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ABSTRACT 

The physiological requirements of Australian isolates of four species of 

Cytophaga!Flexibacter-like bacteria(CFLB), namely Cytophaga johnsonae (CJ), 

Cytophaga psychrophila (CP), Flexibacter columnaris (FC) and Ffexibacter 

maritimus (FM) were studied. Also, the pathogenesis and chemotherapy of some 

diseases caused by these bacteria were investigated. 

In vitro responses of the organisms to environmental conditions, including 

temperature, salinity and pH, showed that all species have psychrotrophic 

tendencies with CJ and CP growing at the lowest temperature, FC the highest and 

CP having the narrowest range of temperature for growth. FM preferred full salinity 

(seawater) for growth with no growth in the presence of NaCl alone, whereas' the 

other three strains preferred no salinity for growth. All species grew well over a 

similar pH range. 

In vivo assessment of susceptibility of a number of freshwater species of fish 

including barramundi (Lates calcarifer), goldfish (Carassius auratus), guppy 

(Poecilia reticulata) and rainbow trout ( Oncorhynchus mykiss) to infections by CJ 

and CP resulted in occurrence of infection by CJ only in barramundi. This occurred 

during bath exposure of fish to the organism when it was coupled with thermal 

stress and was achieved by rapidly reducing the maintenance temperature. No 

infection could be induced in the other species tested. 

Barramundi were more susceptible to FC infection than goldfish and the 

disease was more severe at higher water temperatures than at lower ones. 

Pathological features were similar in both species with acute necrosis of epithelial 

surfaces. 

Experimentally, FM induced infection in Atlantic salmon (Salmo salal), 

rainbow trout and greenback flounder (Rhombosolea tapirina) only by bath 

immersion at full or 15%0 salinity. Distribution of lesions, level of susceptibility and 

temporal pattern of infection were similar in both salmonids, and larger Atlantic 

salmon were more resistant to infection than smaller sizes. There was a great 

consistency in histopathological features of experimental infection in salmonids and 

in natural outbreaks in a number of captured species, including striped trumpeter 

(Latris lineata), flounder, yellow-eyed mullet (Aldrichetta forsten) and commercial 

salmonids. A remarkable lack of inflammatory response, consistent fragmentation 

and degeneration of the epithelium, with infiltration of amorphous protein-like 

materials and occasional intra-epithelial inflammatory cells, congestion and 

haemorrhage were also observed, with invading bacterial cells colonizing dense 

connective tissue and occasionally the underlying musculature. Scale loss, odema 

and low degree of inflammation in scale pockets were evident, but the remaining 

scales were intact. 

-xii-



In vitro antimicrobial activity of skin mucus obtained from naive fish against 

these organisms gave variable results. 

In vitro and in viva efficacies of commonly-used chemotherapeutants were 

determined for these pathogens. Treatment of barramundi with oxolinic acid (OA) 

as a bath (50 ppm) or by mouth (10 mg/kg b w) resulted in serum levels above the 

minimum inhibitory concentration (MIG) for FC and produced significant clinical 

efficacy (P<0.05). Amoxycillin (AM) was found to produce adequate serum levels 

against FM, when used as a bath (200 ppm) or given orally (80 mg/kg b w) to 

Atlantic salmon and rainbow trout, respectively. At these dose rates this antibiotic 

was also clinically efficacious against this pathogen (P<0.05). Trimethoprim (TMP) 

produced more than adequate serum levels for the control of FM when given as a 

bath (50 ppm) or orally (10 mg/kg b w) to Atlantic salmon and rainbow trout, 

respectively. TMP was significantly more protective than AM when tested in viva 

(P<0.05). For CJ and CP the MIG values for OA and oxytetracycline were low, 

whereas that for TMP was high. MIG values indicated CP strains were more 

sensitive to AM and norfloxacin than was CJ. 
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CHAPTER I 

Introduction and Literature Review in Relation to Diseases Caused by Fish­

Pathogenic Cytophaga/Flexibacter-like Bacteria (CFLB) 

1.1. Introduction 

The nomenclature for the Cytophaga!Flexibacter-like bacteria (CFLB) has been the 

subject of debate for many years. In deciding upon the names to be used in this 

thesis the candidate consulted the standard texts and discussed the contemporary 

situation with a number of microbiologists in Australia. It was realised whatever 

decision was made, not all readers would be in agreement, but, hopefully, they 

would appreciate the difficulties confronting the writer. 

The causative agent of columnaris disease (saddleback disease or 

cottonmouth disease) was named Bacillus columnaris (Davis, 1922), 

Chondrococcus columnaris (Ordal & Rucker, 1944) and Cytophaga columnaris in 

both Bergey's Manuals of Systematic and Determinative Bacteriology 

(Reichenbach, 1989; Holt et al., 1994), although an alternative name, Flexibacter 

columnaris, is currently used. However, it has been proposed that F. columnaris be 

included in the genus Cytophaga (Reichenbach, 1989; Holt et al., 1994). 

Hereinafter these two names are considered to be synonymous and F. columnaris 

will be used as it appears widely in the scientific literature. F. columnaris causes 

disease in a wide range of both cold- and warm freshwater fish such as species of 

Cyprinidae, Salmonidae, Centrachidae, lctaluridae and Percidae. 

The causative agent of cold-water disease (low-temperature disease, 

peduncle disease or saddle-like lesions) was named as Cytophaga psychrophila by 

Stanier (1942), Borg (1948), and Pacha (1968), but Lewin and Lounsbery (1969) 

believed that this species of bacterium should be included in the genus Flexibacter. 

However, the current name is C. psychrophila as described in both Bergey's 

Manuals of Systematic and Determinative Bacteriology (Reichenbach, 1989; Holt et 
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al., 1994). Hereinafter these two names are considered to be synonymous and C. 

psychrophila will be used. Until 1988, C. psychrophila infection was believed to be 

restricted to salmonid culture in the USA and Canada. However, recently the 

infection has been reported in other regions such as Europe and Japan, and it was 

diagnosed as the causative agent of a systemic disease, not only in salmonids such 

as rainbow trout ( Oncorhynchus mykiss) (Bernardet et al., 1988), but also in non­

salmonids such as eel (Anguilla anguilla), tench (Tinca tinca), carp (Cyprinus 

carpio) and crucian carp ( Carassius carassius) (Lehmann et al., 1991 ). 

Flexibacter maritimus, which was initially described from a disease in red 

sea bream (Pagrus majofj and black sea bream (Acanthopagrus schlege/1) by 

Masumura and Wakabayashi (1977), was later isolated by Hikida et al. (1979) in 

Japan from a variety of marine fish. Then, Wakabayashi et al. (1986) proposed the 

above name which will be used herein, although Reichenbach (1989) in Bergey's 

Manual of Systematic Bacteriology later removed it to the genus Cytophaga under 

the name of Cytophaga marina. However, the name of F. maritimus is appropriate 

as documented by Holmes (1992). Depending on the main external sign exhibited 

by the infected fish, the infection has been described as "black patch necrosis" of 

Dover sole (So/ea so/ea ) (Bernardet et al., 1990), salmonid cutaneous erosion 

disease of sea-caged salmonids (Carson, 1992) or "eroded mouth syndrome" 

(Toranzo & Barja, 1993a). 

Cytophaga aquatilis was first isolated as a facultative anaerobe from the 

gills of freshwater fish by Strohl and Tait (1978), but the role of the organism, as a 

fish pathogen, is still unclear. The name of this species of bacterium remains the 

same at present. 

Cytophaga johnsonae as a cause of skin and tail rot of cultured barramundi 

(Lates calcarifer) has recently been reported with meaningful losses from 

Queensland, Australia (Carson, 1992; Carson et al., 1993). The current and formal 

name of this bacterium is C. johnsonae (Reichenbach, 1989) which will be used 

hereinafter, but it has probably sometimes been misspelled as C. johnsonii (Holt et 

al., 1994). 
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In addition, two previously unrecognised CFLB causing systemic disease in 

turbot (Scophthalmus maximus) and jaw erosion in farmed rainbow trout have been 

described from Scotland and England, respectively (Mudarris & Austin, 1989; 

Holliman et al., 1991). 

Also, a new. ulcerative flexibacteriosis-like disease "yellow pest" affecting 

young Atlantic cod ( Gadus morhua) was reported from Germany (Hilger et al., 

1991 ). 

Furthermore, recently a CFLB was isolated from the adherent bacterial 

epiflora of Atlantic halibut (Hippoglossus hippoglossus) eggs for which it was 

considered to be an opportunistic pathogen (Hansen et al., 1992). The bacterium 

caused high mortality both during the last few days before hatching and the first few 

days after hatching of halibut larvae. The name Flexibacter ovolyticus was given for 

this new species of gliding bacteria by Hansen et al.(1992). 

Again, a marine CFLB infection has been isolated from diseased cultured 

sea bass (Oicentrarchus labrax) from the French Mediterranean coast (Pepin & 

Emery, 1993) and an ulcerative stomatitis in salmon smolts associated with a 

previously unrecognised species of CFLB has been reported in the USA (Frelier et 

al., 1994). The latter is an economically important disease. 

As a result, it is understood that F. columnaris, first discovered in the USA, 

has along with many other CFLB, been found in other countries of the world and 

that these CFLB affect not only salmonids but also other fish species. Moreover, a 

recognition of more species of this group of microorganisms as fish pathogens has 

arisen. As well, as is discussed later, the role of predisposing factors such as 

temperature, crowding and water quality fluctuations are significant in leading to 

disease outbreaks due to these organisms. Therefore, in this chapter an overview 

of the characteristics of the causative agents, pathogenicity, clinical signs and gross 

pathology, histopathological features, diagnosis and isolation, predisposing factors 

and control and treatment of the diseases caused by these pathogenic gliding 

bacteria is provided. 
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1.2. Causative agents 

1.2.1. Morphological and cultural characteristics 

Many morphological, physiological and biochemical characteristics of fish 

pathogenic CFLB have been identified since Davis (1922) described columnaris 

disease. Nevertheless, so far the nomenclature/taxonomy of this group of 

microorganisms has not been fully clarified. These organisms take the form of 

slender flexible aerobic rods and are Gram negative, motile with unknown 

mechanism of gliding, and possess a DNA, G+C ratio of 30-34 mol%. On plate 

culture, colony colour may be yellow, orange or golden yellow and the cell 

dimensions of the organisms are in the range of 1.5-15 x 0.4-0.6 µm. Generally, 

they degrade gelatin and casein, but not chitin, starch, agar or 3% 

carboxymethylcellulose (CMC). However, C. aquatilis and C. johnsonae are able to 

degrade chitin and starch. Usually fish-pathogenic CFLB are positive for oxidase 

and catalase, but do not produce indole and H2S with the exception of F. 

columnaris which is able to produce H2S. With the exception of F. maritimus, others 

are positive for flexirubin reaction. Aerobically, acid production from carbohydrate is 

usually negative. Peptone and casamino are suitable nitrogen sources. They grow 

on peptone alone and produce NH3. Optimum temperatures and pH are 20-30°C 

and 7, respectively (Christensen, 1977a; Austin & Austin, 1987; 1993, 

Reichenbach, 1989; Bernardet et al., 1990; Carson et al., 1993, Holt et al., 1993; 

1994; Wakabayashi, 1993). 

1.2.2. Pathogenicity 

In comparison with other bacterial fish pathogens, relatively few studies have been 

undertaken on the pathogenicity of CFLB. As will be mentioned later, the 

reproduction of infections by fish-pathogenic CFLB is more effective by immersion 

than by injection and in fish kept in static water which favours attachment of the 

organisms. Also, injection routes do not mimic the natural route of infection even for 

pathogens, which are able to produce systemic infections (Anderson, 1990). 

In addition, the fluctuation of water temperatures significantly influence the 

pathogenesis of CFLB: in particular, C. psychrophila and F. columnaris. 
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{a) F. columnaris 

0 rdal and Rucker ( 1944) pointed out that the mortality rate due to F. col umnaris in 

juvenile sockeye salmon ( Oncorhynchus nerka ) held at 16°C was 30%, while the 

rate was 100% for those held at 22°C. Mortality levels were 45% and 95% at 18°C 

and 2 0°C, respectively, and no mortality was found in a control (uninfected) group 

maintained at 22°C. 

Colgrove and Wood (1966) demonstrated that the pathogenicity of 

F. columnaris in suckers (Catosformus sp.) was associated with temperature so that 

high and rapid mortality occurred at 215.5°C with no infection at~ 11.6°C. Similar 

findings were obseNed for pre-spawning sockeye salmon which were naturally 

exposed to the pathogen prior to the experiment (Colgrove & Wood, 1966). 

There is a marked variation in the virulence of strains of F. co/umnaris. The 

level of virulence of 500 strains of F. columnaris was assayed by immersing 6-14 

month-old sockeye or chinook salmon (0. tshawytscha) at 18-20°C for 2 minutes in 

a broth culture with an optical density of 0.1 (determined with Coleman-Nepho­

Colorimeter using a 525 µm filter) (Pacha & Ordal, 1963; 1970). According to the 

time required to produce 100% mortality, these strains were classified into four 

categories of virulence as follows: 

(1) High virulence which caused 100% mortality within 24 hours. 

(2) Moderate virulence which caused 100% mortality in 48 hours but not within 

24 hours. 

(3) Intermediate virulence which resulted in 100% mortality in 96 hours 

but not within 48 hours. 

(4) Low virulence which required over96 hours to cause 100% mortality. 

Pacha and Ordal (1970) reported that the outbreaks of columnaris disease 

in the Columbia River Basin in salmon, particularly sockeye salmon, were 

associated with an increase in water temperature. They demonstrated a relationship 

between water temperature and different strains of F. columnaris of varying grades 

of virulence. Only highly virulent strains produced the disease at lower temperatures 

(12.8°C), while those of low-virulence were able to initiate infection only at;::: 20°c. 

-5-



Fujihara et al. (1971) produced columnaris disease in sibling chi nook 

salmon (3.9 g) with 100% mortality by bathing fish at a concentration of ea 2.5x105 

cells/I of sterile river water for 25 minutes. Times to 100% mortality were about 19 

and 8 hours at 1 0 and 22°C, respectively. 

No mortalities were observed in oriental weatherfish (Misgumus 

anguillicaudatus) exposed to F. columnaris (106 cells/ml) at 5 or 10°C 

(Wakabayashi & Egusa,1972). In contrast, the mortality level at 20-35°C was 100%, 

while it reached 25% at 15°C. Mean times of mortalities occurred 7, 3, 1.8 and 1 

days post-exposure at 15, 20, 25, and 35°C, respectively. 

A laboratory experiment on the relationship between water temperature and 

pathogenicity of F. columnaris in steelhead trout (0. mykiss), coho salmon (0. 

kisutch ) and chinook salmon was conducted by Holt et al. (1975). Lyophilised 

cultures of an isolate of F. columnaris, which were originally recovered from a gill 

lesion of an adult spring chinook salmon, were used. The bacterium was passaged 

several times in coho salmon prior to the experiment and fish of 10-33 g body 

weight were exposed for 10 minutes to the pathogen in a bath at an optical density 

of 0.1 at 525 nm of the culture bacterium. Mortality levels increased with increasing 

water temperature and reached 70% in chinook salmon and 100% in other two 

species at 20.5°C. The minimum time to death was 1.6-2.3 days at 20.5 or 23.3°C, 

while the maximum time to death was 7.6-12 days at 12.2°c. Mortality levels of 4-

20% occurred at 12.2°c in all species with no infection at~ 9.4 °c. 

Kuo et al. (1981) studied the artificial infection by 55 strains of F. columnaris 

and Flexibacter sp., using contact and intraperitoneal injection in eel (20 g) and 

tilapia (1 O g). Fish with mechanical injury on one side of the gill were exposed to a 

bath of the bacterial culture broth at 3-5 x107 cells/ml for 60 minutes, while intact 

fish were injected intraperitoneally with 2 mV100 g body weight of a bacterial broth 

culture at 3-6 x108 cells/ml. The immersion route was more effective than injection 

in producing infection (Table 1.1) and the mortality rate was higher in static rather 

than running water (Tables 1.1 & 1.2). Higher levels of mortality by bath immersion 

may however, have been owing to the effect of mechanical gill injury prior to 

-6-



challenge. These strains of bacteria were collected from gill and skin of cultured fish 

in Taiwan. They were then grown in two transfers of cytophaga broth using 5 ml and 

50 ml in sequence and held at 28°C for 24 hours during each transfer. The second 

transfer of bacterial culture in broth was used for the challenge and the 

determination of the virulence of the bacterial strain was similar to those findings by 

Pacha and Ordal (1963), plus some strains which were identified as avirulent. 

Table 1.1. Mortality rate(%) of elver (eel) artificially infected with gliding bacteria. 

Static water Running water 

Infection F. columnaris Flexibacter sp. F. columnaris Flexibacter sp. 
method 
Immersion 100 (9)** 100 (5) 91 (11) 27 (15) 
IP* 100 (9) 100 (5) 64 (11) 20 (15) 

* lntraperitoneal injection. -Number of strains tested in parentheses. Adapted from Kuo et 
al. (1981 ). 

Table 1.2. Mortality rates(%) of tilapia and elver infected by immersion wtth gliding bacteria. 

Fish Static water Running water 

F. columnaris Flexibacter sp. F. columnaris Flexibacter sp. 
Tilapia 100 (9)* 100 (5) 72 (14) 77 (13) 
Elver 100 (9) 100 (5) 93 (14) 38 (13) 

*Number of strains tested in parentheses. Adapted from Kuo et al. (1981). 

No infection occurred in cultured Nile tilapia (Oreochromis niloticus) 

challenged with F. co/umnaris unless the natural barriers of the fish were damaged 

(Amin eta/.,1988). The severity of the disease increased and a shortened median 

death time (26-52 hours) occurred when infected fish with injured gills were 

maintained in water containing ammonia (168 mg NH4Cl/I) which enhanced the 

susceptibility of the host to the pathogen. 

In respect of columnaris disease, the effect of temperature on defence 

mechanisms of the host is unknown. However, warm water temperature may 

enhance bacterial multiplication in the host's tissues. This proposition is supported 

by Holt et al. (1975) who demonstrated that this bacterium rapidly grows in vitro at 

17.8-23.3°C, while the growth rate is very limited at low temperatures i.e.~ 12.2°C. 

-7-



(b) F. maritimus 

Campbell and Buswell (1982) challenged two groups of 10 Dover sole with a 

bacterial suspension of F. maritimus using scarification and subdermal injection 

methods. No adverse effects were observed in the fish which were challenged by 

the scarification method, while the group injected subdermally showed 30% 

mortality 48 hours post-infection. 

Wakabayashi et al. (1984) compared a number of routes for producing 

infection by F. maritimus in juvenile black and red sea bream (25-70 mm) (Table 

1.3). Mortality levels, by direct contact of cultures to the tail and mouth, were 

highest, while mortality levels by intramuscular injection and bath exposure were 

lowest and similar. Black sea bream were more susceptible than red sea bream. 

The mean time to death was shortest (1.2 days) and longest (2.5 days) in black 

bream, when challenged with bacterium by mouth application and intramuscular 

injection, respectively. A lyophilised culture of F. maritimus was used for this study. 

It was isolated originally from natural lesions or from kidney tissues of infected fish. 

Table 1.3. Comparison of different methods of infecting fish using a F. maritimus strain 82 

with juvenile red and black sea bream. 

Fish species IM (1) 

Red sea bream 

Black sea bream 

Bath (2) Application 
mouth 3 

10 3 

10 10 

* Indicating number of total fish used per trial. ** Indicating number of dead fish. Sterile 

saline was used for control groups. (1). Fish were intramuscularly injected with 0.02 ml of 

bacterial suspension per fish. (2). Fish were exposed to a bath of bacterial suspension for 

two hours in standing water and were then maintained in pathogen-free flowing water at 23-

240C. (3). Fish were subjected to the cultures of pathogen by direct contact to the tail or 

mouth. Modified from Wakabayashi et al (1984). 

Baxa et al.( 1987) indicated that no infection occurred when black sea bream 

fry were challenged with F. maritimus by the immersion route. The disease, 

however, occurred when a combination of topical application using a test-tube 

brush and immersion was used. Any damage or break in fish barriers, such as 
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scales and epithelial layers, provides a suitable way for bacterial localisation and 

colonisation, with the subsequent inflitration and proliferation in the host's tissues. 

(c) C psychrophila 

In a study Borg (1960) showed that C. psychrophila was most pathogenic, both at 

10 and 18°C, when injected in high numbers (cited by Dalsgaard,. 1993). However, 

there were no mortalities for the injections with dilutions of the culture at 18°C. 

A comparison of 22 strains of C. psychrophila, that were tested for their 

ability to produce disease in yearling coho salmon following subcutaneous injection 

with ea. 2.8 x 107 cells/fish, resulted in a variable mortality rate from O to 100% 

indicating wide variations in virulence. (Holt, 1988). There were low, medium and 

high virulent strains of the bacterium similar to those reported with F. columnaris. 

Similar observations were found by Bertolini et al. (1994) when juvenile coho 

salmon and steelhead trout were subcutaneously injected with 14-29 isolates of C. 

psychrophila. 

Observations by Holt (1988) showed many more cells of C. psychrophila 

were required to achieve 50% mortality in the fish injected intraperitoneally than by 

the intramuscular and subcutaneous routes. This shows that virulence mechanisms 

of C. psychrophila may be better expressed in muscle tissue than in the peritoneal 

cavity. The above may be because the subcutaneous and intramuscular routes 

represent a more natural means of infection and take advantage of the proteolytic 

activities of the pathogen. 

Holt et al. (1989) investigated an experimentally induced C. psychrophila 

infection and its relationship with water temperature in juvenile coho salmon, 

chinook salmon and rainbow trout. Infection was produced using a virulent strain of 

the bacterium SH3-81 subcutaneously injected (4 x 106 and 2 x 1 o7 cells/fish or 

0.02-0.05 ml/fish) between the adipose and dorsal fins of fish. The shortest mean 

time (2.8-5.7 days) and the longest mean time (8.6-10.1 days) from infection to 

death were at 12-15°C and 3-6°C, respectively, which were the temperatures 

associated with doubling the population of the bacterium in the culture medium. 
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Infection was reduced at >15°C with no evidence of disease at 23°C. There was 

also no disease in juvenile steelhead trout injected with 6.6 x 107 cells/fish at 22°C, 

while 100% mortality occurred when the fish were kept at 12°c. 

lntraperitoneal and intramuscular routes of injection (0.0 Sml of ea. 

107cells/ml) of a freshly isolated strain of C. psychrophila in rainbow trout (6 g) 

achieved 80% mortality at 16°C within one week post-infection (Austin, 1992). 

Artificial reproduction of a previously unrecognised CFLB causing jaw 

erosion in rainbow trout by immersion (1 o7 cells/ml), intraperitoneal (106 cells/fish) 

and intramuscular routes (106 cells/fish) resulted in 100% mortality within 96 hours 

in rainbow trout, of average weight 2-3 g, and Atlantic salmon, of average weight 

10 g, when were maintained in aerated freshwater at 16°C (Holliman et al., 1991). 

The effect of temperature on pathogenicity of the cold-water disease may 

also be due in part to its effect on growth of the bacterium in the fish tissues (Holt et 

al., 1989). The optimum temperature at which outbreaks of bacterial cold-water 

disease occurs is between 4.4 and 10°C, as indicated by Pacha and Ordal (1970). 

Generally, the disease decreases at a water temperature of 12 .8°C, although some 

strains of this organism are capable of causing disease at higher water 

temperatures (Pach a & Ordal, 1970). There is also a relationship between 

temperature and fish immune response, so that at lower temperatures fish reaction 

to bacterial infection, e.g. C. psychrophila, is slowed or inhibited. This may occur 

because processing of antigen by macrophages, interactions between 

macrophages and T-helper precursor cells, and the final step of helper cell 

maturationmaybeinhibitedatlowtemperatures (Avtalion, 1981; Holt etal., 1989). 

Moreover, other immune mechanisms such as mucus modulation, interferon, 

ceruloplasmin, C-reactive protein and a-2 macroglobulin production are 

temperature-dependent with protein synthesis of the latter being reduced or 

stopped at I ow temperatures (Langdon, 1 988a). 

Great variations in pathogenicity test conditions (e.g. water temperature, fish 

size and age, challenge route and fish density) used by different researchers make 

it difficult to compare virulence test results quantitatively (Dalsgaard, 1993). 
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1.2.3. Mechanisms of pathogenicity 

The exact mechanisms which are involved in the pathogenicity of CFLB in fish are 

unknown, although Austin and Austin (1987; 1993) indicated that it is probable that 

toxins have a role in F. columnaris infection. Release of powerful proteolytic 

enzymes by cell autolysis may explain the histolysis and necrosis observed in 

columnaris disease (Morita, 1975; Snieszko & Bullock, 1976; Thune et al., 1993). 

Kuo et al. (1981) indicated that iron may affect the pathogenicity of F. 

columnaris. Survival time of eels challenged with the bacterium by intraperitoneal 

injection declined from 20 days to one day when 0.35-1.4 mg iron/100 g fish was 

injected prior to challenge. Iron may limit the pathogenesis of the organism more in 

systemic infection than in superficial infections, because the iron effect was 

observed in only one of the two strains examined when the challenge was delivered 

via the bath method. Also, this suggestion is supported by data which indicates that 

administration of transferrin prior to challenge enhanced survival time from three to 

20 days for an intraperitoneal challenge, while it had negligible effect on a bath 

challenge. 

F. columnaris produces, in culture, a chondroitinase enzyme which is able to 

degrade chondroitin sulphates A and C and hyaluronic acid, the complex 

polysaccharides of connective tissue (Griffin, 1991; Teska, 1993). Extracellular 

proteases have recently been identified in F. columnaris which may affect the 

pathogenicity of the disease (Bertolini & Rohovec, 1992). This organism produces 

two types of slime layers, an acidic polysaccharide and a galactosamine, which 

probably play a role in adhesion by keeping cells attached to the surface. This 

adhesion mechanism may result in large bacterial population at the specific site 

where other virulence factors, such as toxins and enzymes, can be released 

(Dalsgaard, 1993). Although the extracellular proteases and chondroitinase are 

reported to be produced by F. columnaris strains, none of them has been evaluated 

for degradative effects in the tissue of fish. Some specific bactericidal substances 

similar to colicins have been reported for various strains of F. columnaris (Anacker 

& Ordal, 1959b; Becker & Fujihara, 1978). It is thought that the presence of such 
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inhibitory substances may be of value for the survival of individual strains in an 

ecological environment. 

Intramuscular injection of the toxin product obtained from a broth culture of 

C. psychrophila to 20 fish resulted in no mortality or lesions within 13 days (Borg, 

1960). It was concluded that the infection process was due to the presence of the 

live bacteria and that no significant amounts of the exotoxin were released into the 

culture medium. However, other authors have shown that C. psychrophila produces 

extracellular proteases which may be effective in the pathogenicity of the infection 

(Pacha, 1968, Morita, 1975; Bertolini et al., 1994). Otis (1984) suggested that 

extracellular products play a significant role in the disease process. Steelhead trout 

were injected intramuscularly, subcutaneously or intraperitoneally with either live 

bacterial cells or a crude extracellular product. Lesions in both groups appeared to 

be similar macroscopically and microscopically. It is suggested that temperature 

may also affect the production of extracellular proteases and other possible 

determinants of virulence, including the leucocytolytic factor described for other 

bacterial fish pathogens (Holt et al., 1989; Dalsgaard, 1993). 

C. aquatilis possesses an extracellular, thermostable, glucose-repressible 

collagenase which could be involved in pathogenicity (Austin & Austin, 1987; 1993). 

Pathogenicity effects of toxins (crude and pure lipopolysaccharide and 

sonicated cell-free supernatant) and enzymes (protease and haemolysin) of F. 

maritimus were examined by Baxa et al. (1988a). They suggested that the 

bacterium may achieve pathogenicity by means of synergistic interaction of these 

toxins. 

Further work should be directed at elucidating the mechanisms involved in 

the pathogenicity of fish pathogenic CFLB. For example, there is no evidence 

whether or not the unusually thick cell envelope of these organisms is involved with 

their pathogenicity as noted by Mudarris and Austin (1989). This scenario is raised 

because, in contrast to the majority of bacterial fish pathogens, experimental 

induction of the infection by this group is more effective by contact challenge than 
' 

by injection. This is especially true in fish kept in static water, which provides an 
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opportunity for bacterial colonisation and localisation on superficial surfaces with 

subsequent proliferation into tissues. 

Some elements, such as calcium, may play a significant role in expression 

of pathogenicity of CFLB. Calcium is a growth promoter element in different 

pathogenic strains of F/exibacter sp.(Hikida et al., 1979) and, as the enameloid of 

teleost teeth is highly mineralized, it could serve as a source of calcium for these 

bacteria (Shellis & Miles, 1974). The reason why Flexibacter pathogens cause 

stomatitis may be due to this source of calcium in the oral cavity of fish. 

The role of carriers on the course of infections is unclear, although CFLB are 

known as opportunistic fish pathogens which are common in the environment of 

fish. However, it is difficult to establish a carrier state for these organisms. For 

example, some infected rainbow trout released F. columnaris up to 140 days post-

infection, while other did not (Thune et al., 1993). 

The virulence determinants consisting of adhesins, haemolysins, cytotoxins, 

anti-phagocytic factors, proteases, resistance to the bactericidal effect of the 

complement, ability to sequester iron, penetrate epithelial cells, and survive and 

multiply in phagocytes, may have a role in the pathogenicity of fish-pathogenic 

CFLB (Dalsgaard, 1993). Occurrence of plasmids, as is observed in some strains of 

C. psychrophi/a (Holt, 1988), lipid component in the cell membrane, and lack of 

inflammatory reactions by the infected host are other factors which their role in 

virulence of CFLB require more investigation. The recognised virulence 

determinants for these organisms are presented in Table 1.4. 

Table 1.4. Virulence factors of the fish-pathogenic CFLB 

Determinants F. co!umnaris C. psvchrophi/a F. maritimus F. ovolvticus 
Adhesins 

Slime layer + 
Exotoxins 

Proteolytic enzymes + + + + 
Haemolysins + 
Bacteriocins + + 
Bacteriolysis + + + 
Proteases + + + 

Endotoxin (LPS) + + + 

Adapted from Dalsgaard (1993) 
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1.3. The Diseases 

1.3.1. Clinical signs and gross pathology 

Columnaris disease may occur clinically as peracute, acute or chronic disease, 

while other fish-pathogenic CFLB usually cause subacute to chronic disease. Strain 

virulence and water temperature are the most important factors in determining the 

course of infections. 

The type of lesions caused by F. columnaris varies depending on the fish 

species (Snieszko & Bullock, 1976). In young fish, gills are often the major site of 

colonisation and destruction by bacteria (Austin & Austin, 1987; 1993; Carson, 

1990). Congestion of blood vessels in gills and disassociation of the surface 

epithelium of the lamellae from the capillary bed result in scattered points of 

haemorrhage, as observed by Pacha and Ordal (1967). 

In adult fish, the lesions can be found on gills, skin and in musculature. Gills 

show yellow orange areas of necrosis (Austin & Austin, 1987; 1993) containing long 

parallel rows of the organisms (Carson, 1990) and sometimes the primary lamellae 

are destroyed entirely (Pacha & Ordal, 1970). Snieszko and Bullock (1976) believed 

that in scalefish such as Pacific salmonids, the disease often causes gill necrosis 

which commences in the filaments and extends to the arches. On the body, the 

grey-white or blue plaques of lesions, with active erythematous edges on the mid­

dorsal surface of the body (saddle back disease), are known as a major sign of 

infection (Langdon, 1988b; Carson, 1990). Other signs which may be found 

clinically are as follows (Austin & Austin , 1987, 1993; Thune et al., 1993, 

Wakabayashi, 1993): 

(1) Appearance of white spots on the head, gills, fin or body. 

(2) Swarms of bacteria covering the lesions with a yellowish-white mucoid 

exudate resembling cotton wool. 

(3) Destruction of tissues between fin rays, or complete loss of rays. 

(4) Appearance of large lesions (3-4 cm in diameter) on the body and exposure 

of the underlying musculature. 

(5) Oral lesions with extensive degeneration of the oral cavity and gills. 
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In scaleless fish, such as catfish (lctalurus sp.) small-spherical lesions 

containing grey-blue necrotic centres with red margins and surrounded by a ring of 

inflamed skin may be found (Snieszko & Bullock, 1976). 

It is probable that the disease develops as a systemic infection through 

external skin or gill damage (Wood, 1968; 1974; Wolke, 1975; Wakabayashi, 1991; 

1993). It would appear that the organisms enter the circulatory system through 

external lesions which, in themselves would not directly cause death. The internal 

gross pathology in salmonids is limited to glomerular lesions in kidney tissue 

(Bullock et al., 1986). In channel catfish (/. punctatus), swelling of the trunk kidney 

occurs in some cases of systemic columnaris disease, but gross internal signs are 

often lacking (Hawke & Thune, 1992). 

Usually, death occurs due to ulceration in the muscles, which leads to 

osmoregulatory failure or severe gill epithelial destruction (Langdon, 1988b), which 

interferes with oxygen supply with the resultant increase in opercular activity. 

The signs of cold-water disease are usually like those of superficial 

columnaris disease, although it occurs as a systemic disease in advanced stages 

(Ferguson, 1988; Bruno, 1992). Infection may appear as cutaneous ulcers on the 

peduncle region in older fish and ulceration of the yolk sac in fry (Langdon, 1988b). 

Saddle-like lesions near the dorsal fin consist of multitudes of bacteria (Austin & 

Austin, 1987; 1993). Sometimes lesions, associate with caudal peduncle or fins, 

may lead to exposure of the spine (Reddacliff, 1988). The chronic infection causes 

hyperplasia of skin and fins which can be similar to papillomatosis (Ferguson, 1988). 

Weakness, anorexia, melanosis, exophthalmia, reddening of the vent area and 

occasional raised epidermal lesions, spleen hypertrophy, haemorrhaging and 

discolouration of liver, swollen and greyish kidney with haemorrhaging of posterior 

and anterior parts, swelling of abdomen, accumulation of ascites in the peritoneal 

cavity and severe anaemia are associated with rainbow trout fry syndrome caused 

by C. psychrophila in Europe (Bernardet et al., 1988; Austin, 1992; Bruno, 1 ~92; 

Rangdale et al., 1993). Ataxia, spiral swimming behaviour along the longitudinal 

axis, loss of equilibrium, remaining motionless on the side at the water surface, 
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dorsal swelling posterier to the skull ane dark pigmentation on either the right or left 

longitudinal half of the body were reported from underyearling coho salmon, 

rainbow trout and steelhead trout which were affected by C. psychrophila at 

hatcheries in Washington and Oregon, USA (Kent et al., 1989). Recently C. 

psychrophila strains were isolated from eel and cyprinids with skin lesions and 

acute septicaemia in Germany (Lehmann et al., 1991 ). 

Thirteen isolates of C. aquatilis were recovered from the gills of diseased 

hatchery-reared salmon, suckers and trout in Michigan, USA, but it could no be 

demonstrated that this organism was capable of producing the observed disease 

(Strohl & Tait, 1978). This organism is thought to cause swollen gill lamellae, 

clubbing and gill-rot in the host (Austin & Austin, 1987; 1993). 

The clinical observations of C. johnsonae infection in barramundi are similar 

to those of columnaris disease, with posterior superficial skin lesions extended 

somewhat to the anterior body, pectoral fins and lower jaws (Carson et al., 1993). 

In a freshwater environment fish infected by freshwater species of 

pathogenic CFLB are unable to absorb salts actively through damaged gills. This 

osmoregulatory imbalance and blocked respiration r:nay cause the death of affected 

animals. Ulceration of the skin also interrupts normal osmoregulation with the result 

that infected animals become overhydrated. Blood electrolyte concentrations 

change and death can follow. 

Infections associated with marine Flexibacter species are usually similar to 

those of other CFLB. In red and black sea bream infection by F. maritimus caused 

mouth erosion, frayed fins and tail-rot with a pale yellow appearance leading to 

ulcers particularly in young animals (Hikida et al., 1979; Wakabayashi et al., 1984) . 
. 

In adult fish an initial development of lesions, including grey-white cutaneous areas 

on the fins, head and trunk, has been reported (Austin & Austin, 1987, 1993). In 

Dover sole, slight blisters on the skin surface or dark areas between the caudal and 

marginal fins occur and lead to loss of the epithelial surface and disclose 

haemorrhagic dermal tissues. These are major clinical signs caused by marine 

Flexibacter infections (Bernardet et al., 1990). 
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In the marine environment, fish infected by F. maritimus lose cellular water 

through the eroded tissues and so become dehydrated. This dehydration causes 

the death of affected fish. Interference with the excretion of chloride and sodium 

ions through the affected gills may lead to osmoregulatory imbalance and 

exacerbate mortality levels. 

In general, CFLB invade the integument of fish and seldom affect host 

internal organs. Even so, in recent years, C. psychrophila has caused a systemic 

disease in rainbow trout and fingerlings in Europe (Santos et al., 1992; Rangdale et 

al., 1993; Wiklund et al., 1994). Also, an unusual systemic disease caused by a 

peviously undescribed CFLB has been reported as a causative agent of gill 

hyperplasia and generalised haemorrhagic septicaemia in reared turbot from 

Scotland (Mudarris & Austin, 1989; 1992). In addition a CFLB has been recently 

reported from the USA as a causative agent of salmonid stomatitis (Frelier et al., 

1994). 

1.3.2. Histopathology 

The pathology associated with columnaris disease consists of acute necrotizing 

loss of epidermis with ulceration which expands into the muscle in severe cases 

(Ferguson, 1989). Severe spongiosis (intercellular oedema) probably causes failure 

of cell-to-cell contact, resulting in the formation of vesicles or bullae which may 

enhance the loss of epidermis. 

Necrotic stomatitis, owing to columnaris-like infections, is often observed 

especially at warmer temperatures. This lesion, which is named cotton-wool mouth 

(cottonmouth) in aquarium species, is caused by F. columnaris and secondarily 

becomes mixed with fungal infections (Ferguson, 1989). 

Columnaris disease causes widespread gill necrosis, degeneration and 

necrosis of the pseudobranchial epithelium in yellow perch (Perea fluviatilis) and 

young cultured walleye (Stizostedion vitreum vitreum) (Ferguson, 1989). 

There is a remarkable lack of an inflammatory response in columnaris 

disease (Wolke, 1975; Morrison et al., 1981; Thune et al., 1993). Although, 

phagocytosis may be observed in early lesions, it is not apparent in advanced 
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stages of the infection (Snieszko & Bullock, 1976). There is a possibility that an 

early inflammatory response may occur that is subsequently destroyed by the 

action of proteolytic enzymes produced by the organism as the infection 

progresses, or the enzymes may act on the inflammatory response mediators at the 

site of infection to inhibit the chemotactic response of the inflammatory cells (Thune 

et al., 1993). 

There is little or no internal microscopic pathology or host inflammatory 

response associated with columnaris disease. Enlargement of Bowman's capsule 

and the appearance of an eosinophilic material surrounding the glomerular 

capillaries in the kidney of young salmon may be associated with the systemic 

infection (Pacha & Ordal, 1967). However, these reactions may be owing to 

osmoregulatory disturbances associated with damage to the gills. 

C. psychrophila causes an acute necrotizing dermatitis with epidermal 

hyperplasia in chronic cases (Ferguson, 1988; 1989). Subacute and chronic 

periostitis, osteitis, meningitis and ganglioneuritis containing mononuclear cells and 

polymorphonuclear leucocytes have been reported in salmonids including coho 

salmon, rainbow trout and steelhead trout with the causative agent being C. 

psychrophila (Kent et al., 1989). 

The following histopathologic changes are known in fish skin due to both F. 

columnaris and C. psychrophila infections (Ferguson, 1989): 

(1) Superficial dermal oedema. 

(2) Vascular dilation (sometimes haemorrhage). 

(3) Pavementing and emigration of leucocytes. 

(4) Rupture of the pigment cells with dispersion of granules. 

(5) Dermal oedema if the osmotic barriers are broken. 

(6) Severe necrosis with rapid sloughing of the epidermis. 

The histopathological characters due to C. johnsonae infection in 

barramundi are similar to those of columnaris disease, but the thinning of scales in 

varying degrees occurs (Carson et al., 1993) presumably because of the 

chitinobiase activity produced by C. johnsonae. 
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An inflammatory reaction has been decribed in sea-pen salmon smolts 

infected with a previously unrecognised CFLB (Frelier, et al., 1994). It consists of 

mononuclear and polymorphonuclear cells which, surround the underlying 

oedematous areas and extend to the underlying bone and osteonecrosis of the jaw 

bone. 

1.3.3. Isolation and identification of causative organisms 

CFLB, especially the fish pathogenic species, can be isolated on low-nutrient media 

incubated at 10-25°C for a few days up to two weeks (Austin & Austin, 1993). Many 

useful media have been formulated to isolate these organisms from the tissues of 

diseased fish. Some of these media are listed in Table 1 within Appendix I. 

