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Abstract 

In the current competitive market for land in Tasmania, Australia, economic forest 

production may require large nutrient inputs to optimise productivity per unit area of 

land. Nitrogen (N) and phosphorus (P) fertilisers are often required at planting and in 

early stages of tree establishment to achieve rapid early growth and high survival 

rates. In Tasmania, further application ofN and P to plantations ranging in age from 

2- to 20-years has also occurred. To effectively manage these plantations, a detailed 

understanding of nitrogen (N) fertiliser requirements and N retention in forests is 

required. 

Two field fertilisation experiments were used in this study, one in a 20-year-old Pinus 

radiata D.Don plantation growing in the north-east of Tasmania, on a Yellow 

Kurosol, and one in a 5-year-old Eucalyptus regnans F. Mueller plantation growing in 

the south, on a Brown Ferrosol. Both of these experiments were established in the 

early 1980s. Treatments at both sites included various combinations of P and N, 

applied as single-superphosphate and ammonium sulphate through a period of up to 

thirteen years. This study examines fertiliser-use, efficiency and impact on forest 

sustainability, including a detailed examination of the soil profile and litter at both 

sites. Nitrogen cycling was also examined, concentrating on the effect ofN 

fertilisation on N mineralisation in the contrasting surface soil horizons. 

After fifteen years of measurements, nitrogen fertilisation significantly increased 

volume growth at both sites. Two single applications of Palone (totalling 144 kg P 

ha-1
) doubled P. radiata stem volume from 78 m3 ha-1 (Nil) to 192 m3 ha-1 (P). 

Annual N fertilisation for a period of thirteen years (in addition to the P fertiliser) 

further increased P. radiata stem volume from 192 m3 ha-1 (P) to 344 m3 ha-1 

((P)Nl Y), at age 34 years. In contrast, applications of P alone (up to a total of 598 P 

ha1
) had no effect on E. regnans growth, while annual N (plus P) fertilisation for 

thirteen years, doubled E. regnans growth from 125 to 281 m3 ha-1
, at age 19 years. 
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Although fertilisers may be used to increase forest growth there is concern that long­

term N application may impact on forest sustainability through changes in the soil 

chemistry. At both sites in this study, significant changes occurred in the soil profile 

due to long-term fertilisation. Soil pH decreased due to both N and P fertilisation, at 

both sites. Significant reductions of0.7 and 0.3 of a pH unit were associated with the 

highest rates of fertilisation in topsoil (Al, 0-10 cm) and litter (02 horizon), 

respectively. Substantial reductions in exchangeable Mg concentrations were also 

measured, particularly in the Kurosol. 

In association with enhanced growth was a large increase in litter accumulated at both 

sites. Total litter masses (01 +02) ranged from 34.4 to 91.6 t ha-1 under P. radiata and 

from 21.6 to 102.4 t ha-1 under E. regnans. At both sites, the 02 horizon masses were 

significantly greater with annual fertilisation and were a substantial nutrient pool. 

Under P. radiata, 02 horizon mass was 40 t ha-1 when unfertilised and over 70 t ha-1 

with fertilisation, while under E. regnans the mass was 14 t ha-1 when unfertilised and 

77 t ha -l with fertilisation. This indicates that, in the cool temperate climate studied 

here, litter could be an important pool of nutrients. 

Long-term, annual applications of N fertiliser had no significant effect on the annual 

rate ofNNM measured in either the Kurosol or Ferrosol topsoil (0-10 cm). However, 

average rates in Kurosol topsoil were up to four-fold higher in the annually fertilised 

treatment. At both sites topsoil in situ net N mineralisation (NNM) rates measured at 

the end of the experiment were low, ranging between 13 and 52 kg N ha-1 yr-1
• Such 

low rates of N mineralisation might have been associated with a prolonged period of 

low rainfall that occurred throughout the 18-month measurement period. 

To assess mineralisation independent of microclimatic effects that prevailed during 

the in situ study, rates of NNM were measured during aerobic laboratory incubations. 

In agreement with in situ studies, NNM in the Ferrosol topsoil was not changed by 

fertilisation. In contrast, the variation in rates ofNNM between treatments for the 

Kurosol topsoil was greater than that measured in situ, with fertilised topsoil 
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mineralising ten times more N than that unfertilised. However, results were highly 

variable across moisture and temperature treatments. 

Despite the high amounts of N and P that had been applied during annual fertilisation, 

differences in total N and NNM in soil were small and highly variable. This result 

contrasted with the large differences in total N content and NNM rates in the 02 

horizon from both sites. The influence of fertilisation on N cycling in litter produced 

clear results, i.e. daily rates of mineralisation (measured by aerobic laboratory 

incubations) were higher in annually fertilised than unfertilised litters, at both sites if 

incubations went for 7 days or longer. In contrast, low mineralisation rates in both 

topsoils often produced similar daily rates of NNM regardless of fertiliser treatments. 

In both topsoils, 60 days was required to produce a significant cumulative effect, 

resulting from a divergence in NNM rates between the fertiliser treatments during the 

later stage of the incubation. Increased replication of samples in laboratory 

experiments did increase the sensitivity of NNM measurements and significant 

differences between fertiliser treatments were measured. 

These results confirm the importance of litter as an N source in cool temperate 

plantations. The importance of the litter layer in N cycling was particularly evident 

under E. regnans, where N was most concentrated in the litter layer. In addition, the 

E. regnans 02 horizon accumulated significantly more P, S and Ca due to annual 

fertilisation. 

The effects of air-drying, incubation period, moisture content and temperature on 

NNM in laboratory studies were examined and found to depend on both the site and 

fertiliser treatment. This study indicated that higher NNM rates in topsoils would 

occur if soils were not maintained moist prior to and during incubations. This was 

particularly important for wetter sites, where canopy closure had occurred, resulting 

in smaller moisture fluctuations, as observed in the Ferrosol topsoil. Laboratory 

incubation conditions also influenced correlations between nutrient content (total N, P 

Sand Ca) and NNM. For example, NNM rates in the Kurosol topsoil were linearly 

correlated with N, P and Mg concentrations and pH when incubated at 20°C (p 
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<0.05), but only with P at 10°C. This study indicated that minimum disruption of soil 

processes, particularly by drying was essential if accurate measurements of changes in 

soil N, in the cool temperate environment, were to be obtained. Hence, I could not 

identify a reliable indicator ofNNM for these plantations. 

In agreement with the in situ study, application ofN fertiliser seasonally (June, 

October, January or April) resulted in a short-term elevation of mineral N (less than 

six-months), particularly at the wetter Ferrosol site. April fertiliser application 

provided the longest period of enhancement and October the shortest, indicating that 

the current operational practice, of applying fertiliser in autumn (March-May), 

provides an adequate window for fertiliser uptake to occur. These trends also confirm 

that, independent of the time of fertiliser application, a six-month delay after fertiliser 

application was adequate to determine long-term fertiliser affects on NNM. This delay 

allowed mineral-N concentrations to attenuate to a low value that facilitated NNM 

measurements. In agreement with previous studies, at both sites rainfall appeared to 

be a strong regulator of mineral N availability after fertilisation. The importance of 

the litter was also highlighted, because it retained N fertiliser and thereby limited N 

leaching. 

In situ rates ofNNM and tree growth in the nil and annual fertilisation regimes in the 

P. radiata plantation were modelled using the process-based model CABALA. The 

model was developed with forest managers in mind as part of a silvicultural decision 

support system and links C, water and N flows through the atmosphere, tree and soil. 

In this study, CABALA was validated for P. radiata using parameterisation from 

published and unpublished data derived from an independent study. Predicted growth 

increases due to annual fertilisation within 15 % at age 34 years. Limitations to the 

current simulation were often due to the assumption that P was not limited at this site. 

Other responses to N movement in the forest system were also adequately predicted. 

However, this study indicated that functions for N mineralisation and canopy 

development need to be more sensitive to fertiliser inputs to adequately predict N 

availability in the mineral soil and litter layers. There currently seems to be an over­

dependence on C: N ratio, because it drives predictions ofN mineralisation in the 
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CERES model, but there is doubt that this is an important controlling variable in 

forest systems. Further study of in situ NNM rates of litter horizons would be required 

to clarify the amount and mechanisms of N recycling that occur in these systems. 

Large growth rate increases from N fertilisation in both P. radiata and E. regnans 

plantations were often associated with significant changes in soil chemistry and litter 

accumulation. Substantial reductions in exchangeable Mg concentrations and soil pH 

indicate that careful site management is required. Significant accumulation of litter 

under these plantations may act a substantial future source of nutrients, including N 

availability for further tree growth, particularly when N mineralisation is low and not 

significantly effected by long-term fertilisation. 
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1.1 Introduction 

To achieve the required economic return on investment on plantations in Tasmania, 

Australia, mean annual growth in excess of20 m3 ha-1
, and probably 25 m3 ha-1 are 

required (Forestry Tasmania pers. corn). Many of the sites available for plantation 

establishment in Australian have soils oflow fertility with low levels of organic 

matter, which will therefore require fertiliser additions to reach industry targets 

(Neilsen and Davis, 1984). Sites requiring fertilisation will also become more 

common as soil organic matter and soil nutrient levels decline due to wood production 

above sustainable levels (Hamilton, 1965; Raison, 1980; Squire and Flinn, 1981; 

Waring, 1981). Large losses of organic matter and consequently N during previous 

harvesting and site preparation practices have been attributed to the decline of growth 

in successive rotations of plantations (K.eeves, 1966; Wise and Pitman, 1981). 

Economic plantation production cannot be sustained from native soil N alone 

(Neilsen, 1983). 

Many Australian soils require Nitrogen (N) and phosphorus (P) fertilisers at planting, 

and during the early stages of tree establishment to achieve rapid early growth and 

high survival rates (Gentle et al., 1965; Judd et al., 1996; Neilsen, 1996). Later-age 

application of P at P-deficient sites can increase P. radiata plantation growth by an 

average of 10 m3 ha-1 yr -1
, for a periods of 10 years or more (Gentle et al., 1965; 

Neilsen et al., 1984). In Tasmania, substantial later age P fertilising programs have 

been in place since the early 1970's (with between 60- 70% of Forestry Tasmania's 

estate fertilised). Large volume increases in P. radiata plantations from multiple 

applications ofN fertiliser also occur (Neilsen et al., 1992; Neilsen and Lynch, 1998), 

resulting in the development of a later age N fertiliser program in Tasmania since 

1990. 

Following fertilisation, increases in litter accumulation occur in a range of forest 

stands (Baker et al., 1986; Nohrstedt, 1990; Theodorou and Bowen, 1990; Neilsen 

and Lynch, 1998). However in a subtropical climate, litter accession can be low, as 

measured in mixed Eucalyptus forests at 1.8 to 3.6 t ha-1 yr-1 (Birk, 1979). In a warm 

temperate climate in New Zealand, high rates of forest floor organic debris 
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breakdown in E. regnans also resulted in low amounts of accumulation of 4. 7 to 11.0 t 

ha-1 (Frederick et al., 1985). The litter layer is important in the cycling, retention and 

supply of nutrients in forests (Tamm and Popovic, 1995; Neilsen and Lynch, 1998) 

and after canopy closure the cycling of N through re-translocation in the tree and 

mineralisation oflitter become more important sources for growth of new tissues than 

nutrients derived directly from the mineral soil (Cromer et al., 1993). InP. radiata, 

Hunter and Hoy (1983) observed an increase in litter mass from 1.82 tonnes litter ha-1 

with 10.2 kg N ha-1 to 4.13 tonnes litter ha-1 containing24.5 kg N ha-1
, due to the 

application of 400 kg N ha-1
• However, in a review of many studies by Aber and 

Melillo (1980) fresh litter was considered a mineral N sink, rather than a source. Fyles 

and McGill (1987) also indicated that the addition ofrecent litter material favours N 

immobilisation, whereas mineralisation dominates in the 02 layer. 

In addition to increased N retention in litter layers, increase in the rates of N 

mineralisation in soil following N fertilisation have been observed in many field and 

laboratory studies (Johnson et al., 1980; Adams and Attiwill, 1991; Whynot and 

Weetman, 1991; Aggangan et al., 1998). Increased N mineralisation following P 

application has also been observed (Waring, 1969; Khanna et al., 1992; Falkiner et 

al., 1993). However, the literature on the effects of fertilisation on NNM rates is often 

conflicting. 

Although fertilisers may be used to increase forest growth there is concern that long­

term N application may affect forest sustainability through changes in soil chemistry. 

Application of N fertiliser has been identified as a source of increased acidity in soils 

across a range of sites (Adams and Martin, 1984; Tamm and Popovic, 1995; Homann 

et al., 2001 ). Low soil pH decreases the rate at which organic N is mineralised 

(Adams and Martin, 1984), can increase the availability of Al to toxic levels and can 

reduce the availability of cations such as Ca and Mg. 

To effectively manage and refine fertiliser operations in both Eucalyptus and Pine 

plantations, a more detailed understanding of fertiliser requirements is essential. This 

requires increasing our understanding ofN retention in these forests and the longevity 
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of growth responses (Mead and Pritchett, 1975b). Both N retention and subsequent 

availability relate to rates of mineralisation in the soils under study and are therefore a 

response of the local environment and N status (Adams et al., 1989b). Measurements 

ofN mineralisation indicate of the amount ofN that becomes available to trees for 

uptake and subsequent growth (Pastor et al., 1984; Adams and Attiwill, 1986). 

Tasmania has a cool temperate climate, substantially different to the rest of Australia. 

In mature cool temperate forests, N mineralisation rates are often below 10 kg ha-1yr-1 

(Adams et al., 1989a), which contrast markedly to N uptake required for plantation 

growth, of up to 200 kg N ha-1 (Cromer et al., 1993; Smethurst et al., 2004a). In 

Tasmania, NNM rates between 13 and 188 kg N ha-1 yr-1 were observed in surface 

soils (0-10 cm) of Eucalyptus nitens plantations being established on Kurosols and 

Ferrosols (Wang et al., 1998; Moroni et al., 2002) 

The experimental sites studied in this thesis provided an opportunity to determine N 

mineralisation as effected by long-term fertilisation in the Tasmanian environment. 

Studies of long-term applications of N fertiliser in the past have predominantly 

occurred in the Northern Hemisphere, in the context of high rates of atmospheric N 

input. In contrast, this study investigates the effects of N fertilisation at rates up to and 

above operational requirements for plantation growth, in the Southern Hemisphere 

away from industrial areas. The soils chosen in this study, i.e. a Yellow Kurosol and a 

Brown Ferrosol, represent the low-to-medium range of productivity of the P. radiata 

and eucalypt estates in Australia. The Kurosol profile is also very similar to the soil 

researched intensively in the ACT (Khanna et al., 1992) the major difference being 

that the Tasmanian site is in a cooler environment. The combination of both sites with 

contrasting soils and plantation species provides an opportunity to compare the effects 

oflong-term fertilisation, in temperate forests, on nutrient cycling and N 

mineralisation. 

To understand how long-term fertilisation affects plantations in the Tasmanian 

environment, this thesis tests the following hypothesis: 
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"Long-term application of nitrogen fertiliser increases the growth of E. regnans and 

P. radiata plantations, increases the rate ofNNM in soil and litter horizons, and 

results in a redistribution ofN in these systems that can be adequately simulated by a 

process-based model." 

The specific objectives were as follows; 

1. Review the effects of climate, vegetation, soil and site management (in particular N 

fertilisation) on NNM rates in forest soils. 

2. Determine the effects of long-term fertilisation on: 

• growth of a P. radiata D.Don plantation and a E. regnans F. Mueller plantations 

on contrasting soils. 

• nutrient distribution and pH in the soil, including litter. 

• Rates ofNNM in litter (02) and topsoil (Al) in both field and laboratory 

conditions. 

3. To assess mineralisation in the topsoil and litter horizons independent of 

microclimatic affects that prevailed in situ, laboratory experiments were conducted to 

determine the effects of controlled parameters on NNM, i.e. 

• moisture content and air-drying 

• incubation period, and 

• incubation temperature 

4. Test whether NNM or other attributes measured in these plantations could be 

adequately simulated by a currently available processed-based model. 

5. Discuss the implications oflong-term fertilisation on site productivity, soil 

conditions and management. 

This thesis is divided into 10 chapters, a flow diagram of the thesis development and 

outline is given in Figure 1.1. 
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2. Literature Review 

2. 1 Introduction 

Soil is an integral part of the forest and forest growth is a direct product of the quality 

and quantity of the soil (Grant et al., 1995). The growth of forests depends on the total 

quantity of nutrients available from the mineral soil and organic matter, on nutrient re­

translocation in the tree and on atmospheric inputs. A key to optimising tree growth 

therefore depends on understanding the complex interaction of processes affecting the 

long-term availability and cycling of nutrients in the forest environment. These 

complex processes include factors such as; soil mineralogy, micro- and macro­

climates, organic matter and soil mineralisation rates, and the plant-soil relationships 

of the species occupying the site. 

Nitrogen is often the most growth-limiting nutrient in both terrestrial and aquatic 

systems. The majority of forest plants rely on microbial transformations of organic 

material to release N for plant uptake and growth. In undisturbed forest soils, 

inorganic N for plant growth is derived almost entirely from the decomposition of 

organic forms ofN in a process called N mineralisation. Therefore, the efficient 

conversion of organic N to available mineral forms is vital for plant nutrition. 

Microbial mineralisation of organic N is influenced by factors such as temperature, 

moisture, substrate concentration (quantity), and ease of utilisation by, or accessibility 

to, micro-organisms (quality) (Fyles et al., 1990). 

Nitrogen mineralisation has been widely studied as an indicator of site productivity, 

with productivity in many forest ecosystems increasing with soil N mineralisation 

(Pastor et al., 1984; Adams and Attiwill, 1986). Nitrogen mineralisation in soils have 

also been significantly correlated with soil characteristics such as total soil N content, 

mineral soil N concentration, soil organic C, or soil pH (Nadelhoffer et al., 1983; 

Pastor et al., 1984; Gower and Son, 1992). In addition, litter amount and quality 

influence N mineralisation from soil organic matter and that, in turn, influences leaf­

litter production and quality. As this interaction is controlled by feedback between 

vegetation and soil organic matter dynamics, practices that alter the function of either 
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ecosystem component, may alter the amount ofN cycling, and ultimately effect site 

productivity (Nadelhoffer et al., 1982). 

Optimal N fertilisation prescriptions aim to maximise the assimilation of exogenous N 

into trees, by synchronising N availability with periods of maximum N uptake. To 

prepare such a prescription it is necessary to understand N availability in litter and soil 

systems and its subsequent uptake into and retranslocation in the tree. Inherent site 

properties determine the probability and magnitude of growth response to fertilisation 

with N and P alone and in combination. The duration of enhanced growth from 

fertilisation will depend on the duration of increased soil and litter N mineralisation 

and retranslocation ofN within the tree. Forests with inherent low rates ofN 

mineralisation show large growth response to N fertilisation, if P availability is 

adequate (Raison et al., 1987). However, the duration of growth enhancement due to 

N fertiliser is often limited to 5 to 10 years post fertilisation (Fagerstrom and Lohm, 

1977; Miller, 1981; Fisher and Binkley, 2000). Prolonged responses to tree growth 

from long-term simulations ofN supply from fertilisation have been indicated (Raison 

et al., 1990; Neilsen et al., 1992; Neilsen and Lynch, 1998). In contrast, single 

applications of P fertiliser have produced continued response for many years in a 

number of forest crops (Ballard, 1978; Turner and Lambert, 1986). 

Reports on long-term affects of fertilisation on N cycling in forest soil and subsequent 

N mineralisation vary greatly. Inconsistencies often reflect variations in site 

characteristic and fertiliser-application management (Aggangan et al., 1998) and 

limitations when measuring NNM (Adams et al., 1989b ). However, increased NNM 

in forest soil due to N fertilisation have been measured both during laboratory and 

field incubations (Johnson et al., 1980; Hingston, 1984; Aarnio and Martikainen, 

1995), up to six years after application (Smolander et al., 1998). Interactions between 

microbial utilisation of N and its net N mineralisation depend on a range of site and 

environmental conditions. Temperature and moisture content together with pH, are 

among the most important abiotic factors influencing biogeochemical 

transformations, including N mineralisation (Tietema et al., 1992). 
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The prediction and realisation of responses as measured by tree growth is only a 

rough guide to the direct effects of fertilisation on the whole forest system. The role of 

the soil and internal recycling in the tree and between the tree and soil are important 

in the development of stand management and fertiliser application regimes. Large 

losses of organic matter and consequently N during previous harvesting and site 

preparation practices have been attributed to the decline of growth in successive 

rotations of plantations (Keeves, 1966; Wise and Pitman, 1981). 

Numerous investigations have demonstrated the role of seasonal temperatures on 

microbial growth and N mineralisation (Foster, 1989; Powers, 1990; Nadelhoffer et 

al., 1991; Verburg and Van Breemen, 2000). The following review highlights the 

major factors influencing tree growth and N mineralisation in forests. These are 

segregated into sections that highlight the principles and ideas tested in the thesis. 

2.2 Fertilisation Effects on Plantation Growth and Soil Profile Changes 

Many factors can limit the growth and rotation length of a plantation. Factors such as 

climate, soil physical structure and soil biochemistry interact to form a complex set of 

indicators of a site's inherent potential for plantation growth. Many Australian soils 

are old or derived from highly weathered materials and widespread P deficiency has 

been well documented (Attiwill, 1983). As a consequence, the establishment of 

plantations such as pines on these P deficient soils commonly depends on the use of P 

fertilisers at rates between 100 and 300 kg super phosphate per hectare, at the time of 

planting (Attiwill, 1983). Fertilisation of eucalypt plantations with N and P is also 

common during the first few years after planting as it leads to substantially increased 

wood yields (Neilsen et al., 1984; Attiwill, 1996). 

Increased plantation growth occurs from later age application of P fertiliser in P­

deficient sites (Waring, 1969; Flinn et al., 1979b; Neilsen et al., 1984; Herbert, 1990; 

Turner et al., 2002). The magnitude and longevity of response to P application 

depends on soil properties such as the inherent P concentrations, P sorption capacity 

and soil pH (Ballard, 1978; Pritchett and Comerford, 1982). For example, in P. 

radiata applications of at least 120 kg P ha·1 were required to increase growth on 
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strongly fixing soils in south-eastern Australia (Hopmans and Flinn, 1998). Where 

adequate P contents are measured in soils and in current P. radiata needles, no 

significant increases in growth due to P application occur (Raison et al., 1990). In 

contrast, where soil and foliar P levels are low or marginal long-term growth response 

due to a single application have been measured, extending into a second rotation 

(Ballard, 1978; Gentle et al., 1986). In a study of to slash and loblolly pine stands on 

six soil types, Fisher and Garbett (1980) observed soils with high organic matter 

contents and large reserves ofN responded dramatically to P application, but when N 

was limited, N fertilisation was required in combination with P. 

Enhanced growth rates due to N fertilisation are site dependent (Fisher and Garbett, 

1980). For, example, Adams and Attiwill (1983) observed no significant increase in 

growth of 23-year-old P. radiata, 30 months after the application ofN fertiliser at 

high rates (500 and 1000 kg N ha-1
). Nitrogen excess problems can also occur 

resulting in no growth response to N application on ex-pasture sites (Birk, 1991). In a 

study of slash pine growing in the lower coastal plain of the south-eastern United 

States, Kushla (1980) observed no response to urea applied at rates of22 and 90 kg N 

ha-1 on young stands of slash pine, while semi-mature stands (9-18 years old) 

responded to Nat rates of 55, 110, 220 kg N ha-1
• Limited fertiliser responses in 

young stands were associated with restricted root growth on wet soils with high 

surface clay contents. 

In Tasmania, large volume increases have been obtained due to annual applications of 

N fertiliser to P. radiata stands (Neilsen et al., 1992; Neilsen and Lynch, 1998). 

Application of 100 kg N ha-1
, on 16-year-old stand of P. radiata, for 12 years resulted 

in fertilised trees having significantly higher N content for all components at all ages 

than unfertilised trees, and a 150 % increase in growth rate four years after the 

cessation of fertiliser. Many studies have found that N fertilisation effects conifer 

growth through the rapid (within six months) increases of foliar N concentration, 

foliar mass and colour. These increases in foliar N concentration reach a maximum 

within a year and level off to its original value within a few years (Miller, 1981; Fife 

and Nambiar, 1997). The rate of wood production, on the other hand, starts to increase 
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after a time delay of around one year. This positive growth response is then retained 

for approximately ten years, with a maximum occurring after three or four years 

(Fagerstrom and Lohm, 1977; Hunter and Hoy, 1983; Neilsen and Lynch, 1998). For 

example, in a study of six year old P. radiata stands, Fife and Nambiar (1997) 

observed increases in basal area compared to the control of 6, 21and29 percent, five 

years after the application of ammonium sulphate at rate 150, 300 and 600 kg N ha-1
, 

respectively. Nitrogen application increased foliar N concentration in all needles (1-3 

years old), and remained elevated well beyond observed N elevations in soil, which 

declined rapidly to reach pre-treatment within 12 months. Consequently, the authors 

concluded that the benefit ofN application was due to increase in growth rates when 

environmental conditions were suitable mainly through recycling of N pools in the 

tree. In agreement, even though Raison et al. (1990) observed an increase of growth 

due to fertilisation with 400 kg N ha-1 (ammonium sulphate), no increase in growth 

occurred during drought conditions. 

Although large quantities of N fertiliser have produced growth responses, declines in 

such responses are associated with decreasing soil N concentrations within the years 

following application (Williams, 1972; Johnson et al., 1980; Adams and Attiwill, 

1983; Hingston and Jones, 1985; Adams and Attiwill, 1991; Khanna et al., 1992; Fife 

and Nambiar, 1997; Smethurst et al., 2001). Therefore to maintain diverging growth 

from untreated plantations, repeated applications are required (Neilsen et al., 1992; 

Neilsen and Lynch, 1998). The period between repeated applications will depend on 

the period of elevated availability and cycling of applied nutrients in the soil system 

and the efficiency of internal recycling of nutrients (Switzer and Nelson, 1972). 

Snowdon (2002) describes short-term growth responses as a Type I response, where 

the response is characterised by an initial increase in growth that is not sustained in 

the long-term. In comparison, the responses to P application into the second rotation 

discussed above are considered a Type II response. That is, P application results in a 

long-term increase in growth and a change in site quality. The responses observed by 

Neilsen et al. (1992) in P. radiata could be considered Type II responses due to 

sustained increases in growth from multiple fertiliser applications. However, after 

fertiliser cessation, the response declines indicating a Type I response. 
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Following fertiliser application nutrients become distributed between the overstorey, 

ground vegetation, litter and mineral soil horizons. Concurrent with plantation 

biomass increase, there is an increase in litter mass. The litter layer plays a major role 

in mineral cycling in forest ecosystems. To improve the understanding of the effects 

of fertilising on nutrient cycling in plantations it is necessary to quantify the extent to 

which fertilising increases the turnover of nutrients through the litter layer. At sites 

with low nutrient levels in the mineral soil, litter quality, as measured in terms of C: N 

ratio, has been shown to be highly correlated with tree volume growth (Smith et al., 

2000). 

The upper organic horizons of forest soils can be divided into three layers L, F and H 

layers. These layers represent different stages in the humification process. The L layer 

is the litter layer composed of plant products, leaves and twigs, which although 

weathered retain their original structure. The F layer is the fermentation layer 

composed of plant remains partially crushed and decomposed, but with tissues that 

are still recognisable. The H layer is the dark brown or black amorphous humus layer. 

The transition from the L to the H layer via the F layer is through physical, chemical 

and biological processes. These processes result in the reduction in the physical 

structure of the particles, a darkening in the colour, and a lowering of the C: N ratio, 

relative to the original L layer (Spurr and Barnes, 1980). Often, the strongly 

decomposed H layer is virtually non- existent. fu the Australian system of horizon 

classification the layers are classified as 01 (L) and 02 (F and H) (McDonald et al., 

1990). 

Tamm and Popovic (Tamm and Popovic, 1995) in northern hemisphere studies noted 

the importance of the litter in the retention of base cations within the forest system, 

and its role in planning management systems for fertiliser additions. The mass and 

nutrient content of litter is variable between species, stand age, site and fertiliser 

treatment (Feller, 1978; Baker et al., 1986; Crane and Banks, 1992; Neilsen and 

Lynch, 1998; Canary et al., 2000) and temporally (Frederick et al., 1985). Turvey et 

al. (1994) observed that litter accumulated on the forest floor at a rate proportional to 

the productivity of the P. radiata stands. They also noted a close link between the 
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nutrient contents of P. radiata and that of the underlying soil. In contrast, Florence 

and Lamb (1974) observed no correlation between productivity and litter 

accumulation. 

Nitrogen due to fertilisation can accumulate in the tree and soil organic layer in 

approximately equal amounts (Miller et al., 1979). Neilsen and Lynch (1998) studied 

the changes of the litter layer over a period of 10 years and demonstrated the 

importance of this layer in buffering applied nutrients into the rhizosphere. 

Concurrent with large growth increases from fertilisation, their research also showed 

increases in litter layer mass (02) from 15 t ha-1 to 50 t ha-1 with the Nin the litter 

layer (01 layer plus 02) increasing from 148 kg N ha-1 to 593 kg N ha-1
• Hunter and 

Hoy (1983) observed an increase in litter mass from 1.82 tonnes litter ha-1 with 10.2 

kg N ha-1 to 4.13 tonnes litter ha-1 containing24.5 kg N ha-1
, from the application of 

400 kg N ha-1
• Similar trends were observed by Maier and Kress (2000) in loblolly 

pines fertilised with urea. 

Following fertiliser application a proportion is also lost from a site through leaching 

and gaseous diffusion (Miller, 1981). With the increasing use of fertilisers, there are 

increasing concerns about their long-term environmental costs and impacts. Concern 

over traditional fertilisers, such as urea, result from losses due to N leaching and 

denitrification. Extensive research in temperate ecosystems across Northern America 

and Europe have shown that N inputs both from atmospheric and fertiliser additions 

could lead to soil acidification, depletion of base cations and mobilisation of Al at 

potentially toxic levels (Adams and Martin, 1984; Matson et al., 2002). Decreases in 

exchangeable Ca and Mg within the soil profile, associated with acid deposition and 

harvesting have been linked to declines in forest health and productivity (Watmough 

and Dillon, 2003). 

Acidification has also been reported for many agricultural soils in Australia (Porter et 

al., 1995). The rate of pH decline is variable and depends on the rate and type of 

fertiliser application, the soil type and soil parent material (Bromfield et al., 1983; 

Binkley et al., 1988; Porter et al., 1995). Differences in soil responses are generally 
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attributed to different clay mineralogy's, which changed the buffering capacities of 

the soil. Minor or no changes in pH have been observed in some long-term 

experiments, using either ammonium nitrate or urea (Nohrstedt, 1990; Homann et al., 

2001). Other studies, using the same fertilisers, have determined substantial 

reductions in soil pH, but only at rates of74 kg ha-1 yr-1 or more, or at lower rates if 

combined with P and K fertilisers (Tamm and Popovic, 1995). Similar results are 

observed in agricultural (cropping) soils. Applications of 45 kg N ha-1 as ammonium 

sulphate have been calculated to lower the pH of an acid sandy loam by about 0.1 pH 

units. In contrast, a three-fold application would be needed to produce the same effect 

in a more highly buffered acid clay loam (McGarity and Storrier, 1986). The 

application of Urea to agricultural soils has been shown have a less acidifying effect 

than either ammonium sulphate or ammonium nitrate (Porter et al., 1995). In 

Tasmania, a range of N and P fertilisers have been used in forest production, current 

applications are predominantly urea or a blend of urea and di-ammonium phosphate 

(UDPA) (Elliott and Hodgson, 2004). 

In several studies significant decreases in the soil solution pH have occurred in 

subsoils, ranging from 0.5 to 1.9 units (Vestgarden et al., 2001). Fertilising with 

ammonium sulphate has also resulted in soil solution pH declines in subsoils beneath 

Eucalypt plantations in Tasmania (Smethurst et al., 2001). In this study the 

relationship between rate of N application and pH decline was predominantly linear 

on log-linear, and was effected by the rate of fertiliser application rather than the 

timing of applications. 

2.3 Soil organic matter, soil fertility and Nitrogen Mineralisation 

Soil organic matter is an integral component in the maintenance of soil fertility and N 

availability in a forest ecosystem. The majority of forest plants rely on microbial 

transformations of organic material to release N for plant uptake and growth. In 

undisturbed forest soils, inorganic N for plant growth is derived almost entirely due to 

the decomposition of organic forms ofN. Subsequently, the efficient conversion of 

organic N to available mineral forms is vital for plant nutrition. Soil organic matter 

also helps maintain the structural health of the soil, provides cation exchange sites, 
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and provides energy for heterotrophic soil micro-organisms (Adams and Attiwill, 

1988). 

For nutrients bound in the SOM to become available for plant uptake, they must first 

be released through a sequence of transformations. The ultimate conversion of organic 

matter forms of nutrients to inorganic compounds is called mineralisation. This 

nutrient release is predominantly a two-step process, initially a fauna-mediated 

particle size reduction, followed by a predominantly microbial mediated 

mineralisation of the organic substrate. A review of fauna mediated decomposition 

has been conducted by many authors including Waring and Schlesinger (1985). The 

microbial mediated processes have also been reviewed at by many authors including 

Attiwill and Leeper (1987). The primary outcome of decomposition is a reduction in 

both litter mass and carbon concentration. 

During decomposition, readily available (labile) polysaccharides decompose first by 

exo- and endo-enzymes (Armson, 1979). This leaves behind an accumulation of more 

recalcitrant chemical structures such as alkyl, aromatic (aryl and o-aryl), and carbonyl 

materials, which decompose more slowly (DeMontigny et al. , 1993; Mathers et al., 

2000). The timing of this decomposition process was described by Berg (2000) as a 

two-phase model. In the early stage (months to one year) decomposition rate is 

controlled by climate, major nutrients (N, P and S) and water-soluble nutrient 

concentrations. Water-soluble components decompose quickly (in a few months) 

before reaching relatively stable levels. Subsequently, the concentrations of major 

nutrients and lignin start to increase, and dominate later stage decomposition rates. 
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The relative amount of organic matter in a soil at a steady state can vary greatly with 

climatic conditions, soil acidity, drainage conditions, inorganic nutrients and soil 

parent material (McLaren and Cameron, 1996). Different organic components are 

utilised to very different extents by soil microbes and will therefore remain in the soil 

for different periods of time. Decomposition rate of fresh plant litter may decrease 

from 0.1 percent per day in fresh litter to 0.00001 percent per day or lower in more 

completely decomposed material (Berg, 2000). A number of models have been 

developed to determine long-term changes in organic matter over time, in both soil 

and litter fractions (Campbell and Doeg, 1989). Due to the complex nature of 

decomposition and the chemical change in the litter as decomposition continues from 

readily decomposable to recalcitrant chemical compounds, the indices based on initial 

litter quality often have limitations in predicting long-term decomposition rates 

(Corbeels, 2001 ). Models of organic matter transformations generally divide the 

various organic matter constituents into plant residues and SOM. These components 

are then further divided into fractions characterised by their rate of transformation (i.e. 

fast, slow and resistant). In their review of modelling litter quality effects on 

decomposition, Paustain et al. (1997) concluded that in the wide array oflitter 

decomposition models available the major differences were associated with, whether 

the model accounted for microbial turnover and the formation of secondary products 

and whether the pools of plant compounds and decomposition products were grouped 

into discrete or continuum pools. 

In agricultural soils, the RothC model was developed to model organic C turnover 

from the Rothamsted long-term field experiments. This model was one of the first 

widely used C transformation models. The model assumes six pools of C are available 

for decomposition, these are defined by: (i) decomposable plant material (DPM); (ii) 

resistant plant material (RPM) (iii) slow microbial biomass pool (BIO-S); (iv) fast 

microbial pool (BIO-F); (v) humidified organic matter (HUM); and organic matter 

inert to biological attack (IOM). In this model each pool decomposes at different rates 

and each rate is modified by climate and a plant protection factor. Although these 

decomposition rates were developed in agricultural soils, the constants were found to 

be also suitable for soils under plantation systems (Paul and Polglase, 2004b ). The 

CENTURY model (Campbell and Doeg, 1989), also incorporated multiple SOM 

15 



compartments (active, slow and physically protected) and simulates decomposition 

rates that vary as a function of monthly soil temperature and precipitation, including 

both N and C flows. 

In most terrestrial systems, the flow of C and N are closely interrelated. Generally, 

mineral N does not accumulate in undisturbed forest sites since C inputs are high and 

N is the element limiting decomposition (Paul and Juma, 1981). Simultaneously to N 

mineralisation, microbial biomass utilises available N for its development, a process 

known as immobilisation. Whether the mineralised N is immobilised again mainly 

depends on the C: N ratio of the microbial biomass. Immobilisation is recognised as a 

major process in eucalypt forest soils (Adams and Attiwill, 1986). A review of the N 

cycle in forested ecosystems and a summary of the complex pathway and interactions 

ofN in the forest has been given by Carlyle (1986). 

Nitrogen mineralisation has been widely studied as an indicator of site productivity, 

with productivity in many forest ecosystems increasing with soil N mineralisation 

(Pastor et al., 1984; Adams and Attiwill, 1986). The quantity of soil N mineralised in 

a given time depends on temperature, available water, rate of oxygen replenishment, 

pH, amount and nature of plant residues, and content of other nutrients (Stanford and 

Smith, 1972). Observed N mineralisation rates over time, in laboratory incubations, 

generally follow one of four patterns: (I) Immobilisation of N during the initial period 

of incubation, followed by mineralisation ofN in the later period (Haque and 

Warmsley, 1972). (II) A rate ofrelease that decreases with time. In 15 out of39 soils 

studied by Stanford and Smith (1972) there were slight to marked tendencies for the 

rates on NNM to decline with continued incubation during 30 weeks. Adams et al. 

(1989b) also found a decrease in the rate ofNNM with increasing time of incubation. 

(Ill) A steady linear release with time during the whole period of incubation. 

Tabarabai and Al-Khafaja (1980) found when incubating soils at 20 to 35 °C 

cumulative N mineralisation was linear with time. (IV) A rapid release of nitrate 

during the first few days, followed by a slower, linear, rate of release (Stanford and 

Smith, 1972; Feigin et al., 1974; Bonde and Rosswall, 1987). The pattern that applies, 

depends largely on the manipulation of the substrate before incubation occurs, and the 
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relative change in the incubation parameters given above, from the native state. For 

example, Bonde and Rosswall (1987) established that a soil responds to drying and re­

wetting with a flush of C and N mineralisation, the magnitude depends on soil 

characteristics. 

Several techniques including in situ cores and in situ polyethylene bags have been 

validated and used to study N mineralisation in the field (Richards et al., 1985; Raison 

et al., 1987; Smethurst and Nambiar, 1989b). In the laboratory, N mineralisation 

studies follow two basic methodologies, anaerobic incubations and aerobic 

incubations. Rates of mineralisation using laboratory incubations may or may not be 

correlated with rates of mineralisation in the field. For example, Connell (1995) found 

a poor correlation (R2 = 0.20) between laboratory incubation and in situ field 

measurements, with mineralisation rates of up to 10-times greater in the laboratory 

than the field. These differences are often associated with the large changes in soil 

structure (sieving and mixing) and moisture content (air-drying and re-wetting) that 

occur during sample preparation (Birch, 1958; Lund and Goksoyr, 1980; Van Gestel 

et al., 1993), which are discussed in section 2.1. 

In situ core methods have been extensively reviewed by a number of authors (Raison 

et al., 1987; Adams et al., 1989b; Smethurst and Nambiar, 1989b), and the technique 

was confirmed in the Biology Forest Growth (BFG) experiment for estimating rates of 

N mineralised, uptake and leaching (Raison and Myers, 1992). In their review on in 

situ N mineralisation studies Adams et al. (1989b) summarised some of the effects of 

in situ core methodology, as a result of altering the soil environment; " (i) cessation 

from carbon input through decomposing litter and from fine root turnover; (ii) 

increased C inputs from fine-root turnover; (iii) modification of the moisture and 

temperature regimes relative to the bulk soil; and (iv) accumulation of inorganic-N." 

Incubation of soils in situ have been undertaken over a range of periods, between 7 

and 90 days, dependent on the expected NNM rate and field moisture fluctuations 

(Raison et al., 1987; Adams et al., 1989b; Smethurst and Nambiar, 1989b; Goncalves 

and Carlyle, 1994; Carlyle et al., 1998b). Raison et al. (1987) observed NNM rates in 
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cores increased linearly with time, resulting in an appropriate containment period 

between 30 and 90 days. In their study, Adams et al. (1989b) recommended quite 

short containment periods of one to two weeks, to reduce the impact of containment 

on moisture fluctuations. However, they also concluded that "relatively long 

containment periods (> 4 weeks) may be useful for comparative purposes, and their 

use may be dictated by the practicality of visiting distant forests." 

Rates of N mineralisation depend on many factors, including management practices 

such as clear-felling, ripping, mounding, slash burning and fertilisation (Raison et al., 

1987; Smethurst and Nambiar, 1990a; Connell et al., 1995). In undisturbed soils 

under mature forests, rates ofN mineralisation are usually low, ranging from 1to100 

kg ha-Iyr-I (Binkley and Hart, 1989). The NNM rate depends greatly on the climate 

zone. In mature cool temperate forests, N mineralisation rates are often below 10 kg 

ha-Iyr-I, while rates in mature tropical forests can be greater than 800 kg ha-1yr-I 

(Adams et al., 1989a). McClaugherty et al. (1982) reported rates ofN mineralisation 

for temperate forests to range from 50-300 kg ha-1yr-I, while above ground demands 

for N range from 50-150 kg ha-1yr-1
• In P. radiata sites in southern Australia, Carlyle 

et al. (1998a) observed in situ NNM rates between and 74 kg N ha-I yr-I, while 

Theodorou and Bowen (1983a) estimated rates around 50 kg N ha-I yr-I. In Tasmania, 

annual rates ofNNM in mature eucalypt forests are reported between 16 and 51 kg N 

ha-1 (Adams and Attiwill, 1988), and in young eucalypt plantations between 13 and 

188 kg N ha-1 (Wang et al., 1998; Moroni et al., 2002). 

In terms of the proportion of total N present, annual rates ofNNM are generally 

between 1 to 3 %. In south-eastern Australia under various management practices 

Connell et al. (1995) measured in vitro rates of 2 to 67 kg ha-I, this amounted to 

between 0.1 and 3.1 % of the N to 30 cm depth. Cole (1995) also reported N 

mineralisation of 1 and 2 % of the total SOM in temperate forest. Mineralisation rates 

also varied greatly with altitude ranging from 20 to 80 kg ha-1yr-1
. A value of 80 was 

considered adequate for plant growth, while a value of 20 indicated limited N 

availability. 
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2.3.1 Species Effects on Nitrogen Mineralisation 

Important feedbacks occur between plant characteristics and nutrient availability in 

terrestrial ecosystems. The release of N from litter is an important process in the 

cycling of N in an ecosystem. On an ecosystem level, litter amount and quality 

influence N mineralisation from SOM and that, in turn, influences leaf-litter 

production and quality. As this interaction is controlled by feedback between 

vegetation and SOM dynamics, practices that alter the function of either ecosystem 

component, may alter the amount of N cycling, and ultimately effect site productivity 

(Nadelhoffer et al., 1982). In addition, the nature of decomposition of litter influences 

the amount of C retained in the litter and transferred to the soil and effects the ability 

of a forest site to store C. This has important implications for carbon accounting and 

potential C trading schemes (Paul and Polglase, 2004a). Rates of decomposition and 

subsequent C storage in the litter and soil are also important when considering the 

possible effects of global warming on C02 emissions (Comins and McMurtrie, 1992). 

In a review of the effects of global warming on organic C storage, Kirschbaum (2000) 

concluded that warming was likely to reduce carbon storage by stimulating 

decomposition rates more than net primary production (NPP). In a review of soil 

responses to climate change Anderson (1992) noted that soils in cooler climates 

generally had greater soil organic matter in a less advanced stage of decomposition 

than soils in warmer climates and that the same principles applied to wetter and drier 

climates. However, warm soils with moderate base status are associated with high 

quality litter. Anderson (1992) also noted that litter quality, in terms ofN, lignin and 

other factors, that changed the rate of decomposition, had a greater influence on soil 

organic matter in cooler climates. 

In a forest soil, litter is the predominant form of organic matter addition (Armson, 

1979). Litter is defined as the addition of freshly fallen leaves, twigs, stems, flowers, 

fruit, bark and roots. Additions vary with the type of forest, eg. forest species, 

successional stage, soil type, topography and climatic zone. These variables determine 

the quantity and quality of litter produced and subsequent composition of SOM. After 

canopy closure the cycling of N through translocation in the tree and mineralisation of 

litter becomes a more important source for growth of new tissues than nutrients 

derived directly from the mineral soil (Cromer et al., 1993). The importance oflitter 

19 



in nutrient availability for tree growth was highlighted by Grier et al. (1981) who 

suggested there is a progressive self isolation of trees roots from the underlying soil, 

as additional fine root growth occurring as the trees ages, shift upwards into the 

decomposing litter layer. The forest floor has been noted as a major storage pool for N 

and P in colder sites, often exceeding the content in vegetation (Johnson, 1995). In 

South Australian P. radiata plantations, Lamb and Florence (1975) observed that the 

litter layer represented a considerable proportion of the above ground organic matter, 

containing up to 55% of the total N and 30 % of the total P. 

Although annual leaf and needle litter production, and N returned in leaflitter are 

strongly correlated with estimated N uptake (Nadelhoffer et al., 1982), the rate of 

decomposition is often not correlated with N mineralisation across sites and 

vegetation types (Harris and Riha, 1991). No unique relationship has been found 

between mineralisation and litter quality (Heal et al., 1997). In soils, litter 

decomposition is related both to the quality of the litter (Melillo et al., 1982) and the 

soil matrix (Skene et al., 1997). Differences between species in rates oflitter 

decomposition are often not responsible for the differences in N availability. For 

example, Prescott and Preston (1994) observed that N mineralisation rates were not 

proportional to C mineralisation rates and respiration under three litter layers (western 

red cedar (Thuja plicata Donn ex D. Don), western hemlock (Tsuga heterophylla 

(Raf.) Sarg.)) and Douglas fir (Psuedotsuga menziesii (Mirb.) Franco)), even though 

nearly identical rates of mass loss of foliar litter in the three species occurred. Such 

discrepancies between rates of C mineralisation and net N mineralisation may result 

from differences in an often substantial re-immobilisation of mineral N by micro­

organisms (Davidson et al., 1992). The ratios of gross N mineralisation to NNM range 

between 2 to 100 in forest soil (Binkley and Hart, 1989). In addition, after N 

fertilisation up to 98 % of the N may be immobilised (Strader and Binkley, 1989). 

Aggangan et al. (1999) observed that changes in N immobilisation were related to the 

amount and corresponding degree of incorporation of the litter into the soil. 

Furthermore, decomposition oflitter can be reduced when N inputs are increased. For 

example, in the BFG experiment decomposition of litter was slowed when fertiliser 
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(400 kg N ha-1
) was applied. Over a three year period the proportion oflitter lost was 

28 % in unfertilised litter compared to 17 % in the fertilised (Raison et al., 1990). In 

contrast, (Ribeiro et al., 2002) observed that increased N, P and S concentrations in E. 

globulus leaf litter through fertilisation application did not cause significant increases 

in decomposition. Kelly and Henderson (1978) observed significant decreases in 

decomposition of white oak (Quercus alba L.) litter due to P addition but little effect 

from N addition. Skene (1997) suggested that physical protection by inorganic 

matrices was the limiting factor in the decomposition of high quality substrates (such 

as straw), whereas chemical protection was the limiting factor for low quality 

substrates such as Eucalyptus litter. 

Vegetation species occupying a site influence the availability of cycling nutrients and 

are recognised as having a greater impact on soil N dynamics than microclimate 

variations (Gower and Son, 1992; Prescott and Preston, 1994). Although this is well 

recognised, the specific influence of vegetation on N mineralisation, separation of its 

influence from other factors, such as climate, soil, time, and topography are difficult 

to determine, due to the predisposition for species to grow on different sites. As a 

result, although some consistent trends have been identified (ie. low N mineralisation 

under pines), contradictory findings have been common (Prescott and Preston, 1994). 

However, recent studies in forests of several species on the same site have 

demonstrated distinct differences in N availability between species (Adams and 

Attiwill, 1986; Ellis and Pennington, 1989; Gower and Son, 1992; Prescott et al., 

1993; Prescott and Preston, 1994). For example, Jurgensen et al. (1986) observed that 

compared to E. regnans the litter layer under P. radiata contained more N, P, Kand 

Mg. Differences in the nutrients in the litter layer were seen in plantations as young as 

four-years-old and regression analysis indicated that the differences between the two 

species increased with stand age. Gower and Son (1992) also observed significant 

differences between five species litter NNM rates measured in the laboratory and in 

situ, even though annual litter fall N content were similar between species. In 

Australia, Adams and Attiwill (1986) observed that higher rates of mineralisation and 

nitrification occurred in Ash forests (E. delegatensis, E. regnans), forests of greater 

productivity, than forest dominated by E. obliqua (Messermate) and E. sideroxylon 

(Red ironbark) and forests of lower productivity. It was noted that in lower 
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productivity forests immobilisation was almost equivalent to mineralisation, and 

nitrification was insignificant (Adams and Attiwill, 1986). 

Tree species effects on nitrification have been strongly correlated particularly when N 

fixing species are included (Ellis and Graley, 1987; Ellis and Pennington, 1989). 

Nitrification can be promoted by the presence of Acacia dealbata and apparently 

inhibited by Leptosperum lanigerum (Ellis and Graley, 1987). Nitrogen fixing species 

such as Acacia also have a strong influence on soil N properties resulting in high 

concentrations of total N, mineralisable N and nitrate, while other soil properties such 

as pH, loss on ignition and total P remain unrelated to N mineralisation (Ellis and 

Graley, 1987). 

Understorey species, although small in biomass, may contribute significantly to 

nutrient recycling, due to their relatively high concentrations of nutrients to mass and 

fast turnover (Birk, 1979). For example, Prescott and Preston (2000) observed that 

variation in NNM among sites was unrelated to overstorey species and decomposition 

rates. In addition, in Karri wet sclerophyll forests understorey was found to play a key 

role in nutrient cycling, contributing 30-70 % of the weight of many of the nutrients in 

the leaf component of the litter (O'Connell and Menage, 1982). However, in Jarra 

(Eucalyptus marginata Donn ex Sm.) dry sclerophyll forests in western Australia 

O'Connell et al. (1978) observed that the main factors determining element 

concentrations in the litter were soil differences and the overstorey. 

The relative importance of the effects of plant species on N mineralisation is critical 

for assessing the long-term effect of flora and site management. The role of individual 

plantation species such as Pinus radiata on the overall improvement, preservation or 

degradation of a site has been contemplated by many. Lamb (1976) hypothesised that 

the poor-quality litter inputs characteristic of P. radiata plantation result in site 

degradation due to the cyclic effect of slow litter degradation and low N 

mineralisation. In glasshouse experiments, Skinner and Attiwill (1981) were able to 

show that P. radiata decreased the productivity of both native and pasture soil, 

through changes in N and P availability. Reductions in populations of bacteria, 

actinomycetes and microarthropods have also been measured in pine litter (Upadhyay 
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and Singh, 1985). Theodorou and Bowen (1981; 1983a) also observed a decline in 

bacterial numbers and an increase in fungal numbers under a second rotation P. 

radiata compared with the first rotation (previously pasture). However, both studies 

involved young age trees in the second rotation and noted that these effects were 

evident for less than 18 months. Under P. radiata plantations of different ages, Birk 

(1992) observed similar changes, with a decline in total mineral N concentrations 

under 15 year old plantations compared to younger 2 or 4-year-old stands. In contrast, 

Ross et al. (1995) found microbial biomass C and N and mineralisable Nin litter and 

mineral soil showed no relationship with P. radiata stand age up to 33 years. In a 

comparison under P. radiata and E. regnans plantations in New Zealand, ranging in 

ages from 4 to 17 years, Jurgensen et al. (1986) observed C: N ratios in the litter were 

higher under the eucalypts ranging from 38 to56 compared to 23 to 29 under the 

pines. However, decomposition rates were clearly lower under P. radiata. 

As a result of the complex integration between the N cycle and microbial turnover, 

correlations between specific soil and litter parameters and N mineralisation vary 

considerably. Parameters such as total soil N content, mineral soil N concentration, 

soil organic C, or soil pH were found not to be significantly correlated with annual 

soil N mineralisation (Nadelhoffer et al., 1983; Pastor et al., 1984; Gower and Son, 

1992; Connell et al., 1995). The N and lignin content of vegetation are the most 

commonly used variables for characterising litter quality in decomposition models. 

Models differ in the level of detail used to capture the dynamics of soil organic 

matter; models with several organic-matter pools may behave differently than single­

pool models (Ryan et al., 2000). However, the functions of substrate quality, in terms 

of litter species and C: N ratios, soil quality, and climatic factors such as temperature 

and moisture on N mineralisation have been established, and the role of each of these 

will be discussed in the following sections. 

2.3.2 Substrate Effects on NNM 

The direction ofN transformation, from net mineralisation to net immobilisation, 

depends on a number of factors. Lignin content and C: N ratios of the soil organic 

matter are considered two of the most important. C: N ratios are considered good 
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predictor of leaf litter decomposition especially when the litter substrates have a low 

lignin content or show a wide range oflignin content (Taylor et al., 1989). There have 

been various values put forward for the upper and lower limits of the C: N ratio where 

N mineralisation will occur. In the study of crop residues and litter layers C: N ratios 

between 24 to 44 have been associated with no NNM or N immobilisation (Edmonds, 

1980; Schlesinger and Hasey, 1981; Trinsoutrot et al., 2000). Parfitt et al. (1998) 

observed that C: N ratios of greater than 55 in P. radiata litter resulted in no net N 

mineralisation. However, other research has indicated that NNM occurs at higher C: 

N ratios, but at a much reduced rate (Van Cleve et al., 1986; Usman et al., 2000). 

Overall, the direction of N dynamics is influenced by much broader relationships than 

just C: N ratios. Berg and Ekbohm (1983) observed no fixed C: N quotients for N 

release, other factors, such as the system in which the litter was incubated were 

considered important. They compared a mature Scots pine litter and a clear cut Scots 

pine slash. In the first system, N mineralisation still occurred at a C: N ratio of 109, 

but in the second, no net N mineralisation occurred over a ratio of 63. In addition, 

Smethurst and Nambiar (1995) during a study ofN mineralisation in aP. radiata 

plantation, revealed that although the C: N ratio decreased, from 38 to 31, during a 

three year period, N mineralisation also decreased, due to a change in conditions , 

controlling microbial activity. As a result specific relationships between C: N ratio 

and N mineralisation have been difficult to quantify, and consideration of the system 

as a whole needs to occur. 

In spite of the difficulties in associating N mineralisation directly with C: N ratios, 

good correlations between litter N and C: N ratios with N mineralisation have been 

observed by many authors (Pastor et al., 1984; Adams and Attiwill, 1986; Prescott 

and Preston, 1994; Thomas and Prescott, 2000; Usman et al., 2000). For example, 

Pastor et al. (1984) reported an inverse relationship between litter (ash corrected) C: 

N ratio and annual NNM for eight forests in Wisconsin, even though NNM was not 

correlated with N concentration. Conversely, Vitousek et al. (1982) found a direct 

relationship between the amount ofN in the annual litter fall and the proportion of 

litter N mineralised in laboratory incubations. Prescott and Preston (1994) observed a 

high correlation between NNM rates and initial forest litter concentrations ofN %, C: 

N ratio, lignin % and lignin: N ratios, and Thomas and Prescott et al. (2000) observed 
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that in litter layers P, N03 --N and extractable mineral N concentrations were highly 

correlated with NNM. In contrast, Sollins et al. (1984) reported NNM in whole soil 

and litter layer correlated poorly with the C: N ratio unless N mineralisation was 

expressed as a proportion of total N (Nm:Nt ratio). 

In a study of a wide range of Australian forest soils, Connell et al. (1995) also 

observed soil C, N, P contents, their ratios (C: N, C: P, N: P) and soil texture were 

poorly correlated with N mineralisation. However, correlations between total soil N 

and NNM are improved when sites were grouped by primary profile form (Connell et 

al., 1995) or into strongly and weakly nitrifying soils (Carlyle et al., 1990). In their 

historical overview of plant litter qualities and decomposition, Heal et al. (1997) 

noted that although the "C/N ratio is accepted as a general index of quality, the 

relative importance of the different chemical and physical components in different 

resources and their interaction is a matter of considerable debate." In soils, Adams 

and Attiwill (1983) noted that in forests were the pools of C and Nin soils are large 

the C: N ratio of the acts as a strong buffer to perturbation of mineralisation patterns. 

