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PREFACE

A designer usually needs

(1) A preliminary design method which must be clear and short, suitable
for a small computer; and

(2) A final design method which must be accurate enough and reliable, and

usually relevant to the use of big computers.

Research workers are often interested mainly in mathematical aspects,
while the designers' main interest is usually in the structural action and
the real behaviour of the structure. A research worker uses mathematics,
theories, and assumptions, in analysing his mathematical model, but a
designer is always tending to use charts, tables, and codes of practice, or
what are often called "established methods".

There 1is, thué, at times a big gap between the two, and it is hoped
that this thesis helps in closing the gap and producing some link between
the mathematical and the physical view points. This may be achieved by
presenting simple methods of analysis for the design office.

* * * *

This thesis deals mainly with the statics and dynamics of suspension
bridges. A short chapter on the dynamics of suspension cables and nets
is also included.

Suspension bridges have been known, constructed, and used since pre-
historic times. A review of the history of suspension bridges is presented
in Chapter I.

The great majority of authors analyse the suspension bridge as a plane
structure, as if it has a single cable and a very narrow deck with no
torsional stiffness. The static analysis of such a "single-cable bridge"
is presented in Chapter II, with analytical and experimental application
on a laboratory model of a single-cable bridge. The chapter probes rather
deeply into the development of methods of analysis, and, by trying out the
various methodson the laboratory model, actually making the numerical
calculations, brings out forcefully some important points both on the given
methods and on the behaviour of suspension bridges. Real suspension
bridges have, usually, two or more cables supporting a deck of some width.
They act as a plane structure if they are loaded in such a manner that the
deck flexes only, without twisting. However, in the case of torsional
loadings, i.e. loadings which are asymmetric about the longitudinal centre
line of the bridge, the single-cable bridge analysis is not valid.

The dynamic analysis of the "single-cable bridge" is dealt with in
Chapter III. To test it out, in some detail, the flexibility matrix of

the laboratory model was calculated (and measured), and an iterative proce-

dure was implemented to get the first three modes of vibration for the dead



(v)
load, (D.L.), condition and also some live load, (L.L.), conditions. An
estimate for the fundamental frequency was evaluated using Rayleigh's
quotient. Measurements showed good agreement with calculations in most
of the cases.

The iterative procedure is also used in the dynamic analysis of
suspension cables and nets in Chapter 1IV.

In Chapter V, a simple, approximate, but adequate method for the
analysis of the suspension bridge as a three-dimensional structure, is
derived. It is, actually, an extension to Timoshenko's energy method of
1930. The method ignores the torsional stiffness of the towers, but this
does not greatly affect the accuracy of the analytical results of our lab-
oratory model since a separate tower has been provided for each cable.
However, the resulting error is almost self-corrected if the extensibility
of the main cables (and backstays) is considered.

Under flexural loading, the method reduces, automatically, to
Timoshenko's method of 1930 for analysing the so-called "plane suspension
bridge". But its use is in analysing the suspension bridges under torsional
loads. Results obtained by this method gave reasonable, and rather encour-
aging agreement with direct measurements on the laboratory model.

Chapter VI gives full details of the results of thé method as applied
to a fairly realistic laboratory model. The flexibility matrix was calcu-
lated for the dead load condition and for two torsional loadings. The
natural "flexural" and "torsional" frequencies and modes of vibration were
determined. A simple and quick method for eigenvalue exonomization is
suggested by the writer. The aim is to help the designer, especially in
preliminary design.

Measurements on the model were taken for some of the natural frequen-
cies and modes of vibration. The measurements favourably support the
validity of the static and dynamic analyses (of Chapters V and VI), and the
eigenvalue economization procedure.

Studies on the Newport bridge, (Ref. 7.7), showed that the torsional
stiffness of the towers increases the torsional frequencies of the bridge
by about 10%. This means that the present method of analysis is erring on
the safe side by ignoring the torsional stiffness of the towers. The
reason, as is clear from Chapter VII, is that the 10% increase in the torsional
frequencies of the bridge increases the separation between torsional and
flexural frequencies, and thus inhibits coupling, and increases the critical
wind speed which causes flutter. The aerodynamic behaviour of suspension

bridges, in general, is covered (to some extent) in Chapter VII.
x k k%
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Chapter VIII presents a study of the design, construction and erection,
and the economics of suspension bridges. Some repetition is involved
between Chapters I (history) and VIII, and perhaps Chapter VII, for the sake
of completeness. A method for the design of laboratory models and real
bridges as well is also given in Chapter VIII.

A set of conclusions and recommendations is given in Chapter IX which
ends the thesis. The references of the whole thesis are listed in Appendix
Al, a list of notation is provided in Appendix A2, and abbreviations are
listed in Appendix A3. Appendix A4 comprises some important notes on

singular matrices.



CHAPTER I

HISTORICAL INTRODUCTION TO SUSPENSION BRIDGES

1.1 INTRODUCTION

There is much written on the history of suspension bridges.* Among
the distinguished writers is Steinman who is one of the famous bridge
builders and who played an important role in the development of methods of
suspens ion~bridge analysis since early this century. Pugsley also is among
the writers of the history of suspension bridges. He presented a good deal
of theoretical (and some experimental) work on the statics and dynamics of
suspension bridges, mainly at the middle of this century. A survey of some
of his work, as well as some of the work of many others, is presented in his
interesting book, (Ref. 1.3).

The following two sections deal with the history of both the construc-

tion and erection of, and the literature on, suspension bridges.

1.2 HISTORY OF CONSTRUCTION AND ERECTION

Primitive suspension bridges, made of bamboo, twisted lianas, creepers,
or other similar materials, were found in China, India, Africa, and South
America. Cables were anchored to posts set in the ground, or were tied
round large trees or rock. In some of these primitive bridges, the roadway
was directly resting on cables, where branches were cut and placed close
together across the cables to form the roadway within a few hours. The
result was a shaky structure, but it had sufficient strength and security to
serve the needs of a primitive society.

Another type was the basket type, (with only one cable), in which the
traveller carries a wooden saddle with a groove in it, and when he comes to
a cable bridge, he fixes the cable into the groove, seats himself, and he is
transported by natural gravitation to the opposite bank. On his return he
is pulled up by ropes.

A third type was the suspended roadway type, provided with handrail
cables. This type was similar to modern suspension bridges. The only
modification in modern suspension bridges has been the discovery of better

materials and the invention of improved machinery, which have rendered

* See References 1.1 - 1.7 , Appendix Al.



possible the bridging of spans of a new order of magnitude.

Lron was being made in India earlier than 1500 B.C., and its manu-
facture had followed the trade routes into China and was well established
there by 600 B.C. In China, chain-~suspended bridges had been in use since
time immemorial. The first metal rope occurred in China when iron chains
were used in building suspension bridges with, sometimes, masonry towers.
Kircher, in 1667, described a bridge 200 ft span built by the Emperor Ming
in A.D. 65 using 20 iron chains.

The Chinese practice of using at least four chains connected together
transversely with smaller chains would ensure the continuous life of a
bridge because defective links could be replaced when they failed without
serious disruption of traffic and without appreciable risk since it would
be unlikely that links in two different chains would fail together at the
same cross—section, and it would not be catastrophic even if they did.

In 1632 a 200 ft span chain bridge over the Hwa Kiang River in China
was built using 16 iron chains, and it is still existing.

Jakkula records that in 1515 a rope bridge was built across the Padus
River in Italy. A rope suspension bridge was also built in 1569 across
the Clain River.

The first European description of a suspension bridge was published
by an Italian, F. Verantius, in 1607. He showed the hangers of wrought
iron and described an all-iron suspension bridge.

The earliest reported iron chain bridge in Europe was at Glorywitz
where one was built in 1734 across the Oder River. The first chain bridge
in England was the Winch Bridge over the River Tees in 1741. It was a
footbridge, 2 ft wide and 70 ft span, with the flooring supported directly
on the chain cables in the primitive fashion. It stood for 61 years.

The first iron suspension bridge in North America was built in 1769
by Finley across Jacob's Creek in Pennsylvania (U.S.A.) using two iron
chains, one on each side, to support a deck, 72 ft span and 13 ft wide.

By 1810 the number of suspension bridges in U.S.A. built to the catenary
principle, was already considerable. Of these, the 244 ft chain bridge over
the Merrimac River (Massachusetts), built by Finley in 1809, is still in
existence today, the chains having been replaced by parallel-stranded wires,
and the timber towers were replaced by new reinforced concrete ones in 1909.

In 1808 Burr tried out timber cables on Mohawk Bridge (four spans,
225 ft each). The wooden cables were made of two-inch planks of Norway
Pine, bolted together. The bridge deflected so much under traffic that it
was converted into an eight-span bridge by building additional piers to
support the centre of each of the original four spans. It was finally

demolished in 1873, after 65 years in service.

N *



The first cable suspension bridge was built in North America
(Phil adelphia) in April 1816 with a 408 ft span. It stood for only one
year. In November 1816, a foot bridge 111 ft span was built in Scotland
using iron wire cables. About the same time, Napier replaced the ropes
in an existing suspension bridge with wire cables. In addition, he
stiffened this bridge with stays radiating from the tops of the towers.

The first major cable bridge in Europe was built at Geneva in 1823 by Dufour
and S&guin with two spans 132 ft each. The tests carried out by Dufour
revealed that drawn wires have a greater strength than wires of untreated

or annealed material.

In 1814, Telford and Brown carried out experiments with chain bridges.
In 1817, Brown patented his flat eyebar links, intended to replace the round
and square rods then in use. He used modest masts, each of which was
stabilised by two straight back-stays. Matching the angles of the back-
stays were two more stays radiating from each mast to intermediate points
on the main span.

In 1820, Brown built the Union Bridge over the Tweed River in England,
449 ft span and 18 ft wide. It was the first suspension bridge in Great
Britain to carry loaded carriages. In this bridge, eyebars were used for
the first time for its 12 main chains (six on each side). Its dip~span
ratio was 1/15. It was reported, in November 1965, that it is still carrying
a good deal of traffic between England and Scotland. At about the same time
Messrs Smith built the Dryburgh Abbey suspension bridge over the Tweed, which
contained the first use of auxilliary stays. Both these two bridges (over
the Tweed) had suspended level floors, a feature of modern suspension bridges
which was invented by Finley.

During the early 19th century, 40 bridges of Finley's design were
erected throughout the U.S.A. A famous one of them was the Newburyport
Bridge (Massachusetts) built in 1809 with 244 ft span, using 10 chains on
each side. It stood for 100 years.

In 1823, Sir Marc Brunel used braced chains for the bridges of Bourbon

Isle in France.

* * *

Telford became the leader of his age in building suspension bridges.
He built the Menai Straits Bridge in Wales in 1826 with a record span of
580 ft and 24 ft wide, using four wrought-iron chains. The deck was of
timber and there was no stiffening truss or any diagonal wind stays, and so
it was repeatedly damaged by storms. In 1839 a heavier timber deck was
built, and in 1893 a steel deck was installed and survived until 1939 when

the four old wrought-iron chains were replaced by two chains of high tensile

steel eye-bars.
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Most of the suspension bridges built during the first decades of the
1%th century had no bracing, and not a few of them have failed after a com-
pgﬂﬁ)tively brief existence owing to the resonance vibrations caused by wind
forces. The Union Bridge, for instance, was destroyed during a gale only
six months after its completion. The long list of failures of suspension
bridge decks raised the important task of devising a structure with stiff
ertough deck. James Dredge in 1832 was one of the pioneers in stiffening
the roadway.

The Fribourg Bridge was built in 1834 by Chaley in Switzerland with
a record span of 870 ft. It had four wire cables and stood for 90 years.

The second quarter of the 19th century is considered an era of sus-
pension bridges in France, where an average of about one bridge per month
was built in the period 1834~ ‘41. In the year 1834 alone, 16 suspension
bridges were built in France. No bridges of bar-iron were built, whereas
this was the '"golden age'" of wire bridges, following Vicat's report of 1830.
Vicat patented the air-spinning method in 1829 which has ever since been
used, with few exceptions, for all cables made up of parallel wires.

Ellet was the first famous bridge builder to adopt the wire
cables. He built the first wire cable bridge in America in 1842 with a
span of 358 ft. In 1848 he built the first long-span wire-cable suspension
bridge in the world at Wheeling over the Ohio River, 1010 ft main span with
12 wire cables, six at each side. After being destroyed by a storm in 1854
it was repaired and strengthened by Roebling. It is still standing and in
use. A wire suspension bridge, 650 ft span, was also built in France in

1836 by Le Blanc.

* & *

The first railway suspension bridge built in England in 1830 over the
Tees, with a span of 281 ft, had a very brief life. The deck sagged
beneath the weight of the trains and rose in front of them. Within 11 years
the bridge was literally torn into pieces by excessive bending. In 1840%
Séguin built a railway suspension span of 137 ft in France with wire cableé
and 8 ft deep stiffening girders.

The first successful railway suspension bridge in the world was built
by Roebling in 1855 across the Niagara with 821 ft span. For 43 years
thereafter it carried progressively increasing weight, amounting in time to
2.5 times the original design loading. In this bridge, Roebling introduced
a new method for constructing the wrought-iron cables with the separate
straﬁds consolidated into a compact cylindrical cable and then wrapped with
softer wire for protection from the weather. Four main wire cables were

used to support the two decks. The upper deck was 24 ft wide and the lower



one was 15 ft wide, and they were connected together on each side by trusses
20 ft deep. These formed, in efféct, a stiffened box 24 ft wide by 20 ft
deep; a splendid section to resist torsion. 64 diagonal stays were added
above the box, mostly radiating down from the tops of the towers to the top
deck, but some radiating outwards from the towef, at deck level, up to various
points along the cables. Also 56 underfloor stays were anchored to the rocky
cliffs. '

In 1841, Roebling patented and made his first twisted, or stranded,
wire ropes, which ensured uniform tension on all wires and on all strands of
a rope. His cables were the first ones to have the continuous spiral wrap=-
ping advocated by Vicat. Roebling then conceived the idea of making parallel
wire cables, which is used in most of the American suspension bridges today.

In 1847, Roebling said that it cannot be questioned that wire cables,
when well made, offer the safest and most economical means for the support of
heavy weights. He added that wire-cable bridges, properly constructed, will
be found hereafter the most durable and cheapest railway bridges for spans
over 100 ft and up to 1500 ft.

In 1851, Serrel built the Lewiston Bridge, 1043 ft span and 20 ft wide,
and, in 1855, underfloor stays were added on Roebling's suggestion. The Ohio
River Bridge was built by Roebling in 1867 with a span of 1057 ft centre to
centre of the 230 ft high massive masonry towers.

In 1869, the first Niagara-Clifton Bridge was built below the falls by
Keefer, with a record span of 1268 ft and a wooden deck only 10 ft wide.

After a year or two the deck was rebuilt and the wooden stiffening chords and
towers replaced by steel. The bridge was widened in 1888 and destroyed in a
gale seven months later. It was replaced within a year but it was taken
down eight years later as it was found not stiff enough to carry the new
electric trolley cars that had come into use.

Steel in bridge~building was first used in constructing a chain sus-~
pension span of 312 ft at Vienna in 1828. The chains were fashioned of flat

eye~bars of open-hearth steel.

* * *

The Brooklyn Bridge, at New York, is the first great modern suspension
bridge. It was built by the Roeblings (father and son) in 1883 with a record
span of 1595% ft, and the radiating stays of John Roebling were also used.

The bridge held its record as the longest suspension span for twenty years
until it was surpassed in 1903 by the Williamsburg Bridge (1600 ft span), only
4% ft longer than the Brooklyn Bridge. Then, in 1924, the Bear Mountain



Bridge was completed with a new record span of 1632 ft, which was, in turn,
surpassed by the Philadelphia-Camden Bridge in 1926 with 1750 ft span, and,
then, the Ambassador Bridge at Detroit in 1929 with a span of 1850 ft.