Cytophaga agar (Anacker & Ordal's medium, 1959a) is the most commonly used 

medium for this purpose. it is a selective medium when it contains antibiotic 

additives including one or more of neomycin (5 µg/ml), polymyxin B (10-200 IU/ml), 

erythromycin (10 µg/ml), oxolinic acid (2 µg/ml) (for isolation of F. maritimus) 

(Carson, 1990; Hawke & Thune, 1992). The medium must be made up with at least 

30% sterile seawater for cultivation of F. maritimus because this species does not 

grow in the presence of NaCl alone. 

Since the isolation and subcultivation of C. psychrophila in a Cytophaga 

medium is sometimes unsuccessful (Lorenzen, 1993), the medium has been 

improved by increasing the amount of tryptone to 0.5% (Bernardet & Grimont, 

1989), adding 10% foetal calf serum (Obach & Baudin-Laurencin, 1991) or 5% new­

born calf serum (Lorenzen & Karas, 1992; Lorenzen, 1993). The brand of beef 

extract in the medium also seems to be important for the growth of this bacterium 

as Lorenzen (1993) observed that the organism did not grow in the medium 

containing Oxoid beef extract and/or Gibco products, while it grew well in Difeo 

products, which is a semifluid preparation. The author's own expe~ience shows that 

the primary and subculture of Australian isolates of C. psychrophila are achieved in 

each of Cytophaga agar/broth using BBL beef extract, modified Cytophaga agar 

containing 0.5% tryptone, tryptone yeast-extract salts (TYES) (Holt et al., 1993) or 

Sheih's medium (Song et al., 1988). The effects of medium composition on the 
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growth of some isolates of C. psychrophila and F. columnaris has been recently 

studied by Cipriano and Teska (1994), and none of the media enhanced the growth. 

A presumptive identification can be made from wet preparations of infected 

material and examining microscopically for the presence of filamentous bacterial 

rods. Austin and Austin (1993) believe that an effective diagnosis is best achieved 

by isolation in pure culture, followed by biochemical verification (e.g. Wakabayashi 

et al., 1986; Reichenbach, 1989; Bernardet et al., 1990; Austin & Austin, 1993; Holt 

et al., 1994). However, isolation of these organisms in culture media is not always 

successful. 

Serological tests are becoming more popular. Cell-agglutination reactions 

may be an effective test for differentiating C. psychrophila, F. columnaris and F. 

maritimus from other myxobacteria (Pacha, 1968; Morrison et al., 1981; 

Wakabayashi et al., 1984). However, some Australian isolates of F. columnaris and 

F. maritimus produce rough suspensions, and it is not possible to undertake 

serological tests which require homogeneous suspensions (Carson, pers comm, 

1993). Therefore, immunofluorescent antibody tests (IFAT) are required for 

serological assays of these isolates. Griffin (1987) developed an IFAT procedure for 

identification of F. columnaris. Baxa et al. (1988b) found IFAT to be a suitable 

technique for F. maritimus diagnosis. Lorenzen and Karas (1992) developed a 

method based on immunofluorescene analysis of spleen imprints from diseased 

rainbow trout and utilized rabbit antiserum prepared against C. psychrophila. 

1.3.4. Control and treatment 

It is important to avoid every condition· which causes stress to fish. Higher and lower 

temperature than optimal are the most important stressors which affect the 

incidence of columnaris and peduncle diseases, respectively. Therefore, it is 

advisable to decrease the temperature in order to control columnaris disease and to 

increase the temperature for the control of peduncle disease. In addition, increased 

dissolved oxygen, a suitable pH, reduced organic substances, the avoidance of 

unnecessary handling and overcrowding are all recommended. The use of a layer 

of sand on the bottom of tanks reduces the number of bacterial cells on the surface 

-20-



of the skin or fin through the abrasive action of the sand in removing the cells and 

reducing the stress level in flatfish (McVicar & White, 1981/1982; McVicar, 1986). 

Such a device is, however, applicable only to flatfish species because their external 

topographical structure is different from other species. Therefore, abrasions, due to 

sand, may sometimes encourage the establishment of infection because of scale 

loss and "port-entry" induced on the fish skin through the abrasion on sand. 

At present there is no commercially available vaccine against CFLB. So far 

only a few studies have been und~rtaken to investigate the immunity against these 

infections in fish. Daily administration of vaccine of heat-killed F. columnaris cells in 

feed for seven weeks reduced mortalities down from 48-8% in three-month-old coho 

salmon with an antibody production of 1 :168 comparable with 1 :17 for contror 

survivors (Fujihara & Nakatani, 1971 ). A study of antigenicity of F. columnaris in 

channel catfish resulted in an agglutination antibody with a mean titre of 1 :4337 

when fish were injected either subcutaneously or intramuscularly by heat­

inactivated F. columnaris cells (Schachte & Mora, 1973).The protective results of 

vaccination were inconclusive. Oral immunisation (1 O mg/g feed of the formalin­

killed F. columnaris cells) against columnaris disease resulted in 35% survival in 

vaccinated coho salmon one month post-immunisation compared with 100% 

mortality in the unvaccinated group (Ransom, 1975; cited by Newman, 1993). No 

protection was observed when vaccinated fish were challenged with the pathogen 

three months following vaccination. Field studies by Schachte (1978) and Moore et 

al. (1990) revealed the feasibility of vaccination of channel catfish against 

columnaris disease. Immersion vaccination against F. columnaris resulted in 59.3-

89.8% protection in vaccinated rainbow trout compared with no protection in 

unvaccinated fish (Song, 1986, cited by Newman, 1993). 

Vaccination of yearling coho salmon against C. psychrophila infection 

resulted in complete protection by intraperitoneal injection of the vaccine compared 

with 43% loss in control groups (Holt, 1988; Holt et al., 1993). Vaccination by 

immersion gave a reduced level of protection (11 %) compared with the 

intraperitoneal route. The efficacy of a heat-inactivated strain of C. psychrophila 
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vaccine which has been tested in rainbow trout resulted in 80% protection by 

intraperitoneal injection of the vaccine compared with no protection for control 

groups (Obach & Baudin-Laurencin, 1991 ). Bath vaccination provided a lower, but 

still significant, protection in fish compared with controls. 

In a study by Carson et al. (1993), no protection was observed for 

immersion vaccination of rainbow trout and Atlantic salmon (Salmo salary against F. 

maritimus infection. In a later attempt only immersion vaccination gave a low to 

moderate level of protection in Atlantic salmon against the infection (Carson et al., 

1994). 

It is notable that a suitable vaccine against CFLB should be able to protect 

the outside surface of fish. This is so because these organisms usually give rise to 

superficial infections rather than systemic ones. 

Since these pathogens primarily affect external surfaces of fish, chemicals 

for treatment are often added directly to the water as a dip, flush, bath or indefinitely 

prolonged treatment. Field observations show that oxolinic acid and oxytetracycline 

could be more useful than other antibiotics to treat columnaris disease (Austin & 

Austin, 1993; Munday, 1988; 1994; Carson, 1990; Holt et al., 1993). Sulphonamides 

such as sulfisoxazole and sulphadimidine are known as successful drugs for the 

treatment of C. psychrophila and other Cytophaga spp. (Munday, 1988; 

Reddacliff, 1988). Although egg disinfection by organic iodine compounds (Amend, 

1974) against C. psychrophila was recommended by Holt (1972) and Schachte 

(1983), Holt et al. (1993) indicated that iodophor treatment of eggs did not prevent 

the disease in the resultant fry. F. maritimus infection may be treated by 

oxytetracycline, Tribrissen, trimethoprim and tiamulin (Carson, 1990; Wakabayashi, 

1993; Munday, 1994). Nalidixic acid, sulphonamides and tetracycline may be used 

for treatment of C. aquatilis (Austin & Austin, 1993). In Appendix I (Table 2) a list of· 

antimicrobial agents and chemical substances which have been utilized against fish 

pathogenic CFLB so far is provided. 
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1.4. Predisposing factors 

As mentioned earlier, fluctuation in water temperature plays a significant role on the 

progress of infections caused by CFLB in particular C. psychrophila and F. 

columnaris (Fish & Rucker, 1943; Colgrove & Wood, 1966; Pacha & Ordal, 1970; 

Holt et al., 1975; 1989; 1993; Austin & Austin, 1993; Wakabayashi, 1993). In 

addition to water temperature, the severity of the infections may also be influenced 

by a multiplicity of other environmental stressors and host-related factors. 

An imbalance of water quality, such as pH changes, low levels of dissolved 

oxygen, unfavorable changes in nitrite and ammonia levels, causes stress in fish, 

thus, increasing the susceptibility of fish to these organisms. Observations by Chen 

et al. (1982) showed the highest mortality levels due to F. columnaris infection in eel 

were associated with stagnant water. As expected, the lowest losses occurred in 

running water. There was an inverse correlation between the dissolved oxygen level 

and the mortality rate. A condition of concomitant rise in the level of ammonia 

resulted in the enhancing of the mortality rate, even in the presence of adequate 

dissolved oxygen. Obviously a reduction in oxygen level or an increase in ammonia 

causes severe stress in fish and increases the host's susceptibility to infection. 

A spontaneous infection of F. columnaris can be induced in channel catfish 

when fish are exposed to 5 mg/I nitrite for seven days (Hanson & Grizzle, 1985). 

Arsenic increased the susceptibility of striped bass (Marone saxatilis) to F. 

columnaris, when fish were exposed to four and 10 times the average 

environmental concentrations of 1-3 µg/1 of this heavy metal (MacFarlane et al., 

1986). Nitrite or heavy metals can depress the immunity of fish so that the host's 

susceptibility to pathogens is increased (Rougier et al., 1994). 

Work by Chowdhury and Wakabayashi (1988b) showed that infectivity of F. 

columnaris in loach (weatherfish) and common carp was established in water 

supplemented with four cations (Na+, K+, Mg2+ and Ca2+) and in tap water in 

contrast with no infection in distilled water. Although distilled water is more stressful 

to fish than tap water or supplemented water because of osmoregulatory difficulty in 

distilled water, distilled water also lacks substances which are required for bacterial 
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suNival and growth. The progress of infection in individual salt solutions was also 

lower than in those of either the supplemented water or tap water. The presence of 

fish meal in water also seems to enhance the growth and infectivity of some of 

these pathogens as the study by Sugimoto et al. (1981) showed that infectivity due 

to F. columnaris in juvenile eels (Anguilla japonica) increased in the presence of the 

particulate feed matter compared with no effect in control fish. 

Other factors such as crowding of fish, handling and physical injury also 

enhance the susceptibiltiy of fish to these infections. For instance, obseNations by 

Wakabayashi and Egusa (1972) suggest that the higher initial density of F. 

columnaris or the concentration of fish not only cause more infection in 

weatherfish, but also that mortality commenced earlier (Table 1.5). Similarly, no 

infection or mortality occurred in a trough (30.5 x 30.5 x 305 cm) containing 50 

juvenile chinook salmon when they were challenged with F. co/umnaris at 17.5-

21°C, while a mortality level of 1.3%, 10.2% and 12% occurred in troughs 

containing 150, 450 and 500-fish, respectively (Becker & Fujihara, 1978). 

The effect of crowding may not only decrease the resistance of fish to the 

organisms through depressing the host immune system (Wakabayashi, 1991 ), but it 

also increases the chances of the bacteria meeting the host. 

Table 1 .5. Effects of stocking density of fish and bacterial concentration of F. columnaris on 

columnaris disease of weatherfish at 22°C and 26 °C. 

Number of Number of dead fish and lethal time (day) 
fish* 

Initial density of F. columnaris (CFU/ml) 
O** 101 103 104 105 106 

1 0 0 0 0 1 (2) 0 
1 0 0 1 (2) - 1 (2) -
5 0 0 5 (3) 1 (4) 5 (1-2) 5 (1-2) 

10 0 6 (4) 10(2-4) 10 (3-4) 10 (1-2) 10 (1-2) 

Fish of average weight 10 g were maintained in glass jars containing 3 I of bacterial 

suspension prepared in sterile water with aeration. **Control group. Modified from 

Wakabayashi (1991 ). 

1.5. Conclusion 

Despite extensive bacteriological data on several species of CFLB, many of the 

others are poorly characterised. Also, taxonomy of this group of fish pathogens is 
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still not clear. Recent reports of new species of this group as fish pathogens '" 

demands a clarification of the classification for CFLB. It is also difficult to ascertain 

whether the recovered isolates are pathogenic or not. For instance, isolates of C. 

aquatilis were recovered from salmon, suckers and trout (Strohl & Tait, 1978); and 

strains of C. johnsonae have been reported from diseased barramundi (Carson et 

al. 1993), but it is not clear that whether these organisms are true pathgens. 

Therefore, although the identification of CFLB is readily possible, their classitication 

is still the subject of debate. 

Although the pathogenesis of many infections in fish is still poorly 

understood, it has been suggested that the pathogenicity of CFLB can be explained 

by the release of powerful proteolytic enzymes by cell autolysis (e.g. Austin & 

Austin, 1993, Thune et al., 1993). Release of such enzymes would explain the 

histolysis and necrosis that are characteristic of CFLB infections. Even so, the exact 

mechanisms of pathogenicity of these organisms are poorly understood (Dalsgaard, 

1993). Although, specific adhesins have not been described, many of CFLB are 

surrounded by a thin slime layer that attaches the cells to a surface and is actively 

involved in the process of gliding motility (Dalsgaard, 1993). Mechanisms of gliding 

motility with predictive role in the bacterial pathogenesis, however, is not 

understood in this group, although Beatson and Marshall (1994) recently suggested 

a common helical mechanism for gliding motility of some gliding bacteria. 

There is a variation of virulence between species and even among strains of 

the one species, especially F. columnaris and C. psychrophila. Many of pathological 

characters due to CFLB are similar both macroscopically and microscopically. Even 

so, there are some significant differences in this regard which make the type of 

infections distinguishable. For instance, C. johnsonae attacks scales, while other 

species do not probably because of the lack of chitinobiase (Bernardet & Grimont, 

1989; Carson et al., 1993). In addition, unusual forms of columnaris disease caused 

by an atypical F. columnaris have been reported in rainbow trout (Backmann & 

Speare, 1989). The affected fish showed focally severe destruction of areas of the 

ventral body wall leading to herniation of internal organs and lesions closely 
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resembled those of furunculosis. Also, an unusual CFLB infection caused gill 

hyperplasia and systemic haemorrhagic septicaemia has been reported in turbot 

(Mudarris & Austin, 1989). 

Apart from fish, there are some reports indicating that CFLB may affect 

other aquatic animals. For instance, Dungan et al. (1989) suggested that strains of 

a Cytophaga-like bacterium were the agents of a degenerative disease affecting 

juvenile cultured Pacific oysters ( Crassostrea gigas). 

Expression of infections by CFLB in fish is greatly influenced by 

predisposing factors especially fluctuations in water temperature, the presence 'at 

organic substances and stocking density. Parameters of water quality such as 

ammonia, nitrite, dissolved oxygen and pH, any break in external barriers such as 

scales and surface epithelial layers, handling and probably ultraviolet irradiation 

affect the course of infections by these organisms in aquatic animals, in particular 

fish. 
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General Introduction to Study 

From the Literature Review (Chapter I) it will be appreciated that the interactions 

between water parameters such as temperature, hardness and salinity greatly 

influence the pathogenicity of Cytophaga!Flexibacter-like bacteria (CFLB). Also, 

poor water quality and the presence of pollutants are likely to enhance these 

infections. Despite a significant increase in losses owing to these organisms in 

aquaculture, not enough attention has been paid to their pathophysiology and 

chemotherapy. This may be owing to the difficulties associated with the 

experimental reproduction of some of the infections and the fastidious cultural 

conditions required by these organisms (Vasquez-Branas, 1991; Toranzo & Barja, 

1993a) or it may be because these organisms have not attracted researchers until 

recent years, when there has been significant increase in their importance in fish 

medicine concomitant with the recent rapid growth in the aquaculture industry. 

During the last decade the intensive hatchery and extensive cage culture 

technology for breeding and rearing of a number of catadromous and anadromous 

species of fish in Australia have been associated with an increase in the number of 

CFLB infections (Schmidtke et al., 1991; Anderson & Norton, 1991; Carson et al., 

1993; Munday & Nakai, 1994; Schmidtke & Carson, 1995). In warm water culture, 

Cytophaga johnsonae and Flexibacter columnaris have been isolated from diseased 

barramundi in northern Australian freshwater impoundments. In some instances 

outbreaks have been associated with seasonal fluctuations in weather conditions 

leading to water temperature variations. In Tasmania, after the establishment of 

cage culture salmon id farming in 1985, an epizootic due to Flexibacter infection was 

implicated as a potential threat to the industry. Flexibacter maritimus then was 

identified as the causative agent of salmonid cutaneous erosion disease. So far F. 

maritimus has been recovered not only from commercially grown salmonids, 

Atlantic salmon and rainbow trout, but also from a number of captured species, 

including striped trumpeter (Latris lineata), greenback flounder (Rhombosolea 

tapirina) and yellow-eyed mullet (Aldrichetta forsten). More recently, another 
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freshwater species of CFLB, Cytophaga psychrophila, has been recovered from 

Atlantic salmon with ulcerated skin in some freshwater ponds (Schmidtke & Carson, 

in press). 

Usually, the pathogenic potential of a microorganism as the causative agent 

of a specific infection requires to be confirmed by evaluating the pathogenicity of the 

isolated organism in the appropriate host under laboratory conditions. This provides 

data which permits the potential importance of the disease to be assessed. This is 

even more relevant because of recent reports on "new" fish-pathogenic organisms 

which may confuse the differentiation between the pathogenic and non-pathogenic 

CFLB. Although comprehensive studies have been undertaken on the 

microbiological aspects of the causative organisms, there are minimal data 

concerning the pathogenesis of the diseases they produce. 

This work was initiated to provide a comparative study of the physiological 

requirements, pathogenesis and chemotherapy of selected Australian isolates of 

CFLB including C. johnsonae, C. psychrophila, F. columnaris and F. maritimus 

recovered from a number of tropical and coldwater fish. More attention has been 

paid to C. johnsonae and F. maritimus because of their roles as "new" fish 

pathogens. 

The effect of environmental variables (Chapter II) was an in vitro study to 

identify responses of these organisms to a variation in temperature, salinity and pH 

and discusses the practical implication of these findings, as fluctuations in 

environmental factors greatly influence infections by CFLB. 

Chapter Ill describes an in viva investigation of pathogenesis of infections 

due to these organisms. The intention was to: 

(i) Evaluate susceptibility of a number of species of fish including barramundi, 

goldfish ( Carassius auratus), guppy (Poecilia reticulata) and rainbow trout to 

C. johnsonae and C. psychrophila infections, and to identify difficulties 

associated with experimental induction of infections by these isolates. 

(ii) Assess susceptibility of barramundi to F. columnaris and compare it with a 

known susceptible species, namely goldfish. 
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0-, 

(iii) Study natural and experimental disease caused by F. maritimus in a number 

of commercial and captured species including Atlantic salmon, rainbow trout, 

greenback flounder, striped trumpeter and yellow-eyed mullet. 

In Chapter IV an in vitro study was undertaken to assess the antibacterial 

activity of skin mucus of a number of species of naive fish against the causative 

agents. The aim was to identify that there was interaction between these organisms 

with fish surfaces (skin mucus), which is the first line of non-specific defence against 

the pathogens. 

Chapter V describes the in vitro and an in viva studies of chemotherapy of 

these infections. In the in vitro study, the minimum inhibitory concentrations of five 

commonly recommended antimicrobial agents were determined. The serum or 

mucus levels for some of these compounds were also determined in barramundi, 

Atlantic salmon and rainbow trout using different dosages and different routes of 

administration. These data were then correlated to the in viva efficacy of selected 

compounds to validate the clinical efficacy of the antimicrobial agents for treatment 

of CFLB. 

A general discussion and concluding remarks on the study are provided in 

Chapter VI. 
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CHAPTER II 

The Effect of Environmental Variables on the Growth of 

Cytophaga/Flexibacter-like Bacteria (CFLB) Pathogenic to Fish 

Introduction 

The activities of microorganisms are greatly affected by the chemical and physical 

conditions of their environment. These environmental influences help investigators to 

explain the distribution of microorganisms in nature and make it possible for them to 

devise methods for controlling microbial activities, and to destroy undesirable 

organisms such as pathogens. Bacteria respond differently to environmental factors 

such as temperature. In other words, an environmental condition, e.g. a particular 

temperature, may be suitable for one organism while it is harmful to another, 

although bacteria can tolerate some adverse conditions under which they are unable 

to grow, but can still survive. Researchers therefore, need to distinguish between the 

effects of environmental conditions on the viability of an organism and effects on 

growth, differentiation, reproduction and pathogenicity. 

Temperature, salinity and the pH of water are three of the important 

environmental factors influencing the growth, survival and pathogenicity of fish 

pathogenic Cytophaga/Flexibacter-like bacteria (CFLB) in aquatic environments (e.g. 

Fijan, 1968; Becker & Fujihara, 1978; Holt et al., 1975; 1989; 1993; Chowdhury & 

Wakabayashi, 1988a; 1988b; 1991; Wakabayashi, 1991; 1993). These organisms 

are mesophiles, often with a strong psychrotrophic tendency. Usually soil and 

marine species of these organisms have an optimum temperature between 30 and 

35°C, while the freshwater species show a considerably lower temperature optimum, 

usually between 20 and 25°C (e.g. Stanier, 194.1; Veldkamp, 1961; Lewin & 

Lounsbery, 1969; Oyaizu et al., 1982). The maximum temperature for growth of 

these bacteria is generally below 40°C and thermal death occurs at about this 

temperature. For instance, investigations on a collection of species of CFLB found 
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that the thermal death point occurred at 48 and 50°C after 10 and four minutes, 

respectively (Warke & Dahala, 1966; Reichenbach, 1989). Many strains of this group 

grow fairly well at 30°C when kept on agar plates, but when they are grown in liquid 

media, they prefer lower temperatures. Furthermore, it is possible to have a wide 

temperature range for near optimal growth. For example, one strain of Cytophaga 

johnsonae has a range of 22-30°C for near optimal growth (Reichardt & Morita, 

1982b) . 

Organisms have a pH range within which growth is possible, and usually 

have a well defined pH optimum for best growth. Most natural environments have pH 

values between 5 and 9, and organisms with optima in this range are common 

(Brock & Madigan, 1991 ). Most bacteria grow best at neutral pH, although there are 

some species of bacteria which require particular acidic or alkaline conditions. The 

optimal pH for CFLB is around 7.0 and usually no growth occurs above pH 8-9 or 

below 5.5 (Reichenbach, 1989). 

Other factors of water quality such as salinity and hardness could affect the 

survival and growth rate of fish pathogenic CFLB. For example, Fijan (1968) 

indicated that F. columnaris could live for long periods in very hard water with high 

organic matter content at 25°C, while the survival time of the organism decreased 

significantly in water with a pH of 6. He also suggested that soft water of about 1 O 

ppm CaC03 , particularly when acidic or with low organic matter content, was unable 

to provide a proper environment for the organism's survival. Another trial by 

Wakabayashi and Egusa (1972) showed that F. columnaris could survive for a long 

time in autoclaved tap water containing 2.2% Ca2+ and 1.4% Mg2+ at pH 8. The 

survival of this organism was also studied in a variety of waters containing different 

concentrations of Na+, K+, Ca2+ and Mg2+ (Chowdhury & Wakabayashi, 1988a). It 

was found that the bacterium could survive for the longest period in water with 0.03 

% NaCl, 0.01 %KCI, 0.002% CaCl2.H20 and 0.004% MgCl2, while the survival of the 

organism in water containing the salts at 10 times or greater concentrations was 

significantly reduced. Chowdhury & Wakabayashi {1990b) demonstrated that some 

strains of F. columnaris could survive for above 10 days in tap water and diluted sea 
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water containing 0.5% NaCl, while total loss of viability occurred within three days in 

water containing 0.5% NaCl and no other salts. Results of these findings show that 

the presence of other components such as Ca, Mg, K and Na ions may augment the 

stabilisation of the freshwater CFLB in low salinity conditions or hard water resulting 

in long-term survival. 

Therefore, environmental factors are of crucial importance in the expression 

of the pathogenic potentials of disease-producing microorganisms, particularly in the 

aquatic environment where both the host and the pathogen are greatly influenced by 

fluctuations of ambient water conditions. The present study was undertaken to 

investigate the effects of variations in temperature, salinity and pH on the in vitro 

growth of four species of fish-pathogenic CFLB, and it discusses the practical 

implication of these findings. 

Materials and Methods 

Materials 

1. Bacteria 

Flexibacter maritimus 89/4762, Cytophaga psychrophila 91/4043-17, Cytophaga 

johnsonae 91/0262-10, (Department of Primary Industry and Fisheries, Tasmania) 

and Flexibacter columnaris 1468 (Animal Health Laboratory, Department of 

Agriculture, Western Australia} were used in this study. The first two were isolated 

in Tasmania, Australia from a case of salmonid cutaneous erosion disease and 

from fin-rot in Atlantic salmon smolts, respectively (Carson, 1990; 1992; Schmidtke 

& Carson, in press). The latter two have been reported as a putative agent of an 

erosive skin disease and of columnaris disease, respectively of reared juvenile 

barramundi in the Northern Territory and Western Australia (Carson et al., 1993; C. 

Mifsud, pers comm, 1993). 

2. Media 

Marine Ordal broth (MOB) (Anacker & Ordal, 1959a) containing tryptone 0.05% (w/v) 

(Difeo, Detroit, Michigan, USA), yeast extract 0.05% (w/v) (BBL, Becton Dickinson 

Cockeysville, MD, USA), sodium acetate hydrated (Univar) 0.02% (w/v) (Ajax 
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Chemicals) and beef extract 0.02% (w/v) (BBL) prepared in natural seawater was 

used for the culture of F. maritimus. The medium was autoclaved at 121°C for 15 

minutes, held for 24 hours and then filtered (0.22 µm Millipore filter) to remove the 

particulates precipitated from the sea water. Appropriate volumes were then placed 

in 70 or 200 ml sterilized rectangular culture bottles. For growing F. columnaris, C. 

johnsonae, and C. psychrophila, the medium was prepared in dechlorinated tap 

water (freshwater Ordal broth, FOB). 

Methods 

Frozen ampoules of F. maritimus and C. johnsonae, and lyophilised ampoules of F. 

columnaris and C. psychrophila were reconstituted and grown in marine Ordal's 

agar (MOA) or freshwater Ordal's agar (FOA) at 25 or 15°C for two to five days 

under aerobic conditions. Bacterial cultures were then subcultured in 50 ml MOB or 

FOB at 25 or 15°C for up to 48 hours. Following purification on MOA or FOA, 0.5 ml 

of the exponentially growing cultures of F. maritimus and C. johnsonae were 

inoculated into the culture bottles containing 50-55 ml fresh MOB or FOB. For other 

bacterial species, the FOB bottles were inoculated to give an optical density of 

0.030 at time zero. 

The bacterial growth was measured turbidmetrically at 550 nm with a 

Spectronic 200 spectrophotometer (Milton Roy Company). This was used because 

cells changed size during culture. The absorbance of F. maritimus and C. johnsonae 

were measured daily for nine days (temperature) and five days (pH and salinity). 

The absorbance of F. columnaris and C. psychrophila was measured for up to nine 

hours. The morphology, cell length, motility and contamination were checked by wet 

mount, modified Hucker's Gram stain (Hendrickson & Krenz, 1991) and culture using 

two random replicates. The organisms were inoculated in MOB or FOB and 

incubated at temperatures of 4, 8, 10, 15-16, 20, 25, 30, 35, 37-38 and 42°C (± 

0.5°C) with five replicates per temperature at pH 7.2 ± 0.2. The effect of pH was 

observed over the range 3 to 10 (± 0.1) at intervals of 0.4-0.7 with three or four 

replicates for each pH value at the optimum temperature determined in the first trial. 

NaOH or HCI (1 M) was used to adjust the pH of the broths. The fresh water broths 
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were buffered to each pH value with 0.1 M phosphate buffer. The bacteria were 

cultured at salinities of 0 to 3% NaCl at intervals of 0.3-0.5% with three or four 

replicates per salinity at optimum temperatures and pHs determined in the first and 

second trials. As well, F. maritimus was inoculated at 0, 10, 30, 70 and 100% 

natural sea water with 3 replicates each. Cultures of F. maritimus at 4 and 8°C were 

measured every second day for 22 days and those of C. psychrophila at 4°C were 

measured over 72 hours. 

To verify the survival of the organisms at low and high values of temperature, 

pH and salinity, samples of these cultures were subcultured on to MOA or FOA at 

optimum temperature, salinity and pH for up to 10 days following inoculation. 

The length of bacteria was measured using an ocular micrometer calibrated 

against a stage micrometer at x 40 magnification of phase contrast microscope. 

Doubling times for F. columnaris and C. psychrophila were calculated at 

different temperatures, salinities and pH values. The log of absorbance was plotted 

against time (hours) and the line of best fit was then computed by regression 

analysis. The doubling times for the organisms were then calculated according to the 

following formula (McMeekin et al., 1993): 

Generation time= log2/slope of steepest tangent of exponential growth phase 

Log2 = 0.301 

Results 

Trial 1. Temperature 

The results of growth at different temperatures are shown in Figures 2.1 to 2.4. 

(Details in Tables 1 to 4 in Appendix II). Where growth is shown to be zero, this was 

after two to three weeks of incubation. 

F. maritimus grew at temperatures ranging between 8 and 35°C (Fig. 2.1 ). 

Up to six days the optimum temperature for growth was 30°C. The bacterium grew 

faster at high temperatures, e.g. 20-30°C, but after eight to nine days the 

absorbance of cultures decreased indicating a decrease in biomass. Subcultures 

taken from the cultures grown at 4°C were positive, while those of 37-38°C and 42°C 
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were negative (i.e. there was survival at 4°C, but not at 37-38 and 42°C). 

Microscopic observation showed gliding motility was present at temperatures 4-

350C, although it appeared that the bacteria were more motile at temperatures 16-

300C inclusive. 

C. johnsonae grew at temperatures ranging between 4 and 35°C (Fig. 2.2). 

After eight days inoculation, highest absorbance occurred in cultures incubated at 

20°C. At temperatures below 15°C the absorbance was still increasing on day nine. 

Maximum absorbance at other temperatures occurred on day seven, or earlier, and 

was less than the maximum seen for 20°C. Absorbance for all temperatures ;::: 15°C 

decreased with further incubation past the time of maximum absorbance, indicating 

a decrease in biomass. Growth rates for cultures held at 15-30°C were similar and 

higher than cultures held at lower temperatures. No growth occurred at ;::: 37°C. 

Subcultures of the samples grown at 37 and 42°C gave no growth. Observation of 

gliding motility indicated that the bacteria appeared to be more motile at 4-20°C than 

25-30°C. 

The relationship between temperature and the growth shows that on days 

eight to nine post-inoculation, the growth increased with an increase in temperature 

up to 25°C for F. maritimus and up to 20°c for C. johnsonae and, then, at higher 

temperatures it decreased (Fig. 2.5). While cells initially appeared to get longer, after 

six days cells in cultures at 30-35°C became shorter. This may explain the decrease 

in absorbance after eight days for these cultures. 

Growth of F. columnaris occurred at temperatures ranging between 15 and 

37°C (Fig. 2.3). The growth rate increased with an increase in temperature up to 

30°C and then it decreased at higher temperatures. C. psychrophila grew at 

temperatures ranging between 4 and 20°C with no growth at 25°C and above (Fig. 

2.4). The doubling time of F. columnaris was shortest (two hours) at 25-30°C and 

longest (about 4.6 hours) at 15°C, while that of C. psychrophila was 3.7 hours at 

20°C, 4.4 hours at 15°C and 34 hours at 4°C. Optimum, maximum and minimum 

temperatures for growth of F. co/umnaris were estimated to be 25-30°C, 37°C and 

about 13°C respectively, while those of C. psychrophila were estimated at 20°c 
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(optimum) and about 3°C (minimum), respectively (Fig. 2.5). Subcultures of F. 

columnaris taken from the cultures grown at 5-10°C were positive, while those at 

42°C were negative. Subcultures of C. psychrophi/a at~ 25°C were negative. 

Fig. 2.1. Comparison of growth of F. maritimus at different temperatures. 

(Mean± SE, n = 5) 
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Fig. 2.2. Comparison of growth of C. johnsonae at different temperatures. 
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Fig. 2.3. Comparison of growth rate of F. columnaris at different temperatures. 

(Mean ± SE, n = 5) 
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Fig. 2.5. Relationship between temperature and growth/growth rate of 

Cytophaga!Flexibacter. 

*The value for F. maritimus and C. johnsonae is based on absorbance units (eight to nine 

days post-incubation) and for other species is 1/generation time (h) (five to nine hours post­

incubation). (Mean± SE, n = 5) 
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The results of growth at pH values are shown in Figures 2.6 to 2.9 (Details in Tables 

5 to 8 in Appendix II). 

F. maritimus was able to grow at pHs between 6 to 8.6 (Fig. 2.6). No growth 

occurred at pHs ::; 5 or> 8.6.The fastest and maximum growth occurred at a pH 

value of 7.2, while the minimum growth occurred at pH 8.6. Furthermore, the cells of 

these cultures remained viable only at pH;::: 5. 

C. johnsonae grew at pHs ranging between 5 to 9 (Fig. 2.7). Following five 

days of inoculation, optimum growth occurred at pH 7.5. The maximum and 

minimum of growth occurred at pHs of 7.5 and 5, respectively. The bacterium grew 

better in alkaline conditions than it did at acidic pH (Fig. 2.10). Wet mount 

preparation indicated that the organism was alive (gliding motility) at pH values of 3, 

4, 9.5 and 10 five days following inoculation, but subcultures of these only grew from 

pH 4. Gram staining showed that the organism was elongated at all pH values, 

except for pHs 3-4 and 9.5-10. The length of the bacteria at pHs 3 and 4 was 

approximately the same as the original size, while the organisms appeared as short 
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rod to coccoid shapes at pHs of 9.5 and 10. Failure to elongate is further evidence 

of no growth occurring. 

The pH values ranging from 6 to 8 were found to be suitable for F. 

columnaris and C. psychrophila growth (Figs. 2.8 & 2.9). No growth was observed at 

pHs of::;; 5 and ~ 9. The growth of F. columnaris at pH 8.5 started a few hours post­

inoculation, while C. psychrophila did not grow at this pH. The shortest (about two 

hours) and longest (about three hours) generation times for F. columnaris were 

estimated to occur at pHs of 7 and 8.2, respectively (Fig. 2.1 O), while those of C. 

psychrophila were three and eight hours at pHs of 7-7.5 and 6, respectively. 

Subcultures taken from the cultures grown at pHs 3 and 4 resulted in no growth, 

while those of pHs 5, 9 and 9.5 were positive. 

Fig. 2.6. Comparison of growth of F. maritimus at different pH values and incubated at 30°C. 
(Mean ± SE, n = 3) 
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Fig. 2.7. Comparison of growth of C. johnsonae at different pH values and incubated at 20°C. 

(Mean± SE, n = 3) 
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Fig. 2.8. Comparison of growth rate of F. co!umnaris at different pH values and incubated at 

30°C. (Mean ±SE, n = 4) 
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Fig. 2.9. Comparison of growth rate of C. psychrophi/a at different pH values and 
incubated at 20°C. (Mean ± SE, n = 4) 
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. Trial 3. Salinity 

The growth at different salinities is shown in Figures 2.11 to 2.14 (Details in Tables 9 

to 13 in Appendix II). 

F. maritimus is a fastidious organism which requires seawater or a complex 

salt solution for growth. Even so, subcultures on MOA made with NaCl only 

indicated that F. maritimus remained viable in media containing NaCl at the 

concentrations of 1 to 2.5% for three days. No growth occurred at 0% and 10% 

natural sea water, while maximum and optimum growth occurred in media 

containing 100% sea water (Fig. 2.11 ). The results of subcultures of 0% and 10% 

sea water were positive. There is a coincidental relationship between the ratio of sea 

water provided in the media and the growth of the organism (Fig. 2.15). When the 

sea water percentage was increased, the growth increased. 

C. johnsonae was able to grow at salinities of 0% to 2% NaCl. No growth 

occurred at salinities above 2% NaCl (Fig. 2.12). The optimum growth occurred at 

0% salinity. There was an inverse relationship between salinity and growth. When 

salinity was increased, the growth decreased (Fig. 2.15). The bacteria were alive 

(gliding motility) at salinities of 2.5% and 3% NaCl, five days following inoculation. 

This was confirmed by subcultures on FOA. The Gram stain results indicated that, 

with an increase in the salinity up to 2% NaCl, the length of the cells appeared to 

decrease. However, the size of the cells at salinities of 2.5% and 3% was the same 

as the original inoculum. 

Optimum and minimum growth for F. columnaris and C. psychrophila were 

demonstrated to be 0% and 0.7% NaCl, respectively (Figs. 2.13 & 2.14). The 

doubling times for bacterial population of F. columnaris at salinities of 0% and 0.7% 

NaCl were estimated to be about two and 3.9 hours, respectively, while those of C. 

psychrophi/a were 3. 7 and 6.8 hours, respectively (Fig. 2.15). No growth was 

observed at salinities of 1 %, 1.5% and 2% NaCl. Subcultures taken from samples at 

1 % NaCl grew, while those from above 1 % NaCl did not. 
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Fig. 2.11. Comparison of growth of F. maritimus at different percentages of natural sea water 

and incubated at 30°C. (Mean± SE, n = 3). 
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Fig. 2.13. Comparison of growth rate of F. columnaris at different salinities (NaCl%) and 

incubated at 30°C. (Mean± SE, n = 4) 
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20°C. (Mean± SE, n = 4) 
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Fig. 2.15. Relationship between salinity and growth/growth rate of F/exibacter!Cytophaga 

(Mean± SE, n = 3-4). *The value for F. maritimus and C. johnsonae is based on absorbance 

units (five days post-incubation) and for other species is 1/generation time {h) (five to nine 

hours post-incubation). 
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These strains of Cytophaga/Flexibacter should be considered as psychrotrophic 

bacteria having an optima of 20-30°C, except for F. co/umnaris which had 

mesophilic tendencies (Fig. 2.5). This is supported by the fact that the organisms 

grow well at 20°C and by the minimum temperatures for growth being::;; 8°C except 

for F. columnaris in which the minimum temperature is >10°C. 

Although the Japanese and Scottish strains of F. maritimus grow at 

temperatures of 15-34°C (Wakabayashi et al., 1986; Austin & Austin, 1987; 

Bernardet & Grimont, 1989), this Australian strain is able to grow at 8 and 35°C. A 

temperature range from 4-35°C was found for C. johnsonae strain with an optimum 

of about 20°C. This concurs with Canadian strains of this organism obtained from 

diseased freshwater fish, moose dung and soil (Christensen, 1977b). 

Sanders and Fryer (1988) found that some strains of F. columnaris grew at 

temperatures from 10-37°C. The study of eight strains of this organism isolated in 

Europe, the USA and Japan revealed that growth occurred in Ordal broth at 10-33°C 

(Bernardet & Grimont, 1989; Wakabayashi, 1993). This Australian isolate of F. 

columnaris grew at temperature range from 10°c >to 37°C but not at 42°C. 
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Comparison of C. psychrophila strains obtained from different hosts or 

geographical locations shows that the activity of this bacterial species is restricted to 

cold to temperate geographical regions with a temperature range from about 4-20°C. 

Some isolates may have a scant growth at below 4°C or at 25°C (Pacha, 1968; 

Bernardet & Kerouault, 1989; Holt et al., 1989; 1993). In tryptone -yeast extract broth 

(TYEB; 0.4% tryptone and 0.04% yeast extract) a generation time of about two 

hours at 15°C, and 20 and 26 hours at 3°C were estimated for two strains (Holt et 

al., 1989), compared with a doubling time of three to four hours at 15-20°C and 34 

hours at 4°C in this study. This is probably because FOB has less nutrients than 

TYEB. Therefore, FOB is likely to give a better estimate of growth rate in the natural 

environment. Fry rainbow trout syndrome caused by C. psychrophila , has a higher 

incidence at lower temperatures (4-12°C), partly because the host's immune system 

is less responsive at this low temperature (see pathogenicity, Chapter I). 

These Australian isolates of F. maritimus and F. columnaris were not able to 

grow at 4 and 10°c respectively, even after three weeks incubation, while C. 

johnsonae and C. psychrophila started to grow at 4°C with 45 minutes and two 

days, respectively. The growth was slow at low temperatures of 4-15°C as 

psychrotrophic organisms do not grow very quickly at low temperatures, and it may 

take several weeks before visible growth is seen in culture media at 0°C (Brock & 

Madigan, 1991). 

Brock and Madigan (1991) found that the catalytic reactions of 

psychrotrophic bacteria are more active to some degree at low temperatures, with 

the result that their enzymes are inactivated at higher temperatures of 30-40°C. 