The presence of other substances, such as lignin and tannins, may also inhibit the 

activity of soil micro-organisms. In a review by Scott and Binkley (1997), lignin:N 

ratios in leaf litter explained more of the variation in NNM for the forest ecosystems 

than any other litter quantity or quality parameters. Lignin is the most resistant 

component of plant residues entering the soil and is the third most abundant 

component of plant residues after cellulose and hemicellulose (Cresser et al., 1993). 

The lignin fraction of the decaying plant material becomes increasingly important as 

decomposition proceeds (Melillo et al., 1989). Decay-resistant materials such as 

lignin and possibly lignin-N complexes may be the principle source ofN in older litter 

and organic matter layers, and form important feedback mechanisms in N 

mineralisation (Pastor et al., 1987). Higher lignin concentrations generally retard 

decomposition and N release, with a critical lignin:N ratio level given as 50 and above 

where N availability was substantially reduced (Van Cleve et al., 1986). Inverse 

relationships have been observed between foliage lignin and NNM and leaf litter fall 

lignin: N ratio (Pastor et al., 1984; Gower and Son, 1992; Prescott and Preston, 1994). 
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In contrast, Prescott et al. (2000) found no correlation between NNM and percentage 

lignin or lignin:N ratios in the litter layers. In their study, Prescott and Preston (1994) 

suggested alkyl C content, rather than lignin per se, may be the component more 

resistant to decomposition, and a better predictor of decomposition rates. DeMontigny 

et al. (1993) observed similar trends. High tannin levels are also often associated with 

low N mineralisation in litter (Gallardo and Merino, 1992; DeMontigny et al., 1993). 

Tannins reduce the biodegradability and humification of organic matter by producing 

protein-tannin complexes. Overall the complex interactions between species and 

nutrient availability on decomposition and N supply was aptly summarised by Fisher 

and Binkley (2000) " General correlations between decomposition and litter N 

concentration can lead to mistaken inferences about N supply on N decomposition." 

2.3.3 Seasonal Temperature Effects on N mineralisation 

Nitrogen mineralisation, as a result of microbial utilisation of organic N, intimately 

depends on the environmental influences on the micro-organisms involved. These 

include temperature, moisture, substrate quantity and quality (Fyles et al., 1990). 

Pools ofmineralisable Nin forest soil often show significant temporal variation (Ellis, 

1974; Nadelhoffer et al., 1982; Nadelhoffer and Aber, 1984; Richards et al., 1985). 

Microbes are influenced by the physical and environmental conditions, and the pattern 

of mineralisation of organic N subsequently reflects seasonal changes in microbial 

populations (Theodorou and Bowen, 1981). The intricacy of this pattern is 

complicated by the wide variety of micro-organisms involved in the process as a 

whole. 

General trends of N mineralisation in temperate regions show increases during the 

period of late spring and summer as temperature in the forest floor increased, and a 

subsequent decrease with decreasing temperatures. The maximum rates ofN 

mineralisation reached in summer are often restricted by moisture limitations 

(Nadelhoffer et al., 1983; Richards et al., 1985; Adams and Attiwill, 1986; Plymale et 

al., 1987; Foster, 1989). In a summer rainfall climate, the wetter and warmer months 

favour mineralisation, leading to an increase in the field concentrations of inorganic N 

throughout the spring and summer. Mineral N concentrations then decline to a 
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minimum in mid to late winter as the environment becomes progressively drier and 

colder (Richards et al., 1985). Seasonal trends ofNNM are experienced across a range 

of forest and soil types concurrently (Nadelhoffer and Aber, 1984; Richards et al., 

1985; Plymale et al., 1987; Boone, 1992; Gower and Son, 1992) to varying degrees 

(Adams and Attiwill, 1986; Adams et al., 1989b; Birk, 1992). Nadelhoffer et al. 

(1984) observed pronounced seasonal variations from nine temperate forest 

ecosystems in Wisconsin. However, seasonal trends where also influenced by 

secondary peaks in NNM due to leaf fall at deciduous sites. Seasonal in situ 

mineralisation rates were found to be twice that for stands of E. regnans aged 80 years 

than stand ages ranging between 5, 46 and 250 years, which had similar N 

mineralisation rates (Polglase et al., 1992a). While Birk (1992) observed seasonal 

fluctuations in mineral N that were more pronounced in the younger stands of P. 

radiata (2 or 4 years old) than older stands (15 years old). 

Seasonal ranges for N mineralisation can be dramatic. For example, in a field study of 

first and second rotation P. radiata soils the total mineral N content were three to ten 

times greater at the end of summer and autumn, than in mid winter (Theodorou and 

Bowen, 1983a). Furthermore, Vitousek and Matson (1985) showed a nearly ten-fold 

seasonal range for NNM in mineral soil under clear-cut loblolly pines. Soil 

temperature and moisture were the primary controls of these NNM seasonal trends. 

As the warm soil dried later in summer, NNM rates declined. Boone (1992) observed 

a seasonal change in N mineralisation potential in a mor soil under Pinus strobus L. of 

nearly two-fold for mineral soil (0-15 cm), nearly three-fold for the Oa ( 4-5 cm forest 

floor depth) horizon and more than four-fold for the Oe (1-4cm forest floor depth) 

horizon. 

The seasonal trends in N availability and NNM can also vary independently. 

Although pools of mineral N and P varied with season across forest soils in north­

eastem Tasmania reaching a maximum in autumn, no such marked seasonal variation 

was observed in the rates ofNNM (Adams et al., 1989b). Prasolova et al. (2000) also 

observed in soil under hoop pine that although total N and mineral N of the soil did 
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not differ between a wet and dry seasons, potential mineralisable N displayed 

different patterns of spatial variability between the two seasons. 

Low temperatures often result in no or little net accumulation of inorganic N in soil 

(Nadelhoffer et al., 1983; Foster, 1989). Seasonal low temperatures impact on the 

whole N cycle dynamics for a given environment, reduce the rate of organic matter 

decomposition, thereby reducing N mineralisation (Yin, 1992). Below 4 °C, Foster 

(1989) found no net accumulation of inorganic nitrogen. Concurrently, low 

temperatures often occur with reduced plant uptake of N through reducing root 

growth, soil root transport, and nutrient absorption rate. This reduction in overall plant 

development can therefore produce high gross N mineralisation in the field and 

therefore accumulated mineral N (Van Cleve et al., 1981; Yin, 1992). In addition to 

temporal changes, the ranges of temperatures in which observations are taken also 

need to be quantified when measuring N availability and NNM. Studies in arctic soils 

found N mineralisation was more sensitive to changes in temperature above 10 °C 

than below (Usman et al., 2000). This is consistent with observed enzymatic activity 

in these temperature ranges. Nadelhoffer et al. (1991) also observed that N 

mineralisation rates and soil respiration were insensitive to temperatures between 3 

and 9 °C, but increased by a factor of two or more, between 9 and 15 °C. In a review 

ofresearch on a range of studies, Kirschbaum (1995) concluded that temperature 

sensitivity of soil processes (as expressed by the Q1o function) was not constant across 

a range of temperatures, but was far greater at low (<10 °C) than at moderate to high 

(20-30 °C and above) temperatures. 

The period of seasonal change is also considered to influence the rates of N 

mineralisation. Foster (1989) using in situ buried bags in litter horizons ofMaple­

Birch in central Ontario found NNM appeared to be particularly sensitive to temporal 

changes in average daily temperatures in the field. A late-summer peak in litter mean 

daily temperatures triggering a shift from NNM to NN immobilisation as the 

temperature began to decline. In contrast, Ellis (1974) noted that the direction of 

seasonal change was not effected by-short-term changes in soil temperature and 

moisture. 
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2.3.4 Moisture Effects on N Mineralisation 

Significant interactions between temperature, moisture and NNM rate are observed 

through seasonality in the field and laboratory incubations (Cassman and Munns, 

1980; Theodorou and Bowen, 1983a; Zak et al., 1999). In a study predicting litter 

decomposition under eucalypts and pines using CAMFor (Carbon accounting model, 

under forests) and GENDEC, Paul and Polglase (2004a) observed that more accurate 

predictions of litter decomposition occurred when climatic data, temperature and 

rainfall, were taken into account than when actual values of lignin, cellulose and 

soluble C content were used. Interactions between moisture availability and temperate 

are an important factor in the understanding of the overall processes involved in N 

mineralisation. Clearly, temperature influences physiological activity and, 

consequently, the demand for substrate. Microbial activity can be limited by diffusion 

at warmer soil temperatures where high rates of physiological activity create a large 

demand for substrate. Where as, substrate diffusion is less likely to be limiting at 

lower temperatures due to the reduced physiological demand. Ellis (1974) observed 

that in any one stand, the rates of respiration were highly dependent upon the 

temperature of the soil at the time of sampling, but were considered unrelated to the 

moisture content, whereas patterns ofN mineralisation followed variation in soil 

moisture content, dominant to temperature. Furthermore, Adams and Attiwill (1986) 

measured the highest mineralisation rates during summer (February) where both 

higher temperature and moisture levels were present, while rates of other seasons 

were generally similar. 

Moisture conditions are a major factor controlling survival and activity ofmicro­

organisms in the forest ecosystem. Micro-organisms depend on water for their 

physiological functions and the activity is effected by supply of dissolved nutrients, 

dissolved oxygen and exoenzymes (Griffin, 1981). Consequently, a positive 

correlation is generally exhibited between microbial activity and soil water potential 

between air-dry and field capacity. A strong relationship is also observed between the 

soil and litter horizon's water potential and N mineralisation (Powers, 1990; Evans et 

al., 1998; Prasolova et al., 2000) and nitrification (Tietema et al., 1992). Nitrogen 

mineralisation, nitrification and respiration have been shown to increase linearly with 

gravimetric moisture content to a maximum content dependent on local field capacity 
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value (Tietema et al., 1992). Strong et al. (1998b) indicated that water status strongly 

limits N mineralisation even at the high water potential of -30 to -10 kPa. In a later 

study Strong et al. (1999b) related such changes in NNM due to moisture content to 

the availability of organic N in soil pores. 

In a study of birch (Betula cordifolia Regel) and fir (Abies balsamea (L.) Mill) 

forests, Evans et al. (1998) observed that patches oflitter layers dominated by 

different species responded differently to annual changes in soil moisture or variables 

associated with wet and dry years. During an unusually dry year in their study, they 

found no correlation between NNM and nitrification with soil chemistry (N %, C %, 

C: N ratio) or abiotic variables (moisture, temperature, pH) in either birch or fir 

dominated plots. However, in the next wetter year the birch plots exhibited significant 

positive correlations with N % for NNM and nitrification and a significant correlation 

between moisture and nitrification. In this wetter year fir plots also showed a positive 

correlation between moisture and NNM. 

Examination of climosequence soils and varying rainfall zones have shown that soil 

biota response to changes in moisture contents, such as drying and re-wetting are 

associated with inherent development properties (Birch, 1958; West et al., 1988; Van 

Gestel et al., 1991; Van Gestel et al., 1993). Changes in NNM rates due to drying, are 

influenced by the soil biota's pre-adaptation to water fluctuations (West et al., 1988), 

rainfall zones (Paul et al., 1999), climatic history (Lund and Goksoyr, 1980), previous 

organic matter depletion by field drying (Degens and Sparling, 1995), previous soil 

aggregation state (Van Gestel et al., 1991) and soil clay content (Cabrera and Kissel, 

1988a; Strong et al., 1999a). In laboratory studies, it is well recognised that 

environmental conditions most be controlled to obtain reproducible estimates ofNNM 

(MacKay and Carefoot, 1981 ). Rates of aerobic mineralisation were generally much 

less for soils incubated in situ than for soils incubated in the laboratory (Adams and 

Attiwill, 1986). A dramatic change in moisture contents prior to laboratory incubation 

changes the availability of decomposable organic matter through microbial death and 

physical disruptions. This increases microbial biomass and activity and subsequently 

mineralisation of C and N (Stevenson, 1956; Birch, 1958; Van Gestel et al., 1993). 
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The content of clay and organic matter within the soil determines the relative 

disruption of the physical structure of the soil and subsequently the rate of newly 

available organic matter release (Cabrera and Kissel, 1988a; Van Gestel et al., 1991; 

Strong et al., 1999a). In addition, soil C content generally increases with clay content 

as a result of the physical protection of organic matter within the clay matrix 

(Anderson, 1992). In a study of particle-size fractions in grassland soils Tiessen et al. 

(1983) observed that the topsoil fine silt fractions had the highest C content of the 

organo-mineral fractions and that the C: N ratios decreased with decreasing particle 

size from approximately 15 in sand to around 7 in fine clays fractions. In addition, the 

highest N contents were generally found in the coarse clay fractions. Their study 

indicated that particle-size fractionation yielded soil organic matter fractions with 

distinctly different properties that undergo different transformations during organic 

matter turnover. 

2.4 Fertiliser Effects on N Mineralisation 

The literature on the effects of fertilisation on NNM rates is conflicting. 

Inconsistencies are often a reflection of the effects due to variable nutrient status in 

the soil studied, the types of fertiliser used and the period during which they are 

applied (Aggangan et al., 1998). However, increase in the rates ofN mineralisation 

following N fertilisation to forest soils have been observed in many field and 

laboratory studies (Johnson et al., 1980; Adams and Attiwill, 1991; Whynot and 

Weetman, 1991; Aggangan et al., 1998). 

Due to the large reservoirs of organic N present in the soil and litter pools, fertilisation 

with Nat normal rates (eg. between 100 and 300 kg per hectare) contributes little to 

current total N pool (Morrison and Foster, 1977). Conversely, the same levels of 

fertiliser N can contribute substantially to the soil available N pools (Johnson et al., 

1980), and result in growth response in plantations (Waring, 1969; Cromer et al., 

1975; Miller, 1981; Cromer et al., 1993; Neilsen and Lynch, 1998). 
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The proportion of nitrification may also increase due to N fertilisation, to the extent 

that nitrate N may become the newly dominant form of inorganic N (Adams and 

Attiwill, 1983). Often, the increased mineral N concentrations are relatively short 

lived, being rapidly transformed into less available forms in the microbial population 

(Williams, 1972; Johnson et al., 1980; Khanna et al., 1992; Fife and Nambiar, 1997; 

Smethurst et al., 2001 ), dependent on the form and frequency of fertilisation 

(Heilman, 1974; Strader and Binkley, 1989). Enhancement ofN concentrations in soil 

beyond 12 months occurred only at high rates ofN fertilisation (600 and 1000 kg ofN 

ha-1
) (Miller, 1981; Fife and Nambiar, 1997). 

Ammonium is the dominant form ofN taken up by eucalypts (Adams and Attiwill, 

1986). Under the conditions that prevail in many forest soils, including low pH and 

intense microbial competition for inorganic N, the conversion of ammonium to nitrate 

by nitrifying organisms is low and in temperate soils and nitrate concentrations are 

often low or insignificant (Dyck et al., 1983; Carlyle, 1986). Studies using in situ soil 

incubations in undisturbed soils generally have little nitrate initially and little 

nitrification during one to two months of incubation (Raison et al., 1987; Carlyle et 

al., 1990; Connell et al., 1995). In undisturbed forests, the ammonium: nitrate ratio is 

in the order of 10:1 (Cole and Rapp, 1981). In a study of27 soils in south-eastern 

Australia, Connell et al. (1995) observed that only soil that had experienced some 

disturbance (fertilisation, irrigation, ploughing, or burning etc) showed significant 

nitrification during incubations. Distribution of nitrate in soil profiles usually follows 

the water regime, rather than specific soil characteristics, such as clay content or 

particle size (Stevenson, 1982). However, significant anion exchange or other 

sorption sites will effect the mobility of nitrate in some subsoils ( eg in Red Ferrosols, 

Doyle pers. comm.). 

Although no growth response was observed in Adams and Attiwill's (1983) study of 

nitrification, NNM (as measured by aerobic laboratory incubations) and foliar N 

content all increased within 12 months of fertilisation. However, inorganic N and 

patterns of mineralisation approached those of the control plots 30 months after 

application. Similar increases in soil mineral N concentrations were observed by 
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Johnson et al. (1980) after applying urea (200 kg N ha-1
) to a 25-year-old loblolly pine 

stand (Pinus taeda). Twenty days after fertilisation, mineral N (predominantly 

ammonium) increased in soil to 200 µg g-1 and by 161 days they declined to 

unfertilised concentrations of less than 10 µg g-1
• In contrast, McLaughlin et al. 

(2000) observed N applied as ammonium nitrate at 100 kg N ha-1 resulted in a 

significant decrease in NNM and an overall inhibition of organic matter 

decomposition during the entire growing season. However, long-term changes in 

NNM have been measured. For example, six years after the application ofN fertiliser 

at 860 kg N ha-1 (applied during a period of7 years) Smolander et al. (1998) observed 

higher rates ofNNM (aerobic incubations) compared to unfertilised soil. 

In addition to the rate of fertilisation, the type ofN fertiliser also influences the 

amount and patterns ofN retention in soil and litter horizons. For example, Williams 

(1972) compared changes in humus N concentrations in sand dunes after application 

of ammonium nitrate, ammonium sulphate, urea or sodium nitrate at a rate of 250 kg 

N ha-1 on Scots pine (Pinus sylvestris L.). Application of all forms ofN significantly 

increased N availability in the humus layer from 1.4 to 2.0 percent within two months 

of the final fertiliser application. However, only N applied as urea application showed 

any significant long-term retention in humus (at 1.52 % after 2 years). 

Contrasting affects of fertilisation on microbial biomass, respiration and subsequent 

organic matter decomposition have also been observed. Decomposition can be 

inhibited byN decomposition (Berg and Tamm, 1991). Generally, N applied as urea 

stimulates microbial activity and decomposition, while inorganic forms of N may 

suppress such activity. For example, Strader and Binkley (1989) observed under 

Douglas fir stands, N fertilisation as urea increased soil respiration, microbial 

population numbers, and dehydrogenase activity during the first growing season more 

than ammonium nitrate. However, the opposite occurred for NNM and neither 

fertiliser effected N immobilisation. In contrast, Raison et al. (1990) observed 

ammonium nitrate application (400 kg N ha-1
) significantly increased soil N 

immobilisation (128 kg N ha-1 0-40 cm depth) after one year, while, Smethurst et al. 
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(1998) observed no microbial response (estimated by the substrate-induced 

respiration) to N and P fertilisation in two year old eucalypt plantations. 

The role of previous land use is also important when examining the effects of N 

fertiliser on N mineralisation and organic matter decomposition (Aggangan et al., 

1998). Previous land use has a significant influence on NNM (measured in laboratory 

incubations) decreasing in order ofland use with ex-pasture> ex-native forest> 

native forest (Aggangan et al., 1998). Higher net mineralisation rates were observed 

in ex-native forest and ex-pasture sites fertilised with N, indicating a faster turnover of 

organically bound N in response to N application. In contrast, the total amount of 

potentially mineralisable N declined with application of N, P alone and in 

combination in the ex-native forest. Site and land use factors also determine the 

overall ability for trees to compete for nutrients. In P. radiata plantations, Smethurst 

and Nambiar (1995) found trees were unable to take up N mineralised during weed 

senescence due to previous limited root development. 

As discussed previously, application ofN fertiliser significantly increases the amount 

of litter and N concentrations in litter returned to the forest floor. Applying NPK 

fertiliser (806, 178 and 366 kg ha-1
, respectively) during a three-year period to a 12-

year-old P. radiata plantation increased both litter amount and litter N content 

(Theodorou, 1990). Fertilisation increased N return in each seasons' litter fall 

approximately two-fold and over 100 percent annually. However, during a three-year 

period, N content, immobilisation and release from decomposing litters and 

decomposition rates, where similar to those unfertilised. 

Continued enhancement of growth due to N fertilisation for more than 5 to 10 years 

depends on repeated applications. This is illustrated by the inability of increased 

availability ofN, alone, to increase rates of decomposition (Theodorou and Bowen, 

1990; Prescott et al., 1993), and evidence of often low rates ofN mineralisation (Cole, 

1995). 
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Like N fertilisation, P fertilisation impacts on N dynamics are variable and depend on 

fertiliser type, combinations, application period, site history and site nutrient status, 

and particularly whether P is limited. An increase in N uptake by enhancing soil N 

mineralisation has been observed in a range of forest soils (Waring, 1969; Falkiner et 

al., 1993). For example, application of superphosphate to P. radiata plantation 

increased soil mineral N concentrations by approximately 100 percent, while 

enhancing NNM for 800 days (Falkiner et al., 1993). In dry sclerophyll eucalypt 

forest, P application (500 kg P ha-1
) increased NNM by 40 percent (Falkiner et al., 

1993). Khanna et al. (1992) also observed a significant increase in NNM when 

superphosphate was applied at 200 kg P ha-1 to a podzolic soil under ten-year-old P. 

radiata. In addition, P application (200 kg P ha-1
) in P. radiata resulted in a three-fold 

increase in N uptake (Falkiner et al., 1993). Short-lived stimulation of mineral N 

production due to P application was observed by Williams (1972). However, low rates 

of P fertilisation often have no significant effect ofNNM rates. For example, 

application of 56 kg P ha-1 resulted in no significant effect on soil N dynamics using 

in situ buried bags (Javid and Fisher, 1990), and in a soil under young lodgepole pine 

stands, P fertilisation at the rate of 38 kg P ha-1 had no significant effect on NNM, N 

uptake, or N loss for the total growing season. 

Therefore when P is not limiting due to site history such as ex-pastures (Aggangan et 

al., 1998) or naturally high P content (Johnson et al., 1980; McLaughlin et al., 2000), 

addition of P fertiliser may have little effect on NNM. Net N mineralisation may 

actually be reduced after P application as a result of increased microbial activity 

(Adams and Attiwill, 1991; McLaughlin et al., 2000). However when P is limiting, 

relatively long-term (beyond three years) increases in NNM can occur (Falkiner et al., 

1993). 

2.5 Tools for predicting fertiliser responses- process based models 

To achieve the required economic return on investment from plantations forest 

managers need reliable estimates of the long-term effects of silvicultural management 

practices. It is well recognised that economic plantation growth levels cannot be 

sustained from native soil N and that large fertiliser programs are required. Often 
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assessing the site quality of a forest ecosystem in terms of inherent physical, chemical 

and biological indices does not adequately take into account many soil-plant 

interactions or the role of nutrient cycling in the forest ecosystem (Schoenholtz et al., 

2001), e.g. gradual changes in nutrient pools as the plantation develops. Generally, 

nutrient requirements by plantation trees are greatest prior to canopy closure and 

decline significantly in the later stages of stand development when nutrient uptake is 

primarily driven by wood increment (Cole and Rapp, 1981; Miller, 1981). 

Models can summarise the results of many experiments by incorporating hypotheses 

and conclusions into a quantitative :framework. Empirical based models, which use 

equations to which observed data from many sites have been fitted, do not generally 

respond to climatic changes and are not suited to simulating management changes 

such as fertiliser application. One tool increasingly used to inform silvicultural 

practices, is process-based modelling. Model outcomes can be used to estimate 

growth responses and therefore economic benefits of silvicultural practices on a 

rotational length. In addition, they allow the assessment of risk involved both in terms 

of changing climate affects on economics (i.e. drought) and possible offsite 

movement of fertilisers. 

There are a number of models that have been developed to predict forest productivity 

including; FOREST BGC (Running and Coughlan, 1988), BIOMASS (McMurtie et 

al., 1990; McMurtrie and Landsberg, 1992), CENW (Kirschbaum, 1999), PnET (Aber 

and Federer, 1992), G'DAY (Comins and McMurtrie, 1992), TREGROW (Weinstein 

et al., 1991) PROMOD (Battaglia and Sands, 1997), 3-PG (Landsberg and Waring, 

1997) and CABALA (Battaglia et al., 2004). Each model was developed with 

different objectives; therefore, different processes are emphasised at different levels 

of detail. 

BIOMASS is a process-based model of P. radiata growth incorporating sub models 

for radiation absorption, canopy photosynthesis, partitioning of assimilate between 

plant organs, litter fall and stand water balance (McMurtie et al., 1990; McMurtrie 

and Landsberg, 1992). The model uses a daily climatic data to obtain daily total 

photosynthesis and transpiration in P. radiata. BIOMASS is calibrated against the 

BFG experiment, which included treatments of irrigation and fertiliser on a P. radiata 
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plantation in Canberra. However BIOMASS was limited by the fact that it does not 

simulate decomposition and N mineralisation but uses the foliage nutrient 

concentration as an input to simulate these processes (Ryan et al., 2000). CENW was 

validated against the BFG experiment and is a comprehensive forest growth model 

that links the flow of C, energy, nutrients and water in trees and soil organic matter 

(Kirschbaum, 1999). The model runs on a daily time step, calculating allocation for 

both fractions of C and N to different plant organs daily. Decomposition is determined 

by temperature, soil water status and soil organic matter quality based on CENTURY 

model (Parton et al., 1987). Nitrogen mineralisation, of the active organic matter pool 

is based on C: N ratios of the organic matter received from the litter. The model was 

able to successfully simulate dynamics of C, energy, N and water across stands and 

five treatments over 4 to 5 years. However, the model was unsuccessful in modelling 

the higher foliar N content (dependent on foliar biomass growth, senescence and N 

mineralisation and uptake) measured in unfertilised trees in the BFG experiment. 

PROM OD predicts growth of forest following canopy closure (Battaglia and Sands, 

1997). The model uses simple soil and climate data (monthly or daily time steps) at a 

site and predicts the closed canopy LAI of a stand, estimates the annual NNP and 

stand water use of the stand. PROMOD is limited by the fact that it assumes a stand in 

steady status growth with closed canopy and roots fully occupying the soil volume 

and does not predict biomass partitioning. Neither does it predict what happens ifthe 

stand has a partially closed canopy. This limits its use for silvicultural management 

prediction such as thinning and pruning. 3-PG is a dynamic process-based model of 

forest growth that runs on a monthly time step using monthly climatic data 

(Landsberg and Waring, 1997). 3-PG predicts the time-course of stand development, 

biomass pools, stand water use and available soil water. The model allows the 

selection of site factors to be age dependent which simulates silvicultural intervention 

and aids the study of consequences to changing site conditions such as irrigation and 

fertilisation or run down of site conditions. However, 3PG had a poor prediction of 

canopy development and mortality limited has soil and nutrition data. Both PROMOD 

and 3-PG do not consider the decomposition processes of plant litter. 

CABALA is a carbon balance model of plantation growth designed for silvicultural 

decision support managers (Battaglia et al., 2004 ). It predicts the time-course of stand 
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development, water use and available soil water for trees and responds to silvicultural 

interventions such as thinning and fertilisation. Daily canopy photosynthetic 

production is calculated using coupled C-water-N models of photosynthetic rate and 

model of LAI and light interception by tree crowns. Soil N turnover can be calculated 

using a simple mineralisation model which is a derivation of SNAP, (Paul et al., 

2002) or by defining soil C and N pools at the start of the simulation and using 

process-based N mineralisation model CERES-N, (Goodwin and Jones, 1991). Its 

primary stand-level outputs are biomass to various pools, available soil water in the 

tree root zone, tree predawn water potential and a detailed breakdown of site water 

balance, and the distribution ofN in trees and the soil. With N mineralisation tuning, 

CABALA successfully simulated some aspects of N dynamics in a E. nitens 

plantation in Tasmania (Smethurst et al., 2004a), but predictions beyond 2.8 years 

were biased mostly by parameters for allocation and plant N concentration that were 

suited only to much younger plantations. 

Models are developed with various objectives and subsequently place different 

emphasised and different levels of detail on components of any given forest. Models 

such as CABALA and CENW can be used to compare the long-term effects on N 

fertilisation on growth and N cycling, as both link the flow of C, N and water on a 

daily time step. However, both models use N submodels that are based on agricultural 

soil processes. This is particularly evident in the CENTURY decomposition model 

used in CENW, which was developed under grazing grasslands. 

2.6 Conclusion 

Although N is abundant in the atmosphere only a relatively small component occurs 

in forest soil and less than three percent of this is in the mineral form available for tree 

growth (Cole, 1995). As most forest trees prefer to take up Nin the ammonium form 

with limited organic N uptake and N fixation, nitrogen mineralisation is an essential 

component of the N cycle required for plant growth. The process ofN mineralisation 

~ release) occurs through microbial utilisation of organically bound N forms, as 

an energy source. As this is a microbially mediated process, it depends on 

environmental effects such as climate temperature and moisture, and quantity and 

38 



quality of organic N. (Fyles et al., 1990). OfN mineralised, 0.5 to 0.01 percent will be 

released as ammonium and the remainder immobilised by the microbial community 

(Binkley and Hart, 1989). As N mineralisation is an integral step in the availability of 

N for plantation growth it has been widely studied as an indicator of site productivity, 

with productivity in many forest ecosystems increasing with increasing soil N 

mineralisation (Pastor et al., 1984; Adams and Attiwill, 1986). 

An increase in N availability in the short-term also occurs due to application of N 

fertiliser (Johnson et al., 1980; Adams and Attiwill, 1991; Aggangan et al., 1998). In 

contrast, limited increases in N mineralisation in the long-term have been measured 

(Smolander et al., 1998). The difficulty in assessing the long-term effects ofN 

mineralisation may be due to the insensitivity of NNM measurements to low rates of 

fertilisation. Although there are clear influences of plant species, temperature, and 

moisture and soil fertility on N mineralisation, the isolation of these effects for 

interpretation is often less defined. Each factor is often confounded with the site being 

studied. In addition, the process of in situ and laboratory incubations to determine 

NNM could cause a change in one or more of these factors. 
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Chapter 3. Growth response of Eucalyptus regnans and Pinus radiata 

due to long-term periodic fertilisation and changes in Ferro sol and 

Kurosol profiles. 

3. 1 Introduction 

In Tasmania the increased demands for wood production on a base of decreasing land 

availability has resulted in the progression of intensive managed forest into areas with 

soil of reasonable physical structure but low nutrient status. This trend is combined 

with increasing demands for faster growth and greater product utilisation from forest 

sites, intensifying nutrient demand and removal. Prescription N and P fertilisation at 

planting, and in early stages of tree establishment are required at many sites to 

achieve rapid early growth and high survival rates (Gentle et al., 1965; Waring, 1972; 

Judd et al., 1996). 

Later age application of P fertiliser on P-deficient sites can increases P. radiata 

plantation growth (Waring, 1969; Flinn et al., 1979b; Neilsen et al., 1984). The 

magnitude and longevity ofresponse to P application depends on soil properties such 

as the inherent P concentrations, P sorption capacity and soil pH (Ballard, 1978; 

Pritchett and Comerford, 1982). Phosphorus application may also increase soil N 

uptake in plantations (Waring, 1969; Neilsen et al., 1984; Falkiner et al., 1993). 

In contrast to P, enhanced growth response due to N application may decline within a 

few years (Fagerstrom and Lohm, 1977; Miller, 1981; Mcintosh, 1982; Fisher et al., 

2000). Such declines are related to short-term fluxes in mineral N after fertilisation 

(Hingston and Jones, 1985; Adams and Attiwill, 1991; Smethurst et al., 2001) and 

then corresponding decreases in foliar N concentrations (Fagerstrom and Lohm, 

1977). Subsequently, to maintain diverging growth from untreated plantations, 

repeated applications ofN fertiliser are required (Neilsen et al., 1992; Neilsen and 

Lynch, 1998). The frequency of applications will depend on the period of elevated 

availability, cycling of applied nutrients in the soil system and the efficiency of 

internal tree recycling of nutrients (Switzer and Nelson, 1972). Falling needle 

concentrations ofN, and declining growth, indicate that applications at between two 
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and four years are required to maintain growth of P. radiata plantations on nutrient 

poor sites in Tasmania (Neilsen and Lynch, 1998). 

Following canopy development, internal redistribution and nutrient return from 

decomposition become critical processes in supplying nutrients for new growth 

(Miller, 1981; Weston, 2001). The litter layer is important in the cycling and retention 

and supply of nutrients in forests (Tamm and Popovic, 1995; Neilsen and Lynch, 

1998). Variations in overall mass and nutrient concentration oflitter depend on the 

site, species, stand age, fertiliser treatment, and time of measurement (Feller, 1978; 

Frederick et al., 1985; Baker et al., 1986; Crane and Banks, 1992; Canary et al., 

2000). At sites with low nutrient concentration in the mineral soil, litter quality forms 

a strong correlation with tree volume growth (Smith et al., 2000) and N mineralisation 

(Adams and Attiwill, 1986; Gower and Son, 1992; Prescott et al., 1993; Prescott and 

Preston, 1994). 

Although fertilisers may be used to increase forest growth there is concern that long­

term N application may impact on forest sustainability through changes in the soil 

chemistry. Nitrogen fertilisation has been identified as a source of increased acidity in 

soil chemistry across a range of sites (Adams and Martin, 1984; Tamm and Popovic, 

1995; Homann et al., 2001). Low soil pH decreases the rate at which organic N is 

mineralised (Adams and Martin, 1984), reduces the availability of cations such as Ca 

and Mg, and could increase the availability of Al to toxic concentrations. Factors 

including, fertiliser form and rate, the site climate and plant species determine the 

extent to which the soil pH changes. Soil properties such as, the concentration and 

nature of organic matter, type and amount of clay, the initial soil pH and the soil 

buffering capacity also influence the rate of pH change (Adams and Martin, 1984). 

The objectives of this experiment were to examine two sites of contrasting soils and 

tree species and; 

1) examine options for improving the growth of both P. radiata and E. regnans 

plantations through various periodic applications of late age fertilisation, 
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2) examine the effect of fertilisation on nutrient distribution in soil profiles, 

3) investigate fertiliser effects on forest litter mass and nutrient retention, for long­

term nutrient cycling and site management, and 

4) evaluate periodic sampling of foliar nutrient concentrations, in both plantations, as 

an indicator of future growth response. 

3.2 Site and Soil Profile Description 

Two field experiments, one in P. radiata (Latitude 41° 28' S, Longitude 148° 00' E) 

and one in E. regnans (Latitude 43° 17' S, Longitude 146° 54' E), were established to 

critically evaluate later age fertilising with nitrogen, applied periodically, and in 

combination with phosphorus. 

The Kurosol studied under P. radiata in this research is formed on siliceous 

sediments, which represent a substantial proportion of the P. radiata estate in 

Australia and other P. radiata growing areas. Sediments of Devonian-Silurian age 

comprise the largest proportion of the Tasmanian estate plus extensive areas in 

Eastern Victoria and Southern New South Wales. The soil profile is also very similar 

to the soil researched intensively in the ACT (Khanna et al., 1992) the major 

difference being that the Tasmanian site is in a cooler environment. 

The Ferrosol under E. regnans is a brown soil formed on basic igneous parent 

material. Although dolerite is not common outside of Tasmania, the soil is used 

extensively for eucalypt plantations in Tasmania and is similar to soils developed on 

basalt used extensively in cool temperate climatic zones where eucalypt plantations 

are grown. 

3.2.1 Kurosol planted with P. radiata 

The topography of the experimental site was an easterly aspect of about 10 % slope 

and an altitude of350 m. The 24 year average annual rainfall was 938 mm spread 

fairly evenly through the year, with a winter bias. However, annual rainfall was 
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highly variable. The vegetation on the site before conversion to P. radiata plantation 

was mature Eucalyptus sieberi (L.A.S. Johnson) of20 - 29 m height, with an 

understorey of moderately dense bracken (Pteridium esculentum (Forst. f.) (Photo 

3.1). 

Photo 3.1. Typical native vegetation of a Eucalyptus sieberi and Pteridium 
esculentum before conversion to P. radiata. 

The profile described was classified as a haplic, mesotrophic, Yellow Kurosol with 

loamy sand and over silty clay (Isbell, 1996), and a Yellow Podzolic in the Greater 

Soils Group (Stace et al., 1968). The soil is formed on metamorphosed shales and 

sandstone of Devonian-Silurian age (Mathinna beds). The likely US soil taxonomy 

class is Typic Haplohumult. Texture was predominantly silty clay and total soil depth 

was 0.6 - 0.8 m (Photo 3.2, Table 3.1). 
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Photo 3.2. Kurosol profile 

These soils are widespread in the north-east of Tasmania where the annual rainfall is 

less than 1 OOO mm. They form on undulating, rolling steep to low hills, are 

moderately well drained and normally support dry sclerophyll forest often with 

Eucalyptus sieberi and E. amygdalina over an understorey of species such as 

Dodonaea viscosa, Davesia latifolia, Pultenaea daphnoides and Epacris impressa. 

The soils are texture contrast with loamy sand surface horizons over silty clay 

subsoils of strong to firm strength. Both total N and organic C are naturally low 

throughout the profile while the surface soil has total P at medium to low levels 

(Neilsen et al., 2002). The status of total N and P and organic C is described in Grant 

et al. (1995) (Table 3.2). 
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T bi 31 K I fil d a e . a uroso pro 1 e ·r escnp ion 
HORIZON DEPTH( cm) DESCRIPTION 

01 -1.5 to -0.5 Loose litter, comprising pine needles and dead bracken 

02 -0.5 to 0 Decomposing duff layer derived from litter, abrupt boundary 

Al 0-10 Dark brown (7 .5YR3/2) loamy sand; weak strength, 

concentration of fine roots and common medium roots, 

diffuse boundary 

A2e 10-20 Greyish brown (2.5Y5/2) fine sand to loamy sand; weak 

strength, few roots, abrupt boundary 

B21t 20-44 Olive yellow (2.5Y6/6) silty clay; strongly developed 20-

50mm angular blocky breaking to 5-1 Omm subangular 

blocky structure; moderately friable; 10-30% distinct clay 

skins; moderate strength, 20% rock and 10% gravel present; 

common medium roots and some concentration of fine 

roots, gradual transition 

B22t 44-58 Olive yellow (2.5Y6/6) silty clay; weakly developed 5-

1 Omm subangular blocky to compact structure; strong 

strength, 30% rock and 10% gravel present; common 

medium roots, gradual transition 

B3t 58-63 Olive yellow (2.5Y6/6) silty clay; 2-10% <5mm distinct 

yellowish red (5YR5/8) oxidation/reduction mottles; 

compact structure; strong strength, 30% rock and 10% 

gravel present; few fine roots, clear boundary to C horizon 

c 63+ Decomposing sandstone 

(Neilsen et al., 2002) 
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Table 3.lb. Kurosol profile description from soil pits for NIL and (P)NlY 
treatments under P. radiata. 

Water-stable p 
Treatment Horizon Sample Depth Bulk Density 

Aggregates 
Clay 

retention 

(cm) (g cm 3
) (% > 0.25 mm) (%) 

NIL 02 -05 to 0 0.46 
A1 0-10 1.54 21.3 4 5 
A2e 10-20 1.51 23.6 6 4 
821t 20-44 1.67 44.3 49 36 
B22t 44-58 1.94 39.6 44 33 

(P)N1Y 02 -3 to 0 0.37 
A1 0-3 1.71 10.0 4 2 
A2e 3-17 1.71 17.7 7 2 
821t 17-50 1.9 38.7 33 29 
822t 50-70 1.04 23.2 29 19 

Table 3.lc. Kurosol chemical profile description from soil pits for NIL and 
(P)Nl Y treatments under P. radiata. 

Treatment Horizon Sample Depth 
Exchangeable Exchangeable Exchangeable 

ECEC BS (%)1 
H+ Al Acidity 

(cm) (me.100 g-1
) 

NIL 02 -05 to O 
A1 0-10 1.2 0.9 2.1 16.7 15.9 
A2e 10-20 0.0 1.9 1.9 9.2 6.7 
B21t 20-44 0.5 6.4 6.9 25.2 3.6 
B22t 44-58 0.7 4.2 4.9 21.1 5.0 

(P)N1Y 02 -3 to 0 
A1 0-3 3.0 1.0 4.0 23.9 5.3 

A2e 3-17 1.1 1.0 2 1 13.4 2.5 
B21t 17-50 1.6 7.8 9.4 20.6 1.4 
B22t 50-70 0.6 4.2 4.7 15.6 1.7 

BS = Base Saturation 

Table 3.2 Ratings for chemical and physical laboratory analysis, after Grant et 
al. (1995). 

Rating Organic C Total P Total N 
Water-stable 
aggregates 

(%) (ppm) (%) (%>0.25 mm) 

Very High >10 

High 5-10 >250 >0.6 >70 

Medium 2-5 100-250 0.3-0.6 30-70 

Low <2 <100 <0.3 <30 

3.2.2 Ferrosol planted with E. regnans 

The topography of the experimental site was a south-easterly slope of about 10 % and 

an altitude of 100 m. The average annual rainfall was 1200 mm. Prior to plantation 
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establishment the site originally carried Eucalyptus obliqua of 34 to 41 m height and 

an understorey of moderately dense bracken with some Cassinia aculeata and Acacia 

verticillata (Photo 3.3). 

Photo 3.3. Typical native vegetation of Eucalyptus obliqua and Acacia verticillata 
before conversion to an E. regnans plantation. 
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Photo 3.4. Ferrosol profile 

The profile described was classified as a Haplic, Brown Ferrosol (Isbell, 1996), and a 

Krasnozem in the Greater Soils Group (Stace et al., 1968). The soil is formed on 

Jurassic dolerite and Triassic sandstone. The likely US soil taxonomy class is a 

Hapludalt. The soil was a yellowish-brown to red clay loam soil total soil depth of 

over 1.0 m (Table 3.1, Photo 3.4). 
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T bi 3 3 F a e . a l fil d erroso pro 1 e escr1ption 
HORIZON DEPTH( cm) DESCRIPTION 

01 -4 to -1 Loose litter, comprising leaves and fine branches 

02 -1to0 Decomposing duff layer derived from litter, abrupt boundary 

Al 0-12 Dark yellowish brown (10YR4/6 to 10YR3/4) clay loam to 

loam; friable sub-angular structure; weak strength; many 

medium and fine roots; variable boundary 

B21t 12-60 Dark yellowish brown (1 OYR4/6) distinct strong brown (7 .5YR 

5/6) oxidation mottles; clay loam; sub-angular blocky structure 

with peds 2 - 10 cm; weak strength; many medium roots; 

gradual boundary 

B22t 60-90 Dark yellowish brown (10YR4/6 to 10YR5/8) distinct strong 

brown (7 .5YR5/6 to 7 .5YR5/8) mottles; clay loam; compact 

structure; firm strength; 20-30% sub-rounded 200-600mm 

dolerite :fragments; common fine roots; gradual boundary 

B3t 90+ Strong brown (7.5YR5/8) light clay; compact structure; firm 

strength; 20-50% subrounded 200-800mm dolerite :fragments; 

few fine roots 

(Neilsen et al., 2002) 

Table 3.3b. Ferrosol profile description from soil pits for NIL and (P)Nl Y 
treatments under E. regnans. 

Treatment Horizon Sample Depth Bulk Density 
Water-stable 

Clay 
p 

Aggregates retention 

(cm) (g cm3
) (% > 0.25 mm) (%) 

NIL 02 -1 to O 0.67 
A1 0-12 1.37 84.4 56 47 

B21t 12-60 1.47 88.0 63 57 
B22t 60-90 1.52 85.2 58 54 

P1YN1Y 02 -6 to 0 0.22 
A1 0-10 1.15 68.9 42 37 

B21t 10-60 1.48 91.5 61 60 
B22t 60-100 1.45 82.1 54 54 
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Table 3.3c. Ferrosol profile description from soil pits for NIL and (P)Nl Y 
treatments under E. reg_nans. 

Treatment Horizon Sample Depth 
Exchangeable Exchangeable Exchangeable 

ECEC BS(%)1 
H+ Al Ac1d1ty 

(cm) (me.100 g"1) 

NIL 02 -1 to O 
A1 0-12 1.0 3.6 4.6 32.1 22.7 

B21t 12-60 1.5 6.4 7.8 36.2 7.8 
B22t 60-90 1.4 69 8.3 34.3 6.1 

P1YN1Y 02 -6 to 0 
A1 0-10 2.4 83 10.8 36.5 6.2 

B21t 10-60 2.9 16.1 19.0 34.7 3.7 
B22t 60-100 1.9 11.1 13.0 32.2 7.4 

BS = Base saturation 

These soils are widespread where annual rainfall exceeds 1000 mm. Formed on 

rolling hills they are well drained and support mainly wet sclerophyll forest 

dominated by Eucalyptus obliqua and ranging to mixed forest, with understorey 

species such as Cassinia aculeata, Acacia verticillata, Pomaderris apetala and 

Gahnia grandis. The soils are distinguished by gradational profiles with clay loams 

overlying light clays, which vary in colour from yellow brownish to brown. Surface 

soils generally have high organic C and total P with medium concentrations of total 

N. In the subsoil these nutrients can be oflow to medium status (Table 3.2) (Grant et 

al., 1995). This site had been logged and burnt in wild fires before plantation 

establishment and only about 10 cm of topsoil remained (Neilsen et al., 2002). 

3.3 Fertiliser experiment establishment 

3.3.1 Kurosol planted with P. radiata 

The fertiliser experiment was established in a 20-year-old P. radiata plantation, 

located in the north-east of Tasmania (Map 3.1). At plantation establishment (1967) 

seedlings were fertilised with 23 g N (urea) and 12.5 g P (superphosphate) per tree 

and stocking was 1500 stems ha-1 (3 m x 2.2 m spacing). The experiment area was 

thinned prior to establishment of the fertilisation experiment to approximately 58 % of 

initial stocking (from 23.6 m2 ha·1 to 18.3 m2 ha-1 mean basal area (BA)). The 

thinning was mainly aimed at removing small diameter, poorly formed and forked 

trees. Prior to treatment the experimental site exhibited approximately 56 % dead 

tops (with no current apical growth). The Pinus radiata experiment was established in 
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an older stand to demonstrate the resilience of P. radiata to recover from nutrient 

limitations on growth. In practice fertilising commences much earlier than this. 

The fertiliser experiment consisted of two replicates (blocks) of six treatments (Table 

3.4). Twelve rectangular plots each had a total area of668 m2
• The two blocks were 

determined on initial tree basal area (BA), with one block being the six highest BA 

plots (mean BA 20.3 to 20.5 m2 ha-1
) and the other being the six lowest BA plots 

(mean BA 16.2 to 16.3 m2 ha-1
). In each plot, a sub-plot of25 trees (288 m2

) was 

selected for measurement, allowing for a buff er zone of at least two trees between 

different fertiliser treatments. 

Phosphorus was applied at the establishment of the experiment (June 1987), and when 

need as indicated by foliar analysis, to maintain foliar concentrations close to 0.12%, 

the concentration considered adequate for good growth. Re-application was carried 

out six years after initial fertiliser application at age 26, with a total of 144 kg P ha-1 

applied. The periodic N application experiment was designed with four levels of 

regular N applications; no N ((P)), N applied every fourth year ((P)N4Y), every 

second year ((P)N2Y), and annually ((P)Nl Y). In addition, two other treatments were 

included, a treatment with neither N nor P applied (NIL), and a treatment ofN plus P 

applied every two years (P2YN2Y). The rate of N required was determined using 

previous experiments, as 100 kg N ha-1 for each application (Neilsen and Lynch, 

1998). Fertilisers used were single superphosphate, ammonium sulphate or mixtures 

of the two, resulting in large quantities of Sand Ca also being applied. Fertilisers 

were broadcast by hand; rates of elemental N, P, Sand Ca applied are given in Table 

3.4. 
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Map 3.1 Location of experimental sites 

Table 3.4 Treatments and frequency of application of fertilisers giving total 
quantities of N, P, Sand Ca. 

Code Treatment Rate 

NIL 
(P) 
(P)N4Y 

(P)N2Y 

(P)NlY 

(kg ha-1
) 

Nil 
superphosphate 750 
superphosphate 750 
ammonium 
sulphate 
superphosphate 
ammonium 
sulphate 
superphosphate 
ammonium 
sulphate 

480 

750 
480 

750 
480 

Frequency 

twice 
twice 
4-yearly 

twice 
2-yearly 

twice 
I-yearly 

400 

700 

1300 

144 
144 

144 

144 

164 
636 

990 

1698 

P2YN2Y 11:5t 952 2-yearly 700 322 1190 

t 11 :5 (N: P) is a mixture of superphosphate and ammonium sulphate. 

330 
330 

330 

330 

330 

All 25 trees on the sub-plot were measured for diameter at breast height over bark 

(DBHOB) annually from establishment for 15 years. The two tallest trees on each 

whole plot were measured for height as MDH (mean dominant height), based on the 
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tallest 50 SPH (stems per hectare) evenly distributed trees over the area. Stand 

volume was calculated using volume tables (Wilkinson and Neilsen, 1995). A number 

of symptoms of tree health were assessed including, foliar colour, crown length, 

crown width, the presence of fused needle, and dead tops (Neilsen et al., 1992). 

Foliar sampling was carried out pre-fertilising at age 17, and at ages 22, 23 and 34 

years. One and two year old age classes of foliage were sampled. Three selected trees 

per plot were sampled by climbing and sampling, or using a shotgun to collect twigs. 

Needles from the three trees were stripped from each branch; each age class was 

combined on the basis of equal mass and bulked separately for foliar analysis. 

Samples were prepared as described by Neilsen et al. (1992). Drying was carried out 

at 70°C before grinding in a Wiley mill prior to analysis. 

My involvement in the fertiliser experiment was from tree age 27 onwards, prior to 

this Bill Neilsen, Wally Pataczek, Lindsay Wilson and Martin Piesse managed the 

experiment. Information prior to tree age 27 has been provided by Bill Neilsen as 

pers. corn. and written communication. 

3.3.2 Ferrosol planted with E. regnans 

The fertiliser experiment was established in a 5-year-old E. regnans plantation, 

located in southern Tasmania (Map 3.1 ). At plantation establishment (1981) seedlings 

were fertilised with 25 g N (ammonium sulphate) and 11 g P (superphosphate) per 

tree and initial stocking of 1333 SPH (3 m x 2.5 m spacing). The fertiliser experiment 

consisted of two replicate (blocks) of six treatments (Table 3.5). The two blocks were 

determined on initial BA, with one block being the six highest tree BA plots and the 

other being the six lowest tree BA plots. Each of the twelve rectangular plots had a 

total area of 400 m2
• In each plot, a measured sub-plot of25 trees was selected, 

allowing for a buffer zone of at least two trees between different fertiliser treatments. 

All trees on the measured sub-plot were measured for DBHOB annually from 

establishment for 15 years. A sample of tree heights was measured and volume was 

estimated using tree volume tables (Wilkinson and Neilsen, 1995). 
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Because of the lack oflong-term data for eucalypt stands, the fertiliser experiment 

was designed for analysis as an N and P factorial, with applications at two yearly 

intervals, as well as a level experiment. The level experiment was designed with 

regular applications of N and P together with the amounts set by the period between 

applications. There were four levels ofN plus P applied, no fertiliser (NIL), every 

fourth year (P4YN4Y), every second year (P2YN2Y), and annually (PlYNlY). For 

the factorial experiment there were, in addition, applications every second year ofN 

only (N2Y) and P only (P2Y). As in the P. radiata experiment, fertilisers used were 

superphosphate, ammonium sulphate or mixtures of the two. Fertilisers were 

broadcast by hand; rates of elemental N, P, Sand Ca applied are given in Table 3.5. 

Table 3.5 Treatments and frequency of application of fertilisers applied to the 
research area giving total quantities of N, P, Sand Ca. 

Code Treatment Rate Frequenc N P S Ca 
(kg ha-1

) y (kg ha-1
) (kg ha-1

) (kg ha-1
) (kg ha-1

) 

NIL Nil 
P4YN4Y 11 :5t 952 4-yearly 400 184 680 420 
P2YN2Y 11:5t 952 2-yearly 700 322 1190 735 
PlYNlY 11:5t 952 1-yearly 1300 598 2210 1365 
N2Y ammomum 480 2-yearly 700 826 

sulphate 
P2Y superphosphatc 476 2-yearly 322 364 735 
t 11 :5 (N: P) is a mixture of superphosphate and ammonium sulphate. 

Foliar samples were collected prior to fertilisation treatments at ages 10 (just prior to 

the sixth annual fertilisation, 12, 14 and 20 years, three years after the final fertiliser 

treatment). Three selected trees per plot were sampled using a rifle or shotgun to 

collect branches or twigs from the upper third of the crowns. Leaves from the three 

trees were stripped from each branch and combined, on the basis of equal mass basis, 

for foliar analysis. Samples were prepared as described by Neilsen et al. (1992). 

Drying was carried out at 70°C before grinding in a Wiley mill prior to analysis. 

My involvement in the fertiliser experiment was from tree age 16 onwards, prior to 

this Bill Neilsen, Wally Pataczek, Lindsay Wilson and Martin Piesse managed the 

experiment. Information prior to tree age 16 has been provided by Bill Neilsen as 

pers. corn. and written communication. 
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3.4 Sampling and Analysis of Soil profiles and Litter Layers 

The impact of fertilisation on forest soils was considered by examining differences in 

soil profiles between unfertilised and fertilised plots at tree age 34 and 20 in P. 

radiata and E. regnans, respectively. Pits were dug, to the depth of 1.0 m, in the 

centre of each unfertilised and annually fertilised plot and soil horizons were 

described and sampled for analysis (Photo 3.2 and 3.4). Physical and chemical 

parameters for each horizon were measured and analysed. Additionally, soils in all 

plots were sampled by soil-auger (5 cm diameter) to a depth of 50 cm, in 10 cm 

increments. Soil was collected from each site from the uncultivated zones between 

tree rows. Each 10 cm increment sample was bulked from each of four auger holes 

per plot. Resulting in two replicate soil samples for each treatment and depth. Soil 

used to determine mineral N concentrations were maintained moist and sieved to < 2 

mm for chemical analysis. Remaining soils were air dried and sieved to < 2 mm for 

chemical analysis. Bulk density for soil was calculated from intact cores sampled 

from soil pits, in 10 cm increments, to a depth of 50 cm. 

Litter (forest floor organic debris) was collected using a 25 by 20 cm frame. Litter 

was collected from each site from the uncultivated zones between tree rows. Litter 

samples were separated into 01and02 litter layers (McDonald et al. 1990) (also 

described in Section 3.2). Five 01 and 02 litter samples were collected from each plot 

and bulked separately for biomass determination. Only the 02 samples were 

analysed. 02 litter layers were air-dried and sieved to < 2 mm for chemical analysis. 

Total nutrient biomass in the litter (02) and soil was estimated from these 

measurements. 

Foliar and litter samples were digested by acid hydrogen peroxide (Lowther, 1980). 

The digest was analysed for N, based on the indophenol blue method (Lachat 

Instruments), P by molybdate blue method (Murphy and Riley, 1962) and Ca, Kand 

Mg by atomic absorption spectrometry (AAS). For soil, total P and N were estimated 

by semi-micro-Kjeldahl digestion automated colour (Rayment and Higginson, 1992). 

Total Mg, Ca, Kand micronutrients Cu, Fe, Zn and Mn in soil were analysed by AAS 

following nitric acid digest. Exchangeable Ca, Mg and K were extracted using 1 M 
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ammonium chloride at pH 7.0 (Rayment and Higginson, 1992). Organic C in soil was 

determined by the Walkley-Black method (Rayment and Higginson, 1992). Soil pH 

was measured in a 1/5 soil/ distilled water ratio using soil that had not been dried. 

Mineral N (ammonium plus nitrate) was extracted from samples(< 2 mm fraction), 

maintained field moist, using cold 2 MKCl, (Rayment and Higginson, 1992). Mineral 

Nin KCl extracts was measured using a flow injection analyser (Lachat instruments). 

3.5 Data analysis 

Total nutrient biomass of P. radiata trees was estimated using an equation derived 

from Neilsen and Lynch (1988) (Table 3.6). Mean tree (based on volume) total 

content ofN, P, Ca and Mg were regressed against mean tree volume and this was 

applied to the mean tree total volume for the plots in this experiment. Samples based 

on mean tree volume are unbiased but may have an error of up to 10 % (Crow, 1971). 

Analysis of variance and least significant difference (LSD) tests were used to test the 

significance of treatment and soil profile depths on nutrient content, while group 

regression analysis was used to evaluate volume growth response (Genstat 5 

Committee, 1988). Tests were validated by testing data for normality of distribution, 

and transforming data where required. Residuals from the model for each variable 

were examined for normality using diagnostic graphs. 

Table 3.6 Regression equations for total nutrient biomass of P. radiata trees on 
Yellow Kurosol formed on Silurian- Devonian sandstone (derived from Neilsen 
and Lynch 1998t). 

