for evaluating any particular matrix element. The general HOME has 

been shown to be given by: 

<nl~Plm> - p! (m! 11/2 [n}:z]2cx (~) (m-n+cx) ! (z-cx) !]-l 
- 2p/2+z ln!) cx=O ~ 

(2 .AlO) 

Equation (2.AlO) is defined for n~m and z = ~ (p+n-m), [n, z] 

denotes the smaller of n and z, and [~)is a binomial coefficient. In 

the special case of diagonal elements this expression reduces that 

previously given by Cyvin (1968, pg75): 

. (2 .All) 

where only even powers of the coordinate ~ are non-zero. These 

formulae could be used instead of the explicit expressions given in 

table 2.Al but are more cumbersome in practice. 

The non-zero matrix elements of the kinetic energy operator are 

given by (Heilbronner 1956) : 

<nl p (~) 2 ln-2> - ! "1n (n-1) (2 .Al2) 2 
a2 

<nl p (~) 2 In> (n + ~) P(s) 2 

as
2 

<nl p (~) 2 ln+2> - ~ "1 (n+l) (n+2) 

(2 .21) 



TABLE 2.Al Matrix elements of <nlsplm> p=0-10 

p m <nlsplm> 

0 n 20 

1 n-1 2 -1/2 [n]l/2 

n+l 2 -1/2 [n+l]l/2 

2 n-2 2 
-1 

[n (n-1)] 112 

-1 
. (2n+l) n 2 

n+2 2 
-1 

[ (n+l) (n+2)] 112 

3 n-3 2 -3/2 [n (n-1) (n-2)] 1/2 

n-1 2 
-3/2 

[n] 112 . 3n 

n+l 2 -3/2 
[n+1J 112 .3(n+l) 

n+3 2 -3/2 [ (n+l) (n+2) (n+3)] 112 

4 n-4 -2 
[n (n-1) (n-3)]1/2 2 .. 

n-2 2 
-2 1/2 [n(n-1)] .2(2n-1) 
-2 

. 3 (2n2+2n+l) n 2 

n+2 2 
-2 

[ (n+l) (n+2)] 112 .2 (2n+3) 

n+4 
-2 

[ (n+l) (n+4)]1/2 2 .. 
5 n-5 2-512 [n (n-1) .. (n-4)]1/2 

n-3 -5/2 1/2 2 [n(n-1) (n-2)] .5 (n-1) 

n-1 2 -5/2 
[n] 112 . 5 (2n2+1) 

n+l 2-512 [n+1J 112 .5(2n2+4n+3) 

n+3 -5/2 [ (n+l) (n+3)]1/2 .5(n+2) 2 .. 
n+5 -5/2 [ (n+l) (n+5)] 1/2 2 .. 

6 n-6 
-3 

[n (n-1) (n-5)] 1/2 2 .. 
n-4 

-3 
[n (n-1) 1/2 2 .. (n-3)] .3 (2n-3) 

n-2 2 
-3 1/2 2 [n(n-1)] .15(n -n+l) 

n 2 
-3 

.15(4n3+6n2+8n+3) 

n+2 2 
-3 

[ (n+l) (n+2)] 112 .15 (n2+3n+3) 

n+4 
-3 

[ (n+l) (n+4)]1/2 .3(2n+5) 2 .. 
n+6 

-3 
[ (n+l) (n+6)] 1/2 2 .. 

7 n-7 -7/2 [n (n-1) (n-6)] 1/2 2 .. 
n-5 -7/2 [n (n-1) 1/2 2 .. (n-4)] .7(n-2) 

n-3 2 -7/2 1/2 2 [n(n-1) (n-2)] .21 (n -2n+2) 

n-1 2 -7/2 
[nJ 112 .35(n3+2n) 

n+l 2 -7/2 [n+1] 1/ 2 .35(n3+3n2+5n+3) 

n+3 -7/2 [ (n+l) (n+3)] 112 .21 (n2+4n+5) 2 .. 



TABLE 2.Al (cont.) 

n+5 -7/2 [ (n+l) (n+5)]1/2 .7(n+3) 2 .. 
n+7 -7/2 [ (n+l) (n+7)]1/2 2 .. 

8 n-8 -4 [n(n-1) (n-7)]1/2 2 .. 
n-6 -4 [n(n-1) (n-5)]1/2 .4(2n-5) 2 .. 
n-4 -4 [n(n-1) 1/2 2 2 .. (n-3)] .14 (2n -6n+7) 

n-2 2 -4 1/2 3 " 2 
[n(n-1)] .28 (2n -3n +7n-3) 

-4 4 3 2 n 2 .35(2n +4n +lOn +8n+3) 

n+2 2 -4 [ (n+l) (n+2)] 112 3 2 .28(2n +9n +19n+15) 
n+4 -4 [ (n+l) (n+4)J 112 .14(2n2+10n+15) 2 .. 
n+6 -4 [ (n+l) (n+6)J 112 .4(2n+7) 2 .. 
n+8 -4 [ (n+l) (n+8)]1/2 2 .. 

9 n-9 -9/2 [n (n-1) (n-8)]1/2 2 .. 
n-7 -9/2 [n (n-1) (n-6)] 1/2 .9(n-3) 2 .. 
n-5 -9/2 [n (n-1) 1/2 2 2 .. (n-4)] .18 (2n -8n+ll) 

n-3 2 -9/2 [n (n-1) (n-2)] 1/2 3 2 .42(2n -6n +13n-9) 
n-1 2 -9/2 [nJ 112 .63(2n4+10n2+3) 
n+l 2 -9/2 [n+1J 112 .63(2n4+8n3+22n2+28n+15) 

n+3 -9/2 [ (n+l) (n+3)J 112 .42(2n3+12n2+31n+30) 2 .. 
n+5 -9/2 [ (n+l) (n+5)J 112 .18(2n2+12n+21) 2 .. 
n+7 -9/2 [ (n+l) (n+7)] 112 . 9 (n+4) 2 .. 
n+9 -9/2 [ (n+l) (n+9)]1/2 2 .. 

10 n-10 -5 [n (n-1) (n-9)] 1/2 2 .. 
n-8 -5 [n (n-1) (n-7)] 1/2 .5(2n-7) 2 .. 
n-6 -5 [n (n-1) (n-5)]1/2 2 2 .. .45(n -5n+8) 
n-4 -5 [n(n-1) 1/2 3 2 2 .. (n-3)] .30(4n -18n +44n-39) 
n-2 2 -5 [n(n-l)J 112 .105(2n4-4n3+16n2-14n+9) 
n 2 -5 .63(4n5+10n4+40n3+50n2+46n+15) 

n+2 2 -5 
[ (n+l) (n+2)] 112 .105 (2n 4+12n3+40n2+66n+45) 

n+4 -5 [ (n+l) (n+4)]1/2 .30(4n3+30n2+92n+105) 2 .. 
n+6 -5 [ (n+l) (n+6)J 112 .45(n2+7n+14) 2 .. 
n+8 -5 [ (n+l) (n+8)J 112 .5(2n+9) 2 .. 
n+lO -5 [ (n+l) (n+lO)]l/ 2 2 .. 



APPENDIX 2.A2 Perturbation Formulae for a Harmonic Oscillator. 

If a harmonic oscillator is perturbed by small anharmonic terms 

in the potential, then perturbation theory can be used to find the 

approximate correction to the unperturbed energy levels and wavefunc­

tions. The Hamiltonian to be solved in dimensionless units is given 

by: 

H (2 .Al3) 

1 a
2 

+ ~2 l ( - -- is the unperturbed SHO Hamiltonian, and 
2 a~2 

2 3 4 H' = a 0 + a 1 ~ + a2 ~ + a 3 ~ + a 4 ~ 
is the perturbation which is considered small with respect to H . 

0 

From the solution of H
0

, the unperturbed energies and wa vefunc-

tions are respectively: 
1 

En= (n + 2l hv; In> n = 0,1,2.. (2.Al4) 

The explicit form of these wavefunctions have been given in (2.33). 

The approximate energies of the Hamiltonian in (2 .Al 3) can be found 

using second order perturbation theory (see Schiff 1968, pg 247) and 

are given by: 

E 1 2 (hv 1 2 1 
(ao- 2a1l + + a2 - -a ) ( n + -n 2 2 2 

2 15 n2+ 11 ) + 3 2 
- a3 4 n + 35 a4 4 ( 2n + 2n + 1 ) 

2 1 
( 34n3+ 3ln2+ 59n + 21 (2 .AlS) - a4 8 

The corresponding approximate wavefunctions of (2.Al3) are given by: 

<I> 
n 

n+8 
N L 

i=n-8 
c. In>; 

1 
N 2 ] -1/2 L c. 

i 1 
(i > 0) (2 .Al6) 

The expressions for the coefficients c., will be very long and 
l 

cumbersome when there is more than one non-zero perturbation term in 

(2.Al3), because of the cross terms in the second order perturbation 

expressions. For the special cases where only a cubic (a 3) or only a 

(2 .22) 



quartic (a 4) perturbation is present, the_ coefficients are as given in 

table 2. A2. It is these approximate expressions in equations (2 .Al5) 

and (2.A16) that were used in section 2.2.4, and compared with the 

exact results of the variational methods. 

i 

n-6 

n-4 

n-3 

n-2 

n-1 

TABLE 2.A2 The Wavefunction Coefficients 

ci cubic perturbation (a = a 3 ) 

a2 (18. 8) -l (n (n-1) .. (n-5)] 112 

2 -1 1/2 a (4.8) [n(n-1) (n-2) (n-3)] 
_,- -1 1/2 a (3.-v8) [n(n-1) (n-2)] 

a2 (2.8)-l [n(n-1)] 112 

a (1 . ..Ja) -l [nJ 112 

.1 

. (4n-3) 

.1 

(7n2- 19n + 1) 

.3n 

n 1 

n+l 

n+2 

n+3 

n+4 

n+6 

i 

n-8 

n-6 

n-4 

n-2 

n 

n+2 

n+4 

n+6 

n+8 

a (1 . ..Ja)-1 [n+1J 112 

a2 (2.8)-l [(n+l) (n+2)] 1/ 2 

a (3 . ..Ja) -l [ (n+l) (n+2) (n+3)] 112 

a2 (4. 8) -l [ (n+l) . . . (n+4)] l/ 2 

a2 (18. 8) -l [ (n+l) ... (n+6)] 1/2 

c. quartic perturbation (a 
l 

2 -1 (n-7)]1/2 a (32 .16) (n (n-1) .. 
2 -1 (n-5)]1/2 a (24 .16) [n (n-1) .. 
2 -1 (n-3)]1/2 a (16 .16) [n (n-1) .. 

+ a (4.4)-l [n (n-1) .. (n-3)]1/2 

/(8.16)-l [n(n-l)J 112 

+ a (2.4)-l [n(n-l)J 112 

1 

a2 (8.16)-l [(n+l) (n+2)J 112 

+ a (2.4)-l [ (n+l) (n+2)] 112 

2 -1 (n+4)]1/2 a (16 .16) [ (n+l) .. 
+ a (4.4)-l [ (n+l) .. (n+4)]1/2 

2 -1 (n+6)]1/2 a (24 .16) [ (n+l) .. 
2 -1 (n+8)]1/2 a (32 .16) [ (n+l) .. 

(2.23) 

.-(3n+3) 

. (7n2+ 33n + 27) 

.-1 

. (4n + 7) 

.1 

= a ) 
4 

.1 

. (12n-22) 

. ( 32n2 - 132n 

. ( 4n - 2 ) 

.-(4n3+ 2 210n -

.(4n-2) 

3 .-(4n - 2 
166n -

.- ( 4n + 6 ) 

. ( 32n2+ 208n 

.-1 

( 12n + 38 ) 

.1 

+ 112 ) 

214n + 156) 

718n - 600) 

+ 288 ) 



APPENDIX 2.A3 NUMERICAL TEST DATA 

Test data is given here for the exact numerical eigenvalues, mean 

and root mean squared amplitudes for several vibrational levels of an 

anharmonic oscillator. These were calculated by the variational method 

using a basis of 70 SHO functions. The potential energy operator is 

constructed from a sixth order polynomial so that the Hamiltonian is: 

H 
1 a2 6 

- - + L a ~n 
2 a~2 n=O n 

(2 .Al 7) 

The potential coefficients are arbitrarily chosen as those which 

give a least squares fit to the curve given in figure 2.Al. This curve 

is actually a detail from the IR spectrum of Nujol in the hydrogen 

stretch region (see inset of figure 2.Al) which has been arbitrarily 

dimensioned. The source of this curve along with the quality of the 

fit is unimportant, but results in the potential coefficients in table 

2. A3 which, when substituted into (2 .Al 7), gives the numerical test 

data in table 2.A4. 

. .. 

-2 0 2 4 
~ (dimensionless) 

Figure 2 .Al -Arbitrarily dimensioned Nujol IR spectrum. 

--- Least squares fit to a sixth order polynomial. 

(2.24) 



TABLE 2.A3 Potential Coefficients 

n a n 

0 -0.57762 

1 2.30767 

2 0.41713 

3 -0.59221 

4 -0.14409 

5 0.03909 

6 0.01373 

TABLE 2.A4 Numerical Test Data 

Level Energy/hv <~> <~2>1/2 

1 -1.43913 -1. 28371 1. 42782 

2 -0.02976 -1. 21555 1. 64112 

3 1.07495 1. 33027 2.02175 

4 1. 45977 -0.13957 1.97881 

5 2.64788 -0.16042 1.91259 

6 3.78543 0.02445 2.09134 

7 5.09141 -0.11736 2.17380 

8 6.56163 -0.16527 2.23651 

9 8.16156 -0.19448 2.29710 

10 9.88462 -0.21940 2.35160 



CHAPTER 3 WEAK VIBRONIC INTERACTIONS: 

WORKING WITHIN THE ADIABATIC APPROXIMATION. 

This chapter considers weak vibronic coupling which causes the 

electronic part of an adiabatic vibronic wavefunction to vary as a 

function of the nuclear coordinates. The use of adiabatic functions 

greatly simplifies the calculation of vibronic spectra as the transi­

tions will occur between the potential surfaces of only two electronic 

states. This chapter is concerned with the calculation of such 

vibronic spectra within the adiabatic approximation. 

After some introductory concepts relevant to vibronic transitions 

and group theory, the normal modes are divided into those in which the 

transit ion moment depends on the nuclear coordinates and those in 

which it does not. These will be called the coupling and non-coupling 

coordinates respectively. The following sections detail the way that 

the total spectrum can then be calculated using the variational 

method. Also discussed is the alternative approach of a moments 

analysis, where the spectral properties can be found in a convenient 

manner. Analytic formulae are then derived for some properties of 

vibronic spectra within a harmonic approximation. Finally, several 

interesting and unusual effects in vibronic spectra are explored. 

3.1 VIBRONIC TRANSITIONS 

The vibronic spectrum of a non-linear molecule will consist of 

transitions between only two potential surfaces in an n (=3N-6) dimen­

sional hyperspace. In an absorption spectrum a single vibronic 

transition can be denoted by: 

l~gil i2 .. in> ~ l~ejl j2 .. jn> (3.1) 

where ~g' ~e are the ground and excited electronic states and 

i 1 , ... in; j 1, ... jn are the respective quantum numbers of then normal 

vibrations. The energy of this transition will be: 

E~l~2· ·~n = E + E(j 1,j2 .. jn) - E(i1,i2 .. in) (3.2) 
J1J2· ·Jn ° 

where E is the vertical energy separation of the potential surfaces 
0 

and E (i 1 , .. in); E(j 1, .. jn) are the vibrational energy levels within 

(3 .1) 



the potential surfaces of the ground and excited states. The intensity 

of this transition is given by (Roche and Jaffe 1976) : 

I il' i2 .. i I ' ' ' I M (Q) I ' ' ' 12 
, , .n ~ <i112 .. 1 J1J2··Jn> J1,J2··Jn n ge 

(3 .3) 

where Mge (Q) is the electronic transition moment in the electron 

dipole approximation: 

M (Q) = <~ (Q) I eLr I~ (Q)> 
ge g P p e 

(3. 4) 

In any electronic transition there are clearly an enormous number 

of vibronic transitions. For example, in a medium size molecule of six 

atoms, if it is assumed that in each normal mode there will be non­

zero transitions from the lowest vibronic level in the ground state to 

five excited state, vibronic levels, then there will be s12 =2. 4 x 1O 8 

individual vibronic transitions in the spectrum. 

However, a great simplification can be made if it is assumed that 

the normal coordinates are the same in both electronic states. This 

then assumes that there is no rotation of the normal coordinates in 

the excited state (the effects on the vibronic spectrum when this 

occurs is examined in section 3.7.2). The consequence of this assump­

tion is that all terms in the vibronic Hamiltonian that are 

attributable to different normal modes commute with each other. This 

means that the total vibronic spectrum is the convolution of the 

vibrational spectra of each normal mode. 

A proof of this statement has been given by O'Brien (1981; 323-

37). The importance of this statement is that the vibronic spectrum 

can be calculated separately for each normal mode. In the six atom 

example given above, there will still be -2. 4 x 10 8 vibronic t rans i­

t ions in the spectrum, but only 5x12 = 60 transitions need to be 

calculated, the rest follow by convolution (for simplicity all vibra­

tions are considered non-degenerate). By convolution it is meant that 

each vibronic transition in one normal mode acts as a vibronic origin 

for the vibronic spectra of all other normal modes. 

In this approach the electronic transition moment in equation 

( 3. 3) can be expanded about the ground state equilibrium geometry, 

Q=O, in terms of the normal coordinates: 

(3.2) 



Mge (Q) = M(O) + :E (£MaQ(Q) lo + ... 
n ~ n n 

= M (0) + :E M (Q ) 
n n 

(3. 5) 

The cross terms in (3.5) disappear in the absence of the Dushinsky 

effect, and the energy and intensity of the vibronic transition in 

(3.1) are then given respectively as: 

(3. 6) 

These equations then replace (3.2) and (3.3) in the convolution 

approach and represent the deflation of the problem from an 

n-dimensional one to n one-dimensional problems. The first and second 

terms on the right hand side of equation (3. 7) represent the allowed 

and forbidden components of the transition. In equations (3. 6) and 

(3.7) the subscript n, in the sums and products, runs over all the n 

normal coordinates, and k denotes only those that are vibronically 

active (ie Mk (Qk) -:t:. 0) . The part of the electronic transit ion moment 

that does not depend on the nuclear coordinates, M(O), can be taken 

outside of the integral over the vibrational wavefunctions in ( 3. 7) . 

Methods of evaluating these integrals are given in sections 3. 3 and 

3. 4. 

(3. 3) 



3.2 GROUP THEORY 

"Just the ability to describe the syrrunetry of ,a physical object 

may be sufficient reason for many people to learn the rudiments 

of point symmetry groups (eg to amaze ones friends by announcing 

that a tennis ball has n2h point symmetry)." - Flurry (1983) 

3.2.1 Molecular Point Groups and Selection Rules. 

A complete set of syrrunetry operations that takes a molecule into 

itself forms a mathematical group called a molecule point group. Group 

theory can formalise the intuitive use of syrrunetry arguments that are 

of such fundamental importance in chemistry. 

The chemical applications of group theory given in the texts of 

Cotton (1963), Vincent (1977) and Harris and Bertolucci (1978) include 

the formation of spectral selection rules and the construction of 

syrrunetry adapted functions. More advanced applications of group theory 

includ~ the -use of irreducible tensor methods in the s-implification of- ; 

matrix elements (Koning and Kremer 1977; Piepho and Schatz 1983). 

The application of group theory to quantum mechanics depends on 

the fact that the Hamiltonian of a molecule transforms as totally 

symmetric in the point group of the molecule (Cotton 1963, chapter 5; 

Piepho and Schatz 1983, section 8.9). This means that the Hamiltonian 

is invariant to any of the syrrunetry operations of the point group. If 

this was not so, the molecule point group would be lowered by the 

invariant terms in the Hamiltonian until it became so. 

Group theory gives information about integrals such as: 
00 I * 

_
00 

'Va P 'l'b dt = <aJPlb> (3.8) 

The wave functions 'Va' 'l'b and the operator P can form a basis for the 

irreducible representations ra, rb, rp of a particular point group. 

The integral in (3.8) will be non-zero if the direct product of these 

irreducible representations contains the totally symmetric irreducible 

representation of the point group: 

<aJPJb> * o only if ra x rb x rp ~ r + tot.sym. (3. 9) 

(3. 4) 



When the operator is the Hamiltonian of the system then, since H 

is always totally symmetric, the rule in (3.9) reduces to: 

<aJHJb> ~ o only if r x rb ~ rt t + · · a o .sym. 
(3.10) 

This is extremely important as it shows that in a variational calcula­

tion a matrix element can only connect basis functions of the same 

symmetry. It is therefore very desirable to have basis functions that 

are symmetry adapted to the problem being solved. This decreases the 

computational task and has the added advantage of increasing one's 

insight into the problem. 

To form selection rules from equation (3.9), a model must first 

be invented- to describe the system which can then be used to give the 

relevant integrals. The rule expressed by (3. 9) may then be used to 

determine whether these integrals are non-zero, thus forming the 

selection rules. These selection rules often "break down" but this is 

always due to an inadequate model rather than a failure of group 

theory. 

For example, selection rules can be made for the polarisation of 

the transitions between two electronic states of a particular molecule 

in the electric dipole approximation. However, these selection rules 

will be wrong if the intensity of the transition is mainly derived 

from a magnetic dipole mechanism or from vibronic coupling. In this 

case the wrong integrals were considered, rather than group theory 

failing to evaluate them correctly. 

3.2.2 Non-Rigid Molecules: Inversion-Permutation Groups. 

The point group symmetry of molecules refers to the equilibrium 

nuclear geometry of the molecule, and assumes that there are only 

small departures from this configuration. Difficulties arise in the 

case of non-rigid molecules where there can be several equivalent 

configurations separated by energy barriers. Examples of such 

molecules include those with internal rotation (ethane), ring pucker­

ing (eye lopentane) and inversion (ammonia) . The theory of inversion­

permutation groups was developed by Longuet-Higgins (1963) to deal 

with these types of situations. It is noted that dynamic Jahn-Teller 

(3 .5) 



systems are also examples of non-rigid molecules and must be clas­

sified in terms of inversion-permutation symmetry groups (see Bersuker 

and Polinger 1982, pp92-3; also section 4.4.3). 

Ammonia provides a good example of a non-rigid molecule, as there 

are two equivalent minima at a c3v geometry which are separated by a 

barrier of -2000 cm-l at the D
3
h planar configuration (Papousek and 

Aliev 1983, chapter 25). As discussed in section 2.2.5, this sort of 

double minima potential results in near degenerate pairs of vibra­

tional levels below the height of the barrier. The energy s e par at ion 

bet we en these pairs of levels are often referred to as the inversion 

splitting. If the c3v point group was used to calculate the ground 

state vibrational properties of ammonia then this inversion splitting 

would not be predicted. However, if the inversion-permutation group is 

used (which is isomorphic to the D
3

h point group), the inversion 

splittings will be correctly calculated. 

The inversion barrier in phosphine PH
3 

is -11, OOO cm-l and the 

inversion splitting has been calculated to be -lo-16 cm-l (Spirko etal 

1986). This splitting has not been detected experimentally so the 

molecule can be considered as having a rigid c3v geometry with no loss 

of information. However, if an ultra high resolution experiment was 

able to detect these splittings, they would have to be interpreted in 

terms of a D3h permutation-inversion symmetry group (Papousek and 

Aliev 1983, pg244). 

A general criterion for the use of an inversion-permutation group 

of a non-rigid molecule, in preference to a molecular point group of a 

rigid molecule, is when the experimental technique is capable of 

detecting the effects of the quantum mechanical tunnelling between the 

equivalent configurations (ie inversion splittings). This in turn 

depends on whether the tunnelling can occur on the time scale of the 

experiment. [Note: This is a very loose sort of criterion as the 

inversion splitting increases as the vibrational levels approach the 

barrier height, and therefore the probability of tunnelling increases 

(Papousek and Aliev 1983, pg 76) .] 

For example, in a calculation/experiment involving the electronic 

Hamiltonian of a non-rigid molecule the molecular point group of the 

rigid molecule is sufficient to describe the system, as electrons are 

very fast on the time scale of nuclear motions. For vibrational 

calculations/experiments this may not be sufficient, depending on the 

(3. 6) 



barrier height between equivalent geometries, as the time scale of 

vibrations are slower. For isomer separation where the time scale is 

long (of the order minutes), the system should be described by the 

appropriate inversion-permutation group (Flurry 1983, pg 114) . 

When one thinks of the "geometry" of a non-rigid molecule one 

must specify the time scale of the "geometry". In the case of ammonia, 

the geometry along the inversion coordinate at any instant of time is 

given by the c3v point group. However, the time average (or expecta­

tion value, see section 2.2.3) of the geometry will correspond to the 

inversion-permutation group isomorphic to the n3h point group. It is 

therefore often a matter of preference as to how one defines geometry. 

It is important to realise, however, that if one wishes to describe 

ammonia in the c3v point group, the Hamiltonian of the molecule is of 

c
3

v symmetry. This means that NH
3 

will be described by a potential 

surface that has a single minimum at c3v geometry, and the fact that 

it can invert will be completely lost. If one wishes to describe the 

ground state of ammonia as a double minimum potential, the Hamiltonian 

(and therefore mean geometry) is of n3h symmetry. 

3.2.3 Selection Rules for Adiabatic Potential Surfaces. 

Group theory can be used to determine the possible forms of the 

adiabatic potential surfaces along a normal coordinate of particular 

symmetry. Here non-degenerate coordinates are assumed; degenerate 

coordinates are considered in chapter 4. The adiabatic potential 

surf ace along a single normal coordinate is given by (1. 9) : 

Ek (Q) = <'Pkl He(q,Q) l'Pk> 

Ek(QO) + <'Pkl (~~la + 1 (a2v) Q2 + . l'Pk> 2 
aa

2 
o 

1 
ek(Qo) + ukkQ + 2 2 

ukkQ + .. (3 .11) 

where n 
<'P I ! (a"v l l'Pk> (3.12) ukk k n! aan 

The first term gives the energy of the adiabatic potential at the 

equilibrium geometry, and the remaining terms give the shape of the 

(3. 7) 



potential in terms of a power series in the normal coordinate. Group 

theory can now be used to determine which of the coefficients in 

(3.12) are non-zero. Since the Hamiltonian of the system must trans­

form as totally symmetric, this means that each of the u~kQn terms in 

the expansion must also be totally symmetric. This will only be true 

when u~k transforms the same as Qn, ie as [rQ]n. Since the coeffi­

cients (integrals) in (3.12) must themselves transform as totally 

symmetric to be non-zero, this will only be possible when [rQ]n con­

tains the totally symmetric representation: 

n 
ukk * 0 only when [r Jn r + 

Q :::::> t t .. o .sym. 
(3.13) 

If rQ is a
19 

then [rQJn is always totally symmetric and therefore 

all coefficients in the adiabatic potential (3 .11) are allowed to be 

non-zero. However, if rQ is non-totally symmetric only even orders of 

[rQ]n are totally symmetric. Therefore, by group theory, the adiabatic 

potential along a non-totally symmetric coordinate may only be com­

posed of even order terms. 

This immediately means that an excited state potential surface of 

a molecule can only be displaced from the ground state eguilibrium 

geometry along totally symmetric coordinates. This is because a dis­

placement requires a non-zero linear term in the potential (3.11). 

Displacements that have been given to potentials along non-totally 

symmetric coordinates in the literature (for example Ballhausen 1977, 

figure 7) are without question incorrect. 

Perhaps an easier way of stating this is: since the total 

Hamiltonian of the system must transform as totally symmetric in the 

molecular point group, there is nothing in this Hamiltonian that can 

lower the symmetry of the molecule. Therefore there cannot be a dis -

placement along a non-totally symmetric coordinate as this would lower 

the symmetry of the molecule. As will be discussed in deta i 1 in sec­

tion 4.2, this is true even for Jahn-Teller systems. In an ideal Jahn­

Teller system, the quantum mechanical mean geometry is always the high 

symmetry undistorted geometry; it takes terms of low symmetry in the 

Hamiltonian to produce a (static) distortion. 

(3. 8) 



3.3 NON-COUPLING MODES 

A non-coupling normal coordinate of an electronic transition will 

be defined as one where the intensity of the vibronic transitions 

between the potential surfaces does not depenq on the coordinate. The 

electronic transition moment can then be taken outside of the integral 

over these vibrational coordinates in the expression for the intensity 

in equation (3.7). This is often called the Condon approximation 

(Roche and Jaffe 1970). 

The intensity due to a non-coupling coordinate is 

I~ cc M2 . J<iJj>J 2 
J 

then given by: 

(3 .14) 

where M represents either the pure electronic transition moment or the 

induced intensity of a false origin due to a coupling mode. The 

J<ilj>J 2 term is called the Franck-Condon factor, the square of the 

Franck-Condon overlap integral. This determines the intensity dis­

tribution among the vibrational components of the electronic 

transition. The total intensity of the transition is constant and does 

not depend on the ground or excited state potential surfaces nor the 

temperature of the system. The intensity distribution among the vibra­

tional components of the spectrum, however, depends on all of the 

above factors. 

3.3.1 Selection Rules for the Vibrational Fine Structure. 

Since the electronic transition moment in (3.14) does not depend 

on the nuclear coordinates, the electric dipole selection rules for 

the electronic transition depends only on the electronic states. The 

selection rules can be easily found from (3.9) using the symmetry of 

the ground and excited wavefunctions and the electric dipole moment. 

Examples of such calculations are found in the texts of Harris and 

Bertolucci (1978, section 5-4) and Lever (1984, section 4.2). What is 

of interest in this section is the selection rules for the individual 

vibronic transitions that make up the vibrational fine structure of 

the electronic transition. 

In section 3.2.3 it was shown that only totally symmetric modes 

may have displaced potentials. This fact can now be used to determine 

(3. 9) 



the form of the wavefunctions. From appendix 2.Al it can be seen that 

the matrix elements of powers of a normal coordinate can only connect 

simple harmonic oscillator basis functions of the same parity 

(evenness or oddness) . Therefore, if the wavefunctions are expanded in 

a SHO basis in a variational calculation, they can be a linear com­

bination of any SHO basis functions for a totally symmetric potential. 

In a non-totally symmetric potential however, odd numbered vibronic 

states will be a linear combination of odd SHO basis functions, and 

even states will be a combination of even functions. From their ex­

plicit form in equation (2.36), a SHO wavefunction with an even 

quantum number will be an even function of the coordinates, while 

those with odd quantum numbers will be an odd function of the coor­

dinates. Since any integral of an odd function will be zero, a Franck­

Condon overlap integral will only be non-zero between two even 

wavefunctions or two odd wavefunctions. This leads to the following 

selection rules (Herzberg 1966, pp151-2): 

~n = 0, ±1, ±2, . . (Q: TS) (3 .15) 

for transitions between potentials of a totally symmetric coordinate, 

and ~ = O, ±2, ±4, . . (Q: non-TS) (3 .16) 

for transitions between potentials of a non-totally symmetric coor­

dinate. These selection rules are completely general, and do not 

assume harmonic potentials. They are based on the following line of 

reasoning: 

Symmetry of Q ~ Possible dependence of the potential on Q. 

~ Possible dependence of the wavefunctions on Q. 

~ Selection rules for the Franck-Condon overlaps. 

An alternative approach is to consider the symmetry of the 

wavefunctions directly. The Franck-Condon integral, <i I j>, will be 

non-zero if the direct product, r.x r., contains the totally symmetric 
J. J 

irreducible representation. The lowest vibrational level of each 

electronic state (i=O, or j=O) will transform, or have the same sym­

metry, as the normal coordinate. The symmetry of the higher 

vibrational levels can be obtained from direct products. These will be 

totally symmetric for even quantum numbers, and have the same symmetry 

as the lowest state for odd quantum numbers. These are the same con­

siderations that are used to determine the symmetry species of 

vibrational overtone levels (WDC, section 7 .3). Finding the symmetry 

(3.10) 



of higher levels of degenerate vibrations is more complex, but may be 

found using the formula of WDC (pg153, equation 13). The direct 

product of the irreducible representations of the ground and excited 

vibronic states gives the symmetry of the Franck-Condon overlap in­

tegral. This will be non-zero only when it transforms as totally 

symmetric and the same selection rules as given by equations (3.15) 

and (3.16) result. 

Figures 3.1-3.4 illustrate these selection rules for transitions 

from the lowest level of a harmonic ground state to the various dif­

ferent excited state potential surfaces given in the figure captions. 

Several vibrational probability functions are also shown with the 

potentials. The spectra have been calculated with the methods given in 

section 3.5, and the ground and excited state potentials have been 

chosen so that the energy separation of their minima is the same in 

all cases. 

Figure 3 .1 shows identical ground and excited state potential 

surfaces which results in a spectrum that consists of the single 

ng=O ~ ne=O transition which is called the electronic origin. Figure 

3.2 shows a typical cross section of a potential surface along a 

tot a 11 y symmetric coordinate. The potential is displaced due to the 

odd linear term in the potential. The selection rule in equation 

(3 .15) is operating, although the vibrational "progression" is finite 

in length. The higher members of the progression, while group 

theoretically non-zero, are calculated to have a vanishingly small 

intensity. 

Figure 3.3 shows a typical cross section of the potential along a 

non-totally symmetric coordinate. The excited state potential is 

harmonic and undisplaced with respect to the ground state, but with 

a harmonic frequency that is half that of the ground state. He re, a 

very short progression in two quanta of the non-totally symmetric mode 

is seen, following the selection rule in (3.16). Calculations show 

that for harmonic potentials, even when the excited state frequency is 

half that of the ground state, the dn = 0 origin contains - 95% of the 

intensity (Herzberg 1966, pp152-3). 

Figure 3.4 shows a double minima excited state potential surface, 

which again has a progression in two quanta. However, this spectrum 

has more in common with the intensity pattern of figure 3.2 than 

(3 .11) 
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figure 3.3. This is because the vibrational levels below the barrier 

occur in symmetric/antisymmetric pairs which are separated by a small 

"inversion" splitting. The energy separation of these pairs is ap­

proximately harmonic and is typical of a displaced parabola as in 

figure 3.2. The spectral lines with intensity in figure 3.4 are the 

transitions to the symmetric wavefunctions, which are the lower of the 

pair. Transitions from the symmetric ground state to the antisymmetric 

excited states are calculated to be zero, as required by group theory. 

The temperature dependence of the above spectra is .shown in 

figure 3.5. Although the overall intensity of the transitions does not 

vary, the intensity distribution within the different vibrational 

components can be temperature dependent. The mean energy of the tran­

sitions change if the ground and excited states do not have the same 

harmonic frequency (figures 3.5c,d); and the mean halfwidth will also 

change if the potentials are not identical in the ground and excited 

states (figures 3.5b,c,d). 

3.3.2 Franck-Condon Analysis. 

A Franck-Condon analysis derives the displacement of the excited 

state potential from the observed spectrum. This can be done by fit­

ting the experimental intensities of the vibrational components in the 

Franck-Condon progression to those values calculated by varying the 

displacement of the potential surfaces. The displacement of the ex­

cited state potential surface with respect to the ground state can be 

related to the change of geometry that occurs in the molecule when it 

is electronicly excited. One of the first quantitative calculations of 

this sort was performed by Craig (1950) on the 1A1g-+ 1B2u absorption 

spectrum of benzene, where it was found that in this transition the C­

C bond lengths all expand by 3.7pm. 

The Franck-Condon overlap integrals necessary for such a calcula­

tion can be evaluated by the variational method to be discussed in 

section 3. 5. However, if the potential surfaces are assumed to be 

harmonic (but may be both displaced and have different frequencies), 

then a recursion formula is available to evaluate these integrals. For 

transitions from the lowest vibrational level in the ground state to 

the nth vibrational level of the excited state, the overlaps are given 

by (Henderson etal 1964a) : 

(3.12) 
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<0 ln+l> -2oD<Oln> - (2n) 112 (o2-l)<Oln-1> 

(o2+1) [2(n+l)] 112 
(3.17) 

( 
20 )

12 
2 

2 exp(-0.5p ), 
(l+o ) 

where <0 I 0> 

0 = ~~r/2 hv ' e 
p DI (l+o2) 1/2' D 

Here ~S refers to the change in a symmetry coordinate (in pm), 

and M is the inverse of the G matrix element appropriate to this 

symmetry coordinate (in amu) (Moule 1977, eq32; Yersin etal 1980). 

This expression is defined for absorption; for emission, hv and hv g e 
should be interchanged in the expression for o, and hv should be g 
replaced by h v in the expression for D (~~) . This is because the e 
displacement of the final state potential surf ace is measured from the 

initial equilibrium geometry. The displacement is always measured in 

this way because the kinetic energy in the problem is assumed to be 

unchanged from its value in the initial state. This is the basic 

premise of the Franck-Condon approximation: the potential surface 

changes before the (kinetic energy of the) vibrations have "realised" 

what has happened. An excellent discussion of this point has bee_n 

given by Mulliken (1971) . 

This general problem of solving overlap integrals between the 

wavefunctions of harmonic oscillators with different frequencies 

centred at different equilibrium geometries was solved as early as 

1930 by Hutchisson. The recursive formula of (3.17) was later derived 

by Ansbacher (1959). This equation has been "rediscovered" quite 

regularly since then (see Waldenstrom and Naqvi 1982 and 22 references 

within) and frequent misprints in the literature (ie Yersin etal 1980; 

Lever 1984, pg181) have caused some confusion. For this reason equa­

tion (3.17) has been tested very thoroughly. Table 3 .1 gives sample 

overlaps calculated in 4 different ways, for the parameters o = 1.1, D 

= 1.0. These parameters can be dimensioned in the manner to be given 

in section 3. 5. For example, in the case of the a1 mode of 2-
CuCl4 

-1 g 
with a ground state frequency of 275 cm , they correspond to an 

excited state potential 

displaced by 5 .. 8815 pm. 

with a frequency of 227.2727 cm-l that is 

( 3 .13) 



Table 3.1 Test data D=l.O, o=l.1 

n I II III IV 

0 0.7957168 0.79572 0.7957168 -0.79572 
1 -0.5601108 -0. 56011 -0.5601108 -0. 56011 
2 0.2253231 0.22532 0.2253231 -0.22532 
3 -0.0481150 -0. 048115 -0.0481150 0. 04811 
4 0.0016081 0.0016080 0.0016080 0.00161 
5 -0.0045955 -0.0045955 -0.0045955 -0.00460 
6 0. 0011811 0. 0011811 0. 0011811 0.00118 
7 -0.0000900 -0.0000900 -0.0000901 0.00009 

The data in column I of table 3.1 was obtained from the recursive 

relation (3.17). The figures in column II were taken from the tables 

of Henderson et al (1964b, pg74). Column III was calculated from the 

explicit formula for the overlaps (Waldenstrom ~nd Naqvi 1982), which 

in the present notation are: 

(o > 1) (3.18a) 

<Oln> (3 .18b) 

Here H (x) is the nth Hermite polynomial, l is N., and all other n 
quantities are as previously defined. The figures in column IV are the 

results of a variational calculation. [Note: the sign of the overlaps 

are not correctly reproduced because the eigenvectors obtained from a 

matrix diagonalisation are unique only within a sign change. In prac­

tise this causes no problems, as only the square of the overlap is 

ever needed.] 

A useful simplification can be achieved if it is assumed that the 

ground and excited state frequencies are the same. Equation (3.17) 

then reduces to: 

<Olj> _ D2n 
<0 I O> - 2nn! 

(3 .19) 

where the quantities are as previously defined. In most cases equation 

(3.19) can be used instead of (3.17), as the difference in the fre-

quencies will have only a small effect on the intensity distribution. 

(3 .14) 



3.4 COUPLING MODES 

For forbidden electronic transitions, the Condon approximation of 

the previous section becomes invalid and the intensity gained through 

vibronic coupling causes the electronic transition moment to be de­

pendent on the nuclear geometry, and therefore temperature, of the 

system. The normal modes where this occurs will be called coupling 

modes and the form of this dependence is investigated in this section. 

3.4.1 Herzberg-Teller Theory. 

Vibronic coupling is usually derived in the Herzberg-Teller 

approach (Albrecht 1960). This treats the nuclear motion as a pertur~ 

bation using the electronic wavefunctions appropriate to the 

equilibrium nuclear geometry (see section 1.2): 

I 'Po> + L. (Q) I 'Po> g cgs s 
s:tg 

l'I'~> + L. cet(Q) l'I'~> 
t:te 

(3. 20) 

where l'I' (Q)>, 
g 

l'I'e(Q)> refer to the ground and excited state 

electronic wavefunctions respectively, and l'I'0 >, l'I'0 > are the solu-g e 
tions to the Hamiltonian H~ in the crude adiabatic approximation of 

equation (1.19). From first order perturbation theory, the coeffi-

cients c(Q) are: 

cgs(Q) = 
<'¥

0 I H' I '¥0 > g s 
(E - E ) ' s g 

cet(Q) = 

the integrals being over electronic coordinates only, and 

H' H - H~ = L. (~~ l Qa + L. (~~H oQ ) Qa Qb + 
a ak a,b a b o 

(3. 21) 

(3. 22) 

In general the inducing coordinate, Q, can be of any symmetry 

although here only non-totally symmetric modes are considered. This is 

because the vibronic coupling in transition metal complexes is usually 

most apparent in the symmetry forbidden transitions of centrosymmetric 

complexes. The excited ligand field states are coupled to higher 

electronic states of ungerade symmetry (usually charge transfer 

(3.15) 



states) by vibrations of ungerade (therefore non-T S) symmetry. The 

effects of vibronic coupling via totally symmetric vibrations has been 

observed by Craig and Small (1969). 

In the present case then, the quadratic terms of the form Q2 in 

(3.22) will be zero, as this term will only couple electronic states 

which have the same symmetry as the zeroth order wavefunctions 11¥0> 
g 

and 11¥0>. Cross terms of the form Q Qb can be non-zero if two dif-e a 
ferent vibrations of the same symmetry are coupled to the same 

electronic state. This results in a Dushinsky rotation whi_ch will be 

considered in section 3.7. In what follows only the linear terms of 

(3.22) are kept and the transition moment is then given by: 

M (Q) = <1¥0 ieLri1¥0> + ge g e 

+ L c (Q)<1¥0 1eLri1¥0> 
s gs s e 

L c t(Q)<1¥0 ieLrl1¥~> 
t e g 

+ L c (Q)c t(Q)<1¥
0

1eLrl1¥t
0

> gs e s s,t 
(3. 23) 

For strictly forbidden transitions the first term is zero. For 

the remaining terms, consideration of the energy denominator of the 

co e ff i c i en t s ( 3 . 21) shows that the second term will be the largest, 

and usually the following two are set to zero. However, as pointed out 

by Orlandi and Siebrand (1973), the size of the coefficients c (Q) gs 
depends on the matrix element as well as the energy difference. 

Vibronic calculations by Ziegler and Albrecht (1974) on benzene show 

that vibronic coupling in the ground state gives small but significant 

contributions to the transition moment. This may even be more impor-

2- -1 tant for a metal complex such as Cucl 4 where (Et-Ee) - 15, OOO cm 
-1 -1 and (E -E ) - 30, OOO cm ; whereas for benzene (Et-E ) - 10, OOO cm s g 1 e 

and (E -E ) - 50,000 cm- . If a particular transition is vibronically s g 
allowed by a single vibration (from group theory arguments) along a 

particular coordinate Qk' then (3.23) becomes: 

(3. 24) 

<1¥0 I ( oH) I 1¥0> <1¥0 I ( oH) I 1¥0> 
where c = L e aQ 0 t <1¥~leI:rl1¥~> + L 9 ao o s 

<1¥
0

ieI:ri1¥0> 1 t:;t:e (Et - Ee) s:;t:g (E - E ) s e s g 

<1¥0 1 ( aH) I 1¥0> <'Pol (aH) l'l'o> 
and c = L e aQ 0 t L 9 aQ o s <'l'~leLrl'l'~> 2 (Et- Ee) (E - E ) 

t:;t:e S:;t:g s g 

(3 .16) 



Here the normal coordinate Qk has been taken out of the integral 

over electronic coordinates in (3.22). If mixing into the ground state 

is ignored, then c2 and the second term of c1 are zero and the us u a 1 

case of a linear dependence of the transition moment on Q is 

recovered. 

The vibronic calculation of Ziegler and Albrecht (1974) on ben­

zene has shown that a linear dependence of (3.24) holds fairly well 

for at least two root-mean-squared displacements of the inducing 

coordinate. It is usual in the study of centrosymmetric transition 

metal complexes to set the quadratic term in (3.24) to zero as the 

coefficient "steals" intensity from a charge transfer to charge trans­

fer type transit ion which is a 1 so parity forbidden like the d-d 

transitions. However, as will be discussed in appendix 9. A3, semi­

empir ical intensity calculations suggest that such a contribution can 

be important for low frequency, large amplitude coupling vibrations. 

In this case the molecule can be viewed as having a static distortion 

at the RMS amplitude of this coordinate. 

Fin a 11 y it is noted that the whole Herzberg-Teller approach has 

been recently criticized since it neglects coupling by nuclear momenta 

due to the breakdown of the adiabatic approximation (Orlandi and 

Siebrand 1972, 1973, Orlandi 1973) . Since the relative contribution of 

this effect is roughly of the order hv/ (Et - Ee), the Herzberg-Teller 

theory described here is for weakly coupled electronic states that are. 

well separated in energy. For degenerate or near degenerate electronic 

states the kinetic energy operator must be included on a par with the 

potential energy terms in a variational calculation on a vibronic 

basis. This approach will be described in chapter 4. 

3.4.2 Vibronic Selection Rules. 

Vibronic selection rules are important in centrosyrnrnetric transi­

tion metal complexes where the spectrum is electric dipole forbidden, 

as all the intensity comes from the "false" or vibronic origins of the 

coupling modes. These selection rules can be obtained from the in­

tegrals in the coefficients of equation (3.24). If only the vibronic 

coupling in the excited state is considered, then the conditions for 

these coefficients to be non-zero are found by using (3.9): 

(3.17) 



(3.25) 

(3 .26) 

where r , r , rt, rQ, r are the irreducible representations of 
g e r 

respectively the ground, excited and "lending" electronic states, the 

coupling mode and the electronic vector of the incident light. 

Equation (3.25) represents the coupling of the excited state to a 

"lending" state and (3 .26) determines whether this lending state is 

itself allowed in r polarisation. As implied by (3 .2 6) the vibronic 

origin then takes on the polarisation properties of the lending state. 

If the symmetry of these intermediate lending states is not of 

interest, then (3.25) and (3.26) can be combined to give: 

(3.27) 

It should be borne in mind when using (3.27) as a vibronic selec­

tion rule, that it is a necessary but not sufficient condition for 

vibronic intensity to occur. In particular it assumes that the inter­

mediate states 'Pt of the appropriate symmetry exist, and that the 

integrals as expressed in (3.25) and (3.26), while group theoretically 

non-zero, are of non-vanishing magnitude. It can also be noted that 

ground state vibronic coupling will give exactly the same overall 

selection rule (3.27). However the intermediate states '¥ s may be 

different to those found to mix with the excited state; in equations 

(3.25), (3.26) r
8 

would replace rt and rg and re would be exchanged. 

3.4.3 Vibrational Fine Structure and Temperature Dependence. 

For coupling modes, the electronic transition moment cannot be 

factored out of the integration over nuclear coordinates as in the 

Condon approximation (3.14). The part that is a function of Q must 

remain inside the integral over the vibrational wavefunctions. The 

intensity of such a forbidden electronic transition, where only the 

linear terms in (3.24) are kept, is given by: 
i 2 

I. oc l<ilMge(Q) lj>I 

J oc c~. I <i IQ I j> 12 
(3 .28) 

(3 .18) 



Here, instead of the square of a Franck-Condon overlap as in 

( 3 . 14) , the intensity is proportional to the square of <i IQ I j> which 

will be called the inducing overlap. There are other approaches such 

as the r-centroid method of Noda and Zare (1982) where the Franck­

Condon overlap can be kept for a forbidden (or non-Condon) transition, 

but this will not be introduced to avoid the confusion of additional 

terminologies. 

If Q is a non-totally symmetric coordinate then, since <ilQlj> 

must transform as totally symmetric to be non-zero, the irreducible 
'+' representation of <ilj> [rQ] 1 J must transform as rQ. Using the same 

arguments as in section 3.3.2, this condition is fulfilled when the 

difference (or sum) of the vibrational quantum numbers (An = j-i) in 

the transition is odd. The selection rules for individual vibronic 

transitions is then as given by Herzberg (1966, pgl76): 

<ilQlj> -:t:. 0 if An= ±1,±3,±5, . . (Q: non-TS) (3. 29) 

As shown in the previous section, the non-totally symmetric 

potentials are required to be undisplaced, and for harmonic type 

potentials this results in a very short vibrational progression. The 

most prominent by far will be the An = ±1 transitions. This becomes 

exact if the ground and excited state potentials are harmonic with the 

same frequency, as is easily seen by considering the non-zero harmonic 

oscillator matrix elements of <i!Qlj> in table 2.Al. 

In the unusual situation where a totally symmetric mode is induc­

ing intensity , the condition [r Q] i+j = r Q is always met. The 

selection rules for individual vibronic transitions is then: 

<i!Qlj> -:t:. zero if An 0, ±1, ±2, . . (Q: TS) (3.30) 

As noted by Roche and Jaffe (1976, pgl 77) a totally symmetric 

mode can only induce intensity when the transition is already partly 

allowed. The reasoning is as follows. If the transition is symmetry 

forbidden then the intensity of the transition is zero at the equi­

librium geometry (Mge(O) = 0). Since a totally symmetric mode does not 

change the symmetry of a molecule, it follows that M (Q} will be zero ge 
for any value of Q. 

(3 .19) 



It is therefore impossible for totally symmetric vibrations to 

contribute intensity in the symmetry forbidden transitions of 

centrosymmetric metal complexes. This also follows from the vibronic 

selection rule in (3.27). The electronic "d" states aremade of 

molecular orbitals that are even functions, so r, r are gerade. The 
g e 

symmetry of the electric field vector will always be ungerade because 

it is odd with respect to the inversion symmetry element. This means 

that the symmetry of the coupling vibration, rQ' must also be ungerade 

to fulfill the conditions in (3.27) and so rQ cannot be totally sym­

metric. 

Figure 3.6 illustrates the temperature dependent spectra calcu­

lated for transitions between the same potentials as that given in 

figures 3.1 to 3.4. The only difference between this and figure 3.5 is 

that Q is now considered a coupling coordinate. It is assumed that the 

electronic transition is forbidden at the equilibrium nuclear geometry 

and the electronic transition moment depends linearly on Q. The inten­

sity of each vibronic transition is given by (3.28) rather than 

(3 .14) . 

These spectra can be directly compared to those in figure 3. 5, 

the main difference between these allowed and forbidden spectra being 

the large increase in the intensity with temperature in the latter 

case. This is because the electronic moment depends on the nuclear 

coordinates, making the intensity dependent on the population of the 

ground state vibrational levels (see section 3.6). In addition, the 

most intense vibronic transition in the spectra of figure 3. 6 is not 

the vertical transition as in figure 3.5, since this is at the 

geometry where the transition is forbidden. Instead, the most intense 

vibronic lines occur in the wings of the spectrum, and a "hole" in 

the spectrum appears at this vertical transition. When this vertical 

transition is missing, it is often called a "non-Condon" effect 

(Herzberg 1966, ppl72-3; Hennecker etal 1979). 

It should be noted that the spectra shown in figure 3.6 would not 

be observed in practice, as each of the vibronic lines in these 

spectra would act as vibronic origins for a totally symmetric progres­

sion of the molecule. In addition, the hypothetical spectrum shown in 

figure 3. 6b could not possibly occur, as this spectrum is due to a 

totally symmetric coordinate which cannot be rigorously forbidden at 

the equilibrium nuclear geometry, for the reasons given above. 

(3 .20) 



t 
>­
~ 
Ul 
c 
Cl> ..... 
c ......... 

."!:::: 
Ul 
c 
Cl> ..... 
c ......... 

a) 

c) 

-10 

b) 

d) 

-5 0 5 10 -10 ... 5 0 5 10 

Energy I h\J Energy I hv 

Figure 3.6 The temperature dependence of the vibronically induced spectra 

with the potentials taken from figures 3.1-4 shown in a) - d) respectively. 

The temperatures are 0, 100, 200, 300 K from bottem to top. 



3.5 NUMERICAL SIMULATION OF THE TOTAL SPECTRUM 

"Well," said Owl, "the customary procedure 

in such cases is as follows." 

"What does Crustimoney Proseedcake mean?" 

said Pooh. "For I am a Bear of Very Little 

Brain, and long words Bother me." -A.A.Milne 

To find the position and intensity of vibronic transitions be­

t we en two adiabatic potential surfaces, the energy and wavefunctions 

of the vibrational levels within each potential must be calculated. 

This is most easily done within a variational calculation {section 

2.1.2), and this approach has been described in detail by Lohr (1970). 

The Hamiltonian of the one dimensional adiabatic potential surfaces 

considered in this thesis can be expressed in the general form: 

1 a2 6 2 
2 

+ L a Sp +A exp{-Bs ) 
as2 p=o P 

(3. 31) 

s is a d i mensionless coordinate which can be related to the 

symmetry or normal coordinates by equation (2.35). The vibrational 

Hamiltonian in (3.31) is in units of the harmonic frequency of the 

b a sis f u nctio n s . Whe n it c a n be e xp r esse d in terms of t h e s ymmetry c oor-

dinates, the Hamiltonian in (3.31) becomes {see equation 2.35 for the 

definition of x) : 

H(S) 1 hv a2 6 2 2 ~ + 1 hv xPa sP + hv A exp(-hvx BS ) 
2 ~2 as2 p=O P 

(3.32) 

However, in all variational calculations in this thesis, the 

dimensionless form of (3.31) is used. This is the customary procedure 

in the literature and is more straightforward than to especially 

dimension the Hamiltonian of each normal coordinate before the cal­

culation. Any dimensioned quantity that is desired (ie root-mean­

square geometry, excited state displacement) can be found by using 

equation (2.35) after the calcul ation. 

To f ind the energy levels and wavefunctions of th e vi b r ational 

levels in the ground and excited states, the wavefunctions of both 

(3.21) 



states are expanded as a linear combination of the same N harmonic 

oscillator basis functions: 

N 
Ii> IJ'> :r. "' cnj"'n 

n=O 
(3. 33) 

The matrix elements of the kinetic and potential energy operators 

of (3.31) can be evaluated by the formulae given in appendix 2.Al in a 

harmonic basis that is centred at the ground state equilibrium nuclear 

geometry. As discussed in section 3. 3. 2, this is done because it is 

absorption spectra that are of interest and the kinetic energy 

operator retains the ground state value in the excited state. For an 

emission spectrum the wavefunctions would be expanded in terms of SHO 

basis functions centred at the excited state equilibrium geometry. 

The secular equations are diagonalised by standard techniques 

(Smith etal 1976) resulting in N energy levels in (non-integral) units 

of hv, and N columns of the coefficients en of (3.33) in the eigenvec­

tor matrix. The basis size should in principle be infinite but is 

truncated to N and, as previously discussed in section 2.2, care must 

be taken that N is large enough to properly converge all the wavefunc­

t ions that are of interest. The calculation is performed separately 

for both ground and excited states and, since their wavefunctions were 

expanded in the same basis, the overlaps necessary for the calculation 

of the intensities are given by: 

<ii j> 

<il~lj> 

N 
L c .c . 

n=O n1 nJ 

N 
L (n/2) 112 [ c .c 1 .+ c 1 .c · 

n=l n1 n- J n- i nJ 

N 
L 

n=2 

(3. 34) 

(3. 35) 

(3. 36) 

A similar calculation can be performed for all normal modes, and 

then the spectrum is convoluted. As described previously, this in­

volves calculating a huge number of transitions as each vibronic line 

between potentials of one normal coordinate serves as an orig in for 

(3.22) 



all other normal coordinates. In practice the ground and excited state 

potentials of most normal coordinates are similar and their spectra 

wi 11 consist of a sing le line as shown in figure 3 .1. Therefore, 

usually the spectra due to only one or two normal modes need be con -

sidered in simulating the complete spectrum. 

The intensity of a single vibronic transition for a particular 

dimensionless coordinate ~n is given by: 

(3. 37) 

The convoluted spectra due to all n (=3N-6) normal modes for a single 

vibronic transition is then given by: 

The energy factor ~ is the energy of the transition: 

E
0
+ L (E(jn)- E(in)) 

n 

(3. 38) 

(3. 39) 

and E
0 

is the pure electronic transition energy. Equations (3.37) and 

(3.39) are defined for absorption; the energy factor must be raised to 

the fourth power for emission (Yersin etal 1980). The temperature 

factor, which gives the fractional Boltzmann population of the ground 

state level Ii> of energy E(i ), is: n n 

P~(T) = exp(-E(in)/kT) I~ exp(-E(in)/kT) 
l 

(3.40) 

It is defined such that L P~(T) 1.0 for all n and T. The electronic 
i l 

transition moment in (3.38) is expressed in terms of dimensionless 

coordinates and the total transition moment can be found by using 

equations (3.34)-(3.36). 

There is no need to convert the electronic transition moment back 

to dimensioned form of (3 .24) as only the relative, not absolute, 

intensities are of interest. It is customary to normalise the total 

spectrum at zero Kelvin to unity (Lohr 1970) . It then suffices to know 

the ratio of allowed to forbidden character, or the the ratio of first 

(3.23) 



to second order dependence of the transition moment rather than the 

absolute value of the coefficients in (3.24). 

Having the energy and intensity of all vibronic transitions in 

the spectrum, it is now possible to construct the total spectrum in 

the form of a stick diagram. However, in a real spectrum the vibronic 

lines have finite width which can be simulated by giving each transi­

tion a Gaussian lineshape. The source of these finite linewidths need 

not concern us here. A Gaussian can be fully characterised by an 

intensity, I, position, P, and halfwidth, HWHH, of the vibronic line. 