Efficient low temperature function is due to high content of unsaturated fatty acids in 

the psychrotrophs cell membrane so the membrane remains semifluid at low 

temperatures. This enables the organisms to concentrate effectively essential 

nutrients at low temperatures. A higher metabolic versatility of these organisms at 

lower temperatures was also obseNed by Reichardt & Morita (1982a) and 

Reichenbach ( 1989). 
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The decrease in absorbance at higher temperatures, 25 and 30°C after 

growth, shows that the bacteria have shrunk or possibly lysed, indicating that culture 

is in a death phase. The death phase of C. johnsonae occurred at temperatures of 

25 and 30°C six days following inoculation, while it occurred on day eight for F. 

maritimus. Death could be due to lack of nutrients and accumulation of waste 

products which cause stress to the bacteria. 

While C. johnsonae grew over the pH range of 5 to 9, F. maritimus and F. 

columnaris and C. psychrophila were restricted to pH 6 to 8.5. Therefore, none of 

the organisms are acidophilic or alkalinophilic. The strains of C. johnsonae studied 

by Christensen (1977b) were able to grow on skim milk acetate plates over a similar 

wide pH range from 5 to 10. Change in the pH of seawater may affect the 

concentrations of the seawater elements thus resulting in direct and indirect effects 

on the growth/survival of F. maritimus. In this study F. maritimus had a narrow range 

of pH for growth. 

Wakabayashi et al. (1986) pointed out that the Japanese strains of F. 

maritimus did not grow in cytophaga medium prepared in NaCl alone. They found 

that these strains required K+ and Na+ for growth. Also Ca2+ and Mg2+ enhanced 

growth, while S042- had a slightly inhibitory effect. These results show that this 

strain of F. maritimus required other salts than just NaCl, therefore, it will be 

restricted to an estuarine or marine environment. F. columnaris, C. psychrophila and 

C. johnsonae are considered to be freshwater organisms which do not require any 

NaCl for growth (Reichenbach, 1989) and the results here concur with this.These 

freshwater organisms grew at higher sodium chloride concentrations (up to 0.7% for 

F. columnaris and C. psychrophila and 2% for C. johnsonae), than the highest 

salinity concentrations quoted by Reichenbach (1989). Using TYEB all examined 

isolates of C. psychrophila were able to grow in the presence of 1 % NaCl (Holt et al., 

1993), while only some of those isolates which were tested in Cytophaga broth grew 

at 1 % NaCl (Pacha, 1968). However, the isolate examined here did not grow at 1 % 

NaCl even four weeks post-inoculation. 
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With regard to mariculture conditions, seawater usually has a pH of between 

7.5 and 8.5 and a salinity of 32 - 38%0 (Austin, 1988). Many freshwater environments 

usually have a pH ranging between 6 and 8 and a salinity up to 3%o. The results of 

in vitro culture predict that these organisms may grow/survive well in such marine or 

freshwater conditions. These strains were shown to grow at temperatures ranging 

from 4-35°C. Therefore, it appears that the organisms will be found in many aquatic 

environments of temperate or tropical regions. Consequently, understanding of the 

environmental characteristics observed in this study can be useful as a guideline to 

preventing the incidence of disease in fish farms. 

The environmental conditions, including temperatures of 15-30°C, pH values 

of 6 to 8 and 3.5% salinity, are significant physiological requirements which increase 

the growth of F. maritimus. The requirements for C. johnsonae consist of a 

temperature of 5-30°C, a pH of 5-9 and preferably no NaCl. The significant 

parameters for growth of F. columnaris and C. psychrophila consist of a 

temperature ranging from 15-35°C (for F. columnaris) and 4-20°C (for C. 

psychrophila ), pH values of 6 -8 and zero salinity. Therefore, within such conditions 

the possibility of the incidence of the disease will be increased, particularly if the host 

becomes stressed. Outside of these physiological requirements, the incidence of the 

disease is likely to be less because, according to this study, the bacteria grow more 

slowly or are unable to grow at all. Furthermore, a decrease in salinity (seawater 

dilution) to below 10%o for F. maritimus infection and an increase in salinity to 10-

15%0 for columnaris disease or C. johnsonae infection should be a reasonable 

approach for the control and treatment of these bacterial infections in fish. These 

methods are not only economic procedures, but are also relatively harmless to the 

environment. 
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CHAPTER 111 

In vivo Study of the Pathogenesis of Cytophaga!Flexibacter-like Bacteria 

(CFLB) Infections 
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3.1. Susceptibility of Some Freshwater Species of Fish to Infection by 

Cytophaga johnsonae and Cytophaga psychrophila 

Introduction 

There are very little data concerning the role of C. johnsonae as a pathogenic 

bacterium for fish. Christensen (1977a) isolated strains of C. johnsonae from 

diseased fish, probably rainbow trout, but the exact role of the bacterium was 

unknown. Some strains of this organism have been isolated from external lesions of 

fish including carp, eel, crucian carp and tench, where these organisms have acted as 

opportunistic pathogens (Lehmann et al., 1991 ). Also, Rintamaki and Bernardet 

(1993) reported some isolates of this organism from the head and tail lesions of 

Atlantic salmon in Finland. More direct evidence of pathogenicity has been provided 

by the isolate of this organism from juvenile barramundi with severe cutaneous 

erosion in Australia (Carson et al., 1993). However, neither these authors nor 

Lehmann et al., (1991) and Rintamaki and Bernardet (1993), have attempted to 

reproduce the various disease conditions which have been associated with C. 

johnsonae. 

The geographical distribution of C. psychrophila infection was thought to be 

limited to the North American continent until 1984, when the disease was recognised 

in rainbow trout in Europe (Wiklund et al., 1994). Since then, the disease has 

frequently been reported with the mortality of farmed fry and fingerling rainbow trout in 

several European countries (Bernardet, et al., 1988; Dalsgaard & H0rlyck, 1990; 

Lorenzen et al., 1991; Austin, 1992; Santos et al., 1992; Toranzo & Barja, 1993b; 

Wiklund et al., 1994). Recently, infection was also reported from coho salmon and 

Atlantic salmon in Japan and Australia, respectively (Wakabayashi et al., 1991; 

Wakabayashi & Toyama, 1993; Schmidtke & Carson, 1995). In Australia, the report 

of C. psychrophila infection was documented by recovering the organism from 

Atlantic salmon smolts of 45 g body weight at 5°C. The affected fish had fin and tail 

erosion with a mortality level of < 0.01 % week and no bacterium was recovered from 
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the internal organs. The pathogenesis of this southern hemisphere strain of C. 

psychrophila has not been evaluated so far. 

Therefore, the initial objective of this study was to assess the susceptibflity 

of a number of freshwater. species of fish to infections by C. johnsonae and C. 

psychrophila. 

Material and Methods 

1. Cultures 

Strain 91/0262-10 of C. johnsonae (Chapter II) was used for all experiments. The 

bacterium was passaged in goldfish ( Carassius auratus) and barramundi three times 

to ensure there was no loss of virulence. For passaging, fish were bathed in bacteria 

at a concentration of 1.0 x 1 o7 cells/ml for one hour or injected intraperitoneally with 

1.0 x 106 cells/fish. A lyophilised ampoule of C. psychrophila 91/4043-17 (Chapter 

II) with one passage (intraperitoneal injection with 5 x 106 cells/fish) in rainbow trout 

was used. In addition, the strain of C. johnsonae 3550-4 and one isolate of 

Cytophaga sp. (Fish Health Unit, Department of Primary Industry and Fisheries, 

DPIF) recovered from rainbow trout with tail-r<?t were included in this study. The 

cultures used for challenge were grown into 1 OOO or 2500 ml volumes of Cytophaga 

broth (CB) (Anacker & Ordal, 1959a) in 2 or 3 liter conical flasks. The cultures were 

grown with shaking using an orbital shaker (30-40 rpm), at 15 or 25°C for C. 

johnsonae and Cytophaga sp. (Table 3.1.1) and at 16°C for C. psychrophila (Table 

3.1.2) for up to 96 hours. The cells for challenge were counted on Cytophaga agar 

(CA) in triplicate using the spread plate method, and viable count were estimated as 

colony forming unit (CFU) per ml of water tank or fish (Table 3.1 ). 

2. Fish stocks 

Barramundi, goldfish and guppies (Poecilia reticulata) were maintained in aquaria and 

rainbow trout in a recirculation tank with biofiltration. Water was exchanged 5-

10%/day; pH ranged between 7.0-7.5. Juvenile barramundi, 2-5 g body weight 

were maintained at 28°C; goldfish 5-30 g body weight and guppies 2-5 g body 

weight were maintained at 15-20°C. Rainbow trout 4-9 g body weight (challeged 
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with C. psychrophila) and 100-300 g body weight (challenged with C. johnsonae) 

were maintained at 10 and 12-15°C, respectively. Also, goldfish 1-4 g body weight 

were maintained at 10°C. Fish were fed once daily using Tropical Fish Flakes 

(Wardley's) or Salmon Feed (Gibson's Feed Mill). 

3. Purification and confirmation of cultures prior to challenge 

The purification tests were wet mounts, Gram stains and subcultures on CA, blood 

agar and nutrient agar or CA only before inoculation. A specific C. johnsonae antisera 

was also prepared in a white New Zealand rabbit and slide agglutination test was 

then used as a confirmatory test. 

The preparation of anti-C. johnsonae antisera was as follows: 

A lyophilised ampoule of C. johnsonae 91/0262-10 was cultured on CA at 25°C for 

48 hours. Subcultures were introduced into CB at room temperature (20-22°C) for 48 

hours with gentle agitation. Bacterial cells were harvested (1500 g for 25 min). The 

cells were washed three times with sterile phosphate buffered saline (PBS, pH 7.3, 

0.1 M) and subcultures were made on blood agar and CA to a verify purity of the 

cells. The cells were inactivated by formalin 1.4 v/v% and left at 4°C for 24 hours. 

Inactivated cells were then washed once with sterile PBS and re-suspended in PBS 

to McFarland standard 1 (ea. 3 x 108 cells/ml). Incremental doses of 0.1 ml were given 

intravenously to a New Zealand white rabbit at two day intervals commencing at 0.1 

ml and finishing at 1 ml; repeat 1 ml doses were given after two and six days. 

Antibody titre was assessed by slide agglutination test; and the rabbit was 

exsanguinated five days later; blood was left at 4°C overnight and the antiserum 

separated and stored at -20°c. 

4. Challenge 

Challenge methods are given in Table 3.1. An unchallenge control group was used 

for each experiment. Control groups were kept in separated tanks provided in an 

isolated unit but in the same area. The fish were observed twice daily for 21 days 

and any moribund or dead fish removed. Following Gram smear preparations from 

lesions, all fish with skin or fin lesions were cultured on CA; the presence of C. 
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johnsonae or C. psychrophila was confirmed by the appearance of a characteristic 

cellular and colonial morphology and/ or by slide agglutination with rabbit raised 

polyclonal antiserum to C. johnsonae . 

Table 3.1. Methods used to assess the pathogenicity of C. johnsona e and C. psychrophila 
I 

3.1 .1 . C. johnsonae 

No. Method of challenge Cell no. as CFU Water Fish species No. fish 

temp. (°C) 

1 Bath 7.9 x 107/ml 25 Goldfish 20 (2)* 

2 Scarification & bath 5.2 x 107/ml 30 Goldfish, Guppy 20 (1) 

3 Scarifying - 15 Goldfish, Guppy, 5 (3) 

and swabbinq Rainbow trout 

4 I. M. injection 4.85 x1 06/f ish 25 Goldfish 20 (1) 

5 I. P. injection 1.4 x 104-1 .4 x 21 Goldfish 10 (2) 

1 o7/fish 

6 lmmunosuppression 1.4 x 107/ml 25 Guppy 20 (4) 

and bath 

7 Bath 9.7 x 107/ml 25 Barramundi 25 (2) 

8 Bath 9.4 x 107/ml 20 Barramundi 20 (2) 

An unchallenged control group was used for each method. Challenge time for bath method 

was 60 minutes except for methods 2 and 8 where fish were exposed to bacteria for 90 

minutes. 

(1) Following anaesthetization, a few scales were removed and the skin lightly 

scraped with a sterile scalpel blade. 

(2) Scarifications 10 - 20 x 5 - 10 mm were made on the sides of the fish. Rainbow trout 

and goldfish were also challenged with C. johnsonae 3550-4 and Cytophaga sp. 

(3) Scarifications were directly swabbed with plate cultures. Rainbow trout and goldfish 

were also challenged with C. johnsonae 3550-4 and Cytophaga sp. 

(4) Injections were given into the dorsal muscles. 

(5) Doses used for intraperitoneal injection were 1 .4 x 1 o4, 1 .4 x 1 o5, 1 .4 x 106 and 1.4 

x 107 CFU/fish. 

(6) A week prior to challenge, fish were intraperitoneally injected by a single dose (100 

µgig body weight) of the corticosteroid triamcinolone acetonide (TA) (Sigma), and an 

unchallenged control group treated with TA. 

(8) Fish were taken from 28°C, immediately challenged at 20°C and then held at this 

temperature. 

*Number of replicates in parentheses. 
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3.1.2. C. psychrophila 

No. Method of Cell no. as CFU Water Fish species* No. fish 

challenqe temp.(°C) 

1 Bath 1.2 x 107/ml 10 Goldfish 13 (2)** 

5.6 x 106/ml Rainbow trout 

2 Scarifying 1.2 x 107/ml 10 Goldfish 13 (2) 

and bath 5.6 x 106/ml Rainbow trout 

3 l.M. injection 5.8.x 106/fish 10 Goldfish 13 (2) 

Rainbow trout 

4 1.P. injection 5.8 x 1 o61fish 10 Goldfish 13 (2) 

Rainbow trout 

An unchallenged control group was used for each trial. 

(2) Scarifications (5-20 mm in length) were produced on the sides of the fish. 

* Goldfish 1-4 g body weight and rainbow trout 4-9 g body weight were used. **Number of 

replicates in parentheses. 

Results 

No significant lesions were detected in any fish other than barramundi and then only 

in the fish challenged after the water temperature was dropped rapidly from 28-20°C 

(Method 8, Table 3.1.1 ). The lesions induced were not as severe as those described 

by Carson et al. (1993) and consisted of fin rot, involving especially dorsal fins and 

tail (Fig. 3.1 ). Clinically, 45% of fish showed some lesions and exhibited a peculiar 

swimming behaviour with flexion of the body and rapid rippling of the fins with little 

actual movement of the fish. Mortality to 21 days after exposure was 25%, which 

were confirmed by Gram stain, plate culture or slide agglutination. 

The goldfish did not show any external signs or internal abnormality in this 

study. From Methods 2 and 3 (Table 3.1.1 ), some of the guppies (8 and 5 fish 

respectively) died within a few days following challenge. This was considered to be 

due to the effect of low or high temperatures, i.e. 15 and 30°C. The bacterial 

examinations were negative except for one (Method 2), which showed 

haemorrhages around the scar site, unilateral swimming, sluggishness and hovering 

below the surface of the water, as well as a positive result of the bacterial 

identification taken from this scar site. The rest did not show any signs. From rainbow 
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trout, only two of the fish infected with the isolate 3550-4 (Method 3) showed large 

lesions on the caudal site as well as tail rot. The wet mount and Gram stain 

preparations from these lesions showed the existence of ectoparasites including 

Trichodina and lchthyophthirius as well as the filamentous rod bacterium. Results of 

cultures and slide agglutination from these lesions were positive for C. johnsonae. 

Goldfish and rainbow trout exposed to C. psychrophila did not succumb to 

infection. In the other words, no mortality or lesions were attributable to C. 

psychrophila . Two rainbow trout (Method 2, Table 3.1.2) died 11 days post­

exposure with no sign of the infection. Gram smears and plate cultures obtained from 

external surfaces and internal organs (kidney and spleen) were negative for C. 

psychrophila. There were no mortalities or lesions recorded in the control group. 

Fig. 3.1. (A) Caudal, dorsal and ventral fin-rot in barramundi infected by C. johnsonae. (B) 

Control fish . 

Discussion 

Barramundi were infected by C. johnsonae 91 /0262-10 only when there was a 

sudden drop in water temperature from 28 to 20°c. Goldfish , guppy and rainbow 

trout were resistant to C. johnsonae. Goldfish and guppy were resistant even at 

high and low temperatures , i.e. 30 and 15°C. No effect was observed when guppy 
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were injected by the immunosuppressor (triamcinolone acetonide) and then 

challenged with the organism. The bacterium was also unable to affect rainqow trout 

even with the existence of large and deep scars on the saddle sites. The tail rot and 

caudal lesions observed on two dead fish were probably due to ectoparasites such 

as Trichodina and lchthyophthirius, although Gram stain preparation of the lesions 

revealed numerous C. johnsonae which was confirmed by lesion culture and slide 

agglutination test. Therefore, this species may be affected by this organism in the 

presence of predisposing factors such as high temperature and poor water quality. 

None of the rainbow trout or goldfish challenged with C. psychrophila were 

affected even three weeks post-challenge. This is not altogether surprising as this 

isolate was recovered from an instance of low grade fin and tail rot in stressed 

Atlantic salmon held at 5°C (Schmidtke & Carson, 1995). It is well-established that 

rainbow trout are susceptible to C. psychrophila (e.g. Lorenzen et al., 1991; Austin, 

1992; Wiklund et al., 1994) and, therefore, it is probable that the isolate used is of 

low virulence and only able to produce disease under conditions of stress for the 

host. Another possibility is that this strain may require a very low temperature, e.g. 

4-6°C, to invade the host as the natural infection was reported at 5°C (Schmidtke & 

Carson, 1995). However, the in vitro growth of the organism showed that it grows 

very slowly at low temperature, 4°C, compared with higher temperature (10-20°C) 

(Figs. 2.4 & 2.5, ,Chapter II). 

Many factors are involved in predisposing fish to infection with CFLB and, 

particularly, to the production of morbidity and mortality associated with these 

organisms. These factors include fluctuation in environmental temperature, 

overcrowding, immunity of previously exposed fish, species differences, age, size 

and condition of fish, differences in strain virulence of the pathogen and interaction 

with other fish diseases (e.g. Fujihara et al., 1971; Holt et al., 1975; 1989; 

Wakabayashi, 1991 ). 

The effect of temperature and crowding on the resistance or susceptibility to 

the diseases caused by these organisms have been previously discussed 

(Pathogenicity and Predisposing factors, Chapter I). The outbreak of natural disease 
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in barramundi described by Carson et al. (1993) was associated with a dramatic 

drop in water temperature from 35-27°C, a situation not dissimilar to that reported for 

temperature-mediated immunosuppression in channel catfish (Bly & Clem, 1991 ). It 

is probably pertinent that disease could be experimentally produced only in 

barramundi when they were subjected to a sudden drop in water temperature. 

The host non-specific factors such as lysozyme, complement, protease, 

agglutinins may affect the organisms during the challenge or later. This is 

investigated in Chapter IV. 

The age and size of fish are also related to the pathogenicity of these 

organisms. As an example, in a study by Fujihara et al. (1971) the older and larger 

rainbow trout and chinook salmon were less susceptible to F. columnaris compared 

to the younger and smaller fish. At similar weights of about 1.25 g, the rainbow trout 

were resistant to a virulent strain of the bacterium, whereas 90% of the chinook 

salmon were killed in less than 24 hours. The fish which were used in this study 

were at the age range of approximately eight months to two years. Such fish have 

already developed non-specific defence, such as thickening of epithelial layers of 

skin and scales, and specific immune system with the result that they become more 

resistant to infections compared to younger and smaller sizes. 

The interaction of these organisms with other fish diseases may also be 

important in pathogenicity of these organisms Fujihara et al. (1971 ). For example, fish 

ectoparasites or gas bubble disease may have a synergistic effect on the course of 

the infections and mortality caused by these organisms. The stress induced by the 

parasites or gas bubble disease, and particularly the presence of ruptured gas 

blisters or damage in the superficial epithelial layers of the epidermis by the parasites 

that open "portals of entry", makes the host particularly susceptible to these 

organisms as in this study it was observed in the case of the infected rainbow trout 

with the parasites. 

In addition, it is important to emphasise that for the experimental reproduction 

of a disease the use of a virulent bacterium is necessary. There is a wide variation in 

virulence among the strains of fish-pathogenic CFLB. For example, the virulence of 
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eight strains of F. columnaris obtained from different sources indicated high and 

moderate virulence strains caused 70-80% and 10-20% infection at the same 

concentration of 4-6 x 106 CFU/ml in loach (Misgurmus anguillicaudatus) after three 

and seven days, respectively post-challenge (Chowdhury, 1993). The low 

virulence strains affected the fish when the challenge doses were increased by 10-

100 times. The virulence of the organism was also studied by Pacha and Ordal 

(1963; 1970) using yearling sockeye or chinook salmon. High, moderate and 

intermediate strains resulted in 100% mortalities within 24, 24-48 and 48-96 hours 

respectively, while low virulence strains were only able to cause 100% mortality 

over 96 hours. 

The environment greatly influences the properties of a pathogen. For 

example, often one or more of the factors including temperature, growth rate, 

availability of nutrients, ionic strength/osmolarity, oxygen tension, pH and host 

factors, such as complement and phagocytes, are important in determining the 

expression of virulence. Therefore, the growth of a bacterium in a rich nutrient medium 

in the laboratory is very different from the bacterium in an infection (Paxton & 

Arbuthnott, 1990). Therefore, the virulence factor of these strains of C. johnsonae 

and C. psychrophila used in this study may be affected by in vitro conditions or 

during storage time. However, the organisms used in this study were passaged in 

the appropriate host prior to challenge in an attempt to restore any virulence 

properties. 

Carson et al. (1993) histopathologically demonstrated that fish scales were 

attacked by the C. johnsonae during a natural outbreak. This shows that chitinase 

and chtinobiase (Sundarraj & Bhat, 1971; 1972) may play an important role in the 

infections by C. johnsonae. None of these chitinobiases is reported for other fish­

pathogenic CFLB. There is also no data regarding the effects of other enzymes 

produced by C. johnsonae on the process of infections in fish. These enzymes 

include extracellular enzymes (endo- lyase (Sundarraj & Bhat, 1971; 1972), end-B­

(1-3)-glucanases, B-(1-6)-glucanases (Bacon et al., 1970) and endoenzyme, 

DNase, (Reichenbach, 1989). Unlike other chitinolytic bacteria some strains of C. 
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johnsonae do not liberate/release an extracellular chitinase, but need close contact 

with the chitin particles to hydrolyse them (Christensen, 1977a). 

These studies confirm C. johnsonae 91/0262-10 as a potential pathogen of 

barramundi. Also, they illustrate the difficulty of reproducing diseases caused by 

CFLB, and the need to use freshly-isolated cultures on fish exposed to 

environmental conditions similar to those encountered by fish in the wild or held under 

commercial aquaculture conditions (Ferguson et al., 1991 ). This is demonstrated 

experimentally in the following study where a fresh isolate (recently recovered) of F. 

columnaris was used. 
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3.2. A Study of the Pathogenesis of Diseases Produced by Two 

Flexibacter Species, Flexibacter maritimus and Flexibacter 

columnaris 

3.2.1. Introduction 

Since the original reports of erosive skin disease due to F. maritimus in Japanese 

aquaculture species such as red sea bream, black sea bream, rock bream 

( Oplegnathus fasciatus) and flounder (Paralichthus olivaceus) (Baxa et al., 1986; 

Wakabayashi et al., 1986), infections have been recorded in Dover sole (Bernardet 

et al., 1990), turbot (Alsina & Blanch, 1993) and more recently sea urchin 

(Pseudocentrotus depressus) (Hamaguchi et al., 1994) in the northern hemisphere. 

In the southern hemisphere, F. maritimus has been identified as a pathogen of 

sea-caged Atlantic salmon and rainbow trout and, recently, captured greenback 

flounder (Rhombosolea tapirina), striped trumpeter (Latris lineata), yellow-eyed mullet 

(Aldrichetta forsten) and black bream (Acanthopagrus butchen) in Australia 

(Schmidtke et al., 1991; B. Munday, pers comm). 

A low incidence of ulcerated skin lesions was observed in sea caged 

salmonids in Tasmania during the first few years following the industry's 

establishment in 1985. While these early cases were assumed caused by mixed 

infections of Flexibacter and Vibrio spp., the first severe outbreak of F. maritimus 

infection as a distinct entity occurred in the summer of 1988-89 (J. Handlinger & J. 

Carson, pers comm, 1994). During this episode, ulcerated fish were observed 

virtually simultaneously at most of the marine cage sites in south eastern Tasmania, 

with distances of up to 30 km between farms. There were also significant numbers of 

fish showing necrotic gill lesions, although these were more sporadic. The outbreak 

occurred during an extended period (months) of cloud-free days and water 

temperatures as high as 21°C. High levels of skin lesions and increased mortalities 

were observed in individual cages on most farms from late November, through 

December, and into January, with sporadic cases diagnosed thereafter into July. 
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During December virtually all cages on some farms were affected to a varying 

degree. F. maritimus was isolated from the surface of lesions in all groups of fish, with 

variable levels of mixed Vibrio spp. also being involved (J. Carson, pers comm, 

1993). 

In the following summer (1989-90), the incidence of the disease was much 

lower, with sporadic cases being linked to predisposing traumatic factors, including 

rough weather, poor handling and bird attack. The number and severity of outbreaks 

have continued to decline, probably owing to more sophisticated husbandry on the 

farms, improved treatment and milder weather patterns. Though morbidity varied 

between individual cages, post-smelts were much more severely affected than fish in 

their second summer at sea. The disease was also seen in rainbow trout at marine 

sites. 

The incidence of F. maritimus have also been recently observed by Dr Barry 

Munday and the author, not only in salmonids but also in a number of captured non­

salmonid species in the National Key Centre for Aquaculture, University of Tasmania. 

These consisted of greenback flounder, striped trumpeter, yellow-eyed mullet and 

black bream. Although a comprehensive and detailed bacteriological description of the 

causative agent has been provided by Schmidtke et al. (1991 ), minimum data is 

available on the pathogenesis of this disease in fish. 

The application of intensive hatchery and cage culture technology for 

breeding and rearing of barramundi has been associated with an increase in the 

number of diseases of this species in Australia (Anderson & Norton, 1991 ). A 

condition resembling columnaris disease has been reported in barramundi raised in 

freshwater, and the organism used in this study was isolated in 1993 ·(Anderson & 

Norton, 1991; C. Mifsud, pers comm, 1993). Water temperature at the time of 

outbreaks has ranged from 18-24°C, with only isolated cases occurring at above 

24°C. 

There were five initial objectives in this study. 

( 1) Study of pathology due to F. maritimus in natural infections. 
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(2) Successful experimental reproduction of the diseases conditions caused by F. 

maritimus and F. columnaris with the evaluation of a number of methods or 

conditions inclusive. 

(3) Assessment of fish susceptibility to the infections by these organisms using a 

number of species of fish. 

(4) Comparison of the macroscopic and microscopic pathology of the produced 

diseases by the organisms, and between naturally and experimentally 

infections of F. maritimus. 

(5) Comparison of virulence level and determination of the lethal concentration 

dose to achieve 50% (LC50) mortality in population with the consideration of 

the temporal pattern of the infections in fish. 
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Materials and Methods 

Materials 

3.2.2. Flexibacter maritimus 

3.2.2.1. Field Studies 

Natural infection of F. maritimus was studied in a number of commercial and captured 

species of fish. These included: 

1. Atlantic salmon and rainbow trout 

Fish and specimens from affected fish were submitted to the Fish Health Unit, DPIF 

from marine salmonid farms in southern Tasmania, especially during 1988 and 1989. 

Retrospective histopathological examination of selected samples was undertaken by 

the author in conjunction with Dr Judith Handlinger of the DPIF. Specimens were also 

collected from infected Atlantic salmon at the Key Centre for Aquaculture, University of 

Tasmania. 

2. Striped trumpeter 

Striped trumpeter were wild-caught broodfish. Most fish with lesions were recently 

captured, but affected fish were likely to be seen after any period of prolonged or 

traumatic handling. 

3. Greenback flounder 

Natural infection was noted in commercial batches of fish, especially when being 

weaned from live (artemia) to artificial diets. 

4. Yellow-eyed mullet 

Yellow-eyed mullet were 10-40 g body weight obtained by netting from the Brid 

River at Bridport, Tasmania. 

Methods 

Initial examination of lesions was by taking smears from the periphery of lesions and 

staining with Gram stain. Lesion materials were cultured on CA prepared in seawater 

(SCA); the presence of the bacteria was confirmed by the appearance of the 

characteristic cell morphology of the organisms and the colonial morphology on the 
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medium. Biochemical characteristics of the causative agent for the samples submitted 

to the DPIF was undertaken by Schmidtke et al. (1991 ). For the other samples, the 

confirmation of the causative agent was undertaken by a slide agglutination test 

using rabbit raised polyclonal antisera to F. maritimus made by Carson et al. (1992). 

Selected lesions including skin and gill tissues were collected and fixed in 10% 

formal saline or Bouin's fixative. After trimming, these blocks of tissue were embedded 

in paraffin wax, sectioned at 5 µm and stained with haematoxylin and eosin. 

Results 

Bacteriology 

In most instances, the infections were confirmed bacteriologically and some of these 

have been reported previously by Schmidtke et al. (1991 ). 

1. Salmonids 

1.1. Gross pathology 

Lesions occurring more commonly as circular shallow erosions were observed in 

salmonids most typically on the flank at the point of pectoral fish brushing, but less 

commonly on the dorsum, as "fin-rot" erosions, or as "gill-rot" erosions of the free 

ends of one to several primary lamellae which were reduced to white bare exposed 

cartilages. Skin erosions involving the head as the predominant lesion were seen on 

two occasions, in which irritant pre-disposing factors leading to cage ramming were 

identified. Eye lesions were identified on two occasions, and at least once in 

conjunction with head lesions. Rupture of affected eyes was variable. 

Advanced flank or dorsal lesions were most obvious and were similar on all 

occasions, and in both species, though lesion distribution varied with predisposing 

factors. These lesions showed shallow erosions up to 5 cm diameter, exposing the 

white dense dermal connective tissue often with central exposure of muscle, giving a 

substantially white appearance, with variable incomplete central reddening. 

Occasional gross lesions of deep extensive muscle reddening were shown 

histologically and bacteriologically to be mixed infections, with superficial F. maritimus 
I 

and deep secondary vibriosis especially V. sp/endidus. 
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Early lesions were seldom identified, but those noted during outbreaks 

included scale loss, or pale sub-epithelial raised blisters up to 1 cm in diameter. 

Scale loss was often seen at the point of pectoral fin brushing, or at other sites 

consistent with identified pre-disposing trauma. Raised blisters were seen to 

progress rapidly to typical erosive lesions. 

Gill lesions were more sporadic, and were seldom seen when frank skin 

trauma was identified as the pre-disposing cause. 

Additional gross finding in severely affected fish included petechial 

haemorrhage of abdominal peritoneum, occasionally inflammation and erosion of the 

buccal cavity and jaws, some congestion of meninges and peri-orbital tissue, and of 

the lower intestine, and sanguineous abdominal fluid. Spleens were not enlarged, gill 

pathology was variable between farms and cages, some having concurrent amoebic 

gill disease, others being unaffected. 

1.2. Histopathology 

1.2.1. Skin lesions 

Advanced skin lesions generally showed an abrupt marginal cessation of the 

epithelium, large numbers of long filamentous F. maritimus rods formed adherent 

bacterial mats of varying thickness over the eroded surface, and extended deep into 

the dense connective tissue layer and associated fibrin. Flexibacter were not seen 

on, within, or under marginal epithelium. Flexibacter type rods were never seen 

within the muscle, though deep bacterial invasion with plump bacterial rods of Vibrio 

or mixed morphology were a common, but variable, finding. 

Much of the dense connective tissue layer infiltrated by Flexibacter showed 

necrosis and loss of nuclear detail, with degeneration extending well beyond the 

area of visible bacteria. However, the degenerate collagen retained much of its gross 

morphology, serving in most cases as a barrier to deep bacterial invasion. 

Exposed or underlying muscle usually showed congestion only, though fibre 

lysis occurred where little dense layer remained, apparently owing to osmotic effects. 

A variable acute inflammation was sometimes seen in conjunction with other types of 

bacteria deep within the lesions. On two occasions filamentous rods had invaded 
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into the connective tissue of exposed blood vessels within the muscle layer, but not 

into the surrounding muscle fibres. Similar invasion of vessels was seen 

occasionally in gills. 

Inflammatory reaction was generally negligible in the invaded dense 

connective tissue layer. Inflammation was more common, but not invariably present, 

at the residual epithelial margins and in the epidermis and superficial dermis of the 

early lesions. 

Early lesions showed variable scale loss, oedema and inflammation of scale 

pockets. Small numbers of inflammatory cells were variably seen in the epithelium 

adjacent to scale pocket inflammation. Those with the gross appearance of blisters 

generally showed more intense scale pocket oedema, with a more intense 

inflammation and sometimes haemorrhage only where scales had been lost (Fig. 

3.2). Despite these changes, an intact epithelium was often seen even in early 

lesions associated with known trauma, for example from storms, sometimes even 

over lost scales, suggesting probable rapid repair. Filamentous bacteria were . 

seldom identified in early lesions, either of scale loss or blisters. Where epithelium 

remained, Flexibacterwere only seen in connective tissue or fibrin deposits, where 

these were directly exposed to the exterior through small fissures. Only in one fish 

was Flexibacter seen within the surface epithelium, and once extending beneath 

intact epithelium. 

In early lesions of some outbreaks in which prolonged sunlight was 

suspected to be the predisposing factor, intact epithelium over inflamed scale 

pockets or at the margins of early erosions showed variable changes of intra­

epithelial oedema, vacuolation or vesiculation; irregular ragged or occasionally thin 

and flattened surface; separation from basement membrane or splitting of the 

epithelium parallel and near to the basement membrane; and variable intra-epithelial 

pycnotic cells. The latter could not be confirmed as typical of "sunburn cells" as 

described by Bullock (1988). 
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Fig. 3.2. Section through the margin of a blister lesion wi th early erosion, showing denuded 

scales with peri-scale oedema and adherent filamentous bacteria (solid arrow), and empty 

scale pockets (open arrow) surrounded by intense inflammation. (H & E, bar= 0.43 mm) 

1.2.2. Head and fin lesions 

Head and fin lesions showed erosion to expose superficial bone , with sharp 

demarcation of the margin of epithelial cover as for flank skin. With fully affected fins 

showing lesions on both surfaces, there was total necrosis with neither congestion 

nor inflammatory cells in areas of fin distal to the advancing margins, but where only 

one surface of the fin was affected, a variably intense inflammation of the deep 

structures was seen. F/exibacter mats over necrotic surfaces were as for flank skin 

lesions. 

1.2.3. Gill lesions 

All gill lesions were erosive in character, with total necrosis distal to heavy 

encroaching filamentous bacterial mats (Fig. 3.3) . There was usually minimal reaction 

of affected lamellae except in a small zone of conges tion deep to the bacterial 

masses, suggesting rapid expansion exceeding the ability of the host to mobilise 

responses to tissu e damage or bacteria. Adjacent lamellae showed either minimal 

reaction or a very marked acute inflammation. 
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Fig. 3.3. Gill section from a natural infection, showing an eroded primary lamella with adherent 

filamentous bacteria (arrow) . (H & E, bar= 0.43 mm) 

Occasional lesions showed Flexibacter in association with overwhelming 

acute inflammation with oedema, marked congestion, and large number of polymorph 

leucocytes. Often such cases were associated with other insults such as jelly fish 

stings or lightning flashes , suggesting the F. maritimus infection may have been 

secondary to, rather than the cause of, the intense inflammation. Indeed, occasionally 

very small filamentous mats were seen in small surface fibrin aggregates of intense 

acute inflammatory lesions, but it was not possible to determine if these were at the 

edge of much larger lesions . 

1.2.4. Eye lesions 

Outbreaks of affected eyes were seen on only two occasions, both with filamentous 

rods within the cornea of eyes with corneal epithelial erosion and choroid congestion, 

sub-choroid haemorrhage, or complete eye collapse and corneal rupture. Flexibacter 

cells were also sporadically seen at margins of ruptured eyes where rupture was 

suspected to be due to other causes. 
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2. Striped trumpeter 

2.1. Gross pathology 

Lesions in striped trumpeter were usually associated with sites of trauma e.g. caudal 

peduncle owing to manual restraint at this point during capture. However, all fins and 

body surfaces were found to be affected and nercotising branchialitis occurred in 

some instances. 

The skin lesions usually commenced as small areas of redding and scale loss 

with rapid progression to ulceration and, finally, the presence of large (up to 70 mm in 

length) ulcers exposing the underlying muscle and having a pale periphery of eroded 

skin (Fig. 3.4). 

Fin lesions were essentially erosive leading to raggedness and, in some 

instances, complete loss of individual fins or tail elements. 

The gill lesions were typical of Flexibacter infection being aggressively necrotising. 

2.2 . Histopathology 

Histologically, the early lesions in striped trumpeter were similar to those in salmonids, 

but more advanced cases were invaded by Uronema-like ciliates which provoked an 

intense inflammatory reaction. The parasites invaded between, and into, the muscles 

causing myolysis and provoking a pseudograulomatous reaction dominated by 

macrophages with granular cytoplasm. 

Fig. 3.4. Infected striped trumpeter showing head and trunk lesions caused by F. maritimus. 
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3. Greenback flounder 

3.1. Gross pathology 

Infected flounder were relatively mildly affected, exhibiting mild to moderate erosion of 

fin and tail margins with no lesion on the head and trunk. The eroded edges of these 

elements were blanched. 

3.2. Histophathology 

Histological lesions were quite muted. Affected areas of epithelium were eroded and 

filamentous bacteria were adherent to the damaged surface in numbers varying from 

occasional to dense mats. There was practically no discernible inflammatory 

response to the presence of the bacteria. 

4. Yellow-eyed mullet 

4.1. Gross pathology 

Gross pathology in mullet consisted of melanosis of skin, haemorrhagic spots on the 

base of fins, and on the jaws, mouth and head erosions, tail rot, and small pale to 

somewhat redded blisters on the lateral, pectoral and ventral sites. Loss of scales at 

variable sites of the body, in particular the pectoral and lateral sites was observed. 

Observation of internal organs did not show any particular gross pathology. 

4.2. Histopathology 

Histological changes due to F. maritimus in naturally infected mullet were similar to 

those of early lesions in salmonids. A mild and low degree of inflammatory response 

in epithelial layers was evident in some sections, while condensed connective tissue 

and scales were intact. There was mild congestion in soft connective tissues. 

Fragmentation and degeneration of superficial epithelial layers were seen. In some 

samples amorphous granular protein-like materials occupied the fragmented epithelial 

fissures and empty scale pockets. Filamentous bacteria were seldom observed in 

sections, although, the bacteriological work confirmed the infection. 
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Materials and methods 

1. Materials 

1.1. Cultures 

3.2.2.2. Experimental Studies 

Frozen ampoules of F. maritimus 89/4762 (Chapter II) originally isolated from infected 

Atlantic salmon in southern Tasmania (Schmidtke et al., 1991) were used. The 

bacterium was passaged twice in Atlantic salmon by bath immersion at 1 x 108 

cells/ml to enhance the virulent factor prior to challenge. The passaged strain was 

used for Trials 4, 5, 6, 7 & 8 (Table 3.2). 

1.2. Fish stocks 

Atlantic salmon 20-50 g body weight and 150-300 g body weight, greenback flounder 

10-25 g body weight, goldfish 5-30 g body weight and rainbow trout 50-140 g body 

weight were used in this study. Fish were maintained at the National Key Centre for 

Aquaculture, University of Tasmania using a re-circulation with biofiltration system, 

aeration and a temperature of 24-26°C, 12-15°C and 8°C for goldfish, salmonids and 

flounder, respectively. Fish were acclimatised to seawater (Table 3.2) by increasing 

4-5%0 seawater each day interval, and they were then held in seawater 3-4 weeks 

prior to challenge. Fish were fed twice daily using Tropical Fish Crumble or Salmon 

Feed (Gibson's Feed Mill). Yellow-eyed mullet 10-40 g body weight, which were 

naturally infected with F. maritimus, were obtained from Brid River at Bridport, 

Tasmania, and they were used for the direct transmission of the infection (Trial 9, 

Table 3.2). 

2. Methods 

2.1. lnoculum preparation 

lnoculums were prepared according to the method described by Carson et al. (1992). 

Bacteria were grown on SCA at 25°C for up to four days. Subcultures for challenge 

were inoculated into 1000-2500 ml volumes of CB prepared with seawater in 2-3 litre 

conical flasks. The cultures were grown at 22 or 25° for 48-96 hours with or without 

-71-



agitation using an orbital shaker (30-40 rmp). The cells were counted in triplicate 

using the spread plate method on SCA, and cell concentrations for challenge were 

estimated based on viable count (CFU/ml of water tank), except for Trials 1 and 2 

(Table 3.2), which the cell numbers were estimated microscopically using a Helber 

counting chamber. Broth culture or harvested cells in phosphate buffered saline 

(PBS) were used for parenteral inoculation. Culture purity tests included the use of 

wet mount and Gram stain preparations and subcultures on SCA to check for 

contamination of the cultures prior to challenge. 

2.2. Methods of inoculum 

Challenge methods are given in Table 3.2. Control groups were kept in separated 

tanks with separated biofilter system. 

Table 3.2. Methods used to assess pathogenicity of F. maritimus in a number of fish 

species. 