Total P 76.2 *Mean Tree Volume 
Total N 910.3 *Mean Tree Volume 
Total Mg = 218.9 *Mean Tree Volume 
Total Ca 814.3 *Mean Tree Volume 

+ 8.389 
37.915 

+ 0.607 
+ 19.698 

R2 =0.69 
R2 =0.88 
R2 =0.93 
R2 =0.61 

t Wood, bark, branches, cones and roots from each fertiliser treatment had similar concentrations. 

Foliar concentrations were similar for all elements except N. Foliar N concentrations in the N treated 

plots were up to 20% higher than in the unfertilised plots. As foliage contained up to 25 % of the 

biomass N, this could result in an error of up to 5%. 
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3.6 Results 

3.6.1 Kurosol planted with P. radiata 

3.6.1.1 Growth and Plantation Health 

Total volume growth in the 15 years following the commencement of fertiliser 

treatments showed increasing P. radiata growth due to applied P and with more 

frequent N applications (Figure 3.1 ). The greatest response occurred in (P)Nl Y, 

resulting in six times the volume growth of NIL and double the volume growth of the 

(P) treatment. Phosphorus re-applied at age 26 years resulted in an increasing volume 

growth of (P) over NIL. During the last six years of measurement there was virtually 

no volume growth of the NIL (Figure 3.1). 
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Figure 3.1 Growth of P. radiata with various fertiliser treatments following initial 
application at age 20 years. Bars indicate least significant difference 
between treatments (LSD). 

During the fifteen years of measurement the average volume growth of NIL trees was 

4 m3 ha-1 PAI (periodic annual increment), the P treatment was 13 m3 ha-1 PAI, and 

the (P)Nl Y treatment was 27 m3 ha-1 P Al. All N treatments produced 10 m3 ha-1 PAI 

more than the P only treatment. Enhancement of PAI due to increased frequency of N 

application was most pronounced in the first seven years, beyond this period (age 27 

years) the (P)Nl Y treatment advantage over the (P)N2Y declined, and all the N 

application treatments had showed similar growth rates. The total volume growth 
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obtained during the 15 years, as a response to the quantity ofN applied (fertiliser-use 

efficiency), showed a decrease in efficiency with annual application compared to 

applications every second and fourth year. 

The health of fertilised trees improved dramatically within three years of initial N 

applications (Figure 3.2a). Tree health was a visual assessment of foliar colour, crown 

length, crown width, the presence of fused needle, and dead tops. To be defined as 

"overall healthy" the tree needed to have a full green crown with apparent no nutrient 

deficiency symptoms. Overall tree health improved due to P application and was 

substantially increased when N was also added. Deficiency symptoms, such as colour, 

crown length, crown width, and the presence of fused needles, decreased in 

proportion to the amount of fertiliser N applied. Prior to fertiliser treatments, 

approximately 56 percent of trees had dead tops, with no current apical growth. Dead 

tops were substantially improved by both P and N application and after the second 

application of Pat age 26 years the dead tops in all fertilised treatments, including the 

P only, were reduced to zero (Figure 3.2b). However, no trees at age 20 had complete 

recovery due to soil moisture retention and drought, in particular the last 25 years has 

been a period of below mean annual rainfalls (Pook and Budd, 2002). 

Foliar N and P concentrations varied considerably throughout the sampling times. 

Foliar N concentrations were marginally deficient prior to fertilisation (Table 3.7). 

Generally, treatment foliage N concentrations were lower than prior to fertilisation 

reflecting a dilution effect due to enhanced growth. By the end of the experiment the 

unfertilised foliar N concentrations had dropped substantially below deficiency levels 

and below the concentrations in all other treatments. Prior to the initial fertilisation, 

foliar P concentrations were below 0.08%, well below the level considered deficient. 

Throughout the experiment foliage from unfertilised trees remained at amounts 

between 0.08 percent and 0.09 percent, for both N and P, respectively. Even with 

fertiliser treatment the concentrations of N and P remained marginal throughout the 

experiment. Only at age 34 years were the N concentrations of the P plus N fertilised 

treatments significantly higher than those of the NIL and P (Table 3.7). At age 22 and 
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34 years the P treated trees resulted in a higher foliar P concentrations than the NIL 

trees. 
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Figure 3.2 P. radiata trees with (a) complete health and (b) dead tops(%) for 
various treatments six years following initial treatment at age 20 years. Bars 
indicate LSD between treatments. 

Further analysis of foliage for calcium, magnesium, potassium, copper, iron and zinc, 

at the end of the experiment revealed large variations and no significant trends 

between treatments. Physical parameters such as needle length, weight and colour for 

both age classes also showed no significant treatment trends. Concentrations of P, N, 

Ca and Mg in litter were not correlated with either one or two year old foliar 
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concentrations. Exchaneagble Ca and Mg have been found to be highly variable in the 

02 horizon and they were not measured. 
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Table 3.7 Foliar nutrient concentrations (in one year old needles) for N and P for 
various treatments following initial treatment at age 20 years in P. radiata. 
Letters indicate significant difference between treatments (~ < 0.05). 

Age (Years) 
Treatment 17 22 23 34 
P. radiata foliar N % 
NIL 1.11 a 1.04 a 1.25 a 0.85 a 
(P) 1.12 a 1.05 a 1.15 a 0.95 ab 
(P)N4Y 1.09 a 1.10 a 1.20 a 1.19 b 
(P)N2Y 1.18 a 1.16 a 1.30 a 1.11 b 
(P)NlY 1.18 a 1.20 a 1.30 a 1.15 b 
P2YN2Y 1.20 a 1.29 a 1.20 a 1.11 b 

P. radiata foliar P % 
NIL 0.07 a 0.07 a 0.09 a 0.07 a 
(P) 0.08 a 0.15 b 0.12 ab 0.11 b 
(P)N4Y 0.08 a 0.10 ab 0.11 ab 0.12 be 
(P)N2Y 0.08 a 0.12 b 0.12 ab 0.10 b 
(P)NlY 0.08 a 0.10 ab 0.09 a 0.10 b 
P2YN2Y 0.07 a 0.16 b 0.13 b 0.15 c 

3.6.1.2 Fertiliser effects on the soil profile, soil pH and soil chemistry 

There were significant differences in nutrient distribution in soil profiles at tree age of 

34 years. The heaviest fertiliser treatments resulted in a significant increase in the 

mass of the 02 litter layer with over 70 t ha-1 for the annual fertilised treatment, 

compared to 26 t ha-1 for the (P) (Figure 3.3.). This contributed to a redistribution of 

nutrients from the mineral soil into the 02 horizon (Table 3.8). fu comparison, 

changes in the mass of the 01 litter layers was not significant between the NIL and 

annually fertilised treatments, at 17 to 20 t ha-1
, respectively. 

Under P. radiata there was also a significant increase in total N in the 10 - 20 cm soil 

layer of the (P)NlY treatment compared to the (P) treatment. However, substantial 

variations in base nutrient loads generally resulted in no clear differences in total N 

content at other depths. Concentrations of mineral N in the soil profile were 

dominated by ammonium (NH4 \ with nitrate (N03) commonly below detectable 

limits. Ammonium increased significantly with the rate of N application in the surface 

0-10 cm of the Kurosol (Table 3 .9). The remaining profile, to a depth of 50 cm, was 

generally lower in ammonium than the NIL treatment, suggesting little downward 
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movement of mineral N. An increased C/N ratio occurred in both the (P)N4Y and 

P2YN2Y treatments in the surface soil (0-10 cm); with no significant difference 

throughout the remaining profile (Table 3 .10). 
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Figure 3.3 Mass of litter 01 and 02 horizons (kg ha-1
) for various treatments 

under P. radiata. Letters indicate significant difference between treatments 
(p < 0.05). 

Phosphorus application resulted in no significant increase in total P in 02 layer or the 

surface mineral horizon. However, the total soil P in the top 50 cm of mineral soil was 

significantly higher for all rates of N application, compared to when P was applied 

alone. Total organic C in the top 50 cm of the Kurosol profile followed a similar trend 

to P. The distribution of soil C was concentrated in the surface 0-10 cm. At the 

highest N application rate soil C content in this horizon doubled from 21 t ha-1 in NIL 

to 41 t ha-1 in (P)Nl Y (Table 3.8). Increased sulphur contents were observed in the 

02 horizon and throughout the upper 50 cm of the mineral soil, but were only 

significant higher in the highest fertiliser treatments. (Table 3.8). 

No significant differences were observed in total Mg or total Ca within the 02 or 

mineral soil horizons (Table 3.8). However, there was a substantial decrease in the 

profile total Ca overall, with the highest rate ofN application. Base saturation was 

also substantially reduced due to fertilising, by 50 % to 60 % throughout the profile 

(Table 3.lc). 
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Fertiliser treatments significantly reduced pH (1 :5 soil: water) by up to 0.7 of a unit in 

the 0 - 50 cm soil and by 0.3 of a unit in the 02 horizon (Figure 3.4a). Increasing 

rates ofN application resulted in increasing reductions in pH, with (P)N4Y, (P)N2Y 

and (P)Nl Y being significant more acidic compared to (P). At the highest rate, 

annual, fertilisation resulted in an overall pH reduction from 3.8 to 3.4 units within 

the surface 0 - 10 cm. The greatest reduction in pH from the annual application of 

fertiliser occurred in the 20 - 50 cm layer, where the reduction averaged 0.9 units 

(Table 3.9). Reductions in the order of0.5 units were recorded throughout the entire 

soil profiles to the depth of 58 cm. 

High rates of N application also resulted in significant reductions in exchangeable Mg 

(Table 3.9). Significant reductions were measured throughout the 50 cm sampled for 

all fertiliser treatments (Figure 3.4b ). Nitrogen fertilisation reduced exchangeable Ca 

in the top 50 cm under P. radiata by 50 %, compared to the NIL soil and by 75 %, 

when compared to the (P). All N treatments significantly reduced the exchangeable 

Ca compared to the (P) to the depth of 30 cm. 
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Table 3.8 Nutrient content in tree, litter and soil (kg ha-1
) for various treatments 

under P. radiata. Letters indicate significant difference between treatments (p 
< 0.05). 

Treatment 

Total N (kg ha-1
) 

Treet Litter 
02 

NIL 135 331 
(P) 217 167 
(P)N4Y 294 263 
(P)N2Y 332 490 
(P)NlY 364 717 
P2YN2Y 317 191 
Total P (kg ha-1

) 

NIL 23 17 
(P) 30 11 
(P)N4Y 36 13 
(P)N2Y 39 26 
(P)NlY 42 37 
P2YN2Y 38 14 
Total S (kg ha-1

) 

NIL 34 
(P) 22 
(P)N4Y 30 
(P)N2Y 60 
(P)NlY 78 
P2YN2Y 25 
Total Ca (kg ha-1

) 

NIL 127 
(P) 90 
(P)N4Y 105 
(P)N2Y 217 
(P)NlY 169 
P2YN2Y 106 

Total Mg (kg ha-1
) 

NIL 42 41 
(P) 62 21 
(P)N4Y 80 25 
(P)N2Y 90 48 
(P)NlY 97 49 
P2YN2Y 86 17 
Total C (kg ha-1

) 

NIL 
(P) 
(P)N4Y 
(P)N2Y 
(P)NlY 
P2YN2Y 

t Calculated from Table 3.5 

Soil Depth (cm) 
0-10 10-20 20-30 

ab 899 
a 707 
ab 949 
b 1272 
b 1567 
a 820 

ab 75 
a 82 
ab 137 
b 128 
b 119 
ab 123 

a 208 
a 150 
a 106 
a 223 
a 253 
a 168 

a 322 
a 404 
a 331 
a 367 
a 260 
a 326 

b 201 
ab 137 
ab 171 
b 215 
b 158 
a 157 

20984 
19759 
33313 
32906 
40654 
33925 

ab 726 
a 405 
ab 666 
b 741 
b 837 
a 532 

a 80 
a 105 
a 144 
a 126 
a 106 
a 142 

a 166 
a 137 
a 99 
a 232 
a 175 
a 165 

a 271 
a 219 
a 164 
a 146 
a 72 
a 124 

a 232 
a 170 
a 260 
a 381 
a 150 

ab 765 
a 516 
ab 661 
ab 680 
b 865 
ab 552 

a 123 
a 123 
a 151 
a 141 
a 156 
a 149 

a 185 
a 192 
a 125 
a 261 
a 379 
a 228 

a 157 
a 123 
a 95 
a 83 
a 40 
a 71 

a 743 
a 566 
a 409 
a 523 
a 735 

a 205 a 589 

a 22843 be 14448 
a 13427 a 15596 
b 18288 ab 21063 
b 27887 e 17047 
e 20876 b 17481 
b 21382 b 13480 

30-40 

a 835 
a 588 
a 751 
a 764 
a 894 
a 655 

a 142 
a 130 
a 182 
a 214 
a 195 
a 145 

a 208 
a 216 
a 250 
ab 336 
b 487 
a 275 

a 54 
a 63 
a 59 
a 82 
a 37 
a 61 

a 1035 
a 821 
a 792 
a 819 
a 659 
a 963 

a 12438 
ab 13184 
b 15887 
ab 16154 
ab 15328 
a 15744 

40-50 

a 780 
a 554 
a 798 
a 833 
a 791 
a 750 

a 159 
a 127 
ab 188 
b 205 
ab 253 
a 160 

a 242 
a 236 
a 280 
ab 360 
b 433 
a 338 

a 37 
a 29 
a 40 
a 68 
a 25 
a 55 

a 946 
a 760 
a 826 
a 888 
a 666 
a 1089 

a 10565 
a 10191 
a 13615 
a 13708 
a 9324 
a 12114 

Soil Total 
0-50 

a 4006 a 
a 2770 a 
a 3825 a 
a 4290 a 
a 4954 a 
a 3310 a 

ab 579 ab 
a 567 a 
ab 801 b 
b 814 b 
b 830 b 

ab 718 b 

a 1009 ab 
a 931 ab 
a 860 a 
ab 1412 be 
b 1727 e 
ab 1173 ab 

a 841 a 
a 837 a 
a 688 a 
a 746 a 
a 434 a 
a 638 a 

ab 3158 a 
a 2454 a 
ab 2458 a 
ab 2825 a 
a 2368 a 
b 3004 a 

a 81277 b 
a 72156 a 
a 102164 d 
a 107702 e 
a 103663 d 
a 96646 e 
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Table 3.9 Litter and soil pH and exchangeable Mg, Ca and K and total NH/ (kg 
ha-1

) for various treatments under P. radiata. Letters indicate significant 
difference between treatments (~ < 0.05}. 

Treatment Tree Litter Soil Depth 

02 0-10 10-20 20-30 30-40 40-50 0-50 
cm 

pH Soil 
Average 

NIL 4.2 e 3.8 b 3.8 b 4.2 e 4.4 e 4.4 e 4.1 d 
(P) 4.1 b 3.9 ab 4.0 ab 4.1 e 4.1 e 4.2 e 4.1 d 
(P)N4Y 4.0 ab 3.6 ab 3.7 ab 3.7 ab 3.9 b 3.9 b 3.8 e 
(P)N2Y 4.0 ab 3.6 ab 3.6 ab 3.6 b 3.8 b 3.9 be 3.7 e 
(P)NlY 3.9 a 3.4 a 3.5 a 3.3 a 3.4 a 3.6 a 3.4 a 
P2YN2Y 3.9 a 3.6 ab 3.4 ab 3.5 ab 3.6 ab 3.7 ab 3.6 b 
Total Ex Mg (kg ha-1

) Soil 
Total 

NIL 0.8 b 0.7 e 0.8 e 0.9 e 0.9 b 4.1 e 
(P) 1.2 e 0.4 b 0.4 ab 0.6 b 0.7 ab 3.4 b 
(P)N4Y 0.6 ab 0.4 b 0.4 ab 0.6 be 1.0 b 2.9 b 
(P)N2Y 0.5 a 0.4 b 0.5 b 0.7 e 0.8 b 2.9 b 
(P)NlY 0.5 a 0.2 a 0.2 a 0.2 a 0.5 a 1.5 a 
P2YN2Y 0.4 a 0.2 ab 0.3 a 0.4 ab 0.6 ab 1.8 a 
Total Ex Ca (kg ha-1

) 

NIL 2.3 a 1.6 b 1.1 b 0.4 a 0.5 a 5.8 b 
(P) 7.3 e 2.8 e 1.7 e 0.9 a 0.5 a 13.2 d 
(P)N4Y 2.4 a 1.2 b 0.9 b 0.7 a 0.5 a 5.8 b 
(P)N2Y 2.7 a 1.2 b 1.0 b 1.1 a 0.9 a 7.0 b 
(P)NlY 2.3 a 0.6 a 0.2 a 0.2 a 0.1 a 3.3 a 
P2YN2Y 5.7 b 1.6 ab 1.0 b 0.9 a 0.8 a 9.9 e 
Total Ex K (kg ha-1

) 

NIL 76.1 a 0.4 a 0.3 a 0.4 a 0.4 a 0.3 a 1.7 a 

(P) 44.8 a 0.5 a 0.2 a 0.2 a 0.3 a 0.3 a 1.5 a 

(P)N4Y 46.7 a 0.3 a 0.2 a 0.2 a 0.2 a 0.2 a 1.1 a 

(P)N2Y 77.8 a 0.2 a 0.3 a 0.4 a 0.3 a 0.3 a 1.5 a 

(P)NlY 119.8 a 0.4 a 0.2 a 0.3 a 0.3 a 0.2 a 1.4 a 

P2YN2Y 36.8 a 0.3 a 0.2 a 0.3 a 0.4 a 0.4 a 1.7 a 

Total NH/ (kg ha-1
) 

NIL 18.3 a 1.0 ab 1.2 b 2.2 e 3.4 e 2.7 b 10.5 d 

(P)N4Y 8.1 a 0.5 a 0.4 a 0.5 a 0.7 a 0.7 a 2.7 a 

(P)N2Y 7.5 a 1.2 b 1.3 b 1.1 b 0.7 a 0.7 a 4.9 b 

(P)NlY 28.5 a 2.9 e 1.0 ab 1.4 b 1.4 b 1.2 a 8.0 e 
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Table 3.10 C/N ratios of soil for various treatments under P. radiata. Letters 
indicate significant difference between treatments (~ < 0.05). 

Treatment 

NIL 
(P) 
(P)N4Y 
(P)N2Y 
(P)NlY 
P2YN2Y 

a. 

4.20 d 

4.00 

3.80 

:a 3.ao 

3.40 

3.20 

3.00 

b. 

250 

....... 
~:.ei 200 

Cl 
.§. 
Cl 150 
:ii 
QI :a 
: 100 
Cl c 
111 
.c 
~ 50 

0 

. 

Nil 

c 

. 

. 

. 

Nil 

0-10 
23.1 a 
28.6 ab 
34.6 b 
28.2 ab 
25.9 ab 
41.4 b 

d 

(P) 

b 

(P) 

Soil Depth (cm) 
10-20 20-30 30-40 40-50 

30.1 a 18.9 a 14.9 a 13.6 a 
33.0 a 30.3 a 22.4 a 18.0 a 
28.0 a 32.0 a 21.3 a 17.6 a 
37.5 a 25.2 a 21.1 a 16.4 a 
24.7 a 20.5 a 17.2 a 11.2 a 
41.0 a 25.1 a 24.3 a 16.3 a 

c c 
~ 

-
b 

a 
~ 

(P)N4Y (P)N2Y (P)N1Y P2YN2Y 

Treatment 

b b 

a 
a 

(P)N4Y (P)N2Y (P)N1Y P2YN2Y 

Treatment 

Figure 3.4 Soil (a) average pH for 0-50 cm of mineral soil and (b) sum of 
exchangeable Mg in the top 50 cm, for various treatments ofN and P. 
Letters indicate significant differences between treatments p < 0.05. 
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3.6.2 Ferroso/ planted with E. regnans 

3.6.2.1 Growth and Plantation Health 

Increasing amounts ofN plus P fertilisation resulted in increasing volume growth 

(Figure 3.5). Volume growth doubled, from age 5 years to age 19 years, from 6 m3 ha-

1 PAI in the NIL treatment to 14 m3 ha-1 PAI in the Pl YNl Y treatment. Total volume 

growth obtained during the 15 years, as a response to the quantity of fertiliser applied, 

showed a decrease in response with annual compared to biannual applications (Figure 

3.5). 
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Age (years) 

Figure 3.5 Growth of E. regnans unfertilised or fertilised with N plus P, annually, 
two yearly or four yearly, following initial application at age six years. Bars 
indicate LSD between treatments (p = 0.05). 

Significant volume growth increases compared to the NIL treatment due to annual N 

plus P fertilisation occurred after 300 kg of N ha-1 had been applied in both Pl YNl Y 

and P2YN2Y treatments, at ages eight and ten years, respectively. Beyond ten years 

of age there was no significant increase in volume growth between the P 1 YNl Y and 

P2YN2Y treatments. Treatment P4YN4Y did not significantly increase volume 

growth from the NIL. From ages 14 to 19 years the average PAI' s for NIL and the 

average of the three levels ofN fertilisation were 10 and 21 m3 ha-1 yr-1, respectively. 
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The factorial experiment showed that there was strong growth response to applied N, 

at the rate of 700 kg N ha-1
, but no response to applied P, at the rate of 322 kg P ha-1

, 

during the experimental period and no interaction between N and P (Figure 3.6). 
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Figure 3.6 Growth of E. regnans fertilised with factorial combinations of N and 
P, applied two yearly following initial application at age six years. Bars 
indicate LSD between treatments (p = 0.05). 

Visual assessment of E. regnans health is difficult in older stands and was not 

undertaken in this experiment. Foliar N and P concentrations varied throughout the 

sampling times. In general, foliar N concentrations ranged from 1.09 to 1.40 % 

between treatments, though this was not significant {Table 3.11). In eucalypts, foliar 

deficiency levels for N is suggested as < 1.1 % and at < 0.1 % in P (Reuter and 

Robinson, 1997). The foliar concentrations ofN and P remained marginal throughout 

the experiment, except for the P concentration in the P2Y treatment. Despite higher 

foliar P content in P2YN2Y, (0.16 % Pat ages 14 and 20 years) this treatment did not 

produce more growth than N2Y (foliar P content of 0.10%). This higher P content 

resulted in a significantly higher NIP ratio for N2Y, varying over the four sampling 

periods from 16.1to18.6, compared to NIP ratios of7.3 to 12.3 forP2YN2Y. Neither 

foliar Ca nor foliar S concentrations reflected differences in quantities of these 

nutrients applied in various treatments. Foliar Ca concentrations were high, ranging 

from 0.5 % to 1.0 %, while S concentrations were in the range considered adequate, 

falling between 0.11 % to 0.14 %. 
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Table 3.11 Foliar nutrient concentrations for N and P for various treatments 
following initial treatment at age six years in E. regnans. Letters indicate 
significant difference between treatments (~ < 0.05). 

Age (Years) 

Treatment 10 12 14 20 

Foliar N % 

NIL 1.38 a 1.26 a 1.15 ab 1.30 a 

P4YN4Y 1.28 a 1.22 a 1.09 a 1.38 a 

P2YN2Y 1.31 a 1.23 a 1.17 ab 1.28 a 

PlYNlY 1.34 a 1.27 a 1.24 ab 1.20 a 

N2Y 1.40 a 1.30 a 1.29 b 1.24 a 

P2Y 1.36 a 1.20 a 1.18 ab 1.21 a 

Foliar P % 

NIL 0.10 ab 0.08 ab 0.10 ab 0.10 a 

P4YN4Y 0.10 ab 0.09 ab 0.12 ab 0.15 b 

P2YN2Y 0.11 b 0.10 b 0.16 b 0.16 b 

PlYNlY 0.16 c 0.14 b 0.14 b 0.17 b 

N2Y 0.08 a 0.07 a 0.08 a 0.07 a 

P2Y 0.19 c 0.13 b 0.24 c 0.23 c 

Ratio NIP 

NIL 13.9 b 16 a 11.7 a 13.2 b 

P4YN4Y 12.9 b 14 a 9.2 a 9.5 ab 

P2YN2Y 11.4 ab 12 a 7.4 a 7.8 a 

PlYNlY 8.6 ab 9 a 8.6 a 7.2 a 

N2Y 17.3 b 20 a 15.9 a 17.4 b 

P2Y 7.3 a 9 a 5.0 a 5.2 a 

3.6.2.2 Fertiliser effects on the soil profile, soil pH and soil chemistry 

The heaviest fertiliser treatment, Pl YNl Y, resulted in a significant increase in the 

mass of both the 01and02 horizons compared to NIL (Figure 3.6). The mass of the 

litter layers increased from 28 t ha-1 in NIL to 102 t ha-1 in Pl YNl Y. The greatest 

increase occurred in the 02 horizon, which increased from one cm and 14 t ha-1 for 

NIL, to six cm deep and 77 t ha-1 for Pl YNl Y. This contributed to an accumulation of 

nutrients in the 02 with significantly more N, P, Sand Ca in the annually fertilised 

treatment (Table 3.12). Nitrogen concentrations in the 02 horizon were 1.22 % in 

Pl YNl Y treatment, compared with 0.88 % in NIL. However, substantial variations 

often resulted in no clear significant differences in total N, organic C or C/N ratios in 

the soil (Table 3.13). 
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The 02 horizon in the NIL treatment contained 122 kg N ha-1 compared with 949 kg 

N ha-1 in the P 1 YNl Y. This seven-fold increase accounted for 60% of the N applied. 

However, the annually fertilised soil profile to a depth of 50 cm contained 

significantly less N than the NIL treatment. Soil mineral N was dominated by NILi +, 

with N03- commonly below detectable limits. Mineral N (NH/) content was 

significantly higher in the 02 horizon for P 1 YNl Y, than other treatments, while there 

were no significant differences in mineral N content due to N application in the upper 

50 cm of mineral soil (Table 3.14). 

Phosphorus application resulted in an increase in total P in the 02 horizon, although 

this was only significant at the highest rate of fertiliser application. Phosphorus also 

accumulated in the top 10 cm of the Ferrosol profile in the higher rates of P 

application. Significantly higher amounts of P were observed in the top 50 cm of all P 

fertilised soils. 
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Figure 3.7 Mass of litter 01and02 horizons (kg ha-1
) for various treatments 

under E. regnans. Letters indicate significant difference between treatments (p 
< 0.05). 
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Table 3.12 Nutrient content in litter and soil (kg ha-1
) for various treatments 

under E. regnans. Letters indicate significant difference between treatments (p 
< 0.05). 

Treatment 

Total N (kg ha-1
) 

Litter 

02 

NIL 122 

P4YN4Y 97 

P2YN2Y 190 

PlYNlY 949 

N2Y 78 

P2Y 237 

Total P (kg ha-1
) 

NIL 10 

P4YN4Y 14 

P2YN2Y 30 

PlYNlY 136 

N2Y 5 

P2Y 32 

Total S (kg ha-1) 

NIL 13 

P4YN4Y 11 

P2YN2Y 20 

PlYNlY 99 

N2Y 8 

P2Y 26 

Total C (kg ha-1
) 

NIL 

P4YN4Y 

P2YN2Y 

PlYNlY 

N2Y 

P2Y 
Total Ca (kg ha-1

) 

NIL 67 
P4YN4Y 61 
P2YN2Y 121 
PlYNlY 674 
N2Y 29 
P2Y 154 
Total Mg (kg ha-1

) 

NIL 24 
P4YN4Y 
P2YN2Y 
PlYNlY 
N2Y 
P2Y 

14 
28 
51 
10 
37 

Soil Depth 

0-10 10-20 20-30 30-40 40-50 

Soil Total 

0-50 cm 

a 2275 

a 1970 

a 2039 

b 1693 

a 2507 

a 2041 

a 357 

a 442 

a 654 

b 569 

a 359 

a 821 

a 520 

a 485 

a 560 

b 728 

a 447 

ab 350 

48113 

43785 

43470 

56726 

53802 

49014 

a 743 
a 459 
a 701 
b 866 
a 328 
a 1030 

ab 951 
a 661 
ab 625 
b 1098 
a 670 
ab 995 

b 2008 

ab 1908 

ab 1899 

a 1102 

b 1693 

ab 1166 

a 379 

ab 532 

cd 507 

be 385 

a 317 

d 330 

ab 485 

ab 579 

ab 637 

b 705 

a 381 

a 384 

b 1672 

ab 1526 

ab 1411 

a 933 

ab 1091 

a 902 

ab 296 

b 454 

ab 406 

ab 360 

a 235 

a 244 

ab 521 

ab 622 

b 685 

b 726 

a 369 

a 409 

a 841 

a 1209 

a 1087 

a 733 

a 1005 

a 753 

ab 257 

b 354 

ab 357 

ab 360 

a 209 

a 221 

ab 476 

b 605 

b 793 

b 797 

a 376 

ab 453 

a 665 

a 1046 

a 800 

a 616 

a 833 

a 665 

a 266 

a 372 

a 327 

a 380 

a 199 

a 228 

a 462 

ab 707 

b 831 

b 778 

a 391 

a 484 

a 7460 

a 7659 

a 7236 

a 5077 

a 7129 

a 5526 

a 1555 

a 2154 

a 2252 

a 2054 

a 1320 

a 1844 

a 2465 

ab 2999 

b 3506 

b 3733 

a 1964 

ab 2079 

b 

b 

b 

a 

b 

ab 

b 

e 

f 

d 

a 

c 

ab 

be 

c 

c 

a 

a 

a 35023 a 25270 a 14762 a 14013 a 137181 a 

a 35307 a 25960 a 18511 a 16225 a 139788 a 

a 43584 a 29353 a 21093 a 14160 a 151659 a 

a 22288 

a 39189 

a 27396 

ab 608 
ab 509 
ab 589 
b 602 
a 276 
b 463 

ab 1161 
ab 728 
a 764 
b 1191 
ab 676 
ab 1060 

a 18443 

a 29721 

a 19691 

a 548 
a 436 
a 384 
a 579 
a 215 
a 400 

ab 1223 
ab 743 
ab 776 
b 1298 
a 684 
ab 1103 

a 15404 a 12077 

a 18290 a 16225 

a 16446 a 13201 

a 467 
a 399 
a 352 
a 384 

a 388 
a 280 
a 266 
a 353 

a 124937 a 

a 157227 a 

a 125748 a 

a 2754 b 
a 2083 ab 
a 2292 ab 
a 2784 b 

a 235 a 255 a 1308 a 
a 307 a 271 a 2470 b 

b 1155 ab 1118 a 5607 ab 
a 924 
ab 899 
b 1545 
a 728 
ab 1225 

ab 865 
ab 908 
c 1496 
a 844 
b 1193 

a 3922 
a 3972 
a 6628 
a 3602 
a 5576 

71 

a 
a 
b 
a 
ab 



Table 3.13 C!N ratios of soil for various treatments under E. regnans. Letters 
indicate significant difference between treatments (~ < 0.05). 

Treatment Soil Depth (cm) 
0-10 10-20 20-30 30-40 40-50 

NIL 21.2 a 17.5 a 16.0 a 17.5 a 21.2 a 
P4YN4Y 22.2 a 18.6 a 16.9 a 15.2 a 15.6 a 
P2YN2Y 20.3 a 22.4 a 20.9 a 19.4 a 18.0 a 
PlYNlY 32.5 a 20.3 a 19.9 a 21.0 a 19.4 a 
N2Y 21.3 a 23.1 a 27.2 a 18.7 a 20.2 a 
P2Y 26.0 a 24.9 a 24.0 a 22.8 a 21.0 a 

Fertiliser treatments significantly reduced pH (1 :5 soil: water) by up to 0. 7 of a unit in 

the 0 - 50 cm soil depth and 0.6 of a unit in the 02 horizon (Table 3 .14). Higher rates 

of fertiliser N resulted in significantly lower soil pH. Treatments P2Y and N2Y also 

caused significant drops, which were of the same order as that resulting from 

P2YN2Y. In the 02 horizon, significant declines in pH occurred only at the highest 

fertiliser rate. At the highest rate, annual fertilisation resulted in an overall pH 

reduction from 4.6 to 3.9 units, with the greatest reduction occurring in the surface 

soil (Figure 3.8a). Reductions in the order of0.5 units were recorded throughout the 

entire soil profile, to the depth of 90 cm. 

Exchangeable Mg was also significantly reduced in the soil profile to a depth of 50 

cm in the N2Y treatment (Figure 3.8b) and in the surface 10 cm forPlYNlY (Table 

3.14). Significant differences were not observed in total Mg content (Table 3.12). 

Total Ca in the soil, to the depth of 50 cm, was significantly reduced by N2Y 

treatment, to 50 % of that in NIL. Base saturation was also substantially reduced due 

to fertilising, by 50 % to 60 % throughout the profile (Table 3.3c). There was no 

significant effect of N or P fertilisation on exchangeable K concentrations (Table 

3.14). 
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Table 3.14 Litter and soil pH and concentration of exchangeable Mg, Ca and K 
and total NH/ (kg ha-1

) for various treatments under E. regnans. Letters 
indicate significant difference between treatments (p < 0.05). 

Treatment Litter Soil Depth 

02 0-10 10-20 20-30 30-40 40-50 0-50 cm 
pH 
NIL 
P4YN4Y 
P2YN2Y 
PlYNlY 

4.8 be 
5.0 e 
4.9 e 
4.2 a 

N2Y 4.7 b 
P2Y 4.9 e 
Total Ex Mg (kg ha-1

) 

NIL 
P4YN4Y 
P2YN2Y 
PlYNlY 
N2Y 
P2Y 
Total Ex Ca (kg ha-1

) 

NIL 
P4YN4Y 
P2YN2Y 
PlYNlY 
N2Y 
P2Y 
Total Ex K (kg ha-1

) 

NIL 20 a 

P4YN4Y 12 a 

P2YN2Y 23 a 

PlYNlY 73 a 

N2Y 

P2Y 

Total NH/ (kg ha-1
) 

17 a 

27 a 

NIL 0.62 a 

P4YN4Y 0.16 a 

P2YN2Y 

PlYNlY 

N2Y 

P2Y 

0.3 a 

8.5 b 

0.25 a 

0.54 a 

4.5 
4.4 
4.0 
3.6 
4.0 
4.1 

3.3 
2.3 
1.5 
0.9 
1.2 
2.8 

5.6 
5.3 
8.8 
5.8 
3.1 

e 
be 
ab 
a 
ab 
b 

b 
ab 
ab 
a 
ab 
ab 

ab 
ab 
b 
ab 
a 

10.2 b 

0.8 a 

1.0 a 

0.8 a 

0.5 a 

0.5 a 

0.8 a 

7.85 a 

2.23 a 

4.88 a 

2.60 a 

4.17 a 

3.73 a 

4.6 b 
4.4 b 
4.0 ab 
3.8 a 
4.0 a 
4.2 ab 

3.4 a 
2.5 a 
1.9 a 
1.8 a 
1.5 a 
2.6 a 

5.7 a 
7.2 a 
7.6 a 
5.5 a 
3.0 a 
6.2 a 

0.8 a 

1.2 a 

1.0 a 

0.6 a 

0.6 a 

0.8 a 

4.6 b 4.5 b 
4.4 b 4.5 b 
4.1 ab 4.1 ab 
3.9 a 4.1 a 
3.8 a 3.8 a 
4.1 ab 4.1 ab 

3.2 a 2.3 a 
2.7 a 3.7 a 
2.0 a 2.6 a 
2.4 a 2.4 a 
1.6 a 1.8 a 
2.8 a 2.7 a 

5.3 a 3.4 a 
6.1 a 6.0 a 
5.7 a 5.9 a 
5.8 a 5.5 a 
2.6 a 2.9 a 
5.6 a 4.5 a 

0.6 a 0.3 a 

0.7 a 0.5 a 

0.7 a 0.7 a 

0.6 a 0.4 a 

0.6 a 0.5 a 

0.4 a 0.3 a 

Average 
4.5 b 4.6 e 
4.5 b 4.4 e 
4.1 ab 4.1 ab 
4.0 a 3.9 a 
4.0 a 3.9 a 
4.1 a 4.1 b 

Soil 
Total 

2.2 a 14.3 b 
3.4 a 14.7 b 
2.7 a 10.5 ab 
2.4 a 9.9 ab 
2.2 a 8.3 a 
2.9 a 13.7 b 

2.8 a 22.8 ab 
4.4 a 29.1 b 
4.6 a 32.6 b 
5.0 a 27.6 b 
3.3 a 14.9 a 
4.2 a 30.7 b 

0.2 a 2.7 a 

0.5 a 3.9 a 

0.6 a 3.9 a 

0.5 a 2.7 a 

0.5 a 2.6 a 

0.3 a 2.5 a 

12.91 b 

11.13 b 

6.79 ab 5.98 a 5.10 a 38.63 b 

9.45 b 5.27 a 3.57 a 31.65 b 

5.17 ab 6.57 ab 4.58 a 3.43 a 24.62 ab 

3.17 a 4.25 ab 4.60 a 3.98 a 18.61 ab 

4.91 ab 4.80 ab 3.50 a 3.43 a 20.81 ab 

1.84 a 2.06 a 1.85 a 1.99 a 11.47 a 
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Figure 3.8 (a) Soil average pH levels over the depth of 50 cm and (b) sum of 
exchangeable Mg in the top 50 cm, for various N and P fertilisation 
treatments. 

3. 7 Discussion 

3.7.1 P. radiata plantation growth 

The soil type on which the P. radiata experiment was established was defined as P 

deficient, and large volume growth increases of P. radiata have been obtained on this 

soil type due to applications of P fertiliser (Neilsen et al., 1984). The constraint on P. 

radiata growth due to P deficiency, as measured by low P concentration in the 
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foliage, was addressed with two single applications of P, resulting in a three-fold 

increase in stem volume growth. These long-term growth responses are in agreement 

with the Type II response associated with moderate P applications (Snowdon, 2002). 

Single applications of P fertiliser have produced continued response for many years in 

a number of forest crops (Waring, 1969; Ballard, 1978; Gentle et al., 1986; Turner 

and Lambert, 1986; Comerford et al., 2002; Turner et al., 2002). 

Rates of N mineralisation depend greatly on climate, and in cool-temperate forests 

these are low, sometimes less than 10 kg N ha-1 yr-1
• Low rates ofN mineralisation 

mean that high growth rates could be achieved only through fertilisation (Binkley and 

Hart, 1989; Jacobson and Pettersson, 2001). The site used for this research is not 

uncommon with low native soil nutrients. Such problems will become more common 

as soil organic matter declines with production above sustainable levels. Economic 

plantation growth cannot be sustained from native soil N alone. Large growth 

responses resulting from applied N fertiliser could be sustained by further fertiliser 

additions, recycling of N within the trees, or supply from mineralisation of 

accumulated soil N (Neilsen et al., 1992). Growth responses from application ofN 

fertiliser are often short lived and considered a Type I growth response, however 

multiple applications ofN can result in long-term responses simulating a Type II 

response, as seen in this study. In this study, N application to a P. radiata plantation 

yearly, every second and every fourth year through 15 years resulted in improved 

growth increases that depended on the amount ofN applied. Nitrogen application at 

the highest rate almost doubled the plantation production from 192 m3 ha-1 with P 

only to 344 m3 ha-1 on this site during the 15 years of the research. This was in 

agreement with the large volume increase in P. radiata from annual and periodic N 

application observed in a number of field experiments (Raison et al., 1990; Neilsen 

and Lynch, 1998). The total growth showed lower fertiliser response efficiency with 

annual application compared to applications every second or fourth year. Once the P. 

radiata stand was carrying full canopy, applications every fourth years were sufficient 

to maintain growth. This four-year period has provided the opportunity to develop a 

viable fertilising program. For economic return on investment in Tasmania, plantation 

growth in excess of 20 m3 ha-1 mean annual increment MAI, and probably 25 m3 ha-1 
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(MAI), are required. Many soils have low organic matter levels and meeting these 

growth rates requires fertiliser additions. 

Reduced volume growth rates in the annually fertilised trees beyond 29 years of age 

may reflect the limited water availability at this site, as soil water availability was 

significantly reduced under fertilised trees compared to unfertilised trees (Chapter 4). 

Raison et al. (1990) also observed moisture deficits in a low rainfall area reduced the 

growth of 10-year-old P. radiata plantations growing on podzolic soil. During the 

four-year growing period studied, they observed an overall 24 percent increase in 

volume due to N application, but no growth during a drought period. In addition, 

Crane and Banks (1992) observed the greatest response to N fertilisation in low 

rainfall plantations occurred when irrigation treatments were included. Annual rainfall 

was highly variable between years at this site and this is discussed in Chapter 4. 

3.7.2 P. radiata stand health and foliar nutrient concentrations 

Various authors have addressed the effect of repeated fertiliser applications on growth 

and sustainability issues (Nohrstedt, 1990; Tamm and Popovic, 1995; Nohrstedt et al., 

2000). In this study, under P. radiata all N application resulted in improved health 

and volume growth increases, dependent on the amount of N applied. 

Foliar P concentration in P. radiata reflected the increase in P availability when P was 

applied. Increases in volume growth in the P. radiata were accompanied by rapid 

increases in stand health. Enhanced overall stand health and needle biomass 

observations are common after N application to P. radiata previously showing severe 

nutrient deficiencies (Fagerstrom and Lohm, 1977; Hunter and Hoy, 1983; Neilsen et 

al., 1984; Neilsen et al., 1992). In this study, P application alone resulted in dead 

tops recovering, but other symptoms were only relieved when N was also added. 

After fertilisation, N concentrations rapidly increase to a maximum within a year or 

two and subsequently decline (Fagerstrom and Lohm, 1977; Hunter and Hoy, 1983; 

Crane and Banks, 1992). Reduced volume growth response to N application after 

three to four years are also reflected in declining foliage N concentrations. 
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Foliar nutrient concentrations varied between years, independent of fertilisation. 

Foliar nutrient concentrations can be influenced by many factors including seasonal 

differences, soil moisture availability and time since fertilising (Nason et al., 1990). 

The periodic foliage sampling in this study made it difficult to assess pluses in 

nutrients due to fertilisation and uptake and retranslocations in the tree. Half to two­

thirds of the nutrients required for the new foliage production may result from 

retranslocation from older foliage (Miller, 1981; Lim and Cousens, 1986). Such 

retranslocation from foliage was observed in the spring by Fife and Nambiar (1997) in 

six to ten year old P. radiata, but not until late summer and autumn by Crane and 

Banks (1992) in ten year old P. radiata. 

Foliar nutrient concentrations are considered good indicators of tree health (Woolons 

and Will, 1975; Dell et al., 2002). In P. radiata deficiency symptoms were associated 

with low nutrient concentrations. Phosphorus concentrations before treatment, at age 

17 years, were well below levels considered deficient (Neilsen et al., 1984), and 

throughout the experiment NIL trees remained at these low levels. However, 

limitations of foliage analysis in predicting volume growth response have been 

observed previously. For example, Benson et al. (1992b) observed that there was little 

similarity between patterns of stem growth in P. radiata and N concentration in the 

foliage. Hunter and Hoy (1983) suggested that foliage responses to N fertiliser were 

better expressed in terms of needle growth rather than needle N content. However in a 

study of young P. radiata stands ( 4 to 5 year old), Hunter et al. (1987) indicated that 

foliar N and needle mass could be used to estimate stem volume increments. 

3.7.3 Nutrient distribution in soil and 02 horizons 

Litter plays an intricate role in the cycling of nutrients in forests. To improve the 

understanding of the effects of fertilising on nutrient cycling in plantations it is 

necessary to quantify the extent to which fertilising increases the turnover of nutrients 

through the litter layer. At sites with low nutrient content in the mineral soil, litter 

quality, as measured in terms of C: N ratio, can be highly correlated with tree volume 

growth (Smith et al., 2000). The form and species oflitter also has a strong influence 
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on N mineralisation (Adams and Attiwill, 1986; Gower and Son, 1992; Prescott et al., 

1993; Prescott and Preston, 1994). 

With fertilisation, the litter layer constitutes a large and significant source of 

mineralisable nutrients. This was evident in this research. Applications ofN at the 

highest rate resulted in significant increase in 02 biomass, with N mass doubling in 

the 02 horizon. This was in agreement with work in a range of forest stands that have 

shown increased forest floor organic matter production and N mass due to N 

fertilisation (Nohrstedt, 1990; Theodorou and Bowen, 1990; Neilsen and Lynch, 

1998). In P. radiata, Baker et al. (1986) reported a stand fertilised with 960 kg N ha-1 

during 10 years, which had 15 t litter ha-1 (containing210 kg N ha-1 and 18 kg P ha-1
) 

compared to unfertilised plots with 6 t litter ha-1 (containing 57 kg N ha-1 and 12 kg P 

ha-1
). Under P. radiata, Fife and Nambiar (1997) observed, prior to canopy closure, 

litter amounts increased with increasing N application rates. An increase in litter 

production of75 % was also accompanied by an increase in N concentrations in the 

litter and foliage. This contrasts to this study, where inconsistent foliar concentrations 

were observed. 

3. 7.4 Changes in cations and pH under P. radiata 

Changes in the soil acidity occurred after long-term N additions as ammonium 

sulphate. There was a general trend of decreasing pH with increasing N application, 

with the maximum decline of 0.6 units in the (P)Nl Y treatment. Extensive research in 

temperate ecosystems across Northern America and Europe have shown that N inputs 

both due to atmospheric deposition and fertilisation can lead to soil acidification, 

depletion of base cations and increased availability of potentially toxic Al (Matson et 

al., 2002). Acidification has also been reported for many agricultural soils in Australia 

(Porter et al., 1995). 

In the fertilised Kurosol, significant pH changes occurred to at least 50 cm, associated 

with low organic matter and nutrients. Soil pH declines were greatest in the subsoil 

(20-50 cm) with decreases up to 1 unit. In several studies and reviews significant pH 
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decreases, ranging from 0.5 to 1.9 units, in soil solution of subsoil have been 

determined (Vestgarden et al., 2001; Paul et al., 2003a). Smethurst et al. (2001) noted 

the relationship between the rate of N application and pH decline in the soil solution 

was predominantly linear or log-linear, and was effected by the amount of 

fertilisation, rather than the timing of applications. Nitrogen uptake by plants has been 

attributed to the development of acidic subsurface soil layers (Paul et al., 2003a). 

Because of the fertilisers used here, single-superphosphate and ammonium sulphate, 

large amounts of S, up to 1.7 t ha-1
, were applied to the plot. While superphosphate 

has little impact on active acidity, ammonium sulphate is known to induce soil 

acidification though the dual impact of nitrification and sulphate and cation leaching. 

Additions of elemental S and dilute sulphuric acid have been used as a means of 

acidifying soil for experiments in Europe (Tamm and Popovic 1995). Soils differ in 

their ability to buffer added S (Binkley et al., 1988). 

In a study using similar rates ofN fertiliser in Sweden, Tamm and Popovic (1995) 

observed that application of 1080 kg N ha-1 (plus 200 kg P ha-1 and 384 kg K ha-1
) 

during 14 years, decreased the pH in the 5-20 cm soil layer by 0.5 pH units, but 

increased the pH in the litter. In that study, both urea and ammonium nitrate were 

found to acidify the soil but only at 74 kg N ha-1 yr-1 or more. At lower amounts (37 

kg N ha-1 yr-1
) pH decline only occurred when N was combined with P and K 

fertilisers at application. Khanna et al. (1992) observed pH changes of 0.8 units in 

KCl within one year ofNPK fertilisation (ammonium sulphate, 400 kg N ha-1
, 

superphosphate, 100 kg N ha-1 and potassium sulphate, 10 kg N ha-1
). In the current 

study, application occurred at constant amounts and there was still a significant 

reduction in pH in the intermediate treatments. In addition, the pH in the litter under 

P. radiata, sampled four years after the final fertilisation had significantly decreased 

due to N application. 

Results from research on the effects of various types and rates ofN fertilisers on soil 

pH have varied. Minor changes in pH of 0.2 to 0.3 units have been observed due to 

large and or long-term applications of urea and ammonium nitrate (Nahrstedt, 1990; 
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Homann et al., 2001). However, Nohrstedt (1990) noted that ammonium nitrate 

application did not result in any clear and persistent signs of soil acidification, nitrate 

leaching or change in base cations availability. Nohrstedt et al. (2000) also observed 

that 13 years after multiple applications of urea to Norway spruce Picea abies (L.), up 

to a total rate of2400 kg N ha-1
, had no significant effect on pH measured in the 

humus and mineral soil (to a depth of 10 cm). These results contrast with the 

significant long-term changes observed in this study, where fertilisation every fourth 

year resulted in a pH reduction of0.3 units throughout the profile (0-50 cm). 

Soil profile analysis (Table 3.lc) indicated that annual fertilisation substantially 

increased soil acidity increasing the levels of exchangeable W to a total depth of 

50cm. Assuming all NH/ added from the 1300 kg N ha-1 (ammonium sulphate) was 

converted to N03-, a total of 378 kmol H+ ha-1 would be produced. Uptake of mineral 

N was calculated in fertilised topsoil at a rate of 82 kg N ha-1 (Chapter 4), which is 

equivalent to the consumption of 5.6 kmol H+ ha1yr-1 or 72 kmol W ha-1 in total over 

thirteen years. Comparing the fertilised and unfertilised Kurosol topsoils indicates that 

the cation exchange capacity increased from 16.9 to 23 .9 meq 100 g-1
, while base 

saturation declined from 16% to 5% (Table 3.lc). The BS% reduction may have 

resulted from the leaching of cations in association with the added sulphate ions. If 

the increased cation exchange capacity was utlised by H+ ions this could account for 

114 kmol H+ ha-1 of the available W, while the measured reduction in BS% would 

account for a further 137 W ha-1 on the exchange complex. Therefore, the increase in 

CEC and the decrease in BS% alone could adsorb 67% of the H+ added by 

ammonium sulphate fertilisation. These calculated estimates assume full nitrification 

of the ammonia ions after fertiliser addition, however, low to negligible amounts of 

nitrate were measured in soil solution and may account for the lower measured 

change in H+ ion concentration on the exchange complex of29 kmol W ha-1 (ten-fold 

less than estimated based on full nitrification of added fertiliser). 

In the Kurosol, high rates of N application significantly reduced exchangeable Mg by 

half throughout the entire profile. Such reductions were also observed in total Mg and 

Ca content, but due to large spatial variations these were not significant. The 

depletion of Mg in the profiles was most likely due to uptake by the forest crop and 
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transfer to the litter, rather than depletion by leaching, associated with N movement. 

Leaching of Mg and significant reductions of Mg in surface soils due to fertilisation 

with ammonium sulphate have been observed (Khanna et al., 1992). Exchangeable 

magnesium is considered to be in low supply when less than 10 µe. g-1 soil or when it 

constitutes less than 6 % of the CEC, and is considered in plentiful supply at values 

greater than 30 µe. g-1 soil (Metson, 1974). These soils therefore have adequate Mg 

levels for growth. However, low Mg content in some acidic Tasmanian soils has been 

identified (Neilsen and Dredge, 1999), and given the dramatic reduction of Mg 

measured in this study any proposals to increase plantation production through 

fertiliser use need to address possible reduction in soil Mg content in future rotations. 

The low pH levels measured in these soils indicate that Mg deficiency could well 

arise. Low levels of foliar Mg and associated indications of deficiencies are now 

present on 2nd rotation sites on Kurosols in the area studied. 

Base saturation was greatly reduced due to fertilisation. Annual N application 

decreased base saturation by one third throughout the entire profile. Many 

experiments in Europe and Northern America have shown decreases in exchangeable 

Ca and Mg in the soil profile. Such losses in base cations associated with N 

application and timber harvesting, have been linked to declines in forest health and 

productivity (Watmough and Dillon, 2003). 

3.7.5 E. regnans plantation growth 

Large increases in E. regnans stem volume growth due to N fertilisation in this study 

indicate that the site was limited by N availability. Volume growth at the highest rate 

of fertilisation was more than double that of the unfertilised. In contrast, there was no 

measurable response to P alone or when applied in combination with N. Eucalypt 

plantations response to later age N and P addition are variable and site specific 

(Cromer et al., 1981; Weston et al., 1991). Ward et al. (1985) only found responses in 

height growth to N and P in combination and no response to P applied alone. In 

contrast, N fertilising and thinning experiments in E. regnans, have shown only a 

small increase in diameter following urea application at 460 kg N ha-1 and no 

significant increase in volume (Messina, 1992). In the current study, the lack of 
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growth response to P application in the E. regnans plantation indicates that P was not 

limiting growth at this site. Crane (1978) also noted that response to Pin the field 

were rare. When P is adequate, little or no response to P fertilisation are observed 

(Fisher and Garbett, 1980; Raison et al., 1990; Raison and Myers, 1992). Ferrosols, 

due to their high levels of iron oxyhydroxide, have a very strong P fixing capacity 

(Smethurst et al., 1998). The low pH of these soils between 4.5 and 3.5 and would 

also have increased the association of P with Fe and AL The dolerite based soils in the 

Southern Forests in Tasmania can have P sorption maxima in the order of 3000 ppm. 

Available P levels, measured by methods such as dilute acid fluoride, are generally 

around 1 to 3 ppm. A paste extract developed by Mendham, et al. (2002) been found 

to be useful for Ferrosols on basalt, but it has not been fully evaluated for the dolerite 

based soils. In P. radiata plantation in south-eastern Australia, applications of at least 

120 kg P ha-1 were required to increase growth on strongly fixing soils (Hopmans and 

Flinn, 1998). Turner and Lambert (1983) indicated that fast growing species of 

eucalypts remove less P than P. radiata. Baker and Attiwill (1985) also observed that 

P. radiata had a greater absolute requirement for P than Eucalyptus. Measures of 

available P have been shown to be weak indicators of potential growth in Australian 

Eucalyptus forests due to the activity of mycorrhizal fungi associations while pines do 

respond (Attiwill and Leeper, 1987). However, P responses have occurred in these 

soils with alternative Eucalyptus species (Paul Adams pers. corn.). 

Growth response to N and P fertiliser may depend on several other factors including 

pest control (Flinn et al., 1979a). The low MAI of the most productive treatment in E. 

regnans in the current study could be partially due to continued insect attack by 

Cyrsoptharta bimaculata (Oliver) (Leon, 1989; Elliott et al., 1993; Neilsen, 1996). 

These attacks have occurred frequently through the experiment (Leon, 1989). There 

is some evidence that high P treatments may have been more severely browsed, with 

significantly more leaf area removed ( 40 % compared to 25 % ) in the treatments with 

lower P foliar concentration at age 12 years (W. Neilsen pers. corn.). In Tasmania, 

reductions in growth due to insect defoliation of up to 44 % have been observed in 6-

year-old E. regnans plantations (Elliott et al., 1993). However, E. regnans have some 

of the highest reported productivity in Australia(> 30 m3 ha-1yr-1
, over 20-30 year 
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rotations) (Weston, 2001). The results indicate that N fertiliser response will occur 

despite this defoliation. However, some distortion of the results is possible. 

3.7.6 E. regnans stand health and foliar nutrient concentration 

This study showed no correlation of growth response with foliar N content. This is in 

agreement with the findings of Judd et al. (1996), but contrary to those of Ballard 

(1978). Even at applications ofN totalling 2180 kg ha-1 during a period of six years, 

Birk and Turner (1992) observed little increase in foliar N concentrations. Numerous 

authors have associated variations in growth response and foliar nutrient 

concentrations due to patterns of rainfall soon after treatment (Heilman et al., 1982; 

Nason et al., 1990; Benson et al., 1992b). 

Accumulation of Pin E. regnans foliage also suggested P was not the limiting factor. 

When limited by other factors, trees are capable of accumulating P, as inorganic P, 

beyond the immediate tree requirement (Bennett et al., 1997). Evidence of such 

response was seen in the accumulation of Pup to 300 percent in young E. globulus 

Labill. plantations (Hooda and Weston, 1999). Attiwill (1980) showed that in mature 

E. obliqua, 46 % of the demand for P was met by internal cycling. This efficient use 

of P by eucalypts could mean that P supplied in fertilisers would also be efficiently 

recycled and prolong any response. When N was applied, but not P, growth was as 

good as when both N and P were applied. This was despite low foliar P levels of 0.07 

to 0.08% and an NIP ratio of 17, compared with foliar P levels of0.16% and an NIP 

ratio of 8 after P fertilisation. This suggests that the requirements for P in E. regnans 

may be lower than indicated in other eucalypt species (Dell et al., 2002). Hopmans 

and Flinn (1987) observed that growth of P. radiata was limited by P deficiency 

growing on strong P-fixing soils, as indicated by marginal P levels in foliage, even 

after the application of 240 kg P ha-1
• 

3.7.7 Nutrient distribution in soil and 02 horizons 

In this study, at the highest rate of fertilisation, N, P, S and Ca all accumulated within 

the 02 horizon. Nitrogen in the fertilised treatments was concentrated in the 02 
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horizon, the mass of N increased by seven fold due to annual fertilising, equivalent to 

over 60 % of the N applied. The thicker 02 horizon and higher N concentration in 

that layer combined to form a significant nutrient pool. This is in agreement with 

work in a range of forest stands that have shown an increase in litter production and N 

litter mass due to N fertilising (Hunter and Hoy, 1983; Nohrstedt, 1990; Theodorou 

and Bowen, 1990; Neilsen and Lynch, 1998; Maier and Kress, 2000). Decomposer 

organisms are more active and abundant on surfaces, which results in more activity in 

the finer 02 litter layer, than the 01, and an increase in the availability of inorganic 

nutrients at the interface between the soil and 02 horizon (Paustain et al., 1997). 