These three parameters correspond to the integrated area, the peak, 

and the half width at half height of the Gaussian. Whenever a 

halfwidth is referred to in this thesis, it refers to this half width 

at half height. The Gaussian line shape as a function of the energy E 

in terms of the above parameters is given by (A&S equation 26.2.9): 

G(E) I 
HWHH (

ln2 ]112 [ (E-P J ] 1t ) exp - HWHH ln2 (3. 41) 

The lineshape in (3.41) is calculated for all transitions in the 

convoluted spectrum and summed to give the total spectra shown in 

figures 3.1-6. It is interesting to notice that, while it is assumed 

that the halfwidth of the individual transitions are temperature 

independent (this is certainly an oversimplification), the resolution 

of the spectra decreases with increasing temperature, as is observed 

experimentally. This i11 r.1rnsed by the congestion of the enormous 

number of spectral lines present at higher temperatures. 

(3 .24) 



3.6 MOMENTS ANALYSIS 

The simulation of vibronic spectra outlined in the previous 

section is a straightforward task for a computer. These calculated 

spectra can then be fitted to the experimental spectrum by varying 

the adiabatic potential surfaces. If a unique set of potential sur­

faces are found, then this allows one to draw conclusions about the 

geometry, bonding and electronic properties of the particular 

electronic states involved. 

However, while thousands of vibronic transitions may be calcu­

lated to high accuracy, often the experimental spectrum may be quite 

featureless. In this case, ·the structure of the calculated spectrum 

can be either deliberately "washed out" by adding a large halfwidth to 

each vibronic transition, or else a moments analysis can be done. The 

zero, first, second, ... moments of a spectrum can be related to the 

bulk spectral properties of intensity, mean energy, mean halfwidth, ... 

respectively. 

This is very useful because, as noted by O'Brien (1981, pg 332), 

"Given a complicated spectrum in which many modes of vibration are 

involved, it is always difficult and frequently impossible to make an 

unambiguous fit to a set of phonon frequencies and coupling strengths, 

but it is often possible to extract the first few moments of the 

spectrum from the experimental data, and they can then be used as a 

set of parameters to which any theoretical fit must conform." A mo­

ments analysis is then a useful bridge between theory and experiment 

in much the same manner as the spin Hamiltonian used in the study of 

ESR spectroscopy. 

3.6.1 The Intensity, Mean Energy and Mean Halfwidth. 

If f (E) is a function describing a lineshape such as a spectrum, 

then the mth moment is defined as (A&S, pg 928): 

µ = I Emf(E) dE (3.42) 
m 

The intensity I, mean energy E, and the variance cr2 , are related to 

the moments in the following manner (Kubo and Toyozawa 1955; Markham 

1959; Prassides and Day 1984): 

(3.25) 



I = µ 0 
E = µ I 

2 1 
cr = µ2/ 

(3.43) 

(3. 44) 

(3.45) 

For a Gaussian distribution, the halfwidth (HWHH) is related to 

the variance by: 

H = (2ln2) 112cr (3.46) 

Higher order properties such as the skewness, kurtosis, etc of a 

spectrum can be related to the higher moments (Lohr 1970) . 

The moments of a continuous experimental spectrum can be ex­

tracted by numerical integration, but for a disco n tin u o us 

distribution, such as is calculated theoretically, the moments are 

given by: 

µ =I: f.(E).(E.)m (3.47) 
m i l i 

Equation ( 3 • 4 7) can then be used to determine the properties in 

(3. 43) - (3. 46) from a calculated spectrum represented by equations 

(3.38) and (3.39). The summation in (3.47) will be over all vibronic 

transitions and therefore is over all quantum numbers of all normal 

coordinates. 

If k of the m normal coordinates are responsible for inducing 

intensity and the electronic transition moment is separated into 

allowed and forbidden parts, then the expression for the total inten­

sity becomes: 

ITOT(T) oc M(O) IT I: P~(T) I: l<i lj >1 2 
, l . n n 

n in Jn 

oc M(O) rr I (T) + L Ik(T). rr I (T) 
n n k n*k n 

oc A + I: Ik (T) 
k 

(3. 48) 

Here A is the temperature independent part of the intensity due to the 

allowed component of the spectrum. In(T) and Ik(T) correspond to the 

contribution from the non-coupling and coupling modes respectively: 

(3. 26) 



:I: p~ (T) :I: I <in I jn> 1
2 

i l 
jn n 

(3. 49) 

:I: p~ (T) ~ l<iklMk(~k) ljk>i
2 

ik 
l 

Jk 

(3. 50) 

The intensity due to the non-inducing modes, In (T), contributes 

nothing to the temperature dependence of the intensity as, by the 

orthonormal properties of the wavefunctions, equation (3.49) will be 

summed to 1.0. However, it is very important to include these terms in 

the expressions for the mean energy and halfwidth below. The expres­

sion for the total intensity given in (3. 48) is normalised to 1. 0 at 

zero Kelvin: 

A+ :I: Ik(T=O) = 1.0 
k 

(3. 51) 

The mean energy (which will also be the maximum of the spectrum 

if the total spectrum is symmetric, such as a Gaussian) is given by 

(Markham 1959) : 

E (T) 

I (T) .1E 
where E _m __ _ 

m Im (T) 

between the states ljm> 

halfwidth (HWHH) is: 

(3.52) 

and .1E = E(j ) - E(i ) is the energy difference 
m m 

and Ii >. The analogous relationship for the m 

H (T) = H 1 + H2 + H3 + .. (3. 53) 

[ 2ln2 
I (T) (.1E - E ) 2 

]1/2 where H m m 
= m 

Im (T) 

Em is given by (3.52) above and the Im(T) terms are given by 

either (3.50) if the mode is "active" (m=k), or (3.49) if it is not 

(m=n). However, it is should be pointed out that in general the 

spectra due to the inducing modes will be non-Gaussian. The expression 

for the halfwidth in (3.53) is only valid for Gaussian distributions, 

and the contribution due to the inducing modes will usually be overes­

timated. 

It is very important to realise that the terms subscripted i,j in 

(3.52) and (3.53) are to be included in the summation over i and j in 

(3. 27) 



equations (3. 49) or (3.50). It can be seen that the denominators of 

these equations will be equal to unity if the mode is "inactive" 

(m:;t:k) . 

While (3.48) only gives the relative intensity, equations (3.52) 

and ( 3. 5 3) give the absolute mean energy and halfwidth respectively. 

The problem remains to evaluate the overlaps in (3. 4 9) , ( 3. 5 0) . This 

can be done either by the variational methods of section 3.5 using 

equations (3.34)-(3.36), or by analytic formulae that are valid if the 

adiabatic potentials are restricted to certain forms. 

3.6.2 Some Analytic Formulae. 

Analytic formulae for the temperature dependence of the inten­

sity, band shift and halfwidth of symmetry forbidden transitions are 

given in this section. The details of their derivation are given in 

appendix 3.A2. The normal modes in this section are subscripted "k" if 

they are coupling modes, or "n" if they are non-coupling modes. 

I. Intensity: The temperature dependence of the intensity of an 

electronically forbidden spectrum is determined solely by the form of 

the ground state potentials of the inducing modes. Proof of this 

statement is given in appendix 3.Al. If the electronic transition 

moment in (3.48) depends only linearly on the k "active" normal modes, 

then the intensity is given by (Kubo and Toyozawa, 1955) : 

(3.54) 

The tot a 1 intensity of the spectrum in (3. 54) is the sum of the con­

tributions of the individual inducing modes. If the electronic 

transition moment in (3.48) contains quadratic terms then the inten­

sity is given by (Fussgaenger etal 1965) : 
. 2 

I(T) ~ ~ Ilk(O) coth(Xk) + I 2k(O) coth (Xk) (3.55) 

where Ilk ,I2k are determined by the relative size of the coefficients 

in (3.24). The conditions for the appearance of these quadratic terms 

were discussed in section 3.4.1. In the remaining equations given in 

this section, a linear dependence of the electronic transition moment 

on Q is assumed. Equations (3.54) and (3.55) have been derived assum­

ing a harmonic ground state for the inducing modes. As shown in 

(3.28) 



appendix 3.Al the excited state potentials, as well as the ground and 

excited state potentials of the non-coupling modes (Lohr 1969), may 

take any form. 

II. Band-shift: The shift of the band maximum from that expected for 

a pure vertical electronic transition is given by: 

where on hv' being the excited state frequency. 
n 

(3 .56) 

Equation (3.56) is derived assuming that the potentials of all modes 

in both the ground and excited states are harmonic. In addition, the 

excited state potential of the k inducing modes must be undisplaced 

and have the same frequency as the ground state. The n non-inducing 

modes may have their excited state potential displaced or with a 

different frequency. 

III. Halfwidth: The variation in halfwidth is given by: 

1/2 H(T) = L hvk(2ln2) sech(Xk) 
k 

(3.57) 

1 2 
where S = 2D on is called the Huang-Rys factor, D the displacement of 

the surfaces, and all other definitions are as before. The Huang-Rys 

factor given here is dimensionless and conforms with the definition 

given by Markham (1959; eq 10.23). It represents the energy difference 

between the excited state potential minima and the vertical transition 

energy in units of the ground state frequency, and is therefore 

analogous to the Jahn-Teller stabilization energy ( E JT) . Equation 

(3.57) is only valid under the same conditions as given for (3.56). 

The first term in equations (3.56) and (3.57), which are due to 

the inducing modes, have not previously appeared in the literature. 

(3 .29) 



Their derivation is given in appendix 3.A2. Some general cormnents can 

now be made concerning the above expressions: 

i) No use of synunetry has been made and in general, the inducing 

modes may be of any symmetry. However, the usual case is that the 

inducing mode is non totally synunetric, and is then required by 

group theory to be undisplaced (see section 3.2.3). The ap­

proximations made in the derivation of (3.56) and (3.57) are then 

fully justified. 

ii) The intensity in equations (3.54) and (3.55) is due entirely to 

the inducing modes. 

iii) The shift in the mean energy that is due to the k inducing modes, 

goes from hvk (OK) to 0 (ooK); ie at low temperature only the 0~1 

transition will be observed, while at high temperature a nearly 

equal number of n~n+l and n~n-1 transitions will occur, which 

will average to a mean of zero. A maximum band shift of less than 

hvk is therefore expected as a result of an inducing mode. 

iv) The shift in the mean energy due to the non-inducing modes will 

only appear if the frequencies are different in the ground and 

excited states. 

v) The halfwidth due to the inducing modes will grow from 0 (at OK) 

to (2ln2) 112hvk (at ooK). The non-inducing modes will give a 

finite bandwidth at OK, the most important factor being the 

displacement of the surfaces D. 

The equations (3.54)-(3.57) are only valid within the harmonic 

approximations that were made, so anharmonicity will dramatically 

change the temperature dependence. Dreybrodt and Fussgaenger (1965) 

have derived an expression for the temperature dependence of the 

intensity for a vibration with quartic anharmonicity using perturba­

tion theory. However, this is very cumbersome and is valid only over a 

limited range. A more profitable approach can be pursued with the 

variational method previously described. This allows one to not only 

extract the properties of non-harmonic potentials, but also provides a 

check on the above formulae. 

(3. 30) 



3.6.3 Some Applications. 

The simulated allowed spectra shown in figure 3.5 were subjected 

-to a moments analysis, and the variation of the intensity, mean energy 

and mean halfwidth with temperature are shown in figure 3. 7. This 

figure shows how the various properties of the spectra can be repre­

sented in a very straightforward manner. Briefly, it can be seen that 

the intensity is constant for all four cases, the mean energy becomes 

red-shifted and the halfwidth increases with temperature. 

The moments analysis of the inducing spectra in figure 3.6, which 

have been calculated using the same potentials as in the allowed case, 

are shown in figure 3.8. The increase in the intensity with tempera­

ture is identical for all four cases as they all have the same 

harmonic ground state potential and this intensity follows the 11 coth 

rule" of equation (3.54). The deviations from the 11 coth rule" that 

occur if there is anharmonicity in the ground state potential of the 

coupling mode or a non-linear dependence of the transition moment, is 

investigated in chapter 9. 

In all four cases the mean energy of the spectrum becomes red 

shifted with increasing temperature. In both the allowed and forbidden 

cases the effect is only slight for harmonic potentials of the same 

frequency (cases 1, 2), is larger for an excited state with a reduced 

frequency (case 3), but is most pronounced for the double well excited 

state potential (case 4). It has been shown by Lohr (1970) that if the 

frequency of the coupling modes in the excited state are larger than 

in the ground state, the spectrum can become blue shifted with in­

creasing temperature. 

The increase in the halfwidth with temperature shows similar 

trends, although the largest temperature dependence comes from the 

displaced potential (case 2) . For reasons already given, the halfwidth 

variation of the non-harmonic modes are misleading as they do not 

correspond to the true halfwidth; however, the general trend remains 

qualitatively valid. 

Different potential surfaces with various types of anharmonicity 

or displacements could give endless variations on the above examples, 

but space does not permit their inclusion here. Further examples are 

considered in chapter 9. 

(3. 31) 
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3.7 ADDITIONAL EFFECTS 

3.7.1 MIME: Missing Mode Effect. 

Recently a new "effect" has been coined for the appearance of a 

vibrational progression in the absorption or emission spectrum of a 

molecule which has an energy interval that cannot be associated with 

any of the totally symmetric vibrational frequencies of the molecule. 

This "missing mode ~ffect" or MIME (Tutt et al 19 8 2; 19 8 3; 1 9 8 7) is 

more convincing in emission spectra as the ground state vibrational 

frequencies that should appear in the spectrum can be observed 

directly from Raman spectroscopy. 

Tutt etal (1982) have considered such a case where a SSOcm-l 

progression observed in the emission spectra of W(CO) 5py did not 

correspond to any of the totally symmetric vibrations, the closest 

of which are the 432 and 599 cm-l modes. This puzzling observation was 

interpreted using the "semiclassical" theory of electronic transitions 

(Heller 1981), as being due to the excited state potential being 

displaced along both these totally symmetric coordinates. In this 

section it is shown that this type of calculation can be done both 

more easily and accurately with the well known procedure of calculat­

ing Franck-Condon overlaps. 

In their semiclassical approach the Frank-Condon aver lap is 

proportional to the recurrence of the time evolving wave packet to its 

original position on the final potential surface. This recurrence is 

only partial when a damping factor is included to give the vibronic 

lines a finite halfwidth. The time evolution of the wave packet on a 

two dimensional surface is the product of the time evolution of the 

separate modes (O'Brien 1981). The fourier transform from the time to 

the frequency domain then gives a spectrum with a vibrational interval 

that is different than either of the separate vibrations. This 

"missing mode" vibration is not simply the average of the two separate 

vibrations, and indeed can be smaller than either, but must not be 

larger than both of the separate vibrations (Tutt etal 1983) . 

The above arguments are illustrated in figure 3.9a where the time 

evolution of the total and separate vibrations are shown. The steep 

fall of the recurrence times are due to the damping factor which 

(3.32) 
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Figures a), b) have been taken from Tutt etal (1982). 
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b) Experimental and semiclassically calculated spectrum of W(C0) 5py. 

c) The exact Franck-Condon spectrum calculated from (3.58) and (3.59). 



represents the relaxation of the system into other vibrational modes. 

Transforming into the frequency domain in figure 3. 9b, the role of 

this damping factor is seen to broaden the vibronic lines. The result-
- -1 ing spectrum shows the progression in v = 550 cm that was observed 

in W(C0)
5
py. These figures have been taken from Tutt etal (1982) which 

-1 -1 
were calculated using the frequencies v1= 

dimensionless displacements d1 = 1. 82, 

origin E
0

= 20,500 cm-l 

432 cm , v2= 599 cm ; the 

d2= 1.55; and the electronic 

While this analysis provides a convincing explanation for the 

experimental observations, it is given in the unfamiliar (or new) 

language of semiclassical spectroscopy. This approach gives an ap­

proximation to the exact quantum mechanical behaviour in a variational 

calculation. A variational calculation with a two dimensional harmonic 

oscillator basis could have equally been used to calculate the Franck­

Co nd on overlaps and hence the spectrum. Since in the present case 

there are no matrix elements connecting the two coordinates, this is 

equivalent to doing two one dimensional calculations and convoluting 

the resulting spectra. Indeed, a variational calculation is in itself 

unnecessary since analytic formulae are available for the Franck­

Condon factors of displaced oscillators. From equation (3 .19), the 

energy and intensity of the low temperature emission spectrum from the 

excited to ground state, 100> ~ lmn>, is given by: 

I m,n I 
o,o (~]

4 
(<00 lmn>J E <00100> o,o 

D2m D2n 

(3. 58) 

(3. 59) 

(
<00 lmn> J2 = 
<OO I 00>) 

1 2 

2m2nm!n! 
(Dis defined as in equation (3.19)) 

The energy factor in (3.59) is raised to the fourth power because 

we are dealing with emission (Yersin etal 1980). The stick diagram of 

the spectrum calculated using equations (3.58) and (3. 59) with the 

same parameters as Tutt etal (1982), is shown in figure 3.9c. The 

addition of a Gaussian lineshape (HWHH=250cm- 1 ) to each of these 

lines results in a spectrum which is almost identical to that calcu­

lated by semiclassical methods. In fact, any differences in the two 

spectra must result from the inadequancy of the semiclassical method 

(3.33) 



as it only approximates the exact spectrum given in figure 3.9c calcu­

lated from equations (3.58), (3.59). 

The Franck-Condon spectrum shows the MIME frequency for exactly 

the same reasons as the semiclassical spectrum, the resolution or 

halfwidth of the lines (or damping factor) does not allow the underly­

ing structure to be observed. The resolved line spectrum of figure 

3.9c could also be approximately calculated by semiclassical methods 

by setting the damping factor to zero. 

In summary, for the missing mode effect to occur, two conditions 

must be present. First, there must be a displacement along at least 

two normal coordinates (ie there must be two or more totally symmetric 

modes); and second, the spectrum must not be fully resolved. Although 

this phenomena has recently been explained semiclassically, the MIME 

effect is a general molecular property and need not be calculated in 

this manner. It is felt that the usual time independent Franck-Condon 

method are more accessible and easier to use. However, the semiclassi­

cal approach is very useful conceptionally when considering the 

dynamics of the problem, especially the source of spectral resolution. 

3.7.2 The Dushinsky Effect: The Electron's Revenge. 

The Dushinsky effect (Dushinsky 1937; Kupka and Cribb 1986) is 

the name given to the unusual intensity distribution among the 

vibronic transitions between two electronic states where the normal 

coordinates are rotated in one electronic state, with respect to those 

of the other. This can then be described as a case where the 

electronic states (or the different sets of averaged electrons) couple 

the vibrational coordinates (nuclear motions). This electronic­

vibrational coupling ("electrational"?) is in a sense the opposite 

case to the vibrational-electronic (vibronic) coupling that is the 

main thrust of this thesis. However it is relevant to the present work 

in that the unusual intensity distributions that result may be con­

fused with vibronic effects. In addition, if both the Dushinsky effect 

and vibronic coupling are present, novel cancellation effects can also 

occur. 

As discussed in section 2.2.1, for any particular electronic 

state, normal coordinates can always be found. These normal coor­

dinates need not be the same in each electronic state as has been 

(3. 34) 



assumed up to now. However, since the normal coordinates of a par­

ticular electronic state must span the complete 3N-6 coordinate space 

of the molecule, a set of normal coordinates in one electronic state 

can always be expressed as a linear combination of the normal coor­

dinates in another. 

Consider the adiabatic potential surface of a particular non­

degenerate electronic state Im> which is not coupled to any other 

electronic state. This surface is then expanded about a reference 

geometry Q
0

: 

(av l 1 (a2v ) V ( Q) = V ( Q ) + l: <m I ~Q I m>Q . + 2- l: <m I oQ oQ I m>Q . Q . + m m o . a . i • • • • i J 
l l l, J l J 0 

If only the two normal modes Qa' Qb are considered this becomes: 

(3. 60) 

The reference geometry, Ou' is usually takP-n ris the equilibrium 

ground state geometry so that the linear terms in (3.60) are zero in 

the ground state. Similarly, the normal coordinates can be chosen so 

that the quadratic cross term in (3.60) is also zero in the ground 

state (see section 2. 2 .1) . This need not be the case in the excited 

electronic states but group theory can be used to determine when these 

terms can be non-zero. As seen previously, the linear terms in (3. 60) 

are non-zero only for the normal coordinates Q that are totally 
a 

symmetric. The quadratic term is the harmonic force constant when a=b 

and a cross term when a:;eb. This cross term uab will only be non-zero 

when the direct product of the irreducible representations of the 

coordinates contain the totally symmetric representation. This will 

only be true when the two coordinates a and b are of the same symmetry 

(regardless of whether a or b are degenerate or not) . It is this cross 

term that gives rise to the Dushinsky rotation, the normal coordinates 

in this electronic state are "mixed" when expressed in terms of the 

ground state coordinates. 

The expansion of the potential in (3.60) can be continued where 

the diagonal cubic terms represent the anharmonicity, but the cubic 

and higher cross terms cause difficulties. Their inclusion means that 

the excited state coordinates can no longer be expressed as a linear 

(3.35) 



combination of the ground state coordinates but are related by a non­

linear transform. Curvilinear coordinates must then be used, but this 

case will not be considered further here (Gans 1977). 

If terms only up to second order are kept in (3. 60), then the 

linear combination of the normal coordinates can be expressed as a 

rotation of the normal coordinates in the excited state with respect 

to the ground state. For only two normal coordinates this can be 

expressed by (Doktorov etal 1979) : 

= [ 
cos e 

-sin e 
sin e 
cos e l [ ~: l + 

+ (3. 61) 

The coordinates Q~, Qb' and Qa' Qb correspond to those of the 

excited and ground states respectively. The angle e is the Dushinsky 

rotation angle of the excited state coordinates as shown in figure 

3.10. It can be related to the potential constants in (3.60) by sub­

stituting (3.61) into (3.60), and with some algebra it is found: 

tan 29 (3. 62) 

This is equivalent to an expression given by Small (1971) . 

So far it has been assumed that there is no vibronic coupling 

present, and it is again stressed that vibronic coupling is not neces­

sary for the Dushinsky effect to be occur. However, if it is present, 

and the excited state is coupled to the intermediate states Im>, then 

the uab of equation (3.60) is then given by (Lee 1985; Small 1971): 

(3. 63) 

The existence of both the Dushinsky rotation and vibronic cou­

pling as expressed above can lead to constructive and destructive 

interference in the spectrum and a detailed study of this has been 

given by Small (1971) and Renneker etal (1983). Here only the first 

term in (3.63) is considered and the absorption spectrum was simulated 

for transitions between two two-dimensional potential surfaces for 

three typical cases: 

(3. 36) 



1) The ground state potential surface is harmonic and is charac­

terised by the two vibrations va' vb of different frequencies. 

The excited state potential is identical and undisplaced with 

respect to the ground state. 

2) As in the case above, except the excited state potential 

surface is displaced along both the normal coordinates. 

3) The ground state is as above, the excited state potential is 

undisplaced and harmonic with respect to one normal mode and a 

double well potential with respect to the other. 

Cases 1) and 3) above are typical behaviour for two non-totally 

symmetric normal modes, while case 2) is typical for a two totally 

symmetric normal modes. In all the above cases, the spectra were 

calculated for different angles of Dushinsky rotation. The transition 

is assumed to be allowed and the spectra was simulated using the 

energy levels and wavefunctions determined by the variational method 

as described in section 3.5. Only transitions from the lowest vibra­

tional level of the ground electronic state were included, which 

corresponds to a low temperature spectrum. In all cases the vibronic 

transitions were given a halfwidth (HWHH) of 50 cm-l and the separa­

tion of the electronic origins was held at 20, OOO cm- 1 . A cross 

section of the ground and excited state potential surfaces at the 

energy of their lowest vibrational level is also given for each 

spectrum. 

The calculated spectrum of the potentials of case 1) are shown in 

figure 3. 10. The harmonic vibrations are v a= 200 cm-1, vb = 500 cm -l 

and as expected the spectrum with no rotation of the excited state 

potential consists of a single vibronic line corresponding to the 

(0,0) ~ (0,0) transition. As the Dushinsky rotation is applied, addi-

tional transitions are calculated to be non-zero, but the intensity is 

very low. In real systems the difference in the ground and excited 

state frequencies would also caused transitions of comparable inten­

sity in progressions of two excited state quanta (see section 3.3.1) 

What is of particular interest in figure 3.10 is that the 

spectrum is composed of two "harmonic" vibrations with a frequency 

intermediate to the two ground state frequencies. These calculated 

excited state frequencies are shown in figure 3.11 as a function of 

the Dushinsky angle e. At e = o0 and e = 90°, the coupling term uab 

(3.37) 
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disappears and the Franck-Condon factors may be calculated exactly 

from the analytic expression previously given by equation (3.17). At e 
= o0 the excited state vibronic energy levels are those of the ground 

state, while at e = 90°, the excited state vibronic levels are given 

by: 

v' v' ..JR. v (3.64) a b a 
At all other angles the energy levels and Franck-Condon factors must 

be calculated numerically. However, an approximate expression for 

these excited state frequencies is given by: 

v' [ 1 + A. - !A.2 - !A.2 [K/(K2-1)] v (3.65) 
a a 2 a 2 ab a 

v' b 
[ 1 + 'o - ~'o2 + !A.2 (1/ (K2-1)) 

2 ab vb 

K vb/va; A. =!(K-l)sin2e· 
a 2 ' \= A./K; A. = ab ~(l-K)sin2e. 

These approximate formulas are compared with the exact calcula­

tions in figure 3.11. Equation (3.64) and (3.65) were derived by 

scaling the coordinates and 2nd order perturbation theory respec­

tively, but space does not permit details here. 

When considering case 2) above, there arises an ambiguity in the 

way the displacement of the excited state surfaces can be defined. The 

displacement as defined in (3.61) corresponds to a displacement after 

the rotation. Similarly a displacement before the rotation can be 

defined by: 

case 

-sine 
sine l [ Q + d 
case Q: + d: 

(3. 66) 

The simulated spectra for both these cases are given in figure 

3.12 and 3.13 respectively. These spectra were calculated for poten­

tials with the harmonic frequencies: va = 300 cm-1, vb = 400 cm-l and 

the displacements da= 2.5, db= 1.0. 

As in the undisplaced case, a harmonic vibrational spacing is 

calculated, where the harmonic interval is intermediate between the 

ground state frequencies. However, in this case, the vibronic transi­

tions are far more visible due to the Franck-Condon envelope. These 

harmonic intervals are the same for a particular value of the 

(3.38) 
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The vibronic Hamiltonians are the same as that given in figure 3.12. 



Dushinsky angle, regardless of whether equation (3. 61) or ( 3 . 6 6) is 

used. The exact values and those obtained from (3.65) are shown in 

figure 3.llb. For angles in the interval 90-180°, the behaviour is the 

reflection of that shown in the 0-90° range. 

While the harmonic intervals are identical for a particular 

rot at ion in figures 3. 12 and 3 .13, the intensity pattern differs 

substantially. This may seem surprising at first since the potentials 

are related. For example, the potential surfaces at e = 30° in figure 

3.12 are identical to those ate= 150° in figure 3.13, except that 

the ground and excited states are interchanged. This then stresses the 

importance that the kinetic energy operator has in determining the 

observed fine structure. The spectra shown for the angles 0-180° in 

figure 3.12 will correspond to the emission spectra with the potential 

surfaces given in 180-0° in figure 3.13, and vice versa. Inspection of 

these spectra shows that there is a lack of the expected mirror image 

symmetry between such absorption and e~ission spectra. Craig and Small 

(1971) have observed such a lack in mirror symmetry between the ab­

sorption and emission spectra of phenanthrene. 

In the third case to be considered, the potentials are undis­

placed and have a double minimum as a function of one coordinate. The 

intensity pattern of the vibronic structure changes considerably with 

the rotation angle, however it is not possible to derive simple ex­

pressions for this non-harmonic structure. 

The spectra due to the rotation of harmonic potentials in cases 

1) and 2) have harmonic frequencies which are intermediate to those 

calculated with the potential with no rotation. Often, depending on 

the rotation angle and the displacement of the surfaces, only one of 

these progressions will dominate. In this respect it could be said 

that the Dushinsky rotation causes a true "missing mode effect", where 

a vibrational progression can be observed whose interval does not 

correspond to either of the harmonic frequencies of the potential. The 

MIME effect studied by Tutt etal (1982, 1983, 1987) is essentially the 

result of constructive interference of many vibronic transitions, 

whereas the structure observed here is due to "real" energy levels and 

does not depend on the resolution of the spectrum. 

(3. 39) 
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In summarising this chapter, the importance of the kinetic energy 

operator should be stressed. Studying the form of the adiabatic poten­

tial surfaces gives the static, but incomplete, view of a molecular 

system. A full understanding of the vibrational or electronic 

properties of a molecule requires the consideration of the dynamics of 

the system. This is examined in more detail in the study of the 

dynamic Jahn-Teller effect in the following chapter. 

(3. 40) 



APPENDIX 3.Al: PROOF: THE TEMPERATURE DEPENDENCE OF THE INTENSITY 

DEPENDS ONLY ON THE GROUND STATE POTENTIAL. 

It was shown by Lohr (1969) that the derivation of the "coth 

rule" in equation (3.54) requires that the ground state is harmonic 

and that there is only a linear dependence of the electric transition 

moment on normal coordinate of the inducing mode. This will now be 

extended to show that any temperature dependence of the intensity 

depends only on the ground state where both the ground and excited 

state potentials may be anharmonic, and the electronic transition 

moment may be an arbitrary function of the normal coordinate. 

The intensity of a transition is given by (3.50). For clarity 

only one inducing mode is considered. [This may be easily extended to 

many modes.] 

I(T) 00 L P. (T) L l<ilM(~) lj>l
2 

(3.Al) 
' 1 ' 

1 J 
The ground and excited state vibrational wavefunctions Ii>, lj> 

are expanded in terms of a harmonic oscillator basis I<!>>: 
n 

00 00 

Ii> = L a . I <I> > ; I j> = L b . I <I> > (3 .A2) 
n=O n1 n n=O n] n 

The coefficients a,b are found as eigenvectors of a secular 

equation and will form orthonormal sets. This makes it possible to 

express the excited state functions lj> in terms of the ground state 

functions: 

I j> 
00 

L c .. Ii> 
i=O lJ 

00 

where c .. = La. b , 
lJ n=O rn nJ 

(3 .A3) 

Assuming that the normal coordinate spaces in the ground and 

excited states will be connected at most by a displacement and rota­

tion (Albrecht 1960, footnote 19), the coefficients c will also form 

an orthonormal set. Substituting (3.A3) into the part of the intensity 

expression dependent on the j excited states: 

L l<ilM(~) lj>l
2 

= L l<ilM(~) II c .. li>l
2 

j j i l] 

I 
j 

I c.+k .<ilM(~) li+k> 12 , i+k~O 
k 1 ,] 

(3. 41) 



L [ L [ c?+k .J<i1Mli+k>i
2 

+ L c.+k .c.+ .<ilMli+k><ilMli+m>] l 
j k i ,J m*k i ,J i m,J 

L (Lc~+k .) i<i1Mli+k>i 2 + L L (Lc'+k .c.+ .)<ilMli+k><ilMli+m> 
k j i ,J k m*k j l ,J i m,J 

By the orthonormality of the rows and columns of c the summation 

over j in the first parentheses is equal to one and in the second 

equal to zero: 

= L l<ilM(~) li+k>i 2
, i+k;;::O. (3.A4) 

k 
Substitution into (3.Al) results in the desired relationship 

where the intensity is independent of the excited state. [Note: It is 

recognised that the electronic transition moment M(~) will be dif­

ferent for transitions to different electronic states. However, if two 

electronic transitions are vibronically allowed by the same vibration, 

then they should show the same temperature dependent intensity as it 

is determined solely by the ground state potential.] 

Alternatively, the closure relationship (Albrecht 1960, eq.6) can 

be used in the summation over j in (3.61) to give: 

<ilM(~) L li+k><i+kl M(~) Ii>= <ilM(~) 2 ii> (3.A5) 
j 

This again results in the temperature dependence of the intensity 

being determined by a Boltzmann distribution over the ground state 

levels. 

This is a different way of thinking about the temperature depend­

ence of the intensity, instead of transition probabilities between 

vibronic levels as in (3.Al), we now have the average (or quantum­

mechanical mean) value of the square of the electronic transition 

moment in the ground state levels. For example, if the electronic 

transition moment has a linear dependence on a normal coordinate, then 

the relative intensity at certain temperature will be equal to the 

relative mean-square value of this coordinate at this temperature. 

(3.42) 



APPENDIX 3.A2: ANALYTIC FORMULA IN THE HARMONIC APPROXIMATION. 

The equations (3.54)-(3.57) in section 3.6.2 are derived assuming 

harmonic potentials. The "coth rule" in equation (3.54) has previously 

been given by Albrecht (1960), but a short derivation in the present 

notation follows. 

It is assumed that the ground state wavefunctions are harmonic 

oscillator functions and that the transition moment depends 1 ine a r ly 

on ~. The non-zero matrix elements of (3.A4) are when k=±l and the 

intensity is then given by: 

I (T) =ALP. (T) (l<il~li-1>1 2+ l<il~li+l>l 2 ) 
' l 

A 1 i = - L X [1-X] (2i+l), where X = exp(-hv/kT) 
2 ' A l , , : ~ t~~;i) 1

2IiH1ix

1

- f
1 1 

= I coth(hv/2kT) 
0 

(3 .A6) 

The relationship for a second order dependence of the transition 

moment on ~ has been given by Fussgaenger (1965) . The derivation 

follows a similar course as that of (3.A6) above. If the electronic 

transition moment is given by: M(~) =a~+ b~2 , then from (3.Al) one 

has: 

I(T) 

~ L Xi[l-X] ~ (a2 (2i+l) + 3b2 (i2+i+l/2) ) 
i 

3b2 
-4- (

l+X y 
1-X) 

I(T) = I 01coth(hv/2kT) + I 02 coth2 (hv/2kT) 

1. 0. 

(3.43) 
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In deriving (3.A6), (3.A7) the following identities have been used: 

L Xi = (1-X)-l where X=exp(-hv/kT) 
i ' 2 
L iXl = X. (1-X)-

i i 2Xi= X(X+l). (l-X)-3 

i 

For the remainder of this appendix a linear dependence of the 

electronic transition moment is assumed. The expressions for the non­

inducing contribution to the band maxima (3. 56) and halfwidth (3. 57) 

have also previously been given, (Kubo and Toyozawa 1955; Markham 

1959; Prassides and Day 1984) and will not be elaborated on. The 

inducing mode contributions to these quantities, however, have not 

previously appeared in the literature and their derivation follows: 

The energy of the band maxima is given by ( 3. 52 ) ; and if again 

only one mode is considered: 

E(T) = L P. (T) L l<il~lj>l 2 (E(j)-E(i)) I LP. (T)Ll<il~lj>i 2 

' l J' ' l ' l l J 

Assuming now that the ground and excited state potential surf aces 

have the same harmonic frequency; and letting E
0 

represent the 

electronic origin: 

E (T) = L P. (T) 21 [ i(E -hv) + (i+l) (E +hv) 
' l 0 0 
l 

= E + hv L Xi(l-X) 2/(l+X) 
0 i 

] I !(l+Xl 2 1-X 

E(T) = E + hv tanh(hv/2kT) 
0 

The halfwidth (halfwidth at half height) from (3.53) is: 

H(T) = [2ln2J 112cr where 

(3.A8) 

cr2 = L P. (T) L l<il~lj>i 2 (E(j)-E(i)-E(T)) 2 / LP. (T)Ll<il~lj>l 2 

i l j i l j 

2 2 , x 2 , x 2 l+X 
Assuming again equal freluencies in the ground and excited sjatet: l 

cr = (hv) ~ Pi(T) (i(l+tanh(2)) + (i+l) (l-tanh(2ll I l-X 
l 

where x=hv/kT, X=exp(-x) 

(3. 44) 



x 2 [hv sech(2)] 

[hv sech(~)J 2 

[hv sech(~)J 2 

~ Pi(T) [iexp(x) + (i+l)exp(-x)] I [t~~] 
~l-X)2 1 Xi(iXi-1 + (i+l)Xi+l) I [l~XJ 

1-X i 

H(T) = (2ln2) 1/ 2 hv sech(hv/2kT) (3.A9) 

In the above derivations all summations have been from 0 to oo and 

use has been made of the relations between hyperbolic functions 

(Abramowitz and Stegun 1964, section 4.5). Note: To be consistent with 

other parts of the thesis the label i denotes the ground vibrational 

states; it should not be confused with the imaginary i which does not 

appear in this appendix. 

(3.45) 



CHAPTER 4: STRONG VIBRONIC INTERACTION: 

THE DYNAMIC JAHN-TELLER EFFECT. 

4.1 INTRODUCTION AND SOME OBJECTIONS. 

This chapter is concerned with a particular breakdown of the 

adiabatic approximation that occurs with electronic states at the 

point of degeneracy. This breakdown is commonly known as the Jahn­

Teller effect, and has typically been stated as: 

Apart from two specific exceptions, a molecule in a degenerate 

electronic state will be unstable and the nuclei of the molecule will 

displace themselves so that the symmetry of the system is lowered and 

the degeneracy is removed. The exceptions are when the degeneracy is 

either in a linear molecule or is the Kramer's spin degeneracy that 

occurs in systems with an odd number of electrons. 

The above is an existence theorem and can say nothing about the 

magnitude of the distorting forces. It has been shown, however, that 

the coupling of degenerate spin levels with molecular distortions will 

be very much weaker than the case of orbital degeneracy (Jahn 193 8 ) . 

The above formulation of the Jahn-Teller effect does not reflect the 

full subtlety of the problem. In particular it contains the following 

two statements: 

1) The molecule spontaneously distorts from high symmetry. 

and 2) The degeneracy of the system is removed. 

These statements, if taken literally, are incorrect or at the best 

misleading (Ber,suker 1975 pg358). There are three objections that can 

be made against the Jahn-Teller effect formulated in the above manner. 

These objections arise because the non-adiabatic nature of the 

Jahn-Teller effect has not been appreciated. The electronic and vibra­

tional states of the system become inexorably mixed and cannot be 

described by a simple Born:Oppenheimer product as in equation (1. 3). 

The concept of vibronic states existing on a single potential surface 

then loses physical meaning. In particular the adiabatic potential at 

the point of degeneracy can be shown to be singular (see section 

(4.1) 



4.3.1). This means that, at the point of high symmetry, a "Q-dependent 

electronic state" is meaningless and the stability argument in state­

ment 1) cannot be used (Perlin and Wagner 1984, pgll) . 

In addition, it is well known that the vibronic Hamiltonian must 

reflect the full symmetry of the system, and transforms as totally 

symmetric in the molecular point group (section 3.2.1). This means 

that there is nothing in the Hamiltonian that can lower the symmetry 

of the system. The expectation values of the nuclear coordinates in 

all vibronic states will correspond to the high symmetry, undistorted 

geometry. This is again contrary to statement 1). 

For the same reason there can be no terms in the Hamiltonian that 

can remove the degeneracy of the system. The symmetry of the vibronic 

states will be the same whether the Jahn-Teller effect is present or 

not. The hypothetical electronic degeneracy is then replaced by a 

vibronic degeneracy, the overall degeneracy of the system does not 

change contrary to statement 2) . 

The distortion and degeneracy removal that is characteristic of 

the Jahn-Teller formulation above can only occur when there is some 

external perturbation present. As this is often the case in the solid 

state due to the existence of random crystal strains, this distortion 

and degeneracy removal is often observed. However, it is important to 

realise that formally the Jahn-Teller effect alone cannot be respon­

sible for its appearance. 

The objections outlined above are well known and these points 

have previously been made by many others (for example: St urge 19 6 7, 

pp106, 111; A&B, pg791; Ham 1972, pp14-16; Englman 1970, pp5-7; 

Bersuker 1975, pg376; Perlin and Wagner 1984, pgll; Bersuker 1984a, 

pg35). In this chapter some of the subtleties of the problem are 

presented and the above objections will become clearer. Only the Jahn­

Teller case of a doubly degenerate electronic state coupled by a 

doubly degenerate vibration (the Exe problem) is considered. The 

problem is presented from both a static and dynamic viewpoint, follow­

ing the classic papers of Opik and Pryce (1957) and Longuet-Higg ins 

etal (1958) respectively. Cooperative effects between the Jahn-Teller 

centre and the lattice are not considered, although some discussion of 

this point is given in section 5.4 in connection with vibronic relaxa­

tion. It has been shown that multimode effects can often be 

(4 .2) 



represented by a single effective mode (O'Brien 1972; O'Brien and 

Evangelou 19 8 0) . Al though the theory of the present chapter is quite 

general, it is especially developed for the case of octahedrally 

coordinated Cu(II) ions which are to be studied in the subsequent 

chapters. 

The literature published on the Jahn-Teller effect is enormous, a 

bibliographic review by Bersuker (1984b) contains several thousand 

references. Several texts (Englman 1972; Bersuker 1984a; Perlin and 

Wagner 1984) are available as well as many general reviews (Sturge 

1967; Bersuker 1975) . Specialist reviews also exist dealing with 

optical spectroscopy ( 0' Brien 19 81) , vibrational spectroscopy 

(Koningstein 1980), electron spin resonance (Ham 1972; Bates 1978), 

solid state structures (Reinen and Friebel 1979) as well as theoreti­

cal aspects (Longuet-Higgins 1961; Liehr 1963; Judd 1974; Bersuker and 

Polinger 1982) . 

(4.3) 



4.2 THE STATIC VIEWPOINT: ADIABATIC POTENTIAL SURFACES. 

To clarify the objections made in the previous section it is 

necessary to. start by considering the adiabatic approximations dis­

cus sed in chapter 1. The electronic part of the vibronic wavefunction 

can be expanded in terms of the electronic states that are d-fold 

degenerate at the point of high symmetry.Q : 
d 0 

.Q = L 'lfk(q,Q ).cl>k,(Q) (4.1) 
k=l 0 l 

By expanding the potential about this high symmetry configura-

tion, the difference between the potential at an arbitrary geometry 

and the high symmetry geometry can then be considered as a perturba­

tion in a secular equation: 

0, i,j 1, .. d. (4 .2) 

The solution to this electronic part of the problem gives the 

adiabatic potentials e(Q). The Jahn-Teller theorem is really concerned 

about the geometric nature of these adiabatic potentials, and can be 

restated as: 

If Q (a=l, .. 3N-6) is a point where d of the adiabatic poten­ao 
tials e. (Q ) , i=l, .. d coincide, then none of these d surfaces will 

i a 
have a minimum at this point. The exceptions are linear molecules and 

Kramer's degeneracy (Bersuker 1984a). 

This is very easy to prove: For there to be a minimum at Qao 

there must be no linear terms in the potential. It can be shown that 

in degenerate electronic states there will always be such a linear 

term for all molecular point groups. From (4.2) the linear terms are: 

(4.4) 



( 4. 3) 

The matrix elements A can be shown to be non-zero using the usual 

arguments from group theory. The direct product of the irreducible 

representations of 'I'., 'If,, Q mlst Jontain the totally symmetric 
J. J a av 

representation of this to be' true. [ aoa 0 transforms the same as 

Qa since V must transform as totally symmetric.] 

r('ljf,) x r(Q ) x r ('If.) ::::> Al 
J. 2 a J g 

or [r('lf) J => r(Qa) (4.4) 

The brackets [ ] denote the symmetric direct product (Harris and 

Bertolucci 1978; eq 4.21). [It should be noted that for double point 

groups, or systems with an odd number of electrons, it is the antisym­

metric direct product that should be taken (Jahn 1938) .] 

Equation (4.4) is trivially true when Q is the totally symmetric a 
coordinate, but this has the same effect on all the d degenerate 

electronic states in the secular equation (4.2) and so does not remove 

the ue<::Je11enit;y bul:. simply displaces it. This effect can be removed by 

a change in the origin of the totally symmetric coordinate. Not count­

ing this trivial case, Jahn and Teller (1937) showed that there will 

always exist a normal mode of suitable symmetry to make (4.4) true for 

non-linear molecules. They proved this by considering all possible 

molecular point groups. Therefore, where the adiabatic potentials of a 

non-linear molecule are at a point of degeneracy, they cannot simul­

taneously be at a minimum. 

4.2.1 The Linear Jahn-Teller Effect. 

For the case of a doubly degenerate E electronic state, the 

symmetric direct product of ( 4. 4) can be found from published tables 

(Harris and Bertolucci 1978) : 

E2 ] =A + E (4.5) 1 
This then identifies the doubly degenerate e vibration as the 

Jahn-Teller active mode. In this electronic state, the Jahn-Teller 

theorem states that there will be linear terms in the potential along 

this normal coordinate and the secular equation in (4 .2) can now be 

written out in the electronic subspace composed of the two components 

e, e of the degenerate E electronic state up to first order: 

(4.5) 



0 Al , (4. 6) 

Only four of the possible eight matrix elements are non-zero and 

these can be replaced by a single constant A1, as the four matrix 

elements will be equal within a sign change. This is a consequence of 

the Wigner-Eckart theorem which says that any operator acting within 

an irreducible representation of a group can be written as a product 

of a reduced matrix element and a set of vector coupling coefficients 

(Bill 1984, pg714) . In the present case the reduced matrix element is 

A1 and is commonly called the linear (or first order) Jahn-Teller 

coupling constant. The vector coupling coefficients must transform as 

the components of the direct product: 

E2 = A1 + A2 + E (4.7) 

With the usual choices of phase (Koster etal 1963; Ham 1972, pgl8; 

A&B, pg799) these coefficients 

I 1 0 l (Al) 

0 1 

O'y = l 0 
. 

(A2) -t 

t 0 

are: 

-cr = -1 z 
0 

crx= l 0 

1 

0 

1 

1 

0 

l 
l (E ) 

E 

(4. 8) 

The cr labels have been used because they they provide a con­

venient way to remember the coefficients as they correspond to the 

Pauli spin matrices (Schiff 1968, pg206) . 

Within the angular overlap model (Bacci 1978), these linear 

coupling terms can be calculated explicitly, and are in full agreement 

with ( 4. 6) : 

av av av av ~ ae (cr) <e1---1e> -<e 1---1 e> -<e1---1e> -<e 1---19> 
ao 9 ao 9 ao oQE 2 oR E 

av av av av 0 ( 4. 9) <91---le> <E 1---1 E> <91---le> <e 1---1 e> 
ao ao aQe ao 9 E E 

The solution of the secular equation in ( 4. 6) gives the two 

adiabatic potential surfaces: 

E± = ± IA1I ( Q~ + Q~ J
112 = ± IA1I p (4.10) 

( 4. 6) 



Here the polar c·oordinates p, cl> defined in figure 4.2, have been used: 

Q0 = p coscj> (4.11) 

Q = p sincj> e 
A plot of the two potential surfaces of equation (4.10) gives the 

conical intersection in figure 4. la that is characteristic of these 

systems. It should be noticed that the + and - surfaces expressed by 

(4.10) are the stalactite and stalagmite respectively and are both 

singular at the point of high symmetry. Figure 4.la implies that the 

molecule will not be stable on the lower potential surface. However, 

this "distortion" does not go on forever but is_ stopped by the 

"restoring forces" or bonding in the molecule. Higher terms then just 

linear must be considered in the expansion of the potential energy 

operator. 

These higher order terms are classified into those that take the 

totally symmetric coefficient in (4.8) and those that do not. The 

former are called invariants (Piepho and Schatz 1983, pg304) and can 

be thought of as the usual potential energy terms or force constants 

in the absence of any Jahn-Teller effect, and will be labelled K terms 

to differentiate them from the A coupling terms. If the second order 

invariants, or harmonic terms, of the potential are included then the 

secular equation in (4.6) becomes: 

I H - e I I 

H = 
0 

0 (4 .12) 

The invariants are kept in H
0

, and the coupling terms in H JT. The K2 
constant is equal to the vibrational energy of the harmonic oscillator 

basis functions, or the hypothetical frequency of the e vibration of g 
the molecule in the absence of vibronic interactions. It is often 

referred to in the literature as simply hv. In the variational cal­

culations of chapter 2, the dimensionless potential coefficients were 

in units of hv, whereas in this chapter all the coefficients are in 

units of cm- 1 . The adiabatic terms that result from diagonalising 

(4 .12) are: 
+ e- (4 .13) 

(4. 7) 
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b) E 
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Figure 4.1 The Adiabatic Potential Surfaces. 
a) Conical intersection of the linear terms: equation (4.10). 
b) The Mexican hat potential: equation (4.13). 
c) The warped Mexican hat: equation (4.17). 



This gives the familiar form of the Mexican hat potential surface 

as shown in figure 4. 2, where the symmetry coordinates of the e g 
vibration of an octahedral molecule are also given. A new electronic 

basis can be obtained from the eigenvectors of the diagonalisation: 

~~= sini 10> + cosl le> (4.14) 
~ = cos2 10> - sin2 le> 

The eigenvector matrix in (4.14) represents a similarity trans­

form that converts the potential energy terms in the Hamiltonian 

(4.12) into diagonal form. This corresponds to a rotation of the 

electronic basis by cj>/2; or equivalently, a rotation of the electronic 

operators by cj> (Rorison and O'Brien 1984). The two electronic 
+ - + -wavefunctions cj> , cj> "belong" to the upper e and lower e potential 

surf aces respect! vely. However if the linear coupling constant A 1 as 

defined by (4.6) and (4.7), is negative then this order is reversed 
+ and ~ belongs to the lower surface (Harn 1972 pg25; Reinen and Friebel 

1979, pg6). 

4.2.2 The Warping Terms: Second Order Coupling and Anharmonicity. 

It is well known that this Mexican hat potential surface shows a 

higher symmetry than the c3v factor group of the vibronic space indi­

cates (Bersuker and Polinger 1982; O'Brien 1984). This results in the 

artificial degeneracy of the A1, A2 vibronic states. The inclusion of 

higher order terms in the potential will remove these artificial 

degeneracies, and the resulting Hamiltonian is then given by: 

I H - EI I 0 (4 .15) 

where 

1 2 2 2 2 
Ho= [ ~K2(Q0 + 0el + K3Qe(Qe - 3Qe) l [ ~ ~ j 

2 2 
HJT= [AlQ0- A2 (Qe - QE)] [ -~ ~ 1 + [AlQE+ 2A2Q0QE] [ ~ ~ ] 

Equation (4.15) can be rewritten by changing to polar coordinates: 

H 
0 

(4.8) 

(4 .16) 
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Figure 4.2 a) The cartesian and polar coordinates of the Mexican hat. 
b) The symmetry coordinates of the eg vibration in an octahedral molecule. 



HJT~ [A1pcos~+A2p2 cos2~] [ -~ ~ l + [A1psin~+A2p2sin2~] [ ~ ~ l 
Diagonalisation of the secular equation will give the adiabatic poten­

tial surfaces: 

(4.17) 

and the wavefunctions: 

'I'+ sin(~) 19> +cos(~) le> (4.18) 

- z z 
'I' =cos(~) 19> - sin(~) le> 

As noted by Bersuker (1975; pg367), z *~unless A2 is zero: 

(4 .19) 

Equations (4.17) and (4.19) have differing signs to those given 

by Bersuker (1975, pg 367) and Bersuker (1984a, pg47). This is due to 

the different phase conventions that have been used and will be dis­

cussed in section 4.2.4. 

The lower adiabatic potential surface of ( 4 .17) is shown in 

figure 4. 3a. It can be seen that the potential surface now has the 

full c3v symmetry required. It is noted here that anharmonic, K3 , and 

the second order coupling, A2, terms have the same qualitative effect 

of warping the potential surface so that three minima result. If the 

Hamiltonian in (4.15) is transformed by the similarity transform of 

the linear case (4.14), then the diagonal warping terms are: 

(4 .20) 

If the off-diagonal terms are ignored and the radial coordinate p is 

replaced by the minimum of the Mexican hat potential p , then (4 .20) 
0 

becomes (Bill 1984, pg718): 

(4 .21) 

( 4. 9) 



a) 

b) 

0 120 240 

Figure 4.3 The lower adiabatic surface of the warped Mexican hat potential. 
a) Contour plot of equation (4.17), using the parameters: 

-1 -1 -1 -1 K2= 300cm , A1= 900cm , A2= 33.33cm (~ = 300cm ) . 

b) Angular potential along the path of least energy (dotted line in a) . 
The minima correspond to tetragonally elongated geometries. 



The positive sign in front of A2 in (4.21) is appropriate for 

Cu(II) complexes. The barrier height between the three equivalent 

wells is then approximately 2p, although, it should be noted that 

the least energetic path between the minima is far from circular 

(figure 4.3a) as implied from setting p = p in (4.21). Figure 4.3b 
0 

shows that the movement along the angular coordinate causes linear 

combinations of the e vibrational components in figure 4. 2 that g 
result in a pseudo-rotation motion of the molecule through the three 

possible tetragonal elongations. 

The octahedral cu 2 + ion is most often found in a tetragonal 

elongated geometry, as in the three minima shown in figure 4. 1 c. 

These minima result at an elongated geometry for K
3
< 0 (as expected 

for a bond stretch cubic anharmonicity) or A2> 0 when the two effects 

are considered separately in (4.21). A mixture of these and other 

factors (Deeth and Hitchman 1986) will be probably be physically 

responsible for the warping, although it is usual to set K
3
= 0 as it 

causes computational difficulties (O'Brien 1981; pg342). Figure 4. 4 

shows the effect that even quite a small anharmonicity has on the 

potential surfaces at large values of p. As discussed in section 2 .2, 

this sort of dissociative potential will cause erroneous results in a 

variational calculation. The second order coupling constant can be 

used to warp the potential without causing it to turn over, as long 

as: 

(4.22) 

An additional difference between the anharmonic and second order 

coupling terms is the effect it has on the energy separation of the 

lower and upper adiabatic surfaces shown in figure 4. 2. From ( 4. 1 7) , 

the warping due to the anharmonic terms is the same in both lower and 

upper surfaces and their separation is 4EJT" For second order cou­

pling, however, this warping is out of phase and the energy separation 

becomes 4EJT+ 2p. 

4.2.3 The Strain Terms: Systems of Lower than Cubic Syrranetry. 

It has been appreciated for some time that the effects of even 

small random crystal strains can be very large on the wavefunctions in 

the cubic Exe case (Ham 1972). The "strain" that is to be considered 

in the experimental examples of the following chapters is large and in 

( 4 .10) 
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Fi gure 4 . 4 The effect of anharmonicity on the lower adiabatic potential. 
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Potential parameters : K

2
= 300cm , A1= 900cm , K3= - Scm (p = 135cm ) . 

a) Three equivalent minima; b) Dissociative channels at higher values of p. 



well defined directions, formally reducing the problem to one of lower 

than cubic symmetry. These low symmetry terms are called strain terms 

because the formalism is similar to that of small strain terms in the 

cubic case. The origin of these strain terms need not be considered 

here, but they can either be due to the low symmetry of a host lat­

tice, or to the different bonding characteristics of inequivalent 

ligands. 

The Exe problem is reduced to a (A+A)x(a+a) problem for a general 

strain in the Qe-Qe plane. In terms of the cubic electronic basis 

functions, the strain Hamiltonian is given by (Ham 1972, pg21) : 

HST = [ -Se Se l (4.23) 

se se 
Here Se, Se are the tetragonal and orthorhombic components of the 

strain respectively and can be expressed as: 

Se = s cos~s (4.24) 

S = S sin~ e s 
where s, ~ are the magnitude and direction of the strain respectively s 
in the Qe- Qe plane. 

The 1e>, le> electronic basis functions will transform as A1 and 

B1 in tetragonal symmetry, and as A and A in orthorhombic symmetry. 

From group theory, considering the possible first order coupling 

constants in (4.9), there will be three independent non-zero values in 

tetragonal symmetry, and six in orthorhombic symmetry. For the second 

order coupling constants the number of independent non-zero constants 

becomes five and nine respectively. In addition to this, the problem 

will also require more harmonic and anharmonic force constants to 

describe the now non-degenerate vibrational modes. In general it would 

be impossible to find a unique set of these parameters by fitting 

experimental data. 

Feiner ( 19 81) has argued that a similarity transform can remove 

the orthorhombic component of the strain, thus reducing the number of 

independent parameters. However his argument is strictly incorrect as 

the kinetic energy operators are neglected in the total Hamiltonian. 

Such a similarity transform, while removing the orthorhombic strain, 

will produce additional off-diagonal terms from the kinetic energy 

operator. The arises from the fact that the kinetic energy operators 

do not commute with rotations in the Qe-Qe plane (section 4.3.l). The 

effect of these additional off-diagonal terms will be small if the 

(4.11) 



orthorhombic component of the strain is small compared to the 

tet ragona 1 component, but even in tetragonal symmetry the problem is 

over pararneterised. 

The most useful simplification that can be made in low symmetry 

problems is to assume that the strain terms are sufficiently small 

that HST can be considered as a perturbation on the cubic Hamiltonian 

(4 .15). This seems to be the only feasible approach to such an over­

pararneterised problem, and has been previously adopted by Feiner 

(1981), although he considered only tetragonal strain with first order 

coupling. Including the kinetic energy operator, the most general form 

of the Exe Hamiltonian then becomes: 

H H + HJT + HST (4. 25) 
0 

H 
K2 

(P2 p2 + Q2 + Q2 ) + 2 - 3Q2 ) ] I 2 + K3Q9 (Qe 0 e E e E E 

HJT - [A Q - 2 Q2)] [Al QE + 2A2Q9QE] A2(Q9- cr + cr 1 e E z x 

• 
HST -s cr + s cr e z E x 

p2 a2 p2 a2 
e - aQ2 , E - aQ2 

e E 

4.2.4 A Respite: Phase Conventions. 

It is often confusing to find in the literature that different 

signs are often used in the expressions given in the previous sections 

for the coupling constants, adiabatic potentials and wavefunctions. 