No Method of Cell no. as Water Fish density Fish species No. fish 
challenge CFU temp. °C g/I and 

and and (No.rep.) 
(salinity %0) (average 

weiqht q) 

1 Bath 2.5 x 106/ml 18 (35) 0.8 (35) Atlantic salmon 83(1) 

0.8 (35) Atlantic salmon 83(1) 

2 Bath 2.5 x 106/ml 18 (35) 3.2 (225) Atlantic salmon 50 (2) 

3 Bath 5.3 x 107/ml 20 (15) 2.9 (35) Atlantic salmon 25 (2) 

1.5 (17.5) Flounder 25 (2) 

1.5 (17.5) Goldfish 25 (2) 

4 Bath 1.8 x 103- 18 (35) 1.4 (35) Atlantic salmon 12 (2) 

1.6 x 107/ml 3.8 (95) Rainbow trout 12 (2) 

5 Bath 2.3 x 106/ml 15-16 (35) 2.3 (35) Atlantic salmon 20 (2) 

4.7 x 106/ml 7.3 (95) Rainbow trout 23 (2) 

6 Bath 5.6 x 106 16 1.8 (35) Atlantic salmon 15 (2) 

7 l.M. injection 2.3x106/fish 18 (35) 1.2 (35) Atlantic salmon 10 (2) 

8 l.P. iniection 2.3x106/fish 18 (35) 1.2 (35) Atlantic salmon 10 (2) 

9 Scarification - 18 (35) 1 (35) Atlantic salmon 100(1) 

& swabbinq 

._ Legend shown on page opposite (71 a) 
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2.3. Collection and procesS?Jng of samples 

2.3.1. Bacteriology 

Bacteriological techniques of experimental studies were similar to those utilised for 

natural infections as previously described (3.2.2.1 ). Samples from lesion materials 

were cultured on SCA supplemented by 4 µg/ml of oxolinic acid at 25°C for up to five 

days. In some instances the slide agglutination test was also used as a confirmatory 

test. 

2.3.2. Detection of the bacterium by indirect immunofluorescent antibody 

test (IFAT} in infected salmonids 

IFAT was used as a confirmatory test for F. maritimus and was compared with wet 

mount, Gram smears and lesion cultures. For this purpose, the smears (10 x 10 mm) 

from the edge of skin lesions and gills of 30 infected fish (15 Atlantic salmon and 15 

rainbow trout) were taken at random. By plate culture, isolations were made 

simultaneously from the same organ sites used for the smear preparations and 

cultured on fresh SCA at 24°C for up to five days. The technique of indirect IFAT 

described by Carson et al. (1992) was used. The smears were air dried, overlaid by 

40 µI of rabbit antiserum 89/0329-5 of F. maritimus diluted 1 :100 in PBS (pH 7.2 0.1 

M) incubated in a moist chamber at 37°C for 30 minutes, and rinsed for 15 minutes in 

PBS. Following the removal of the excess buffer by blotting the slides, 20 µI of anti­

rabbit FITC conjugate (Silenus Laboratories) diluted 1: 60 in PBS was added to 

each sector of the slide. Smears were incubated at 37°C for 30 minutes and rinsed 

for 30 minutes in PBS. Smears were then blotted to remove the excess buffer. 

Smears were mounted using alkaline glycerol buffer (NaHC03 0.0729g, Na2C03 

0.016 g, distilled water 1 O ml, glycerol 90 ml, pH 9.0), coverslipped and were 

examined at x 40 magnification with epifluorescent microscopy (Nikon) using UV 

illumination. 

2.3.3. Gross pathology 

Clinical signs and mortality were checked daily. Lesion distribution, and lesion size 

were recorded. The distribution of lesions on the body of fish were recorded in fish of 

-73-



trials one, two, three and five (Table 3.2), and lesion size was measured using a 

metric ruler in fish of trial one. 

2.3.4. Histopathology 

Histological techniques of experimental studies were similar to those utilised for field 

studies as previously described (3.2.2.1 ). In addition, Geimsa and Gram stains 

(Vacca, 1985; Stevens, 1990) were used for staining the selected lesions. At the end 

of the trials, the fish were anaesthetised by carbon dioxide and appropriate samples 

were collected from survivors. 

2.3.5. Serology 

To monitor whether the infected animals develop a specific immune response or not, 

blood samples were taken from surviving Atlantic salmon {Trial 1, Table 3.2), left at 

37°C for one hour, transferred at 4°C overnight and sera separated, which were then 

kept at -20°C until tested by the slide agglutination test. One drop of serum was put 

on the clean slide and one drop of antigen homogenised in PBS (106 cells/ml of 24-

hour cultured F. maritimus) was added. The slide was rotated gently for 2-3 minutes 

and closely watched for the evidence of an agglutination. The sera of 20 uninfected 

Atlantic salmon were taken as a control group. F. columnaris 1468, C. johnsonae 

91/0262 and Vibrio anguillarum 85-3954-1 (DPIF) were also included to check any 

cross reaction. 

2.4. Statistical analysis 

Data were analysed by Student t-test. Pairwise comparisons of means were 

conducted using Fisher's Least Significant Difference (LSD) test. 

Results 

1. Bacteriology 

The results of all smears taken for Gram stain resulted in Gram negative, slender, 

flexuous, rods with a dimension of 2-6 x 0.4 µm (occasionally longer to 30 µm) (Fig. 

3.5). In general, over 60% of the plate cultures revealed concave, spreading, white 

to pale yellow colonies with an irregular edge and relatively sticky. These colonies 

appeared after two days at 25°C and developed on the surface of the plates within 
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seven days . The slide agglutination resulted in a positive reaction using specific 

antisera against F. maritimus. 

Fig. 3.5. Gram smear from the lesions of infected Atalantic salmon with F. maritimus. (Bar= 8 

µm). 

2. Detection of F. maritimus by IFAT 

As data shown in Figure 3.6, bacterial identification by IFAT was more sensitive than 

other methods with two-third of smears diagnosed as positive for F. maritimus (Fig. 

3.7). Plate cultures showed less sensitivity than Gram smears and wet mount slides 

indicating a suppression of F. maritimus by other opportunist organisms on the plate 

agar. Gram stain was relatively more applicable as an assumptive identification 

procedure than wet mount preparations. Detection value in both species of fish was 

similar, but bacterial detection was more successful in skin samples than gill samples. 
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Fig. 3.6. Comparison of IFAT, media culture, Gram stain and wet mount preparations for 

detection of F. maritimus in Atlantic salmon (15 samples) and rainbow trout (15 samples) 

challenged with the bacteria by bath immersion. 
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Fig. 3.7. An IFA staining of smear obtained from a lesion of an experimentally infected 

Atlantic salmon with F. maritimus. Note the smears obtained from the same lesion site for wet 

mount and plate culture gave negative results , and for Gram stain , a small numbers of 

Flexibacter-type filamentous Gram negatives were detected. (Bar= 17 µm) . 

3. Serology 

The sera from 30 of the surviving fish were positive using the rapid slide 

agglutination test, while 45 fish showed a negative reaction . A control test, which 

included the sera of 20 healthy Atlantic salmon (approximately the same age as the 

test group) were examined to avoid mistakes in reading the results of the test and all 

these proved negative . No cross-reaction was observed with F. columnaris, C. 

johnsonae. and V. anguillarum. 

4. Mortality and gross pathology 

In general , clinical signs of experimental induction of disease by F. maritimus was 

similar in Atlantic salmon , rainbow trout and flounder and were similar to those 

described for natural infections. 

In all trials fish became anorexic within one to three days after exposure. Fish 

developed melanosis and showed flashing swimming behaviour. The loss of scales 

at different sites of body in particular at the pectoral and lateral areas was evident. 
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Congestion and haemorrhagic spots appeared on the jaws and fins especially on the 

base of pectoral and ventral fins. Individual details for each trial were as follows: 

4.1. Atlantic salmon (Trial 1) 

Shaken culture 

Mortalities commenced one week post challenge, and reached 7.2% within two 

weeks of exposure. The gross pathology of these fish included, skin erosion around 

the jaw and at sites adjacent to the fins, congestion and haemorrhagic spots on the 

jaw and skin, erosion and hyperaemia of the fins and tail rot. The largest lesions 

(0.3-6 x 0.5-3.5 cm) occurred on the ventral surfaces. Of the survivors, a third of the 

fish showed macroscopic lesions with the largest lesions found on the jaws (0.5 x 

, 0.5-1 cm) and the ventral fins (0.5-1 x 0.5 cm). Most fish (both mortalities and 

survivors) displayed lesions on jaws (12%), pelvic fins (15.6%) as well as tail rot 

(14.5%), while the smallest lesions occurred on the dorsum (1.2%), caudal sites and 

head (3.6%), and on the pectoral fins and lateral sites (4.8%). The characteristics of 

lesions were similar to those described for natural infections. Gill-rot was observed in 

two (2.4%) cases of the infected fish. 

Static culture 

The infection was very similar to that of the shaken culture group, but with a lower 

mortality level of 6% which occurred within two weeks following exposure. 

4.2. Effect of stocking density and fish size on the course of infection 

(Atlantic salmon, Trial 2) 

Trial 2 was carried out to compare the effect of fish size, fish weight and fish density 

with Trial 1. Atlantic salmon challenged in this trial were six times in weight, 

app~oximately 2.5 times in size and about one year older than fish used in Trial 1. 

Fish density in this trial was also four times that of Trial 1. 

Clinically the infection condition in this trial was almost similar to that of Trial 1. 

However, development of infection and mortality level were less than Trial 1. 

Mortality levels of 2 and 4% occurred in the different replicates. Of the survivors, 
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one-fourth of the fish in each replicate showed macroscopic lesions indicating larger 

animals were more resistant to infection than smaller ones. 

4.3. Effect of salinity on the course of infection (Atlantic salmon, flounder 

and goldfish, Trial 3) 

Atlantic salmon and flounder were challenged with F. maritimus to assess the course 

of infection at a low level salinity (15%0) as a relatively minimum salinity required for 

growth of bacterium in vitro condition (Chapter II). Goldfish was used to evaluate 

whether the bacterium is able to affect some freshwater species. 

Atlantic salmon had a mortality level of 10% for each replicate two weeks 

after challenge. Of the survivors, 20% showed lesions, haemorrhagic spots, 

congestion and/ or hyperaemia on the skin or the fins. The gross signs and the type 

of lesions were similar to those described in first trial. 

A total mortality level of 2% occurred in flounder. No gross signs of disease 

were seen in the survivors. In comparison with natural infection, the disease in 

experimentally-infected flounder was somewhat more severe with a greater degree of 

"fin-rot" with congestion and haemorrhage at the bases of the fins. This difference 

may have resulted from the relatively elevated water temperature (20°C) used in the 

experiment. 

There was no mortality or lesion in goldfish challenged with organism at this 

salinity. 

4.4. Determination of the lethal concentration dose to achieve 50% (LC50) 

mortality in population and temporal pattern of infection in salmonids (Trial 

4) 

The lethal concentration dose (LCso), temporal pattern of infection and comparison of 

the susceptible level between Atlantic salmon and rainbow trout were evaluated in 

this trial. Results are shown in Table 3.3. In general the temporal pattern of infection 

caused by F. maritimus was similar in both salmonid species (Fig. 3.8). Both species 

showed a relatively similar level of susceptibility to infection with a slightly higher 

level of resistance indicated by rainbow trout (Fig. 3.9). However, there was no 
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significant difference between the susceptibility level of salmonids (P > 0.05). A 

bacterial concentration of 2.3 x 1 as and 1.6 x 106 CFU/ml was required to achieve 

50% mortality in Atlantic salmon and rainbow trout populations, respectively 

indicating a higher concentration of about 10 times required to achieve the LCso in 

rainbow trout. However, a mortality level of 100% occurred in both species when 

they were challenged with higher bacterial concentration of 1.6 x 1O7 CFU/ml. 

The temporal pattern of infection in both species showed that virulent strains 

of F. maritimus are able to cause early mortality in susceptible species three days 

following challenge at concentrations 2.3 x .105-1.6 x 107 CFU/ml, while the 

development of lesions was prolonged, up to one week, when fish were subjected 

to lower concentrations. Cutaneous erosions were superficial in early mortality, with 

some fish showing white blisters on the skin. In late mortality, erosions developed 

into eroded ulcers. 

Table 3.3. Determination of LCso in salmonids by bath immersion of F. maritimus over 1 O 

days post-infection. 

Fish species Dose Rep. No. of Mortality per Mean of total 
CFU/ml dead fish replicate(%) mortality(%)± SO 

Atlantic salmon 1.8 x 103 1 2 16.7 12.5 ± 5.9 
2 1 8.3 

Rainbow trout 1 0 0 4.15 ± 5.9 
2 1 8.3 

Atlantic salmon 2.3 x 104 1 4 33.3 33.3 ± 0.0 
2 4 33.3 

Rainbow trout 1 3 25 29.15 ± 5.9 
2 4 33.3 

Atlantic salmon 2.3 x 105 1 6 50 45.9 ± 5.9 
2 5 41.7 

Rainbow trout 1 3 25 33.3 ± 11.8 
2 5 41.7 

Atlantic salmon 1.6 x 106 1 10 83.3 74.95 ± 11.8 
2 8 66.7 

Rainbow trout 1 7 58.3 50 ± 11.8 
2 5 41.7 

Atlantic salmon 1.6 x 107 1 12 100 100 ± 0.0 
2 12 100 

Rainbow trout 1 11 91.7 95.85 ± 5.8 
2 12 100 

Each replicate originally contained 12 fish. 
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Fig. 3.8 Percentage survival of Atlantic salmon and rainbow trout subjected to various 

concentrations of F. maritimus. (Mean± SO, n = 2 replicates of 12 fish) 
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Fig. 3.9. Comparison of percentage survival of Atlantic salmon and rainbow trout exposed to 

F. maritimus infection over 10 days post-infection. (Mean± SD, n= 2 replicates of 12 fish). 
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4.5. Comparison of distribution of lesions between Atlantic salmon and 

rainbow trout (Trial 5) 

Mortality levels of 100 and 95% (with mean of total mortality equal to 97.5 ± 2.5%) 

and 87 and 82.7% (with mean of total mortality equal to 84.8 ± 2.18%) occurred in 

Atlantic salmon and rainbow trout, respectively. The distribution of lesions in rainbow 

trout was similar to those of Atlantic salmon (Table 3.4, Fig. 3.11 ). However, the 

lesions were more extensive in trout, especially in that they showed pale white 

blisters of 0.5-1 x 0.5-1 cm on caudal, lateral or pectoral sites as well as at the bases 

of _fins (Fig. 3.12) Such blisters rapidly developed into typical lesions and 

observations revealed that these fish could survive for up to 48 hours after becoming 

infected. 

4.6. Effect of predictive competitive bacteria on the course of infection 

(Atlantic salmon, Trial 6) 

This trial was undertaken to investigate whether the normal microflora in natural 

seawater influenced the progress of infection and the gross pathology. All Atlantic 

salmon challenged with F. maritimus in filtered seawater (test group) and unfiltered 

seawater (control group) died by the time that the the experiment was terminated 

(Fig. 3.10). The process of infection was found to be faster in the test group and 

100% mortality was reached four days earlier than in the control group. Fish in the 
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test group showed signs of infection one day post-challenge, while lesions in control 

groups appeared three days later: Clinically, lesions in the test group were more 

superficial, uniform in shape (circular) and smaller in size than lesions in the control 

fish, but distribution of the lesions in both groups were mainly similar 

Fig. 3.10. Comparison of the progress of F. maritimus infection in Atlantic salmon exposed to 

the bacteria in filtered seawater and unfiltered seawater. (Mean± SD, n = 2 replicates of 15 

fish). 
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4.7. Evaluation of the parenteral routes (IP and IM) of disease induction 

(Atlantic salmon, Trials 7 & 8) 

No infection occurred in fish injected IP or IM by F. maritimus. However, 20% fish 

injected IM developed small lesions on the site of injection. Gram smears of the 

lesions showed that the organisms were morphologically similar to F. maritimus, in 

most instancies mixed with some Gram negative rods. F. maritimus, however, was 

not isolated from these lesion cultures probably because of overcrowding by 

opportunistic bacteria in the culture media. There were no abnormalities in internal 

organs, except that some IP injected fish showed a low degree of 

hyperaemia/congestion in the peritoneal cavity and on the liver surface. 
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4.8. Direct transmission of infection (Atlantic salmon, Trial 9) 

Direct transmission of mullet strain of F. maritimus did not affect Atlantic salmon even 

after scraping the skin. Fish did not show any lesions or mortality at the termination of 

the experiment. 

5. Distribution of lesions 

The distribution of lesions due to F. maritimus are shown in Table 3.4 and Figure 

3.11. The following points were noted: 

(1) Generally, the pattern of lesions distribution was similar in all experiments and 

with the two species of salmonids. 

(2) The incidence of dorsal lesions and gill-rot were minimum, while lateral and . 

pectoral lesions, pectoral and pelvic fin-rot, tail-rot, jaw erosions and 

haemorrhage or congestion spots were predominant in all experiments. 

(3) The incidence of lesions was higher when the virulent strain (passaged strain) 

of F. maritimus was used for challenge (Trials 4 & 5). 

(4) Outbreak of lesions was higher in the smaller size of Atlantic salmon 

(Trial 1) than in the larger size ones (Trial 2). 

(5) Lesions were fewer and less severe when the Atlantic salmon were challenged 

at 15%0 of seawater (Trial 3). 

(6) The pattern and outbreak of lesions in both species of salmonids were similar 

(Trials 4 & 5). 

-84-



Table 3.4. Distribution of lesions in Atlantic salmon and rainbow trout experimentally infected by F. maritimus at different conditions of fish density, fish size (age} 

and salinity. 

Fish Replicate Pectoral Head Jaws Lateral Caudal Dorsum Ventral Pectoral Pelvic Tail rot Gill rot Haemorrhage 
species site site site site fin rot fin rot /hyperaemia 

/congestion 

1 (a} 5(6}* 3(3.6} 10(12} 4(4.8} 3(3.6} 1 (1.2} 
( 

3(3.6} 4(4.8} 13(15.6} 12(14.5} 2(2.4} 13(15.6} 

salmon 1 4 4.8 2 2.4 11 13.2 3 3.6 2 2.4 0.0 1 1.2 5 4.8 10 12) 8(9.6) 1 (1.2) 11(13.3 

1 3(6} 1 (2} 8(16} 2(4} 3(6} 1 (2) 2(4) 3(6) 8(16} 7(14) 0.0 8(16) 

2 3(6} 2(4} 7(14} 3(6} 2(4} 0.0 0.0 4(8} 10(20} 6(12} 1(2} 7(14 

1 4(16} 1 (4) 5(20) 4(16) 2(8) 0.0 2(8) 2(8) 2(8) 2(8) 1 (4) 2(8} 

2 3(12} 1 {4} 4{16} 2(8} 3(12} 1 {4} 4(16} 5{20} 4(16} 3{12} 0.0 4(16 

~ I ~;:~~~~' I 
13(65} 2(10) 8(40) 16(80) 11 (55) 3(15) 10(50) 9(45) 10(50) 7(35) 4(20) 12(60) 

2 11 {55} 3(15} 9{45} 14(70} 13{65} 5{25} 7(35} 12(60} 8{40} 10(50} 6(30} 9(45 

Rainbow 1 11 (47.8) 1 (4.35) 3{13.1) 10(43.5) 11 (47.8) 0.0 5(21.7) 9(39.1) 4(17.4) 13(56.5) 2(8.7) 5(21.7) 

trout 5 2 9 39.1 2 8.7 4 17.4 13 56.5 9 39.1 2 8.7 5 21.7 10 43.5 313 11 47.8 4 17.4) 3(13 

*: Indicating percentage. (a): Shaken culture and (b) static culture were used. (1): Trial 1 in Table 3.2. (2): Trial 2 in Table 3.2. (3): Trial 3 in Table 3.2. 
(4) and (5): Trial 5 in Table 3.2. 
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Fig. 3.12. Classic lesion of salmonid cutaneous erosion disease caused by F. maritimus in 

experimentally infected Atlantic salmon and ra inbow trout. (a) Atlantic salmon with lateral 

lesion and (b) gill-erosion (arrow) ; (c) Rainbow trout with early erosion showing white blisters 

on the pectoral (solid arrow) , lateral and dorsa l (open arrow) and (d) tail erosion . 
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6. Histopathology 

6.1. Histopathology of greenback flounder 

The histopathological changes in experimentally-infected greenback flounder were 

similar to those of natural infection (3.2.2.1, Field Studies), but lesions were 

somewhat more severe (possibly temperature related), with a greater degree of "fin­

rot" with congestion and haemorrhage at the bases of the fins. Epithelial erosions 

with adhered filamentous bacteria, and lack of inflammatory response were evident. 

6.2. Histopathology of salmonids 

Histologically, lesions due to F. maritimus in salmonids may be categorised as early 

(superficial) lesions and late (deep) lesions. 

6.2.1. Histopathology of early lesions 

Early lesions were collected from the infected survivors soon after their appearance. 

Histopathological changes observed in the epidermis included a relatively mild 

exudative inflammation containing amorphous granular basophilic material, intra­

epithelial inflammatory cells, occasional hyperplasia and necrosis of the epithelium 

(Fig. 3.13). 

There was a consistency of fragmentation of the epithelium in some or all 

areas of the epidermis, with amorphous proteinaceous material between epithelial 

layers, and scattered intra-epithelial inflammatory cells (Figs. 3.14 & 3.15). Thinning of 

epithelial layers was evident in some samples, especially in infected rainbow trout. 

An accumulation of exudative fluid was seen on the edges of the scales, but the 

scales themselves remained intact. Where epithelial erosion was complete, small foci 

of filamentous bacteria were occasionally seen adhering to the most superficial, 

amorphous, fibrin-like layer. In some samples there was scale loss and scale pockets 

showed a variable odema and inflammation. Acute dermal and intra-epithelial cellular 

inflammatory infiltrates were seen in all fish which retained epithelium, but were not 

seen in the dermis of eroded lesions. Necrosis and hyperplasia in fibroblast cells, 

hyperaemia and haemorrhage were also occasionally observed. Inflammatory 

response or haemorrhage was seldom detected in the hypodermis. 
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6.2.2. Histopathology of late lesions 

Late lesions were collected from fish which were moribund or had died overnight (12-

15 hours dead). In most samples examined, there was a loss of the epidermis with 

replacement by mats of filamentous rods bacteria sometimes mixed with amorphous 

material. Inflammatory response was largely restricted to serous protein rich fluid over 

the fragmented or absent epithelium. Bacterial cells invaded the dense connective 

tissue layer (dermis) with necrosis and loss of nuclei (Figs. 3.16 & 3.1 7). Bacterial 

cells were not seen on and within the remaining epithelial layers. In some samples 

bacterial cells invaded underlying muscle and there was a congestion with some 

necrosis of muscle fibres (Fig . 3.18). In some sections, the connective tissue or 

fibroblast cells , had increased between the skeletal muscle cells . Other histological 

changes were similar to those described for natural infections. 

Fig . 3 .13. Superficial lesion in Atlantic salmon experimental ly infected by F. maritimus 

showing remnants of epithelial cells (arrow) , superficial proteinaceous exudate and early 

fibroblastic reaction infiltrated by lymphocytes, macophages and the occasional neutrophil. 

(H & E, bar= 21 µm) . 

-90-



Fig . 3.14. Early mouth lesion in Atlantic sa lmon experimentally infected wi th F. maritimus 

showing fragmentation and degeneration of epithelial ce lls. (H & E, bar = 34 µm) 

Fig . 3.15. Early skin lesion in an Atlantic sa lmon experimentally infected with F. maritimus 

showing detach ed epithe lial cells (so lid arrow) embedded in a matrix of prote inaceous 

exudate (open arrow) . (H & E, bar= 21 µm) 
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Fig. 3.16. View of a mature lesion in a rainbow trout experimentally exposed to F. maritimus. 

Epithelial layers are completely missing exposing collagen fibres of dermis (arrow) (Gram 

stain , bar= 75 µm) 

Fig . 3.17. Higher magnification of Figure 3.16 showing loss of epidermis and mats of long 

filamentous F. maritimus cel ls invading collagen fibres of dermis (solid arrow) and underlying 

musculature (open arrow) . (Gram stain, bar= 25 pm). 
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Fig. 3.18. Higher magnification of an eroded lesion in rainbow trout experimenta lly infected 

by F. maritimus showing invasion of long filamentous bacteria into underlying musculature . 

(Gram stain, bar= 8 µm). 
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Materials and Methods 

1. Test organism 

3.2.3. Flexibacter columnaris 

A fresh lyophilised (recently isolated and freeze-dried) ampoule of F. columnaris 1468 

(Chapter II) was used. The bacterial isolate was originally recovered from freshwater 

caged barramundi (30-100 mm in length, seven month old) at Lake Argyle in Western 

Australia in August-September, 1993 (C. Mifsud, pers comm, 1993). 

2. Fish stocks 

Barramundi 2-6 g body weight and goldfish 2-7 g body weight were used. 

Barramundi were obtained from West Beach Aquaculture in South Australia and 

goldfsh were obtained from a pet shop. Fish were maintained in the National Key 

Centre for Aquaculture, University of Tasmania using a re-circulation with biofiltration 

system, aeration and 5-10% water exchange daily at 25 or 28°C. Fish were fed twice 

daily using Tropical Fish Flakes (Wardley's). 

3. Challenge 

Bacteria were grown on CA at 25°C for up to 4 days. Cultures for challenge were 

prepared by inoculating the bacterium into 1 OOO or 2500 volumes of CB in 2 or 3 liter 

conical flasks at 25°C for 48-96 hours with gentle agitation using an orbital shaker. 

Cell counting technique, preparation of the inoculum for parenteral inoculation and 

validation tests prior to challenge were similar to those previously described for C. 

johnsonae and F. maritimus. 

Challenge methods are given in Table 3.5. One week prior to challenge, fish 

were transfered to the 40 I aquaria. Fish were exposed to different doses of bacteria 

separately, and they were then kept in separated aquaria for 1 O days post­

exposure. Control groups were exposed to sterile CB, and they were kept in 

separated tanks provided in an isolated box, but in the same area. A box filter was 

provided for each tank. Water exchange was provided about 10% daily using 24-

hour stored tap water. 

-94-



Table 3.5. Methods used to assess the susceptibility of barramundi and goldfish to F. 

columnaris . 

No. Method of Cell no. as CFU Water Fish species No. fish 
challenge temp. 

(oC) 
1 Bath 1.3 x 102 - 25 Barramundi 15 {2)* 

1.7 x 107/ml Goldfish 

2 Bath 2.4 x 105/ml 20 Barramundi 15 (2) 
Goldfish 

3 lntraperitoneal 1 o5 - 1o7 cells/fish 25 Barramundi 10 {2) 
iniection (IP) Goldfish 

Two unchallenged control groups were used for each method. Challenge time for bath 
methods was 60 minutes. 

(1) Fish were bath challenged at concentrations of 1.3 x 102, 1.3 x 103, 1.3 x 104, 1.7 x 

105, 1.7 x 106, 1.7 x 107 CFU/ml, and were then maintained in 40 1 aquaria for up to 

10 days. 

(2) A week prior to challenge, fish were adapted at 20°C and then were challenged at this 

temperature. Fish were then maintained in 40 I aquaria for up to 10 days. 

(3) Doses used were 1 x 105, 1 x 106 and 1 x 107 cells/fish of direct count. Control 

groups were injected with normal sterile saline. 

*Number of replicates in parentheses. 

4. Collection and processing of samples 

Initial examination of lesions was by making smears from the periphery of the lesions 

and staining with Gram stain. Lesion materials were cultured on selective CA (Hawke 

& Thune, 1992); the presence of F. columnaris was confirmed by the appearance of 

the characteristic cell morphology of the organism and colonial morphology on the 

medium. Clinical signs and mortality were checked 2-3 times a day. Material obtained 

from the selected lesions was processed for histopathological examination as 

described for F. maritimus (3.2.2.2). 

Results 

1. Bacteriology 

The bacterial examination including wet mount and Gram smears from the skin and 

fins of dead or surviving fish resulted in typical mats of filamentous, Gram negative, 

rod and flexuous bacteria (0.45-10 µm or occasionally longer) (Fig. 3.19). The 

cultures of these smears resulted in yellow, rhizoid, convex, sticky colonies with mild 

spreading on the plate surface on CA at 25° for up 72 hours. 
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Fig . 3.19 . Gram smear obtained from a lesion (white spot on the body surface , Fig . 3.23) of 

experimentally infected barramundi with F. columnaris. Note filamentous rods are quite 

dominant in the smear indicating a minimum secondary infection. (Bar= 8 µm) . 

2. Mortality and gross pathology 

At a temperature of 25°C, a mortality level of 100% occurred in barramundi at 

concentration range from 1.3 x 104-1.7 x 107 CFU/ml, while this mortality level in 

goldfish resulted from concentrations of 1. 7 x 106-1 . 7 x 107 CFU/ml (Fig. 3.20). The 

bacterium caused 100% mortality in barramundi with a dose rate at least 20 times 

less than what was needed to achieve this level in goldfish (Fig. 3.21 ). The LC50 for 

barramundi was< 1.3 x 1 o3 and> 1.3 x 1 o2 CFU/ml, while that of goldfish was 1.7 x 

1 o5 CFU/ml . Minimum time to death in barramundi was eight hours while that of 

goldfish was up to 18 hours. At a temperature of 20°C, mortality levels of 60% and 

30% occurred in barramundi and goldfish, respectively (Fig. 3.22) . All fish injected 

intraperitoneally died within 24 hours post-injection, with some fish showing eroded 

skin and fins containing mats of long filamentous F. columnaris cells conifrmed by wet 

mount, Gram smears or plate culture. 
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Fig. 3.20. Temporal pattern of F. columnaris infection in barramundi and goldfish subjected 

to various concentration of bacterium at 25°C. (Mean± SD, n = 2 replicates of 15 fish). 

cti 
> 
-~ 
::J 
en 
Q) 
O> 
al -c: 
Q) 

2 
Q) 
c.. 

100 

80 

60 

40 

20 

0 
0 

100 

cti 80 -~ 
i:: 
::J 
en 
Q) 

60 
O> 
al - 40 c: 
Q) 

2 
Q) 

c.. 20 

0 

Fig. 3.20.1. Barramundi 

0 

..... 
.,;,.~·:·· ..... .,, · ... , T ..... ..... ..... 
-"'1 ' .... I ,. '1~·· .. o· T ,~ \ ...... . .......... -0-·····-- .,.. "T" --r "T" "T'" \ \ )~= ! l ............ !: .................. :! ................... !: .................. :! ............. :! 

'. \ .. ' \ . 
\ i \ ' ' .... . ,,. 'J . T \~ ~ \ \ 
I i.. I\\ 'o-. T 
I• ~' ~ ••• 
IP. '~ l ·····-o ...., \[• .. 

~,\ .L ······ .. J ......... J ......... .r ...... r 
~ .L .L .L .L 

I. 

I\ ". ..L.'' 
,,, 

40 

Fig. 3.20.2. Goldfish 

80 120 

Time post-infection (hours) 

,. --
'l~:""· :i.------~---------

..... T 

160 

1111.. 

!"---111--__ T 
' .L - - -m- - - _ T T T T 
~ l ---111------m-------m----iB 
i. .L .L .L .L 

l 
... T .... 
', l. · ..... ,., ..... 

\ ··-· \ -- ~-~-~-~ 

40 80 120 160 

Time post-infection (hours) 

-0-- 100 CFU/ml ·········O••H•••• 1.3 x 102 CFU/ml •••• -0·... 1.3 x 103 CFU/ml 

-----A---- 1.3 x 1 o4 CFU/ml - - - EB- - - 1.7 x 1 o5 CFU/ml -·-· .. -·-· 1.7 x 106 CFU/ml 

---•--- 1.7x 107 CFU/ml 

.97. 



Fig. 3.21. Comparison of percentage survival in barramundi and goldfish subjected to 

various concentrations of F. columnaris at 25°C over 160 hours post-challenge. (Mean± SD, 

n= 2 replicates of 15 fish). 
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immersion {2.4 x 105 CFU/ml) of F. columnaris at 20°C. (Mean± SD, n= 2 replicates of 15 

fish). a1 =Control (goldfish), a2 = Infected goldfish, b1 =Control (barramundi), b2 = Infected 

barramundi. 
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Clinically, the signs of "cotton-wool" including small to large white spots on the 

head , around the mouth, on the fins and tail as well as fin and tail-rot were apparent 

on infected fish (Fig. 3.23). The sign of cottonmouth was typically observable on the 

both species especially at lower concentrations of bacteria. Typical gross pathology 

was usually not observable in fish infected at higher concentrations of 1. 7 x 106-1. 7 

x 107 CFU/ml at the time of death. These fish showed only "sudden death" Any 

survivors showed melanosis, tiny haemorrhagic spots, rippling of the fins and the 

body, hovering, fin nipping and flashing swimming behaviour. 
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Fig . 3.23 . Experim ental columnaris disease in barramundi showing typical signs of 

cottonmouth disease, tail-rot, and white spots (bacterial clusters) covering skin surfaces or 

attached to fins. 

3. Histopathology 

All lesions examined showed acute necrosis of epithelial layers with minimum 

inflammatory reactions (Figs . 3.24 & 3.25). An accumulation of filamentous bacteria on 

the surface of the skin and throughout the epidermis and dermis was observed. In 

severely involved sites such as fins and mouth , large mats of the bacterial cells 

replaced the dense connective tissue (dermis) and bacteria also occurred deep in the 

underlying musculature. Affected muscles were necrotic and sometimes inflammation 

was observed. Scale loss was evident but the remainding scales were intact, with 

odema and inflammation in scale pockets . Most of the samples showed a severe 

bacterial invasion into epithelial layers, resulting in complete loss of the epidermis and 

replacement by filamentous cells and amorphous granular material. Internal organs, 

including liver, spleen and kidney were histologically intact and the bacterium was not 

observed in these organs. 
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Fig. 3.24. Columnaris disease in barramundi . Epidermis is completely missing , and mats of 

filamentous bacteria have infiltrated into the necrotic and oedematous dermal collagen . 

(Giemsa, bar= 21 µm) . 

Fig . 3 .25. Higher magnificat ion of Figure 3.24 showing clumps of F. columnaris cells (solid 

arrow) and remnant pigment cells (open arrow) in necrotic connective tissue. (Giemsa, bar= 8 

µm) . 
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3.2.4. Discussion 

The findings of this study provide a comparative study on the pathogenesis of 

freshwater and marine Flexibacteria pathogens for fish. 

Despite the similarity of histopathological characters owing to F. columnaris 

and F. maritimus, the gross pathology was somewhat dissimilar. F. columnaris 

clinically caused "cotton-wool" covered lesions, especially anterior ones (cottonmouth 

disease), on the fins and to a lesser degree at caudal sites with the seldom 

occurrence of erosive skin disease characteristic of marine Flexibacterinfection. The 

disease produced by F. maritimus began with small white-grey blisters at the infected 

sites and developed into cutaneous erosion. Therefore, the name of cutaneous 

erosion disease, given by Carson (1992), may describe the condition of F. maritimus 

infection, especially in salmonids, better than saltwater columnaris given by 

Wakabayashi (1993). 

The progress of columnaris infection at higher concentrations of bacterium was 

usually rapid and highly aggressive resulting in a rapid death about eight hours in 

barramundi and 18 hours in goldfish post-in fection (Figs. 3.20.1 & 3.20.2). In 

contrast, marine Flexibacterinfection required at least 48 hours to cause death in the 

host (Figs. 3.8.1 & 3.8.2). 

Studies of gross pathology and histological changes in Atlantic salmon, 

rainbow trout and flounder infected with F. maritimus highlighted the similarity of the 

disease conditions, both natural and experimental. Fin erosions owing to 

experimental infection in green back flounder were slightly more severe than those of 

natural infections. This may possibly be owing to the effect of temperature at which 

fish were exposed to the bacteria. There was a great consistency of lesions in 

experimentally infected salmon ids in all trials (Fig. 3.11 ). The severity of infection 

was enhanced when fish were subjected to the virulent strain (passaged strain) of 

the bacterium {Trials 4 & 5, Fig. 3.11 ). The lesions mainly occurred on the jaws, 

ventral sites, tail; and pectoral and ventral fins. This distribution of lesions is similar to 

that observed in natural outbreaks of the infection in caged Atlantic salmon, rainbow 
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trout (3.2.2.1. Field Studies) and sea bream (Hikida et al., 1979; Wakabayashi et al., 

1984). 

Oral cavity/jaws and fin erosions were consistently dominant in all trials. The 

reason why Flexibacteria prefer to attack the oral cavity, jaws and fins is not entirely 

clear. The primary physical abrasions on the fins and mouth may provide a suitable 

place for bacterial localisation and colonisation with subsequent proliferation and 

infiltration into epithelial tissues. Teeth and fins of teleost fish are usually rich in Ca 

ions which are important elements in promoting the growth of Flexibacteria (Hikida et 

al., 1979). In the recent report by Frelier et al. (1994) they demonstrated the 

enameloid erosion due to a Cytophaga-like bacterium in Atlantic salmon. 

The main common histological findings in this study were a remarkable lack of 

an inflammatory response in advanced lesions in both Flexibacter infections. 

Although there were differences between the species of salmonids and non­

salmonids studied in regard to the siting and extent of F. maritimus lesions, there was 

a great consistency in the histopathology, with usually minimal inflammatory reaction 

to the bacterium which produces a necrotising, expanding lesion with bacteria in the 

most superficial layers and extending into but not beyond the necrotic tissue. 

Interference with the host immune response may occur in different ways, such as 

immune tolerance, production of immunosuppresive factors, the use of molecular 

mimicry and interference with immune factors at the site of infection (Thune et al., 

1993). Histopathological findings in this study, however, showed a low level of 

inflammatory cells, i.e. macrophages and lymphocytes, in the early lesions, in 

particular for F. maritimus infection. This suggests that powerful exotoxins are 

produced by the organisms, effectively preventing a host response. The studies of 

Baxa et al. (1988a) and Bertolini & Rohovec (1992) support this proposition. It is 

likely that any efficacious vaccine would need to include this toxin. Thinning or 

damage of the scales could not be seen for flexibacterial infections, probably 

because of a lack of chitinobiase production which is involved in C. johnsonae 

infection (Bernardet & Grimont, 1989; Carson et al., 1993). 
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The restriction of visible F. maritimus in sections to necrotic tissue, connective 

tissue, or fibrin, suggests that bacterium is unable to survive in well vascularised 

living tissue, or with possible specific activity such as collagenase activity. If the 

former, the occasional visualisation of the bacteria within blood vessel walls is 

surprising. The epithelium appears normally to be an effective barrier to 

establishment of the bacterium. 

In natural infections, factors damaging to the epithelium were identified as pre­

disposing to F. maritimus infection. In experimental infection erosion and degeneration 

of surface layers were seen to occur following exposure to the organism, without 

localisation within the epithelium. It is possible that the presence of this presumptive 

toxin in the dense cell suspensions used for experimental challenge may have led to 

superficial skin damage, thus initiating the cascade of changes typical of the disease. 

However, the lack of visible Flexibacter in early lesions may be due to early 

localisation of the bacteria within the mucus layer, which was not preserved by 

standard histopathology techniques. These findings are in part consistent with 

variable bacteriological findings of early lesions and have been interpreted as 

probably reflecting uneven distribution of the bacteria over the lesion. 

In contrast to early lesions, there were mats of F. maritimus invading dense 

connective tissue and they were occasionally in the underlying musculature in late 

lesions. In such sections there was usually a loss of epidermis. 

At a salinity of 15%0 seawater disease induction by F. maritimus was 

successful in Atlantic salmon and greenback flounder. This concurs with the in vitro 

physiology of the organism (Chapter II), which is able to grow well at this salinity. 

The process of infection was similar at full salinity resulted in slightly less intense 

infections. Infection may, however, become more severe at full salinity which 

enhances the growth of the bacterium (Fig. 2.11, Chapter II). The reason why 

goldfish adapted at this salinity were not affected by F. maritimus is not entirely 

understood. It may be due to host immunity or host specificity. 

F. columnaris achieved 100% mortality in fish subjected by IP challenge. This 

highlights that infection may occur both as a superficial and systemic disease and 
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the existence of previously injury on skin, fins or gills for bacterial invasion of the 

blood circulation system as suggested by Wakabayashi (1991; 1993) may not be 

necessary. Even so, experimental induction of infection by CFLB is generally more 

effective by bath immersion rather than by parenteral routes. Also, pathogenicity of 

many of bacterial fish infections should be assessed by immersion rather than an 

injection route, because bath challenge mimics natural routes of infection (Anderson, 

1990). 

Both Atlantic salmon and rainbow trout showed a similar level of 

susceptibility and temporal pattern of infection to F. maritimus. A relative LC50 could 

be achieved in both species at concentrations ranging from 2.3 x 1 oS-1.6 x 106 

CFU/ml at a temperature range 16-20°C at which bacterium grows well (Chapter II). 

However, environmental variables may affect the obtained LC50 when facing 

natural outbreaks. 