In a review of 19 experiments across the United States and Europe, Fenn et al. (1998) 

also notes the importance of soil retaining N, with the majority oflabelled N applied 

in experiments being retained in the soil and litter layer. In contrast, in a warm 

temperate climate in New Zealand high rates of forest floor organic debris breakdown 

in E. regnans resulted in low amounts of accumulation of 4. 7 to 11.0 t ha-1 (Frederick 

et al., 1985), compared to the 102 t ha-1 in the annual fertilisation treatment in this 

study. 

Accumulation of Pin the litter occurred and was significant at the highest rate ofN 

application, whether P was supplied independent ofN or not. Phosphorus also 

accumulated in the Al horizon. Turner and Lambert (1986) observed that a single 

application of P fertiliser (100 kg P ha-1
) to P. radiata 30 years previously resulted in 

P accumulation in the litter, which doubled as did Ca, Mg and K, together with a 

three-fold increase in litter mass. The accumulation ofN and P in the litter results in a 

long-term increase in productivity (Type II response) at this site from multiple 

fertiliser application. 

3.7.8 Changes in cations and pH under E. regnans 

Changes in the soil pH occurred after long-term N additions as ammonium sulphate. 

At the highest application rates soil pH declined throughout the profile (0-50 cm) by 

greater than 0.6 pH units. Generally soil pH declines increased with the rate of N 

application. In contrast to the Kurosol, declines in soil pH were most pronounced at 

the 0 to 30 cm depth (0.9 pH units) in the annually fertilised soil. Although there was 
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a substantial pH decline of 0.6 units in litter fertilised at the highest rate, there was no 

significant difference between the unfertilised and intermediate fertilisation rates. The 

reduced pH decline at this site may be associated with an increased capacity for base 

cation cycling in the tree and litter systems. The addition of plant residues leads to an 

initial increase in soil pH through the association of organic anions and the biological 

oxidation of these anions to C02 (Paul et al., 2003a). This Ferrosol soil also had a 

higher clay content and CEC and hence buffering capacity than the Kurosol soil. 

Bromfield et al. (1983) noted that soil parent material, soil texture and hence the 

buffering capacity changes the rate of pH decline and tends to decrease in the 

following order: granite > sedimentary >basalt. This was evident in these soils where 

the rate of pH decline was similar in the annually fertilised soils from both sites, while 

intermediate fertiliser rates did not affect the more highly buffered Ferrosol. 

The rate and prominence of pH change has previously been noted to be extremely 

variable, dependent on the site and rate and type of fertilisation. The application of 

urea can effect the pH of agricultural soils as strongly as ammonium sulphate and 

ammonium nitrate (Porter et al., 1995). In comparison, a range of sites in Tasmania 

where fertiliser was applied were examined. In an E. globulus plantation in northern 

Tasmania, on a Yellow Kurosol formed on Silurian-Devonian siltstone, the highest 

rate of N fertiliser, applied as ammonium sulphate, dropped pH throughout soil to a 

depth of 50 cm by 1 pH unit (Bill Neilsen pers. corn.). In another research area in 

northern Tasmania, on a Yellow Kurosol formed on Precambrian sandstone, 

application of triple superphosphate at the rate of 70 kg P ha-1
, or application of urea 

for three years at the rate of 100 kg N ha-1 yr-1
, had no effect on soil pH. However, 

the application of the two combined significantly reduced soil pH by 0.2 of a unit to 

50 cm depth. Doubling the rate of urea for three years (200 kg N ha-1 yr-1
) 

significantly reduced soil pH by 0.33 of a unit (Paul Adams pers. corn.). On a similar 

soil to the P. radiata site, fertilising with 1346 kg N ha-1 during 12 years, mainly as 

urea, did not significantly reduce pH (Neilsen et al., 1992). It appears that urea, at 

moderate application rates, could have a lesser impact on soil pH than ammonium 

sulphate. 
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Phosphorus treatments also had significantly lower soil pH, compared to NIL. 

However, there was no cumulative effect of N and P fertiliser in combination. This is 

contrary to research in agriculture where generally pH decline in cropping soils is not 

associated with application of P fertilisers (McGarity and Storrier, 1986). For 

example, in an agricultural cropping soil, application of superphosphate at similar 

rates to this study (45 to 60 kg ha-1 yr-1 during 7 years) in general had no effect on pH 

in the top 7 .5 cm of agricultural soil (Manoharan et al., 1995). 

Reductions in exchangeable Mg due to fertilisation were significant and in the surface 

soil there was a depletion of exchangeable Mg by over one third. This was not 

associated with a significant decline in total Mg content. Base saturation was also 

greatly reduced due to annual fertilisation by one third in the Al horizon. 

The ample supply of P and Ca through regular superphosphate applications at this site 

produced an excess in some treatments. Even when applied in excess at this relatively 

high rainfall site there was no evidence ofleaching of these elements. In contrast, the 

application of N alone significantly reduced the total Ca available in the top 50 cm of 

soil, compared to the NIL. High rates ofN application to the Ferrosol generally 

doubled exchangeable Al throughout the profile. Below a pH of 4.2 Al is more 

rapidly released into the soil solution due to aluminium hydroxide buffering more 

acidic solutions (Matson et al., 2002). Increased Al availability results in inhibited 

root growth and reduced uptake of Ca (Flinn et al., 1979b ). This may be partially 

responsible for the lack of treatment response in foliar and litter Ca concentrations. 

3.8 Conclusion 

Plantation productivity can be increased substantially through periodic fertilisation. 

This study has shown substantial responses to N fertiliser, applied as ammonium 

sulphate at two diverse sites, 

• Volume growth of both stands doubled with annual applications ofN fertiliser at 

100 kg N ha-1 yr-1 (totalling 1300 kg N ha-1
). 
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• Although applications every second and fourth year produced less response, these 

treatments had better fertiliser-use efficiency. In both plantations fertiliser 

application every second year produced similar growth to annual fertiliser 

application once 300 kg of N had been applied. 

• Two applications of P fertiliser, as superphosphate, totalling 144 kg ha-1 produced 

substantial increases in P. radiata volume growth. 

• ill contrast, applications every second year of N and P together to E. regnans 

resulted in no volume growth difference when compared to N only. This may 

relate to several edaphic factors or to the Eucalypts capacity to scavenge P from a 

deep P-fixing soil. Eucalyptus species have a lower absolute requirement for P 

than P .radiata (Baker and Attiwill, 1985). 

Nutritional management of plantations requires information on soil and site 

characteristics, and clear guidelines on where fertilisers are needed, when to apply 

them, what products to apply and at what rates. While information of this type is 

available, much of it is restricted and not reliable across sites and regions. The 

proposition to use fertilisers to lift the performance of plantations on soils of low 

productivity, as well as the productivity of many satisfactorily performing plantations, 

needs to be carefully monitored. The effects of fertilisers on soil pH are site specific 

and varied, but are substantial and progressive. This was seen at both sites with, 

• Significant reductions in soil pH at both sites, of about 0.6 of a unit, associated 

with the highest rates of fertilising. In the Ferrosol the greatest reduction was at 

the surface, while the greatest reduction was 20 to 50 cm in the Kurosol. ill the 

Ferrosol reductions also occurred with both nitrogenous and phosphatic fertilisers. 

• At both sites the reduction in active acidity was matched by reductions reserve 

acidity as indicated by lower base saturation in high N treatments. 

• Decline in pH was linear with quantity of fertiliser applied, although, in some 

cases, low rates had no effect. The Ferrosol soil also had a higher clay content and 

CEC and hence buffering capacity than the Kurosol soil. 
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• Substantial soil pH changes of 0.5 to 1.0 units throughout the soil profile pose 

serious long-term consequences for productivity directly and through reductions 

in exchangeable bases. Further evaluation of types of fertiliser and rates of 

application used in forestry will be needed to select those that will have no impact 

or at least minimise change. Some forest soils are particularly vulnerable to 

change with initial low pH and low buffering capacity as seen in the Kurosol 

profile. 

Long-term fertilisations altered the distribution of nutrients in the soil profile with 

concentration of some nutrients increasing in litter and surface soil horizons. However 

reductions in base saturation also highlight cation leaching and associated 

acidification. Reductions in exchangeable Mg were significant at both sites and the 

decline was associated with lower pH changes in these soils. Under P. radiata high 

rates ofN fertilisation reduced exchangeable Mg concentrations by half over the 

entire profile. The research highlights the balance needed between obtaining growth 

response and causing detrimental soil effects due to long-term fertiliser application. 

Increased N cycling retained in the tree, forest floor and surface soil is important 

when considering the management of sites for further plantation establishment. 

Removal of the litter layer and any surface soil due to clearing or burning could result 

in substantial reductions in the available nutrient pool. Replacement of these nutrients 

through long-term fertiliser additions could potentially cause significant pH decline 

over successive rotations. The role of long-term N fertilisation on the availability of 

mineral N for tree growth is investigated in the following Chapters. The important 

role of the litter layer in cycling nutrients in a forest system and options for 

minimising detrimental effects of fertilising on soil are discussed in Chapters 6, 7 and 

9. 
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Chapter 4. In situ rates of net nitrogen mineralisation in two 

Tasmanian forests after 13 years of annual fertilisation 

4. 1 Introduction 

Productivity is often limited in temperate forest ecosystems by low N mineralisation 

rates, which has led to N fertilisation programs in many countries including; New 

Zealand, Sweden, Canada, the United States of America, Australia and Portugal 

(Thomas and Mead, 1992a). Application ofN fertiliser at rates between 100 and 300 

kg ha-1 are common in commercial plantations and can contribute substantially to 

plant-available N (Johnson et al., 1980). Although the economic costs of fertilisation 

are often met by the increase in growth, overall recovery of N is commonly less than 

30 precent (Mead and Pritchett, 1975a; Heilman et al., 1982). Nitrogen fertilisation 

increases plant-available Nin topsoils for only a short period of time, even at rates as 

high as 600 kg N ha-1
, available N concentrations decline to pre-fertilised within two 

years (Smethurst et al., 2001). In contrast to the relatively short period ofN 

enhancement, plantation growth rate increases occur due to fertilisation for a period of 

up to ten years (Hunter and Hoy, 1983; Fife and Nambiar, 1997; Neilsen and Lynch, 

1998). 

Reports on long-term affects of fertilisation on N cycling in forest soil and subsequent 

N mineralisation vary greatly. Inconsistencies often reflect variations in site 

characteristic and fertiliser-application management (Aggangan et al., 1998) and 

limitations when measuring NNM (Adams et al., l 989b ). However, increased NNM 

in forest soil due to N fertilisation have been measured both during laboratory and 

field incubations (Johnson et al., 1980; Hingston, 1984; Aarnio and Martikainen, 

1995), up to six years after application (Smolander et al., 1998). 

Rates ofNNM in temperate forest are often low (Adams et al., 1989b). In Tasmania 

annual rates ofNNM in mature eucalypt forests range between 16 and 51 kg N ha-1
, 

and in young eucalypt plantations between 13 and 188 kg N ha-1 (Wang et al., 1998; 

Moroni et al., 2002). In P. radiata plantations growing in southern Australia Carlyle 
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et al. (1998a) observed in situ NNM rates between 16 and 74 kg N ha-1 yr-1
, while 

Theodorou and Bowen (1983a) estimated rates around 50 kg N ha-1 yr-1
• 

Effects oflong-term N fertilisation on N mineralisation rates in the Tasmanian climate 

have not been studied. In this study, the effect of long-term N or N plus P fertilisation 

on in situ rates ofNNM in underlying Ferrosol and Kurosol topsoils were examined. 

Seasonal variations at these sites were also examined to determine maximum and 

minimum rates of NNM and establish the optimum sampling times to assess NNM in 

these environments. Annual rates and seasonal variability in NNM were measured 

using in situ cores. 

4.2 Methods 

4.2.1 Site selection 

Site and soil profile descriptions are provided in detail in Chapter 3 (Section 3.2). 

Therefore, a limited summary of these details is given here. Nitrogen mineralisation 

studies were conducted in the two plantations studied in Chapter 3, as they provide 

contrasting plantation species and soils, and a large body of background information 

on plantation growth and health during the thirteen-years of fertilisation. One site was 

located in the north-east of Tasmania and the other in the south (Map 3.1). The 

climate at both sites was cool temperate, characterised by cool, wet winters, and warm 

dry summers. Rainfall in the north-east was spread evenly through the year with a 

winter bias. However, rainfall was highly variable between years. Annual rainfall was 

obtained using a stand gauge located near the site, at Evercreech, from 1963 to 1986. 

The local Bureau of Meteorology (BOM) station at Fingal highlights the high 

variability in rainfall between years ranging from 374 up to 750 mm, annually (Figure 

4.1 ). However, the rainfall average at Fingal weather station was considered lower 

than that at the plantation. Rainfall at the southern site was more uniform. Soil and 

profile descriptions were provided in detail in Chapter 3 (Section 3.2). A summary of 

site details is given in Table 4.1. 
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Figure 4.1 Variation in annual rainfall, for the north-east during the period of 
the fertilisation experiment, measured at the nearest Bureau of Meteorology 
(BOM) weather station at Fingal, Latitude 41°64' S, Longitude 147° 96' E. 

All fertiliser treatment plots studied at both sites were slashed with a brush-cutter to 

remove understorey weeds one week prior to commencing in situ incubations (June 

1999). Understorey in the P. radiata plantation consisted predominantly of bracken 

(Pteridium esculentum (Forst.f.)) and the highest proportion was in the unfertilised 

plots. The E. regnans understorey was also predominantly bracken, and included 

some small Blackwood (Acacia melanoxylon R. Br.) and cutting grass species. At this 

site, all the slash was removed to the outside of the plot buffers. In addition, the 

blackwood stumps were marked with paint so that these areas could be avoided 

during soil and litter sampling. Understorey species were removed to aid in situ 

technique and reduce the variability across the site, as some understorey species were 

N fixers. Slash was removed from the plots to ensure a homogeneous soil surface and 

no confounding of erratic N supply by decomposing slash. Soil sampling 

predominantly occurred between cultivated tree rows. 
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Table 4.1 Site description summary 
Location North-east South 

Soil Yellow Kurosol Brown Ferrosol 

Altitude 350m lOOm 

Aspect and slope Easterly, 10 % South-easterly, 10 % 

Annual rainfall 938mm 1200mm 

Species P. radiata E. regnans 

Year planted 1967 1981 

Experiment established 20-year-old plantation 5-year-old plantation 

Final fertiliser application June 1999 May 1999 

Fertiliser treatments Unfertilised, NIL Unfertilised, NIL 

(studied in this chapter) Fertilised, (P)Nl Y Fertilised, Pl YNl Y 

Ammonium sulphate Ammonium sulphate 

N fertiliser applied (annually) (annually) 

100 kgNha-1 100 kgNha-1 

P fertiliser applied 
Superphosphate (twice) Superphosphate (annually) 

72 kgP ha-1 46 kgP ha-1 

At both sites, each fertiliser treatment plot was sub-divided into two sub-plots. Sub­

plots were treated separately throughout the in situ study. Soil samples from each sub­

plot were processed separately in the laboratory, to measure variability between the 

fertiliser treatment plots. Figure 4.2 and 4.3 is a summary diagram of the site 

selection, sub-plot selection and in situ sampling points, for the P. radiata and E. 

regnans experiments, respectively. 
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4.2.2 In situ core methods 

This field study on N mineralisation was established using a modification of the in 

situ core methods from Raison et al. (1987). Although Raison et al. (1987) used steel 

cores, I used unperforated PVC cores. PVC cores are cheaper to make and easier to 

transport. Cores were unperforated to prevent loss of ammonium and nitrate by mass 

flow and diffusion, as suggested by Hart et al. (1994). 

Field estimates ofNNM using in situ cores maintain the natural environmental and 

temperature fluctuations with as little disturbance to the soil moisture content as 

possible (except when capped). In summary, soil isolation in PVC pipes was used to 

estimate NNM from the change in mineral N (NRi + and N03) during the incubation 

period. PVC pipes prevent the uptake of soil N by plant roots, thereby limiting N 

processes to microbial communities in enclosed soil. This experiment also prevented 

N leaching in some cores by excluding rainfall, via caps on the pipes. The use of both 

open and closed (capped) cores allowed simultaneous measurements of NNM, N 

leaching and N uptake. 

Cores consisted of 5 cm diameter PVC pipe cut to lengths of 12 or 17 cm (Photo 4.1 ). 

The longer pipes allowed for the additional depth of the litter horizon. Individual 

pipes were marked at 10 or 15 cm to gauge penetration depth on insertion into the 

soil. Pipes marked at 10 cm were for incubating mineral soil only, and those marked 

at 15 cm were used when litter horizons were also incubated. In cores marked at 15 

cm, only the soil to a depth of 10 cm was isolated. This depth corresponded to the 

depth ofKurosol and Ferrosol topsoils. At the top of the PVC pipe two holes were 

drilled to aid removal. The base of each pipe was tapered to aid insertion and 

minimise soil disturbance. 
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Photo 4.1 Shows 5 cm diameter PVC pipe cut to lengths of 17 cm (a) and 12 cm 
(b) core, and cap (c) used to cover closed cores during sampling. 

Previous in situ incubation periods of between 7 and 90 days, have been 

recommended (Raison et al., 1987; Adams et al. , 1989b; Smethurst and Nambiar, 

1989b; Goncalves and Carlyle, 1994; Carlyle et al. , 1998b). Raison et al. (1987) 

observed NNM rates in cores increased linearly with time, resulting in an appropriate 

containment period between 30 and 90 days. In this study two-monthly containment 

periods were chosen as rates ofNNM in both soils were expected to be low. In order 

to examine the seasonal variations in N fluxes at both sites, two-monthly incubations 

were replicated during an 18-month period (July 1999 to January 2001). 

For each sampling point, a minimum of three cores were required, labelled initial, 

open or closed. At each sampling point, individual cores were set approximately 5 cm 

apart. The sampling cores were prepared by removing the litter plugs first. The plugs 

were cut out of the litter horizon using a PVC pipe to the depth of the mineral soil. 

Once these plugs had been removed, the surrounding litter at the sampling point was 

removed to the mineral soil interface. This was done to prevent litter entering the 

mineral soil during pipe insertion. 
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An initial core of mineral soil was extracted by hammering a PVC pipe to a depth of 

10 cm into the soil. The PVC pipe was then removed along with mineral soil. The 

mineral soil was then pushed out of the pipe and placed in a plastic bag. For the open 

core, a 17 cm PVC pipe was hammered into the soil to a depth of 10 cm. One of the 

litter plugs removed earlier was then placed on top of the mineral soil inside. Closed 

cores were installed in the same manner as open cores, except a PVC cap was placed 

on top of the protruding pipe to prevent rainfall and leaching in the soil core (Photo 

4.2). The remaining litter was placed back around the cores, which remained in the 

ground for the length of the incubation period. 

Photo 4.2 Shows a sampling point where all four cores were incubated for two 
months (a) open with litter, (b) closed with litter, (c) open without litter, (d) 
closed without litter. 

Samples were taken at two-month intervals for 18-months. At the end of each two­

month incubation, open and closed cores were removed. On the same day, a new 

sample point was selected and a new set of cores was added. Four sub-samples were 

taken from each treatment and sub-plot (Figure 4.2 and 4.3). These four sub-samples 

(per sub-plot) were pooled into a single plastic bag. Only mineral soil was kept and 

litter plugs were discarded. The pooled treatment samples were then placed in a 

"cooler bag" for transport to the laboratory. 
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Extra cores were added to the sampling points, periodically to determine how the litter 

horizon influenced N fluxes during incubation. Extra open and closed cores were 

added during September, July and May. These cores were incubated without the litter 

plug on top and were called 'open without litter' and 'closed without litter' (Figure 

4.2 and 4.3). Hence, during these sampling periods each sampling point had four 

cores left for the two-month incubation (as shown in Photo 4.2). 

4.2.3 Laboratory procedures 

All samples were transported to the laboratory within approximately six hours and 

refrigerated at 2-4 °C until processed. Storage time was kept as short as possible, with 

a maximum of three days passing before all samples were ready for mineral N 

extraction. 

Each pooled soil sample (an individual bag containing soil from four pooled cores) 

was processed as follows; 

• Samples were thoroughly mixed in a plastic bag, manually dispersing individual 

soil cores completely, until a friable homogenised soil sample was formed. 

• From this homogenised soil, a small sub-sample was taken ( ~ 50 g), weighed, 

oven dried at 105 °C for 24 hours, and then reweighed. This oven-dried weight 

was used to calculate the gravimetric field moisture content at the time of 

sampling. The oven-dried soil was then heated to 600 °C for four hours and 

reweighed, to estimate the organic matter content of the soil (Herbert et al., 1995). 

From the homogenised soil a large sub-sample was passed through a 2 mm sieve. The 

< 2mm fraction was then used to determine soil pH, mineral N concentration, and 

organic C content. 

• pH was determined in a 1:5 ratio of soil(< 2mm): distilled water. 

• organic carbon was determined by loss on ignition. 

• Oven dried weight and loss on ignition was calculated for < 2mm soil as per 

above. 

Mineral N was extracted from fresh < 2mm homogenised soil using 2 M KCl 

(Rayment and Higginson, 1992); 
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• Duplicate 10 g < 2mm soil samples were shaken in 50 ml of cold 2 M KCl for 

one hour. 

• The suspension was then filtered through Whatman No 42 papers to provide 

clear extracts. All extracts were stored frozen. 

• Extracts were defrosted and analysed for nitrate and ammonium using a flow 

injection analyser (FIA) (Lachat Instruments). 

Concentrations of mineral N were corrected using moisture content in the < 2 mm soil 

faction determined earlier. Topsoil mass per hectare was calculated using the average 

bulk densities (of replicate treatment plots) determined in Chapter 3. The average bulk 

density across both treatment plots in the Kurosol topsoil was 1.625 g cc-1
, and in the 

Ferrosol it was 1.26 g cc-1
• 

4.2.4 Calculations and statistical analysis 

Calculations of N mineralisation, leaching and uptake using the in situ core methods 

have been described in detail by Adams et al. (1989b). Summaries of the principles 

are given here. 

Net N mineralisation was calculated as the change in ammonium and nitrate values 

between the soil sampled at the start of each incubation (initial soil core) and that 

measured in the closed soil core at the end of each incubation period (two months) 

(Equation 4.1 ). 

Nm= Nc(t+ 1)-Ni(t) (4.1) 

Where, Nm= N mineralisation (ammonium plus nitrate) 

t= time 

t+ 1 = time at the end of incubations 

Ne= closed soil core mineral N concentration 

Ni = initial soil core mineral N concentration 

Assuming rates of N mineralisation in the open or closed soil cores are the same, 

uptake ofN by vegetation can be calculated. Nitrogen uptake was calculated as the 

change in mineral N measured in closed soil cores at the end of the incubation period 

minus the amount of mineral N measured in initial soil cores in the same time period 

(Equation 4.2). 
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Nu= Nc(t+l)- {Ni(t+l)-Ni(t)} (4.2) 

Where, Nu = N uptake 

Assuming inputs of N due to rainfall are negligible, by comparing the amount of 

mineral N measured in closed soil cores to that in open cores, the amount of leaching 

of N during the incubation period could also be measured (Equation 4.3). 

Nl =No (t+l)-Nc (t+l) 

Where, Nl = N leaching 

No= open soil core mineral N concentration 

Results were analysed using a multiple analysis of variance (MANOVA) procedure of 

the GenStat software (Genstat 5 Committee, 1988). Means were compared using the 

treatment interactions (fertiliser and season) least significant differences (p < 0.05 and 

p < 0.001), as stated. No data transformation was required. Tests were validated by 

testing data for normality of distribution, and transforming data where required. 

Residuals from the model for each variable were examined for normality using 

diagnostic graphs. 

4.3 Results 

4.3.1 Kurosol topsoil 

Mineral N concentration was enhanced in fertilised topsoil compared to unfertilised 

topsoil at the beginning of the study (fertilisation had occurred one month earlier) 

(Figure 4.4). Although fertilised topsoil had a significantly higher mineral N 

concentration than unfertilised during some measurements, differences between 

fertiliser treatments during all sampling times were not significant, due to the wide 

variations in mineral N concentration measured in the fertilised topsoil. 

In both fertilised and unfertilised topsoil, rates of monthly NNM were generally low, 

reaching a maximum of9 kg N ha-1month-1 in fertilised topsoil during the summer of 

2000 (Figure 4.5). Immobilisation of N occurred in fertilised topsoil for the first six 

months of the study. The significantly higher immobilisation ofN in fertilised topsoil 

during the first in situ core incubation was probably associated with the recent 

fertilisation. Beyond six months, NNM rates increased, and although not significantly 

different, rates were up to six times greater in fertilised topsoil than those unfertilised. 
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Ammonium was the dominant form of mineral N in both fertilised and unfertilised 

topsoils, with nitrate generally below detectable limits. 
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Figure 4.4 Mineral N (kg ha"1 in Al horizon) during the 18-month field study 
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by time, not significant at (p = 0.05). 
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Figure 4.5 Net N mineralisation (kg ha"1 in Al horizon) during the 18-month 
field study (based on closed minus initial cores). Bar indicates LSD of 
treatment by time, not significant at (p = 0.05). 

Seasonal variability was observed in unfertilised topsoil as a summer peak in NNM of 

4 kg N ha-1 month"1 (Figure4.6). This peak was associated with a high rainfall event 
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in January, the time of soil containment. During this period, the moisture content was 

twice that of the previous spring and summer gravimetric moisture content of22 % 

compared to approximately 10 % (Figure 4. 7). The large enhancement of mineral N in 

fertilised topsoil for the first six months of the study obscured any clear seasonal 

trends. Rates ofNNM were similar in fertilised and unfertilised topsoils during the 

last 12-months of the study. 
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Figure 4.6 Rate of net N mineralisation in unfertilised topsoil compared to 
climatic data (rainfall and temperatures) from nearest Bureau of 
Meteorology (BoM) weather station at Fingal. Bar indicates LSD of NNM in 
unfertilised topsoil during the 18-month study. 

During the 18-month study unfertilised topsoil had a significantly (p < 0.05) higher 

moisture content than that fertilised (Figure 4.7a). Unfertilised topsoil had an average 

moisture content of 24 % almost twice that measured in the fertilised topsoil at 13 %. 

Although open cores could have up to twice the moisture content of those closed, 

throughout the entire sampling period this was not significant (Figure 4.7b). Topsoil 

in open and closed cores also had similar trends in mineral N concentration 

throughout the experiment. Net N mineralisation was compared to the relative field 
,..J 

water content (RFWC), 
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0 = gravimetric water content eLL = Lower Limit 

0uL =Upper Limit 

The RFWC allows the comparison of a given water content to the lower and upper 

limits observed in the field. No trend between NNM and RFWC was observed in 

either fertilised or unfertilised topsoils (Figure 4.8). 
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An in situ temperature logger (Stowaway Titbit temperature logger) measured the 

temperature in the mineral soil at the depth of 5 cm. The logger was located under an 

even canopy in a plot fertilised every two years, representing the average canopy 

cover of the experimental site as a whole. The daily maximum soil temperature 

reached over a two-year period was 19.1 °C and the daily minimum was 5 °C. 

Average maximum and minimum temperatures over the two-year period are presented 

in Figure 4.9. 
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Fertiliser effects on NNM, N leaching and N uptake were compared for the final 12-

months of the study (Table 4.2). These measurements examine the long-term affects 

of fertilisation. Inclusion of the first six months of sampling would have obscured any 

long-term effects of fertilisation due to the rapid decline in mineral N in recently 

fertilised topsoil. Fertiliser treatment effects on NNM were significant (p = 0.045), 

while there was no significant effect of fertilisation on N leaching or N uptake. The 

annual rates of NNM, N leaching and N uptake were calculated by summing in situ 

rates during the 12-month period (Table 4.3). Although there were large increases in 

the annual N mineralised, N leached and N uptake in fertilised vs unfertilised topsoils 

during this time, the effect of fertilisation was not significant. 

Table 4.2 In situ net N mineralisation rate, and calculated N leaching and N 
u~take values (kg ha-1 month-1 in Al horizon). 

In situ period ending 
Fertiliser March May July September November January 
treatment 2000 2000 2000 2000 2000 2001 

Net N Mineralisation Fertilised 8.6 3.5 3.1 1.0 1.9 7.7 

Unfertilised 4.4 -1.0 0.7 0.1 0.3 1.8 

N leaching Fertilised 8.7 1.4 0.2 -2.2 -1.6 1.9 

Unfertilised 3.8 -2.7 -0.5 -0.6 -0.8 0.5 

N Uptake Fertilised 18.4 3.3 5.2 2.4 3.1 8.7 

Unfertilised 7.0 2.2 1.4 0.7 0.8 2.2 

Fertiliser treatment or time did not significantly effect N leaching. Fertiliser treatment significantly 

increased average NNM (p= 0.045) however, there was no significant fertiliser by time interaction. 

Table 4.3 Calculated annual net N mineralisation, N leaching and N uptake (kg 
ha-1 in Al horizon). 

Fertiliser Anuual 
treatment 2000 

Net N Mineralisation Fertilised 51.7 

Unfertilised 12.6 

N leaching Fertilised 16.7 

Unfertilised -0.4 

N Uptake Fertilised 82.2 

Unfertilised 28.6 

Fertiliser treatment did not significantly effect annual N mineralisation, N leaching or N uptake. 
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4.3.2 Ferrosol topsoil 

Fertiliser treatment had no significant effect on mineral N concentration (Figure 4.10), 

or NNM (Figure 4.11 ), during the 18-month study. Mineral N concentration and 

NNM varied widely between sampling times. At this site, in situ incubations began 

two months after the final fertiliser application. In contrast to the fertilised Kurosol, 

there was no pronounced increased mineral N concentration, or N immobilisation, 

during the initial sampling periods. Ammonium was the dominant form of mineral N 

in both fertilised and unfertilised topsoils, with nitrate generally below detectable 

limits. 
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Figure 4.10 Mineral N (kg ha-1 in Al horizon) during the 18-month field study 
(based on initial cores). Bar indicates LSD of treatment by time. There was 
no significant difference between fertilised and unfertilised treatments 
during the period studied. 

Although positive at all times, rates of monthly NNM were low, reaching a maximum 

in unfertilised topsoil during March 2000 of 6 kg N ha-1 month-1
. Large temporal 

variability combined with high spatial variability (treatment replicates), resulted in no 

clear seasonal trends in mineral N concentration (Figure 4.10) or NNM (Figure 4.12). 
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Figure 4.11 Net N mineralisation (kg ha-1 in Al horizon) during the 18-month 
field study (based on closed minus initial cores). Bar indicates LSD of 
treatment by time. 
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Figure 4.12 Rate of net N mineralisation in unfertilised topsoil compared to 
climatic data (rainfall and temperatures) from nearest Bureau of 
Meteorology (BoM) weather station at Latitude 43°31' S, Longitude 147° 02' 
E. Bar indicates LSD of NNM in unfertilised topsoil during the 18-month 
study. 
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Fertiliser effects on NNM, N leaching and N uptake were compared for the final 12-

months of the study (Table 4.4). There was no significant effect of fertiliser treatment 

on NNM, or N leaching during this period. The highest rate of NNM occurred in 

unfertilised topsoil during March 2000 (p = 0.058), all other rates in both fertilised 

and unfertilised topsoil were similar. Fertiliser treatment did not significantly effect 

annual NNM, N leaching or N uptake (Table 4.5). However, the average monthly N 

uptake was significantly (p = 0.011) lower in the fertilised (2.5 kg N ha-1 month-1
) 

than the unfertilised (4.9 kg N ha-1 month-1
) topsoil. 

Although an in situ temperature logger was placed in the mineral soil at this site the 

data obtained was corrupted. However, the empirical model SNAP has a submodel to 

predict daily average temperatures in three soil layers (Paul et al., 2002). By defining 

the litter layer cover, depth and mass, weed cover, canopy leaf area index along with 

climatic data the sub model (STUF, soil temperature under forests) calculates the 

temperature in the mineral soil at 0-10 cm depth. SNAP requires daily weather inputs, 

in this study the climatic data was obtained from the bureau of meteorology as data 

derived from the interpolation of local meteorological stations (calculated to within 5 

km). For comparison, the Pl YNl Y and NIL treatment topsoil temperature was 

calculated (Figure 4.13). Inputs including soil bulk density, carbon, gravel and clay 

contents, as well as site parameters such as litter masses and depths, are described in 

Chapter 3. Leaf area index measurements were assessed at age 36 and were 

approximately 3 and 2.5, in fertilised and unfertilised trees respectively. These were 

assessed using both a visual guide (Cherry et al., 2002) and the LICOR LAI2000 

(Cherry et al., 1998). Temperatures in the PlYNlY topsoil ranged from 1.5 °C lower 

in summer to 0.8 °C higher in winter compared to those in the NIL treatment. The 

predicted maximum temperature reached 19.6 °C and the minimum was 5.8 °C, these 

are similar to those observed under P. radiata. 
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Figure 4.13 Average daily temperature (°C) of Pl YNl Y and NIL treatment 
topsoils (0-10 cm) calculated by the submodel STUF (SNAP). 

Table 4.4 In situ net N mineralisation rate, N leaching and N uptake (kg ha-
1month-1 in Al horizon}. 

In situ period ending 
Fertiliser March May July September November January 

treatment 2000 2000 2000 2000 2000 2001 

Net N Mineralisation Fertilised 1.8 1.8 1.0 2.7 0.9 0.1 

Unfertilised 5.5 0.0 3.5 1.1 0.9 0.6 

N leaching Fertilised -5.8 -3.9 -4.9 -2.0 0.4 -0.3 

Unfertilised 1.7 -4.3 -2.3 -1.1 -1 .1 -0.4 

N Uptake Fertilised 3.7 1.8 1.6 3.9 2.8 1.4 

Unfertilised 9.9 2.9 2.5 5.3 3.8 4 .6 

Fertiliser treatment or time did not significantly effect N leaching or NNM. Fertiliser treatment 

significantly increased average N uptake (p= 0.035) however, there was no significant fertiliser by time 

interaction. 
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Table 4.5 Calculated annual net N mineralisation, N leaching and N uptake (kg 
ha-1 in Al horizon). 

Fertiliser Anuual 
treatment 2000 

Net N Mineralisation Fertilised 16.1 

Unfertilised 23.3 

N leaching Fertilised -33.1 

Unfertilised -15.2 

N Uptake Fertilised 30.6 

Unfertilised 58.2 

Fertiliser treatment did not significantly effect annual N mineralisation, N leaching or N uptake. Note 

the negative leaching values probably relate to drier soil conditions in the closed cores restricting 

mineralisation with respect to the open cores. 

Moisture content in unfertilised topsoil (initial cores) was significantly higher (p < 

0.001) than that fertilised (Figure 4.14). Nitrogen leaching, calculated as the 

difference between closed and open soil cores, was generally negative, that is mineral 

N concentration were higher in open than closed cores. When calculating N leaching, 

it was assumed that the N inputs ofrainfall were negligible, and rates ofNNM 

between open and closed soil cores were the same. Negative N leaching would appear 

to be a factor of the different moisture conditions in the open vs closed cores. There 

was a clear trend of higher rates ofNNM in open soil cores, which received rainfall. 

Closed soil cores resulted in a significantly lower (p < 0.001) moisture content than 

open soil cores (Figure 4.14b). Differences in moisture content of up to 15 % occurred 

during some sampling periods. Differences were often more pronounced in fertilised 

than unfertilised topsoil, however, there was no core by treatment interaction. No 

trend between NNM and RFWC was observed in either fertilised or unfertilised 

topsoils (Figure 4.15). 
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cores (b) closed and open cores(% in Al horizon). Bar indicates LSD across 
treatment and time. 
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field water content, in fertilised (circles) and unfertilised (crosses) topsoils. 

4.4 Discussion 

4.4.1 Kurosol topsoil 

Low amounts of N mineralisation occurred in the Kurosol topsoil throughout the 18-

month experiment. Net N mineralisation rates were 13 and 52 kg N ha·1 yr· 1 in 

unfertilised and fertilised treatments, respectively. These measurements are similar to 

in situ NNM rates (between 16 and 74 kg N ha·1 yr-1
) observed by Carlyle et al. 

(1998a) under nine P. radiata sites in southern Australia. Such low rates ofNNM, 

and high site variability, make it difficult to determine the influence of season on 

NNM in topsoils during the time period studied. However, NNM varied six-fold 

between the highest and lowest rates, occurring in March and May, respectively. 

Polglase et al. (1992a) also observed an order of magnitude greater mineralisation and 

nitrification rates measured in spring and summer, to those measured in winter and 

autumn. Raison et al. (1992) observed the highest NNM in spring (10 kg N ha·1 

month-1
) and the lowest in winter (0.5 kg N ha·1 month-1

), with a distinct depression 

occurring in NNM when drought occurred. 

Changes in short and long-term N availability due to N fertilisation were observed, 

but were often not significant. Immediately after fertilisation (one month) mineral N 

concentrations in topsoil were enhanced ten-fold, compared to unfertilised topsoil. 
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Elevated mineral N concentrations were evident for the first six months of the study, 

although this was only significant in the first month. The rapid decline in mineral N 

observed in the Kurosol have been observed extensively in previous fertilisation 

experiments, on a range of soils and sites (Williams, 1972; Johnson et al., 1980; Fife 

and Nambiar, 1997; Smethurst et al., 2001). The magnitude, and rate of decline have 

been related to the form, and frequency of fertilisation (Heilman, 1974; Strader and 

Binkley, 1989; Aggangan et al., 1998). Rates of annual NNM were also larger, four 

times greater, in fertilised Kurosol topsoil than unfertilised, but this was not 

significant by MANOV A tests. Enhanced NNM in forest soil due to N fertilisation 

have been widely reported (Johnson et al., 1980; Adams and Attiwill, 1991; Whynot 

and Weetman, 1991; Connell et al., 1995; Aarnio et al., 1996; Aggangan et al., 1998; 

Smolander et al., 2000). In the Biology Growth Experiment (BFG) experiment, 

Raison et al. (1992) observed significant increases of two to three-fold four years after 

fertilisation. 

Fertilised Kurosol topsoil had a greater variation in NNM between treatment 

replicates (82 compared to 22 kg N ha-1 yr-1
) than between treatments (52 and 13 kg N 

ha-1 yr-1
), obscuring any possible treatment effect. N leaching and N uptake were also 

highly variable between replicates at 82 to 21 kg N ha-1 yr-1 and 128 to 37 kg N ha-1 

yr-1
, respectively in the fertilised topsoil. The large variability in mineral N cycling 

between these treatment plots was also observed in later laboratory studies. 

Examination of the soil analysis, presented in Chapter 3, indicated that total N and P 

content of fertilised plots were similar (Table 3.8). The only nutrient that was clearly 

different between plots was Ca, both in total and exchangeable forms, the lower 

mineralising plot having twice the Ca of the higher mineralising plot. Such a variation 

would not explain the four-fold difference in NNM. Although higher Ca availability 

in this plot may have resulted in a potential for stronger immobilisation, thus reducing 

measured annual NNM rates, this was unlikely as the volume growth of trees on this 

plot was observed to be slightly higher throughout the entire experiment. Strader and 

Binkley (1989) and Whynot and Weetman (1991) both emphasised that high spatial 

and temporal variability during in situ studies could obscure treatment effects. 
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At both sites, each fertiliser treatment plot was sub-divided into two sub-plots at the 

start of the experiment. Each sub-plot was treated separately throughout the in situ 

study and soils were processed separately in the laboratory. Rates of NNM, N 

leaching and N uptake were then averaged to give fertiliser treatment effects. This 

data was not presented as a within treatment replicate as this would constitute 

pseudoreplication (Hurlbert, 1984). However, it showed that there was limited 

variability between the sub-plots and that the variability between the fertiliser 

treatment plots, especially at the Kurosol site, was real. 

Nitrogen immobilisation was measured in both fertilised and unfertilised Kurosol 

topsoils, and was clearly enhanced during the period of measurement immediately 

after fertilisation. Immobilisation of N was observed in lodgepole pine plantations by 

Stump and Binkley (1993) and is recognised as a major process in eucalypt forests 

(Adams and Attiwill, 1986). Raison et al. (1992) also observed fertilisation to 

significantly increase N immobilisation in a Yellow Podzolic topsoil for almost 1 year 

after its application. The total N immobilised in their study was 147 kg N ha-I. 

Compared to an average of33 kg N ha -I in this study. However, in their study they 

applied a much larger amount ofN fertiliser (applying 400 kg N ha-I, as ammonium 

sulphate) which could explain the larger and longer duration of immobilisation than 

observed here. The amount and length of immobilisation observed was approximately 

one quarter of that measured by Raison et al. (1992). 

Nitrogen uptake was highest immediately after fertilisation at 26 kg N ha-I month-I. In 

examination of the long-term effects (2000 data) the highest N uptake and N leaching 

(not significant) in both fertilised and unfertilised topsoils occurred in March 2000 in 

association with increased rainfall after summer. Raison et al. (1992) also observed N 

uptake to be greatest when soil moisture was abundant. 

The direction of nitrogen transformation, from net mineralisation to net 

immobilisation, depends on a number of factors, the C: N ratio of the soil organic 

matter is considered one of the most important. This is related to the inherent ratio in 

microbial cells of approximately five to fifteen (Paul and Juma, 1981 ). In this study, 
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no significant differences were observed between (P)Nl Y and NIL treatment C/N 

ratios at 25 and 23, respectively (Chapter 3, Table 3.10). This is discussed further in 

Chapter 7 when other fertiliser treatments are examined. 

Ammonium was the dominant form of mineral N in both fertilised and unfertilised 

Kurosols. Examination of both soil profiles (Chapter 3) showed that the ammonium 

dominance occurred throughout the soil profile, to the depth of 50 cm. Ammonium is 

often observed as the dominant mineral N form in fertilised and unfertilised forest soil 

(Williams, 1972; Johnson et al., 1980; Adams and Attiwill, 1986). Under the 

conditions that prevail in many forest soils, including low pH and intense microbial 

competition for inorganic N, the conversion of ammonium to nitrate by nitrifying 

organisms is low. Thus in many temperate forest soils nitrate concentrations are often 

low or insignificant (Dyck et al., 1983; Carlyle, 1986). However, in a study of old 

growth forests, Hart et al. (1994) indicated that nitrate immobilisation can be 

substantial in forests soils and a lack of soil nitrate during incubations is therefore not 

unequivocal with insignificant nitrification. 

As nitrification is more inhibited by low pH than ammonification (Attiwill et al., 

1978) this could explain the low and generally undetectable rates of nitrification 

observed throughout the field study. The Kurosol topsoil was naturally acidic (pH < 

4.2), and additions of N and P fertilisers increased this acidity by up to 0.6 pH units 

(Table 3.9). In a study of 38 podzolic soils, Carlyle et al. (1990) observed a clear 

discrimination between strongly and weakly nitrifying soils using soil pH and 

observed a distinct switch at a pH of 5.3 below which limited nitrification occurred. 

As the pH in these soils remained below 5.0 units, nitrification was not expected to 

occur even after fertiliser additions. Induced nitrification and significant leaching has 

been reported on sandy soil from fertilisation alone (400 kg N ha-1
) and combined 

fertilisation and irrigation treatments (Raison et al., 1990; Khanna et al., 1992). 

4.4.2 Ferrosol topsoil 

Nitrogen mineralisation rates were low in both fertilised and unfertilised Ferrosol 

topsoils at 16 and 23 kg N ha-1 yr-1
, respectively. Net N mineralisation was also low, 
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in both cool temperate mature eucalypt forest (<10 kg N ha-1 yr-1
) (Adams et al., 

1989b), and in young eucalypt plantations (13 to 188 kg N ha-1 yr-1
) (Wang et al., 

1998; Moroni et al., 2002). 

Large temporal variability combined with high spatial variability resulted in no clear 

seasonal trends in mineral N concentration or NNM. However, in unfertilised topsoil, 

NNM rates varied six-fold reaching a maximum in March. Adams and Attiwill (1986) 

observed N mineralisation peaks during summer, when both higher temperatures and 

moisture were present, while rates in other seasons were generally similar. This 

topsoil also showed no short or long-term changes in mineral N concentration, or 

NNM, due to annual fertilisation of N plus P for a period of thirteen years. In contrast 

to previous studies, no elevation in mineral N concentration was measured. The final 

fertiliser application to the Ferrosol occurred two months prior to instillation of the in 

situ studies. This, combined with the higher rainfall present at the southern site, may 

have resulted in field measurements missing the initial flush of mineral N due to 

fertilisation. Rainfall at the Ferrosol site following fertilisation was twice that (86 

mm) of the Kurosol site (40 mm). Timing of fertiliser application and rainfall affects 

on mineral N availability are examined in detail in Chapter 5. 

When comparing rates of NNM in Ferrosol topsoil, there was a non-significant 

depression of annual NNM after long-term fertilisation. This is in agreement with 

McLaughlin et al. (2000), who observed a significant decrease in NNM, with an 

overall inhibition of organic matter decomposition due to ammonium nitrate 

application (100 kg N ha-1
). However, there was also evidence that the N processes in 

the current study were influenced by the in situ core methods used. In situ core 

methods have been extensively reviewed by a number of authors (Raison et al., 1987; 

Adams et al., 1989b; Smethurst and Nambiar, 1989b), and the technique was 

confirmed in the Biology Forest Growth (BFG) experiment for estimating rates ofN 

mineralised, uptake and leaching (Raison and Myers, 1992). In Tasmania, rates of 

NNM were expected to be low, as was observed, so the containment period oftwo­

months was chosen to provide sufficient time for N accumulation to occur without 

causing detrimental changes. The lack of nitrate suggested that this was well founded. 
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However, large fluctuations in moisture during this incubation time did impact on the 

rates of NNM and N leaching measured. 

Higher mineral N concentrations were often measured from open soil cores compared 

to those remaining closed. Differences could be large i.e., up to 200 % greater. 

Increased rates of NNM were often associated with higher moisture concentration in 

the open cores during the time of containment. These results suggest that isolating 

mineralising soil from rainfall could have underestimated field rates of mineralisation 

in this study. In addition, increased NNM in open cores often resulted in negative 

estimates ofN leaching, with annual leaching rates of -15 and -33 kg N ha-I in 

unfertilised and fertilised topsoils, respectively. Calculating rates of NNM from soil 

incubated in open cores may better represent field NNM rates. However, these 

calculations still resulted in no significant effect of fertiliser treatment on rates of 

NNM (NIL and PI YNl Y, 39 and 30 kg N ha-I yr-I respectively). 

Rainfall during the in situ study was lower than average at both sites. At the Kurosol 

site simulated rainfall data from the bureau of meteorology (within 5 km) indicated 

that the annual rainfall in 1999 was only 690 mm and 713 mm in 2000. At the 

Ferrosol site the annual rainfall in 1999 was also extremely low for this site at only 

760 mm, this increased to 1060 mm in 2000. In the Ferrosol topsoil moisture contents 

reached field capacity (65 %) only twice during the study, in July and September in 

open cores from unfertilised topsoil. These low levels of rainfall during this study at 

both sites may have reduced annual rates of NNM, especially under fertilised trees 

which often had higher moisture uptake rates (seen as significantly lower soil 

moisture in the topsoil). This hypothesis was tested in the laboratory studies discussed 

in Chapter 6 and 7. Using RFWC as a generalised moisture function for N 

mineralisation allows for microbial adaptation to the local environment, since 

microbes are adapted to the upper and lower limits of the water contents observed in 

the field (Paul et al., 2003b ). However, in this study NNM in both fertilised and 

unfertilised soils at both sites were unrelated to RFWC. 
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Total N measured in the fertilised (Pl YNl Y) topsoil was also significantly less than 

that in the NIL treatment (1.7 t ha-1 compared to 2.3 t ha-1 respectively, Table 3.13). 

This could explain the lack of enhanced NNM in the fertilised topsoil and indicates 

that it may be important to examine N mineralisation in the litter layer at this site, as 

this was the horizon where substantial increases in total N were measured (Chapter 3, 

Table 3.13). Investigation ofNNM rates in the litter layers (02) was undertaken under 

controlled conditions in the laboratory (Chapter 6 and 7). 

Ammonium was the dominant form of mineral N in both fertilised and unfertilised, 

Ferrosol topsoils. Examination of all soil profiles, in Chapter 3, showed that the 

ammonium dominance occurred throughout the soil profile, to the depth of 50 cm. 

The naturally low pH (pH < 4.5), and decline in pH in N and P treatments by up to 0.9 

pH units (Table 3.15) may have also limited overall mineralisation rates in both the 

Ferrosol topsoils. Suppression ofN mineralisation by soil acidity, and increases in 

NNM after liming, have been observed in a number of experiments (Attiwill et al., 

1978; Page et al., 2003). Denitrification was not expected to contribute to N losses, 

due to low nitrate concentrations, low soil pH, free draining soils and moisture 

contents generally below field capacity. However, in a similar study of a Ferrosol 

under young eucalypt plantations Wang et al. (1998) inferred that negative N fluxes 

were probably due to denitrification. In a study of old growth forests Hart et al. 

(1994) indicated that nitrate immobilisation can be substantial in forests soils and a 

lack of soil nitrate during incubations is therefore not unequivocal with insignificant 

nitrification. 

In this study only the top 10 cm of the soil profile was examined. Approximately one 

third of the soil profiles total N, organic C and mineral N was concentrated in the 

surface 10 cm of mineral soil (Table 3. 8 and 3.13). In contrast, mineral N was 

dispersed throughout the Ferrosol profile. A more even dispersion of mineral N down 

the profile often occurred in the higher N fertilisation treatments. Such dispersion of 

mineral N throughout these profiles might suggest significant amounts ofN 

mineralisation could occur lower in the profile. However, this was considered 

unlikely as subsoil available C and oxygen would probably become limiting to 
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microbial growth and hence N mineralisation. The age of soil organic matter also 

generally increases down the profile and is therefore more resistant to decomposition 

(Federer, 1983). In addition, microbial distribution is generally concentrated in the 

surface of a profile (Murphy et al., 1998a). The examination of surface (0-10 cm) soil 

as an indicator ofN availability was qualified in a review by Binkley and Hart (1989). 

This review noted that the forest floor and mineral soil, to a depth of 15 cm, typically 

produced half or more of the N mineralised in forest. In a sandy podzol similar to the 

Kurosol studied in this experiment, Smethurst and Nambiar (1989b) noted that from 

the top 30 cm of mineral soil, 84 percent of the in situ N mineralisation occurred in 

the in the top 15 cm portion. Below 30 cm, amounts of mineralisable N were very low 

to undetectable. A strong proliferation of fine roots just below the litter layers also 

indicated the abundance of nutrients at the surface of the soil profile. 

Removal of the understorey weeds one week prior to commencing in situ incubations 

in both P. radiata and E. regnans plantations, predominantly bracken (Pteridium 

esculentum (Forst.f.)), would have produced an increased number of severed roots in 

the plots studied. Removal of the understorey would have increased the number of 

dead roots in both fertilised and unfertilised soils at both sites. However, in the 

comparison of the fertiliser treatment weed removal was consistent. In a study of 

weed control effects on N in young P. radiata plantation in South Australia, 

Smethurst and Nambiar (1989a) observed that although mineral N concentrations 

were 50 to 80 % higher in plots where weeds had been controlled by herbicides there 

was no significant effect on annual NNM over two years. Enhanced mineral N 

concentrations in their study occurred for the first six months of measurements. In this 

study, the first six months of measurements were removed from annual NNM 

calculations. This was done to remove the last fertiliser application effects from the 

long-term changes from fertilisation. By removing this first six months, the immediate 

effects of weed control would have also been limited. Low mineralisation rates at 

these sites also suggest understorey removal did not stimulate NNM. In their study 

Raison et al (1987) noted that exposure of soil cores to living plants would result in N 

uptake. Removal of weeds at these sites prevents N uptake by these species. In 

addition, large woody roots were not generally observed in these cores and therefore 

would not have resulted in underestimation of NNM. Raison et al (1987) also noted 
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that the severing of roots appeared to have no effect on the patten of accumulation of 

mineral-Nin several undisturbed forest soils for up to 130 days. 

The impact of below-ground inputs on soil C and N pools and turnover has received 

limited attention (Ross et al., 2001) and is generally confined to tench plots with 

limited or no understorey. In trenched plot studies under a 26 year old P. radiata 

plantation in New Zealand, Ross et al. (2001) observed similar amounts of mineral N 

and NNM between trenched and control treatments after 56 days in a mineral soil (0-

lOcm). Thirteen years after trenching in an old-growth conifer forest Hart and Sollins 

(1998) indicated that measurable changes in C and N pools were only observed in 

laboratory NNM rates. Few detectable changes in C and N pools and processes were 

observed in the field and no significant changes of annual in situ NNM or nitrification 

were measured. Ross et al. (2001) did observe large changes in nitrification from 

trenching, up to 200-fold increased. As discussed previously little nitrate was 

observed in either the Kurosol or Ferrosol, which suggests limited effects of 

understorey removal on severed roots. 

It was considered that even though rates of NNM may have been slightly reduced due 

to increased immobilisation from C additions from served roots, as suggested by 

Adams et al. (1989b ), the effects of fertilisation on NNM rates in these soils could 

still be compared. The effect of roots and increased C additions due to both slashing 

the site and the placement of cores is limited in later laboratory studies as roots are 

removal when the soil are sieved (Chapter 6 and 7). 

4. 5 Conclusions 

Long-term annual applications of N fertiliser had no significant effect on the annual 

rate ofNNM in either the Kurosol of Ferro sol topsoils as assessed by MANOV A 

tests. Rates at the Kurosol site were higher with fertilisation but overall rates on all 

treatments were low. 
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The effects of N fertilisation on short and long-term trends in N availability and NNM 

due to fertilisation varied between soil types; 

• In the Kurosol topsoil, with an inherently lower nutrient status, located in a lower 

annual rainfall area (938 mm), mineral N concentrations increased for a period of 

around six-months after N fertilisation, before declining to pre-fertilisation levels. 

• In contrast, in the Ferrosol topsoil, with an inherently higher nutrient status, 

located in a high rainfall area (1200 mm), no peak in mineral N concentration was 

observed two months after N fertilisation. 

• Net N mineralisation rates in Kurosol topsoil were low between 13 and 52 kg N 

ha-1 yr-1 (not significantly different) in unfertilised and fertilised treatments, 

respectively. 

• Net N mineralisation rates in Ferrosol topsoil were low between 23 and 16 kg N 

ha-1 yr-1 (not significantly different) in unfertilised and fertilised treatments, 

respectively. 

Seasonal variations in NNM are difficult to clearly define without sampling for a 

number of years and the limited time of this study resulted in no significant seasonal 

effect. However, at both sites there was an overall enhancement in NNM when 

temperature and moisture levels were higher, during late summer and early autumn, 

while NNM declined during winter. N uptake was also enhanced during this period. 

This study indicates that at these low mineralising sites, maximum rates ofNNM can 

be measure during a period of high temperature immediately after rainfall. In contrast, 

minimum NNM rates depend on either the moisture or the temperature subject to the 

sites rainfall history. However, minimum rates were generally below half the 

maximum rate ofNNM measured during the rest of the year. Fertiliser treatments 

followed similar seasonal NNM patterns, indicating that the sampling times selected 

to measure minimum and maximum rates of NNM could be the same irrespective of 

the fertiliser treatment. 

Results from this study suggest pre-wetting soil cores would allow maximum rates of 

NNM to be measured at the end of summer and minimum rates at the start of winter. 
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This hypothesis was tested in the laboratory studies discussed in Chapter 6 and 7. In 

addition, in chapter 5, I test whether the timing of the fertiliser application alters the 

maximum and minimum rates ofNNM, by assessing the role of the season of 

fertiliser application on mineral N availability. 

At both sites rates, of NNM were low and an incubation period of 60 days was 

considered necessary to measure changes in NNM rates between fertiliser treatments. 