In one jump, only two years later, Ammann almost doubled the previous
record of span with his giant stride of 3500 ft by building the George
Washington Bridge (1931) to span the Hudson River at New York City, using
four cables with straight backstays, and only 29 ft deep trusses to support
the 120 ft wide deck. In 1962 a second deck was added. (Note: The author
has been told privately that this famous bridge has proved too flexible and
connections are failing by fatigue. Measures are being taken to try to
stiffen it, a most formidable task.)

Engineers again pushed their way forward with the Golden Gate Bridge
(4200 ft span) in 1937, and then Ammann's Verrazano Bridge in 1964 with
4260 ft span.

The first Tacoma Bridge was built in 1940, with, at its time, the third
longest suspension span in.the world (2800 ft). It was only 39 ft wide
(1/72 of the span L)*, and plate girders only 8 ft deep (L/350). Being very
slender, it was completely destroyed four months later by wind due to its
unanticipated "aerodynamic instability', although the wind force was only 10%
of the static wind force which was quite safe. In 1950, the second Tacoma
Bridge was built with the same span, but using open-web stiffening trusses,
33 ft deep (L/85) instead of the 8 ft solid plate girders used in the former.
The width centre to centre of the cables is 60 ft (L/47) compared with 39 ft
in the first bridge.

The longest self-—anchored suspension bridge ever built was the Cologne-
Mtilheim Bridge over the Rhine with 1032 ft span. It was built in 1938 and
destroyed at the end of the war in 1945. The longest existing self-anchored
suspension bridge in the world is the Paseo Bridge, over the Missouri River,
at Kansas City. It has a 616 ft main span and two side spans 318 ft each,
and it was completed in 1954. In a self-anchored sugpension bridge, a strut
is built (usually a deck level) between the two anchorages, which relieves
them of any horizontal pull.

In Europe, the most famous modern suspension bridges are the Forth Road
Bridge in England, built in 1964 with a main span of 3300 ft, and the Severn
Bridge (1966) with a main span of 3240 ft and a tubular deck. In Turkey,
the Bosporus Bridge was completed in 1973 with a tubular deck and a main span
of 1074 m (3524 ft). The huge Humber Bridge is now being built in England with
1.4 km sﬁan (7/8 of a mile = 4600 ft).

* See Appendix A2: Notation.



In 1894, in a report by the Board of U.S. Engineers the maximum span
practicable for a wire suspension bridge was estimated as 4335 ft with a unit
stress in the cable of 60,000 psi (=413 Mpa)*. With the discovery of better
materials, and the invention of new materials, a working stress of 700 Mpa
could be used for the cables of the Severn Bridge in 1966.

In his "Bridges and their Builders", in 1957, Steinman said: 'The
decades immediately ahead will see the realization and the construction of
other bridges of even greater spans. Fifty years ago, the feasibility of a
span of 3000 ft was seriously questioned. Now bridge engineers confidently
agree that suspension bridge spans as long as 10,000 ft are practically feas-
ible. And such spans will be built"*f

Steinman was the builder of the Mackinac Straights Bridge at Michigan
in 1958, with a main span of 3800 ft, which is now the third longest suspen=-
sion spén in the world (exceeded only by the Golden Gate Bridge built in 1937
(4200 ft) and the Verrazano Bridge (4260 ft)built in 1964).

1.3 HISTORY OF LITERATURE AND THEORIES

The first European description of a suspension bridge was published by
an Italian, F. Verantius, in 1607. His "Machinae Novae'" included a descrip-
tion of a portable suspension bridge with a horizontal floor connected to
cables by vertical hangers.

In 1794, Fuss developed the theory of the parabolic cable supporting a
load that was uniform along the span.

In an article in "The Portfolio" in 1810, Finley described his stiffened
suspension bridge, claiming that "in 1801 I erected the first bridge on this
construction over Jacob's Creek'". Pope's "Treatise on Bridge Architecture"
in 1811 spread Finley's "ingenious invention'" all over the world.

In 1823, Navier published in Paris his "Rapport et Mémoire sur les
Ponts Suspendus' in which he analysed the effects of changes of temperature
and other factors on cables and platforms. This was the pioneer work which
dominated the theory of suspension bridges for a long time. It was followed
in 1824 by Séguin's "Des Ponts en Fil de Fer". In his "REsumé des Legons
données & 1'Ecole des Ponts et Chaussées", published in 1826, Navier initiated
the modern theory of arches and applied it to the design of a suspension
bridge over the Seine in Paris, partly constructed in 1831 and later abandoned.

In 1826, Provis published a complete report upon the construction of
Telford's_Menai Bridge. In the same year, D. Gilbert read a paper before

the Royal Society ''on the Mathematical Theory of Suspension Bridges with

* See Ref. 1.8, pp. 10-11.
*%k See Ref. 1.6, p. 371,
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Tables for Facilitating their Construction', which dealt with the ordinary
catenary and also the catemary of equal strength.

Vicat completed his masterly report on the air-spinning methods in
1830, and it was published the following year in "Annales des Ponts et
Chaussées". In 1834, he published another Report on 'The Progressive
Lengthening of Iron Wire Submitted to Various Tensions", and he became the
first man to notice and iInvestigate creep.

Pasley, in 1839, submitted a memorandum to the Institution of Civil
Engineers, ICE? in which he said: "The injuries to the roadways of suspen-—

sion bridges, are owing to the wiolent action of the wind from below".

This proved to be true, to some extent, a hundred years later after the
failure of the first Tacoma Bridge in 1940. Pasley's memorandum was
followed by another paper by Provis in 1841 on repairs to the Menai Bridge,
which was followed by a lively discussion at the ICE. In the same year
(1841), Rendel delivered his '"Memoir of the Montrose Suspension Bridge'

to the Institution, in which he described the measures he had adopted.

The first paper "on the Vibration of Suspension Bridges and other
Structures; and the Means of Preventing Injury from this Cause', was
published in 1841 by John Russel, in the Transactions of the Royal Scottish
Society of Arts, in which he discussed '"the general nature of the vibrations
that destroy suspension bridges and other slender structures".

In 1846, Roebling published his first report on his Ohio River Bridge
(of 1867), and in 1856 there followed another report on its practicability
and probable cost. In 1855, he presented his final report, on the Niagara
Railway Bridge (of 1854), which was a masterly summary of the concepts

underlying the success of the first large railway suspension bridge.

* * *

The fact that the response of a heavy suspension cable, without any stif-
fening girder, under a concentrated load is non-linear was well known in
the first half of the 19th century. The mathematical expression of this
non~linearity, however, did not appear in general form till the publication
of an approximate analysis by an unknown author in 1862, (Ref. 1.9).

In 1868, Bender read a paper to the American Society of Civil
Engineers, ASCE, in which he traced successive improvements to suspension
bridges. Bender credited Finley with his first regular suspension bridge
across Jacob's Creek in 1796, although, in his first article (of 1810),
Finley himself said that it was in 1801.

* See Appendix A3: Abbreviations.
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Rankine's books, on Applied Mechanics (1858) and Civil Engineering
(1863), presented the combination of cable (for direct stress) and stiffening
girder (for bending). He produced his approximate theory, for two and threew
hinged stiffening girders, that has been used so much ever since. By
assuming that any concentrated load was spread by the girder uniformly across
the whole span on to the cables, he produced the first rational theory of
the interaction of cable and girder.

In 1880, Clericetti published a paper in the proceedings of the ICE,
on '"The Theory of Modern American Suspension Bridges', which was followed in
1881 by another paper by Bender on '"The Combined Action of an Elastic Beam
Suspended from an Elastic Cable'. By 1886, in a paper by Levy in the
Annales des Ponts et Chaussées, the essential ingredients of the approximate
elastic theory were crystallised. By 1922, the elastic theory of today was
standardised by Steinman,(Ref. 1.7).

* * *

The first non-linear theory of suspension bridges was evolved by Melan
in a comprehensive review of existing knowledge, published in 1888, in which
the change of shape under a concentrated load and the corresponding change
of the tension in the chain were considered. This was refined and presented
in practical form in his "Handbuch der Ingenierurwissenschaften'" in 1906,
which was translated into English by Steinman in 1913)(Ref. 1.10).

The first application of this deflection theory of Melan was, by
Moisseiff, in the computations for the Manhattan Bridge which was completed
in 1909 with a span of 1470 ft. It was then used in the design of many other
American bridges like Ammann's George Washington Bridge in 1931 (3500 ft span)
and Strauss's Golden Gate Bridge in 1937 (4200 ft span).

Rankine's method was, of course, itself so simple as to be a direct
design method without modification. With the development of the elastic
method, however, greater complexity was introduced which Steinman simplified
by the diagrams and tables in his standard book,(Ref. 1.7), in which he set
a system of coefficients and charts for the design of suspension bridges.

He used a non-dimensional stiffness factor, S, in the form
s = (1/L) ./ EI/H_ (1.1)

where L is the span, EI is the bending stiffness of the girder, and HO is
the initial horizontal component of the cable tension (due to the dead load

condition). This stiffness factor had been used before at the end of the



10

last century by Godard)(Ref. 1.11), in the form

(1/s)= L. Vi _/ET (1.2)

and, after that, it has been widely used by Southwelly(Ref. 1.12), and many
others.

Castigliano's work, in 1879, on arches in terms of his energy theorems,
led gradually to the restatement of the arch-like theory of suspension bridges
in the energy form given by Johnson, Bryan, and Turneaure in their compre-
hensive text book on '"Modern Framed Structures",(Ref. 1.13), first published
in 1893. The first English text-book to include a summary of this elastic
theory was by Pippard and Baker in 1936.

In 1894, Godard,(Ref° l,ll),proposed a linearisation of Melan's deflec~
tion theory both for its simplification and for the advantages that it gave,
by making the use of superposition and influence lines legitimate. With
more experience of the deflection theory and its application to bridges of
longer and longer spans, the linearised theory became increasingly valuable
and relevant.

In 1911, Steinman published his first book "Suspension Bridges and
Cantilevers - Their Economic Proportions and Limiting Spans".

In his 1930 paper, (Ref. 1.14), Timoshenko showed how the basic differ-
ential equation of the deflection theory could be solved by the use of
Fourier trigonometric series, and potential and strain energy analysis.

And in 1933, Ammann published a paper in the Transactions of the ASCE
describing his George Washington Bridge, in which he pointed out that the
stiffening girders had been designed according to Melan's deflection theory
which obviated the need for empirical proportioning.

H. Bleich, in 1935, showed that linearisation of Melan's treatment was
possible without undue error and led to considerable computative simplifi-
cation. Accepting this for the large span bridges of today, in which the
cable plays the major structural part, Pugsley, (Ref. 1.15), in 1949 suggested
the treatment of the suspension bridge in terms of two structures, one the
cable and the other the stiffening girder, by matching their deflections,
both vertical and horizontal (if necessary), by finite tables of influence
or flexibility coefficients. Only nine stations across the span were found
adequate to give reasonable accuracy. This method was used for the analysis
of the stresses during the erection of both the Forth and Severn bridges,
while the Relaxation method has been used for their design, (Ref. 1.3).

In 1939, Hardesty and Wessman produced their preliminary design method
for suspension bridges. In the same year (1939), Southwell, (Ref. 1.12),

showed how the differential equation of the deflection theory could be
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treated using the Relaxation Process. By his process, allowance could be
made, for the first time, for the calculations of the horizontal displace-
ments, from vertical, of the hangers. This was followed in 1946 by
Crosthwaite's paper, (Ref. 1.16), which showed how the Relaxation Method
could be applied in practice (in the preliminary design calculations for the
then proposed Severn Bridge).

F. Bleich, following the linearised deflection theory, in 1950, could
discuss the natural frequencies and modes of vibration of suspension bridges.

In 1952, '53, '62, Pugsley called the attention of suspension bridge
designers to the real structural action of their structures, including its
"gravity stiffness'", the stiffness produced by its own weight. He succeeded
in treating the stiffening girder, approximately, as an elastic beam on a
linear foundation provided by the cable. This simple and basic method was
analysed by Charlton, (Refs. 1.17 and 1.18), using both potential and comple~
mentary energy treatments, the aim being to give designers reliable approx-
imate computations of the main effects. The latter was modified by Hegab
in 1975, (Ref. 1.19), to give the same equations of Pugsley's method of
1949, (Ref. 1.15).

The collapse of the first Tacoma Bridge in 1940, as a result of exces=
sive torsional oscillations in transverse wind of only 42 m.p.h., led the
engineers to study and understand the aerodynamic instability problems.
Large model experiments have been made in England, America, and Japan by
many authors, (Refs. 1.20 - 1.24).

As a result, it has been found that the gravest oscillations can be
largely prevented by proper aerodynamic measures applied to the deck and
girders of the bridge.

The first published torsion analysis of suspension bridges was pre-
sented in 1957 by Sih, (Ref. 1.25). This was followed in 1975 by a paper
by Fukuda, (Ref. 1.26). A potential energy analysis has been derived by
the writer and will be discussed in detail in Chapter V.

In a recent paper, Van der Woude, (Ref. 1.27), analysed the single-
cable bridge problem with an energy analysis using the calculus of varia-

tions to validate the energy equations.



CHAYTER II

SINGLE-CABLE BRIDGE: STATICS

2.1  INTRODUCTION

The analysis of the suspension bridge as a single-cable bridge dominated
the methods of solution of suspension bridges, both in this century and the
previous century as well. It has been dealt with by many authors and using
several theories and procedures (Refs. 2.1 - 2.7)*. In this chapter, a
number of these methods will be applied in the analysis of a realistic labor-
atory model of a single-cable bridge. The aim is to bring out the history
of the development of various theories and simplifications which came into
use. This can best be done by making calculations with them and checking
the results against measurements. The results are illuminating, and add
greatly to appreciation of the action of a suspension bridge. The term
"single~cable bridge" means a suspension bridge loaded symmetrically with

respect to its longitudinal centre line.

2.2 MODEL DESCRIPTION

Although it could have been a model with two cables loaded symmetri-
cally about its longitudinal centre line, the model used herein was made
using only one structural cable to support its narrow deck, by means of nine
equidistant vertical hangers, at its longitudinal centre line, Fig. 2.1.

The horizontal component of the cable tension, H, for any loading condition
is measured by means of a double lever system to which the end of one of the
back~stays is anchored. The bending stiffness, EI, of the deck was obtained
from a direct bending test on a deck specimen. The effective cable stiff-
ness was measured using a cable specimen loaded and unloaded a few times
within the elastic range, (Ref. 2.8). The initial cable shape is assumed

to be parabolic under the dead load, D.L., with unstressed deck; i.e. under
the action of D.L. only, the deck is assumed to carry no load or bending
while all the D.L. is carried by only the main cable. The model was very

carefully set up to attain this assumed condition.

* See also Refs. (1.7, 1.10, 1.12, 1.14 - 1.18, 1.27).
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2,3 AN IDEA ABOUT THE BEHAVIOUR OF THE MODEL

Some preliminary tests have been carried out to investigate the
response of the model to liwve load, L.L. Regarding the cable tension, an
increasing point-load was applied at various stations, one at a time,

(Fig. 2.2-a). Another loading condition was to start by loading station 1
only, and then extend the load to adjacent stations until loading all the
stations with an increasing load, (Fig. 2.2-b). Fig. 2.2 shows that the
increase in the horizontal component of the cable tension is, nearly,
linearly proportional to the live load, an approximation that has been used
before by Timoshenko, (Ref. 1.14).

As for the deflections, an increasing point-~load was moved on the
bridge deck and both the vertical and horizontal deflections of all the
stations were measured using a two-way microscope moving across the whole
span, close to the cable joints. (Actually, the hangers of the laboratory
model are so "rigid" that their extensions are nearly negligible, a case in
which it can be said that the wvertical deflection of the cable is equal to
that of the deck at the same distance in the spanwise direction.) Fig.
2.3 shows plots of the deflections (in both the vertical and the horizontal
directions) due to a point-load travelling across the span. The terms
vij’ uij represent respectively the vertical and the horizontal displacement
of point i due to a point=load, P, acting vertically at j.

