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ABSTRACT 

The southern calamary, Sepioteuthis australis is a sub-annual, commercial 

species that exhibits little to no generation overlap. Therefore, the strength of one 

generation depends on the reproductive success and survivorship of offspring 

spawned by the previous generation. Quantitative estimates of mortality Jates during 

embryonic developmental and the subsequent juvenile phase are virtually non­

existent, therefore it is not understood what role early life history plays in 

determining recruitment strength. Through extensive egg surveys and laboratory 

experiments this project investigated the role of fluctuating environmental 

temperature; the position of the embryo within an aggregated egg mass; the substrate 

upon which its attached; the density of the egg mass; the role of fouling organisms 

colonising the eggs; and the effects of maternal condition on the developing embryo. 

Furthermore this study investigated mortality rates in the subsequent paralarval phase 

by using novel collection methods and statolith measurements to explore the 'bigger 

is better' hypothesis. 

Embryo mortality rates were highly variable both spatially and temporally 

ranging from 2 to 25%. Dramatic increases in mortality rates were not strongly 

associated with natural fluctuating temperatures and there was weak evidence 

suggesting that fluctuating salinity was responsible. Examining embryonic 

development in relation to the egg mass revealed that the position of the embryo 

within the mass influenced hatching success. Embryos located in the centre of the 

mass, where egg density is greatest, developed slower and suffered higher mortality 

rates than those located around the periphery. This was attributed to the inability of 

the embryos to adequately respire and eliminated metabolic wastes and was 

exaggerated in large, dense egg masses that had been physically dislodged from 

attachment. 

Maternal condition also influenced embryo mortality. Using a model, 

multiple spawning cephalopod, conducive to laboratory manipulation (Euprymna 

tasmanica) revealed that maternal ration and not temperature significantly effected 

egg viability. Low ration females produced sub-optimal eggs where 60% of embryos 
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failed to develop. Egg viability deteriorated over successive clutches and by the 

third clutch 100% of the eggs died suggesting that low ration eggs were not receiving 

their full complement of maternally derived resources. Embryo mortality did not 

exceed 60% in high ration females regardless of treatment. 

Hatchling size was extremely vmio.ble ranging from 4.3 to 7.3 mm (ML), 

with significantly larger animals hatching out in November and· the smallest in 

February. By comparing natal statolith dimensions between recently hatched ( < 13 

hrs old) and adult S. australis it was possible to determine whether size selective 

processes were operating during the early life history. In all but one month a 

significant difference between the size distribution of the natal radii in hatchlings and 

adults was found and was due to the absence of adults with small natal radii. This 

indicated that smaller hatchlings were less likely to recruit, suggesting that an 

element of size-mediated mortality exists in S. australis populations. 

This study is the first to quantify early mortality rates and identify processes 

responsible in an inshore, multiple spawning cephalopod. Results obtained will aid 

in reducing some of the variability encompassed within existing stock-recruitment 

relationships, potentially improving predictive recruitment models and allowing 

fisheries managers to make more informed decisions about commercial squid 

fisheries. 
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Chapter One General Introduction 

1.1 POPULATION DYNAMICS 

With the exception of Nautilus spp. cephalopods are predominantly sub­

annual species and as a consequence exhibit little to no generation overlap (Boyle 

1990). Therefore, the strength of one generation critically depends on the strength 

and spawning success of the previous generation. As a result cephalopod fisheries 

are composed entirely of recruits, therefore, management must aim to protect 

spawning stock to ensure enough eggs are laid to produce the next generation 

(Beddington et al. 1990; Brodziak 1998). 

Although, the biology of cephalopod species is fundamentally different to the 

majority of teleost fish the basic ecological principles and theories that link 

population dynamics and fisheries management are similar; in terms of 

understanding and quantifying processes such as immigration, emigration, natural 

and fishing mortality and recruitment to estimate stock size. It is generally a 'top­

down' approach where researchers have focussed on adults through commercial 

fishing data and scientific surveys to ascertain the health of a population or stock. 

This involves heavy reliance on fisheries catch per unit effort data (CPUE), a widely 

accepted index of abundance, which is often sparse and fragmentary (Boyle and 

Boletzky, 1996; Hatfield and Des Ciers 1998). Nevertheless, this data is valuable in 

the sense that it is compiled from a comparatively large, indirect, sampling network 

(the commercial fishers) providing a foundation for scientists and fisheries managers 

to build on. 

Predictive recruitment models based on spawner biomass or parental stock 

sizes vary in accuracy (Agnew et al. 2000) and are complicated by climatic 

fluctuations (Pierce and Guerra 1994). As such, it is suggested that there is no 

predictive understanding of the population process in cephalopods, and further 

research effort must investigate sources of mortality, particular those operating 

during the first six months of the life cycle (Hatfield and Des Ciers 1998). A general 

lack of data on the causes of embryo and juvenile mortality and on the resulting 

mortality rates hampers most studies of recruitment dynamics (Boletzky 2003 ). 
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However, the importance of defining early mortality rates in cephalopods is 

beginning to be recognised, particularly for species of commercial interest (Cailliet 

and Vaughan 1983; Augustyn et al. 1994; ODor 1998). 

Obtaining reliable, quantitative data from hatchlings and juveniles is 

logistically challenging, as they are largely inconspicuous (Voss 1983; but see 

Vecchione 1998). Assessing rates in benthic eggs, therefore, becomes an attractive 

first step in understanding the entire cephalopod life cycle. For inshore, neritic 

species (i.e. loliginids) sampling oviposited eggs is comparatively less challenging as 

they typically form large spawning aggregations in shallow embayments where they 

secure benthic eggs to the substrate (Fig 2.1, page 17). For those species that lay 

eggs in <20 m depth in situ observations, egg surveys, and collections are feasible 

via SCUBA. For other species that lay eggs in depths >20 m in situ observations are 

limited to expensive remote monitoring and hydroacoustic techniques (Lipinski et al. 

1998). Nevertheless, for species in which spawning grounds are accessible, 

researchers are beginning to direct efforts to complement the 'top-down' approach 

with a 'bottom-up' assessment by quantifying spawning intensity and egg abundance 

on broader temporal and spatial scales (Moltschaniwskyj et al. 2002; 

Moltschaniwskyj and Peel 2003). 

Estimates of egg numbers on the spawning grounds are a valuable 

contribution as they can provide a relatively quick augmentative assessment of the 

spawning stock and potential strength of recruitment, providing there is an 

understanding of the species relative fecundity (Sauer et al. 1993). Estimating egg 

abundance alone, however, is not adequate to determine recruitment strength as the 

survival rates of embryos and hatchlings are unknown (Cailliet and Vaughan 1983; 

Scott et al. 1999). Once spawning sites have been located and densities established 

the next logical step would be to quantify the embryos' relative hatching success and 

investigate early mortality rates to fill some of these tenuous gaps. 
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1.2. THE 'EGG CARTON' 

The loliginid egg mass represents an ideal sampling unit for experimental 

manipulations (Boyle et al. 2001; Boletzky 2003) and current estimates of embryo 

mortality are largely based on laboratory experiments. There is a clear understanding 

of the role of constant incubation temperatures on developmental rates and 

physiological boundaries (Segawa 1987; Sakurai et al. 1996; Caveriviere et al. 1996; 

Gowland et al. 2002a; Oosthuizen et al. 2002). What is less common are 

experiments examining the effects of fluctuating temperatures on the developmental 

process which would be more indicative of the natural environment (see Kinoshita 

1982; Hoyle 2002). At present only one field study exists where embryo mortality 

has been assessed, with results suggesting that for Patagonian long-finned squid 

Loligo gahi mortality rates do not exceed 5% (Arkhipkin et al. 2000). Although 

temperature is considered the major environmental factor governing the 

developmental process, there is a suite of other biotic and a.biotic factors that 

potentially perturb embryonic development and contribute to early mortality. These 

can be broadly categorised as (1.) environmental conditions, (2.) maternal 

investment, and (3) predation pressure (Fig. 1.1). 

POPULATION DYNAMICS 

Maternal 
Investment 

Pressure 

Figure 1.1. Partitioning of natural mortality into the three main contributing factors 
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1.2.1. Environment 

Cephalopod embryos developing in benthic eggs can be considered sedentary 

as they are effectively anchored throughout the course of development until they 

individually hatch. Therefore, if mortality is a function of environmental conditions 

when and where eggs are laid will determine hatching success and contribute to the 

size of future populations (O'Dor 1998). To date the relative importance of biotic 

and abiotic factors on cephalopod embryonic development and survival on spawning 

beds has not been assessed, and laboratory experiments, manipulating conditions 

other than temperature, have been largely overlooked. Generally the main reason 

behind the collection and rearing of cephalopod eggs is to obtain healthy hatchlings 

for use in biomedical, growth and aquaculture studies (Forsythe and Hanlon 1988; 

Lee et al. 1994; Forsythe et al. 2001; Walsh et al. 2002; Vidal et al. 2002a). In most 

cases aquarium conditions are set to match the environment in which the eggs were 

collected (Boletzky and Hanlon 1983). Particular emphasis is placed upon 

maintaining a stable environment as fluctuations in temperature and the water 

chemistry (salinity, nitrates and nitrites and dissolved oxygen) can potentially perturb 

development, especially during early organogenesis (Choe 1966). Similarly UV 

light intensity and degree of agitation are monitored, as light promotes epiphytic 

fouling on the egg strands' surface, which may contribute to 'unsatisfactory hatching' 

(Choe 1966), and increased agitation promotes pre-mature hatching during the later 

stages of development (Boletzky and Hanlon 1983). In addition aggregated egg 

masses, consisting of numerous egg strands, each containing multiple egg capsules, 

can also constrain development, with internally located embryos effectively 

competing for oxygen and the elimination of nitrogenous wastes (Strathmann and 

Chaffee 1984). The amount of care associated with egg and embryo husbandry 

clearly suggests that in a dynamic fluctuating environment, characteristic of inshore 

spawning grounds (Augustyn et al. 1994), a degree of embryo failure is expected. 

1.2.2. Maternal Investment 

Embryonic development in cephalopods is direct, where embryos are totally 

reliant on maternally derived yolk to fuel the developmental process and hatch as 
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structurally and functionally competent juveniles (Jackson 1994; Boletzky 2003). 

Currently there is little research investigating the embryonic yolk requirements and 

viability of oviposited eggs, but there is evidence in the fish literature to suggest 

hatching success is positively correlated to maternal condition and most likely due to 

the quality and quantity of yolk allocation (Laine and Rajasilta 1999). There is also 

evidence that egg numbers and quality do not remain constant per unit biomass and 

must therefore be considered when attempting to forecast recruitment strength (Scott 

et al. 1999). The supply of food to the maturing female can also be significant in 

determining the reproductive potential in different fish species (Springate et al. 

1985). In addition, the rate of yolk consumption in cephalopods is inversely related 

to incubation temperature, and hatchlings which develop in warmer temperatures 

need to exogenously feed earlier (Bouchaud and Galois 1990, Vidal et al. 2002). 

Both maternal food ration and incubation temperature can therefore provide the 

foundation for the developing embryo and subsequent competitiveness of the 

hatchling. 

1.2.3. Predation Pressure 

In general, benthic cephalopod eggs are extremely well protected by 

numerous mucous layers, and as a result there is limited evidence of egg predation in 

the wild (Hixon 1983; Qian and Chia 1991; Sauer and Smale 1993, Benkendorff 

1999). Once the embryos hatch, however, they become more vulnerable to predation 

and it has been suggested that predation rates along with starvation during this early 

phase greatly influences recruitment strength (Okutani and Watanabe 1983). 

Cephalopod juveniles are difficult to quantitatively assess in the field and in many 

cases their basic distribution eludes researchers (Okutani and McGowan 1969; Voss 

1983). This is partially due to the use of unrefined sampling techniques and 

equipment. In addition, little is known about hatchling and juvenile general biology 

as they are difficult to maintain in captivity (Laptikhovsky et al. 1993). Moreover, 

starvation and disease reflecting artificial rather than natural mortality factors are 

likely to bias mortality rates obtained from laboratory studies (Boletzky 2003 ). 

Despite these challenges, early mortality rates have been determined through 

planktonic surveys, in the oceanic squids, Todarodes pacificus (Okutani and 

Watanabe 1983) and Sthenoteuthis pteropus (Laptikhovsky et al. 1993), with both 
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studies concluding that mortality seems to be highest in smaller size-class squid. 

These studies indicate potential size-selective mortality processes operating during 

the squids' life history, alluding to the 'bigger is better' hypothesis. 

1.3. APPLIED SIGNIFICANCE 

In recent years, interest in cephalopod biology and ecology has surged due to 

the dramatic increase in world-wide commercial fishing pressure and the requirement 

of basic biological data in which to base management strategies. Catches of squid, 

octopus, and cuttlefish have soared since the 1950's satisfying the markets' high 

demand for seafood in the face of declining finfish stocks (Caddy 1983; Caddy and 

Rodhouse 1998; Pierce and Guerra 1994). As a consequence many commercial 

fishers have redistributed their effort to include cephalopods in their catch either by 

expanding trawling grounds, maximising cephalopod bycatch, or via directly 

targeting cephalopods with purpose built equipment (Rathjen 1991). 

Concentration of fishing effort on spawning aggregations is a concern and a 

previously unmanaged practice that potentially contributed to the collapse of lllex 

illecebrosus and Todarodes pacificus fisheries in the North-West Atlantic and North­

West Pacific Oceans, respectively (Dawe and Warren 1993). Similarly loliginid 

fisheries in Californian, South African and Southern Australian coastal waters are 

threatened by this fishing practice (Vojkovich 1998; Augustyn and Roel 1998; 

Moltschaniwskyj et al 2002). Temporary commercial and recreational fishing 

closures on known, productive spawning grounds have been enforced in South 

Africa, the Falkland Islands and Tasmania, aiming to protect Loligo vulgaris 

reynaudii (Roel et al. 1998), L. gahi (Hatfield and Des Ciers 1998) and Sepioteuthis 

australis (Moltsc~wskyj et al. 2002) stocks, respectively. Effort control through 

closures is the most effective management tool used to regulate fishing mortality 

however it can potentially be a hit and miss management strategy (Roel et al. 1998). 

As a result, there is further requirement to advance our understanding of cephalopod 

biology and ecology to aid in future management decisions and therefore protecting 

ecologically and economically valuable resources. 
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1.4. THE SOUIBERN CALAMARY SEPIOTEUTHIS AUSTRALIS 

The southern calamary, Sepioteuthis australis is a relatively large, robust 

loliginid endemic to southern Australia and northern New Zealand waters. In 

southern Australia it ranges from Dampfor in Western Australia to Moreton Bay in 

Queensland, including Tasmania. For the majority of it distribution, S. australis 

inhabits coastal waters and embayments, typically associated with seagrass beds and 

reefs usually in depths less than 50m (Winstanley et al. 1983). It is one of the most 

common cephalopods in southern Australia and is a key component of the coastal 

ecosystem as a primary consumer of crustaceans and fishes, as well as a major food 

source for numerous species offish and marine mammals (Zeidler and Norris 1989). 

Southern calamary are the basis of a relatively new commercial fishery in 

Australia as a result of their high market value (5-15 $/kg), low set-up costs and open 

access to fishers with a commercial marine scalefish licence (Moltschaniwskyj et al. 

2003 ). Mature animals predictably form large aggregations in sheltered, inshore 

waters during the warmer spring/summer months to spawn and are therefore an 

attractive, easy target for commercial fishers utilising a variety of fishing methods. 

Hand-jigging from small dinghies represents the preferred fishing method, however, 

spears and nets (dip-nets, purse seines, haul nets) are often used. In South Australia 

annual calamary landings peaked in 1998/1999 at 436 t worth an estimated $2 

million (Triantafillos and Fowler 2000). In Tasmania annual catches also rose 

dramatically in 1998/1999 from historic levels generally below 20 t to 100 t valued 

over $0.5 million (Lyle and Hodgson 2002). 

Great Oyster Bay is considered the major spawning ground for southern 

calamary and as such has been periodically closed to fishing during peak spawning 

periods (see Moltschaniwskyj et al. 2003). The unique features of this bay, including 

its shallow (<lOm) well-protected coastline and varying influence of cool 

subantarctic and warm tropical water masses may make it conducive to embryonic 

development and post-hatching survival, potentially attracting large spawning 

aggregations. 
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Like the majority of other loliginids, S. australis is relatively short-lived with 

maximum recorded ages for females and males are 263 and 275 days respectively 

(Peel 2000). During this short life span individual growth rates are rapid and highly 

variable (approx 4-8% dai1
) attaining weights of up to 3.6 kg (Lyle and Hodgson 

2002). Some of this variability may be inherently a function of the individuals' 

thermal and nutritional environment. As a result of this 'live-fast, die-young' life 

style and increased fishing pressure both from the commercial and recreational 

fishing sectors there is concern that localised calamary populations may be 

increasingly susceptible to collapse. 

1.5. GENERAL OBJECTIVES 

The general aim of this thesis was to assess mortality rates in the early life 

history stages of the commercially exploited southern calamary Sepioteuthis australis 

(Cephalopoda: Loliginidae). This was achieved through field surveys and laboratory 

experiments with particular emphasis on identifying the roles of fluctuating 

temperature on natural spawning grounds; the environment and dynamics of 

aggregated egg masses; and maternal condition on egg viability and hatching 

success. Furthermore, this study investigated mortality rates in the subsequent 

hatchling phase by using novel collection methods and statolith measurements to 

explore the 'bigger is better' hypothesis. 

1.6. CHAPTER SUMMARIES: 

This thesis consists of five data chapters, each one comprising a stand-alone 

manuscript, therefore there may be areas in the text that are slightly repetitive. 

Chapter Two: 

EMBRYONIC DEVELOPMENT OF SOUTHERN CALAMARY (SEPIOTEU11IIS AUSTRALIS) 

WITHIN THE CONSTRAINTS OF AN AGGREGATED EGG MAss. 

Through a series of laboratory-based experiments, this chapter's primary aim 

was to establish a stepwise staging criteria for the embryonic development of 
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Sepioteuthis australis to allow both intra- and inter-specific comparisons. In 

addition, the effect of egg mass density and the embryos' relative position both 

within individual strands and within the egg mass on the developmental process was 

quantified. This chapter forms the basis of a publication; Marine and Freshwater 

Research (2003 Vol. 54: 217-226). 

Chapter Three: 

TEMPORAL VARIABILITY IN EMBRYONIC DEVELOPMENT AND MORTALITY IN THE 

SOUTHERN CALAMARY (?SEPIOTEUTHISAUSTRALIS): A FIELD AsSESSMENT. 

This field based study aimed to quantify variability in rates of development 

and mortality for calamary embryos throughout a spring/summer-spawning season. 

Due to the collective egg packaging strategy exhibited by this species, this study also 

described the variation in development within individual egg strands to determine if 

certain eggs were at a higher risk to mortality. Furthermore, the effect ofbiofouling 

on the capsule surface and its effect on mortality rates was quantified. The bulk of 

this study has been published in Marine Ecology Progress Series (2002 Vol. 243: 

143-150). 

Chapter Four: 

FACTORS RESPONSIBLE FOR EMBRYO MORTALITY IN THE SOUTHERN CALAMARY 

SEPIOTEUTHISAUSTRALIS: THE ROLE OF THE AGGREGATED EGG MAss. 

Using results obtained from the previous chapter (three) this chapter aimed to 

explore mortality rates in the southern calamary on a finer resolution by focussing on 

the constraining properties of the egg mass. Through field and laboratory studies this 

study investigated the role of egg mass size, the substrate upon which it is attached, 

the position of the embryo within the mass and the degree of surface fouling on 

embryo mortality. This chapter is currently in review in Marine Biology. 

Chapter Five: 

THE ROLE OF TEMPERATURE AND MATERNAL RATION IN EMBRYO SURVIVAL: 
USING THE DUMPLING SQUID EUPRYMNA TASMAN/CA.AS A MODEL. 

Due to the logistical difficulties associated with maintaining the relatively 

robust Sepioteuthis australis in captivity this study used a model sepiolid Euprymna 
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tasmanica to explore the link between the nutritional and thennal environment in 

which females are exposed and the quantity and quality of the offspring produced. 

Previous research has examined the influence of maternal condition on fecundity and 

egg quality (Lewis and Choat 1993). This study takes an ad_ditional step by 

examining lipid bestowal over multiple clutches and quantifying hatching success. 

Relative proportions of polyunsaturated fatty acids (PUF A) and lipids were of 

particular interest, as they are considered critical for successful embryonic 

development (Navarro and Villanueva 2000; Boyle et al. 2001). This chapter is in 

press with the Journal of Experimental Marine Biology and Ecology. 