However, no significant differences were measured between fertiliser treatments at 

either site. The role of incubation period on NNM needs to be examined in the 

laboratory (Chapter 7) to test whether the in situ incubation period increased 

immobilisation and therefore decrease measurable differences between fertiliser 

treatments. 
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Chapter 5. Effect of the season of nitrogen fertilisation on the 

temporal pattern of mineral nitrogen concentrations in litter and 

topsoil from two contrasting forest soils. 

5. 1. Introduction 

The investigation of in situ rates of N mineralisation revealed relatively short-lived 

elevations in concentrations of mineral N after fertilisation (Chapter 4). Mineral N 

concentrations decreased substantially within a six-month period in the Kurosol 

topsoil, while in the Ferrosol topsoil there was no measurable increase in mineral N 

two months after application. Rapid declines in concentrations of mineral N after 

fertilisation have been noted in other forest soils (Williams, 1972; Smethurst et al., 

2001). The final fertilisation of the Ferrosol site occurred two months prior to 

instillation of the in situ mineralisation cores. This, combined with the higher rainfall 

at the site, may have resulted in field measurements missing the initial flush of 

mineral N due to fertilisation. In this study I tested that assumption by examining the 

rate of mineral N decline in both Ferrosol and Kurosol topsoils for a period of six 

months following fertilisation. 

The previous in situ study also indicated low rates of mineralisation throughout the 

year with a peak occurring in late summer immediately after rainfall, in both fertilised 

and unfertilised topsoils. Application of fertilisers occurred in May or June prior to 

the in situ study. Although numerous investigations have studied the role of climate, 

temperature and moisture, and its ultimate impact on soil N mineralisation 

(Nadelhoffer and Aber, 1984; Boone, 1992; Gower and Son, 1992), limited research 

is published on the interaction between season and fertilisation on mineral N 

availability in forest soil. However, research studying foliar N dynamics by both 

Nason et al. (1990) and Thomas and Mead (1992b), observed a strong influence of 

subsequent rainfall events on N availability. This study aimed to identify whether the 

timing of fertiliser would effect the period of mineral N enhancement. This has 

implications for fertiliser efficacy as well as sampling strategies needed to determine 

long-term NNM rates. 
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There is an extensive body of research indicating increased litter production due to N 

fertilisation (Hunter and Hoy, 1983; Theodorou and Bowen, 1990; Neilsen and 

Lynch, 1998; Maier and Kress, 2000) and subsequent site improvement. In this study, 

application of P plus annual N almost doubled the mass of the litter (02 horizon) 

under P. radiata compared to when no fertiliser was applied, while under E. regnans, 

annual application ofN, plus P, increased this litter layer five-fold (Chapter 3). 

Associated with this increased mass, total N content of the litter layers increased by 

over two-fold and seven-fold under P. radiata and E. regnans, respectively (Figure 

3.3 and 3.7). However, there are few studies on the effect of fertilisation on mineral N 

availability with the litter layer. In this study I examine how seasonal applications of 

N fertiliser affect temporal patterns of mineral N concentrations both in the litter and 

soil of the eucalypt and pine plantations. 

5.2 Methods 

5.2.1 Experimental design 

The experiment was designed to examine mineral N concentrations in the topsoil (Al 

horizon) and litter (01 plus 02 horizons), for a period of six months after N 

feiiilisation (100 kg N ha-1
). Each site included five treatments i.e. four different times 

of N application, and a NIL fertiliser treatment. Nitrogen fertiliser (ammonium 

sulphate) was applied at the end of the months of June 2000, October 2000, January 

2001 or April 2001. All treatments were replicated five times, in a randomised block 

design. 

5.2.2 Site Establishment 

This experiment was established at the two sites previously studied (Chapters 3 and 

4). The southern E. regnans plantation, on a Haplic Dystrophic Brown Ferrosol, and 

the north-eastern P. radiata plantation, on a Bleached Dystrophic Yellow Kurosol. 

The experiment was located on the previously biannually fertilised plots, ((P)N2Y) 

and (P2YN2Y) described in Section 3.2 (Table 3.4 and 2.5). At both sites, replicate 

biannually fertilised plots were available. Due to site debris, both replicate plots 

where required at the Kurosol site (Figure 5 .1 ), while one plot only was required at 
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the southern Ferrosol site (Figure 5.2). For further information on the existing long­

term fertilisation experimental design, and site details, see Section 3.2. 
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Figure 5.1 indicates the plots selected for sampling and the layout of the sub­
plots used in this experiment at the Kurosol site. 

5 

Site preparation involved the slashing ofunderstorey species, predominantly bracken, 

across all treatments. Slash residue was carefully removed to the outside of the plot, to 

prevent additions to, and disturbance of, the existing litter horizon. Cleared sites were 

then pegged into 25; 3 x 2 m sub-plots (5 treatments by 5 replicates). Sub-plots were 

placed between cultivated tree rows, avoiding large debris (rocks and logs). 

To ensure even distribution of fertiliser granules, sub-plots were first subdivided into 

six one-meter square sections. The required amount ofN fertiliser (100 kg N ha-1
) was 

also divided into six equal masses and hand broadcast evenly on to each individual 

square (Photo 5 .1 ). 
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Figure 5.2 indicates the plots selected for sampling and the layout of the sub­
plots used in this experiment at the Ferrosol site. 

5.2.3 Site Sampling 

J 

Litter and topsoil samples were collected monthly for six months after each 

fertilisation. Unfertilised plots were sampled for the duration of the experiment i.e. a 

total of sixteen months. 

Litter samples were cut using a 5 cm-diameter PVC pipe inserted to the depth of the 

interface with the mineral soil (up to 6 cm). Once the litter was removed, the 

underlying mineral soil was cut to the depth of 10 cm using the same device. Four 

sub-samples of each litter and soil samples were collected from each sub-plot and 

pooled separately, in plastic bags then placed in a "cooler-bag" for transport. 
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Photo 5.1 Sub-plot layout showing the division of the sub-plot into six sections 
for even fertiliser application. 

All samples were brought to the laboratory within eight hours of sampling, and placed 

in the cool-store at 2-4°C. The bulked samples were thoroughly mixed to homogenise 

the material. The samples were prepared in the same manner as used in the field 

mineralisation study (Section 4.2.3). Gravimetric water contents were determined for 

each sub-plot by drying at 105°C for 24 hours. The samples were sieved to < 2 mm 

prior to chemical analysis. Duplicate 10 g sub-samples of < 2 mm samples were 

shaken in 50 ml of 2 M cold KCl for one hour and the extract filtered through 

Whatman No.42 papers (methods modified from Raymond and Higginson 1992). The 

resultant extracts were frozen and stored for later analysis of N03 - and NH4 + using a 

flow-injection analyser (FIA) (Lachat Instruments). See Section 4.2.3 for further 

details. 

Data analysis 

Results were analysed using a multiple analysis of variance (MANOVA) procedure of 

the GenStat software (Genstat 5 Committee, 1988). Means were compared using the 

treatment interactions (fertiliser and time) least significant differences (p < 0.05 and p 

< 0.001), as stated. 
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5.3 Results 

5.3.1 P. radiata litter and Kurosol topsoil 

One month after fertilisation, in all treatments, mineral N concentrations were 

between 10 and 28 times greater in the topsoil, and 10 to 250 times greater in the litter 

than in unfertilised topsoil and litter. After each fertiliser treatment, enhanced mineral 

N concentrations, in both fertilised horizons (01 and Al) decreased within four to 

five months to concentrations similar to those measured in unfertilised horizons 

(Figure 5.3 and Figure 5.4). 

Seasonal trends in mineral N concentration were not evident in the unfertilised 

topsoil. Concentrations remained low throughout the experiment reaching a maximum 

of 4 µg g-1 in September 2000 (Figure 5.5). In contrast, mineral N concentrations in 

the unfertilised litter increased during summer (December to February). These 

increases were associated with the period of highest soil temperatures but lowest 

rainfall, and concentrations declined at the beginning of the autumn rainfalls. The 

autumn decline in litter mineral N was associated with a small peak in mineral N in 

the underlying topsoil. Generally, mineral N concentration in the litter was ten times 

that of the topsoil in the unfertilised treatments (Figure 5.5). 

The horizon with the greatest mineral N mass varied depending on the time of 

fertilisation (Figures 5.3 and 5.4). Fertiliser significantly increased mineral N mass 

(kg ha-1
) in the topsoil in all treatments (p<0.05). However, the amount of mineral N, 

and time that the significant increase lasted, varied with treatment. Mineral N 

increases due to fertilisation lasted for three months after the June treatment but only 

two months after the January and April treatments. Although the October treatment 

resulted in lower mineral N masses in litter after fertilisation than the other treatments 

(Figure 5.3b) significant (p<0.001) increases in this treatment lasted for four months. 

Comparing fertilisation times, one month after fertilisation both January and April had 

significantly (p = 0.015) higher mineral N contents in the P. radiata litter than June, 

which was significantly higher than October (Figure 5.6). During the six months of 

sampling, the average amount of available mineral N measured in the litter was lower 
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in the October treatment compared to January and April {p<0.001). fu contrast in the 

Kurosol topsoil, although mineral N content was significantly (p < 0.001) higher in all 

treatments for the first two months after fertilising, there was no significant 

interaction between fertiliser treatment by time in the (Figure 5.7). 
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Figure 5.3 Total mineral N mass (kg ha-1
) in P. radiata litter on the Kurosol 

topsoil after each fertiliser application (a) June, (b) October, (c) January, 
and ( d) April. Bars indicate LSD for fertiliser treatment by time. 
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Figure 5.4 Total mineral N mass (kg ha-1
) in Kurosol topsoil under P. radiata 

plantation after each fertiliser application (a) June, (b) October, (c) 
January, and (d) April. Bars indicate LSD for fertiliser treatment by time. 

One month after fertilisation, the combined mineral N mass in litter plus topsoil, 

ranged from 16 to 180 times greater than that unfertilised. This mineral N mass in 

combined litter plus topsoil samples varied significantly with time of fertilisation. One 
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month after fertilisation the October treatment had a significantly lower (p<0.05) 

mineral N mass in litter plus topsoil (30 kg N ha-1
) , compared to other application 

times. However, by the third month mineral N masses were not significantly different 

between treatments. 
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Figure 5.5 Comparison between total monthly precipitation (recorded at Fingal 
weather station) and mineral N concentrations (µg g-1

) measured in the 
unfertilised P. radiata litter and Kurosol topsoil. 
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Figure 5.6 Total mineral N mass (kg ha-1
) in P. radiata litter after each fertiliser 

application (a) June, (b) October, (c) January, and (d) April. Bars indicate 
LSD for fertiliser treatment by time. 
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Figure 5. 7 Total mineral N mass (kg ha-1
) in Kurosol topsoil after each fertiliser 

application (a) June, (b) October, (c) January, and (d) April. Fertiliser 
treatment by time interaction was not significant (p = 0.067). 

The period of mineral N retention in combined litter plus topsoil was longest after the 

April treatment, and shortest after the October treatment. Comparing the fertilised and 

unfertilised sites (taking into account the low mineral N availability in the unfertilised 

horizon), of the 100 kg N ha-1 that was applied in April, 96 % was still present one 

month after fertilisation. This corresponded to a period of relatively low rainfall in the 

month immediately after the April application. In contrast, the October application 

was followed by a period of relatively high rainfall. 

Annual temperature range varied between 0.9 °C (minimum) and 26.2 °C (maximum), 

in July and February, respectively (Figure 5.8). Variations between the monthly 

maximum and minimum temperatures were highest in January and February and 

lowest during October and November. No correlations were observed between 

mineral N and temperature and monthly rainfall trends in unfertilised litter (Table 

5.1 ). In contrast, mineral N concentrations in unfertilised topsoil were significantly 

correlated with air temperatures (Table 5.1). Maximum and minimum temperatures 

accounted for 65 percent of the variation in mineral N (p<0.05). 
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Table 5.1 Unfertilised P. radiata litter and Kurosol topsoil mineral N 
concentration correlations with each other and with other climatic variables. 

I Max. temperature I Min. temperature I Monthly Rainfall I Soil mineral N I Temperature 
Range 

Litter mineral N -0.41 -0.39 -0.09 I 0.42 I -0.37 

Max. temperature 0.97** -0.45 -0.65* 0.83** 

Min. temperature -0.32 -0.65* 0.68** 

0.33 -0.66* Monthly Rainfall 
--~·-----T---I soil mineral N -0.50* 

* fudicates significance value,* p<0.05, ** p<0.001 

Table 5.2 Nitrate -N (g ha-1
) measured monthly in Kurosol topsoils for six 

months after fertiliser treatment. 

Application month 
Months since application 

1 2 3 4 5 6 
January 0 0 0 0 0 0 
April 0 0 0 0 21 0 

July 0 2 8 5 0 0 

October 0 0 0 0 0 0 

Table 5.3 pH measured monthly in Kurosol topsoils for six months after fertiliser 
treatment. 

Application month 

January 
April 
July 
October 

* missing value 

1 
3.31 
3.10 
3.35 
3.54 

Months since application 
2 3 4 5 

3.48 3.34 3.36 3.45 
3.30 3.31 3.24 3.34 

* 3.41 3.45 3.58 
3.38 3.39 3.39 3.40 

6 
3.42 
3.31 
3.53 
3.43 
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Mineral N was dominated by ammonium with nitrate concentrations often below 

detectable limits (Table 5.2). At its highest, nitrate content was only 2 % of the total 

mineral N measured during the fifth month after the April treatment. Nitrate contents 

were not significantly different between fertiliser treatments in the six months 

measured. Differences also did not occur when seasonal variations in control soils 

were taken into account (monthly control nitrate content minus monthly fertilised). 

Over the six month period on average pH was lower (p < 0.001) in the April 

application than in any other treatment (Table 5.3). Time since fertilisation did not 

significantly effect pH and there was no significant interaction of pH and time. 

Overall, pH decline in all treatments during the six-month period between 0.1 and 0.3 

pH units compared to the control soil. However, there was a significant difference 

(p<0.001) in the pH of control soils during the 16 months of measurement. Taking 

into account seasonal effect on pH during each six months (monthly control minus 

monthly treatment pH) there was no effect of fertilisation timing on pH decline in the 

Kurosol topsoil. 

5.3.2 E. regnans litter and Ferrosol topsoil 

One month after fertilisation, in all treatments, mineral N concentrations were 

between four and twelve times greater in the topsoil and up to sixty times greater in 

the litter, than those unfertilised. After each fertiliser treatment, enhanced mineral N 

concentrations were evident only for the first month's measurement (Figure 5.9 and 

5 .10). The short period of fertiliser retention in topsoil resulted in significant 

(p<0.001) increases in mineral N measured in June and April treatments only (Figure 

5.10). In contrast, all treatments significantly (p<0.001) increased mineral N masses 

in the litter for one to two months, above those unfertilised (Figure 5.9). 

Unfertilised topsoil and litter horizons both showed a depression in mineral N 

concentrations in summer associated with low rainfall events, and a subsequent 

increase in mineral N corresponding to increasing autumn and winter rainfall (Figure 

5 .11 ). This was contrary to the Kurosol site where mineral N peaked in the litter 

during summer. Maximum mineral N concentrations occurred in winter, at 9 µg g-1 

and 17 µg g-1 in topsoil and litter, respectively. Generally, mineral N concentrations in 

unfertilised litter were ten times those measured in unfertilised topsoil. One month 
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after fertilisation, the combined mineral N mass (kg ha-1
) in litter plus topsoil was 

seven to twenty five times greater than that unfertilised. 
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Figure 5.9 Total mineral N mass (kg ha-1
) in E. regnans litter on Ferrosol topsoil 

after each fertiliser application (a) June, (b) October, (c) January, and (d) 
April. Bars indicate LSD for fertiliser treatment by time. 
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Figure 5.10 Total mineral N mass (kg ha-1
) in Ferrosol topsoil under E. regnans 

plantation after each fertiliser application (a) June, (b) October, (c) 
January, and (d) April. Bars indicate LSD for fertiliser treatment by time. 

Comparing fertilisation treatments alone, all treatments had significantly (p < 0.001) 

different mineral N content in E. regnans litter just for the first month after 

fertilisation (Figure 5.12). Mineral N content was highest in April and declined in the 
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order June, January and then October. Overall, October had a significantly lower 

average mineral N content during the six months of sampling (p<0.001). In agreement 

with E. regnans litter, mineral N content in the Ferrosol topsoil was only significantly 

higher in the first month after fertilisation (p < 0.001) (Figure 5.13). April treatment 

also had the highest mineral N content in the litter for the first month and on average 

over the six-month period (p < 0.001). 
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Figure 5.11 Comparison between total monthly precipitation (recorded at Dover 
weather station) and mineral N concentrations (µg g-1

) measured in the 
unfertilised E. regnans litter and Ferrosol topsoil. 

Comparing fertilised and unfertilised sites (taking into account low mineral N 

availability in the unfertilised horizon), of the 100 kg N ha-1 that was applied in April, 

more mineral N was available in the topsoil after the first month than was supplied. In 

contrast, less than 30 % of the N was measured in the combined topsoil and litter 

horizons one month after the October application. 

Annual air temperatures ranged from 2.6 °C (minimum) and 24 °C (maximum) in July 

and February, respectively (Figure 5.14). Variations between the monthly maximum 

and minimum temperatures were highest in January and February and lowest during 

October and November. No correlation was observed between unfertilised topsoil 

mineral N content and monthly temperatures and rainfall (Table 5.4). In contrast, even 
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though temperatures were low during periods of increased mineral N availability, the 

mineral N content of the litter correlated with temperature, and moisture trends. 

(p<0.05). The difference between mean monthly maximum and minimum air 

temperature accounted for 81 % of the variation in mineral N content in the E. regnans 

litters, while monthly rainfall explained 37% of the variation. 
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Figure 5.12 Total mineral N mass (kg ha-1
) in E. regnans litter after each 

fertiliser application (a) June, (b) October, (c) January, and (d) April. Bars 
indicate LSD for fertiliser treatment by time. 
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Figure 5.13 Total mineral N mass (kg ha-1
) in Ferrosol topsoil after each fertiliser 

application (a) June, (b) October, (c) January, and (d) April. Bars indicate 
LSD for fertiliser treatment by time. 
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Figure 5.14 Monthly minimum and maximum temperatures (°C), recorded at 
Dover weather station. 

Table 5.4 Unfertilised E. regnans litter and Ferrosol topsoil mineral N 
concentration correlations with each other and climatic variables. 

Max. temperature Min. temperature Monthly Rainfall Temperature 
Range 

Litter mineral N 0.79** 0.62* -0.61 0.90** 

Max. temperature 0.96** -0.41 0.77** 

Min. temperature -0.29 0.54* 

I 
I 

I 

- -- -r 

Monthly Rainfall -0.54* 
Soil mineral N 

Indicates significance value,* p<0.05, ** p<0.001 

Table 5.5 Nitrate -N (g ha-1
) measured monthly in Ferrosol topsoils for six 

months after fertiliser treatment. 

Application month Months since application 
1 2 3 4 5 6 

January 0 0 69 0 91 0 
April 0 95 0 0 0 0 
July 43 13 0 0 0 0 

October 467 0 0 0 0 333 

I 

i 

Soil mineral N 

-0.16 

0.05 

0.09 ... 

-0.08 

-0.07 
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Table 5.6 pH measured monthly in Ferrosol topsoils for six months after 
fertiliser treatment. 

Application month 
Months since application 

1 2 3 4 5 
January 4.27 b 4.18 ab 418 ab 4.13 ab 4.36 be 
April 3.98 a 4.04 ab 4 01 ab 3.95 a 4.51 e 
July 4.32 be 4.32 be 4.29 be 4.40 be 
October 4.25 b 4.15 ab 4.01 ab 4.29 be 4.13 ab 

* missing value 

6 
4.05 ab 
3.97 a 
4.31 be 
4.05 ab 

Mineral N was dominated by ammonium with nitrate concentrations often below 

detectable limits (Table 5.5). At its highest, nitrate content was only 7 % of the 

mineral N measured during the fifth month following January fertilisation. Nitrate 

contents were not significantly different between fertiliser treatments or between 

seasonally adjusted fertiliser treatments (monthly control nitrate content minus 

monthly fertilised) in the six months measured. Both treatment and the month after 

fertiliser application effected topsoil pH (Figure 5.6). April treatment had the lowest 

average pH compared to July and January. Overall, pH declined in all treatments 

during the six-month period between 0.02 and 0.27 pH units compared to the control 

soil. Seasonal trends in unfertilised Ferrosol topsoil pH were significant during the 16 

months of measurement (p<0.001) reaching a maximum of pH 3.70 in September and 

a minimum of pH 3.34 in August. Taking into account this seasonal effect on pH 

during each six-month treatment (monthly control pH minus monthly treatment pH), 

fertilisation in October (0.27), April (0.18) and January (0.18) reduced pH 

significantly (p<0.001) more than July (0.02). 

5.4. Discussion 

5.4.1 P. radiata litter and Kurosol topsoil 

In all fertiliser treatments there was an elevation of mineral N for up to five months 

after fertilisation. These agreed with results from Chapter 4, and other field and 

laboratory research (Johnson et al., 1980; Hingston and Jones, 1985; Khanna et al., 

1992). The rate of mineral N decline depended on the horizon and season of 

fertilisation. 
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Rainfall immediately after fertilisation influenced N fertiliser retention, with the 

rainfall following October fertilisation associated with low mineral N concentration 

and dry conditions following April fertilisation associated with the highest mineral N 

concentration. These trends agree with Thomas and Mead (1992b), who observed N 

was retained from urea fertilisation in the soil horizon under 2-year-old P. radiata 

plantations longer during periods oflower rainfall. Nason et al. (1990) also related N 

leaching or immobilisation to rainfall immediately after fertilisation. 

Although peaks in mineral N were generally associated with initial fertilisation, there 

was evidence of delay in N movement between the litter and soil. This was evident in 

the Kurosol topsoil fertilised in January, with N increases during February and March 

2001 associated with a decline in the overlying litter. This flux in mineral N was 

associated with warm temperatures and a large increase in rainfall, after a three-month 

dry spell, and as such may also correspond to a flush ofN mineralisation due to a 

drying and re-wetting cycle in the litter and topsoil. Enhanced mineralisation ofN due 

to rainfall (within 4 hours) was observed in agricultural soils by Murphy et al. 

(1998b ). This enables a considerable amount of N mineralisation to occur after 

summer rainfall, even though the soil surface dries rapidly. Data interpretation 

unfortunately relies on determining just when the rainfall event occurred and at what 

stage in the re-wetting response cycle the sample was taken. Detailed information on 

rainfall individual events was not measured during this study. However, a similar 

peak in mineral N occurred in March of the previous year during in situ measurements 

(Chapter 4), although this was not significant. This was associated with a significant 

increase in N uptake in both fertilised and unfertilised soils in March 2000, while no 

differences in N uptake were measured for the remainder of the year. For the 

remainder of the year N uptake was below 3 kg N ha-1 month-1 and as such had not 

significant effect on the mineral N availability in this study. 

Canopy cover and litter retention would have also effected moisture regimes. Conifer 

needles have a hydrophobic surface and small surface area, and as a result they may 

be slow to take up moisture, but they are effective at retaining moisture (Heal, 1979). 

Although the moisture content in P. radiata litter fluctuated by (1600 percent), the 

amount was generally higher than that measured in the topsoil. In contrast to the 
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limited influence of season on topsoil mineral N, the P. radiata litter showed a 

distinct elevation of mineral N during the summer period, which declined 

dramatically after autumn rainfalls. Although litter horizons are characterised by a 

high biological activity and frequent and extreme fluctuations in moisture content, 

these effects are poorly understood (Clein and Schimal, 1993). 

In agreement with earlier research the effect of season on mineral N availability was 

variable (Adams and Attiwill, 1986; Adams et al., 1989b; Birk, 1992). Under P. 

radiata there were no correlations with the climate variables measured and N 

availability in litter, while the variation of mineral N in topsoil was correlated to 

monthly air temperatures. 

5.4.2 E. regnans litter on Ferrosol topsoil 

In all fertiliser treatments there was a brief elevation of litter and topsoil mineral N in 

the first month after fertilisation. The elevation of mineral N for only one-month on 

this site reflects the generally wetter conditions at this site. 

Although peaks in mineral N were associated with initial fertilisation, there was 

evidence of N mineralisation at the end of measurements in the October treatment (in 

April 2001). At this time mineral N concentration in the topsoil increased above those 

observed in the first month after fertilisation, ~hile no corresponding increase 

occurred in the unfertilised topsoil. This flux in mineral N was also associated with 

warm temperatures and a period of high rainfall. 

In agreement with Chapter 4, little nitrate was measured in the topsoil from both sites. 

At its highest, nitrate content was only 7 % of the mineral N, which occurred during 

the fifth month following fertilisation in January. In a study of 38 podzolic soils 

Carlyle et al. (1990) observed a clear discrimination between strongly and weakly 

nitrifying soils using soil pH and observed a distinct switch at a pH of 5.3 below 

which limited nitrification occurred. As the pH in these soils remained below 5 units, 

nitrification was not expected to occur even after fertiliser additions. 
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Negative correlations between mineral N content in the E. regnans litter and monthly 

rainfall probably result from N leaching during large rainfall events. Moisture content 

in litters was higher than in topsoils and this difference between the two remained 

relatively constant, while the moisture content in the litter varying five-fold. This 

could explain the strong temperature dependent correlation in litter but not in soil. The 

influence of moisture availability on NNM in the Ferrosol topsoil was previously 

observed and discussed in the in situ study of Chapter 4. During that experiment, 

NNM in topsoil was reduced by half when additional rainfall was eliminated from in 

situ incubating soil. Nadelhoffer et al. (1991) observed that cumulative NNM was 

significantly related to an organic C by temperature interaction (r2 = 0.73, p<0.001), 

which could explain the correlations with temperature in litter but not topsoil. The 

previous in situ study also indicated although N uptake was highest around the 

beginning of Autumn (March) there was not significant effect of season on N uptake. 

5.5 Conclusions 

Enhancement of mineral N was evident in both horizons, at both sites, after each 

fertiliser treatment. However, the length of time for which this was evident depended 

on the horizon being studied, the site and the season of fertilisation. 

• At the wetter, Ferrosol site planted with E. regnans, the flux of mineral N after 

fertilisation was brief with only a small amount present one month after 

fertilisation. By the second month, mineral N concentrations were similar to 

unfertilised horizons. This validates the assumption made in Chapter 4 that the 

two-month delay from fertiliser application to in situ measurements resulted from 

the flush of mineral N due to fertilisation being missed at this site. 

• In comparison, the drier Kurosol site planted with P. radiata showed a mineral N 

flux that lasted between four and five months. These trends are in agreement with 

the earlier observations made at these sites (Chapter 4) and confirms that a six­

month delay after fertiliser application is adequate to determine long-term 

fertiliser effects on NNM, independent of the time of fertiliser application. 

• At both sites the measurement of mineral N after fertilisation was greatest in April 

treatments, and lowest in October treatments, with similar amounts available in 

the litter and topsoil. Indicating that current operational practice of applying 
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fertiliser in autumn provides an adequate window for fertiliser uptake to occur. 

This is further validated by the increased uptake of N in autumn measured during 

the in situ study (significant only in the Kurosol) (Chapter 4). 

• At both sites, one month after fertiliser application in April, mineral N contents 

were around 80 percent of that applied. In comparison, the October treatment 

contained around 20 percent. At both sites, the large drop in mineral N following 

October treatment was associated with high spring rainfalls during this period. 

• In agreement with previous studies, rainfall appeared to be a strong regulator of 

mineral N availability at both sites. 

• At both sites, ammonium was the dominant form of mineral N, with nitrate often 

below detectable limits or less than 10 percent of the total mineral N. The highest 

proportion measured was 7 percent in the Ferrosol topsoil five months after 

fertilisation in January. 

• At both sites, mineral N concentrations were generally 10 times greater in litter 

than topsoil in all treatments. Although the litter had higher concentrations of 

available N the greater density of the topsoil means the total amounts on Nin the 

two horizon types were quite similar. 
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Chapter 6. Temperature, moisture and fertiliser effects on net 

nitrogen mineralisation in laboratory incubations of soil and litter 

from two contrasting sites. 

6. 1 Introduction 

At both sites (Kurosol and Ferrosol), long-term N fertilisation had no statistically 

significant effect on in situ NNM rates (Chapter 4) and after N fertilisation increases 

in mineral N concentration were observed to be relatively short-lived, decreasing to 

pre-fertilised levels within a few months (Chapter 5). However, in both studies, 

changes in soil mineral N, due to N fertilisation were influenced by the rainfall events 

that occurred after fertilisation. Seasonal effects on N mineralisation are widely 

reported in the literature (Nadelhoffer and Aber, 1984; Adams and Attiwill, 1986; 

Plymale et al., 1987; Foster, 1989). 

Increased plantation growth through long-term fertilisation can lead to changes in the 

microclimate of the underlying forest floor. For example, long-term fertilisation can 

increase the size of the tree canopy (Smethurst et al., 2003), stem volume (Waring, 

1972; Hunter and Hoy, 1983; Sch5nau and Herbert, 1989; Neilsen and Lynch, 1998), 

and the rate oflitter fall, as discussed in Chapter 3. A larger tree canopy and litter 

layer insulates the underlying soil and dampens fluctuations in both soil temperature 

and moisture. In addition, the larger canopy can result in a higher rate of transpiration 

and a subsequent decrease in soil moisture content. Evidence of such trends were seen 

during the in situ mineralisation study, where, for the majority of sample times, there 

were significantly lower moisture contents under annually fertilised P. radiata trees 

compared to those unfertilised (Chapter 4). As a result, long-term fertilisation creates 

different microclimates for microbial activity between fertilised and unfertilised soils. 

Rainfall during the 18-month study was lower than average, and therefore might have 

limited NNM. Previous researches have established a strong relationship between 

water availability and soil and litter N mineralisation rates (Powers, 1990; Evans et 

al., 1998; Prasolova et al., 2000). These variations in the micro- and macro-climate of 

certain soils makes it more difficult to extrapolate data generated over the present 
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relatively short-term field study to the longer-term (20-30 years). To minimise the 

influence of climatic variations on NNM rates, many researchers have incubated soil 

under controlled temperature and moisture conditions (Theodorou and Bowen, 1983a; 

Richards et al., 1985; Carlyle et al., 1998b). 

In addition to climatic variations, nutrients applied in fertilisers eventually become 

distributed between the overstorey, understorey, forest floor, mineral soil horizons 

and various loss pathways (Miller, 1981), which also changes the patterns nutrient 

cycling between these compartments. The effect of fertilisation on NNM in litter was 

not examined in the field study (Chapter 4). However, results from Chapter 3 clearly 

indicate that changes in total N, due to fertilisation was significant only in litter and 

not in the top 10 cm of mineral soil. In karri (Eucalyptus diversicolor F. Muell.) re­

growth forests in Western Australia, fertilisation (200 kg N ha-1
) increased annual 

litter fall by 21 % and N content by 23 % in three years (O'Connell and Grove, 1993) 

and was associated with an increase in the amounts of nutrients transferred into the 

litter layer from the soil during decomposition. At these sites it was considered 

necessary to determine the rates ofNNM in the litter, as the litter was a significant 

nutrient pool in both plantations studied. In addition this present study aimed to 

determine the optimum temperature and moisture content for N mineralisation in litter 

(02) and topsoil (Al) horizons of each of the sites studied, and using these optimum­

rates, compare N mineralisation rates from contrasting fertiliser treatments. 

6.2 Methods 

6.2.1 Field Sampling 

At both sites where in situ rates ofNNM were measured (Chapter 4), four plots were 

sampled, i.e. two annually fertilised plots and two unfertilised plots (Table 6.1 ). 

Samples were collected from uncultivated zones between tree rows using the 

following procedures. 
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Table 6.1 Field sampling summary 
Site location Southern Tasmania 

Soil 

Species 

Fertiliser treatments 

Horizons 

Ferrosol 

E. regnans 

PlYNlY 

NIL 

Al (0-10 cm) 

02 Litter 

North-east Tasmania 

Kurosol 

P. radiata 

(P)NlY 

NIL 

Al (0-lOcm) 

02 Litter 

Litter was collected using a 25- by 20-cm frame. Samples were separated into two 

horizons, i.e. the undecomposed organic debris (01 horizon) and the decomposed 

organic debris (02 horizon) (McDonald et al., 1990). There was also a distinct 

separation between the 01 and 02 boundaries at both sites, with the 02 horizon 

containing darker particles that were smaller and often matted together by fungi. The 

01 horizon was the remaining loose litter on top of the 02. Only the 02 horizon was 

retained for analysis. Six 02 litter sub-samples were collected and bulked per plot into 

plastic bags, which were then placed in insulated bags for transportation to the 

laboratory. 

After litter removal, a 25- by 20- by 10 ( depth)-cm block of mineral soil was 

removed, and placed in to a 28-litre plastic bin. At these sites the distinction between 

layers was clear and relatively easy to separate, with a clear boundary between the 01 

and Al horizon and a marked mass of roots between the two. Site profiles 

photographs are presented in Chapter 3, which demonstrate this. The mineral soil 

depth (0-10 cm) corresponds to that used for in situ core incubations in Chapter 4. Six 

mineral soil sub-samples were bulked per plot into a single plastic bin. Topsoil mass 

per hectare was calculated using the average bulk densities (of replicate treatment 

plots) determined in Chapter 3. The average bulk density across both treatment plots 

in the Kurosol topsoil was 1.625 g cc-1, and in the Ferrosol it was 1.26 g cc-1
• Litter 

02 mass per hectare was calculated using average litter masses per fertiliser treatment 

(P. radiata NIL, 40 t ha-1
; (P)NlY, 71 t ha-1

; E. regnans NIL, 14 t ha-1
; PlYNlY, 77 t 

ha-1
). For further information on sample collection and calculations oflitter mass and 
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soil bulk densities, see Section 3.4. All samples were brought to the laboratory within 

eight hours of collection and placed in the cool-store at 2-4 °C. 

6.2.2. Laboratory sample preparation 

Pooled topsoil (Al) horizons were sieved through a 2 mm sieve to remove rocks, 

large roots and twigs. The resultant < 2 mm mineral topsoil was then thoroughly 

mixed and cool-stored (2-4 °C ) for two weeks. This period of cool storage was to 

allow equilibration after the sieving disturbance. Bulk 02 horizon samples were 

passed through a 4 mm sieve to remove large debris. The resultant < 4 mm :fraction 

was then thoroughly mixed and placed in a square 28 litre plastic bin and cool-stored 

(as per< 2 mm soil). 

Following two weeks cool-storage, all bulked samples were removed :from storage 

and sub-sampled, in duplicate, to determine mineral N concentration (as per methods 

in Section 3 .4). The concentrations ofN03 - and NH4 +measured at this time were set 

as initial (time zero, T0) concentrations. 

To compare rates ofNNM concentrations were converted to kg ha-1 using the 

following equations; 

NNM kg Soil/ha= NNM (µgig) x BD (glcm3
) x 10-9 kg (µg/kg) x 108 (cm2/ha) x 10 

cm depth of the topsoil. 

NNM kg Litter/ha= NNM (µgig) x Litter (kg/ha) x 10-6 g (µgig). 

6.2.3 Determination of moisture content for laboratory incubations 

Three water potentials were chosen for comparison, i.e. just above the permanent 

wilting point (15 bar) just below field capacity (0.33 bar) and an intermediate value 

between the two (3 bar). These tensions were applied to both the Ferrosol and Kurosol 

topsoil using pressure plate apparatus. 
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From bulk< 2 mm topsoil samples; twelve sub-samples (approximate 30 grams) were 

removed and packed firmly into individual rubber holding rings. Four packed rings 

from each plot were then placed on each of the three porous pressure plates and 

wetted thoroughly. Individual plates were then placed under pressure to produce the 

designated water potentials of 0.33, 3 or 15 bar, and allowed to equilibrate for three 

days. Soil samples were then removed and gravimetric water content determined after 

drying at 105 °C for 24 hours. 

Moisture content for litter samples were determined to simulate freely drained litter 

horizons in the field. From each bulk< 4 mm litter (02 horizon) sample per plot, four 

sub-samples were removed and packed firmly into rubber holding rings. Packed rings 

were placed onto a porous plate and wet thoroughly. Wet 02 horizon samples where 

then left to free drain (without suction) and evaporate during a period of 36 hours. The 

remaining mass of water for each sub-sample was then calculated using oven dry 

weights (105°C, 24 hours). 

Remaining bulk < 2 mm soil and < 4 mm litter samples were split for moisture 

corrections. Depending on the initial moisture content, a sample was dried down (at 

ambient temperatures) or distilled water was added, by applying a fine spray to the 

surface of the sample. Once a sample was at the required moisture content, it was 

thoroughly stirred and returned to cool-store (2-4 °C) for a further two week period of 

equilibration. 

6.2.4 Incubations methods 

The design of the experiment included factorial combinations of two sites, two 

horizons (02 and Al) and two fertiliser treatments (annual application and 

unfertilised). There were also four incubation temperatures and three moisture levels 

for each soil and two incubation temperatures and two moisture levels for each litter. 

Each temperature-by-moisture treatment was replicated in three individual vials. 

Samples of 40 g of< 2 mm topsoil and 30 g of< 4 mm litter were placed into separate 

100 ml clear plastic vials. These vials were covered with polyethylene film (brand 
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name, Gladwrap) to allow 0 2 and C02 exchange while limiting the loss of water 

(Connell et al., 1995). 

All vials were incubated in the dark two months at one of the treatment temperatures 

(3, 12, 16 or 22 °C for topsoil and 12 and 16 °C for litter). During incubation, samples 

were disturbed as little as possible while moisture content was checked fortnightly by 

weighing. Water content was readjusted, if necessary, by gently spraying with 

distilled water until the original moistened sample weight was reached. Moisture loss 

was low at 2 to 4 % by day 28. 

Following incubation, samples in vials were thoroughly mixed and a single 10 g sub­

sample was removed for extraction with cold KCl (see Section 6.2.2). Determined 

mineral N concentration was set as the final concentration (T 1). 

Table 6.2 Summary of laboratory incubation parameters 
Site Horizon Temperature Moisture Content (% w/w) 

oc 
North-east Kurosol topsoil (Al horizon) 3 10 % (level 1) 

12 15 % (level 2) 

16 20 % (level 3) 

22 

P. radiata litter (02 horizon) 12 80% 

16 120% 

South Ferrosol topsoil (Al horizon) 3 30 % (level 1) 

12 45 % (level 2) 

16 60 % (level 3) 

22 

E. regnans litter (02 horizon) 12 120% 

16 180% 

The four temperatures represent the range of temperatures occurring in the forest floor 

in Tasmania (Chapter 4, Figures 4.9 and 4.13). The three moisture contents in soil 

samples for each site represent; Level 1, approximately just above permanent wilting 

point, Level 3, approximately just below field capacity, and Level 2, a water content 
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mid-way between the other two levels (Table 6.2). All three levels were observed in 

the field, at each site, during the 18-month field study (Chapter 4). 

Data analysis 

Results from each plot were compared by the standard error between replicate vials. 

Overall comparison, of all four plots at each site, were analysed using a multiple 

analysis of variance (MANOV A) procedure of the GenStat software (Genstat 5 

Committee, 1988). Means were compared using the treatment interactions (fertiliser, 

moisture and temperature treatments) least significant differences (p < 0. 05 and p < 

0.001), as stated. 

6. 3 Results 

6.3.1 Kurosol topsoil 

Initial mineral N content ofKurosol topsoil (prior to incubation, To) was low, 

generally less than 10 kg ha-1
• On average, fertilised topsoil ((P)Nl Y) had mineral N 

content four times greater than those unfertilised (NIL), 6. 7 and 1. 9 kg ha-1
, 

respectively (Figure 6.1 ). However, mineral N contents from the two fertilised topsoil 

varied, by up to two-fold (Figure 6. la, b ). In contrast, mineral N contents within the 

two unfertilised soil replicates showed little variation (Figure 6.lc, d). 

Following eight weeks incubation, final mineral N content (T1) in fertilised soil was 

between three and twenty three times larger than those measured in unfertilised soil. 

In all four topsoils studied, there was no consistent effect of either temperature or 

moisture on mineral N content. However, differences between soil collected from 

fertilised and unfertilised replicates were most pronounced at the higher temperatures 

of 10, 16 and 22 °C. 
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Figure 6.1 Mineral N content of the Kurosol topsoil initially and after two 
months incubation at 3, 10, 16 or 22 °C, in (a) (P)Nl Y plot-1, (b) (P)NlY 
plot-2, (c) NIL plot-1, (d) NIL plot-2. Bars indicate standard error (SE) 
between replicate vials. 

Rates ofNNM were calculated by subtracting initial mineral N content (To) from the 

final mineral N content (T1) (see Section 4.2.4 for further details). Due to the 

relatively high initial mineral N content of plot-2 compared to plot-1, plot-2 topsoil 

had much lower rates of NNM than plot-1 topsoil (Figure 6.2 a & b ). In both fertilised 

topsoils, the highest NNM rate occurred when incubated at 16 °C and 20 percent 

moisture, a moisture content that was just below field capacity (24 kg ha-1 in plot-1 

and 10 kg ha-1 in plot-2 per 2 months). Rates ofNNM in unfertilised topsoil were very 

low, and often negative (Figure 6.2 c & d).Positive NNM in unfertilised topsoil was 

often associated with the treatment (temperature and moisture) that produced high 

NNM in fertilised topsoil. Maximum NNM in unfertilised topsoil was observed when 

incubated at 16 °C and 20 percent moisture, the same as the fertilised topsoil. 
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Overall, when comparing all four plots, fertiliser treatment had a significant effect on 

mean NNM (p<0.001) (Table 6.3). Calculated annual NNM varied, due to incubation 

moisture and temperature, in fertilised topsoil per plot from -20 to 146 kg N ha-1 yr-1
, 

and in unfertilised plots between - 14 and 21 kg N ha-1 yr1
• No other treatment had a 

significant effect at this level of analysis. 
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Figure 6.2 Kurosol topsoil net N mineralisation, kg ha-1 (a) (P)Nl Y plot-1, 
(b) (P)NlY plot-2, (c) NIL plot-1, (d) NIL plot-2. Bars indicate SE between 
replicate vials. 
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Table 6.3 Analysis of variance comparing mean NNM in Kurosol topsoil from all 
four plots combined 

[Source of variation d.f. s.s. m.s. v.r. F pr. 
Fertiliser 1 I 299.27 299.27 15.22 <.001 
Moisture 2 3.2 1.6 0.08 0.922 
Temperture 3 94.64 31.55 1.6 0.196 
Fertiliser. Moisture 2 9.12 4.56 0.23 0.793 
Fertiliser. Temperture 3 58.72 19.57 1 0.400 
Moisture. Temperture 6 I 84.74 14.12 f0.72 0.636 
Fertiliser.Moisture. Temperature 6 30.62 5.1 0.26 0.954 

I I 
- ·--i·----Residual 72 1415.54 19.66 

Total 95 1995.85 i 

Both fertilised and unfertilised topsoil showed an increase in nitrate production at the 

lower moisture and temperature combinations, but nitrate production was very low ( < 

0.1 kg N/ha) (Table 6.4). No nitrate was observed prior to incubation. 

Table 6.4 Nitrate-N (gram ha-1
) in the Kurosol topsoil initially and after two 

months incubation at various combinations of moisture and temperature. Only 
positive results are presented. 

I I Moisture % 

I Temperature (°C) I 10 I 15 20 
Fertilized plot-1 Initial I 

-~ 3 60 
10 

~ 
65 62 

-· 
16 
22 

Fertilized plot-2 Initial 
3 33 I -· l_ 

10 53 50[ 
-· =t--== 16 

22 
Unfertilized plot-1 Initial 

3 
10 46 56f 
16 
22 

Unfertilized plot-2 Initial 
3 8 
10 58 46 
16 12 -· 22 
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6.3.2 Ferrosol topsoil 

Initial mineral N content (prior to incubation, T 0) was similar in the two fertilised 

(Pl YNl Y) and two unfertilised (NIL) topsoils (Figure 6.3). Generally topsoil with the 

lowest moisture content, just above the permanent wilting point (15 bar), had higher 

initial mineral N content. This was particularly pronounced in one of the unfertilised 

plots. Drying unfertilised soil to near wilting point also substantially increased the 

availability of nitrate prior to and post incubation and at all temperatures (Table 6.5). 

Following eight weeks incubation, there were no consistent differences in, final 

mineral N content (T1), between fertiliser treatments. Inconsistencies were present 

between plots and moisture affects. The effect of temperature also varied with 

fertiliser treatment. Mineral N content in fertilised topsoil generally increased with 

increasing temperature, while unfertilised topsoil was generally unaffected by 

temperature. 
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Figure 6.3 Mineral N content of the Ferrosol topsoil initially and after two 
months incubation at 3, 10, 16 or 22 °C, in (a) PlYNlY plot-1, (b) PlYNlY 
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plot-2, (c) NIL plot-1, (d) NIL plot-2. Bars indicate SE between replicate 
vials. 

Rates of NNM from the two unfertilised topsoils were inconsistent between plots and 

highly variable, ranging from -4 to 146 kg N ha-1 during the two-month incubation 

(Figure 6.4). In contrast, trends in NNM between the two fertilised plots were similar. 

In fertilised topsoil, NNM increased with temperature and was slightly depressed at 

the intermediate moisture content. The optimum temperature for NNM in both 

fertilised and unfertilised topsoil was 22°C, the highest temperature used. The 

optimum moisture content was the highest (60%) in fertilised soil, however, this 

resulted in the highest rate of immobilisation (reduction in N content during the 

incubation) in unfertilised soil. In contrast to the fertilised topsoil, the inconsistent 

moisture effects on NNM in the unfertilised topsoil meant that no moisture optimum 

could be determined. 

Table 6.5 Nitrate-N (gram ha-1
) in the Ferrosol topsoil initially and after two 

months incubation at various combinations of moisture and temperature. Only 
positive results are presented. 

I I Moisture % 
I Temperature (°C) I 30 J 45 60 

Fertilized plot-1 j~itial 

10 13 5 
16 1 
22 I 

Fertilized plot-2 Initial t--3 
10 

I 
20 

+ 
-

16 
122 

I Unfertilized plot-1 Initial 72 
3 117 10 
10 124 33 
16 128 29 
22 130 13 

Unfertilized plot-2 Initial 30 
3 501 0 
10 111 4 
16 444 0 I 
22 443 0 
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Figure 6.4 Ferrosol topsoil net N mineralisation, kg ha-1 (a) PlYNlY plot-1, (b) 
PlYNlY plot-2, (c) NIL plot-1, (d) NIL plot-2. Bars indicate SE between 
replicate vials. 

Overall, when comparing all four plots, no significant difference in mean NNM was 

observed between fertiliser treatments (Table 6.6). Annual NNM rates ranged 

between 34 and 764 kg N ha·1 yr·1 in fertilised topsoil and between - 24 and 621 kg N 

ha·1 yr1 in unfertilised topsoil. There was a significant interaction between fertiliser 

and moisture treatment (p<0.05) where at the highest moisture treatment (60%) 

resulted in mean NNM in fertilised soil higher than those unfertilised, while at the 

lower moisture contents mean NNM was not significantly different. 
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Table 6.6 Analysis of variance comparing mean NNM in Ferrosol topsoil from all 
four plots combined 

I Source of variation d.f. s.s. m.s. v.r. F pr. 
Fertiliser 1 236 236 0.19 0.660 
Moisture 2 1759 879 0.73 0.487 
Temperture 3 4396 1465 1.21 0.313 
Fertiliser. Moisture 2 13524 6762 5.58 0.006 
Fertiliser. Tern perture 3 1309 436 0.36 0.782 
Moisture. Temperture 6 344 57 0.05 1.000 
Fertiliser. Moisture. Temperature 6 1677 280 0.23 0.965 

-----
Residual 72 87240 1212 
Total 95 110484 I 

6.3.3 Pinus radiata litter 

Initial mineral N content (prior to incubation, To) in fertilised ((P)Nl Y) litter (02) 

was generally ten times greater than unfertilised (NIL) litter (Figure 6.5). However, 

there was also a large variation, between litters from the two fertilised plots and 

between litters from the two unfertilised plots. 

Following eight weeks of incubation, final mineral N content (T1) was significantly 

greater in litter from the two fertilised than litter from the two unfertilised plots. Net N 

mineralisation rates ranged between 7 and 18 kg ha-1 in fertilised litter, while in 

unfertilised litter NNM rates were generally less than 1 kg ha-1
, or negative (Figure 

6.5). Net N mineralisation rates increased with increased incubation temperature in 

both fertilised and both unfertilised litters. As a result, differences in NNM rates 

between fertilised and unfertilised litter were more pronounced at the higher 

temperature. In contrast, there were no consistent moisture effects on NNM. 
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Figure 6.5 Mineral N content (N kg ha-1
) of P. radiata litter initially and after two 

months incubation at 3, 10, 16 or 22 °C, in (a) (P)NlY plot-1, (b) (P)NlY 
plot-2, (c) NIL plot-1, (d) NIL plot-2. Bars indicate SE between replicate 
vials. 

Overall, when comparing all four plots, fertiliser treatment had a significant effect on 

mean NNM (p<0.001) (Table 6.7). Annual rates ofNNM in the unfertilised litter 

ranged from-2.1to3.9 kg ha-1 yr-1 compared to 42.8 to 106.2 kg ha-1 yr-1 in fertilised 

litter. The maximum NNM rate occurred at the higher temperature and moisture 

content, 16°C and 120 %, for both fertiliser treatments. Moisture and temperature had 

no significant effect on mean NNM across all plots. 
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Figure 6.6 Pinus radiata litter net N mineralisation, kg ha·' in (a) (P)Nl Y plot-1, 
(b) (P)NlY plot-2, (c) NIL plot-1 , and (d) NIL plot-2. Solid columns are 
moisture content of 80%, hashed are 120%. Bars indicate SE between 
replicate vials. 

Table 6. 7 Analysis of variance comparing mean NNM in P. radiata litter from all 
four plots combined 

Source of variation d.f. S .S . 

Fertiliser 485.665 
Moisture 2.207 
Temperture 9.753 
Fertiliser. Moisture 1.251 
Fertiliser. Temperture 5.622 
Moisture. Temperture 3.892 
Fertiliser. Moisture. Temperature 

4.414 
Residual 

f 
8 68.546 

Total 15 581 .35 

m.s. 
485.665 

2.207 
9.753 
1.251 
5.622 
3.892 

4.414 
8.568 

v.r. 
56.68 
0.26 
1.14 
0.15 
0.66 
0.45 

0.52 

F pr. 
< .001 
0.625 
0.317 
0.712 
0.441 
0.519 

0.493 
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Table 6.8 Pinus radiata nitrate-N (gram ha-1
) measured initially and after 2-

month incubations at given moisture (%) and temperature (°C). Only positive 
results presented. 

Moisture 
Temperature 80 120 

Fertilized plot-1 Initial 8 
10 30 10 
16 36 

Fertilized plot-2 Initial 4 6 
10 24 18 
16 31 

Unfertilized plot-1 Initial 1 
10 1 1 
16 19 

Unfertilized plot-2 Initial 4 
10 5 
16 13 

6.3.4 Eucalyptus regnans litter 

Initial mineral N content (prior to incubation, T 0) in fertilised (PI YNl Y) litter (02) 

(Figure 6.7a, b) were between 5 and 50 times larger, compared to those measured in 

the unfertilised (NIL) litter (Figure 6.7c, d).Increased moisture content prior to 

incubation decreased mineral N content in all litters, and generally enhanced the 

variation in mineral N content between fertiliser and unfertilised plots. Differences 

between fertiliser treatments were increased at the end of the eight-week incubation 

(Tr). 
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Figure 6.7 Mineral N content (N kg ha-1
) of E. regnans litter initially and after 

two months incubation at 3, 10, 16 or 22 °C, in (a) PlYNlY plot-1, (b) 
PlYNlY plot-2, (c) NIL plot-1, (d) NIL plot-2. Bars indicate SE between 
replicate vials. 

Rates ofNNM (T1-T0) in litter from the two fertilised plots (Figure 6.8a, b) were 

between 5 and 33 times greater than unfertilised plots (Figure 6.8c, d). There were no 

consistent effects of temperature or moisture across all four litters. However, higher 

moisture content increased NNM and the highest NNM rate in all four plots occurred 

when the litter was incubated at 16°C and 180% moisture. 
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Figure 6.8 Eucalyptus regnans litter net N mineralisation, kg ha-1 (a) PlYNlY 
plot-1, (b) Pl YNl Y plot-2, (c) NIL plot-1, (d) NIL plot-2. Solid columns are 
moisture content of 120%, hashed are 180%. Bars indicate SE between 
replicate vials. 

When comparing all four plots, fertiliser treatment had a significant effect on mean 

NNM (p<0.001) (Table 6.9). Annual rates ofNNM in the fertilised litter ranged from 

28.2 to 320 kg ha·1 yr·1 compared to 0.2 to 21.7 kg ha·1 yr·1 in unfertilised litter. There 

was no significant effect of fertiliser treatments on nitrate content, which increased 

slightly by the end of the two-month incubation (Table 6.10). Moisture also 

significantly increased mean NNM rates across all four plots (p<0.05). There was no 

interaction between moisture and temperature, but there was an interaction between 

moisture and fertiliser treatment, with fertilised litter significantly increasing with 

increasing moisture, while unfertilised remained constant. No interaction between 

treatment, temperature and moisture occurred. 
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Table 6.9 Analysis of variance comparing mean NNM in E. regnans litter from 
all four plots combined 

!Source of variation d.f. s.s. m.s. v.r. F pr. 
Fertiliser I 1 2353.61 2353.61 44.38 I <.001 
Moisture 1 1147.54 1147.54 21.64 0.002 
Temperture 1 11.67 11.67 0.22 0.651 
Fertiliser. Moisture 1 I 1068.78 1068.78 20.15 0.002 
Fertiliser. Temperture 1 18.48 18.48 0.35 0.571 
Moisture. Temperture 1 1.99 1.99 0.04 0.851 
Fertiliser. Moisture. Temperature 

1 1.13 1.13 0.02 0.888 -
Residual 8 424.29 53.04 
Total 15 5027.47 

Table 6.10 Eucalyptus regnans litter nitrate-N (grams ha-1
) initially measured 

and after two month incubation at a given moisture (%) and temperature (°C). 
Only positive results presented. 

Fertilized plot-1 
Temperature 
Initial 
10 
16 

Fertilized plot-2 Initial 
10 
16 

Unfertilized plot-1 Initial 
10 
16 

Unfertilized plot-2 Initial 
10 
16 

6.4 Discussion 

Moisture 
120 

2 
3 

7 
44 

1 
6 

6.4.1 Pinus radiata litter and Kurosol topsoil 

180 
10 
37 
1 

9 
1 

49 
2 
3 
6 

Net N mineralisation in the litter reflected increased N inputs due to fertilisation, 

which was not always present in topsoil. Previous research indicated a tendency for 

enhanced rates ofNNM in the soil after fertilisation to be relatively short-lived 

(Williams, 1972; Johnson et al., 1980; Adams and Attiwill, 1983), and depends on the 

form and frequency of fertilisation (Heilman, 1974; Strader and Binkley, 1989). 

During current field studies this was also the case, with in situ NNM not significantly 

higher after long-term fertilisation at either site (Chapter 4) and mineral N 

concentration declined to pre-fertilised levels within five months (Chapter 5). 

However, results presented in this chapter demonstrated that under controlled 
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laboratory incubations, significant differences in NNM due to fertilisation could be 

observed. 

Under P. radiata, both the fertilised litter and soil had significantly higher rates of 

NNM than those unfertilised. Increased N cycling in litter due to fertilisation 

corresponded to a large increase in the total N content and NNM per gram of the 02 

horizon (Chapter 3). Previous authors have also observed similar trends from 

laboratory incubations of soil. Connell et al. (1995) observed that heavy fertilisation 

almost doubled the rate of soil N mineralisation during laboratory incubations. Higher 

rates of NNM in soil were observed six years after the final application ofN fertiliser 

(860 kg N ha-1 applied during a period of7 years) by Smolander et al. (1998), and 22 

years after the application of ammonium nitrate (470 kg N ha-1
) to a Douglas fir 

plantation by Strader and Binkley (1989). In agreement with observations in Strader 

and Binkley (1989) study, increases in NNM from fertilisation in the current study 

were low, at less than 50 µg g-1
• In contrast, increases in NNM in the 02 horizon were 

up to almost 200 µg g-1 (from a maximum concentration of less than 10 µg g-1 

observed in the unfertilised litter to 195 µg g-1 in the fertilised). In the P. radiata litter, 

NNM increased significantly due to fertilisation both due to the increase in total mass 

of the litter and the rate ofNNM per gram oflitter. 