Up to this point, the choice has been made to be consistent with the 

phase conventions in Koster etal (1963). This means that the cubic 

Hamiltonian in (4.15) is identical to that given by: A&B (equations 

21.39,43,44); Harn (1972, equations 2.2.1,6,7); Bill (1984 equation 1); 

Bersuker and Polinger (1984, equations 37,41). The adiabatic potential 

and wavefunctions also agree with the above workers with the exception 

of Bersuker and Polinger (1984) where the third term on the RHS of 

their equation 53 should be negative as in (4.17). 

Note that these conventions are different from those used by the 

often cited references O'Brien (1964) and Bersuker (1984a). This 

(4.12) 



discrepancy arises because they have defined the first order coupling 
av 

constants A1= - <91aQ 19> rather than that given in (4.10). [I n addi-
9 

tion the O'Brien (1964) Hamiltonian operates on the electronic basis 

(le>, 19>) rather than the usual (19>, le>) basis.] These authors have 

later (see Rorison and O'Brien (1984), Bersuker and Polinger (1984)) 

conformed with the usual convention. 

The sign of the linear coupling constant will affect the signs 

in both the adiabatic potentials and wavefunctions. For example, 

compare Bersuker (1984a) equations 2.5, 2.12 with the equations (4-

.17), (4.19) given earlier. However, it is important to realise that 

with these standard conventions, the sign of the linear coupling 

constant in the case of octahedral copper(II) is negative. This has 

been pointed out by Abragam and Bleaney (1970, p806-7), Setser etal 

(1975, tableII) and Reinen and Friebel (1979, pg6) . 

However, in the literature, the vast majority of the Jahn-Teller 

studies of octahedral Cu(II) complexes have defined the first order 

coupling constant to take positive values. Since the theory outlined 

in this chapter is to be applied to such complexes, the linear cou­

pling constant will also be be defined positive. Similarly, since the 

I 9>, I e> electronic states are hole functions in Cu(II), the strain 

terms will also take the opposite sign. The most general vibronic 

Hamiltonian to be considered in this thesis is then given by: 

( 4. 26) 

The adiabatic potentials cartesian and polar coordinates are: 

(4.2 7) 

(4.13) 



The adiabatic wavefunctions are now: 

[ 
v~ l = [ cos (z/2) I 0> - sin(z/2) I E> l 
v sin (z/2) I e> + cos (z/2) Ii::> 

(4 .28) 

In (4.28) the adiabatic wavefunction v- corresponds to the lower 

adiabatic potential i::-. The above three equations are to be used 

throughout the remainder of the thesis. Only the vibronic Hamiltonian 

in (4.26) is really needed in the numerical solution of the system, 

although equations (4.27) and (4.28) are useful when considering the 

problem from a static point of view. 

(4.14) 



4.3 DYNAMIC VIEWPOINT: THE KINETIC ENERGY OPERATOR 

When the kinetic energy operator in (4.26) is taken into account, 

the system is no longer treated as static as in the previous section, 

but is now called the dynamic Jahn-Teller effect. This is not simply a 

study of hopping between static distortions, but rather the numerical 

solution of the secular equation of the vibronic Hamiltonian. This 

results in discrete energy levels and vibronic wavefunctions where the 

electronic and vibrational parts are mixed such that it is impossible 

to express them as an adiabatic product. 

The adiabatic potentials in the previous section were found by 

diagonalising the 2x2 electronic secular equation via a similarity 

transform to form uncoupled potential surfaces. If this is attempted 

when the kinetic energy operator is included, one find that the 

secular equation cannot be made diagonal. The dynamic Jahn-Teller 

effect can then best be described by a pair of coupled (second order 

differential) equations, and the resulting vibronic wavefunctions 

cannot be said to be associated with only one potential surface. 

However, if there is strong Jahn-Teller coupling so that the 

adiabatic potential surfaces are well separated, then the coupling 

between these surfaces is small and the adiabatic approximation can 

approximately be recovered by using a wavefunction that varies with 

the nuclear geometry. That is, the vibronic wavefunction can ap­

proximately be written as a single adiabatic product as in (1.3): 

Q ~ .~ (4.29) 

where the electronic part of the wavefunction ~ is given by 

(4 .28). However, an exact solution requires the coupled equations to 

be solve numerically, and the vibronic wavefunctions are then ex­

pressed as linear combinations of two adiabatic products: 

n = 19>.~9 + le>.~e (4.30) 

4.3.1 The Effect on the Adiabatic Potentials. 

The effect that the kinetic energy operator has on the adiabatic 

potentials can best be illustrated by considering the linear case of 

equation (4.12). Including the kinetic energy operator and expressed 

(4.15) 



in polar coordinates, the Hamiltonian becomes (Rorison and O'Brien 

1984) : 

H H + HJT 0 

H ! ( 2: 1 a + - --
0 2 ap2 p <Jp 

HJT= A1 [ -pcos~ psin~ 
psin~ pcos~ 

1 a2 
+ --

-a;2 2 p 

acting on the electronic basis 

(4 .31) 

2 ) [ 1 0 - p 

0 1 

( 
I 9> ) 
I e> . 

Applying the similarity transform given by (4.14) to (4.31) one finds: 

H' = SHS-l (4.32) 

H + Alp -1 0 1 1 a + --- 4 - a~ 0 2p2 
a 1 

0 1 a~ 4 
which acts on 'If' S'lf. 

V' = [ ~~ l [ sin (I) I 0> + cos (II I e> l 
cos (2) I 9> - sin (2) I e> 

(4 .33) 

The important point to note about equation (4.33) is that, while 

the 1 in ear Jahn -Teller coupling terms are made diagonal, additional 

off-diagonal terms appear from the kinetic energy operator. This 

arises from the fact that the kinetic energy operator does not commute 

with the trigonometric terms in the similarity transform (4.32). For 

example [a2 ;a~2 , cos(~)] = a2 ;a~2 cos(~) - cos(~) ~ o. 
The effect of these additional terms can best be illustrated by a 

plot of the adiabatic potentials. These plots ignore any off-diagonal 

terms, so it-should be realised that the resulting surfaces are still 

coupled. A plot of the diagonal terms of (4.31) before the similarity 

transform are shown in figure 4. Sa. These are sometimes called 

"diabatic" potential surfaces (Thompson etal 1985). A plot of the 

adiabatic potentials after the similarity transform, but ignoring the 

1 as t term in ( 4 . 3 3) which arises from the kinetic energy operator, 

(4.16) 
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Figure 4.5 The (E@e) Jahn-Teller potentials with linear coupling. 
a) The diabatic surfaces: the diagonal terms of the potential energy 

operator before the similarity transform. 
b) The adiabatic surfaces: the diagonal terms of the potential energy 

operator after the similarity transform. 
c) As in b), but including the potential terms due to the kinetic 

energy operator after the similarity transform. 



results in the popular "Mexican hat" potential shown in figure 4.5b. A 

plot of the adiabatic potentials including all the diagonal terms in 

(4.33) is shown in figure 4.5c. The p-2 term causes the potentials to 

become infinite at the high symmetry configuration, thus illustrating 

the origin of objection 1) in section 4.1. The study of Thompson etal 

( 19 8 5) has shown that the vibronic wavefunctions passed through this 

point of singularity "unharmed", clearly contrary to what would be 

expected for a classical particle on the potential. This singular 

potential also illustrates the "centrifugally stabilised S 1 on c z e w ski 

resonances" (Slonczewski 1963; Englman 1972, pp30-2), where metastable 

states are proposed for the upper potential surface. 

It is a moot point as to which of the three potentials in figure 

4.5 is the most "real", as they all neglect an invisible (unplottable) 

off-diagonal term. In an interesting study by Thompson etal (1985), 

the Hamiltonians corresponding to all three of these potentials were 

so 1 ved numerically and compared with the exact values. Their results 

showed that the third potential shown in figure 4. 5 c gives results 

closest to the exact values, and in this sense this potential with a 

singularity could be said to be more realistic than the usual "Mexican 

hat" potential. Further comments have been made by Perlin and Wagner 

(1984, ppl2-18) . 

4.3.2 The Nature of the Problem. 

In the most general form of the Exe Jahn-Teller Hamiltonian 

considered here the Hamiltonian in (4.26) must be solved. This repre­

sents a system of two coupled equations: 

(Hee - E)<I>e(Q) + Hee<I>e(Q) o (4.34) 

H ee<l>e (Q) + (Hee - E) <I\ (Q) o 
To so 1 ve equation ( 4. 34) , the vibrational part of the wavefunc-

tions <l>e, <l>e that are based on the I e>, I e> electronic states 

respectively, are expanded in a series of N/2 basis functions. 

Equation ( 4. 34) then becomes a large (NxN) secular equation in the N 

dimensional vibronic space. This secular equation can then be 

diagonalised numerically resulting in the vibronic eigenvalues and 

eigenfunctions. A brief description of how this is done is given in 

the following section. 

(4.17) 



4.4 THE CALCULATION 

4.4.1 Basis Functions and Basis Size. 

The vibronic basis functions for the solution of the Exe Jahn­

Teller problem can be written as 

IA m n> = IA>lm>ln> (4.35) 

where A = a, e represents the electronic wavefunctions and m,n are the 

quantum numbers for a two dimensional harmonic oscillator basis ex­

pressed as a product of two one dimensional SHO's. This vibrational 

basis was chosen rather than the two dimensional SHO functions ex­

pressed in polar coordinates because it is more straightforward to 

evaluate the matrix elements in this basis. [However, see Rorison and 

O'Brien 1984.) 

The pth vibrational level of a two dimensional HO has a 

degeneracy of (p+l) functions: lp>IO>, lp-1>11>, ... ll>lp-1>, IO>lp>. 

When nv of the vibrational levels are included in both the electronic 

components of the basis, the total basis size of the vibronic func­

tions is given by: 
nv 

N = :l. 2 (p+l) 
p=O 

= (n +l) (n +2) v v (4.36) 

An estimate of the number of vibrational levels that need to be 

included in the vibronic basis can be achieved using classical argu­

ments. For example, the lowest vibronic wavefunction may be centred on 

the trough, p
0
= 3, of a Jahn-Teller surface, but could extend as far 

asp= 4. It is then necessary that the basis functions, from which 

this wavefunction is constructed, should also extend at least this 

far. If this extension is connected with the root-mean-square 

amplitude of the vibrational basis then the following equation can be 

used as a guideline. 

n (p + 1) 2 - 1 (4.37) v 0 
Here p is the Jahn-Teller radius expressed in dimensionless 

0 

units as in equation ( 4. 22). For p
0
= 4, a value typical of strong 

Jahn-Teller coupling, then nv= 24 and the total basis size is N = 650. 

If higher v ibroni c levels are required then a larger basis must be 

used. 

(4.18) 



Equation ( 4 . 3 7) should only be used as a rough guide, the best 

way of to tell if the basis is large enough is to examine the eigen­

values as the basis size is increased. The eigenvalues will then 

converge to a constant value (from above), however it should noted 

that the eigenvalues are known to converge more quickly than eigenvec­

tors (Barentzen etal 1981, section 4). Adler-Golden (1985) has used 

the more sophisticated approach of using semi-classical trajectories 

to determine a minimum basis size which can then have both an upper 

and lower cutoff. This approach has not been used here as it means 

that the calculated eigenvalues are not necessarily a 1 ways an upper 

limit to the true e igen values, making it difficult to determine a 

convergence criteria. 

Another common method of reducing the basis size necessary in a 

variational calculation is to scale the basis functions. However, it 

can be shown using the methods of Balsa etal (1983) that this approach 

cannot be applied to Jahn-Teller systems, as the linear term is 

dominant in the potential. A shift in the origin, which would be an 

obvious simplification in the case of a non-degenerate electronic 

state, w i 11 not be helpful in the present case unless a large strain 

is present, and such a case is considered in the following section. 

4.4.2 Redefining the Origin. 

A shift in the origin of the vibronic basis functions will only 

be advantageous when the strain strongly localises the wavefunctions 

of interest near a particular minimum. If this is the case, then these 

wavefunctions will converge with a smaller basis; however, for higher 

avefunctions that are delocalised, the convergence will become much 

slower than if the basis functions at the undistorted geometry were 

used. If a large enough basis size is used, the calculation will give 

identical results for the basis functions based on any origin. 

In the present case the change in origin has been restricted to 

lie along the tetragonal coordinate only, as in the cases to be 

studied, it is the tetragonal strain that dominates the potential 

surface. The shift of the origin along the orthorhombic coordinate 

also causes an added complication as it not only changes the coeff i­

cients in the Hamiltonian (4.26), but also causes new terms to appear. 

( 4 .19) 



Making the following coordinate change: 

00 = 00 - Q~ 
Q' = Q 

£ £ 

the Hamiltonian in (4.26) can then be rewritten as: 

Hee = Ho + AAO 
H H + BBO re o 
Hee = Hee= ABO 

+ AAlQe 

+ BBlQe 

+ ABlQ' 
£ 

(4.38) 

(4.39) 

Here H is given in (4.26) and the coefficients take the values 
0 

given in table 4.1 when the origin is either at the undistorted (0, 0) 

or tetragonal (Q~, 0) geometry. Note that the vibrational part of the 

Hamiltonian, H , is the same as when the origin is not shifted, and 
0 

the kinetic energy operator is not effected by a shift in the origin 

(Schiff 1968, pgl91). 

Table 4.1 Coefficients of Equation (4.39). 

ORIGIN 

AAO 

AAl 

AA2 

BBO 

BBl 

BB2 

ABO 

ABl 

AB2 

(0' 0) 

Se 

Al 

A2 

-Se 

-Al 

-A2 

-s 
£ 

-Al 

2A2 

4.4.3 The Secular Equation and Symmetry Blocking. 

Since from (4.36) the problem involves the diagonalisation of 

large matrices, symmetry is used wherever possible to "uncouple" the 

matrix into diagonal blocks. For the case of linear Jahn-Teller cou­

pling, Longuet-Higgins etal (1958) defined a good half-odd integral 

quantum number j, that allowed the secular equation of size N, to be 

(4.20) 



factored into 2(nv+ 1) separate blocks (figure 4.6a). Since all of the 

levels are doubly degenerate, only half of the number of functions in 

each block need be considered. For a particular value of j, the 

secular equation is a real tridiagonal symmetric matrix (Thompson etal 

1985) : 

hv (j+l/2) A1" (j+l/2) 0 0 (4.40) 

A1 ..J ( j + 1 /2) hv (j+3/2) -A ff. 1 0 

0 -A ff. 1 hv(j+5/2) A1..J(j+3/2) 0 

0 0 A1..J(j+3/2) hv(j+7/2) -A -,/2 1 
0 -A -,/2 1 hv (j+9/2) 

The fact that this can be done is due to the linear Hamiltonian 

having a symmetry that is higher than required by group theory 

(Rorison and O'Brien 1984). When warping terms are included, j ceases 

to be a good quantum number, and the vibronic wavefunctions are clas­

sified by the A
1

, A2 or E irreducible representations in the c3v 

factor group. The warping terms also remove the artificial degeneracy 

of the A1, A2 levels that occurs in the linear case (O'Brien 1964), as 

shown in figure 4.14a. 

The factor group reflects the symmetry of the potential surface 

and can be found by dividing the the molecules point group by the 

kernal symmetry (Ceulemans etal 1984). The kernal symmetry is the 

first subgroup where all the Jahn-Teller active coordinates become 

totally symmetric. The symmetry,of an octahedral complex in the Q9-QE 

plane is Oh at the origin, D4h along the Q9 axis, and D2h for any 

other position. The kernal symmetries are then D2h or D2 for an oc­

tahedral or tetrahedral molecule respectively. The factor group is 

then given by Oh/D2h= Td/D2= c3v. Terms in the Hamiltonian also must 

transform as A
1

, A2 or E representations and so cannot mix states of 

different symmetry. With appropriate symmetry adapted basis functions 

the NxN secular equation can then be factored into one of size N/2 and 

two of size N/4. 

If the symmetry of the system is lowered by tetragonal strain 

then the factor group is D4h/ D2h = Cs' again reflecting the symmetry 

of the potential surface. The vibronic wavefunctions can then be 

labelled as transforming as the A' or A'' representations and the 

secular equation can be divided into two blocks of half the original 

(4.21) 
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Figure 4.6 The factor group symmetry of the vibronic functions 
and the adiabatic potential surfaces: 
a) Linear coupling; b) + Warping terms; 
c) + Tetragonal strain; d) + Orthorhombic strain. 



size. If the orthorhombic component of the strain is non-zero however, 

then the factor group is D2h/ D2h= c1 . All vibronic wavefunctions will 

then transform as the same irreducible representation A. This means 

that all basis functions can be mixed and the secular equation cannot 

be factored. These four cases are illustrated schematically in figure 

4. 6, where the secular equation can be symmetry blocked in the factor 

group which is also isomorphic with the point group of the adiabatic 

potentials. 

It remains to create symmetry adapted basis functions that trans­

form as the irreducible representations of the vibronic states. For 

the important case of tetragonal strain, this can be done simply by 

reordering the basis functions already given in section 4.4.1. Simple 

symmetry considerations of the product functions ( 4. 3 5) shows which 

w i 11 transform as A' or A'' . An easy way to describe this is to give 
- ' 

the values,~_::_ __ Q_LE:~ -~for the electronic basis and then the follow-

ing conditions apply: 

+ n even ~ IA.mn> transforms as A' ( 4. 41) 

+ n odd ~ IA.mn> transforms as A''. 

4.4.4 Matrix Elements and Diagonalisation. 

The actual implementation of a computer program to solve a varia­

tional problem must do two main things: calculate the matrix elements 

of the vibronic Hamiltonian, and diagonalise the resulting secular 

equation. This section briefly describes the Fortran 77 program JTVIB 

which was written to solve the general (Exe) vibronic Hamiltonian of 

equation (4.26). 

The vibrational part of the basis has been chosen as a product of 

one dimensional harmonic oscillator basis functions due to the ease 

with which the matrix elements can be calculated. These matrix ele­

ments are simply the product of the one dimensional matrix elements 

given by the explicit expressions in table 2.Al. For example, the 

anharmonic term in (4.26) between 1901> and 1911> is given by: 

<0011 K3Q9 (Q~-3Q~) 1011> K3 (<0IQ~ll><111> - 3<0IQ 9 11><11Q~ll>J 
= -3/..f2 K

3 
This sort of calculation must be made for all terms in the 

Hamiltonian between all basis functions and a sample 6x6 portion of 

the secular equation is shown in table 4.2, although it should be 

(4.22) 



noted that in a typical calculation the secular equation will be of 

the order lOOOxlOOO. It can be seen from table 4.2 that when S = 0, 
E 

the matrix can be split in half using the bases 1000>, 1010> and leOl> 

transforming as A' and I eOO>, I elO> and I 001> transforming as A'' in 

agreement with (4.41) . Matrices up to about 250x250 can be 

diagonalised by standard routines (Smith etal 1976), but for larger 

matrices problems are encountered with both storage requirements and 

processor time limitations. 

<0001 

<eOO I 
<0101 

<elO I 
<0011 

<eOll 

Table 4.2 Sample Portion of the Secular Equation 

1000> I eOO> 1010> I elO> 1001> 

l+S0 -s 1 0 0 
E -.J2 Al 

1 1 -s 1-S 0 --./2. Al - -./2. Al 
f 0 

-./2. Al 0 2+A2+s 0 
-s 0 

1 E 

0 -~Al -s 2-A -S A2 E 2 0 
0 --./2. Al 0 A2 2-A2+s

0 1 
--./2. Al 0 A2 0 -s 

E 

leOl> 

1 
--./2. Al 

0 

A2 
0 

-s 
E 

2+A
2
-s

9 

Condensed storage algorithms have been employed (Piss anet sky 

19 8 4, pp2 0-23, 252) as most of the elements of large secular equation 

will be zero. These algorithms allow operations on the matrix where 

only the non-zero upper triangular elements are stored. The 

diagonalisation is performed by the Lanczos algorithm which is ide.ally 

suited for use with a matrix in condensed storage. The Lanczos algo­

rithm has been discussed by many workers (Cullum and Willoughby 1981; 

Parlett 1980; Bjorck etal 1981), and the subroutines used in the 

present program were EA14ZD, EA14WD from the Harwell libraries 

(Par let t and Reid 1980) . Minimal changes in common block storage and 

I/O format were made to enable to allow the routines to run on a 

FORTRAN 7 7 compiler. A random starting vector (O'Brien and Evangelou 

1980) was used in the present case as there is little overlap of the 

lowest eigenvalues with the lowest basis functions for the case of 

strong linear coupling. With the program described above the lowest 

eigenvalues and eigenvectors of matrices of the order 4000x4000 could 

be obtained. 

( 4. 23) 



4.5 THE ANSWERS 

4.5.1 The Energy Levels. 

The energy levels of a Exe linear Jahn-Teller system are shown in 

figure 4. 7 as a function of the first order coupling constant A1 . 

There are many interesting features in this figure. On the extreme 

left the energy levels are that of an unperturbed two dimensional 

harmonic oscillator; while on the extreme right, in the regime of 

strong linear coupling, the levels can be approximately described by 

radial and angular quantum numbers. In the intermediate region the 

energy levels are observed to undergo curious oscillations, a detailed 

section of this is shown in figure 4. Ba. This nodal structure is 

unusual as the apparent degeneracies are in fact all "near misses" 

(Thorson and Moffitt 1968). This phenomena has lead to the discovery 

of isolated "exact" solutions for Exe coupling (Judd 1977; 1979), and 

in turn to an analytic formulation of the linear Jahn-Teller problem 

(Reik 1984; Reik and Doucha 1986). 

The angular and radial type vibrational energy levels at the 

strong coupling end of figure 4. 7 can be understood in terms of the 

adiabatic potential surfaces. The potential in the radial direction 

remains harmonic with the same curvature as the unperturbed case. The 

potential in the angular direct~on on the other hand is zero and the 

energy levels are determined solely by the kinetic energy operator in 

exactly the same manner as rotation energy levels are quantised. Using 

the radial and angular quantum numbers m and j, the energy levels are 

approximately given by (Longuet-Higgins etal 1958) : 

E (m, j) 1 hv .2 
- EJT + (m + 2) hv + 2 J ; 

2p 
0 

(4. 42) 

This approximate formula is shown with the exact calculations in 

figure 4. Sb, and the agreement at high coupling strengths shows how 

good this approximate description of independent radial and angular 

motions becomes. 

At intermediate coupling strengths the spacing between leve 1 s of 

adjacent m quantum number are far from harmonic as shown in figure 4.9 

and such irregular spacings have often been cited as evidence of the 

(4.24) 
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Figure 4.7 The E®e energy levels as a function of the linear 
coupling constant. The wavefunctions of the levels marked with 
a solid circle are shown in figures 4.11, 4.12. 
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Jahn-Teller effect in optical spectroscopy (Struck and Herzfeld 1966) . 

Figure 4.9 also shows the expected intensity pattern for an optical 

transit ion to an excited doubly degenerate excited state for a par­

ticular value of the coupling strength (A1/hv = 2.25). The spectrum is 

calculated from the square of the projection of the lowest vibrational 

level of the harmonic ground state on to the calculated excited state 

wave functions (Longuet-Higgins etal 1958). This results in a spectrum 

with a characteristic double maxima that one might expect from apply­

ing the Franck-Condon principle classically. Such unevenly spaced 

vibronic structure with a double maxima has been observed in the 
4A2 -1

2E(D) (Laiho and Treshchalov 1981) and 4A2-1
2E(G) (unpublished 

work) transitions of tetrahedral CoCl~-. 
However, the linear Exe case is highly idealised and such a 

spectrum as shown in figure 4. 9 would be unlikely to be observed in 

practice. Anharmonicity (O'Brien 1964) and second-order coupling 

(Sakamoto 1982) in the Hamiltonian in (4.26) will greatly effect the 

energy levels and split the artificial degeneracy of the A
1

, A
2 

states. Figure 4 .14a shows the energy levels relative to the ground 

vibronic state as a function of the second order coupling constant for 

a particular (fixed) value of linear coupling. 

The ground vibronic state always remains an orbital doublet, the 

next excited state splits into singlets of A1 and A2 symmetry. [These 

symmetry labels should not be confused with the first and second order 

coupling constants, which unfortunately have the same symbols.] For 

strong second order coupling the barrier between the equivalent minima 

(2J3) is high and the energy levels approach triple degeneracy. If 

these minima correspond to tetragonal elongations in a Cu(II) complex, 

then the second order coupling constant is positive and the lower 

singlet that approaches three fold degeneracy with the ground state 

doublet is then of A2 symmetry. A different choice in the signs of the 

first and second order coupling constants can result in this lowest 

excited singlet having A1 symmetry (Englman 1972, pg36; Setser etal 

1975, table II). The behaviour of the energy levels as a function of 

strain has been given by' Eng lman and Halper in ( 19 7 0) and Feiner 

(1981). Similar calculations are shown in figure 4.14b. 

(4.25) 
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4.5.2 The Wavefunctions. 

The shape of the adiabatic potential surfaces in section 4.2 were 

useful in visualising Jahn-Teller phenomena from a static viewpoint. 

Simi 1ar1 y, the probability plots of the wavefunctions are useful for 

visualising dynamic phenomena. However, a complete plot of a vibronic 

wavefunction would require six dimensions. This is the three dimen­

sional geometric space of the molecule in which the e 1 e c t r on (ho 1 e) 

dens i t.y of an electronic state is usually shown, the two dimensional 

Q0- Q space of the vibrational wavefunctions and a dimension to 
E , 

express the probability amplitude. 

The difficulties in displaying such a wavefunction can be avoided 

by plotting the electronic and vibrational parts of the vibronic 

wavefunction separately. This involves integrating over the part that 

is not to be displayed. The vibronic wavefunction and the probability 

functions of the electronic and vibrational parts can be given by: 

L 
m,n 

( a0 Jemn> +a Jemn>) mn emn 

<.QJ.Q>el (x,y,z) r 
m,n 

( 4. 43) 

2 2 <A ><0l0>(x,y,z) + 2<AB><0Je>(x,y,z) + <B ><ele>(x,y,z) 

<AB> 

<nJn> 'b(Qe,Q ) = r 
Vl E A 

[ L 
m,n 

I: a a emn emn' m,n 

L [ (a~mn+ a~mn) <mlm>(Q0)<nln>(Qe) J 
m,n 

Here l0>(x,y,z), le>(x,y,z) are the conventional real d-orbitals 

evaluated at the point (x,y,z) in the molecular coordinate system; and 

Im> (Q 0 ) ln>(Qe) is the product of two one-dimensional harmonic oscil­

lator functions (equation (2.36)) evaluated at the points Q0 and Qe. 

The electronic and vibrational parts of the vibronic wavefunc­

tions are shown in figures 4 .10 and 4 .11 respectively. These plots 

have been made using the spherical and polar coordinate subroutines 

(4 .26) 
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respectively from the <PLOT79> library (Mcintosh and Beebe 1979) . The 

electronic part of the probability functions are shown in figure 4.10 

for the two components of the ground vibronic doublet for weak and 

strong linear coupling. There is a close connection between these 

plots and the vibronic reduction (or Ham) factors which can be con­

sidered as the reduced matrix elements of the electronic part of the 

vibronic functions (Ham 1972) . These reduction factors have been given 

by Ham (1972, p32), which in the present formalism for a ground 

vibronic doublet n8, ne in the case of linear coupling are: 

p = t <08 1 cr 10 > = 2q - 1 y E 

(4. 44) 

These reduction factors can be used in a (2x2) spin Hamiltonian 

of a purely electronic basis. Apart from reducing the electronic 

quantities, the vibrational parts of the wavefunctions do not need to 

be used. This is called the two state model (Bill 1984, pp719-21), but 

this is often found to be inadequate when higher order and strain 

terms in the Hamiltonian make it necessary to include higher vibronic 

states in the spin Hamiltonian. The three state model (Setser etal 

1975) and six state model (Setser and Estle 1978) then require addi­

tional reduction factors, and the use of this type of formalism 

quickly loses it's attractiveness. In the experimental systems to be 

studied here, there are large strain terms so that the wavefunctions 

are far from the cubic basis functions in these models. This would 

then require an "n" state model, where n is large, to construct ac­

curate wavefunctions for all thermally populated leve 1 s using many 

reduction factors. For these reasons this approach of using reduction 

factors in a large spin Hamiltonian will not be considered further. In 

chapter 5 it is assumed that the strain terms sufficiently remove the 

degeneracy of the vibronic levels that the Zeeman operator can be 

applied separately to each level. 

For the singlet vibronic levels, the electronic part of the 

probability functions, shown in figure 4.12a, are isotropic combina­

tions of the d(z2) and d(x2-l) orbitals that have equal lobes along 

all three molecular axes. It is interesting to note that it is impos­

sible to produce such a probability function from the square of a 

(4.27) 



static mixture of d(z2) and d(x2-y2) orbitals, so they represent true 

dynamic wavefunctions. This will result in an isotropic g-t en so r for 

such a state, although in practice it is often difficult to distin­

guish between such a case and the rapid exchange between equivalent 

static states. 

The vibrational part of the vibronic probability functions is 
-1 

shown in figure 4 .11 for a linear coupling of A1= 300cm , K2= 
lOOcm-1 . The approximate radial and angular quantum numbers of (4 .42) 

is reflected in the nodal structure as there are m nodes in the radial 

direction similar to that of a harmonic oscillator, and 2 j nodes in 

the angular direction for the pairs of degenerate levels. The ground 

state vibronic wavefunctions are in agreement with those given by 

Thompson et al ( 1985, fig7). However, these functions do not display 

the full symmetry of the problem as the two components of the 

degenerate levels are prevented from mixing. Although the variational 

calculation has been done in real space, this is only because real d 

orbitals were used in the electronic basis. In general electronic 

(and therefore vibronic) states will be complex Hermitian, and any 

linear combination of the eigenvectors n9, ne of the two components of 

a degenerate level will also be eigenvectors of these levels. When the 

vibronic space is considered complex then the combinations 

the symmetry of the wavefunctions are given by: 
1 ( . nl = ~ ne+ t ne) 

n2 = ...f2. (n 9- l ne) where i is ~-

that reveal 

(4. 45) 

These wavefunctions are shown in figure 4.12b and can be compared 

with those in figure 4.11. The linear combinations of (4.45) will also 

cause the electronic part of the vibronic functions to become 

isotropic, identical to that calculated for sing let levels (figure 

4 .12b). This is in contrast to the anisotropic electronic probability 

functions that are calculated from vibronic wavefunctions that have 

not been symmetrised. This refinement is completely unnecessary in any 

practical application of the wavefunctions, as the n8 , ne wavefunc­

tions remain perfectly correct. 

As might be expected, the effect that warping terms have on the 

wavefunctions is to localised them about the three minima of the 

(4.28) 
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Figure 4.12 The syrrunetrised vibronic probability functions. 
a) The electronic part, which is the same for all vibronic levels. 

This isotropic function has equal lobes along the molecular axes. 
b) The vibrational part, which all have the full C syrrunetry . oov 

The higher excited angular vibrations are almost identical except 
for a slight increase in the mean radial amplitude, <p>, which 
corresponds to a centrifugal distort ion. 



potential as shown in figure 4.13. These numerically calculated vibra­

tional probability functions are very close to linear combinations of 

SHO functions '1'1' v2, v3 based in the minima at cj> = o0
, 120°, 240° 

respectively. The appropriate linear combinations are also shown in 

figure 4.13 and these functions are the basis in the three state model 

(Bill 1984, pg722). It can be seen from figure 4.13, that these func­

tions are a very good approximation to the true wavefunctions in this 

particular case where there is strong linear coupling with large 

warping terms. 

4.5.3 Expectation Values. 

Other quantities of interest can be calculated from the vibronic 

wavefunctions other than just the <A2>, <AB>, <B2> electronic coeffi­

cients given in (4.43). The expectation value of the cartesian 

coordinates can easily be found by using simple harmonic oscillator 

matrix elements (appendix 2.Al). One can find for example: 

n n 
:E :Ev :Ev 
A. n=O m=l 

Similarly <Q >, <Q2
9>, <Q2>, etc can be calculated. However, expecta-e E 

tion values of geometric quantities such as <p>, «p>, <sincj>>, etc 

cannot be calculated directly in the above manner, as analytic expres­

s ions for the matrix elements in this basis do not exist, and the 

integrals must be evaluated numerically. Gauss-Hermite quadrature 

(Carnahan etal 1969; chapter 2) was chosen to save the calculation of 

exponentials in the expressions for the harmonic oscillator wavefunc­

t ions. The abscissae and weighting factors were taken from the 

tabulations of Stroud and Secrest (1966; table 5). Expectation values 

of the following quantities were calculated: <illil>, <p>, <cj>>, <sincj>>, 

<coscj>>, <cos2 (cj>/2)>, <sin2 (cj>/2)>, <z>, <sinz>, <cosz>, <cos 2 (z/2) >, 

<sin 2 ( z I 2) >. The results were checked by using both 20 and 30 point 

quadrature formula and numerical test data is given in appendix 4.Al. 

(4.29) 
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Figure 4.13 The effect of the warping terms on the three 
lowest wavefunctions . The potential is that of figure 4.3a . 
The approximate wavefuntions of the three state model are also shown. 



4.6 APPROXIMATE METHODS 

Many approximate methods have been devised to simplify the com­

putational task of solving the vibronic Hamiltonian in (4.26) exactly. 

Here three different approaches are briefly described: 

1.) An obvious simplification that can be made in the limit of 

strong first order coupling, is to ignore the upper adiabatic poten­

tial surface. This has been done by Thompson etal (19 8 5, scheme ii) 

when they considered only the lower surface in figure 4.5c. The cal­

culation is difficult to implement numerically although a reduction of 

the basis size by half is achieved. 

2.) In the next level of approximation, only the angular coor­

dinate of the lower potential surface is considered important in 

determining the electronic properties of the vibronic functions, which 

can then be calculated from (4.28). The natural basis to use for this 

circular cross-section of the Jahn-Teller surface is a Fourier series 

of sine and cosine functions. This has been done for the Exe case with 

anharmonicity (O'Brien 1964), and anharmonicity with tetragonal strain 

(Englman and Halperin 1970). In this approximation, if there is no 

warping or strain terms, then the basis is diagonal with the energy 

levels simply that of a free rotor given by (4.42). 

A computer program, CIRCLE, was written to perform such calcula­

tions and contains two improvements to Englman and O'Brien's methods. 

First, centrifugal and vibrational-rotational coupling type terms have 

been included to improve the free rotation basis functions (CIRCLE I); 

and second, the similarity transform that includes the strain terms 

(4 .28) is used (CIRCLE II). Space does not permit a detailed descrip­

tion, but some example calculations comparing these methods with the 

exact results are shown in figure 4.14. 

3.) In a further simplification, the potential near a single 

minimum can be approximated by a harmonic parabola. This has been done 

by Englman (1972, equation 3.25) in the case where a small strain 

localises the ground state in one of the minima caused by the warping 

terms. The case where a large strain dominates the potential has been 

(4.30) 
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given by Kurzynski (1977, equation 2. 7) . The intermediate case where 

both strain and anharmonic terms determine the form of this harmonic 

potential is given in section 6.4.3. 

In addition to the above approximations, it has recently been 

found that semiclassical methods are able to provide reasonable agree­

ment to the eigenvalues of the Exe vibronic Hamiltonian ( Zwanz iger 

et a 1 19 8 6) . In addition, the resulting classical trajectories appear 

to be a promising approach to studying multimode and cooperative 

effects. 

(4.31) 



APPENDIX 4.Al NUMERICAL TEST DATA 

Exact numerical eigenvalues of the vibronic Hamiltonian of equa­

tion (4.26) for a range of parameters are available in the literature 

for first order coupling (Longuet-Higgins etal 1958) and first and 

second order coupling (Sloane and Silbey 1972; Sakamoto 1982). In the 

tables below, the exact numerical eigenvalues and several wavefunction 

properties are given for the lowest five levels of the vibronic 

Hamiltonian (4.26) with two sets of parameters. 

These parameters correspond to the "best fit" values found for 

the K2 Zn[Cu]F4 (chapter 6) and K2Zn[Cu] (H2o) 6 (so4) 2 (chapter 7) sys­

tems and are given here as numerical test data. A basis size of n = 
v 

2 6, and 3 0 point Hermite quadrature has been used in these calcula-

tions. 

TABLE 4.Al Numerical Test Data. 

-1 220 cm (=hv) 

-1. 799 cm -1 

Energy/cm -1 <A2> <B2> 

1 -1380.1 0.9689 0. 0311 
2 -1318.0 0.9234 0.0766 
3 -1239.1 0.8975 0.1025 
4 -1154 .5 0.8740 0.1260 
5 -1150. 9 0.9583 0.0417 

<P> < 4> > 

1 3.0236 180.0 
2 3.2839 180.0 
3 3.4468 180.0 
4 3.5647 180.0 
5 3.0562 180.0 

<z> 

1 180.0 
2 180.0 
3 180.0 
4 180.0 
5 180.0 

673 cm-l 
-1 0.0 cm 

<AB> <Qe> 

0.0000 -2. 718 
0.0000 -2.527 
0.0000 -2.415 
0.0000 -2.302 
0.0000 -2.654 

< coscj>> < sincj>> 

-0.9000 0.0000 
-0.7695 0.0000 
-0.7059 0.0000 
-0.6471 0.0000 
-0.8597 0.0000 

<cosz> <sinz> 

-0.9360 0.0000 
-0.8456 0.0000 
-0.7941 0.0000 
-0.7473 0.0000 
-0. 9140 0.0000 

(4.32) 

-541 cm -1 

0.0 cm -1 

<Q > 
E 

<Q2> 
e 

<Q2> 
E 

0.000 7.890 1. 733 
0.000 6.932 4.332 
0.000 6.531 5.842 
0.000 6.317 6.859 
0.000 8.441 2.300 

<cos
2 (~)> <sin

2 (~)> 
0.0500 0.9500 
0 .1153 0.8847 
0.1471 0.8529 
0.1764 0.8236 
0.0702 0.9298 

2 z , 2 (z)> <'.'"COS (2)> <Sln 2 

0.0320 0.9680 
0.0772 0.9228 
0.1030 0.8970 
0.1263 0.8737 
0.0430 0.9570 



TABLE 4.A2 Numerical Test Data. 

-1 300 cm_1 (=hv) 
0.0 cm 

-1 A1 = 900 cm _1 A2 = 33.33333 cm 

-1 

S
s9 __ = -1000_1m 

55 cm e 

Energy/cm -1 <A2> <B2> <AB> <Qe> <Q > <Q2> <Q2> 
e e E 

1 -2127 .1 0.8633 0.1366 0.3334 -2.242 2.754 5.518 8.374 
2 -2055.6 0. 8772 0.1228 -0. 3115 -2.271 -2.592 5.647 7.746 
3 -1940.0 0.9086 0.0914 0.1673 -2.238 1.383 5.908 6.530 
4 -1862.3 0.8886 0 .1114 -0.0937 -2. 311 -0.790 5.831 8.470 
5 -1821. 5 0.8505 0.1495 0.3439 -2.191 2.799 6.276 8.653 

<p) <'1>> <coscp> < sincp> < cos
2 (~)> <sin2 (~)> 

1 ,3. 6464 129.9 -0.6212 0.7468 0.1894 0.8106 
2 3.5750 227.6 -0.6436 -0.7147 0.1782 0.8218 
3 3.3532 155.5 -0.7433 0.3679 0.1283 0. 8717 
4 3. 6179 194.6 -0.6812 -0.2244 0.1594 0.8406 
5 3.7291 126 .5 -0.5634 0.7646 0.2183 0.7817 

<Z> < cosz) < sinz>- <cos
2 (~):> <sin

2 (~)> 

1 137.5 -0. 7263 0.6663 0.1368 0.8631 
2 219.3 -0.7538 -0.6223 0.1231 0.8769 
3 158.8 -0.8158 0.3340 0.0921 0.9079 
4 191. 6 -0.7762 -0.1871 0 .1119 0.8881 
5 135. 7 -0.7006 0.6871 0.1497 0.8503 

A careful examination of the above tables can yield much informa­

tion about the systems. In table 4.Al, the expectation values of all 

properties that are antisymmetric with respect to the Q
9 

axis are 

zero, due to the symmetric nature of the wavefunctions in this system 

which has a zero orthorhombic strain term. The potential is dominated 

by a single minimum and approximate angular and radial quantum numbers 

can be assigned to these levels. 

In table 4 .A2, the potential has three inequivalent minima, and 

the minima in which the wavefunctions are predominately localised can 

be identified by the expectation values of the coordinates. It is 

interesting to compare the adiabatic wavefunctions given by (4.28) to 

the exact values by comparing <A2>, <B 2>, <AB> with <sin2 (~)>, 
<cos2 (~)>, ~<sinz> respectively. The agreement is quite close in both 

cases due to the relatively large separation of the adiabatic poten­

tials which allows the vibronic wavefunctions to be mainly associated 

with the lower Mexican hat surface. Note that if z was set equal to cp 

then there would not be this agreement. 

(4. 33) 



APPENDIX 4.A2 SOAP FILMS: A JAHN-TELLER ANALOGUE. 

An interesting classical analogy to the lower surface of the 

warped Mexican hat potential exists in the soap films that form on a 

wire frame in the shape of a cube. When such a frame is withdrawn from 

a container of soapy water, a film will form that connects all sides 

of the cube (see figure 4.Al). The free energy of the film is propor­

tional to the surface area (Almgren and Taylor 1976), and can be 

thought of as the potential energy of the system. This potential 

energy will minimise by minimising the surface area in the same way 

that a film enclosing a volume of gas will form a spherical bubble. 

In the case of a cubic frame, the soap film "spontaneously 

distorts" from a high symmetry to adopt one of three equivalent lowest 

energy configurations. These "geometries" are shown in figure 4. Ala, 

where the central square can be normal to either of the X, Y or z 
axes. These three positions are similar to the three equivalent minima 

in the warped Mexican hat shown in figure 4.3. This analogy becomes 

stronger if "bondlengths" are defined as in figure 4 .Ala so that the 

low energy configurations correspond to tetragonal elongations. The 

normal coordinates Q9, Qe can now be defined in exactly the same 

manner as for an octahedral ML
6 

molecule in figure 4.2b. 

Although the soap film cannot be distorted along the Q8 coor­

dinate, it can pass bet we en equi va lent minima via orthorhombic 

distortions. This pathway is indicated by dotted lines in the Q
8

-Qc 

plane in figure 4. Alb, where the lowest energy configurations are 

marked X, Y, Z. The surface area (« energy) of a unit cube is given in 

figure 4.Alc for movement along this triangular path, clearly showing 

the three stable configurations as equivalent minima. The soap film 

will remain at the one configuration that is formed originally as long 

as the frame is kept still. 

The behaviour that is being observed here is analogous to the 

static Jahn-Teller effect. There is no kinetic energy in the system 

corresponding to the kinetic energy operator in the Hamiltonian (4-

.26). Kinetic energy can be provided, however, by shaking the wire 

frame, and higher energy films will form. A movement backwards and 

forwards parallel to the X or Y axes in figure 4.Ala will cause the 

orthorhombic motion shown by the arrows in figure ,4.Alb. If enough 

(4 .34) 
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Figure 4.Al a) The soap film that forms on a cubic frame. 

b) The three equivalent geometries of the film, with the central square 

normal to the X, Y or Z axes. The interconversion pathway is shown. 

c) The surface area of the unit cube following the dashed line above. 



energy is supplied so that the barrier at the corner of the triangular 

path is crossed, then a different configuration will result with the 

central square parallel to X or Y. 

If a large and constant kinetic energy is added then a dynamical 

system will result, and the time-averaged geometry will be that of the 

origin in the Q 9-QE plane in figure 4.Alb. This is the symmetrical 

configuration where the soap films meet at the centre of the cube; 

however, at any instant of the time, the "geometry" of the film will 

be close to the dotted line in figure 4.Alb. 

The soap film on a cube has many similarities to the cubic Exe 

Jahn-Teller system and analogies can also be drawn with strain 

modified Jahn-Teller cases. Squashing the cube into a square prism by 

making four parallel edges shorter than the other eight, corresponds 

to a positive tetragonal strain. One of the minima in the cubic case 

is made lower than the others as shown in figure 4.A2a. The converse 

case, where the four edges are made longer, corresponds to a negative 

tetragonal strain and is shown in figure 4 .A2b. By making the three 

sets of four parallel edges unequal, forming a rectangular prism, will 

cause the three minima to all be inequivalent and the "potential" 

corresponds to Mexican hat with both tetragonal and orthorhombic 

components of strain (figure 4.A2c). 

These three cases where the cube is perturbed are interesting 

because ground state potential surfaces of real systems have been 

found that strongly resemble these potentials. In the second half of 

this thesis, potentials have been found for copper(II) doped into the 

hosts ZnGeF 6 .6H 2o, NH 4Cl and K2Zn(so4i 2 .6H20 that are qualitatively 

similar to those given in figures 4 .A2 a-c respectively. This again 

illustrates the usefulness of adapting a high symmetry formalism to 

the low symmetry situations that are most commonly found in nature. 

(4.35) 
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CHAPTERS: ELECTRON SPIN RESONANCE 

5.1 THE CALCULATION OF q-VALUES AT A FIXED GEOMETRY 

Electron spin resonance spectra are usually interpreted in terms 

of a spin Hamiltonian rather than the real Hamiltonian of the system. 

It is an effective Hamiltonian which involves only spin operators, and 

acts on the wavefunctions of a system that are expressed as effective 

spin functions: 

H p S.g.H 
s 

R ( g S H + g S H + g S H ) 
I-' xxx yyy zzz (5 .1) 

This expression is for the magnetic field along the principal axes of 

the g-tensor or g-ellipsoid and all symbols have their usual meanings 

(McGarvey 1966\) . A more complete spin Hamiltonian will also include 

the additional terms involving the hyperfine, superhyperfine, and for 

systems with spin greater than ~' the zero-field splitting tensors 

(A&B, chapter 3). This section will only be concerned with the cal­

culation of the g-values, and further, only for systems of spin ~· 
Such a case arises for isolated Kramers doublets, and of particular 

interest is copper (II) compounds in octahedral coordination. 

For an S = ~ system the fictitious spin functions are then I+~ >, 

I-~> and evaluating the spin Hamiltonian (5.1) in this basis gives: 

1 l l 1+ 1--> 
~gy~Hy] <+!1 1 2 

~gzpHZ -g ~H - (5.2) 
! i ~H 

! x x 
<--1 2gx~Hx + - -g ~H 2 2gy y 2 z z 

The above matrix elements of the spin operators in (5.1) can be found 

from the Pauli spin matrices in equation (4.8). 

The "real" Hamiltonian of the system is the Zeeman operator: 

Hzee ( kL + geS ) ~H 

where again the symbols taking their usual meanings 

corresponding "real" wavefunctions can be labelled 

sociated with the spin function I+~> with mainly ms= 

associated with the I-~> function. 

(5.1) 

(5 .3) 

(A&B, pg50) . The 

I+>, to be as-
1 +2, and 1-> to be 



The use of the Zeeman operator (5.3) only within the pair of 

ground state wavefunctions !+>, I-> is call the first order Zeeman 

effect (Mabbs and Machin 1973, chapter 3), and is tantamount to assum­

ing that the magnetic field does not mix in higher excited states. 

This is a very good approximation for isolated Kramers doublets as the 

perturbations of the ligand field and spin-orbit coupling on the d-
-1 -1 orbital basis are of the order 10,000cm and lOOOcm respectfully, 

while the perturbation due to the magnetic field is of the order 
-1 

-lcm . 

This approximation can breakdown when there are low lying 

electronic states, and the second order Zeeman formula (from perturba­

tion theory) must be used (Mabbs and Machin 1973). A similar effect 

can happen when -there are close lying vibronic states with different 

electronic character to that of the ground state. This will be con­

sidered in the following section. 

As an alternative to using perturbation formula, the Zeeman 

Hamiltonian (5. 3) can be evaluated simultaneously with the other 

(ligand field etc) terms. In the present case this is unnecessary, as 

the use of (5.3) on the wavefunctions I+>, I-> after evaluating the 

other perturbations is a good approximation. The action of the Zeeman 

Hamiltonian (5. 3) on I+>, I-> can then be equated with that of the 
1 1 spin Hamiltonian (5.1) on 1+2>, l-2>: 

gxpsxHx (kx1x + geSx) PHx µxHx (5 . 4l 

gypsYHY (kYLY + geSx) PHY µYHY 

gzpszHz (kz1z + geSz) PHz µzHz 
By comparing the matrix elements of the above equations and using 

(5.2) the following equations can be found: 

gx = 2 <+I kxLx + geSx I-> 2 <+I µx I-> (5.5) 

gy 2i<+I kYLY + geSy I-> 2i<+I µy I-> 

gz 2 <+I kzLz + gesz I+> 2 <+I µz I+> 

It can be seen in (5.5), that if the i+>, I-> wavefunctions are 

equivalent to the!+~>, I-~> spin functions, then the absence of 

orbital angular momentum will cause the g-values to be isotropic and 

equal to g , the value for a free electron. The "g-shifts" are then a e 
direct measure of the orbital angular momentum in the wavefunctions 

I+>, I->. The fact that these shifts are usually small in copper(II) 

complexes is due to the "quenching" of the orbital angular momentum by 

the ligand field which removes the degeneracy of the d(x 2 -y 2 ) ,d(xy) 

(5 .2) 



and d(xz),d(yz) pairs of orbitals. Spin-orbit coupling, however, mixes 

these states so the quenching is not complete. 

In arriving at equations in (5.5) many aspects of the problem 

have been glossed over to keep the argument simple. The following 

points need to be considered: 

i) What if the reference frame is not along the principal directions? 

ii) How can the wavefunctions I+>, I-> be calculated? 

iii) What is the effect of the Zeeman Hamiltonian mixing vibronic 

states? 

5.1.1 The g-tensor. 

When the g-values of a compound are either measured experimen­

tally or calculated theoretically, the principal axes may not be 

known, and off-diagonal elements of the g-tensor can be non-zero. 

Equation (5.1) can then be more fully written as: 

H s 

gxx gxy gxz l Hx 
gyx gyy gyz Hy 

gzx gzy gzz Hz 

(5. 6) 

g is usually referred to as the g-tensor, and although in a strict 

mathematical sense g is not a tensor (A&B, pp651-3), the common usage 

of referring to a g-tensor will be kept. 

For molecules of low symmetry, g.,:;:. g .. and it is impossible to 
l] Jl 

diagonalise the g-tensor by a coordinate transform (Wertz and Bolton 

1972, section 7.4; Gerloch and McMeeking 1975). The g 2 tensor, 

however, is symmetric and the principal directions will be the same as 

for the g-tensor. The sign of the principal g-values obtained from the 

square-root of the diagonalised elements of the l-tensor, remains 

ambiguous. For the present case of Cu(II), the small shifts from the 

free electron value of ge= 2.0023 imply that these values will always 

be positive. 
2 The elements of the g -tensor, which is the matrix product of 

gin (5.6) and its transpose (Wertz and Bolton 1972, pg136), can be 

calculated from (Gerloch and McMeeking 1975) : 

2 L 
i=+,-

(5.3) 

(5. 7) 



where µex. is the cx.th component of the magnetic dipole moment operator 

in (5.4). Diagonalisation of this calculated g2-tensor gives eigenvec­

tors, which are the principal axes expressed as a linear combination 

of the reference axes, and eigenvalues which will be the squares of 

the principal g-values. It remains to have the explicit wavefunctions 

for the calculation of the matrix elements in (5.7). 

5.1.2 The Wavefunctions. 

The "real" wavefunctions I+>, j-> to be used in the previous 

calculations are most conveniently obtained by a ligand field calcula­

tion. For Cu(II) compounds this means that the matrix elements of the 

ligand field and spin-orbit operators are evaluated in, say , a real 

d-orbital spin basis and the resulting lOxlO secular equation is 

diagonalised. The lowest Kramers doublet is then used in either (5.5) 

or (5.7) to calculate the g-values. 

Alternatively, the wavefunctions can be obtained from perturba­

tion theory, then explicit expressions for I+>, I->, and hence the g­

va 1 ue s, can be found without the need for a matrix diagonalisation. 

For centrosymrnetric six-coordinate Cu(II), the zero order ground state 

~ will be a mixture of the d(x2-y2) and d(z2) orbitals: 
0 

~+=A (x2-y2)+ + B (z2)+ (5.8) 
Q 2 2 - 2 -

~o = A (x -y ) + B (z ) 

The mixing of the d(xy), d(xz), d(yz) orbitals into this ground state 

by spin-orbit coupling can be achieved by perturbation 

the following wavefunctions (Bleaney etal 1955c) : 
I+> N-112 ~+ + icx.d- - Pd- + . d+ 

o yz xz cy xy 

I-> = N-l/
2 ~o + iad;z + Pd~z - iyd~Y 

where N = ( 1 + cx.2 + p2 + .../ ) . 

theory, giving 

(5. 9) 

First order perturbation theory gives for the coefficients: 

ex.= 1 
2 u (-A-~B) (5 .10) 

p = 1 (-A+~B) 2 v 

1 (2A) 'Y = 2 w 

while second order perturbation theory gives: 

(5. 4) 



1 [ u(-A---.f3B) + ~uv(-A+--.!3B) 1 (5 .11) a= 2 + 2uw (2A) 

f3 = 
1 v(-A+"°3B) + ~vw(2A) + 1uv(-A-"°3B) 
2 2 
1 w(2A) + ~uw(A-"°3B) + ~vw(-A+--.!3B) 'Y = 2 

k2~ k2~ k2 ~ 
The other coefficients x L z E is the are u v = w = ; E ' E E xy yz xz xy 
energy of the excited state dxy etc, and ~ is the spin-orbit coupling 

constant. 

It is important to realise that·the above wavefunctions are 

derived for six coordinate Cu(II) assuming that it remains in the 

Q
9
-Q plane of the octahedral e vibration. In this situation only the 

E g 
spin orbit coupling causes the mixtures of the d , d , d orbitals xy xz yz 
into the ground state '¥

0
, not the low symmetry component of the ligand 

field. 

Since the Cu(II) complex remains centrosymmetric in the Q9- Qe 

plane, it follows that the principal axes of the g-tensor lie along 

the molecular axes. Explicit expressions for the g-values may then be 

derived by substituting the appropriate wavefunction coefficients in 

( 5. 9) and then evaluating (5. 5). The g-values that result from the 

first order wavefunctions are given by (Hitchman 1970) : 

gx = ge + 2 u (A+--.f3B) 2 

g = ge + 2 v (A---.f3B) 2 
y 

(2A) 2 g = ge + 2 w z 

(5 .12) 

The g-values that result from the second order wavefunctions are 

given by: 

g = g + 4a(-A---.f3B) 
x e 

g = g + 4f3(-A+--.f3B) y e 
g = g + 4y(2A) z e 

2 2 - 4(f3 +f3y+y) (5 .13) 
2 2 - 4 ( y +ya.+a ) 
2 2 - 4(a +af3+f3 ) 

[Note: In deriving the expressions in (5.13), factors of the type~ 

appear which are made - a. This means that the above expressions a re 

accurate only up to second order in a.] 

These expressions have been previously given for the ground state 

in the form: '¥
0 

= ~ ( ad(x 2 ) + bd(y2) + cd(/)) by Bleaney etal 

(5.5) 



(1955c). The expressions in (5.12), (5.13) are needed directly in 

terms of the A 2 , AB, B2 coefficients when vibronic effects are con­

sidered, for reasons to be explained in the following section. The 

expansion of (5.12) is obvious and will not be given, but the expan­

sion of (5.13) is quite messy. The necessary algebraic manipulation 

was done by the computer program REDUCE2, resulting for example in the 

following inelegant expression for gx: 

g = g + 
x e 

(5 .14) 
1 2 2 2 2 2 2 2 2 2 2 2 4[-u v -u vw-u w +3uv w-4uv +2uvw+4uv+8uw -8uw+8u-3v w +6v w 

2 2 2 -f3 22 2 22 2 2 2 -4v +8vw-16w ] .A + 2[-u v -u vw-u w +2uv w+uvw +2uvw+4uw 
2 2 2 1 2 2 2 2 2 2 -4uw+8u-2v w+4v -4vw -4vw] .AB + 4 [-3u v -3u vw-3u w +3uv w 

2 2 22 2 2 2 +12uv +6uvw +6uvw-12uv+24u-3v w -6v w-12v ] .B 

Friebel etal (1976) have taken the expressions in (5 .11) and 

(5 .13) and have kept terms only up to second order in a, ~' y (which 

is entirely valid in light of the previous approximation concerning 

l/N), and arrived at the following expressions: 

(5 .15) 

g = g + 4u - 2(v2+w2) - (uv-vw+wu) 
x e 

- (2u+(2w2-v2)-(2uv+vw-wu)) .cos~+ 13 (2u+v2-(vw+wu)) .sin~ 

g = g + 4v - 2(w2+u2) - (vw-wu+uv) 
Y e 

- (2v+(2w2-u2)-(2uv+wu-vw)) .cos~ - 13 (2v+u2-(uw+wv)) .sin~ 

2 2 g + 4w - 2(u +v) - (wu-uv+vw) 
e · 2 2 2 2 

+ (4w+(u +v )-(2uv+wu+vw)) .cos~ - ..f3 ((u -v )-(vw-wu)) .sin~ 

Here the problem has been formulated in terms of the Jahn-Teller 

angular coordinate ~' and the coefficients of the previous equations 

are related by: 

<cos~> <cos2 (~/2)> - <sin2 (~/2)> = <A
2

> - <B2> (5 .16) 

<sin~> 2 <sin(~/2) .cos(~/2)> = 2<AB> 

The expressions in (5.13)-(5.15) above can now be compared to the 

results of an "exact" calculation. This will give an idea under what 

conditions these perturbation expressions can be applied. Table 5 .1 

shows the results for a pure d (z2) [A=O, B=l] and and a pure d (x2-y2) 

(5. 6) 



[A=l,B=O] ground state with the parameters: k = k = k = 0.9· E = E = 
X y Z I xy XZ 

E AE; ~ = 830cm-l. yz 
It can be seen from table 5.1 that, as would be expected, the 

expressions from perturbation theory are closer to the exact values 

when the excited states are higher in energy and the perturbation is 

therefore smaller. As this energy is raised (ie > 60,000 cm-1), all 

orders of perturbation agree with the exact values. In the more 

realistic situation, corresponding to AE = 10,000 cm-1 , it can seen 

from table 5.1 that first-order perturbation theory gives values which 

are only qualitatively correct, but the second order expressions 

generally agree with the exact values to two decimal places. It is 

interesting to note that the second order expressions of Friebel etal 

(1976) in equation (5.15) are closer to the exact values than those of 

Bleaney et al (1955c) in equation (5 .14). As indicated previously the 

inclusion of terms higher than second order are not justified within 

the level of approximation, and this seems to be borne out in the 

results of table 5.1. 