Chapter Six: 

ARE BIGGER CALAMARY (SEPIOTEU111ISAUSTRALIS) .HATCBLINGS MORE LIKELY 
TO SURVIVE?: A STUDY BASED ON STATOLITH DIMENSIONS. 

Quantifying field mortality rates in an attempt to predict recruitment strength 

is a task that is plagued with problems and assumptions that has consistently 

frustrated fisheries biologists. This study aims to investigate an aspect of this 

problem by exploring whether 'bigger is better' in calamary stocks. Firstly, this study 

aimed to describe the variability in hatchling size throughout the late spring/early 

summer hatching season and investigated the strength of the relationship between 

hatchling size and a series of statolith dimensions. Using the somatic/statolith 

relationship this study aimed to quantify whether bigger hatchlings are more likely to 

survive by comparing the size frequencies of recent hatchlings with successfully 

recruited adults. This chapter appears in Marine Ecology Progress Series (2003 Vol. 

261: 175-182). 
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Chapter Two Embryonic Development 

2.1. ABSTRACT 

A post-cleavage embryological scheme was established for southern 

calamary Sepioteuthis australis. Using this developmental scheme intra- and inter­

specific comparisons were made. Sepioteuthis australis development most closely 

resembled that of its tropical congeneric species, S. lessoniana with only a few subtle 

heterochronies. The greatest developmental difference was observed when 

comparisons were made with Loligo pealei. These differences were attributed to 

developmental duration and respective egg sizes. Within S. australis variation in 

developmental rates among embryos mass was associated with the size of the egg 

mass, with less variation evident in smaller egg masses. Embryos located on the 

periphery of the egg mass and at the distal or unattached end of an individual egg 

strand developed significantly faster than those located deep within the egg mass. 

On average, embryos in small egg masses, consisting of five individual egg strands, 

developed significantly faster than those in dense aggregations comprised of > 100 

strands. 

2.2. INTRODUCTION 

Squid embryos are encapsulated for the duration of their development, where 

they are totally dependent on maternally derived yolk for nutrition, and are at the 

mercy of the ever-fluctuating marine environment. As a result the embryos' 

developmental process can be perturbed by a variety of biotic and abiotic factors 

manifesting themselves as slight morphological asymmetries to gross abnormalities 

and developmental arrest (Boyle et al. 2001 ). These disruptions are typically linked 

to unfavourable developmental conditions, namely elevated incubation temperatures 

(Sakurai et al. 1996), rapid or sustained changes in salinity (Palmegiano and D' Apote 

1983) or extended exposure to UV-B radiation (Biermann et al. 1992). However, 

there is evidence of elevated mortality and developmental error for embryos 

developing within dense egg masses (Chaffee and Strathmann 1984). This is 

observed in a variety of marine species, and in each instance it is the centrally 

located embryos that are more likely to suffer. This is because they are effectively 
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crowded by neighbouring egg strands and are unable to exchange gases and waste 

products efficiently (Strathmann and Chaffee 1984). 

Female loliginid squid typically anchor multiple egg strands to a common 

attachment point to form discrete egg masses. Each egg strand is comprised of 

multiple protective layers and can contain several hundred spirally arranged eggs ( eg. 

Loligo spp) to less than 10 longitudinally aligned capsules (eg. Sepioteuthis spp.). 

Multiple spawning females often contribute to existing egg masses thereby 

increasing its overall density (Sauer et al. 1992). In an extreme case, Loligo 

opalescens, collectively forms egg masses up to 40 feet (12.2 metres) in diameter 

(McGowan 1954). However, egg masses consisting of> 10 to <600 individual egg 

strands are commonly observed in other loliginids (eg Sepioteuthis australis 

Moltschaniwskyj and Peel 2003). Asynchronous development and variable mortality 

within individual strands is evident both in laboratory reared (Ikeda et al. 1999) and 

field collected eggs ( Gowland et al. 2002; Steer et al. 2002; Chapter three). 

Cephalopods undergo direct embryonic development and to identify and 

define any discontinuities in the developmental process a baseline scheme must be 

established. Although the developmental process is continuous there has been 

considerable work establishing stepwise staging criteria for a number of species 

(Segawa et al. 1988; Baeg et al. 1992; Guerra et al. 2001). Initially the 

embryological process was described at equal time periods over ~e course of 

development (Naef 1928), however this staging system is considered impractical, as 

there is no scope to make comparisons between embryos developing under different 

conditions (Arnold 1990). To make this scheme practical the developmental process 

was modified by basing stages upon the chronological appearance of morphological 

structures to generate a 30 stage 'universal' scheme (Arnold 1965). Since the 

inception of this scheme there has been evidence of species-specific heterochronies 

in the appearance of morphological structures (see Guerra et al. 2001), and as a result 

Arnold's scheme has also been frequently modified (Segawa 1987; Baeg et al. 1992; 

Blackburn et al. 1998). 

This study first established a stepwise embryonic developmental scheme for 

Sepioteuthis australis by incubating field-collected eggs at two temperature regimes. 
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This effectively sets a baseline for this species, which may benefit future embryonic 

comparisons, both within and between species. Using this baseline the effect of egg 

mass density and the embryos' relative position both within individual strands and 

within the egg mass on the developmental process was quantified. 

2.3. MATERIALS AND METHODS 

2.3.1. Establishing a species specific embryological scheme 

In July 2000, five recently laid, unfouled, egg masses, each comprised of 

>500 digitate egg strands (Fig 2.la), were collected from shallow seagrass 

(Amphibolis antarctica) beds on the east coast of Tasmania (42°12'S, 148°17'E). 

Eggs were placed in two 20 L buckets filled with ambient ( 11 °C) oxygenated 

seawater and transported to the University of Tasmania's aquatic facilities in 

Launceston. Each egg mass was divided into smaller clusters of approximately 20 

egg strands and randomly placed into a series of floating baskets allocated to one of 

two 1400 L closed recirculating systems which were gradually increased (1°C day-1
) 

to 13°C and l6°C, respectively. Due to limited aquarium space, these two 

temperature regimes were chosen to tie in with a concurrent study; nevertheless, 

these slight daily increases in temperature were not expected to deter the 

developmental process. Inflow pipes and air stones were secured to the base of each 

floating basket, positioned directly beneath the eggs, to ensure adequate water 

circulation and aeration. Water quality checks were carried out three times a week 

and maintained at within these levels; salinity 34-36 %0, N03 <10 mg/L, N02 <0.1 

mg/L, ~ <0.25 mg/L. Photoperiod was set to a 12:12 hour light: dark cycle. 

Five egg strands (Fig 2.1 b) were randomly selected on the day of collection; 

thereafter five strands were collected from both temperature regimes three times a 

week until hatching. Each egg capsule was excised from the egg strand and 

examined under a stereo-microscope. Egg strand length, number of egg capsules per 

strand and their respective maximum length and diameter were recorded. Embryonic 

development was tracked by noting the appearance of morphological and anatomical 

structures. Embryos pre-organogenesis were observed through the egg chorion and 

described. Representative chilled live embryos undergoing organogenesis were 
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dissected from the chorion and drawn to scale with the aid of a camera lucida and 

digital images. A sample of pre-mature and mature hatchlings was collected from 

both temperature regimes, preserved in 70% ethanol and their dorsal mantle lengths 

measured. 

The developmental process of Sepioteuthis australis was compared to established 

developmental sequences of three other loliginid species; Sepioteuthis lessoniana 

(Segawa 1987), Loligo forbesi (Segawa et al. 1988) and Loligo pealei (Arnold 1965). 

These three species were chosen because they share many ecological, behavioural 

and biological similarities with S. australis. Differences between species were made 

by comparing the order of the appearance of morphological features. Arnold's 

(1965) original scheme for L. pealei was used as a baseline and comparisons between 

pairs of species were completed using Kendall's coefficient of rank correlation ( r). 

2.3.2. Effect of egg mass size and capsule position on embryonic development 

Three large (>500 strands) recently laid egg masses were collected in August 

2001 from Mercury Passage (42°40'S, 148°05'E) and transported to aquarium 

facilities. Each egg mass was divided into six clusters consisting of 5, 25, 50, 100, 

200 and >200 strands, and each cluster was suspended by a length of nylon thread in 

one of six 100 L tubs connected to a closed 1400 L, 11°C recirculation system. All 

eggs were completely submerged during handling to reduce the risk of damage due 

to air exposure. Flow rates in each tub were adjusted so each egg mass was gently 

agitated ensuring that they were not suspended in stagnant water. Gentle surface 

aeration was provided and water quality was monitored three times a week. A 12:12 

light: dark period was set. 

Strands of embryos were harvested before hatching (~Stage 24-25) and 

masses containing five strands completely dissected. In the case of larger egg 

masses ten strands were sampled; five from the interior of the mass and five from the 

periphery. Embryos were dissected from each strand and staged. The position of 

each embryo within the strand was recorded with position 1 identifying the egg 

located at the fixed/proximal end of the strand progressing consecutively to the 
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free/distal end of the strand. Eggs that were unfertilised, undergoing abnormal 

development or had ceased development were scored as dead. 

2.3.3. Statistical Analyses 

To determine variability in embryonic development within egg strands the 

average developmental stage and the deviation of each embryo from the strand 

average was calculated (as per Steer et al. 2002; Chapter three). Differences in 

developmental deviation within each strand were examined as a function of the 

embryos relative position within the egg mass (internal/peripheral) and within the 

strand (distal/proximal) using a 2-way Model 1 ANOVA. Egg strands containing >7 

egg capsules were not included in the analysis due to insufficient replication (n = 3). 

The effect of egg mass density on embryonic development was investigated by 

comparing mean embryonic developmental stages across varying egg mass densities 

and as a function of their respective position within the mass via a 2-way ANOV A. A 

Hochberg GT2 post hoe test for an unbalanced dataset was conducted to highlight 

significant differences among means. Egg masses containing five egg strands were 

not included in the analysis due to difficulties in discriminating between internally 

located and peripheral strands, however data was still graphically presented. In each 

analysis homogeneity of variances were checked via visual inspection of residual 

plots and no data transformations were necessary. 
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B. 

Egg Capsules 

I 

Figure 2.1. (A.) Schematic illustration of a typical Sepioteuthis austral is egg mass 
composed of numerous egg strands and attached to a seagrass (Amphibo/is 

antarctica) frond. (B.) An individual egg strand harbouring 6 longitudinally aligned 
egg capsules. (adapted from Moltscruiiwskyj and Peel (2003)). Scale bars= lOmm. 

2.4. RESULTS 

Sepioteuthis australis eggs are laid in white digitate strands ranging from 40 

to 82mm in length and containing between 3 and 8 eggs (average 5.15, n = 215, Fig 

2.1 ). Egg capsule volume was initially below 1.0 cm3
, however, this increased to an 

average of 3.7 cm3 prior to hatching (Fig 2.2a) with no effect of temperature evident 

(two-tailed test, t = 2.12, df= 16, P = 0.52). 

Developmental rate was temperature dependent with embryos incubated at 

16°C beginning to hatch nine days earlier than those developing at 13°C. Duration 

to first hatching was 52 and 61 days, respectively (Fig. 2.2b ). Hatching success was 

poorer in the warmer regime, with 80.5% of eggs hatching at 16°C compared with 

93.0% at 13°C. Furthermore, hatchlings were significantly smaller at 16°C (F = 

23.02, df = 1, 273, P < 0.001) on average measuring (mean± SD) 4.80 ± 0.63 mm 

compared to 5.18 ± 0.62 mm at 13°C. 
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Figure 2.2. (a.) Increase in egg capsule volume throughout embryonic development 
of Sepioteuthis australis. Egg capsule volume was calculated using the formula for a 
uniform ovoid structure; 4/3.1t. r.d, where r= the radius of the longest axis and d=the 
diameter of the egg capsule. (b.) Embryonic development of Sepioteuthis australis 

incubated at 13 °C (V) and l 6°C ( •) during the period of collection to hatching. 

2.4.1. Developmental scheme 

Stage 12 (Arnold 12, Segawa 10-11 )(Fig 2.3) 

The majority of newly collected eggs were developing through the early 

stages of gastrulation. At this stage the blastoderm is clearly evident at the apical 

end of the egg and is composed of two germ layers, consisting of ectodermic and 

mesodermic cells, with the former being slightly elevated from the latter. At this 

stage the egg capsule has already started to expand as there is a distinct separation of 

the capsule chorion and the yolk body. 
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Stage 13 (A13, S12)(Fig 2.3) 

The blastoderm spreads by marginal cell divisions over the uncleaved yolk 

mass and at this stage covers approximately 20% of the egg. 

Stage 14 (A14, S13)(Fig 2.3) 

Blastoderm covers 20-40% of the egg. 

Stage 15 (Al5, S14)(Fig 2.3) 

Blastoderm covers 40-60% of the egg. 

Stage 16 (A16, Sl5+-16)(Fig 2.3) 

Blastoderm covers 60-75% of the egg. First sign of shell gland primordia 

appearing as a shallow depression at the animal pole. Two slight shadows appear at 

either side of the embryo as a result of specialised cellulation forming the rudiments 

of the optic primordia. The entire embryo rotates slightly around the animal pole 

axis due to ciliary action on the yolk envelope (as per Boletzky 1989). 

Stage 17 (Al7, Sl6-17)(Fig 2.3) 

Blastoderm covers 75-90% of the egg. Primordium of the mantle is 

recognised as a thickened, elevated region surrounding the shell gland. An annular 

ridge is evident around the optic vesicles. The areas where the arm rudiments appear 

begin to show faint signs of thickening. The mouth region (stompdaeum) is a 

crescent shaped invagination on the dorsal surface. Equatorial constriction is evident 

separating the future external yolk sac from the embryonic body. 

Stage 18 (Al 7-18, Sl8)(Fig 2.3) 

The blastoderm has nearly enveloped the entire outer yolk body. The optic 

vesicles support a disc-like retinal membrane whilst the mantle continues to thicken 

and extend, becoming more obvious. The primordia of the gills and funnel folds 

appear as a collar partially surrounding the mantle. The statocyst primordia are 

represented as distinct circular 'clouds' situated close to the outer boundary of the 

collar. The arm ridge becomes more pronounced and slightly separating alluding to 

individual arm rudiments. 
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Stage 19 (A18, Sl8+)(Fig 2.3) 

The outer yolk sac is completely enveloped by the blastoderm. Gills appear 

and are distinguishable from the thickening posterior funnel folds. The anterior 

funnel folds are evident. Both the eyes and mouth begin to invaginate. Arm 

rudiments (A I - A V), including tentacles (T IV) become more distinct and separate 

buds are now prominent. The mantle continues to protrnde outwards and elongate 

slowly enveloping the posterior shell gland. The embryo proper is compressed 

dorso-laterally. 

17_ 19 
lo.1 mm 

Figure 2.3. Illustrated developmental stages for Sepioteuthis australis. Stages 12-15 
are illustrated from the lateral aspect, whereas stages 16-19 are illustrated from the 

apical aspect. Refer to page 31 for abbreviation key 

Stage 20 (A20, S19-20)(Fig 2.4) 

The shell gland is almost completely enveloped by the mantle. The eye 

vesicles are continuing to invaginate and beginning to close. The eyestalks are 

slightly protruded. Both the anterior and posterior funnel folds are thickening and 

converge toward the mid-line. The anal knot primordium is clearly situated between 

the gills. 
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Stage 21 (A20, S20+)(Fig 2.4) 

The shell gland is completely enveloped by the mantle. Fins begin 

developing on the broadening mantle, which is covering approximately 10% of the 

gills. The optic stalks are prominent. The opening of the eye vesicle closes. The 

anterior funnel folds are approaching the mid-line but have not fused. The arms 

grow and begin to project. 

Stage 22 (A21-22, S21-22)(Fig 2.4) 

The mantle has continued to grow anteriorly, covering 25% of the gills. The 

gills are more defined and it is possible to identify slight demibranch segments. The 

fins are obvious and are seen as thin crescent shaped flaps on the anterior end of the 

dorsal mantle. The anterior funnel folds begin to fuse at the midline and thicken. 

The eyes are clear and display a faint pigmented annular ring. The lens primordia 

are visible. The eyestalks appear to be reinforced by thick ectodermic cushions 

(Boletzky 1988). The tips of the arms begin to splay away from the outer yolk sac 

and possess defined sucker bulbs. The internal yolk sac first noted. 

Stage 23 (A22-23, S21-22)(Fig 2.4) 

The mantle covers 50% of the gills. The posterior funnel margins approach 

the mid-line, whereas the anterior portion has developed into a tube. The cushioning 

surrounding the protruding eyestalks has thickened and extended. The retinal vesicle 

begins to invaginate within the iris folds. The systemic and paired branchial hearts 

first noted. Statoliths are evident within the now well developed statocyst. The arms 

continue to extend. 

Stage 24 (A24, S23-24)(Fig 2.4) 

Mantle completely covers the gills, anal knot and a portion of the posterior 

funnel margin which is now fused at the mid-line. The crescent shaped fins are also 

fused at the midline. The retinas display a faint pink tinge with a darker collared iris. 

The retinal vesicle continues to invaginate and resembles a cup-shaped dimple on the 

eyeball. The optic ganglia are apparent. The posterior lobes of the internal yolk sac 

begin to expand. The funnel is relatively well developed and is situated over a pair 

of distinctive, reflective statoliths. 
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Stage 25 (A25, S25-26)(Fig 2.4) 

Mantle envelops the posterior margin of the funnel and actively contracts. 

Eyes increasingly pigmented from pink to red and beginning to invert. The primary 

lid extending from the ventral arm bases is partially enveloping the eyes and the 

opaque optic ganglia. An empty ink sac is evident. The branchial hearts beat 

asynchronously. The buccal mass is first noted. 

Stage 26 (A26-27, S26-27+ )(Fig 2.4) 

Red chromatophores appear on the arms, head and mantle. The primary 

corneal lids envelop a third of the eyes, which are now pigmented dark red. The ink 

sac begins to fill. The anal structure is evident along with paired anal papillae. 

Beginning ofHoyle's organ is obvious between the fins on the dorsal mantle. 

Stage 27 (A28, S27-28+)(Fig 2.4) 

A second row of small brown chromatophores appears on the arms. 

Numerous red and brown chromatophores exist on the head and mantle. Hoyle' s 

organ develops a T-shaped thickening. The eyes are almost completely enveloped by 

the transparent cornea and are faintly iridescent. The ink sac is full and functional. 

The embryo:external yolk sac (E:Y) ratio is 50:50. Paired tentacles begin to splay 

out and are obviously longer than the sessile arms. Midgut (digestive) gland first 

noted surrounding the internal yolksac. 

Stage 28 (A28-29, S28-29+)(Fig 2.4) 

Yellow chromatophores appear on the arms, head and mantle and as with the 

existing red and brown chromatophores are capable of firing. Eyes are completely 

enveloped and are highly reflective with a distinct black iris. The ink sac is densely 

covered with highly reflected iridophores. A dense array of suckers exists at the 

terminal ends of the tentacles to form the tentacular clubs. Opaque beaks are evident 

within the buccal mass. Internal yolk sac decreased in size whilst the caecum and 

midgut gland increase. E:Y ratio is 60:40 with the external yolk sac easily detached 

from the embryo. Premature hatching occurs if the embryo is mechanically 

stimulated. 
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26 27 

Figure 2.4. Illustrated developmental stages for Sepioteuthis australis. Stages 20-28 
ventral views are represented. Refer to page 31 for abbreviation key. 
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Stage 29 (A29+, S29++ )(Fig 2.5) 

Green iridophores develop around the eyes. The olfactory organs are clearly 

evident on the head's ventral surface. E:Y ratio is 80:20. Embryos are increasingly 

active within the egg capsule and easily hatch leaving behind the reduced external 

yolk mass. Preserved pre-maturely hatched specimens display distinct 

countershading where the dorsal surfaces are more densely covered with dark 

chromatophores compared with ventral surfaces. 

Stage 30 (A30; S30)(Fig 2.5) 

Embryos have hatched having absorbed all or the majority of their external 

yolk stores. Hoyle's organ begins to deplete. After hatching they typically swim to 

the surface and are capable of inking, cryptic colour changes and behavioural 

postures, including V postures and upward curls as described in Moynihan and 

Rodaniche (1982) for S. sepioidea hatchlings 

2.4.2. Species comparisons 

The chronological appearance of organs in Sepioteuthis australis was similar 

to the basic loliginid scheme with only subtle heterochronies (Fig. 2.6). In general, 

the embryological process most closely resembled that of its tropical congener S. 

lessoniana, with the majority of heterochronies varying by only one embryological 

stage. For example, the opening and closing of the eye vesicle occurred one stage 

later, whereas the appearance of ventral chromatophores, anal papillae, 'and a full ink 

sac developed one stage earlier. The most notable difference between these two 

species was the appearance of Hoyle's organ, which appeared two stages earlier in S. 

australis. When comparing S. australis to L. forbesi, developmental differences 

were slightly greater. In this case, the appearance of the majority of structures were 

delayed by a few stages, with the exception of the shell gland, statocyst, lens 

primordia and closure of the shell gland which occurred synchronously and the 

appearance of the anal papillae and full ink sac which occurred one stage earlier. 