The mullet strain of the organism did not affect Atlantic salmon even when 

scarification was used. There are two possible explanations. First, low salinity of 

PBS may affect the organism's virulence, as this strain is more susceptible to lower 

salinity than the Atlantic salmon strain (Schmidtke et al., 1991; B. Munday, 

unpublished data). The cultures provided from affected mullet and PBS suspension 

also support this, because there was no growth from the PBS suspension, while 

there was positive growth for samples cultured from mullet. Secondly, there may be 

a different host susceptibilities in relation to various strains of F. maritimus. 

This study clearly shows that the Atlantic salmon strain of F. maritimus affects 

rainbow trout and greenback flounder. Greenback flounder appear to be relatively 

resistant to marine Flexibacterinfection, although more numbers and replicates would 

be required to confirm this. However, infection should not create any significant 

impediment to commercial farming of this species. In contrast, striped trumpeter are 

easily infected with F. maritimus and the disease could be significant in this species if 

appropriate strategies such as shading tanks for juvenile fish are not instituted, once 

this fish becomes a viable commercial prospect. However, more work needs to be 

directed to the inter-host susceptibility among the isolated strains of F. maritimus, e.g. 
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whether mullet, striped trumpeter, sea bream, and flounder isolates are able to 

invade successfully salmonids or not. 

This study also shows that barramundi is a very susceptible species to F. 

co/umnaris infection and should therefore be included in the list of susceptible species 

such as that given by Wakabayashi (1991) and Austin & Austin (1993). The fish 

were more susceptible to the bacterium than goldfish and, when challenged with high 

concentrations of bacteria, they showed no gross tissue dam_age at the time of death, 

especially at the higher temperature of 25°C. Probably, death occurred before 

external signs of the infection appeared. This event was observed in young salmon 

(sockeye or chinnok salmon) infected by a high virulent strain of the organism (Pacha 

& Ordal, 1967). According to Pacha & Ordal (1967), the virulence of this isolate of F. 

columnaris may be categorised as being high. This is so because of its ability to 

produce 100% mortality within 24 hours at 1.7 x 105-1.7 x 1 o7 CFU/ml. Natural 

outbreaks of infection in barramundi occur at temperatures above 24°C (C. Mifsud, 

pers comm). Comparison of survival levels at two different temperatures of 25 and 

20°C showed that bacterial invasion to the host at higher temperatures (25-35°C) is 

more rapid than lower water temperatures of < 20°C. One main reason for this is 

because bacterial growth rate is faster at higher temperatures. The in vitro study 

proved that optimum temperature for growth of F. columnaris is between 25 and 

30°C, with a doubling time of 0.6 and 0.4 those at 20 and 15°C, respectively 

(Chapter II). 

Data on the actual mechanisms involved in pathogenesis due to Flexibacteria 

are limited. So far, the role of exotoxins such as proteases have been suggested to 

play an important part in the pathogenesis of these organisms in fish (e.g. Pacha, 

1961; Baxa et al., 1988a, Bertolini & Rohovec, 1992; Austin & Austin, 1993; 

Dalsgaard, 1993). 

Long survival of F. co/umnaris in water was reported by some workers (Fijan, 

1968; Ross & Smith, 1974; Becker & Fujihara, 1978; Chowdhury & Wakabayashi, 

1988a; 1990b). From practical observations undertaken in this study, it was notable 

that in immersion trials bacterial proliferation in the water containing infected fish 
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rapidly resulted in slight water turbidity and an induction of a slime/sticky layer 

covering the water surface within 24 hours. This slime layer degraded within 48 

hours. Wet mounts and Gram stain smears prepared from water sample showed 

mats of filamentous bacteria. The production of such slime layers was also relatively 

obseNed with virulent strains of F. maritimus. Interestingly, there were no such 

obseNations for other less or non-virulent CFLB isolates of F. co/umnaris, F. 

maritimus, C. johnsonae and C. psychrophila. In broth culture the comparison of 

virulent and non-virulent strains of F. columnaris and F. maritimus showed that virulent 

strains were capable of producing this slime cluster layers in broth much more than 

non-virulent strains. Therefore, an adhesion mechanism, due to this sticky production, 

may play a role in the pathogenicity process of virulent strains of gliding bacteria 

leading to the attachment of cells to the host surface, resulting in large bacterial 

populations at the site where other virulence factors such as toxins and enzymes 

can be released. This is supported by Johnson and Chilton (1966) and Pate and 

Ordal (1967), who demonstrated the production of two types of slime layers, an 

acidic polysaccharide and a galactosamine by F. co/umnaris. Also, work by 

McEldowney and Fletcher (1988) suggested that differences in the adhesion of the 

gliding bacteria (Flexibactersp.) may be associated with their adaptation to different 

ecological niches. They found progressive adhesion levels of a gliding Flexibacter 

sp. were with increased growth rates in a continuous culture until the death phase, 

and an increase in either temperature or pH caused a decline in adhesion level, 

probably through a decrease in viscosity. 

The bacteriocin and bacteriolytic activities of CFLB may also give them a 

competitive advantage over other commensal bacteria resulting in the improvement of 

the attachment and colonisation on the host surface (Dalsgaard, 1993). The work by 

Chowdhury and Wakabayashi (1989a; 1989b; 1990a) showed variable effects of 

other bacterial species on the course of columnaris infection. For instance, the 

bacterium successfully invaded the fish in the presence of Streptococcus sp. or 

each of two species of Flavobacterium flavescens and F. fuscum, even when the 

numbers of these bacteria were 1 OOO times that of F. columnaris. ObseNations of 
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Gram smears and cultures taken from lesions on infected fish in this study indicated 

massive mats of F. columnaris (Fig. 3.19). This was also obseNed by histological 

examination of the tissues from infected fish. However, the progress of marine 

Flexibacter infection in Atlantic salmon was faster in filtered (0.2 µm) than unfiltered 

seawater (Trial 6, Fig. 3.1 O) indicating a possible interaction between natural 

microflora in seawater and the infection. 

Apart from temperature fluctuations as a crucial important factor influencing the 

progress of infections by Flexibacter spp (Chapters I, II & Section 3.1 in this 

Chapter), there are some other variables which may be involved in the natural 

outbreaks of these infections in Australian aquaculture, in particularly marine 

Flexibacterinfection in salmonids. These may include: 

(1) Effect of ultraviolet (UV) irradiation 

Atlantic salmon parr are usually transferred to marine habitats during spring/summer 

when the water temperature is above 15°C. The highest amount of UV-B arrives on 

the earth's surface at this time, water at the site where the fish are located is of 

variable clarity and fish are fed at frequent intervals to optimise the growth rates. 

These conditions have given rise to a scenario in which UV-B irradiation may act as a 

predisposing factor on the course of F. maritimus infection. Recent reports show that 

the so-called "hole in the ozone layer" has dramatically increased the amount of UV-B 

irradiation during spring/summer in the Australian region (Munday, 1993). For 

example, in the summer of 1990-1991 the biologically-weighted UV irradiances in 

New Zealand were about twice those of northern Germany. The hypothesis is also 

supported, because at the time of natural outbreaks the fish are under rapid growth, 

having actively-dividing cells which are most susceptible to UV-B damage (Munday, 

1993). Occasional eye damage and dorsum lesions in natural outbreaks have also 

been described. In contrast there were no such lesions in experimental animals. 

(2) Effect of translocation 

Smolting salmon are transferred from freshwater to seawater and the process of 

transferring fish may suppress the animal's immune system and they may become 

susceptible to infections. 
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(3) Softness of scales and skin in small sized fish 

Most naturally affected Atlantic salmon were post-smolts which were more severely 

affected than fish in their second summer at sea. The higher incidence of the disease 

in post-smolts almost certainly relates to the softness of the scales and the ease with 

which they are lost. Comparison of results taken in experiments 1 and 2 (Table 3.2) 

support this proposition, because the incidence of infection and lesions were fewer in 

larger size animals than smaller size fish, even though the stocking density in larger 

sizes was four times that of smaller sizes. 

( 4) Poor management 

Any condition which cause stress to fish, such as poor feeding management which 

results in scale loss through competition, and inappropriate treatments, e.g. use of 

oxolinic acid for F. maritimus infection, may render fish susceptible to infection. 

Antimicrobial activity of quinolones against CFLB will be discussed in the next 

Chapter. 

(5) Interaction with other infections 

There may also have been some predisposition created through existing gill 

pathology associated with amoebic gill disease (Roubal et a/., 1989; Howard & 

Carson, 1994) which could exacerbate the infection by F. maritimus in sea-caged 

salmon ids. 
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CHAPTER IV 

In Vitro Studies of the Antimicrobial Activity of Skin Mucus of Fish Against 

Cytophaga!Flexibacter-Like Bacteria (CFLB) 

Introduction 

The antimicrobial activity of fish mucus often acts as a first line of defence against 

pathogens. The mucus layer provides a significant mechanical protective function 

which prevents surface colonisation of some parasites, bacteria and fungi through 

continuous loss and replacement of this layer. Also, fish mucus contains several 

secretary components including agglutinins, lysins, lysozyme, non-specific 

precipitins, C-reactive proteins and natural antibodies (e.g. Hodgins et al., 1973; 

Ingram, 1980; Gudkovs, 1988; ltami et al., 1988; Alexander & Ingram, 1992; Rainger 

& Rowley, 1993; Dash et al., 1993). These macromolecular mucin components act as 

important chemical defence barriers against pathogens. 

Scant studies have been directed to evaluate the pr~perties of antimicrobial 

activity of fish skin mucus, in particular non-immune skin mucus, and are summarized 

in Table 4.1. 

In regard to immune responses, Fletcher and Grant (1969) reported an 

induction of hemagglutinins in the skin and intestinal mucus of plaice (Pleuronectes 

platessa) following parenteral immunisation with Vibrio ichthyodermis and Fletcher 

and White (1973) demonstrated a specific antibody for Vibrio anguillarum in mucus 

secretions of the skin of immune plaice. 

Harrell at al. (1976) showed that the antibacterial activity of immune and non­

immune skin mucus of rainbow trout comprised four significant mechanisms. Firstly, 

complement existed in body mucus and may, at least in vitro, have antimicrobial 

functions. Secondly, heat-stable and heat-labile components in both immune and 

non-immune mucus were present which, together, were able to inhibit or kill V. 

anguillarum in vitro. Thirdly, non-immune mucus, diluted in fresh normal serum 
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(complement source), was capable of generating plaque (growth inhibition), but its 

titre was lower than that of immune mucus. Finally, neither heat-inactivated immune 

mucus, heat-inactivated immune serum nor fresh normal serum showed anti-Vibrio 

activity. 

Both serum and body mucus of rainbow trout previously vaccinated against 

Aeromonas salmonicida enhanced bactericidal/bacteriostatic activity against A. 

salmonicida, A. punctata and Serratia marcescens in vitro condition compared with 

. control fish injected only with saline (Rainger & Rowley, 1993). 

lntraperitoneal and intramuscular injections of non-absorbed and absorbed 

skin mucus obtained from coho salmon vaccinated against Vibrio ordalii did not give 

any protection in recipient coho salmon (passive immunisation) (Velji et al., 1991 ). 

The recipient fish also contained no detectable anti- V. ordalii agglutinins. 

The bacteriolytic activity of skin mucus obtained from yellowtail (Serio/a 

quinqueradiata) was examined for its enzymatic properties against Pasteurella 

piscicida and Micrococcus /ysodeikticus (Takahashi et al., 1987). There was high 

bacteriolytic activity against both cells in distilled water or in low molar buffer. 

Subasinghe and Sommerville (1988) did not find any antibacterial function in 

the skin and buccal mucus of naive mouth-brooding cichlid ( Oreochromis 

mossambicus) fernales at different stages of their breeding cycle. 

Ourth (1980) demonstrated bactericidal activity and agglutinating antibodies in 

the skin mucus of immune channel catfish (Table 4.1 ). 

Kamiya & Shimizu (1980) found that mucus lectins from healthy windowpane 

flounder (Lophopsetta maculata) were capable of agglutinating a marine bacterium, 

Microcyc/us marinus, but not either V. alginolyticus or Pseudomonas sp., thus 

indicating a possible selective activity of these mucus components. 

Using skin mucus from healthy rainbow trout Austin and Mcintosh (1988) 

demonstrated marked growth inhibition against A. hydrophila, while the lowest growth 

inhibition was obseNed when Mycobacterium fortuitum and Nocardia asteroides 

were exposed to the mucus. The mucus was also inhibitory to populations of other 
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freshwater bacteria, including Cytophaga sp., Flavobacterium sp., P. f/uorescens, 

Micrococcus roseus and Staphylococcus epidermidis. 

Work by Fouz et al. (1990) showed that skin mucus from healthy turbot 

(Scophthalmus maximus, Scophthalmidae) had a wide spectrum of antibacterial 

activity against different Gram negative and Gram positive bacterial fish pathogens 

including A. hydrophila, A. salmonicida, Flavobacterium sp., V. anguillarum, V. 

splendidus, V. damsela, V. tubiashii, V. pelagius, Yersinia ruckeri, Lactobacillus 

piscicola, Moraxella sp., P. piscicida, P. fluorescens and S. aureus 

AL-Harbi and Austin (1992) showed an inhibitory action for skin and gut 

mucus from immune and non-immune turbot against a fish pathogenic Cytophaga-like­

bacterium. The greatest inhibitory activity was recorded in the presence of gut mucus 

from animals which were previously immunised with the lipopolysaccharide extracted 

from the bacteria, while antibacterial activities of gut mucus from non-immunised fish 

and skin mucus from both immune and non-immune fish were lower and of similar 

intensity. 
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Table 4.1. Antibacterial activity of fish skin mucus. 

Property of mucus Test antigen Results Fish species 
(a) (b) 

Protease (trypsin type) V. angui/larum + Rainbow trout (1) 

Complement components V. anguillarum + +* II (2) 

Complement components V. angui/larum -** II (2) 

Enzymatic properties A. salmonicida, A. punctata + - II (3) 
Serratia marcescens 

Agglutinogens Sheep erythrocytes + - II (4) 

Enzymatic properties P. piscicida, M. lysodeikticus + Yellowtail (5) 

Enzymatic properties V. anguillarum + Plaice (6) 

Agglutinogens V. ichthyodermis + - II (7) 

Enzymatic properties P. fluorescens, A. hydrophila, - Cichlid (8) 
Flavobacterium sp., 
E. tarda Y. ruckeri. 

Agglutinogens Sheep erythrocytes + + Gar(9) 

Enzymatic properties Cytophaga-like bacterium + + Turbot (10) 

Agglutinogens Salmonella paratyphi + Catfish (11) 
Agglutinogens (lectin) Microcyclus marinus + Flounder (12) 

Enzymatic properties 
A. hydrophila,, Cytophaga sp., + Rainbow 
Flavobacterium sp., P. trout (13) 
fluorescens, S. epidermidis 

(a): Immunised skin mucus, (b): non-immunised skin mucus. * Mucus was prepared in normal 

fish serum (complement source).** Heat-inactivated mucus was used. 

-: No activity/inhibitory gorwth, (+): Weak positive activity/inhibitory growth, +: Positive 

activity/inhibitory growth, .: Not applicable. 

(1) Hjelmeland et al. (1983), (2) Harrell at al. (1976), (3) Rainger & Rowley (1993), (4) St. 

Louis-Cormier et al. (1984), (5) Takahashi et al. (1987), (6) Fletcher & White(1973), (7) 

Fletcher & Grant (1969), (8) Subasinghe & Sommerville (1988), (9) Bradshaw et al. (1971 ), 

(10) AL-Harbi & Austin (1992), (11) Ourth (1980), (12) Kamiya & Shimizu (1980), (13) Austin 

and Mcintosh (1988) 

Such antimicrobial activity has also been reported for other fish fluids/organs 

such as blood serum and kidney extracts. For instance, untreated serum of rainbow 

trout was bactericidal against an avirulent strain of A. salmonicida (Sakai, 1983). Of 

two lysozymes isolated from rainbow trout kidney, one was potent, having 

substantial antibacterial activity against a number of bacteria consisting of V. 

anguillarum, V. salmonicida, A. salmonicida subsp. salmonicida and achromogenes, 

Flavobacterium sp. and Yersinia ruckeri (Grinde, 1989). In trials involving goldfish 
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and the protozoans lchthyophthirius multifiliis and Tetrahymena pyriformis Ling et al. 

(1993) were able to demonstrate appreciable levels of anti-parasite antibodies in the 

plasma and skin mucus of immunised fish. 

From the above it is evident that, in certain circumstances, it is possible to 

demonstrate that fish skin mucus has an important external protective effect against 

disease microorganisms found in the aquatic environment. Especially as some CFLB 

show varying pathogenicity for different species of fish, it was hypothesised that 

this might be due, in part at least, to differing abilities of the skin mucus to inhibit 

colonisation by these bacteria. Consequently, the main objective of this study was 

to investigate whether skin mucus from a number of fish species has antimicrobial 

activity against a range of CFLB. 

Materials and Methods 

Materials 

1. Test organisms 

The same isolates of bacteria used for in viva pathogenesis (Chapter Ill) were used 

in this study. These were: C. johnsonae 91/0262-10, C. psychrophila 91/4043-17, F. 

co/umnaris 1468 and F. maritimus 89/4762. 

2. Experimental animals 

Atlantic salmon 30-75 g body weight, barramundi 44-101 g or 450-1 OOO g body 

weight, green back flounder 20-44 g body weight, goldfish 40-108 g body weight and 

rainbow trout 500-1 OOO g body weight were used to provide the skin mucus. 

Barramundi were held at 25°C at West Beach Aquaculture in South Australia. The 

other fish including goldfish, flounder and salmonids were maintained at 25-28°C, 10-

120C and 15-17°C, respectively at the Key Centre for Aquaculture, University of 

Tasmania. 

Methods 

1. Collection and processing of mucus samples 

Skin mucus samples were collected by gently wiping/scraping the skin using a glass 

microscope slide (AL-Harbi & Austin, 1992). Care was taken not to include blood or 
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other body fluids in the samples. The samples were suspended in an equivalent 

volume of sterile phosphate buffered saline (PBS) (pH 7.4 0.1 M) and centrifuged 

( 1500 g for 25 min at 4 °C) to pellet any particulate material. The supernatants were 

dialyzed against PBS at 4°C for 36 hours. The sample preparations were first filtered 

using glass fibre prefilter (Sartorius) and, then filter-sterilised using 5 and 0.22 µm 

Millipore membranes in sequence and stored at -20°C until used. To precipitate any 

proteins present, the mucus samples were also prepared in the same way, but 

treated with 50% ammonium sulphate (pH 7). Mucus samples were also sonicated at 

90% duty cycle (about 50 watts) for five minutes in crushed ice and stored at -20°C 

until used. 

2. Assay for activity 

Agar diffusion assay with disc and well procedures was used to demonstrate 

antibacterial activity of mucus against these organisms. Fish species and CFLB used 

for this observation are shown in Table 4.2. 

Table 4.2. Test organisms and mucus sources used for antibacterial activity tests. 

Bacterial species Fish used for mucus collection 

C. johnsonae Barramundi*t, rainbow trout, goldfish 

C. psychrophila Atlantic salmon*, rainbow trout, goldfish 

F. columnaris Barramundi*t, goldfisht 

F. maritimus Atlantic salmon*t, floundert, qoldfish 

*Indicates fish from which the organism was isolated. 

t Indicates fish in which disease was produced. 

Test organisms were grown in Cytophaga broth (Anacker & Ordal, 1959a) 

prepared in freshwater or seawater (for F. maritimus) at 20 or 24°C for 48 hours. The 

bacterial cultures were pelleted (1700 g for 15 min) and washed with PBS or sterile 

seawater (for F. maritimus). lnocula were adjusted to McCFarland 0.5 turbidity 

standard to give ea. 1 x 108 CFU/ml (Arthur, 1991 ). The agar plates of freshwater or 

seawater Cytophaga agar were inoculated with the standard inoculum of bacterial 

suspensions by swabbing the surface of the agar plates in three different directions 

and with a final swab around the rim. Before adding the discs, the inoculated plates 
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were dried in room temperature for 5-10 minutes so that excess fluid was absorbed. 

Sterile blank discs of 6 mm diameter (Whatman Cat No 2017 006, Maidstone, 

England) were then aseptically placed on the surface of the agar plate. Mucus 

samples of about 30 µI were added to duplicate discs in three replicate plates. 

Control discs were included by impregnating discs with sterile PSS or seawater. The 

plates were incubated upside down within 10-15 minutes. Duplicates of about 50 µI 

of mucus samples were also placed in 7 mm diameter wells in three replicate plates 

for each mucus sample. Sterile PBS or seawater was used as the control. The plates 

were incubated at two different temperatures of 20 and 30°C except for C. 

psychrophila samples which were incubated at 15 and 20°C. After 20-30 hours 

incubation, inhibitory zones were measured with a metric scale under a dissecting 

microscope. The experiment was performed in the same way with mucus samples 

treated with ammonium sulphate and sonicated mucus. The experiment was repeated 

twice using mucus samples collected at different times. 

Results 

In general, variable results were obtained in this experiment. The first set of 

mucus samples generally showed some antibacterial activity (Table 4.3), while the 

second set of samples were negative for an inhibitory zone. Similar results were 

found for both disc and well procedures. No reason was apparent for these 

anomalous results. 

Mucus of goldfish and rainbow trout at 20 and 30°C were inhibitory against 

C. johnsonae having a zone of inhibition with an average of 2.5 mm. There was no 

zone of inhibition by barramundi mucus at 20°C, but a 1 mm zone of inhibition was 

evident at 30°C. 

Antibacterial activity with an average inhibitory zone of 1.5 mm was obtained 

for skin mucus of Atlantic salmon, rainbow trout and goldfish against C. psychrophila 

at 15°C, whereas at 20°C this activity was found only for goldfish mucus with an 

average 1.5 mm zone of inhibition. 

Antibacterial activity of barramundi and goldfish mucus against F. columnaris 

was nil at 20°C and was inhibitory with 1 mm at 30°C. 
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Goldfish mucus showed an anti-F. maritimus activity of 1.6 mm at 20°C and 

30°C. Flounder mucus showed an inhibitory zone up to 1 mm at 20°C and no 

antibacterial activity at 30°C. No antimicrobial activity was found for Atlantic salmon 

mucus against this organism. 

It was notable that the inhibitory zones disappeared over time of the 

incubation suggesting a bacteriostatic effect for the mucus samples. 

There was no antibacterial activity for mucus samples treated with ammonium 

sulphate. Results of sonicated mucus were not detectable because of contamination 

by normal bacteria which were not killed by sonication procedure. 

Table 4.3. Inhibitory zones of skin mucus of some species of fish against a range of CFLB. 

Fish species C. johnsonae C. psychrophila 

20°c 30°C 15°C 

Atlantic salmon - - 1.5 

Rainbow trout 2.0-3.0 2.4-2.6 1.0-2.0 

Barramundi 0.0 1.0 -
Flounder - - -
Goldfish 2.4-2.5 2.2-2.9 0.8-2.2 

Values are based on annular radius (mm). 

-: Not tested. 

Discussion 

20°c 

0.0 

-
-

-

1.0-2.0 

F. columnaris F. maritimus 

20°c 30°C 20°c 30°C 

- - 0.0 0.0 

- - - -
0.0 1.0 - -
- - 0.5-1.0 0.0 

0.0 0.7-1.4 1.0-2.2 1.5-1.7 

The variable results of this study may be due to the collection of the mucus at 

different times. The growth inhibitory capacity of skin mucus depends on age, diet, 

environmental temperature, and the existence or non-existence of stressors at the 

time of sample collection. The fish used to collect mucus were of different age and 

size and received different types of diet. The antibacterial capacity of fish mucus 

secretions may also vary with the species being investigated (Fujihara & Hungate, 

1972) as was observed in this study. Another possible explanation for the results 

obtained is that many of CFLB are ubiquitous in the aquatic environment, so that 

experimental fish may have possessed a variable degree of pre-existing immunity to 

these organisms. 
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Concentration of the proteins in the mucus could be expected to result in more 

antimicrobial activity. Although, the samples were dialyzed to concentrate the 

proteins in the mucus, this method may not have adequately concentrated the 

macromolecular proteins. 

No growth inhibition was found when mucus samples treated with ammonium 

sulphate was used. This may have been due to the effect of ammonium sulphate on 

the structure of the proteins in the mucus. 

The mode of action of the active components of skin mucus on bacterial 

growth is, at present, mainly unknown. It remains to be determined whether there is a 

bacteriostatic or bactericidal effect. One possibility is that some bacterial populations 

were killed when challenged with mucus (bactericidal effect) and/ or organism growth 

was inhibited or decreased during the inoculation time and thereafter (bacteriostatic 

effect). Probably the mucus factors had a bacteriostatic effect because of the 

observed disappearance of inhibitory zones over time. However, the type of factor 

or factors involved in antibacterial activity, the mode of action and the mechanisms of 

the effect were not a part of this study. 

A common character of the skin, gills and intestines of fish is mucus secretion 

and these organs comprise most of the external surfaces of the animals, which is the 

first line of defence against potential pathogenic microorganisms. The results obtained 

in this study suggest that skin mucus of naive fish may have some control over the 

growth of CFLB, and the naturally resistant fish generally have the most inhibitory 

mucus. The present data are insufficient, however, to adequately assess such 

antimicrobial activity of mucus of fish against fish-pathogenic bacteria. Further works 

using more sophisticated methods need to be undertaken in this field of the study. 
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CHAPTER V 

In vitro Antimicrobial Sensitivity and In vivo 

Chemotherapy of Cytophaga!Flexibacter-like Bacterial {CFLB) 

Pathogens of Fish 

Introduction 

As discussed in Chapters I and Ill, with the recent rapid expansion of the 

aquaculture industry, increased losses due to Cytophaga!Flexibacter-like bacteria 

(CFLB) in both freshwater and marine environments have been reported (e. g. 

Wakabayashi et al., 1986; Mudarris & Austin, 1989; Holliman et al., 1991; Hilger et 

al., 1991; Schmidtke et al., 1991; Hansen et al., 1992; Carson et al., 1993; Frelier et 

al., 1994; Wiklund et al., 1994). F. columnaris affects a wide range of fish, while F. 

maritimus, a marine pathogen, has been reported from Australian, Japanese and 

European marine aquaculture farms. C. psychrophila is a serious pathogen in the 

salmonid industry, but is now known also to affect non-salmonid species. Other 

newly recognised pathogenic CFLB species such as C. johnsonae, F. ovolyticus 

and previously unrecognised species have recently been implicated in losses in the 

industry (e. g. Kent et al., 1988; Hilger et al., 1991; Pepin et al., 1993; Frelier et al., 

1994). 

Typically, but not always, pathogens of this group cause topical infections 

involving the skin and gills of fish (e. g. Kent, et al., 1989; Austin & Austin, 1993; 

Carson et al., 1993; Wakabayashi, 1993). Environmental conditions are frequently 

crucial in the expression of pathogenicity by these species in particular, water 

temperature has a major influence on the occurrence of disease due to F. columnaris, 

C. psychrophila and F. maritimus (e.g. Holt et al., 1975; 1989; Wakabayashi 1991; 

1993; Hamaguchi et al., 1994 ). In the case of C. johnsonae, sudden changes in 

water temperature appear to be as important as actual water temperature in 

precipitating clinical disease (Carson et al., 1993; Chapter Ill). Other factors which 
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have been demonstrated to influence the pathogenicity of these agents include water 

quality and stocking density (e.g. Chowdhury & Wakabayashi 1991; Carson et al. 

1993). 

The current methods for controlling disease conditions caused by bacteria in 

fish are either by improving husbandry or by chemotherapy. Optimisation of culture 

conditions are often not completely practicable in commercial fish farms, although 

improving managment provides a natural defence for fish with a reduction of losses 

(Alderman & Michel, 1992). The limitations of such general control methods and 

vaccines (with the exceptions of yersiniosis, vibriosis and furur:iculosis) have led to 

chemotherapy being considered as the most effective alternative strategy against 

infectious disease (Herman, 1970; Rucker, 1972; Gratzek, 1983; Stuart, 1983; 

Alderman & Michel, 1992), particularly when faced with major epizootic disease. 

Unfortunately, the data on an effective vaccines against CFLB are minimal with no 

available commercial vaccine so far. 

Little information is available on the chemotherapy of fish-pathogenic CFLB 

(Austin & Austin, 1993). A number of antimicrobial compounds, notably 

oxytetracycline, oxolinic acid and sulphonamides have been advocated for treatment 

of these infections in fish (Austin & Austin, 1993; Munday, 1994). The recommended 

dosages are most often based on field results rather than determination of minimum 

inhibitory concentration (MICs) of the antimicrobial agents, bioavailbility of the 

antibiotic in the fish's organs or the in viva clinical efficacy of the therapeutant against 

the disease (Carson, 1990; Munday, 1994). 

Sulphonamides and oxytetracycline are used for the treatment of bacterial 

cold-water disease caused by C. psychrophila and salmonid cutaneous erosion 

disease caused by F. maritimus, but not always with satisfactory results (Holt et al., 

1993; Wakabayashi, 1993). These antimicrobial agents and oxolinic acid are also 

used for columnaris disease caused by F. columnaris (Hawke & Thune, 1992; Austin 

& Austin, 1993; Scott, 1993; Wakabayashi, 1993). 

The recommended treatment levels of antibiotic in Atlantic salmon and rainbow 

trout, two important commercial species, have been established by a number of 
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workers (O'Grady et al., 1986; Jacobsen, 1989; Hustvedt et al.; 1991, Inglis et al., 

1992; Cameron, 1993), but there are no data to demonstrate the actual dose rates by 

correlation with in vitro MIC and in vivo efficacy for the treatment of CFLB. 

Therefore, there were five main objectives in this field of the study. 

(1) To assess a modified microdilution agar procedure in order to determine the MIC 

values for these pathogens. This was an aim because of a lack of such 

methods for fish bacterial diseases many of which have different physiological 

requirements from pathogens of warm-blooded animals. 

(2) To determine the MIC values of five field recommended antimicrobial 

compounds used in aquaculture against the Australian isolates of CFLB. 

(3) To evaluate the achievable levels of antibiotics in the sera of barramundi, 

Atlantic salmon and rainbow trout. 

(4) To assess the clinical efficacy of these compounds in vivo condition. 

(5) Finally, to correlate in vitro and in vivo results to identify the standard dosages 

of the compounds for treatment of this group of fish pathogens. 

Materials and Methods 

1. In vitro Studies 

1.1. Materials 

1.1.1. Test organisms 

Nineteen Australian strains of four species of CFLB, including C. johnsonae, C. 

psychrophila, F. columnaris and F. maritimus, were included in this study (Table 5.1). 

All isolates were recovered from infected freshwater barramundi, Atlantic salmon and 

rainbow trout and seawater Atlantic salmon with skin, gill, fin and tail lesions. 
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Table 5.1. Isolates of Cytophaga!Flexibacter-like bacteria (CFLB) used for MIC 

determinations. 

Bacterial sp. Strain Source 

C. johnsonae 91/0262-10 Barramundi, Northern Australia (1) 

91 /3550-3; -4; 89/1795-Y Golden rainbow trout, Tasmania (1) 

C. psychrophila 91/4043-1; -11; -12; -16 and -17 Atlantic salmon, Tasmania (1) 

F. co/umnaris 1468; 1438 Barramundi, Western Australia (2) 

87/0023 Rainbow trout, Tasmania (1) 

93/158-1 Atlantic salmon, Tasmania (1) 

F. maritimus 89/4762; 89/0148-1; 89/0239-1 Atlantic salmon, Tasmania (1) 

89/0282-1; 89/0329-2; 89/0578-5 

(1) Fish Health Unit, Department of Primary Industry and Fisheries, Tasmania. 

(2) Animal Health Laboratory, South Perth, Western Australia. 

1.1.2. Antimicrobial agents 

The following antimicrobial agents were included in this study: Amoxycillin (AM), 

oxytetracycline dihydrate (OTC), oxolinic acid (OA), norfloxacin (NO) and 

trimethoprim (TMP) (Sigma Chemical Co. St. Louis MO, USA). 

1.2. Methods 

1.2.1. Determination of minimum inhibitory concentration (MIC} of 

antimicrobials. 

Test organisms were grown in modified Cytophaga broth (CB) (Anacker & Ordal, 

1959a) containing tryptone 0.07% (w/v) (Difeo, Detroit, Michigan, USA), yeast 

extract 0.05% (w/v) (BBL, Becton Dickinson Cockeysville, MD, USA), sodium 

acetate hydrated (Univar) 0.02% (w/v) (Ajax Chemicals), beef extract 0.02% (w/v) 

(BBL) at 20°c for 48 hours under aerobic conditions. MIC values were determined 

using Cytophaga agar (CA) supplemented with 1.1 % (w/v) agar (Difeo). Media 

were prepared in distilled water for all organisms except F. maritimus for which natural 

seawater (SCA) was used. The pH of the media was adjusted to 7.1. Antimicrobial 

agents were weighed using a five decimal scale. Stock solutions of 1 mg/ml of 

antimicrobial agents were then prepared using appropriate solvents (PBS 0.1 M pH 

8, HCL 0.05M, NaOH 0.1 M, and lactic acid 88% were used to dissolve AM, OTC, 

OA-NO and TMP, respectively) and, stored at -70°C and used within five weeks. 
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Final plate concentrations were in doubling dilutions in the range 0.007-64 µg/ml. A 

multipoint replica tor (H I Clements PTY LTD, Sydney) was used to inoculate ea. 1 o4 

CFU/spot of test organisms. Inoculated plates (two replicates per a dilution of 

antimicrobial agent) were incubated at 20°c aerobically for 24 hours. The spot of 

lowest concentration showing no growth was interpreted as the MIC. Reference 

strains of Staphylococcus aureus (ATCC 29213) and Escherichia coli (ATCC 

25922) were included as controls. These strains were used because of their well 

known MICs for most of these antimicrobials (Washington II, 1985; Sahm & 

Washington II, 1991 ). MIC of the control strains was also determined in Mueller­

Hinton agar (MHA, Oxoid) at the same temperature (20°C) to compare the obtained 

MIC values in CA and MHA (Washington II, 1985; Arthur, 1991 ). 

1.2.2. Determination of Serum and Mucus Levels of Antimicrobials 

The serum levels of antimicrobials were determined based on general guidelines 

given by Garrod et al. (1981) and Robertson & Edberg (1991 ). Standard curves 

were prepared for AM, OA and TMP in sterile water and normal Atlantic salmon serum 

using 50 µI per well. In the presence of serum all zones were either the same size or 

up to 1 mm smaller than zones formed from antimicrobials prepared in sterile water, so 

serum was selected for making the standard curves. Limits of detection for these 

antimicrobials were determined for a number of test organisms: Bacillus subtilis spore 

suspension (ATCC 6633, BBL) Bacillus cereus spore suspension (NCTC 2599), 

E. coli (ATCC 25922) and S. aureus (ATCC 29213) (Garrod et al., 1981; Robertson 

& Edberg, 1991 ). Antimicrobial levels in sera and mucus were then determined by 

bioassay in Mueller-Hinton agar (MHA) with B. subtilis spore suspension as the 

indicator organism. 

The volumes of 0.15 ml of the spore suspension (5 x108_9 x108 spore/ml) 

were added to 75 ml MHA at 45-50°C, mixed quickly, and poured in 140 mm diameter 

plates. Plates were gently rotated on a flat surface for few secends, and they were 

then untouched for one hour. The wells in 7 mm diameter were then induced in the 

agar using a cork borer. Standards of the antimicrobials were prepared in Atlantic 

salmon serum with the following range of concentrations: OA (0.6-10 µg/ml), TMP 
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(0.3-10 µg/ml) and AM (0.16-5 µg/ml). Duplicate 50 µI samples of both test and 

standard sera were placed in the wells in each of four replicate of plates. Plates were 

placed at 5°C for two hours before incubation at 35°C overnight and zones of 

inhibition were then measured. The log concentration of standards was plotted 

against zone size and the line of best fit was computed by regression analysis. The 

concentration of antimicrobials in sera and mucus was then calculated. The value of 

r2 for all curves was 0.997 at P<0.001. Untreated sera obtained from Atlantic salmon 

and rainbow trout were aslo tested in separated plates as the controls to 

demonstrate any inhibitory zone when using serum without the antimicrobials. 

The concentration of antimicrobial agents in water samples of bath treatments 

was also determined. Samples were diluted in sterile water and the level of 

compounds was then determined in the same procedure described for bioassay of 

sera and mucus, but standard dilutions of antibiotics prepared in sterile water were 

used. 

2. In vivo Studies 

2.1. Materials 

2.1.1. Fish 

Barramundi 2-5 g body weight, Atlantic salmon 18-52 g body weight and rainbow 

trout 53-138 g body weight were used to verify the in viva efficacy of OA (nominally 

100%), AM (84%) and TMP (40%). The barramundi, Atlantic salmon and rainbow 

trout were maintained in 40 I aquaria or 300 I tanks containing freshwater or seawater 

with re-circulation and biofiltration. Also, barramundi of 44-101 g body weight and 

rainbow trout of 220-479 g body weight were used to determine the bioassay of the 

antimicrobial compounds in the fish sera. Fish densities for challenged barramundi, 

Atlantic salmon and rainbow trout were 1.8, 2.3 and 7.3 g/I, respectively. Water 

exchange was maintained at 5-10% per day and water quality parameters including 

pH, total ammonia, dissolved oxygen and salinity were checked daily. 

2.1.2. Cultures 

Clinical isolates of F. maritimus 89/4762 and F. co/umnaris 1468 were used to 

challenge the fish. The former had been recovered from a case of SCED in sea-
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caged Atlantic salmon in Tasmania and the latter was isolated from freshwater-caged 

barramundi with columnaris disease in Western Australia. 

Prior to challenge, the isolates were passaged twice in appropriate hosts to 

enhance their pathogenicity. F. co/umnaris was passaged in barramundi by bathing 

(1.0 x 108 cells/ml} or intraperitoneal injection (1.0 x 1 o7 cells/fish) and F. maritimus 

was passaged in Atlantic salmon by bathing (108 cells/ml). The organisms used for 

the challenge were three-day cultures of the last passage grown in CB at 23-24°C 

with gentle agitation. 

2.2. Methods 

2.2.1. Bath Challenge 

Three replicates of 21 barramundi were challenged with F. columnaris at a 

concentration of 2.1 x 1 o5 CFU/ml of tank water at 25°C for one hour. Two replicates 

of 20 Atlantic salmon and 23 rainbow trout were challenged with F. maritimus at 

concentrations of 4.3 x 106 and 4.7 x 106 CFU/ml of tank water, respectively at 16°C 

for one hour. Equivalent replicates of control groups (infected and unmedicated) were 

included for each experiment. Fish were exposed to the pathogens in their holding 

aquaria/tanks to reduce stress associated with the challenge procedure. At the end of 

the exposure period the tanks were drained as far as practicable and refilled with 

clean water. In addition, two replicates of 18 barramundi and two replicates of 15 

Atlantic salmon and rainbow trout were used as negative controls (uninfected 

unmedicated) to monitor any mortality owing to handling and grading during the 

experiments. Negative controls fish were exposed to sterile CB for one hour. These 

fish were held in the isolated tanks to avoid any direct transmission of the infections. 

The barramundi were observed for 14 days and the Atlantic salmon and rainbow 

trout were observed for 16 days. 

2.2.2. Treatment regimes 

Treatment regimes are given in Table 5.2. Bath and feed medication treatments 

against F. columnaris were undertaken three and four hours following challenge, 

respectively. Treatment against F. maritimus was undertaken 12 hours post-
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challenge. These strategies of treatments were selected based on the level of 

virulence of the pathogens used as the results obtained in Chapter Ill showed that 

columnaris disease is a rapid infection requiring a treatment soon after exposing the 

fish to the pathogen, to have left treatment longer would have led to massive 

mortality and negated the study. However, the progress of infection by F. maritimus 

is slower than columnaris disease and, therefore, later treatment was appropriate. 

The feed-medication groups were fed 0.8-1 % body weight of medicated feed to 

encourage fish to take all feed. Medicated diets were prepared daily by surface 

coating pellets (Tropical Fish Crumble or Salmon Feed, Gibson's Feed Mill) with 

gelatin. Appropriate amounts of the antimicrobial agents were weighed and dissolved 

by the solvents previously mentioned and stored in small volumes at -70°C until 

used during the experiments. Gelatin (38g/ml) was prepared in tap water, allowed to 

cool to a tepid solution before adding the antibiotics. The pellets were coated using a 

Pasteur pipette and care was taken to coat all pellets. The control fish and bath 

treated groups were fed antimicrobial-free gelatin coated pellets. 

Table 5.2. Bath and feed treatment regimes of antibacterial compounds for treatment 

of salmonid cutaneous erosion disease (SCED ) and columnaris disease. 