The choice of one of the above methods for calculation of 

g-values is a balance between the accuracy that is desired and the 

ease of calculation. The explicit expressions from perturbation theory 

are easy to use but are only really correct to two decimal places. As 

another example on a real system, figure 5 .1 shows the temperature 

dependent g-values of Cu(II)/K2ZnF 4 (chapter 6), where lst, 2nd order, 

and exact expressions are used. 

TABLE 5.1 

lst Order 2nd Order 2nd Order "Exact" 

llE/cm -1 (5.12) (5 .14) (5 .15) 

g : 5,000 (z2) 2.0023 1.9551 1. 9481 1.9435 
z 

(x2-ll 3.0780 2.9585 2. 9514 2.8982 

10,000 (Z2) 2.0023 1. 9897 1. 9888 1. 9856 

(x2-ll 2.5401 2.5094 2.5085 2.4982 

20,000 (Z2) 2.0023 1. 9990 1. 9989 1. 9979 

(x2-ll 2.2712 2 .2634 2.2633 2.2614 

gx= gy: 5,000 (z2) 2.8091 2.7076 2.7006 2.6595 

(x2-ll 2.2712 2.2060 2.1989 2.1822 

10,000 (z2) 2.4057 2.3795 2.3786 2.3700 

(x2-ll 2.1368 2 .1196 2 .1187 2 .1137 

20,000 (z2) 2.2040 2.1973 2.1972 2.1955 

(x2-ii 2.0695 2.0651 2.0650 2.0638 

(5.7) 
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Figure 5.1 Calculation of the g-values of Cu(II)/K
2

ZnF
4 

with the parameters of Riley etal (1986) using: 

First order perturbation theory (equation 5.12): ••••••• 

Second order perturbation theory (equation 5 .15 l: - - - -

"Exact" diagonalisation: 



5.2 THE CALCULATION OF THE g-VALUES IN DYNAMIC SYSTEMS 

Although the calculation of g-values in a fixed electronic state 

is well understood, the problem becomes more complex when considering 

the vibronic (implying dynamic) states. This is especially true where 

the electronic properties of a system are "non-rigid" and vary accord­

ing the vibronic state it is in. 

The vibronic coupling of the Jahn-Teller effect represents such a 

situation, and two distinct aspects of the problem will be discussed. 

Firstly there is the case of the Jahn-Teller effect in crystals of 

cubic symmetry where the ground state will retain its degeneracy as a 

vibronic doublet. Secondly, and of particular interest to the present 

study, is the case of lower than cubic symmetry where the problem 

becomes formally that of the pseudo Jahn-Teller effect. This second 

case is somewhat more straightforward to treat as far as the calcula­

tion of the g-values is concerned, as all the vibronic levels are 

singlets. Another incentive to examine this second case in detail 

closely is that while little theoretical work has previously been 

attempted, there is a wealth of experimental data available. 

5.2.1 Jahn-Teller Effect: Cubic Symmetry. 

Al though there is much literature dealing with the ESR of cubic 

Jahn-Teller systems (A&B; Ham 1972; Sester and Estle 1978; Bill 1984), 

these systems were not well understood until the contributions of 

O'Brien (1964) and Ham (1965, 1968). Typically there are three basic 

types of ESR spectra that are observed in such systems (A&B, pg 826): 

1) A superposition of three axially symmetric spectra correspond­

ing to vibronic singlets at static tetragonal elongations. 

2) A single anisotropic spectrum of a vibronic doublet similar to 

that of an 2E electronic state in full cubic symmetry in the 
g 

absence of the Jahn-Teller effect. 

3) A single isotropic ESR spectrum of a vibronic singlet. 

Since the ground state in the Exe case is always a vibronic doublet in 

the absence of strain, the last spectrum will only occur for finite 

temperatures. 

(5. 8) 



The occurrence of the above spectra depends both on the random 

strain As and the separation 3r of the ground vibronic doublet from 

the lowest excited vibronic singlet. Ham (1972) has stressed that the 

role of the random strain is particularly important in these cases as 

strong Jahn-Teller coupling can amplify the effects of even the smal­

lest strain. For the case of copper, with a large Jahn-Teller coupling 

constant, the following two cases may be distinguished: 

a) As >> 3r where a static Jahn-Teller spectrum of type 1 is expected. 

b) 3r >> A where a dynamic, but still anisotropic, spectrum of type 2 s 
is expected. 

The former case a) was investigated by O'Brien (1964) where it 

was shown that a random strain could isolate the complex at a 

tetragonal geometry in any of the three wells of the warped Mexican 

hat. At higher temperatures the population of the other wells occurs. 

Either the population or exchange with these states, or a combination 

of both, will give rise to an isotropic spectrum at higher tempera­

tures. An example of this is given by Cu(II) I ZnSiF 6.6H20 (Dung ctul 

1974), who have shown that the observed coexistence of both the 

anisotropic and isotropic spectra over a temperature range is consis­

tent with either of the above population or averaging mechanisms. 

The second case b) has been examined by Ham (1965, 1968, 1972) 

who realised the implications of the fact that the Jahn-Teller effect 

does not lift the total degeneracy of a system, rather the electronic 

degeneracy is replaced by a vibronic degeneracy. The ESR spectrum of 

the ground vibronic doublet is then similar to that of an electronic 

doublet in octahedral symmetry without the Jahn-Teller effect. This 

situation was encountered in Cu(II) I Cao (Coffman 1968). At first the 

Jahn-Teller effect seems strangely absent, but its effect is to cause 

a vibronic reduction factor, q, to appear in the spin Hamiltonian 

(A&B, eq 21.71; Ham 1972, eq 2.3.15): 

H = glps.H I+ 2!qg2p[-(3SZHZ-S.H) cr + .../3(S H -s H ) cr] s z x x y y x (5 .17) 

The symbols I, cr
2

, crx are the 2x2 unit and Pauli spin matrices 

(equation ( 4. 8)) respectively. In this case the spin Hamiltonian in 

(5.17) acts on a 4x4 basis ("two state model"), rather than the 2x2 

basis of singlets given by equation (5.1) in the previous section. The 

ESR spectrum will be characterised by two frequencies which will 

(5. 9) 



become equal along the body diagonal of the cube in the molecular 

coordinate system (A&B, pp803-4) . The ESR lineshape will be influenced 

by both the random strain (Ham 1972, pp35-6) and the motional averag­

ing, which is dependent on the magnetic field direction (Ham 1972, 

pg55). Population or exchange with the higher vibronic singlet with a 

spectrum of type 3 will give rise to an isotropic signal at higher 

temperatures-. 

These two cases of a) a static vibronic singlet spectrum, and b) 

a dynamic vibronically reduced doublet spectrum, represent limiting 

cases of the same problem. A formulation that covers both these cases 

is the "three state" model, and has been successfully applied to 

Cu (II) I MgO, CaO (Reynolds etal 1974, Reynolds and Boatner 19 7 5) . 

This approach has also been extended to a "six state" model (Sester 

and Estle 1978), although the increase in the number of reduction 

factors makes this hard to use in practice. Each reduction factor will 

be different between different vibronic levels, and it is usual to 

d!J!JLuxlma Le LhelL· value8 according to the strength of the coupl-ing. 

[It is noted here that within the framework of the present numerical 

approach all such reduction factors are implicitly evaluated and a "N 

(>1000) state" model could be used if desired. However the this type 

of calculation is not the main interest here so this will not be 

pursued.] 

An orbit a 1 singlet in a linear Exe Jahn-Teller system will have 

an isotropic g tensor. The wavefunctions will be composed of 50% 

character of each of the electronic basis functions, but the product 

of their electronic coefficients will be zero because of the or­

thogonality of the vibrational parts of the wavefunction. This can be 

verified from direct calculations and is easily understood when the 

expectation value of the electronic coefficients are expressed as 

trigonometric functions. Integrating over a singlet wavefunction that 

will be delocalised around the Mexican hat potential, one finds: 

<A2> - <B2> = <cos2 (~/2)> - <sin2 (~/2)> <cos~> 0 

<AB> = <cos(~/2) .sin(~/2)> <sin~> 0 

Using the the normality of the wavefunctions one then finds <A 2 > 

<B2> = 0.5, while <AB> = 0. 

If these values are then substituted into the perturbation ex­

pressions of (5 .15) (noting that u = v = w), then all principal g 

values become equal and are given by (Reinen and Friebel 1979): 

(5.10) 



2 g. = g + 4u - Su 
lSO e 

(5 .18) 

This equation is only appropriate for vibronic singlets, whereas 

the ground state of an Exe Jahn-Teller system is a vibronic doublet. 

Although the spectrum of this doublet will be anisotropic Abragam and 

Bleaney ( 19 7 0, pg 8 2 8) and Ham (1970, pg 55) have shown that fast 

vibronic relaxation between the lowest levels that are split by 

strain, will result in an averaged spectrum that is identical to the 

isotropic spectrum of a singlet. 

5.2.2 The Pseudo Jahn-Teller Effect: Low Symmetry. 

The large value of strain implied in a system of low symmetry 

will lift the degeneracy of the electronic states involved, so for­

mally there will not be a Jahn-Teller effect present. However it seems 

reasonable to assume that if there is a strong Jahn-Teller coupling in 

cubic symmetry, there will also be strong vibronic coupling in lower 

symmetry. The approximation is made that the strain terms can be 

simply added to the cubic part of the vibronic Hamiltonian. As dis­

cussed in section 4.2.3, this is not entirely valid as the coupling 

constants and force constants of the two electronic states are not now 

required to be equal by symmetry. However, this seems the only trac­

table approach for such systems and can be partly justified by the 

fact that it can successfully explain the experimental systems con­

sidered in the following chapters. 

An import ant consequence of the strain terms in the Hamiltonian 

is that the degeneracy of all the vibronic levels are removed 

(excepting Kramers degeneracy). They are all singlets of A', A'' or A 

symmetry if there is tetragonal or orthorhombic strain respectively. 

The fact that only singlets occur in such systems means the approxima­

tion can be made that the Zeeman operator does not mix the different 

vibronic levels. This will still be good approximation as the energy 

separations are of the order lOOcm-1, and any such mixing that does 

occur will have only a minor effect as the electronic properties 

between neighbouring levels do not usually differ greatly. This is 

tantamount to saying that each vibronic level will have its own set of 

g-values and, in the limit of fast vibronic relaxation, a Boltzmann 

(5.11) 



average over these levels will result in the single set of g-values 

that is observed. 

The us u a 1 approach to calculating ESR parameters in a system of 

lower than cubic symmetry is to consider the problem from the "static 11 

Jahn-Teller viewpoint, by ignoring the kinetic energy term in the 

Hamiltonian (4.26). However, the Jahn-Teller effect is not completely 

"quenched", and departures from a rigid electronic state that can 

occur experimentally for the zero Kelvin and temperature dependent 

spectrum, are explained by the "zero-point motion" and "averaging over 

two or more static geometries" respectively. Such phenomena can only 

be properly explained within a dynamic model, and such a model that 

reproduces the experimental observables will yield much information 

about the coupling of nuclear and electronic motions that is the 

subject of this thesis. The following section shows how the numerical 

vibronic calculations of chapter 4 can be used to calculate dynamic 

ESR parameters. 

5.2.3 The Calculation of g-values in Dynamic Systems. 

The vibronic Hamiltonian (4.26) can be solved for a particular 

set of parameters describing the potential and kinetic operators of 

the pseudo Jahn-Teller problem (see chapter 4). The result is then a 

series of n levels with energy En and wavefunctions: 

n n 

n n 
I e> ( l: a . I <I> • >) + I e> ( l: b . I cp . >) 

i=l l l i=l l l 
(5.19) 

The basis functions are comprised of two electronic states 19>, 

le> and N (>1000) vibrational states icpi>. These wavefunctions contain 

both the geometric and electronic properties that are necessary for 

the g-value calculations. In order to determine the electronic 

properties, the wavefunctions are integrated over the vibrational 

coordinates, and in terms of the coefficients of (5.8): 

<A2> l: 
2 <B2> 2 

<AB> l: a.b. ai; l: b.; 
i i l i l l 

(5. 20) 

Note: i=l,2, .. N; <A2> + <B2> 1. 

(5.12) 



Simi 1 a r ly the expectation values of geometric properties can be 

found from the wavefunctions: <p>, <~>, <Q 0>, <Qe>' <cos~>, 

<sin 2 (~/2) >, ... etc (section 4.5.3). These geometric factors can be 

used to establish the energy of the excited triplet electronic states 

which will be different for each ground vibronic state. Alternatively, 

a mean energy can be used depending on how sophisticated a model is 

desired. 

The electronic coefficients in (5.20) can be substituted into a 

g-value expression such as (5.12), but care must be taken to use only 

the exact product expressions given. The dynamic electronic coeffi­

cients in (5.20) will obey the Schwartz inequality (CDL, pg165): 

(5.21) 

instead of the equality that would be obeyed if these coeffi­

cients were replaced by their static values. As an example, in systems 

with only tetragonal strain present in addition to the usual cubic 

Jahn-Teller terms, <AB> will be calculated to be zero. So when using 

(5.12) the appropriate expressions 

gx ge + 2u(<A
2

>+3<B
2

>) 

+ 2v(<A2>+3<B2>) gy ge 
gz ge + 8w(<A2>) 

are: 

(5.22) 

It is obvious that this must be so, as otherwise g would not x 
equal gy and rhombic g-values would result without any rhombic strain. 

Equation (5.22) is equivalent to calculating the g-values expected for 

a pure d(z2) and pure d(x2-y2) electronic state and then using the 

fractional probability of each electronic state from the vibronic 

calculation to calculate the vibronic g-values. In other words the 

"cross term" disappears, and this approach was the one made in Riley 

etal (1986), using the second order expressions in (5.15). 

This point is important as it has sometimes been erroneously 

concluded that the tetragonal strain in a Jahn-Teller system, which 

gives a mixture of d(x2-y2) and d(z2) electronic states, will lead to 

rhombic g-values (Bill 1984, pg760) . Rhombic g-values require an 

orthorhombic term in the vibronic Hamiltonian and cannot be a result 

of just tetragonal strain. The Schwartz inequality, ( 5. 21) , and the 

above arguments can be visuali~ed in several ways. The vibronic 

(5.13) 



wavefunctions in the tetragonal problem can be classified as either A' 

or A'' in the Cs factor group: 

IA'> = a1gJA1g> + b1gJB1g> (5.23) 

JA''>= blgJA1g> + a1gJB19> 
The symbols a

19
, b

19
, A

19
, Blg represent the irreducible repre­

sentations of the vibrational and electronic basis functions in the 

D4h point group. In both cases the vibrational functions connected to 

each electronic function are of different symmetry, so the product 

<AB> within each vibronic state must, by symmetry, be equal to zero. 

Alternatively, (5.21) can be explained by examining the vibronic 

probability functions in figure 6. 6. The wavefunctions are symmetric 

about the Q
9 

(or in this case Q(a1 )) axis. From equation (4.28) it 

can be seen that the d(x2-ll state c~anges sign about this axis. 

Therefore <A> = O, even though <A2> ":F. 0, similar to the mean and RMS 

geometry of an undisplaced harmonic oscillator. 

To again stress the point, in the electronic wavefunctions that 

are at a fixed geometry in ( 5. 8) , the coef f ic ien t s A and B have 

definite values that represent the mixture of d(z2) and d(x2-y2) 

orbitals. However in the vibronic wavefunctions of (5 .17), the in­

tegration over vibrational coordinates leaves only the electronic 

coefficients <A2>, <B2>, and <AB> available for use. 

Considering briefly the case of an orthorhombic component of the 

strain, the symmetry of the vibronic states are classified all of A 

symmetry in the factor group c1 : 

IA> = a IA > (5.24) 
g g 

Both the vibrational and electronic basis functions are totally 

symmetric in the D2h point group, and the cross term <AB> will be non­

zero. This is entirely expected, as it is needed to produce rhombic g­

values. A plot of the wavefunctions (or potential surface) w i 11 1 o s e 

the mirror symmetry about the Q0 axis of before and therefore <A> ":F. O. 

The electronic properties in (5.20) can be used in the first 

(5.12) or second (5.15) order perturbation formula for the calculation 

of the g-values. For an "exact" calculation however, additional care 

must be taken. Each vibronic state is an orbital singlet, but a 

Kramers doublet. Since there are no spin operators in the vibronic 

Hamiltonian of (4.26), each vibronic state of the form (5.19) can be 
1 1 labeled either a pure spin = +2 or -2· However, it is impossible to 

determine the electronic coefficients of the vibronic functions to 

(5.14) 



form a (static) purely electronic wavefunction to substitute into the 

ligand field calculation. The following circuitous approach is taken. 

The pure spin-orbital pairs (z2)+, (z2)- and (x2-y2)+, (x2-y2)- are 

separately put into the ligand field matrix. The two resulting 8x8 

complex Hermitian matrices can each be split into two 4x4 matrices, 

because the spin-orbit coupling matrix ford spin-orbitals can be 

split into two, and there are no off-diagonal liga_nd field matrix 

elements. This later point is true because the only states that are 

coupled by the ligand field in the Q0-Qe plane are the d(z 2 ) and 

d(x 2 -y 2 ) orbitals, and this term has already appeared in the Jahn­

Teller Hamiltonian as the orthorhombic strain Se. In a sense then, the 

vibronic states are pre-diagonalised with respect to the ligand field. 

The energy of the excited electronic triplet states are given by: 

E AE + A1 (T) ( - 1 +~ <Q > ) yz 2 <Qe> 2 £ 
(5. 25) 

E AE + A1 (T) ( - 1 V3 2 <Qe> - - <Q > ) xz 2 £ 

E = AE + A1 (T) <Q0> xy 

The quantities <Q
0
>, <Q/ are expectation values calculated from the 

vibronic functions (section 4.5.3), AE is the energy baricentre of the 

triplet state above the ground state, and A1 (T) can be viewed as a 

linear coupling constant in a Txe Jahn-Teller problem. The energy AE 

is kept constant for all vibronic levels to keep the average g-value 

constant. 

The different expectation values for the geometry in each 

vibronic state means that the energies of the excited triplet orbitals 

d(xy), d(xz), d(yz) will also differ for each vibronic level. Four 4x4 

complex Hermitian matrices must then be evaluated for each vibronic 

level, and four eigenvectors similar to (5.9) result: 

J+(z2)>, J-(z2)>, J+(x2-y2)>, l-(x2-y2)> (5.26) 

where the orbital in brackets indicates the main component, with small 

mixtures of the excited triplet electronic states. The vibronic 

wavefunctions would be: 

I+> Al+(x2-y2 )> 

I->= Al-(x2-y2)> 

+ Bl+(z2)> 
2 + BJ-(z )> 

(5.15) 



except that the coefficients A, B are unknowable. However, the 

evaluation of the Zeeman Hamiltonian (5.5) gives for example: 

gx 2A2<+(x2-y2) Iµ l-(x2-y2)> 
2 2 x 2 

+ 2AB<+(x -y ) Iµ 1-(z )> 
2 x 2 2 

+ 2AB<+(z ) lµxl-(x -y )> 

(5.27) 

+ 2B
2

<+(z2) lµxl-(z
2

)> 

where the coefficients are now known from equation (5.20). [Note: <BA> 

= <AB> since all coefficients in equation (5 .19) are real.] From the 

wavefunctions in (5.26), the coefficients given in (5.20), and equa­

tions of the form (5.27), the principal g-values for each vibronic 

level can be calculated. The full g-tensor does not need be calculated 

and diagonalised since the principal axes are assume coincident with 

the molecular axes. A Boltzmann average over populated levels will 

then give the calculated g-values at a particular temperature. 

The calculation of dynamic g-values outlined in this section 

requires the numerical solution of a vibronic Hamiltonian that in­

cludes the kinetic energy operator of the system. Such a calculation 

is often beyond the level of sophistication in reported studies and 

dynamic effects are often quoted as an "O'Brien mechanism" (O'Brien 

1964) being active to provide an appropriate dynamic mixture of the 

electronic functions due to the zero point motion about a minimum of 

the potential (Reddy and Srinivasan 1966; Hagan and Trappeniers 1970). 

Alternatively, a static model has sometimes been used where a dynamic 

averaging between two orthorhombic static distortions is said to 

account for such a mixture (Reinen and Krause 1981). In either case, 

such arguments can lead to an incorrect interpretation of the systems. 

(5 .16) 



5.3 CALCULATING HYPERFINE PARAMETERS 

The coupling of the electron spin with the nuclear magnetic 

moment results in hyperfine structure in the E SR spectrum. This is 

represented in the spin Hamiltonian by an additional term: 

J3 S.g.H + S.A.I (5. 28) 

Here A is the hyperfine tensor analogous to the g tensor that was 

described in section 5.1. For the case of copper, which has a nuclear 

spin of 3/2, the above spin Hamiltonian will act on an 8x8 basis 

composed of the fictitious spin functions that are characterised by 

electron and nuclear spin quantum numbers. The principal hyperfine 

values can be found by calculating all the elements of the A tensor 

and then diagonalising. 

Since the electronic Zeeman term is much larger than the hyper­

fine splitting, the off-diagonal hyperfine interaction connecting the 

two different electron spin states can be neglected. This means that 

the two terms in (5.28) can be calculated separately in a 2x2 

electronic spin and a 4x4 nuclear spin basis respectively. The 

principal values and axes of both the g and A tensors can then be 

found separately, and the principal axes of the hyperfine tensor need 

not necessarily be parallel with those of the g-tensor (A&B, pgl69) . 

Analogous to the calculation of the g tensor given in section 

5. 1, the "real" Hamiltonian of the system and the spin-orbital ground 

state wavefunction, are required. The matrix elements of the real 

system are then equated to those of the effective spin Hamiltonian to 

give the elements of A. The real Hamiltonian, or hyperfine operator, 

can be found in the texts of Ham (1972, eq 2 .1. 9) or Abragam and 

Bleaney (1970, eq 17.61) and the calculation is straightforward using 

the methods of sections 5.1-2. 

As with the g-values, approximate formulae for the principal 

hyperfine values can be obtained from perturbation theory. Bleaney 

etal (1955c) have derived such expressions up to second order. 

However, as explained at length in section 5. 2. 3, such expressions 

must be fully expanded if they are to be used with the wavefunction 
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coefficients from dynamical systems. The appropriate expressions given 

to first order are: 

A /Pa.' x 

A /Pa.' 
y 

(5. 29) 

-K + 4u + [~(2-3v)-2u]. (A2- B2) + "13[~(-2+2w+v)+2u] .AB 

1 2 2 .~ 1 -K + 4v + [7 (2-3u)-2v]. (A - B ) + ~3[7(-2+2w+u)+2v] .AB 

1 2 2 .~ 1 Az/Pa.' = -K + 4w + [7 (3(u+v)-4)+4w]. (A - B) + ~3[7(u-v)] .AB 

He re P is a scaling factor representing the average distance of 

the electron spin from the nucleus, a.' is a constant less than 1 that 

represents the unpaired spin density in the metal d-orbitals, and K 

represents the contribution due to the unpaired spin density in the 
-1 met a 1 s or bi ta ls. These above parameters take the values 0 . 0 3 6 cm , 

0.75 and 0.43 respectively for copper(II) complexes (Hitchman 1985b); 

and other symbols in equation (5.29) are as defined in section 5.1.2. 

TABLE 5.2 Hyperfine Test Data 

lst Order Pert. 2nd Order Pert. 2nd Order Pert. 

(eq 5 .29) (Bleaney etal) (keeping only 

2nd order terms) 

A Ay Az A A A A A A x x y z x y z 

2+ Cu(NH3) 4 -25 -25 -193 -24 -24 -194 -24 -24 -195 

Cs2cucl4 29 29 -16 35 35 -40 37 37 -37 

(enH2)2cuc1 6 59 9 -31 51 20 -51 54 22 -46 
4- -39 -39 18 -47 -47 25 -45 -45 26 CuF 6 

Equation (5.29) has also been determined by second order pertur­

bation theory, analogous to equation (5.15) for the g values, but as 

these formulae are quite lengthy they will not be reproduced here. 

Example calculations are shown in table 5.2 that compare the three 

perturbation formulae. The parameters used have been taken from 

Hitchman (1985b), and the hyperfine constants are given in units of 

x 1 O - 4 cm -l. It can be seen from the table that while the two second 

order expressions give similar results, the first order expressions in 
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(5.29) do not. This is especially the case in tetrahedral complexes 

(second and third examples above) where the excited electronic states 

are at low energy. 

Analogous to the isotropic g-values given by (5.18), isotropic 

hyperfine values can be found (A&B, pg802) : 

2 34 2 A. /Pa' = - ( 1 - 2u )K + 4u - -- u 
lSO 21 (5.30) 

As with the isotropic g-values, this equation is only appropriate for 

a vibronic singlet, or motional averaging within a vibronic doublet. 

In the following section the vibronic relaxation effects, which cause 

this motional averaging, is considered in more detail. 
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5.4 RELAXATION EFFECTS IN JAHN-TELLER SYSTEMS 

The calculation of g-values and hyperfine values given in the 

previous sections are for the individual vibronic eigenstates of the 

molecule. If rapid relaxation between these levels is assumed then the 

observed magnetic properties will be the Boltzmann average of the 

properties of the individual levels. 

It is important to note that vibronic relaxation is quite dif­

ferent from spin lattice relaxation. In the former case the relaxation 

is between vibronic levels of the same spin, while in the later it is 

bet we en different spin states. The conditions under which averaging 

from vibronic relaxation will occur has been carefully studied by 

Kurzynski (1977), and it was concluded that if -r is the vibronic 
v 

relaxation time and 'ts the spin-lattice relaxation time, where 'tv is 

always << 't , then the following inequalities must be obeyed: 
§1 -1 

't << v; AV << 't (5.31) s v 
In the first inequality, v is the frequency of the transition 

between spin states within one vibronic state and is then the condi­

tion for slow spin-lattice relaxation. The spin-lattice relaxation is 

usually slow in the cases studied in this thesis (Bersuker 1984a, 

pg 115) and is not of direct interest. In the second inequality Av is 

the difference between v's for different vibronic states and is the 

condition for fast vibronic relaxation or "motional averaging". 

A rapid relaxation between between vibronic levels are implicit 

in studies where the magnetic properties vary smoothly with tempera­

ture. Such a situation was found by Griller and Preston (1979) who 

determined the energy of the out-of-plane bending vibration of the 

isopropyl radical from the temperature dependence of the hyperfine 

values. Similarly, the temperature dependence of the g-values of 

K2Zn[Cu]F 4 can be used to determine the form of the ground state 

potential surface (chapter 6) . 

The above two cases are examples where the ground state potential 

is characterised by a single minimum. Rapid relaxation will occur 

between the different vibrational levels within the one well, and 

simple thermal averaging in these cases is a good approximation. 

However, if there are several minima in the potential, the relaxation 

between vibronic wavefunctions that are localised in different minima 
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can be much slower. This can lead to abrupt changes of the magnetic 

prope rt ie s with temperature that do not follow a Boltzmann type law. 

The classic case of this is observed in the anisotropic to isotropic 

collapse of the ESR spectrum of Zn[Cu]SiF 6.6H2o as discussed in sec­

tion 5.2. 

Such a situation can also occur in systems of less than cubic 

symmetry. The experimental ESR spectra of Cu(II) doped Tutton salts 

and N H 4C1 are a 1 so characteristic of a potential surface with more 

than one minimum. These cases are considered in detail in chapters 7 

and 8. The remainder of this chapter examines the way that vibronic 

relaxation effects can be incorporated into the molecular model that 

has been developed so far. 

5.4.1 Causes of Vibronic Relaxation. 

Rapid vibronic relaxation means that the rate of the transitions 

between the vibronic levels is much faster than the timescale of the 

ESR experiment. These transitions are due to the coupling of the 

molecular energy levels with the phonon continuum (Ham 1972, section 

2. 5; Gauthier and Walker 1976). In principle then, the continuous 

phonon spectrum should be included within the Jahn-Te 11 er v i bro n i c 

calculation. However, such a multimode calculation is impossible 

within the variational approach given in chapter 4. 

Gauthier and Walker (1976) have used thermal Green function 

techniques to study the coupling of the ground vibronic 2
E state to 

the phonon continuum in the linear Jahn-Teller approximation. The 

present approach is to consider the Jahn-Teller coupling of the 

electronic E state only with the internal molecular vibrations of e 

symmetry. This then assumes that the low energy lattice phonons are 

only weakly coupled with the molecular Jahn-Teller system. The 

"isolated molecule" type calculations given in chapter 4 can then be 

kept, and although the lattice phonons are not considered explicitly, 

their existence are required to provide a relaxation mechanism between 

the vibronic levels of the molecule. 
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5.4.2 Lineshape Calculations. 

The effects of vibronic relaxation on the lineshape of an ESR 

spectrum is identical to that of "motional narrowing" or "chemical 

exchange" in NMR spectra (Carrington and McLachlan 1967, chapter 12) . 

The theory in both ESR and NMR is usually developed from the modified 

Bloch equations or density matrix theory (Heinzer 1971; Poole and 

Farach 1972, chapter 16; Kaplan and Fraenkel 1980). Here the results 

f ram the density matrix formalism are simply presented. The details 

behind these results are quite complex, and the above references can 

be consulted for additional information. 

Considering now a particular problem where there are nk vibronic 

levels each with their own magnetic properties. The energy of these 

levels and their properties can be calculated using the methods given 

in chapter 4 and sections 5.2, 5.3 respectively. In each level the ESR 

spectrum will consist of nj lines representing the hyperfine t rans i­

t ions. If it is assumed that there will only be relaxation between 

levels of the same nuclear spin as well as electron spin, the problem 

can be solved separately for each hyperfine line (Binsch 1975, pg 52) . 

The spectral lineshape is then given by (Heinzer 1971) : 

Y (v) oc: Real { - (5.32) 

Here Q is a row vector of length nk with elements all 1.0, P is a 

column vector containing the'fractional populations of the nk levels. 

The nxn matrix M can be decomposed into the parts dependent and inde­

pendent of frequency: 

M. = B. + i vI 
J J 

I is the nxn unit matrix and the elements of B are given by: 

Bj K 

n 
-iv - 1/T - LkK 

pj 2p r~p rp 

pq pq 

(5 .33) 

(5. 34) 

Throughout this section the symbol i will represent the imaginary 

quantity H. The symbol T2p represents the effective transverse 
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relaxation time (in seconds) of the spin in level p. In the present 

case it is just treated as a parameter to give the line widths of the 

spectrum in the absence of vibronic relaxation. It is therefore an 

effective relaxation constant which contains contributions from many 

line broadening mechanisms and instrumental factors (Binsch 19 7 5, pg 

48; Sandstrom 1982, pg 15). If the half width at half height of a 

Lorentzian ESR line is W Gauss, then the following relationship holds: 

T 
2 

= ( 2 7tf3gW ) - l ( 5 . 3 5) 

where g is the g value of the transition and J3 = 1.4xl0 6 is the Bohr 

magneton in units of Hertz/Gauss. 

The symbol Krp in equation (5.34) represents the rate of relaxa­

tion or exchange between the vibronic levels r and p. It is a first 
-1 

order rate constant in units of s K is related to K by the rp pr 
equilibrium condition: P K r rp 

P K , where P is the fractional ppr r 
population of the rth level (Heinzer 1971; Sandstrom 1982, pg 19) . 

The frequency v . is the energy of the Zeemann transition be-
PJ 

tween hyperfine levels j in the vibronic state p, evaluated at a 

particular reference magnetic field. A value near the centre of the 

spectrum is usually taken (Kaplan and Fraenkel 1980, pg 25). Since the 

g-shifts in Cu (II) compounds are small, the reference field will be 

taken as the resonance field of a free electron at the microwave 

frequency of the spectrometer. 

A spectrum calculated from (5.32) would involve inverting a 

complex nxn matrix at each frequency, which may be up to 1000 values 

for a typical spectrum. However, the decomposition of equation (5 .32) 

into ( 5. 3 3) may be exploited in the following manner given by Binsch 

(1968). The complex non-Hermitian matrix B can be made diagonal by a 

similarity transform: 
-1 

U. B. U. =A. (5.36) 
J J J J 

Here Aj is a column vector containing the nk complex eigenvalues of 

Bj' While Uj is an nxn matrix containing the complex eigenvectors in 

columns. Equation (5.32) then reduces to: 

Y(v) ex: - Real J • -
{ 

n. nk 1 } 
~ ~ Sjk (Ajk + tV) (5. 37) 

where Sj is a vector of the shape function whose elements are: 
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m 

nk 
I. Q (U,) k 

J m 
nk -1 
I. (U, ) k p 

J n n 
(5. 38) 

n 

The use of equation (5.37) means that B needs to be diagonalised 

only once for each spectrum, saving an enormous amount of computer 

time. However, the second summation in (5.38) requires the solution of 

a system of complex linear equations. 

It is usual to present an ESR spectrum as the derivative of the 

absorption, which from (5.37) gives: 

~v Y (v) S ( A 'tv ) - 2 } jk jk - (5. 39) 

All parameters in matrix M, and therefore the spectral functions in 

(5 .37) and (5.39), are measured in Hertz. These can easily be changed 

to field swept absorption or derivative curves for the appropriate 

microwave frequency of the spectrometer. 

The following physical interpretation can be made of equations 

(5 .37) and (5.38) (Binsch 1968, Heinzer 1971): The relative intensity 

of the spectral line jk is determined by the real part of S j k, wh i 1 e 

the width and position are determined from the real and imaginary 

parts of Ajk respectively. 

5.4.3 The Vibronic Rate Constants. 

The vibronic rate constants, Kin equation (5.34), will vary with 

temperature as the rate of transitions between the levels depends on 

the temperature of the phonon bath (Ham 1972). This dependence has 

been found to closely follow an Arrhenius law: 

(5. 40) 

where Kabis the relaxation rate between states a and b separated by 

the "activation" energy Eab. This is the same dependence for the rate 

constants as in motional averaging problems in NMR spectroscopy 

(Carrington and McLachlan 1967, pg210; Binsch 1975, pp75-6). 

The exponential factor in (5.40) can be interpreted as the rela­

tive probability of finding the molecule in the bth state; or 

equivalently, to the probability of the phonon continuum exciting the 
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upward transition (Ham 1970, pg 55). The energy, Eab' is then just the 

energy separation of the two levels, except for levels that are 

localised in different minima of the potential surface, where the 

"rate determining 11 step may be the excitation to a higher vibronic 

level that is delocalised over both wells. 

This can be explained by the following· arguments: All vibronic 

levels of the isolated molecule are initially orthogonal, and there­

fore direct overlap between them is zero. However, the coupling with 

the phonon bath causes the vibronic levels and wavefunctions, to be 

"smeared", and this allows transitions to take place as finite overlap 

of the wavefunctions occurs (Reynolds and Boatner 1975). Clearly a 

much greater overlap would be expected for wavefunctions within the 

same minimum, as the probability density of the their wavefunctions 

are in closer proximity. For wavefunctions in separate minima, the 

smearing of the wavefunctions will create only a small amount of 

overlap as the probability density of the unperturbed wavefunctions 

are far from each other. 

The relaxation rate constant between two states that are 

localised in different minima is then better described by equation 

(5.40) with the energy Eab being the height of the barrier between the 

minima, rather than their energy separation. This corresponds to a 

real transition to a level near the top of the barrier that is 

delocalised over both wells thus providing a pathway for relaxation to 

the level in the other minimum (Ham 1972, pg 56). The Arrhenius form 

of equation (5.40) is then easy to understand in terms of a classical 

rate of passage over a barrier. 

The 11 random strain11 introduced by Ham ( 19 7 2) provides such a 
11 phonon ba th 11 for a relaxation pathway in cubic Jahn-Teller systems. 

This is in addition to the role the random strain plays in explaining 

the anisotropic g-values at low temperature in such systems. The 

calculation of line shapes of cubic systems have been made (Sester 

et a 1 19 7 5) assuming some explicit form of the random strain. In the 

following section the lineshape formalism previously described is used 

to illustrate some of the effects that can result from relaxation in 

Cu(II) ESR spectra. 
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5.4.4 Example Calculations of Relaxation Effects. 

Using the methods outlined in section 5.4.2, the general program 

EXCHGE was written for the simulation of spectral lineshapes. This is 

essentially the same program as that described by Heinzer (1971) 

except that it will calculate spectra for systems with up to 60 

levels, each with an arbitrary number of hyperfine components. Library 

routines from EISPACK (Smith etal 1975) and LINPACK (Dongarra etal 

1979) were used for the complex matrix diagonalisation and solution of 

the linear equations. 

Two experimental examples will be considered: 

1) The variation of the hyperfine line widths and their 

temperature dependence in Cu(II)/K2Zn(S04)2 .6H2o. 
2) The anisotropic to isotropic collapse of the ESR spectrum 

of Cu(II) doped into a cubic host with a random strain. 

The lineshape simulation of the above cases are merely illustrative 

and will only consider a small number of levels. The relaxation rates 

between pairs of levels are assumed to take the Arrhenius form of 

(5. 40) where the 11 activation energy11 is simply the energy difference 

between the levels, unless otherwise stipulated. 

The simple two level model of Silver and Getz (1974) will be used 

for the temperature dependence of Cu(II)/K2Zn(S04)2 .6H2o. The levels 

are characterised in table 5. 3 for the magnetic field directed a 1 on g 

the x molecular axis: 

TABLE 5.3 

E /cm -1 A (xl0-4 -1 n gxn cm ) n xn 

1 0.0 2.42 96 

2 75.0 2.15 20 

The temperature dependence of the principal g and hyperfine 

values have been observed to follow the Boltzmann averaging that is 

expected for fast vibronic relaxation (Silver and Getz 1974). However, 

since the hyperfine values of the different levels vary, the frequency 
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Figure 5.2 The low field spectrum of Copper(!!) doped K2Zn(so4i 2 .6H2o. 

a) The relaxation mechanism. c) Simulated spectra with K = 6.Sx10 10exp(-120/kT)S-
1 

b) Simulated spectra with K = 10 15 5-1 
d) Experimental spectra (from Silver and Getz 1974). 



difference bet we en the different levels will vary with the hyperfine 

transition. This will result a in different broadening of each hyper­

fine line if the relaxation rate is comparable to these frequency 

differences. This is illustrated schematically in figure 5.2a. 

If the vibronic relaxation between levels is very fast, then 

there would be no contribution to the line widths from the relaxation. 

This is shown in figure 5.2b where, although the g and hyperfine 

values "change" with temperature, the halfwidths of the lines do not. 

This spectrum was simulated using the data in table 5. 3 with an in­

trinsic halfwidth, W, of 3 Gauss and a relaxation time of 1015 Hz that 

satisfies the conditions of fast vibronic relaxation expressed by 
-1 equation (5.31): K = tv >> Av. 

In the other extreme, if there were no vibronic relaxation, then 

the spectra due to individual levels will by seen as these levels 

become thermally populated. The relaxation rate that will reproduce 

the observed experimental spectrum must be fast enough to "motional 

average" the spectra due to each level, but not so fast that it does 

not contribute to the halfwidths of the individual lines. 

The simulated spectra shown in figure 5.2c were obtained with the 

temperature dependent relaxation rate given by equation (5.40) using 
10 -1 the parameters found by Silver and Getz (1974): v = 6.5 x 10 s and 

0 

E12= 120 cm-1 . The simulated spectrum can be seen to compare well with 

the experimental spectrum of Silver and Getz in figure 5.2d. 

A hypothetical cubic system is now considered. It is assumed that 

random strain will localise the molecule in one of the minima of a 

warped Mexican hat potential. A system for a strain directed along the 

z molecular axis is characterised by the three levels in table 5.4: 

TABLE 5.4 

n E /cm-l gxn gyn gzn A A A n xn yn zn 

1 0 2.1 2.1 2. 42 14 14 107 

2 5 2.1 2.42 2.1 14 107 14 

3 10 2.42 2.1 2.1 107 14 14 
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Figure 5.3 The hypothetical spectrum of table 5.4. 

a) Simulated spectra with K lxlo10exp(-50/kT) s-l 

b) Simulated spectra with K 5xlo10exp(-50/kT) s-l 

3100 H/G 

c) Experimental spectrum of Cu(II)/ZnSiF 6.6H2o. (Taken from Dang etal 1974.) 



These parameters are taken from the low temperature spectrum of 

Cu (II) /ZnSiF
6

.6H2o (Dang etal 1974). The spectra due to these levels 

are shown on the left hand side of figures 5.3a,b. Here the magnetic 

field is parallel to the z molecular axis and the relaxation rates are 

given by an activation energy of 50cm-l with the pre-exponential 

factors of v
0 

1 x 1010s-l and 5 x 1010s-l respectively for figures a 

and b. The high field lines at low temperature are due to the small 

thermal population of.·the excited levels. It can be seen at about 25K 

the two sets of lines collapse to a single set. 

In a real system the strain will randomly localise the molecule 

into different wells. This means that sites with the levels 1,2,3 

permutated in table 5.4 are equally likely. Since the vibronic relaxa­

tion is assumed to be intramolecular only, the resulting spectrum is 

the same as that calculated from table 5.4 with the magnetic field 

along x, y, and z simultaneously appearing in the same spectrum. The 

temperature dependent spectra for this random strain, with the mag­

netic field directed along a principal axis, are also shown in figures 

5. 3 a, b. The experimental spectrum of copper doped Zn (SiF 6) . 6H2o is 

shown in figure 5.4c for comparison (Dang etal 1974). 

The main temperature dependent features are correctly reproduced 

by the simulation. These are the anisotropic to isotropic collapse of 

the spectrum, and the unequal halfwidths of the hyperfine lines in the 

isotropic spectra. However no attempt is made to fit the experimental 

spectrum as the real situation in this molecule is likely to be con­

siderably more complicated. A similar case of exchange narrowing 

occurs in the orthorhombic to tetragonal coalescence of the ESR 

spectrum of a copper centre in NH 4Cl. This is considered in detail in 

chapter 8. 
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CHAPTER 6 THE TEMPERATURE DEPENDENT ESR SPECTRUM OF Cu(II)/K2ZnF4 

In the following three chapters, the theory in the previous 

chapters is applied to the interpretation of the temperature dependent 

g-values of copper complexes. In these three chapters, complexes of 

increasingly low symmetry are considered: tetragonal and orthorhombic 

complexes with identical ligands in chapters 6 and 7 respectively, and 

mixed ligand complexes in chapter 8. A general concern of this thesis 

is whether the Jahn-Teller formalism, which is really only appropriate 

to cubic systems, can be successfully applied to low symmetry com­

pounds. 

6.1 INTRODUCTION 

6.1.1 "Octahedral" Copper. 

A static six coordinate copper complex cannot be rigorously 

octahedral according to the Jahn-Teller theorem because it has a 

doubly degenerate electronic ground state. The highest static symmetry 

that is allowed is tetragonal, where the distortion can either be an 

elongation or compression of the octahedron. A dynamic Cu16 system, on 

the other hand, may have a time averaged octahedral geometry but this 

can only occur in cubic crystal systems where the barriers along the 

angular coordinate of the Mexican hat potential is small. Such be­

haviour has been observed, for example, in Cu(II)/CaO (Boatner etal 

1977). 

The tetragonal distortion that is observed experimentally is most 

commonly an elongation. This corresponds to the warping terms in the 

potential forming minima at <I> = O, 120 and 240° in the Mexican hat 

potential surface. Yamatera (1979) h.as shown that the alternative 

tetragonal compression is less stable. 

The crystal structure determination of CuL 6 systems can often 

reveal a compressed geometry which actually results from either a time 

average or space average of elongated octahedra (Bertini etal 1979). A 

true compressed cu16 geometry, however, can often be found in doped 
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systems where the symmetry of the host lattice may impose a compres­

sion that is greater than the intrinsic tendency of Cu(II) to 

elongate. 

These systems are of special interest as the deviation of g 11 from 

the value expected from a pure d(z2) ground state is quite sensitive 

to the small mixture of d(x2-y2 ) caused by vibronic coupling. In 

addition, the balance of the strain and wa~ping terms can result in a 

potential that is relatively shallow and anharmonic. This then will be 

sensitive to the temperature of the system. Both the low temperature 

g-values and their temperature dependence make copper in a compressed 

octahedral geometry ideal for the study of vibronic coupling effects. 

6.1.2 Examples of Compressed Octahedra. 

An early ESR study of a system that was interpreted as due to 

compressed octahedra was reported by Hayes and Wilkins (1964), in 

conjunction with the theoretical study of O'Brien (1964). Later 

studies also found compressed octahedra for Cu (I I) doped into the 

following hosts: Ba2Zn(HC02) 6 .4H20 (Reddy and Srinivasan 1966); CsCl 

('Hag_e?.and Trappeniers 1973); Ba2ZnF 6 (Friebel etal 1976); and K2 ZnF 4 
(Reinen and Krause 1980). In these studies no attempt was made to 

quantitatively interpret the effects of vibronic coupling, all simply 

commenting that an "O'Brien mechanism" is likely to be present. It is 

the subject of this chapter to make such a quantitative study of the 

temperature dependence of the Cu(II)/K2ZnF 4 system. 

In the previous study of Reinen and Krause (1980), it was recog­

nised that relatively large vibronic mixtures of d(x2-y2) were 

involved, but it could not be determined whether this was due to a 

single minimum at ~ = 180°, or dynamic exchange between two orthorhom­

bic minima at ~ = 180 ± x0 Other examples of a compressed octahedra 1 

geometry occur in mixed ligand systems, such as Cu (II) /NH 4Cl, but 

their treatment is considerably more complicated and the study of this 

system is left to chapter 8. 
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6.1.3. Experimental 

4-T he K2 ZnF 4 host lattice consists of layers of ZnF 6 polyhedra 

connected by four common corners, as shown in figure 6.1. 

z • Zinc 

o Fluoride 

o Potassium 

x 

FIGURE 6.1 The Structure of K2ZnF 4 (from Reinen and Krause 1981). 

The axial f louride bonds are only slightly shorter than the 

equatorial Zn-F = 202pm(2x), 203pm(4x) (Herdtweck and Babel 1980), and 

al though ZnF 
6 

4- is nearly octahedral, it is apparently the fact that 

the four equatorial flouride ligands are shared while the two axial 

ones are not, which makes this a compressed octahedral site. 

The ESR spectrum of Cu (II) /K2ZnF 4 was measured by M.A. Hit chm an 

in the temperature range 4-300K at both X and Q band. The tetragonal 

g-tensor was found to lie with g 11 aligned along the z mole c u 1 a r axis 

in figure 8 .1, with gJ. showing no angular dependence in the (001) 

plane. 

The g-values at 4.2K, g 11 = 2.0030(5), g.L = 2.390(5), are charac­

teristic of a d(z2 ) ground state. As the temperature is raised, g 11 is 

observed to increase while g.L decreases, as shown in figure 6.3. Many 

different samples where used and this served to provide an estimate of 

the uncertainties in the recorded g-values (Hitchman 1986). The 

measurement of g 11 was considerably more precise than g .L and is a 1 so 

more sensitive to vibronic coupling. For these reasons, in addition to 

the fact that the dependence of g 11 shows other interesting features, 

the emphasis in this study has been to reproduce the features of g II' 

while keeping within the constraint of broadly reproducing g1 . 

( 6. 3) 



The system shows considerable hyperfine structure; in particular, 

there is coupling with the axial and equatorial ligands. The latter is 

usually indicative of a d(x2-y2) component in the ground state. A low 

temperature hyperfine analysis has been reported by Hitchman et al 

( 19 8 6) , but because of broadening effects the temperature dependence 

could not easily be studied and is not considered here. 

The electronic spectrum of the doped Cu(II)/K2ZnF 4 system has 

been measured by Reinen and Krause (1981) who observed the following 

transitions that are typical of a compressed copper geometry: 

d(z2) -) d(x2-y2 ) 

-) d(xz) ,d(yz): 

-) d (xy) 

5,200 

9,000 

10,500 

-1 
cm 

-1 
cm 

-1 
cm 

The pure K2CuF 4 compound has also been the subject of many opti­

cal absorption and MCD studies. The assignments of Laiho (1975) agree 

with those of the doped compound above, but disagree with the works of 

Kleeman and Farge (1975) and Ferre etal (1979). These later studies 

place the lower transition at 900 cm-1 . However, this conflicts 

strongly with the degree of distortion in the complex and conventional 

ideas about bonding. The electronic spectrum of the pure compound is 

interesting as the middle transition shows considerable vibrational 

fine structure. 

A similar study of the low temperature absorption spectrum of the 

doped system would be very interesting as the vibrational structure 

may be eyen more resolved. The structure on this transition would be 

expected to involve progressions in two totally symmetric, and one 

Jahn-Teller active, vibrations. These three vibrations would be of 

alg' a1g and eg symmetry in the D4h point group, corresponding to the 

vibrations of a1 , e (0) and t 2 symmetry respectively in the parent 
g g g 

octahedral group (ie the Jahn-Teller active vibration will not cor-

respond to either of the pseudo Jahn-Teller vibrations of the present 

problem) : Such a study would provide very detailed information about 

the geometry of the complex in this excited state. 

(6.4) 



6.2 METHOD 

6.2.1 The Vibronic Hamiltonian. 

The method used here to calculate the temperature dependent g­

values is to treat the CuF 6 
4- centre in the K2ZnF 4 lattice as a 

discrete unit. Multimode effects are then ignored. The vibronic 

Hamiltonian of the Exe Jahn-Teller system is used with a tetragonal 

strain component added to account for the low symmetry of the host. 

The vibronic Hamiltonian to be solved is given by the equation 

(4.26) from chapter 4. Here only the first order electronic coupling 

is included, and the warping of the Mexican hat potential was achieved 

by the anharmonicity of the eg vibration. It was found that the small 

size of the anharmonicity constant that was required did not cause the 

computational difficulties that were outline in section 4. 2. 2. Both 

the second order electronic coupling, A2, and the orthorhombic strain, 

s9, in the vibronic Hamiltonian are set to zero for the present 

problem. 

A basis size of 506 was found to be sufficient for this problem. 

Since the vibronic Hamiltonian has tetragonal symmetry, the methods 

outlined in section 4.4 have been used to symmetry block the secular 

equation. Diagonalisation was performed by both Householder and 

Lanczos algorithms, giving identical results. 

6.2.2 Calculation of the g-values. 

The calculation of the g-values in this study is very 

straightforward. The vibronic wave functions can be found by solving 

the vibronic Hamiltonian. From these the electronic properties can be 

calculated by the methods of section 5.2. These are the <A2> and <B2> 

coefficients which are the fraction of the d(z 2 ) and the d(x 2 -y 2 ) 

basis functions in the vibronic wavefunction. As discussed in section 

5.2.3, since there is no orthorhombic component of the strain, the 

crossterms <AB> will be zero. 

A single average value for the energy of the excited electronic 
-1 triplet states was taken, E(T) = 9,500 cm , as well as an isotropic 

( 6. 5) 



orbital reduction factor, k = 0.9. This means that, in the present 

approach, the g-values of the vibronic states depend only on their 

electronic composition, not on any geometric properties of the 

wavefunctions. 

Using a value of 830 cm-l for the spin-orbit coupling constant, 

the parameters in the second order perturbation expressions of equa­

tion (5.15) are then calculated to be u = 0.0704. These expressions 
2 2 2 can then give the expected g-values for pure d(z ) and d(x -y) 

electronic states: 

2 1. 987 2 2.395 g II (z ) g.l(z ) 
2 2 2.531 2 2 2.123 gll(x -y ) g.l(x -y) 

( 6 .1) 

The observed g-values will then be: 

2 <A2> 2 2 <B2> gll g II (z ) + gll(x -y) 
2 <A2> 2 2 <B2> gl. g.L ( z ) + g.i(X -y ) 

(6.2) 

Substituting the low temperature g-values given in section 6.1.3, 

and the g-values expected for the pure electronic basis functions, the 

equations in (6.2) can be solved to give the following electronic 

composition of the lowest vibronic level: 

<A
2

> = 0.97; <B
2

> = 0.03 (6.3) 

Since <A 2 > + <B2> must always equal 1.0, the equations in (6.2) 

can be solved separately, both roughly giving the same result. The 

values in (6.3) are for the more accurate g" values. It is also clear 

from (6.2) that g 11 is more sensitive to vibronic coupling. For a 

particular value of d(x2-y2) mixed into the predominantly d(z2) ground 

state, the shift of g 11 is much greater than g..1. from the values of a 

pure d(z 2 ) ground state. This also explains why g 11 is observed to be 

more temperature dependent than g.i. 

It was shown in figure 5 .1 of chapter 5, that the use of the 

second order perturbation expressions is quite a good approximation to 

the "exact" calculation for the present system. Comparison of the 

first, second and exact calculations in figure 5.1 indicates that the 

perturbation expressions will slightly underestimate the orbital 

reduction parameter k. For simplicity this effect is ignored and the 

( 6. 6) 



second order perturbation expressions are used with the electronic 

coefficients obtained from the vibronic wavefunctions. 

The calculation of the g-values for finite temperatures can be 

done in one of two ways. Either the g-values of all the thermally 

populated leve 1 s can be calculated from ( 6. 2) and then a Boltzmann 

average taken; alternatively a Boltzmann average can be taken of the 

electronic properties <A2> and <B2> and then the g-values calculated 

from (6.2). Both methods will give identical results. It is the 

former, however, that is strictly correct. It is not the electronic 

properties of the system that are averaged, but rather the g-values, 

or more strictly, the ESR spectrum, that is averaged. This is because 

of the fast vibronic relaxation or "motional narrowing" that occurs on 

the ESR timescale. An hypothetical "fast" experiment could verify this 

by detecting the electronic properties of each vibronic level, though 

in practise this would be difficult as the electronic properties 

of the levels only differ slightly. 

6.2.3 Estimation of the Parameters. 

Four parameters in the vibronic Hamiltonian need to be specified: 

The linear coupling constant. 

The force constant and anharmonicity of the eg vibration. 

The magnitude of the tetragonal strain. 

The features which may be observed experimentally are: the low 

temperature g-values, the temperature dependence of the g-values and 

the optical spectrum. The optical spectrum can give the transition 

between the two Jahn-Teller potential surfaces directly. This transi­

tion is approximately d(z2) - d(x2-l) in the present system and has 

been observed at 5,200 cm-l (Reinen and Krause 1981). In terms of the 

potential parameters this corresponds to the energy: 

(6. 4) 

The low temperature g-values, on the other hand, are determined 

by the zero point vibration which in turn is mainly dependent on the 

relative magnitude of s0 and K
3

. This is for a particular set of the 

( 6. 7) 



magnetic parameters: k, ~' E (T) that have already been chosen in the 

previous section to give (6.1). 

Where g(average) is determined by these magnetic parameters, the 

anisotropic part of the g-tensor (gi-g 11 ) is determined by the relative 

mixture of the d(z2) and d(x2-y2) electronic basis functions in the 

vibronic states. The lowest state must contain the correct mixture 

given in ( 6. 3) to reproduce the low temperature g-values, while the 

higher vibronic states must have both the correct mixtures and 

energies above the ground state to reproduce the temperature depend­

ence of the g-values. 

Although it has been shown here that the experimental observables 

are related to the parameters of the vibronic Hamiltonian in a complex 

manner, a systematic approach can reveal a unique set of these 

parameters that "fits" experiment. 

(6. 8) 



6.3 RESULTS 

6.3.1 Fitting the Parameters 

The transition energy to the upper Jahn-Teller is determined by 

three parameters in ( 6. 4) . Figure 6. 2a shows sets of these three 

parameters that fit the observed transition energy by satisfying 

( 6. 4) • It can be seen that the fit is most sensitive to the linear 

coupling constant A1 . For reasonable values of hv and Se, the linear 

coupling constant, A1, must lie in the range 600-900 cm-l 

Another experimental observable that can be used is the Jahn­

Teller radius p which can be determined from X-ray structural data. 
0 

For pure K2CuF 4 this equals -35pm (Reinen and Krause 19 81) , but be-

cause of cooperative effects this is likely to be larger than for a 

discrete CuF 6 
4- centre. From the study of mixed crystals at various 

concentrations a value of p
0 

-27 .5pm was concluded by Reinen and 

Krause (1981) for an infinitely dilute crystal. This dimensioned Jahn­

Teller radius is related to both A1 and hv by the following 

expression: 

A
1 

= p
0

x hv; x = 1.722xlo-3 [M.hvJ 1/ 2 (6.5) 

The values of A1 and 

shown as a dashed line in 

hv that satisfy (6.5) when p = 27. 5pm is 
0 

figure 6.2a. Intersections of the dashed and 

full lines represent possible solutions that simultaneously satisfy 

both p
0 

and AE. 

The next easiest experimental observable to fit is the low tern­

perat ure g-values, and figure 6.2b shows the values of Se and p that 

reproduce g 11 ( 0) for several values of hv. For each value of h v, the 

linear coupling constant that reproduces p is taken (ie the dashed 
0 

line in figure 6.2a). However, an arbitrary point along these plots 

will not fit either AE or the temperature dependent g-values. As with 

A1 and Se in figure 

P and Se, chosen 

dependent g-values, 

6.2a, p and Se are near linearly related. Plots of 

to fit both the low temperature and temperature 

versus AE, A1 -1 Here, at AE = 5,200cm , there 

fit all the experimental data. 

and hv are shown in figure 6. 2c. 

are sets of A1 and hv that appear to 

( 6. 9) 
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If the extra information that p
0 

-27.Spm is used, then this gives 

the dotted line in figure 6.2c. The intersection of the dotted and 
-1 -1 dashed lines occurs at a frequency of hv -220 cm and A1 = 673 cm 

When these are related back to figures 6. 2a and 6. 2b, the unique 
-1 -1 values of s

0 
= -541 cm and p = 51.5 cm respectively, are obtained. 