Significant increases in Kurosol topsoil NNM due to fertilisation determined in the 

laboratory contrasted to results observed in the field. Although in situ rates ofNNM 

were on average four times higher in fertilised topsoil in the field, this was not 

significant due to large plot variations (Chapter 4). Both the field and laboratory 

studies highlighted variations between fertiliser plots at this site. Annual rates of 

NNM in fertilised soil varied between 22 and 82 kg N ha-1 yr-1 in the field, and 

between-20 and 146 kg N ha-1 yr-1 in the laboratory, dependent on the plot studied, 

incubation temperature and moisture content. In both field and laboratory 

experiments, NNM rates were up to 20 times higher in plot-1 than plot-2. Such 

variations indicate that on sites selected as being reasonably uniform (Chapter 3) 

variation in NNM was very high. 
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In the laboratory, the effect of the incubation temperature and moisture content varied 

between the litter and the topsoil. Net N mineralisation in the topsoil showed little 

variation between 3 and 10 °C, while the highest NNM rates occurred at one of the 

two higher temperatures (16 and 22 °C). These results concur with Nadelhoffer et al. 

(1991) in a study of six Alaska soils, where C and N mineralisation during aerobic 

laboratory incubations were insensitive to temperatures between 3 and 9 °C, but 

increased by a factor of two or more between 9 and 15 °C. Their study also noted that 

differences in mineralisation rates among soils were greater than differences due to 

incubation temperature in a single soil. 

In the unfertilised topsoil NNM decreased with increasing temperatures from 3, 10 

and 16 °C, while the fertilised soil generally increased with increasing temperature. 

Such trends suggest a change in the microbial population due to long-term 

fertilisation. In a comparison of soil NNM rates from four forested sites in Michigan, 

MacDonald et al. (1995) observed a significant site, and site by temperature, 

interaction during laboratory incubations. They observed that differences in NNM a 

rate between sites were often increased with increasing laboratory temperature, 

between 5 and 25 °C. Changing temperate optima for microbial populations was also 

highlighted by Richards et al. (1985), their laboratory study revealed distinct 

microbial ammonifying populations operating at different optimal temperatures, either 

15 or 46 °C. Such distinct populations highlighted that a temperature response curve 

for N mineralisation was actually a composite curve of several different microbial 

communities. In a review of research on a range of studies, Kirschbaum (1995) 

concluded that temperature sensitivity of soil processes (as expressed by the Q10 

function) was not constant across a range of temperatures, but was far greater at low 

( <10 °C) than at moderate to high (20-30 °C and above) temperatures. 

The effect of moisture on NNM rates in the various fertiliser-temperature 

combinations was not significant in either the Kurosol topsoil or P. radiata litter. At 

this drier P. radiata site the Kurosol topsoil underwent constant large moisture 

fluctuations in the field, and the lowest incubation moisture content, just above 

permanent wilting point, was not uncommon in the field (Chapter 4). 
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In this study only the 02 layer was examined in the laboratory, as this layer was a 

significant proportion of the total litter present (Chapter 3). The aim ofthis study was 

to examine the long-term effects of fertilisation on N cycling within each plantation, 

rather than the immediate effects of the last fertiliser application. Incorporation of the 

01 layer into samples would have increased the immediate litter fall influence on 

NNM (Bauhus, 1996). In addition, field studies had indicated low rates of 

mineralisation at these sites (Chapter 4), since I measured NNM only, I could not 

determine whether low gross rate ofN mineralisation or high rate ofN immobilisation 

occurred. In their study Fyles and McGill (1987) indicated that addition of recent litter 

material favours N immobilisation whereas mineralisation dominates in the 02 layer. 

Aber and Melillo (1980) also reviewed many studies demonstrating fresh litter is a 

mineral N sink, rather than a source. To prevent increased rates of immobilisation 

depressing the actual amounts of mineral N available in the field, the 01 layer was not 

incorporated into the litter samples during laboratory incubations. 

6.4.2 Eucalyptus regnans litter and Ferrosol topsoil 

In agreement with the in situ rates of N mineralisation determined in Chapter 4, 

fertiliser treatment had no significant effect on laboratory NNM rates in Fcrrosol 

topsoil. In contrast, laboratory incubation of the decomposing litter horizon resulted in 

significantly higher rates ofNNM in fertilised litter, generally ten times greater than 

the unfertilised litter. 

Increased N cycling in litter due to fertilisation corresponded to large increases in 

total N content in 02 horizons and increases in NNM (Chapter 3). Increases in NNM 

due to fertilisation were associated both with increases in the amount of litter and the 

rate ofNNM within the litter. The average rate ofNNM across all moisture and 

temperatures treatments increased three-fold, from 90 to 327 µg g-1 due to 

fertilisation. As seen in both studies (reported here and in Chapter 3) increases in N 

and NNM detected in litter were not always observed in underlying soil, indicating 

that the litter layer may represent a clearer picture of long-term changes in N cycling 

at a site, than the soil. Previous investigations have also noted large increases in litter 

fall N, following N fertilisation (Hunter and Hoy, 1983; Nohrstedt, 1990; Fife and 
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Nambiar, 1997; Neilsen and Lynch, 1998), but few investigations noted significant 

changes in soil. 

In the laboratory, increased temperatures generally increased NNM in Ferrosol 

topsoil. This is in agreement with previous research, where inorganic N release 

increases with increasing temperature between 5 and 40 °C (Theodorou and Bowen, 

1983a; Foster, 1989; Beier and Eckerersten, 1998). Temperature affects were 

expected as temperature exerts strong control over both the physiological activity of 

soil micro-organisms and their ability to access substrate pools (Ellert and Bettany, 

1992; MacDonald et al., 1995). However, the effect of temperature on N 

immobilisation may result in negative NNM at higher temperatures (Kurosol topsoil, 

Section 6.4.1 ). 

Large differences in soil moisture content between fertiliser treatments were 

previously reported (Chapter 4). Differences were associated with increased water 

uptake by larger trees on the fertilised sites. The importance of soil water availability 

in controlling the rate of litter decomposition was reviewed by Sommers et al. (1981 ). 

Rates of microbial processes were generally more rapid near field capacity and 

linearly decline as water matric potential became more negative (MacKay and 

Carefoot, 1981; Linn and Doran, 1984). In this study, the effects of moisture on rates 

of NNM were significant, across fertiliser treatments in E. regnans litter and Ferrosol 

topsoil. The strong effect of moisture on NNM at this site was previously noted in the 

in situ study from Chapter 4, where N mineralisation was limited when moisture 

additions through rainfall were restricted in closed cores. Strong et al. (1998a) also 

indicated that water status strongly limited N mineralisation even at the high water 

potential of 0.3 and 0.1 bar (-30 to -10 kPa). By reducing moisture content from-30 

to -10 kPa they observed a mean NNM decrease of 16 per cent. However, in the 

current study the effect of moisture on NNM in the Ferrosol topsoil varied, dependent 

on the scale of change and previous fertiliser treatment. Paul et al. (2003b) also 

highlighted this function when defining the relationship between soil water content 

and NNM. In their review they noted that the effect of water content on mineralisation 
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was dependent on substrate quality. The more easily decomposable the substrate was 

the more sensitive mineralisation was likely to be to water content. 

There was an obvious effect of initial sample disturbances, particularly drying. This 

effect was most pronounced in unfertilised Ferrosol soil dried to near permanent 

wilting point. Under such treatment, mineral N content, prior to incubation, was 

enhanced by up to ten-fold. As no re-wetting occurred, enhanced mineral N due to 

drying, may reflect bacterial cell lysis, releasing N, or microbial population changes 

as noted in previous research (Stevenson, 1956; Birch, 1958; Lund and Goksoyr, 

1980; Van Gestel et al., 1993). In contrast, rates ofNNM at near field capacity 

moisture content varied greatly between treatments, resulting in immobilisation in 

unfertilised soil and NNM rates up to 438 kg N ha-1 yr-1 in fertilised topsoil. 

Discrepancies amongst topsoils and fertiliser treatments due to differential drying 

effects on mineral N availability indicate that these effects should be considered in 

prediction systems for NNM rates. Previous examination of N mineralisation has 

shown enhancement of C and N due to soil disturbance may result in NNM 

overestimation (Van Gestel et al., 1993; Murphy et al., 1998b; Pulleman and Tietema, 

1999). However, in soils with a wide range of physical and chemical characteristics 

under karri forests in southern Western Australia, O'Connell and Rance (1999) were 

able to use disturbed soils samples to estimate in situ NNM rates by plus or minus 20 

percent. Incubation of intact cores has been suggested to better reflect field 

conditions (Adams and Attiwill, 1986; Fyles and McGill, 1987; Raison et al., 1987). 

Intact cores also maintained the spatial separation between surface litter and humified 

material lower in the profile, thereby eliminating the possibility than N mineralised 

from decomposed litter 02 layer material would, for example, be immobilised by 

undecomposed litter brought into close contact by mixing. Under these circumstances, 

rates of N mineralisation could be seriously underestimated (Fyles and McGill, 1987). 

However, results in this study indicated that an extremely high number of intact soil­

core replicates would be required to show this in a statistically consistent manner. 
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6.5 Conclusion 

The effect oflong-term fertilisation on soil NNM rates in aerobic laboratory 

incubations was not consistent across sites or various water-temperature 

combinations, but, at both sites: 

• Long-term fertilisation significantly increased mineral N availability and NNM in 

litter. Depending on the moisture content and temperature at which the samples 

were incubated, fertilised litter had NNM rates up to 50 times greater (per 

horizon) than those unfertilised. Increases in NNM due to fertilisation were 

associated both with increases in the amount of litter and the rate of NNM within 

the litter. This highlights the importance of site management practices that 

conserve this high-nutrient component of the forest ecosystem. 

• In agreement with in situ studies, long-term fertilisation did not significantly 

increase NNM in Ferrosol topsoil. However, long-term fertilisation did 

significantly increase NNM in Kurosol topsoils when incubated under control 

temperatures of 16 °C. 

The influence of moisture and temperature on mineral N availability and NNM was 

strongly site dependent. 

• In general, the Ferrosol site, with its higher inherent fertility reacted more strongly 

to incubation parameters than the Kurosol site. 

• Moisture had a significant effect on both initial N availability and NNM in 

Ferrosol topsoil. 

• Changes prior to laboratory incubations, such as air-drying, caused large increases 

in mineral Nin the Ferrosol topsoil, while the effects of temperature on NNM 

increased at high moisture content. 

In laboratory studies, it is well recognised that environmental conditions must be 

controlled to obtain reproducible estimates ofNNM (MacKay and Carefoot, 1981). 

To obtain an estimate of the overall productivity of a site and the fluxes ofN it is 

necessary to determine optimum rates of NNM. Interactions between moisture 

availability and temperate are an important factor in the understanding of the overall 
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processes involved in N mineralisation. The trends observed in this study emphasise 

the role of the site when selecting incubation parameters. When relative high fertility 

sites are being measured, the incubation parameters of temperature and moisture 

could result in variations from N immobilisation to a 500-fold increase in NNM. Even 

at the relatively poor fertility Kurosol site, this trend was observed when comparing, 

N-enriched fertilised soil to those unfertilised. Consequently, clear optimum 

incubation parameters could not be determined. However, general trends indicate that 

maximum rates ofNNM in the laboratory were measured at temperatures between 16 

and 22 °C at moisture between 0.33 and 3 bar. The effects of temperature, moisture 

and timing on NNM rates are investigated further in the following laboratory studies 

(Chapters 7). 
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Chapter 7. Effects of incubation period, air-drying and long-term 

periodic fertilisation on laboratory net nitrogen mineralisation in 

topsoil and litter samples from two contrasting sites. 

7. 1 Introduction 

Although laboratory rates ofNNM have been suggested as an indicator of N 

availability for tree growth (Adams and Attiwill, 1986), the previous laboratory study 

(Chapter 6) indicated that in vitro rates of NNM depended on the incubation 

parameters used relative to the site being studied. 

Both the field study (Chapter 4) and laboratory study (Chapter 6) ofNNM rates 

showed that changes in moisture availability in Ferrosol topsoil could have a strong 

influence on rates of in situ and in vitro. This contrasted with the lack of a significant 

effect of moisture on NNM in the Kurosol topsoil. Moisture effects in the Ferrosol 

soil appeared to be greatest when the soils were pre dried to levels just above 

permanent wilting point ( ~ 15 bar). It is important to quantify just how this pre-drying 

might affect rates ofNNM in this and other studies, as many laboratory studies, have 

pre dried, sieved, and then re-moistened samples prior to standard laboratory 

incubations (Richards et al., 1985; Bonde and Rosswall, 1987; Robertson et al., 1988; 

Ross et al., 1995). Thus an experiment was designed to test this. During this research 

(Chapter 4, 4 and 5) all topsoil and litter samples, including samples collected from 

the field were maintained moist prior to incubations and N extractions. Differences in 

sample preparation in the laboratory such as pre-treatments including air-drying may 

partly explain differences in rates ofN mineralisation behaviour in this study as 

compared to published studies by other workers. 

The effects of pre-treatments such as air-drying and sieving on N availability in a soil 

result from a modification of key physical, chemical and biological processes. These 

all influence organic matter decomposition and hence N release (Birch, 1958; Bartlett 

and James, 1980; Seneviratne, 1985; Strong et al., 1999b). Air-drying pre-treatments 

may therefore alter C and N mineralisation-immobilisation processes, microbial 

biomass, and microbial activity. (Stevenson, 1956; Soulides and Allison, 1961; Lund 
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and Goksoyr, 1980; Van Gestel et al., 1993). Air drying and re-wetting also disrupts 

the soils physical structure resulting in the release organic compounds available for 

subsequent mineralisation (Van Gestel et al., 1991; Degens and Sparling, 1995). 

The laboratory study presented in Chapter 6 indicated that in contrast to field studies 

(Chapter 4), under controlled laboratory conditions significant differences between 

NIL and annual fertilisation (1300 kg N ha-1
) could be measured. Previous research 

has shown changes in NNM from fertilisation depends on the soil nutrient status, type 

of fertiliser applied, and the individual and cumulative rates applied (Heilman, 1974; 

Strader and Binkley, 1989; Aggangan et al., 1998). Current management of some ex­

forest sites in Tasmania may result in the cumulative addition of 500-700 kg N ha-1 

during each rotation (Smethurst et al., 2004a). At both study sites, intermediate rates 

of fertiliser application (every two and four years) resulted in cumulative rates 

between 400-700 kg N ha-1 (Table 3.4 and 3.5). Using these fertiliser treatments I 

wanted to test whether significant changes in NNM could be measured at lower 

fertilisation rates using laboratory incubation methods. 

Under E. regnans, the effect of P application was also investigated. At this site P was 

applied with N at rates ranging between 184 kg P ha-1 and 598 kg P ha-1 during 

thirteen years, and was also applied alone biannually, to a total of 322 kg P ha-1 (Table 

3.5). Although increases in NNM due to P additions have been noted in some cases 

e.g. Falkiner (1993), other studies have indicated the opposite or no effect of P 

fertiliser (Javid and Fisher, 1990; Whynot and Weetman, 1991). Growth analysis of 

the E. regnans plantation (Chapter 3) indicated that P was not limiting. Using these 

treatments, I therefore wanted to examine whether P additions would significantly 

effect NNM rates in laboratory incubations. 

Rates ofNNM in the field (Chapter 4) and during the first laboratory study (Chapter 

6) were both assessed using 60-day incubation periods. Previous in situ incubation 

periods between 7 and 90 days have been recommended (Raison et al., 1987; Adams 

et al., 1989b; Smethurst and Nambiar, 1989b; Goncalves and Carlyle, 1994; Carlyle et 

al., 1998b). At both sites rates ofNNM were expected to be low and a linear increase 
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NNM over time, as indicated by Raison et al. (1987) suggested a incubation period of 

60 days was required to measure changes in NNM rates between fertiliser treatments 

at these sites. However, Raison et al. (1987) also stated that exposure should not be so 

prolonged that accumulation of ammonium may induce nitrification in a system 

which does not otherwise nitrify significantly. In these systems limited amounts of 

nitrate were observed in the field (Chapters 3, 4 and 5) and during 60 day laboratory 

incubations (Chapters 5). The lack of increased nitrate production during incubations 

indicated that the incubation period was not too prolonged. In field and laboratory 

incubations of soil, the period of incubation was critical when assessing N 

transformations (Lund and Goksoyr, 1980; Cabrera and Kissel, 1988c; Sierra, 1992; 

Pulleman and Tietema, 1999; Paul, 2001). To test that an incubation period of 60 days 

did not increase immobilisation and therefore was an optimum incubation period for 

NNM it was therefore necessary to examine the role of incubation period on NNM. 

In litter layers, studies by Pulleman and Tietema (1999) and Clein and Schimal (1993) 

have noted that, during laboratory incubation, N release and microbial activity depend 

on incubation period. However, investigations into NNM rates in litter are limited. 

Results reported in previous Chapters (2, 4 and 5) showed that there was a large pool 

ofN available for mineralisation in litter of both experimental sites. To obtain an 

estimate of the overall productivity of a site and the fluxes of nitrogen it was 

necessary to understand the role of time, on N release from the litter. 

The objectives of this study was to determine the effects of various factors on NNM 

rate, these included conducting laboratory incubations as follows; (1) impact of pre­

treatments such as air-drying, (2) impact of incubation period on NNM in both litter 

and topsoils and (3) the sensitivity of in vitro NNM to various long-term N and P 

fertilisation. In addition, I wanted to examine whether litter and soil horizon chemical 

characteristics affected the rates of NNM measured in the laboratory at various 

temperatures. By studying topsoil and litter from the sites studied previously, I also 

wanted to test the hypothesis that adaptation to soil moisture conditions in the field 

might reduce the impacts of pre-treatments like air-drying. 
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7.2 Methods 

This study was split into three experiments; Experiment 1 examined the effect of an 

air-drying pre-treatment on NNM, Experiment 2 examined the role of incubation 

period on NNM and Experiment 3 examined the effects of intermediate rates of 

fertilisation on NNM with treatment rates of 400 kg N ha-1 to 700 kg N ha-1
. 

Both sites were examined in this series of laboratory based incubation experiments, 

i.e. the E. regnans plantation on a Haplic Dystrophic Brown Ferrosol, and the P. 

radiata plantation on a bleached Dystrophic Yellow Kurosol. 

7.2.1 Field sampling and laboratory methods 

Litter (02 horizon) and topsoil (Al horizon) samples were collected in July 2002 

from both sites by the methods described in Section 6.2.1. At the E. regnans site both 

plots from each of five fertiliser treatments were sampled, NIL, P4YN4Y, P2YN2Y, 

P 1 YNl Y and P2Y (collected from the field 28 days prior to the start of the laboratory 

incubation, day-28) (Table 7.1). At the P. radiata site, both plots from each of four 

fertiliser treatments were sampled, NIL, (P)N4Y, (P)N2Y, and (P)Nl Y (collected 

from the field 29 days prior to the start of the laboratory incubation, day-29) (Table 

7.1). For further information on fertiliser treatments see Chapter 3, Tables 3.4 and 

3.5. 

All samples were brought back to the laboratory within eight hours and placed in the 

cool-store at 2-4 °C. Samples were prepared in the laboratory for incubation as per 

Sections 6.2.2. In contrast to Chapter 6, after the determination of mineral N 

concentrations from pooled plot litter and topsoil samples, samples from plots of the 

same fertiliser treatment were thorough! y mixed. Mixing of replicate plots resulted in 

a composite sample for each litter and topsoil, of each fertiliser treatment, for the two 

sites. Samples were mixed to obtain a representative sample of each treatment. 

Homogenised litter and topsoil samples were placed back into cool storage for a 

further one to two weeks to minimise the influences of disturbance on NNM and 
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allow for air-drying in experiment 1 (day -14 to -7 and 0). A summary of the initial 

timing and management of samples is given in Table 7.1. 

Individual pooled litter and topsoil samples, for each fertiliser treatment, where 

thoroughly mixed before sub-sampling into vials for incubation. In each experiment 

between 30 and 40 grams of samples were placed in 100 ml plastic vials and covered 

with polyethylene film, as per Chapter 6. All samples were maintained moist (~3 bar) 

throughout the incubation. All vials in Experiment 1 and 2 were placed in a constant 

20 °C incubator for the duration of the experiment. The temperature chosen, 20 °C, 

corresponded to the highest temperature recorded at 5 cm depth in the topsoil under P. 

radiata (Figure 49). In Experiment 3, vials were incubated at either 10 °C or 20°C for 

60 days. Vials were checked for moisture losses fortnightly, by weight. Moisture loss 

during the incubation was found to be very low (~2 to 4 %). Moisture was adjusted 

once during the experiment, at day 24. 

Table 7.1 Timetable for sample collection, an initial laboratory analysis 
Day Process 

-28, -29 Field collection of samples 

-28 2 week cool-store (2-4 °C) for sieving equilibration 

-14 Sub sample individual pooled, plot, samples for mineral N 
concentrations. Then combine individual plots to form 
homogeneous treatment samples. One to two week cool-store, 
for mixing equilibration. 

-7 Experiment 1. Start of drying treatment, mineral N 
extraction, T _ 7 and To 

0 Experiment 1. Re-wetting of air-dried samples, start of 
incubation. 

Start of all incubations 

3, 7, 15, 30 Experiment 2. Mineral N extractions at, T3, T7, T15 and T3o 

Experiment 1. Mineral N extraction T30 

60 End of all incubations, final mineral N extractions, T 60 

175 



7.2.2Experiment1 

The design of the experiment 1 included factorial combinations of two sites, two 

horizons (02 and Al), two fertiliser treatments (annual application and unfertilised) 

and two pre-incubation treatments (air-dried and maintained moist). There were also 

two incubation periods (30 and 60 days), three replicates, and 96 vials in total (Table 

7.2). 

Table 7.2 Summary of treatments in Experiment 1 
Location Southern Tasmania 

Topsoil Ferrosol 

Species E. regnans 

Profile Litter (02) 
Topsoil (Al) 

N inputs Fertilised (Pl YNl Y) 
Unfertilised (NIL) 

Drying Treatment Air-dried 7 days 
(prior to incubation) Maintained moist 

Incubation Time 30 and 60 days 
Temperature 20°c 
Moisture content 

Litter 
120 % (w/w) 

Topsoil 
45% 

North-east Tasmania 

Kurosol 

P. radiata 

Litter (02) 
Topsoil (Al) 
(P)NlY 
Unfertilised (NIL) 

Air-dried 7 days 
Maintained moist 

30 and 60 days 
20°c 

80% 
15 % 

*of samples maintained moist prior to incubation and the moisture content of all samples during 

incubation. 

Moisture contents applied to composite litter and topsoil samples in this study (Table 

7.2) were the intermediate levels used in the previous laboratory study (Chapter 6). 

Moisture was adjusted up by adding a fine mist of distilled water until the required 

weight was reached, and down, by air-drying in the cool-store. All composite samples 

were adjusted to the appropriate moisture content within 2 days of the laboratory 

study commencing (at day -7). 

Samples were taken for mineral N concentration determination at days - 7 and day 

zero (T_7 and T0). Nitrogen concentration was determined using the methods detailed 

in Section 6.2.2. At day-7, samples to be air-dried were placed in large flat open 

dishes for drying at a constant temperature of 20 °C. Moist samples remained covered 

in the cool-store. Both moist and drying samples were stirred frequently (day-7 to 0). 
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At day zero, air-dried samples were then re-wetted, with a fine distilled water mist, 

until the same moisture content as the 'moist samples' was reached. All samples were 

incubated moist. Thorough mixing after re-wetting was required to completely 

disperse water throughout the samples, especially with the Kurosol topsoil, which had 

a tendency to become water repellent. All samples were mixed before sub-samples 

were transferred to individual vials for incubation. 

7.2.3. Experiment 2 

The design of the experiment 2 included factorial combinations of two horizons (litter 

and soil), two fertiliser treatments (annual application and unfertilised), and five 

incubation periods (3, 7, 15, 30 and 60 days); each treatment was replicated three 

times (Table 7.3). 

Individual pooled litter and topsoil samples, for each fertiliser treatment, were 

thoroughly mixed before sub-sampling into vials. All vials were placed in a constant 

20 °C incubator for the duration of the experiment (day 0 to 3, 7, 15, 30 or 60). 

Table 7.3 Summary of treatments in Experiment 2 
Location Southern Tasmania North-east Tasmania 

Topsoil Ferrosol Kurosol 

Species E. regnans P. radiata 

Profiles Litter (02) horizon Litter (02) horizon 

Topsoil (Al) horizon Topsoil (Al) horizon 

Nutrient Inputs Fertilised (Pl YNl Y) Fertilised ((P)Nl Y) 
Unfertilised (NIL) Unfertilised (NIL) 

Incubation Time (days) 3 3 
7 7 
15 15 
30 30 
60 60 

Temperature °C 20 20 
Moisture content 

Litter 120 % (w/w) 80% 

Topsoil 45% 15% 

177 



7.2.4 Experiment 3 

The design of the experiment 3 consisted of factorial combinations of two horizons, 

i.e. litter (02) and topsoil (Al), five (at E. regnans site) or four (at P. radiata site) 

fertiliser treatments, two incubation temperatures (10 °C and 20 °C), and three 

replicates (Table 7.4). Homogenised samples, between 30 and 40 g were placed into 

100 ml plastic vials, covered with polyethylene film, as per Chapter 6. Vials were 

incubated moist at 10 °C or 20°C for 60 days. 

Table 7.4 Summary of treatments in Experiment 3 
Location Southern Tasmania 

Topsoil 

Species 

Profiles 

Nutrient Inputs 

kg N ha-1 

Moisture content 

Litter 

Topsoil 

Incubation Time (days) 

Incubation Temperature 

Ferrosol 

E. regnans 

Litter (02) horizon 

Topsoil (Al) horizon 

1300 (Pl YNl Y) 

700 (P2YN2Y) 

400 (P4YN4Y) 

0 (P2Y) 

0 (NIL) 

maintained moist 

120 % (w/w) 

45% 

60 

20°c 

10 °C 

7.2.5 Data presentation and analysis 

North-east Tasmania 

Kurosol 

P. radiata 

Litter (02) horizon 

Topsoil (Al) horizon 

1300 ((P)Nl Y) 

700 ((P)N2Y) 

400 ((P)N4Y) 

0 (NIL) 

maintained moist 

80% 

15 % 

60 

20°c 

10°C 

Results of all three experiments were expressed as concentration µg g-1
. This allowed 

the examination of the role of both fertiliser treatments and laboratory parameters on 

NNM across the sites and avoided variations in litter mass and bulk density from 

excessively influencing calculations. At the end of the experimental results Table 7.15 

presents a summary of all experiments in NNM kg N yr-1
• 
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Results were analysed using a multiple analysis of variance (MANOVA) procedure of 

the GenStat software (Genstat 5 Committee, 1988). Means were compared using the 

treatment interactions (Experiment 1. fertiliser and pre-drying, Experiment 2. fertiliser 

and incubation time and Experiment 3. fertiliser and temperature) least significant 

differences (p < 0.05 and p < 0.001), as stated. The relationship between mineral N 

concentrations and NNM were examined by scatter plot and regression analysis. 

Linear and non-linear (quadratic) were calculated for untransformed data. 

Relationships were considered significant when (p <0.05). The R squared statistic is 

given for significant correlations. Tests were validated by testing data for normality of 

distribution, and transforming data where required. Residuals from the model for each 

variable were examined for normality using diagnostic graphs. 

7.3 Results 

7.3. 1 Experiment 1. Effects of laboratory air-drying pre-treatment on 

NNM. 

7.3.1.1 Kurosol topsoil and litter under P. radiata 

Prior to laboratory incubation (days -7 and 0), there was significantly (p<0.05) more 

mineral N in fertilised than unfertilised Kurosol topsoil (Figure 7 .1 ). At day zero there 

was no initial effect of drying on mineral N concentrations, all concentrations were 

low, varying between 0.2 and 2.3 µg g-1
• After re-wetting and incubating for 30 days, 

air-drying significantly (p<0.05) increased concentration of mineral N above those 

maintained moist, in unfertilised, but not the fertilised topsoil (Table 7.5). At day 60, 

both the fertilised and unfertilised air-dried topsoils had significantly higher (p<0.001) 

mineral N concentrations than those maintained moist. 
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Figure 7.1 Mineral N concentrations (µg g-1
) measured in Kurosol topsoil at days 

-7 to 60. Bars indicate least significant differences (LSD) (p = 0.05) for 
comparison of fertiliser-by-drying interaction means. 

Rates ofNNM were similar between fertiliser treatments at day 30, and increased 

significantly (p<0.05) due to air-drying in unfertilised topsoil (Figure 7.2). By day 60 

there was a significant (p<0.001) increase in both the fertilised and unfertilised 

topsoils due to the air-drying pre-treatment. There was no interaction between 

fertiliser and drying treatments at either 30 or 60 days. 
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Figure 7.2 NNM (µg g-1
) in Kurosol topsoil after 30 and 60 day incubations. 

There was no significant interaction between fertiliser and moisture 
treatments. 
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Table 7.5 MANOVA summery table of treatments (fertiliser and air-drying) 
effects on Kurosol topsoil NNM, significant differences between means 
indicated by p values in bold. 

I 
Day I Fertiliser I Drying II Interaction I 

treatment treatment 

Daily rate NNM 30 0.48 0.028 0.609 

60 0.004 <0.001 0.306 

Cumulati~ rate of NNM 0 <0.001 0.088 0.075 

30 0.379 0.013 0.549 

60 <0.001 <0.001 0.372 

Fertilised P. radiata litter had mineral N concentrations up to six times higher than 

that unfertilised (p<0.001) (Figure 7.3). In both fertilised and unfertilised litter air­

drying significantly increased mineral N concentrations at day zero by around double 

(p<0.001) (Table 7.6). Rates ofNNM were similar between air-dried and moist 

samples at day 30 and day 60 in unfertilised litter (Figure 7.4). However, air-drying 

had significantly suppressed NNM in the fertilised litter by 20 percent at day 60. 
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Figure 7.3 Mineral N concentrations (µg g-1
) measured in P. radiata litter at days 

-7 to 60. Bars indicate LSD (p = 0.05) for comparison of fertiliser-by-drying 
interaction means 
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Figure 7.4 NNM (µg g-1
) in P. radiata litter after 30 and 60 day incubations. 

There was no significant interaction between fertiliser and moisture 
treatments. 

Table 7.6 MANOV A summery table of treatment (fertiliser and air-drying) 
effects on P. radiata litter (02) NNM, significant differences between means 
indicated by p values in bold. 

Daily rate NNM 

Day 

30 

60 

Fertiliser 
treatment 

<0.001 

<0.001 

Cumulati\e rate of NNM 0 <0.001 

30 <0.001 

60 <0.001 

Drying 
treatment 

0.322 

0.053 

<0.001 

0.061 

0.017 

7.3.1.2 Ferrosol topsoil and litter under E. regnans 

Interaction 

0.445 

0.145 

<0.001 

0.318 

0.193 

Air-drying the samples significantly increased the mineral N concentrations above 

topsoil maintained moist for the length of the incubation (p<0.001) (Figure 7.5). In 

the fertilised topsoil, mineral N concentrations increased due to air-drying by 5, 15 

and 7 times those maintained moist at days 0, 30 and 60, respectively. The effect of 

pre-drying was less pronounced in the unfertilised topsoil, increasing 2, 4 and 3 times, 

respectively, with an interaction between fertiliser and drying significant (p<0.05) at 

day 0 and day 30 (Table 7.7). 
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Figure 7.5 Mineral N concentrations (µ.g g-1
) measured in Ferrosol topsoil at days 

-7 to 60. Bars indicate LSD (p = 0.05) for comparison of fertiliser-by-drying 
interaction means 

Rates ofNNM at day 30 and 60 were significantly (p<0.05) different between moist 

and air-dried topsoils and there was a significant interaction between treatments 

(Figure 7 .6). Rates of mineralisation in moist samples were low or negative and 

around 30 times less than those measured in air-dried topsoil. Differences between 

rates ofNNM due to fertiliser treatment were evident only in air-dried topsoil. 
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Figure 7.6 NNM (µ.g g-1
) in Ferrosol topsoil after 30 and 60 day incubations. 

Letters indicate significant differences between fertiliser and drying 
treatment. Lower case at 30 days, and upper case at 60 days. 
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Table 7.7 MANOVA summery table of treatments (fertiliser and air-drying) 
effects on Ferrosol topsoil NNM, significant differences between means 
indicated by p values in bold. 

I 
Da j Fertiliser I Drying I Interaction I 

y treatment treatment 

Daily rate NNM 30 0.004 <0.001 <0.001 

60 <0.001 <0.001 0.010 

Cumulative rate of NNM 0 <0.001 <0.001 0.002 

30 <0.001 <0.001 <0.001 

60 0.385 <0.001 0.078 

The effect of air-drying on mineral N availability in litter varied with the time of 

sampling. At day 0 air-drying significantly increased the amount mineral N (Figure 

7.7). In contrast by day 30 air-drying significantly (p<0.001) decreased the amount of 

N in fertilised litter, and by day 60 there was no difference. 
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Figure 7. 7 Mineral N concentrations (µg g-1
) measured in E. regnans litter at 

days -7 to 60. Bars indicate LSD (p = 0.05) for comparison of fertiliser-by­
drying interaction means 

As a result the difference between rates ofNNM in fertilised and unfertilised litter 

was thirty-fold, when moist, and two-fold, when dried (Figure 7.8) (p<0.05). Rates of 

NNM at both 30 and 60 days where significantly (p<0.001) decreased in air-dried 

litter due to the large variation in the initial mineral N measured, rather than changing 

mineral availability during the incubation time (Table 7.8). 
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Figure 7.8 NNM (µg g-1
) in E. regnans litter after 30 and 60 day incubations. 

Letters indicate significant differences between fertiliser and drying 
treatment. Lower case at 30 days, and upper case at 60 days. 

Table 7.8 MANOV A summery table of treatment (fertiliser and air-drying) 
effects on E. regnans litter (02) NNM, significant differences between means 
indicated by p values in bold. 

Fertiliser 
Day 

treatment 

Daily rate NNM 30 

60 

Cumulati-.e rate of NNM 0 

30 

60 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

Drying 
treatment 

<0.001 

<0.001 

<0.001 

<0.001 

0.190 

Interaction 

<0.001 

0.005 

0.01 

0.01 

0.615 

Low concentrations of nitrate were measured throughout the laboratory study, 

remaining below 1 µg g-1 in both litter and soil horizons. Air-drying had a varied 

effect on nitrate production generally increasing it in the soil (by up to 3-fold), but 

decreasing it in some litter samples {Table 7.9, p<0.05). 
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Table 7.9 Nitrate concentrations (µg g-1
) measured in air-dried and moist 

samples. Star (*) indicates LSD (p = 0.05) for comparison of fertiliser-by­
drying interaction means. 

I Horizon ITreatrrent Day Mo1St Dry 
Ferrosol Soil PlYNlY I 0 0 0.01 

NIL 0.01 0.01 
PlYNlY 30 0.04 0.02 
NIL 0.01 0.05 
PlYNlY 60 0.00 0.03* 
NIL 0.02 0.03 

E. regnans Litter PlYNlY 0 I 0.02* 0.07 
NIL 0* 0.09 --
PlYNlY 30 0.07 0.13 
NIL 0.05 0.05 
PlYNlY I 60 0.11 0.15 
NIL 0.08 0.03 

Kurosol Soil (P)NlY 0 0 0 
NIL 0 0 
(P)NlY 30 0.00 0.01 

NIL 0.01 0.03 
(P)NlY 60 0.00 0.01* 
NIL 0.00 0.00 

P. radiata Litter (P)NlY 0 0.02* 0.07 I 
NIL 0.01 0.02 ~ (P)NlY 30 0.13 0.08 
NIL 0.11 0.06 1 

(P)NlY 60 0.12 0.12 

I NIL 0.17 0.10 

7.3.2. Experiment 2. Effects of laboratory incubation period on NNM in 

both litter and topsails. 

7.3.2.1 Kurosol topsoil and litter under P. radiata 

A small non-significant effect of disturbance, in this case mixing, on NNM in samples 

was apparent in the fertilised Kurosol topsoil measured at day three (0.3 µg g-1 day-1
). 

Daily rates were calculated as T 3, 1, 1s, 30 or 60 minus initial N concentrations To divided 

by the number of incubation days (3, 7, 15, 30 or 60). During the entire incubation 

period of sixty days, daily rates of NNM were extremely low; rates between day 7 and 

60 rates were around 0.1 µg g-1 day-I (Figure 7.9). Long-term annual fertilisation had 

no significant effect on daily rates of NNM. Results suggest that average rates of 

NNM in Kurosol topsoils would be less than 50 µg g-I yr-I. 
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Figure 7.9 Rates ofNNM (µg g-1 day-1
) in Kurosol topsoil. Bar indicates LSD for 

comparing interaction means of fertiliser and incubation period. 

Cumulative rates ofNNM during 60 days show a significant (p<0.05) increase in 

NNM in fertilised compared to unfertilised topsoil (Figure 7.10). However, significant 

differences occurred only by 60 days, with a distinct divergence in NNM rates 

occurring after day 30. Net N immobilisation occurred in unfertilised litter from day 

30 to 60, while from day 15 onwards, cumulative NNM increased significantly with 

fertilised topsoil. 
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Figure 7.10 Cumulative rates of NNM (µg g-1
) in Kurosol topsoil. Bar indicates 

LSD for comparing interaction means of fertiliser and incubation period. 
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Daily NNM rates in P. radiata litter were generally ten times greater than that in 

Kurosol topsoil (Figure 7.11). Fertilised litter had significantly (p<0.05) higher rates 

ofNNM than that unfertilised and showed a NNM flush at day 7, possibly in response 

to disturbance during sample preparation. Extrapolation of NNM rates between days 3 

and 60 resulted in estimated annual NNM rates of 68 to 1282 µg g-1 yr-1 in fertilised 

litter, and 135 to 576 µg g-1 yr-1 in unfertilised litter. Average annual NNM from 

fertilised litter was significantly higher than the unfertilised litter at 702 and 287 µg g-

1 yr-1
, respectively. 
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Figure 7.11 Rates ofNNM (µg g-1 day-1
) in P. radiata litter. Bar indicates LSD for 

comparing interaction means of fertiliser and incubation period. Fertiliser 
affect was significant but there was no significant interaction. 

In fertilised litter, cumulative rates ofNNM increased significant (p<0.001) between 

day 3 and 7, and again between day 15 and 30 (Figure 7.12). Rates ofNNM decreased 

slightly over time in unfertilised litter (Figure 7 .11 ), which led to a significant 

cumulative effect by day 60. 
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Figure 7.12 Cumulative rates ofNNM (p.g g-1
) in the P. radiata litter. Bar 

indicates LSD for comparing interaction means of fertiliser and incubation 
period. 

Nitrate concentrations were measured throughout the 60-day incubation in both 

Kurosol topsoil and P. radiata litter. Data was not graphed, as the maximum amount 

of nitrate measured was only 0.16 µg g·1 in the NIL litter after 60 days. In both 

horizons daily rates of net nitrification were not greater than 0.01 µg g·1 day"1
• 

7.3.2.2 Ferrosol topsoil and litter under E. regnans 

Daily rates ofNNM in Ferrosol topsoil were significantly (p<0.001) lower in 

fertilised topsoil at day 3 than unfertilised topsoil (Figure 7.13). From day 7 onwards, 

NNM in fertilised topsoil increased slightly, but was not significantly higher than 

those unfertilised. During the 60 day incubations, the average daily rates in fertiliser 

treatments were not significantly different, resulting in annual rates of NNM less than 

14 µg g-1 in both fertilised and unfertilised topsoils. 
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Figure 7.13 Rates ofNNM (Jlg g-1 day-1
) in Ferrosol topsoil. Bar indicates LSD 

for comparing interaction means of fertiliser and incubation period. 

Cumulative rates ofNNM were significantly (p<0.001) higher in fertilised topsoil at 

day 60 only (Figure 7 .14). Prior to this time, rates of NNM were similar between 

fertiliser treatments. 
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Figure 7.14. Cumulative rates ofNNM (Jlg g-1
) in Ferrosol topsoil. Bar indicates 

LSD for comparing interaction means of fertiliser and incubation period. 

Daily rates ofNNM in fertilised E. regnans litter increased significantly (p<0.001) 

during the 60 day incubation (Figure 7.15). In contrast, unfertilised litters mineralised 

less between days 7 and 30, than at day 3. This resulted in fertilised litter having 3 to 

30 times greater mineralisation rates then those unfertilised, dependent on the period 
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of incubation. Rates of NNM per annum, calculated from each date, varied in 

fertilised litters between 271 and 2820 µg g-1 yr-1
, and in unfertilised litters between 

68 and 837 µg g-1 yr-1
. During the entire incubation period, fertilised litter had an 

NNM rate four times higher than that in unfertilised litter, i.e. 1810 and 317 µg g-1 yr-

1, respectively. 
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Figure 7.15. Rates ofNNM (Jlg g-1 day-1
) in E. regnans litter. Bar indicates LSD 

for comparing interaction means of fertiliser and incubation period. 

Cumulative rates ofNNM in fertilised litters increased significantly (p<0.001) during 

all incubation periods (Figure 7 .16). In contrast, cumulative rates of NNM in 

unfertilised litter remained around zero up to day 30, and then increased ten-fold from 

day 30 to 60. Comparisons between the rates of mineralisation in fertilised and 

unfertilised litter were similar between this period, both mineralising around 60 µg g-1 

during this period. 
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Figure 7.16 Cumulative rates ofNNM (µg g-1
) in E. regnans litter. Bar indicates 

LSD for comparing interaction means of fertiliser and incubation period. 

Nitrate concentrations were measured throughout the 60-day incubation in both 

Ferrosol topsoil and E. regnans litter. Data was not graphed, as the maximum amount 

of nitrate measured was only 0.09 µg g-1 in the Pl YNl Y litter after 60 days. In both 

horizons daily rates of net nitrification were not greater than 0.01 µg g-1 day"1
• 

7.3.3 Experiment 3. Testing the sensitivity of in vitro NNM to various 

long-term N and P fertilisation. 

7.3.3.1 Kurosol topsoil and litter under P. radiata 

Initial mineral N concentrations were extremely low, with the highest concentration 

measured in the (P)Nl Y treatment (3 µg g-1
). Other treatments contained mineral N 

concentrations less than 1 µg g-1 (Figure 7.17). 
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Figure 7.17 Initial mineral N concentrations (µg g-1
) in Kurosol topsoil. Bar 

indicates least significant differences (LSD) for comparing treatment means 
(p<0.001). 

Rates ofNNM at 20 °C increased significantly (p<0.05) between N input increases 

from 0 (NIL), to intermediate (700 kg N ha-1 (P)N2Y and 400 kg N ha-' (P)N4Y) and 

1300 ((P)Nl Y) kg N ha-1 (Figure 7.18). The highest rate ofNNM observed in (P)Nl Y 

topsoil, was still low, resulting in less than 5 µg g·1 during the entire incubation period 

of 60 days. Reducing the incubation temperature to 10 °C significantly reduced NNM 

rates in all topsoils. Declines in NNM rates were proportionally greater in (P)Nl Y 

topsoil, decreasing to almost one third of that measured at 20 °C. Subsequently, at 10 

°C the highest rate ofNNM occurred in (P)N4Y topsoil. 
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Figure 7.18 Rates of NNM in (µg g-1 60 d-1
) Kurosol topsoil after 60 days 

incubations at 10 and 20 °C. Bar indicates LSD for comparing interaction 
means of fertiliser rate by incubation temperature (p<0.05). 

These rates ofNNM, projected as the proportion of total N mineralised annually, was 

less than 5 % per year when incubated at 20°C (Table 7.10) and lower when incubated 

at 10 °C. 

Table 7.10 Projected percentage of total N mineralised annually (based on 60 d 
incubations) in topsoil and litter. Means with the same letters within a site and 
temperature combination are not significantly different (p < 0.05). 

Total N ug g-1 20°C 10°C 

Kurosol topsoil 
NIL 553 2.9 a 0.9 a 
(P)N4Y 584 4.2 a 2.7 b 
(P)N2Y 783 2.8 a 1.4 a 
(P)NlY 964 3.1 a 0.9 a 
Pinus radiata litter 
NIL 8251 2.1 a 0.9 be 
(P)N4Y 9939 4.0 b 0.4 ab 
(P)N2Y 9315 1.7 a 0.3 a 
(P)NlY 9933 5.1 b 1.4 c 

Fertiliser significantly (p<0.001) increased initial mineral N concentrations in P. 

radiata litter. The highest concentration was observed in the (P)Nl Y treatment, which 

was six times that measured in the unfertilised (Figure 7 .19). In contrast to the rate of 
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fertilisation the initial concentrations were higher in the bulked sample of the (P)N4Y 

(400 kg N ha-1
) than (P)N2Y (700 kg N ha-1

) 

50 

40 LSDI 
";-

Cl 
Cl 30 2: 
z 
~ 20 
Q) 
c: 
:E 

10 

0 
0 400 700 1300 

N applied (kg ha-1) 

Figure 7.19 Initial mineral N concentrations (µg g-1
) in P. radiata litter. Bar 

indicates LSD for treatments (p<0.001). 

Trends in NNM rates between treatments incubated at 20 °C reflected initial N 

concentrations, (P)N4Y mineralising double that of (P)N2Y, while (P)Nl Y was 

significantly (p<0.001) higher than all other treatments (Figure 7.20). Reducing the 

temperature to 10 °C significantly reduced NNM in all litters, and decreased the 

variation between (P)NlY and unfertilised litters by five-fold. At 10 °C, NNM was 

similar between treatments in all but the highest fertiliser treatment. 

These rates ofNNM in the litter, projected as the proportion of total N mineralised 

annually, was less than 5 % per year when incubated at 20°C (Table 7.10) and lower 

when incubated at 10 °C. At 10 °C the proportion mineralised decreased in treatments 

between 50 and 90 percent. 

Initial N concentrations and NNM rates at both 10 °C and 20 °C in soils and litter 

were fitted with linear and quadratic regression. No significant relationships were 

observed. 
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Figure 7.20 Rates of NNM in (µg g-1 60 d-1
) in P. radiata litter at 10 and 20 °C. 

Bar indicates LSD for comparing interaction means of fertiliser rate by 
incubation temperature (p<0.001). 

7.3.3.2 Ferrosol topsoil and litter under E. regnans 

Intermediate fertilisation amounts, 400 kg N ha-1 (P4YN4Y) and 700 kg N ha-1 

(P2YN2Y) had similar initial N content to unfertilised (NIL) topsoil, and ten times the 

amount measured in the 1300 kg N ha-1 (Pl YNl Y) treatment (Figure 7.21). With the 

exception of Pl YNl Y, mineral N concentrations were initially higher when N and P 

were applied in combination, than when either N or P was applied alone (N2Y and 

P2Y, respectively). 
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Figure 7.21 Initial mineral N concentrations (µg g-1
) in Ferrosol topsoil. Bar 

indicates LSD for treatments (p<0.001). 
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Figure 7.22 Rates of NNM in Ferrosol topsoil (µg g-1 60 d-1
) at 10 and 20 °C (a) N 

level trial, (b) N by P factorial trial. Bar indicates LSD for comparing 
interaction means of fertiliser rate by incubation temperature (p<0.001). 

In contrast, positive NNM (60 days at 20 °C) occurred only in Pl YNl Y topsoil, 

which was significantly (p<0.001) higher than all other treatments (Figure 7.22a). 

Intermediate levels ofN and P applications in combination or alone resulted in net 

immobilisation. Application of both N and Palone had significantly lower rates ofN 

immobilisation than when the fertilisers were applied in combination (Figure 7.22b). 

Reducing the incubation temperature to 10 °C resulted in marginal increases in NNM 

from unfertilised and P4YN4Y treatments and a significant increase in P2YN2Y. In 

contrast, NNM rates in Pl YNl Y topsoil declined when the incubation temperature 

was reduced. As a result, the differences between rates of NNM topsoil in the highest 
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application ofN (PlYNlY) and the NIL were reversed at the different incubation 

temperatures. 

The proportion ofN mineralised in Ferrosol topsoil was effected by incubation 

temperature. At 20 °C, Pl YNl Y topsoil mineralisation was the highest at just under 2 

%, while at 10 °C, unfertilised topsoil mineralised the highest at just less than 1 % 

(Table 7.11). 

Table 7.11 Projected percentage of total N mineralised annually (based on 60 d 
incubations) in topsoil and litter. Means with the same letters within a site and 
tem~erature combination are not significantly different (p < 0.05). 

TotalN ug g -1 20°C 10°C 

Ferrosol topsoil 
NIL 1806 -0.6 b 0.6 e 
P2YN2Y 1563 -4.2 a -3.8 a 
P4YN4Y 1618 -4.8 a -1.8 b 
PlYNlY 1344 1.9 c 0.2 d 
N2Y 1990 -0.9 b -0.6 c 
P2Y 1620 -0.2 b -0.2 d 
Eucalyptus regnans litter 
NIL 8836 4.8 a 0.15 ab 
P2YN2Y 9499 7.8 b -0.03 a 
P4YN4Y 9060 7.1 b -0.19 a 
PlYNlY 12159 12.2 d 8.68 d 
N2Y 10068 9.0 c 2.33 c 
P2Y 10009 11.4 d 0.55 b 

Fertiliser treatment significantly (p<0.001) effected initial mineral N concentration in 

E. regnans litter (Figure 7 .23). Increases in mineral N concentrations were unrelated 

to the rate of N application, that is double the rate ofN application P2YN2Y 

compared to and Pl YNl Y, increased mineral N concentrations three-fold, whilst 

almost doubling the application of N between P4YN4Y and P2YN2Y, resulted in a 

less than 50 % increase. Application of N alone significantly increased initial N above 

that of N and P fertiliser combined. 
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Initial mineral N concentration in the Pl YNl Y litter was significantly higher than 

other fertiliser treatments. In contrast, in the topsoil initial mineral N concentration 

was much lower, resulting in a sixty-fold difference between the horizons. N2Y litter 

also had initial mineral N concentrations were four times greater than the topsoil. 
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Figure 7.23 Initial N concentrations (µg g-1
) in E. regnans litter. Bar indicates 

LSD for treatments (p<0.001). 

Rates of NNM in litter at 60 days and 20 °C increased significantly with fertilisation 

(Figure 7.24a). NNM rates were three-fold higher in PI YNl Y than unfertilised litter 

and doubled that measured in P2YN2Y and P4YN4Y. In contrast to initial N values, 

NNM rates were higher in P4YN4Y than P2YN2Y treatments. Application of P and N 

alone also significantly increased NNM. Phosphorus application actually increased 

rates ofNNM more than when applied in combination with N, or when N was applied 

alone (Figure 7.24b). 

Decreasing the incubation temperature to 10 °C significantly reduced NNM in all 

litters, by up to 178 µg g-1
• At 10 °C, NNM was positive only in Pl YNl Y and N2Y 

litters, and there was no effect of Pon NNM. Differences between the intermediate 

rates of N fertilisation declined at 10 °C, and were generally around zero. 
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Figure 7.24 Rates of NNM in E. regnans litter (µg g-1 60 d-1
) at 10 and 20 °C (a) N 

level trial, (b) N by P factorial trial. Bar indicates LSD for comparing 
interaction means of fertiliser rate by incubation temperature (p < 0.001). 

In comparison to the topsoils, at 20 °C, E. regnans litter the proportion ofN 

mineralised was between twelve and five percent of the total N available (Table 7 .11 ). 

At both temperatures the highest efficiency of conversion occurred in Pl YNl Y, 

which declined by one quarter when the temperature was reduced. However, in 

comparison to other treatments the proportion of total N mineralised in the P 1 YNl Y 

litter was the least effected by temperature. 
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Initial N concentrations and NNM rates at both 10 °C and 20 °C in soils and litter 

were fitted with linear and quadratic regression. No significant relationships were 

observed. 

7.3.4 Correlations between initial mineral N and NNM to nutrient content 

Initial mineral N and NNM rates of litter and topsoil are examined by scatter plot and 

correlation analysis for relationships with nutrient concentrations measured in Chapter 

3 (Table 3.8). Each site is examined separately first for correlations between nutrients 

and NNM. Although this provides insight into the relationship between the nutrient 

content and NNM, the strength of this analysis is limited due to a single measurement 

of nutrient content for each three replicates of NNM. Therefore, a combined analysis 

that uses each site, soil and litter nutrient content, as the replicate is given in Section 

7.3.4.3. 

7.3.4.1 Kurosol topsoil and litter under P. radiata 

Although initial mineral N concentrations measured in the Kurosol topsoil were 

significantly linearly related to N (positive, +ve), Ca (negative, -ve) and Mg (-ve) 

concentrations and pH (-ve), these relationships were strongly dependent on the 

highest fertilised treatment (P)Nl Y (Table 7 .12). Such that when the data from the 

((P)Nl Y) treatment was removed, the relationship was no longer significant. The 

same trend was observed in the P. radiata litter. In the litter, Ca and Mg 

concentrations and pH where significantly negatively (linearly) related. However, 

even for Mg (r2 = 0.94), the relationship was dependent on the highest fertiliser 

treatment ((P)Nl Y) (Figure 7.25). When the data from this treatment were removed, 

the relationship was not significant. 
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Figure 7.25 Initial N compared to magnesium concentrations (µ,g g-1
) in Kurosol 

topsoil 

NNM rates in Kurosol topsoil incubated at 10 °C (Table 7 .12) were linearly related to 

P ( +ve) concentrations only, and at 20 °C, rates were linearly related to total N ( +ve ), 

P (+ve) and Mg (-ve) concentrations and soil pH (-ve) at 1:5 soil: water (Figure 7.26). 

Unlike initial mineral N concentrations, these relationships were not dominated by the 

data from the highest rate of N fertilisation ((P)Nl Y). Although not significant, the N 

concentration was almost double at 0.1 % in the annually fertilised than the 

unfertilised and (P)N4Y topsoil (0.06 %). NNM rates were unrelated to organic C 

concentration and C: N ratios. Organic carbon in the unfertilised and annually 

fertilised topsoil was around 1.3 and 2.5, respectively. However, organic C 

concentrations were highly variable in the (P)Nl Y topsoil and ranged from 1.5 to 2.6 

% resulting in no significant differences between treatments. 

Pinus radiata litter incubated at 10 °C showed a strong negative (linear) relationship 

with Ca concentration, however, this was not significant at 20 °C. Magnesium was 

linearly related (-ve) at both temperatures, while N (+ve) concentration and pH (-ve) 

were linearly related to NNM only at 20 °C. 
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Figure 7.26 Kurosol topsoil Net N mineralisation compared to total nitrogen 
concentrations (µg g-1

), crosses 10°C and squares 20°C 

Table 7.12 Correlations(%) between initial N and NNM (10°C and 20°C) and 
major substrate nutrients (r squared statistic). Significant correlations 
indicated with* (p < 0.05) and **(p < 0.001). 

Nutrient initial N NNM at 10°C NNM at 20°C 
P. radiata Kurosol P. radiata Kurosol P. radiata Kurosol 

N 32 66* <O <O 56* 38* 
p 13 <O <O 75** 18 30* 
Mg 94** 51* 51* <O 58* 38* 
Ca 50* 75* 85** <O 24 17 
pH 54* 43* 5 11 35* 64* 
S <O 14 

7.3.4.2 Ferrosol topsoil and litter under E. regnans 

Relationships between initial N concentrations and concentrations of nutrients in 

Ferrosol topsoil depended on the number of fertiliser treatments included in the 

regression analysis. When all treatments were included in scatter graphs and 

regression analysis, Ca (-ve), S (+ve), and Mg (-ve) concentrations and pH (+ve) of 

the Ferrosol topsoil were linearly related to initial mineral N (Table 7 .13a). However, 

like those measured in the Kurosol topsoil the relationship depends on the highest 

fertiliser treatment Pl YNl Y, such that when the data :from this treatment was 

removed, the relationship was not significant. In E. regnans litter S ( +ve) 

concentration and pH (-ve ), was significantly linearly related to mineral N 

concentrations (pH r2 = 0.85) when all treatments were included. 
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Examination of the N level treatments in E. regnans litter showed initial mineral N 

concentration in the litter to be linearly related to N, Mg, Ca, P and S concentrations 

and pH (Table 7.13b). Magnesium and mineral N concentrations were strongly 

positively correlated (r2 = 0.93 and 0.95) within these treatments. Other relationships 

between nutrients and mineral N in the litter were again dependent on data from the 

Pl YNl Y treatment. In the four N level treatment Ferrosol topsoils N, Mg, 

concentrations and pH were significantly related to mineral N concentrations, but the 

relationships were weak compared to the litters. 