Antimicrobial Treatment Fish species 

aqent 

Oxolinic acid Oral: 1 O mg/kg b w/day for 1 O days Barramundi 
II Bath: 50 ppm for 1 h II 

Amoxycillin Oral: 80 mg/kg b w/day for 10 days Rainbow trout 
II Bath. 200 ppm for 1 h Atlantic salmon 

Trimethoprim Oral: 10 mg/kg b w/day for 7 days Rainbow trout 
II Bath: 50 ppm for 1 h Atlantic salmon 
II Bath: 100 oom for 1 h II 

2.2.3. Confirmation of infection and statistical analysis of data 

Wet mounts and Gram stain preparations were made daily from lesions of each 

clinically affected or dead fish. Lesion material was cultured on selective CA or SCA 

(Carson, 1990; Hawke & Thune, 1992) and typical colonies identified. The 

immunofluorescent antibody test (IFAT) (Chapter Ill) was used as a confirmatory 
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test for F. maritimus. Twenty samples (1 O from Atlantic salmon and 10 from rainbow 

trout) were collected at random for this purpose. 

Data were analysed by one way ANOVA after confirmation of homogeneity 

of variance with Cochran's test. Treatment procedures were treated as a fixed factor. 

Pairwise comparisons of means were conducted using Fisher's Least Significant 

Difference (LSD) test. 

2.2.4. Concentration of antimicrobial agents in fish serum and mucus 

Duplicate groups of 13 barramundi were given bath and feed-medicated treatments 

with OA at water temperatures of 25 and 27°C, respectively. Two groups of 15 

seawater-adapted Atlantic salmon were bath exposed at 15°C to AM and TMP. 

Serum levels of AM and TMP for feed-medication were determined in duplicate 

groups of five rainbow trout maintained at 14°C in freshwater. The dosages of the 

antimicrobial agents were similar to the treatment regimes detailed in Table 5.2. In 

addition, AM was administrated by feed-medication at 60 mg/kg body weight in 

rainbow trout. 

Atlantic salmon and barramundi exposed by bath treatment were bled four 

and 24 hours post-dosing. Orally-treated barramundi and rainbow trout were fed 

medicated feed for five days and bled 12 hours after the last feeding on Day 5. 

Pooled blood· samples were allowed to clot for 30 minutes, centrifuged at 1200 g for 

10 minutes and the separated sera stored at -70°C and used within 72 hours. The 

sera of 10 untreated Atlantic salmon and five untreated rainbow trout were also 

obtained as the control. 

Skin mucus samples from bath-treated fish were collected at the same time as 

blood collection, i.e. four hours post-dosing, by scraping lateral and dorsal areas with 

a glass slide. The mucus samples were diluted in sterile water (4:1, mucus: water), 

centrifuged and then stored at -70°C until used. Water samples of bath treatments 

were also collected at the commencement of treatment and one hour post-treatment to 

determine whether extraneous substances in freshwater or seawater affect the 

activity of the compounds. 
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Results 

1. In vitro Studies 

1.1. MIC values 

MIC results are shown in Table 5.3. MIC values for control organisms were within 

the acceptable error, i.e. ±1 log2, of known values (Washington II, 1985; Sahm & 

Washington II, 1991 ). MIC values of reference strains were in a similar range for 

both CA and MHA (Table 5.3). 

Quinolone compounds were in the range 0.12-4.0 and 16->64 µg/ml against 

freshwater and marine strains of CFLB, respectively. MIC for TMP was above 64 

and 0.5 µg/ml against freshwater and marine strains, respectively. AM and OTC 

gave MIC in the range 0.06-4.0 and 0.12-2 µg/ml, respectively, against both 

freshwater and marine CFLB. 

Table 5.3. Sus<_::eptibility of 19 strains of Cytophaga!F/exibacter-like bacteria (CFLB) to 5 

antimicrobial agents. 

No. of MICµg/ml 

Bacterial species strains AM OTC OA NO TMP 

F. columnaris 4 0.06 0.06-0.12 0.06-0:12 0.12 >64 

F. maritimus 6 0.25-0.5 2.0 ~64 8-16 0.25-0.5 

C. johnsonae 4 2.0-4.0 2.0 0.25-0.5 2.0-4.0 >64 

C. psychrophila 5 0.03-0.06 0.5-2.0 0.12-0.25 0.5 ~64 

E. co/i ATCC 25922 (a) 4.0 1.0-2.0 0.03-0.06 0.03 4.0 

II (b) 4.0-8.0 2.0 0.03-0.06 0.06 2.0-4.0 

S. aureusATCC 29213 (a) 0.25-0.5 0.25-0.5 0.5 0.5 2.0-4.0 

II (b) 0.25-0.5 0.5-1.0 0.25-0.5 0.5-1.0 1.0-2.0 

AM: Amoxycillin, OTC: Oxytetracycline, OA: Oxolinic acid, NO: Norfloxacin, TMP: 

Trimethoprim. 

(a): Indicating the MIC values were obtained in CA. (b): Indicating the MIC values were 

obtained in MHA. 

1.2. Bioassay of sera and mucus 

Data obtained for serum levels of treated fish are included in Table 5.4. The smallest 

measurable zones in the standards occurred at 0.6, 0.3 and 0.16 µg/ml for OA, TMP 

and AM, respectively with no zone at the next lower concentration. For each of the 
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antimicrobial agents the levels in serum samples collected 24 hours post-treatment of 

bath-treated fish were not detectable though these agents were present in 

detectable quantities at four hours post-dosing. No antimicrobial agents were 

detected in the mucus samples collected four hours post-dosing. No 'inhibitory zone 

was recorded for untreated sera (controls). There were no significant differences 

between water concentrations of antimicrobial agents at time zero and one hour post-

dosing (P>0.005). 

Table 5.4. Serum levels for three antimicrobial agents in barramundi, Atlantic salmon 

and rainbow trout. 

Dosage of Fish species Serum level (µg/ml) 

antimicrobial OA AM 

Feed treatment* 

10 mg/kg b w Barramundi 3.4 -
10 mg/kg b w Rainbow trout - -
60 mg/kg b w II - 0.1 

80 mg/kg b w II - 0.2 

Bath treatment** 

50ppm Barramundi 0.5 -
50ppm Atlantic salmon - -
100 ppm II - -
200 oom II - 0.6 

*Blood was collected 12-hours post last feeding on day 5. 

**Blood was collected four hours post-dosing. -Not applicable. 

2. In vivo Studies 

Efficacy of treatments 

TMP 

-
0.8 

-
-

-
0.4 

0.4 

Mortalities were confirmed to be due to the agent of interest by Gram stains of 

smears, culture and IFAT of lesion materials. Of total samples (93) of barramundi 

checked for Gram stain and plate culture, 90 (96.8%) and 74 (79.6%) were positive 

for F. columnaris, respectively. Of 68 dead Atlantic salmon, 65 (95.6%) and 51 

(75%) were positive for F. maritimus by using Gram stain and plate culture 

techniques, respectively. Also, of 58 dead rainbow trout, 58 (100%) and 44 (64.7%) 

were positve for F. maritimus by using Gram stain and plate culture techniques, 

-128-



respectively. All 20 samples, which were checked by IFAT were positive for F. 

maritimus. 

2.1. Efficacy of OA in barramundi 

Among the replicates, mortality range of 19-38.1 % and 28.6-42.9% occurred in 

replicates of bath and oral treatments, compared with a mortality range of 66.7-95.2% 

for infected nonmedicated replicates (Table 5.5). Of the negative controls (uninfected 

unmedicated) only three fish died by the termination of the experiment with no sign of 

the infection. 

Table 5.5. Mortality rate in barramundi exposed to F. columnaris and treated with oxolinic acid 

by immersion and feed-medication. 

Treatment Rep. No. of Mortality Mortality per Mean of total 
dead fish 12er re12. {%} total fish{%} mortalit~ {%}±SE 

Immersion 1 6 28.6 9.5 28.5 ± 5.5 
(50 ppm) 2 4 19 6.3 

3 8 38.1 12.7 
Feed-medication 1 8 38.1 12.7 36.5 ± 4.2 
(1 O mg/kg b w) 2 6 28.6 9.5 

3 9 42.9 14.2 
Control (infected 1 14 66.7 22.2 82.5 ± 8.4 
non-medicated) 2 18 85.7 28.5 

3 20 95.2 31.7 

Each replicate originally contained.21 fish. 

Mortalities in fish treated by bath and feed-medication against infection were 

significantly lower (P<0.01) than the mortalities in non-medicated fish (Fig. 5.1 ). Bath 

treatment resulted in slightly more survival than oral-medication. However, there were 

no significant differences (P>0.05) between treatment regimes. The infection pattern 

(Fig. 5.2) showed a rapid establishment of columnaris disease during the first 48 

hours post-infection consistent with a virulent organism (Section 3.2.3., Chapter Ill; 

Wakabayashi, 1993). 
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Fig. 5.1. Total mortality in barramundi infected with F. columnaris and treated with oxolinic 

acid by bath (50 ppm for one hour) and feed-medication (10 mg/kg b w/day for 10 days). 

Means sharing a common superscript are not significantly different (P>0.05). 
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Fig. 5.2. Cumulative mortality of barramundi infected with F. columnaris and treated with 

oxolinic acid by bath and feed-medication. (Mean ± SE, n = 3 replicates of 21 fish). 
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2.2. Efficacy of AM and TMP in Atlantic salmon 

Bath treatment of Atlantic salmon with TMP at either 50 or 100 ppm was more 

effective (P<0.05) than AM at 200 ppm against F. maritimus (Table 5.6). Treatment 

at these dosages resulted in 78.5%, 87.5% and 62.5% survival, respectively 

compared with only 2.5% survival for control groups (Fig. 5.3). Mortalities of bath 
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treated fish were significantly lower (P<0.01) than mortalities in non-medicated fish. 

There was also a significant (P<0.05) difference in clinical efficacy between the use of 

TMP at 50 and 100 ppm in the treatment of the infection. There were a total of two 

dead fish for the negative controls (uninfected unmedicated). 

Table 5.6. Mortality levels in Atlantic salmon exposed to F. maritimus and treated by 

amoxycillin and trimethoprim baths. 

Treatment Rep. No. of Mortal~y Mortality per Mean of total 
dead fish eer ree. {%} total fish{%} mortality{%}± SE 

Amoxycillin 1 8 40 20 37.5 ± 2.5 
{200 EEm} 2 7 35 17.5 
Trimethoprim 1 4 20 10 22.5 ± 2.5 
{50 eem} 2 5 25 12.5 
Trimethoprim 1 3 15 7.5 12.5 ± 2.5 
{100 EEm} 2 2 10 5 
Control (infected 1 20 100 50 97.5 ± 2.5 
non-medicated} 2 19 95 47.5 

Each replicate originally contained 20 fish. 

Fig. 5.3. Total mortality in Atlantic salmon infected with F. maritimus and treated by AM and 

TMP baths for one hour. There is a significant difference (P<0.01) between mortality levels 

of treatment and control groups and among different treatment regimes (P<0.05). 

(Mean ±SE, n = 2 replicates of 20 fish) 
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The pattern of mortality in AM treated fish (Fig. 5.4) shows that there was no 

infection in bath treatments during the first few days post-challenge, while mortalities 

commenced in control groups within 48 hours following challenge and it was 

significant during days four to eight post-exposure (Fig. 5.4). 
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Fig. 5.4. Cumulative mortality of Atlantic salmon infected with F. maritimus by immersion and 

treated by bath with AM and TMP for one hour. (Mean± SE, n = 2 replicates of 20 fish). 
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2.3. Efficacy of AM and TMP in rainbow trout 

12 14 16 18 

The efficacy of AM and TMP incorporated in rainbow trout feed highlights the 

superiority (P<0.05) of TMP at 1 O mg/kg b w (Table 5.7, Fig. 5.5). While 30.5% 

mortalities were observed in fish treated with AM at 80 mg/kg b w, those treated with 

TMP had only 13% losses. Control groups had significantly (P<0.01) higher 

mortalities than either of the treated groups. No mortality was recorded for negative 

controls (uninfected unmedicated). 

Lesions appeared in AM medicated groups at two days post-challenge and 

were of a low level but constant up to 10 days post-challenge, while fish treated with 

TMP were better protected against overt infection during the experiment (Fig. 5.6). 

Table 5.7. Mortality levels in rainbow trout exposed to F. maritimus and treated orally with 

amoxycillin and trimethoprim. 

Treatment Rep. 

Amoxycillin 1 
(80 mg/kg b w) 2 
Trimethoprim 1 
(10 mg/kg b w) 2 
Control (infected 1 
nonmedicated) 2 

No. of 
dead fish 
8 
5 
2 
4 
20 
19 

Mortality 
per rep.(%) 
34.8 
26.1 
8.7 
17.4 
87 
82.7 

Each replicate originally contained 23 fish. 
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Mortality per 
total fish (%) 
17.4 
13 
4.4 
8.7 
43.5 
41.3 

Mean of total 
mortality(%)± SE 
30.5 ± 4.35 

13 ± 4.35 

84.8 ± 2.18 



Fig. 5.5. Total mortality in rainbow trout infected with F. maritimus and treated orally with AM 

and TMP for 1 O and seven days, respectively. Mortalities of treatment groups are significantly 

different (P<0.01) from control groups. There are also significant differences (P<0.05) 

between treatment regimes. (Mean ± SE, n = 2 replicates of 23 fish). 
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Many of the recommended dose rates of antimicrobials used in aquaculture in 

Australia have been determined on the basis of clinical responses or transferred 

directly from recommendations for mammals, and only a minority have been fully 

validated under local conditions by determination of the combination of minimum 

inhibitory concentration (MIC), effective tissue level of the chemotherapeutic 
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substance and/or a critical experimental infectivity trial. Ideally, correlation between 

serum levels, MIC values and clinical efficacy need to be established prior to 

treatment strategies. 

This study provides original data correlating serum antibiotic levels, MIC 

values and clinical efficacy. It also validates the use of CA for the determination of 

MIC values (Table 5.3). This is because standard Mueller-Hinton medium (MHM) 

inhibits adequate growth, in some instances eliminating growth completely, of many 

CFLB (Hawke & Thune, 1992; Thune, 1993; author's own experience) because of 

their fastidious character and low nutrient requirement (Austin & Austin, 1993). 

However, MIC value for OTC against four strains of F. columnaris in modified MHM 

was in a similar range (0.195 µg/ml) (Hawke & Thune, 1992) to those obtained in this 

study. Therefore, in this study the evaluation of Cytophaga medium as the most 

commonly used medium for isolation and cultivation of these bacteria showed that it 

may be employed as a suitable medium for the determination of MIGs for the 

antimicrobials tested here. Furthermore, similar MIC values to those obtained in this 

study have been reported for some strains of CFLB using Cytophaga medium 

(Baxa et al., 1988c; Carson et al., 1993). 

The MIC values obtained in this study showed the bactericidal quinolones, 

OA or NO, are suitable compounds for columnaris disease, cold-water disease and 

C. johnsonae infection, but would not be suitable for natural outbreaks of marine 

Flexibacter infection because of the high MIG (8 - ;?:64 µg/ml) obtained for this 

organism in this study. The drug efficacy against columnaris disease highlights that 

OA is effective for treatment of columnaris disease at dosages of either 50 ppm 

(bath) or 10 mg/kg b w (oral). The bath treatment gave higher survival than feed­

medication, possibly because infection may have occurred in fish which either did not 

take the feed-medication or became anorexic immediately post-challenge. Even so, 

there were no significant differences between the treatment regimes (P>0.05). The 

serum level at dosage 1 O mg/kg b w was more than 50 times the MIC values, 

suggesting a much lower oral dosage such as 5 mg/kg b w would be efficacious 

when facing natural outbreaks of columnaris infection. Alternatively, the treatment 
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period could be reduced from 1 O to five days. These findings also suggest the bath 

dosage may be lowered to 30 ppm for up to two hours when facing intermediate to 

low virulence of the outbreaks, because columnaris infection is more of a superficial 

disease than a systemic infection. However, although lower dosage may reduce the 

level of infection to the point where the fish's defence mechanisms aid in recovery, it 

may promote development of antibacterial resistance. 

The serum level of AM by bath immersion at 200 ppm was above the MIC 

value for F. maritimus at four hours post-dosing, and fell to below the MIC after 24 

hours. However, the clinical efficacy of this antibiotic in Atlantic salmon was significant 

with mortalities in treated fish being 37.5%, compared with 97.5 % in untreated fish 

(P<0.01 ). Bioassay of sera from rainbow trout given AM incorporated in feed at 80 

mg/kg b w revealed that the level was below the MIC value. In viva assessment of 

the drug efficacy, however, showed that it may be used to treat SCED at this 

dosage because of significant differences (P<0.01) between the treatment and 

control rainbow trout challenged with F. maritimus. Mortalities in fish given bath 

treatment with AM started about one week post-infection (Fig. 5.4). This could be 

due to the gradual decrease of antibiotic concentration in tissues. This interpretation is 

supported by the known short withdrawal period reported for this compound (Brown 

& Grant, 1992; Elston, 1992; Inglis et al., 1992). The correlation, however, of in vitro 

and in viva findings shows the efficacy of AM for control of SCED. Comparison 

between serum levels of AM and TMP with similar MIC values against F. maritimus 

showed a high uptake of TMP by fish tissues (Table 5.4). 

Data on the use of TMP as a single chemotherapeutic substance against 

bacterial fish diseases are scant (Cameron, 1991 ). This pteridine dihydrofolic acid 

component analogue is usually used as one of the components of the potentiated 

sulphonamide combinations. However, the use of sulphonamide component, 

sulphadiazine, is unsuitable for the control of F. maritimus infection because of 

inherent bacterial resistance (MIC>100 µg/ml) (J. Carson, pers comm). As TMP is 

mobilised to, and persists in the skin (Jacobsen, 1989; Cameron, 1993), it is an ideal 

antibacterial agent for the control of superficial infections. The MIC values of this 
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compound obtained in this study indicated that TMP is not a suitable antibacterial 

compound for CFLB, except for F. maritimus infection. Serum levels of this compound 

at dosages of either 50 or 100 ppm (bath) and 1 O mg/kg b w (oral) were generally 

above MIC values and in some instances up to four times of MIC values for the 

examined isolates of F. maritimus (Table 5.4). Clinical efficacy of this compound in 

both Atlantic salmon and rainbow trout highlights the effectiveness of TMP against 

SCED. TMP possesses a withdrawal period however of up to 60 days when used 

at five mg/kg b w for five days (Jacobsen, 1989). The correlation of in vitro and in 

vivo results indicates the value of a reduction in both dosage treatments from 20 to 

10 mg/kg b w and treatment period from 1 O to five days. 

The absence of the antibiotics in mucus, at least within the sensitivity of the 

test used, needs comment. This apparent lack of transfer from the bloodstream to 

mucus could possibly be attributed to lack of transfer. However, in affected fish this 

may not hold as antibiotic could be transferred with serum leaking from superficial 

lesions. 

In this study, infected barramundi were treated three to four hours post­

infection and Atlantic salmon and rainbow trout were treated 12 hours post-infection: 

times which provided adequate opportunity for bacterial invasion of the external 

surfaces and render some fish moribund before the therapeutic regimes commenced. 

This situation occurs especially in the case of rapidly progressive infections such as 

columnaris disease. It is therefore pertinent to treat infected fish as soon as possible 

after diagnosis even though oral treatment may even then be ineffective in fish with 

advanced disease. 

The correlation of in vitro and in vivo results indicate AM is a suitable 

therapeutic agent against C. psychrophila, F. columnaris and F. maritimus. OA is 

useful against C. johnsonae, C. psychrophila and F. columnaris, NO against C. 

psychrophila and F. columnaris, OTC against F. columnaris and C. psychrophila and 

TMP against F. maritimus. TMP is superior to AM for treatment of SCED caused by F. 

maritimus. These results raise important issues regarding the definition of laboratory 

and field studies in the evaluation of chemotherapeutic substances in aquaculture. 
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CHAPTER VI 

General Discussion and Conclusion 

The initiative for this study came from the perception that Cytophaga/Flexibacter-like 

bacteria (CFLB) are significant problems in both freshwater and marine aquaculture in 

Australia. The study was conducted to compare the responses of these fish­

pathogenic organisms to environmental conditions in vitro together with the in vitro 

and in viva pathogenesis and chemotherapy of the causative agents. 

1. Pathogenesis 

1.1. Cytophaga johnsonae 

Carson et al. (1993) described an outbreak of C. johnsonae-associated disease in 

barramundi in freshwater when water temperature decreased from 35 to 27°C. The 

present study describes for the first time experimental reproduction of the infection by 

C. johnsonae and confirms the role of this species of gliding bacteria as a fish 

pathogen, especially in barramundi. Experimental induction of the infection in 

barramundi was achieved only through a sudden change in water temperature from 

28-20°C (Chapter Ill). Comparison of natural and experimental infections by this 

organism shows that sudden changes in water temperature appear to be as 

important as the actual water temperature in precipitating clinical disease. This 

experimental condition apparently places the fish in an environment conducive to the 

growth of C. johnsonae (Fig. 2.2, Chapter II) and also probably suppresses the 

imi nune response of the host (Bly & Clem, 1991; Szalai et al., 1994). In addition, 

based on the results of the physiological requirements of the pathogen (Figs. 2.5 & 

2.15, Chapter II), maintenance of the temperature 2 35°C, if possible, e.g 

barramundi, and /or salinity above 20 g/I, may reduce the growth of C. johnsonae 

sufficiently to reduce morbidity. 

The reason why barramundi are more susceptible to C. johnsonae infection 

than the other species investigated in this study is not entirely understood. The 
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study of skin mucus of fish showed it is less inhibitory to C. johnsonae than that of 

the other fish species investigated (Chapter IV). 

Because of its role as a new fish pathogen, the pathogenicity of C. 

johnsonae may need to be assessed in other commercial, tropical or temperate 

species. Chitinase or chitinobiase enzymes seem to have a significant role in the 

progress of infection as scale thinning and scale invasion by the organism have 

been demonstrated in barramundi (Carson et al., 1993). Strains of C. johnsonae do 

not release an extracellular chitinase, but need close contact with the chitin particles 

to hydrolyse them (Christensen, 1977a). Sticky adhesive character of fish mucus 

together with the slime layer produced by gliding bacteria may provide sufficiently 

close contact for a long time until the organisms become localised and proliferate in 

situ. Also, the possible roles of other biochemical, enzymatic and cell surface 

properties as potential indicators of virulence in C. johnsonae warrant further 

investigation. 

1.2. Cytophaga psychrophila 

The geographical distribution of C. psychrophi/a, the agent of bacterial cold-water 

disease, or low temperature disease was originally believed to be limited to North 

America (Chapter I). Recently, however, this pathogen has been reported in several 

kinds of fish in Europe, Japan and, more recently, in Australian aquaculture (Chapter 

Ill). The pathogenicity of the pathogen may well be related to a lowered immune 

response of fish at low temperatures (Holt et al., 1989; 1993; Ainsworth et al., 1991 ). 

Natural outbreaks are often' reported in rainbow trout fry at water temperatures 

ranging from 4-15°C, and pathogenicity tests were often successful at similar range 

with the best at 12-15°C (Holt et al., _1989; 1993). Virulent isolates can also infect 

larger fish (Wiklund et al., 1994 ). The Australian isolate of this pathogen in this study 

did not affect rainbow trout fingerling or goldfish in in viva tests using different routes 

of challenge. This shows that this strain may not possess a virulence factor. Also, 

natural incidence of infection in Atlantic salmon was recorded as being very low. 

Therefore, it is likely that this strain of C. psychrophila may affect fish that are only 

subject to a number of stressors; otherwise, its role as a pathogenic organism is 
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uncertain, or it may be a host specific organism. However, should disease occur or 

be likely to occur, maintenance of temperature above 20°C may significantly reduce 

mortality, particularly if salinity can be kept above 1 O g/I, because the growth rate of 

many strains of C. psychrophila is also reduced at these levels (Figs. 2.5 & 2.15, 

Chapter II). 

1.3. Flexibacter columnaris 

The impact of water temperature on the progress of disease by F. columnaris has 

-been studied in a number of commercial species of fish such as salmonids and 

weatherfish (Holt et al., 1993; Wakabayashi, 1993). In this study higher mortality 

was found at 25°C than 20°c in barramundi and goldfish challenged with F. 

co/umnaris strain1468 (Chapter Ill). This may be explained to some extent by the 

slower growth rate of the bacterium at the lower temperatures as the doubling time at 

15 and 20°c was more than twice and 1.6 times of those at 25-30°C (Chapter II). 

Therefore, temperature ::;15°c and, where possible, salinity;::: 10 g/I may be useful in 

control of F. columnaris infection. 

Experimentally induced disease was severe in both barramundi and goldfish 

with greater susceptibility for barramundi (Chapter Ill). There is no single valid dose 

to achieve 50% mortality (LCso) for columnaris disease in fish. Because it will be 

different, depending on the level of virulence of the organism, species of fish, 

stocking density and water quality during the challenge time and thereafter. A valid 

LC50 for this pathogen should be obtained under appropriate conditions, especially 

using a freshly isolated strain and the original host from which the pathogen was 

recovered. In this study the LCso of a barramundi isolate of F. co/umnaris was 

validated in the barramundi and was also compared with goldfish as a known 

susceptible host. The pattern of infectivity in barramundi clearly showed that this 

species is one of the highly susceptible fish to the pathogen. The minimum time to 

death in this species was less than 1 O hours, indicating the high virulence of this 

Australian isolate similar to those strains studied by Pacha and Ordal (1970). 

Histological changes were similar in both species of fish with acute necrosis 

of the superficial epithelium and gill necrosis, but internal organs remained intact. 
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These histopathological findings are similar to those previously reported in a number 

of coldwater or warmwater species of fish (Chapter I), and histopathological features 

owing to F. maritimus studied here. However, infection by F. columnaris is clinically 

somewhat different from marine Flexibacter disease. Using the appropriate host in 

this study, it was evident that the barramundi isolate of F. columnaris caused a rapid 

and acute infection in both barramundi and goldfish, while the progress of marine 

Flexibacter infection was relatively slow in salmonids. Without further studies the 

reasons are speculative, but it may be due to differences in the host, level of 

virulence of the powerful exotoxins, e.g. protease, and/ or the amount of these 

exotoxins produced by the isolates used here. Histological findings also showed the 

severity of these toxins produced by F. columnaris brought about acute necrosis in 

the cutaneous layer of the infected animals. 

1.4. F/exibacter maritimus 

This study describes the pathogenicity of F. maritimus and the histopathological 

features of infection with this pathogen in a number of species of fish, in particular 

salmonids under Australian conditions. 

Comparison of the results of Trials 1 and 2 with Trials 4 and 5 (Table 3.2, 

Chapter Ill) confirms that the greater susceptibility shown in both Atlantic salmon and 

rainbow trout in Trials 4 and 5 was due to increased virulence as a result of passage 

of F. maritimus, as previously observed by Carson et al. (1992). Both natural and 

experimental marine Flexibacter infection of Atlantic salmon and rainbow trout 

indicated an identical range of lesions in these two species, with a slightly higher 

level of susceptibility of Atlantic salmon under Tasmanian conditions (Chapter Ill). 

The pattern of infection was also similar in both salmonids with LC50 in the range 2.3 

x 105-1.6 x 106 CFU/ml at a temperature range 16-20°C and full salinity. Higher 

susceptibility to F. maritimus was found in younger and smaller sizes of Atlantic 

salmon than in older and larger size fish. This concurs with the higher incidence of 

natural outbreak in post-smolts than older fish. Work by Fujihara et al. (1971) 

showed older and larger rainbow trout and chinook salmon were less susceptible 

th.an younger and smaller sizes to F. columnaris infection. One likelihood is that the 
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fish external barriers, such as softness of scales, thinness of skin and mucus layer in 

smaller size fish, may provide a convenient condition for localization and colonization 

of the bacteria on the external surface. Other parameters such as an elevated 

immunity in older fish, may also affect the progress of infection. 

Histological study of mature lesions showed a remarkable lack of inflammatory 

response with bacteria invading dense connective tissue and occasionally 

underlying musculature. The earliest erosions showed consistent fragmentation and 

degeneration of the epithelium with infiltration of amorphous protein-like materials and 

occasional intra-epithelial cellular inflammatory cells, congestion and haemorrhage. 

Scale loss, odema and low degree of inflammation in scale pockets were evident, but 

the remaining scales were intact. There was a great consistency in the 

histopathology in salmonids and non-salmonid species studied here. 

Correlation of natural outbreaks of marine Flexibacterdisease with traumatic 

episodes provides a logical predisposing cause. The often intact epithelium of early 

lesions, following trauma, may be due to successful rapid migration of the adjacent 

epithelium covering small lesions from scale loss, as described by Bullock & Roberts 

(1992). However, the most severe natural outbreaks in salmonids were related to 

warm water conditions and extended periods of sunny, cloudless days rather than 

trauma. Rodger (1991) has already reported the presence of lesions 

indistinguishable from those of marine Flexibacter disease in fish exposed to 

excessive solar irradiation. Although no unequivocal "sunburn" cells were seen in the 

material studied from natural outbreak, some early lesions of natural infections were 

suggestive of the spongy changes reported by Bullock (1988) as a result of 

ultraviolet (UV) irradiation. The likelihood of these lesions being initiated by 

excessive UV light is strengthened by the lack of such changes when trauma was 

identified as a pre-disposing cause. There was a similar epithelial finding in early 

lesions of experimental infections under artificial lighting. High density of bacterial cells 

or their toxin production in challenge may act as a predisposing factor initiating such 

early epithelial findings similar to natural infections, except for the virtual simultaneous 

appearance of the disease in widely separated farms. The importance of UV radiant 
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light is also supported by the lack of eye and dorsal lesions in experimental 

infections. However, the possible role of UV irradiation in F. maritimus infection of 

Tasmanian salmonids warrants further investigation, given the continued incidence of 

natural infection. 

The response of F. maritimus to environmental factors (Chapter II} suggests 

that it would be necessary to reduce the salinity below 15 g/I to prevent outbreaks of 

salmonid cutaneous erosion disease due to F. maritimus 89/4762. This is supported 

by experimental reproduction of cutaneous erosion disease using this strain in 

Atlantic salmon at a salinity of 15 g/1 (Chapter Ill). However, another (mullet origin) 

strain of F. maritimus is more sensitive to low salinities than isolate 89/4762 

(Schmidtke et al., 1991 ), and Flexibacter disease in mullet can be ameliorated by 

holding them at a salinity of 15 g/I (B. Munday, pers comm, 1994). 

2. Antimicrobial activity of skin mucus 

The variable inhibitory action against selected CFLB of skin mucus from presumed 

naive fish could be due to a wide variety of factors. Chief among these is that fish 

are normally exposed to a wide range of organisms, including CFLB in the water 

column and, as a result, may well develop varying degrees of immunity to these 

organisms. Although more data are required the present study suggested that such 

induced resistance was more apparent for low-virulence commensals such as C. 

psychrophila and C. johnsonae than the more pathogenic F. columnaris and F. 

maritimus. Findings supported this hypothesis included those of Fujihara and 

Hungate (1972) who demonstrated naturally-occurring agglutinin titres in the sera of 

12 species of fish against F. columnaris, Hazen et al. (1981) who found high 

antibody titres to Aeromonas hydrophila among populations of wild largemouth bass 

(Micropterus salmoides) in a freshwater pond and Sakai (1983) who demonstrated a 

bactericidal action for naive rainbow trout serum against an avirulent strain of 

Aeromonas salmonicida, but with a lower degree for a virulent isolate. Another 

likelihood is that the level of natural immunity of naive fish is different, depending on 

the species of fish. For instance, lysozyme activity in naive rainbow trout organs 

such as skin mucus was recorded to be 20 times greater than Atlantic salmon (Lie et 
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al., 1989), indicating some species possess an inherent (genetically) low level of 

such non-specific immunity. Consequently, detailed studies of individual immunity 

factors of mucus, such as lysozyme activity, and other macromolecular proteins 

(agglutinins), are warranted in future. 

3. Chemotherapy 

As mentioned earlier (Chapter V), many of the recommended dose rates of 

antimicrobial agents used in fisheries have been based on clinical responses and not 

by validation of the minimum inhibitory concentrations (MIC) and effective tissue 

levels. Treatments should preferably be established by correlating serum levels, 

MIC values and clinical efficacy. This is more relevant, especially with CFLB, which 

are organisms associated with skin infections. There is also a great need to ascertain 

the sensitivity of pathogens because of increased antimicrobial resistance of 

organisms associated with aquaculture. Another relevant point is that the 

relationships between dose rate, treatment time and withdrawal time are complex. For 

instance, some authors have suggested that a high dose for a shorter time may lead 

to more rapid excretion than a low dose administered for a longer time (McCracken et 

al., 1976; Jacobsen, 1989), although, treatment under such strategy may not always 

be effective because of rapid excretion of the therapeutant from the animal's tissues. 

The recent worldwide severe disease outbreaks due to CFLB infections 

have had significant impacts on the aquaculture industry, and have led to a rational 

demand by industry and their advisers to establish appropriate control and treatment 

procedures against these infections. Immunization against these pathogens is only 

beginning and so far the results of those investigations have been variable (e.g. 

Moore et al., 1990; Newman, 1993; Carson et al., 1993; 1994). If possible, improving 

management or manipulating environmental parameters, such as water temperature 

and salinity as mentioned earlier, should be the first choice, otherwise use of 

therapeutants is justified to ameliorate the infections and improve the welfare of the 

fish. 
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These studies provided original data validating the use of some 

recommended antimicrobial agents against CFLB by correlating in vitro and in vivo 

tests. 

Amoxycillin an acid stable, low protein binding, penicillinase-susceptible 

semisynthetic penicillin (13-lactam) compound is suitable for oral use. This antibiotic 

has recently been registered for control of bacterial fish diseases, in particular 

Aeromonas sa/monicida, in some countries such as the United Kingdom (Barnes et 

al., 1994) and is under consideration for licensing in other regions such as the United 

States (Inglis et al., 1992; Elston, 1992). Amoxycillin has been also evaluated 

against pseudotuberculosis (Pasteurella piscicida) in yellowtail (Serio/a 

quinqueradiata) in Japan (Inouye et al., 1992, Cameron, 1993). In the light of the 

resistance which has developed to the other available antimicrobial agents, the 

antibiotic has great potential. Resistance to this agent is plasmid mediated and 

involves ability to produce ~-lactamase enzymes. 

Correlation of the MICs data, serum levels and clinical efficacy obtained in 

this study provides the evidence that amoxycillin is useful for treatment of CFLB 

infections. Since amoxycillin has a short withdrawal time (Elston, 1992; Inglis et al., 

1992), bath treatments may need to be repeated. For instance, in this study a 

sudden mortality commenced one week post-treatment (Fig. 5.4, Chapter V), 

indicating a reduction of drug level in tissues to below the MIC value. 

Trimethoprim is an analogue of the pteridine component of dihydrofolic acid 

with high structural resemblance to dihydrofolate reductase enzyme. The antibacterial 

action of the compound is to interfere with folic acid metabolism in the bacterial cell by 

competitively blocking the biosynthesis of tetrahydrofolate, resulting in blocking of 

the synthesis of DNA, RNA and cell wall proteins leading to the rapid death of the 

bacteria (Harold, 1991 a; 1991 b). Resistance to this compound is due to both 

permeability changes and to an altered dihydrofolate reductase by the mechanism of 

either a chromosomal mutation or a plasmid mediating a new enzyme with an altered 

affinity for trimethoprim. 
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In contrast to freshwater species of CFLB, marine Flexibacter infection does 

not respond to treatment with sulphonamides at least in vitro as indicated by J. 

Carson (pers comm, 1994). Bergsjo and Sognen (1980) reported higher uptake of 

trimethoprim by seawater fish compared to freshwater ones. This study has clearly 

demonstrated that trimethoprim at 10 mg/kg body weight/day for seven days or 50 

ppm for one hour is the treatment of choice against F. maritimus infection, but 

amoxycillin at 80-100 mg/kg body weight/day for 1 O days or 200 ppm for one hour 

would be more suitable close to harvest, when a shorter withholding period is 

necessary. 

Oxolinic acid is commonly used in Australian aquaculture (Anderson, 1992) 

and has been registered for fisheries usage in some countries such as Japan (Austin 

et al., 1983), the UK (Austin & Austin, 1987) and Norway (Lunestad, 1992). The 

antibiotic has been used against a number of bacterial fish pathogens including F. 

columnaris, V. anguillarum, A. hydrophila, A. salmonicida and Y. ruckeri (Carson, 

1990; Anderson, 1992; Austin & Austin, 1993; Munday, 1994). Mechanism of 

antimicrobial action by these quinolone antimicrobial agents is to inhibit DNA 

replication through binding to DNA gyrase enzyme in the bacterial cell (Harold, 

1991 b). Resistance to these agents is due to two mechanisms including structural 

changes in the target enzyme and changes in outer membrane proteins (Hooper & 

Wolfson, 1991 ). Findings by o'Grady et al., 1986 and Ishida (1990) show that this 

compound is more active in freshwater than seawater. The bioassay results in this 

study show that oxolinic acid is readily absorbed in freshwater barramundi when 

used orally. This may be due, in part, to the drug's stability when incorporated in a 

pellet (Scott, 1993; Munday, 1994 ), to higher absorption at higher temperatures and 

lower pH (6.5-7.2) as was observed for flumequine (O'Grady et al., 1988; Sahlberg, 

et al., 1994), and to drug thermostability (Lunestad, 1992; Martinsen et al., 1992). 

Oxolinic acid was chosen to treat F. maritimus infection during the initial phase 

of the natural outbreak in Tasmania (J. Handlinger & S. Percival, pers comm, 1994), 

when the causative agent was unclear, and continued once F. maritimus was 

identified as the causative agent, as recommended for treatment of freshwater 
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Flexibacter infections. Subsequent use of oxytetracyline proved efficacious in these 

outbreaks. Moreover, the consistency of high MIGs values obtained in this study 

confirm the ineffectiveness of oxolinic acid for F. maritimus disease. In contrast, this 

study validated the usefulness of this compound against columnaris disease. MIC 

values, serum level and clinical efficacy data of oxolinic acid suggest a reduction in 

both oral and bath dosages from 10-5 mg /kg body weight/day and, with this in mind, 

a reduction from 50 ppm to 30 ppm against columnaris disease would be 

appropriate. 

It is often difficult to compare the bioassay results reported by various 

workers because of the variability of the procedures, species of fish and conditions 

of treatment. For instance, levels of 1.25, 0.9-1.7, and 1 to >1.2 µg/ml have been 

recorded in the serum or plasma of Atlantic salmon when fish were fed at 80, 9-10 

and 10 mg/kg body weight/day of amoxycillin, oxolinic acid and trimethoprim, 

respeGtively (Carson, 1990; Hustvedt et al., 1991; Cameron, 1991; 1993; Inglis et 

al., 1992). In this study at the similar oral dosages, levels of amoxycillin and 

trimethoprim reached 0.2 and 0.8 µg/ml, respectively in serum of rainbow trout, and 

oxolinic acid achieved 3.4 µg/ml in barramundi serum. Bath treatments of amoxycillin 

(200 ppm) and trimethoprim (either 50 or 100 ppm) produced levels of 0.6 and 0.4 

µg/ml, respectively in sea water Atlantic salmon, and oxolinic acid reached 0.5 µg/ml 

in barramundi when given as a bath (50 ppm). 

However, such procedures need to be both accurate and rapid clinically, 

easily reproducible and cheap in cost. Although, the use of chemical methods with 

high sensitivity and specificity, such as high performance liquid chromatography for 

assay of the reagents, have been recently increased, they are however complex 

with the disadvantages of the time involved, the expense and sometimes difficulties 

in replicating. Such physicochemical analyses do not also determine if the residues of 

antibiotics are either active or biologically available (Barker & Page, 1993). Therefore, 

it would be rational to evaluate and develop microbiological assays which provide a 

rapid, inexpensive and easily applied means of screening for antimicrobial agents 

(Inglis et al., 1993; Smith et al., 1993). However, the use of such physicochemical 

-146-



procedures was not the aim of this study. The aim was to evaluate microbiological 

assays as a means of providing meaningful data. 

Clearly, in a situation when rapid diagnosis and treatment of disease is 

imperative, quick-acting compounds with broad spectrum inhibitory activity are 

adyantageous. The correlation of in vitro and in viva results concludes that 

amoxycillin is a suitable therapeutic reagent against the CFLB; oxolinic acid and 

norfloxacin against freshwater species of CFLB and trimethoprim against F. 

maritimus. Oxytetracycline is a recommended compound for treatment of these 

infections, especially columnaris disease and this efficacy is shown by the results of 

MIC values obtained in this study. However, this compound suffers some 

disadvantages including low bioavailability (e.g. in carp), interference with 

osmoregulation in salmon smolts, long retention in skin and muscles with a relatively 

long withdrawal period of two months, production of insoluble complexes with Ca 

and Mg ions when it is used in sea water or hard waters and immune suppression 

(Rijkers et al., 1980; Jacobsen 1989; Lunestad & Goks0yr 1990; Lunestad, 1992; 

Munday 1994). In addition, results of investigations (e.g. Toranzo et al., 1984) show 

that the long and extensive usage of this antimicrobial agent as both a therapeutant 

and a growth promoter (Ahmad & Matty, 1989) in aquaculture has caused a 

significant increase in bacterial resistance to this compound. 