However, the value of p was estimated using many approximations, 
0 

and it would be preferable to determine it by independent means. This 

is done by calculating the temperature dependent g-values for other 

pairs of (A1, hv) that intersect the dashed line in figure 6.2c. Plots 

obtained using these values are shown in figure 6.3. 

It can be seen that while the low temperature g-values and the 

general temperature dependences are reproduced, only one set gives the 

inflection in the curve of g 11 at low temperature. This particular set 

also corresponds to that predicted using p = 27. 5 cm- 1 . The final 
0 

parameters obtained are then fully consistent with all the experimen-

tal data and are in a sense overdetermined. This, coupled with the 

sensitivity of the fit shown in the following section, suggests that 

parameters of this system can be determined uniquely. 

6.3.2 Sensitivity of the Fit. 

The sensitivity of the fit to the parameters determined in the 

previous section are briefly discussed here. The lower adiabatic 

potential surface of the best fit potential is shown in figure 6. Sa. 

The angular cross section of this surf ace at constant p = p , is shown 
0 

in figure 6.Sb. However, it should be noted that the least energy path 

around the two dimensional surface is far from circular, and figure 

6.Sb is only a schematic representation to display the calculated 

energy levels. 

Of all the parameters that define the potential surface, it is 

the warping parameter that is most difficult to independently quan­

tify, as it is a composite parameter resulting from many competing 

mechanisms of whi,ch the anharmonicity will be just one (Deeth and 

Hitchman, 1986). This warping parameter can be conveniently described 

by p (- -K 3 p~) where 2P is the barrier height between equivalent 

minima of the warped Mexican hat in the absence of strain. In a sense 

p is a parameter used to "fine tune" the potential into the shape 

desired. 

(6.10) 
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-1 
The temperature dependent g-values for p = 0 and 100 cm are 

shown in curves 3 and 4 respectively in figure 6.4, where the other 

parameters are kept at the values given in (6.5). It can be seen that 

these values fit neither the low temperature g-values nor their tem­

perature dependence. The value of p can then be said to be well fixed 

at -50cm-l for this system assuming the values of all the other 

parameters. 
-1 -1 -1 

The best fit linear coupling constant A1 = 673cm (V=75cm pm ) 

is somewhat lower than that determined by the optical spectra and 
-1 structure of pure copper (II) flouride complexes, A1 = 816cm (V = 

-1 -1 lOOcm pm ) (Reinen and Krause, 1981). Again it is not at all 

surprising that the best fit value of A
1 

for this doped system is less 

than in the pure cases, as cooperative effects would tend to increase 

A
1 

in the latter case. If a larger value of A
1 

is used with the other 

parameters chosen to fit the low temperature g-values and optical 
-1 -1 -1 -1 

spectra (A1= 770cm ; hv= 270cm ;Se= -400cm ; p =12cm ) , then 

curve 2 in figure 6. 4 results. [Note: Slightly different values of 

these parameters were erroneously given in figures 6 & 7 of Riley etal 

( 19 8 6) . ] However, this curve does not reproduce the temperature de­

pendence of the g-values. The angular potential obtained using these 

parameters is shown in figure 6.5c and can be compared directly with 

the best fit potential, clearly illustrating why the temperature 

dependence of this does not fit using this potential. 

The inflection in g 11 at -60K implies that there must be angular 

vibrations of quite low energy. This occurs for particular values of 

Se and p which result in a highly anharmonic potential along the 

angular coordinate. The best fit potential in figure 6.5b has such a 
-1 low lying level (62cm ) when compared to the potential in figure 6.5c 

(-lOOcm-1). 

These low lying levels could only be found for quite a 1 ow fr e -
-1 

quency of the e vibration, hv = 220 cm . This hypothetical frequency 

of the CuF~- unit in the absence of vibronic interactions or strain, 

is substantially lower that that observed in the Ni(H20)~+ (305cm-1) 

or Zn(H20)~+ (278cm-1) by Jenkins and Lewis (1981). However, such a 

low value appears necessary to fit all the experimental observables in 

the present study. 

( 6 .11) 
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6.4 DISCUSSION 

6.4.1. The Best Fit Parameters. 

The parameters that were found to best fit experiment are: 

A
1 

673 cm-l 

hv 220 cm-l 
-1 K

3 
-1. 8 cm 

-1 s0 -541 cm 

-1 -1 (V= 75.0 cm pm ) 
o-1 (f 0.54 mdyneA ) 

-1 (p = 51. 4 cm ) 

( 6. 6) 

The additional values on the right are equivalent ways of expressing 

these parameters in alternative units. Other quantities of interest 

are: 
1029 cm-l 

= 3.0591 27.5pm) 

The vibronic energy levels and wavefunctions calculated for 

these par a meters are shown in figures 6. 6 and 6. 7. The energy levels 

are shown inside the circular cross section of the lower Jahn-Teller 

surf ace at constant p . The zero point vibration energy of the radial 
0 

vibration has been subtracted from these levels. 

Approximate radial and angular quantum numbers (np,n$) are given 

to each level and the members with 0,1,2 radial quanta are shown, as 

full, dashed and dotted lines respectively. These approximate quantum 

numbers can be understood if the vibrational part of the vibronic 

wavefunctions are plotted explicitly. These are shown in figure 6.6 as 

probability functions in the Q0-Qe plane. As in a simple harmonic 

oscillator, the 0,1,2 ... quantum numbers correspond to 0,1,2 ... nodes 

in the wavefunctions along the radial or angular coordinates. 

Also shown, next to the energy levels, is the percentage of the 

d(x2-y2) orbital in the predominantly d(z2) wavefunctions. For higher 

quanta of the angular vibration, this mixture quickly increases. Even 

though each vibronic function is symmetric about $ = 180° as required 

by symmetry, the more delocalised they become, the more d(x2-y2) 
character is mixed in dynamically. The radial vibration, however, is 

much less effective in mixing in d (x2-y2) as the two surfaces of the 

(6.12) 
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Mexican hat potential are separated by a large amount in these strong 

Jahn-Teller coupling systems. 

The electronic composition of the vibronic levels can also be 

illustrated by considering the electronic part of the wavefunctions 

explicitly, as shown in figure 6.7. The lowest level is nearly a pure 

d(z2) orbital, with the -3% d(x2-y2) causing only a small protuberance 

along the x and y axes. For the higher levels, as a greater mixture of 
2 2 d(x -y) is involved, these lobes grow. With the first excited radial 

vibration (1,0), the almost pure d(z2) orbital is again calculated. 

6.4.2 Comparison with other Calculations. 

The present calculations indicate that there is only a single 

minimum at ~ = 180°, therefore ruling out the alternative explanation 

of rapid exchange between two orthorhombic minima for the low tempera­

ture g-values in this system made by Reinen and Krause (1981). 

Although there have not been other quantitative determinations of the 

coupling constants of CuF~- from experiment, several theoretical 

studies have been carried out. The results of these studies are given 

in table 6.1 in terms of the units that are used here. 

TABLE 6.1 Vibronic Constants of CuF~-

Present Liehr & Pelikan Shashkin & 

Work. Ball. (1958) etal (1985) Goddard (1986) 

METHOD Experiment Crystal CNDO/INDO HF-Cl 

Field Cluster Model 

hv/cm -1 220 210 681 270 

A1/cm -1 673 693 427 702 

EJT/cm 
-1 1029 1142 134 1075 

-1 51.5 200 4 ~/cm 674 

With the exception of the study by Pelikan etal (1985), and the 

values of ~' good agreement was found with the calculated values. This 

gives some confidence to the values obtained in the present study, 

(6.13) 



especially as the work of Shashkin and Goddard (1986) appeared after 

the completion of the present work (Riley etal 1986) . 

6.4.3 An Approximate Harmonic Model. 

A contour plot of the lower potential surface of the best fit 

parameters is shown in figure 6.Sa. Here it can be seen that near the 

minimum of the potential the curvature is very much less in the an­

gular direction than along the radial coordinate. This results in the 

energy of the angular vibration being much less than that of the 

radial vibration. 

A much simpler approach than solving the vibronic equations as 

given above would be to consider just this angular coordinate with a 

harmonic potential. The variation of the adiabatic electronic function 

in the angular coordinate is then given by: 

z 2 z 2 2 
~ = sin2 d(z ) + cos2 d(x -y ) (6.7) 

For strong Jahn-Teller coupling (EJT>>S
9
), z can be replaced by 

the angle cj> of the Mexican hat potential. The mean angular amplitude 

of the vibrations in such a harmonic angular potential centred at 180° 

will be zero as required by group theory, but the mean squared angular 

amplitude be non-zero. If the angle ~ is defined as cj> - 180°, then for 

small values of ~ one has: 

sin ~ - ~ ( 6. 8) 

The mean square angular amplitude for the nth vibrational level 

is then given by: 
2 1 -2 

<~ >n = (n+2l (p
0
x) (6.9) 

Here p is given in picometers and x has been given in equation (6.5), 
0 

where the vibrational frequency, hv, to be used in x is the energy of 
' -1 the angular vibration in cm 

Using equations (6.2) and (6.7) the g-values are given by: 

g (6.10) 

( 6 .14) 



The dynamical quantities can be approximated using (6.8): 

2 < 2> 
<cos (~)> - 1 - ~; 

when TI is small and given in radians. The temperature dependent g­

values are then: 

2 2 2 2 -2 gi = g1 (z) + 2[g1 (x -y) - gi(z )] (2p x) coth (hv/2kT) 
0 

(6 .11) 

These equations are easily derived from (6.10) using the methods 

of section 3. 6 and are analogous to the expressions for temperature 

dependence of the intensity of parity forbidden electronic t rans i­

t ions. The frequency, hv, of this angular vibration can be found from 

(6.10) using the low temperature g-values, or equivalently, using 

(6.8) with the wavefunctions in (6.3). If the experimentally deter­

mined value of p = 27.Spm is used then one finds: 
0 

hv [8x(l.722xl0-3)2xl9x(27.5) 2<A2>]-l 
= 100 cm-l 

This value of 100 cm-1, which reproduces the low temperature g­

values, also roughly gives their temperature dependence. This is shown 

in figure 6. 8 with several other harmonic potentials. The fact that 

the overall behaviour of this system can be modelled with these har­

monic potentials is not surprising considering the single minimum and 

well localised wavefunctions that were obtained in the more sophisti­

cated calculations. However, the harmonic model is incapable of 

reproducing the subtler features of the temperature dependence, such 

as the inflection in g 11 observed at low temperatures. It would need a 

very anharmonic potential to reproduce such a feature. 

In addition to this it is difficult to directly relate the har­

monic model to the physical properties or parameters arrived at in 

solving the vibronic equations. The lower adiabatic potential in polar 

coordinates is given by: 

(6.15) 
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(6.12) 

If the approximations cosx - 1-x2/2 and [1-xJ 112 - 1-x/2 are used, and 
(6.12) is minimised with respect to p, then the angular potential is: 

(6.13) 

For s0<<EJT this gives K = [S 0-9~] as given in Riley etal (1986). 

Similar formulae have been given by Kurzynski (1975, 1977). If the 

best fit values are substituted into the above expressions, the value 

of hv = 8 cm-l is calculated for the angular vibration. Since this is 

far from the 100 cm-l that was required to fit the experimental data, 

it can be seen that the parameters of the two approaches are not 

easily related. 

The act ua 1 energies of these (approximately) angular vibrations 

calculated from the vibronic Hamiltonian, are shown in figure 6. Sb. 

The first to fourth energy intervals are 62, 79, 85, 87 cm-l respec­

tively. 

( 6 .16) 



6.5 CONCLUSIONS 

It has been found that the temperature dependent ESR spectrum of 

K2Zn[CuJF 4 could be well reproduced by molecular models that are 

strictly applicable only to isolated CuF~- species. The copper centre 

in the crystal lattice will really have its ground electronic states 

coupled by the phonon continuum of eg symmetry. However, O'Brien 

(1983) has shown that multimode effects can be closely approximated by 

a single effective vibration. It has also been assumed that the poten­

tial surface itself is temperature independent. At higher temperatures 

a s 1 i g h t increase in the g-values could be expected from the thermal 

expansion of the host lattice. 

The anharmonicity, or warping terms, in the potential are also 

likely to be influenced by the continuous nature of the lattice in two 

dimensions. It has been argued by Deeth and Hitchman (1986) that such 

lattices will tend to reduce the anharmonicity. This is borne out by 
-1 the relatively low value of p (=50 cm ) required to reproduce the g-

values of this system. 

A simple harmonic model of the system was found to qualitatively 

reproduce the temperature dependent g-val ues. However, the more 

sophisticated approach of solving the strain perturbed E x e 

Hamiltonian was necessary to quantitatively reproduce all the ex­

perimental data. 

The success of treating K2Zn[CuJF4, as described in this chapter, 

has prompted the further studies of the more complex low symmetry and 

mixed ligand systems discussed in the following chapters. 

(6.17) 



CHAPTER 7 COPPER(II) DOPED TUTTON SALTS 

7.1 INTRODUCTION 

The family of Tutton salts given in table 7 .1 have the general 

composition expressed by x2M(Y0 4) 2 .6H2o, where the symbol X represents 

a monovalent cation and Y is either sulphur or selenium. These com­

pounds contain discrete M(H20) ~+ units, where the metal ion, M2+, is 

surrounded by a distorted octahedra of six water molecules and has a 

local D
2

h symmetry. Following the pioneering work of Bleaney etal 

(1955b), it was Silver and Getz (1974) who showed that the ESR spec~~m 
- - ---~---- ------------ - -- ------ - - - - -- - -- ---- -~-- --~ ---

of Cu(II) doped K2 Zn(S0 4 )
2

.6H2o was an example of the Jahn-Teller 

effect. They carefully examined the temperature dependence of the spin 

Hamiltonian parameters and developed a model that could account very 

well for the observed experimental behaviour. 

This model, which is essentially a Boltzmann average over three 

(energetically) non-equivalent static distortions, has subsequently 

been used to interpret the ESR spectra of similar systems containing 

the Cu (H2o)~+ ion (Petrashen etal 1980; Zaitdinov etal 1976, 198 3; D'e 

et a 1 19 8 4; Rubin etal 1984); as well as crystal structures (Hathaway 

etal 1981; Alcock etal 1984) . 

As Silver and Getz (1974) have themselves appreciated, the model 

is basically a static one whose strength lies in the ability to co r­

re c t ly reproduce temperature dependent ESR parameters. However, it is 

felt that already several workers have carried this model too far and 

have drawn erroneous conclusions about the nature of the ground state 

potential surface. In this chapter the experimental ES R spectrum of 

four representative copper doped Tutton salts and copper doped 

Zn(GeF
6

) .6H20 is reexamined in terms of a fully dynamical model. 

7.1.1 Experimental. 

The temperature dependent 
+ X 

2 
Z n ( S 0 

4 
) • 6 H 

2 
0 , w he re X = NH 4 , 

shown as points in figures 7.3-7.7. 

g-values for copper doped 
+ + + K , Cs , Rb and Zn(GeF 6) .6H2o are 

The different sources of the data 

(7 .1) 



TABLE 7.1: Tutton Salts Structural Data. 

x y M R b) R R <R>c) d) Temp. Ref. z y x Po 

*NH s Cu 196.1(5) 209.5(5) 221.9(5) 209.2 25.8 RT 1 
*II 4 II II 196.6(1) 207 .2 (1) 223.0(1) 208.9 26.6 ?e) 2 
*II II II 196.7(2) 204.1(2) 225.0(2) 208.6 29.4 215e) 3 
*II II II 197.0(1) 201. 2 (1) 227.8(2) 208.7 33.4 145e) II 

ND II " 192.7(6) 208.1(7) 224.2 (6) 208.3 31.5 293 4 II 4 II II 194.1(4) 204.8(6) 229.9(5) 209.6 36.8 250 II 

II II II 195.1(4) 202.4(6) 232.5(4) 210.0 39.6 203 " II II II 194.4(5) 200.8(5) 231.8(6) 209.0 40.0 150 " II II 195.0(4) 200.6(4) 231. 8 (5) 209.1 39.7 123 " II II 194.8(5) 199.6(5) 230.3(6) 208.2 38.5 50 " 
" II 195.1(4) 201.1(4) 230.4(6) 208.9 37.8 5 " 
K II 194.3(2) 206.9(2) 227.8(2) 209.7 33.8 RT 5 
Rb II 195.7(3) 203.1(3) 230.7(3) 209.8 36.9 RT 6 ,, II 197.8(5) 200.0(5) 231.7(5) 209.8 37.9 77 7 
Cs " 196.6(5) 200.4(4) 231. 5 (5) 209.5 38.3 RT 8 II II I 201 (4) 200 (1) 231(2) 210.6 35.2 77 9 

?Tl II " 195.7 201. 7 231.7 209.7 38.6 RT 10 
?NH4 Se II 199.0(5) 203.1(5) 223.7(5) 208.6 26 .5 295 11 
*K " II 193.6(2) 204.4(2) 229.7(2) 209.2 37.1 RT 12 

*NH s Zn 207 .5 (1.2) 211.7(1.2) 212.9(1.2) 210.7 5.7 RT 13 
*K 4 II II 203.2(4) 212.6(5) 213.3(4) 209.7 11.3 RT 14 

*NH s Ni 203(2.5) 203(3.5) 205(2.5) - - RT 15 *II 4 II II 203.6(1.2) 208.3(1.2) 208.5(1.2) 206.8 5.5 RT 16 
*II " II 204.8(9) 205.5 206.5(5) 205.6 1. 7 2 17 
*DH " II 203.8(3) 206.2 (3) 206.6(3) 205.5 3.0 2 17 K 4 " II 202.1(2) 207.8(2) 208.7(2) 206.2 7.2 RT 18 

*NH " Mg 205.1(5) 207.3(5) 208.3(5) 206.9 3.3 RT 19 
?K 4 II II 205.6(?) 210.3(?) 211.8(?) 209.2 6.5 RT 20 

NH 4 
II Mn 215.0(6) 219.3(6) 220.0(6) 218.1 5.4 RT 21 

*NH II Cd 224.1(7) 229.7(7) 229.8(7) 227.9 6.5 RT 22 4 

*NH II v 212 (1) 216 (1) 216 (1) 214.7 4.6 RT 23 4 

*NH II Fe 208.6(7) 213.6(7) 215.6(7) 212. 6 7.2 RT II 

4 

*NH II Co 207.0(4) 210.6(4) 4 210.7(3) 209.4 4.2 RT II 



NOTES FOR TABLE 7.1: 

a) All compounds are isostructural, monoclinic space group P2 1/a with 

Z=2. The standard deviation in the last figure is given in brackets. 

b) In the crystallographic notation R =M-0(9), R =M-0(7), R =M-0(8); z y x 
except for the structures marked*, where Ry=M-0(8), Rx=M-0(7); or? 

where a different notation has been used. The molecular coordinate 

system has been chosen so Rz< Ry< Rx. Therefore the principal axis z 

corresponds to a tetragonal compress ion, with a positive rhombic 

distortion. In terms of the eg vibrational coordinates, this means Q9 
O, Q > 0. The "static" geometry is therefore in the second quadrant 

E 

(90<~<180) of the Jahn-Teller surface. 

c) <R> = ! L R., is the mean bondlength. 
3 i l 

d) p
0 

= [ ~ 2(Ri- <R>) 2 J112 , is the Jahn-Teller radius. 
l 

e) The temperatures 215, 145K quoted are taken from Hathaway etal 

(1981). Their original reference (3) gives them as 203, 123K respec­

tively. Reference 3 also suggest that the structure reported in (2), 

has been done below room temperature, and so has been marked ? . 

Reference 2 does not quote a temperature. 

REFERENCES FOR TABLE 7.1: 

1) Montgomery and Lingafelter (1966a) . 
2) Brown and Chidambaram (1969). (neutron) 
3) Alcock etal (1984). Note: Data at -150K (Duggan etal 1979) 

has not been given as this reference says it is inaccurate. 
4) Hathaway and Hewat (1984) . (neutron powder) 
5) Robinson and K~nnard (1972). (neutron) 
6) Van der Zee (1972). (neutron) 
7) Smith etal (1975). (neutron) 
8) Shields and Kennard (1972). (neutron) 
9) Shields etal (1972b). 
10) Shields etal (1972a). (neutron) 
11) Monge and Gutierrez-Puebla (1981) . 
12) Whitnall etal (1975a). (neutron) 
13) Montgomery and Lingafelter (1964a). 
14) Whitnall etal (1975b) . (neutron) 
15) Grimes etal (1963). (two dimensional data) 
16) Montgomery and Lingafelter (1964b). 
17) Fender etal (1986). 
18) Hodgeson etal (1975). (neutron) 
19) Margulis and Templeton (1962) . 
20) Kannon and Viswamitra (1965). 
21) Montgomery etal (1966) . 
22) Montgomery and Lingafelter (1966b). 
23) Montgomery etal (1967). 



a re indicated by different symbols and were obtained from the follow­

ing published studies: 

)('Bagguley and Griffiths 
A 'Bleaney etal (1955b) 
0- Silver and Getz (1974) 
+ Zaitdinov etal (1976) 
0 Petrashen etal (1980) 
O Wan Mohamed (1985) 

(1952) [K] 
[K] 
[K] 
[Ge] 
[NH 4, Cs, Rb] 
[K, NH 4J 

From these studies the following features are well known: 

1) In all cases <g> is temperature independent and coincides for 

all the Tutton salts hosts, having a value of 2.20. In the 

case of Zn(GeF
6

) .6H2o, <g> = 2.226. 

2) In all cases the principal axes of the g and A-tensors 

coincide and are temperature independent, remaining directed 

along the the Cu-0 bonds. 

3) The temperature dependence of the g-values varies with the 

host lattice. 

4) In the case of the Tutton salts, the principal g-values are 

rhombic, two being strongly temperature dependent while the 

third remains essentially temperature independent. 

5) In the case of the Tutton salts, the "apparent tetragonal 

axis" changes by 90 degrees between low and room temperature. 

At low temperature the rhombic g-values can be loosely 

described as being close to a tetragonal elongation, while at 

higher temperatures they become better described by a 

tetragonal compression. 

6) In the case 

tetragonal up 

typical of a 

of Cu(II)/Zn(GeF 6 ) .6H 2o, the g-values are 

to a phase transition at 190K. The g-values are 
2 2 

d(x -y ) ground state, but are strongly tempera-

ture dependent. 

7) In the case of K2 Zn(S0 4 J 2 .6H 2o, the relative hyperfine 

linewidths show a strong temperature dependence. 

7.1.2 The Silver and Getz Model. 

In previous studies, the temperature dependent ESR spectrum of 

copper(II) doped Tutton salts has been explained in terms of the 

Silver and Getz (1974) model. This model uses the three static elon­

gated distortions that correspond to the minima of the warped Mexican 

(7 .2) 



hat where their degeneracy has been lifted by the low site symmetry of 

the lattice. The g-values are given by an equation of the form 

(Petrashen etal 1980) : 

g (T) Nlgxl + N2gx2 + N3gx3 (7 .1) 
x 

g (T) Nlgyl + N2gy2 + N3gy3 y 
gz(T) Nlgzl + N2gz2 + N3gz3 

N exp(-o1n/kT) I n 
[L exp(-8

1
./kT)]; 

' l 
N1+ N2+ N3= 1.0. 

l 

The symbols gxl' N1 for example, represent the g-value and frac­

tional population respectively at a static rhombic geometry of site 1. 

In the original treatment of Silver and Getz (1974), it was assumed 

that only the population of the two lowest sites was important, and 

that the magnetic properties were the same in both sites with an 

interchange of the x and y axes: 

g (T) 
x 

g (T) 
y 

g (T) z 

= Nlgxl + N2gyl 

Nlgyl + N2gxl 

= gzl 

(7. 2) 

Inherent in equations (7.1) and (7 .2) is the assumption that the 

transitions occur between the three wells at a rate that is fast 

compared to the ESR time scale. This fast vibronic relaxation results 

in motional averaging and the observed magnetic properties are a 

Boltzmann weighted average of the individual sites. 

The values of g, are equal to those obtained from the low tem-
1 

perature spectrum when N
1
= 1, N2= 0. From the populations N1, N

2 
that 

fit the the experimental data, the energy differences between the 

wells o1, 2can be found and such values are given in table 7. 2. Also 

included in table 7 .2 are the estimates of the energy of the higher 

well o1, 3 obtained from crystallographic data, and the "activation 

energy" for transitions between wells 1 and 2 in K2Zn(S0
4

)
2

.6H
2
o. This 

latter value was obtained by Silver and Getz (1974) from an analysis 

of the hyperfine linewidths in a manner described in section 5.4.4. 

(7. 3) 



Table 7.2: Parameters from the Silver and Getz Model. 

Compound 01,2 01,3 El,2 Reference 

K2Zn(S04) 2 .6H20 75 450 120 Silver & Getz (1974) 

75 -1125* - Petr ashen et al (1978) 

Rb2Zn(S04) 2 .6H20 175 -1000* - " 
(NH 4)2Zn(S04) 2 .6H2o 230 -1050* - " 
Cs2Zn(S04) .6H20 290 -1000* - " 
ZnGeF 6. 6H20 154 - 160 Zaitdinov (1976, 1983) 

* Obtained from the crystal structure, the rest from ESR data. 

2+ Table 7.3: Vibrational Data for M(H2.Ql
6
_. 

Complex v(eq)/cm -1 v(a10)/cm -1 Temp/K Reference 
Ni(H2o) 6SiF 6 305 405 15 Jenkins & Lewis 
Ni(H2o) 6TiF 6 302,323,334 402 15 " 
Fe(H2o) 6SiF 6 296 379 15 " 
Mg(H20) 6SiF 6 300 374 15 " 
Zn(H2o) 6SiF 6 278 380 15 " 
Mn(H20) 6TiF 6 260 - 103 Choudhury etal 
Zn(H20) 6TiF6 254,268 396 110 " 

Table 7.4: Estimation of the Strain Parameters. 

NH+ 
4 

K+ 

AR (pm) 2.2 (1.2) 3.6 ( 0. 5) 
~Rx (pm) 1.0 " 2.9 " 
~Ry (pm) -3.2 " -6.5 " 
Qe z (pm) -5.54 -11.3 
Q~ (pm) 1.20 0.70 
Q~ a) -0.701 -1. 425 
QE -1 0.152 0.089 
s9 (cm_1) b) -630 -1280 
S (cm ) 140 80 
_es I s 4.5 16 9 E 

a·) The coordinates are made dimensionless by1using equ~£io!} 1 (2.35). b) The strain is calculated using A1= 900cm (V=ll3cm pm ) . 

(1981) 

(1985) 



7.2 METHOD 

Contrary to the Silver and Getz model usually adopted, a dynamic 

approach has been taken, where the full pseudo-Jahn-Teller vibronic 

Hamiltonian is solved numerically. A single set of parameters are used 

to describe the kinetic and potential energy operators of an isolated 

Cu (H 2 o)~+ ion. The observed temperature dependence in the different 

host lattices are then fitted by allowing the tetragonal and orthor­

hombic components of the strain to vary. It will be shown that these 

strain terms compare favourable with the geometry of the host lattice 

~where a crystal structure has been done. 

7.2.1 The Calculation. 

The vibronic Hamiltonian is that of the usual Jahn-Teller E<=e 

problem with additional strain terms to account for the low symmetry 

of the host lattice. This vibronic Hamiltonian is given by (4.26) 

which has the inherent approximation that the strain terms will not 

destroy the symmetry of the cubic part of the Hamiltonian. 

Anticipating a relatively large value for the warping terms in 

the present systems, the second order coupling constant has been used 

to parameterise this effect. This term has been used instead of the 

anharmonicity because of the computational difficulties that are 

encountered for a large anharmonic constant (section 4.2.2). 

7.2.2 Estimation of the Parameters. 

~2~ The quadratic force constant, K2, which is equal to the energy of 

the hypothetical e vibration, hv, in the absence of vibronic cou­

pling, is held fixed a~ 300cm-l from the vibrational data obtain for 

other metal hydrates. Table 7.3 shows.the assignments given to the 

Raman active e and a1 vibrations for several non Jahn-Teller ions. 
g g 

The assignments of Jenkins and Lewis (1981) are preferred, because the 

spectrum has been taken at a lower temperature and is in keeping with 

the usual value of 300cm-l that is used for thee vibratlon in 

vibronic calculations on the Cu(H20)~+ ion (Williams ital 1969; O­

'Brien 1964). 

(7. 4) 



~1_;_ The linear Jahn-Teller coupling constant for Cu (H 2 o)~+ has 

previously been given va 1 ue s of 812cm-l (Williams etal 1969), and 

1300cm-1 (0'Brien 1964). The value of O'Brien is probably too large as 

it ,is inconsistent with the electronic spectrum. Bill (1984, pg791) 

gives a value of 960 cm-l for the (Cuo 6) sub-unit, found from an 

average of the structural data of 15 pure compounds. An estimate from 
-1 simple bonding arguments (Deeth and Hitchman 1986) gives A1 = 625cm , 

-1 -1 when values of r = 210pm, A'=ll,500cm , hv=300cm are used in their 
0 

equation for V. 

A1 may be fixed from experiment from the observed transition to 

the upper Jahn-Teller surface in the electronic spectrum. This transi-
-1 tion has been observed at AE - 7,500cm in pure copper Tutton salts 

(Hitchman and Waite 1976). Cooperative effects may make this larger 

than that in an isolated complex, but this can be taken as an upper 

limit. Neglecting orthorhombic strain and second order coupling terms 

this energy is given by: 
2 

AE "' 4EJT + 2Se, EJT= A/ (2hv) (7 .3) 
Anticipating values for s9 of the order -500-1000 cm-1, equation (7.3) 

gives a value of A1 in the range -900-1000 cm-1 . A value of A1=900cm-l 

is used in this investigation. 

~2_;_ The value of A2 determines the barrier height, 2~, between equiv­

alent wells of the warped Mexican hat: 
2 

~ A2po' Po= Al/K2 (7. 4) 
This parameter is traditionally hard to quantify; previous estimates 

for Cu(H20)~+ have been~= 450cm-l (Williams etal 1969) and ~ = 

600cm-l (O'Brien 1964). The "activation energy" for the transition 

between the two lowest wells in Cu(II)/K2Zn(S04)2 .6H 2o was found by 

Silver and Getz (1974) to be E1, 2= 120 cm-1, but this is not equal to 

the barrier height as has sometimes been implied (Hathaway 1983). 

This activation energy represents the energy of a relaxation pathway, 

usually a vibronic state that is delocalised over both wells (section 

5. 4). Even if this value could be equated with the barrier height 

between wells, it does not provide a direct measure of ~' as the 

strain terms will decrease the barrier height that occurs in the cubic 

case (Reinen and Krause 1981, figure 14) . 
-1 . -1 

A value of ~ = 300cm (A 2= 33 .3 cm ) was found to give an 

excited vibronic level at an energy in rough agreement to E1, 2 for the 

(7. 5) 



copper doped potassium salt when the strain terms are included. It 

should be noted however that this value is far from certain and will 

be further discussed below. 

Strain: Ham (1972, ppll0-3) has shown that the effect of the strain 

from a host lattice can be viewed in terms of the displacement 

{Q0

0, Q0
) along the e coordinates in the absence of the Jahn-Teller e g 

effect. By expanding this displacement and making a change of variable 

he arrived at: 
0 0 

HST =Al (Qecrz- Qecrx) (7 . 5) 

which is then added to the cubic Hamiltonian. A comparison with 
0 0 equation (4.26) gives s0= A1Q0 , Se= A1Qe' where A1 is the linear 

coupling constant. 

Equation ( 7. 5) is only strictly valid in the case of linear 

coupling and where the force constants of the host compound are equal 

to the guest species (Ham 1968). However, since we are dealing with a 

strong Jahn-Teller effect and the vibrations of the zinc host are 

quite similar {see table 7.3), equation (7.5) should be valid within 

the experimental uncertainties to follow. 

Using the data for the known zinc structures in table 7 .1, the 
' -1 strain terms that result from using a value of A1 = 900cm a re shown 

in table 7.4. The uncertainties are large, even if the error estimate 

for the change in bondlength is taken as the standard deviation of the 

bondlength given in the crystal structure. Due to this large uncer­

tainty in the quite small changes of bondlength involved, the strain 

components are left as variables in this treatment. A qualitative 

comparison of these values with those derived from fitting the ESR 

data will then test the self-consistency of the present model. 

(7. 6) 



7.3 RESULTS 

7.3.1 Fitting the Parameters. 

After solving (diagonalising) the vibronic Hamiltonian, the g­

values can be calculated from the wavefunctions in a manner previously 

described in section 5.2.3. In all cases the average g-value is -2.20, 

and this effectively fixes the value for the baricentre of the excited 

triplet state AE in equation (5.25) and the isotropic orbital reduc-
-1 

tion factor k. If AE is held at -11, 900cm from the experimentally 

observed spectrum of the pure copper compounds (Hitchman and Waite 

1976), then a value of k = 0.88 must be used to give <g>=2.20. These 

parameters are now fixed and do not enter the fitting procedure. 

It it should be noted that the g-values are calculated by 

diagonalising the ligand field matrix rather than by using the usual 

perturbation formula. These latter formula tend to overestimate the 

mixture of the excited triplet states through spin-orbit coupling and 

consequently a lower value of k is typically reported for these type 

of compounds (Waite and Hitchman 1976). 

The low symmetry effects of the host lattice can best be ap­

preciated by examining figure 7.1. Here the the g-values are 

calculated for the lowest vibronic state with the cubic parameters 

fixed at the values given earlier, while the tetragonal compression is 

allowed to vary. The ratio -s9;p < 9 is in the regime where there are 

two equivalent lowest energy minima on the potential surface symmetric 

about ~ = 180° (Reinen and Krause 1981) . The circular cross-section of 

the strain perturbed warped Mexican hat potential at constant p = p 
0 

is shown in figure 7 .lb. A small positive orthorhombic strain S has 

been used to make the minimum in the second quadrant (90°<~<180°)E the 

lowest in energy which in turn defines the order of the low tempera­

ture g-values as g > g > g . x y z 
For a small tetragonal strain, the lowest wavefunction is nearly 

centred at ~ = 120°, corresponding to a tetragonal elongation along 

the x axis. The g-values are then nearly tetragonal with g < g . As 

the tetragonal st~ain is increased, this has two effects on the poten­

tial: 1) the minima of the two wells move towards ~ = 180°, and 2) the 

barrier between the wells decreases. Both these points tend to make 

(7. 7) 
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Figure 7.1: a) The low temperature g-values as a function of s0. 
-1 -1 -1 -1 hv=300cm , A1=900cm , A2=33.3cm , Se= Scm . 

b) The lower adiabatic Jahn-Teller surface along the angular 

coordinate, as a function of the tetragonal strain. 
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the g-values correspond more to a tetragonal compression, after pass­

ing through a rhombic stage. The first can be thought of as a static 

effect as the wavefunction closely follows the minima of the well 

which corresponds to a particular static geometry. The second is a 

dynamic effect, as the wavefunction becomes delocalised over both 

wells as the barrier decreases. In the limiting case where S 9 I~ > 9, 

there is a single minima near ~ = 180° corresponding to a compression 

along the z axis, and almost tetragonal g-values will result. 

The observed low temperature g-values can be compared to those 

calculated in figure 7 .la and the position of the lowest energy well 

can be found. The value of the tetragonal strain that roughly fits the 

rhombicity of the g-values will in general give the highest g-value 

too low and the lowest g-value too high. This is due to the fact that 

the energy of the excited triplet states d(xy), d(xz), d(yz) have been 

assumed the same. These levels are now allowed to differ according to 

equation (5.25) and the calculated geometry of the vibronic states. 

The anisotropy of the excited triplet can be controlled by the linear 

coupling constant A1 (T) in equation (5.25), and the effect of varying 

this is shown in figure 7.2 for different values of s9 . As might be 

expected, the general effect is to increase the spread of the g­

values. 

The splitting of the triplet states experimentally observed is 

approximately 1,500 cm-l (Hitchman and Waite 1976) which, using the 
-1 

present set of parameters (p
0 

= A1/hv = 3), would give A1 (T) -330crn 

However, the energy of these triplet states will also be determined 

by: the low symmetry strain terms, the anisotropic pi-bonding of the 

water ligands and the variation of the orbital reduction factors with 

bondlength. For this reason the coupling constant, A1 (T), will be an 

effective value that incorporates many different factors that effect 

the mixture of the triplet states ~nto the ground vibronic states. The 

approach taken here has been to use a single isotropic value for the 

orbital reduction factor, k, and a single value for the triplet 

baricentre, LlE, in all five Cu(H2o)~+ complexes; and allowing the 

coupling constant, A1 (T), to vary. The values that fit the experimen­

tal data fall in the range -150:-300cm-l and are shown in table 7.5. 

These values both agree in sign and magnitude with the splitting 

observed in the electronic spectrum. 

(7. 8) 



After the low temperature g-values have been fitted by varying 

the tetragonal strain, the temperature dependence of the g-values can 

be fitted by varying the orthorhombic component of the strain. The 

best fit calculations are shown in figures 7. 3-7. 7, along with .a plot 

of their four lowest probability functions. As can be seen, good 

agreement can be made with all the experimental data. It should be 

stressed that exactly the same Jahn-Teller parameters for the cubic 

part of the Hamiltonian have been used, and only the strain has been 

varied to correspond to the different host lattices. A list of the 

parameters used is given in table 7.5. The values obtained for the 

strain and those independently calculated from the known crystal 

structures in table 7. 4 are in close agreement. In both cases the 

strains derived from the crystal structures are too large. This may be 

due to an overestimate of the linear coupling constant. A value of A
1 -1 -1 -1 = 750 cm (V=95cm pm ) would give closer agreement, but would 

predict the lowest electronic transition from equation (4) to be at 

4750-5750 cm-1 . The electronic spectrum is considered to be a more 

accurate measure of A1, as it does not have the uncertainties of the 
-1 structural data, and the value of A1 - 900 cm is kept. 

7.3.2 Sensitivity of the Fit. 

The linear coupling constant, A1, and the harmonic frequency, hv, 

can be fixed with some certainty. However, the warping parameter of 

the Mexican hat potential surface is not easy to quantify and this is 

often reported in the literature as "the least improbable" value 

(Englman 1972, pg315). Given these uncertainties, it is of interest to 

consider the sensitivity of the experimental fit to the value of p in 

the present cases. 

First, it is instructive to consider the case where there is no 

warping term at all, and attempt to fit the observed experimental data 

using only linear coupling and strain terms in the potential. The 

strain components in the vibronic Hamiltonian (4.26) can be written in 

terms of a magnitude S, and a direction ~ in the Q9-Q plane given in 
S E 

equation (4.24). The lower surface of the Mexican hat potential takes 

the following form after diagonalising the potential operators 

(equation 4.27): 

V(p, ~) (7. 6) 

(7. 9) 
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Figure 7.3b: The four lowest vibronic probability functions. 
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For a particular magnitude of the strain, the components S 0 , SE 

can be chosen, via equation (4.24), to cause the potential to have a 

minimum at the value <l>s· The approach then is to choose these com­

ponents to give a value of <I> that correctly reproduces the low s 
temperature g-values, and then to vary the magnitude, s, in an attempt 

to fit the temperature dependence of the g-values. 

Figures 7.8 and 7.9 show the calculated g-values for the strain 
-1 0 parameters S=lOO and 400 cm respectively, where a value of <I> - 135 s 

has been chosen to approximately fit the low temperature g-values of 

Cu(II)/K2Zn(S04) 2 .6H2o. At room temperature in figure 7.8a, the value 

of g has decreased too much, while g has not increased enough. The 
x y 

lowest g-value, g , instead of remaining approximately constant, has z 
increased substantially. The g-values at 300K are approaching an 

isotropic value, following the behaviour of the increasingly 

delocalised vibronic functions shown in figure 7.8b. Figure 7.9 shows 

qualitatively the same behaviour except, as the localised nature of 

the probability functions indicate, the larger strain means that the 

change towards an isotropic spectrum is more gradual. Again, both the 

calculated rise in g
2

, and the temperature dependence of gx and gy do 

not follow the experimentally observed behaviour. 

The existence of a warping term in the potential is then n e c e s -

sary, within the present model, to reproduce the experimental 

observables; the strain terms alone are insufficient. An estimate of 

the magnitude of this warping can be found in two ways: 

In the first approach, the strain parameters can be taken from 

the structural data of the host compounds and thereby used to find p, 

as both p and s0 mainly determine the low temperature g-values. The 

fitted value of the strains (table 7 .5) were found to be somewhat 

smaller than those obtained from the structural studies (table 7. 4) , 

implying that P could be similarly underestimated. If just the 

tetragonal strain is considered, then Reinen and Krause ( 19 81) have 

shown that the angular position of the potential minimum is determined 

by the ratio s0/3p. Using this and the data given in tables 7.4, 7 .5, 

this gives the values p - 380 and 340 cm-l for the K+, and NH+ hosts 
4 

respectively. 

The second way to estimate a value of p is from the relaxation 

rate determined from the variation of the hyperfine halfwidths. This 

(7.10) 



(/) 
w 
:::> 

2.5 

2.4 

_J 2.3 
~ 
I 
O'I 

2.2 

2.1 

Figure 7.Sa No warping terms. S = 100 cm- 1; ~s 135°. 

O @oOOO~~Cbooooo xo 
2.0 '--~~~~~~~-'--~~~~~~~-----'--~~~~~~~-' 

0 100 200 300 
Temperature (Kelvin) 

Figure 7.Sb The four lowest vibronic probability functions. 

-1 
3 E = 104 cm ; g = 2.272; g = 2.181; g = 2.121. x y z 

-1 
2 E = 56 cm ; 

-1 
1 E = 0 cm ; 

-
g = 2.339; g = 2.164; g = 2.087. x y z 

g = 2.419; g = 2.145; g = 2.051. x y z 



en w 
:J 
_J 

~ 
I 
O"I 

Figure 7.9a 

2.5 

2.4 

2.3 

2.2 

2.1 

No warping terms. s = 400 -1 
cm ; ~ = 135°. s 

~oooo~ ~ Cboooo o 

~ooo~~ 
c:00000 0 

~oo o~ ~ <-00000 o 
2·QQL-~~~~~~-1L00~~~~~~~2~00~~~~~~---'-1300 

Temperature (Kelvin) 

Figure 7.9b The four lowest vibronic probability functions. 

-J. 

4 E = 296 cm ; g = 2.339; 
x 

-1 
3 E = 205 cm ; g = 2.365; 

x 

-1 
2 E = 108 cm ; 

g = 2.163· g = 2.104. y , z 

g = 2.156; g = 2.088. 
y z 

g = 2.150· g = 2.073. y , z 

-1 
1 E = 0 cm ; g = 2.419; g = 2.143; g = 2.056. x y z 



has been shown (Silver and Getz 1974; Zaitdinov etal 1983) to ap­

proximately follow an exponential dependence given by (5.40) over the 

temperature range - 10-80 K. The "activation energy", E12 , has been 

interpreted as a barrier height between the two lowest wells and has 
-1 + been found to be 120 cm for the K host (Silver and Getz 1974); 160 

-1 -1 cm for the Zn(GeF 6) .6H20 host (Zaitdinov 1983); and 420 cm for 

Cu (H 20) ~ in solution (Poupko and Luz 1972). In the present case, for 

A
2

= 33.3 cm-1 , the barrier height in the absence of strain at the 

Jahn-Teller radius p , is approximately given by 2~ - 600 cm-1 . 
0 

However, the inclusion of a negative tetragonal strain greatly reduces 

this va 1 ue, and using the data for the K+ host a barrier height of 

-280 cm-l is found. 

The energy E12 is more correctly interpreted as the energy inter­

val to the lowest lying excited vibronic state that is delocalised 

over both wells to provide a relaxation pathway (William etal 1969) . 

From figures 7.3b and 7.7b, it can be seen from the vibronic probabil­

ity plots that such vibronic levels exist in the correct region to be 

interpreted in terms of E12 , although the energy levels are calculated 

too high in both cases. A smaller value of p only marginally improves 

this agreement. 
-1 -1 

The value of ~ - 300 cm (A2= 33.3 cm ) is a compromise between 

both the above methods of estimation. A larger value of p would re­

quire a larger value of the tetragonal strain to fit the low 

temperature g-values. This then cnuses disagreement with the Se/SE 

ratio from the structural data. Alternatively, if the orthorhombic 

component of the strain is then increased to give agreement with this 

ratio, then the temperature dependence of the g-values will not be 

reproduced. A value of p-300 cm-l gives a Se/SE ratio that closely 

agrees with the structural data and fits the g-values (tables 7.4,5). 

It should be stressed that it is not really appropriate to give a 

precise value of p because of the approximations already made in the 

model. In particular it is likely that the strain will destroy the 

cubic form of the warping terms in the vibronic Hamiltonian and the 

"real" warping parameters may be very different. A value of p - 3 o O ± 
-1 

100 cm seems a reasonable estimate for the present system. 

(7 .11) 



Table 7.5: The Best Fit Parameters. 

Cubic 2arameters: 

hv = 300 cm -1 
( 

-1 
f = 0.95 mdyneA ) 

A1 = 900 cm -1 -1 -1 ( V=113cm pm ) 
-1 -1 A2 = 33.3 cm ( ~ = 300 cm ) 

-1 k = 0.88 ~E = 11, 900 cm 

K+ Rb+ NH+ Cs+ 2-
4 (GeF 6) 

-1 -1000 -800 -550 -650 100 s
0

(cm ) 
-1 55 110 120 200 0 S (cm ) 

E 

- S /S 18 7.3 4.6 3.2 -0 E 

A1 (T) -170 -250 -170 -300 -130 

Table 7.6: Predicted Zn-0 bondlenqths in the Host Lattices. 

K+ Rb+ NH+ Cs+ 2-
4 (GeF 6) 

Qo 
e (dim' less) -1.111 -0.889 -0. 611 -0.722 0 .111 

Qo (dim' less) 0.061 
E 

0.122 0.133 0.222 0.0 
Qo 
e (pm) -8.78 -7.02 -4.83 -5. 71 0.88 

Qo (pm) 0.48 
E 

0.97 1.05 1. 76 0.0 

R x (pm) 212.8 212.5 211. 9 212.5 209. 7 

R y (pm) 212.3 211.5 210.9 210.8 209.7 

R (pm) 204.9 z 205.9 207.2 206. 7 210.5 



7.4 DISCUSSION 

7.4.1 Comparison with the Silver and Getz model. 

Silver and Getz (1974) have seemed almost apologetic that their 

simple model works so well, and ended their paper with the hope that 

their work would " .. stimulate further theoretical work on this crys­

tal in order to elucidate the role of the excited vibronic states". 

The present investigation represents the start of such a study, and it 

is now of interest to compare the two approaches. 

From figures 7.3-7.7 it is clear why the Silver and Getz (S&G) 

model has been so successful. The probability functions of the 

vibronic levels show that the lowest levels are strongly localised 

within single wells. The properties of these levels are then close to 

what would be expected for an ion with a static geometry representing 

the minimum of the appropriate well. The gross features of the ob­

served temperature dependence are then principally determined by the 

relative population of the two levels that are localised in the two 

lowest wells. The higher of these two levels may not be the lowest 

excited level, as calculated for the Cs+ host (figure 7. 6), so it is 

not the case-that other vibronic levels are unimportant because they 

are thermally inaccessible. However, the g-values calculated for these 

other levels do not differ greatly from those of the lowest level in 

each well, and their effect on the overall temperature dependence will 

be minimal. 

This is illustrated in figure 7.10 for the two extreme cases of 

the K+ and Cs+ hosts. Here the full lines shows the results of the 

present method as previously given which includes -60 vibronic levels 

in a Boltzmann average over all levels up to 1, 5 0 0 cm -l above the 

ground state. The dashed line is for the same calculation using just 

the two vibronic levels that are most closely localised in each well. 

These levels are the lst and 2nd and the lst and 4rd levels respec­

tively for the K+ and Cs+ hosts. The dotted line is the Silver and 

Getz model (equation 7.2) using the parameters given in table 7.2 and 

the low temperature g-values. It can be seen that in both cases the 

full calculation and the S&G model agree very well. The use of only 

(7 .12) 
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two levels (dashed line) agrees well in the K+ host, as the wavefunc­

tions are completely localised in the separate wells (see figure 

7 .3b), therefore closely resembling the static nature of the S&G 
+ model. In the Cs host, however, t~e use of only two levels (dashed 

~ine) results in a large deviation from the full calculation. 

Inspecting the wavefunctions (figure 7.6b) shows that there is, in 

fact, no level that is fully localised in the higher well. Including 

all the levels however (full line) results in the correct behaviour. 

The two level S&G model appears to be a better approximation for the 
+ + K host system rather than the Cs host. 

The biggest difference between the g-values calculated using the 

Silver and Getz model and the present approach is due to the fact that 

the S&G model uses the experimental low temperature g-values so that 

better agreement is obtained for the lowest g-value. Another, very 

subtle, difference is that the full model predicts that the lowest g­

va 1 ue should very s 1 ight ly dee rease with increasing temperature, 

rather than stay the same in the S&G two well model, or increase in 

the S&G three well model. This change however is very slight and would 

be difficult to observe experimentally. The present model does not 

require the experimental low temperature g-values, as these values 

come out of the calculation. The g-values may even be predicted with 

some confidence in similar systems if the structure of the host com­

pound is known. 

The purpose of this work is not to improve an already very good 

model, but rather to investigate the physical meaning behind it, and 

in particular the differences between the values of the parameters 

obtained from the two approaches. From the g-values given for the 

lowest wavefunctions in figures 7.3-7.7, it can be seen that the 

Silver and Getz assumption that the two wells have equivalent magnetic 

properties, is not quite true. This means in the present model these 

levels must be somewhat closer than those in the S&G model to achieve 

the same temperature dependence. This energy interval is not the same 

as the strain, as has been assumed by some authors (Petrashen etal 

1980), or even the energy difference of the well minima. The strain is 

just one of many terms that go to make up the potential, and the 

energy levels which result must be calculated nurnerlcally. The present 

model should give a better estimate of both components of the "true" 

strain. In the S&G model the tetragonal strain is found from the 

(7.13) 



population of the third (highest) well; whereas in the present method 

it is fixed by the low temperature g-values, or equivalently, the 

angular position of the minima in the Jahn-Teller surface. This ~eans 

that the tetragonal strain.can be found much more accurately with the 

present model if a value of beta is assumed. 
-1 Silver and Getz (1974) have estimated a value of E13- 450 cm 

from the temperature dependence of the lowest g-value, g3, in the K+ 

salt. Petrashen etal (1980) have realised that this is too low to be 

consistent with the crystal structure of the host, and have estimated 
-1 -1 . 

a value of E13 - 1125 cm . The present value of s9 - 1000 cm is in 

good agreement with the value of Petrashen etal (1980), because as 

discussed before, in general s
0 

< E13 . Since the K+ salt has the most 

rhombic low temperature g-values in the four Tutton salts discussed, 

it follows if ~ is kept constant, that it must have the highest value 

of the tetragonal strain. This is found to be the case using the 

present model, but the third level has a much higher energy than that 

given by Silver and Getz (1974). These workers have stressed that 

their value of 450 cm-l is only very approximate, based on the data in 

the 310-350K range in figure 7.llb. The very definite rise in the 

lowest g-value that they observed in this range requires explanation 

as such a rise is unexpected with the strain parameters found in the 

present work. 

This discrepancy prompted the thermogravimetric analysis of the 

host compound K2Zn(S04)2 .6H2o shown in figure 7.lla. The host compound 

loses four waters at -333K and a further two -20° higher. Si 1 ver and 

Getz observed no change in the g-values until -310K, and a phase 

transition prior to water loss may explain the rise until 3 3 3 K; c er­

t a inly their published points at 340 and 350K should be viewed with 

some suspicion. 

7.4.2 Prediction of the Host Geometry. 

It is now possible to predict the Zn-0 bondlengths of the host 

compounds where the crystal structure determination has not been 

carried out, from the strain parameters that have been derived from 

the t ernpe rat u re dependent ESR data. These predictions are given in 

table 7.6, and a brief description of the calculation follows. 

(7.14) 
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-1 
First equation (7 .5) is used with a value of A1 = 900 cm to 

find the shift in the origin of the host Q~, Q~ that is responsible 

for the ES R derived strain values. This origin is then converted to 

dimensioned coordinates using the relationship given by equation 

( 2 . 3 5) . The change in the individual bondlengths can then be calcu-

lated by the following expressions: 

(7. 6) 

~R 1 0o _ 1 0o 
y -ill e 2 e 

~R 1 Qo 
z --13 e 

The overall bondlengths can then be calculated by using <R>=2 l 0 pm 

found from an average of the bondlengths in the two known zinc crystal 

structures in table 7.1. 

The final results, listed in table 7.6, show excellent agreement 

with the two known structures (K+, NH~ salts). Further, the Cs+ salt 

is predicted to be the host with the largest rhombic distortion, and 

the Rb+ salt to have a tetragonal compression intermediate to the 

known K+ and NH~ structures. The Zn (GeF 6). 6H2o host is predicted to 

have only a very small tetragonal elongation in the low temperature 

phase. However, this compound is known to be isomorphic with 

MgSiF 6.6H2o (Zaitdinov 1983), which is monoclinic in the low tempera­

ture phase (Syoyama and Osaki 1972). Because the tetragonal strain is 

positive and reinforces one of the wells due to the warping, a sma 11 

orthorhombic strain from the host would have little effect on what 

would essentially be a tetragonal ESR spectrum. Therefore, while it is 

unlikely that the bondlengths along the x and y molecular axes will be 

equal as given in table 7. 6, the present method is not capable of 

distinguishing this. 

(7.15) 



7.5 CONCLUSIONS 

The E SR properties of the Cu (H2o)~+ ion in various host lattices 

can be successfully described from the point of view of the dynamic 

Jahn-Teller effect where the effects of strain imposed on the system 

by the host lattice partially quenches the dynamic properties. The 

approximation that the Jahn-Teller part of the problem keeps its cubic 

symmetry, while drastic, has resulted in a model that is capable of 

explaining the very different temperature dependence of the Cu(H20)~+ 
ion observed in five different host lattices with a single set of 

parameters. The experimentally fitted strain parameters are shown to 

be physically more realistic than those found using the Silver and 

Getz model. It allows certain predictions to be made about the struc­

ture of the unknown zinc host lattices. 

The reason why the Silver and Getz model works so well appears 

to be due to the fact that the calculated vibronic wavefunctions are 

at well defined localised geometries. The observed temperature depend­

ence of the ESR spectrum can then be closely approximated by the rapid 

equilibrium between these static configurations rather than a 

delocalisation in the electronic and structural sense that occurs in 

cubic Jahn-Teller cases. 
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APPENDIX 7.Al THE TEMPERATURE DEPENDENCE OF THE CRYSTAL STRUCTURES 

The crystal structures of the pure copper Tutton salts are quite 

interesting in that they apparently show a substantial temperature 

dependence of the Cu-0 bondlengths (see table 7.1). An analysis of the 

anisotropic temperature factors (Duggan etal 1979) show that the bonds 

that have the greatest temperature dependence also have the largest 

root-mean-square amplitudes in the direction of the Cu-0 bond. Since 

x-ray measurements occur over a long time scale, a thermal average of 

vibronic levels will be observed. For dynamic systems such as these, 

the geometry can be quite different in each vibronic level. The 

electron density that is observed corresponds to that of many dif­

ferent individual levels, resulting in an average value of the 

geometry with a large thermal ellipsoid. 

Such a postulated large thermal ellipsoid along the Cu-L axis in 

dynamic Jahn-Teller systems has often been puzzlingly absent. For 

example the thermal ellipsoid of the nitrogen atom in cubic 

K2Pb[Cu(N02) 6J was found to be nearly isotropic (Isaacs and Kennard 

19 6 9) where clearly an anisotropic one would be expected for what is 

thought to be a dynamic system. However, a careful study by Cullen and 

Lingafelter (1971) on the same molecule, found that the RMS amplitude 

of the N atom was slightly greater in the direction parallel to the 

Cu-N perpendicular to it. Considering just the internal vibrations, 

this is unexpected since bond bending amplitudes are in general 

greater than bond stretching. Cullen and Lingafelter (1971) were able 

to derive a value for the Jahn-Teller radius from from these tempera­

ture factors alone, and similar work has been carried out by Ammeter 

etal (1979). The above discussion is to show that while anisotropic 

thermal parameters are to be expected, the effect may be quite small 

since the bulk of the ellipsoid contains the external motions of the 

crystal lattice. 

The geometric properties. of the present doped systems cannot 

really be investigated experimentally. However, their hypothetical 

geometries can be calculated for the potentials that reproduce the 

ESR data, and then compared to the observed behaviour of the pure 

structures. These geometries of the Cu(H20)~+ ion in the zinc hosts 

are given in table 7.7 for the NH:, K+ and Zn(GeF 6) .6H2o compounds. 
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The geometric properties of the first four vibronic leve 1 s have 

been calculated directly as expectation values from the wavefunctions 

shown in figures 7.3-7.7. The value of the Jahn-Teller radius, p -30 
0 

pm, does not vary appreciable within the individual levels, but is 

significantly less than the value of -36 pm seen in the pure Tutton 

salts. [This value was found from the average of the four low tempera­

ture copper Tutton salt structures in table 7. l]. This may be due to 

cooperative effects in the pure compounds. It is also interesting to 

note that p is greater than the classical Jahn-Teller radius p
0

= A1/hv 

which gives p = 3, or 23.7 pm when dimensioned. This is because the 
0 

warping causes the minima of the wells to be at slightly larger values 

of p. 

Table 7.7 also shows the temperature dependence of these 

geometric properties, where they are given a Boltzmann average. The 

geometry does not actually "average" in this sense, a perfect X-ray 

machine would see the thermal ellipsoids of all the vibronic levels as 

they are populated. However, since the root-mean-square amplitudes are 

of the same order of magnitude as the change in the bondlengths in the 

different vibronic states, an average of these ellipsoids will be 

seen, the mean of which will be temperature dependent. 