Table 7.13 Correlations(%) between initial N and NNM (10°C and 20°C) and 
major substrate nutrients (r squared statistic), (a) includes all six treatments 
data (b) includes N level data only. Significant correlations indicated with* (p 
< 0.05) and **(p < 0.001). 

(a) 

Nutrient initial N NNM at 10°c NNM at 20°c 
E. reg_nans Ferrosol E. reg_nans Ferrosol E. reg_nans Ferrosol 

N <O 20 9 <O <O 7 
p <O 20 <O <O 13 <O 
Mg <O 52* <O 53** 1 74** 
Ca 9 28* 22* 23* <O 15 
pH 85** 28* 93** <O 49** 9 
s 31* 48* 

(b) 

Nutrient initial N NNM at 10°C NNM at20°C 
E. reg_nans Ferrosol E. refl_nans Ferrosol E. refl_nans Ferrosol 

N 95** 66* 96** <O 97** 5 
p 52* <O 37* <O 68** <O 
Mg 91** 53* 80** 65** 95** 98** 
Ca 93** 21 87** 76** 99** 51* 
~H 88** 51* 94** <O 72** 7 

Like the initial mineral N, linear correlations between NNM and nutrients analysed in 

litter and topsoil were dependent on the number of fertiliser treatment included in the 

regression. When N2Y and P2Y treatment data were included in regression analysis 

of E. regnans litter, pH (-ve) at both temperatures, and Ca ( +ve) at 10 °C showed a 

significant linear relationship with NNM (Table 7.13a). At 10 °C, the relationship 

between pH and NNM had an r2 = 0.93, but was significant only when Pl YNl Y 

treatment data was included. 

204 



Removal ofN2Y and P2Y data from regressions resulted in significant linear positive 

relationships between NNM in Ferrosol topsoils for only Mg and Ca (r2 = 0.98 at 20 

°C) concentrations, at both temperatures. In the litter total N ( +ve ), P ( +ve ), Ca ( +ve) 

and Mg (-ve) concentrations and pH (-ve) were linearly related to NNM at both 

temperatures. Both Ca and Mg showed strong linear relationships with NNM, at r2 = 

0.99 and r2 = 0.96, respectively (Figure 7 .27). 

,.., 300 
~ 

'I>!) 

250 I>!) 

.e 
= 200 
~ 150 :! .. .. 100 .. 
·§ 50 
z .. 0 .. z 

,.., 300 
'I>!) 

I>!) 250 .e = 
~ 200 
.l!l 150 .... .. 

~!! .. 
100 .e 

= IC z 50 
t z 0 

4000 5000 6000 7000 

Calciwn (ug g-1
) 

8000 9000 0 500 1000 1500 2000 

Magnesium (ug g-1
) 

Figure 7.27 Net N mineralisation compared to (a) calcium and (b) magnesium 
concentrations (µg g-1

) in E. regnans litter incubated at 20°C 

7.3.4.3 Combined sites 

Combined topsoil data (using Kurosol and Ferrosol topsoils as replicates) indicated 

that only the initial mineral N concentration was correlated to NNM at 20 °C (r2 = 

75.5 p = 0.003) (Table 7.14). No other nutrient content was correlated forNNM 

across both soil types. Combined litter data (using P. radiata and E. regnans as 

replicates) NNM was correlated with mineral initial N, total N, P and Ca at 20 °C and 

initial N and total N at 10 °C (Figure 7.28). 
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Table 7.14 Correlations between NNM (10°C and 20°C) and major substrate 
nutrients (r squared statistic), includes combined data from N level 
experiments at both sites. Significant correlations indicated with * (p < 0.05) 
and **(p < 0.001 ). 

Nutrient NNM at 10°C NNM at 20°C 

Litter Topsoil Litter Topsoil 

N 74.4* 15.8 69.4* 38.7 
p 20.7 23.3 72.0* 38.8 

Mg 35.1 <O 65.5* 1.1 

Ca 19.8 <O <O <O 
pH <O 15.3 <O 39.5 

s 19.3 6.0 15.6 11.2 

initial N 70.0* 31.7 64.7* 75.5* 

Predicted annual rates of NNM using 60 day incubations in NIL and (P)Nl Y Kurosol 

topsoils were 8 kg N ha-1 yr-1 and 14 kg N ha-1 yr-1
, respectively at 10 °C, and at 20 °C 

this increased to 26 kg N ha-1 yr-1 and 49 kg N ha-1 yr-1
, respectively (Table 7.15). 

Although temperature significantly increased NNM in both treated topsoils, the 

difference between rates ofNNM in fertilised and unfertilised topsoils was always 

around double. Although temperature significantly increased NNM in both treated 

topsoils, the difference between rates ofNNM in fertilised and unfertilised topsoils 

was always around double. In Ferrosol topsoils predicted annual rates of NNM using 
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60 day incubations in NIL and Pl YNl Y were 14 kg N ha"1 yr-1 and 3 kg N ha-1 yr-1
, 

respectively at 10 °C, and at 20 °C NIL treatment declined to -14 kg N ha-1 yr-1 while 

PlYNlY treatment increased to 32 kg N ha-1 yr-1 (Table 7.15). 

Table 7.15 Summary of results from Experiments 1, 2 and 3. Annual NNM ha-1 

yr-1 in each horizon for each laboratory treatment and fertiliser treatment. 

Horizon Fertiliser 
Laborato!l'. treatment Time 

treatment Moisture Temperature 3 7 15 30 60 

Ferrosol (0-10 cm) NIL Dry 20°c 428 115 
Moist 20 °C 96 -4 -2 -4 -14 
Moist 10°c 14 

P1YN1Y Dry 20°c 323 230 
Moist 20°c -23 52 11 12 32 
Moist 10 °C 3 

P2YN2Y Moist 20°c -99 
Moist 10 °C -37 

P4YN4Y Moist 20°c -83 
Moist 10 °C -76 

N2Y Moist 20°c -22 
Moist 10 °C -16 

P2Y Moist 20°c -4 
Moist 10 °C -4 

E. regnans (02) litter NIL Dry 20°c -6 4 
Moist 20°c 11 2 1 6 
Moist 10 °C 0 

P1YN1Y Dry 20°c 53 77 
Moist 20°c 21 219 180 167 115 
Moist 10 °C 82 

P2YN2Y Moist 20 °C 13 
Moist 10 °C 0 

P4YN4Y Moist 20°c 7 
Moist 10 °C 0 

N2Y Moist 20 °C 9 
Moist 10 °C 0 

P2Y Moist 20°c 22 
Moist 10 °C 6 

Kurosol (0-10cm) NIL Dry 20°c 144 75 
Moist 20°c 27 75 36 68 26 
Moist 10 °C 8 

(P)N1Y Dry 20°c 114 114 
Moist 20°c 190 56 29 63 49 
Moist 10 °C 14 

(P)N2Y Moist 20°c 36 
Moist 10 °C 39 

(P)N4Y Moist 20 °C 40 
Moist 10 °C 61 

P. radtata (02) litter NIL Dry 20°c 8 6 
Moist 20 °C 10 12 5 9 7 
Moist 10°C 3 

(P)N1Y Dry 20°c 47 30 
Moist 20°c 5 92 60 58 36 
Moist 10 °C 10 

(P)N2Y Moist 20 °C 8 
Moist 10 °C 1 

(P)N4Y Moist 20°C 10 
Moist 10 °C 0 
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7.4 Discussion 

7.4.1 Kurosol topsoil and litter formed under P. radiata 

Net N mineralisation was almost double in the (P)Nl Y Kurosol topsoil than the NIL 

at 49 kg N ha-1 yr-1 and 26 kg N ha-1 yr-1
, respectively. However, significant 

differences were observed between treatments only when incubated for a period of 60 

days. The low rates of NNM in Kurosol topsoil observed in this study at both 

temperatures concur with previous field and laboratory observations (13 kg N ha-1 yr-1 

for NIL and 52 kg N ha-1yr-1 for (P)Nl Y), Chapter 4). In general, soil micro­

organisms grow at N starvation levels with four percent N in their biomass (Rosswall, 

1982). The efficiency ofN conversion can be examined by determining the amount of 

total N that was converted to mineral N in excess of microbial requirements, i.e. net N 

mineralisation divided by total N. In this study, laboratory incubations of both litter 

and topsoil at 20 °C, resulted in less than five percent of the total N being mineralised 

annually. This was a similar amount to that observed at the lower end ofN 

mineralisation in agricultural soils (Tabatabai and Al-Khafaji, 1980). Hence, even 

after receiving large applications of N and P and incubating soils at the higher end of 

field temperatures (20 °C), N mineralisation rates were low. 

Reducing the incubation temperature from 20 °C to 10 °C significantly reduced NNM 

in all Kurosol top soils, and the efficiency of N conversion declined to less than 1 % in 

both annually fertilised and unfertilised topsoils. Many researches have reported 

different temperature sensitivities when comparing temperature responses in various 

systems, such as soil vs litter vs horizon types (Kirschbaum, 1995). In this study the 

effects of temperature were more pronounced in top soils where high rates of fertiliser 

had been applied i.e. Kurosol topsoil (P)Nl Y incubated at 10 °C did not have 

significantly higher NNM rates than the unfertilised topsoil. Both Powers (1990) and 

MacDonald et al. (1995) observed that increasing temperatures often had an equal or 

greater influence than site on NNM rates. This study indicated that at a given site the 

amount of substrate N could influence the effect of temperature on NNM. However, 

such variations in response to temperature were only found when there were large 

changes in N inputs. At 20°C NNM rates in (P)N4Y and (P)2Y treatments were 

similar to at 40 kg N ha-1 yr-1and 36 kg N ha-1 yr-1
, respectively. 
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A pronounced temperature effect on NNM was also observed in litter horizons in this 

study. Increasing the incubation temperatures of litter horizons, to 20 °C, generally 

increased the variation in NNM between different fertiliser treatments. However, this 

was not linearly related to N application, as 400 kg N ha-1 ((P)N4Y) treatment, often 

had significantly higher rates ofNNM than the 700 kg N ha-1 ((P)N2Y) treatment. It 

was interesting to note that the total N concentration in the (P)N4Y treatment was 

similar to the (P)Nl Y treatment in the litters from this site (Table 7 .10). However, 

NNM was significantly higher only at the higher incubation temperature in this 

treatment ((P)N4Y). This suggested that at the higher temperature some other factor 

became important in microbial growth, which remained limited at lower temperatures. 

In soils with adequate moisture availability, at higher temperatures increased 

metabolic rate and access to substrates in microbial communities have been observed 

(Ellert and Bettany, 1992; MacDonald et al., 1995; Beier and Eckerersten, 1998). An 

increasing rate of litter decomposition in (P)N4Y treatment due to the increase in 

temperature, compared to the other layers, would explain such a flux in NNM. 

However, it is generally accepted that organic matter decomposition is limited not 

only by N, but also by soluble C (McLaughlin et al., 2000). The increase in soluble C 

availability due to disturbance and temperature changes in samples such as those 

taken from the (P)N4Y treatment, may have increased litter decomposition and 

therefore rates ofNNM. In both horizons (02 and Al) the response ofN mineralising 

microbes to temperature was stronger in annually fertilised ((P)NlY) than the NIL 

treatment. 

Incubation length had a significant effect on the overall rate of NNM, response 

depended on fertiliser treatment and horizon being studied. In short incubation 

periods, effects of disturbance (mixing) were particularly evident in fertilised P. 

radiata litter, with a depression in daily rates at day 3 compared to day 7, and settling 

to an intermediate rate by day 15. In contrast, fertilised Kurosol topsoil showed a 

reversed trend, with daily NNM rates enhanced at day 3, and then rates of NNM 

remaining constant for the duration of the incubation. 

Patterns of N mineralisation under field conditions are influenced by the organisation 

of the physical, chemical, and biological components of the soil matrix on a micro 
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scale (Strong et al., 1998a). Disruption of these aggregates due to mixing soils 

increases N mineralisation, the amount of increase depends on the degree of physical 

protection, and consequently the size and stability of the aggregates prior to 

disturbance (Sollins et al., 1984). The lack of aggregation in the Kurosol topsoil 

could explain limited changes in NNM due to disturbance of this soil. The percent of 

water stable aggregates (>0.25 mm) in the Kurosol topsoil were low ranging from 10 

to 23 % (Chapter 3 Table 3.11). In addition to release of organic matter from 

microsites, Sierra (1992) noted disturbance could produce a more homogenous soil 

aeration, by rupturing anaerobic soil microsites, and increasing sites accessibility for 

microbial colonisation. In poorly aggregated soil such as the Kurosol topsoil, limited 

increases in microsite nutrient or oxygen availability would occur due to physical 

disruption. This difference in the 'physical protection of organic matter' may explain 

why the Kurosol topsoil reacted differently, by releasing a peak of mineral N at day 3 

due to the initial disturbance, causing limited disruption of aggregates compared to 

the Ferrosol, discussed in Section 7.4.2. 

Lower rates of daily NNM at day 15, after a period of higher activity, agree with the 

theory put forward by Sierra (1992), who determined that the rate of mineralisation 

during one period would change the subsequent N mineralisation rate. Low rates of 

NNM after disturbance in horizons where aggregation was present, may therefore 

correspond to increases in microbial populations as they occupy the newly available 

sites. Hart et al. (1994) observed an increase in microbial biomass during the first 

seven days of incubation and associated decreases in mineral N production. Once the 

population has increased, NNM rates also increased and then stabilised. This 

relationship was seen in the unfertilised Kurosol. This study indicated stabilisation 

had occurred by around 15 days. Therefore the period between day three and day 

seven was a critical period for either population expansion, or species divergence, due 

to the mixing disturbances before incubation. 

In the Kurosol day 3 had the highest rate ofNNM of any of the incubation periods but 

this was only in the (P)Nl Y treatment. Calculation of annual NNM at this time would 

have over estimated the rate at around four times greater than any other time 
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measured (at 190 kg N ha-1yr-1
). These results agree with many authors who have 

observed short-term increases in C and N mineralisation during laboratory incubations 

(Van Gestel et al., 1993; Murphy et al., 1998b; Paul et al., 1999; Pulleman and 

Tietema, 1999). In contrast, use of the NNM rate at Day 3 would have under 

estimated annual NNM in the (P)Nl Y P. radiata litter by around one tenth (at 5 kg N 

ha-1yr-1
). Such trends emphasise the importance of incubations long enough to go 

beyond the initial period of disturbance, to a length of at least 15 days, a period also 

noted as critical by Robertson (1988). Beyond this point, microbes are operating more 

in equilibrium (or steady state) and are more likely to represent the N turnover that 

naturally occurs in these horizons in the field. The use of short-term experiments to 

predict field NNM rates may overestimate the results (Sierra, 1992). The impact of 

mechanisms which influence NNM such as changing microbial populations, 

accessibility of N and oxygen supplies, and fluxes between mineralisation and 

immobilisation process, will all vary with the period of incubation. 

Although both the fertilised and unfertilised pre-dried topsoil and pre-dried litter had 

significantly higher initial mineral N concentrations there was no significant effect on 

the overall rate of NNM. Lower enhancement of mineral N concentrations due to 

drying in Kurosol topsoil may be due to these soils undergoing similar large moisture 

fluctuations in the field. The lowest incubation moisture content in the pre-drying 

study, just above permanent wilting point, was not uncommonly measured in field 

(Chapter 4). Previous research has indicated that soil biota response to drying and re­

wetting depend on prevailing site conditions (Birch, 1958; Lund and Goksoyr, 1980; 

Van Gestel et al., 1993). West et al. (1988) demonstrated, using soils from a 

climosequence, that soil biota biomass from the lowest rainfall regions were more 

resistant to imposed gradual drying treatments. 

7.4.2 Eucalyptus regnans litter on Ferrosol topsoil 

Rates ofNNM were very low at all times in the Ferrosol topsoils incubated moist 

regardless of fertiliser treatments. Immobilisation was observed to be a dominant 

process, with only topsoil fertilised at the highest rate, receiving a total of 1300 kg N 

ha-1
, actively mineralised Nin excess of microbial requirements during incubations at 
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20 °C (32 kg N ha-1yr-1
). The exception occurring when calculating NNM at Day 3. 

Pl YNl Y topsoil was the most efficient mineraliser (the efficiency of N conversion 

NNM/total N is explained in Section 7.4.1) converting around two percent of the 

available N. In contrast, at 10 °C the unfertilised topsoil converted the most N, 

however, this was less than one percent of total N. Low rates ofN mineralisation are 

common in forest soil (Stump and Binkley, 1993) and immobilisation ofN is well 

recognised as a major component of the N cycle in eucalypt forest soil in Australia 

(Adams and Attiwill, 1986). Since I only measured NNM, I could not determine 

whether low gross rate of NM or high rate ofN immobilisation occurred. However, 

the large amounts of immobilisation in the intermediate fertiliser treatments observed 

in this study indicate that high rates of immobilisation could occur, particularly in the 

Ferrosol soils. The results from this study also concur with the low rates ofNNM 

observed in the field and laboratory studies presented in Chapters 4 and 6. 

Changing the temperature reversed the treatment effects on NNM in the Ferrosol 

topsoil. Total Nin Ferrosol topsoil was one third higher in the NIL treatment than the 

Pl YNl Y (Table 3.12), which suggested higher total N content resulted in stronger 

temperature effects on N immobilisation. Comparisons between concentration were 

not significant, however it can be noted that the concentration of N was also higher in 

the unfertilised than annually fertilised topsoil at 0.18 and 0.13 %, respectively. In 

contrast, organic C concentration was lower (not significantly) at 3.8 and 4.5 %, 

respectively. Such trends suggest that there is a build up on recalcitrant organic matter 

as in this soils as suggested by (Mathers et al., 2000), which could be derived from 

the microbial biomass (DeMontigny et al., 1993). 

Increased N immobilisation with higher incubation temperatures was also noted by 

Bonde and Rosswall (1987), who suggested that increasing the temperature could 

increase the metabolic rate, size or number of species of microbes resulting in greater 

net N immobilisation. In the field in Tasmania soil temperatures these temperatures 

were rare and thus the marked change in population dynamics in Ferrosol topsoil may 

not occur under field conditions. This suggests that laboratory incubation parameters 

have vastly accelerated NNM the processes. 
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In the field in situ rates of NNM, calculated using closed cores, were higher (not 

significantly) in unfertilised Ferrosol topsoil at 23 kg N ha-1 yr-1 than the fertilised 

(Pl YNl Y) topsoil, at 16 kg N ha-1 yr-1 (Chapter4). This supports the observations 

from topsoils incubated at 10 °C in the laboratory. In laboratory incubations held at 10 

°C, unfertilised topsoil, mineralised 14 kg N ha-1 yr-1
, a similar rate to that observed in 

the field, while PlYNlY topsoil mineralised less than 4 kg N ha-1 yr-1 (Table 7.15). 

However, in laboratory incubations held at 20 °C, unfertilised topsoil immobilised 14 

kg N ha-1 yr-1
, but Pl YNl Y topsoil mineralised 32 kg N ha-1 yr-1

• Although not 

consistent with field observations, these results were in agreement with the laboratory 

study on moisture and temperature where NNM often doubled in Pl YNl Y topsoil 

when the temperature increased from 10 °C to 22 °C, but showed inconsistent 

variations in NNM due to temperature changes in unfertilised topsoil, (Chapter 6). 

Application of N and P alone, every second year, immobilised significantly less N 

than when N and P were applied together. A reduction in mineralisation from P 

application contrasts to results observed by Falkiner et al. (1993) in mixed forests and 

P. radiata plantations. Under these forests rates ofNNM increased after P application 

(200 to 500 kg P ha-1
) for at least 2 years, and were readily availably for plant uptake. 

However, in the current study as no increase in volume growth occurred due to P 

application and P was not thought to be limiting at this site (Chapter 3). When P is not 

limiting due to the site history such as ex-pastures (Aggangan et al., 1998) or 

naturally high P concentrations (Johnson et al., 1980; McLaughlin et al., 2000), 

addition of P fertiliser may have little effect on NNM. Net N mineralisation may 

actually be reduced after P application as a result of increased organic inputs and 

associated microbial activity (Adams and Attiwill, 1991; McLaughlin et al., 2000). 

Such behaviour was observed in the present study. However when P is limiting, low 

rates of P application, 100 kg P ha-1
, can cause dramatic increases in total N 

accumulation and wood production, with increased N accumulation for up to 30 years 

after fertilisation (Falkiner et al., 1993). Results similar to those observed by Falkiner 

et al. (1993) would be expected in the P-poor Kurosol under the P. radiata. 
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In comparison to the topsoil, the largest total N pool was measured in P 1 YNl Y E. 

regnans litter, which also corresponded to the most effective mineralising substrate, 

converting twelve percent of the N annually. This emphasises the importance of the 

litter horizon in supplying N for tree growth at this site. In a review of litter quality 

and annual NNM across a range of sites in northern America, Scott and Blinkley 

(1997) observed that both litter N concentrations and N content correlated poorly with 

NNM. In contrast, annual rate of NNM measured in E. regnans litter in this study 

correlated well with the total N measured at the time of sampling. 

Decreasing the incubation temperature of litters decreased the differences between 

NNM rates due to fertiliser treatments. At the lower incubation temperature, NNM 

was similar between unfertilised and intermediate fertilisation. The exception 

occurred when N was applied alone to E. regnans litter. Unlike the topsoil, no field 

rates of NNM were measured in litter horizons at either site. However, field 

examination of mineral Nin Chapter 4 and 5, clearly showed that large long-term 

differences in mineral N content of litter horizons developed due to fertilisation. 

Laboratory incubations have often been used to compare N mineralisation or 

nitrification potential of soils of different regions, ecosystem types, topographic 

positions, or ages (Nadelhoffer, 1990). However, comparisons between field and 

laboratory rates ofNNM using air-dried soil are not always clear. In agreement with 

this study, Connell et al. (1995) found a poor correlation (r2 = 0.20) between in situ 

rates of mineralisation and laboratory rates, which were of up to ten times greater. In 

this study drying increased rates ofNNM by up to twenty-fold, which could have a 

large effect on the calculated rate of annual NNM. For example calculating annual 

NNM from 60-day incubations of Pl YNl Y treated topsoils air-drying pre-treatments 

resulted in 230 kg N ha-1yr-1 compared to 32 kg N ha-1yr-1 in those maintained moist 

(Table 7.15). Previous research has shown that pre-drying soil can result in substantial 

microbial death. The soil micro-organisms which survive, respond to re-wetting by 

temporarily entering a state of high metabolic activity, resulting from the 

cannibalisation of the dead microbial cells and a burst of humus decomposition (Lund 

and Goksoyr, 1980). Substantial increases in NNM rates of the Ferrosol topsoil 

214 



suggest that drying this soil significantly changed the natural metabolic rate and 

therefore mineralisation rates of the microbial communities. 

In addition, drying changed the difference in NNM rates between fertiliser treatments, 

and this effect was dependent on the incubation length. In their study Lund and 

Goksoyr (1980) noted that changes in microbial activity in a soil after drying and re­

wetting proceeded in waves, due to bacterial and fungal populations having different 

growth and activity patterns. From the field study in Chapter 4, there was no 

indication that the Ferrosol topsoil reached moisture content as low as air-dried 

laboratory topsoil. The field study also did not measure mineral N content above 20 

µg g-1
• Both of these factors indicated that air-drying, to the level used in this study, 

was not a very likely natural occurrence at this site, and therefore air-drying prior to 

incubation probably resulted in a significant overestimation of the amount ofN 

available for tree growth. 

In agricultural soils, both Cabrera and Kissel (1988b) and Van Gestel et al. (1993) 

observed significant increases in NH4 + and NNM after drying and re-wetting. Cabrera 

and Kissel (1988b) observed drying and sieving resulted in an over prediction of the 

amounts N mineralised by, between 60 and 340 percent, compared to rates measured 

in the field. In agreement with the current study and the previous laboratory study 

(Chapter 6) Cabrera and Kissel (1988b) noted that drying soils enhanced nitrate 

production. This contrasted to the increase in ammonifying organisms and 

ammonification from drying observed by Stevenson (1956) and Van Gestel et al. 

(1993). Although the amount of nitrate increase was small, (less than 1 µg g-1 N03-l) 

it was up to a five-fold increase. Nitrate was not found in field samples (Chapter 4 and 

5) or laboratory samples maintained moist. Ammonification was the dominant N 

mineralisation process in many forest soil (Adams and Attiwill, 1986), and was 

consistently observed as the dominant process in both the forest soils examined here. 

Hence, drying soil prior to laboratory incubations could over predict the amount of 

nitrate present and lead to erroneous conclusions about N leaching. 

Low nitrification rates were observed at both sites throughout the 60-day incubation. 

The maximum net nitrification measured was only 0.16 µg g-1 at day 60 in the NIL P. 
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radiata litter. At both sites, rates on net nitrification remained below 0.01 µg g-1 day-1
• 

In a study ofN mineralisation and nitrification in soils at 17 sites, including 10 

coniferous stands, Vitousek et al. (1982) observed that litter horizons had a threshold 

for N between 60 and 90 µg g-1 above which net nitrification occurred. In this study, 

cumulative rates of mineral N reached a maximum in the E. regnans litter at 244 µg g-

1, however rates of net nitrification remained low at 0.09 µg g-1.suggesting that some 

other mechanism other than the availability of ammonium was limiting net 

nitrification. Vitousek et al. (1982) observed in mineral soil (0-15 cm) the pattern was 

more linear with high mean mineral N concentrations in the field associated with high 

net nitrate production. Again this was not observed in this study. Both studies week 

conducted as aerobic laboratory studies over an eight period, and in this study the rate 

of nitrification did not increase over the incubation period, which suggest that the 

length of the incubation period was not the limiting factor. 

Previously I have discussed that the low pH at these sites was probably the factor 

limiting net nitrification. However soils with low pH can have mineral N dominated 

by nitrate (Bauhus and Khanna, 1994 ). In a study of drying and wetting on two acid 

forest soils in south-east Australia, Bauhus and Khanna (1994) observed that 

nitrification was more constrained by low soil moisture than ammonification. 

However, results from this study indicated that samples incubated at near field 

capacity did not have significant net nitrification. Net nitrification was only evident in 

these soils after air-drying (Chapter 6). 

Large differences in clay and organic matter content could also influence NNM 

response to drying prior to laboratory incubation. Disruption of soil physical structure, 

substrate desorption from soil surfaces during soil desiccation, and re-wetting can 

release organic compounds available for subsequent mineralisation (Degens and 

Sparling, 1995). Bartlett and James (1980) showed drying soil increases the solubility 

of organic matter, seen by the increased yellow colour in solution extracts. Such 

colour variations were observed during the analysis on mineral N extracts during this 

study. However, these variations were not characterised. The relative amounts of 

organic N released have been associated with the previous aggregation state (Van 

Gestel et al., 1991) and clay content of the soil (Wetselaar, 1968; Cabrera and Kissel, 

1988a). Strong et al. (1999a) not only observed that clay content often had a 
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significant influence on N mineralisation and nitrification response to disturbance, but 

also observed that when soils were maintained moist the relationship between clay 

content and N mineralisation and nitrification was negative, while drying and re­

wetting resulted in a positive relationship. 

Disturbance effects were also observed in short incubation periods. In short 

incubation period effects due to disturbance (mixing) were particularly evident in 

fertilised litter and topsoil, observed as a depression in daily rates at day 3 compared 

to day 7, settling to an intermediate rate by day 15. In contrast, unfertilised topsoils 

had increased rates of fertilisation at day 3. This large disturbance affect was 

associated with the relatively high aggregate stability. The percent of water stable 

aggregates (>0.25 mm) was between 69 and 84 % in the F errosol topsoil (Table 3 .11 ). 

The large variation in clay and organic matter content between the Kurosol (loamy 

sand, Al with approximately 4 % clay) and Ferrosol (clay loam to loam, Al with 

approximately 50 % clay) was also considered a factor in the differences in 

disturbance response between the soils. Cabrera and Kissel (1988a) observed that N 

mineralisation over-prediction, using disturbed samples, was related to the clay and 

total N concentration within soils. The higher the clay to total N ratio, the larger the 

physical disruption due to disturbance such as sieving, the greater the change in 

accessibility to organic matter, and the higher the over prediction of NNM. Even 

during long incubations, 224 days, if the period of greatest variation in NNM was 

included, the first 28 days, N production was over-predicted in disturbed samples 

(Cabrera and Kissel, 1988a). To prevent this the incubation of intact cores has been 

suggested to better reflect field conditions (Adams and Attiwill, 1986; Raison et al., 

1987). However, results in this study indicated that an extremely high number of 

intact soil-core replicates would be required to show this in a statistically consistent 

manner. 

Changes in NNM rates due to drying may also reflect major shifts in the activity of 

soil populations such as a change in the microbial population base to a more fungal 

dominated one that is better adapted to low moisture environments. Bauhus and 

Khanna (1994) observed an increase in the C: N ratio of microbial biomass, which 

indicated an increase in the proportion of fungi due to drying and wetting soils. 
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Moisture content and pore size distribution will determine the ability of diflerent 

microbial structures to move through water filled pathways. Many bacterial activities 

in soil have been shown to decrease sharply as matric potential in the soil falls to 

between -50 kPa and -30 kPa. As filamentous fungi do not suffer from the limitation 

of movement imposed by unicellular structure, the relative competitive advantage of 

bacteria and fungi in soil changes markedly as moisture content declines (Harris, 

1981). Such response to drying alone was also evident in the Ferrosol topsoil from the 

first laboratory study (Chapter 6). Changing populations emphasise the importance of 

selecting an appropriate incubation time to determine the rate ofNNM. 

Air-drying the E. regnans litter layers resulted in an increase of mineral N prior to re­

wetting, by up to five-fold over the litter kept moist and cool. However, after re­

wetting rates ofNNM decreased. This contrasts to NNM enhancement due to drying 

in the Ferrosol. Clein and Schimal (1993) and Pulleman and Tietema (1999) also 

observed that the effect of drying on N mineralisation and microbial activity differed 

in the litter and soil. In the field, litter horizons are more exposed and are therefore 

naturally more prone to drying and re-wetting than the soil. Under these conditions 

there would be selection pressures for desiccation-resistant microbial populations. 

Both Clein and Schimal (1993) and Pulleman and Tietema (1999) observed increased 

microbial activity within a few hours of re-wetting, and the effect of air-drying on 

overall N mineralisation was found to be dependent on the severity and length of 

drying. The length and severity of the drying event in the litter affected the overall 

reduction in microbial species diversity and subsequent re-colonisation time (Clein 

and Schimal, 1993). 

The decreased impact of drying and re-wetting on N mineralisation in the litter 

horizons would also result from a reduction in the severity of physical change due to 

drying. The litter has larger poor spaces and limited aggregation, compared to highly 

structured soils, such as the Ferrosol topsoil. Consequently, there would be limited 

fractionation of the particles resulting in a reduction of newly available surfaces of 

organic matter for mineralisation. 
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In addition to changes in N availability discussed in this study and previous research, 

other studies, for example Bartlett and James (1980) noted that drying and re-wetting 

soils affected the solubility of exchangeable Mn, K, P, Ca and Mg and soil 

flocculation. This affects the nutrients available to the soil biota, and subsequently the 

size of the mineralisation flush due to re-wetting. 

Results from this study suggest that removal of the first seven days of cumulative N 

mineralisation would remove the initial flush of N mineralisation caused by 

disturbance. However, they would not remove the effects of air-drying in Ferrosol 

topsoils, which are still evident at days 30 and 60. Cumulative rates ofNNM in 

topsoil also showed a distinct divergence between fertilised and unfertilised horizons 

between days 30 and 60. At this point, it was proposed that in unfertilised samples 

there was depletion in available organic N for mineralisation or a build up of waste 

products. However, depletion of organic N availability was more likely, as fertilised 

samples continued actively mineralising N. A similar divergence trend at day 48 was 

observed by Johnson et al. (1980) in their 100-day laboratory study, ofN or N plus P 

composite mineral soil and litter horizons. In the present study, calculation of NNM 

between days 30 and 60 produced N mineralisation rates two to three times higher in 

fertilised litters than unfertilised. Another explanation for the general reduction in the 

rate of NNM in unfertilised horizons between days 30 and 60 could be a change in 

soil biota populations to a fungal dominated one. Bonde and Rosswall (1987) 

hypothesised that in long-term incubations decomposition of a large part of the 

microbial biomass would occur within the first few weeks, resulting in a favouring of 

fungal populations in the later part. This change in decomposer communities may also 

reflect a change in the amount and type of available C. These results indicated for the 

sites examined in this study incubation length of 60 days were adequate to measure 

changes in NNM from fertiliser treatments. 

Changes in NNM during longer incubation times suggest that the isolation of small 

amounts of soil may impose unnatural restrictions to N processes. However, any 

removal of samples from the forest will change the natural cycling of N, due to the 

absence of litter inputs and leaching. In a forest situation leaching of mineralised N 

from the litter horizon and uptake by mycorrhizal fungi and tree roots result in an 
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internal dynamic between the litter and soil horizons. The concentration of tree feeder 

roots at the litter and soil horizon interface indicates the importance of this process on 

tree growth. 

Combining the sites as replicates indicated that rates ofNNM in topsoil could not be 

predicted by total N, P, Ca, Mg or S concentrations or by soil pH. In an examination 

of38 podzolized sands (0-15 cm) under similar laboratory conditions (56 day aerobic 

incubation) Carlyle et al. (1990) also observed no correlation between NNM and total 

C, total N or C/N ratio. This was despite the soils being of similar texture, parent 

material and weak aggregation, i.e., similar to Kurosol topsoil. Correlations were 

observed between total N and NNM when the soils were split into highly and weakly 

nitrifying soils. In this study low rates of nitrate were observed in both soil types. In 

contrast, Carlyle et al. (1990) observed a significant correlation between NNM and 

total P in the soil. However it was difficult to determine relationship with nutrients in 

the soil as this study was complicated by additions of various nutrients added together 

in the fertilisers (N, P, Ca and S) and depletion of nutrients by increased tree growth 

(Mg). For example, the correlation ofNNM with Ca and Mg was negative for the 

Kurosol and positive for the Ferrosol topsoil. Calcium differences relate to the large 

amounts of Ca added with superphosphate at the Ferrosol topsoil, while 

concentrations declined with uptake in the Kurosol topsoil. Magnesium 

concentrations declined in both topsoils however increased immobilisation during 

incubations of intermediate fertiliser applications (every second and fourth year) 

resulted in a positive correlation in the Ferrosol topsoils. Such comparisons indicate 

that negative correlations between NNM and nutrients measured in this study would 

not reflect growth limitations as a result of restrictions in N cycling. 

NNM rates from the combined litter data were significantly correlated to total N, P 

and Mg for incubations at 20 °C. Although relationships were strongly influenced by 

NNM rate of the Pl YNl Y treatment. However, if this treatment was excluded from 

the regression retains a significant relationship. This was in agreement with the 

analysis of sites separately, where litter often had stronger correlations than the 

underlying soil. . 
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7.5 Conclusions 

The influence of fertilisation on N cycling in litter produced clear results, i.e. daily 

rates of mineralisation were higher in annually fertilised than unfertilised litters, at 

both sites if incubations went for 7 days or longer. In contrast, low mineralisation 

rates in both topsoils often produced similar daily rates of NNM regardless of 

fertiliser treatments. Increased replication of samples in laboratory experiments did 

increase the sensitivity of NNM measurements and significant differences between 

fertiliser treatments could be measured. However, comparisons between the effects of 

intermediate fertiliser treatments on NNM rates were dependent on incubation 

temperature. 

In topsoils from both sites, low and often negative rates of NNM during 60 days may 

have indicated that this period of incubation might not have been enough to overcome 

the effects of disturbance at intermediate rates ofN fertilisation. However, results 

from experiment 2 showed that shorter incubation periods of 3 to 7 days generally 

resulted in enhanced rates of NNM compared to those measured in longer 

incubations. Longer periods of incubation lead to depletion in available substrate or a 

build up of products that negatively feeds back on microbial activity. However, in 

both topsoils, 60 days was required to produce a significant divergence in cumulative 

NNM rates between the fertiliser treatments during the later stage of the incubation. 

Overall, soil type had a much larger affect than temperature on NNM trends, i.e. at 

both temperatures, the Kurosol topsoils were net N mineralisers, while the Ferrosol 

topsoils were net N immobilisers. However, temperature influenced changes in NNM 

due to the amount of fertiliser supplied. For example, decreasing the incubation 

temperature from 20 to 10 °C significantly decreased the rate of NNM, in all except 

the unfertilised Ferrosol topsoil. Decreasing the temperature also reduced the strength 

of correlations between NNM and measured chemical parameters. However, 

incubation temperatures of 10 °C, in this study, were considered to more closely 

reflect the natural environment for microbial mineralisation in the field. As the effect 

of temperature was not linear or consistent across the horizons or sites, the incubation 
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temperature of 10°C was considered the most appropriate temperature to indicate 

actual field rates ofNNM. 

This study indicated that enhanced NNM rates in topsoils would occur if soils were 

not maintained moist prior to and during incubations. Samples maintained moist more 

closely reflected natural changes in the litter and soil quality and quantity, rather than 

changes caused by air-drying. Drying events occur in field environments and are a 

natural process that causes flushing of NNM. However, the length and severity of the 

drying event could determine microbial population species diversity and activity. As a 

result, pre-drying both the topsoil and litter horizons in laboratory incubations can 

produce water contents not previously experienced by microbes and could lead to 

NNM rates outside the sites natural range. Results indicated that there was a greater 

change in NNM in both litter and topsoil horizons due to air-drying in the inherently 

wetter Ferrosol site than the inherently drier Kurosol site. In unfertilised Ferrosol 

topsoil air-drying increased initially negative NNM rates (immobilisation) to NNM 

rates above 100 kg N ha-1 yr-1 at30 or 60 days. In contrast, pre-drying increased NNM 

rates in unfertilised Kurosol topsoil from between 26 to 75 kg N ha-1 yr-1
. These 

results are not inconsistent with the hypothesis of microbial pre-adaptation to 

moisture stress in the sandier Kurosol topsoil and P. radiata litter at the drier site. 

Examination of the relationship between substrate nutrient content and NNM was 

limited by the low replication of treatments at both sites and confounding of the 

addition of some nutrients during fertilisation, i.e. N, P, Ca and S. Rates ofNNM in 

litter substrates (02, combined P. radiata and E. regnans) were significantly 

correlated with total N, P and Mg for incubations at 20°C. In contrast, in the combined 

Ferrosol and Kurosol topsoil dataset, NNM rates were not related to total N, P, Ca, 

Mg or S concentrations or soil pH. It can therefore be concluded that, from the sites 

and conditions studied in these experiments, NNM was more sensitive to the nutrient 

content oflitter than to that of soil. Concentrations of N and P in litter were positively 

correlated with NNM, probably because fertilisation improved litter quality. In 

contrast, Mg concentrations were negatively correlated with NNM, probably because 

N fertilisation decreased Mg availability in soil and Mg uptake, while Mg 

concentrations in the range studied did not limit NNM oflitter (Chapter 3). 
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Chapter 8. Simulation of nitrogen dynamics and Pinus radiata growth 

in response to fertilisation. 

8. 1 Introduction 

Nutritional management of plantations requires information on soil and site 

characteristics, and clear guidelines on what and where fertilisers are required. While 

information of this type is available, much of it is restricted and not reliable across 

sites and regions. Site availability and uniformity are often a major restriction to 

experiments on nutritional management of plantations. The effects of site restrictions 

were highlighted in this study as results were often limited by the replication 

established at the beginning of the project in the early 1980s. For example, 

examination of the relationship between substrate nutrient content and NNM was 

restricted by the low replication of treatments at both sites. At the P. radiata site, most 

of the variability in results, particularly NNM, was observed within the treatment plot 

replication. Further complication arises when trying to assess long-term change 

independent of short-term variations, such as the periodic low rainfall (Chapter 4) and 

insect attack (Chapter 3). 

One tool increasingly used to inform silvicultural practices is process-based 

modelling. Models can summarise the results of many experiments by incorporating 

hypotheses and conclusions into a quantitative framework. These models predict tree 

growth in response to the environment and silviculture and they can assist in 

identifying factors which limit growth (McMurtrie and Landsberg, 1992; Battaglia 

and Sands, 1998). In addition, they allow the assessment of risk involved both in 

terms of changing climate effects on economics (i.e. drought) and possible offsite 

movement of fertilisers. 

Process-based models such as CABALA (Carbon Balance) are hypotheses of the 

cycles and interactions between C, N and water within a forest (Battaglia et al., 2004). 

As part of a silvicultural decision support system for forest managers, CABALA 

draws on and combines existing concepts and sub-models of tree and stand growth, 

light interception, canopy growth, water use and C and N cycling. The N 

mineralisation sub-model of CABALA is that of the CERES model, which has been 
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used to model N dynamics and growth in several agricultural ecosystems (Goodwin 

and Jones, 1991). Once validated for a given plantation system, CABALA can be 

used to develop a range of hypotheses about stand and ecosystem functioning. In 

addition, comparisons between the two (model and observed) outcomes may highlight 

areas where experimental data is not available or where observed results lie outside 

standard outcomes. For example, with N mineralisation tuning, CABALA 

successfully simulated some aspects of N dynamics in a E. nitens plantation in 

Tasmania (Smethurst et al., 2004a), but predictions beyond 2.8 years were biased 

mostly by parameters for allocation and plant N concentration that were suited only to 

much younger plantations. As N dynamics in the soil and litter had not been measured 

at the site these aspects of CABALA required further validation. 

A limitation for this thesis is that the model had not previously been validated for P. 

radiata or E. regnans. Results presented in earlier chapters of this thesis therefore 

could be used to address this need, and physiological parameters suitable to run 

CABALA for P. radiata have recently become available. 

The objectives ofthis chapter, therefore, were to compare observed attributes of the P. 

radiata site with those predicted by CABALA; including key components of the N 

cycle with and without N fertilisation, and thereby determine the strengths and 

weaknesses of CABALA for this application. If the validation was satisfactory, there 

would then be the opportunity to predict aspects of system behaviour that were not 

measured, including the extent to which low water availability limited tree growth. 

8.2 Model description and methods 

A full description of CABALA is given by Battaglia et al. (2004). The model works 

on a daily time step to calculate net daily production of stand biomass. Stand biomass, 

a set of identical trees (with the exception of edge trees), is divided into separate 

compartments where net daily production is allocated (foliage, roots fine and coarse, 

stem sapwood and heartwood, branches and sapwood of branches and tree bark). 

Biomass losses from the stand occur through litter fall and biomass turnover. A one­

dimensional water balance model allocates tree water use :from a number of 

overlapping compartments. Nitrogen inputs in the stand include fertiliser additions, 
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atmospheric inputs and N mineralisation. Atmospheric inputs at this site were set at 

2.5 kg N ha-1 yr-1
, while fertiliser inputs are described in Chapter 3. Nitrogen 

mineralisation is calculated by a N turnover sub-model in CABALA, the CERES 

model (Goodwin and Jones, 1991). In CERES, N mineralisation in humus fraction is 

calculated as, 

RHMIN = NHUM (L) x DMINR x TF x MF x DMOD 

RHMIN = N mineralised in the humus 

NHUM (L) = N associated with a stable humus fraction 

DMlNR = humic fraction decay rate (1/ days) 

TF = temperature factor, which approximates the soil temperature effects on ammonification. 

MF = moisture factor, which approximates the soil moisture effects on ammonification. 

DMOD = the amount of chemical or physical protection that organic matter has at a given site. 

Used to adjust the mineralisation rate on atypical soils ( <1 equates to slow mineralising sites 

and> 1 relates to sites where mineralisation occurs faster than expected). 

CABALA requires daily weather inputs, climate data used to drive the model in this 

study was simulated data based on the interpolation of local meteorological stations 

and calculated within a range of 5 km of the site. Other inputs including silvicultural 

practices such as tree spacing, thinning, pruning and fertilising, as well as the site 

parameters such as soil pH and N concentration, are described in Chapter 3. 

Simulations were initiated at planting age with identical values of initiation and 

parameterisation for unfertilised and fertilised trees. The parameterisation of 

CABALA for Pinus radiata was derived from "the biology of forest growth 

experiment" data (Benson et al., 1992a) and provided by Dr Barrie May CSIRO pers. 

comm (Commercial in confidence). A summary of the site details at the beginning of 

the simulation is given in Table 8.1. 

To predict growth responses of NIL treated trees at this site the predicted rate ofN 

mineralisation needed to be lowered. That is, the degree of humus protection, DMOD, 

was adjusted to 0. 7, using the mineralisation rates indicated in the field study 

discussed in Chapter 4. Once this was completed the predicted volume growth 

responses were similar to those observed during the fifteen years of annual 

measurements. No further parameterisation changes were required to fit simulated 

225 



data to those observed. Leaf area index (LAI) was measured at age 36 years using 

both a visual guide (Cherry et al., 2002) and the LICOR LAI2000 (Cherry et al., 

1998). Other observations are described in previous chapters. 

Table 8.1 Summary of site details at the beginning of the simulation 

Description 

Latitude 

Species 

Seedling Description 

interrow spacing (m) 

intrarow spacing (m) 

row direction 

Thickness of Horizon (cm) 

Initial plant available water (mm) 

Depth permanent water table (cm) 

Drainage 

Salinity 

Hard pan 

Depth (cm) 
Organic C 

C:N ratio 

Bulk Density 

soil pH 

DMOD (scalar 0-1)* 
* degree of organic matter protection 

8.3 Results of Simulations 

Site and Initial Plant Variables 

Seedling height (cm) 

Leaf area (cm2
) 

Foliar N cone (gig) 

0 -10 

1.3 
23 
1.6 

3.8 

0.7 

10 -20 

1.4 

30 
1.7 

3.8 

0.7 

-41.67 

Pinus radiata 

15 

200 
2.5 
3.0 
2.2 
340 

60 
600 
1000 

0 

0 

0 

20 - 50 

0.7 
16 
1.8 

3.8 

0.7 

The performance of CABALA for predicting volume growth was evaluated by 

comparing predicted and observed stand volume of fertilised and unfertilised trees 

during the fifteen years of annual measurements (Figure 8.1 ). The large drop in 

predicted volume at age 20 years was due to thinning that occurred at establishment of 

the fertiliser experiment. Trees were waste thinned and provided a predicted 36 t ha-1 

of slash. As the version of CABALA used in this study assumes that P was not 

limited, both the NIL and P only fertilised treatments were compared to the predicted 

volume growth of unfertilised trees. Phosphorus was applied at ages 20 and 26 years 

and was observed to significantly increase P. radiata growth (Chapter 3). By the third 

application ofN fertiliser, predicted volume growth ofN fertilised trees was 30 % 

higher that that observed. By age 34 years, predicted stand volume was within 15 % 

of that observed. Figure 8.2 a and b shows that the quality of fit for predicted vs 
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observed values is very similar for (P)Nl Y stand volume, but declines in the NIL and 

(P) stand volumes. The quality of fit was also tested for the first application of P only, 

this decreased the slope slightly (r2 = 0.99). 
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Figure 8.1 Volume growth in three treatments at the Kurosol site. Lines indicate 
predicted growth using CABALA. Points indicate observed growth as 
described in Chapter 3. Bar indicates LSD of observed values. 

a. b. 

500 y = 0.8488x - 16.995 

R1 - 0.9882 

350 • p 

a N~ 

- Linear (P) 

y = 1.33 1 Ix - 38.786 

R
2 = 0.9815 

' .. 400 .., 
"!, 

~ 300 

c; 
> 200 "ll 

~ 300 .... 
-= 250 
~ 
8 200 
= 
~ 150 

ll 100 

• 
- - Linear (Nil) 

~ 100 ... 
ti :a .. .. 
=--

50 
y = 0.4817x + 69.9 

R
2 = 0.9002 

0 
0 100 200 300 400 500 600 0 50 100 150 

Observed Volume (m' ha-1
) Observed Volume (m3 ha-1

) 

Figure 8.2. Comparison of observed and predicted stand volumes in the (a) 
(P)NlY treatment, and (b) NIL and P treatments. 

200 

CABALA simulates the movement of N throughout the forest system and predicts N 

mineralisation and uptake separately in three layers; layer 1 (0-10 cm), layer 2 (10-20 
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cm) and layer 3 (20-50 cm). It is assumed that mineral N below 50 cm is unavailable 

to the tree. In all three layers of mineral soil CABALA predicted low rates of 

monthly nitrification, resulting in nitrate content generally below 1 kg N ha-1
, in both 

fertilised and unfertilised treatments (Figure 8.3). Observed N03- contents at the end 

of the fertiliser experiment (age 34 years) were also low or below detectable limits. In 

contrast to N03-, predicted NH/ concentrations increased substantially in the top 20 

cm of soil after each annual fertiliser application (Figure 8.4). Predicted NH/ 

increases occurred for a period of six to twelve months after fertilisation. In subsoils 

(20 - 50 cm), CABALA predicted a large long-term increase in the concentration of 

NRi + due to fertilisation. 
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Figure 8.3 Predicted and observed nitrate content in fertilised and unfertilised 
Kurosol profiles at depths (a) 0-10 cm, (b) 10-20 cm, (c) 20-50 cm and (d) 0-
50 cm. 
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Figure 8.4 Observed and predicted ammonium content in fertilised and 
unfertilised Kurosol profiles at depths (a) 0-10 cm, (b) 10-20 cm, (c) 20-50 
cm, and 0-50 cm. (LSD of observed ammonium content was 1.8 at age 34 
years) 
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Figure 8.5 Observed and predicted Leaf area index of P. radiata fertilised and 
unfertilised trees. 

40 

Predicted leaf area index (LAI) of fertilised tress increased significantly following the 

commencement of fertilisation at age 20 years and reached a maximum of 8.4 at age 

32 years. By age 35 years LAI had declined to a value of 7 (Figure 8.5). Field 

measurements at age 36 years indicated that the LAI of fertilised trees was 

approximately 4.8. In contrast, observed and predicted values for unfertilised trees 

were similar at 1.3 and 1.5, respectively. Simulated crown volume prior to thinning 

was 27816 m3 ha-1
, which was thinned to 16149 m3 ha-1

• Simulating crown volumes 

during the fertiliser experiment indicated that, without fertilisation, trees were only 

able to reach their pre-thinning volume, while fertilised trees had doubled the volume, 

at 53274 m3 ha-1
• 

Monthly N mineralisation predicted during the experiment was similar between 

fertilised and unfertilised topsoil (0-10 cm layer) (Figure 8.6). This resulted in 

predicted annual N mineralisation during 2000of6.0 and 8.6 kg N ha-1 in unfertilised 

and fertilised topsoils, respectively. The predicted range of monthly N mineralisation 

in the fertilised topsoil ranged from - 0.4 and 1.6 kg N ha-1 and in unfertilised topsoil 

between 0.3 and 0.9 kg N ha-1 (Figure 8.7). Observed in situ NNM was extremely 
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variable and often higher than that predicted. 
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Figure 8.6 Predicted monthly N mineralisation (kg ha-1
) in the (a) 0-10 cm (b) 10-

20 cm and (c) 20-50 cm depths of the fertilised and unfertilised Kurosols. 
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Figure 8.7 Observed and predicted monthly N mineralisation (kg ha-1
) in the 0-

10 cm depth during period of the in situ sampling at fertilised and 
unfertilised sites. 
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Figure 8.8 Observed and predicted leaf litter mass (kg ha-1
) includes foliage, 

branch, bark, stemwood and duff at fertilised and unfertilised sites. 

Predicted litter amounts were slightly lower at 29 and 83 t ha-' for unfertilised and 

fertilised treatments at age 34 years, than those measured in the field at 56 and 92 t ha-

1, respectively. (Figure 8.8), Increased litter inputs were also predicted between the 

ages of 32 and 35 years (Figure 8.9). 

The temporal patterns of predicted NNM in the litter (01 horizon) and duff (02 

horizon) are shown in Figure 8.10. Predicted annual rates ofNNM in litter and duff 

were 1.7 and 4.9 kg N ha-1 yr- 1 in unfertilised and fertilised treatments, respectively. 
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Figure 8.10 Predicted monthly N mineralisation (kg N ha-1
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Figure 8.11 Observed and predicted C/N ratios in fertilised and unfertilised 
Kurosol topsoil (0-10 cm). 
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Increased C in the forest was predicted with total soil C mass alone increasing from 

50 t ha-1 to 92 t ha-1 after fertilisation, while the above ground mass of trees doubled 

(120 to 287 t ha-1
). Increased predicted soil C resulted in C/N ratios increasing from 

25 in unfertilised topsoils to 28 in fertilised topsoils (Figure 8.11). 

8.4 Simulation of stand biomass allocation and N budget 

In addition to comparisons between predicted and measured values, CABALA can be 

used to compare parameters not measured in this study. This is particularly useful 

when examining parameters that are labour intensive or expensive to measure, such as 

root structure and water movement. A partial N budget could be estimated using the 

data presented in Chapter 3 (Table 8.2). However, numerous values were not 

measured during this analysis and CABALA provided an opportunity to do a total N 

budget for each treatment and examine N retention within each stand (Table 8.3). 

Table 8.2 Nitrogen budget (t ha-1
) calculated from data presented in Chapter 3, 

Table 3.8. 

Nil (P)NlY Difference 
I 

Total Soil N (0-50 cm) 4.01 4.95 0.95 

Total Stand N a 0.14 0.36 0.23 

Total02 Nb I 0.33 0.72 0.39 

To1al Site N I 4.47 

I 
6.04 

! 

1.57 

Total N Loss (in nmo:ff and deep drainage) c . ~ ~ ~ I 

!Partial site N Budget 4.47 6.04 1.5~ 
a Total Stand N biomass of P. radiata trees was estimated using an equation derived from Neilsen and 
Lynch (1988) (Table 3.6). 
b Total Nin the Litter Layer (01) was not measured. 

c Total N Loss was not calculated. 

Table 8.3 Predicted N budget (t ha-1
) for fertilised and unfertilised stands 

\ \ Nil \ (P)NlY \ Diflerence 

Total Soil N (0-50 cm) 3.93 4.31 I 0.38 

Total Stand N 0.15 0.72 0.57 

Total Litter plus Duff N 0.02 0.11 0.09 

Total Site N 

I 
4.10 

I 

5.15 

I 
1.04 

Total N Loss (in nmo:ff and deep drainage) 0.05 0.11 0.06 

I Site N Budget 4.15 5.26 1.10 

I 
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The predicted difference in N budgets between the fertilised and unfertilised sites was 

1.1 t ha-1 of N, which is close to the total amount ofN supplied during the thirteen 

annual applications (1.3 t ha-1
). The model simulates that a large proportion of applied 

N is retained within the stand at age 34 years, while the proportion of total N that was 

lost (2 % of total N budget) at the fertilised site was twice as large as the unfertilised 

site (1 %). Monthly N losses were predicted to be < 1 kg N ha-1 month-1 in the 

unfertilised Kurosol and averaged around 2 kg N ha-1 month-1 after fertilisation 

(Figure 8.12). Assuming the normal loss ofN in this forest is represented by the 

unfertilised rate (0.05 t N ha-1
, total at age 34 years) of the 1.3 t ofN supplied, less 

than 5 % was lost from the stand. Nitrogen immobilisation increased four-fold in 

fertilised compared to the unfertilised Kurosol (Figure 8.13). Resulting in the amount 

ofN immobilised throughout fertiliser application increasing from 181 kg N ha-1 to 

637 kg N ha-1 (Table 8.4). 
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Figure 8.12 N loss in run off and or deep drainage (kg ha-1
) in unfertilised and 

fertilised Kurosol profiles. 
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Figure 8.13 Nitrogen immobilisation (kg ha-1
) in unfertilised and fertilised 

Kurosol profiles. 

Table 8.4 Total N mineralisation and immobilisation in the unfertilised and 
fertilised stand up to the age of 34 years. 

N Mineralised I Nil I (P)NlY I Difierence I 

Litter and Duff 25.9 
I 

46.0 
I 

20.2 

0 -10 cm 87.4 93.3 5.9 

10 - 20 cm -3 .2 23.4 26.6 

20 - 50 cm -1.7 14.2 15 .8 

Total 108.4 176.9 68.5 

N immobilised ! 
Total 180.8 I 637.2 456.4 

Increased growth in fertilised stands resulted in a large reduction in water available 

within the profile (Figure 8.14). As a result, fertilised trees were predicted to be 

drought-stressed for a period of over 1 OOO days up to age 34 years, compared to only 

30 days in unfertilised trees (Figure 8.15). 
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Figure 8.14 Plant available total water in the fertilised and unfertilised Kurosol 
profiles. 
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Figure 8.15 Number of days P. radiata trees were predicted to be in drought in 
fertilised and unfertilised Kurosol profiles. 