The general conclusions, out of this preliminary study, can be sum-
marized as follows:

(i) The horizontal component of the cable tension, H, is almost

linearly proportional to the L.L., whether it is uniformly distri-~
buted over the entire span or a part of it, or even if it is a
single concentrated load acting at any position.

(ii) The deflections (both vertically and horizontally) are, generally,

non=-linear with the load, and the structure tends to stiffen as

the load increases.

2.4 METHODS OF ANALYSIS

In this section, the single—cable bridge model will be analysed using a
few of the previous theories with some modification, by the writer, whenever
it seems to be relevant. A comparison between measurements and calculation

will accompany each method.
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2.4.,1 THE DEFLECTION THEORY OF MELAN,
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(Refs. 1.3, 1.7, 1.10, 1.13)

This is the first non-linear theory of suspension bridges, in which

the change of shape under loading, and the corresponding change of the

tension in the cable were considered.

The bending moment, M, in the stiffening girder is given by

where m
[o)

it

M = m - h.y - (Ho 4+ h).v

(2.1)

bending moment due to the L.L., p, on the girder when treated

as isolated and simply supported at its ends;

increment, due to the L.L., p, in the horizontal component of

the cable tension;

the co-ordinate of a cable point, distance x from the left end

of the span, with the x-axis being the chord joining the two

cable ends, Fig. 2.4;

horizontal component of the cable tension, D.L. condition; and

increment, in y, due to the live load p

vertical deflection of the cable at distance x.

Hy+h

Ho+h
e x - L/z o
P
Oc (NN AR AN N 3
.. |
< T 4

- ® () 2,
Yy=4D.2 (- X)

y'= ~-8D/12

Fig.2-4.

Using the approximation d?v/dx? = M/EI, Eq. 2.1 can be written in

the form
d?v c?
= (m - hy) -~ c?v
dxz HO + [s) y
H 4+ h
o

where c2 =

EI

(2.2a)

(2.2b)



19

Eq. 2.2a is a second order differential equation, D.E., in v, which

may be directly solved provided h is known, or can be found. The solution

gives

¥ =CX mO 1 d2 mo
+ C'.e + (-—h - y) + PR ‘(‘i‘;—z‘(“-ﬁ* - y)] (2.3)
where C and C' are integration constants which are to be found from the
boundary and the continuity conditions.

Substituting Eq. 2.3 in Eq. 2.1, the bending moment M, in the stif-

fening girder becomes

. . 2
M= -h[C.e®™ + c'.e™ X + 142 _ ] (2.4)

' *
The D.E. of the suspension bridge can also be written in the form

L dtv d?v _ d%z
EI.dXJ“‘ - (HD + h) =z p + h.'a‘xz (2.5)

which is a 4th order D.E. in v, that can be solved to give the same solution

as in Eq. 2.3. It can also be considered as a 2nd order D.E. in M as

2 2
dM oy =p o4 n Y (2.6)
dx? dx?

which when solved gives the same solution previously given in Eq. 2.4.

We come now to the number of the constants of integration C, and C'.
If the whole span is uniformly loaded, all through, by a load, p, the number
of these constants is two, namely Ql and Cf. If only a part of the span
is loaded, or if the span is loaded with loads of different intensities,
the span is divided into zones on each of which the load is either uniform
or zero. For example, in the case shown in Fig. 2.4, we have three zones,
and so we have six constants of integration, for which six boundary, or
continuity, conditions are needed.** The boundary conditions are
provided by knowing'the deflections (or the moments) at both ends of the
span if Eq. 2.3 (or Eq. 2.4) is used (respectively). The continuity
conditions are provided by matching the deflections and the slopes (or the
bending moments and the shear forces) to the left and the right of both
points 1 and 2, if Eq. 2.3 (or Eq. 2.4) is used (respectively). Whe ther

Eq. 2.3 or Eq. 2.4 is used, the six constants are the same. These

* See Refs. 1.3, 2.9.
** . . . .
Generally, the number of the constants of integration is always twice
the number of zones to which the span is to be divided, i.e. two
constants for each zone.
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constants have been evaluated by the writer, and by Steinman before (Ref.
1.7). They can be written in the form

(i) For Zone 0-1 (o0 & x <« xl)

P [ec{Lu(X1+x2)}+e—C{L—(x1+x2)}mec(wa1)“e~c(L—x12148D/L2)(l“e—cL)

A
1 E?' cl, ~cL
e —~e .
(2.7a)
(- 1 2
(ii) For Zone 1-2 (% g X & Xp)
_ 1 p -CXy
C2 = Cl + P} 02h s € (2-7C)
1 .
Cy = =C + =5 (%ﬁ . e“*1-(8p/1.2)) (2.7d)
(iii) For Zome 2-3 (x, ¢ x g L)
.l ) )
C3 = CpF T3 %ﬁcl ~e F2y |, 1 (2.7e)
2 - -
¢y = —cy &7 o Ly (B, D, (g meRe) L (gp/12)e®T (2.7£)

Eqs. 2.7 give the other five constants in terms of the first one, a method
that has been used before by Pugsley, (Ref. 1.3),in his four-constants'
problem. Steinman,(Ref. 1.7), gives the second constant in each pair in
terms of the first one of the same pair, which, in turn, is evaluated using
only the dimensions and the properties of the structure.

The constant Cl seems to be small, and it is, actually, very small

for the laboratory model, while the constants C2 and C3 are very much
smaller. On the other hand, the constants Cé and Cé are very big,

! which is very large. It can thus be noticed from both Egs.

3
2.3, 2.4 that the small coefficients C are multiplied by big quantities,

ecx’ while the big coefficients C' are multiplied by small quantities e—cx'

especially C



For our laboratory model, using either Pugsley's or Steinman's method of
evaluating the integration constants, it has been found that each pair of
constants C and C' has the same sign for both the first and the second
zones (negative sign for Zone 0-1, and positive sign for Zone 1-2), while
in the third zone (Zone 2-3) they have different signs (C3 is a very small
negative number, and Cg is a very big positive number)f Here a very
serious case of ill-conditioning arises, which makes it impossible to get
the solution for the third zone. However, the solution, for the third
zone, could be obtained starting from the right (with the origin at the
right end of the span), thus having the wanted zone (Zone 2-3) as the
first zone which is solved with no problems. The designers of old bridges,
like the Manhattan Bridge, for instance, did not face such trouble because
of the high stiffness of their decks. The ill-conditioning of the traditional
solution of the deflection theory at the third zone is related, actually
to two factors:

(i) the stiffness of the deck;

(i1i) the form of the integration constants, or the method of their

derivation.

Regarding the stiffness of the deck, the laboratory model itself is
well-conditioned, because everything could be measured easily and properly.
However, it has been found that if the stiffness of the deck is, theoreti-
cally, increased by 50% (or more), the analysis becomes well-conditioned.
Fig. 2.5 gives a measure of ill-conditioning represented by the ratio
VZr/v22 versus the non-dimensional parameter EI/HOLE, where vy is the

vertical deflection of point 2 calculated from Zone 2-3; is the

v
vertical deflection of the same point calculated from Zone ifZ; (these
two values must be equal as it was put in the continuity condition at
point 2 in getting the integration constants).

As for the form of the integration constants, the problem has been
carefully investigated by the writer, and the following results were

obtained. Steinman's way of writing the constants gives
cy = -eL(cy . el + (8D/c212)) (2.7£.1)

It has been found that the two terms in brackets in Eq. 2.7f.1 are
very close and have opposite signs. Bearing in mind that C3 is very
small and eCL is very big, the product (C3 . eCL) is not, then, reliable.

Thus, it becomes improper to calculate C) in terms of C, (as Steinman,
(Ref..1.7)did). It is not recommended, even, to calcufate C4 in terms

of Ci(as Pugsley, (Ref. 1.3) did), since Ci also is small and may be

beyond the accuracy of the computing device. However, the best way is

to get all the constants, only in terms of the dimensions and the
properties of the structure. S
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The term in brackets becomes then, in turn, a non-reliable small quantity,
which is to be multiplied by the very big number, ECL9 to give a very big
value for ¢!. The sign of this very big C!

3 3
for the laboratory model when Eq. 2.7f.1 was used in the calculations.

has been proved to be wrong

Also, Pugsley's way of writing the integration constants gives C!

3
as in Eq. 2.7f, which can be rewritten in the form
¢y = -eF . [ . e %z(%; ceflmx1) g mexoy (8D/L2))] (2.7£.2)
Again, Cl is small and when multiplied by the very big number eCL,
the result becomes inaccurate. The term C oeCL is negative, while the

1
other terms in the square bracket are all positive, and the result

between the square brackets in Eq. 2.7f.2 becomes similar to the result
in parentheses in Eq. 2.7f.1, both of which being multiplied by the same
factor (~eCL) which is very big.

The Manhattan Bridge has a relatively stiff deck (as can be seen
from Fig. 2.5), but the writer cannot deny that both the George Washington
Bridge and the Golden Gate Bridge are a bit more slender than our laboratory
model, although they were designed using the deflection theory. Perhaps
the three-zone case of loading was not considered in their designs.

However, in order to avoid such trouble, the writer suggests the

following forms for the six integration constants.

. Zh[ c{L (x1+x2)} —c{L (x1+x2) }_ c(wal) —c(L xl)] (8D/1.2) (1-€ cL)
Cy = =
cL -cL,
e - e
(2.8a)
. _E{ec{L~(x1+x2)}+e—c{L—(x1+x2)}_ec(Lﬂxl)_e—c(mel)]+(8D/L2)(ECL_1)
Cf = Y cL -cL
e - e
(2.8b)
1 I—EE[EC{L"(XIJ"XQ) hperel Gm(xrtma) }_mellrm)_—e(lx1) g gn 12y (3™l
Co = P
L cL -cL
e - e

(2.8c)

lz{il[edl.(x1+ xz)} wc{L (xy+x2) } c(L~x1) +C(L+X1)]+(8D/L )(eCL—l)]
c

cilt ~cL
e - e

(2.84)
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. E%{enc{L—(x1+x2)}+e—c{L+(x1+ xz)}_e—c(L—xl)_e—c(L+x1)] —(8D/L2)(1—ewCL)
C3 =27 _
cL ~cL
e - e
(2.8e)
) EEIGC{Lu(x1+x2)}+ec{L+(x1+x2)}_ec(L—xl)_ec(L+x1)] +(8D/L2)(eCL~1)
= -z G

(2.81%)

all of them being in terms of the dimensions and the properties of the
structure to minimize the round~off errors. This process succeeded in
eliminating, entirely, the ill-~conditioning of zone 2-3, when the computa~-
tions were carried out on a PDP-8 Digital computer (a.small laboratory
computer) . _

It remains now to evaluate the value of h, in terms of which the
constant c¢ is calculated (Eq. 2.2b). The problem is a bit complicated
and needs some approximations in order to get a solution. Several approx-
imations have been used before by many authors (Refs. 1.3, 1.7, 1.13), each
of which does not affect much the value of h, but the deflections are
remarkably affected.

One of these approximations is to neglect the effect of the cable

extensibility on h by putting
L

f v.dx=0 - (2.9)

o

This gives, for the loading condition of Fig. 2.4



2%

2
P [ X1 (x1txy) Xy _ 1
b= I Xy« [ (Lmx1) +7 ‘)[L"(xl*'x?-)} T =)

16D g™ | 8D 2

372 Y=+ =D,
c°L ecL+1 c4L 3
l 5 - .[‘l'_( +X )}
v msemin e O L C B BALCREYTRD
3(eCLm “CL)

+emc{L—(x1+x2)}Hec(thl)we—c(wal)_ec(x1+x2)

_ewc(x1+x2{]
(2.10)

Using this procedure, the laboratory model was analysed for three
point loads, each of which equals 98.1 Newtons, acting at stations 5, 6, 7.
The results are shown in Fig. 2.6, where the measurements are also plotted.

Corrections, to the deflections, due to the extensions of both the
main cable and the back-stays must be added. The latter is represented by
the horizontal movements of the tower tops. These corrections are added,
by superposition, according to the diagram shown in Fig. 2.7, which is
suggested by the writer. A similar procedure has been proposed before, in
1862, (Ref. 1.9). The idea is to get first the deflections considering
the cable to be inextensible with fixed ends. A symmetrical parabolic
wave caused by the cable stretch is then added, followed by another symmet-
rical parabolic wave caused by the tower movements which shorten the span
and thus increase the sag.

The changes in the central dip of a cable due to changing both its
length and span have been evaluated before by Pugsley,(Ref. 1.3). A simplif-

ication can be made by the writer as follows

. 8 ,D\2 32 D"
L =L [1+ “3-‘ ("];') - 55 (L) 1 (2.11)

Where % is the length of the main cable, L is thg span, (%) is the dip-span
ratio. Eq. 2.11 is a quadratic equation in (%5 from which D + 8D can be
easily calculated if 2 becomes (& + 82) and L becomes (L ~ S8Lj = 8L,) where
8D, 82, 8L; and 8Ly are the changes in the central sag, the length of the

main cable, and the horizontal movements of the tower tops, respectively.
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Knowing the change of the central sag, 8D, the corresponding correction in
the vertical deflection at any section, distance x from the left support,

becomes

= X X :
Sv = 448D . T (1 L) (2.12)
The main cable extension can be approximately written as

8 = —= : - (2.13)

Also the tower top movement §L, using Fig. 2.8, can be given as follows:

(h/cos 45°%) . %y

§lo = AR

h . Lo 2h . %o
G‘Q’Z = =
AE.cos245° AE

where £, is the initial length of back-stay 2, (D.L. condition).

Thus the reduction in the span due to the tower movements becomes

§L = 6Ly + 6Ly = 22 (91 + £y) (2.14)

where %7 is the initial length of back-stay 1, (D.L. condition).




29

It can be seen from Fig. 2.6 that the above analysis of the deflec~
tion theory agrees with the laboratory measurements within about 157 at
the point of maximum deflection, which can be accepted according to the
foregoing successive approximations in the analysis, and within the labor-

atory accuracy in both measuring and modelling.

* * %

A Fourier series analysis has been worked out by the writer in
solving the basic D.E. of the deflection theory as follows:
Eq. 2.5 can be rewritten in the form
dtv

El.— = (p+w) = H 4+ h) . (y"+v") (2.15)
dx™ °

where w = intensity of D.L. per unit length of the span; v'" = d?v/dx?
= the curvature, K, of the deck; y" = (d%y/dx?) = -(8D/L2).

Eq. 2.15 can, approximately, be solved using a Fourier series tech-
nique by multiplying both sides by (sin i%ﬁ) and integrating from 0 to L;
thus

. L L
d*v . dmx = o dmx _ PXNPRTINE & ¢
EIf q.s.m T dx = 0\[ (p+w) .sin I dx +(Ho+h)o\/ {((-8D/1.2)+v"") .sin I dx

(2.16)

Put v = I a_ .sinﬂ%ﬁ (2.17a)
“ov'= Ia (n;‘" .,coslg‘}i (2.17b)

nm 2 . nNTx
v' = - I a_ (—i) -sin—5= (2.17c)

4 u

45 oy 3 a ANy | e1nE (2.17d)

dx n L L

Therefore, the left-~hand side, L.H.S., of Eq. 2.16, after some algebra,

reduces to

im L
EI (“1?4 <5 v Ay
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For a uniform L.L., p acting from x; to x, on the span, the first
term of the right-hand side, R.H.S., of Eq. 2.16, after manipulation,

becomes

%;‘[p(COS E%El - CcOS i%ﬁzo + w(l ~ cos iw)]

The second term of the R.H.S. of Eq. 2.16 also becomes

| i 2
-1, + ) [/ @ - cos 1m) + G gy

Rearranging the terms, Eq. 2.16 thus yields

p(cost XL cos™2) + {w=(8D/L2) (H +)} (1 ~ cos in)
0 A5 L mr dB° + @ 4n) o
L .2 L o

which is exactly the same as that given by Timoshenko, (Ref. 1.14) for the
Fourier coefficient given below in Eq. 2.21, noting that w = Ho.(8D/L2),

h = B.Ho. The value of h can be obtained using the foregoing method or

any other relevant method.