Sepioteuthis australis development however, was most different to the 

developmental scheme of Loligo pealei, where the appearance of certain structures 

was separated by more than three embryological stages (Fig 2.6). 
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Figure 2.5. Illustrated developmental stages for Sepioteuthis australis. Stages 29-
30, pre-mature and mature hatchlings. Both dorsal (D) and ventral (V) views are 

represented accompanied with illustrations of the chromatophore patterning 
determined from preserved (70% ethanol) specimens. Refer to page 31 for 

abbreviation key 
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Figure 2.6. Comparison of the chronological appearance of organs in four 
Loliginids. Including a Kendall's tau correlation matrix. **denotes significance at 

the 0.01 level (2-tailed). See page 31 for abbreviation key. 

2.4.3. Effect of egg mass size and capsule position on embryonic development 

There were strong position effects on the rates of embryonic development as 

a function of both the position of the egg strand within an egg mass and within an 

individual strand (Fmass•strand= 2.517, df= 5, 225, P = 0.031). Embryos developing at 

the proximal end of the strand displayed consistently slower developmental rates 

compared with their distal siblings (Fig 2. 7). This trend was exaggerated for 

embryos developing within the internal strands as they displayed significantly higher 

variation, with proximal embryos on average developing 1.5 developmental stages 

behind distal embryos, compared to those in peripheral strands where only a 0.6 

developmental stage difference was evident. Internal strands also displayed distinct 

signs of deterioration and decay compromising the integrity of the entire strand, 

whereas the peripheral strands were relatively unaffected. 

27 



Chapter Two Embryonic Development 

0.5 
= Q .... .... 0.0 = .... 
t 
"CS-
-~ .:! 00 

-0.5 

= ....!. ~+ -1.0 a-
~ 
Q 

)( Internal -~ -1.5 t • Peripheral ~ 

-2.0 

1 2 3 4 5 6 
Egg position 

Figure 2.7. Within strand developmental deviation comparing internally and 
peripherally located egg strands. Egg position 1 refers to the proximal embryo and 

position 6 the distal embryo. Dashed line represents synchronous development 
within an egg strand, error bars represent standard error. 

Internally located embryos were observed to develop significantly slower 

than peripheral embryos regardless of egg mass density ( cf average developmental 

stages 23.96 ± 0.05 with 24.60 ± 0.03; F= 54.74, df= 1, 476, P < 0.001). Significant 

differences in developmental rates were evident across masses of varying densities (F 

= 11.57, df= 4, 476, P < 0.001) with the smaller, less dense, egg masses harbouring 

embryos that were developing significantly faster than larger masses (Fig 2.8). This 

translates to a 1.5 developmental stage difference between the smallest (five strand) 

and largest (200+ strand) egg mass. Developmental rates did not, however, decrease 

linearly with increasing mass density as embryos collected from masses comprised of 

200 strands were developing at a similar rate to those within the 50 strand mass ( cf 

average developmental stages 24.46 with 24.50). 
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Figure 2.8. Developmental differences across egg masses of varying density, 
incorporating the Hochberg GT2 post hoe test (lower case letters). Means sharing 
the same letter are not significantly different. na denotes treatment not included in 

statistical analysis. 

2.5. DISCUSSION 

Rates of embryonic development determined for S. australis in this study are 

considered conservative estimates as they were calculated from the time of collection 

(Stage 12) rather than from the time of fertilisation. Nevertheless there were 

considerable differences in developmental rates for embryos reared at different 

temperatures, taking 52 days at l 6°C and a further 9 days at 13°C. An inverse 

relationship between duration of development and incubation temperature is evident 

in the majority of cephalopod species, providing that temperatures do not fall outside 

the species' thermal tolerance boundaries (Sakurai et al. 1996; Oosthuizen et al. 

2002). However, there is considerable variation between species, which is attributed 

to the respective size of the ovulated eggs, with species laying larger eggs displaying 

longer developmental times compared to species laying smaller eggs and incubated 

at similar temperatures. Of the loliginids, Sepioteuthis spp. produce the largest eggs 

(eg S. australis 5.6-7.5 mm (Peel 2001); S. lessoniana 5.6-5.8 mm (Segawa 1987)) 

compared to Loligo spp. (eg L. forbesi 3.0-3.3 mm (Segawa et al. 1988)); L. pealei 
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1.0-1.6 mm (McMahon and Summers. 1971)). It is therefore possible that ovulated 

egg size and subsequent developmental rates may be responsible for the observed 

heterochronies. This is consistent with Baeg et al. (1992), however there is some 

conjecture in defining differences as true species specific heterechronies as they may 

be an artefact of differing observation techniques or rearing conditions (Guerra et al. 

2001). 

Increasing egg mass density affected variation in the rate of embryonic 

development within egg strands for laboratory reared calamary eggs. This was 

particularly evident for those embryos located within the centre of the aggregated 

mass as they displayed greater developmental deviation than those strands located 

around the periphery. This trend may be directly attributed to diffusion problems 

resulting from the negative effect of crowding embryos. Typically embryos located 

either deep within aggregated egg masses or close to the substrate where there is 

little to no surface exposure, experience problems acquiring oxygen and eliminating 

metabolic wastes as demonstrated in the pond snail Lymnaea stagnalis (Marois and 

Croll 1991). Pechenik (1986) suggests that these diffusion problems may play a role 

in limiting egg mass morphology, size and number of capsules packaged within each 

strand. The susceptibility of these embryos will therefore be directly proportional to 

the density, or crowding of the egg mass. Although no significant interaction 

between egg mass density and strand locality was evident in this study, our results 

consistently displayed different developmental rates within each egg mass regardless 

of density, where internally located strands developed approximately 1. 0 

developmental stage behind peripheral strands. 

It is possible that the results obtained in this study are inflated due to embryos 

being incubated in controlled, artificial laboratory conditions not indicative of the 

natural environment. Obviously the developmental process hinges on a variety of 

other environmental factors and estimates would theoretically be reduced if tidal 

currents and wave action flushed egg masses. There is field evidence, however, of 

asynchronous development and high incidences of dead embryos located close to the 

egg mass' attachment point in S. australis (Steer et al. 2002; Chapter three). 

Furthermore, there have been instances where central strands within large egg 

masses have displayed signs of deterioration and decay (Steer, unpublished data). 
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These results raise interesting questions relating to the spawning behaviour of female 

loliginids. For example, what are the benefits (in terms of embryonic success) of 

multiple females contributing to an existing egg mass and therefore increasing its 

relative density? Multiple females do contribute egg strands to a common egg mass 

for L. pealei (Arnold 1962), L. opalescens (Hixon 1983), L. v reynaudii (Sa~r et al. 

1992)' and S. australis (Jantzen and Havenhand 2002). However, it is not clear where 

on the existing egg mass the new strands are attached. Adding egg strands to the 

periphery of existing masses would theoretically maximise embryonic development 

and hatching success as the female effectively avoids centrally located strands. 

Laying small discrete masses consisting of long egg strands (i.e comprised of many 

eggs) would similarly be beneficial. Laying longer egg strands first will potentially 

buffer the effects of other females contributing to the mass, as the embryos located at 

the distal ends of the strand are least susceptible to the constraints associated with an 

aggregated mass. 
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2.6. ABBREVIATION KEY 

A Arm Mth Mouth 
AFF Anterior funnel fold OF Olfactory pore 
AP Anal papillae OG Optic ganglia 
BC Blastoderm completely cellulated ov Optic vesicle 
BH Branchial hearts PA Arm primordia 
BI Blastoderm PAK Anal knot primordium 

BM Buccal mass PFF Posterior funnel fold 
Ce Caecum PG Gill primordia 
CH Chromatophores PL Lens primordia 
Cn Chorion PM Mantle primordium 
EC Eye vesicle closes PSG Shell gland primordium 
EI Eye vesicle invaginates PS Sucker primordia 
EY External yolksac PST Statolith primordia 
F Fins RP Retinal Pigmentation 
Fd Fused Fins RV Retinal vesicle 
FF Funnel Fuses SG Shell gland 
FU Funnel SGC Shell gland closes 
G Gills SH Systemic Heart 

HO Hoyle's organ ST Statolith 
IS Ink sac T Tentacle 
IY Internal yolksac VCH Ventral chromatophores 
M Mantle y Yolk 

MG Midgut gland 
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CHAPTER THREE 

TEMPORAL VARIABILITY IN EMBRYONIC 

DEVELOPMENT AND MORTALITY IN THE SOUTHERN 

CALAMARY SEPIOTEUTHIS AUSTRALIS: A FIELD 

ASSESSMENT 
Steer, MA., NA Moltschaniwskyj, FC Gowland. (2002). Marine 
Ecology Progress Series 243: 143-150 
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3.1. ABSTRACT 

This study describes the incidence of embryo mortality and differential 

development in southern calamary (Sepioteuthis australis) eggs. Late stage S. 

australis ~gg strands containing multiple embryos close to hatching were sampled 

from shallow (<4m) Tasmanian spawning grounds from early November 2000 to 

January 2001. Results indicated that S. australis embryos develop asynchronously 

within individual egg strands with proximal embryos developing slower and 

suffering higher mortality than their distal siblings. The magnitude of asynchrony 

however differed throughout the season with greater within-strand differences 

observed when embryos were exposed to broader environmental temperatures. 

Unexpectedly embryos developed more synchronously within biologically fouled 

strands and displayed a significantly lower incidence of mortality compared to those 

developing in unfouled strands. Embryo mortality was initially low (4%) and 

significantly increased to 20% in late November remaining above 10% until late 

December. This dramatic increase in mortality was not strongly associated with 

increasing water temperatures but coincided with a period of heavy rainfall followed 

by relatively calm inshore conditions. 

3.2. INTRODUCTION 

Quantitative estimates of mortality rates for squid species are virtually non­

existent. However they have been vaguely defined as higher than mammals, similar 

to marine plankton and lower than fish (ODor 1998). This description arises purely 

as a function of the logistical and technical complexities associated with reliably 

sampling the animals through the egg, paralarval and juvenile phases in the wild. 

However, the need to quantify early mortality rates and identify processes 

responsible is important, especially from a fisheries management perspective, as it 

can potentially be used to predict recruitment strength. 

For most fish species egg and larval mortality rates are generally high, but 

extremely variable (Ferron and Legget 1994). This variability is largely attributed to 
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the larva's vulnerability to physical and biological interactions, e.g., predation 

pressure, starvation and the physical environment (Sissenwine 1984 ). Such 

variability contributes significantly to variation in recruitment to the adult population 

(Narimatsu and Munehara 1999). Loliginid squid, however, differ fundamentally 

from fish, as they do not exhibit a true larval phase (Young and Harman 1988). 

Instead they tmdergo direct embryonic development within well-protected, sedentary 

egg capsules to hatch as behaviourally and structurally adept hatchlings (Boletzky 

1987, Boyle et al. 2001). As a consequence some of the risks associated with a 

planktonic metamorphosis phase are reduced resulting in higher survivorship than 

many marine fishes (Caddy 1983). 

Unfortunately direct embryonic development in squid is typically a lengthy 

process, representing up to 30% of their short lifespan, depending on the species 

(Boletzky 1987). During this time the developing embryos are potentially at risk to 

fluctuating environmental conditions (Augustyn et al. 1994). Temperature defines 

embryonic developmental limits (Segawa 1988) and influence rates of development 

(Boletzky 1994) and is therefore considered the principal environmental factor 

governing cephalopod embryonic development. Although some loliginid squids 

spawn sporadically during the winter months or in deep, cold water (e.g. Loligo 

forbesi Lordon and Casey 1999, Loligo. gahi Arkhipkin et al. 2000) most species 

aggregate with some predictability in shallow waters during warmer months to 

spawn (Hanlon 1998). Spawning during this time and in these regions is assumed to 

maximize hatching success and survival by effectively accelerating developing 

embryos through the early vulnerable phase. However, the developing embryos are 

still potentially vulnerable to rapid temperature and salinity fluctuations resulting 

from prevailing weather conditions, whilst also being at risk of dislodgment due to 

storm activity (Augustyn et al. 1994, Moltschaniwskyj and Peel 2003) and excessive 

biofouling. 

In the laboratory, large fluctuations in temperature and salinity are 

responsible for major structural deformities and high embryo mortality (Boletzky and 

Hanlon 1983, Palmegiano and D' Apote 1983; Hanlon 1990; Ueta et al. 1999). In the 

wild, survivorship may be affected by epiphytic growth on the egg strands' surface, 

especially for those laid in shallow, nutrient-rich waters and during the later stages of 
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development (Moltschaniwskyj et al. 2002). The effect of epiphytic growth on the 

developing embryos is unclear, but it may contribute to 'unsatisfactory hatching' 

(Choe 1966). To date, the relative importance of biotic and abiotic factors on egg 

development and survival in nature has not been directly assessed due to the 

difficulties associated with in situ investigations. The southern calamary, 

Sepioteuthis australis, however, reliably aggregates in shallow protected waters on 

the east coast of Tasmania to mate and spawn, allowing researchers regular access to 

extensive spawning beds. Spawning in S. australis is typical of the loliginids; once 

mated, females attach a series of digitate egg strands to seagrass/macroalgae 

holdfasts to collectively form discrete egg masses. Individual egg masses may 

comprise <10 to >500 strands, with each strand containing between 2 and 8 

longitudinally aligned egg capsules (Moltschaniwskyj and Peel 2003). 

This field-based study aimed to quantify variability in rates of development 

and mortality for calamary embryos throughout a spring/summer-spawning season. 

Due to the collective egg packaging strategy exhibited by this species, this study also 

described variation in development within individual egg strands to determine if 

certain eggs were at a higher risk to mortality. Furthermore, the effect of biofouling 

on the capsule surface and its effect on mortality rates were quantified 

3.3. MATERIALS AND METHODS 

Four southern calamary spawning sites located on the east coast of Tasmania, 

Australia (42°07'34"S, 148°17'51 "E) were visited fortnightly from early November 

2000 until early January 2001. All sites were within 5 km of each other, within 100 

m of the shoreline, less than 4 m depth and subjected to a maximum tidal range of 

1.2 m. On each trip divers searched areas of Amphibolis antartica seagrass beds for 

egg masses containing embryos close to hatching. From each egg mass three 

biofouled (F) egg strands (75-100% of the surface supporting filamentous algae) and 

three unfouled (UF) egg strands (0% of the surface supporting filamentous algae) 

were collected, bagged and stored in fresh seawater prior to dissection (Fig 3.1). 
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3.3.1. Dissections 

Embryos were dissected from each strand within 8 hours of collection and 

examined under a stereo dissection microscope. Developmental stage was assigned 

to each embryo according to the criteria described by Steer et al. (2003) (Chapter 

two) that differs slightly (in terms of the chronological appearance of the eye vesicle, 

ventral chromatophores, anal papillae and ink sac) from the developmental scheme 

proposed by Segawa (1987) for Sepioteuthis lessoniana. The position of each 

embryo within an egg strand was recorded; position 1 identified the embryo located 

at the fixed/proximal end of the strand and progressing consecutively to the 

free/distal end of the strand. Eggs that were unfertilised, had ceased development, or 

were undergoing abnormal development were scored as "dead". Due to the external 

fertilisation process exhibited by spawning females the incidence of unfertilised eggs 

was expected to be negligible and therefore not confound mortality estimates. To 

avoid over-estimating the within strand developmental differences, all embryos that 

had hatched to leave an obviously vacant egg capsule were assumed to have hatched 

prematurely (stage 29). This asswnption was based on the observation that 

premature hatching readily occurs during collection (pers obs). 

4 

3 

2 

6 

5 

1 

Figure 3.1. Three unfouled and three fouled S. austral is egg strands. Within strand 
egg position indicated. 
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3.3.2. Environmental data 

Seawater temperature was measured within seagrass beds using 32K 

StowAway® TidbiT® temperature dataloggers located at three collection sites. 

Dataloggers were secured to the substrate ( <4m deep) one month prior to the first 

sampling occasion and logged temperature hourly. Daily rainfall data·( as a proxy of 

salinity) were obtained from a local weather station maintained by the Attstralian 

Bureau of Meteorology. 

3.3.3. Back-calculated oviposited dates 

To examine conditions experienced by developing embryos sampled on each trip 

we back-calculated the approximate date the eggs were laid. Oviposition dates were 

calculated using Laptikhovsky's (1999) predictive equation for decapods. This 

equation takes mean egg size (L mm) and incubation temperature ( T °C) in 

consideration to generate the duration of embryogenesis (D days). The equation was 

applied as follows: 

D = (1220.94 · r-t.68194
) Lk, 

where k= 2.5139 · T-0·3574 

Two problems were evident in this equation. Firstly, as the predictive estimates 

are calculated for eggs developing under constant temperature regimes, they do not 

account for unknown effects of natural temperature fluctuations observed in the field. 

Secondly the equation does not incorporate development stage at the time of 

collection, but rather calculates the time to hatching. In an attempt to counteract 

these problems T was derived from the average field temperature recorded 3-weeks 

prior to collection and mean egg development stage at time of collection was 

factored in to provide approximate oviposition dates (Table 3.1). Egg length (L) was 

determined by measuring a total of 375 ovulated eggs collected from the ovaries of 

13 mature females (mean 6.18 ± 0.06 SE). 
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Table 3.1. Back-calculated oviposition date for field-collected Sepioteuthis australis 
eggs using Laptikhovsky's (1999) model. Mean incubation temperature three weeks 
prior to collection and developmental stages at time of collection are factored into the 

equation. 

Date mean temp Predict dev time Average Predict dev time ApproL date 

Collected Prev 3 weeks (0 C) until hatch (days) Dev Stage At collection (days) laid 

08-Nov-OO 14.5 ± 0.04 78.8 27.3 ± 0.10 72.3 28-Aug-OO 

22-Nov-00 15.2 ± 0.05 70.7 26.5 ± 0.08 55.9 27-Sept-OO 

6-Dec-00 17.3 ± 0.04 52.9 26.2 ± 0.09 40.7 20-0ct-OO 

21-Dec-OO 18.7 ± 0.05 44.2 27.8± 0.12 38.8 10-Nov-OO 

08-Jan-01 18.0 ± 0.07 48.2 27.9 ±0.08 43.9 24-Nov-OO 

3.3.4. Statistical analysis 

To determine variability in embryonic development within egg strands the 

average development stage and the deviation of each embryo from the strand average 

was calculated for all egg positions. If embryonic development was synchronous 

within an egg strand, each embryos' deviation from the strand mean would be zero. 

These differences in developmental deviation within strands were then examined as a 

function of sampling time, biofouling and position within the strand using a 3-factor 

Model 1 ANOV A. Only egg strands containing 4 and 5 eggs were included in the 

analyses to avoid severely unbalancing the dataset. All dead embryos were included 

in the analysis as missing values as developmental stage could not be ascertained. 

Assumptions of ANOV A were checked by visual inspection of variance and normality 

plots. No data transformations were required. 

To determine if developmental asymmetry was a function of the number of 

eggs within a strand, the difference in developmental stage between the fixed and 

free ends was calculated for all strands containing between 4 and 7 eggs (n = 226). 

Strands containing the extremes (3 and 8 eggs) were not included in the analysis due 
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to insufficient replication. A one-way ANOV A with unequal replication was used to 

compare mean values. The Hochberg GT2 post hoe test for an unbalanced dataset 

(Sokal and Rohlf 2000) was used to highlight significant differences amongst means. 

Temporal effects on the frequency of mortality as a function of biofouling 

and the eggs' respective position within the egg strand were estimated via a series of 

non-parametric log-likelihood ratio ( G) tests. Incorporation of Williams's correction 

(Gad;) ensured a more conservative estimate of G and therefore reduced the risk of 

type I errors (Sokal and Rohlf 2000). 