8. 5 Discussion 

Predicted volume growth responses were generally well simulated. Particularly in the 

fertilised ((P)Nl Y) treatment, where the slope of observed vs predicted was close to 1. 

The version of CABALA used in this study assumes that P was not limited. As 

previously indicated P applied at age 20 and 26 significantly increased growth. By the 
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cessation of fertilisation, incremental growth in the P fertilised trees was triple of 

those unfertilised. The projected growth of unfertilised trees was similar to that 

observed in (P) fertilised trees prior to the second application of P. Projected growth 

was also higher during this period for fertilised trees ((P)Nl Y). Following the third N 

application predicted growth was 30 % higher than that observed, however by the 

cessation of fertilisation differences had declined to 15 %. Decreased observed 

responses to the initial applications of fertiliser may be associated with low P 

availability limiting root growth and therefore restricted N acquisition. Site and land 

use factors determine the overall ability for trees to compete for nutrients and in P. 

radiata plantations, Smethurst and Nambiar (1995) found trees were unable to take up 

N due to limited root development from weed competition. In this study fine root 

mass was predicted to increase 10-fold from 0.14 t ha-1 to1.6 t ha-1 following 

fertilisation. However, decreased root vitality has been associated with ammonium 

sulphate application in Norway spruce (Persson et al., 1995). The linking of 

CABALA with PCATS, a P uptake model, successfully predicted fertiliser responses 

in a Eucalyptus nitens plantation (Smethurst et al., 2004b). Incorporation of the 

PCATS model might resolve suspected P limitations in the current simulations. 

At the age sampled, mineral N concentrations were generally well simulated by 

CABALA. Predicted concentrations ofN03- directly after fertilisation were generally 

less than 1 % of total mineral N, which was in agreement with low rates of nitrification 

measured in both field (Chapter 4 and 5) and laboratory (Chapters 6 and 7) 

incubations. At similar rates of fertilisation up of 1440 kg N ha-1 (from three annual 

applications), Nohrstedt (1990) also found that nitrate was generally below detection 

limits in soil water. Elevated mineral N concentrations after fertilisation were 

predicted to last six to twelve months, which was slightly longer than field 

measurements of four to five months. Following the cessation of fertilisation at age 32 

years, predicted NH4 + concentration in fertilised topsoil declined to levels similar to 

those measured in the NIL treatment, which was in agreement with observations in 

the field at this age (Chapter 3). In subsoils (20 - 50 cm), a large long-term increase in 

the concentration of NH4 +due to fertilisation was predicted; such increases were not 

evident in soils measured at the end of the experiment (Chapter 4). Increased 

immobilisation immediately after fertilisation and increased annual mineralisation 

239 



(Chapter 4) suggests that at this site, ammonia was probably retained in surface soil 

and turned over relatively quickly, rather than being leached down the soil profile as 

predicted. Increases in subsoil mineral N concentrations following high rates of 

fertilisation are not uncommon, but the effect lasts for only a year or two unless 

applications are repeated (Khanna et al., 1992; Smethurst et al., 2001). 

Simulated rates ofNNM in the Kurosol topsoil were low and less than 10 kg N ha-1 

was mineralised annually in 2000 (age 32 years). Both monthly and annual rates of 

NNM were only slightly higher in fertilised soils. In contrast, laboratory rates of 

NNM in fertilised soils were significantly higher at 49 kg N ha-1 yr-1 compared to 26 

kg N ha-1 yr- 1 when unfertilised (Chapter 6). Although not significant, in situ rates 

were also four-fold higher in (P) NlY than NIL soils, at 12.6 and 51.7 kg N ha-1
, 

respectively (Chapter 4). In CERES, N mineralisation in the humus fraction is 

calculated as, RHMIN = NHUM (L) x DMINR x TF x MF x DMOD. Results from 

this study suggest that the decay rate constant (DMINR) increases with large N inputs 

and may need to be modified to reflect these changes. Further study would be 

required to determine how this function should be modified. Organic matter may be 

physically protected from mineralisation in the soil through adsorption to negatively 

charged clay surfaces or within micro-aggregate small pores (Tiessen and Stewart, 

1983). In a study of grassland soils Tiessen and Stewart (1983) indicated that particle­

size fractionation of soils yields organic matter fractions with distinctly different 

properties, which undergo different transformations during organic matter turnover. 

Strong et al. (1999a) also observed a significant negative relationship between N 

mineralisation and clay content. However, the clay content of the Kurosol topsoil 

(loamy sand) was 4 % clay and therefore was unlikely to limit NNM in these soils. 

These soil properties require further investigation for forest soils, which don't 

undergo constant cultivation as occurs in the agricultural soils for which the CERES 

model was developed. 

This study also suggests that low P availability limited tree growth even after the 

initial application of P fertiliser and that it might have restricted the rate ofN release 

from decomposition (which is controlled by the DMINR function in the N turnover 

sub-model CERES). There was evidence of higher rates oflitter decomposition due to 

P additions at the P. radiata site, because the P2YN2Y treatment had significantly 
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less litter than the (P)N2Y treatment, i.e. 29 t ha-1 compared to 64 t ha-1
, respectively 

(Chapter 3). An increase in N uptake by enhancing soil N mineralisation has been 

observed in a range of forest soils, including P. radiata, following P application 

(Waring, 1969; Khanna et al., 1992; Falkiner et al., 1993). At this site, NNM rates 

measured in topsoils during laboratory incubations were linearly correlated with P 

concentrations. Carlyle et al. (1990) also observed a significant correlation between 

NNM and total Pin the soil under P. radiata. However, potential P effects on N 

mineralisation through the rate of N release (DMINR) or protection of organic N 

(DMOD) are not taken into account in the N turnover predicted in the CERES 

submodel. 

The protection of organic N, resulting in a DMOD value less than one may also be a 

function of the species studies. In a comparison under P. radiata and E. regnans 

plantations, Jurgensen et al. (1986) observed although C: N ratios in the litter were 

higher under the eucalypts ranging from 38 to56 compared to 23 to 29 under the 

pines, decomposition rates were clearly lower under P. radiata. Skene (1997) related 

this to the protection of inorganic matrices. Protection depended on the quality of the 

substrate, in high quality substrates (such as straw) physical protection was the 

limiting factor on decomposition, whereas chemical protection was the limiting factor 

for low quality substrates such as Eucalyptus litter. Reduced bacterial numbers have 

been observed under pines and between first and second rotation P. radiata 

(Theodorou and Bowen, 1981; Theodorou and Bowen, 1983b; Upadhyay and Singh, 

1985). Further investigation is required to take into account the species dependent 

chemical protection of organic matter in the CERES submodel. 

In subsoils predicted mineralisation rates also remained low, i.e. less than 4 kg N ha-

1yr-1 during the last ten years of simulation, which is consistent with subsoil microbial 

populations having a severely limited ability to conduct NNM (Page et al., 2003). 

The mineralisation of Nin litter was determined as an important N source at both sites 

(Chapter 9) and can be expected to ultimately affect site productivity (Nadelhoffer et 

al., 1982). Predicted litter amounts were slightly lower at 29 and 83 t ha-1 for 

unfertilised and fertilised treatments at age 34 years than those measured in the field 

at 56 and 92 t ha-1
, respectively (Chapter 3). Observed litter masses were in the range 
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expected in temperate forests, which can accumulate to between 10 and 100 t ha-1 

(Fisher and Binkley, 2000). In a previous study, Neilsen and Lynch (1998) observed a 

litter mass of almost 50 t ha-1 under a 34-year-old P. radiata plantation that had been 

fertilised with 429 kg N ha-1
, while unfertilised trees had an underlying litter mass of 

almost 40 t ha-1
. These results generally agree with the current study and suggest that 

large amounts oflitter accumulate in P. radiata plantations. 

Annual predicted N mineralisation in litter and duff was less than 5 kg N ha-1 yr-1 in 

both treatments. Although these rates are similar to NNM rates measured in the 

unfertilised 02 horizon during laboratory incubations (up to 4 kg ha-1 yr-1
), they 

contrast to those measured in the fertilised 02 horizon, which had NNM rates up to 

106 kg ha-1 yr-1 (Chapter 6). Hence, laboratory incubations in this study suggested that 

fertilised litter was capable of mineralising up to 20 times more quickly than that 

unfertilised. However, this high rate of NNM also suggests that, with an N 

concentration of 1 %, over 10 t ha-1 oflitter was decomposed each year, which 

contrasts to the large litter mass measured on site. Predicted litter fall inputs 

(including leaves, branches, bark and stemwood) at age 34 years in fertilised and 

unfertilised sites, were a total 61 t ha-1 and 120 t ha-1, respectively, suggesting low 

rates of decomposition overall. Annual litter fall after thinning was around 1 t ha-1yr-1 

when unfertilised and between 1 and 10 t ha-1yr-1 when fertilised. This result indicates 

that laboratory rates on NNM in fertilised litters would result in the decomposition of 

more litter than that which is actually available. The laboratory temperatures used (10 

and 20 °C), were well within the expected field range and not expected to greatly 

overpredict NNM at this site. However, mineralisation would have been increased due 

to the mechanical disturbance that occurred during laboratory preparation. Therefore, 

and as others have found, rates ofNNM measured in litter during laboratory 

incubations could not be assumed to be occurring in the field. Theodorou and Bowen 

(1990) noted that even though fertilisation (806 kg N ha-1 respectively) increased N 

return in by more than 100 % annually in 12-year-old P. radiata, forest floor N 

content, and rates of decomposition and NNM were similar to those unfertilised. Also 

in agreement with simulated data, Piatek and Allen (2001) suggested under loblolly 

pine the decomposing litter (02) horizon contributed negligible N during the growing 

season and in fact could be viewed as a N sink. Aber and Melillo (1980) reviewed 

242 



many studies demonstrating fresh litter is a mineral N sink, rather than a source. In 

addition, Smethurst and Nambiar (1990b) observed low rates ofNNM of 8.1 kg N ha-

1 yr-1 in the litter of a 37 year-old P. radiata plantation in south-eastern Australia. 

Because rates of NNM in litter could not be reliably extrapolated from the laboratory 

to the field, the current study would have benefited from in situ measurements of litter 

turnover. 

Observed LAI was lower than the predicted value at 4.8 compared to 7, at age 35 

years. Higher predicted LAI in fertilised trees may be due to the assumption of 

adequate P during the experiment. However, even with fertiliser, the P concentration 

in foliage remained marginal throughout the experiment, i.e. between 0.08 and 0.10 % 

(Chapter 3). In contrast, observed and predicted values for unfertilised trees were 

similar at 1.3 and 1.5, respectively. The extremely low LAI in unfertilised trees was 

associated with the high mortality and a high proportion of dead tops. The percentage 

of dead tops in unfertilised trees was over 70 % by age 26 years, and this number 

continued to increase with increasing age (Chapter 3). Thinning and dead tops would 

have also affected the measurement of LAI in these plantations (Cherry et al., 1998) 

and might have contributed to an underestimation of LAI. 

The model simulated that a large proportion of applied N was retained within the 

stand at age 34 years, of the 1.3 t ofN supplied, only 5 % was lost from the stand. 

These values are extremely low compared to other field studies, where N losses are in 

the range 20-50% (Nohrstedt, 1990; Raison et al., 1990; Neilsen and Lynch, 1998; 

Fisher and Binkley, 2000; Smethurst et al., 2001). One reason for limited loss of 

applied N could be the predicted increase in immobilisation, which was often four 

times higher in fertilised than unfertilised Kurosol soil. Significant increases in 

immobilisation ofN were observed for the first six months after fertilisation (Chapter 

4). Another reason could be that LAI was over-predicted in fertilised trees and leading 

to a higher than actual accumulation of N above-ground. A similar problem was 

encountered by Smethurst et al. (2004) for E. nitens simulations, i.e. canopy N 

content was over-predicted. In both cases, if less N had been simulated to accumulate 

above-ground, it is likely that more N would have been lost by leaching. 
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Pinus radiata plantations grown in summer drought areas often have growth limited 

by water availability (Crane and Banks, 1992; Snowdon and Benson, 1992). In a 10-

year-old plantation of P. radiata, Crane and Banks (1992) observed that irrigation 

increased growth by 25 % above fertiliser applied alone. Simulation in this study also 

suggested that P. radiata growth could be substantially boosted if fertilisation was 

combined with irrigation. 

8.6 Conclusions 

After tuning the model for only the degree of N limitation, there was broad 

quantitative agreement between simulated and observed data of several key variables 

in the unfertilised and fertilised treatments. These simulations were for a period of 36 

years of tree growth, and included one thinning. Stem volume growth, nitrate and 

ammonium concentrations, LAI, NNM, litter mass, and the overall N budget were 

adequately simulated, which is a very pleasing result considering the difficulties often 

encountered in such long-term, complex simulations. However, simulations of the 

fertilised treatment over-predicted ammonium accumulation in the 20-50 cm depth, 

and the LAI and N content of the canopy. Litter mass of the unfertilised treatment was 

under-predicted. Further improvements to the CABALA model should therefore 

consider the way these parameters are calculated, and particularly the sensitivity of 

decomposition and N mineralisation to fertiliser inputs. 

A partial N budget based on field measurements indicated that N losses due to 

leaching were low. Simulations using CABALA were consistent with this result, with 

losses at less than 5 % of N applied, but this N flux may have been under-estimated 

due to a simulated over-accumulation ofN in the canopy. 

This model also provided an opportunity to compare the water status of fertilised and 

unfertilised stands, which suggested that, even though rainfall at this site is considered 

high by Australian standards, further growth increases would probably require a 

combination of irrigation and fertilisation. 
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Chapter 9. General Discussion and Conclusions 

9. 1 Introduction 

Increased demand for plantation wood production, on a base of decreasing land 

availability, has resulted in the progression of plantations onto soils of reasonable 

physical structure but low nutrient status. This trend is combined with increasing 

demands for faster growth and greater product utilisation from forest sites, 

intensifying nutrient demand and removal. Many Australian soils require N and P 

fertilisers at planting and during the early stages of tree establishment to achieve rapid 

early growth and high survival rates (Gentle et al., 1965; Judd et al., 1996; Neilsen, 

1996). Results from this study support the hypothesis that long-term fertilisation of E. 

regnans and P. radiata plantations significantly increase stem volume and change the 

distribution of nutrients in these systems. In both plantations, fertilisation at the 

highest rate (totalling 1300 kg N ha-1
) resulted in a significant increase in growth, 

doubling wood volume in both P. radiata and E. regnans plantations. 

Long-term fertilisation resulted also resulted in the accumulation of nutrients in the 

mass of the lower litter (02 horizon), which formed a substantial nutrient and carbon 

pool. Under E. regnans, at the highest rate of fertilisation, the 02 horizon contained 

over seven times the N content of the NIL treatment, equivalent to about 60 % of the 

N applied. Phosphorus, S and Ca also accumulated within the 02 horizon, showing 

the importance of this layer as a nutrient reserve. However, changes in the rate ofN 

cycling, as indicated by in situ NNM, were not significantly effected by fertilisation in 

either the Kurosol or Ferrosol topsoils. At both sites, in situ net N mineralisation 

(NNM) rates were low, ranging between 13 and 52 ha-1 yr-1
• 

During laboratory incubations, NNM rates in both Kurosol and Ferrosol topsoils 

could be significantly increased due to fertilisation, however, this depends on the 

temperature and particularly the moisture content of the soil during incubations. 

Changes in moisture content and the incubation temperature altered NNM rates in 

topsoils by up to five-hundred-fold. In contrast, NNM rates on a unit per mass basis, 

were up to 50 times higher in the 02 horizon than those in the topsoil and at both sites 

fertilisation significantly increased NNM. 

245 



9.2 Plantation growth health and foliar nutrient concentrations 

Limitations of plantation growth due to low N availability have been frequently 

reported in the literature (Cromer et al., 1975; Menge et al., 1977; Neilsen et al., 

1984; Schonau and Herbert, 1989; Raison et al., 1990; Raison and Connell, 1992). 

Low rates ofN mineralisation in cool temperate forests (Ellis, 1974; Adams et al., 

1989a; Foster, 1989; Polglase et al., 1992b) means that high growth rates can only be 

achieved with applications of fertilisers (Waring, 1969; Hunter and Hoy, 1983; 

Raison and Connell, 1992; Neilsen and Lynch, 1998; Jacobson and Pettersson, 2001). 

In this study, substantial responses to N fertiliser, applied as ammonium sulphate, 

were observed in both plantations. Volume growth of both stands doubled with annual 

applications ofN fertiliser at 100 kg N ha-1 yr-1
• Although applications every second 

and fourth year produced less response, these treatments had better fertiliser-use 

efficiency. This is in agreement with large volume increase in P. radiata due to 

annual and periodic N application observed in a number of other studies (Hunter and 

Hoy, 1983; Raison et al., 1990; Fife and Nambiar, 1997; Neilsen and Lynch, 1998). 

Two applications of P fertiliser, as superphosphate, totalling 144 kg ha-1 produced 

substantial increases in P. radiata growth. In contrast, application of N and P every 

second year together to E. regnans resulted in no difference from N applied alone. 

Responses of eucalypt plantations to later age N and P addition are variable and site 

specific (Cromer et al., 1981; Weston et al., 1991). Ward et al. (1985) only found 

responses to N and P in combination, which showed a positive interaction on height 

growth, but not to P applied alone. However, single applications of P fertiliser have 

produced continued responses for many years in a number of forest crops (Ballard, 

1978; Flinn et al., 1979b; Turner and Lambert, 1986; Turner et al., 2002). 

Foliar nutrient levels are good indicators of tree health (Woolons and Will, 1975; Dell 

et al., 2002). However there are limitations of foliage analysis in predicting growth 

responses. In an intensive study of 12 year old P. radiata effected by N and water 

supply, Benson et al.(l992b) observed that there was little similarity between patterns 

of stem growth and that of N concentration in foliage. In Eucalyptus species it has 

also been recognised that it is difficult to correlate growth and foliar nutrient 

concentrations beyond two years of age (Judd et al., 1996). 
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Foliar nutrient levels are effected by many factors including seasonal differences, soil 

moisture availability and time since fertilising (Nason et al., 1990). In both species in 

this study, foliar nutrient levels varied between years, independent of fertiliser 

application. The periodic foliage sampling within this trial made it difficult to assess 

pulses in nutrients from fertiliser application and uptake and subsequent re­

translocation within the tree. In P. radiata, deficiency symptoms were associated with 

low nutrient levels and P levels reflected the increase in P availability when P was 

applied. Phosphorus application alone resulted in dead tops recovering, but other 

symptoms were only relieved when N was also added. Enhanced overall stand health 

and needle biomass observations have been common after N application to P. radiata 

previously showing severe nutrient deficiencies (Hunter and Hoy, 1983; Neilsen et 

al., 1984; Neilsen et al., 1992). Even though rainfall at this site was considered high 

by Australian standards, further enhancement of stand health and growth would 

probably require a combination of irrigation and fertilisation. CABALA predicted that 

fertilised trees were drought-stressed for a period of over 1 OOO days up to age 34 

years, compared to only 30 days in unfertilised trees (Chapter 8). 

In contrast to the P. radiata plantation, accumulation of P within the E. regnans 

foliage suggested P was not the limiting growth at this site. When limited by other 

factors trees have been capable of accumulating P, as inorganic P, beyond the 

immediate tree requirement (Bennett et al., 1997). Evidence of such responses was 

also observed in the accumulation of Pup to 300 percent in young E. globulus 

plantations by Hooda and Weston (1999). 

9.3 Changes in nutrient distribution and soil acidity 

Various authors have addressed the effect of repeated fertiliser applications on growth 

and sustainability issues (Nohrstedt, 1990; Tamm and Popovic, 1995; Nohrstedt et al., 

2000). In this study, significant reductions in soil pH, of about 1 unit, were associated 

with the highest rates of fertilising and reductions in pH occurred after the application 

of both nitrogenous and phosphatic fertilisers. Fertiliser treatments significantly 

reduced pH by up to 0.6 of a unit in the 0 - 50 cm soil depth at both sites and by 0.3 
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and 0.6 of a unit in the P. radiata and E. regnans litter. In the Ferrosol the greatest 

reduction was at the surface, while the greatest reduction occurred at 20 to 50 cm in 

the Kurosol. 

High rates of N application significantly reduced exchangeable Mg by half to the 

depth of 50 cm in the Kurosol, and by over one third in the top 10 cm of the Ferrosol. 

Leaching of Mg from surface soils due to fertilisation with ammonium sulphate have 

been observed (Khanna et al., 1992). Combined with the potentially large losses of 

nutrients in the order of 221 kg Ca ha-1
, 285 kg K ha-1 and 66 Mg ha-1 from the 

removal of P. radiata sawlogs (Webber and Madgwick, 1983), it indicates a high risk 

of base cation decline in production forests. Base cation losses due to acid deposition 

and harvesting have been linked to declines in forest growth and health (W atmough 

and Dillon, 2003). Although leaching per say was not measured at this site, a partial N 

budget based on field measurements and simulated data using CABALA indicated 

that N losses due to leaching were low. Less than 5 % of the N applied was predicted 

to be lost from the site. In addition, both observed and predicted concentrations of 

nitrate were low, generally less than 1 % of the total mineral N. 

9.4 Nitrogen Fertilisation effects on N availability and NNM 

9.4.1. Soil 

Field measurements of NNM were assessed using in situ cores, both open and covered 

from rainfall, as reviewed by Raison et al. (1987), Adams et al. (1989b) and 

Smethurst and Nambiar (1989b). At both sites, rates ofNNM were low, ranging 

between 13 and 52 kg N ha-1 yr-1
, and were not significantly effected by long-term 

fertilisation. These rates are within the range measured in eucalyptus forests in 

Tasmania, between 13 and 188 kg N ha·1 (Adams and Attiwill, 1988; Wang et al., 

1998; Moroni et al., 2002) andP. radiata plantations of southern Australia, between 

16 and 74 kg N ha-1 (Carlyle et al., 1998a). 

In the Ferrosol topsoil, long-term fertilisation had no significant effect on annual 

NNM (both below 25 kg N ha-1 yr"1
), N leaching or N uptake. This is not surprising as 

the total N content was actually significantly higher in the unfertilised (NIL) than the 
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annually fertilised (Pl YNl Y) treatment. Long-term N fertilisation also had no 

statistically significant effect on total N, NNM, N uptake or N leaching, in the 

Kurosol topsoil. However, all three measurements (NNM, N uptake and N leaching) 

had average annual rates at least four-fold greater in the annually fertilised ((P)Nl Y) 

topsoil than the NIL. Average annual NNM increased from 13 kg N ha-1 yr-1 to 52 kg 

N ha-1yr-1 in unfertilised and annually fertilised ((P)Nl Y) topsoil, respectively 

(p=0.3). In comparison, Raison et al. (1992) observed significant increases of two to 

three-fold four years after fertilisation in the Biology Growth Experiment. Such 

results highlight that the interpretation of the long-term effects of fertilisation on 

NNM in this experiment was constrained by the low treatment replication at the sites 

studied. 

To reduce variability, and examine whether recent climate variability temporally 

restricted field rates ofNNM, rates ofNNM were measured in the laboratory (Chapter 

6). Under controlled temperatures and moisture long-term fertilisation significantly 

increased NNM in the Kurosol topsoil, from 4 kg N ha -l yr-1 to 60 kg N ha -l yr-1 

(incubated at field capacity moisture and 16 °C). Ferrosol topsoils also had 

significantly higher NNM due to fertilisation but only when incubated at a water 

content close to field capacity and in this soil long-term fertilisation had no significant 

effect overall. Although this experiment demonstrated that under controlled laboratory 

incubations, significant differences in NNM due to fertilisation could be observed, it 

also demonstrated that this occurred only under particular conditions. In addition, as 

observed with in situ measurements, rates of NNM in the laboratory still varied 

considerably between plot replicates of fertiliser treatments. 

To reduce site variability further, soils from replicate plots of each treatment were 

collected again and homogenised (pooling) (Chapters 7). During this second 

laboratory study, although rates of NNM in the fertilised Kurosol were higher than the 

unfertilised, fertilised every second ((P)N2Y) or every fourth year ((P)N4Y) had no 

significant effect. In contrast, Ferrosol topsoil fertilised every second (P2YN2Y) and 

fourth year (P4YN4Y), immobilised significantly more than the unfertilised and 

annual fertilisation (Pl YNl Y) treatments. The efficiency of conversion (the rate of 

NNM compared to the amount of total N available, NNM/total N) in both topsoils 
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was low compared to agricultural soils (Tabatabai and Al-Khafaji, 1980), at less than 

four percent and two percent per annum in the Kurosol and Ferrosol, respectively. All 

three studies indicated that the soils studied in this experiment required large changes 

in N inputs to occur before significant changes in soil NNM rates could be measured. 

This may also indicate that the methods used were not sensitive enough to measure 

change at such low rates of NNM. 

Low and often negative rates of NNM during 60 days may have indicated that this 

period of incubation might not have been enough to overcome the effects of 

disturbance at intermediate rates of N fertilisation. However, 60 days was required to 

produce a significant cumulative effect, resulting from a divergence in NNM rates 

between the fertiliser treatments during the later stage of the incubation. Results from 

this study also indicate that longer periods of incubation may underestimate NNM due 

to depletion in available organic N for mineralisation or a build up of waste products 

in the small samples used in laboratory incubations. In both litter and topsoil horizons, 

the effect of laboratory method on NNM could mask smaller changes due to changing 

N inputs. As a result when small, < 10 µg g-1
, changes in NNM occurred due to N 

inputs, these become swamped by large changes that occurred due to, air-drying, 

water availability, temperature, the time of sampling and the physical disturbance of 

the samples during preparation. As cool temperate mature eucalypt forests had NNM 

rates <10 ha-1 yr-1 (Adams et al., 1989a), the use of some laboratory methods, for 

example pre-drying samples to predict field NNM rates in soils is questionable. 

9.4.2 Litter 

Fertilisation significantly increased NNM in the litter layer (02) of both sites and 

corresponded to large increases in total N mass (Chapter 6 and 7). Increases in litter N 

mass and NNM were not always observed in underlying soil, indicating that the litter 

layer may represent a clearer picture oflong-term changes in N cycling at a site, than 

the soil. Previous investigations have also noted large increases in litter fall N, 

following N fertilisation (Hunter and Hoy, 1983; Nohrstedt, 1990; Fife and Nambiar, 

1997; Neilsen and Lynch, 1998), but few investigations noted significant changes in 

soil. Both E. regnans and P. radiata litter had NNM rates ten times greater than that 

measured in topsoil. Annual rates ofNNM were up to 106 kg ha-1 yr-1 and320 kg ha-1 
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yr-1
, in fertilised P. radiata litter and E. regnans litter, respectively. The increased N 

cycling in litter due to fertilisation highlights the importance of estimating N inputs in 

litter horizons, to avoid underestimation of the overall site productivity. Hendrickson 

and Robinson (1984) also observed rates ofNNM were higher in litter than mineral 

soils and declined, moving downward through the profile. However, previous studies 

have indicated that the litter layer is a N sink rather than a source (Aber and Melillo, 

1980). For Example, Piatek and Allen (2001) observed that in situ NNM rates in the 

decomposing litter (02) horizon under loblolly pine were low and often negative and 

suggested this layer contributed negligible N during the growing season. CABALA 

also predicted low rates ofN mineralisation in litter and 02 horizon at less than 5 kg 

N ha-1 yr-1 in both treatments (Chapter 8). 

Annual litter fall after thinning was predicted at around 1 t ha-1yr-1 when unfertilised 

and between 1 and 10 t ha-1yr-1 when fertilised. With a N concentration of around 1 % 

in both litter layers, the high rates of litter decomposition measured in the first 

laboratory study would suggest that over 10 t ha-1 of litter was decomposed each year, 

which contrasts to the large litter mass measured on site. Rates of mineralisation in 

the second laboratory study at 10 °C are considered to reflect field rates ofNNM more 

realistically. These rates also concur with those measured in a 37 year-old P. radiata 

plantation in south-eastern Australia by Smethurst and Nambiar (1990b). 

There were large differences in the efficiency of N conversion between the litter 

horizons at both sites. Annually fertilised E. regnans litter (02) had higher N 

concentration (1.2%) and mineralised nine times more N than P. radiata litter (N, 

1.0%). In contrast, even though N concentrations from unfertilised litter from both 

sites were under 0.9 % (Chapter 3), annual rates ofNNM were ten-fold higher in P. 

radiata than E. regnans litter. In addition, the litter layer under P. radiata generally 

had twice the mass ofN, P, S, Ca and Mg of that present under the E. regnans 

plantation. Jurgensen et al. (1986) also observed these differences in E. regnans and 

P. radiata plantations as young as four-years-old. Higher nutrient contents in the P. 

radiata litter compared to the E. regnans litter contrasts to the hypothesis proposed by 

Lamb (1976), that the poor-quality litter inputs characteristic of P. radiata plantation 
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result in site degradation due to the cyclic effect of slow litter degradation and low N 

mineralisation. 

9.5 Moisture and temperature effects on NNM during field and laboratory 

incubations 

The effect of moisture and temperature on NNM and N availability was strongly 

influenced by the site studied. Overall, the influence of incubation temperature and 

moisture on NNM was limited in topsoil and litter of the drier lower fertility site 

under P. radiata, both in the field and in the laboratory. This contrasted to the 

significant effects of both moisture and temperature on NNM in the topsoil and litter 

from the wetter more fertile, E. regnans site. 

Moisture content had a significant effect on in situ NNM in the Ferrosol topsoil, 

where rainfall restriction (in caped cores used to estimate N leaching) could reduce 

rates ofNNM by up to 200 % (Chapter 4). In the laboratory the effect of moisture was 

also significant and in particular the procedure of air-drying samples prior to 

incubation. This occurs in many laboratories (Richards et al., 1985; Bonde and 

Rosswall, 1987; Robertson et al., 1988; Ross et al., 1995) and the data presented here 

show this could change N mineralisation from negative (immobilisation) to NNM 

rates above 100 kg N ha-I yr-I. In contrast, air-drying and re-wetting E. regnans litter 

decreased NNM significantly. 

The limited response of NNM rates in the Kurosol topsoil to moisture changes was 

consistent with the idea that local soil biota may have adapted to extreme soil water 

fluctuations (Birch, 1958; West et al., 1988; Van Gestel et al., 1993). In comparison 

to the Ferrosol site, the Kurosol topsoil experienced large moisture fluctuations in the 

field this may lead to micro-organisms capably of facilitating NMN over a wide 

moisture range. Like the mineral Kurosol topsoil, NNM rates in the P. radiata litter 

(02) were generally unaffected by moisture, even after air-drying and re-wetting. 

Site characteristics such as clay and organic matter content of the soil also determine 

the relative disruption of the physical structure of the soil during moisture changes 

and subsequently the rate of newly available organic matter release (MacKay and 
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Carefoot, 1981; Van Gestel et al., 1991; Strong et al., 1999a). The soils studied in this 

experiment had almost a ten-fold difference in clay content, with 4 % and 50 % in the 

Kurosol and Ferrosol topsoils, respectively. This would have contributed significantly 

to differences in NNM due to disturbance effects. Cabrera and Kissel (1988a) noted 

the higher the clay to total N ratio, the larger the physical disruption due to 

disturbance and the higher the over prediction of NNM. 

The overall effect of temperature in field experiments at both sites was limited, and 

often dependent on moisture availability (Chapter 4). Seasonal trends were not 

significantly difficult during the time frame of the study, but both sites had a six-fold 

increase in rates of NNM, from the lowest measured in May and the highest in March, 

which corresponded to a period of high temperatures and rainfall. Adams and Attiwill 

(1986) also observed that the highest rates ofNNM occurred in summer when both 

high temperature and moisture levels were present, while rates of other seasons were 

generally similar. 

In the laboratory, the effect of temperature on NNM was also moisture dependent. 

However, some temperature effects were evident in the laboratory in both 

experiments (Chapters 6 and 7). In both laboratory experiments, Kurosol topsoils 

mineralised more N at the higher temperatures (between 16 and 22 °C, compared to 3 

to 10 °C) and there was a slight increase in the effects of temperature on NNM in 

long-term fertilised topsoil. In contrast, temperature effects on NNM in Ferrosol 

topsoil were different between the two laboratory experiments. In the first study, 

when positive NNM occurred, rates generally increased with increasing temperature 

and this was more pronounced in annually fertilised than unfertilised topsoil. In the 

second study when soils were homogenised, increasing the temperature suppressed 

net mineralisation in all except the annually fertilised treatment. 

Temperature also generally increased NNM in E. regnans litter in both laboratory 

experiments and effects were more pronounced in annually fertilised treatments. For 

example, in the first laboratory study, decreasing the temperature from 16 to 10 

degrees in the P. radiata litter decreased NNM by just under 10 µg g-1
. However, as 

the unfertilised litter had an initial N concentration of 4 µg g-1 only, and the annually 
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fertilised initial N concentration was 150 µg g-1
, reducing the temperature had little 

effect on NNM in the fertilised but resulted in immobilisation in the unfertilised litter. 

Net N mineralisation also declined when the temperature was reduced in the second 

laboratory experiment, but all rates remained positive. 

The time of sampling was found to be critical when measuring laboratory rates in 

NNM at both sites and horizons. Polglase et al. (1992b) also noted that considerable 

variation in in situ NNM rates occurred between years. Although both litter and 

topsoil for each laboratory study were taken at the same time of year (July), they were 

taken one year apart (Chapter 6 compared to Chapters 7). When comparing the 

relative parameters for each horizon, the second laboratory study generally resulted in 

NNM rates lower than the first. These reductions could be large, particularly at 10 °C. 

For example, NNM in unfertilised E. regnans litter was 63.5 µg g-1 in the first 

laboratory study but only 2.2 µg g-1 in the second. Although samples from replicate 

plots were homogenised in the second study, a thirty-fold reduction was not explained 

by physical disturbance, as all samples were sieved prior to incubation in both 

laboratory experiments. It was also noted that reductions in NNM were not consistent 

across all samples, as ten-fold increases in NNM were also measured. 

Differences in rates of N mineralisation between the laboratory studies may have been 

associated with changes in substrate quality, that is, variations in litter fall, fine root 

turnover and changes in soil organic matter and microbial biomass pools related to 

climatic conditions in the interval between sampling. The delay of one year between 

sampling for each laboratory experiment was not expected to produce the changes in 

NNM measured between the experiments. However, Connell et al. (1995) 

demonstrated that pools of mineralisable N in forest soils can show significant 

temporal variation and observed dramatic changes in rates oflaboratory NNM over a 

four year period (11.5 to 3.1 kg N ha-1 30 days-1
). Raison et al. (1990) also observed a 

decline in NNM from 38 to 7 kg N ha-1 yr-1 (0-40cm, Al, Yellow podzol) over four 

years, due to a gradual decline in soil organic N supplies. 
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The marked temperature effect on NNM rates in the Ferrosol topsoil, i.e. at 10 °C the 

unfertilised topsoil mineralised more, while at 20 °C the annually fertilised topsoil 

mineralised more, has important implications when using laboratory measurements to 

predict field rates ofNNM. 

There are a number of different models available that can be used to predict N 

mineralisation in forest soils (Ellert and Bettany, 1988; Goodwin and Jones, 1991; 

Goncalves and Carlyle, 1994; Mary et al., 1999). Many models require a large 

number of input values, which although they may be good research tools, limit their 

use for forest managers. One model is SNAP, Soil N Availability Predictor, which is 

an empirical model developed to predict N mineralisation across a wide range of sites 

(Paul et al., 2002). Using sub-models to predict the soil moisture and temperature 

changes in the field, the model predicts field N mineralisation from N mineralisation 

basal rates (k) determined during aerobic laboratory incubations. Inputs required 

include site data, daily climatic data, LAI, estimated depth of water, litter mass and 

height, and the proportion of soil surface covered by weed, canopy and litter. This 

model was used in Chapter 4 to predict temperatures in the Ferrosol topsoil. 

Sensitivity analysis of the SNAP model (Paul et al., 2002) showed that the model was 

more sensitive to soil temperature changes than relative water contents (RWC). This 

was because N mineralisation rapidly increased with water contents only at RWC 

between 0.2 and 0.6, whereas mineralisation was found to increase exponentially with 

increasing temperatures between 0-40 °C. In the current study, such trends were not 

observed, as temperature did not consistently result in an exponential increase in N 

mineralisation rates within the laboratory. In addition, water was often found to have 

a larger inflence than temperature on Ferrosol topsoil NNM rates in the field and 

laboratory (Chapters 4 and 6). 

Preliminary observations in SNAP also indicate that there was no effect of 

disturbance such as sieving on the calculation ofk, regardless of soil type (Paul et al., 

2002). The current study indicated that disturbances such as sieving and drying could 

have a large effect on overall mineralisation rates depending on the soil type. In 

addition, in the current study the litter layer could be a significant source of mineral 

N, which is not calculated in SNAP. Using topsoil only to predicted increased NNM 
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at this site could result in a substantial under prediction of volume growth increases 

due to fertilisation. In addition, given that the rate of NNM in the field from the 

Ferrosol topsoil was less than 23 kg N ha-I, the error in predicting annual NNM rates 

using SNAP model of23 kg N ha-I (due to variations in forest management, soil and 

climate types) was relatively high. 

Reduced rates ofNNM and increased N immobilisation in the Ferrosol soil in the 

second laboratory study compared to the first also highlight the difficulty of 

interpreting data from higher fertility, well structured, topsoil when the structure is 

highly modified prior to incubation. Even though relatively long periods of time (two 

weeks) were used to allow soils to equilibrate, in an attempt to reduce the effects of 

soil homogenisation, a significant impact of disturbance on NNM still occurred. It 

was therefore concluded from this study that the litter (02) horizon provided a better 

indication of the N cycling occurring in temperate Tasmanian forest. In contrast, the 

topsoil was less effected by long-term fertilisation and more effected by incubation 

parameters. This was a particular problem when soil had higher fertility and good 

physical structure, such as the Ferrosol topsoil studied in these experiments. 

Generally, rates ofNNM in topsoil during laboratory incubations varied greatly, 

suggesting that with the methods used to measure NNM currently, produced non­

repeatable results. The source of variation includes the time of sampling and the 

laboratory parameters used. Incubation of intact soil-cores has been suggested to 

better reflect field conditions due to limited disturbance effects, (Adams and Attiwill, 

1986; Raison et al., 1987). However, previous results in this study indicated that an 

extremely high number of intact soil-core replicates would be required. 

9.6 lmp/ications of long-term fertilisation for site productivity, soil 

conditions and management 

The amount of nutrients removed during harvesting depends on harvesting practises 

and rotation length. Nutrient removal in wood is much higher in short rotation 

plantations due to the high percentage of sapwood relative to heartwood in harvested 

logs (Birk and Turner, 1992). Large proportions ofN are removed in wood, for 

example from the above ground biomass of 29-year-old P. radiata plantation tree, 
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approximately one third of the N content, occurred within the stem, 434 kg N ha-1
, 

and around one quarter was in the needles, 117 kg N ha-1 (Switzer and Nelson, 1972). 

In the current study, over half of the N applied, as fertiliser, could be retained in the 

litter horizon alone. Management and harvesting techniques are therefore key 

regulators affecting long-term site N availability (Switzer and Nelson, 1972; Keeney, 

1980; Webber and Madgwick, 1983). Of particular importance is the amount of fine 

material that is moved off-site in the form of branches, twigs, leaves, litter and 

critically topsoil (Smethurst and Nambiar, 1990a; Smethurst and Nambiar, 1990b; 

Smith et al., 1994). As a result, it is well recognised in Australia that slash and litter 

removal during intensive site preparation could decrease long-term productivity in 

plantations (Nzila et al., 2002). 

Following canopy development, internal redistribution and nutrient return from 

decomposition become critical processes in supplying nutrients for new growth 

(Weston, 2001). The litter layer formed during forest development plays a major role 

in mineral cycling and retention in forest ecosystems, and is strongly linked to the 

cycling ofN, supply of base cations and nutrient buffering in the rhizosphere (Tamm 

and Popovic, 1995; Neilsen and Lynch, 1998). The release ofN from litter is a basic 

process in the cycling of N in forests. Virtually all the N taken up by plants is 

inorganic and the continual replenishment of this pool requires that inorganic N be 

released from litter during decomposition (Carlyle, 1986). 

As evident in this study and previous research, fertilisation results in a significant 

increase in the litter total biomass and N mass (Hunter and Hoy, 1983; Nohrstedt, 

1990; Theodorou and Bowen, 1990; Fife and Nambiar, 1997; Neilsen and Lynch, 

1998; Maier and Kress, 2000). At both sites mass oflitter 01 horizons increased 

slightly, while 02 horizons increased significantly due to large applications of N 

fertiliser, increasing two-fold under P. radiata and seven-fold under E. regnans. 

Although concentrations of N were not significantly different between fertilised and 

unfertilised 02 horizons, the significant increases in litter mass resulted in large 

proportions of N being held in the litter system. The heaviest fertiliser treatments 

resulted in a significant increase in the mass of the 02 horizon in both the P. radiata 
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stand and the E. regnans stand with over 70 t ha-I for the annual fertilised treatment at 

both sites compared to 40 t ha-I for NIL in the P. radiata stand and 13 t ha-I for NIL 

in the E. regnans stand. At the E. regnans site the highest rate of fertilisation resulted 

in significant increases in N, P, Sand Ca within the 02 horizon, with over 60 percent 

of the N fertiliser applied was accounted for in this horizon alone two years after the 

final fertiliser application (Chapter 3). Fenn et al. (1998) also noted that in many 

labelled N experiments, the majority ofN was retained in the litter and topsoil 

horizons. 

This large increase in litter mass also has positive implications for carbon 

sequestration in plantation forests. The amount and rate of litter decomposition 

influences the amount of C retained in the litter and transferred to the soil and effects 

the ability of a forest site to store C. This has important implications for carbon 

accounting and potential C trading schemes (Paul and Polglase, 2004a). Although C 

was not measured in the litter the increased litter mass at both sites from 56 to 92 t ha­

I and 28 to 102 t ha-I under P. radiata and E. regnans indicates a substantial increase 

in C at these sites due to fertilisation. In addition, under P. radiata soil C content in 

the top 10 cm doubled from 21 t ha-I in NIL to 41 t ha-I in (P)Nl Y (Table 3.8). The 

total C budget for the fertilised site was predicted (CABALA) to be almost double of 

that unfertilised, 50 to 92 t ha-I, respectively. Combined with the fact that cooler 

climates generally have greater soil organic matter in a less advanced stage of 

decomposition than soils in warmer climates (Anderson, 1992). The results from this 

study indicate that with careful site management during harvesting and site 

preparation the addition of fertilisers to increase wood production may have 

secondary benefits of C sequestration. 

Subsequent to large increases in N retained in the litter, this study also highlighted the 

importance oflitter horizons in the cycling ofN in the forest ecosystem, with 

significantly higher rates of NNM in litter after annual fertilisation at both sites. 

Annual rates of N mineralised from litter were estimated using laboratory incubations 

at 10 °C (Chapter 7), this lower temperature being closer to the average temperature 
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observed in the field. Comparisons between observed and predicted rates of NNM in 

P. radiata confirm this assumption, as discussed above (Section 9.2.2). 

Under E. regnans, the effect of litter horizons in the long-term increase of site 

productivity due to fertilisation was more pronounced. Unfertilised litter mineralised 

very little N during the life of the plantation (less than 0.2 kg N ha-1 yr-1
, at 10°C 

Chapter 7, Table 7 .15). However, annual fertilisation increased NNM rates over 400-

fold to 82 kg N ha-1 yr-1
• These litter layers were collected three years after the final 

fertilisation, indicating a natural cycling in eucalypt forests large enough to sustain 

enhance growth during this period. 

Under P. radiata, mineralisation in litter increased three-fold due to large applications 

ofN fertiliser, from 2.9 kg N ha-1 yr-1 to 10 kg N ha-1 yr-1 (incubated at 10 °C, Chapter 

7 Table 7.15). Such increases would not be large enough to maintain growth. Even 

when NNM rates in topsoil were measured around 20 kg N ha-1 yr-1
, growth would 

only be maintained by internal recycling in the tree and repeated fertilisation. 

The large nutrient value of the litter layer in the eucalypt system indicates the need for 

conservation of the litter layer during harvesting. In addition to the litter horizons 

supplying a direct nutrient source, litter horizons also provide a buffering capacity 

during fertilisation. For example in Chapter 5, litter horizons were observed to delay 

the movement of mineral N through the profile, retaining relatively large quantities of 

mineral N, and re-mineralising Nat a later date when moisture and temperature 

conditions were more favourable. Litter horizons provide environmental protection 

for the large portion of feeder roots acting directly underneath. Such root protection 

prevents N movement through the profile, as seen in Chapter 5, often being absorbed 

by tree roots at the litter and soil interface. In addition, retained litter can increase 

moisture availability and growth in subsequent rotations (Flinn et al., 1980; 

Hendrickson, 1985). 
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The effect of management practices on soil N and organic C concentration is often 

inconsistent. For example, some researchers have demonstrated a large effect on 

mineral soil C and N in coniferous forests due to residue management (Burger and 

Pritchett, 1984; Smethurst and Nambiar, 1990a), but a literature review and meta 

analysis concluded that, on average, forest harvesting had little or no effect on soil C 

and N (Johnson and Curtis, 2001). However, as highlighted in this study it is often 

difficult to observe statistical differences in soil C and N concentration due to large 

spatial variation in forest systems. Consequently, conflicting effects of organic matter 

removal on extractable N and N mineralisation have also been reported, with no 

effects observed by Smith et al.(1994), Vitousek and Matson (1985), Piatek and Allen 

(1999) and Li et al. (2003), reductions in N availability observed by Burger and 

Pritchett (1984), Vitousek and Matson (1985), Smethurst and Nambiar (1990b), 

(1995) and Piatek and Allen (1999), and increases in NNM for periods between 7 and 

17 years observed by Frazer et al.(1990) and Matson and Vitousek (1981). Large 

increases have also been observed on plantation growth due to harvesting treatments. 

For example, early growth in second rotation P. radiata plantations was found to be 

markedly better on sites where residue (litter and logging residue) was retained (Flinn 

et al., 1980). Results from this study suggest that long-term rates ofNNM at a site 

will decline significantly if surface litter and soil horizons arc removed during 

harvesting practises. In addition, this study indicates perturbations, such as increased 

environmental exposure, will increase rates ofNNM in surface horizons. This was 

particularly evident when comparing predicted (CABALA) rates ofNNM in litter, 

around 5 kg N ha-1 yr-1 compared to those measured in the laboratory after disturbance 

of up to106 kg N ha-1 yr-1
• 

Changes due to harvesting and site preparation for plantation establishment is 

therefore important when assessing site organic C and N availability. Site 

management needs to minimise N removal and disturbance to maintain future 

productivity. Removal of the litter horizons at the E. regnans site after long-term 

fertiliser application during harvesting could effectively remove a potential 80 kg N 

ha-1 input for the first few years of second rotation planting. Considering the topsoil at 

this site mineralised only around 20 kg N ha-1 yr-1
, site productivity in terms ofN 

alone would be reduced to one fifth of its potential if the litter horizons were removed. 
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Also of importance, as was indicated at both sites, excluding roots, little N was added 

to the mineral soil component of a forest system during fertilisation. Most of the N 

added was distributed between the tree and litter components. 

As fertilising also changes the allocation of resources in the tree, increasing allocation 

of dry matter to branch biomass and decreasing stem dry matter allocation (Messina, 

1992), site management such as pruning and biofuel resources also need to be 

managed to take into account the possible increased nutrients retained in finer tree 

components. Pruning regimes will occur earlier in the rotation and resupply nutrients 

for further growth. However, removal of fine fuels as biofuels after harvesting may 

decrease long-term site productivity. 

At a cost of $150 per hectare for the addition of 100 kg N alone, as urea, by air (pers. 

comm. P. Adams), the overall management ofN resources becomes essential for 

economic returns. As seen in this study, litter horizons, alone, supply between 10 and 

80 kg ofN ha-I after large amounts ofN have been applied. Under the eucalypt 

plantation, this study indicates that removal of the litter layer during site preparations 

could result in an economic cost of $120 ha-I for a period of at least three years. That 

is the cost ofresupplying the N alone. Under P. radiata although the rates of N 

mineralisation in the litter were substantially lower, almost 40 percent of the total Ca 

and 70 percent of the exchangeable Ca for the total profile depth, was tied up in the 

02 horizon. Although urea additions may be adequate to amend reductions in site 

productivity caused by forest floor removal, fertilising will aggravated shortages and 

reduced uptake of other elements such as P and boron (Smith et al., 1994). 
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9.7 Conclusions 

As the demand for wood resources increase and the period of rotation length 

decreases, the amount of fertiliser required for wood production on a global scale will 

also increase. This study highlighted that large volume growth increases in both P. 

radiata and E. regnans plantations occurred due to N fertilisation. However, the 

efficiency of fertilisation utilisation varied between the sites. In P. radiata, although 

for the initial seven years after the fertilisation commencement the annual application 

had an advantage above application every second and fourth years, beyond this time 

all the N treatments showed similar volume growth response. In E. regnans, 

applications every second year were sufficient to maintain significant growth response 

at the same rate as annual applications, once 300 kg ofN ha-1 had been applied to 

stimulate initial growth. 

Annual N fertilisation (100 kg N ha-1
) for a period of thirteen years (in addition to the 

P fertiliser) increased P. radiata growth from 192 m3 ha-1 to 344 m3 ha-1
, at the age of 

34 years. Annual N (plus P) fertilisation for thirteen years, doubled E. regnans growth 

from 125 to 281 m3 ha-1, at the age nineteen years. On the P deficient Kurosol, two 

single applications of P alone, totalling 144 kg P ha-1
, increased P. radiata volume 

growth from 78 m3 ha-1 to 192 m3 ha-1
. In contrast, application of P alone or in 

combination with N to the Ferrosol, up to a total of 598 P ha-1 had no effect on E. 

regnans growth. After fifteen years of measurements, nitrogen fertilisation 

significantly increased volume growth at both sites. 

Concerns over long-term fertiliser effects on forest sustainability through changes in 

the soil chemistry were confirmed in this study. Substantial soil pH changes of 0.5 to 

1.0 units throughout the soil profile could pose long-term consequences for 

productivity directly and through reductions in exchangeable bases. The vulnerability 

of some forest soils was highlighted in the Kurosol profile with its initial low pH and 

low buffering capacity. At both sites the reduction in active acidity was matched by 

reductions reserve acidity as indicated by lower base saturation in high N treatments. 

Although the effects of acidification could have been reduced through careful 
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fertiliser management, this study indicated that there was little remediation of pH 

decline over time. 

The current study also highlighted that to examine the long-term effect of fertilisation 

on site changes the whole soil profile plus litter layers need to be examined. Long­

term changes may not be observed when measuring the topsoil alone because of 

mineral cycling this soil horizon. For example, application ofN alone in the Ferrosol 

halved the total Ca content throughout the entire depth of the profile, compared to the 

unfertilised. In the Kurosol, high rates of N application significantly reduced 

exchangeable Mg by half throughout the entire profile. In the Ferrosol topsoil, 

substantial reduction in exchangeable Mg concentration, from 258 to 71 mg kg-1
, was 

also measured. 

Long-term fertilisation resulted in a net transfer of nutrients for the soil into the tree 

and litter horizons. As a result, a large proportion of sites nutrient capital was tied up 

in the components of the system most effected by the eventual harvesting of the trees 

and site preparation of the next rotation. Under E. regnans, at the highest rate of 

fertilisation, N, P, Sand Ca all accumulated in the 02 horizon. The 02 horizon of the 

most heavily fertilised treatment had over seven times the N content ofunfertilised 

treatment, equivalent to about 60 % of the N applied. However, soil to a depth of 50 

cm contained less N in the fertilised treatment, suggesting a transfer of soil N to the 

02 horizon nutrient pool from the mineral soil. The litter might provide a buffer for 

future fertiliser additions where N can be immobilised and released during a period of 

time under favourable climatic conditions. In addition, large increase in litter mass has 

positive implications for carbon sequestration in plantation forests. At the P. radiata 

site the predicted total C budget for the fertilised site double from 50 to 92 t ha-1 due 

to fertilisation. 

To measure the effect of long-term fertilisation on N cycling, N mineralisation was 

examined in the field and laboratory for both sites. This study indicated that: 
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• Low rates of in situ N mineralisation occurred in topsoil at both sites, and neither 

soil was significantly effected by long-term fertilisation (Chapter 4). Net N 

mineralisation ranged between 13 and 52 kg N ha-1 yr-1 across both soil types and 

fertiliser treatments. 

• Large site variability made it difficult to assess N mineralisation with the methods 

applied using the field in situ incubations. Although not significant, average rates 

of in situ NNM in Kurosol topsoil increased four-fold due to long-term 

fertilisation. In the laboratory, under controlled conditions, the effect of 

fertilisation on NNM in Kurosol topsoil increased to ten times that measured in 

the unfertilised topsoil, and was significant. Generally, rates ofNNM in the 

laboratory between fertilised and unfertilised Ferrosol topsoil remained similar. 

• This study highlighted the strong effect of laboratory parameters, moisture and 

temperature, on topsoil NNM, which were often larger than the effect of long-term 

fertilisation during 30-60 d incubations. 

• It was concluded from this study that the litter was more sensitive than soil to 

changes in N cycling. The litter horizons had higher rates ofNNM than the soil 

due to increases in both NNM per unit mass and litter mass. These rates were also 

less effected by laboratory parameters than the topsoil. 

• In both litter and topsoil, when there were smaller changes in N inputs (i.e. 

application every second or fourth year) the effects on NNM could be masked by 

the effects oflaboratory parameters. That is, the change in rates of NNM due to 

incubating samples at moisture and temperatures outside the range observed in the 

field is greater than that between the fertiliser treatments. As cool temperate 

forests often have low rates ofNNM, the use oflaboratory measurements of NNM 

to predict field rates is questionable, when using the current methods applied in 

this study. To prevent this the incubation of intact cores has been suggested to 

better reflect field conditions (Adams and Attiwill, 1986; Raison et al., 1987). 

However, results in this study indicated that an extremely high number of intact 

soil-core replicates would be required to show this in a statistically consistent 

manner. 
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Process-based models, such as CABALA, can be used to identify likely limitations to 

plant growth, define growth potential and predict overall site changes from 

fertilisation. fu this study, CABALA adequately simulated growth and N dynamics in 

the P. radiata plantation for approximately one rotation. Predicted growth increases 

due to annual fertilisation were within 15 % of the actual growth at age 34 years. fu 

agreement with field measurements, low rates of nitrification and little offsite 

movement was also predicted, with less 5 % of the N applied as fertiliser predicted to 

be was lost from the system. Predicted data in this study also indicated that despite the 

rainfall at the P. radiata site considered to be high by Australian standards, further 

growth increases would probably require a combination of irrigation and fertilisation. 

9.8 Future research 

The ability to predict growth and several other site characteristics due to intensive 

silvicultural management of plantations are provided by a number of models, such as 

the CABALA model used in this study. However, this study also indicated that there 

are still a number of knowledge gaps that need to be quantified to allow improved 

understanding of the changes that occur in the forest. Predictions using the CABALA 

model need to be tested across multiple rotations, and the N sub-module might benefit 

from more explicit definition of N mineralisation in the litter layer, and clarification 

of the role of C: N ratio and physical protection in controlling NNM. Aspects of 

leaching, subsoil retention, and canopy storage of N in CABALA also require 

attention. 

Of particular importance is further investigation into the large removal of cations from 

throughout the soil profile and substantial changes in pH, which were observed in this 

study. How these changes progress during successive rotations, in particular short 

intensive rotations, will determine the long-term effects of the current silvicultural 

practices. Changes in available cations, such as Ca and Mg, will need to be closely 

monitored to maintain optimum plantation productivity. To measure long-term 

changes in forests, monitoring will need to include subsoil as well as topsoil. 
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Further investigation of the role oflitter in N turnover is required for its application to 

current N mineralisation predictive models such as SNAP. 

This study indicated that due to the low rates ofNNM in these temperate forests, and 

high site variability, the current methodology used to measure NNM may not be 

sensitive enough to predict changes due to large N inputs in these systems. In this 

study, changes in NNM due to fertilisation were often swamped by the short-term 

changes that occurred due to temperature, moisture and soil disturbance. Further 

investigation of relationship between soil structure (such as aggregate stability and 

clay content) and NNM would enable the development of more sensitive methods for 

measuring NNM and be incorporated into predictive models. 
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