These calculated values are seen to behave in much the same 

qualitative manner as that observed in the pure copper Tutton salts. 

At low temperatures the geometry is close to that of an tetragonal 

elongation along x; and as the temperature is increased, ~R x 
decreases, ~R increases and ~R stays much the same. 

y z 
Duggan etal (1979) have suggested that the temperature dependence 

.of the g-values can be solely explained by this apparent variation in 

the bondlengths that is due to the f luxional properties of the complex 

itself. Indeed they adopted this model 11 
••• especially as it is di f­

f icul t to understand why the alternative explanation of d(x2-y2) and 

d(z2) mixing should be so temperature dependent". They have misun­

derstood the situation as it is just this mixing, or vibronic 

coupling, that causes a potential surface that gives rise to the 

apparent "fluxional" behaviour of the complex. 

The apparent variation of the Jahn-Teller radius "p 11 is also 
0 

shown in table 7.7. These values were calculated from the temperature 

averaged bondlengths, and decreases in magnitude with increasing 

temperature, similar to what is observed in the pure Tutton salts 
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Table 7.7: Predicted Cu-0 Bondlengths in Zinc Hosts. 

Rb+ 
<AR > <AR > <AR > <p >* x y z 0 

level: 1 16.6 -6.7 -9.9 29.6 
2 -5.5 15.7 -10.2 28.7 
3 14.3 -4.0 -10.3 28.2 

NH+ 
4 16.6 -6.9 -9.6 30.1 

4 1 17.0 -7.4 -9.6 30.1 
2 -6.6 16.5 -9.9 29.5 
3 15.7 -5.8 -9.9 29.3 
4 16.8 -7.7 -9.2 30.5 

Zn(GeF 6) .6H20 
1 -8.7 -8.7 17 .3 30.5 
2 4.2 4.2 -8.4 30.4 
3 4.2 4.2 -8.3 30.5 
4 -8.5 -8.5 17.1 29.6 

Rb+ 
"AR II "AR II "AR II "p "** x y z 0 

Temp. OK 16.6 -6. 7 -9.9 29.6 
100 14.3 -4.3 -10.0 25.4 
200 10.8 -0.7 -10.0 20.9 

NH+ 
300 9.1 0.9 -10.1 19.3 

4 0 17.0 -7.4 -9.6 29 .5 
100 15.3 -5.7 -9.6 26.8 
200 11. 7 -2.0 -9.6 21. 6 
300 9.7 -0.l -9.6 19.3 

Zn(GeF 6) .6H20 
0 -8.6 -8.6 17.3 30.5 
100 -6.1 -6.1 12.3 21.3 
200 -3.3 -3.3 6.7 11. 6 
300 -2.2 -2.2 4.5 7.8 

* The changes in the bondlengths are calculated from the expec­
tation values of the Q0, Q coordinates and equation (7.6). 
<p > is an expectatione value calculated directly from the 

·if> . f t. viuronic wave unc ions. 
** The changes in the bondlength are a Boltzmann's average over 
the vibronic levels. "p " is then calculated from these changes 
in bondlength. 0 



structures. Alcock etal (1984) have commented on, but could not give 

an explanation for, this observation which seems contrary to the usual 

assumption of a temperature independent potential surface. The ex-

planation is, of course, that the 

increasing temperature, but remains 

from the expectation values of the 

value of p is not decreasing with 
0 

relatively constant as can seen 

individual levels. It only appears 

to be decreasing when it is calculated from the temperature averaged 

bondlengths that are obtained from the X-ray structures. One can also 

imagine the situation of a purely dynamic Jahn-Teller effect where a 

crystal 'structure will give equal bondlengths and p
0 

will then be 

calculated to be zero. In other words, X-ray crystallography cannot 

give a direct measure of p , and a "p " calculated from the 
0 0 

bondlengths that are an average will appear to decrease as the tem-

perature rises. While structural experiments cannot give the Jahn­

Teller radius of dynamic systems from the bondlengths, they can do so 

from an analysis of the RMS amplitudes of the bondlengths. 

The previous points can be illustrated by considering the 

Zn(GeF 6) .6H2o case in table 7.7. The first wavefunction has the expec­

tation values of <Q 9> = 30.0pm, <Q
1
,> = O.Opm, while the second has 

<Q9> = 14.5pm, <Q > = O.Opm. By calculating "p " from these values, we e o 
have "p " = 30.0pm for the first and "p " = 14. 5pm for the second 

0 0 
wavefunction. While the first value is close to the real (expectation) 

value (<p
0

> = 30. 5pm), the second is a long way off (<p
0

> = 3 O. 4pm) . 

The apparent "p " is calculated too small for the second wavefunction 
0 2 1/2 because, as can be seen from figure 7.7b, <Q > * 0 although <Q > = e e 

0 from the equal amount of the probability function at positive and 

negative regions of Qe. 

Expressed mathematically, this is because: 

<p > 
0 

< n I p I n > 
0 

< [ L 2( R.- <R> ) 2 J112 > 
' l 
l 

* [ L 2( <R.> - <R> ) 2 J112 
= 

l 
i 

"p " 
0 

(7 .Al) 

2 1/2 since in general <X > * <X>. Care must therefore be taken when 

interpreting the "average" geometry of the crystal structures of 

dynamical systems. 
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APPENDIX 7.A2 IMPLICATIONS FOR THE ELECTRONIC SPECTRUM 

Since electronic transit ions a re very fast, the electronic 

spectrum of systems such as those considered here will not be the 

spectrum from an averaged geometry; rather a different electronic 

spectrum would be expected from each vibronic level. The superposition 

of the transitions from all the populated ground state vibronic levels 

will give rise to the observed spectrum. It is therefore pertinent to 

ask whether any temperature dependent effects would be expected from 

these dynamic systems. 

Consider the case of the K2zn (SO 4) 2 . 6H2o host, where there are 

two close lying levels that approximately correspond to tetragonal 

elongations along x and y respectively. In the lower well there will 

be transitions to the excited triplet states: d(y 2 -z 2 ) -+ d(yz) and 

d(y 2 -z 2 ) -+ d(xy) ,d(xz) at the energies ..1E - A1 (T) and ..1E + ~ A
1

(T) 

respectively. [Here ..1E is the energy of the triplet baricent re above 

the ground state, and A1 (T) is the linear coupling constant of the 

triplet state in equation (5.25) .] In the second, higher well the 

transitions will be d(x2-z2
)-+ d(xz) and d(x2-z2) -+ d(xy),d(yz) at the 

same energies. Therefore exactly the same spectrum would be expected 

from each well although the transition to the higher energy doublet 

would be to d(xy), d(xz) in one well and to d(xy), d(yz) in the other. 

The population of other levels will change these energies but, as 

long as the discussion is kept in the e vibrational space, the over-g 
all baricentre of the triplet levels will remain the same and the 

effect of other levels with different geometries will be to simply 

broaden the spectrum. Therefore the spectrum is essentially tempera­

ture independent of the dynamic effects of the e vibrations. Much 
g 

greater temperature dependent effects would be expected from the 

ungerade vibrations that induce intensity in these centrosymmetric 

compounds. 

It should be noted that they are dangers involved in interpreting 

the electronic spectrum (at low or high temperatures) in terms of the 

geometry taken from a room temperature crystal structure. In dynamic 

systems the crystal structure will give an "averaged" geometry rather 

than the true geometry of the individual vibronic levels. 
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CHAPTER 8 THE ESR OF Cu(II) DOPED NH4Cl. 

8.1 INTRODUCTION 

The ESR spectrum of Cu(II) doped NH 4cl has been extensively 

studied fol lowing the early works of Zaripov and Chirkin (1964) and 

Trappeniers and Hageni (1965). The experimental ... ESR spectrum can be 

very complicated as up to three different copper centres can be ob­

served, depending on the conditions of crystal growth. The tempera~ure 

dependent principal g-values obtained by many studies are shown in 

figure 8.la. The main concern of these studies have been twofold: 

i) To determine the exact location and coordination of 

the copper centres. 

ii) To explain the unusual temperature dependence of the 

spin Hamiltonian parameters of these centres. 

It is now well established that in the first two centres the 

Cu(II) ion occupies an interstitial site in the face centred position 

of four chloride ions in the CsCl type structure of NH 4Cl. The charge 

compensation is accomplished by the substitution of two NH: ions in 

the trans positions by either two H2o or two NH3 molecules, as shown 

in figure 8.lb. The copper ion is then six coordinate and the two 

types of species: 
2-

Cu (NH3) 2Cl 4 [centre 

2-trans-Cu (H 2o) 2c1 4 [centre (I)] and trans-

(II)], can be selectively obtained in crystals 

grown from acidic or basic solutions respectively (Hagan and 

Trappeniers 1970). These conclusions are unequivocal from the ENDOR 

studies of Boettcher and Spaeth (1974a,b), and thus supercede the 

earlier interpretations of Pilbrow and Spaeth (1967a,b) (NH: 

vacancies) and Becht le etal (1971) (off centred position of Cu (II)) . 

The coordination of centre (III) however, which has always be observed 

in conjunction with at least one of the other centres, has not been 

determined. The present study suggests a mixed coordination: trans-
2-Cu (H

2
o) (NH

3
) c1

4 
for centre (III). 
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The interpretation of the temperature dependence of these systems 

is more controversial. There are two separate features observed in 

this temperature dependence. At TA. = 242. 9K, there is an order­

disorder phase transition that greatly influences the g values of the 

system, and this has been the subject of many studies ( P ilbrow and 

Spaeth 1967a,b; Hagen.' and Trappeniers 1973; Van der Valk and 

Trappeniers 1977). In addition, at temperatures far from this phase 

transition, other dramatic temperature dependent effects are also 

observed. While the former is due, to some extent, to the bulk 

properties of the host crystal, the latter can be interpreted as due 

to the molecular properties of the Cu(II) guest species. It is this 

1 at t er form of the temperature dependence that is of interest in the 

present study. 

At low temperatures (<12K) the ESR spectrum of centre (I) 
2-[Cu (H20) 2Cl4] has orthorhombic g-values (Bechtle etal 1971). At 

higher temperatures this spectrum is observed to collapse into a 

tetragonal spectrum with g 0 < gJ_, usually typical of a compressed 

octahedral environment. This tetragonal spectrum is then also tempera­

ture dependent with g 11 increasing and gJ. decreasing until the lamda 

point where abrupt changes occur. The spectrum of centres (II) and 

(III) are similar except that they remain tetragonal at all tempera­

tures and their temperature dependence is not as marked as in centre 

(I). 

The local coordination of the Cu(!!) ions in figures 6.lb and 

6.lc are of effective D4h symmetry for the centres (I) and (II) 

respectively. This is because pi-bonding does not enter into the 2E 
g 

ground state and the axial ligands will therefore have an effective 

cylindrical symmetry even though geometrically this is not so. Centre 

(III) will have an effective c4v symmetry if it has the suggested 

Cu(H 20) (NH 3 )Cl~- mixed coordination. A spin Hamiltonian with either 

D4h or c4v symmetry will give rise to a tetragonal g-tensor, so the 

fact that centre (I) shows orthorhombic g-values at low temperatures 

clearly needs explanation. In addition to this, from the purely static 

picture of the centres in figures 6.lb,c, these g-values would be 

expected to be temperature independent. Again this is not the case, 

the order of the temperature dependence of the tetragonal g-values 

being centre (I) > centre (III) > cent re (I I) . Both of the above 

puzzling aspects of the temperature dependence can be quantitatively 
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explained by departing from a purely static model and considering the 

vibronic interactions of the centres. This model is essentially the 

Jahn-Teller Mexican hat potential surface perturbed by the different 

bonding characteristics of the axial ligands. 

Although the Jahn-Teller theorem is not strictly applicable to 

mixed-ligand systems such as those considered here, it is convenient 

to apply the formalism developed in the pre~ious chapters to this 

problem. Reasonable values of the potential and coupling parameters 

can be deduced from simple bonding arguments in what would be other­

wise a very underdetermined problem in these low symmetry systems. The 

solution of the vibronic equations then allows all the above ex­

perimental data to be explained in a straightforward manner. 

8.1.1 The Crystal Structure of Ammonium Halides. 

The ammonium halides undergo a number of well-known phase transi­

tions (Perry and Lowndes 1969) which are summarised below: 

TABLE 8.1 AMMONIUM HALIDE STRUCTURES 

Lattice type NaCl Cs Cl "tetragonal" Cs Cl 

NH+ 
4 ions disordered disordered antiparallel parallel 

ordering ordering 

NH 4Cl I -- 457.7K -- II -------- 242.9K -------- III 

NH 4Br I -- 411.2K -- II -- 235K -- IIIa - 78K - IIIb 

IIIa - 105K - IIIb 

NH
4
I I -- 255.BK -- II -- 232K -- IIIa 

In this study, it is the NH4X lattices with the CsCl type struc­

ture that are of interest. Here the NH: ions occupy the body cent red 

sites in a cubic Cl lattice. The N-H bonds point directly at the 

chloride ions, and the two possible orientations, A and B, of the 

ammonium ions are shown in figure 8.2a. 

The order-disorder transition, that occurs at TA.=243K in NH 
4 
Cl, 

is associated with the orientation of the ammonium ions. At low tem­

perature the NH: ions are parallel to each other as shown in figure 
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8. 2b. In this case there is translat:_ional symmetry between the am­

monium ions which will be either all A, or all B. Above TA there is an 

equa 1 probability of finding the ammonium ion in the A or B orienta­

tion, and these will be randomly distributed in the lattice. This is 

called the disordered CsCl phase and is shown in figure 8.2c. In NH4Br 

and NH
4

I there exists an additional phase where the ordering is an­

tiparallel (A-B-A-B ... ) along two axes and parallel along the third 

(either A-A-A-A ... or B-B-B-B ... ). In this phase the lattice is then 

tetragonal, although the departure from cubic symmetry is very small 

(Perry and Lowndes 1969) . 

As well as the reorientation of the NH: ions, there also coexists 

a first order phase transition at TA (Slichter etal 1971). This is 

observed as a discontinuity in the thermal expansion of the NH4Cl 

lattice which also shows both hysteresis and sample dependence 

(Fredericks 1971) . 

A temperature and pressure depen~ent ESR study of Cu (I I) /ND 4 Cl 

has shown that this change in the lattice constant is at least partly 

responsible for the change in the magnetic properties around TA. Any 

change in the g-values around TA must therefore include lattice ef­

fects as well as "local" changes around the Cu (II) centres, as was 

well appreciated in the early work of Pilbrow and Spaeth (1967a,b) . 

The study of Kuroda and Kawamori (1971) can therefore be 

criticised as they have interpreted the change in the g-values of 

centre (II) at TA as due to the order-disorder transition of the 

ammonia ligands. This treatment is over simplistic as it ignores the 

abrupt change in the lattice constants and, in addition, it is un­

likely that the reorientation of the NH3 ligand bound to copper would 

be the same as the NH: ion in the lattice. The ENDOR studies of 

Boettcher and Spaeth (1974a,b) imply that the NH
3 

ligands rotate about 

the Cu-N axis even down to 1.6K. 

Simi la r ly, the reasoning by Watanabe and Abe (1975a,b) that 
+ centre (I) must have a NH 4 nearest neighbour to explain the abrupt 

changes observed at TA, is not necessarily true. An explanation of the 

observed changes at TA is beyond the scope of this thesis. Here, the 

temperature dependence of the ESR spectrum only below -230K is con­

sidered. It is then assumed that the local dynamics of the Cu(II) 

centres, rather that the bulk crystal properties,- can account for the 

observed experimental behaviour. 
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8.1.2 Previous Interpretations of the Cu(II)/NH4Cl System. 

The literature on this system is extensive. Some of the more 

important previous studies are summarised below. 

Pilbrow and Spaeth (1967a,b) concluded from their studies that centre 

(I) consisted of Cu (II) in a square of Cl ions with one NH: nearest 

neighbour, one NH: vacancy nearest neighbour and one NH: vacancy 

remote. Cent re (I I) was then thought to be due to the Cu (II) ion 

having two NH~ vacancies axial. While this was later shown to be 

wrong, they correctly argued that vibronic contributions would in­

fluence the temperature dependence, as would the change in the lattice 

constant at TA.. 

Hagen. and Trappeniers (1970) first correctly recognized the nature of 

the Cu (I I) sites as due to Cu (H2o) 2cl~- and Cu (NH3) 2cl~- entities in 

centres (I) and (II) respectively, from analysing the hyperfine and 

superhyperfine structure. 

Betchle etal (1971) were the first to report the orthorhombic g-values 

of centre (I) at low temperature. They postulated that this was due to 

the Cu(II) ion occupying an off-centre position in the Cl square. The 

orthorhombic ~ tetragonal transition of the spectrum was then said to 

be due to rapid exchange between the four equivalent off-centred 

positions. 

Hagan and Trappeniers (1973) examined the temperature dependence of 

centre (I) in the range 77-300K with no knowledge of the orthorhombic 

spectrum discovered at lower temperatures. Remarkably, they independ­

ently concluded from a lineshape analysis that the previously assumed 

tetragonal spectrum was actually orthorhombic (gx- gy =0.01 at 77K), 

and was likely to be an averaged spectrum of inequivalent orthorhombic 
2-centres. Further, they proposed that the Cu (H 20) 2c1 4 species may 

intrinsically tend to assume an orthorhombic symmetry by vibronic 

interactions. 
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Freeman and Pilbrow (1974) further developed the off-centred model of 

Betchle etal (1971) . 

Boettcher and Spaeth (1974a,b) conducted a thorough ENDOR study of 

both centres. They confirmed the presence of axial H2o and NH3 ligands 

in centres (I) and (II) respectively. In centre (I) they showed that 

the (110) plane must be a mirror plane of the charge distribution (see 

figure 8 . lb) . The off-centred model was therefore shown to be wrong. 

Boettcher and Spaeth concluded that the orthorhombic spectrum observed 

at low temperatures was due to the two H2o ligands ligands both being 

coplanar in the (110) plane. At higher temperatures the thermally 

activated reorientation of these ligands would occur about the (001) 

axis between the two possible (110) planes. In this "hopping" model, 

the reorientation of the two molecules are required to remain in phase 

(ie stay coplanar) to reproduce the tetragonal ESR spectrum observed 

at higher temperatures. Although they were. u~9-_e_:i:-~tandably 1 not entirely 

happy with this interpretation, this was the only model which they 

could see was able to account for all their experimental observables. 

Watanabe and Abe (1975a,b) have argued that having the H2o ligands 

coplanar in the (110) plane is inconsistent with the NH4c1 structure 

in the ordered phase. Despite the ENDOR evidence they have kept the 

P ilbrow and Spaeth model (adjacent NH:, adjacent NH! vacancy, remote 

NH! vacancy), instead of the H2o coordination. They felt it necessary 

to keep this model to provide a mechanism for the change of the ESR 

spectrum at the order-disorder temperature. However as discussed in 

the previous section this is an invalid argument. They then proposed 

that the low temperature orthorhombic spectrum was due to the Cu (I I) 

ion being in the centre of a rhombus of Cl ions. At higher tempera­

tures, the tetragonal spectrum was then said to be due to the 

vibrations of the Cl rhomb on a fast timescale that results in an 

averaged tetragonal ESR spectrum corresponding to an averaged square 

geometry. 
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8.1.3 Sources of Experimental Data. 

The experimental data to be used in this chapter is shown in 

figures 8.3. The sources of this data are indicated by the use of the 

following symbols: 

0 Pilbrow and Spaeth (1967a,b) 
*Kuroda and Kawamori (1971) 
-f-:Hagenjand Trappeniers (1973) 
ABoettcher and Spaeth (1974a,b) 
0 Valk and Trappeniers (1977) 
O Hitchman (1986) 
• Steffen and Reinen (1986) 

Several comments can be made about this data: 

1) Only the data for temperatures below 230K is included. 

2) In all centres the principal z axis of the g-tensor was found 

to be parallel to the [100] and equivalent directions in the crystal. 

The x and y axes in centre (I) were found to be parallel to [110] or 

[llO] and equivalent directions in the crystal. 

3) The data provided by Hitchman (1986), Steffen and Reinen 

(1986) have not previously been reported, and reflects the special 

interest of the present study in the orthorhombic ~ tetragonal transi­

tion of the spectrum of centre (I) . 

4) While "pure" centres (I) and (II) are possible from the growth 

conditions, centre (III) has never been observed in isolation. Both 

the studies of Pilbrow and Spaeth (1967a) and Hagan and Trappeniers 

(1970) observed all three centres in crystals grown from neutral 

solutions, while Steffen and Reinen (1986) observed centre (III) in 

conjunction with centre (I). Such behaviour is entirely consistent 

with cent re (III) arising from Cu (H2o) (NH3) Cl~- entities, as if both 

H2o and NH3 were available for axial ligation then a statistical 

mixture of centres would result. 

5) The tetragonal spectrum of centre (I) disappears below 10-20K 

(Bechtle etal 1971; Boettcher and Spaeth 1974; Hitchman 1986), al­

though Steffen and Reinen (1986) observed a small tetragonal signal 

even at 4.2K. However these signals are not included here as they are 

probably caused by a small number of centres with neighbouring copper 

sites due to a high concentration of dopant. 
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8.2 METHODS 

In the present study, a vibronic coupling model is used to ex­

plain the temperature dependent effects in Cu(II)/NH4Cl, which can be 

loosely described as due to a pseudo-Jahn-Teller effect. This model 

then assumes that the temperature dependent effects are a result of 

the local dynamics of the isolated cux2cl~- species, and so is only 

appropriate up to the phase transition which is an external effect. 

The experimental temperature dependent ESR spectra have many 

similarities with the Cu(II)/K2ZnF 4 and Cu(II)/ zinc Tutton salts 

systems described in chapters 6 and 7. The methods used in this chap­

ter are also similar, although a special emphasis in this chapter is 

made on the different levels of interpretation that are possible. 

The basic coordination of the copper as trans-Cu ( H2 0) 2 Cl~ - for 
2-

ce n t re (I) and trans-Cu(NH3) 2c1 4 for centre (II) is assumed from the 

ENDOR studies of Boettcher and Spaeth (1974a,b). From simple bonding 

arguments the stronger cr perturbation of the axial ligands compared to 

the equatorial Cl- ligands, would be expected to produce a compressed 

octahedral geometry about the Cu(II) ion. This can equivalently be 

thought of as a tetragonal uniaxial strain superimposed onto the 

normal Mexican hat potential surface. It has been shown by Reinen and 

Krause (1981) that for certain values of the warping parameter and the 

tetragonal comp re s.s ion, the lower potential surface can have two 

equivalent minima at orthorhombic geometries. 

It is proposed that in centre (I) such a situation exists, and at 

low temperatures "random strain" will freeze the molecule into one of 

these minima, giving rise to the observed orthorhombic spectrum. The 

geometry at this minimum corresponds to short bonds to the two water 

molecules and two chloride ions, and longer ones to the other two 

chloride ions. As the temperature is raised the minimum that is 

slightly higher in energy will be populated. The geometry at this 

minimum is the same as that of the lower, except that the bondlengths 

of the two equivalent chloride ions are interchanged. Rapid vibronic 

relaxation between these levels that is sufficiently fast will result 

in the "tetragonal" spectrum that is observed at higher temperatures. 

In practice there is a transition region between 4 .2-20K where the 

orthorhombic spectrum disappears, with accompanying broadening, to be 
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replaced by the "motionally narrowed" tetragonal spectrum. The 

spectrum will then have discontinuous g-values as a function of tem­

perature. This temperature region is interesting because, whereas a 

Boltzmann averaged spectrum can give information about the energy 

levels of the system, the temperature dependent relaxation rates can 

given information about the barrier heights between different minima 

and therefore providing a more rigorous test for any molecular model. 

For centre (II), the same arguments as above can be used, the 

only difference being that the NH3 ligands represent a stronger axial 

compression. This then results in a single minimum on the potential 

surface which gives an ESR spectrum corresponding to a tetragonal 

compression over the entire temperature range. The deviation of g 11 
2 from that expected for a pure d(z ) ground state, as well as the small 

temperature dependence is then due to vibronic effects within the one 

well, analogous to the Cu(II)/K2ZnF4 case studied in chapter 6. 

For centre (III), although the coordination is not known, the 

following facts strongly suggest that it will be Cu(H20) (NH3 )cl~-: 
a) It appears in crystals grown from neutral solutions. 

b) It always coexists with either of the other centres. 

c) It has an average g-value intermediate between that of the 

other two centres. This implies that it has an intermediate 

covalency and/or energy of the excited triplet states. 

d) It has a g 11 intermediate between the other two centres. This 

implies the vibronic coupling due to the zero point vibration 

in a single well is larger than in centre (II) . 

e) It has a temperature dependence intermediate between the other 

two centres. 

It will be shown that good agreement with the experimental g-values 

can be obtained for centre (III), when the potential and coupling 

parameters are transferred from the other centres, and strain terms 

appropriate for axial (H2o) (NH3) ligands are used. 

The interpretation of the ESR data for the centres will be given 

in the following levels of approximation in order of increasing 

"reality": 

i) The Silver and Getz (1974) model is used, which is essentially 

a "static" model . The energy levels and magnetic properties are left 

as free parameters, and although a good fit can be obtained with 
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experiment,_ it will be shown 'that these energies and magnetic 

properties do not necessarily correspond to the real physic a 1 sit u a­

t ion. This static approach can be misleading when used for these 

systems. 

The following two models include the effects of the vibrations and are 

therefore true dynamic models: 

ii) A one-dimensional vibronic coupling model is used, where the 

d(z2) and d(x2-y2) electronic states are coupled by a vibration of 

orthorhombic symmetry. This is then the (A+B)xb vibronic problem, that 

has been previously used by Sorokin and Chirkin (1979) on the 

Cu(II)/NH
4
Br system. 

iii) The full two dimensional Exe vibronic problem is solved, 

assuming that the system can be adequately be described as having a 

potential surface of six equivalent ligands, and the effects of the 

inequivalence of the equatorial and axial ligands is incorporated into 

the model in the form of strain parameters. 

In principle the full two dimensional (A+B) x(a+b) vibronic 

Hamiltonian should be solved. This then has many more force constants 

and coupling constants that the low symmetry of the system really 

requires. However, as discussed in section 4.2.3, this leads to a very 

underdetermined problem, where a set of parameters cannot be found to 

give a unique fit to the experimental data. 

From the above it can be seen that as well as the study of the 

Cu(II)/NH
4
cl system, this chapter is also concerned with the different 

11 levels of interpretation" that can be applied to such a system. In 

particular, it will be shown that after a certain stage, the essential 

chemistry of a molecular system can be understood, and that more 

"rigorous 11 extensions to a model will not change one's understanding 

or picture of the problem in any way. One must then ask if a more 

"complete" model is in any sense more correct, if when what one is 

neglecting in a simple model does not have any effect on the inter­

pretation. 
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8.3 PARAMETERS 

The interface between theory and experiment is often a case of 

developing a theoretical model with a number of parameters which 

represent physical properties of the system, and then "fitting" the 

model to reproduce experiment. In the following sections the mag­

nitudes of the relevant parameters are estimated independently of the 

vibronic model by using the electronic spectrum, normal coordinate 

analysis and the AOM. Exact values of these param~ters are not 

desired, but rather an idea of the range of chemically acceptable 

values that can be expected. 

8.3.1 The Electronic Spectrum. 

The electronic spectrum is useful in estimating the strength of 

the linear Jahn-Teller coupling constant as well as the energies of 

the excited triplet states that are necessary for the calculation of 

the g-values. Since electronic transitions occur on a time scale that 

is fast compared to the rate of relaxation between vibrational levels 

of the electronic ground state, they will reflect the underlying 

static structure of the molecule. The electronic spectrum of samples 

containing centre (I) were measured over the temperature range 60-300K 

using a Cary 17 spectrometer with a Cryodyne 22 closed cycle 

refrigerator. It was found that the transition energies are essen­

tially temperature independent, although the spectrum both broadens 

and increases in intensity with temperature. Kuroda and Kawamori 

(1971) found similar behaviour in a study of centre (II) . 

The low temperature g-values can give the d-orbital mixture of 

the ground electronic state, which will reflect the geometry of the 

complex. For centres (II) and (III), the electronic ground state is 

approximately a pure d (z2) hole and the expected ordering of their 

electronic states is given in figure 8.4. For centre (I) this mixture 

is found to be (see section 8.3.4): 

'l'l = 0.97 d(z2 ) - 0.24 d(x2-y2) (8.1) 

At first this might also appear to correspond to a compressed 

geometry of a mainly d(z2) ground state. In actual fact it is almost 

exactly orthorhombic, midway between compressed and elongated 
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geometries. This can be shown by expressing (8 .1) in terms of the 

equivalent d orbital basis d(y2) and d(x2-z2). The wavefunction in 

these two bases are related by: 

'l'1 (8 .2) 

1 2 1 2 2 sin 2(<j>-120) d(y ) +cos 2(<j>-120) d(x -z ) 

Here the wavefunction coefficients are described by the angle <j> of the 

Jahn-Teller Mexican hat. The change of basis in (8 .2) corresponds 

simply to a shift in the origin by 120°, and when the wavefunction is 

written in both bases one has: 

'ljfl 0.97 d(z2) - 0.24 d(x2-y2) 

= 0.28 d(y2) + 0.96 d(x2-z2) 

(8. 3) 

2B (xy) 2 2 B
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(xy) Eg(xy,yz) -- 2g 2 g 
B

3 
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2B (x2-y2) 
lg 2Ag('I'2) 2A ( 2) 
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D4h(Compressed) D2h(Orthorhombic) D4h(Elongated) 

<l> = 180° <l> = 150° <l> = 120° 

Centres (II), (III) Centre (I) 

FIGURE 8.4 The d-d Electronic Spectrum of Cu(II)/NH4Cl. 

Even though (8 .1) is mainly d (z2), it can be seen from (8. 3) that it 

actually corresponds to a wavefunction of orthorhombic geometry. This 

is in agreement with the observed near equal separation of the low 

temperature g-values (gx-gy - gy-gz). It is therefore mi~leading to 

assign the spectrum of centre (I) as transitions from a d ( z ) ground 

state as given by Billing etal (1970) in table 8.2 below. However, the 

three components of the equally split triplet state that might be 
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expected for the ordering as given in the centre of figure 8.4 were 

not observed in the spectrum, but rather a single broad band at 12,500 
-1 -1 cm with a shoulder ,at 11,400 cm . Each component of the triplet 

state is vibronically allowed by available inducing vibrations and so 

should be equally likely to be observed. 

The reason why all three split components are not observed is 

because the description given by figure 8.4 is based on the linear 

Jahn-Teller effect, which is too simplistic for these low symmetry 

systems. The vibration that corresponds to the tetragonal component of 

thee vibration is quite different to that of an octahedral complex. 
g 

As shown in the following section, it corresponds to a movement of the 

axial ligands -6 times that of the equatorial ligands. When this is 

considered, the wavefunction in (8.1) would correspond more to a 

compressed geometry, with the excited state ordering given on the _LHS 

of figure 8.4. These are the assignments given in table 8.2. 

TABLE 8.2 Electronic Spectra of Cu(II)/NH4Cl. 

Bands/cm -1 Temp. /K Assignment Reference 

Centre(!) 
d(z2) 9300(sh) 300K ~ ? Billing etal (1971) . 

11000 (sh) ~ ? 
12300 ~ d(xz),d(yz) 

9300(sh) 60K '1'1 ~ 'l' Present Work. 
11400 (sh) ~ dixz) ,d(yz) 
12500 ~ d(xy) 

Centre (II) 
d(z2) 9600 (sh) 300K ~ ? Billing etal (1970) . 

14200 ~ d (xz) ,d (yz) 

9500(sh) lOOK d(z2) 2 2 
~ d (x -y ) Kuroda and 

13700 ~ d(xz) ,d(yz) Kawamori (1971) . 
40000(calc) ~ d (xy) 

[Cu (II) /NH4Br] 
9600 300K d(z2) 2 2 

~ d (x -y ) Trappeniers 
13380 ~ d(xz) ,d(yz) etal (1978). 
28900(vs) ~ d(xy) 

The spectrum of centre (II) only shows a single peak in the 

region where the triplet states are expected. The studies referenced 

in table 8.2 assume that this is the d(z2 )~d(xz),d(yz) transition and 
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argue that the d(z2 )-4d(xy) transition is not observed. Kuroda and 

Kawamori (1971) have calculated this transition to occur at 40,000 

cm-1 , which seems far too high for a d-d transition. 

In the present study, the d(z2)-4d(xy) transition is assumed to be 

unresolved from the d(z2)-4d(xz),d(yz) transition at 14,000 cm-1 . This 

is not surprising as the bands are very broad and a splitting of only 
-1 1, OOO cm was observed in centre (I). In centre (II) the tetragonal 

compression is associated mainly with the movements of the axial NH3 
ligands, and as these do not form pi bonds, they would have 1 it t le 

effect on the anisotropy of the triplet states. 

The electronic transitions will not be averaged over the vibronic 

levels as an ESR spectrum is when it undergoes rapid exchange. Each 

vibronic level will have its own electronic spectrum. The two lowest 

orthorhombic levels of centre (I) will have virtually the same 

electronic spectrum except for the interchange of the x and y 

molecular axes. The spectra for these two levels will be identical 

except for the assignments, the electronic spectrum will then be 

virtually temperature independent, except for the usual red-shift due 

to the vibronically active vibrations. 

8.3.2 The Vibrational Potential. 

In this section the hypothetical vibrations of the cux 2 cl~­
complex in the complete absence of vibronic interactions are derived 

approximately. To do this the valence force constants of several non­

Jahn-Teller complexes are used. Table 8 .3 shows the experimental 

frequencies and symmetrised force constants of the stretching vibra­

tions of a number of such complexes. Three vibrations are required to 

determine the three valence stretch force constants simultaneously. 

The experimental frequencies were obtained from the references 

indicated by the bracketed numbers following their values. The sym­

metrised force constants have been calculated using the appropriate 

elements of the G matrix given by Cyvin (1968; pp 125, 131), where the 

approximation is made that the t 1u(s) and eu(s) stretching vibrations 

do not mix with the bending vibrations of the same symmetry. The 

relationships given by Cyvin (1968, pp126,131) are then used to find 

the valence stretch force constants given in table 8. 4. He re f and 
rr 
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TABLE 8.3 Vibrational Frequencies and Force Constants.a) 

I 
Octahedral 

Complex v (a1g) F(alg) v(eg) F (eg) v (tlu) F (tlu) 
2+ Zn(H2o) 6 380 (1) 1.531 278 (1) 0.819 364(2) 1.113 

Ni(H20)~+ 405(1) 1. 739 305 (1) 0.986 333(3) 0.922 

2+ Zn(NH3) 6 
340 ( 4) 1.157 235(4) 0.553 300 (5) 0. 718 

Ni(NH3 )~+ 370 (5) 1.371 265 (5) 0.703 335 (5) 0.883 

Sguare Planar 

v(a1g) F(alg) v(blg) F(blg) v(eus) F(eus) 
2-CuC1 4 275(6) 1. 579 195 ( 6) 0.794 290 (6) 1.15 

a) Frequencies in -1 , force constants in mdyne/R. cm 

(1) Jenkins and Lewis (1981) (4) Schmidt and Muller (1976) 
(2) Nakagawa and Shimanouchi (1964) (5) Schmidt and Muller (1975) 
(3) Adams and Trumble (1974) ( 6) McDonald and Hitchman (1986) 

TABLE 8.4 Valence Stretch Force Constants. 

Complex fr (mdyne/R) frr(mdyne/R) f~r (mdyne/R) 

Zn(H2o) 6 
2+ 1. 08 0.12 -0.03 

Ni(H
2

0)
6
2+ 1. 08 0.13 0.16 

Zn(NH3) 6 
2+ 0.93 0.10 0.04 

Ni (NH3) /+ 0.90 0 .11 0.02 

CuC1 4 
2- 1.11 0.20 0.04 



f' refer to the stretch-stretch interactions of cis and trans bonds rr 
respectively. 

The valence force constants are all reasonably consistent for the 

three types of ligands and two types of coordination. This then gives 

some justification to the drastic assumption that the stretch valence 

force constants of the mixed ligand complex, Cux2 cl~~ can be ap­

proximated by a single set of values. These valence force constants 

will be taken as fr= 1. 0 mdyne/R, frr= 0. 11 mdyne I R and f ~ r = 0; 0 3 

mdyne/R, the average of the values in table 8.4. In a normal coor­

dinate analysis then, the off-diagonal elements of the F matrix are 

zero and vibrations of the same symmetry will be mixed only by the 

off-diagonal terms in the G matrix. 

The three vibrations of interest are those which are the a
1
g and 

e vibrations in the parent octahedral group. The basis functions for 
g 

the symmetry coordinates are shown below in figure 8.5. The non-zero 

elements of the G and F matrices are given by: 

G11 

G22 

G33 

G12 

1 2 
3 rn (Cl) 
1 1 
3 ( rn (Cl) 

1 
m(Cl) 

--12 1 
3 ( m(X) 

S' 
1 

S' 
2 

S' 
3 

1 
+ rn (X) F11 =fr+ 4frr + f~r (8.4) 

2 
+ rn(X) F22 = fr - 2frr + f~r 

F33 = fr - 2frr + f~r 
1 

- rn (Cl) 

FIGURE 8.5 The n4h Coordinate System. 
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Substituting values into (8.4), the resulting vibrational frequencies 

~nd eigenvectors (arbitrarily normalised to unity) are: 
-1 

v1 = 326 cm s1 c11sl + c12s2; c11=0.8, c12=0.6 (8.5) 
-1 

v2 = 225 cm s2 c21si + c22s2; c21=0.384, c22=0.923 

v3 = 197 cm-1 s3 s3 
Similar results are found for X = NH3 -since the force constants are 

the same and the mass difference of NH3 and H2o is small, and in view 

of the approximations made, the v2 and v3 vibrations can be considered 

the _same. By substituting the symmetry coordinates into (8. 5) it can 

be found that for the symmetry coordinate s2, the axial ligands move 

about six times the distance of the chloride ions, instead of twice 

the distance for s2 as would be the case for ligands of equal mass. 

The vibrations for several other hypothetical octahedral copper 

complexes can also be found in a similar manner: 

v(a1g)/cm 
-1 

v(eg)/cm 
-1 

2+ Cu(H2o) 6 
372 276 

4-
Cucl 6 

265 197 

4-
CuF

6 
362 269 

The frequencies calculated in this section, with all the ap­

proximations made, are estimated to be "correct" only to within about 

25%. However, they provide a rough estimate of the values of the 

potential constants to be used in the vibronic Hamiltonian. 

8.3.3 The Coupling Constants. 

In this section the various vibronic coupling constants are 

derived assuming a certain radial dependence of the AOM parameters. 

The reader is again asked to bear with the many approximations used 

here; this section is to gain some form of chemical insight into the 

effects of the non-equivalent ligands on the problem, rather than to 

obtain exact quantities. The coordinates obtained in equation (8.5) 

can be used to derive the linear coupling constants of the problem by 

the methods of Bacci (1979). These are: 
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c = 1 
1 fil 

c = 1 
2 ill 

IA1g> 

c1s1 + c2s2 

C3S3 

(-v°2cll - cl2) 
Cle

0 
(Cl) 

Clr 

(.../2c21- c22) 
Cle

0
(Cl) 

Clr 

c = -
--/3 Cle

0
(Cl) 

3 2 Clr 

c = ..JI ( "2c11- c12) 
Cle

0 
(Cl) 

4 2 Clr 

-.J3 --a Cle (Cl) 
c = c22) 

O' 

s 2 ( 2c21- Clr 

l ( 8. 6) 

2 
(ell+ "2c12) 

Cle
0 

(H20) 
+ {6 ar 

2 
(cl2+ "2c22) 

Cle
0 

(H2o) 
+ {6 Clr 

In the cubic case where e
0

=e
0

(Cl)=e
0

(H20); c11=c22=1; c12=c21=0; then 

the above coupling constants reduce to those given by Bacci (1979) : 
-./3 ae O" 3 oe O'· 

C2= -C3= -CS = 2 Clr ; Cl= C4= ~ Clr . 
Here c 2 , c 3 and CS correspond to the linear Jahn-Teller coupling 

constants; and c1, c 4 to the linear terms in the potential of the 

totally symmetric mode. 

To evaluate the coupling constants in (8.6), the way in which the 

AOM parameters change with the bondlength must first be specified. For 

the hypothetical cux2cl~- unit before vibronic interactions, the 

bondlengths will approximately be r(Cu-Cl)=2S2pm, r(Cu-OH2)=210pm and 

r(Cu-NH3)=22S pm. [These values are estimated from the average of the 

six bondlengths in the structures of Cucl2 (Wells 1949), several 

copper Tutton salts (Bill 1984, pg791) and Cu (NH3) 6c1 2 (Distler and 

Vaughan 19 6 7) . ] At these bondlengths, the AOM parameters have been 

estimated to be e (Cl) = 32SOcm-1, e (H20) = 4000cm -l and e ( NH
3

) = 
O' O' O' 

4SOOcm-l (Hitchman 1986). If the additional approximation is made that 

the AOM parameters are proportional to the inverse fifth power of the 

bondlength (Hitchman 1982), then one finds: 
Cle0 (Cl) -l -l 
ar -6Scm pm (8.7) 

-1 -1 Clecr(NH3) -1 -1 
-9Scm pm ; Clr -lOOcm pm 

(8 .17) 



Substituting these values into (8.6) with the coefficients given in 

(8.5), the coupling constants are then given by: 

IA1 > IB1g> 

[ 
IA1g> IB1g> 

[ -860 Ql- 376 Q2 390 Q3 

QJ 
-900 Q - 400 Q2 390 Q3 

02] 
1 

390 Q3 -190 Ql+ 680 390 Q3 -190 Ql+ 690 

The coupling constants on the left and right above are for centres (I) 

and (II) respectively. Here the coupling parameters are given in units 

of cm-1, appropriate for the dimensionless coordinates given by Q. 

It can be seen that in this D4h problem the coordinates Q1 and 

Q2 , both which transform as alg' do not couple the d(z2) IA1g> and 

d(x2-y2) IB
1

g> electronic basis functions. However, anharmonic cou­

pling between the vibrations will formally cause them all to be 

coupled (Pelikan etal 1985). From the eigenvectors in (8.5) the Q
1 

and 

Q2 coordinates are mainly associated with the SJ. and s2 basis func­

tions or the a1g and eg(9) coordinates of the parent octahedral 

complex. The approximation is now made that the effect of s
1 

on the 

potential will be relatively small and is neglected. Following Bill 

(1984, pg759), a change in the origin will then give for the linear 

coupling matrix: 

HJT = [ -AlaQa AlbQb l (8 · 8) 

AlQ~b AlaQa _
1 

_
1 where A1a= 525cm , A1b= 390cm for centre (I) and A1a= 540cm , 

Alb = 390cm -l for centre (II) . The strain Hamiltonian can be found by 

evaluating the energies of the d(z2) and d(x2-y2) orbitals at the 

hypothetical geometry before the vibronic interaction. In terms of the 

AOM, this is given by 2 [e (X) -e (Cl)] which results in the following 
O' O' 

tetragonal strain terms for the centres (I), (II), and (III): 

H~T= [ -750 0 l 
0 750 

H~~= [ -1250 0 l 
0 1250 

(8. 9) 

The harmonic vibrational part of the Hamiltonian is given by the 

vibrational frequencies of the previous section: 

(8 .10) 
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Here Qa and Qb represent the dimensionless form of the symmetry coor­

dinates s2 and s 3 respectively, while P
2 and hv represent the 

respective kinetic energy term and vibrational frequency of these 

coordinates. 

The form of the lower adiabatic potential without the strain 

terms (H
0
+ HJT) for centre (I) is shown in figure 8. 6a. The effect 

that the different frequencies and coupling constants have on the 

Mexican hat potential surface can be seen quite clearly. This is the 

surf ace typically found in the Ex(b+b) vibronic problem (see Herzberg 

1966, fig.14). Figure 8.6b shows the adiabatic potential of the total 

Hamiltonian ( H = H
0 

+ H JT+ H ST) of the 1 ow symmetry (A+B) x (a+b) 

problem, using the strain terms of centre (I). The lowest levels in 

this potential surface will be very sensitive to the warping terms in 

the potential. These will be considered at a later stage as it is not 

feasible to estimate such terms independently from experiment. 

The similarity of the coupling constants of the axial ligands in 

( 8. 7) can justify the use of a single set of coupling parameters for 

all three of the systems. Already in the previous section, it was 

shown that a single set of vibrational parameters is likely to be a 

good approximation. The most important terms in the vibronic 

Hamiltonian that distinguish between the different centres are then 

the strain terms given in (8.9). In the numerical calculations to 

follow, it is hoped that the same vibronic Hamiltonian, except for 

differing strain terms, will be able to effectively account for all 

three centres. 

The accuracy of the actual values derived is doubtful. The 

electronic transitions can be calculated from the derived parameters: 

4EJT + 2 1s9 1 (8 .11) 

2e
0

(Cl) + e
0

(X) + EJT + JS 9 J 

-1 -1 
Using the effective values hv = 200 cm and EJT= 500 cm this gives: 

Centre(I)/cm-l 

3,500 

11,250 

Centre (II)/cm-l 

4,500 

12,250 

( 8 .19) 



a) 
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-3 

Figure 8.6 The Lower Adiabatic Potential Surface. 

a) E©(affib) Jahn-Teller Surface. 

b) (AffiB)©(affib) psuedo Jahn-Teller Surface. 



Although the energy of the triplet state is reasonable reproduced, it 

would appear that the AOM model underestimates the Jahn-Teller cou­

pling constants in these systems. 

8.3.4 Magnetic Properties. 

The low temperature g-values and <g> (the average g-val ue) a re 

shown in table 8.5 below for the three centres. The average g-value is 

less for centre (II) than for centre (I) as expected because of the 

larger energy separation of the triplet state. If the experimental 

energies are taken (and an intermediate value assumed for centre 

(III)), then the orbital reduction factor can be calculated from: 

2 k2A. 
<g> = g

0 
+ 4u - Su ; u = E(T) (8.12) 

TABLE 8.5 Low Temperature q-values. 

Centre(!) Centre (II) Centre (III) 

gx 2. 411 
2.220 2.247 

gy 2 .179 

gz 2.018 1. 996 2.010 

<g> 2.202 2.145 2.168 

E(T)/cm 
-1 

12,200 14,000 13,100 

u 0.0529 0.0374 0.0438 

k (8.12) 0.88 0.80 0.83 

k (exact) 0.90 0.81 0.84 

The ave rage g-value can also be calculated from applying the Zeeman 

operator to the wavefunctions found from a ligand field diagonalisa­

tion using the methods given in section 5.1. The isotropic k values 

calculated in this manner to reproduce the observed average g-values 

are also given in table 8.5, showing that the perturbation formula 

underestimates these values. These reduction factors are exactly as 

expected since NH3 forms more covalent complexes than H2o. 
The low temperature orthorhombic g-values of centre (I) are 

principally determined by the static mixture of the electronic part of 

its lowest vibronic state, as this wavefunction is localised around a 

sing le minimum. This static electronic mixture is given by equation 

(8. 20) 



(8.2) and the g-values can be calculated from this wavefunction using 

the second order perturbation expressions of (5.15) using an isotropic 

k value: 
[2u 2 (cos<!> + "3sin<!> (8 .13) g = <g> - - u ] x 2 g = <g> - [2u - u ] (cos<!> - "3sin<j> y 2 g = <g> + [4u - 2u J cos<)> 

z 

When the low temperature g-values from table 8.5 are substituted into 

the above expressions, the value of <I> that best reproduces the g­

values is 152°. This value does not exactly reproduce the orthorhombic 

g-values but is the best value found by a least squares fit when an 

isotropic u is used. The approximate static electronic wavefunction is 

then: 

(8 .14) 

(8.21) 



8.4 RESULTS 

8.4.1 The Silver and Getz Model. 

The Silver and Getz model (Silver and Getz 1974) will be briefly 

described here for centres (I) and (II) to show some of the shortcom­

ings of this model when applied to the present system. The model is 

described by the set of equations given by (7.1). If assumptions are 

made about the geometry of the levels then the g-values of each level 

can. be simply related to each other. Schematically these geometries 

are shown below where the dotted, dashed and solid lines refer to 

short, medium and long bonds respectively . 

. , x : , 

The g-values of the two lowest levels can be related by an inter­

change of the x and z axes. 

gxl = gy2 = gx; gyl = gx2 = gy; 
The third level will approximately have 

1 
gx3 = gy3 = gz; gz3 = 2(gx+ gy) 

gzl = gz2 = gz. 
the following g-values: 

A least squares fit of the five independent parameters is shown in 

figure 8. 7a where the experimental points between 4. 2 and 7 7K have 

been omitted. The fitted parameters are: 

2.128 

2.015 

0 
-1 5.3 cm 

294 cm-l 

One conclusion of the Silver and Getz model would be that the 

orthorhombic g-values change dramatically between 0-30K, and that the 

lowest temperature g-values would be different to that observed at 

4.2K. This conflicts with what is observed because the S&G model 

assumes a Boltzmann average of the levels from the motional averaging 

(8.22) 
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of the spectrum. This motional narrowing, which results from fast 

vibronic relaxation, is considered in the following section. 

The model would also imply that the higher temperature dependence 

of the tetragonal spectrum results from the population of a level with 

a geometry elongated along z. The Jahn-Teller model, which is to be 

discussed in section 8. 4. 3, implies that the population of higher 

levels within and over the two minima of the levels 1 and 2 will also 

contribute to this temperature dependence. 

In centre (II) the g-values are tetragonal at all temperatures, 

and the Silver and Getz model requires only two levels: 

gll(T) = Nlglll + N2g.!.l 

gJ.(T) = Nlg.!.l + N2gijl 

__ I c: --r 

(8 .15) 

Here the g-values can be related by: g 112= 2<g>-g 111 , gJ.2= 2<g>-gJ.l' and 

the least squares fit to the experimental data is shown in figure 8.7b 

with the three independent fitted parameters being: 

g 111 =1.998; gJ.1 = 2.218; E1 = 0; E2 = 575 cm -1 

This centre shows only a small temperature dependence but, again, 

it is not due to the population of a higher level with an elongated 

geometry as implied by the S&G model. Rather, the observed temperature 

dependence will be due to the population of higher vibronic levels 

within the one well. However, as this well is steep, the electronic 

properties of these levels will only be slightly different from that 

of the ground state, making the g-values only slightly temperature 

dependent. 

8.4.2 Motional Averaging of the Orthorhombic Spectrum of Centre (I) 

The transition from an orthorhombic to tetragonal g-tensor in 

Centre (I) is shown in figure 8.3. In the transition region, the 

orthorhombic spectrum gradually broadens and disappears while _the 

(8.23) 



tetragonal spectrum increases in intensity. This can be easily under­

stood in terms of vibronic relaxation between the two lowest levels. 

At low temperatures this rate of relaxation, or exchange, between the 

vibronic levels will be slow on the ESR time scale, resulting in the 

superposition of the ESR spectrum. from the individual levels. At 

higher temperatures this rate increases so that exchange between the 

levels is fast on the ESR timescale and an averaged signal is ob­

served. 

The implication of the present study is that the g-values at 

temperatures lower than 4.2K would be the same as those at 4.2K and 

represent the static geometry of the lowest level. This is not 

predicted by the simple Boltzmann population of fast exchanging levels 

in the Silver and Getz model. Bill (1984, p771) has pointed out the 

necessity of measurements at lower temperatures to investigate this, 

but the measurements between 4-20K given in figure 8.3a are sufficient 

to verify the point. 

The orthorhombic to tetragonal coalescence occurs at -2 OK and 

this can approximately be related to the rate constant for the lowest 

levels (Sandstrom 1982) : 

K12 =Jl l:!.v = v
0

exp(-l:!.E/kT) (8.16) 

where l:!.v is the frequency difference between the two exchanging 

spectral lines in s- 1 . Using the above Arrhenius law for the rate 

constant, there are a family of curves that satisfy ( 8. 16) at T=2 0 K 

for different values of v
0 

and l:!.E. The variation of the g-values with 

temperature are shown in figure 8.8b,d for two such rate constants. 

However, the observed motional narrowing is difficult to properly 

quantify for a number of reasons. Firstly, the orthorhombic ~ 

tetragonal transition temperature seems to be sample dependent to some 

extent. Steffen and Reinen (1986) observed weak signals of the 

tetragonal spectrum even down to 4.2K, while Watanabe and Abe (1975b) 

first observed this spectrum to appear at -SOK. As well as this, 

Steffen and Reinen (1986) observed the orthorhombic spectrum to disap­

pear at -30K, while Watanabe and Abe continued to observe weak signals 

up to -150K. 

In both these studies the two types of spectra were observed to 

coexist over a temperature range (4-30K and 50-lSOK respectively) 

although only the spectrum of one signal dominated at any particular 

temperature. As shown in figures 8. Sb,d, the motional narrowing 

(8.24) 
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mechanism does not allow such a coexistence of the two types of 

spectra. The observed coexistence would imply that the "energy 

barrier" to the relaxation rate in equation (8.16) is spread over a 

range of energies, either distributed amoung the centres or within the 

one centre. The first possibility could be caused by random strain, 

while the second may be due to the relaxation pathway being a con­

tinuum rather than a discrete level. To illustrate that this type of 

mechanism can account for the observed behaviour, the "activation 

energy" is spread ±20 cm-1from the mean values in the plot of figure 

8.8b,d, and the results are shown in figure 8.8c,e. The effect of a 

finite spread in the random strain would actually be more complicated 

than this as it would cause a spread in the energies and wavefunctions 

of the vibronic levels as well as the energy of the relaxation path­

ways. 

These complications are ignored, and although it is difficult to 

be quantitative in the present study, a relaxation rate of the order 

shown in figures 8.8b-emustbepresent. Figure 8.8a show the be­

haviour for very fast relaxation that essentially results in a 

Boltzmann average over the levels. On the other extreme, no relaxation 

would result in the g-values of the individual levels appearing as 

they are thermally populated. The spectrum in figure 8. 8b, wh i eh has 

the relaxation rate K = 1.9xlo10exp(-50/kT) s-1, roughly gives the 

correct behaviour. As observed, the orthorhombic g-values move 

slightly closer together before they coalesce. If the activation 

energy is much higher, then an unreasonably large spread must be used 

to explain the observed coexistence of the two types of spectra. 

Any attempt to further quantify the relaxation rate in this 

system would require a careful temperature dependent study of the 

intensities and halfwidths. However, both of these features may have 

other contributions, such as spin-lattice relaxation or instrumental 

factors, to their temperature dependence in addition to just the 

motional narrowing. 

The effect of the slow relaxation at low temperatures is to 

"delay" the coalescence of the orthorhombic spectrum. This sort of 

behaviour is usually observed when there are two or more c 1 o s e lying 

levels which have different magnetic properties, and are separated by 

a barrier. These conditions are fulfilled in the Cu(II)/ZnSiF
6

.6H
2
o 

system, where the tetragonal ~ isotopic transition occurs at -20K 

(8.25) 
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(Dang etal 1974). In the copper doped Tutton salts of the previous 

chapter, the levels are sufficiently separated so that the relaxation 

rate is fast at the temperature where the spectrum of individual 

levels would be expected to be observed. A motionally average ESR 

spectrum is observed except for the effect on the hyperfine linewidths 

which are more sensitive to the motional narrowing. 

In fitting the experimental g-values of centre (I), a Bo 1 t zmann 

average of the g-values of the individual levels will be, used. 

However, the spectrum will be c;::alculated such that the orthorhombic 

spectrum observed at 4.2K will be reproduced at zero Kelvin, and the 

averaged tetragonal spectrum reproduced at -40K. Although the ex­

perimental values in the intermediate temperature region where the 

orthorhombic ~ tetragonal transition occurs will not be reproduced, 

the application a less than infinite relaxation rate (equation 8 .16) 

would correctly give this. 
-1 ' The activation energy of -50 cm is not easily related to the 

barrier height between the two lowest levels. As discussed in section 

5 . 5, it is usually associated with an excited vibronic level that is 

to some extent de localised over both wells, thus providing a re 1 a x a -
-1 

t ion path way. A very approximate value of -100 cm can be estimated 

for the barrier height in this study. 

8.4.3 The Sorokin and Chirkin Model. 

A one dimensional vibronic coupling model was applied to the 

Cu (I I) /NH 4Br sy'stem by Sorokin and Chirkin (1979). This model ignores 

anharmonic coupling between different vibrations, and so the two 

electronic states 2A1 (z2) and 2B
1 

(x2-y2) are coupled by vibrations 
g 2- g 

of blg symmetry. For the cux2c1 4 species, there is only one vibration 

of blg symmetry and this has the same symmetry coordinates as the 

orthorhombic component of the eg vibration of the parent octahedral 

complex. [Similar arguments hold in the c 4v point group of centre 
2 2 2 2 2 ' (III): the A1 (z ) and B1 (x -y ) electronic states are coupled by a 

single vibration of b1 symmetry.] 

This one dimensional pseudo Jahn-Teller model is appealing as it 

requires only three parameters to be specified and allows their deter­

mination uniquely from experiment. Neglecting the kinetic energy 

operator for the moment, the vibronic equations are: 

(8. 26) 



1
2
A > 

1 lg 2 
2 hv Q - E l 0 (8 .17) 

The dimensionless coordinate Q and vibrational energy hv refer to the 

normal mode of b 1 symmetry, and the separation of the pseudo 

degenerate electr;nic states 1
2

A1g> and 1
2

B1g>' is equal to 2S. 

The lower adiabatic potential surface, found by diagona 1 is ing 

( 8 .17) , is: 

(8 .18) 

The electronic part of the adiabatic wavefunction that can be as­

sociated with this surface is: 

-1 z =tan [(A
1
Q)/S] (8 .19) 

The potential surface in (8.18) will have two symmetric minima 
2 for S < A1/hv. In this case the minima, Q

0
; barrier height between the 

minima AB; and the energy separation of the electronic states at the 

minima, AE, are given respectively by: 

Qo ± [ (A1/hv) 2 - (S/A1)2 ] 1/2 (8 .20) 

-ISI 
1 

[ (S/Al) 2 + 2 (8.21) AB + -hv (A1/hv) 2 

AE = 2 [ A2Q2 + 82 
1 0 

] 1/2 (8.22) 

These quantities are shown in figure 8.9a. 