3.4. RESULTS 

Rates of development of Sepioteuthis australis embryos within a strand 

differed among egg positions, but the pattern and magnitude of the difference along 

the strand depended upon time (F = 3.48, df = 16, 601, P < 0.001). On most 

occasions the embryos located at the fixed (proximal) end of the strand developed 

more slowly than those located at the free (distal) end (Fig 3.2). However, in late 

November position 2 embryos were slowest to develop, on average lagging 0.7 

developmental stages from the distal embryos (Fig. 3.2). The within-strand 

difference in development was greatest for those eggs collected in early December 

with proximal embryos on average lagging 1.1 developmental stages behind distal 

embryos. This difference coincided with the largest incremental change in water 

temperature, where embryos were subjected to a 7.3°C increase over a 41-day 

developmental period (Fig. 3.3a). Development rates of embryos within the strand 

were most synchronous in early November where proximal and distal embryos 

exhibited a mean difference of 0.4 in developmental stage (Fig 3.2). Temperatures 

experienced by developing embryos collected in early November were relatively 

constant with embryos experiencing a 3.8°C range throughout development (Fig 

3.3a). There was a weak positive correlation between within-strand development 

variation and rate of temperature change (Pearson's correlation, r = 0.87, n = 5, P = 

0.05). 
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Figure 3.2. Mean differences in the development of Sepioteuthis australis eggs 
during a spring/summer spawning season. Mean developmental deviation per 

embryo is calculated as a function of strand mean. Only egg strands containing 4 or 
5 egg capsules were included in the analysis (n = 226). Dashed line represents 

synchronous development within an egg strand, error bars represent standard error. 

Fouling on the egg strands had a large effect on rates of development within the 

strand, with greater within-strand variation in unfouled than in fouled egg strands (F 

= 13.76, df= 4, 601, P < 0.001). While proximal embryos in unfouled egg strands 

on average lagged 1.0 development stage behind distal embryos, those in fouled 

embryos lagged by only 0.4 (Fig. 3.4). 
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Figure 3.3. (a.) Benthic water temperature (°C) measured hourly; dashed horizontal 
lines represent duration of embryonic development of collected egg samples 

calculated using Laptikhovsky's (1999) predictive equation for decapods. Arrow 
indicates the greatest temperature spike observed during the study period. (b.) Daily 

rainfall (mm). 
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Figure 3.4. Mean differences in the development of Sepioteuthis australis eggs 
between fouled and unfouled strands. Mean developmental deviation per embryo is 
calculated as a function of strand mean. Where fouled= 75-100% surface coverage, 
Unfouled = 0% surface coverage. Dashed line represents synchronous development 

within an egg strand, error bars represent standard error. 

The number of eggs in the strand affected the difference in the rate of 

development between the proximal and distal end (F = 3.31, df = 3, 222, P = 0.021). 

The shortest egg strands showed minimal difference, with proximal embryos lagging 

0.57 ± 0.17 developmental stages behind distal embryos. Longer egg strands, 

however were observed to display greater asynchrony in development with 1.2 ± 0.2 

developmental stages separating proximal and distal embryos. 

Incidence of embryo mortality changed over the summer, ranging from ~4% dead 

in early November to 19.5% in late November (Fig 3.5). Total mortality remained 

above 10.0% in early December and January periodically dropping to 6.4% in late 

December, however greatly varied as a function ofbiofouling (Gadj= 89.27, df= 3; P 

< 0.001). From late November onwards the incidence of mortality in unfouled egg 
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strands was as much as 90% higher than that in fouled strands. Except in early 

November mortality rates were very similar in both fouled and unfouled egg strands. 

Using Laptikhovsky's (1999) predictive equation it was possible to back-calculate 

the approximate oviposited dates from sampled embryos. Embryos collected in the 

initial sample were back-calculated to be laid on the 28th August marking the 

'beginning' of the study period (Table 3.1). By calculating oviposited date it is 

possible to identify potential environmental perturbations throughout embryonic 

development (ie from when eggs were laid to when they were sampled) (Fig 3.3a). 

Diel temperature fluctuations were small throughout the study (mean l.18°C ± 0.55 

SD). The largest temperature change occurred on lih October where there was an 

increase of 2.8°C over a 7-hour period (Fig 3.2a). All embryos collected in 

November would have experienced this subtle temperature spike during their 

developmental process, however, there was no correlation with increased mortality 

rates and changes in water temperature throughout the study (Pearson's correlation, r 

= 0.19, n = 5, P = 0.49) (Fig 3.3a). Embryos collected in November and early 

December experienced a period of heavy rainfall where a total of 83.2 mm fell over 7 

days (from 24th to 30th October, with major downpours occurring on the 25th and 26th 

measuring 36 and 35 mm respectively (Fig 3.3b). Rainfall during this period 

considerably exceeds the October average of 50 mm (Australian Bureau of 

Meteorology). 

Embryos developing at the proximal end of an egg strand suffered mortality rates 

more than seven times higher than those at the distal end, a pattern that was 

consistent in both fouled and unfouled strands (Gadj= 147.74, df= 7, P < 0.001) (Fig 

3.6). No dead embryos were found in positions 7 or 8 regardless ofbiofouling (Fig 

3.6). 
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Figure 3.5. The percent frequency of dead embryos at each sampling time across all 
strand positions for fouled and unfouled egg strands. Numbers in parentheses 

indicate total number of embryos examined. 
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Figure 3.6. The percent frequency of dead embryos at each position along the egg 
strand for fouled ~d unfouled egg strands. Numbers in parentheses indicate total 

number of embryos examined. 
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3.5. DISCUSSION 

Southern calamary embryos develop asynchronously within individual egg 

strands with proximal embryos consistently developing slower and suffering higher 

mortality than their distal siblings. Variable development within an aggregated egg 

mass has been reported in a variety of marine species e.g. gastropods Lymnaea 

stagnalis, Melanochlamys diomedeai and Haminaea vesicula, polychaete Nereis 

vexillosa (Marois and Croll 1991, Cohen and Strathmann 1996), and fish Clupea 

harengus (Stratoudakis et al. 1998). In each instance embryos in the distal or outer 

perimeter of the egg mass develop faster and hatch first. This difference in 

developmental rate is attributed to the interior embryos not getting sufficiently 

oxygenated and/or accumulating excess excretory products and responding by either 

retarding or arresting development (Strathmann and Strathmann 1995). Given the 

high density of eggs in the squid egg masses, particularly at the attachment point, it 

would be of value to determine the micro-environmental characteristics experienced 

by the embryos. 

Temporal variations in developmental rate and mortality estimates were 

explored as a function of incubation temperature. The positive correlation between 

the magnitude of within strand developmental variation and incubation temperature 

range suggests that asynchronous development was greater when embryos were 

subjected to a wider temperature range. Importantly, this can translate to differential 

hatch times, suggesting that an entire egg mass will hatch over a longer period when 

incubation temperatures change, compared to egg masses experiencing relatively 

stable temperatures. Similar results have been observed in shallow-water, benthic 

spawning fish (e.g. Pacific Herring Clupea pallasii and Capelin Mallotus villosus), 

where the hatching interval was negatively correlated with the average incubation 

temperature (Taylor 1971; Frank and Leggett 1981). Given that temperature 

intrinsically defines developmental rates it is likely that when embryos are subjected 

to progressively warmer temperatures, typical of a seasonal increase, embryonic 

development speeds up, exaggerating the within strand variation. It is unclear if 

survival of remaining embryos is compromised once hatching begins. 
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Although seasonal increases in temperature are positively correlated with 

developmental rate their influence on embryo mortality remains unclear. Temporal 

differences in embryo mortality have been observed in the long-finned squid Loligo 

gahi where the incidence of mortality during the winter months is more than four 

times greater than during spring and summer (Arkhipkin et al. 2000). It remains to 

be investigated whether this seasonal difference was purely a result of differing 

temperatures, or other environmental conditions, or a combination of both. Extreme 

temperature fluctuations are suggested to be detrimental in laboratory reared eggs, 

especially during the earlier developmental stages, and controlled temperature shifts 

are advised not to exceed 1°C per day (Hanlon 1990). As temperature fluctuations 

during this study were generally between 1 and 2°C per day it is unlikely that thermal 

conditions contributed to elevated mortality. A previous study of late stage 

Sepioteuthis lessoniana embryos showed that short-term exposure (<l hr) to 

temperatures 3-7°C above natural conditions does not adversely affect development 

(Kinoshita 1982). As the maximum rate of temperature elevation recorded in this 

study equated to 2.8°C over a 7-hour period, it is unlikely to have promoted 

developmental arrest. A study by Pedersen and Tande (1992) suggest that 

invertebrates living in environments characterised by natural increases in temperature 

during the developmental period are physiologically adapted to cope with slight 

fluctuations. By this rationale Sepioteuthis australis embryos may be relatively 

robust with regard to coping with temperature fluctuations. 

Heavy rainfall and subsequent fresh-water run-off, in October may have 

contributed to elevated mortalities observed in late November and early December. 

As all eggs examined in this study were collected in shallow, nearshore waters (< 

4m) their development may have been perturbed by rapid changes in salinity. 

Cephalopods are generally thought to be stenohaline and supporting field evidence 

suggest that low salinities have a significant inhibitory effect on hatching success in 

the cuttlefish Sepia officinalis (Palmegiano and D' Apote 1983). Embryos that were 

collected in early Novemeber, and would have experienced this change in salinity, 

however, displayed a relatively low incidence of embryo mortality, suggesting that if 

salinity was to have an effect on development, the timing of such events may prove 

to be an important factor. 
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Biofouling did not seem to have any obvious detrimental effect upon 

embryonic development. Embryos developing within fouled strands displayed 

relative synchrony in development and a low incidence of mortality compared to 

those developing within unfouled strands. This result was unexpected, as epiphytic 

growth upon amphibian eggs typically creates hypoxic conditions during the night 

(Pinder and Friet 1994). It has been suggested that colonisation of the fouling 

organisms on S. australis egg strands is delayed by a chemical defense present on the 

strands' surface. Therefore any resultant growth is not rapid enough to interfere with 

development as embryos hatch in sufficient time before fouling has any affect 

(Benkendorff 1999). Conversely, the photosynthetic abilities of fouling organisms 

coupled with the surrounding Amphibolis vegetation may enhance oxygen levels 

during the day and water movement during the night may cancel out any negative 

effect of epiphyte respiration (Cohen and Strathmann 1996). Excessive biofouling 

may additionally benefit developing embryos by protecting them from potentially 

damaging solar radiation that has been known to cause problems in development in 

other taxa (Biermann et al. 1992) and perhaps explain why mortality was higher in 

strands that were free of fouling. 

The present study demonstrates temporal variability in development rates of 

Sepioteuthis australis embryos. The dynamic nature of shallow water spawning sites 

makes it difficult to single out the major contributing factor(s) re~ponsible for 

embryo mortality. As a result, future work should focus upon defining tolerance 

levels in developing embryos exposed to a variety of fluctuating environmental 

conditions and determine their relative effect on different phases of development. In 

addition, the size and density of an egg mass needs be factored into any analysis to 

determine if this is contributing to early mortality rates (see Strathmann and 

Strathmann 1995). 

Commercial catches of Sepioteuthis australis off Tasmania have increased in 

recent years and a series of fishery closures aimed at protecting the spawning stock 

and maximizing recruitment strength were implemented (Moltschaniwskyj et al. 

2002). Understanding the effect of the environment on embryonic development and 

hatching success can reduce some of the variability encompassed within existing 
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stock-recruitment relationships, 

biomass/parental stock sizes. 

which are currently based on spawner 

Reducing variability within predictive stock-

recruitment relationships will allow fisheries managers to make more informed and 

accurate decisions about the fishery. 
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CHAPTER FOUR 

FACTORS RESPONSIBLE FOR EMBRYO MORTALITY IN 
THE SOUTHERN CALAMARY SEPIOTEUTHIS 
AUSTRALIS: THE ROLE OF THE AGGREGATED EGG 
MASS 
Steer, MA., NA Moltschaniwskyj, submitted Marine Biology 
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4.1. ABSTRACT 

Using a combination of laboratory and field investigations this study 

examined the role of egg mass size, the substrate upon which the mass is attached, 

the position of the embryo within the mass and the degree of biofouling on embryo 

modality in the southern calamary Sepioteuthis australis. Egg mass size ranged from 

2 to 1241 egg strands, however most masses consisted of 200-299 strands. Small 

egg masses ( <300 strands) were generally attached to soft-sediment vegetation 

(Amphibolis antarctica, Heterozostera tasmanica, Caulerpa sp.), whereas larger 

masses (>300 strands) were either securely attached to robust macroalgae holdfasts 

(Ecklonia sp., Marcocystis pyrifera, Sargassum sp.) or unattached. Rates of embryo 

mortality were highly variable, throughout the course of the study, ranging from 2 to 

25%. Both laboratory and field results indicated a positive relationship between egg 

mass size and embryo mortality. Larger, unattached egg masses contained twice the 

amount of dead embryos than those securely attached to a substrate. Mortality rates 

were significantly affected by the embryos' relative position within the mass. 

Embryos located around the attachment point of the egg strand, within the interior of 

the mass, or in close contact with the substrate were more likely to die. This was 

attributed to the inability of the embryos to adequately respire and eliminated 

metabolic wastes within the constraints of the egg mass. Biofouling did not strongly 

influence embryo mortality, but colonised areas conducive to growth, 

photosynthesis, and respiration indicating 'healthy' regions within the mass. 

4.2. INTRODUCTION 

Cephalopod embryos developing in benthic eggs can be considered sedentary 

as they are effectively anchored throughout the course of development until they 

individually hatch. As a result developmental and mortality rates will largely be 

influenced by the immediate physical and biological environment. Site selection by 

spawning females can therefore contribute to the success of embryonic development 

and potentially the strength of the subsequent generation (ODor 1998). There are 

few field studies that have explored processes determining embryo mortality rates, 
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largely because of the logistical difficulties of sampling late stage embryos from egg 

masses in situ. 

Most neritic squid (e.g. loliginid species) form large spawning aggregations 

and deposit clusters of eggs attached to a variety of substrates including differing 

vegetation types, coral, sand, and inanimate structures (Sauer et al. 1993; Segawa et 

al. 1993; Ueta and Kitakado 1996; Arkhipkin, et al. 2000; Moltschaniwskyj et al. 

2002). Although intermittent spawning may occur throughout the year and in deeper 

water, spawning by loliginids typically peaks during warmer months and in shallow, 

protected embayments (Hanlon 1998). Consequently, it is assumed that these areas 

are preferred 'sanctuaries' for the embryos as they have sufficient substrate for egg 

attachment, are well aerated by wave activity, and display seasonal temperatures 

optimal for correct embryonic development (Augustyn 1990). This generalisation, 

however, is an oversimplification as these shallow inshore regions are areas of 

considerable environmental variability and instability that may potentially perturb the 

developmental process (Augustyn et al. 1994; Oosthuizen et al. 2002; Steer et al. 

2002; Chapter three). 

Given the sub-annual life cycle typical of loliginid squid, it is imperative that 

hatching success is maximised to ensure the production of the subsequent generation. 

To lower the risk of embryo mortality, eggs are well protected from predation by a 

series of mucous layers and are laid over extended temporal and spatial scales. 

Females therefore spread the risk of juvenile mortality by not putting all the eggs in 

one basket (O'Dor 1998). Mortality rates and developmental abnormality are highly 

variable in wild Sepioteuthis australis embryos, ranging from 4 to 20% (Gowland et 

al. 2002b; Steer et al. 2002; Chapter three). Fluctuating temperatures are considered 

the major factor responsible for developmental error in the laboratory (Boletzky and 

Hanlon 1983; Hanlon 1990; Gowland et al. 2002a). However, fluctuations in the 

order of 1-2 °C day-1 were not sufficient to promote embryo mortality in the field 

(Steer et al. 2002; Chapter three). Therefore, it was hypothesised that variation in 

embryo mortality was a function of other unmeasured environmental parameters, or 

the micro-environment within the egg mass (Steer et al. 2002; Chapter three). 
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The nature of the egg mass may have inherent limitations associated with it. 

For example, embryos enclosed within egg capsules may be constrained by the 

morphology of the egg mass and the availability of ambient oxygen (Cronin and 

Seymour 2000). A number of studies suggest that natural aggregations of embryos 

approach or exceed limits for supply of oxygen resulting in retarded, or dead 

embryos located in the centre of the egg mass (Strathmann and Chaffee 1984; Cohen 

and Strathmann 1996). To further complicate this, egg strands become fouled, 

especially during the later stages of development, and it has also been suggested that 

respiration by these fouling organisms can also contribute to hypoxic conditions 

(Benkendorff 1999). The relative position of S. australis embryos within an egg 

strand and presence of biofouling organisms on the strands' surface plays a 

significant role in embryo mortality (Steer et al. 2002; Chapter three). However, it is 

not understood what role egg mass size, position of the embryo within the mass, the 

type of substrate it is attached to, and the degree of biological fouling has on embryo 

mortality. 

The southern calamary Sepioteuthis australis egg masses are typical of 

loliginid squid, where females' package three to nine eggs within a protective, 

digitate strand. Each female is capable of laying a series of egg strands, individually 

attaching each one to a common holdfast to form an egg mass. Numerous females 

can contribute to a single egg mass (Jantzen and Havenhand 2002), and therefore the 

resultant mass may be >600 strands (Moltschaniwskyj and Peel 2003). Using a 

combination of field surveys and laboratory experiments this study investigated the 

effect of egg mass size, the substrate upon which it is attached, the position of the 

embryo within the mass, and the degree of biofouling on embryo mortality. In 

addition, extensive spatial egg surveys were carried out to determine whether egg 

mass density influences the size of aggregated egg masses. 

4.3. MATERIALS AND METHODS 

Monthly Sepioteuthis australis egg surveys, extending from October 2001 to 

February 2002, were carried out on the eastern and south eastern coasts of Tasmania 

(Fig 4.1). In each region 5-17 shallow (<tom) sites, displaying similar 
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characteristics to known calamary spawning areas (ie seagrass beds, macroalgal 

forests associated with rock reef habitats, and areas of patchy vegetation) were 

targeted. To assess the intensity of calamary spawning activity in the region, 20 min 

timed swims were carried out at each site, during which the substrate was searched 

by two SCUBA divers. Given egg masses were of varying size the number of egg 

strands was considered a better indicator of spawning intensity rather than the 

number of egg masses. However, most egg masses were made up of more than 50 

strands and it was not logistically possible to count the strands in each egg mass 

while underwater. The length of an egg mass, as measured from its attachment point 

to the tip of the terminal strand, was therefore recorded and the number of strands 

subsequently calculated from a predictive regression equation established by 

Moltschaniwskyj et al. (2002). When an egg mass with less than 20 strands was 

encountered, the number of strands was counted directly. Using the search time data 

it was later possible to determine relative egg density of the area. 

' ( ' ,... t'lt .... ~·· ......... 141 

Figure 4.1. Map of the east coast of Tasmania, divided in to east and southeast 
regions indicating areas (black circles) where S. australis eggs were collected. 
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Samples were collected from egg masses containing late stage embryos, i.e., 

those which had developed passed stage 20 (see Steer et al. 2003; Chapter two). 

Each sample consisted of six egg strands; three strands completely unfouled and 

three that had some degree of biofouling. A pilot study investigating patterns of 

biofouling in calamary egg masses indicated that the terminal ends of internally 

located egg strands supported significantly more fouling (F = 5.79, df= 1, P = 0.02) 

than peripheral strands. Consequently, in this study fouled strands were selected 

from the interior of the egg mass. Percentage cover of biofouling on each strand was 

estimated (<25%, 26-50%, 51-75%, and 76-100%). The substrate type upon which 

the egg masses was attached was recorded and broadly categorised as either soft­

sediment vegetation (Amphibolis antarctica, Heterozostera tasmanica sp., Caulerpa 

sp.), macroalgae (Ecklonia sp., Macrocystis pyrifera, Sargassum sp.), or other 

(unattached or partially buried in sand). At each site samples were collected from 4-

15 egg masses. 

Embryos were dissected from each strand within 8 hours of collection and 

assigned a developmental stage according to the criteria described by Steer et al 

(2003) (Chapter two). The position of each embryo within the egg strand was also 

recorded; position 1 identified the egg located at the fixed/proximal end of the strand 

and progressing consecutively to the free/distal end of the strand. Eggs that were 

unfertilised, dead, or undergoing abnormal development were scored as "dead". 

To determine how the number of strands in a mass affected mortality rates 

three large (>500 strands) recently laid egg masses (<stage 10), free from biological 

fouling, were collected from Mercury Passage and transported to aquarium facilities. 

Each mass was divided into six clusters consisting of 5, 25, 50, 100, 200, and 200+ 

strands and each cluster was suspended by a length of nylon thread in one of six 100-

L tubs connected to a closed 1400-L, recirculating system maintained at ambient 

temperature. All eggs were completely submerged during handling to reduce the risk 

of damage due to air exposure. Flow rates in each tub were adjusted so each egg 

mass was gently agitated ensuring that they were not suspended in stagnant water. 