The laboratory model was analysed using this Fourier approximation
and the above method of evaluating h. The results, using only five
Fourier terms, are shown in Fig. 2.6, and are almost coincident with the
results of the direct solution of the D.E. This Fourier approximation
avoids completely the ill-comditioning which is likely to happen in some
cases. We may be sure, of course, that ill-conditioning if it occurs is
a property of our method of calculation, not of the actual structural

action and deflections of the suspension bridge.

2.4.2 TIMOSHENKO'S ENERGY METHODy (Ref. 1.14)

In this method the potential energy of the deck, Ul, is evaluated
using a Fourier series for the vertical deflections, as previously given
in Eq. 2.17a. An expression for the Fourier coefficients a; is obtainable
by imposing the condition of stationary potential energy. It must be
noticed here, again, that the coefficient a, is obtained in terms of h.

In this method h is obtained from the equation of the strain and potential

energy, U2 of the cable,
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The potential energy Uy of the deck can be written as

L K L Loy
.‘U. ol
Uy = ffEIK,dK.dx + [ [ adx.av -fj pdx.dv (2.19)
% o [ 0o
where K = curvature of the deck = v'"
q = the intensity of the live load portion carried by the cable
= By - Ho @ + B).v" as given by Timoshenko;
B =nh/H_;
o
w = intensity of D.L. on the bridge;
'p = L.L. intensity on the bridge acting from x1 to xp as shown in

Fig. 2.4.
For a stationary potential energy we can write

LSk R (2.20a)

Thus Eq. 2.19 gives, after substituting for K and q, if EI is

constant

L
ET. f n v dx+f[sw~H (1+8) . v"] .dx -fpo-a-v“ . dx 0 (2.20b)
a4 i

For a uniform L.L., p on the bridge, and after some algebra, Eq.2.20b

yields

p(cosi%zl-w cosi%zz) ~ Bw(l = cos iw)
a = : (2.21)
im
AD° L e @57 4 48]

which is the wvalue of the Fourier coefficients of the vertical deflections
in terms of the parameter B . To evaluate B, the change in the strain and

potential energy of the cable, Uy, was given as follows.

The complete change in the strain energy of the cable, U__ may be

25
expressed as

h(H_ +h) 3
Uys = AE f G I
4]
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_h h Dy 2
= 0 (Ho +3) . L[1+38 (L) ] (2.22a)

which is a simpler form than that given by Timoshenko.

Assuming an average intensity of the load on the cable, the work done

by that load, UZW’ is

L
- g
UZW of(w + 2) Vedx

» § 2 . ,
cw+8) 2 oy + 23435 4y b E T (148) (a2 +22.a2 432,02 +...)
2" W 3 5 o yL 1 2 3
(2.22b)
Equating U23 to U?w yields after some manipulation
Ho L pL+2) (1482 = 182145 oy + T2 (148) . [2 (02 .82) ]
AR 2 L T 2" nTy g 5., Wl 02 3.,
(2.23)

where a are as given by Eq. 2.21 (as a function of B and the L.L., p).

Eqs. 2.21, 2.23 may be solved together to get both the redundants a;
and B. The solution is performed by a trial and error method. A value for
B is assumed, and then the corresponding value of p is calculated. Assuming
for small fluctuations in cable stress that B is proportional to p, the
increase h in the horizontal component of the cable tension can easily be
calculated. This assumption is actually confirmed by the measurements shown
in Fig. 2.2 given before. However, Fig. 2.9 shows the relationship between
the assumed B and the calculated p using Timoshenko's method, from which it
can be seen that this relation is truly almost linear.

It has been found that this method is convergent, and only five Fourier
terms are quite sufficient for practical cases.

The method was applied to the laboratory model loaded as shown in
Fig. 2.4. The results are shown in Fig. 2.10. It can be seen from Eq.2.23

that this method takes the extensibility of the main cable into consideration.

. . . ds d y ds 3 : d x 2
* =2 ™ o 2 ~
Using the approximations a 1+ 3% ] ), (d 1+ 1.5(1 )

2
neglecting higher powers of (%%) , where y = 4D _%(1 - %?
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Thus it remains only to add the corrections due to the tower movements as

shown in Fig. 2.7c¢, i.e. putting éDy = 64 = 0, since their effect has been

already included in Eq. 2.23. Thus Eq. 2.11 becomes.

- (I 8 DDy 2 _ 32 DHSDy M p
L= (L-6L) [+ 3 (o) Rl (2.26)

which can easily be solved in (D+6D2)2 as before. The corrected deflection
curve is also shown in Fig., 2.10, from which.it can be seen that it is
almost coincident with the measurements.

On Fig. 2.10, also, Timoshenko's solution for an inextensible cable

~

(AE = ) is shown, and compares reasonably with the results of Melan's

method.

2.4.3 PUGSLEY'S FLEXIBILITY METHOD, (Ref. 1.15)

This method is wased on determining the flexibility coefficients for
both the cable and the girder. The span is divided into ten equal segments
by nine equidistant stations as shown in'Fig. 2,11, The flexibility

coefficients of the cable are determined considering that it carries all

L=10Xk250= 2500 mm _’

Fig.2.0.— Cable and Girder,
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the D.L., in addition to the moving influence load and the hanger tensions.
This can be done using the above-mentioned Timoshenko's method, (Ref. 1.14),
assuming a very slender deck with no bending stiffness (EI = 0). It can
also be done using the method given by Pugsley in his book,(Ref. 1.3, Ch.3).
Fig. 2.12 shows some load-deflection curves using both methods.

Neglecting the extensions of the suspension rods, (because they are
very small), the deflections of the cable can be considered identical with
the corresponding deflections of the girder. Thus, at any hanger position

i we can write

v, = Vi (2.25a)
where
9
v, = ‘Z Tj . vij (2.25b)
j=1

cable deflection at 1i:

9
v, = 2 (p, = T,) . V,. (2.25c)
i N J 1]
J
= girder deflection at i;
Tj = Tension in hanger j;
Pj = Point-~Live load acting on the deck at the hanger j;
Vij = deflection of the cable at the hanger i due to a unit load acting
on the cable at the hanger j;
Vij = deflection of the girder at the hanger i due to a unit load acting
on the girder at the hanger j.
Thus Eq. 2.25a can be written in the form
[v,] . [T] = v,1. [P -] . (2.254d)
where
[Vi] = row vector of the flexibility coefficients of the cable at the
hanger i;
[T] = column vector of the hanger tensions;
[Vi] = row vector of the flexibility coefficients of the girder at the

hanger 1i;

[P] = column vector of the L.L.
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For the entire system Eq. 2.25d can be written as
[vl . [T] = [Vv] . [P~ T] : (2.26a)

where

It

flexibility coefficients' matrix for the cable; and

[v]
[V]

it

flexibility coefficients' matrix for the girder.

Eq. 2.26a can be rewritten as follows.
[v+ V] . [T] = [V] . [P] (2.26b)
in which the elements of the matrix [v + V] are the algebraic sum of the

corresponding elements of the two matrices [v] and [V].

Writing Eq. 2.26b in full, thus

vl ]_+V1]_ V12+V12 'R Vlg"r“vlg Tl Vl]_ Vlz e e w Vlg P]_
V21¥V21 V22+V22 vess V29+V29 TZ V21 V22 cee V29 P2
+ & & & 8 :
Vo1 Vo1 V9292 Y99™99 [ |To | |Yer Vo2 - Voof | P9
(2.26c¢)

The square matrix of the R.H.S. is symmetrical, while that on the
L.H.S. is not so, because Maxwell's principle of reciptocal deflections

does not hold for cables, (see Figs. 2.12). l Again, (for example) is

the deflection of the girder at station 1 due -to a unit load acting at
point 9. o

Figs. 2.12 show that the cable deflections are not linearly propor-
tional to the acting point loads. So it is essential to linearise the
cable deflections at some load values near the expected hanger tensions
in order to get convenient flexibility coefficient for the cable. From
Figs. 2.12, it is clear that the cable deflections increase, at a dimin~
ishing rate, with the increase of the load, and this means that when the
cable deflections are linearised at loads less than the hanger tenéions,
the solution will overestimate the final deflections of the bridge, and
vice versa. This is clear in Figs. 2.13, and so, after having an idea
about the hanger tensions, the cable flexibility coefficients can be
obtained by a linearisation process at an average value of such hanger

tensions.
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The flexibility coefficients of the cable as evaluated using
Timoshenko's energy method already include the effect of the cable exten~
sibility, and so only the correction due to the tower movements is added
to the resulting vertical dgflections as before. However, the method, as
shown in Figs. 2.13, overestimates both the upward and the downward deflec-
tions everywhere throughout the entire span of the bridge.

It is obvious that the deflections of the bridge are calculated
after solving Eq. 2.26c in the hanger tensions [T] and substituting in
either of the Egs. 2.25b and 2.25c. | '

2.4 .4 CHARLTON'S ENERGY METHOD,(RefS. 1.17, 1.18)

This method is based on Pugsley's flexibility coefficients of the
cable (vij)’ mentioned in the previous sub-section, but using both
potential and complementary energies. The span here also is divided
into 10 equal segments by 9 equidistant stations.

The complementary energy procedure,(Ref. 1.17),has been modified by
the writer, (Ref. 1.19),and leads to the basic flexibility equation (Eq.
2.26b) of Pugsley, given in the previous sub=-section.

Charlton's potential emnergy equation’(Ref. 1u17)’can also be

rewritten in the form

v o=f [ mak.ax + Z S T, . odv, - 2 f W, . dvy (2.27)
o ¢ i=1 ] g=1 o

where

M = EIK “ EIv", for a linear deck;

T _ % ( ) R (S" ;S an ejeme”t f‘n t!’e .St;Ff”eJ‘S

i i1 Sij V. 5 i matrik of the cablt nn‘ﬁ).

Wi = D.L. on cable at hanger i (as shown in Fig. 2.11).

Putting the deflections v in the form of a Fourier series, as in Eq. 2.17a

above, and after some algebra we can write for stationary potential energy

au = 0. Thus
da

m

L 9 9 dv 9 v
9K i i

EI f K. 52 ° dx + Z z Sij Vj 52 ‘Z Wig“ = 0 (2.28)

6 m . . m . m

i=1 j=1 i=1

* See Ref. 2.10.



42

which, in turft, can be reduced to

9 9 T 9
I mnx, ME
miw L akipd i . i
. o 5 1 1 — =
EI (~-~L ) ’ a +£z é 1] (zansir I ) sin i ] Z Wi51rr-—~"“L 0

i=1 =1 i=1
(2.29)

Fq.2:29 is, actually, a set of equations, the number of which is
equal to the number of the Fourier terms used (=n). After obtaining the
Fourier coefficients a s the deflections can be obtained using Eq. 2.l7a.

The matrix of the stiffness coefficients [Sij] is obtained as the
inverse of the flexibility coefficients matrix [aij].

The flexibility matrix obtained by Pugsley's method is symmetrical
only if it is calculated using the tangent to the P ~ v graph at P = 0.
However, it seems to the writer that Charlton got his symmetrical flexibility
matrix at (P/wL) = 0.1 by taking the average of the off-diagonal elements
obtained using the secant to (P/wl) = 0.1.

Fig. 2.14 shows the results of this method, which are nearly the same
as those given by Pugsley's flexibility method (i.e. overestimating the

deflections everywhere along the entire span).
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CHAPTER III

SINGLE-CABLE BRIDGE: DYNAMICS

3.1 INTRODUCTION

The aim of this chapter is to summarize the results of a study of the
natural frequencies and modes of vibration of the so-called "single-cable
suspension bridge". Being a single-cable bridge, it has only flexural
modes of vibration with no twist in the deck.

A real bridge, of course, usually has at least two main cables
supporting a wide deck which is able to vibrate both flexurally and tor-
sionally. As a necessary preliminary, the laboratory model of the single-
cable bridge was dynamically analysed, and natural modes and frequencies

were measured and compared with calculations. The reasons are twofold.

(1) Dynamic analysis must contain all the simplifications and
approximations of the static analysis, and, as a further test of their
validity or otherwise, the opportunity should not be missed to try out these
simplifications and approximations on the simplest possible model, the
single-cable bridge.

(2) The flexural vibrations of a real bridge must have much in

common with its single-cable representation.

3.2 METHOD OF ANALYSIS

There are several methods of calculating frequencies and modes of
vibration of structures. For a single-cable bridge analysis, it is enough
to know the first two (or three) natural frequencies and modes of vibration.
In this case, the iteration methodj(Ref.B,ll,is the most relevant procedure
as it is simple and attractive to the engineer. It begins with a gussed
mode shape and obtains, quickly, reasonable results for the wanted mode
shape and its frequency.

The matrix equation of motion of an elastically connected system of
masses undergoing free undamped vibrations is given, according to Newton's

second law of motion, as

[m] [X] + [k] [X] = O (3.1)
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where [X] = column vector of displacements;
[i] = column vector of accelerations, (X = d2X/dt?):
t = time;
[0] = the zero matrix;
[k] = stiffness matrix of the vibrating system; and

[m] = mass matrix of the vibrating system, which has a diagonal form

for lumped mass systems.

Using the assumption of harmonic motion, we have [i] = wwz[X],
where w = angular frequency. Thus, it appears that the problem is an
eigenvalue problem. If the stiffness matrix, [k], of the system is easy
to obtain, Eq. 3.1 is premultiplied by the inverse [m]”l of the mass matrix

to give, after some algebra

[X] =i;§- m™) . [kl . (x] (3.2)
which can be solved by iteration, provided w? is real and positive.

The iterative procedure starts by assuming a mode shape for the R.H.S.
of Eq. 3.2 and then calculating an improved mode at the L.H.S. This
improved mode shape is normalized and used again on the R.H.S. to get a
further improved mode on the L.H.S., and so on.

This iterative procedure converges, usually, to the lowest value of
(1/w?), i.e. to the highest angular frequency w. The sweeping procedure
can then be used to get the lower modes, (Ref. 3.1). Alternatively, after
getting the highest mode, the lowest mode can be obtained using the parallel
shift method, (Ref. 2.10).

x k%

However, for most structures, it may be easier to obtain the flexi-
bility matrix [k]“l. In some cases, it may be impossible to get the stiff-
ness matrix, (if the flexibility matrix is singular). Here, Eq. 3.1 is pre~

multiplied by (k17! to give after some algebra:

(x] = o2 [k]”' . [m] . [X] (3.3)

which can also be solved by iteration as mentioned above. The iterative
procedure converges here to the lowest wz, i.e. to the fundameptal (=lowest)
mode which is more useful. Higher modes can then be obtained using the
sweeping procedure. The sweeping matrix of the first mode is given in
Ref. 3.1, and that of the first and second modes has been derived by the
writer.,

Rayleigh's quotient, (Refs. 3.1, 3.2) can be used to check the value

of the fundamental frequency.
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3.3 ILLUSTRATIVE EXAMPLE

The iterative procedure was applied first to the triple pendulum of
¥ig. 3.1. This elementary example of wires and masses, without elasticity,
is given in order to clarify simple ideas, both analytically and experi-
mentally.

The problem has three degrees of freedom, and so three modes of vibra-
tion were calculated and also measured, Fig. 3.2, from which it appears that
the calculations agree quite well with the measurements, except perhaps in
the modal shape of the second mode.