When S > Af/hv, a single minima at Q
0 

= 0 results, and the 

separation of the electronic states is then equal to 2S. This 

tetragonal splitting of the electronic states has a different meaning 

to the tetragonal strain given in section 8.3.3. In that section the 
2-tetragonal strain referred to the hypothetical cux2c 1 4 unit before 

v ibronic interactions. Here the quantity 2S represents the splitting 

of the IA1g> and IB1g> electronic states at the equilibrium tetragonal 

geometry (Q =O in figure 8.9). 
0 

(8.27) 
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The fitting of centre (I) is as follows. The orthorhombic low 

temperature g-values imply that this centre has a double minima poten­

tial where random strain will localise the lowest vibronic 

wavefunction into one of the wells. The transition to the upper sur­

face, AE, can be related to two of the parameters from (8.22): 

-1 AE = 9,300cm 2 
2A/hv (8. 23) 

The requirement that z -152° in the wavefunction to fit the low 

temperature g-values can be used to further relate the three 

parameters. Using (8.19) and some algebra, one obtains: 

sec (z) 
2 A/ (S.hv) (8 .24) 

For the particular values of hv and A1 that satisfy equation 

( 8. 2 3), the parameter S can take only a single value from equation 

(8.24). This also uniquely defines the barrier height in (8 .21). 

Example results for a range of hv are given in table 8.6. 

TABLE 8.6 Centre (I) Sorokin and Chirkin Model. 

hv/cm 
-1 

A1 /cm 
-1 

Siem 
-1 

till/cm 
-1 

50 482 -4106 31. 9 

100 682 II II 

150 835 II II 

200 964 II II 

250 1078 II II 

Al though S and AB are uniquely defined, many different pairs of 

(hv,A
1

) satisfy the experimental data. The frequency, hv, is not the 

same as that of the hypothetical complex before vibronic interactions 

as discussed in section 8.3.2. Rather it is the frequency at the 

relaxed tetragonal geometry, or that due to the potential along the Qb 

coordinate at the minimum of the two dimensional potential in figure 

8.6b. 

Although this frequency is likely to be lower than the -200 

(8.28) 

-1 cm 



given for the hypothetical vibrational frequency, it would be dif­

ficult to quantify. Rather than test pairs of (hv,A 1 ) against the 

temperature of the g-values, the other centres are first considered. 

The application of the Sorokin and Chirkin model to centres (II) 

and (I I I) can be made in a manner similar to that used in treating 

Cu (II) /K2ZnF 4 in chapter 6. Here, the low temperature g-val ue s and 

their small temperature dependence is due to the dynai:nic mixture of 

d(x2-l) into the predominantly d(z2) ground state in the lowest and 

higher vibronic levels respectively. By calculating the g-values that 

would be expected for pure d(z2) and d(x2-y2) electronic states, the 

fractional electronic mixture of the lowest vibronic level can be 

obtained. For centre (III), the low temperature g-values imply -4. 5% 

d(x2-y2) in the ground vibronic state. 
-1 The value of S is fixed at - -4750 cm to reproduce the transi-

t ion to the upper Jahn-Teller surface, and figure 8 .lOa shows the 

fraction of d(x2
-y

2) character in the ground vibronic state as a 

function of A1 and hv. As in centre (I), pairs of (hv,A1) give the 

correct mixture of d(x2-y2) character for centre (III). The values of 

A1, for each hv obtained for centre (I) in table 8.6 are also shown as 

the large circles. Remarkable agreement is seen for the two centres: 

for a particular value of hv, the same value of A1 is predicted for 

centres (I) and (III) . 

The obvious step now would be to try to fit the temperature 

dependence of the g-values and thereby find a unique pair of (hv, A1 ) 

that reproduces all the experimental data. For centre (I), neither 

the low temperature or temperature dependent g-values are reproduced, 

even though the potential was chosen, in table 8. 6, to give minima 

that correspond to the correct static mixture of the electronic com­

position. 

This is because the barrier height between the minima is so low 

that the lowest vibronic wavefunctions are delocalised over both 

wells even when quite a large linear term is added to the potential to 

mimic the random strain by making these wells inequivalent. The fact 

that the vibronic states cannot be localised at the minima means that 

the low temperature g-values cannot be reproduced. Figure 8.lOb shows 

the barrier height and splitting of the lowest vibronic states as a 

function of the wavefunction parameter z. To obtain a small splitting 

at z -150° implies that the value of hv < 80 cm-1 . 

(8. 29) 
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The g-values of centre (III) can be fitted using S = -4750cm-l 

and the appropriate data from figure 8.lOa which gives %d(x2-y2)=4.5. 

However, the potentials from which these g-values are calculated are 

double minima potentials. This form of potential, although giving the 

correct calculated g-values, would unlikely to occur in practice .as 

the "random strain" would tend to make these wells slightly inequi v­

alen t resulting in orthorhombic g-values at low temperature, like 

those seen in centre (I). The dotted line in figure 8.lOa shows the 

values of the parameters where double minima occur. This implies that 

to have the correct mixture of d(x2-y2) in the ground state, while 

keeping the potential with a single minimum, hv must be substantially 
-1 

larger than 250 cm . 

This is the opposite to what would be required to fit centre (I) . 

Both centres could be fitted if an extra parameter controlling the 

even order anharmonicity around the equilibrium geometry Q = 0. To fit 

the experiment, this "anharmonicity" would be required to soften the 

potential for centre (I), and stiffen it for centre (III). This then 

corresponds to making the wells deeper in centre (I), and making them 

disappear in centre (III) . 

However, it is not clear what this "anharmonicity" corresponds to 

physically, nor why it should be so different for the two centres. In 

the following section the equivalent of this anharmonicity is deter­

mined by both the warping and strain terms of the Mexican hat 

potential surface. The parameters are then related to the physical 

properties of the centres in a straightforward manner. Since the one 

dimensional model of Sorokin and Chirkin would require addition a 1 

parameters it will not be pursued further here. 

8.4.4 The Jahn-Teller model. 

In this section the cubic Exe Jahn-Teller vibronic Hamiltonian is 

applied to the three copper (II) centres in NH 4 Cl, where the large 

strain terms are used to differentiate between the different centres. 

Since a quantitative fit to the experimental data is desired, a sys­

tematic approach to obtaining "best fit" parameters is outlined here 

in detail. 

As previously described in chapter 5, the electronic and 

geometric properties of each v ibronic leve 1, obtained from the 

(8.30) 



75 150 225 300 
{J (cm-1) 

Figure 8.11 Fitting the g-values. 

a) The g-values calculated using a static wavefunction in equation (8.2). 

b) The position of the orthorhombic minima as a function of ~ and Se. 
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due to the zero point motion as function of ~ and Se. 



diagonalisation of the vibronic Hamiltonian, is placed in a ligand 

field matrix. The numerical diagonalisation of these matrices gives 

the d-orbital mixture caused by spin-orbit coupling, and the applica­

tion of the Zeeman operator then gives a particular set of g-values 

for each v ibronic level. Covalency is taken into account by the used 

of orbital reduction parameters and if isotropic values are used, only 

the electronic properties of the vibronic states are needed. However, 

it was found that centre (I) requires additional anisotropy and so the 

expect at ion values of the geometry of the vibronic levels are also 

required. 

In fitting the g-values, it is convenient to first consider the 

low temperature g-values as this requires the calculation of only the 

lowest vibronic level. If many different sets of parameters are found 

to fit these low temperature values, then the temperature dependence 

can be used to chose the best set. Similar calculation to those 

described in chapter 6 show that the g 11 values of the tetragonal 

centres (II) and (III) require the dynamic mixture of -1.5% and -4.5% 

d(x2-y2) character in the predominately d(z2) ground vibronic state 

from the zero point vibration. A very rough guide to the composition 

of centre (I) can be obtained from the adiabatic electronic wavefunc­

tion given in equation (8.2) at the static geometry around the trough 

of the Mexican hat potential surface. The calculated g-values as a 

function of this angle is shown in figure 8. lla. It can be seen that 

the value of ~ = 152° obtained from the least squares fit in section 
0 

8. 3. 4, does not reproduce the low temperature g-values at all well. 

Another important aspect of the potential that must be reproduced for 

centre (I), is a barrier that separates the two lowest vibronic states 

such that an "inversion splitting" of -2 cm-l to reproduce the 

tetragonally averaged spectrum at -20K. In addition, the barrier 

height has been very approximately estimated, in section 5. 4 .2, as 

-100 cm-l from the motional averaging of the orthorhombic spectra. 

The harmonic vibration of the vibrational basis functions (the 

hypothetical eg vibration of the "cubic" cux2cl~- species), is taken 
-1 as hv = 210 cm for all the centres, which is the average of the 

values obtained from the normal coordinate analysis in section 8.3.2. 

The linear coupling constant is fixed at A1= 900cm-l for all centres, 

which roughly fits the observed transitions to the upper surface of 

the Jahn-Teller potential. The warping parameter, p, and the strain 

(8. 31) 
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Figure 8.12 a) The barrier height between the orthorhombic minima. 

b) The splitting of the two lowest vibronic levels. 



terms are allowed to vary. Family of curves are shown in figures 

8.llb,c for various values of the tetragonal strain as a function of 

p. These are plotted against the position of the orthorhombic minima 

and the % d(x2-y2) electronic character in the ground vibronic state 

respectively. In figure 8.12 similar curves are shown for the barrier 

height between the minima, ~B, and the splitting of the two lowest 

vibronic states. 

For a particular value of p, the values of Se must be chosen for 

the centres such that centre (I) has two minima, with a barrier height 

of -100 cm-1, and an energy separation of the two lowest levels of -2 

cm- 1 . The orthorhombic strain that is used to make the wells inequiv­

alent and the localise the wavefunctions in the separate minima, will 

further slightly split these two levels. For the same value of p, 
centres (II) and (III) must take values of Se such that the potential 

has a single minima at cj>=l80°, and have -1.5% and. -4.5% d(x2-y2) 

electronic character. 

Table 8.7 Fitting the Low Temperature Spectra 

Tetragonal Strain -1 (SA/cm ) 

P/cm -1 A2/cm -1 A1 (T)/cm -1 (I) (II) (III) 

100 5.44 -300 -200 -1000 -600 

150 8.166 -200 -350 -1500 -875 

200 10.88 -160 -600 -1750 -1150 

Many sets of values satisfy the above requirements, and several 

of these are given in table 8.7. As the g-values of centres (II) and 

(I I I) have only a small temperature dependence, centre (I) will be 

initially used to determine the best fit. The calculated and ex­

perimental g-values are shown for centre (I) are shown in figure 8.13 

for the values given in table 8. 7. The anisotropic orbital reduction 

factors: k =k =0.9, k =0.7 were required as well as a non-zero linear x y z 
Jahn-Teller constant for the triplet state, A1 (T). These values are 

also given in table 8.7 and results in the splitting of the triplet 

states by ~A1 (T)p
0 

at an elongated or compressed geometry. The calcu­

lated splitting of the triplet state for the values of A1 (T) used are 

(8.32) 
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-1 
in the range 1, 100-2, OOO cm , agreeing well with the expe r imen tally 

observed value of 1,200 cm-1 , since this splitting is at an orthorhom­

bic geometry of the Mexican hat poten~ial, and so is reduced from that 

expected at a tetragonal geometry. However, it is likely that the 

introduction of this anisotropy will also contain contributions from 

the variation of the orbital reduction factors with bondlength. 

Additional plots are shown in figure 8.13 to illustrate various 

aspects of the calculation. The dashed line in figure 8.13a shows the 

effect of doubling the "random strain". This both causes the 

tetragonal spectrum to appear at a higher temperature than observed, 

and the low temperature g-values to be different from what is ob­

served. The former effect is due to additional splitting caused to the 

lowest vibronic levels, while the latter shows that these wavefunc­

tions are not completely localised within single wells. 

Figure 8 .13b shows the effect of basis truncation and the error 

that can be in t reduced by not including all the populated levels in 

the Boltzmann sum. The dashed line plot in figure 8 .13c shows the 

effect of using isotropic k values. The most noticeable discrepancy 

here is that gx is too low and gz too high. It is easy to increase gx 

by increasing the (negative) A1 (T), but the only way to decrease gz' 

without reducing kz' is to move the position of the minima towards the 

cj>= 18 0 ° posit ion, as shown in the static g-values of figure 8. lla. 

However, it is impossible to do this in the present case, because when 

the strain is increased, the barrier height between the minima 

decreases (figure 8.12a) so that the energy splitting of the two 

lowest states increases (figure 8.12b), and the lowest wavefunctions 

cannot be localised within the one well. After many trial calcula­

tions, it was concluded that centre (I) cannot be fitted with an 

isotropic k value within the present model. 

The temperature dependence of the tetragonal spectrum of centre 

(I) above - SOK is best fitted by the values of ~ = lOOcm- 1 , s
9 

- 2 0 0 cm - l . This can be understood by considering the behaviour of the 

higher vibronic levels. For large values of the tetragonal strain the 

potential outside of the double well is steep, whereas for small 

values it is quite shallow. This means that quite a small value of the 

tetragonal strain is required to fit this temperature dependence. 

If this value of ~=lOOcm-l is used with the other centres with 

the strain va 1 ue s given in table 8. 7, the g-values shown in figure 

(8.33) 



8 .14 result. Excellent agreement is obtained in both cases , without 

requiring anisotropic k values. Figure 8 .14a shows that centre (II), 

which has a very small d(x2-y2) component, is rather insensitive to 

the tetragonal strain. Although the potential of centre (III) has a 

slight double minima (figure 8.12a), the lowest vibronic levels are 

above the barrier. If the same random strain that was used to fit 
-1 ' 

centre (I) is added to the potential (Se=l.5cm ) , then it produces 

only a very small orthorhombic splitting of g.L (figure 8 .14b), which 

would not be detected experimentally. For centre (II), the inclusion 

of this orthorhombic strain has essentially no effect at all. While 

these parameters appear capable of fitting the experimental data, the 

values will only be as meaningful as the model, and they are discussed 

further in the following section. 

8.4.5 The Fitted Parameters. 

The parameters arrived at in the previous section are given below: 

Table 8.8 The fitted parameters. 

hv 210 -1 
SS -200 -1 centre (I) cm cm 

-1 -1 
Al 900 cm -600 cm centre (III) 

A2 5.444 cm -1 -1 =-1200 -1 centre (II) = (~=lOOcm ) cm 

s = 1. 5 cm -1 
e 

The lower adiabatic potential surfaces can be found from the 

vibronic Hamiltonian by diagonalising the potential energy operators, 

and are shown in figure 8.15. It is interesting to note that the 

minima in the potentials of centres (I) and (II) correspond to the 

geometries that are found for Cu(H2 oi 2cl~- and Cu(NH3J2c1:- entities 

in the structures of some pure copper compounds, and this is discussed 

in the following section. The effectively single minimum in cent re s 

(II) and (III) means that the electronic and vibrational parts of the 

vibronic functions will be very similar to those found for the 

Cu(II)/K2ZnF 4 system shown in figures 6.6,7. 

The basic shape of the potential of centre (I) along the angular 

coordinate is essentially the same as the one dimensional model of 

Sorokin and Chirkin. In fact there is a direct mathematical connection 

(8.34) 
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in that, if a change of origin is made to the saddle point between the 

minima, then part of the second order coupling which causes the double 

minima in the two dimensional potential becomes a first order coupling 

constant. While it could be argued group theo ret ica l ly that the 

problem should start from this geometry in the first place, the 

present model provides a rationale as to why the molecule adopts this 

initial compressed geometry. 

The electronic and vibrational parts of the five lowest vibronic 

wavefunctions are shown in figure 8.16 for centre (I). The g-values 

are also given for these levels, and can be simply understood from the 

extension of the d-orbital lobes along the appropriate molecular axes. 

The two lowest levels are below the barrier height and are localised 

to a large extent in the separate wells by the random strain 

(S =l.Scm-1). The lowest wavefunction is localised in the second 

qu~drant ( 9 0 ° «!><180°) of the Mexican hat potential, because the or­

thorhombic strain used to represent the random strain, has been 

(arbitrarily) chosen to be positive. It is heartening to note that an 

excited vibronic level at 74 cm-l is completely delocalised over both 

wells, providing the relaxation pathway between the wells, and the 

energy of this is close to that predicted (-SOcm-1) by the simulation 

of the orthorhombic ~ tetragonal transition region. 

However, there are several criticisms that can be made of these 

results. First, the two lowest levels are not completely localised 

within their separate wells, but have a small overlap with the other. 

This is undesirable because a) it would provide a relaxation pathway 

and an averaged tetragonal spectrum would be expected at all tempera­

tures; and b) the low temperature g-values, if they stay unaveraged, 

would be dependent on fluctuations of the random strain. This latter 

point was illustrated in figure 8 .12a. where a doubling of the random 

strain caused the low temperature g-values to change. 

Since both of the above points conflict with what is observed 

experimentally, it is almost certain that these wavefunctions are 

only qualitatively correct. A larger value of p would seem to be 

required to increase the barrier height between the wells. Connected 

with this point is the magnitude of the tetragonal strains that have 

been arrived at. While certainly these appear qualitatively correct, 

both from the point of view of chemical bonding and their ability to 
-1 

reproduce the ESR data, the value of s9 = -200 cm for centre (I) 

(8.35) 



seems too low. However, as shown previously, the larger values of Se 

(and correspondingly larger value of Pl fails to reproduce the tem­

perature dependence of the higher temperature dependence of the 

tetragonal g-values of centre (I) . 

Both the above anomalous points, the magnitude of the Se and the 

barrier height, can be explained by the form of the warping terms. In 

this formally low symmetry system, the warping terms need not take the 

cubic form (regardless of whether it caused by anharmonicity or second 

order electronic coupling) . That is, it need not be such that it 

produces tetragonal minima at cl> =0°, 120° and 240° in the absence of 

strain. What is needed is a larger barrier height and the minima 

closer to 180°: 

This would then both allow the lowest wavefunctions to be fully 

localised and the correct temperature dependence of the tetragonal g­

val ues to be calculated with a larger value of the strain. However, 

it is felt that the basic interpretation of the dynamics of these 

three centres is correct, and little could be gained by considering 

the non-cubic forms of the warping terms. The following section con­

siders the effects of using non-cubic forms of the linear coupling and 

harmonic terms. 

It is also noted that there is a level calculated for centre (I) 

that is 311 cm-l above the ground vibronic state that is localised in 

the upper well of the potential shown in figure 8.15a. This is similar 

to the energy of the third level in the Silver and Getz model 

described in section 8.4.1. The existence of such a level would not be 

predicted from the one-dimensional pseudo Jahn-Teller model, it makes 

a small, but significant contribution to the temperature dependence of 

the g-values. 

(8. 36) 



8.5 DISCUSSION 

8.5.1 Comparison of the models. 

Although the two dimensional Jahn-Teller model appears to be much' 

more successful in reproducing the observed experimental data than the 

one dimensional model, the sceptic might say that this is because 

there are extra parameters in the model that one can vary. However, 

these- parameters are not really free parameters in the sense that it 

is possible to estimate their magnitudes from the arguments given in 

section 8.3. 

The same cannot be said for the one dimensional Sorokin and 

Chirkin model, as it is difficult to gain an a priori estimate of the 

parameters involved. The vibrational frequency in this model would be 

expected to be reduced from the value of 210 cm-l at the relaxed 

compressed geometry, as the equatorial bonds involved in the vibration 

would have lengthen. However, it is difficult estimate how much this 

reduction would be, although it is unlikely to be as low as -75 cm-l 

or greater than 250 cm-1, as suggested from fitting cent re (I) and 

(III) respectively to this model. 
-1 

The strain parameters of -4,100 and -4750 cm for centres (I) 

and (III) respectively give the difference in the sigma bonding of the 

axial ligands as e (NH
3

) - e (H2o) as 325 cm-l which disagrees with 
O' -1 O' 

the va 1 ue of 1, 0 0 0 cm obtained from the strain parameters of the 

Jahn-Teller model. In addition to this, it is difficult to predict the 

linear coupling constant in the Sorokin and Chirkin model, although 

the large separation of the electronic states at tetragona 1 symmetry 

might suggest that it would be less than what occurs in cubic systems. 

The main deficiency suggested for the Jahn-Teller model was that 

the warping terms were restricted to the cubic form. A non-cubic form 

of the first order coupling and the harmonic terms might also be 

expected to have some effect on the potentials. Figure 8.6a shows such 

a potential which has been constructed from terms estimated from the 

AOM. However, this potential is of the opposite form that is desired 

as it will tend to decrease the barrier height in much the same way as 

the tetragonal strain does. 

(8.37) 



By keeping the cubic warping term, and varying_ the harmonic and 

linear coupling parameters in many trial calculations, no improvement 

to section 8.4.3 was obtained. It is concluded that the warping is 

again the most important term in determining the properties of the 

lowest vibronic levels, and the fact that it is restricted to a high 

symmetry form is mainly responsible for the difficulty encountered in 

fitting the experimental data. 

8.5.2 2-Comparison with other Cux2c14 entities. 

It is instructive to compare the ge9metry of the doped copper 

centres predicted from the analysis given here with known structures 

of pure copper compounds. Table 8.9 shows the bondlengths from pub­

lished structures of the Cu(H2 o) 2Cl~-and Cu(NH3 ) 2c1~- units which 

correspond to centres (I) and (II) respectively for copper doped 

NH 4c1. For both types of coordination the structures are very consis­

tent with each other and also with the predictions given by the 

present study. In particular, orthorhombic bondlengths are found for 

the centre (I) type compounds with short, medium and long bonds cor­

responding to pairs of H2o, Cl and Cl ligands respectively. As 

suggested by_Ha~e~ and Trappeniers (1973), this complex may have an 

intrinsic tendency to assume this orthorhombic geometry. The present 

study would imply that the origin of this tendency is vibronic in 

nature. 

This is more convincing in the doped NH 4cl systems where coopera­

tive effects should be minimal. However, the similar orthorhombic 

geometry of the pure compounds may suggest a similar vibronic inter­

pretation. That is, the quite drastic difference of the inequivalent 

Cu-Cl bondlengths is due to the fact that H
2
o is a slightly stronger 

bonding 1 igand compared to Cl - , which results in a small tetragonal 

compression of the warped Mexican hat. 

It would be interesting to study the low temperature ESR spectrum 

of copper doped CdC12 .4H2o to see if it also shows orthorhombic g­

va 1 ue s. The non-cubic nature of this host (table 8. 9) would probably 

result in the equivalent orthorhombic minima being substantially 

different in energy so that the orthorhombic to tetragonal motional 

averaging would be unlikely to occur. 

(8. 38) 



2-Table 8.9 Cux2c14 Structures. 

2- . r /pm r /pm r /pm Cu(H2o) 2Cl4 Units: x y z 

a) K2Cucl4 .2H20 228.5(3) 289.5(4) 197.1(6) 

b) CuC12 .2H20 229.0 (4) 294.0 (6) 195.7(5) 

c) (NH 4)2cucl4 .2H20 227.1(1) 297.1(1) 195.4(3) 

2- . Cu(NH3) 2c14 Units: 

d) (NH4) 2Cu(NH3)2cl4 276 (1) 276(1) 196 (1) 

e) (NH 4)Cu(NH3) 2cl3 275.8(1) 275.8(1) 195.0(1) 

f) Cu(NH3)2c1 4 276(1) 276 (1) 195 (1) 

Others: 

g) CdC12 .4H20 Cd-Cl = 259.3(7), 258.8(7), 260.6(7), 257.6(7) 

Cd-OH2= 235(1), 236(1) 

h) Cu(NH3) 4so4 .H20 Cu-N = 2.06 (x2), 2.04 (x2) 

Cu-OH2= 2.59, 3.37 

a) (Chidambaram 1970) Isolated Cu(H2o) 2Cl~- units. 

b) (Engberg 1970) Planar Cu(H2o) 2c12 columns tilted ~o axial Cl coor­

dination is -91.2° from Cu(H2o) 2c12 plane. 

c) (Bhakay-Tamhane 19 8 0) Isolated Cu (H2o) 2cl~- units. Basic NH 4Cl 

structure diluted stoichiometricly by Cu (H 2o) 2 cl~-. Cha~~s --~-~--NH: 
-along the cax-i~--partial -ordering at-RT I cornpleteordering at llSK. 

d) (Clayton and Meyers 1976b) Isolated Cu(NH3) 2c1 4 units. Basic NH 4Cl 

structure diluted stoichiometricly by Cu(NH3)2c1 4. 

e) (Clayton and Meyers 1976c) Structure as above. 

f) (Hanic and Cakajdova 1958) 

g) (Leligny 1979) Chains of Cd(H2o) 2Cl~- each sharing two Cl-Cl edges. 

h) (Mazzi 1955) Showing that NH3 is a stronger ligand than H2o. 



In the centre (II) type structures, all three sets of published 

bondlengths show a compressed tetragonal geometry in agreement with 

the ESR data. These three structures are part of a series: 

NH
4
Cl, (NH

4
) 
2
cu (NH

3
) 
2
cl

4
, (NH

4
) Cu (NH

3
) 
2
cl

3
, Cu (NH

3
) 
2

c1
2

, 

which all have the basic NH 4Cl structure. The Cu(II) ions are randomly 

distributed over the face centred positions of the unit cell and the 

two NH: ions in the axial positions are replaced by two NH3 ligands 

(Clayton and Meyers 1976a), exactly as in the doped cent re s studied 

here. It is curious that these compounds follow simple stoichiometry 

rather than a continuous range of mixed crystals that might be ex­

pected. Since the above series has the following stoichiometry: 
1 1 1 1 

NCl.;Cu, NCl.4Cu, NCl.3Cu, NC1.2Cu, 

it might be expected that NCl. ~' corresponding to (NH4) 3cu (NH
3

) 
2

c1
5

, 

would also form a stable compound. 

Although the crystal structure determinations were successful 

using a model where the Cu atoms (therefore NH3 molecules) are ran­

domly distributed about the NH 4Cl lattice (Clayton and Meyers 

1976a,b,c), there is no reason why this should result in the observed 

stoichiometric compounds. Presumably, there must be some sort of 

cooperative effect occurring to explain these intriguing facts, al­

though these effects are assumed to disappear in the present case with 

the high dilution. 

This series of compounds would then be ideal to study such 

cooperative effects, as the cell constants remain the same for all 

concentrations of copper, the basic NH 4Cl lattice acting like a 

"sponge". Any concentration dependence of the ESR spectrum would then 

be due to cooperative interactions. 

Finally, the bondlengths of Cu(NH3 J 4 (H2o)~+ in Cu(NH
3

J
4

so
4

.H
2
o 

a re given in table 8. 9 to illustrate the stronger bonding properties 

of ammonia over water, in agreement with the sign and magnitude of the 

strain parameters found in the present study. 

(8. 39) 



8.6 CONCLUSIONS 

The temperature dependent ESR spectrum of the different centres 

of copper doped NH 4cl over the temperature range 4. 2-2 4 OK has been 

rationalised in terms of vibronic interactions. Over this temperature 

range, it is then the local dynamics of the centres, rather than the 

influence of the bulk dynamics of the host lattice, that is respon­

sible for the observed properties. The consistency of the present 

interpretation has allowed the coordination of the previously un­

characterised 8entre (III) to be postulated. 

The system has proved ideal to test the validity of a vibronic 

approach to low symmetry systems. Although perfect agreement with 

experiment was not found, and indeed not sought, it appears that the 

"chemistry" of the system is well understood within the present for­

malism. It has also been of interest to examine the various 

approximations inherent in the different levels of interpretations of 

such an approach. Although the strain terms dominate the potential of 

the complexes, it was found that the warping terms are again crucial 

in determining the properties of the lowest vibronic levels. These are 

difficult to quantify even in the case of cubic systems, and the 

assumption that these low symmetry systems retain the cubic form of 

this warping seems to be the major limitation of the present approach. 

However, within this limitation, the model was able to describe 

the different temperature dependent ESR spectra by allowing only the 

bonding characteristics of the axial ligands to vary between the three 

centres. The resulting parameters are chemically reasonable and con­

sistent. Moreover, it provides a rationale as to why the radically 

different geometries of centres (I) and (II), (III) are adopted in 

identical environments. A comparison with the geometry in the crystal 

structures of several analogous pure compounds suggests that this type 

of interpretation could also be applied to pure systems. 

There is no group theoretic reason why an isolated molecule in a 

non-degenerate state should adopt the maximum symmetry of its coor­

dination. If a molecule does not have the maximum symmetry, it is 

usual to invoke pseudo Jahn-Teller vibronic coupling with a higher 

excited state to explain the descent in symmetry. It is felt, however, 

that the present approach offers a better description of what is 

actually occurring physically. 

( 8. 40) 
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For centre (I) Sorokin arJ.d Chirkin (1979) expressed surprise at 

finding a pseudo Jahn-Teller effect between states that are separated 
-1 

by -10,000 cm at the tetragonal geometry. In the present interpreta-

tion the problem is viewed as a pseudo Jahn-Teller effect between 
-1 

states separated by -1, 0 0 0 cm at a hypothetical "octahedra1" 
2-geometry. The fact that Cu(H2o) 2c1 4 complexes seem to adopt an or-

thorhombic geometry as a rule, is then not because it has a strong 

tendency to undergo a pseudo Jahn-Teller effect with a state -10,000 
-1 cm distant, but rather is a consequence of the axial water ligands 

being only a marginally stronger ligand than the chloride ions. This 

then results in a small tetragonal compression which is of the same 

order as the warping terms in the conventional Mexican hat potent i a 1 

surface, which leads to the orthorhombic geometry. 

(8.41) 



CHAPTER 9 THE TEMPERATURE DEPENDENCE OF THE ELECTRONIC SPECTRUM 

OF SQUARE PLANAR COPPER TETRACHLORIDE 

9.1 INTRODUCTION 

The temperature dependent v ibronica l ly induced electronic 

spectrum of the square planar CuCl~- species has recently been st~died 
by McDonald and Hitchman (1986) in some detail. It was found that the 

temperature dependence of both the intensities and the shift in the 

band maxima deviated quite strongly from the behaviour expected from 

the generally accepted models. 

These deviations have previously been observed in Ni2+/ KMgc1
3 

by 

Brynstead etal (1966) over the temperature range 80-763K, although no 

explanation was put forward. The observed deviation in the case of 
2-

CuCl4 

300K, 

is even more dramatic over the limited temperature range 10-

and represents an excellent opportunity for investigating the 

causes of the observed discrepencies. 

An investigation of this type is of considerable interest as it 

is a direct probe of the adiabatic potentials involved. As stressed by 

Bacci (1984) these potentials, describing metal-nearest neighbour 

interactions, are important in modulating the active site in met­

alloproteins and temperature dependent phenomena can be used to 
2-investigate their form. The planar CuC1 4 ion represents an advan-

tageous model compound because of its high symmetry and relatively few 

normal modes. 

9.1.1 Background. 

2-The d-d electronic transitions of centrosymmetric cucl 4 are 

parity forbidden, and the relatively weak intensity observed (McDonald 

and Hitchman 1986) is due to vibronic coupling. This leads to the 

transition moment being a function of the nuclear geometry and there­

fore temperature dependent. The theory of this temperature dependence 

is discussed in chapter 3. An important result found in appendix 3.Al 

was that the temperature dependence of the intensity of a vibronically 

induced transition will depend only on the ground state potential 

( 9 .1) 



surface, and the way the electronic transition moment varies along 

this surface. 

This allows the present study to be conveniently divided into two 

sections. These are: a) the temperature dependence of the intensity, 

which depends only on the form of the ground state potential surface 

and b) the temperature dependence of other spectral phenomena, which 

depends on the form of both the ground and excited state potential 

surfaces. In the present model compound there is sufficient experimen­

tal data to quantify these ground and_excited state properties. 

9.1.2 Sources of Experimental Data. 

The spectrum of the complex (meth) 2cucl4 [meth=methadonium] is 

shown in figures 9.la,b for light with the electronic vector polarised 

along the band c crystal axes respectively. These directions cor­

respond closely to the z and xy molecular axes indicated in figure 

9.Al. All the temperature dependent experimental data used in this 

chapter was provided by McDonald (1986). Additional spectra of the 

(NmpH) 2cucl4 [NmpH=N-methylphenethylammonium] compound were taken at 

4.2K -by- a -3 ~etre_Hilger spect~ograP,h with an_1mmersion liq-Uia helium -----
-- - -- - ~- - - -- -, 

Dewar. 

The most obvious variation of the spectrum with increasing tem­

perature is the increase in the intensity, which is typical of a 

vibronically induced transition. The source of this intensity is from 

coupling with higher energy charge transfer states (Desjardins etal 

1983). However, it is only the relative intensity that is of interest 

in the present study. The intermediate states and the source of the 

vibronic intensity will be briefly considered in appendix 9.A3. 

The other temperature dependent features are the shift of the 

band maxima to lower energies and the increase in the band widths with 

increasing temperature. Since the overall spectral band shape of the 

transitions could be well fitted to a Gaussian line shape, the band 

maxima and band width can be related to the mean energy and variance 

respectively (see section 3.6). The higher spectral moments (relating 

to skewness, kurtosis, etc) are small. 

Since it would be tedious to analyse the spectra shown in figures 

9.la,b fullr, only the highest energy transition 2 B1g(x 2 -y 2 ) 

~ 2 A 1 g (z 2 ), will be considered in detail. This transition has been 

(9. 2) 
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chosen because it is the easiest to separate from the other transi­

tions, and also because it lacks complicating features such as 

electronic degeneracy or normal modes of more than one symmetry induc­

ing the intensity in each polarisation. In addition it contains the 

typical behaviour of all the transitions; that is, in the two 

polarisations, a very different behaviour of the intensity, but-a 

similarly large band shift, was observed as a function of temperature. 

The full spectrum is then considered to rationalise the different 

trends for the different transitions. 

(9 .3) 



9.2 TEMPERATURE DEPENDENCE OF THE INTENSITIES: A MOMENTS ANALYSIS. 

2 2 2 2 2 ' The experimental spectrum of the B1g(x -y ) -7 A1g(z ) transi-

tion is shown in figure 9.2. For this particular transition, modes of 

only one symmetry are allowed in each polarisation so one dimensional 

potentials can be used to investigate the deviations from the usual 

"coth rule" model. There are two schools of thought on the breakdown 

of the coth rule. Ferguson (1970) has suggested that the inducing mode 

may be more active in higher vibrational levels than that given by a 

linear dependence. Englman (1960), and more recently Bacci (1984), 

have argued that anharmonicity will be important. 

Here both schemes are investigated, not because of the importance 

of explaining the small deviation of the temperature dependence from 

the harmonic "coth rule", but more because it is necessary to know the 

re 1 at i ve importance of the two effects when considering the shift in 

the band maxima. 

9.2.1 The Harmonic Approximation. 

Vibronic selection rules allow vibrations of only one symmetry to 

induce intensity in each of the xy and z polarisations. These are the 

eu (v 6, v7) and b2u (v5) modes respectively that are shown in figure 

9.Al. A family of curves can be obtained from different frequencies of 

these inducing modes by using the "coth rule" of (3.54). Fair agree­

ment with experiment can be obtained when the vibrations take the 

values v7 = 165cm-l and v5 = 65cm-1, with the stretching vibration of 

e symmetry apparently inactive. The experimental values, and those 
u 

calculated with the coth rule are the symbols and dashed lines respec-

tively in figure 9.3. It can be seen that the observed intensity rises 

more quickly than expected from the coth rule at low temperatures, and 

slower than expected at higher temperatures. The conditions under 

which the coth rule is derived are now relaxed in an attempt to im­

prove this agreement. 

( 9. 4) 
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9.2.2 The Non-Linear Dependence of the Transition Moment. 

If the expansion of the electronic transition moment is taken to 

second order, the quadratic coth rule of (3.55) is obtained. The 

application of this formula to the temperature dependence of the 

intensity is shown in figure 9.4 for the z polarised spectrum. The 

effect of the additional coth2 term is to increase the intensity at 

higher temperatures. Therefore a higher harmonic frequency of v 5 = 

75cm- 1 is used, and the I 01 , I 02 constants are given the pairs of 

values 1.0,0.0; 0.95,0.05; 0.90,0.10 to allow the curves to pass on 

either side of the experimental points. Clearly the wrong sort of 

behaviour is observed, so that this mechanism cannot account for the 

intensities in the lower temperature range. 

In passing, it is noted that this is exactly the type of devia­

tion from the coth rule that was observed by Brynstead etal (1966), 

which in turn was the experimental evidence cited by Ferguson ( 1 9 7 0 ) 

when he suggested this as a possible mechanism. This indeed may be the 

cause for the deviation from the coth rule in this particular compound 

[Ni (II) /KMgC1
3

J, although as Brynstead etal (1966) have themselves 

suggested, this sort of behaviour can also be explained by a quartic 

anharmonicity. For the present compound however, the above mechanism 

cannot account for the observed deviations from the coth rule. 

9.2.3 Anharmonicity. 

The type of anharmonicity likely to account for the deviation 

from the coth rule in the present case, is one in which the energy 

separation between the vibrational levels increases for higher levels. 

This is the same conclusion drawn by Englman (1960), when looking at 

the temperatur~ dependence of the intensity of Ni (H2 0) ~ +. He argued 

that inter-ligand repulsion would cause the harmonic potential of the 

bending modes to become steeper at high amplitudes and used a "Poschl­

Teller" potential to approximate this effect. 

In the present case it is not clear what is causing the anhar­

monicity, as axial ligands are absent and interligand repulsion should 

decrease as the angular distort ion increases along the out - of -p 1 an e 

b 2 u coordinate. However, the potentials of the angular vibrations may 

(9 .5) 
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be perturbed by the hydrogen bonding with the methadonium cation which 

stabilises the planar geometry of these complexes (Harlow etal 1974). 

Alternatively, such an anharmonicity can be rationalised in terms of 

vibronic coupling in the ground state potential (see section 9 .5). 

While the actual cause of the anharmonicity cannot be given with 

certainty, it is clear what form it should take if it is to explain 

the observed temperature effects. 

Calculations of the temperature dependent intensity were done by 

the variational method for various potentials where the anharmonicity 

introduced is slight. Again a family of curves were examined, and it 

became clear that by altering the potential to reproduce the low 

temperature experimental points, the frequency of the harmonic poten­

tial must be lowered to reproduce the higher temperature data. The 

best fit temperature dependent intensity is shown in figure 9.5 by 

solid lines. These were obtained with the potentials: 

V(~) 

V(~) 

2 2 
0.5~ + 2.0exp(-0.25~ ); hv 

0.5~2 + exp(-0.5~2 ); hv 

-1 
165cm , 

-1 
60cm 

(9 .1) 

for xy and z polarisations respectively. These potentials are shown in 

figure 9.5 along with the best fit harmonic potentials for comparison. 

It can be seen that the curves are an improvement on the "coth 

rule 11 and certainly account for the deviation better than the non­

linear dependence of the transition moment. For this reason the latter 

mechanism will not be considered when analysing the larger deviation 

from expected behaviour of the shift of band maxima with temperature. 

9.2.4 Are the Ground States Unique? 

It is not clear that the potentials that result in fitting the 

experimental data in figure 9.3 are unique. Although these potentials 

represent a small deviation from the best fit harmonic potential of 

the "coth plots", a far from harmonic potential might also fit the 

experimental data. The cause of this uncertainty arises because the 

absolute intensities are not being calculated, but rather the inten­

sities relative to the intensity at absolute zero. This means that 

different potentials could give the same relative change in the RMS 

value of the inducing coordinate, which would then give the same 

(9. 6) 
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relative change in the intensity. Several alternate potentials are 

therefore investigated at this point. Here, only the potential of the 

b2u mode, or z polarised data of figure 9. 3 is considered for il­

lustration. Potentials given below have been chosen to have a large 

root-mean-squared amplitude in the lowest vibrationa 1 leve 1 and are 

shown in figure 9.6a. 

vl (~) 0 .5~2 hv 70 -1 (9.2) cm 

0 .2~2 2 -1 
v2 (~) + exp(-0.4~ ) hv 65 cm 

2 2 -1 
V3 (~) 0.5~ + 5.0 exp(-0.1~ ) hv 49 cm 

-0.5~2 + 0.00625~4 -1 
v 4 (~) hv 20 cm 

These potentials have been chosen to give the same relative 

intensity of 6. 0 at a temperature of 300K reflecting the experimen­

tally observed values for the z polarisation (see figure 9. 3b) . The 

temperature dependence calculated for these potentials is shown in 

figure 9.6b and it can be seen that while it agrees with experimental 

data at low and high temperatures, the deviation at intermediate 

temperatures is much larger than experimentally observed. The poten­

tial that comes closest to reproducing the observed behavior is 

potential number two which is very similar to the potential already 

arrived at in the previous section. 

The reasons why the other potentials fail to give the correct 

behaviour can be illustrated classically. Table 9.1 gives the square 

root of the Boltzmann averaged mean-square value of the angle theta 

(see figure 9.Al for the definition of 9) at various temperatures for 

the different potentials. Since the vibronic mixing is assumed to 

depend linearly on e, a molecule at a particular temperature can be 

thought of as being 11 statically11 at the RMS geometry. This will give a 

"static" mixture of allowed character into the wavefunctions and a 

static contribution to the intensity. 

Notice that the ratio of the RMS value at 300K to that at OK is 

the same for all potentials as they have been chosen to reproduce 

experiment at low and high temperatures. At intermediate temperatures 

the relative RMS values deviate from the harmonic values in much the 

same way as the intensity deviutes in figure 9.6b. In fact the connec­

tion is stronger; the square of these relative RMS values is exactly 

equal to the relative intensities if the electronic transition moment 

( 9. 7) 
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depends linearly on the coordinate. This can easily be proved by using 

the closure relationship or "sum rule" as shown by Albrecht (1960). 

Said again: The relative mean-square vall}e of e is exactly equal to 

the relative intensity, no matter what form the ground and excited 

state potentials take. Therefore although a "static" picture of the 

intensity mechanism is helpful conceptionally, it gives no computa­

tional advantage, as the calculation is essentially the same. 

Table 9.1 RMS values <92>1/ 2 (degrees) 

Absolute Relative 

Temp/K: 0 100 200 300 0 100 200 300 

1 1. 05 1.54 2.11 2.57 1.0 1.47 2.01 2.45 

2 1. 86 2.99 3.86 4.58 1. 00 1. 61 2.07 2.46 

3 1. 81 3.13 3.88 4.45 1. 00 1. 72 2.14 2.45 

4 4.37 8.41 9.79 10.73 1. 00 1. 92 2.24 2.45 

- The reason why the above potentials cannot be made to fit the 

experiment al data is because a potential that is flattened to give a 

large RMS geometry in the lowest level also gives levels that are very 

c 1 o s e to the ground vibrational level. Population of these low lying 

levels occurs at quite low temperatures and gives a larger increase in 

intensity than observed experimentally in figure 9.6. This conclusion 

is in agreement with a study of the anisotropic temperature factors 
2-f r om the crystal structures of planar Cucl4 (see appendix 9.Al), 

which gives a RMS value for theta of - 3° at 300K, compared to the -

11° predicted by potential 4 in table 9.1 above. 

From the above arguments it is felt that reasonably accurate 

ground state potentials have been found. This is not to say that an 

exact potential has been obtained, the flatten potentials of figure 

9.4 may be double well potentials with a small barrier separating the 

minima. If this is the case, a temperature dependent study of the 
2-crystal structure of square planar CuC1 4 would be of interest as such 

a double minima ground state may cause a phase transition to occur at 

low temperatures if the CuCl~- ion were frozen into one well and 

thereby losing it's inversion symmetry. 

( 9. 8) 



9.3 THE TEMPERATURE DEPENDENCE OF THE BAND MAXIMA: A MOMENTS ANALYSIS 

9.3.1 The Harmonic Approximation. 

In calculating details of the spectrum other than just the in­

tegrated intensity, the excited state potentials must also be 

considered. The a 1g potential is known to be displaced and slightly 

reduced in frequency compared to the ground state from a Franck-Condon 

analysis of the spectrum at low temperature (McDonald and Hitchman 

19 8 6) . The potential appropriate to this mode in dimensionless units 

is -given in table 9.2. This corresponds to the frequencies 275cm-l and 

265cm-l for the ground and excited states respectively, and a dis­

placement of AS (alg) = 21. 4pm. The potentials of all the other modes 

are required to be undisplaced by group theory (see section 3.2) and 

initially these potentials are considered to be harmonic and of the 

same frequency as the ground state. 

In this approximation, the equations (3.56) and (3.57) can be 

used to calculate the contribution from each normal mode to the band­

shift and halfwidth respectively. These calculations are shown in 

table 9. 2 for both the z and xy polarised spectrum at low (T=OK) and 

room (T=300K) temperatures. As discussed in section 3.6, contributions 

to the shift in the band maxima occur only from the inducing modes or 

modes of different frequencies in the ground and excited states. These 

are the b 2 and a1 modes in the z polarisation and the e (b) and a
1 u g u g 

modes in the xy polarisation. Similarly, the halfwidth is determined 

from these same modes; the largest contribution coming from the a
1

g 

mode, which is displaced with respect to the ground state. 

The results that are calculated using this harmonic approximation 

are shown as solid lines in figures 9.7 and 9.8, along with the ex­

perimental data. A constant energy term has been added to these 

results representing the vertical electronic transition so that the 

low temperature band maximum in z polarisation agrees with experiment. 

Clearly the experimental results cannot be explained in this ap­

proximation. Consider the band maxima in figure 9.7: the low 

temperature band maximum in z polarisation £its the experimental value 

only bee au se the vertical transition energy difference was chosen to 

do so. In xy polarisation the band maximum at low temperature is 

( 9. 9) 



correctly calculated as higher in energy than in z polarisation, but 

is not as high as is observed experimentally. The overall temperature 

dependence in both polarisations shows only a fraction of the decrease 

in the energy of the band maxima that is experimentally observed. 

TABLE 9.2: Temperature dependence of band maximum and halfwidth. 

Harmonic gound and excited state potentials with equal frequencies. 

vl v2 V3 V4 V5 v6 V7 

alg blg a2u b2g b2u eu (s) eu(b) 
hv 275 195 159 181 65 290 165 

a' 1 -3.6385 0.0 0.0 0.0 0.0 0.0 0.0 

a' 
2 

0.4643 0.5 0.5 0.5 0.5 0.5 0.5 

z 2olarisation 

E (0) -4.9 0.0 0.0 0.0 65.0 0.0 0.0 

E(300) -8.5 0.0 0.0 0.0 10.l 0.0 0.0 

H(O) 833.1 0.0 0.0 0.0 0.0 0.0 0.0 

H (300) 1095.8 0.0 o.o 0.0 75.6 0.0 0.0 

Etot (O) = 60.1, Etot (300) = 1. 6, AEtot= -58.5 

Htot (O) = 833.1, Htot(300) = 1171.4, AHtot= 338.3 

xy 2olarisation 

E ( 0) -4.9 0.0 o.o o.o 0.0 0.0 165.0 
E(300) -8.5 0.0 o.o 0.0 0.0 0.0 62.1 
H (0) 833.1 0.0 o.o 0.0 0.0 0.0 0.0 

H(300) 1095.8 0.0 0.0 0.0 0.0 0.0 180.0 

Etot(O) = 160.1, Etot(300) = 53. 6, AEtot= -106.5 

Htot (O) = 833.1, Etot (300) = 1275.8, AHtot= 442.7 

-1 
All units are in cm except for al' a2 which are dimensionless. 

The calculated halfwidth at low temperature in xy polarisation 

(figure 9.8) agrees very well with experiment. However, the experimen­

tal observation that the halfwidth in z polarisation is 
-1 -lOOcm greater than in xy polarisation is not reproduced. It should 

be noted however, that the contribution from these inducing modes can 

only be considered to be qualitative since the spectra due to these 

(9.10) 
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modes is far from Gaussian, and this is a condition under which the 

harmonic formulae were derived (section 3.6). 

St i 11 within the harmonic approximation, the same calculations 

were carried out except that the frequencies in the excited states 

were set to 75% of their ground state values (except the a1g mode, 

where the known excited state potential was used as before) . Even 

though this is probably an unrealistically large reduction, it will be 

shown that even this cannot account for the observed behaviour. 

TABLE 9.3: Temperature dependence of band maximum and halfwidth. 

Harmonic excited state potentials with frequency reduced by 0.75. 

vl v2 V3 V4 V5 v6 V7 

alg blg a2u b2g b2u eu (s) e (b) u 
hv 275 195 159 181 65 290 165 

a' 1 -3.6385 0.0 0.0 0.0 0.0 0.0 0.0 

a' 2 0.4643 0.2813 0.2813 0.2813 0.2813 0.2813 0.2813 

z Qolarisation 

E (0) -4.9 -21.3 -17.4 -19.8 43.7* -31. 7 -18.1 

E (300) -8.5 -48.9 -47.8 -48.4 -127.9* -52.7 -48.0 

H (0) 833.1 35.5 29.0 33.0 20.5* 52.8 30.1 

H(300) 1095.8 81. 4 79.6 80.7 152.6* 87.8 79.9 

Etot (O) =-69.5, Etot(300) =-382.2, AEtot= -312.7 

Htot(O) =1033.9, Htot(300) =1657.8, AHtot= 623. 9 

xy: Qolarisation 

E (0) -4.9 -21.3 -17.4 -19.8 -7.1 -31.7 110. 9* 

E(300) -8.5 -48.9 -47.8 -48.4 -46.0 -52.7 -81. 8* 

H (0) 833.1 35.5 29.0 33.0 11.8 52.8 52.1* 

H(300) 1095.8 81. 4 79.6 80.7 76.6 87.8 227.0* 

Etot(O) = 8.6, Etot(300) =-334.2, AEtot=-342.8 

Htot (O) = 1047.2, Etot (300) = 1728.9, AHtot= 681.6 

-1 All units are cm except al, a2 which are dimensionless. 

* These results are from a variational calculation. 

( 9 .11) 
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Equations (3.56) and (3.57) are again used for the non-inducing 

modes. The contribution from the inducing modes must now be calculated 

from the variational method, as the above equations assume harmonic 

potentials of equal frequency in the ground and excited states for 

these modes. The individual contributions are shown in table 9.3 and 

as dashed lines in figures 9.7 and 9.8. 

The calculated shift in the band maxima is now closer to that 

observed experimentally. For instance, in z polarisation an overall 

shift of -300cm-l was calculated (cf. -60cm-l shift calculated for 

harmonic potentials of the same frequency) while a shift of -9 0 0 cm - l 

is observed experimentally between 10-300K. However, the position of 

the band maximum in xy polarisation is again predicted at too low an 

energy. 

From the above calculations, it is shown that the experimental 
2-tempe rature dependence of the band maxima of planar cuc14 cannot be 

reconciled with harmonic excited state potentials. There is little 

difference in the results if the anharmonic ground state potentials 

given by (9.1) are used in the above calculations. Anharmonicity (in 

the conventional sense) in the excited state potentials will also make 

little d'ifference. No anharmonicity was experimentally observed in the 

a 1g progression, and can only enter as even order terms in the normal 

coordinates of all other modes. 

9.3.2 The Angular Overlap Potentials. 

2 2 2 2 2 The bandshift and halfwidth of the Blg(x -y ) ~ Alg(z ) tran-

sition are now calculated using excited state potentials that have 

been derived using the angular overlap model. The ground state poten­

t i a 1 s a re those found to reproduce the temperature dependence of the 

intensity in section 9.2. To these potentials are added the variation 

of the energy of the d-orbitals change relative to the ground state as 

a function of the appropriate symmetry coordinate. The way these 

potentials have been obtained is outlined in appendix 9.A2. 

It should be noted that the stretching vibrations have not been 

considered. This is because they are of higher energy and therefore of 

less importance than the bending vibrations in the temperature range 

under consideration. Also, the excited state potentials are unlikely 

(9.12) 



to be very different to those of the ground state along these coor­

dinates. [See appendix 9.A2 for a justification of this latter point.] 

The v1 (a19
) potential is used as before. 

TABLE 9.4: Temperature dependence of band maximum and halfwidth. 

Excited state potentials from the angular overlap model. 

vl V3 V4 V5 v* 5 V7 v* 7 
alg a2u b2g b2u b2u eu(b) eu(b) 

hv 275 159 181 65 65 165 165 

a' 1 -3.6385 0.0 0.0 0.0 o.o 0.0 o.o 
a' 2 0.4643 0.2408 0.5380 -0.0632 -0.0632 0.3224 0.3224 

a' 4 o.o 0.00024 0.0012 0.00043 0.00043 -0.0005 -0.0005 

E (0) -4.9 -20.6 3.6 -23.2 -21.3 -23.8 35.9 

E (100) -5.1 -21. 0 4.2 -54.7 -123.0 -33.0 -11.5 

E(200) -6.5 -39.8 6.5 -92.2 -237.0 -47.7 -67.0 

E(300) -8.5 -56.4 9.4 -129.6 -350.4 -61.2 -111. 8 

H (0) 833.1 34.2 6.3 36.6 53.6 37.2 44.6 

H(lOO) 849.2 41. 9 7.4 81. 0 132.5 48.7 109.7 

H (200) 957.5 66.0 11. 7 140.7 233.6 68.1 152.9 

H(300) 1095.8 93.6 17 .4 201. 8 337.8 87.3 184.7 

TOTAL BAND-SHIFT: 

Temperature z XY 

0 -67.0 -9.2 

100 -182.0 -92.3 

200 -324.5 -199.0 

300 -467.1 -296.9 

TOTAL HALFWIDTH: 

0 964.4 954.8 

100 1079.7 1089.2 

200 1336.9 1328.8 

300 1631. 9 1593.3 

* Indicates that this mode is inducing. 

This will be v5 in z, and v7 in xy polarisations. 

(9.13) 



The excited state potentials used in this calculation a re given 

in table 9. 4. The ground state potentials are all assumed harmonic 

except for the v5 and v7 modes which are given by equation (9.1) from 

temperature dependence of the intensities. Also shown in table 9.4 are 

the individual contributions from these modes as well as the total 

band-shift and ha 1 fw idth for several temperatures. The total band­

shift and half width are compared with experimental va 1 ue s in figure 

9.9. Again, agreement with experiment is not particularly good, though 

it is much better than that obtained with the harmonic potentials of 

the previous section. However, there are four main features in the 

figures 9.9a,b that qualitatively reproduce the experimental behaviour 

quite well. These features are: 

i) At low temperature the band maximum is at a lower energy in 

z polarisation than in xy polarisation. 

ii) With increasing temperature the band maximum decreases in 

energy to a slightly greater extent in z polarisation than 

in xy polarisation. 

iii) At low temperature the halfwidth is greater in z polarisa­

tion than in xy polarisation. 

iv) With increasing temperature, the halfwidth increases to a 

slightly greater extent in z polarisation than in xy 

polarisation. 

From table 9.4 it is seen that the greatest contribution to the shifts 

in the band maxima is made by the v5 (b2u) vibrational mode. This is 

for two reasons: first this mode is of low energy and w i 11 be popu­

lated to a greater extent at a particular temperature; and second, the 

excited state potential derived from AOM considerations has a double 

minimum. 

This potential has its two equivalent minima at a D
2

d geometry 

along the b
2

u symmetry coordinate (see figure 9.13). This coordinate 

is the one that takes the square planar configuration towards a 

tetrahedral geometry. A D2d geometry is the one commonly adopted by 

the CuCl~- ion, the square planar compounds studied here being excep­

tions. It is therefore not surprising that in the excited states where 

an electron is promoted to the d(x2-li anti-bonding orbital, the 

molecule adopts the preferred D2d geometry. It should be noted that 

the excited state potential is not displaced along the b 
2 

u symmetry 

coordinate. This would require linear term in the potential, and such 

( 9 .14) 
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a term must be zero by group theory. A double minima potential however 

is allowed by group theory because it is made of even order terms (see 

section 3 .2). 

To improve the agreement to the experimental data, all seven 

potentials of the normal modes could be varied to "fit 11 the data, but 

the problem would be impossibly underdetermined. From the above cal­

culations it can be seen that it is the low frequency b2u mode that is 

by far the most important in determining the temperature dependent 

phenomena, and in the following section this potential will be allowed 

to vary. A discussion of why the AOM potentials are apparently inade­

quate in reproducing the exact behaviour that is observed will be 

given in section 9.5. 

9.3.3 Improving the fit. 

In this section the basic double well excited state potential of 

the b2u mode is retained, and the effects of varying the position and 

depth of the two wells are examined. All other potentials are kept the 

same as in table 9. 4. Figure 9. lOa shows the red shift of the band 

maxima between low (T=OK) and room (T=300K) temperatures for several 

different potentials. Here E . represents the well depth and three min _
1 sets of curves where E . = -500,-1000,-1500 cm are shown for both xy min 

and z polarisations. The abscissa in figure 9.10, e . , is the posi-min 
tion of these minima along the b2u coordinate. These two quantities 

are simply related to the dimensioned coefficients that make the 

double minima potential (the relationship between the dimensioned (c2 , 

c 4) and dimensionless (a2, a 4) are given in appendix 9.A2): 

-- --- , (c2 J/2 
8 = - ' min 2c4 

E . min (9 .3) 

As might be expected, the red shift is greater in z polarisation, 

where the double well is an inducing mode, than in xy polarisation 

where it is not. This is because in the former case the overlaps are 

dependent on the coordinate and are calculated greater for the higher 

ground state vibrational levels, while in the later case the overlaps 

are the normal Franck-Condon factors. This shift in the curves of 

figure 9:10a are seen to increase as the minima become closer. 

(9.15) 
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Classically this can be visualised as due to the "time averaged" or 

root-mean-square geometry at higher temperatures cutting the excited 

state potential at a lower energy as the minima move closer together. 

That is, the slope of the excited state potential becomes steeper in 

the region of the coordinate that is populated in the ground state. 

There reaches a point, however, where this trend reverses as- overlaps 

on the outside of the wells become important. This is indicated 

schematically in figure 9.lOa. Note that this occurs sooner in z 

polarisation because, again, the "outside" overlaps (ie those from 

higher ground state vibrational levels) are weighted more. 