Gentle surface aeration was provided and water quality monitored three times a 

week. A 12:12 light:dark regime was set. Eggs were destructively sampled pre-
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hatching and masses containing five strands were completely dissected. For egg 

masses with more than five strands, 10 strands were sampled, five from the interior 

of the mass and five from the periphery. The within strand position and status (i.e., 

dead or alive) of the embryo was recorded. 

4.3.1. Statistical Analysis 

Comparisons of egg mass density and sizes between regions and among 

months were carried out using ANOV A and chi-square analysis. For ANOV A, residual 

plots were used to assess equality of variances and where necessary data were 

square-root transformed. 

Embryo mortality frequency across a three-way contingency table 

incorporating substrate type, degree of fouling, and position of the embryo within an 

egg strand as the main factors was analysed using log-linear analysis. The 

incorporation of month and regional factors were avoided due to missing, low, or 

zero cell frequencies (Quinn and Keough 2002). In a further attempt to collapse the 

contingency table only egg strands containing five embryos were used (mean± se, 

5.24 ± 0.03, n = 1002 strands), however data from longer strands containing >5 

embryos were graphically presented. 

Log-linear analysis was also used to compare the frequency of embryo 

mortality in laboratory reared eggs as a function of mass size, position within the 

mass (internal or peripheral), and position within the egg strand. Egg masses 

containing five egg strands were not included in the analysis due to difficulties in 

discriminating between internally located and peripheral strands, however, data were 

still graphically presented. 

4.4. RESULTS 

A total of 560 calamary egg masses were surveyed from October 2001 to 

February 2002 and samples were collected from 166 egg masses. Spawning 

intensity, as measured from egg density, differed between regions (F = 4.59, df = 1, 

102, P = 0.035), but not among months (F = 0.77, df = 5, 102, P = 0.577). The 
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density of egg masses was approximately three times greater on the east coast (0.33 ± 

0.05 egg masses per 20 m2
, n = 84) than in the south east (0.12 ± 0.09, n = 30). A 

Majority of Sepioteuthis australis egg masses sampled ( 59%) were associated with 

shallow water ( <4m) soft-sediment vegetation; 27.4% were attached to the holdfasts 

of macroalgal species in depths >4 m; while the remaining masses (12.7%) were 

either dislodged or partly buried in sandy sediments. Two egg masses were found 

attached to exposed tubeworm casts. The seagrass Amphibolis antarctica is the 

dominant shallow seagrass in non-estuarine waters on the east coast of Tasmania, 

extending from Great Oyster Bay to Mercury Passage and as a result was the 

preferred substrate for spawning calamary in these areas. Species of seagrass were 

observed to gradually change as sampling moved south, with calamary eggs attached 

to Heterozostera tasmanica together with sparse cover of Amphibolis on the Tasman 

Peninsula, to purely H. tasmanica in the D'Entrecastreaux Channel area. The soft­

sediment associated macroalgae, Caulerpa sp. also became more dominant further 

south. The macroalgal species Macrocystis pyrifera, Ecklonia sp., and Sargassum 

sp. were the main spawning substrates in deeper waters (>4m). 

The size of the egg masses ranged from 3-1241 strands on the east coast and 

10-619 strands in the south. Single strands containing viable eggs were occasionally 

found (<l.0% of observations) attached at the end of seagrass blades. There was no 

significant difference in the size frequency distribution of the egg masses between 

the two regions (x.2 = 3.45, df = 4, P = 0.49). Most of the egg masses at both 

locations consisted of 200-299 strands (Fig 4.2). The smallest egg masses were 

generally secured to soft-sediment vegetation whereas the largest masses were 

attached to the holdfasts of macroalgae, unattached or partially buried in sand (F = 

6.67, df= 2, 154, P = 0.002, Fig 3). A weak positive correlation between egg mass 

size and number of dead embryos was evident (Pearson's correlation, r = 0.39, n = 

160, p <0.001), with approximately 13-51% of the embryos examined in masses 

>615 strands either developing abnormally or dead. 

57 



Chapter Four Mortality in an Aggregated Egg Mass 

100 

~ = 75 
~ = O" 
~ 

~ 50 
~ .=: .. .s 25 ~ = 

""' ~o, ~o, """'"' .A~~ 
~' ~' ~' I 

~ ~~ ,..,~ 

Number of strands per egg mass 

Figure 4.2. The relative size frequency of S. austral is egg masses measured as 
number of egg strands per mass. Black bars represent eggs collected from the east 

and white bars from the south east coasts of Tasmania. 
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Figure 4.3. The average S. australis egg mass size ± standard error attached to 
different substrate types; soft-sediment vegetation, macroalgae and other 

(unattached, partially buried). Horizontal bars overlap means which are not 
significantly different as determined by a Hochberg GT2 post hoe test. 
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A total of 5249 individual embryos were sampled. Due to the nature of the 

field surveys and the patchiness of calamary spawning there were some sampling 

periods that yielded very few egg masses and periods where eggs were only attached 

to a particular substrate. As a result there were a few gaps in the data series. 

Nevertheless, mortality rates were variable throughout the spawning season, ranging 

between 2-25%. Unattached egg masses contained significantly more dead embryos 

than attached masses (G2 = 84.03, df = 2, p <0.001, Fig 4.4). Embryos located at 

position 1 in unattached masses had the highest mortality at 32%. Mortality rates 

dropped sequentially along the egg strand until position 5 (Fig 4.5). Mortality rates 

in attached masses followed a similar trend, but were consistently 50% lower, 

consequently no interaction between position of the embryo within the strand and 

substrate type was detected (G2 
= 5.03, df = 10, p = 0.89). Although the analysis did 

not include embryos collected from terminal positions 6 and 7, mortality rates in 

unattached masses dramatically increased to 30%, whereas rates in attached masses 

remained below 5% (Fig 4.5). 

25 
East 

20 I Southeast 

t 15 = ~ 
t 
~ = 10 

5 

0 

Soft-sed Macro Other 
Substrate type 

Figure 4.4. Proportion of dead S. austral is embryos within masses associated with 
different substrates; soft-sediment vegetation, macroalgae and other (unattached, 

partially buried) located on the east and south east coast of Tasmania. 
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Figure 4.5. Proportion of dead S. australis embryos within individual egg strands 
collected from different substrates. Position 1 represents embryos that are located at 
the base/proximal end of the egg strand whereas position 7 represents embryos at the 

end of the egg strand. Vertical dashed line at position 5 indicates the boundary of 
statistical analysis. Due to poor replication of longer strands only egg strands 

containing 5 embryos were included in the analysis. 

A significant interaction between degree of fouling and egg position was 

detected (G2 = 26.36, df = 15, P = 0.03). At the proximal end of the egg strand 

embryos in relatively unfouled (0-25% fouled) strands displayed the highest 

mortality rates (Fig 4.6). An obvious inverse relationship existed between relative 

mortality and degree of fouling at the proximal position as the most heavily fouled 

eggs displayed mortality rates more than 50% lower than unfouled eggs (Fig. 4.6). 

This trend, between fouled and unfouled strands continued mid-way along the strand 

with mortality rates dropping sequentially (Fig 4.6). However, at the terminal end of 

the strand mortality rates increase to ~15% in heavily fouled egg strands (50-100% 

fouled) and 0% in relatively unfouled strands. 

Strong position effects on embryo mortality with respect to the location of the 

egg strand within an egg mass and the position of the embryo within an individual 
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egg strand were detected in laboratory reared eggs. Embryos developing at the 

proximal end of the strand displayed consistently higher mortality rates compared 

with their distal siblings, similar to that observed in field collected eggs. This trend 

was significantly exaggerated (G = 79.25, df = 7, P <0.001) in internal egg strands 

where 95% of position 1 embryos were either developing abnormally or were dead 

compared to 43% dead in peripheral strands (Fig 4.7). Embryo mortality within 

internal egg strands decreased sequentially along the strand to 31% at position 7. 

Mortality rates in peripheral strands, however, remained below 10% from position 4 

onwards. 
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Figure 4.6. Proportion of dead S. australis embryos within individual egg strands 
supporting varying degrees of fouling. Position 1 represents embryos that are located 
at the base/proximal end of the egg strand whereas position 7 represents embryos at 
the end of the egg strand. Vertical dashed line at position 5 indicated the boundary 

of statistical analysis. Due to poor replication of longer strands only egg strands 
containing 5 embryos were included in the analysis. 
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In the experimental adjustment of egg mass size, increasing mass size had 

significantly influenced embryo mortality (G = 73.93, df= 4, P <0.001). Egg masses 

containing ~100 egg strands had 30% more dead embryos than those containing :::;50 

egg strands (Fig 4.8). These mortality estimates were greatly inflated by extremely 

high incidences of dead embryos (approx. 90%) within internally located strands. 

These strands also displayed distinct signs of deterioration and decomposition 

compromising the integrity of the entire strand, whereas strands on the periphery of 

the mass were relatively unaffected. Embryos developing in the peripheral strands 

consistently displayed mortality rates lower than 25%, regardless of egg mass 

density. Although egg masses containing five strands were not included in the 

analysis, they yielded comparable results with the peripheral strands displaying 16% 

mortality. 
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Figure 4. 7. Proportion of dead S. australis embryos within individual egg strands 
collected from the interior and periphery of an aggregated egg mass. Position 1 
represents embryos that are located at the base/proximal end of the egg strand 

whereas position 7 represents embryos at the end of the egg strand. 
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Figure 4.8. Proportion of dead S. australis embryos collected from the interior and 
periphery of different size egg masses. Grey bar represents data not included in the 

analysis. 

4.5. DISCUSSION 

The relative position of Sepioteuthis australis embryos within an aggregated 

egg mass determines it chances of survival. Embryos located around the attachment 

point of the egg strand, within the interior of the mass, or in close contact with the 

substrate are more likely to die (due to the inability to exchange gases effectively 

(Strathmann and Chaffee 1984)). This susceptibility to mortality, however, is 

directly related to the density of the egg mass, with larger masses containing 

proportionately more dead embryos, a trend that was consistent in both laboratory 

and field investigations. Such large masses may increase embryo mortality rates for 

two reasons. Firstly there is increased physical stress placed on internally located 

embryos as a function of overcrowding. Secondly there is an increased risk of 

physical detachment of the egg mass from its substrate. 
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Larger egg masses are more prone to detachment purely due to their large 

surface area and susceptibility to current action (Sauer et al. 1993). This study 

partially supports this, as larger masses (> 300 egg strands) were unattached, partially 

buried or securely attached to robust macroalgae holdfasts. The risk of detachment 

would obviously depend on the strength of the currents and the relative strength of 

substrates' foundation. This would explain why some larger masses were found 

attached to the strong foundation of macroalgae holdfasts and not frailer seagrass 

stipes. fu addition, unattached egg masses were frequently found attached to 

uprooted or remnant pieces of vegetation suggesting that they had been physically 

dislodged from their original position. The loss of eggs due to storm activity has 

been documented (Sauer et al. 1993; Moltschaniwskyj and Peel 2003) but, the fate of 

the embryos has never been directly assessed. 

Dislodged egg masses have distinct disadvantages, for example, they are in 

constant physical contact with the benthos, run the risk of being buried, and 

depending on the currents can be transported to unfavourable environments. 

Generally in calm conditions, the physical weight of the egg mass and gentle swell 

motion sweeps the mass into crater-like depressions as described by Sauer et al. 

(1993) for L. vulgaris reynaudii. Being confined in a sandy depression, and in direct 

physical contact with the benthos, potentially reduces the embryos ability to 

exchange gases effectively. Embryos of the pond snail (Lymnaea stagnalis) in direct 

contact with the substrate displayed slower development, suggesting that surface 

exposure and not neighbouring eggs is a limiting factor (Marois and Croll 1991). To 

further support this, laboratory reared S. australis eggs in direct contact with the 

aquarium walls were often found to contain dead embryos, which resulted in the 

entire strand dying (Steer, pers ohs). These strands exhibited similar signs of 

deterioration and decomposition observed in internally located, laboratory reared 

strands in this study. Although this is more frequently observed in an unnatural 

laboratory environment, there was evidence of egg decomposition in unattached egg 

masses in the field, potentially contributing to elevated mortality rates. Although it is 

unclear, it can be suggested that areas of decomposition within an aggregated mass 

'infects' neighbouring embryos consequently compromising their survival. 
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Strong swells can transport unattached egg masses across large distances, and 

it is not uncommon to see loliginid egg masses washed ashore after severe weather 

(Boletzky 1986). Although the direct consequence of the physical rolling of the 

unattached mass along the benthos on the developing embryo is unknown, it is likely 

to be detrimental, especially if the mass is washed ashore for extended periods. A 

higher incidence of dead embryos was found in the terminal ends of unattached 

masses in comparison to attached masses. It is possible that embryos in terminal 

positions 6 and 7 have died as a result of being bumped and tumbled across the 

substrate. This result, however, must be interpreted with caution as strands 

consisting of 6+ embryos represented <8.8% of the total observations. Nevertheless, 

the effect of rolling egg masses and potential abrasion of the sand on the developing 

embryos, particularly those in direct contact with the benthos, requires further 

investigation. 

Embryo mortality rates were highest in unfouled egg strands. This may be 

related to the physical structure of the egg mass, with biofoulers colonising areas that 

are conducive to growth, respiration and photosynthesis. Egg strands deep within the 

egg mass, shaded by neighbouring egg strands, or in direct contact with the substrate, 

would not provide a suitable substrate for fouling. Therefore, it is not surprising to 

see that embryos in these strands displayed the highest levels of mortality. It is 

therefore likely that healthy S. australis eggs support epiphytic growth rather than 

epiphytic growth ensuring healthy embryos (Gowland et al. 2002b ). 

Colonisation of biofoulers on S. autralis egg strands is suggested to be 

delayed by a chemical defence allowing embryos sufficient time to hatch before 

fouling has any effect (Benkendorff 1999). This, however, may not always be the 

case as depending on conditions fouling organisms may rapidly colonise egg strands 

before juveniles hatch. In this study the terminal ends of the strands (position 7) that 

are heavily fouled (>50%) contain proportionately more dead embryos than those 

located down the strand. It is possible that fouling organisms have rapidly colonised 

the strand's surface to a point where the embryo is effectively trapped within the egg 

strand. To further support this, dead mature hatchlings were occasionally observed 

to have partially penetrated the fouled egg strand suggesting that they had become 

stuck and died in the hatching process. It is assumed that Choe (1966) made similar 
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observations in loliginid, sepiolid and sepiid eggs as it was found that large quantities 

of diatoms and green algae colonising the eggs were responsible for 'unsatisfactory' 

hatching. 

Egg mass size in communal spawners such as S. australis, is not determined 

by the individual and potentially depends on how many females are contributing to 

the mass. In some species tens to hundreds of females may contribute to existing egg 

masses subsequently increasing their overall diameter to >3m c~1000-10,ooo 

strands) (eg Loligo opalescens McGowan 1954; L. pealei Griswold and Prezioso 

1981; L. vulgaris reynaudii Sauer et al. 1992). Such large egg masses have not been 

observed in S. australis with the largest egg mass recorded in this study consisting of 

1240 egg strands, and the majority in the 200-299 size class. Given a 3-fold 

difference in egg production between the regions, but no difference in the frequency 

distribution of egg mass size, it is unlikely that egg mass size was a function of 

spawning intensity. This suggests that other factors, such as spawning behaviour or 

substrate type potentially determines egg mass size. Factors determining when and 

where females deposit their eggs may have underlying evolutionary significance, 

raising interesting questions such as; why do some females contribute to existing egg 

masses where others start new masses? What are the benefits, in terms of hatching 

success, of these two methods? Adding strands to the periphery of existing masses, 

where conditions for development are favourable, would theoretically maximise 

hatching success whilst also competing against other embryos. Contributing to an 

existing egg mass will ensure that more juveniles hatch simultaneously, therefore 

reducing the individual's chances of being predated upon. The decision to begin a 

new egg mass may relate to its theoretical critical size (Sauer et al. 1993; Strathmann 

and Strathmann 1995). For example; the benefits of laying eggs on a stable 

substrate, elevated from the benthos may out weigh contributing eggs to a large egg 

mass prone to being dislodged by wave action. The behavioural and social aspects in 

spawning loliginids are complex (Sauer et al. 1997; Hanlon 1998; Jantzen and 

Havenhand 2003) and further work is required to specifically address these 

questions, unravelling whether trade-offs exist in spawning site preferences and 

competitive interactions. 
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The size of the egg mass, the position of the embryo within the mass and the 

substrate to which it is attached are important factors in determining Sepioteuthis 

australis hatching success. Although interiorly located embryos display consistently 

higher mortality rates regardless of substrate, the risk is almost doubled in larger 

masses, particularly those that have been detached from low relief vegetation. 

Embryos situated around the periphery of the mass or are laid in small discrete 

masses, attached to solid substrates are therefore more likely to survive, providing 

the environmental conditions are favourable. In general, S. australis lays relatively 

discrete egg masses with approximately 10% of all embryos examined in this study 

lost to mortality. These results raise interesting questions relating to the spawning 

behaviour and viability of eggs laid by squid species that contribute to large 

communal beds on potentially unstable, sandy substrates. 
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CHAPTER FIVE 

THE ROLE OF TE:MPERATURE AND MATERNAL 
RATION IN EMBRYO SURVIVAL: USING THE 
DUMPLING SQUID EUPRYMNA TASMAN/CA AS A 
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5.1. ABSTRACT 

Using a 'model' sepiolid Euprymna tasmanica this study investigated the role 

of maternal nutritional and thermal history on egg quality and subsequent embryo 

survival. As E. tasmanica produces multiple batches of eggs it was possible to track 

egg quality and hatching success over successive spawning episodes. A two factor 

orthogonal experimental design, involving two feeding levels (high and low rations) 

and two temperatures (summer and winter), was implemented with half of the 

replicates used to explore embryonic development and the remaining half examining 

egg-yolk quality via fatty acid analysis. Differences in reproductive output and 

embryo mortality were largely attributed to maternal ration and not temperature. 

Females maintained on low ration produced smaller clutches, consisting of smaller 

eggs and exhibiting higher embryo mortality rates than high ration females. Both 

batch fecundity and relative hatching success declined over successive clutches. 

Lipid content was also significantly lower in low ration females, however the relative 

quality in terms of lipid and fatty acid constituents was maintained regardless of 

treatment and spawning frequency. It is suggested that elevated embryo mortality 

rates in eggs spawned by low fed females was a function of insufficient maternally 

derived yolk resources to fuel embryogenesis. Both maternal nutritional and 

reproductive history were important determinates for offspring survival, which 

potentially has significant effects on the magnitude of recruitment events in squid 

populations. 

5.2. INTRODUCTION 

Definitive links between size, age, and condition of mature females and 

embryo/larval survival have been identified in a diverse range of marine taxa (Bayne 

et al. 1975; Laine and Rajasilta 1999; Keckeis et al. 2000; Jimmy et al., 2002; 

McCormick 1999; 2003). Recent studies suggest that maternal nutritional history 

has a large influence on embryonic development and offspring competency through 

the sequestering and provisioning of yolk resources (Laine and Rajasilta 1999; 

McCormick 2003). Maternal temperature effects, through interactions with food 

availability, are also considered important determinates of offspring size (McKee and 

69 



Chapter Five Maternal Effects 

Ebert 1996) and potentially larval competency. As a result, fluctuations in 

environmental conditions, particularly food availability, experienced during the 

females' reproductive season can have significant flow on effects to the subsequent 

population structure (Kerrigan 1997). 

Non-overlapping, sub-annual cephalopod populations exhibit considerable 

spatial and temporal variation in recruitment (Pierce and Boyle 2003). This variation 

is expected to be strongly affected by environmental conditions, particularly 

affecting the early life stages (Boyle and Boletzky 1996; Pierce and Boyle 2003). 

Currently little is known about processes of early mortality, however, quantitative 

data exists for the southern calamary Sepioteuthis australis indicating that natural 

embryo mortality rates vary considerably over the spawning season (Steer et al., 

2002; Chapter three; Chapter four). Sepioteuthis australis spawns multiple clutches 

over a relatively short spawning period and exhibits substantial variation in the size 

and number of ovulated eggs (Jackson and Peel 2003). Lipid quantity varies with 

egg size in the cuttlefish Sepia officinalis suggesting that differences in egg quality 

may exist (Bouchaud and Galois 1990). Significant spatial differences in egg 

quality, in terms of lipid content also occurs (Boyle et al. 2001). The lipid 

requirements for correct cephalopod development is not understood, however 

phospholipids and long chained polyunsaturated fatty acids, particularly EPA 

(20:5m3) and DHA (22:6m3) are likely to be essential constituents (Bouchaud and 

Galois 1990; Navarro and Villanueva 2000, 2003; Boyle et al. 2001). Therefore, it 

would be beneficial to investigate whether spatial and temporal fluctuations in 

embryo mortality are linked to egg quality spawned by females from different 

nutritional and thermal environments. 