The solution was carried out using both the stiffness and flexibility
matrix procedures. The stiffness matrix procedure converges first to the
highest mode, (mode 3), while the flexibility matrix procedure converges first
to the fundamental (=first) mode. A check using Rayleigh's quotient was
made to get an estimate for the fundamental frequency.

The modes were not easy to excite by hand: the system had to be
excited first by starting the wanted mode with its natural frequency. After
making some calculations, the system was excited, at the three mass positions
simultaneously, in each of the three natural modes,(one mode at a time),
and the frequency of each mode was measured using a stop watch.

Again, the iteration method used in this example can give all the
modes of a three-degrees-of-freedom system, or, at most, a four-—degrees-of
freedom system. For a system with more degrees of freedom, the iteration
method must not be used to get more than the first three modes to avoid
complexity in the sweeping matrices, and also to avoid the inaccuracy in
calculating the higher modes due to the accumulation of impurities from the
first few modes.

If all the modes, or more than three modes, are wanted, it is better
to use some more general computerized procedure, as will be shown in chapters

IV and VI.
* ® %

The results of the iteration are independent of the first guess of
the modal shape,[X]09 for each mode. However, a reasonable guess makes the
iterative analysis converge quicker. It also gives a good estimate to the
fundamental mode using Rayleigh's quotient. In this example, for all modes,
the guessed mode shape was (Xj:Xp:X3), = (L1:2:3), and convergence was achieved

rapidly.
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3.4 APPLICATION TO THE SINGLE-CABLE BRIDGE MODEL

The above analysis was applied to the laboratory model of the single-
cable suspension bridge using the flexibility matrix. For most structures,
the flexibility matrix is very much easier to calculate, or to measure,
than the stiffness matrix. For the model of the single-~cable bridge, as is
usual for other suspension structures, it was found that the flexibility
matrix is singular, and so it becomes only possible to use the flexibility
matrix procedure in the dynamic study. For more information about singular
matrices see Appendix A4.

Firstly, the flexibility matrix of the model was calculated using
Timoshenko's energy method, (Ref. la14L(because it gave the best agreement
with the laboratory model measurements). An influence load was placed in
turn at nine stations on the span, and the deflected shape calculated.

It was not considered sufficient to just use this calculated flexi~
bility matrix in a subsequent dynamic study without checking it against
statical measurements on the laboratory model, even though this required much
careful work. The work was systematically done, and measured flexibility
matrices for three loading conditions showed good agreement with calculations,
as shown in Fig. 3.3. In both calculations and measurements, the influence
coefficientsy(flexibility matrix elements), were obtained by the secant to
an influence load equal to 12.5% of the total D.L. on the bridge, which was
applied at one station at a time. It can be said that we have here a satis-
factory method of obtaining a flexibility matrix.

The iterative procedure was used to calculate the first three modes of
vibration. The model has nine degrees of freedom; in the 1aborat0ry,only
the first two modes could be excited and measured. The frequencies were
measured by direct counting and using a stop-watch, while the amplitudes
were measured using dial gauges with some additional accessories, designed
by the writer with the aid of technical staff to stay in the position of
maximum amplitude’(Fig. 3.4).

A comparison between calculations and measurements is shown in Figs.
3.5, 3.6, for the D.L. condition and for one L.L. condition, from which it
can be seen that the agreement is good for the D.L., condition,(Fig. 3.5),
for both the frequencies and the mode shapes. For the L.L. condition, (Fig.
3.6), the frequencies agree well but the modes seem to be somewhat shifted.

For the D.L. condition, (Fig. 3.5), the fundamental mode, being anti-
symmetric, is what may be called a "non-stretching mode", that is, there is
no cable stretch, and there is a good agreement between the measured and
calculated frequencies and mode shapes. The second mode is a symmetric
"stretching mode", (one involving cable stretch), and also there is a good

agreement between measured and calculated frequencies and mode shapes. The
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third mode was only calculated and could not be measured. It was expected
to be antisymmetric with two complete sine waves, but it was not found to
be quite so. The reason, perhaps, is the impurities accumulated from the
first two modes in the sweeping matrix which is calculated to get the third
mode. Although the third mode is not thus accurately calculated, the
designer may still be glad to have an estimate of it.

An estimate for the fundamental frequency was obtained using Rayleigh's
quotient with a guessed mode having one or two sine waves, which gave nearly
the same value as obtained by the iterative procedure. This emphasizes the
fact that Rayleigh's quotient gives a good estimate,(an upper bound), for the
fundamental frequency for a large margin of guessed modes, (Ref. 2.10, pp.
86-88) .

For the L.L. condition, Fig. 3.6, the first three modes were calculated
and again only the first two were measured. Reasonable agreement was
obtained regarding the measured and the calculated frequencies. In the
laboratory, the first mode was excited,(with the hand), as in the D.L.
condition, at %—= 0.25 once and %-% 0.75 another time, and the average mode
shape was obtained. But, as is clear from the calculations, the mode is not
antisymmetric; it has deflections on the loaded side of the span greater
than those on the unloaded side, causing some stretch in the cable. It was

noticed that exciting @ mode from one position only produces larger ampli-

tudesy (or excessive displacements),in the vicinity of the excited position,

and so it becomes more suitable to excite each mode at the position of maximum

deflection, (or nearly so). For that reason, the mode excited at %-= 0.75
shows better agreement with measurements as in Fig. 3.6a. The maximum

deflection seems to be not exactly at % = (0,75 but shifted a bit to the left,
i.e. a little away from the loaded zone. The second mode also has maximum
deflection some distance away from the loaded zone.,

The third mode, as calculated, seems again to be not reliable; the
iteration method is thus not recommended for getting more than the first
two modes, especially when the number of the degrees of freedom of the system

is more than three or four.

3.5 VARIATION OF FREQUENCY WITH LIVE LOAD

This may be of importance for real suspension bridges. It appears to
go unmentioned in the literature.

The influence of imposing L.L. on the bridge, on the frequencies of
the first two modes, was investigated. Three peint-loads, each equal to P,
acting at %~z 0.5, 0.6, 0.7 from the left support were used, varying from
P =0 until P = 16 x 9.81 Newtons in increments of 2 x 9.8l Newtons. The

first two frequencies were measured and calculated for each loading condition
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and an estimate of the fundamental frequency was also evaluated using

Rayleigh's quotient. The results are shown in Fig. 3.7.

Before discussing Fig. 3.7, the following must be realised.

(1)

(ii)

For the usual elastic structure, more mass gives lower frequency
if all the other factors are the same, which really means if

the stiffness matrix goes unchanged.

For a suspension structure, more L.L. means greater stiffnessy,

(according to Fig. 3.8), and this gives higher frequency.

(iii) More L.L. gives more cable stretch due to vibrations, and more

cable stretch also means more stiffness,(Fig. 3.8), and this

yields higher frequency as in (ii) above.

Now Fig. 3.7 can be explained as follows:

(1)

(2)

The fundamental mode, which is generally a non-stretching mode,
(although some stretch happens for high L.L.), has an increasing
frequency with increasing L.L. due to increasing the stiffness,
(as in (ii) and (iii) above), which seem to dominate over the
effect of increasing the mass. This is, actually, seen from
measurements and calculations, and also from the application of
Rayleigh's wuotient.

The second mode, which is a stretching mode, has a frequency
which decreases with increasing L.L. according to (i) above.
The effect of increasing the mass seems here to dominate over
the increase in stiffness due to both the static L.L. and the

stretch due to vibration.

It is clear from Fig. 3.7 that the calculated frequencies are
less than the measured ones for both the fundamental and the
second modes. This is expected since the calculated flexi-
bility coefficients are higher than those measured as shown in
Figs. 3.3. The reason of this discrepancy is perhaps due to
the inaccuracy in measuring the bridge properties and dimensions
like AE, EI, ... etc.;which were used in calculations. The
difference between measurements and calculations, especially in
mode shapes, may be due to the following reasons.
(i) The analysis is based on free-undamped vibrations, while
the system was excited by the finger, and has some damping.
The dial gauges, which were used in measuring the ampli-
tudes, also participate in damping the oscillations.
(ii) To get correct results, we should excite the system in a
natural mode, otherwise we will get a combination of

different modes. But actually the model was excited by
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finger* from one position only** and not from all the
stations.
(iii) The iterative procedure is based on using real matrices
which have real eigenvalues and eigenvectors, and this
can be only guaranteed for symmetric matrices. The
flexibility matrix of our model is in the first place a
- fairly drastic simplification of real non-linear behaviour.
Moreover, it is not symmetric, and also it is singular or
nearly so. It is though not very far from symmetric, and
this is the reason for giving adequate results for the
first two modes.
(iv) The model itself is not exactly symmetric since backstay
No. 1,(on the double lever side), is shorter than backstay
No. 2,(resulting in some difference in the tower top
movements and consequently the flexibility coefficients).
Also, there is a rigging screw in the first segment of
the main cable, (from the double lever side), while there
is no such rigging screw on the other side, and this affects
the flexibility coefficients.
(v) There may be some inaccuracy in measuring the vibrational

mode shapes and frequencies.

3.6 STRESSES DUE TO VIBRATIONS; INTRODUCTORY REMARKS

One may ask: what is the use of studying the vibrations of structural
systems and getting their mode shapes and frequencies? The answer is simple:
vibration causes altermating displacements and strains, which in turn cause
alternating stresses, and these yield the possibility of local fatigue of
the structure,or of overall failure. Also, the first Tacoma Bridge was
safe against static wind loads, but it was aerodynamically unstable due to
ignoring the aerodynamic action of wind,(Ref. 1.6, pp. 362-363).

The foregoing analysis was based on free~undamped vibrations, which is
a simplification of the problem of a real suspension bridge, and of our
laboratory model as well. Damping may be regarded as small and having
little effect on the magnitudes of the natural frequencies of the systemy
(but large enough to limit the resonant amplitudes to measurable bounds) .

In summary, if the exciting forces are ignored, the natural frequencies

and the normal modes can be obtained. However, if the exciting forces are

*  Mechanical excitation could not be used because of the low frequencies
of the model.

*% Position of maximum displacement.



60

known, they may be introduced as a column vector on the R.H.S. of Eq. 3.1;
the equation can be solved to get the actual magnitudes of the displacements
instead of just their ratios to one another, (Ref. 3.3, pp. 86-87).

The magnitudes of the amplitudes are thus calculated from the equation
[m][X] + [k][X] = [F] , where F is the harmonic forcing.

Once the deflection curve becomes known, it can be differentiated
twice to get the curvature diagram,(of the deck), then the bending moment
diagram, (or the strains), and finally the stress distribution due to vibra=-
tions. This amounts to saying that a mode of vibration, with known ampli-
tudes, determines shape, shape determines strains and therefore stresses.

The above is what the designer needs. He will specify his materials
of construction by deciding whether the structure is safe or not against
these fluctuating stresses due to vibrations. The Australian Standards of
1968,(Ref. 3.4), for example, limited the maximum working tensile (or
compressive) stresses in the case of fatigue,(with equal tensile and
compressive stress at each section), to 4.3% to 27.1% of the yield stress
of the material of construction, for a life equivalent to 100 x 10 cycles,
according to the efficiency and care in censtruction and erection.

Sometimes, an unwanted or dangerous mode of oscillation can be

restrained by ties. This has been done for some bridges.



CHAPTER 1V

DYNAMICS OF SUSPENSION CABILES AND NETS

4,1 INTRODUCTION

This chapter contains ideas and methods directly useful for designers
of suspension roofs and suspension bridges. The first example represents
the suspension cable: a case of a suspension bridge during erection with
its cables extending between towers with the deck not yet suspended or not
yet connected up. In the second example given, the suspension net, we are
concerned with both the gravity stiffness and the elasticity of the cables
(since there is no deck). So we are facing the basic action of a set of
hanging wires and gravity.

The statics of suspension cables and nets was previously studied by
the writer, (Ref. 4.1), as well as by many other authors, (Refs. 4.2-4.7).
Their dynamics have also received considerable attention, (Refs. 4.8-4.11).
In Ref. 4.11, for example, plane cables only were studied and were assumed
to be inextensible in the calculation of the influence coefficients.

The aim of this chapter is to present a quick study of the dynamic
behaviour of suspension cables and nets. Measurements of the natural fre-

quencies and modes of vibration are compared with the results of calculations.

4.2 THE SUSPENSION CABLE

The suspension cable only of the laboratory model of the single-cable
bridge was first studied briefly using the iteration method. The flexi=
bility matrix was calculated for the cable using Timoshenko's energy method,
(Ref. 1.14), by putting the deck stiffness, EI, equal to zero.

A comparison was made between the dynamic response of both the entire
bridge and the cable alone,(bridge without deck), carrying the same loads,
Figs. 4.1~4.3. It is clear from the graphs that both systems have nearly
the same dynamic characteristics. The cable seems to have slightly lower
frequencies than the bridge for all cases of loading. This is because the
deck,; no doubt, increases the stiffness of the structure slightly, and

consequently increases the natural frequencies.
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The mass of our deck is small compared to the masses hanging on the
cable, and so it does mot lower the frequencies of the bridge, considerably.
Thus the difference between the frequencies of the bridge and the cable is
not considerable because of the low stiffness of the deck.

Fig. 4.4 shows the cable frequency versus the loaded length of a
given L.L. It can be seen that maximum frequency for mode 1 and minimum
frequency for mode 2 are obtained when the L.L. is spread over half the span.
It can also be seen from Fig. 4.5 that moving the load towards the centre of
the span increases the fundamental frequency and lowers the frequency of the
second mode. Generally it appears from Figs. 4.3-4.5 that any increase in
the fundamental frequemncy, due to any change in the loading conditions, is
always associated with a reduction in the frequency of the second mode.

From Fig. 4.6 it can be emphasized, as was noticed in chapter III, that
the application of L.L. makes the amplitudes under the L.L. greater than the
corresponding amplitudes if the L.L. is absent. Also, it is seen that when
a L.L. is covering the entire span, the mode shapes are similar to those of
the D.L. condition, with slight reductions in the frequencies due to the

increase in the mass which seems to dominate over the rise in the stiffness.

4.3 THE SUSPENSION NET
4,3.1 General

A paraboloid surface, square in plan, was built with rigid boundaries

and three high tensile steel wires in each of the two orthogonal directions,

normal to the sides of the rigid square boundary. All the wires have
positive dip-span ratios of 0.10. The nine intersections of the cables
form joints at which the dead and live loads were applied. It is to be noted

that the intersections of different cables with each side of the square
rigid boundary are located on a parabola similar in shape to the wire
shapes, as shown in Figs. 4.7, 4.8.

Wires 0.56 mm in diameter were used with a yield stress = 2000 Mpa =
ultimate stress. The D.L. at each joint is 3 x 9.81 Newtons.

Analytical and experimental studies were carried out on the dynamic
response of the model for the D.L. condition only. The same procedure can
easily be applied to any L.L. condition as previously dealt with in both

the single~cable bridge and the suspension cable.
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(a) General View

(b) 75}3 View

Fig. 4.7 . Laboratory Model of the Sus/oensian Net.
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The flexibility matrix of the system was measured and also calculated
as the slope of a secant to an influence load = 3 x 9.81 Newtons, which is
equal to the D.L. per joint.

The frequencies and modal shapes of the first two modes of vibration
were measured using an oscilloscope and the dial gauges with its accessories
shown in Fig. 3.4.

Calculations using either the measured or the calculated flexibility
matrix showed good agreement with the measured first two modes. Fig. 4.9

shows a summary of the analytical and experimental results.

4.3.2 Measured Flexibility Matrix

The flexibility matrix of the model was measured. It is, as expected
for a suspension structure, not symmetric, but yet it is not far from
symmetric. A symmetric flexibility matrix gives real latent roots, but

our slightly asymmetric flexibility matrix may, or may not, give some complex

latent roots.
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However, the iteration procedure was carried out to get the first
two modes and their frequencies using both: (a) the asymmetric flexibility
matrix as it is; and (b) a flexibility matrix made symmetric by taking
the average of the off-diagonal elements.