If this is carried to an extreme, by moving the minima close 

together, the transition will shift to higher energies (ie blue shift) 

bet we en 0 and 3 OOK. Calculation of the intermediate temperature de­

pendence reveals that the spectrum will first shift to lower energies 

and then reverse to higher energies. This type of behaviour also 

occurs for a harmonic inducing mode that is of higher frequency in the 

excited state (Lohr 1970). This illustrates that the shape of the 

curve representing the temperature dependence of the band-shift can be 

controlled to some extent by varying 0 . . min 
Figure 9.lOb shows the difference of the mean energy in xy and z 

polarisations at low temperatures (OK). For all values of e . the min 
band maximum is seen to be of higher energy in the xy than the z 

po 1 a r is at ion. This is again a consequence of the fact that the over­

laps of the higher ground state levels are weighted more when the 

potent ia 1 is inducing. This agrees with what is observed experimen­

tally, and the calculation of this splitting can again be controlled 

by varying e . . min 
The approach to finding the appropriate potential was as follows: 

Three main experimental observables must be fulfilled: a red shift of 

-920cm-l in z polarisation, and -800cm-l in xy polarisation between 10 

and 290K, and the xy polarised band maximum -200cm-l higher in energy 

than that in z. From table 9.4 it can be found that, not counting the 

a 1 and b 2 modes, the potentials of all the remaining modes con-
g -i1 -1 -1 

tribute 71cm , 181cm and 60cm respectively to the above three 

quantities. Therefore, to fit experiment, the differences must be made 

up by the contribution of the b2u mode. 

The required -850cm -l for the band-shift in z polarisation, must 

come from the E . =-1500cm-l curve as neither of the other two curves min 

( 9 .16) 
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approach this value. Values of emin= 6.5, 8.5 degrees (marked by 

arrows in figure 9.10) roughly fit the desired quantities, and the 

temperature dependence of the band-shift using these two potentials 

are shown in figure 9.11. All three of the above experimental observ­

ables are well accounted for, but the potential with e . = 8.5° min 
appears to better reproduce the shape of the curves at in termed i ate 

temperatures. The ground and excited state b2u potentials used in this 

calculation are shown in figure 9.13 along with the angular overlap 

potential of the previous section for comparison. 

It is not really possible to improve this fit by further adjust­

ing the excited state potential of just the b2u coordinate. The 

correct downward curvature observed experimentally in figures 9.11 can 

only be reproduced with a potential with a larger e , . As can be seen min 
from figure 9.10, this will increase the disagreement with the band-

shift in xy polarisation and also the energy difference of the band 

maxima at low temperature. This can be rectified by varying the e (b) 
u 

potential so that it contributes more to the band shifts (but this 

time to a greater extent in xy than in z polarisation) . 

This has not been done because an exact fitting of the calculated 

and experimental spectrum is not desired, but rather a model that can 

explain these unusual features. It is felt that the less free 

parameters used, the more meaningful (and believeable) the model 

becomes. In the present case the gross features of the temperature 

dependence of the spectrum can be reproduced by allowing only the two 

parameters, Emin' emin to vary; all other potentials being determined 

by the angular overlap model. [The small anharmonicity int reduced to 

explain the deviation of the coth rule in section 9.2 has little 

effect on the above calculations. It is therefore essentially an 

independent problem.] 

Turning finally to the variation of the halfwidth with tempera­

ture, it can be seen in figure 9.12 thatthehalfwidthforboth 

potentials with emin= 6.5°, 8.5° grossly overestimate the observed 

values. As discussed in section 3.6.1, this is because the non-totally 

symmetric modes contribute a non-Gaussian spectrum and so the 

h,alfwidth is not simply related to the second spectral moment. This 

can be seen in figure 9.12 where, contrary to experiment, an early 

increase in the halfwidth between 0-lOOK is due to the calculated 

contribution from a low frequency mode. In the present study a moments 

(9.17) 
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analysis is inappropriate to the calculation of the halfwidth. 

Simulating the spectra, which involves plotting the energy and inten­

sity of each vibronic transition, provides a clearer picture of what 

is occurring. 

The non-totally symmetric vibrations will have some contribution 

to the halfwidth, and this then means that one must be careful when a 

Franck-Condon analysis is performed on a structureless band using the 

halfwidth of the spectrum. The true displacement may then be overes­

timated. The dotted curves in figure 9 .12b show the same calculation 

for aS(a19) = 19.4pm instead of aS(a19) = 21.4pm. 

( 9 .18) 



9.4 SPECTRAL SIMULATION 

9.4.1 The Low Temperature Spectrum. 

In this section the low temperature spectrum shown in figure 9.2 

is reproduced by considering only the spectrum due to the displacement 

of the potential surface of the a1g mode built on a single vibronic 

origin. This procedure is known as Franck-Condon analysis and provides 

information about the geometry change in the excited state. 

From vibrational studies and the spacing of the progression in 

the low temperature vibronic spectra, the ground and excited state 
-1 -1 

frequencies are found to be v1 (a1g) = 275cm and vl (a1g) = 265cm 

respectively. The spectra calculated with various values for the 

displacement of the a1g symmetry coordinate are ~hown in figure 9.14. 

Optimum agreement was found with ~S (alg) = 2 0. 8pm (figure 8. 14b) , 

which is close to the value reported in the literature (~S(a 1g) = 

21.2pm, McDonald and Hitchman 1986). The experimental vibrational 

fr e qu enc i e s and a displacement of 2 0. 8pm correspond to the following 

potentials: 

3.975 s2 s - S(a1g) 

3.690 s2 - 153.541 s 
( 9. 4) 

These potentials can be reexpressed in terms of the dimensionless 

coordinates that are appropriate to a variational calculation: 

v (~) = 0. 5 ~2 

Vg(~) =0.4643 ~2 - 3.284 ~ 
e 

(9. 5) 

-1 
The energy units are hv = 275cm , and the interconversion of 

these "force constants" are given by equation (9.A7) in appendix 9.A2. 

The appropriate mass M to use in this equation is that of one chloride 

ligand. A displacement of ~S(alg) = 20.8pm implies that the individual 

Cu-Cl bondlengths change by ~r = 10. 4pm in this excited state. The 

actual Franck-Condon overlaps that were calculated in this case 

(figure 9.14b) are given in table 9.5 below for reference. 

( 9 .19) 
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Table 9.5 
-1 -1 Franck-Condon overlaps for hv=27Scm , hv'=265cm , AS(a1g)=20.8pm 

n 0 1 2 3 4 

<Oin> 0.04648 -0.11621 0.20483 -0.29392 0.36414 

n 5 6 7 8 9 

<Oin> -0.40229 0.40446 -0.37531 0.32475 -0.26410 

These overlaps can either be calculated from the recursion 

relationship in equation (3.17), the formula in equation (3.18), or 

from variational methods. It must be remembered that the absorption 

and emission of radiation are frequency dependent, and a frequency 

factor must be included in the expression for the intensity when the 

spectrum is simulated. 

As a note of warning figures 9.14c,d also show quite a good fit 

to the experimental spectra using AS(a1g) = 18.8pm and AS(a1g) = 
22.5pm. This is achieved with a shift in the electronic origin as 

indicated by the arrows. Therefore, if the vibronic origin of the 

progression is not definitely known, as in the present case due to the 

overlapping bands, then there is some ambiguity as to the magnitude of 

the displacement. It can be seen that the shape of the spectrum does 

not change much when the displacement takes the values 18.8pm, 20.8pm, 

22.5pm (intermediate values will give the wrong relative intensities 

of the peaks), the bandwidth becoming slightly greater with increasing 

displacement. Classically this can be rationalised by noting that for 

an excited state parabola that has a large displacement (as in the 

present case) further displacements do not greatly change the slope of 

the excited state parabola that lies vertically above the minima of 

the ground state. 

The Franck-Condon analysis of a low temperature spectrum is 

reasonably straightforward and is commonly used to extract information 

about the excited state geometry along totally-symmetric coordinates. 

It is less common to find information about the excited state geometry 

along non-totally symmetric coordinates, as in the present case from 

an analysis of the temperature dependence of a spectrum. 

(9.20) 



9.4.2 The Temperature Dependent Spectrum. 

In simulating the t~mperature dependent spectrum, the potential 

surfaces of only two of the normal modes are considered. These are the 

potentials of the totally symmetric mode v 1 (a 1g) and the inducing 

mode, v 5 (b 2 u) and v 7 (eu(b)) in the z and xy polarisations respec­

tively. The first provides the low temperature envelope of the 

displaced a 1g surface, and the later provides the intensity and 

vibronic origins that the former are built on. Both will be tempera­

ture dependent, the later being more so. The effect of the other 

normal modes cannot be ignored (especially the b 2 u mode in xy 

polarisation, see table 9.4), so energy shifts due to these modes are 

included. Note that these "other" modes are all "non-inducing" and 

contribute nothing to the intensity. 

The calculated line spectrum is then given a finite halfwidth to 

compare with the experimental spectrum. A half width is chosen to fit 

the low temperature spectrum (ie see previous section) and this is 

then kept constant for simulating the spectra at all other tempera­

tures. As before the electronic origin is chosen to reproduce the low 

temperature spectrum in z polarisation. 

The spectrum calculated from the AOM potentials (tab 1 e 9 . 4) is 

compared to experiment in figure 9.15. The intensity variation with 

temperature is well reproduced because the ground state has been 

chosen in section 9. 2 to do this. The failing of these potentials is 

the same as found in the moments analysis, but here it is particularly 

easy to see that: 

i) The band shift is far too small in both polarisations. 

ii) The low temperature spectrum in xy polarisation is too low 

in energy. 

iii) The vibrational fine structure does not disappear as fast as 

is observed experimentally. 

The simulated spectra using the potential obtained in section 9.3 

for the b2u mode are shown in figure 9 .16, where all that is changed 

in the various curves is the temperature. In z polarisation the inten­

sity, bandshift and disappearance of the vlbrational structure are all 

well reproduced. The agreement is also good in the xy polarisation in 

(9.21) 
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terms of the position of the low temperature spectrum, and the varia­

tion of the intensities and bandshift with temperature. However, at 

higher temperatures, the experimental spectrum is much broader than 

the calculated one. This is as one would expect because in this 

polarisation, the b2u mode is non-inducing and only the contribution 

to the band shift has been included from it. A substantial contribu­

tion to the increase in the halfwidth with temperature would be 

expected from this mode. 

In principle the effect of all modes should be considered in both 

po 1 a r is at ions, as they will contribute to both the shift in the band 

maximum and the increase in halfwidth (but not to the intensity). 

However, this becomes a huge calculation as each vibronic transition 

within one mode acts as a vibronic origin for the "progression" in all 

other modes. However the two mode model use here to calculate figures 

9 .15-16 seem to work quite adequately as long as its limitations are 

realised. 

9.4.3 Implications for the Vibrational Fine Structure. 

In the previous section it was shown that the structure due to 

the low temperature a1g progression was correctly calculated to 

broaden with increasing temperature. To illustrate how this occurs 

figure 9 .17a shows the calculated temperature dependence of the 

spectrum due only to transitions between the b2u vibrational levels in 

z polarisation. Here the "vibronic origin" is seen to both increase in 

intensity and halfwidth as well as shifting to the red. [The unusual 

bump seen in the highest temperature spectrum in figure 9 .17a is 

superfluous and provides a good example of the effects of truncation 

error. The basis size (60x60 in this case) in the variational calcula­

tion was insufficient to converge all the eigenvectors in the overlaps 

between the populated levels at this temperature.] If the halfwidth of 

the vibronic lines that make up the band in figure 9.17a is made very 

small, the rich underlying structure of 9. 1 7b is revealed. The 

"vibronic origin" in figure 9.17a is actually composed of thousands of 

vibronic lines, each which can serve as an origin for the a1g progres­

sion. 

What is of interest in this section is whether any effects due to 

underlying structure of the sort shown in figure 9.17b can be detected 

(9.22) 
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in the vibrational fine structure of the spectrum. In particular, it 

is of interest to investigate what sort of deviations could be ex­

pected from the usual model where equal harmonic frequencies are 

assumed for both the ground and excited states of the non-totally 

symmetric modes. 

To show that such a "high resolution 11 study may be feasible, 
. 2 2 2 2 2 figure 9.18 shows the spectrum of this same B1g(x -y ) -) A1g(z ) 

transition in the complex (NmpH) 2cucl4 which also contains planar 
2-CuCl4 species. This spectrum was taken at 4.2K and is considerable 

more resolved than those shown in the previous figures. This structure 

may sharpen even more at lower temperatures. 

Some effects from different potentials are investigated where a 

small halfwidth is used to make these changes more obvious, and the 

electronic orig in is held fixed at 15, OOOcm-1 . Th~ a1 potential 
-1 -1 g 

corresponding to hv=275cm , hv'=265cm and AS(a1g)=20.8pm (equation 

(9.5)) is used throughout. 

Figure (9 .19a) shows the behaviour when the inducing mode has 

equal frequencies, hv=60cm-1, in both the ground and excited states. 

The inset shows the spectrum due to this mode alone. Here the in ten -

sity of the n -) n+l and the lower energy n -) n-1 transitions both 

increase with temperature, and in the limiting case at high tempera­

ture these two vibronic peaks approach equal intensity. In the 

complete spectrum, if the components of the a1 envelope were sharp 
g -1 

"lines", then a new a 1g envelope shifted 2hv=l20cm to lower energies 

would be expected to grow with temperature. However, as t·hese com­

ponents have a finite halfwidth, when the two envelopes are added then 

the effect of the n -) n-1 transitions is to make these components 

appear to gradually shift to the red and increase in halfwidth. 

If the same calculation is performed with a much reduced excited 
-1 -1 

state frequency (hv=60cm , hv'=30cm ) for the inducing mode, then 

spectrum shown in figure 9.19b is obtained. The spectrum due to the 

inducing mode shown in the inset. This spectrum shows different be­

haviour than the previous case, as the n -) n±l selection rule breaks 

down and are replaced by a n -) n±l,±3,±5, .. type selection rule, as 

discussed in section 3.4. The overall effect when the many transitions 

are given halfwidths and summed is, in the terminology of the previous 

spectrum, that the n -) n+l type peak decreases while the n -) n-1 type 

peak increases with temperature. The total spectrum appears similar to 

(9.23) 
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the previous example where the components of the a 1g progression 

appear to broaden and shift to lower energies. However, there are 

subtle differences. In the previous example, the spectrum at the 

energies where the maxima of the components were located at low tem­

perature increased substantially in intensity with temperature. In the 

second example, however, the positions in the spectrum that were the 

low temperature peaks do not change very much and can actually 

decrease in intensity with increasing temperature. This behaviour can 

be understood simply by looking at the spectrum of the vibronic 

origins of the inducing modes alone in the insets of figure 9.19, and 

observing their intensity variation with temperature. Behaviour of 

this second type has been observed (Hitchman 19S6) . 

The spectrum calculated with the double well potential of the b2u 

mode that was found to reproduce the experimental data in section 9.3, 

is given in figure 9.16. If this calculation is repeated using a 
2-

sma l ler halfwidth, then the hypothetical spectrum of planar CuC14 at 

high resolution is obtained in figure 9.20. This spectrum shows some 

similarities to the experimental spectrum at 4.2K shown in figure 

9.18, both in that the a1g progression appears to be based on two 

origins, and that the intensity distribution in these two progressions 

are different. The intensity distribution is expected to be the same 

for both origins as there is only one a1gpotential surface. Examining 

the spectrum due to the b2u mode alone in the inset of figure 9.20, it 

is not obvious why two "origins" appear in the convoluted spectrum, 

but appears to be the result of an interference pattern. Such vibronic 

structure is similar to the that seen in the MIME effect that was 

discussed in section 3.7. Such an interference pattern would be sensi­

tive small changes in the potentials, and therefore might be expected 

to differ for different planar CuCl~- complexes. However, the same is 

true for lattice vibrations and the spectrum shown in figure 9 .18 has 

previously been interpreted in terms of the participation of three 

lattice vibrations of b2u symmetry (Hitchman and Cassidy 1979) . 

The above three examples show only some of the effects that are 

possible in the vibrational fine structure which deviate from a simple 

Frank-Condon envelope typical of a diatomic molecule. The ability to 

simulate a spectrum that appears to be based on the vibronic origins 

of two inducing modes with just a single inducing mode is quite unex­

pected, and in a sense unwanted. It is a sad fact that while all the 

(9 .24) 
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features of vibrational fine structure can be interpreted in terms of 

transitions between potential surfaces, often these surfaces will give 

more questions than answers. Ideally, with an infinitely resolved 

spectrum, every potential surface of a molecule could be derived to 

the accuracy of fitting every spectral line. This situation is some­

t imes approached in the gas phase spectra of small molecules but 

experimental spectra in the solid state are never resolved as one 

would wish. It is therefore only the trends due to the different types 

of potentials that can be talked about with any degree of confidence. 

While the potentials (other than the a 1g potential) cannot be 

chacterised by direct observation of fine structure, the previously 

derived potentials from the "bulk" spectral features (intensity, 

energy, halfwidth ... ) are fully consistent with the expected be­

haviour of the vibrational fine structure. 

( 9. 25) 



9.5 SUMMARY 

9.5.1 Discussion. 

The general trends in the 2B1g(x2 -y2 ) ~ 2 A1g(z 2 ) transition 

studied here are found in the other d-d transitions of square planar 

CuCl~-. Although large red-shifts of the band maxima with temperature 

were also found, they are in all cases less than that observed for the 
2B

1
g ~ 2A1g transition in z polarisation. This is consistent with the 

importance of the b2u potential that is implied in this study, as this 

is the only vibronically active mode for this transition in this 

polarisation. It should be noted that the proposed double minima 

potential surface for the b2u potential will cause a red-shift even 

when it is not active. 

The general trend of the bandshifts in the three transitions is 

in the same order as their transition energies, the largest bandshift 

being seen for the 2B1g(x2-y2) ~ 2A1g(z2) transition. There are two 

ways of rationalising this observation. First, simply from the way the 

d-orbital energies change relative to the ground state as a function 

of the b 2 u coordinate (figure 2.A2), this trend would be expected. 

However, since the AOM was not found to give a realistic potential, 

this argument cannot really be used with confidence. 

Similar arguments about the effects of promoting an electron to 

an anti-bonding orbital have been put forward to explain a double 

minima excited state in so2, however it has recently been shown (Innes 

1986) that vibronic (pseudo Jahn-Teller) coupling provides a better 

explanation. Strong vibronic coupling would also give a convincing 

explanation in the present case as simple bonding arguments from the 

AOM have not found to be adequate. This would also explain why the 

bandshifts are in the observed order, as higher energy states would be 

expected to be involved in stronger vibronic coupling. Weak coupling 

with the ground state would also explai-n the form of the 

"anharmonicity" that was required to reproduce the experimental tem­

perature dependent intensity. 

It might be argued that the above explanation cannot be true 

since the b 2 u mode is not vibronically active in all transitions. 

However, all the excited d-d electronic states can be coupled to the 

(9 .26) 



higher energy charge transfer states by the b2u mode. The vibronic 

selection rules merely mean that it is just the 2 A1g (z 2 ) and the 
2 E (xz,yz) states that are coupled to charge transfer states that are 

g 
allowed (in z and xy polarisations respectively) . Appendix 9. A3 dis-

cu s se s this in more detail along with the source of the vibronic 

intensity. 

The 2
B

1 
(x 2-y2) -l 

2
E (xz,yz) transition has been observed to be 

g g 
split in the (NmpH) 2cucl4 complex (Hitchman and Cassidy 1979). It has 

been suggested that the degeneracy will be removed by either the 

slight inequivalence of the bondlengths, spin-orbit coupling, or the 

Jahn-Teller effect (McDonald and Hitchman 1986). However, the latter 

mechanism is likely to be small as a splitting of only 8 2 cm -l is 

predicted at the RMS geometry of the Jahn-Teller active b2g mode using 

the coupling constants given by the AOM in appendix 9.A2. 

It is interesting to note that the congestion which gradually 

reduces the structure that is present at low temperatures in the 
2-p resent study may explain the fact that the d-d spectra of Cucl 4 

complexes of D2d symmetry, such as cs2cucl4, are featureless. In this 

point group there are two vibrational modes of a1 symmetry (they 
2- g 

correlate to the a1g and b2u modes of the D4h cuc1 4 ) . Displacement 

along both of these coordinates would result in two Franck-Condon 

envelopes, and the convolution of these would give rise to the fea­

tureless bands that are observed at low temperatures. It is 

interesting to speculate whether the excited state potentials of D2 d 

Cu Cl~ - might be similar to the potentials of planar CuCl~-. The ex-
2-cited state of the D2d CuC1 4 would then be distorted towards a planar 

geometry, comp a red to the e . - 28° in the ground state (McGinnety 
min 

1972). The difference in the two complexes would then be as follows: 

in the planar complex the excited state along the b2u coordinate would 

have zero slope above the ground state, while in the distorted 

tetrahedral complex there would be a very steep slope along this 

coordinate above the ground state. In agreement with group theory, 

this corresponds to the absence and presence, respectively, of a 

linear term in the potential. This would then account for the struc­

tured low temperature spectrum of the former complex and the lack of 

it in the latter. 

(9.27) 



9.5.2 Conclusions. 

The temperature dependence of the electronic spectrum of square 
2-pl_anar cucl 4 has been analysed in terms of various non-harmonic 

ground and excited state potential surfaces. It was found that only a 

relatively small perturbation to the harmonic ground state was neces­

sary to account for the experimentally observed temperature variation 

of the in tens i_ty. This conclusion is independently supported by an 

analysis of the anisotropic temperature factors from published crystal 

structures in appendix 9.Al. 

By constraining the ground state potentials in this manner, it 

was then possible to consider various possible excited state poten­

tials to explain the unusually large shift in the band maxima with 

temperature. It was concluded that the form of the excited state 

potentials that was consistent with experiment are ones in which there 

is a double minima along the b2u coordinate. Although qualitatively 

supporting this conclusion, the AOM failed to give excited state 

potentials which reproduce the experimental data. This may be a 

general failing of ligand field theory where coupling occurs to states 

outside of the cl-orbital basis. 

A distorted tetrahedral geometry in the 1B2 gexcited state of 
2-N i ( CN) 4 has also been suggested by Ballhausen et al ( 19 65) to explain 

the anomalous polarisation properties in the electronic spectrum of 

this complex. It is noted here that such a distortion must, by group 

theory, result from a double minima rather than from a displaced 

potential surface. 

It was then shown that such a double minimum potential surface 

will have implications for the vibrational fine structure, and may 

possibly provide an explanation for the variety of fine structure that 

is observed in different planar CuCl~- complexes. Finally the source 

of the vibronic intensity, although not directly related to the 

central concerns of this chapter, has been considered in appendix 

9.A3. 

(9.28) 



APPENDIX 9.Al THE ANISOTROPIC TEMPERATURE FACTORS 

An alternative explanation for the temperature dependence of the 

intensity and band shift was investigated in section 9.2. This alter­

native model was essentially that the ground state b2u potential was 

very anharmonic so the bandshift could be rationalised in terms of the 

energy differences of the d-orbitals predicted by the AOM for distor­

tions along this coordinate. However, it was shown in section 9.2 that 

while such a potential could also be capable of reproducing the ex­

perimental intensities at 0 and 300K, it was impossible to reproduce 

the experimental intensities at intermediate temperatures. 

This appendix will provide additional support for rejecting this 

alternative model from an analysis of the anisotropic thermal 

parameters of the cue!~- ion in published crystal structures. The 

anharmonic model would predict a RMS angular distortion of the Cl-
2- 0 0 ions out of the cucl4 _ plane of -10 at 300K, whereas a value of -3 

is obtained from the analysis below. 

The anisotropic temperature factors for (creat) 2cucl 4 [ crea t = 

crea t ini um] and (NmpH) 2cucl4 have been reported by Udupa and Krebs 

(1979) and Harlow etal (1974) respectively. These quantities a re 

listed in table 9.Al in terms of the dimensionless p matrix (Willis 

and Pryor 1975; pg 99) for an anisotropic temperature factor of the 

form: 
2 2 2 

exp-(p11h + ~22k + ~33 1 + 2p12hk + 2p13h1 + 2p23kll ( 9 .Al) 

In both structures the Cu atom occupies a centrosynunetric site 

and there are two independent Cl atoms. Following the procedure out­

lined by Willis and Pryor (1975, section 4. 4), the p matrices can be 

converted into the mean square displacement matrices, B, which are 

also given in table 9.Al. These B matrices represent ellipsoids where 

there is 50% probability of finding the atoms within. The square root 

of the principal values of these ellipsoids correspond to the root 

mean-square displacement of the atoms along the principal axes (Willis 

and Pryor 1975, pp 97-8). Diagonalisation of the B matrices gives 

eigenvectors which show that the major principal axis is approximately 

along the z molecular axis. The RMS displacements of the atoms along 

these axes are given in table 9.A2. 

(9 .29) 



TABLE 9.Al The anisotropic teirperature factors 

Pn 
a) 

P22 P33 P12 P13 P23 
(creat) 2cucl4 

Cu 96.9 73.8 61. 9 -9.9 21. 0 -1.5 

Cll l19. 8 80.3 143.7 -13.0 27.1 9.5 

Cl2 l14.3 106.0 l15.2 -3.9 -7.2 6.3 

(NmpH) 2CuC14 
Cu 206 17.9 143 1 69 -2 

ell 335 31. 7 235 -41 173 -41 

Cl2 336 19.2 179 -12 138 -5 

Bll 
b) 

B22 B33 B12 B13 B23 
(creat) 2cucl4 

Cu 268 229 563 -29 -8.6 4.5 

Cll 331 249 1351 -38 -4.8 69 

Cl2 316 329 1226 -ll -177 40 

(NmpH) 2CuC14 
Cu 355 466 448 6.7 1.2 -23 

Cll 578 826 586 -275 156 -270 

Cl2 579 500 464 -80 67 -9.9 

a) ( x 10-4 ); b) ( x 10-4 pm2 

TABLE 9.A2 RMS Displacements along the Principal Axes 

X/pm Y/pm Z/pm <e>112 /deg. 

(creat) 2cuc1 4 
Cu 16.8 14.6 23.7 

Cll 18.6 15.2 36.8 3.34 

Cl2 16.8 18.1 35.5 3.00 

(NmpH) 2cucl4 
Cu 18.8 20.8 22.0 

Cll 19.8 20.6 34.1 3.08 

C12 21. 7 20.5 25.5 0.89 



The RMS displacements will be due to both internal and external 

motions of the CuCl~- unit, where the external translational and 

librational motions of the CuCl~- unit as a whole makes the greatest 

contribution at room temperature (Willis and Pryor 1975; ppl91-3) . The 

approximation is now made that these external motions can be removed 

from the problem by subtracting the principal values of the Cu atom 

from those of the Cl atoms. This results in the largest remaining 

motion of the Cl relative to the Cu atoms being in the molecule z 
2-

di re c t ion, or out of the CuC14 plane. The RMS angular displacements 

can be found using a Cu-Cl bondlength of 225pm and are also given in 

table 9 .A2. 

Consistent values of -3° where obtained except for the Cl2 a tom 

in the (NmpH) 2cucl4 complex, which is far too low. No explanation can 

be given for this discrepancy, although it was noted that in this 

complex, the principal axes of the thermal ellipsoids are only roughly 

parallel with each other when compared to the (creat) 2cucl 4 complex. 

If ,out-of-plane motion is assumed to be only caused by the vibration 

of _bfu symmetry, then this corresponds to a harmonic frequency of -6 O 

cm , which is pleasingly close to that obtained from the analysis of 

the temperature dependent intensity in section 9.2. 

However, it should be stressed that the above procedure has many 

drastic approximations, some of which are outlined below: 

a) The subtraction of the translational motion of the CuCl~- unit 

assumes a parallel correlated motion of the Cu and Cl atoms (Willis 

and Pryor 1975; pg 116). This assumption will tend to underestimate 

the true RMS geometry. 

b) The neglect of the librational motions about axes lying in the 
2-CuCl 4 plane will tend to overestimate the true RMS value. 

c) The RMS angular displacement of the Cl atoms by internal vibrations 

will also receive contributions from the out-of-plane a 2 u bending 

vibration. Using the relationships given by Cyvin (1968; pg 76), and 
-1 

the harmonic frequencies 60 and 160 cm for the b2u and the a2u modes 

respectively; the RMS angular displacement at 300K is calculated to be 

3.0° and 3.65° when taking into account just the b 2 u mode and both 

modes respectively. 

With the above approximations it is som~what surprising that such 
1/2 0 a good value of <0> - 3 was found. However, the neglect of the 

antiparallel correlated motion of the Cu and Cl atoms in approximation 

----~(-9_ .. 3-0.), __________ _ 



a) above will be approximately cancelled by the neglect of the a2u 

contribution in approximation b), since this vibration represents a 

pure antiparallel correlation of the Cu and Cl atoms. The present 

study seems to be pa~ticularly favourable case for determining the 

-energy of an internal vibration from RMS values of a crystal struc­

ture. A low temperature study of the temperature factors of these 

complexes would be interesting as the contribution from the external 

motions would be greatly reduced. 
0 In the present context, a RMS value of -3 for the out-of-plane 

motion of the Cl atoms in CuCl~- means that the anharmonic model 

considered in section 9.2 is incapable of providing an explanation for 

both the temperature dependence of the intensity and bandshift while 

remaining consistent with the anisotropic temperature factors of their 

crystal structures. 

(9.31) 



APPENDIX 9.A2 ELECTRONIC POTENTIALS FROM THE ANGULAR OVERLAP MODEL. 

In this appendix ligand field theory, in the form of the angular 

overlap model (AOM), is used to gain a qualitative understanding of 

the form of the excited state potentials. This is done by assuming a 

particular ground state potential to which is added the energy dif­

ference bet we en electronic states a long the particular symmetry 

coordinate to determine the excited state potentials. That is, the 

energy differences in the ligand field electronic states are allowed 

to determine the differences in the excited state potentials to the 

ground state potentials. This is clearly a big approximation because 

the vibrational force constants depend on the electronic distribution 

of the molecule; and secondly, the normal coordinates of the molecule 

are not exactly the same as the symmetry coordinates given in figure 

9.Al. This second point will mean that the bending modes will not be 

independent of the stretching modes, and a "non-rigid inverter" mode 1 

should strictly be used for the low frequency bending modes (see 

Papousek 1983) . 

However, setting aside these objections, the above simple ap­

proach has been found to give very good agreement with experiment for 

calculating both the displacement of the excited state along a1g modes 

(Hitchman 1982), and Jahn-Teller coupling constants (Deeth and 

Hitchman 1986). It is therefore hoped that this same approach will at 

least provide some insight into the present problem. 

The Vibrations. 

The choice of molecular axes and symmetry coordinates for the 
2-CuCl 4 species are shown in figure 9 .Al. It is important to note the 

conventions adopted. This figure also defines the phase of the vibra­

tions and the relationships between the internal coordinates (r,0,a) 

and the symmetry coordinates S. Following the recommendations of Cyvin 

(1968, pglOl), all symmetry coordinates involving angular displacement 

are multiplied by the equilibrium bondlength R. This will mean that 

all the symmetry coordinates are in units of length (pm) and the 
' -1 -2 quadratic force constants will have the units cm pm The internal 

coordinates can be expressed in terms of the symmetry coordinates by 

(9.32) 
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inverting the U matrix (see Cyvin 1968; pp64-67) and, for example, one 

can find: 

1 1 + 1 S (e~ (s)) rl 2 S(alg) + 2 s (blg) 2 

1 1 1 + h:s (e~ (b)) «12 - --S(b ) - --s (e (b)) 2R 2g 2R u 

e1 
1 
2R.S(a2u) 

1 
+ 2RS(b2u) (9 .A2) 

In the present study only bending vibrations are investigated. 

This is because of the stretching vibrations, the displacement and 

excited state force constant of the a1g mode is dete-rmined by the 

experimental spectra. The blg and eu stretch modes are "even" vibra­

tions where positive and negative displacements along their 

coordinates are equivalent. The overall effect of adding a potential 

where a bond compression raises the energy higher than an extension 

(ie an inverse power or overlap calculated patent ia 1) would be to 

increase the frequency in the excited state. Since this cannot be an 

explanation for the present problem, only the bending modes are con­

sidered. 

The Potentials. 

The instantaneous point groups of the vibrations are shown in 

table 9.A3 along with the irreducible representations of the real 

d-orbitals basis functions. [Note: For distortions along the b
2

u and 

blg coordinates, the instantaneous point groups differ from the stan­

dard ones normally used due to the non-conventional orientation of the 

molecular axes.] 

Because each d-orbital belongs to a different irreducible repre­

sentation for distortions along the a2u or b2u symmetry coordinates, 

the ligand field will not mix them and analytic formula can be given 

for the energies of the electronic states in terms of pure d-orbitals. 

These two distortions are equivalent in terms of the AOM model and the 

energies of the electronic states as a function of e have been derived 

by Smith (1977) and are given in table 9.A4. For the b2 and e (b) 
g u 

instantaneous point groups, however, repeated representations occur 

and the d ( z 2 ), d (xy) and d (z2) ,d(x2-y2) pairs respectively will be 

(9.33) 



mixed by the ligand field. The non zero matrix elements are given in 

table 9.A4 and diagonalisation of the ligand field matrix must now be 

done to obtain the energy of the electronic states (which now will not 

all be pure d-orbitals) . In addition, the d-orbitals that transform as 

totally symmetric have been shown to be depressed by conf igu rat ion 

interaction with the metal 4s orbital (Smith 1977). The perturbative 

approach by Smith (1977) along with group overlap integrals (Kettle 

1965) has been used to include this effect and the results are in­

cluded in table 9.A4 where necessary. 

TABLE 9 .A3 

Vibration Instantaneous Irreducible Representations 

Point groups d(z2 ) 2 2 d(x -y ) d(xy) d(xz) d(yz) 

vl (a lg) D4h Alg Blg B2g E g 
v2 (blg) D2h A A Blg B2g B3g g g 
V3 (a2u) c4v Al Bl B2 E 

* ~ 
V4 (b2g) D~h A Blg A B2g'B3g g g 
V5 (b2u) D2d Al B2 Bl E 

v6 (eu (b)) c2v Al Al Bl B2 A2 

V7 (eu (s) ) c2v Al Al Bl B2 A2 

*Denotes a "non-standard" point group, the molecular axes are as 

defined in figure 9.Al. 

The three AOM parameters e , e and ed take the values 5250, 900 
cr 1t s 

and 1500 cm-l respectively from the observed electronic transitions of 

the pla~ar complex. The transitions of CuCl~- in the more commonly 

observed D2d geometry have been found to lie along the calculated 

curves of the b2u coordinate (McDonald and Hitchman 1986). The energy 

differences of these electronic states, calculated from the matrix 

elements given in table 9.A4, are shown in figure 9.A2. The ap­

propriately dimensioned harmonic ground state potential is also 

included for comparison. These curves are now fitted to a fourth order 

polynomial by the least squares method and the results are presented 

in table 9 .AS. 

(9.34) 



TABLE 9.A4 AOM matrix elements for angular distortions. 

a2u and b2u type distortions. 

2 2 1 2 .2 .2 1 22 <z IVlz > = 4(1 - 3cos29) ecr + 3sin 29 e1t - 16(sin 9 - 2cos 9) eds 
22 22 3 2 .2 <x -y !Vix -y > = -4 (1 + cos29) e +sin 29 e 

cr 1t 

<xyJVlxy> = 4cos29 e 1t 

<xzJVlxz> = ~sin229 e + 2(sin29 + cos229) e cr 1t 

<yzJVJyz> = ~sin229 e + 2(sin29 + cos229) e cr 1t 

b
29 

type distortion 

2 2 <z IVlz > = e - 4ed cr s 
2 2 2 2 . 2 <x -y !Vix -y > = 3sin a e 

cr 
2 + 4cos a e1t 

<xyJVJxy> = 3cos2a e + 4sin2a e cr 1t 

2 
- 48cos a eds 

<xzJVJxz> = 2 e 1t 

<yzJVJyz> = 2 e 1t 

<xzJVJyz> = <yzJVJxz> = 2cosa e 
1t 

2 2 ..f3 <z IVJxy> = <xyJVlz > = - 3cosa e 1t 

e (b) type distortion u 

<z2 JVJz2> = e - 4 ed cr s 
22 22 3 2 .2 4 <x -y !Vix -y > = -2 (1 +cos 2a) e + 2sin 2a e - 48cos a ed cr 1t s 

<xylVlxy> = 2~sin2 2a e + 2(1 + cos22a) e a 1t 
2 <xzJVlxz> = 2(1 +cos a) e1t 

<yzJVJyz> = 2sin2a e 1t 

2 2 2 2 2 2 ..f3 <z !Vix -y > = <x -y IVlz > = - 2(1 + cos2a) ecr 

Note: The internal coordinates e, a are defined in figure 9.Al. 
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Figure 9.A2 The cl-orbital energies relative to the ground state as a 

function of: a) b2 , b) a2 , c) b1 and d) e (b) symmetry coordinates. u u g u 
The ground state vibrational potentials are also shown for comparison. 



Care must be taken both when converting from internal coordinates 

( e, ex) , symmetry coordinates, and dimensionless coordinates ( ~) ; and 

also when converting their coefficients. To avoid confusion these 

conversions are outlined in detail. For th~ b2u mode the potentials 

can be defined as: 

_v ( 9) c1e 2 (9 .A3) co + + c2e + . 

V (Sb2u) = b + b1Sb2u 
2 (9 .A4) 0 + -b2Sb2u + . . . 

V(~) 
2 

= ao + als + a2s + (9 .AS) 

-1 -i -1 -i The coefficients have the dimensions: c. (cm deg ), b. (cm pm ) , 
l l 

a. (dimensionless), and are related by the following expressions: 
l 

1 i 1 a. = (-) - b. 
i x hv i 

and the coordinates by: e (180) s (180) 1 J: 
2nR b2u = 2nR x ~ 

(9.A6) 

(9 .A7) 

Here R is the equilibrium bondlength and x is given by (Cyvin 1968) : 

x = 1. 722x10- 3 (Mhv) 112 prn-l where Mis the mass of the 

chloride ion in amu and hv is the frequency of the vibration in cm-1 . 

For the other bending modes the above equations are identical, 

making the appropriate substitutions (9~a, S(b2u)~S(b2g) for example), 

except for the mass used M. This is actually the inverse of the ap­

propriate element of the G matrix (see Cyvin 1968) and will differ for 
* each mode : 

b2u: M = m(Cl) 

M = m(Cl) 
4 

rn (Cl) m (Cu) 
M = [4m(Cl)+m(Cu)] (9 .AS) 

_ m (Cl) m (Cu) 
M - [4m(Cl)+2m(Cu)] 

[* The e (b) mode is actually more complicated as the G matrix couples u 
the e bending and the e stretching vibrations. Here it is assumed u u 
that such coupling is small enough to be ignored.] 

(9.35) 



* TABLE 9.AS Least squares fit to the AOM potentials. 

Vibration V3 V4 V5 V7 
Symmetry a2u b2 b2u e (b) 

-1 ~9 u 
Frequency (cm ) 159 181 60 165 

a2 0.5 0.5 0.5 0.5 
-1 -2 ** 

b2 (cm pm ) 0. 4112 0.4305 0 .1892 0.3382 
-1 -2 

c2 (cm deg ) 25.37 26.55 11. 67 20.86 

~ d(z2) transition 
-1 -2 -13.148 2.020 -13.148 -7.408 c2 (cm deg ) 
-1 -4 

C4 (cm deg ) 0.00392 0.01864 0.00392 -0.00258 

a2 -0.2592 0.0380 -0.5632 -0 .1776 

a4 0.00024 0.00120 0.00043 -0.00055 

*** ~ d(xz) transition 
-1 -1 o.o 31. 416 0.0 0.0 cl (cm deg ) 
-1 -2 

c2 (cm deg ) -16.435 -3.701 -16.435 -6.859 
-1 -3 (-7.956) 

C3 (cm deg ) o.o -0.00159 0.0 
-1 -4 

C4 (cm deg ) 0.00484 0.00037 0.00484 -0.00312 

al 0.0 0.3204 o.o (-0.003) 

a2 -0.324 -0.069 -0.704 -0.164 

a3 0.0 -0.00006 0.0 (-0.191) 

a4 0.00030 0.00002 0.0053 -0.00030 
(-0.00029) 

~ d(xy) transition 
-1 -2 -7.397 8.809 -7.397 c2 (cm deg ) -14.807 
-1 -4 

C4 (cm deg ) 0.00181 -0.0197 0.00181 -0.00013 

a2 -0.1458 0.1659 -0.3169 -0.3549 

a4 0. 00011 -0.00127 0.00020 -0.00001 

* Only non-zero coefficients are given. A least squares polynomial 

of degree 4 is fitted to 31 points in the range ±15°. 
** 1.0 mdyneg-l = 5.035 cm-l pm-2 

*** For the ~ d (yz) transition change the sign of c1, c3 and use the 

bracketed quantities for c2, c4. 



Discussion. 

The dimensionless coefficients, ai, given in table 9.AS are those 

required for use in section 9. 3. 2. Several comments can be made at 

this stage however. The pair of d-orbitals d(xz), d(yz) that are 

degenerate in D4h symmetry are split along the b2g and eu(b) symmetry 

coordinates. This is exactly as given by group theory in terms of the 

instantaneous point groups given in table 9.Al. 

The antisymmetric direct product {E xE: } = b1 +: b 2 gives b 1 , g- g g--- g g 
b

2 
as Jahn-Teller active coordinates (Ballhausen 1965), and from 

g -1 -1 
table 9.AS a linear Jahn-Teller coupling constant of A1=4.00 cm pm 

for the b 2 g mode is calculated. This of course could be immediately 

calculated from the matrix element in a manner similar to that out­

lined by Bacci (1979), which gives A1 = e7t/R. It is interesting to 

note that along the blg coordinate the dxz' dyz orbitals are not 

mixed, whereas they are mixed along the b2g coordinate, analogous to 

the behaviour of the Q9 and Qe components, respectively, of the eg 

vibration in an octahedral Eg state. 

The only active Renner-Teller vibrations will be those whose 

direct product with itself contains either of the blg' b2g repre­

sentations. This will only occur for the e vibrations. From table 
u 

9.AS the second-order Jahn-Teller (or Renner-Teller) coupling constant 

for the eu(b) mode is calculated as A2= 0.0178 cm-1pm- 2 . Again this 

could have been calculated directly from the matrix element A2= e7t/R2 

Herzberg (1966, pp42-5) has discussed the Renner-Teller effect in non­

linear molecules. 

It is heartening that the qualitative behaviour of matrix ele­

ments required to be non-zero by group theory is correctly reproduced 

within a ligand field model. Returning now to the immediate problem, 

the electronic "difference" potentials are added on to the ground 

state vibrational potentials in table 9.AS to form the excited state 

vibrational potentials. In d(x2-y2) ~ d(z
2

) transition, the b2u ex­

cited state vibrational potential dramatically deviates from a 

harmonic parabola. Indeed, it forms a "double well" potential where 

the minima are at ± 14° and are depressed by 140 cm-l from the minima 

of a harmonic potential. The b2u mode is the only one that displays a 

potential of this form. This is due partly to the steepness that the 

( 9. 36) 



electronic "difference" energies fall along this coordinate, and to 

the low frequency (or large amplitude) of this vibration. 

The fourth order term for distortions along the eu (b) coordinate 

is negative, which will eventually cause the potential to turn nega­

tive and become unrealistic. This will occur at quite large 

distortions and will not have any effect on the present problem at the 

temperatures to be studied. However, in practise this term is set to 

zero in the numerical calculations because the diagonalisation 
, 

routines will attempt to calculate "unbound states" outside of the 

potential for large basis sizes. 

(9.37) 



9.A3 THE SOURCE OF THE VIBRONIC INTENSITY 

The intensity of the forbidden d-d transitions in this centrosyrn­

metric complex is vibronic in nature, although this chapter has not 

been concerned with the source of this intensity. When the inter­

mediate "lending" states are not of interest, then the usual vibronic 

selection rules in equation (3.27) can be applied to D4h CuCl~- and 

the results given in table 9.6 are obtained. 

The electronic selection rules of the complex with a static 

distortion along each of these inducing modes gives exactly the same 

results as the vibronic selection rules of table 9.6. This can easily 

be shown to be true for molecules of any point group. Distortions 

along a particular symmetry coordinate Q, causes this coordinate to 

transform as totally symmetric in the new point group. Substitution of 

rQ= Alg into the vibronic selection rule of equation (3.27) results in 

the electronic selection rule, so that transitions that are vibroni­

cally allowed become electronically allowed with a static distortion 

along their inducing coordinates. 

The static selection rules can be found by noting how the d-
, 

orbitals and the electric dipole vector transform in the 

"instantaneous" point groups (subgroups of the parent D4h group) 

resulting from distortions along the normal modes. [These are given in 

table 9.A3 of appendix 9.A2.] Although these above two approaches give 

identical selection rules, it will be shown in the following sections 

that they give very different interpretations as to the source of the 

vibronic intensity. 

Vibronic Approach. 

If the nature of the intermediate charge transfer states are of 

interest, then the separate selection rules in equations (3 .25) and 

(3.26) for the relevant pair of integrals in the transition moment of 

(3 .24) are considered. The first integral gives the possible mixtures 

of the charge transfer states into the "d-orbital" states, while the 

second integral determines whether the charge transfer states that are 

mixed into the wavefunctions are themselves allowed. 

(9. 38) 



TABLE 9.A6: Vibronic Selection Rules for Cuc1:: 

Inducing Vibronically Allowed Polari- "Lending" CT 

Mode Transition sat ion Transition 

a2u 2B (x2-y2) ~ 2E (xz, yz) xy 2B (x2-y2) ~ 2E 
lg g lg u 

b2u ~ 2E (xz, yz) xy ~ 2E 
g u 

2 2 2 
~ Alg(z ) z ~ B2u 

2 ~ 2E e ~ B2g (xy) xy 
u u 

2 2 ~ 2E ~ Alg(z ) xy u 
~ 2E (xz, yz) 2 z ~ B2u g 

Table 9.A7: The Vibronic Selection Rules 

at Various Levels of Approximation. 

Inducing Vibrations 

Transition I II III 

xy z xy z xy z 

Blg~ B2g e (E ) - - b2u(Alu) e (E ) -u u u u 
2 [x -y 2 

~ xy] 

Bl ~ E a2 (E ) eu(B2u) - e (Al ) a2u(B2u) e (E ) g g u u u u u u 
2 2 

b2u (EU) eu (A2u) b2u (A2u) [x -y ~ xz - - -

~ yz] 

Blg~ Alg e (E ) b2u(B2u) - a2u(A2u) e (E ) b2u (A2u) u u u u 
2 2 z2] [x -y ~ 

2 Note: All the electronic states above are doublets. ie B1g= Blg 



The "d-orbital" states are: 

'l'g{Blg) Blg(x2-y2) + c(a2u) 82u + c(b2u)A2u + c(e )E (9 .A9) u u 

'Jf(B2g) B2g (xy) + c(a2u) 8lu + c(b2u)Alu + c(e )E u u 

'I' (Eg) E (xz, yz) g + c(a2u)Eu + c(b2u)Eu 

+ c(e ) (A1 + A2 + u u u 81u+ 82u) 

'I' (Alg) 
2 

Alg(z ) + c(a2u)A2u + c(b2u)B2u + c(eu)Eu 

Here, the lower case letters refer to vibrations and the upper case 

letters to states, so for example, c(a2u) represents a mixing coeffi­

cient dependent on the a 2u symmetry coordinate. From the above 

mixture of the ground state wavefunction, the following allowed tran­

sitions are possible: 

xy 

Blg-+ EU 

B2u-+ Eg 

A2u-+ Eg 
E --+ Al u g 

--+ A2g 

--+ Blg 

--+ B2g 

z 

8 1g-+ 8 2u 
8 2u-+ 8 lg 
A2u-+ Alg 
E --+ E u g 

(9.AlO) 

Note that the transitions all involve a change in parity, both transi­

tions from charge transfer to charge transfer states and d-d 

transitions are forbidden by symmetry. The vibronic selection rules 

are now derived in three different cases: 

I. In the first case the ground state is considered to be a pure 

d(x 2-y2) orbital, and only the excited states are allowed to mix with 

charge transfer states. Further, only electronically allowed charge 

transfer transitions are assumed to contribute intensity. Using equa­

tions (9.A9) and (9.AlO), the selection rules given in column I of 

table 9. A 7 are derived. Here, for each polarisation, the symmetry of 

the inducing mode is given, as well as that of the charge transfer 

states (in brackets) from which the intensity is "borrowed". These are 
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the same selection rules as given in table 9. A6, however, now the 

intermediate states are identified. 
2-The charge transfer spectrum of planar cucl4 has been studied by 

Desjardins etal (1983) . The following three transitions were assigned: 
2 2 -1 2 2 -1 2 2 -1 B1 ~ A2 (23,700cm ), B1 ~ E (26,400cm ), B1 ~ E (35,900cm ) , 

g g g u g u 
all of which were observed to be almost totally xy polarised. In 

particular, the 2B1g~ 2B2u transition that is formally allowed in z 

polarisation, was calculated to have zero intensity and was not ob­

served. This creates a problem, as although the d-d spectrum is more 

intense in xy than z polarisation (see figure 9.1), the difference is 

nowhere near as great as that observed in the charge transfer 

spectrum. A question one might ask is then: where does this z 

polarised intensity come from? 

II. In the second case to be considered, the ground state is 

again assumed to be a pure d(x2-y2) orbital but the mixing with charge 

transfer states that are electronically forbidden in (9 .A9) are al­

lowed to provide some intensity. This is justified by the fact that 

the forbidden 2B1g~ 2A2g charge transfer transition is observed to be 

much more intense than the d-d transitions although it is allowed only 

through vibronic coupling with the 2E states (Desjardins etal 1983). 
u 

This mechanism can then be described as 11 vibronic coupling with 

vibronically allowed charge transfer states". The transitions to these 

states are only electric dipole forbidden, not parity forbidden as are 

the d-d transitions. The following transitions of (9.A9) that have not 

yet been considered become vibronically allowed by b 2g' blg vibra­

tions: 

Charge Transfer Inducing vibration 

Transition xy z 

2 2 
81u Blg(x -y ) ~ - -

~ Alu - b2g(B2u) 
~ A2u - blg(82u) 

Again by using (9.A9) the additional selection rules that result 

from coupling to these states are found and are given in column II of 

table 9.A7. The total selection rules in this approximation are given 

(9.40) 



by both columns I and II. It should be noted that the charge transfer 

transitions under consideration here gain their intensity via vibronic 
- 2 

-coupling to the allowed B2u states, and these states were not ob-

served experimentally. Therefore this mechanism does not provide an 

explanation for the anomalous z polarised intensity discussed pre­

viously. 

III. In the final case considered, the ground state is allowed to 

be vibronically coupled to the ungerade charge transfer states in 

(9.A9). The additional selection rules, which involve transitions 

between the ligand character in the ground state and the d-orbital 

part of the excited d states in (9.A9), are given in column III of 

tab 1 e 9 . A 7 . The total selection rules in this approximation are then 

given by both columns I and III. Note that the selection rules for the 

inducing vibrations are exactly the same as in column I, the only 

difference being in the intermediate "lending" states. This third 

mechanism does provide an explanation for the intensity observed in 

the z polarisation of the d-d spectra. 

Where is the intensity being "stolen" from? From the 2B2 -i 
2E u g 

type transitions in (9.AlO), ie the integrals involving the excited d 

orbitals and the charge transfer states. Therefore, even though an 

intense z polarised charge transfer spectrum is not seen, there is 

still vibronic coupling with the z polarised "virtual" excited state 

charge transfer spectrum. This is a perfectly logical conclusion but 

not one that is usually considered. This is because popular vibronic 

coupling interpretations talk in terms of "borrowing" from intense 

transitions, when it is of course the coupling of the states that is 

important. The idea of "borrowing11 intensity can be a misleading 

conceptional idea when, as in the present case, the vibronic coupling 

is such that the intensity is being "borrowed" from an excited state 

transition that is not observed in a normal electronic spectrum. 

The excited state absorption spectra would provide useful data on 

the intensities of these "virtual" transitions and the importance of 

this mechanism. The excited state absorption spectrum of K2Ptcl4 in a 

triplet state has been studied (Viaene etal 1985); however short 

lifetimes in the present case would make such a study difficult. 
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A Static Approach. 

2-In square planar cucl 4 , the most intense d-d transition in z 

polarisation at all temperatures is the d(x2-y2 ) ~ d(z2) transition 

which is vibronically allowed only by modes of b2u symmetry. Instead 

of asking where the z polarised vibronic intensity is coming from, it 

is instructive to consider where the intensity is coming from for a' 

small distortion away from D4h symmetry along the b2u coordinate. To 

do this, a semi-empirical approach using the cr and n bonding 

properties of the p orbitals of the chlorine ligands was used 

(unpublished results). In agreement with others (Van der Avoird and 

Ro~ 1963, Fenske and Sweeney 1964) it was found that the intensity is 

mainly derived from the single ligand(cr) ~ ligand(cr) type transition, 
2 2 

B2 ~ A1 in the D2d point group, from the ligand component of the 

molecular orbitals. However, it was somewhat surprising to find that 

this is al so the case at quite small departures from D 4h symmetry in 

the region where Herzberg-Teller theory assumes that the dominant 

intensity contribution comes from the metal~ ligand type transitions. 

Extrapolating back to D4h symmetry, this intensity contribution 

corresponds to the ligand-ligand transition 2A2u ~ 2B2u. However, this 

transition is electric dipole forbidden at D4h symmetry, and so 

strictly cannot provide any intensity at the square planar geometry. 

The four possible contributions to the d(x2-y2) ~ d(z2) transition due 

to mixing from the b2u coordinate are: 

1) 2 2A (M-M) forbidden (9.All) Bl ~ 

2) 
2 g 2 lg 

(M-1) allowed Bl ~ B 

3) 
2 g 2 2u 

(1-M) allowed A2 ~ A 

4) 
2 u 2 lg 

(1-1) forbidden A2u ~ 82u 

The first and fourth contributions are forbidden by symmetry, and 

the second is vanishingly small, as observed by the absence of the 
2

B1g ~ 2B2u transition in the charge transfer spectrum (Desjardins 

etal 1983). As argued in the vibronic approach above, the third 

mechanism does provide a plausible explanation for the source of the z 

polarised intensity. The intensity that is being "stolen" cannot be 
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directly observed as in corresponds to the 2A2u ~ 2A1g ligand to metal 

charge transfer transition. 

However, even though the fourth 2A2u ~ 2B2u (L-1) contribution is 

symmetry forbidden at a n4h geometry, the semi-empirical calculations 

show that for a small static distortion along the b2u coordinate, this 

mechanism makes the greatest contribution to the intensity. Therefore, 

as far as the source of the z polarised intensity is concerned, it may 

be mo~e profitable to view the square planar CuCl~- ion at the static 

RMS geometry along the b2u coordinate. This is then an example of 
11 dynamical symmetry breaking 11 which has recently been of interest in 

the literature (Kellman 1983, Levine 1985) . It does not represent a 

breakdown of the Born-Oppenheimer approximation, but rather ~s due to 

the fact that this approximation is obeyed. The electronic transition, 

which takes place on a much faster timescale than the vibrational 

motions of the molecule, will occur at the n2d geometry that the 

molecule will have (considering just this one coordinate) at any 

instant of time. 

This approach has many similarities to the work of Kellman 

(1983), where the overtone spectrum of the C-H stretch vibrations in 

benzene are interpreted in terms of the c2v point group of the local 

modes rather than the full n6h point group of the molecule. As Kellman 

notes, the n6h geometry can be viewed as permutation-inversion group 

of which c2v is a subgroup. 11Dynamical tunnelling 11 will occur to 

restore the D 6h point group, although there is no 11barrier 11 between 

the six equivalent c2v geometries. The point group that is the best to 

view the molecule is then dependent on the timescale of the experi­

ment. 

If this mechanism for the z polarised intensity in CuCl~- is 

correct, then it is pertinent to ask why it is necessary in this case 

when molecular point groups generally work so well in spectroscopy. 

The reason may be two fold. First, the frequency of this out-of-plane 

b 2u vibration is low and so the RMS angular distortions are quite 

large; and secondly, the normal Herzberg-Teller intensity source (ie: 

the 2B 1g~ 2B2u contribution) is very weak. 
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CHAPTER 10: GENERAL CONCLUSIONS 

In the experimental systems considered in this thesis, vibronic 

coupling was found to be essential in the interpretation of their 

spectroscopic properties. This has led to the re-interpretation of 

many previous studies and stresses the importance of including 

vibronic interactions in the study of transition metal spectroscopy. 

It was found that the temperature dependent g-values of six 

coordinate copper(II) complexes could be successfully explained using 

a Jahn-Teller Hamiltonian appropriate to a cubic system with strain 

terms describing the departure from high symmetry. These strain terms 

result, to a large extent, in the quenching of the dynamic nature of 

the vibronic wavefunctions that occur in cubic systems. However, the 

formalism developed here gives a convenient method of calculating the 

electronic and geometric properties of the vibronic energy levels in 

low symmetry complexes. The parameters used in the model can be re­

lated to the bonding properties of the ligands in a consistent manner. 
2-The d-d electronic spectrum of square planar Cucl
4 

was also 

successfully interpreted in terms of vibronic interactions, both as a 

source of intensity and as the cause of unusual temperature effects. A 

double minima excited state potential was found to be necessary to 

explain the shift in the band maxima that was experimentally observed. 

Al though only a small number of experimental systems have been 

considered here, it is clear from their spectral properties, that 

vibronic interactions in general can be crucial in determining the 

electronic and geometric properties of transition metal complexes. 

Finally, as much of chemistry finds justification in biological 

applications, it is noted that there has recently been much interest 

in the temperature dependent spectroscopy of proteins with transition 

metal centres. It has been thought (Bacci and Cannistraro 1987) that 

vibronic coupling could play an important role in the active site 

dynamics of such biomolecules. 
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