Attributing Sepioteuthis australis embryo mortality to maternal nutritional 

and thermal history in the field is logistically challenging. This is largely due to the 

difficulties associated with linking females with spawned eggs and ascertaining the 

females' history. Furthermore, the relative condition of the female may be 

confounded by her reproductive status. Serial spawning females exhibit no clear 

physiological record of previous spawning events (Sauer et al. 1999; 

Moltschaniwskyj and Semmens 2000), therefore it is virtually impossible to 

determine whether spawned eggs are from the first or last spawning episode. In the 
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serial spawning Atlantic cod, Gadus morhua, egg size and quality varies throughout 

successive spawning events (Chambers and Waiwood 1996; Ouellet et al. 2001). 

This variation is attributed to changes in female condition over the spawning season 

with past reproductive investments influencing future investments (Kjesbu et al. 

1996). Therefore, when determining the flow on effects of maternal condition, 

through to egg quality and subsequent embryo survival in multiple spawners, the 

females' reproductive history must be considered. 

Due to the logistical difficulties associated with maintaining large, highly 

mobile, cephalopods in captivity (Hanlon 1990) and assessing links between 

maternal condition and hatching success in field populations, it is necessary to use a 

'model' species conducive to manipulative experimentation. The southern dumpling 

squid Euprymna tasmanica (Sepiolidae) was chosen in this study, as it is a small 

multiple spawning cephalopod that is easily collected and reared in captivity. Using 

this species this study aimed to describe the relationship between the nutritional and 

thermal environment in which females are exposed and the quantity and quality of 

the eggs and embryos produced over successive clutches. 

5.3. MATERIALS AND METHODS 

5.3.1. Experimental design 

To determine the effects of water temperature and level of feeding on 

reproductive parameters 36 females were randomly allocated to one of four treatment 

combinations ( l 8°C - high feeding, l 8°C - low feeding, 11 °C - high feeding, 11 °C 

- low feeding). All animals used in the experiment were collected from sand flats in 

northern Tasmania during night low tides. Due to space constraints in the laboratory 

the 11 °C treatment was run during the austral winter (2001) when ambient water 

temperature when the animals were collected was ~ 11°C and the l 8°C treatment was 

run in summer (2002) when the temperature was ~ l 8°C. Males and females were 

separated upon collection to avoid mating and transported to the aquatic facilities 

located within the School of Aquaculture (University of Tasmania). Upon arrival 

females were housed in individual (300 x 150 x 100 mm) plastic aquaria attached to 

a closed 1400 L recirculation system. Each aquarium contained a half piece of PVC 
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piping for shelter and a secure lid. Water quality was monitored three times a week 

and maintained within these levels; salinity 34-36%0, N02 <0.1 mg/L, N03 <10.0 

mg/L, NH4 <0.25 mg/L. All males were collectively housed in a 100-L tank. The 

prey species used during the experiment were mysid shrimp Tenagomysis tasmaniae, 

Paramesopodosis rufa, and Anisomysis mixta australis. For 1-2 weeks prior to the 

start of the experiment females were fed ad libitum to allow time for individuals to 

habituate to their new surroundings. 

Once habituated, females were randomly allocated to either a high or low 

feeding regime, where high fed females were fed daily and low fed females fed 2-3 

times a week. After two-weeks on the treatment feeding regimes females were 

weighed and a male of known weight was introduced to each female and removed 

after mating was observed. Females were left in isolation until a clutch of eggs had 

been laid. The egg clutches of four females in each feeding-temperature combination 

were removed within twelve hours of being laid. The number, total egg wet weight, 

and egg capsule wet weight (= total egg wet weight minus protective layer wet 

weight), and individual egg volume (egg volume= (4/3) x r d, where r =radius of 

the longest axis and d = the diameter of the egg capsule) was recorded prior to being 

frozen (-86°C) for lipid analysis. Egg clutches from the remaining four females were 

left in situ and the time to hatching, hatching success, and size (dorsal mantle length 

ML and weight) of the hatchlings was recorded. Embryos reared at 11°C were 

destructively sampled before hatching due the extremely slow development time 

(-20 weeks), and the need to run the l 8°C treatment before the end of summer. Eggs 

that were unfertilised, had ceased development or were undergoing abnormal 

development were considered 'dead', as they were unlikely to successfully hatch. 

Males were reintroduced 2-5 days after a female laid a clutch and the entire process 

repeated for three successive clutches. To minimise the influence of paternity on 

embryo growth and survival (Shaw and Boyle 1997) only four males were used 

withjn each temperature regime, with each male used to mate a single female in each 

of the feeding levels. All interactions and manipulations with animals were made 

during daylight hours. 
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5.3.2. Lipid and Fatty Acid Analysis 

Due to small amounts of dry material the entire freeze-dried egg mass (minus 

multiple protective layers) was ground up in a mortar and pestle before extraction. 

Total lipid was extracted from freeze dried eggs using a modified one-phase CH30H­

CHCh-H20 (2:1:0.8 v/v/v) Bligh and Dyer (1959) extraction. Phases were separated 

after 18 hours of extraction under low light- by the addition of CH30H and H20 (1:1 

v/v) and 0.1 g NaCL Lipids were recovered in the lower CH30H phase and the 

solvent was removed under rotary vacuum leaving the total lipid extract (TLE). 1LE 

was weighed to obtain a percentage of the dry weight of the egg mass. All samples 

were made up to 1500µ1 in chloroform and stored at -20°C. 

An aliquot (~lµml) of the TLE was analysed with an latroscan (model TH-10 

MKII, Iatron, Japan) thin layer chromatography-flame ionisation detector (1LC-FID) 

to determine the proportion of major lipid classes. A polar solvent system (60:17:0.2 

v/v/v ratio of CJ!10:(C2Hs)20:CH3COOH) was use to resolve lipid classes after 

samples were applied to silica gel SII chromarods ( 5 µL particle size) using 1 µL 

micropipettes. The FID was calibrated for each compound class. Computer software 

MACLAB Chart v3.5 and Peaks vl.4 were used to quantify areas of lipid class 

peaks. 

A 300µ1 aliquot was taken from the TLE and trans-esterified at 80°C for two 

hours in a CH30H:CHCh:HCL (10:1:1 v/v/v) mixture to produce fatty acid methyl 

esters (FAME). F AMEs were partitioned by the addition of water and extracted with 

CJI10: CHCh (4:1 v/v). Samples were centrifuged at 1500 rpm for three minutes 

and the top phase consisting of F AMEs was retained, reduced under nitrogen and 

stored at-20°C. An internal standard (19:0) of known concentration was added. 

Fatty acid components were determined by gas chromatography using a 

Hewlett Packard 5890 series II gas chromatograph (GC) and a HP 5971A mass 

selective detector (MSD). A 60m x 0.25mm internal diameter HP-IMS column 

(0.25 µm film thickness) was used. GC and MSD operating conditions were similar 

to those described by Nichols et al. (1994). Peaks were quantified using 

ChemStation software and identified by comparison of component mass spectra and 

73 



Chapter Five Maternal Effects 

retention times with a well-characterised menhadin marine oil standard. Both fatty 

acids and lipid classes were presented as a mean percent(± standard deviation) of 

sample per treatment. 

5.3.3. Statistical Analysis 

A two-way analysis of variance (ANOVA) was used to compare parameters of 

interest with feeding level and temperature as the orthogonal factors. Consecutive 

clutches produced by females was treated as repeated measures data and analysed 

using a univariate split-plot ANOV A. Due to the nature of the experiment the design 

became unavoidably unbalanced as many females senesced before laying three 

clutches. Therefore, Type III sum of squares were calculated using unweighted 

marginal means which are not influenced by the sample sizes in each cell (Quinn and 

Keough 2002). In some cases the third clutch was omitted from the analysis, 

however means were still presented. 

Mixed model nested ANOVA was used to determine differences in average egg 

volume and hatchling size as a function of temperature and ration with females as a 

nested term within treatment combinations. Due to reduced replication for 

successive clutches only parameters measured from the first clutch were included in 

the analysis. Data was transformed where necessary to deal with violations of 

assumptions of ANOV A. 

5.4. RESULTS 

Each egg was individually laid and coated in numerous semi-transparent, 

gelatinous layers and a tougher, opaque-orange outer flexible layer. Eggs were 

typically individually attached to a common substrate either abutting, on top of, or in 

close proximity to each other to form discrete egg masses arranged in an amorphous 

structure. Across all the treatments 44. 7% of the females deposited three clutches. 

The number of eggs deposited in a clutch at any one time was highly variable 

ranging from three to 107 eggs and there was a significant decrease in the number of 

eggs in successive clutches (Fig 5.1, Table 5.1). However, the rate of decline in the 

size of successive clutches was not significantly affected by either ration level or 
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temperature (Table 5 .1 ). However, across all clutches the total number of eggs laid 

was affected by ration, but not temperature (Table 5.1 ). Females maintained on high 

rations consistently produced -60% more eggs than those maintained on low ration. 

This was consistent across successive clutches (Bonferroni adjusted two tailed t-tests, 

df= 36, Clutch 1; t = -5.02, P > 0.001. Clutch 2; t = -3.28, P = 0.001; Clutch 3; t = -

2.539, p = 0.016). 
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Figure 5.1. Changes in batch fecundity (average number of egg capsules± standard 
error) over successive clutches for mature Euprymna tasmanica maintained at high 

and low feeding regimes. 

There was no evidence that the size of the female was correlated with total 

reproductive output (Pearson's two-tailed, r = -0.308, n = 20, P = 0.19). Likewise 

there was no correlation between female weight and average egg volume (r = 0.29, n 

= 16, P = 0.25). Egg size was significantly affected by ration (F = 11.07, df= 1,12, 

P<0.01), but not temperature (F = 2.12, df = 1,12, P = 0.17). Eggs spawned in the 

initial clutch by females maintained on the higher ration were consistently larger than 

those maintained on the lower ration (20.06 ± 0.5 mm3 and 14.65 ± 0.5 mm3 

respectively). 

The weight of the protective mucus around the egg did not change in 

successive clutches (Table 5.1). However, the amount of capsular protection 

invested by the females was a function of temperature but not ration level (Table 
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5.1). Females maintained in warmer water laid eggs consisting of approximately 

50% protective mucous, which was 10% more than those eggs laid by females in 

cooler water. This trend was only evident in the first clutch (t = -3.09, df = 16, p = 

0.007) and not in the second clutch (t = -1.95, df = 10, p = 0.08). Although only two 

successive clutches were included in the ANOVA, some eggs from the third clutch 

deposited by females held at 11°C were unattached and had no protective mucous 

(Fig 5.2). 
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Figure 5.2. The average proportion of nidamental mucous protection (± standard 
error) over successive clutches for Euprymna tasmanica maintained at summer 

(18°C) and winter (11°C) temperatures. Dashed lines represent data not included in 
the analysis. 

On average each egg mass, minus protective mucous, was 85.0 ± 0.62% 

water and the egg-yolk lipid content represented 6.78 ± 0.27% of the egg dry weight. 

There was no evidence that the lipid content changed with successive clutches (Table 

5.1), but overall females fed at higher rations produced eggs with ~2% more lipid 

than females fed at low ration (Table 5 .1 ). Significant differences in lipid content 

were only detected in the first clutch (t = -3.05, df = 16, P = 0.008) and not the 

second (t = -2.11, df = 10, P = 0.06) (Fig 5.3). Although the analysis did not include 

data from the third clutch, lipid levels dropped to <3.0% for those females (n = 2) 

maintained on the low ration. Five major lipid classes were identified in the eggs; 

wax esters (WAX), triacyglycerols (TAG) ('reserve' lipids), free fatty acids (FFA), 
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sterols (ST), and polar lipids (PL) ('structural' lipids). The structural polar lipids 

represented 77.8 ± 2.9% of the total lipid extract whereas reserve lipids were less 

abundant representing approximately 3. 0 ± 1. 0%. Free fatty acids comprised 17. 5 ± 

2.4%, whereas sterols and wax esters contributed 0.1 ± 0.1 % and 1.5 ± 0.3% of the 

total lipid extract respectively. All treatments showed considerable variation in the 

relative quantities of these lipid classes, consequently no significant differences 

(split-plot ANOVAs all P values >>0.05) were detected in egg quality as a result of 

maternal condition (Table 5.2). 
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Figure 5.3. The average proportion of egg-yolk lipid(± standard error) over 
successive clutches for mature Euprymna tasmanica maintained at high and low 

feeding regimes. Dashed lines represent data not included in the analysis. 

The fatty acid profiles of E. tasmanica eggs consisted of approximately 48-

56% saturated, 5-14% monounsaturated, and 27-45% polyunsaturated fatty acids and 

were largely dominated by 16:0, 18:0, 20:5m3 (EPA) and 22:6m3 (DHA) (Table 5.3). 

No statistical difference in their relative proportions, however, were detected (split­

plot ANOVAs all P values >>0.05) across treatments, suggesting that egg quality in 

terms of the dominating fatty acids was similar regardless of maternal condition. 

Eggs incubated at 18°C developed and hatched within ~40 days, more than 

three times faster than those incubated at 11 °C where the developmental process took 

approximately 135 days. The relative embryonic duration did not affect mortality 
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rates as no significant difference was detected between temperatures (Table 5.1). 

There were significantly different levels of mortality between successive clutches 

and between the two rations (Table 5.1). Embryo mortality was consistently higher 

in developing embryos deposited by low ration females, increasing from 55% dead in 

the first clutch to 84% dead in the second (t = -2.752, df = 12, p = 0.018). In the 

third clutch produced by low ration females, which was omitted in the analysis due to 

poor replication (n=3), 100% of the embryos failed to successfully develop with eggs 

exhibiting either convoluted, opaque yolk structure or grossly malformed embryos. 

In contrast, embryo mortality was <20% for the first two clutches in high ration 

females but increased 3-fold by the third clutch (Fig. 5.4). There was a strong 

negative correlation (Pearson's correlation r = -0.79, n = 43, P <0.01) between 

percentage of dead embryos and egg mass density (Fig. 5.5). 
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Figure 5.4. The average proportion of dead embryos(± standard error) over 
successive clutches for mature Euprymna tasmanica maintained at high and low 

feeding regimes. Dashed lines represent data not included in the analysis. 

Hatchling length-weight relationships were very poor (r2 = 0.12, n = 162, P 

<0.001) due to the spherical, globular morphology of the dumpling squid. Size of 

hatchlings was significantly affected by the ration level of the females (F = 16.79, df 

= 1, 4, P = 0.02) with high ration females producing significantly larger hatchlings 

than low ration females (1.73 ± 0.03, 1.20 ± 0.05 µg respectively). No correlation 
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between female weight and average hatchling weight was detected (r = 0.36, n = 8, P 

= 0.22). 
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Figure 5.5. Proportion of dead Euprymna tasmanica embryos in relation to clutch 
size. 

5.5. DISCUSSION 

Differences in reproductive output and embryo mortality in Euprymna 

tasmanica were largely attributed to maternal ration and not temperature. Captive 

females maintained on low ration consistently produced smaller clutches, consisting 

of smaller eggs and exhibiting higher embryo mortality rates compared to females 

maintained on high ration. In addition, responses in these variables were dependent 

on clutch sequence with both egg quantity and relative hatching success declining 

over successive clutches. Lipid content was significantly lower in low ration 

females, however the relative quality in terms of lipid class and fatty acid 

constituents was maintained regardless of treatment and clutch sequence. This 

suggests that E. tasmanica trades off fecundity and egg size (and as a result lipid 

quantity) to preserve egg quality in terms of lipid constituents. Reduction in lipid 

quantity may, therefore be responsible for elevated mortality rates suggesting that 

embryos are effectively running out of lipid reserves to fuel embryogenesis. 
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Like most cephalopods E. tasmanica undergoes direct embryonic 

development with juveniles hatching out as miniature versions of adults thereby 

avoiding an extensive larval phase (Hanlon 1990). In addition hatchlings 

immediately adopt a holobenthic lifestyle and are consequently not highly dispersive. 

The developmental process is lengthy and depending on incubation temperature can 

extend to approximately 4.5 months, therefore sufficient maternally derived yolk 

resources are needed to fuel embryonic development and ensure hatching success. It 

is possible that eggs spawned by low fed females have not been allocated their full 

complement of resources and therefore not adequately fuelling the entire 

developmental process, potentially accounting for increased developmental error and 

mortality observed in this treatment. The nutritional requirements, in terms of prey 

type and feeding rates for wild E. tasmanica are unknown and it is possible that 

feeding regimes enforced on captive females are nutritionally deficient potentially 

pushing their reproductive limits and forcing females to partition extremely limited 

resources. 

A negative correlation between fecundity and food availability is evident in 

various iteroparous marine invertebrates (Rey-Rassat et al. 2002) and there are a 

number of theories suggesting why this trade-off occurs. These theories can be 

divided into two broad categories; those relating to the environment experienced by 

developing young and those relating to the phenotypes of the spawning females 

(Parker and Begon 1986). In the first category it is generally hypothesised that 

during periods of limited food availability small clutches are laid to reduce 

competitive interactions between siblings to ensure a greater proportion survive 

(Roff 1981). In the second category the emphasis shifts toward the survival of the 

mother, where it is considered advantageous for the female to direct less energy into 

reproduction when food is limited and therefore survive to breed again when food 

availability increases (Roff 1992). Either way it is analogous to a cost-benefit 

analysis where the main aim of the female is to maximise the success of her 

reproductive output and counterbalance high mortality rates (Boletzky 1988). 

Observing this life history strategy in E. tasmanica is therefore not surprising, as it is 

a holobenthic, shallow-water species that occupies a niche where prey availability is 

spatially patchy and temporally unpredictable. However, it does not explain the high 

incidence of embryo mortality observed in eggs produced by low ration females. 
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Decreasing egg volume accompanied the reduction in clutch size in low fed 

E. tasmanica. This phenomenon is not often observed, as typically marine 

invertebrates produce few large eggs when food is limited and more small eggs when 

food is abundant; trading-off high survival with high dispersal (Qian and Chia 1991). 

Variation in egg size and organic content can be indicative of nutritional (Bayne et 

al. 1975; Bayne et al., 1978) or behavioural stress (McCormick 1999) and some 

starved molluscs produced fewer and smaller eggs ( eg Tenellia adspersa Chester, 

1996). This pattern is not always consistent with some species maintaining egg size 

independent of food availability (eg Lewis and Choat 1993), however maintaining 

egg size does not necessarily equate to maintaining egg quality (Thompson, 1982; 

Cheung and Lam 1999). Although egg quality in terms of the main lipid (TAG, PL) 

and fatty acid constituents (EPA, DHA) was preserved regardless of treatment in E. 

tasmanica the proportionate quantity of lipid (dry weight) was significantly reduced 

in low fed females. 

The degree to which females respond to nutritional stress may vary as a 

function of environmental conditions, their genetic background, or possibly their 

previous reproductive or nutritional history (Kristjansson and Vellestad 1996, Rey­

Rassat et al. 2002). Reduction in batch fecundity and egg reserves through 

successive spawning events across all treatments in E. tasmanica suggests that there 

is a sequential draining of reproductive resources. In general cephalopods are short­

lived with the majority of species exhibiting sub annual life cycles, therefore females 

that lay multiple clutches of eggs have to do so over a brief life span (Maxwell and 

Hanlon 2000). Females living in a food limited environment and possessing inherent 

reproductive time constraints may not be able to acquire sufficient resources in 

between spawning events to maintain batch fecundity. As a result female condition 

deteriorates and batch fecundity is compromised. 

Examples of declines in batch fecundity over successive spawning episodes 

and subsequent hatching success in iteroparous species are rare within the literature 

due to the difficulties of tracking individuals in the wild and a paucity of laboratory 

studies. However the female calanoid copepod, Calanus helgolandicus maintained 

on low ration decreased clutch size throughout its reproductive history (Rey-Rassat 
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et al. 2002). Furthermore, these eggs exhibited poorer hatching success, similar to 

that observed for E. tasmanica, and it was attributed to females not able to maintain a 

maximum egg production rate because of the exhaustion of their metabolic reserves 

(Rey-Rassat et al. 2002). A field study estimating fecundity and describing 

processes of egg release in oceanic squids (lllex illecebrosus, L argentinus and L 

coindeti) make similar inferences, suggesting that it is likely that these species 

exhibit a multiple 'descending' type of spawning strategy where it is initially food 

driven but becomes dependent on metabolism drawn from body stores (Laptikhovsky 

and Nigmatullin 1993). Female condition was not measured in the present study, and 

future experiments assessing female condition by destructive sampling would 

investigate the cost of reproduction on food stressed mothers throughout multiple 

spawning episodes. 