It may be seen, from a first inspection, that the structure has nine
degrees of freedom, but if the extensibility of the wires is neglected, the
number of degrees of freedom of the system reduces to only three (= 9 joints
x 3 deflections per joint - 24 inextensible wire segments).* This means
that we can have only three modes of vibration. However, only two 'good"
modes could be obtained both analytically and experimentally.

The iteration procedure gave nearly the same results for both the
asymmetric matrix as it is, and the matrix when made symmetric by taking the
average of the off-diagonal elements. Both modes agree well with the
measured mode shapes, while the measured frequencies are remarkably less
than the calculated ones (by 12% for the fundamental frequency and 20% for
the second frequency).

Nearly the same results could be obtained by solving the problem, by
computer, by getting the latent roots and latent vectors using the Jacobi
method for symmetric matrices, (Ref. 4.12, ch. 10). Even when the asym-
metric matrix was solved as it is (without the averaging procedure) it gave,
using the Jacobi method, nearly the same solution as when it was made
symmnetric. It is obvious that the reason is that our flexibility matrix
is not very far from symmetric.

However, to check the validity of Jacobi's method as applied to our
asymmetric flexibility matrix as it is, the characteristic equation of the
system was obtained using the Krylov method, (Ref. 4.12, ch. 10), and the
roots of the polynomial were found and showed good agreement with the other

methods of calculation mentioned above, (iteration and Jacobi methods) .

4,.3.3 Simplification of the Solution

The solution of the problem can be greatly simplified making use of
symmetry and antisymmetry, as well as some experimental observation. The.
first mode may be obtained, very quickly, by solving only one equation in
one unknown., Similarly, for the second mode, the problem can be reduced
to an eigenvalue problem of a 3 x 3 matrix, or to solving three equations
in three unknowns, which can also be carried out in almost no time.

This simplification can be done using the symmetric 9 x 9 flexibility
matrix. The results of this method are exactly the same as those of the

iteration, Jacobi, and Krylov methods, which were used in solving the problemn.

It is worthwhile to point out that the flexibility matrix of the suspen~
sion net has been also found singular. This is, perhaps, the reason

for getting some complex latent roots, (i.e. complex frequencies of
vibration).
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A description of the method is given below.

Referring to Fig. 4.10, let the flexibility matrix of the net be
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Making use of reciprocity and symmetry of the influence coefficients about
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all the axes 1-1, 2-2, 3-3, 4-4, we can write

$
11

$

13

15

16

19

22

24

25

28

55

12

S
33

= 0

14
S

41
S

17

$
71

535

653

6].8

581

637

673

544

$26

662

45
854

46

864

655

677

632

S
23
693
639
675
657
634

%43
91
66

84

48

65

56

82

$
99

636
S

97

679

95
$

638

683

88

86

68

85

58

63

59

(4.2.1)
74~ %98 = %96 = S9g
. - . _ (4.2.2)
47 = %877 S69 T Sgg = Oy
31 (4.2.3)
- (4.2.4)
72 7 976 T 895 T Sq,
_ _ _ B (4.2.5)
27 = %67 7 929 T 849 T %61
(4.2.6)
(4.2.7)
(4.2.8)
42
(4.2.9)
52
(4.2.10)
(4.2.11)

Thus, the number of the different elements in the flexibility matrix

reduces to 11 in place of its 8l elements. The flexibility matrix can,

thus, be written in full as
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w)7l= 1 015 825 O15  bas  8ss  Sas 815 a5 15| (4.3
016 O S12 O3 S25 S22 b1 w012
613 516 d19 819 815 16 O11 o172  S13

016 38 D516 O3, S5 Sz S12 S22 12

019 916 513 016 815 S12 813 812

The equation of free undamped motion, using the flexibility matrix,

(Eq. 3.3), is repeated here again

[X] = w?[k)" ). [m][X] (4.4a)

- For the D.L. condition, [m] = 3[1I], where [I] = the identity matrix;
and the D.L. at each joint has a mass of 3 kg. Thus Eq. 4.4a becomes

[X] = 3?[Kk] 1. [X] (4.4b)

(i) First Mode

For the first mode, it can be noticed from the experimental observa-
tions, or from any analytical procedure, that that mode has equal amplitudes
at the four corners with each of the two displacements on the same diagonal
having opposite signs to the other two (of the other diagonal), while all
the other five joints are stationary.* Thus, for the R.H.S. of Eq. 4.4b

we can put

This means that the fundamental mode shape takes the form of a hyperbolic-
paraboloid, with equal central sagging and hogging rises (= amplitude
of a comer joint). The axes of symmetry of the surface are 3-3 and
4-4, (Fig. 4.10), while 1-1 and 2-2 are axes of antisymmetry (on which
all points are free from displacement). In the language previously
used, it is non-stretching.
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[x] = 0 4.5)

Substituting from Eq. 4.5 into the R.H.S. of Eq. 4.4b gives

X3 A
Xy 0
X3 A\
Xy 0
X5 = 3w? [k]m1 . ’ (4.6)
Xg 0
X+ -1
Xg 0
_Xg _ <A

Eqs. 4.6 are, actually, nine equations in the nine amplitudes of the

vector [X], which can easily be solved by direct multiplication of the

R.H.S. Making use of the simplified matrix [k]-_1 (of Eq. 4.3), Eq. 4.6
yields

Xi = X3 = X7 = Xg = 3w? (811~ 2613 + 819) . (A) (4.7a)
and X2 = Xq = XS = X6 . Xg =0 (4.7b)

whexre A is the numerical value of the corner amplitude that can have any

value, (e.g. A = 1).
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Substituting for the measured elements of the flexibility matrix

3

8,4 = 0.2423 x 10 m/N )
S . = -0.1341 x 107 a/N ) (4.7¢)
13 T o3 )
8,9 = 0.0696 x 10 w/N )

If the vector [X] of Eq. 4.5 represents the final correct shape of
the fundamental mode, it can, thus, be substituted into the L.H.S. of Eq.
4.6. Thus Eq. 4.7a ?ields

23.97 rad./sec.
3.815 Hz

€
i

which are the same as the results given by the other analytical methods.

(ii) Second Mode

In the same manner, experimental observation, or analytical study,

may lead us to guess the shape of the second mode, making use of symmetry

about the four axes of Fig. 4.10. Thus, [X] can be substituted in Eq.4.4b
as '
X1 TA T
X A,
X3 Ay
Xy Ay
[x] = X5 = 1 (4.8)
Xg By
X7 i3]
Xg uy)
. Xg_ _ A

where, in the second mode, the displacements of the four corners are
assumed to be equal and each of which = A; . Also, the displacements of
the four mid-sides are assumed to be equal and each of which = A, , while

the central displacement, X5, can have any other relative value, say 1.
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Substitution from Eq. 4.8 into Eq. 4.4b gives nine equations in which

(a) the 1lst, 3rd, 7th, 9th equations,(representing the four corner joints),

are identical and yield

Ay = 302[(8y7 + 2813 + S19) Ay + (2875 + 2876).Ap + 815.(1)] (4.9a)

(b) the 2nd, 4th, 6th, 8th equationsf(representing the four mid-sides) are

identical and yield

by = 3m2[(2512 + 281g) A1 + (S9p + 2851 + Spg).lo + So5.(1)] (4.9b)

(c) the 5th equation, representing the central joint, yields

1 = 302[(4815) Ay + (4855).Ap + S55.(1)] (4.9¢)

Thus we have only three equations in the three unknowns, A1, Ay, w.

These equations can be rewritten in the form

aj; =X o a13 | Ay 0
a1 Opp = A 023 c | d2| = 0 (4.10)
431 032 agg~ x| k1 -0

which is an eigenvalue problem where

apy = 611+ 2873 + 819 ' | (4.11a)
a1 = 2830 + 28714 = ap) (4.11b)
13 = 815 = qgp ¥ 4 ' | (4.11c)
Opo = 8gp + 2824 + Sy (4.114d)
ar3 = 8o5 = ggp ¥ (4.11e)
a3z = 855 (4.11F)

A= 1/(3w?) (4.11g)
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It can be noticed that the square matrix on the L.H.S. is not sym-
metric, but, to become symmetric, the third row needs to be divided by 4.
This, again, will give us A/4 instead of the usual A of the eigenvalue
problems. This is due to the 4:4:1 nature of the assumed mode which leads

to a kind of 1:1:4 in the final matrix.

(1) An Approximate Solution

An approximate solution can be obtained using Jacobi's method which
solves the case of a symmetric matrix. Although the matrix is not
symmetric a good approximate solution could be obtained, using the following

information, in addition to those given by Eq. 4.7c.

.3
812 = _ 0.0788 x 10 m/N )
& )
51; = 0.0381 x 10 m/N
.3 )
515 = 0.0250 x 10 m/N
; )
8pp = 0.2351 x 100 m/N )
23
Sou = 0.0248 x 10 m/N ) (4.11h)
23 )
Spg = = 0.1264 x 10 m/N
_3 )
895 = - 0.0790 x 10 m/N
5 )
855 = 0.2263 x 10 m/N )

The solution of Eq. 4.10, thus, gives the following three values of A :

A1 = = 0.00635
Ao = 0.0563
Ag = 0.3784
Here, Aj gives a complex frequency which is to be refused. Also, Ap

is not accepted since we must take the highest value of A(i.e.A3) to get
the lowest value of the second frequency. Using A3 we get

f=4.,724 Hz

which is almost the same as that given by other analytical methods.
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Substituting for xﬁzﬁa in Eq. 4.10 we get, for the second mede,

Ay 0.178
Ay | _ |- 0.425
As 1.000

which is, again, similar to that obtained by other methods of analysis.

(2) Other Solutions

Eq. 4.10 can be solved by writing down the characteristic equation

which, after some manipulation, reduces to

A3 — 0.4287)2 + 0.01858X + 0.000136 = 0 4.12)

A rough solution to Eq. 4.12 can be obtained very quickly using only

the first two terms, which give

0.4287

)

f

4.44 Hz (6% less than the correct value)

A better solution can be obtained using the first three terms of Eq. 4.12,

giving

A1 0.0489 (to be refused)

i

Ao = 0,380, f = 4,714 Hz (which is nearly equal to the correct value).

The correct value of the second frequency is obtained using all terms

%
of Eq. 4.12 in solving the third order polynomial equation , getting

A1 = - 0.00635 )
) to be refused as before
Ao = 0.0563 )
A3 = 0.378 , f = 4.726 Hz which is again close to the foregoing

solutions.

See Ref. 4.12, chapter 8.
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4.3.4 Calculated Flexibility Matrix

The flexibility matrix of the suspension net can be calculated using
any of the methods referred to in section 4.1 for the analysis of suspension
nets. A quick approximate method used here by the writer gave geod agree-
ment with the measurements of the fundamental mode and the calculations of
the second mode.

The method is based, approximately, on considering that an influence
load at a joint is only carried by the two cables intersecting at that
joint. For the corner joints 1, 3, 7, 9 and the central joint 5, the
influence load at a joint is carried equally by the corresponding two cables
intersecting therein. For other joints 2, 4, 6, 8, the influence load at
a joint is distributed between the two cables intersecting at that joint,
such that the joint deflection is identical when calculated from either
cable, Fig. 4.7. _

Timoshenko's method of 1930, (Ref. 1.14), was again used here for calcu~-
lating the influence coefficients of each individual cable, putting again
EI = 0 in the energy equations. Symmetry of the structure was then made
use of, to complete the flexibility matrix of the net, bearing in mind that
the influence load at a joint is assumed to be carried only by the two
cables intersecting at that joint, while other joints have zero coeffi~
cients. So, for our model, we have five non-zero elements and four zeros
in each row of the flexibility matrix. Charlton and Drakeley used only
the diagonal elements of the stiffness matrix of the suspension bridge in
a recent approximate method, (Ref. 1.18).

The so-called flexibility matrix is not symmetric, but it is not far
from symmetric. Also, it is an approximate matrix, and so there is no
need to keep it asymmetrié as it is, but it can be made symmetric by taking
the average of the off-diagonal elements to simplify the solution.

The results calculated by this method, using the iterative procedure,

are shown in Fig. 4.8. The flexibility matrix used has the following form:
517 812 813 S12 0 0 813 0 0 ]
§12 S22 S12 = O 825 0 0 S28 0
813 S12 611 0 0 12 0 0 813
[k]”1 = 6812 0 0 822 835 6z O12 0 0 | (4.13)
0 825 0 625 855 825 0 825 0
0 0 Sz 68 25 022 0 0 812
613 0 0 812 0 0 811 812 613
0  Syg 0 0 825 0 612 S22 d12
Lo 0 §13 0 0 §12 S13 612 611 |

m wh ich
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i

i.e. we have only

are zeros.
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877 = 899 (4.14.1)
632 = 836 = 873, = 878 = 896 = 89y
623 - 663 = 6[*,7 = 687 = 669 = 689 =3 6?1 (4014.2)
693 = 897

(4.14.3)
839 = 879 = 833
See = dgg (4.14.4)
Sg5 = 8gs

(4.14.5)
656 = O5g = 852

(4.14.6)
Sg2

) (4.14.7)

seven different elements in the matrix, while 36 elements
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4.4 SUMMARY OF RESULTS
The following table summarizes the frequency results of the cable
net.
Measured
Calculated Frequencies (Hz)
Calcu.Flex.
Measured Flexibility matrix matrix Frequencies
B3 IterationrJacobi Roots of |Simplified | (Iteration)
Ch. Eq. |Solution (Hz)
Mode 1| 3.82 3.82 3.90 3.82 3.34 3.4
4,73 4.73 | 4.72 4,724 @ 4.66 3.9
b
Mode 2 4.726
4.714°¢
444 9
matrix
matrix 9 x 9 1x1(mode 1) matrix 9x9
or

3x3(mode 2)

a Solution using Jacobi method for solving eigenvalue problems
with symmetric matrices.

b Roots of the characteristic equation using all the four terms.

c Roots of the characteristic equation using only the first three
terms.

d Roots of the characteristic equation using only the first two

terms.



CHAPTER V

TWO-CABLE BRIDGE: STATICS

5.1 INTRODUCTION

The static structural action of a suspension bridge is three-
dimensional. Observation shows that heavy off-centre live load twists
the deck. However, there is not much published on the analysis of the
suspension bridge as a three~dimensional structure. Nearly all the
previous work tackles the problem of the suspension bridge as if it is
a plane structure. Only three papers on the torsional analysis of sus-
pension bridges could come to the hands of the writer, (Refs. 1.25, 1.26,
5.1). In Refs. 1.25, 1.26, the authors resolve asymmetric loads into
symmetric and antisymmetric components. In Ref. 5.1, the author analyses
the bridge under a point torque or a uniformly distributed torque over a
part of the span.

Present day designers of the great suspension bridges, and the
designers of the past, must have had their methods of torsional analysis
as applied to bridge decks and the stiffening girders. Certainly, torsional
frequencies of oscillation are quoted, but not the methods of obtaining them.
It appears that the static strength of a modern suspension bridge, under
static live load, whether designed in America, Japan, U.K., or Europe, is
provided by designing with respect to a single-cable analysis. Then
aerodynamic stability is achieved by ensuring that aerodynamic excitation
by shed vortices or the like is not coincident with a natural frequency in

either flexure or torsion. (See also Chapter VII).