4. Conclusion 

Substantial evidence was obtained on the pathogenesis of infections due to, and the 

chemotherapy of, a number of fish-pathogenic CFLB. Studies on physiological 

requirements of the organisms showed that temperature or salinity may well be 

useful as controlling agents. Conversely, it is unlikely that manipulation of pH could 

be used to control these bacteria because the pH range for growth of CFLB is similar 

to what might be expected in aquatic environments. Findings on the pathogenesis of 

C. johnsonae gave evidence that this organism may become a significant potential 

pathogen in freshwater or slightly brackish environment where there is a variation in 

the ambient water condition such as temperature. Barramundi was identified to be 

more susceptible to the infection by C. johnsonae and F. columnaris than other 
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species studied here. Infection due to F. columnaris was severe in barramundi and 

goldfish with rapid and high mortality. Another freshwater species, C. psychrophi/a, 

was identified as a low virulence pathogen in the instance of the Tasmanian isolate. 

The study also provided original data correlating pathogenesis of F. maritimus in a 

number of commercial and captured species in Tasmania. Pathological findings due to 

this infection suggest a significant role of the organism in natural epizootics in Atlantic 

salmon, rainbow trout, striped trumpeter and greenback flounder, especially under 

optimal environmental conditions for the organism. In addition, there was a consistent 

similarity between histological findings of natural and experimental infections due to 

this pathogen. Correlation of in vitro and in viva findings gave a substantial and 

original data on the chemotherapy of these infections in fish. In addition, this study 

validated the clinical efficacy of oxolinic acid, amoxycillin and trimethoprim against 

Flexibacterinfections in barramundi, Atlantic_salmon and rainbow trout. 
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Table 1. Composition of media used for the isolation of fish pathogenic Cytophaga!Flexibacter--like bacteria (CFLB). 

No. lnqredient 1 2 3 4 5 6 7 8 9 10 11 12 
1 Agar 0.9% 0.9% 1.0% - 1.5% 1.5% 1.5% 1.0% 1.5% 1.5% 0.9% 1.0% 
2 Beef extract 0.02% 0.02% - - - 0.002% - - - - - -
3 Casamino acids - - - 0.1% - - - - - - - -
4 Casein - - - - - - - - - - - 0.3% 
5 Casitone - - 0.05% - - - - - - - - -
6 Calcium chloride - - - 0.1% - - - - - - - 0.03% 
7 Enzymic digest of fish - - - - - - - - - - 5.0% -

muscle 
8 Magnesium chloride - - - 1.08% - - - - - - - -
9 Potasium chloride - - - 0.07% - - - - - - - -

10 Sodium chloride - - - 3.13% - - - - - - - -
11 Meat broth diluted - - - - - - 1:10 - - - - -
12 Peptone - - - - - - - - - - 0.1% -
13 Peptonized milk - - - - - 0.05% - - 0.1% - - -
14 Skim milk - - - - 0.5% - - - - - - -
15 Sodium acetate 0.02% 0.02% - - - 0.002% - - 0.002% 002% - -
16 Tryptone 0.05% 0.05% - 0.1% - 0.005% - 0.02% - 0.1% - 0.2% 
17 Yeast extract 0.05% 0.05% 0.05% 0.02% 0.05% 0.005% - - 0.02% 0.02% 0.1% 0.05% 
18 Erythromycin - - - - - - - - - - - 10 µg/ml* 
19 Neomycin sulphate - 5 µg/ml - - - - - - - - - 10 µg/ml* 
20 Polymyxin B - 10 IU/ml - - - - - - - - - 256 IU/ml* 
21 pH 7.2-7.4 7.2-7.4 8.0 7-7.2 7.0 7.0 

1. Cytophaga agar (Anacker & Ordal, 1959a); for isolation of marine bacteria the medium consists of at least 30% sea water; use of 2-5 µg oxolinic acid/ml 
improves the isolation of F. maritimus (Carson, 1990, Carson et al., 1992); use of 5 µg neomycin/ml and 200 IU polymyxin B/ml improves the isolation of F. 
columnaris in the systemic infection (Hawke & Thune, 1992). 2. Fijan (1969) medium ; 3. Bootsma & Clerx's (1976) medium. 4. TCY medium (Hikida et al., 
1979; Austin & Austin, 1987; 1993). 5. Skim milk agar (Christensen & Cook, 1972). 6. Peptonized milk agar (Carlson & Pacha, 1968). 7. Mouton agar (Grat & 
StUrzenhofecker, 1946; Reichenbach, 1989). 8. Tryptone agar (Lewin & Lounsbery, 1969). 9. Peptonized milk yeast agar II (Christensen & Cook, 1972). 10. 
Tryptone yeast agar (Christensen & Cook, 1972). 11. Anderson & Conroy (1969); perpared in seawater. 12. Hsu et al. (1983). * Any one of neomycin, 
polymyxin or erythromycin may be used. 
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Table 2. Antibiotics and chemical substances which are used for control and treatment of 

fish pathogenic Cytophagal Flexibacter-like bacteria (Austin & Austin, 1987; 1993; Munday, 

1988; 1994; Reddacliff, 1988; Carson, 1990; Holt et al., 1993; Noga, 1993; Thune, 1993;. 

Wakabayashi, 1993). 

Druq/deterqent 
Acriflavine 
Furanace 
Nalidixic acid 
Oxolinic acid1 

Oxytetracycline2 

Proflavine3 
Sulphonamides:4 
Sulfisoxazole 

Sulphadimidine 

Sulphamerazine 

Sulphamethazine 
Sulphanilimide 
Tribrissen 

Tetracycline 
Trimethoprim 
Benzalkonium 
chloride5 
Copper sulphate 

Formalin 
Malachite green6 

Pyridylmercuric 
acetate 

Method/dosaqe 
bath, 3-5 ppm for 3-10 days. 
0.5 µg/ml for 1 hour every third day. 
oral, 40 mg/kg b w daily for 10 days. 
oral, 10-15 mg/kg b w daily for 10 days. 
Bath, 1 ppm for 24 hours, 50ppm for 1 
hour. 
oral, 75-100 mg/kg b w daily for 10 days. 
Bath, 20-100 ppm (100 ppm in hard 
water) for 5-10 days or 200 ppm for 2 
hours. 
bath, 20 ppm for 30 min. 

oral, 100-200 mg/kg b w daily for 7-1 O 
days. 
oral, 100-200 mg/kg b w daily for 7-10 
days. bath, 8 ppm for 5-10 days. 
oral, 100-200 mg/kg b w daily for 7-10 
days. 
oral, 100-200 mg/kg b w daily 10-20 days. 
bath, 200 ppm daily for 5-10 days. 
oral, 50 mg/kg b w daily for 10 days. bath, 
20 ppm daily for 5-7 days. 

oral, 10 mg/kg b w daily for 10 days. 
bath, 1-2 ppm for 1 hour at water 
hardness 100-200 ppm. 
dip, a dilution of 1 :2000 for 1-2 min. 
bath, 1-2 mg/I for 30-60 min. 
bath, 25 ppm "indefinitely" 
bath, 0.2 ppm fro 1-2 hour at 3 days 
intervals or 0.08 ppm indefinitely. 
Dip, 66 ppm (1 :15000) for 30 sec. 
2 mg/I for 1 hour 

Pathoqen/disease 
columnaris disease (CD) 
Cytophaga sp., BCWD 
C. aquatilis 
CD 

bacterial cold water 
disease (BCWD), CD, F. 
maritimus , C. johnsonae 

CD 

BCWD, Cytophaga sp. 

BCWD, Cytophaga sp. 

BCWD, Cytophaga sp. 

BCWD, Cytophaga sp. 
BCWD, Cytophaga sp. 
BCWD, Cytophaga sp., F. 
maritimus 
C. aquatilis 
F. maritimus 
BCWD, CD, Cytophaga 
sp. 
CD 

CD, F. maritimus 
CD, F. maritimus 

CD 

Sodium chloride? dip. 8% NaCl for 30 sec. or to salinity of CD 
10-15%0 seawater. 

Tiamulin 5-50 mq/kq b w F. maritimus 

(1) Good stability when incorporated into pellets. Aquarium fish should preferably be 

treated in a special treatment container because of drug interference with the 

functioning of biofilters. 

(2) Poor stability in pellets. For treatment of F. maritimus may used at 100-200ppm. 

Response to therapy for BCWD is often poor because of the low temperatures at 

which the disease occurs. 

(3) Insoluble in seawater. 

(4) Must be used with extreme caution in salmonids. 

(5) Reduced efficacy in seawater, can cause gill damage at higher concentration. 

(6) Must be zinc free. 

(7) Farkas & Olah (1980) and Austin & Austin (1993) suggested the use of sodium 

chloride bath is useful in order to control columnaris disease. 
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APPENDIX II 

Table1. Change in absorbance of Flexibacter maritimus 89/4762 (5 replicates cultures) 

with time under different temperatures. Absorbance of blank was 0.000-0.0010. 

Temperature 4 °C 

lime (day) Rep.1 Rep. 2 Rep.3 Rep.4 Rep.5 Mean St. Error 
0 0.001 0.002 0.001 0.001 0.002 0.001 0.000245 

2 0.001 0.002 0.001 0.001 0.003 0.002 0.000400 

4 0.008 0.004 0.004 0.005 0.006 0.005 0.000748 

6 0.007 0.005 0.005 0.005 0.006 0.006 0.000400 

8 0.007 0.005 0.004 0.005 0.008 0.006 0.000735 

10 0.007 0.007 0.008 0.006 0.009 0.007 0.000510 

12 0.008 0.008 0.008 0.009 0.009 0.008 0.000245 

14 0.008 0.009 0.011 0.008 0.007 0.009 0.000678 

16 0.007 0.006 0.009 0.007 0.007 0.007 0.000490 

18 0.007 0.007 0.006 0.006 0.005 0.006 0.000374 

20 0.008 0.008 0.006 0.005 0.005 0.006 0.000678 

22 0.008 0.007 0.006 0.005 0.004 0.006 0.000707 

Temperature 8°C 

lime (day) Rep.1 Rep. 2 Rep.3 Rep.4 Rep.5 Mean St. Error 
0 0.001 0.002 0.001 0.001 0.001 0.001 0.000200 

2 0.007 0.007 0.001 0.001 0.004 0.004 0.001342 

4 0.016 0.02 0.018 0.017 0.018 0.018 0.000663 

6 0.026 0.044 0.032 0.03 0.031 0.033 0.003027 

8 0.056 0.073 0.078 0.072 0.074 0.071 0.003789 

10 0.079 0.07 0.09 0.091 0.098 0.086 0.004946 

12 0.081 0.086 0.112 0.109 0.108 0.099 0.006492 

14 0.1 0.09 0.116 0.114 0.11 0.106 0.004858 

16 0.08 0.07 0.097 0.1 0.095 0.088 0.005750 

18 0.055 0.045 0.079 0.075 0.076 0.066 0.006753 

20 0.046 0.04 0.075 0.07 0.071 0.06 0.007215 

22 0.043 0.035 0.065 0.066 0.064 0.055 0.006501 

Temperature 16°C 

lime (day) Rep.1 Rep. 2 Rep.3 Rep.4 Rep.5 Mean St. Error 
0 0.001 0.001 0.002 0.002 0.001 0.001 0.000245 

1 0.033 0.038 0.035 0.034 0.036 0.035 0.000860 

2 0.081 0.085 0.072 0.075 0.077 0.078 0.002280 

3 0.13 0.135 0.129 0.125 0.129 0.13 0.001600 

4 0.174 0.184 0.164 0.161 0.168 0.17 0.004079 

5 0.181 0.2 0.18 0.182 0.192 0.187 0.003899 

6 0.237 0.25 0.237 0.24 0.246 0.242 0.002588 

7 0.26 0.256 0.266 0.289 0.27 0.268 0.005731 

8 0.36 0.368 0.362 0.292 0.32 0.34 0.014784 

9 0.369 0.374 0.369 0.319 0.369 0.36 0.010296 
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Table 1. continued 

Temperature 20°C 

Time (day) Rep. 1 Rep. 2 Rep. 3 
0 0.003 0.002 0.001 
1 0.077 0.075 0.07 
2 0.11 0.12 0.113 

3 

4 

5 
6 

7 

8 

9 

0.154 0.162 0.16 
0.176 

0.23 
0.245 

0.288 

0.318 

0.328 

Temperature 25°C 

Time (day) Rep. 1 

0 0.001 

1 0.079 

2 0.134 
0.165 

0.201 

0.17 0.172 
0.227 0.237 

0.25 0.265 
0.28 0.309 

0.305 0.338 

0.318 0.328 

Rep. 2 Rep. 3 

0.001 0.002 

0.076 0 075 

0.122 0.129 

0.163 0.164 

0.2 0.2 

0.259 0.251 0.241 

0.3 

0.316 

0.373 

0.282 0.28 

0.296 0.311 

0.394 0.388 

Rep.4 
0.002 
0.068 

0.13 
0.185 
0.193 

0.278 

0.301 

0.334 

0.382 

0.37 

Rep.4 

0.001 

0.086 

0.134 
0.166 

0.202 

0.255 

0.284 

0.318 

0.37 

3 

4 
5 
6 
7 

8 
9 0.368 0.39 0.384 0.364 

Temperature 30°C 

Time (day) Rep. 1 Rep. 2 Rep. 3 

0 0 0.001 0.001 
0.108 

0.17 
0.22 

0.264 

0.325 

0.365 

0.355 

0.102 0.1 

0.153 0.153 

0.2 0.2 
0.238 0.238 

0.286 0.285 

0.328 0.326 

0.338 0.362 

Rep.4 
0.002 
0.083 

0.14 
0.201 

0.231 

0.28 

0.324 

0.361 

1 

2 
3 

4 

5 
6 

7 
8 

9 

0.305 0.373 0.36 0.354 

0.278 0.35 0.343 0.342 

Temperature 35°C 

Time (day) Rep. 1 Rep. 2 Rep. 3 
0 0.012 0.01 0.01 

1 
2 
3 

4 
5 

6 

7 

8 
9 

0.039 0.015 0.028 
0.116 0.048 0.078 
0.135 0.098 0.099 

0.159 0.144 0.135 
0.185 0.185 0.157 

0.228 0.21 0.19 

0.254 0.236 0.211 
0.325 0.307 0.286 

0.313 0.264 0.289 

Rep.4 
0.01 

0.027 

0.073 
0.095 

0.14 

0.18 
0.205 

0.25 

0.302 
0.274 

-179-

Rep.5 
0.001 
0.072 
0.115 
0.168 
0.178 

0.232 
0.268 

0.312 

0.33 

0.369 

Rep.5 

0.001 

0.08 

0.125 
0.162 

0.202 

0.254 

0.29 

0.31 

0.384 

0.372 

Rep.5 
0.001 
0.085 

0.148 
0.21 

0.25 

0.316 

0.34 

0.365 

0.325 

0.29 

Rep.5 
0.011 

0.03 
0.095 
0.122 

0.145 
0.165 
0.202 

0.235 
0.296 

0.305 

Mean 
0.002 
0.072 
0.118 
0.166 
0.178 

0.241 
0.266 

0.305 

0.335 

0.343 

Mean 
0.001 

0.079 

0.129 

0.164 
0.201 

0.252 

0.287 

0.31 

0.382 
0.376 

Mean 
0.001 
0.096 

0.153 
0.206 

0.244 

0.298 

0.337 

0.356 

0.343 
0.321 

Mean 
0.011 

0.028 
0.082 
0.11 

0.145 
0.174 

0.207 

0.237 

0.303 
0.289 

St. Error 
0.000374 
0.001631 

0.003501 
0.005295 
0.004055 

0.009441 
0.009815 
0.009537 

0.013098 

0.011134 

St. Error 
0.000200 
0.001934 

0.002396 

0.000707 

0.000447 

0.003033 

0.003611 

0.003852 

0.004521 

0.004915 

St. Error 
0.000316 
0.004925 

0.004913 
0.003929 

0.005817 

0.009190 

0.007626 

0.004831 

0.012404 

0.015125 

St. Error 
0.000400 

0.003839 
0.011353 
0.007933 

0.004007 
0.005689 
0.006197 

0.007546 

0.006476 
0.009171 



Table 1. continued 

Temperature 37°C 

Time (day) Rep.1 Rep.2 Rep.3 Rep.4 Rep.5 Mean St. Error 

0 0.001 0.001 0.001 0.001 0.001 0.001 0.000000 

1 0.033 0.031 0.031 0.033 0.03 0.032 0.000600 

2 0.032 0.027 0.028 0.027 0.027 0.028 0.000970 

3 0.03 0.025 0.025 0.025 0.025 0.026 0.001000 

4 0.029 0.025 0.025 0.025 0.025 0.026 0.000800 

5 0.027 0.023 0.025 0.023 0.024 0.024 0.000748 

6 0.025 0.021 0.023 0.02 0.021 0.022 0.000894 

9 0.01 0.006 0.005 0.008 0.007 0.0072 0.000860 

14 0.004 0.003 0.005 0.006 0.007 0.005 0.000707 

Temperature 38°C (absorbance of the cultures at 42°C was similar to those of at 38°C) 

Time (day) Rep.1 Rep. 2 Rep.3 Rep.4 Rep.5 Mean St. Error 

0 0.001 0.001 0.001 0.001 0.002 0.001 0.000200 

1 0.006 0.006 0.006 0.007 0.007 0.006 0.000245 

2 0.003 0.003 0.004 0.005 0.005 0.004 0.000447 

3 0.007 0.007 0.007 0.008 0.007 0.007 0.000200 

4 0.007 0.007 0.007 0.006 0.005 0.006 0.000400 

5 0.007 0.007 0.003 0.005 0.004 0.005 0.000800 

14 0.006 0.007 0.003 0.004 0.002 0.004 0.000927 

Table 2. Change in absorbance of Cytophaga johnsonae 91/0262-10 (5 replicates 

cultures) with time under different temperatures Absorbance of blank was 0.000-0.0010. 

Temperature 4°C 

Time (day) Rep.1 Rep2 Rep3 Rep4 Rep5 Mean St. Error 
0 0.002 0.003 0.005 0.002 0.003 0.003 0.000548 

1 0.011 0.005 0.009 0.01 0.005 0.008 0.001265 

2 0.016 0.01 0.01 0.01 0.009 0.011 0.001265 

3 0.037 0.011 0.027 0.039 0.012 0.025 0.005953 

4 0.084 0.043 0.068 0.082 0.048 0.065 0.008462 

5 0.127 0.078 0.115 0.132 0.095 0.109 0.010112 

6 0.165 0.127 0.16 0.145 0.134 0.146 0.007290 

7 0.196 0.176 0.194 0.193 0.186 0.189 0.003661 

8 0.221 0.211 0.223 0.215 0.202 0.214 0.003763 

9 0.245 0.231 0.238 0.237 0.231 0.236 0.002600 

Temperature 8°C 

Time (day) Rep.1 Rep2 Rep3 Rep4 Rep5 Mean St. Error 
0 0.002 0.003 0.005 0.002 0.003 0.003 0.000548 

1 0.012 0.013 0.014 0.011 0.012 0.012 0.000510 

2 0.026 0.026 0.029 0.025 0.026 0.026 0.000678 

3 0.05 0.051 0.065 0.047 0.052 0.053 0.003114 

4 0.11 0.112 0.115 0.096 0.105 0.108 0.003326 

5 0.137 0.139 0.16 0.139 0.132 0.141 0.004823 

6 0.177 0.178 0.194 0.181 0.166 0.179 0.004488 

7 0.196 0.21 0.227 0.216 0.194 0.209 0.006194 
8 0.22 0.231 0.248 0.227 0.218 0.229 0.005342 

9 0.239 0.243 0.293 0.254 0.245 0.255 0.009861 
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Table 2. continued 

Temperature 10°C 

Time (day) Rep.1 Rep2 Rep3 Rep4 Rep5 Mean St. Error 

0 0.004 0.005 0.004 0.004 0.003 0.004 0.000316 

1 0.021 0.018 0.022 0.022 0.021 0.021 0.000735 

2 0.064 0.064 0.062 0.068 0.069 0.065 0.001327 

3 0.126 0.122 0.127 0.113 0.13 0.124 0.002943 

4 0.2 0.19 0.214 0.199 0.212 0.203 0.004450 

5 0.226 0.232 0.258 0.242 0.236 0.239 0.005463 

6 0.262 0.261 0.302 0.27 0.265 0.272 0.007662 

7 0.297 0.281 0.338 0.302 0.3 0.304 0.009363 

8 0.347 0.321 0.38 0.352 0.331 0.346 0.010106 

9 0.362 0.367 0.37 0.37 0.36 0.366 0.002059 

Temperature 15°C 

Time (day) Rep.1 Rep.2 Rep. 3 Rep.4 Rep.5 Mean St. Error 
0 0.004 0.003 0.003 0.004 0.003 0.003 0.000245 

1 0.07 0.066 0.064 0.074 0.07 0.069 0.001744 

2 0.168 0.155 0.152 0.176 0.164 0.163 0.004359 

3 0.223 0.221 0.217 0.236 0.214 0.222 0.003787 

4 0.266 0.269 0.262 0.3 0.256 0.271 0.007666 

5 0.313 0.32 0.288 0.351 0.296 0.314 0.010966 

6 0.342 0.355 0.331 0.38 0.324 0.346 0.009903 

7 0.382 0377 0.368 0.396 0.355 0.376 0.006860 

8 0.379 0.35 0.372 0.374 0.393 0.374 0.006947 

9 0.36 0.35 0.35 0.36 0.363 0.357 0.002750 

Temperature 20°c 

Time (day) Rep.1 Rep2 Rep3 Rep4 Reps Mean St. Error 
0 0.005 0.004 0.004' 0.004 0.004 0.004 0.000200 

1 0.068 0.067 0.069 0.07 0.077 0.070 0.001772 

2 0.154 0.147 0.151 0.15 0.152 0.151 0.001158 

3 0.225 0.199 0.225 0.21 0.22 0.216 0.005014 

4 0.271 0.256 0.284 0.248 0.264 0.265 0.006194 

5 0.305 0.297 0.315 0.276 0.307 0.300 0.006648 

6 0.353 0.342 0.35 0.305 0.347 0.339 0.008790 

7 0.392 0.388 0.394 0.34 0.392 0.381 0.010346 

8 0.414 0.42 0.404 0.375 0.397 0.402 0.007829 

9 0.37 0.416 0.37 0.39 0.361 0.381 0.009867 

Temperature 25°C 

Time (day) Rep.1 Rep. 2 Rep.3 Rep.4 Rep.5 Mean St. Error 
0 0.004 0.003 0.004 0.004 0.003 0.004 0.000245 

1 0.125 0.113 0.112 0.114 0.115 0.116 0.002354 

2 0.187 0.188 0.192 0.177 0.187 0.186 0.002478 

3 0.25 0.23 0.268 0.245 0.252 0.249 0.006116 

4 0.316 0.299 0.328 0.275 0.288 0.301 0.009494 

5 0.353 0.345 0.351 0.327 0.355 0.346 0.005083 

6 0.375 0.378 0.38 0.37 0.382 0.377 0.002098 

7 0.368 0.35 0.338 0.355 0.343 0.351 0.005190 

8 0.312 0.318 0.301 0.319 0.307 0.311 0.003385 

9 0.295 0.286 0.276 0.288 0.288 0.287 0.003059 
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Table 2. continued 

Temperature 30°C 

lime (day) Rep.1 Rep.2 Rep.3 Rep.4 Rep.5 Mean St. Error 
0 0.007 0.003 0.004 0.006 0.007 0.005 0.000812 

1 0.083 0.086 0.105 0.088 0.089 0.090 0.003839 

2 0.18 0.175 0.195 0.18 0.181 0.182 0.003367 

3 0.255 0.228 0.279 0.244 0.25 0.251 0.008303 

4 0.3 0.252 0.309 0.266 0.288 0.283 0.010583 

5 0.311 0.265 0.316 0.312 0.311 0.303 0.009545 

6 0.335 0.29 0.268 0.313 0.326 0.306 0.012225 

7 0.283 0.288 0.21 0.268 0.274 0.265 0.014084 

8 0.251 0.267 0.205 0.22 0.232 0.235 0.010986 

9 0.196 0.221 0.147 0.152 0.205 0.184 0.014742 

Temperature 35°C 

lime (day) Rep.1 Rep. 2_ Rep. 3 Rep.4 Rep.5 Mean St. Error 
0 0.004 0.003 0.004 0.004 0.003 0.004 0.000245 

1 0.076 0.07 0.069 0.073 0.067 0.071 0.001581 

2 0.092 0.087 0.08 0.088 0.073 0.084 0.003362 

3 0.093 0.094 0.087 0.095 0.077 0.089 0.003353 

4 0.082 0.086 0.08 0.086 0.066 0.080 0.003688 

5 0.075 0.08 0.074 0.08 0.062 0.074 0.003292 

6 0.075 0.076 0.073 0.074 0.06 0.072 0.002943 

7 0.074 0.075 0.07 0.074 0.058 0.070 0.003169 

8 0.074 0.074 0.07 0.074 0.058 0.070 0.003098 

9 0.073 0.074 0.068 0.071 0.057 0.069 0.003076 

Temperature 37°C (absorbance of cultures at 42°C was similar to those of at 37°C). 

lime (day) Rep.1 Rep.2 Rep.3 Rep.4 Rep.5 Mean St. Error 
0 0.003 0.01 0.003 0.002 0.003 0.004 0.001463 

1 0.010 , 0.018 0.012 O.Q12 0.011 0.013 0.001400 

2 0.004 0.012 0.005 0.005 0.003 0.006 0.001594 

3 0.004 0.011 0.003 0.004 0.003 0.005 0.001517 

4 0.003 0.010 0.003 0.005 0.002 0.005 0.001435 

5 0.003 0.011 0.004 0.004 0.002 0.005 0.001594 

6 0.002 0.006 0.004 0.003 0.001 0.003 0.000860 

8 0.002 0.005 0.004 0.003 0.001 0.003 0.000707 

14 0.003 0.007 0.005 0.002 0.002 0.004 0.000970 

Table 3. Change in absorbance of Flexibacter columnaris 1468 (5 replicates cultures) 

with time under different temperatures. Absorbance of blank was 0.001-0.003. 

Temperature 10°C (absorbance of the cultures at 4°C was similar to those of at 10°C). 

Time (hr.min) Rep.1 Rep.2 Rep.3 Rep.4 Rep.5 Mean Log 
0.00 0.030 0.030 0.030 0.030 0.030 0.030 -1.523 

1.00 0.034 0.030 0.035 0.030 0.032 0.032 -1.495 

2.00 0.034 0.030 0.038 0.030 0.035 0.033 -1.481 

3.00 0.033 0.027 0.034 0.026 0.030 0.030 -1.523 

4.00 0.033 0.028 0.034 0.028 0.031 0.031 -1.509 

5.00 0.033 0.028 0.034 0.028 0.031 0.031 -1.509 

24.00 0.029 0.022 0.034 0.020 0.030 0.027 -1.569 

72.00 0.005 0.013 0.016 0.008 0.015 O.Q11 -1.959 

336.00 0.004 0.010 0.018 0.010 0.010 0.010 -1.983 
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Table 3. continued 
Temperature 15°C 
Time (hr.min) Rep.1 Rep. 2 Rep.3 Rep.4 Rep.5 Mean Log 

0.00 0.030 0.030 0.030 0.030 0.030 0.030 -1.523 

0.30 0.033 0.033 0.034 0.033 0.033 0.033 -1.479 

1.00 0.036 0.036 0.037 0.035 0.037 0.036 -1.441 

1.30 0.039 0.040 0.043 0.039 0.041 0.040 -1.394 

2.00 0.042 0.043 0.046 0.042 0.044 0.043 -1.363 

2.30 0.045 0.046 0.049 0.045 0.046 0.046 -1.335 

3.00 0.053 0.047 0.052 0.046 0.047 0.049 -1.310 

3.30 0.057 0.051 0.056 0.049 0.050 0.053 -1.276 

4.00 0.060 0.053 0.061 0.054 0.053 0.056 -1.252 

4.30 0.063 0.056 0.066 0.058 0.058 0.060 -1.222 

5.00 0.066 0.062 0.070 0.062 0.064 0.065 -1.187 

15.00 0.086 0.082 0.106 0.085 0.094 0.091 -1.041 

Temperature 20°C 

Time (hr.min) Rep.1 Rep. 2 Rep.3 Rep.4 Rep.5 Mean Log 
0.00 0.030 0.030 0.030 0.030 0.030 0.030 -1.523 

0.30 0.035 0.032 0.037 0.032 0.033 0.034 -1.469 

1.00 0.043 0.036 0.045 0.038 0.039 0.040 -1.396 

1.30 0.046 0.043 0.050 0.044 0.046 0.046 -1.339 
2.00 0.051 0.048 0.055 0.049 0.050 0.051 -1.296 

2.30 0.057 0.056 0.060 0.055 0.055 0.057 -1.247 
3.00 0.066 0.060 0.069 0.059 0.059 0.063 -1.201 

3.30 0.073 0.066 0.073 0.064 0.064 0.068 -1.167 

4.00 0.080 0.076 0.086 0.071 0.070 0.077 -1.114 
4.30 0.088 0.081 0.088 0.078 0.076 0.082 -1.086 
5.00 0.095 0.087 0.098 0.085 0.084 0.090 -1.046 

15.00 0.109 0.114 0.118 0.112 0.112 0.113 -0.947 

Temperature 25°C 

Time (hr.min) Rep.1 Rep. 2 Rep.3 Rep.4 Rep.5 Mean Log 
0.00 0.030 0.030 0.030 0.030 0.030 0.030 -1.523 

0.25 0.035 0.035 0.036 0.034 0.033 0.035 -1.461 

0.50 0.042 0.039 0.044 0.038 0.036 0.040 -1.398 

1.15 0.050 0.044 0.050 0.044 0.041 0.046 -1.337 

1.40 0.057 0.050 0.057 0.053 0.050 0.053 -1.276 

2.10 0.073 0.068 0.077 0.070 0.068 0.071 -1.149 

2.40 0.082 0.081 0.092 0.085 0.080 0.084 -1.076 
3.10 0.101 0.101 0.106 0.103 0.095 0.101 -0.996 

3.40 0.108 0.114 0.115 0.111 0.103 0.110 -0.959 

4.10 0.118 0.127 0.132 0.128 0.123 0.126 -0.900 
4.40 0.122 0.137 0.150 0.145 0.136 0.138 -0.860 

5.10 0.139 0.151 0.160 0.165 0.155 0.154 -0.812 
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Table 3. continued 

Temperature 30°C 

Time (hr.min) Rep.1 Rep. 2 Rep.3 Rep.4 Rep.5 Mean Log 
0.00 0.030 0.030 0.030 0.030 0.030 0.030 -1.523 

0.25 0.034 0.035 0.034 0.033 0.035 0.034 -1.466 

0.50 0.046 0.041 0.048 0.039 0.041 0.043 -1.367 

1.15 0.055 0.051 0.056 0.050 0.050 0.052 -1.284 

1.40 0.064 0.059 0.066 0.061 0.059 0.062 -1.208 

2.10 0.081 0.075 0.077 0.075 0.074 0.076 -1.119 

2.40 0.097 0.090 0.091 0.087 0.086 0.090 -1.046 

3.10 0.114 0.105 0.101 0.101 0.099 0.104 -0.983 

3.40 0.127 0.120 0.118 0.120 0.113 0.120 -0.921 

4.10 0.143 0.131 0.126 0.130 0.120 0.130 -0.886 

4.40 0.159 0.144 0.139 0.145 0.130 0.143 -0.845 

5.10 0.175 0.160 0.159 0.165 0.148 0.161 -0.793 

Temperature 35°C 

Time (hr.min) Rep.1 Rep.2 Rep. 3 Rep.4 Rep.5 Mean Log 
0.00 0.030 0.030 0.030 0.030 0.030 0.030 -1.523 

0.30 0.034 0.033 0.033 0.032 0.033 0.033 -1.481 

1.00 0.041 0.038 0.038 0.036 0.037 0.038 -1.420 

1.30 0.050 0.047 0.046 0.044 0.045 0.046 -1.333 

2.00 0.059 0.058 0.056 0.053 0.054 0.056 -1252 

2.30 0.071 0.067 0.065 0.060 0.061 0.065 -1.188 

3.00 0.085 0.076 0.074 0.073 0.075 0.077 -1.116 

3.30 0.098 0.085 0.086 0.084 0.085 0.088 -1.057 

4.00 0.109 0.105 0.097 0.096 0.094 0.100 -0.999 

4.30 0.117 0.115 0.103 0.112 0.100 0.109 -0.961 

13.00 0.280 0.243 0.264 0.255 0.243 0.257 -0.590 

Temperature 37°C 

Time (hr.min) Rep.1 Rep.2 Rep.3 Rep.4 Rep.5 Mean Log 
0.00 0.030 0.030 0.030 0.030 0.030 0.030 -1.523 

0.30 0.033 0.031 0.035 0.034 0.033 0.033 -1.481 

1.00 0.037 0.035 0.036 0.035 0.037 0.036 -1.444 

1.30 0.042 0.039 0.042 0.039 0.041 0.041 -1.391 

2.00 0.045 0.041 0.046 0.042 0.044 0.044 -1.361 

2.30 0.053 0.048 0.051 0.047 0.047 0.049 -1.310 

3.00 0.058 0.054 0.054 0.050 0.053 0.054 -1.268 

3.30 0.062 0.064 0.060 0.052 0.056 0.059 -1.229 

4.00 0.065 0.072 0.067 0.053 0.058 0.063 -1.201 

4.30 0.067 0.076 0.079 0.059 0.066 0.068 -1.167 

5.00 0.070 0.090 0.084 0.064 0.068 0.074 -1.131 

14.00 0.073 0.108 0.088 0.076 0.083 0.086 -1.066 
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Table 3. continued 

Temperature 42°C 

Time (hr.min) Rep. 1 Rep. 2 Rep. 3 
0.00 0.030 0.030 0.030 
0.30 

1.00 
1.30 
2.00 
2.30 
3.00 
3.30 

4.00 

4.30 
5.00 

15.00 

336.00 

0.033 

0.033 
0.031 
0.030 
0.030 
0.030 
0.030 

0.029 

0.029 

0.029 

0.029 

0.032 

0.031 0.035 

0.031 0.035 
0.031 0.036 
0.031 0.035 
0.031 0.035 
0.031 0.035 
0.031 0.034 

0.031 0.033 
0.031 0.033 

0.031 0.033 

0.031 0.033 

0.031 0.034 

Rep.4 
0.030 

0.034 

0.034 
0.032 
0.034 
0.034 
0.033 
0.034 

0.034 

0.033 

0.033 

0.033 

0.034 

Rep.5 
0.030 

0.033 

0.033 
0.033 
0.036 

0.036 
0.032 
0.032 

0.031 

0.032 

0.032 

0.032 

0.036 

Mean 
0.030 

0.033 

0.033 
0.033 
0.033 
0.033 

0.032 
0.033 

0.032 

0.032 

0.032 

0.032 

0.033 

Log 
-1.523 
-1.481 

-1.481 
-1.487 
-1.479 

-1.479 
-1.492 
-1.479 

-1.500 

-1.500 

-1.500 

-1.500 

-1.476 

Table 4. Change in absorbance of Cytophaga psychrophila 91/4043-17 (5 replicates 

cultures) with time under different temperatures. Absorbance of blank was 0.001-0.003. 

Temperature 4°C 

Time (hr.min) Rep. 1 Rep. 2 Rep. 3 
0.00 0.030 0.030 0.030 

1.00 0.033 0.032 0.030 
2.15 0.036 0.034 0.035 

3.45 0.036 0.034 0.035 

5.00 
15.00 

25.00 

35.00 

42.00 

48.00 

55.00 

64.00 

72.00 

0.038 

0.046 

0.058 

0.066 

0.072 

0.082 

0.096 

0.110 

0.118 

Temperature 10°C 

Time (hr.min) Rep. 1 

0.00 0.030 

1.00 0.042 

2.00 0.047 

3.00 0.048 

0.054 
0.063 

0.068 
0.075 
0.078 

0.080 

0.035 0.037 

0.048 0.052 

0.060 0.057 

0.065 0.062 

0.070 0.068 

0.080 0.077 

0.086 0.083 

0.095 0.093 

0.105 0.095 

Rep. 2 Rep. 3 

0.030 0.030 

0.036 0.039 

0.042 0.046 

0.045 0.048 

0.052 0.056 
0.063 0.067 

0.068 0.070 
0.075 0.070 
0.079 0.073 

0.081 0.074 

4.00 
5.00 

6.00 
7.00 
8.00 

9.00 
15.00 0.094 0.101 0.093 

Rep.4 
0.030 

0.030 

0.031 
0.032 

0.033 

0.053 

0.058 

0.066 

0.065 
0.070 

0.075 

0.087 

0.093 

Rep.4 

0.030 

0.034 

0.041 

0.043 

0.047 
0.057 

0.062 
0.066 
0.069 

0.072 
0.095 
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Rep.5 
0.030 

0.033 

0.034 

0.036 

0.037 

0.052 

0.058 

0.065 

0.070 

0.077 

0.082 

0.100 

0.108 

Rep.5 

0.030 

0.035 

0.042 

0.045 
0.049 
0.058 

0.062 
0.066 
0.068 

0.069 
0.095 

Mean 
0.030 

0.032 

0.034 

0.035 

0.036 

0.050 

0.058 

0.065 

0.069 

0.077 

0.084 

0.097 

0.104 

Mean 
0.030 

0.037 

0.044 

0.046 

0.052 
0.062 

0.066 
0.070 
0.073 

0.075 
0.096 

Log 
-1.523 

-1.500 

-1.469 
-1.461 

-1.444 
-1.299 

-1.235 

-1.188 
-1.161 

-1.112 

-1.074 

-1.013 

-0.984 

Log 
-1.523 

-1.429 

-1.361 

-1.339 
-1.287 

-1.210 

-1.180 
-1.152 
-1.134 

-1.124 
-1.020 



Table 4. continued 

Temperature 15°C 

Time (hr.min) Rep. 1 Rep. 2 Rep. 3 Rep.4 
0.030 
0.032 
0.036 
0.039 
0.045 

0.056 
0.060 
0.064 

0.072 
0.079 

0.083 

0.087 

0.090 
0.110 

0.00 0.030 0.030 0.030 

0.45 
1.50 
2.15 

3.00 

3.45 
4.50 
5.15 

6.00 
6.45 

7.50 

8.15 

9.00 
15.00 

0.034 

0.038 
0.047 
0.054 

0.060 
0.065 

0.076 

0.080 

0.090 

0.091 

0.093 

0.095 

0.112 

0.033 0.033 
0.036 0.037 
0.038 0.042 
0.044 0.049 

0.055 0.058 
0.062 0.061 
0.065 0.068 

0.072 0.075 
0.076 0.080 

0.084 0.088 

0.087 0.091 

0.089 0.091 

0.106 0.112 

Temperature 20°c 

Time (hr.min) Rep. 1 Rep. 2 Rep. 3 

0.030 0.030 

0.034 0.034 

Rep.4 

0.030 

0.034 

0.00 0.030 

0.45 0.036 

1.50 

2.15 
3.00 

3.45 

4.50 

5.15 
6.00 

6.45 

7.50 

8.15 

9.00 

15.00 

0.044 0.040 0.037 0.037 

0.052 0.049 0.044 0.046 
0.057 0.054 0.051 0.053 

0.066 0.060 0.063 0.065 

0.076 0.069 0.067 0.070 

0.079 0.072 0.072 0.073 

0.087 0.078 0.078 0.076 

0.096 0.085 0.088 0.082 

0.100 0.090 0.092 0.087 

0.104 0.093 0.094 0.092 

0.107 0.096 0.094 0.094 

0.102 0.100 0.093 0.095 

Rep.5 
0.030 
0.035 

0.040 
0.045 
0.054 

0.062 
0.070 

0.076 

0.081 

0.088 

0.092 

0.095 

0.096 
0.106 

Rep.5 

0.030 

0.036 

0.040 

0.048 
0.056 

0.064 

0.071 

0.074 
0.079 

0.085 

0.090 

0.093 

0.096 

0.096 

Mean 
0.030 
0.033 

0.037 
0.042 
0.049 

0.058 
0.064 

0.070 

0.076 

0.083 

0.088 

0.091 

0.092 

0.109 

Mean 

0.030 

0.035 
0.040 

0.048 
0.054 
0.064 

0.071 
0.074 

0.080 

0.087 

0.092 

0.095 

0.097 

0.097 

Log 
-1.523 
-1.476 

-1.427 
-1.375 
-1.308 

-1.235 

-1.197 
-1.156 

-1.119 
-1.083 

-1.057 

-1.043 
-1.035 
-0.962 

Log 
-1.523 

-1.458 
-1.402 

-1.321 
-1.2136 
-1.197 

-1.151 

-1.131 
-1.099 

-1.059 

-1.037 

-1.021 

-1.011 

-1.012 

Temperature 25°C (absorbance of cultures at 30 and 35°C was similar to those of at 25°C). 