It was anticipated that the proportion of nidamental mucous invested by the 

mother to protect individual eggs would also change as a function of ration as seen in 

the scavenging intertidal gastropod Nassarius festivus (Cheung and Lam 1999). 

Instead no difference was found between the two feeding regimes, however 

significant differences were detected as a function of water temperature. 

Developmental rates at 11°C are considerable slower than at l 8°C where embryos are 

encapsulated for approximately 4.5 months compared to one month. Consequently it 

is assumed that the longer the duration of embryogenesis the higher the need for 

protection to counteract embryo mortality (Boletzky 2003). However, this study 

indicated an opposite trend where eggs laid in warm water had 10% more capsular 

protection than those laid in cool water. It is possible that eggs developing in 

warmer water need more protection for fouling organisms and increased UV 

radiation. Further manipulative experimentation is required to investigate this 

relationship. 

The effects of maternal condition will have both a direct effect on the embryo 

survival and an indirect flow-on effect on the competency of the resulting hatchling. 

Female E. tasmanica maintained on high ration produced larger offspring than 

females on low ration. Size at hatching is considered to be a relatively good 

indicator of hatchling competency and is of potential importance for survival (Pepin, 

1989; Chambers and Trippel 1997). Larger hatchlings may have less susceptibility 
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to predation and starvation due to enhanced swimming abilities and predation 

competency in comparison to smaller hatchlings (Pepin 1989; Chapter six). 

Maternal nutrition may therefore have major ramifications, not only in the success of 

embryogenesis, but also in the subsequent traits of the hatchlings and effectively pre­

determining the offspring's chances of survival. 

Variation in egg quality is potentially one of the limiting factors in the 

successful production of offspring (Laine and Rajasilta 1999) and on the whole 

maternal effects on embryo mortality have been largely overlooked (Scott et al. 

1999). Through this study it can be concluded that maternal ration and reproductive 

history plays an important role in determining batch fecundity, egg size, hatching 

success and potentially hatchling competency. Although extrapolating laboratory 

results should be treated with caution such maternal effects may have special 

relevance in the context of fisheries and aquaculture. For squid species that spawn 

multiple clutches over an extended spawning season such as, Sepioteuthis australis 

(Moltschaniwskyj et al. 2002) and Loligo vulgaris reynaudii (Augustyn et al. 1998), 

there is potential for a reduction in egg viability towards the end of the spawning 

season when the population lays its final clutches. Such factors that influence early 

mortality rates have the potential to significantly affect the magnitude of subsequent 

recruitment events in squid populations. 
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Table 5.1. Summary of the split-plot repeated measures ANOVA output comparing batch fecundity, proportion mucus protection, rates of embryo 
mortality and lipid levels with ration level and temperature and across successive clutches. 

Clutch Size (In eggs) Nidamental Mucous Embryo Mortality Lipid Content 

Number of clutches 3 2 2 2 
Sources of variation F df p F df p F df p F df p 
Between Subjects 
Temperature 0.37 1 0.55 9.42 1 0.02 2.28 1 0.16 0.97 1 0.35 
Ration 12.95 1 <0.01 4.03 1 0.08 75.99 1 <0.01 15.95 1 <0.01 
Temp*Ration 0.97 1 0.34 1.01 1 0.35 1.71 1 0.22 3.28 1 0.11 
Within Subjects* 
Clutch 16.58 2 <0.01 0.01 1 0.91 10.87 1 <0.01 0.36 1 0.57 
Temp* Clutch 0.46 2 0.62 0.63 1 0.45 <0.01 1 0.99 0.27 1 0.62 
Ration*Clutch 0.52 2 0.59 0.01 1 0.93 7.40 1 0.02 0.38 1 0.56 
Temp*Ration*Clutch 1.45 2 0.25 0.54 1 0.49 <0.01 1 0.95 0.09 1 0.77 
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Table 5.2. Relative proportions oflipid classes (mean± sd) over each treatment combination. 

Temp 11 11 11 11 11 11 18 18 18 18 18 18 

Ration Low Low Low High High High Low Low Low High High High 

Clutch 1 2 3 1 2 3 1 2 3 1 2 3 

WAX 0.2±0.3 0.7 ± 0.3 0.5 ±0.2 1.5 ± 0.6 2.3 ± 1.1 1.6 2.2 ± 1.2 2.0±3.3 1.6 ± 1.0 1.9±0.6 1.7± 0.7 

TAG 2.9 ± 1.5 2.4± 0.5 5.9 ± 3.4 1.6 ± 1.6 1.0 ± 0.8 1.4 2.4 ± 2.3 0.6±0.9 3.2±3.6 4.7± 2.1 4.5 ± 5.1 

FFA 19.9± 17.8 23.0±9.7 10.8 ± 11.8 15.6 ± 3.0 12.2 ± 9.3 14.1 15.4 ± 3.8 10.8± 12.6 16.4±4.5 19.8 ± 3.3 21.4 ± 5.3 

ST 0 0 0 0.1±0.2 0 0 0.4 ± 0.7 0 0.2± 0.4 0 0.2± 0.3 

PL 76.9 ± 18.7 73.8 ± 10.8 82.8 ± 8.7 81.2 ± 1.4 84.5 ± 9.7 82.9 79.5 ±4.9 86.6± 16.8 70.3 ± 16.6 73.6±3.4 72.3 ± 10.4 
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Table 5.3. Relative proportions of fatty acid constituents over each treatment combination. Standard deviations= 10- 15% of the mean. 

Temp 11 11 11 11 11 11 18 18 18 18 18 18 

Ration Low Low Low High High High Low Low Low High High High 

Clutch 1 2 3 1 2 3 1 2 3 1 2 3 

SATURATES 

14:0 2.03 1.05 1.8 1.51 1.40 1.4 0.77 0.64 0.71 0.67 0.76 
15:0 0.06 0.12 0.1 0.14 0.10 0.10 0.10 0.09 0.13 
16:0 34.58 34.60 37.6 31.39 32.59 33.8 31.97 29.31 31.10 30.04 31.42 
17:0 1.21 0.61 1.6 1.40 1.47 1.4 1.62 7.97 1.51 1.49 1.42 
18:0 17.77 16.66 17.6 15.22 16.84 15.9 16.84 17.61 15.68 16.47 16.31 
20:0 0.06 0.12 <0.1 <0.1 <0.1 0.33 

i15:0 <0.1 
i17:0 <0.1 <0.1 <0.1 
i18:0 <0.1 <0.1 

MONOUNSATURATES 

16:1 0.20 0.19 0.22 0.4 1.02 0.21 0.43 

16:1ro7 0.24 0.29 0.27 0.28 0.77 0.22 0.40 
17:1 0.03 

18:1ro9 3.20 2.08 4.0 1.24 0.10 1.0 1.82 1.38 0.62 0.65 0.89 

18: lro7 5.01 4.04 5.7 3.82 2.86 5.4 2.35 4.15 3.00 2.76 4.63 

20:1ro9 1.77 1.21 2.7 2.12 2.06 2.0 2.39 2.20 1.33 2.15 2.09 
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Table 5.3. Continued ... 

Temp 11 11 11 11 11 11 18 18 18 18 18 18 

Ration Low Low Low High High High Low Low Low High High High 

Clutch 1 2 3 1 2 3 1 2 3 1 2 3 

POLYUNSATURATES 

18:2ro6 0.01 0.42 7.3 2.12 5.61 0.24 0.20 
18:3ro6 0.21 0.17 0.08 1.20 0.28 
18:3ro3 1.85 

18:4 0.41 0.20 0.26 0.16 1.36 0.07 
20:2ro6 0.02 2.32 
20:4ro6 0.02 0.30 0.22 0.05 0.76 0.37 0.09 
20:4ro3 0.25 0.19 0.25 0.10 0.26 0.28 
20:5ro3 17.29 19.16 12.4 20.75 21.08 18.0 19.05 16.85 22.48 21.80 21.89 
22:5ro3 1.06 0.50 0.92 0.50 0.8 0.69 0.40 0.60 1.13 0.15 

22:6ro3 15.64 18.71 15.0 18.72 18.24 20.0 20.37 19.48 18.96 19.42 19.60 

SUMMARY 

Total 100.17 103.03 105.7 100.7 102.9 100.0 100.2 100.0 100.3 100.3 100.9 
PUFA ro3 33.99 38.62 27.32 40.60 39.82 38.78 40.35 36.73 43.98 42.61 41.93 
PUFA ro6 0.05 3.03 7.27 2.55 5.67 0.00 0.42 0.00 1.04 1.56 0.37 
DHAIEPA 0.90 0.98 1.2110 0.9022 0.8651 1.1103 1.0693 1.1558 0.8436 0.8906 0.8953 
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CHAPTER SIX 

ARE BIGGER CALAMARY SEPIOTEUTHIS AUSTRALIS 
HATCHLINGS MORE LIKELY TO SURVIVE? A STUDY 
BASED ON STATOLITH DIMENSIONS. 
Steer, ~ GT Peel, NA Moltschaniwskyj (2003) Marine Ecology 
Progress Series 261: 175-182 
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6.1. ABSTRACT 

To detennine if any size selective processes were operating throughout the 

squids' life history this study set out to explore whether bigger hatchlings are more 

likely to survive to adulthood. This was achieved by comparing natal statolitb 

dimensions between recently hatched(< 13 hrs old) and successfully recruited adult 

Sepioteuthis australis. The squid statolith (analogous to the teleost otolith) retains a 

check associated with hatching, and the natal radius (NR) at hatching had a strong 

linear relationship to dorsal mantle length (ML). Hatchlings were collected from 

October (2001) to February (2002) on natural spawning grounds located on the east 

coast of Tasmania using emergent traps. Hatchling size was extremely variable 

ranging from 4.3 to 7.3 mm (ML), with significantly larger animals hatching out in 

November and the smallest in February. From February to August adults were 

collected from the same bay and aged using validated daily rings in the statolith, 

those adults which were estimated to have been born between October and February 

were included in the analysis. In all but one month a significant difference between 

the NR size distributions of the hatchlings and adults was detected due to low 

numbers of adults with small natal radii. This indicated that smaller hatchlings were 

less likely to recruit, suggesting that there is an element of size-mediated mortality 

operating on populations of S. australis. 

6.2. INTRODUCTION 

Given the short life span(< one year) and low fecundity of neritic squid high 

survival rates during the early life history are essential to guarantee that recruitment 

failure does not occur. However, currently there are no estimates of juvenile 

mortality rates for neritic squid and it is not clear if size at hatching is important in 

survivorship. It is widely suggested in the fish literature that fast growing and 

rapidly developing larvae attain larger sizes earlier and therefore lower the risk of 

size-dependent mortality (Johannessen et al. 2000). There are a number of theories 

supporting why this is the case and they collectively attribute it to faster growing fish 

accelerating through the window of vulnerability associated with being small and 
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poorly developed (Fogarty et al. 1991). Furthermore, this potential for faster growth 

may be present at hatching, with larger hatchlings displaying an 'athletic' edge 

compared to their smaller siblings (Meekan and Fortier 1996). Similarly some 

individuals may be more likely to survive based on other physical, behavioural, or 

physiological characteristics (Rice et al. 1993). 

Studies exploring size-selective mortality in teleost fish have used, otolith 

dimensions to estimate the length of an individual. This is achieved by generating a 

predictive relationship between otolith size and fish size, and allowing the size of 

that fish at an earlier stage of its life history to be estimated (Francis 1990). This 

approach, however, may fail if there is an uncoupling between somatic and otolith 

growth (Molony and Choat 1990; Mosegaard 1990). Establishing a link between 

otolith size and larval size at hatching may be more appropriate in addressing size 

selective processes, although difficult in wild fisheries due to poor availability of 

recently hatched larvae. Weak positive correlations between otolith size and 

hatchling size for laboratory reared Atlantic cod Gadus morhua (Miller et al. 1999) 

and wild-caught juvenile Sockeye Salmon Oncorhynchus nerka (West and Larkin 

1987), do not provide reliable predictions to estimate hatchling size from adult 

otoliths. However, constraining the data so that it is stock- and season-specific may 

potentially account for some of the variability and improve the predictive power of 

this approach (Miller et al. 1999). 

In squid populations establishing and identifying characteristics of successful 

recruits in non-overlapping generations may lead to improved forecasts of each 

year's population strength. This is particularly pertinent in the face of increasing 

worldwide cephalopod fishing pressure (Roper and Rathjen 1991). The statoliths in 

squid are structurally and functionally analogous to fish otoliths and as a result many 

of the ageing and growth techniques used in fish otolith analysis are applicable in 

squid (Jackson 1994). Linear relationships (of varying strengths) between statolith 

dimensions and body size and weight at hatching are evident for some laboratory 

reared cephalopods (ie Sepioteuthis lessoniana, Ikeda et al. 1999; Jackson and 

Moltschaniwskyj 2001; Loligo vulgaris, Loligo forbesi, Martins 1997). Loliginid 

squid generally display a distinct anomaly, 'hatch-check' or 'natal ring', in the 

statolith structure, associated with the day of hatching (Villanueva et al. 2003). The. 
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retention of this anomaly in the adult statolith potentially provides a way of 

estimating an adults size at hatching from the size of the statolith radii at hatching 

(Ikeda et al. 1999). This method potentially provides a powerful tool for exploring 

the 'bigger is better' hypothesis by collecting hatchlings over the spring/summer 

spawning period and adults three to four months later and comparing the size 

frequency of the hatch check radii. 

The primary aim of this study was to investigate if size selective mortality 

was operating during Sepioteuthis australis' life history. If no size selection is 

operating during the squids' life history, then the size frequency of the natal statoliths 

in recent hatchlings and those preserved in adults would be similar. If, however, size 

selective mortality has occurred with bigger hatchlings more likely to survive, then 

the natal radii size distribution of the adult statolith would be expected to be further 

to the right of the hatchling natal radii size distribution. The advantage of this 

approach is that it is field-based and avoids any biases associated with the potential 

uncoupling of somatic and statolith growth. To reduce the variability associated with 

stock- and season- specific affects, we limited collection of hatchlings and adults to 

specific areas and times of the year. 

6.3. MATERIALS AND METHODS 

6.3.1. Validation of hatchling statolith and somatic relationships 

Recent (<13 hrs old) Sepioteuthis australis hatchlings were collected from 

inshore spawning beds located within Great Oyster Bay, Tasmania (Fig 6.1) from 

late October 2001 to early February 2002, excluding January due to poor weather. 

Great Oyster Bay represents a unique area as it accommodates the majority of S. 

australis spawning activity on the east coast of Tasmania, comprising 50-70% of 

Tasmania's commercial catch (Lyle and Hodgson 2001). As a result it was assumed 

that squid hatching out in Great Oyster Bay were highly likely to use the same area 

to spawn as adults. 

Hatchlings were captured using purpose built emergent traps, which were 

placed and anchored over egg masses from which individuals were hatching (Figure 
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6.2). Traps were constructed from 1.5 mm mesh and <1.0 mm perforated plastic 

collection vials that retained all hatchlings. Five emergent traps were deployed on 

shallow (<4m) productive spawning beds in Great Oyster Bay within 10 Ian of each 

other (Fig 6.1). Each trap was inspected twice a day (at ~0800 and ~ 1900 hrs) over 

four consecutive days in each month. Captured hatchlings were taken ashore and 

immediately preserved in 70% ethanol. Each hatchling was weighed (g) and dorsal 

mantle length (ML) measured (mm) using a stereo dissector and eyepiece graticule. 

Statoliths were removed from the hatchlings by decapitating the squid and teasing 

each statolith from the exposed statocyst chamber. Statoliths were rinsed in 100% 

ethanol to remove excess tissue, air-dried and whole mounted on the posterior plane 

in Crystal Bond© thermoplastic cement. 
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Figure 6.1. Map of Great Oyster Bay, located on the east coast of Tasmania, 
indicating where hatchlings and adults were collected for this study. 
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Natal statolith total length (TL) and radius (NR), measured from the nucleus 

to the statolith margin perpendicular to the longitudinal axis (Fig 6.3) were measured 

using a high power binocular microscope and Scion image analysis computer 

program. These dimensions were chosen because these natal ring dimensions can be 

reliably measured in prepared adult statoliths, depending on whether they have been 

ground transversely or dorso-ventrally. To determine whether there was a difference 

in dimensions between the left and right statoliths, both statoliths from 50 random 

hatchlings were measured and compared using paired t-tests. No difference was 

detected for either TL (t = 0.56, df = 49, P = 0.58) or NR (t = -0.15, df = 49, P = 

0.88), therefore only one statolith was used from the remaining hatchlings. To 

determine the reliability of the measured linear dimensions a second person 

measured TL and NR in 20-25 statoliths. No reader bias was evident for either 

linear dimensions (TL, t = 1.72, df= 24, P = 0.12 and NR, t = 1.73, df = 19, P = 

0.09). 

6.3.2. Measuring the 'natal radius' in adults 

Adults were caught in Great Oyster Bay (within a 10 km radius from where 

hatchlings were collected) from February and August. Unfortunately in 2002 low 

numbers of adults were caught (n = 24), therefore adults that had been caught in 

1996 to 2001 were used. For the purposes of this study it was assumed that year-to­

year variation was minimal, but will require further investigation. Each individual 

was processed fresh; sexed, weighed, measured (ML) and both statoliths were 

extracted, rinsed in 100% ethanol and stored dry. Grinding an adult statolith down to 

the focus on the lateral plane allows TL and NR to be measured. However, the natal 

statolith's rostrum is occasionally obscured by the growth of the wing preventing 

measurement of TL. Grinding to the focus dorso-ventrally was adopted in this study 

due to the precision of measuring NR. Statoliths were whole mounted in Crystal 

Bond© thermoplastic cement with the ventral dorsal dome projecting over the edge of 

the glass slide. The statolith was then ground along a transverse plane, using wet 

1200 µm carborundum paper, until the plane passed through the statolith nucleus. 

The ground surface was polished with 0.05 µm alumina powder on wet suede 

polishing cloth. The extent and intensity of grinding was continually monitored 

using a binocular light microscope ( 40x). The polished surface was mounted so the 
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rostrum was aligned perpendicular to the slide' s surface. The statolith was ground 

and polished to a section thin enough for examination. Statoliths were heat treated 

on a hot plate for 1-2 minutes to accentuate the natal ring and increments. Age 

estimates were determined from daily increments in the statolith, validated for this 

species by Peel (2000). Adults that were estimated to have been born from October 

to February were used in the analysis. From the dorso-ventral plane the natal ring, 

representing the boundary of the hatchling statolith, and the statolith nucleus is 

evident. The natal statolith radius (NR), measured from the nucleus to the maximum 

width of the natal ring was measured using Scion image analysis. 
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Figure 6.2. (a.) Emergent trap used to collect Sepioteuthis australis hatchlings. (b. ) 
Deployed over a hatching egg mass. (c.) Collection vials able to be serviced in situ. 
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Hatchling Adult 

TL 

0.Smm 

Figure 6.3. Schematic illustration of the hatchling and adult statolith, highlighting 
the preservation of the natal statolith in the adult form. Natal radius (NR) and total 

length (TL) are indicated on the hatchling statolith. 

6.4. RESULTS 

6.4.1. Hatchlings 

A total of 364 Sepioteuthis australis hatchlings were collected from the Great 

Oyster Bay region from October through to February. Overall, hatchling ML ranged 

from 4.33 to 7.33 mm with significant differences in size among months (F = 82.24, 

df = 3, 360 P < 0.001). November hatchlings were as much as 4-14% larger than 

hatchlings in any other month, with the smallest hatchlings in February (Fig 6.4). 

The hatchling length-weight relationships were not significantly difference among 

the months (ANCOVA, F = 1.50, df = 3, 356, P = 0.21). Indicating that the rate of 

increase in weight with length was similar among months (Fig 6.5). A large 

proportion of hatchlings ( ~0%) collected in October were observed to have retained 

their external yolk sac, suggesting they had been stimulated to hatch prematurely by 

prevailing weather conditions. Taking these pre-mature October hatchlings into 

96 



Chapter Six Is Bigger. Better? 

consideration it was apparent that hatchling size decreased with increasing seasonal 

temperatures. 
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'Figure 6.4. Mean hatchling mantle length (ML) ± standard error over the sampling 
period. Lower case letters indicate significant difference amongst means via a post 

hoe Tukey' s test. Numbers indicate sample size. 