Timoshenko's method of 1930, (Ref. 1.14),1is extended by the writer
herein to solve the problem of the two-cable bridge, i.e. to allow for the
torsional stiffness of the bridge deck. It is recommended as a design
procedure, in view of its simplicity, and the way in which design modifi~
cations can be incorporated readily. Its main parameters are cable stiff-
ness in tension and deck stiffness in bending and twisting. The writer
has checked the method against the detailed measured behaviour of a fairly

realistic laboratory model.
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5.2 DESIGN OF THE LABORATORY MODEL

For a real bridge, the span is chosen according to the crossing and
the geology of the site as well as economical considerations. The width
of the bridge depends on the requirements of traffic. Soythe choice is
nearly limited for both the span and the width. Therefore, the design of
the bridge superstructure will include the main cable, the hangers, and
the deck cross section (as well as the towers, of course).

(i) First Trial

For our model let

L = 2,500 m (span centre to centre of towers);

B = 0,250 m (total deck width);

b = 0.200 m (width between centres of cables)*;

t = 2 m (thickness of deck which is a flat plate);
Ho = 800 N (horizontal component of tension in each

cable due to D.L.);

E = 200 x 10° Mpa (modulus of elasticity for the deck
material)

G = 0.4E (modulus of elasticity in shear for the

deck material)

I = 167 mm" (moment of inertia of the deck = B°t3/12);
= 47 (torsional modulus of the deck = B.t3/3):
G.J.= 1.6 EI (for a thin rectangular plate); and
2 HO.LZ )
i 300 g
) (two dimensionless parameters).
G.J L2
E (E- 250)
)

(ii) Comparison with the Forth Road Bridge
The following parameters for the Forth Road Suspension Bridge were
published in Refs. 5.2, 5.3, and are presented here to compare with our

model.

* L/b = 12.5 which is nearly reasonable compared to real bridges for which
L/b ranges usually between 20 and 50. It was made rather small to
ensure measurable torsional behaviour.
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]

1006 m )
23.8 m )
10290 tonne (per cable)

L/b = 42.3

[

Ii

78900 in2 £t2)”
) J/I = 0.269
21200 in? ft2)

0.4E

=
i

it

[

2 .12
— = 230

(iii) Design of Main Cable and Hangers

(a) Dead Load

Using the well~known equation HO = wL2/8D, and the above data
given in (i), and for a dip-span ratio, (D/L)= 0.10, the total dead
load for each cable becomes wL = 640 Newtons.

Let the self weights of the deck, cable, hangers, joints,..etc.

11

0.15 wL. Therefore, the dead weights at nine stations = 0.85 wL
640 x 0.85 = 544 Newtons per cable.
Mass per station = (544 + 9) + 9.81 = 6.16 Kg.

tf

(b) Main Cable

Let h = 0.5 H = 400 Newtons = maximum increase in the hori-

max o ok
zontal component of the cable tension due to L.L.
Therefore H + h = 1200 Newtons.
o max g

Maximum tension in each backstay = (Ho+hmax),v 2 = 1700 Newtons.

Let the factor of safety = 2,
Therefore yield load for each backstay = 3400 Newtons, say 4000 Newtons.
Yield stress of cable material.63_= 2000 Mpa

Therefore cross-sectional area of main cable = 4000 # 2000 = 2 mmZ.

Diameter of main cable ¢C = 1.6 mm.

* Ref. 5.2, p.57.
*% For the Forth Bridge, h = 0,32 H , (Ref. 5.3).
max o

%%% To keep down the overall length of the model, to enable it to be erected
in available space, backstays were designed to be 45° to the horizontal
which is greater than the slope at any section on the main cable.

So the backstay section is the critical section for design.
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(c) Hangers
Let maximum L.L. at any station = 120 Newtons.
Therefore maximum hanger force = 60 + 120 = 180 Newtons, (D.L. + L.L.)
Let the factor of safety = 2 (as in the main cable design).
Yield load for a hanger = 360 Newtons, say 400 Newtons.
Using yield stress for the hanger material, & = 2000 Mpa,
Cross-sectional area of a hanger = 400 % 2000 = 0.2 mm?,

Hanger diameter , = 0,50 mm.

¢h
(d) VFinalization of the Model Dimensions

The model was constructed and erected, using the available
materials, with the following dimensions. Firstly, the deck was

horizontal (without camber).

2.500 m

0.250 m (This was altered thereafter to produce some camber).
0.250 m
0.200 m

t O W o t
I

= 2 mm
1.63 mm
= 0.57 mm

=
0
i

%h
length of backstays: &1 = 0.95 m, 22 = 1.05 m,(average = 1.0 m)
height of tower = 0.850 m

spacing between hangers = 0.250 m

height of camber = 0.0

(AE) = 417 x 103 Newtons,(Axial stiffness of a main cable)

%
GJ = 35 N.m? (Torsional stiffness of the deck Section)%
EI = 56.5 N.m? (Bending stiffness of the deck section)

Lumped mass hung per station = 6.0 Kg, (for D.L.).

The horizontal component of the cable tension Ho, in each cable (due
to D.L.), was measured, for the above profile with no camber, and gave an
average value = 800 Newtons, which is the same as the design value.

A real bridge has some camber. To get a camber, either of the

following two methods can be used.

(i) Shortening the hangers to get the required deck profile while the
cable length and sag, and the length of backstays, are kept unaltered, or

*  These are the average measured values. TFor details see Appendix at the

end of this chapter.
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(ii) Decreasing the sag (and consequently the cable length), while keeping
the hangeré and backstays unchanged in length. In this case, the deck

profile will have a paraboiic shape if the cable is also so.

The second method is the one used by the writer. The sag D was
reduced to 0.235 m to produce a camber with a central rise = 0.015 m = L/167,

Fig. 5.1.* This increased HO to 846 Newtons (= 800 x 250/235).

* * %

The horizontal component of each cable tension is measured by a single-
lever system as shown in Figs. 5.1. The tower legs are separate. In other
words, each cable is supported at, more or less, a separate tower each side.
This makes it possiblé to ignore the torsional stiffness of the towers in
both the analysis and the physical behaviour of the bridge model. This is
unlike what happens in real bridges, where the tower legs are braced

together, but our model is rather a simplified one.

5.3 METHOD OF ANALYSIS

As previously mentioned, Timoshenko's method is extended herein to
evaluate the potential energy of the deck in terms of the increase in the
horizontal components of the two cable tensions, h; and hy, using a Fourier
series analysis for the vertical deflections of the deck. The strain
energies of the cables can then be evaluated, which may give the values of

h; and h; somehow. The method can be outlined as follows:

Total potential (and strain) energy of the deck, U, is:

Ky

L K L L v Loy
U = fj M.dKdx + ff M .dK_ dx + ff (q1 -dx)dv, +ff (a5 .dx)dv,
0 ¢ 6 g . Y ¢ © 0o d

e v 4 Yy |
,.,J\/ (p1.dx)dvy - ff (pp.dx)dvy (5.1)
o )‘s o

*

For the Forth Bridge, height of camber = L/220, (Ref. 5.2, p.86).
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in which vy, v2 = vertical deflections of cables 1-1 and 2-2, respectively,

neglecting the hanger extensions, due to the live loads

Pis P2 H
v = (Vl + v2)/2 = vertical deflection of the bridge centre
*
line ;
K =v" = d2v/dx? = curvature of the deck centre line in the span-

wise direction *;
vl, v) = dv;/dx, dv,/dx, respectively;
" "

v, v, = dzvlldxz, dzvzldxz, respectively;

M = EIK = EIv" = bending moment in the deck in the longitudinal

direction;
vy - V2
-4 (dv, _d_ = (v' - !
ny ax (dy Ix ( T— (v) vy) /b
= twist in the deck assuming no lateral curvature;
Mt = GJ.Kxy = GJ.(vi - v;)/b = torsional moment in the deck;
hl’ h2 = increments in the horizontal pull in cables 1-1, 2-2,

respectively, due to live load;
Bis By = h1/HO, hz/Ho, respectively;
q, = Bw - Ho(l +8y) . VY = portion of live load, p,, carried

by cable 1-1; and

q, = Byw - Ho(l + 8,) . vg = portion of live load, p,, carried

by cable 2-2.

Thus Eq. 5.1 becomes

L L L o
U =EI fj V'dv'dx + 2 jf (v! - vDd(v! - v)dx + ff ' (q,.dx).dv

L v %, Y X, %
+ ff (qz.dx).c.’tv2 - [f (1,:>1.<11~:)t.’tv1 - ff (pz.dx)dv2 e (5.2)
9 o _ % o #3 o

where x , x , x , X are defined as shown in Fig. 5.2.
1 2 3 L

* In the transverse direction, the deck is assumed to be straight, with

v = XJ—%—EZ , since the deck is narrow compared to the span. For other

cases where the transverse bending of the deck is not negligible, its

potential energy must be included in Eq. 5.1.



92

“ in LTX _ o iTx
Put vy = Zai sin — 5 vy = )’bi sin T

. oo T imx S imx

vy I Zlai cos =, v, I Zlbi cos ==

vl = - (-'{L)2 £i2a, sinit® ; = (11)2 £ 12b, sin X

1 L i L: ? R | L

- V" - V'll + V2 _ ;/(___) { Ziz( + b ) sin _J:E}..(_
5 ——— a; A I

where a, and bi are Fourier coefficients.

It is worth stating here that the unknowns in this analysis are the

cable deflections vy and Vs which are both Fourier series.

If the potential energy U is differentiated with respect to a Fourier

coefficient ai, Eq. 5.2 gives, for stationary potential energy,

I "
0 = B—U—i = EIJr "‘-—— dx + = of (v{ - vz')dx. (v - v') +f qldx *—-i“
2otz
+fq2dx.*é'aﬂ pldx. pzdx. ceoee (5.3)
© i
av" m, 2 . dmx
where -a—;i:- = - 35(1—) . sin <y~
i
ovi ¢
imx
5a, - @) - cos ;
i
dvy = sin 1—“1:-}5 & and
da,
i
vy ) V2 g
sa, da
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Thus, after some algebra, Eq. 5.3 reduces to

o . 8 ; '
im L|.EL ,im, 2 GJ ETI ,im, 2 GJ
D SIS rezti,Q+e] . a +FEE) -z ] - by

= [p; (cos

iTrx1 - cos ¥ )~31W (1 - cos im )]
L i

Similarly, using

ov'" 4. s D . X
_— T2 (EE) sin X ’
ob, L g L
vy . vy P
o S L
Bbi Bbi
v
av2 = _if imx : and

Bbi (_f) . cos =

2 . dmx
=S

ceee(5.4)
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and for a stationary potential energy, we can write

o 3 o 2 : T 2
dm L |EL im= _GJ EL  im GJ
(L ) . 2 [ L| (L ) b? ] L ai + [ L), (L ) + B’z‘ + HO (1 + B2)] . bi
imxg iTrxJi
= [ py (cos [ - cos ) = Bow (L = cos im ) ] e..(5.5)

Egs. 5.4, 5.5 can be written in the form

. } | (5.6)

i i

which can, easily, be solved in the two unknown Fourier coefficients ai, bi’

where

o _ o in3 L (BT im 2 | GJ .
Cidy =G .75 @) +gzr+HE A +B8D] 3
*15). = im 3 L El.(iﬂdz ) 1= .

12); =G -5 5 G gz 1= Ca), s

3 .
o _Jimw L EI dim2 ., GJ .
(22)i - (']-jm) "é‘[q (L) +~bq2>+HO (1+82)] 5
o ' inrx imx
= 1...,. 2Y e - 1 .

( 10):.L [p1 (cos T cos _TT“J Biw (1 = cos im)]
o _ inxg _ imx
( 20)1 - [p2 (cos L cos —ETEJN Bow (1 = cos im)]

To summarize the mathematical treatment so far: the shape of each
side of the bridge has been written as a Fourier series, one side having
the coefficients ass the other side having coefficients bi' These are
the unknowns. When the a; and bi are known, we have deck curvature and
twist everywhere, hence bending moment and torque. The equations involve
deck bending stiffness EI and torsional stiffness GJ. They also involve
the increase in the horizontal component of both the cable tensions, h; ,
h,, which appear non-dimensionally aa B, = hl/Ho and B, = hz/Ho’ respec-

tively.
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It is obvious from Eq. 5.6 that each pair of the Fourier coefficients
a;s bi is totally independent of the other pairs, and so any number of the
Fourier coefficients can easily be calculated according to the desired
accuracy. For practical purposes, it has been found by the writer that

only five, or even four, Fourier terms for each cable are quite sufficient.

If X, = xg, x, = 3@, and P, = Ez’ the bridge becomes loaded symmet-
rically about its longitudinal centre line, and so }? =}% and v, o= v,
and consequently ai = bi' In such a case Eqs. 5.4, 5.5 become identical
yielding

inxy _ imxp, - :

a, = p; (cos —— ~ cos o ) Bw (1 - cos iw) (5.7)

im3 L orprdmy?

GO - F EIGDT +H @+ 8]

which is exactly the same equation as that given by Timoshenko for a single-
cable bridge, (cf. Eq. 2.21 given before in Chapter II), a useful check.

It should be noticed that the torsional stiffness term GJ/b? will
disappear if a; = bi’ since it has opposite signs in the coefficients of

each (as shown in both of Eqs. 5.4, 5.5).

* *® *

As stated before, the foregoing analysis is based on knowing the
values of hj and h2, or alternatively the ratios B, and B,. Similarly
to the case of a single-cable bridge, B; and B, may now be obtained from
the potential energy equations of both éables. The work done by the
external loads on each cable can be equated to the change in the strain
energy of the cable tension. This can be given, as in Chapter II, accor-
ding to Timoshenko's method, (Ref. 1.14), for cables 1-1 and 2-2 respec~

tively, as follows:

For cable 1-1:

2 a
H - By D", _ 16D B3 i
2 B 8D 1=5@A+"DCE Iy _ 1 55,

me
+ Ei-(l +81) (5 i2a%)
Yi=1,2,3,... (5.8a)
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and for cable 2-2 <

H 2 b
) B2 Dy 1 . 16 D Boyey L
aE - 8L AL 8E 1= @A+ A D
i=1,3,5,...
o : (5.8b)
+ o (1 + 8, (2 1%b2)
’ i=1,2,3,...

The problem can be solved if fgs. 5.6 and 5.8 can be solved together
to give both the Fourier coefficients of the deflections of the two cables,
ai and bi’ and the parameters Bl and 82 of the increments of the two cable

tensions.

* * * *

The solution was sought by iteration beginning with guessed £; and
Bo values, evaluating Fourier coefficients from Eqs. 5.6, and then getting
better values for B, and B, using Egs. 5.8, and so on. Unfortunately, this
iterative procedure is not convergent, and the method for solving the
single~cable bridge problem,(involving one Fourier series and one parameter
B for the increment in the cable tension), is not at all directly applicable
here to two sets of Fourier coefficients and two parameters B8, and B, for

the increments in the two cable tensions.

5.4 APPROXIMATE SOLUTION
5.4.1 Introduction

A simplified, but reasonably adequate, solution is presented here by
the writer. It came from studies on the laboratory model.

Initially the increases in the cable tensions were measured on the
laboratory model, and the parameters 81 and Bzevaluated and used in Eqgs.
5.6 to solve for the deflections of both cables.

For a model, it was easy to measure 81 and 829 but for a real bridge,

of course, not so. However, this led the writer to the recommended method.

5.4.2 The Procedure

Where torsion is involved, the method is to calculate 81 and 62,
approximately, from a single-cable bridge analysis, considering that each
lengthwise half of the bridge is carrying alone the entire load on its
side (i.e. usiﬁg half the flexural stiffness EI of the entire deck with

each cable). Then these values of By and g,are used in Eqs. 5.6 to get

the vertical deflections of both cables.
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It was found that a reasonable solution can be obtained using this
procedure if only corrections due to tower movements are added. The pro-
cedure includes, already, the effect of the extensibility of the two cables,
_ (between the towers), in evaluating the values of B; andB, as mentioned
before in Chapter II. This method, although it uses approximate values
for B; and By, showed very good agreement between the measured and the cal~
culated deflections of both cables, for all loading conditions used by fhe

writer, including some rather extreme ones.