Time (hr.min) Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Mean Log 
0.00 0.030 0.030 0.030 0.030 0.030 0.030 -1.523 

0.45 

1.50 

2.15 

3.00 
3.45 

4.50 

5.15 

6.00 
6.45 

7.50 
8.15 

9.00 

15.00 

336.00 

0.030 

0.031 

0.031 

0.031 

0.029 
0.029 

0.029 
0.029 
0.030 

0.029 
0.029 

0.029 

0.029 

0.019 

0.032 0.030 

0.032 0.029 

0.032 0.029 

0.032 0.029 

0.032 0.029 
0.032 0.029 

0.032 0.029 
0.032 0.030 
0.032 0.029 

0.031 0.029 
0.030 0.029 
0.030 0.029 

0.030 0.029 

0.028 0.025 

0.031 

0.031 

0.033 

0.033 

0.031 
0.031 

0.031 
0.031 
0.031 

0.031 
0.032 

0.032 

0.032 

0.020 
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0.030 

0.030 
0.030 

0.030 
0.030 

0.030 

0.031 
0.032 
0.031 

0.031 
0.031 

0.031 

0.031 

0.031 

0.031 

0.031 
0.031 

0.031 
0.030 

0.030 

0.030 
0.031 
0.031 

0.030 
0.030 

0.030 

0.030 
0.025 

-1.514 

-1.514 

-1.509 

-1.509 

-1.520 
-1.520 

-1.517 
-1.511 
-1.514 

-1.520 
-1.520 
-1.520 

-1.520 

-1.609 



Table 5. Change in absorbance of Flexibacter maritimus 89/4762 (3 replicates cultures) 

with time under different pH values and incubated at 30°C. Absorbance of blank was 0.000-

O.Q10. 
pH 5 (Absorbance of the cultures at pHs 3 and 4 was similar to those of at pH 5). 

lime( day) Rep.1 Rep.2 Rep.3 Mean St. Error 

0 0.012 0.011 0.010 0.011 0.000577 

1 0.010 0.009 0.007 0.009 0.000882 

2 0.008 0.009 0.007 0.008 0.000577 

3 0.008 0.007 0.005 0.007 0.000882 

4 0.005 0.006 0.005 0.005 0.000333 

5 0.003 0.003 0.003 0.003 0.000000 

14 0.007 0.006 0.005 0.006 0.000577 

pH6 

lime( day) Rep.1 Rep.2 Rep.3 Mean St. Error 

0 0.010 0.009 0.010 0.010 0.000333 

1 0.067 0.069 0.073 0.070 0.001764 

2 0.188 0.180 0.210 0.193 0.008969 

3 0.257 0.245 0.300 0.267 0.016697 

4 0.330 0.280 0.347 0.319 0.020108 

5 0.405 0.350 0.396 0.384 0.017033 

pH6.5 

lime( day) Rep.1 Rep. 2 Rep.3 Mean St. Error 

0 0.010 0.009 0.010 0.010 0.000333 

1 0.070 0.073 0.084 0.076 0.004256 

2 0.170 0.187 0.220 0.192 0.014678 

3 0.265 0.274 0.320 0.286 0.017033 

4 0.330 0.315 0.360 0.335 0.013229 

5 0.404 0.390 0.420 0.405 0.008667 

pH7.2 

lime( day) Rep.1 Rep. 2 Rep.3 Mean St. Error 

0 0.010 0.010 0.010 0.010 0.000000 

1 0.129 0.110 0.130 0.123 0.006506 

2 0.231 0.198 0.220 0.216 0.009701 

3 0.318 0.331 0.346 0.332 0.008090 

4 0.376 0.396 0.418 0.397 0.012129 

5 0.388 0.414 0.448 0.417 0.017372 

pH7.6 

lime (day) Rep.1 Rep.2 Rep. 3 Mean St. Error 

0 0.008 0.008 0.008 0.008 0.000000 

1 0.099 0.096 0.101 0.099 0.001453 

2 0.187 0.160 0.184 o.1n 0.008544 

3 0.275 0.217 0.250 0.247 0.016796 

4 0.326 0.255 0.277 0.286 0.020984 

5 0.396 0.310 0.340 0.349 0.025201 
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Table 5. continued 

pH8.2 

Time( day) Rep.1 Rep.2 Rep. 3 Mean St. Error 

0 0.010 0.010 0.010 0.010 0.000000 

1 0.054 0.070 0.062 0.062 0.004619 

2 0.165 0.189 0.164 0.173 0.008172 

3 0.270 0.330 0.293 0.298 0.017477 

4 0.320 0.370 0.346 0.345 0.014438 

5 0.373 0.380 0.378 0.377 0.002082 

pH8.6 

Time( day) Rep.1 Rep.2 Rep. 3 Mean St. Error 

0 0.006 0.005 0.008 0.006 0.000882 

1 0.023 0.021 0.022 0.022 0.000577 

2 0.027 0.038 0.028 0.031 0.003512 

3 0.060 0.130 0.040 0.077 0.027285 

4 0.106 0.220 0.066 0.131 0.046135 

5 0.230 0.330 0.140 0.233 0.054874 

pH 9 (Absorbance of the cultures at pHs 9.5 and 10 was similar to those of at pH 9). 

Time( day) Rep.1 Rep. 2 Rep.3 Mean St. Error 

0 0.009 0.009 0.010 0.009 0.000333 

1 0.010 0.010 0.011 O.Q10 0.000333 

2 0.009 0.010 0.009 0.009 0.000333 

3 0.009 0.009 0.007 0.008 0.000667 

4 0.008 0.007 0.007 0.007 0.000333 

5 0.008 0.006 0.006 0.007 0.000667 

14 0.005 0.004 0.005 0.005 0.000333 

Table 6. Change in absorbance of C)1ophaga johnsonae 91/0262-10 (3 replicates 

cultures) with time under different pH values and incubated at 20°C. Absorbance of blank 

was0.000. 

pH 4 (Absorbance of the cultures at pH 3 was similar to those of at pH 4). 

Time( day) Rep.1 Rep. 2 Rep.3 Mean St. Error 

0 0.002 0.002 0.002 0.002 0.000000 

1 0.003 0.000 0.003 0.002 0.001500 

2 0.005 0.002 0.005 0.004 0.001500 

3 0.005 0.002 0.005 0.004 0.001500 

4 0.002 0.001 0.002 0.002 0.000500 

5 0.004 0.001 0.004 0.003 0.001500 

14 0.001 0.002 0.002 0.002 0.000333 

pH5 

Time( day) Rep.1 Rep.2 Rep.3 Mean St. Error 

0 0.002 0.002 0.002 0.002 0.000000 

1 0.017 0.017 0.017 0.017 0.000000 

2 0.067 0.063 0.066 0.065 0.002000 

3 0.127 0.129 0.128 0.128 0.001000 
4 0.167 0.177 0.171 0.172 0.005000 

5 0.225 0.229 0.226 0.227 0.002000 
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Table 6. continued 

pH6 

Time (day) Rep.1 Rep. 2 Rep.3 Mean St. Error 
0 0.003 0.004 0.004 0.004 0.000500 

1 0.065 0.072 0.071 0.069 0.003500 

2 0.146 0.142 0.144 0.144 0.002000 

3 0.210 0.190 0.199 0.200 0.010000 

4 0.248 0.233 0.241 0.241 0.007500 

5 0.284 0.275 0.281 0.280 0.004500 

pH6.5 

Time (day) Rep.1 Rep.2 Rep.3 Mean St. Error 
0 0.001 0.001 0.001 0.001 0.000000 

1 0.079 0.078 0.079 0.079 0.000333 

2 0.166 0.175 0.171 0.171 0.002603 

3 0.233 0.243 0.238 0.238 0.002887 

4 0.291 0.288 0.291 0.290 0.001 OOO 

5 0.318 0.317 0.318 0.318 0.000333 

pH? 

Time (day) Rep.1 Rep.2 Rep.3 Mean St. Error 
0 0.001 0.001 0.001 0.001 0.000000 

1 0.064 0.075 0.070 0.070 0.002041 

2 0.132 0.154 0.144 0.143 0.004082 

3 0.206 0.228 0.217 0.217 0.004491 

4 0.257 0.283 0.269 0.270 0.005715 

5 0.291 0.340 0.316 0.316 0.009798 

pH7.5 

Time (day) Rep.1 Rep. 2 Rep.3 Mean St. Error 
0 0.002 0.001 0.002 0.002 0.000408 

1 0.071 0.081 0.075 0.076 0.002449 

2 0.162 0.190 0.175 0.176 0.001400 

3 0.235 0.255 0.244 0.245 0.010000 

4 0.300 0.305 0.303 0.303 0.000816 

5 0.342 0.343 0.342 0.343 0.000408 

pH8 

Time (day) Rep.1 Rep.2 Rep.3 Mean St. Error 
0 0.001 0.002 0.002 0.002 0.000000 

1 0.058 0.068 0.062 0.063 0.002449 

2 0.151 0.159 0.154 0.155 0.002041 

3 0.228 0.248 0.231 0.236 0.006940 

4 0.283 0.284 0.284 0.284 0.000000 

5 0.320 0.317 0.318 0.319 0.000408 

pH8.5 

Time (day) Rep.1 Rep.2 Rep.3 Mean St. Error 
0 0.003 0.003 0.003 0.003 0.000000 

1 0.024 0.025 0.025 0.025 0.000000 

2 0.097 0.090 0.094 0.094 0.001633 

3 0.212 0.209 0.211 0.211 0.000816 

4 0.275 0.273 0.273" 0.274 0.000000 

5 0.314 0.307 0.309 0.310 0.000816 
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Table 6. continued 

pH 9 (Missing culture of Rep. 3). 

lime (day) Rep.1 Rep. 2 Rep. 3 Mean St. Error 

0 0.003 0.001 0.002 0.001000 

1 0.005 0.043 0.024 0.019000 

2 0.048 0.128 0.088 0.040000 

3 0.118 0.160 0.139 0.021000 

4 0.220 0.260 0.240 0.020000 

5 0.290 0.302 0296 0.006000 

pH9.5 

lime (day) Rep.1 Rep.2 Rep.3 Mean St. Error 

0 0.004 0.005 0.005 0.005 0.000500 

1 0.006 0.007 0.007 0.007 0.000500 

2 0.008 0.008 0.008 0.008 0.000000 

3 0.009 0.009 0.009 0.009 0.000000 

4 0.007 0.007 0.007 0.007 0.000000 

5 0.010 0.010 0.010 0.010 0.000000 

14 0.020 0.014 0.010 0.015 0.002906 

pH10 

lime (day) Rep.1 Rep. 2 Rep.3 Mean St. Error 

0 0.005 0.004 0.005 0.005 0.000408 

1 0.006 0.007 0.007 0.007 0.000000 

2 0.006 0.009 0.009 0.008 0.000000 

3- 0.010 0.010 0.010 0.010 0.000000 

4 0.005 0.005 0.005 0.005 0.000000 

5 0.007 0.007 0.007 0.007 0.000000 

14 0.003 0.004 0.002 0.003 0.000577 

Table 7. Change in absorbance of Flexibacter columnaris 1468 (4 replicates cultures) 

with time under different pH values and incubated at 30°C. Absorbance of blank was 0.000. 

pH 5 (Absorbance of the cultures at pHs 3 and 4 was similar to those of at pH 5). 

Time (hr.min) Rep.1 Rep. 2 Rep.3 Rep.4 Mean Log 
0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

1.00 0.031 0.031 0.030 0.029 0.030 -1.519 

2.00 0.028 0.029 0.030 0.030 0.029 -1.534 

3.00 0.030 0.029 0.030 0.029 0.030 -1.530 

4.00 0.027 0.026 0.025 0.028 0.027 -1.577 

5.00 0.026 0.025 0.025 0.027 0.026 -1.589 

336.00 0.018 0.022 0.021 0.016 0.019 -1.716 

pH6 

Time (hr.min) Rep. 1 Rep.2 Rep.3 Rep.4 Mean Log 
0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

0.30 0.032 0.033 0.034 0.034 0.033 -1.478 

1.00 0.038 0.038 0.039 0.039 0.039 -1.415 

1.30 0.044 0.045 0.044 0.043 0.044 -1.357 
2.00 0.053 0.054 0.057 0.053 0.054 -1.266 
2.30 0.066 0.068 0.065 0.064 0.066 -1.182 

3.00 0.073 0.080 0.075 0.073 0.075 -1.123 
3.30 0.084 0.092 0.086 0.085 0.087 -1.062 
4.00 0.094 0.101 0.095 0.097 0.097 -1.014 

4.30 0.105 0.108 0.105 0.108 0.107 -0.973 

5.00 0.110 0.118 0.114 0.115 0.114 -0.942 
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Table 7. continued 
pH6.5 

Time (hr.min) Rep.1 Rep.2 Rep.3 Rep.4 Mean Log 
0.00 0.030 0.030 0.030 0.030 0.030 -1.523 
0.30 0.033 0.032 0.034 0.033 0.033 -1.481 
1.00 0.038 0.040 0.041 0.039 0.040 -1.403 

1.30 0.048 0.051 0.054 0.049 0.051 -1.297 

2.00 0.065 0.065 0.067 0.066 0.066 -1.182 
2.30 0.078 0.074 0.076 0.076 0.076 -1.119 

3.00 0.090 0.082 0.083 0.082 0.084 -1.074 
3.30 0.101 0.092 0.093 0.094 0.095 -1.022 

4.00 0.113 0.101 0.103 0.106 0.106 -0.976 
4.30 0.136 0.110 0.,114 0.118 0.120 -0.923 
5.00 0.148 0.125 0.124 0.128 0.131 -0.882 

pH7.0 
Time (hr.min) Rep.1 Rep. 2 Rep.3 Rep.4 Mean Log 

0.00 0.030 0.030 0.030 0.030 0.030 -1.523 
0.30 0.035 0.034 0.034 0.033 0.034 -1.469 

1.00 0.045 0.044 0.041 0.039 0.042 -1.374 

1.30 0.050 0.054 0.052 0.049 0.051 -1.290 
2.00 0.067 0.068 0.064 0.062 0.065 -1.185 
2.30 0.084 0.078 0.074 0.071 0.077 -1.115 
3.00 0.098 0.085 0.080 0.082 0.086 -1.064 
3.30 0.106 0.096 0.092 0.094 0.097 -1.013 
4.00 0.125 0.106 0.103 0.108 0.111 -0.957 
4.30 0.144 0.118 0.110 0.120 0.123 -0.910 
5.00 0.164 0.129 0.127 0.138 0.140 -0.855 

pH7.5 
Time (hr.min) Rep.1 Rep.2 Rep.3 Rep.4 Mean Log 

0.00 0.030 0.030 0.030 0.030 0.030 -1.523 
0.30 0.034 0.033 0.035 0.036 0.035 -1.462 
1.00 0.045 0.043 0.040 0.043 0.043 -1.369 
1.30 0.055 0.060 0.055 0.056 0.057 -1.248 

2.00 0.063 0.072 0.068 0.069 0.068 -1.167 
2.30 0.082 0.081 0.077 0.079 0.080 -1.098 
3.00 0.094 0.087 0.086 0.086 0.088 -1.054 
3.30 0.105 0.097 0.092 0.094 0.097 -1.013 
4.00 0.120 0.108 0.103 0.106 0.109 -0.962 
4.30 0.131 0.113 0.109 0.115 0.117 -0.932 
5.00 0.146 0.125 0.121 0.128 0.130 -0.886 
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Table 7. continued 

pH8.2 

Time (hr.min) Rep.1 Rep.2 Rep. 3 Rep.4 Mean Log 

0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

0.30 0.032 0.035 0.033 0.034 0.034 -1.475 

1.00 0.038 0.041 0.040 0.039 0.040 -1.403 

1.30 0.049 0.048 0.048 0.046 0.048 -1.321 

2.00 0.054 0.054 0.045 0.051 0.051 -1.292 

2.30 0.061 0.057 0.057 0.058 0.058 -1.235 

3.00 0.075 0.065 0.068 0.067 0.069 -1.163 

3.30 0.080 0.068 0.071 0.072 0.073 -1.138 

4.00 0.087 0.074 0.077 0.079 0.079 -1.101 

4.30 0.094 0.078 0.082 0.084 0.085 -1.073 

5.00 0.101 0.085 0.089 0.092 0.092 -1.037 

pH 9 (Absorbance of the cultures at pHs 9.5 and 10 was similar to those of at pH 9). 

Time (hr.min) Rep.1 Rep. 2 Rep.3 Rep.4 Mean Log 

0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

1.00 0.030 0.031 0.029 0.030 0.030 -1.523 

2.00 0.030 0.032 0.032 0.032 0.032 -1.502 

3.00 0.028 0.030 0.030 0.032 0.030 -1.523 

4.00 0.027 0.030 0.030 0.031 0.030 -1.530 

5.00 0.027 0.029 0.028 0.029 0.028 -1.549 

336.00 0.017 0.013 0 021 0.015 0.017 -1.783 

Table 8. Change in absorbance of Cytophaga psychrophila 91/4043-17 (4 replicates 

cultures) with time under different pH values and incubated at 20°C. Absrobance of blank 
was 0.000-0.003. 

pH 5.5 (Absorbance of cultures at pHs 3, 4 and 5 was similar to those of at pH 5.5) 

Time (hr.min) Rep.1 Rep. 2 Rep. 3 Rep.4 Mean Log 

0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

0.45 0.028 0.031 0.030 0.032 0.030 -1.519 

1.50 0.028 0.028 0.031 0.028 0.029 -1.541 

2.15 0.030 0.029 0.030 0.031 0.030 -1.523 

3.00 0.029 0.031 0.030 0.030 0.030 -1.523 

3.45 0.030 0.030 0.030 0.029 0.030 -1.527 

4.50 0.028 0.030 0.030 0.030 0.030 -1.530 
5.15 0.030 0.030 0.030 0.030 0.030 -1.523 

6.00 0.027 0.030 0.030 0.029 0.029 -1.538 

6.45 0.030 0.030 0.029 0.028 0.029 -1.534 

7.50 0.028 0.030 0.028 0.029 0.029 -1.541 

8.15 0.028 0.030 0.028 0.029 0.029 -1.541 

9.00 0.028 0.030 0.028 0.028 0.029 -1.545 

336.00 0.020 0.015 0.013 0.021 0.017 -1.763 
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Table 8. continued 
pH6 

Time (hr.min) Rep.1 Rep. 2 Rep.3 Rep.4 Mean Log 
0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

0.45 0.032 0.032 0.033 0.033 0.033 -1.488 

1.50 0.036 0.036 0.037 0.038 0.037 -1.435 
2.15 0.040 0.040 0.042 0.044 0.042 -1.382 
3.00 0.043 0.043 0.045 0.046 0.044 -1.354 

3.45 0.045 0.046 0.047 0.048 0.047 -1.333 

4.50 0.046 0.047 0.049 0.050 0.048 -1.319 

5.15 0.048 0.048 0.051 0.053 0.050 -1.301 

6.00 0.049 0.053 0.054 0.057 0.053 -1.274 

6.45 0.050 0.052 0.052 0.054 0.052 -1.284 

7.50 0.047 0.049 0.050 0.053 0.050 -1.303 

8.15 0.047 0.048 0.048 0.051 0.049 -1.314 

9.00 0.046 0.048 0.047 0.050 0.048 -1.321 

15.00 0.028 0.036 0.041 0.045 0.038 -1.426 

pH6.5 
Time (hr.min) Rep.1 Rep. 2 Rep.3 Rep.4 Mean Log 

0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

0.45 0.036 0.036 0.035 0.035 0.036 -1.450 
1.50 0.045 0.041 0.040 0.040 0.042 -1.382 

2.15 0.055 0.055 0.049 0.047 0.052 -1.288 
3.00 0.060 0.061 0.057 0.055 0.058 -1.235 
3.45 0.063 0.063 0.059 0.058 0.061 -1.216 

4.50 0.065 0.067 0.061 0.063 0.064 -1.194 

5.15 0.066 0.068 0.063 0.066 0.066 -1.182 

6.00 0.069 0.067 0.068 0.069 0.068 -1.166 

6.45 0.070 0.072 0.069 0.071 0.071 -1.152 
7.50 0.070 0.073 0.071 0.072 0.072 -1.146 
8.15 0.071 0.073 0.072 0.073 0.072 -1.141 

9.00 0.072 0.074 0.072 0.074 0.073 -1.137 
15.00 0.080 0.088 0.086 0.089 0.086 -1.067 

pH7.0 
Time (hr.min) Rep.1 Rep. 2 Rep. 3 Rep.4 Mean Log 

0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

0.45 0.032 0.033 0.033 0.033 0.033 -1.485 
1.50 0.042 0.042 0.041 0.039 0.041 -1.387 

2.15 0.050 0.048 0.047 0.045 0.048 -1.323 

3.00 0.059 0.064 0.061 0.058 0.061 -1.218 
3.45 0.061 0.065 0.062 0.060 0.062 -1.208 
4.50 0.064 0.066 0.065 0.062 0.064 -1.192 
5.15 0.064 0.068 0.067 0.065 0.066 -1.180 
6.00 0.066 0.072 0.070 0.069 0.069 -1.160 
6.45 0.067 0.072 0.072 0.070 0.070 -1.153 
7.50 0.071 0.073 0.075 0.072 0.073 -1.138 
8.15 0.072 0.074 0.075 0.073 0.074 -1.134 
9.00 0.072 0.074 0.075 0.074 0.074 -1.132 
15.00 0.082 0.078 0.079 0.082 0.080 -1.096 
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Table 8. continued 

pH7.5 

Time (hr.min) Rep.1 Rep. 2 Rep.3 Rep.4 Mean Log 

0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

0.45 0.036 0.034 0.033 0.033 0.034 -1.469 

1.50 0.048 0.043 0.042 0.040 0.043 -1.364 

2.15 0.062 0.057 0.058 0.056 0.058 -1.235 

3.00 0.064 0.062 0.063 0.061 0.063 -1.204 

3.45 0.065 0.063 0.064 0.063 0.064 -1.196 

4.50 0.066 0.067 0.066 0.065 0.066 -1.180 

5.15 0.071 0.068 0.069 0.068 0.069 -1.161 

6.00 0.073 0.072 0.074 0.073 0.073 -1.137 

6.45 0.076 0.075 0.077 0.077 0.076 -1.118 

7.50 0.079 0.078 0.080 0.081 0.080 -1.100 

8.15 0.080 0.080 0.082 0.083 0.081 -1.090 

9.00 0.083 0.082 0.084 0.083 0.083 -1.081 

15.00 0.098 0.100 0.098 0.101 0.099 -1.003 

pH8 

Time (hr.min) Rep.1 Rep.2 Rep.3 Rep.4 Mean Log 

0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

0.45 0.034 0.033 0.033 0.033 0.033 -1.478 

1.50 0.036 0.041 0.040 0.041 0.040 -1.403 

2.15 0.045 0.045 0.044 0.045 0.045 -1.349 

3.00 0.049 0.056 0.054 0.056 0.054 -1.270 

3.45 0.050 0.056 0.056 0.057 0.055 -1.262 

4.50 0.051 0.057 0.058 0.058 0.056 -1.252 

5.15 0.052 0.061 0.061 0.063 0.059 -1.227 

6.00 0.054 0.063 0.064 0.066 0.062 -1.209 

6.45 0.055 0.064 0.065 0.069 0.063 -1.199 

7.50 0.054 0.064 0.065 0.068 0.063 -1.202 

8.15 0.054 0.062 0.064 0.067 0.062 -1.209 

9.00 0.053 0.062 0.064 0.067 0.062 -1.211 

15.00 0.031 0.032 0.035 0.035 0.033 -1.478 

pH 8.5 (Absorbance of cultures at pHs 9, 9.5 and 10 was similar to those of at pH 8.5). 

Time (hr.min) Rep.1 Rep. 2 Rep.3 Rep.4 Mean Log 
0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

0.45 0.028 0.028 0.028. 0.028 0.028 -1.553 

1.50 0.028 0.028 0.027 0.028 0.028 -1.557 

2.15 0.027 0.028 0.027 0.028 0.028 -1.561 

3.00 0.027 0.028 0.027 0.027 0.027 -1.565 
3.45 0.027 0.027 0.027 0.027 0.027 -1.569 

4.50 0.027 0.027 0.026 0.027 0.027 -1.573 

5.15 0.027 0.027 0.026 0.027 0.027 -1.573 

6.00 0.026 0.026 0.026 0.027 0.026 -1.581 
6.45 0.026 0.026 0.026 0.027 0.026 -1.581 
7.50 0.026 0.026 0.026 0.026 0.026 -1.585 
8.15 0.026 0.025 0.025 0.026 0.026 -1.593 
9.00 0.025 0.025 0.025 0.025 0.025 -1.602 

336.00 0.020 0.012 0.020 0.015 0.017 -1.776 
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Table 9. Change in absorbance of Flexibacter maritimus 89/4762 (3 replicates cultures) 

with time under different salinities (NaCl%) and incubated at 30°C. Absorbance of blank 

was 0.000-0.006. 
1%NaCI 

Time (day) Rep.1 Rep. 2 Rep. 3 Mean St. Error 

0 0.009 0.009 0.009 0.009 0.000000 

1 0.009 0.009 0.008 0.009 0.000333 

2 0.008 0.008 0.008 0.008 0.000000 

3 0.010 0.009 0.007 0.009 0.000882 

4 0.007 0.006 0.005 0.006 0.000577 

5 0.005 0.004 0.003 0.004 0.000577 

14 0.003 0.004 0.003 0.003 0.000333 

1.7%NaCI 

Time (day) Rep.1 Rep.2 Rep. 3 Mean St. Error 

0 0.009 0.009 0.010 0.009 0.000333 

1 0.009 0.009 0.009 0.009 0.000000 

2 0.008 0.009 0.008 0.008 0.000333 

3 0.006 0.007 0.006 0.006 0.000333 

4 0.006 0.007 0.006 0.006 0.000333 

5 0.004 0.005 0.005 0.005 0.000333 

14 0.004 0.005 0.007 0.005 0.000882 

2.5%NaCI 

Time (day) Rep.1 Rep. 2 Rep.3 Mean St. Error 

0 0.010 0.014 0.012 0.012 0.001155 

1 0.009 0.012 0.010 0.010 0.000882 

2 0.008 0.010 0.009 0.009 0.000577 

3 0.009 0.009 0.009 0.009 0.000000 

4 0.006 0.007 0.006 0.006 0.000333 

5 0.005 0.006 0.005 0.005 0.000333 

14 0.005 0.002 0.005 0.004 0.001000 

3.5%NaCI 

Time (day) Rep. Rep.2 Rep. 3 Mean St. Error 

0 0.012 0.011 0.010 0.011 0.000577 

1 0.011 0.010 0.010 0.010 0.000333 

2 0.011 0.010 0.010 0.010 0.000333 

3 0.010 0.009 0.009 0.009 0.000333 

4 0.008 0.007 0.006 0.007 0.000577 

5 0.006 0.006 0.005 0.006 0.000333 

21 0.010 0.008 0.009 0.009 0.000577 
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Table 1 O. Change in absorbance of Flexibacter maritimus 89/4762 (3 replicates cultures) 

with time under different salinities (seawater) and incubated at 30°C. Absorbance of blank 

was 0.000-0.008. 
0% seawater 

Time (day) Rep.1 Rep.2 Rep.3 Mean St. Error 

0 0.008 0.011 0.009 0.009 0.000882 

1 0.008 0.010 0.009 0.009 0.000577 

2 0.006 0.010 0.009 0.008 0.001202 

3 0.004 0.009 0.008 0.007 0.001528 

4 0.005 0.008 0.008 0.007 0.001 OOO 

5 0.005 0.008 0.007 0.007 0.000882 

14 0.005 0.009 0.009 0.008 0.001333 

10% seawater 

Time (day) Rep.1 Rep.2 Rep.3 Mean St. Error 

0 0.012 0.012 0.010 0.011 0.000667 

1 0.012 0.012 0.010 0.011 0.000667 

2 0.010 0.010 0.010 0.010 0.000000 

3 0.009 0.009 0.010 0.009 0.000333 

4 0.008 0.008 0.009 0.008 0.000333 

5 0.008 0.007 0.009 0.008 0.000577 

14 0.008 0.010 0.009 0.009 0 000577 

30% seawater 

Time (day) Rep.1 Rep. 2 Rep.3 Mean St. Error 

0 0.009 0.009 0.012 0.010 0.001 OOO 

1 0.098 0.089 0.101 0.096 0.003606 

2 0.160 0.135 0.141 0.145 0.007535 

3 0.197 0.151 0.223 0.190 0.021050 

4 0.234 0.177 0.278 0.230 0.029237 

5 0.275 0.260 0.299 0.278 0.011358 

70% seawater 

Time (day) Rep.1 Rep. 2 Rep.3 Mean St. Error 

0 0.012 0.012 0.012 0.012 0.000000 

1 0.100 0.100 0.110 0.103 0.003333 

2 0.159 0.149 0.146 0.151 0.003930 

3 0.251 0.230 0.210 0.230 0.011837 

4 0.319 0.304 0.295 0.306 0.007000 

5 0.355 0.313 0.303 0.324 0.015930 

100% seawater 

Time (day) Rep.1 Rep. 2 Rep.3 Mean St. Error 
0 0.012 0.010 0.010 0.011 0.000667 

1 0.083 0.086 0.113 0.094 0.009539 

2 0.135 0.136 0.174 0.148 0.012837 

3 0.240 0.220 0.273 0.244 0.015452 

4 0.317 0.281 0.335 0.311 0.015875 
5 0.360 0.374 0.372 0.369 0.004372 
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Table 11. Change in absorbance of Cytophaga johnsonae 91/0262-10 (3 replicates 

cultures) with time under different salinities (NaCl%) and incubated at 20°C. Absorbance of 

blank was 0.000. 

0%NaCI 

Time( day) Rep.1 Rep.2 Rep.3 Mean St. Error 

0 0.002 0.002 0.003 0.002 0.000333 

1 0.106 0.094 0.117 0.106 0.008134 

2 0.170 0.172 0.209 0.184 0.015530 

3 0.218 0.232 0.267 0.239 0.017847 

4 0.284 0.288 0.334 0.302 0.019647 

5 0.304 0.302 0.386 0.331 0.033892 

0.5%NaCI 

Time( day) Rep.1 Rep. 2 Rep.3 Mean St. Error 

0 0.002 0.002 0.003 0.002 0.000333 

1 0.089 0.107 0.109 0.102 0.007789 

2 0.150 0.174 0.180 0.168 0.011225 

3 0.185 0.215 0.225 0.208 0.014720 

4 0.224 0.259 0.268 0.250 0.016437 

5 0.250 0.282 0.299 0.277 0.017593 

1%NaCI 

Time( day) Rep.1 Rep. 2 Rep.3 Mean St. Error 

0 0.002 0.001 0.002 0.002 0.000333 

1 0.058 0.071 0.083 0.071 0.008841 

2 0.116 0.119 0.125 0.120 0.003240 

3 0.146 0.160 0.163 0.156 0.006416 

4 0.174 0.189 0.180 0.181 0.005339 

5 0.186 0.213 0.203 0.201 0.009652 

1.5%NaCI 

Time( day) Rep. 1 Rep. 2 Rep.3 Mean St. Error 

0 0.003 0.001 0.002 0.002 0.000577 

1 0.005 0.006 0.005 0.005 0.000333 

2 0.025 0.041 0.042 0.036 0.005508 

3 0.052 0.076 0.077 0.068 0.008172 

4 0.085 0.108 0.108 0.100 0.007667 

5 0.120 0.125 0.127 0.124 0.002082 

2%NaCI 

Time( day) Rep. 1 Rep. 2 Rep.3 Mean St. Error 
o,_J 0.002 0.002 0.001 0.002 0.000333 

1 0.004 0.004 0.004 0.004 0.000000 

2 0.006 0.006 0.004 0.005 0.000667 

3 0.025 O.Q16 0.015 0.019 0.003180 

4 0.056 0.032 0.032 0.040 0.008000 

5 0.070 0.055 0.056 0060 0.004842 
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Table 11. continued 

2.5%NaCI 

lime( day) Rep.1 Rep. 2 Rep.3 Mean St. Error 

0 0.002 0.001 0.002 0.002 0.000333 

1 0.004 0.003 0.003 0.003 0.000333 

2 0.005 0.005 0.004 0.005 0.000333 

3 0.004 0.005 0.004 0.004 0.000333 

4 0.005 0.005 0.004 0.005 0.000333 

5 0.005 0.004 0.004 0.004 0.000333 

14 0.002 0.003 0.004 0.003 0.000577 

3% NaCl (absorbance of cultures at 3.5% NaCl was similar to those of at 3% NaCl). 

lime( day) Rep.1 Rep.2 Rep.3 Mean St. Error 
0 0.003 0.001 0.002 0.001 0.000577 

1 0.004 0.002 0.003 0.001 0.000577 

2 0.004 0.003 0.004 0.001 0.000289 

3 0.004 0.003 0.004 0.001 0.000289 

4 0.004 0.004 0.004 0.000 0.000000 

5 0.004 0.004 0.004 0.000 0.000000 

14 0.003 0.004 0.004 0.004 0.000333 

Table 12. Change in absorbance of Flexibacter columnaris 1468 {4 repl. cultures) with time 

under different salinities (NaCl%) and incubated at 30°C. Absorbance of blank was 0.010. 

0.0%NaCI 

Time (hr.min) Rep. 1 Rep. 2 Rep.3 Rep.4 Mean Log 
0.00 0.025 0.025 0.025 0.025 0.025 -1.602 

0.30 0.027 0.028 0.028 0.030 0.028 -1.549 

1.00 0.038 0.042 0.040 0.040 0.040 -1.398 

1.30 0.048 0.052 0.052 0.050 0.051 -1.297 

2.00 0.058 0.060 0.062 0.060 0.060 -1.222 

2.30 0.065 0.069 0.068 0.066 0.067 -1.174 

3.00 0.074 0.073 0.076 0.073 0.074 -1.131 

3.30 0.083 0.081 0.085 0.080 0.082 -1.085 

4.00 0.097 0.096 0.099 0.096 0.097 -1.013 

4.30 0.110 0.102 0.106 0.106 0.106 -0.975 

5.00 0.120 0.113 0.118 0.119 0.117 -0.930 

7.00 0.165 0.156 0.160 0.140 0.155 -0.809 

0.4% NaCl 

Time (hr.min) Rep.1 Rep. 2 Rep. 3 Rep.4 Mean Log 
0.00 0.025 0.025 0.025 0.025 0.025 -1.602 

0.30 0.027 0.029 0.028 0.027 0.028 -1.557 

1.00 0.031 0.033 0.033 0.032 0.032 -1.491 

1.30 0.038 0.042 0.040 0.039 0.040 -1.401 

2.00 0.048 0.050 0.049 0.047 0.049 -1.314 

2.30 0.053 0.056 0.054 0.053 0.054 -1.268 

3.00 0.060 0.062 0.060 0.059 0.060 -1.220 

3.30 0.065 0.064 0.067 0.065 0.065 -t.185 

4.00 0.073 0.071 0.076 0.073 0.073 -1.135 

4.30 0.081 0.078 0.085 0.084 0.082 -1.086 

5.00 0.093 0.094 0.095 0.093 0.094 -1.028 

7.00 0.112 0.120 0.122 0.120 0.119 -0.926 
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Table 12. continued 

0.7%NaCI 

Time (hr.min) Rep. 1 Rep.2 Rep. 3 Rep.4 Mean Log 

0.00 0.025 0.025 0.025 0.025 0.025 -1.602 

0.30 0.028 0.027 0.027 0.027 0.027 -1.565 

1.00 0.031 0.031 0.032 0.031 0.031 -1.505 

1.30 0.035 0.039 0.036 0.034 0.036 -1.442 

2.00 0.039 0.042 0.040 0.038 0.040 -1.401 

2.30 0.043 0.045 0.042 0.042 0.043 -1.367 

3.00 0.046 0.047 0.047 0.046 0.047 -1.333 

4.00 0.053 0.053 0.052 0.053 0.053 -1.278 

5.00 0.058 0.061 0.061 0.061 0.060 -1.220 

10.00 0.080 0.080 0.089 0.095 0.086 -1.066 

12.00 0.093 0.094 0.106 0.101 0.099 -1.007 

1.0% NaCl (absorbance of the cultures at 1.5%, 2%, 2.5% and 3% NaCl was similar to 

those of at 1 % NaCl). 

Time (hr.min) Rep. 1 Rep. 2 Rep.3 Rep.4 Mean Log 

0.00 0.025 0.025 0.025 0.025 0.025 -1.602 

1.00 0.026 0.027 0.027 0.026 0.027 -1.577 

2.00 0.030 0.030 0.031 0.028 0.030 -1.527 

3.00 0.030 0.030 0.031 0.028 0.030 -1.527 

4.00 0.029 0.029 0.030 0.027 0.029 -1.541 

5.00 0.028 0.028 0.028 0.026 0.028 -1.561 

20.00 0.019 0.018 0.025 0.022 0.021 -1.678 

336.00 0.018 0.010 0.015 0.020 0.016 -1.803 

Table 13. Change in absorbance of Cytophaga psychrophila 91/4043-17 (4 replicates 

cultures) with time under different salinities (NaCl%) and incubated at 20°C. Absorbance of 

blank was 0.000-0.002. 

0.0%NaCI 

Time (hr.min) Rep. 1 Rep. 2 Rep. 3 Rep.4 Mean Log 

0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

0.45 0.038 0.034 0.036 0.036 0.036 -1.444 

1.50 0.042 0.039 0.040 0.040 0.040 -1.395 

2.15 0.050 0.047 0.046 0.046 0.047 -1.326 

3.00 0.057 0.053 0.050 0.052 0.053 -1.276 

3.45 0.065 0.061 0.061 0.064 0.063 -1.202 

4.50 0.074 0.070 0.066 0.071 0.070 -1.153 

5.15 0.075 0.074 0.073 0.074 0.074 -1.131 

6.00 0.086 0.078 0.079 0.077 0.080 -1.097 

6.45 0.096 0.085 0 088 0.084 0.088 -1.054 
7.50 0.101 0.094 0.093 0.087 0.094 -1.028 

8.15 0.106 0.096 0.096 0.094 0.098 -1.009 

9.00 0.108 0.099 0.098 0.098 0.101 -0.997 

15.00 0.120 0.114 0.110 0.115 0.115 -0.940 
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Table 13. continued 

0.5%NaCI 

Time (hr.min) Rep.1 Rep. 2 Rep. 3 Rep.4 Mean Log 

0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

0.45 0.038 0.034 0.038 0.036 0.037 -1.438 

1.50 0.040 0.037 0.040 0.040 0.039 -1.406 

2.15 0.048 0.047 0.048 0.048 0.048 -1.321 

3.00 0.058 0.052 0.061 0.060 0.058 -1.238 

3.45 0.062 0.059 0.062 0.063 0.062 -1.211 

4.50 0.068 0.070 0.070 0.068 0.069 -1.161 

5.15 0.073 0.072 0.072 0.071 0.072 -1.143 

6.00 0.079 0.076 0.075 0.075 0.076 -1.118 

6.45 0.085 0.078 0.080 0.081 0.081 -1.092 

7.50 0.083 0.079 0.081 0.082 0.081 -1.090 

8.15 0.084 0.080 0.081 0.082 0.082 -1.088 

9.00 0.085 0.080 0.081 0.082 0.082 -1.086 

15.00 0.088 0.081 0.083 0.085 0.084 -1.074 

0.7%NaCI 

Time (hr.min) Rep.1 Rep. 2 Rep.3 Rep.4 Mean Log 

0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

0.45 0.033 0.034 0.033 0.033 0.033 -1.478 

1.50 0.034 0.034 0.034 0.035 0.034 -1.465 

2.15 0.038 0.041 0.037 0.038 0.039 -1.415 

3.00 0.041 0.043 0.041 0.042 0.042 -1.379 

3.45 0.042 0.044 0.041 0.044 0.043 -1.369 

4.50 0.046 0.051 0.049 0.049 0.049 -1.312 

5.15 0.047 0.053 0.052 0.053 0.051 -1.290 

6.00 0.048 0.050 0.050 0.052 0050 -1.301 

6.45 0.040 0.048 0.050 0052 0.048 -1.323 

7.50 0.040 0.047 0.045 0.048 0.045 -1.347 

8.15 0.040 0.047 0.045 0.047 0.045 -1.349 

9.00 0.040 0.047 0.046 0.047 0.045 -1.347 

15.00 0.042 0.041 0.046 0.046 0.044 -1.359 

1.0% NaCl (Absorbance of the cultures at 1.5%, 2%, 2.5% and 3% NaCl was similar to 

those of at 1 % NaCl). 

Time (hr.min) Rep.1 Rep. 2 Rep. 3 Rep.4 Mean Log 

0.00 0.030 0.030 0.030 0.030 0.030 -1.523 

0.45 0.033 0.034 0.033 0.033 0.033 -1.478 

1.50 0.033 0.034 0.033 0.033 0.033 -1.478 

3.00 0.034 0.033 0.035 0.035 0.034 -1.465 

4.50 0.033 0.034 0.033 0.033 0.033 -1.478 

6.00 0.033 0.034 0.033 0.033 0.033 -1.478 

9.00 0.030 0.030 0.030 0.030 0.030 -1.523 

15.00 0.030 0.030 0.029 0.030 0.030 -1.527 

336.00 0.015 0.010 0.013 0.018 0.014 -1.854 
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