At least one statolith was successfully dissected from 348 (95 .1 % ) individuals 

and SL measured. In some cases (10.9%) the statolith rostrum either cracked or 

crumbled during the dissection process, consequently TL was measured from 310 

individuals. Both measured statolith dimensions (NR and TL) were significantly and 

positively related to hatchling length and weight (Fig 6.6). In general larger 

hatchlings had larger statoliths, however, the two statolith dimensions varied in their 

predictive power. Hatchling natal radius (NR) was the strongest predictor of ML 

explaining 68% (n = 348) of the variation in ML, while total length (TL) explained 

slightly less (63%) of the variation in ML (n = 310). A similar trend was observed 

for hatchling weight, however, the predictive power was weaker explaining 53% and 

45% of the variation respectively. 

97 



Chapter Six Is Bigger, Better? 

0.06 

- 0.05 
1)1) -..... 
-= 1)1) 

-~ 0.04 
;;i... 

"'O 
Q = 0.03 

Oct 
Nov 
Dec 
Feb 

0.02 -1---,....---......------r-----. 

4 5 6 7 8 
Mantle length (ML) mm 

Figure 6.5. Hatchling length weight relationship. Power regression formula 
provided for total sample. Data points have been coded to represent sampling month. 

6.4.2. Comparison of successful recruits and recent hatchlings 

A total of 269 Sepioteuthis australis adults were successfully aged and 

subsequently calculated to have hatched in the target months (Oct- Feb, except Jan). 

There were significant differences between natal radii size frequency distributions 

between hatchlings and adults in each birth month, except in November (Fig. 6. 7). 

When significant differences were detected there were proportionally more adults 

with natal radii in the larger size classes, resulting in distributions that were shifted to 

the larger end of the size spectrum. In total, 42.53% of all the collected hatchlings 

had natal radii >0.12 mm compared with 73.13% of the adults, demonstrating the 

differences in the size distributions. 

No significant difference was detected in the adult natal radius size 

distributions among the months (mean= 0.125 mm) (Table 6.1). Using the validated 

ML/NR regression equation a hatchling with an average NR of 0.125 mm would 

have a predicted mantle length of 6.19 ± 0.05 (95% CL), which was 5.8% larger than 

the average size of the trapped hatchlings (5.85 ± 0.06). 

98 



Chapter Six Is Bigger. Better? 

A series of Pearson's correlations between adult biological parameters and 

predicted hatchling size were used to identify any biological characteristics of adults 

that would explain their survival. Correlations between predicted hatchling size with 

adult ML (mm), adult weight (g) and calculated residuals from the adult length­

weight relationship were all weak and non significant (ML; r = 0.12, n = 239, P = 

0.06, Weight; r = 0.09, n = 239, P = 0.17, Resids; r = -0.08, n = 243, P = 0.22). 

Similarly no difference was detected when comparing the predicted hatchling size 

distributions between sexes (Z = 0.74, n = 210, P = 0.65) suggesting that no sexual 

dimorphism is evident at hatching. 

Table 6.1. Pairwise comparisons of the size frequency distributions ofNR 
measurements in adult statoliths between months via a series ofKolmogorov­

Smimov (Z) tests 

Comparison n z Sig 

October v November 105 1.013 0.256 

October v December 143 1.149 0.143 

October v February 134 0.623 0.832 

November v December 134 0.506 0.960 

November v February 125 0.924 0.361 

December v February 163 1.027 0.242 

6.5. DISCUSSION 

In general larger Sepioteuthis australis hatchlings had larger statoliths, and 

there was a positive relationship between natal statolith radius (NR) and mantle 

length (ML). The natal ring and nucleus preserved in adult statoliths were clear 

enough to measure NR. In three of the four months the adult natal radii were larger 

than the hatchling natal radii. Two major assumptions underlie this study, the first 

related to the formation of the natal-ring at hatching an assumption that is supported 

throughout the literature (Natsukari and Komine 1992; Villanueva et al. 2003) and 

has been validated for S. australis through the rearing of known age animals in 

captivity (Peel 2000). The second assumption made was that there was minimal 

annual variation in hatchling size, which allowed us to compare adults hatched 
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during 1996-2001, with hatchlings from 2001. However, there was an absence of 

adults with small natal radii, inferring smaller sizes at hatching, in the distribution. 

This suggests a degree of size-selective mortality, or non-random predation, was 

operating throughout the early life history. Interestingly, no significant difference 

was detected in the predicted size at hatching across months. Most of the adults were 

estimated to have a hatched ML> 6.19 mm, with hatchlings smaller than this poorly 

represented. Although it is impossible to attribute the loss of these individuals 

directly to size-selective predation from the data obtained, these results suggest that 

the smallest hatchlings failed to recruit into the fishery. 

Sepioteuthis australis hatchlings are the largest of the loliginids having 

relatively advanced behavioural and functional attributes (Steer et al. 2003; Chapter 

two). Despite this they are still susceptible to a suite of predators throughout their 

entire life and as a result are considered an important link in the marine ecosystem 

(Gales et al. 1994). Size-selective mortality is observed in a variety of marine 

species that exhibit broad variability in size and is often referred to as the 'bigger is 

better' hypothesis, where average mortality rates decrease with age and body size as 

the individuals' sensitivity to starvation decreases and its foraging success and 

swimming abilities improve (Conover and Schultz 1997). However there is potential 

for individuals to grow out of one window of vulnerability for a particular type of 

predator and enter into another suggesting that there may be continuous non-random 

predation, with animals always running the gauntlet. A purely size-based predation 

model is considered an oversimplification of the inter-connected processes involved 

in the marine ecosystem as there are naturally many other contributing factors 

(Cowan and Shaw 2002). Local hydrodynamics, availability of food, intolerance to 

extreme environmental conditions, suscepti~ility to disease/parasites, and fishing 

pressure may also be responsible for elevated mortality (Sogard 1997) with some of 

these continuing to operate with an element of size-selectivity. 

Due to the large proportion (approx. 60%) of pre-mature hatchlings collected 

in the October sample differences in the size distributions may be exaggerated. Size­

selective mortality was not strongly evident during November, coinciding with the 

beginning of the 'hatching' season. However, there was a progressive shift in the 

frequency distributions between hatchlings and successful recruits in subsequent 
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months. West and Larkin (1987) observed similar trends for salmon Oncorhynchus 

nerka, with mortality increasing in intensity through late summer to early autumn 

and was attributed to size-mediated predation and parasitism. However, the 

correlation between fish and otolith length was considered too weak (r2 < 0.2) to 

attribute losses purely to size selective mortality and it was suggested that other 

parameters such as weight and age be incorporated in the model to reduce biases 

(Mosegaard 1990). The relationship between statolith radius and hatchling length in 

this study was comparatively stronger (r2 = 0.68) and although the susceptibility of 

juveniles to parasites was not investigated, exaggerated differences in the size 

compositions may be in part attributed to density-dependent effects. Large variation 

in hatchling sizes existed over the extended hatching period (also see Villanueva et 

al. 2003), therefore larger, older, and more competent individuals have the capacity 

to cannibalise their smaller and younger conspecifics, a phenomenon evident in 

haddock, (Melanogrammus aeglefinus) and bluefin tuna (Thunnus maccoyii) 

populations (Perry and Nielson 1988; Young and Davies 1990). Cephalopods are 

cannibalistic throughout most life stages, especially when food is limited, and there 

is evidence of intra-cohort cannibalism in Sepioteuthis hatchlings, where larger 

hatchlings readily attack and consume smaller conspecifics, both in the wild (Peel, 

unpublished data) and in captivity (Walsh et al. 2002). Given that calamary spawn 

over a protracted season, the risk of mortality for hatchlings due to cannibalism may 

be heightened as the season progresses and egg density increases (see 

Moltschaniwskyj and Peel 2003), potentially accounting for tlw increasing 

differences observed in this study. Alternatively, differences may be attributed to 

temporal shifts in productivity and available prey, directly challenging hatchlings 

upon their switch from an endogenous to exogenous mode of feeding (Cushing 

1975). 

Complimenting the data from this research with pre-recruit studies will 

determine whether natural mortality is greatest during the early life stages (Type III 

mortality curve, Pearl and Miner 1935) or whether predation occurs at a continuous 

rate throughout their entire life history (Type II). Pre-recruit, larval abundance 

studies on the oceanic ommastrephid Todarodes pacificus indicated that this species 

exhibited a Type III mortality curve where rhynchoteuthion larvae measuring ~ 6 

mm ML suffered higher mortality than larvae> 6 mm (Okutani and Watanabe 1983). 
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This shift is suggested to correspond with the end of the rhynchoteuthion stage and a 

period when diel migration is critical to the larvae. Sepioteuthis australis possess 

two maternally derived yolk sacs, the external yolk sac is typically depleted pre­

hatching, however the internal yolk sac sustains the hatchling for a short period post­

hatch (Steer et al. 2003, Chapter two). Although calamary do not undergo 

metamorphosis the switch in feeding modes may represent a similar critical period 

accounting for improved survival rates post 6.19 mm. 

It has been suggested that in a population where size differences are 

maintained and juvenile size is a good predictor of adult size, selective :fishing 

mortality removing relatively large individuals could obscure the interpretation of the 

data (Sogard 1997). Other than size at hatching there was no strong evidence of 

other biological parameters present in the adults that provided an indication of their 

'athletic' edge. The adult population was relatively heterogeneous with all explored 

correlates with hatchling size yielding insignificant results. The ability of squid to 

quickly respond to their immediate environment in terms of growth and reproduction 

(Hatfield 2000; Jackson and Moltschaniwsk:yj 2002) may potentially cloud any 

functional correlations with hatchling size. Furthermore, a comparison of purse­

seine (non selective) and jigging (potentially selective) sampling techniques yielded 

no significant difference in the size composition of captured squid (Moltschaniwskyj 

et al. 2003) suggesting that there were no associated collection biases in this study 

and the results obtained truly reflect size-dependent mortality. A concern associated 

with the interpretation of the data, however, relates to the amount of variability 

explained by the predictive regression model. Although on the whole the model is 

not poor, a degree of error was assumed to be incorporated as a function of 

measuring very small hatchlings and statolith dimensions. It has been suggested that 

statolith area may potentially improve the model by reducing the amount of error 

associated with measuring linear dimensions (Meekan et al. 1998). The 

methodology involved in measuring the area of the natal statolith preserved in adults 

has not yet been refined but is theoretically possible when grinding the statolith 

laterally. Although the exact processes involved in size selective mortality in 

southern calamary are unclear such estimates provide valuable insights into the 

dynamic processes and the vulnerability of small squid which can potentially be used 

as a proxy to predict recruitment strength. 
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Figure 6.6. Linear regressions between statolith dimensions, total length (TL) and 
statolith radius (NR) with hatchling mantle length (ML) and weight. Regression 

equations are provided to indicate each comparison's relative strength. 
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Figure 6.7. Monthly natal statolith radius (NR) length frequency histograms plotted 
for wild-caught hatchlings (black bars) and adults (white bars). Each graph includes 

a Z (Kolmogonov-Smimov) statistic exploring differences between the two 
frequency distributions. 
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7.1. BRIEF SUMMARY 

This thesis focused on quantifying mortality rates and identifying factors 

responsible for mortality in the early life of Sepioteuthis australis. The early life is 

defined as the embryo and hatchling ('paralarval') phases and as a result processes of 

mortality were investigated in these two stages independently. Chapters two through 

to five dealt exclusively with the embryonic phase whereas chapter six investigated 

the role of size-selectivity in the subsequent hatchling phase. Embryo mortality was 

defined as any individual that was unlikely to successfully hatch and therefore, 

included embryos that were unfertilised, had ceased, or were undergoing abnormal 

development. Given the species-specific differences in loliginid embryology (Baeg 

et al. 1992; Guerra et al. 2001 ); Chapter two) it was necessary to define the 

embryological process in S. australis in order to set a baseline for inter- and intra­

specific comparisons, and to identify 'abnormal' embryos (Chapter two). Once the 

embryological scheme was established the direction of research adopted a 

hierarchical approach, investigating factors contributing to early mortality from; 

(1.) A broad environmental perspective, 

(2.) The micro-environment of the aggregated egg mass, and 

(3.) Individual egg quality. 

7 .2. SYNTHESIS: 

Throughout the course of this study embryo mortality in Sepioteuthis 

australis ranged from 2 to 25% and varied both spatially and temporally. Estimates 

of 25% exceed existing mortality rates for loliginid embryos developing in stable 

laboratory conditions (<10%, S. lessoniana Segawa 1987; S. australis Triantafillos 

2001) and in the wild (c. 5%, Loligo gahi (Arkhipkin et al. 2000). From the 

collective results it can be broadly stated that embryo mortality and offspring 

survival is determined by when and where eggs are laid. This statement holds true 

on a number of cascading levels. For example, the mother and clutch the egg 

originates from; when and where the egg mass is attached; the relative position of the 
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embryo within the mass; and the sequence of hatching all contribute to offspring 

survival (Fig 7.1). Such inter-related processes can operate at different strengths 

potentially explaining the variation in mortality rates observed in this study. 
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Figure 7.1. Further partitioning of natural mortality process in Sepioteuthis australis 
incorporating major findings. ~ Signifies little to no contribution to early mortality, 

0 signifies positive contribution. 

Maternal allocation of yolk resources is an important factor in offspring 

survival as it provides the necessary components to fuel development within the egg, 

whilst also allocating extra reserves to buffer the transition from embryo 

(endogenous) to hatchling (exogenous) (Vidal et al. 2002). Results from a 

component of this study (Chapter five) suggest that mature females with a poor 

nutritional history do not provide the embryo with sufficient resources that are 
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important for successful embryo development. Food stressed females produced 

smaller eggs of lower quality, a trade-off also exhibited in Baltic herring (Laine and 

Rajasilta 1999). The consequences of this response are two-fold; (1) it directly 

increases embryo mortality rates (Chapter five) and (2) it produces smaller 

hatchlings, compromising their competitive edge in comparison to larger 

conspecifics (Chapter six). Life history theory suggests that in a food limited 

environment females tend to offset early mortality by reducing fecundity and 

maintaining egg quality (Roff 1992). This however, may not be the case if resources 

are severely stressed, as hypothesised in this laboratory study. In addition, having a 

spawning mode where multiple clutches are laid over a relatively short spawning 

season can increase reproductive stress, leading to a sequential decline in offspring 

viability. From this component of research it can be suggested that large eggs 

spawned in an initial clutch, produced from a well nourished female, will inherently 

contain the necessary components for successful development. However, the 

chances of survival will subsequently depend on when and where the eggs are laid. 

The 'egg packaging' strategy exhibited in the loliginids suggests high 

survival rates (Boletzky 1994). However, on closer inspection this strategy can be 

detrimental through constraining the developmental process and potentially 

suffocating the embryos (Chapters two to four). Depending on where eggs are laid, 

embryos will have varying chances of survival despite their high level of capsular 

protection (Boyle and Boletzky 1996). Embryos located deep within the interior of 

the egg mass are at a higher risk to mortality and this risk increases proportionately 

to egg mass size (Chapters three and four). Communal spawning is a strategy 

exhibited by the majority of loliginids (Griswold and Prezioso, 1981; Sauer et al. 

1992; Mohamed 1993; Wada et al. 1995) and for some species egg masses can 

exceed 12m (40 feet) in diameter (McGowan 1954). It is likely that such large 

masses would exhibit unfavourable areas within the mass potentially promoting 

higher mortality rates than those observed in S. australis. 

Natural temperature fluctuations recorded during the course of this study had 

no clear effect on embryo mortality rates, but governed rates of development 

(Chapter two and three). This is typical for most invertebrates, where developmental 

rates are inversely proportional to incubation temperature (McMahon and Summers 
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1971; Clarke 1982; Boletzky 1994; Caveriviere et al. 1999). Similarly the position 

of the embryo within the egg strand affected rates of development, with embryos 

located at the proximal ends exhibiting retarded developmental rates compared to 

distal embryos. The magnitude of these within-strand differences was also governed 

by temperature (Chapter three), along with the strand's relative position within the 

mass (Chapter two). Although temperature had no direct effect on embryo mortality, 

it, along with the position of the embryo within the mass, indirectly reduces the 

hatchlings' chances of survival by influencing hatchling size. Therefore, incubation 

temperatures, the constraining properties of the egg mass, and the previously 

mentioned role of maternal effects, contributes to considerable variation in size at 

hatching. Variation in hatchling size has been documented in other loliginids such as 

Sepioteuthis lessoniana (Ikeda et al. 1999) and Loligo vulgaris (Villanueva et al. 

2003), and as such may also have significant flow on effects in terms of size­

selective mortality processes (Chapter six). 

7.2. POTENTIAL APPLICATIONS AND FUTURE RESEARCH DIRECTIONS 

Obviously numerous other inter-connecting biotic and abiotic processes, not 

covered in this thesis may contribute to early mortality rates in Sepioteuthis australzs. 

The results obtained, however, offer preliminary insights into a field that has not 

been directly addressed. The identification of factors that significantly contribute to 

natural embryo mortality rates is an important first step in understanding S. australis 

and other loliginid life histories. With further refining and quantification on broader 

temporal and spatial scales, early mortality 'indices' can be established and 

incorporated into stock-recruitment models assisting fisheries management. 

To obtain mortality indices that can potentially be used in stock-recruitment 

models, three main areas were identified that need to be independently addressed and 

further refined; 

(1.) The flow on effects of maternal condition over an extended spawning 

season, 
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(2.) Further investigation of mortality processes within the egg mass 

examining the role of biotic and abiotic factors on larger temporal and 

spatial scales, 

(3.) Investigation of size-selective mortality processes though application of 

the technique described in chapter six to all post-hatching life stages 

7.2.1. Maternal Effects 

Recent research on Sepioteuthis australis has indicated that significant 

differences in ovulated egg sizes exist over the spring/summer spawning season 

(Jackson and Peel 2003). Such extreme differences in egg size over a relatively short 

period remains unexplained but suggested to be in response to environmental or 

physiological influences. Jackson and Peel (2003) further suggests that S. australis 

exhibits little evidence of feeding on the spawning grounds, a finding concurrent 

with Loligo vulgaris reynaudii (Augustyn 1990). It is therefore possible that 

observed changes in egg size are potentially reflecting the females' nutritional and 

reproductive history (as seen in Chapter five). It would, therefore, be beneficial to 

explore whether correlates exist between egg size and female age, condition and 

local productivity. The flow on effect of such changes in terms of egg quality and 

viability would be of particular interest and it may be theoretically possible to use 

female attributes coupled with environmental data to predict hatching success. 

7.2.2. Large scale spatial and temporal quantification of embryo mortality 

For loliginids that spawn benthic eggs in shallow water, conducive to in situ 

investigations, quantifying embryo mortality rates are feasible. Accompanying egg 

density surveys, which currently aim to provide a 'quick and easy' assessment of the 

spawning stock (Sauer et al. 1993; Moltschaniwskyj et al 2002), with a structured 

sampling protocol investigating mortality rates will provide valuable information 

aiding stock-recruitment models. Expanding such protocols over larger spatial and 

temporal scales and simultaneously measuring other environmental factors such as 

salinity, dissolved oxygen, sedimentation and UV radiation, will provide further 

information on the direct and indirect processes responsible for embryo mortality. 

110 



Chapter Seven Synthesis & Future Directions 

7.2.3. Examine size-selectivity over multiple life stages 

The statolith technique used in chapter six to investigate the 'bigger is better' 

hypothesis yielded promising results, indicating a potential for widespread 

application in cephalopod fisheries management. Further research is required, 

however, to refine this method and reduce some of the variability incorporated within 

the model. Efforts should be made to investigate whether the natal area of the 

statolith is a better predictor of hatchling size than simple linear dimensions, as 

suggested by Meekan et al. (1998). Furthermore, the model needs to be re-tested, 

eliminating the potential for year-to-year variation that may have been incorporated 

in this study. The major benefit of this method, however, is the fact that it can be 

applied to any life stage of a squid, providing the hatchling statolith and somatic 

relationship is validated and the natal ring is preserved in the species. Through 

collecting hatchlings, juveniles, maturing adults and successfully recruited adults 

from the same cohort and applying this statolith technique it is theoretically possible 

to identify what life stage is most susceptible to size-selective mortality processes. 

There are still many unanswered questions relating to early mortality rates. 

Studies such as those outlined above may shed further light on the patterns and 

processes of mortality during the early 'vulnerable' stages. In quantifying these 

processes over large spatial and temporal scales it will be possible to reduce some of 

the variability encompassed within existing stock-recruitment relationships. 
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