5.5 APPLICATIONS
Several loading cases were applied to the laboratory model of the two-

cable bridge to check the validity of the above procedure.

5.5.1 Flexural Loading, Examples F; and F,

Firstly, however, and very much as a preliminary, in order to explore
the properties of the model, two purely flexural loadings were applied.
Here, of course, there is no torsion, and the cables undergo equal increase
in the horizontal component of tension, i.e. B1 = Bo.

A single-cable analysis is adequate,* using cable stiffness equal to the
sum of the stiffnesses of the two cables,'and deck stiffness equal to that of
the entire deck. The solution is carried out exactly as in Chapter II.

The loadings as well as the calculated and the measured deflection curves
are shown in Fig. 5.3, from which it is seen that the agreement is good between
the calculated and the measured deflections for the two loading cases.

In Example F;, the measured value of B was 0.235, and the calculated
value was 0.249. The difference between the two values, (about 6%), represents
only about 1% of the total (design) value of the horizontal component of the
cable tension, H = HO + h= Ho(l + B), which is practically very small.

In Example F», the measured value of B was 0.132, and the calculated
value was 0.144. The difference between the two values, (about 9%), repre-
sents, again, only about 1% of the total (design) value of H, which is again

very small for practical purposes.

% * * ok
The above work was done, and is presented here, in order to prove the
laboratory two-cable model for flexural loading. It is seen that the single~
cable analysis is working well for the two-cable bridge under loadings
causing flexure without torsion. The results are considered satisfactory,

and give confidence in proceeding to torsional studies.

See Eq. 5.7.
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5.5.2 Torsional Loading, HEzamples Ty

The torsional behaviour involves only the additional parameter of the

T2 and T3

torsional stiffness. (This was measured for a portion of the actual deck
and agreed well with calculations,* soy,no difficulty is expected in that
regard.)

It is worth repeating here that we now have two different B values,
one for each cable, and the recommended method for getting them, and also
for evaluating the vertical deflections of both cables, has been stated in
subsection 5.4.2.

Three torsional loading cases were applied to the bridge model as
shown in Figs. 5.4, 5.5, and the bridge was analyéed for each case of
loading using this recommended method (of subsection 5.4.2). It can be
seen, from the figures, that the calculated deflections for both cables
compare reasonably well with measurements.**

The difference between the calculated and the measured values of the
total (design) horizontal component of the tension in either of the cables,
H, for any of the three loading conditions, does not exceed 37%. (Actually

it ranges between 0.3% and 3.0%).

* * * *

An informative check is also available. The parameters Bl and 82
could be measured directly on the laboratory model and fed into Egs. 5.6
to solve for the deflections of both cables. Here, of course, no correc-
tions must be added to the calculated deflections because the measured Bl
and 82 have already been influenced by both the cable extensibility and the

tower movements. The results are shown, for interest, in Figs. 5.4, 5.5.
* * * *

Although it seems perhapsyat first;to be somewhat rough in concept,
the recommended solution showed very good agreement between the measured
and the calculated deflections of both cables. The reasons need consider-
ation. It can be repeated that the approximation introduced is merely for
the purpose of getting values for B, and B,, to be inserted in Egs. 5.6
resulting from energy. Now, firstly, if one of the B values, say B;, is

overestimated,(for example), the other one, BZ’ will be underestimated.

See appendix at the end of this chapter.

To the calculated deflections, corrections are added due to tower move-
ments only. (It has been stated in subsection 5.4.2 that the effect
of the cable extensibility is already included in evaluating the
values of By and 82.)
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When the two values are used in Eqs. 5.6, the resulting deflections v,

will be underestimatedi while v, will be overestimated. (This may be clear
from the simple Eq. 5.7). However, secondly, the added corrections due to
tower movements, as given before in Chapter II, are proportional to the B
values. Thus, because B, is an overestimate, the corrections to v, will
be overestimated, while, because 82 is an underestimate, those of vy will
be underestimated. Thus the corrected deflections are reasonable as shows
from the results of the analysis, because, from the foregoing, for example,

if v, is initially underestimated then it receives a slightly overestimated

correction, and vice versa for v,.

5.6 THE PRINCIPLE OF SUPERPOSITION

As in the case of the traditional single-cable suspension bridge
problems, and also suspension cables and nets in general, the principle of
superposition may be applied without considerable error. Deflection
measurements, (Figs. 5.4, 5.5), and calculations, (Fig. 5.6), support this
conclusion when the resultant deflection curve is due to either flexural,

(Figs. 5.4, 5.6c', 5.6c'™), or torsional, (Figs. 5.5, 5.6c, 5.6¢c"), loadings.

Measurments of the horizontal component of the cable tensions, H,
Figs. 5.7, 5.8, for torsional and flexural loading cases, showed that the
variation of H is nearly linear with the load, and that the principle of
superposition holds also for H as in the case of the single-cable bridge,
(cf. Fig. 2.8, Chapter II).

Fig. 5.9 shows that the variation of the deflections with the load is
not exactly linear, but is nearly so. This is useful in the dynamic study

of the two-~cable bridge.
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APPENDIX TO CHAPTER V

A simple tension test was carried out in order to measure th¢ modulus
of elasticity in both bending and shear (E and G, respectively), as well
as the Poisson's ratio n for the deck material. The specimen was only
30 mm wide, but it had the same thickness as the model deck,(z mm) .
Huggenberger tensometers were used to measure both the longitudinal and

lateral strains, from which the following results were obtained:

E = 200 x 103 Mpa,
u o= 0.29,
_ 005_4“;“: - 3
= z_qfh 77.5 x 10° Mpa.

5.7 MEASURING THE TORSIONAL STIFFNESS

To measure the torsional stiffness of the deck, a specimen with the
same width and thickness as the deckp(B = 0,250 m and t = 2 m),with a
length = 0.500 m, was supported at three corners a, b, ¢, and loaded at the
fourth one, d, as shown in Fig. 5.10. The vertical deflection A of the
loaded corner was measured for different loads P. A graph between the
torque acting on the specimen (= P.B), and the resulting twist (= A/B.QS)
is shown in Fig. 5.10, which is obviously non-linear, (See Ref. 5.4).
The first part of the graph,(for small twists),is nearly linear, the slope
of which gives a reasonable value, for practical purposes, for the tor-

: *
sional stiffness, GJ = 56.6 N.m? (cf.(l/3)B.t3 . G = 51,67 N.m2).

5.8 MEASURING THE BENDING STIFFNESS

The bending stiffness of the deck was measured using more than one
method. The above specimen was simply supported on a span = 0.45 m,
and was loaded centrally and the central deflection was measured. This
gives the bending stiffness, directly, as shown in Fig. 5.11.

The specimen was then loaded equally at the third points and the

It is noticed from Fig. 5.10 that the specimen stiffens for higher
twists, and this means that the bridge model will be more safe under
higher twisting moments. Real bridges, however, are unlikely, at
acceptable deformations, to have their decks enter upon the non-
linear range of torque versus twist.



: N-mm

Torque = (9.8/x240)

108

2.5
2.0
/-5
/0

d

/ i

&
g.5 /f I;P 1;-“44’" i i‘l/?mil’
0.0 /

¢ 4 4 é 8 10
Twist X (240x440)  : mm

B’g.s-la._%ryweaw Twist Fﬂl’ a Full- Wl'df}’ Specimen
OF tbQ ua-Cable Br;'Jje Deck_



109

fo

"'\\

§

o

3 g

N

P>y

& 6

.I.

a.

w\

©

L+

-

g 4

e

«

W

A\

P
' Z & N c;. N A
. / : l"_“z" ] ‘5*41
_ & - .
/ | A= f;};z

0 & M
0

. / 2 3 4
Measuved Central Deflection , Ao : mm

F;:g. S I e Centrgl Load ~ Cenitval Deﬁec?:‘an Far 9
Full- M’Jt_k Sfecimen of the Two- Cable
Bﬁdge Deck. :



1o

deflections at the loaded points and the midspan, as well as the curvature®
at midspan., were measured. Fig., 5.12 gives the load »~ deflection graph

for this loading condition from which two values for the bending stiffiness
were calculated. M ~ & graph 1s shown in Fig. 5.13, from which a fourth

value fer EI was calculated.

An average value for the measured EI is about 35 N.mZ.

3
(cf. E. ?]iizlm"f)*“ 36.43 N.m?)
.3
E. Bi; = 33.33 N.u? .

* R .
The curvature was measured using the curvature meter, Fig. 5.13.
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CHAPTER VI

TWO~CABLE BRIDGE: DYNAMICS

6.1 INTRODUCTION
As in the case of the static study, there is not much published on

the dynamic analysis of the two-cable bridge. Only one paper,(Ref. 6.1)’
on the topic, dealing with field tests on two existing bridges, could come
to the hands of the writer. The foregoing eigenvalue analysis, presented
by the writer in Chapter IV, is extended herein to get the flexural as well
as the torsional modes and frequencies of vibration of the two=cable sus-~
pension bridge model. Some measurements were taken and showed good agree-

ment with calculations.

6.2 NUMERICAL EXAMPLES _

The vibrational modes and frequencies were calculated for the D.L.
condition and also for the two L.L. conditions shown in Fig. 6.1. Measure=
ments for the D.L. conditiom were taken for both the frequencies and the

mode shapes to check the analytical results.

O ®
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The flexibility matrix was calculated for each loading condition
using the secant to an influence load of 4 x 9.81 = 39.24 Newtons. The
span of each cable was divided into ten equal segments, to give nine equi~
distant stations per cable.* Accordingly, the flexibility matrix of the
bridge becomes 18 x 18. (See Appendix A4, "Singular Matrices".)

Due to the singularity of the flexibility matrix, only ten
'feasonable" o vibrational modes could be obtained.

The flexibility matrix of the two-cable bridge is asymmetric due to
the non-linearity of the structure. However, it is not very far from
symmetric since the structure is not highly non-linear. An averaging
procedure was subsequently carried out on the off-diagonal elements of the
flexibility matrix of the D.L. condition to get rid of the complex eigen-
values and eigenvectors, but even then only the same ten 'reasonable"

vibration modes were obtained.

6.2.1 Reduction of Degrees of Freedom

This led the writer to think of reducing the order of the matrix to
see what it gives. There are several methods for reducing the degrees of
freedom of structures, called "eigenvalue economisation', Ref. 6.2, but the
method presented herein by the writer has apparently never been used before.
For a space structure with 18 joints, the usual number of degrees of freedom
is 18 x 6 = 108. But for our simplified model of the suspension bridge,
neglecting the hanger extensions and regarding the displacements of the 18
deck stations, (9 each side), to be identical with the corresponding joints
of the two cables, the number of degrees of freedom can be reduced to half,
i.e. 18 x 3 = 54. If we can go further and neglect the horizontal in-
plane and out-of-plane displacements of the two cables, i.e. if we consider
only the vertical deflections, the number of degrees of freedom is reduced
again to 18 x 1 = 18.

The new reduction, introduced herein by the writer, is to imagine
that the span is divided into a number of intermediate stations less than
what it really is. For example, our model is divided by nine stations
(each side) into ten segments, and now let us imagine reducing the number
of stations from 9 to, say, 7, 5, 3, 1, corresponding to ﬁatrices of orders
14, 10, 6, 2 respectively. (In all cases the stations are horizontally

equidistant, and the bridge is divided into equal segments, the number of

* The word equidistant, here, is related to the horizontal travel between
each two successive stations.

k%
The word reasonable, here, refers to modes with low frequencies (not

more than, say, 12 Hz) .
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which is equal to the number of stations per cable + 1, and the masses of
all segments are assumed to be equal, each of which is lumped at its centre
in the spanwise direction and divided equally between the two cables.

When applying L.L., the total L.L. is independent of the number of stations
and is distributed equally, (or otherwise), among the proposed number of
stations.

The results of the obtained frequencies are shown in Table 6.1, and
the mode shapes are shown in Figs. 6.2, 6.3, 6.4. It has been found that
if the matrix order is 10, 14, or 18, not more than 10 "reasonable", (or
useful),modes can be obtained, and the frequencies and the mode shapes are
almost the same. This proved to be true for all the above-mentioned three
loading cases. It is obvious, from Table 6.1 and Fig. 6.2, that the
averaging procedure does not make any considerable change in the frequency
of any of the ten modes.

When the order of the matrix is reduced to six, only the first six
modes can be obtained. When the matrix order was further reduced to two,
the first two frequencies could be obtained with adequate accuracy.

This is actually very important, since much time can be saved in
finding the eigenvalues and the eigenvectors by using a matrix size just
proper for the required number of modes, and also for defining the mode
shape.

In this study, the number of stations per cable was always odd to
provide a station at midspan, since the midspan is very important in |
defining many modes.

It is worthwhile to notice that, for any matrix order, half the
obtainable modes are flexural and the other half are torsional. In other
words, the number of each of the flexural and torsional modes is equal to
the number of stations per cable. So,it is likely that for any number of
stations, some flexural modes and an equal number of torsional modes will
be obtained, with the advantage that modes with lower frequencies are
obtained first. For example, if the number of stations per cable is four,
the first four flexural and the first four torsional modes will be obtained.

This is actually very useful, not only in saving much time in solution,
but also in making it possible to use smaller computers. For example, the
laboratory-type digital computer Pdp-8,(using the Focal language), could
not solve the 18 x 18 matrix which had to be solved by the Burroughs
B6700/B7700,(using Fortran IV). However, the 14 x 14 matrix could just be
solved by the Pdp-8 small computer, by dividing the Focal program into

three separate programs because of the small capacity of that machine.



*Sopol TRUOTSIO0] 9IB (T ‘6 °/ G €¢ sopow STTYMm ‘sopouw TeRINXI[I B3I § g ¢4 ,N.,H SOPOR

$910N

*sjusmeTo TeUOSRTIP-3JO 9yl Sur8eisAr £q OTIJoWLLS 9pBW ST XTIFER

Sxxx

*pPOSN S9OTAjBW DTAJSWmASUNn I0J 2inpadoad ,Aoﬂuumﬁﬁhmmvnwﬂ IT SB XTIIBW: xx

*S10309AUSSTD pue SONTEAUSSTD 9yl 398 03 pasn SIVTAFBWLHTIJOWEAS 103 danpadoid s,Tqooel ‘(0oTajommise) ‘ST 3T SB XTAIBW: «x

RIS
e || €11 | o6 | 9L | Tl | g9rc| Lo [sz'7] 26t | 60'€ ] 97
x 0L°TT | T0°6 | 9 | «1¢ | €95 | s9w | sew| we'e | ere ] ov'e
x 08°TT | zv6 | 89° | £T'z | €9°| <% | €s°v| 96°¢ | LI€| Sv°z 01 0T
* 80°9 89'y | 8L°¢c| z6°c | oT'€| sv°C 9 9
*S9pTS Yyjog UO peoT TRUOTSIOL (q)
| _ |
- [L°TT | 096 | %L | 02°L | €9°6| eL'w | 05w 66°c | 6I°€| 9%°C 0T 8T
* 08°TT | Se'6 | €L | 0L | €9°6| 1'% | 25w 66°€ | 0°€| sve 01 91
x 08°TT | 666 | st°s | oz's | €9°¢| 1w | €stw| 6 | 9T€| Sv°e 01 01
x 21°9 o'y | 18| 9tw | €T'e| Sve 9 9
x 61°¢ | 07°2 z z
*ATuQ 9pIS QUQ U0 peOT WIoFTUf (B)
T°9 *574 30 SUOTITPUO) ~1°1 TBUOTSIOL(TT)
poanseow _ _ ve's| siv | €1y 88t | ste]| 95¢ |
x| OL°CT | 99°6 | 96°Z | ¢vl | e'S| 8w | wiw eUv | e€| Ly || OT 81
. OT'zT | 99°6 | ¢6°Z | vl | eS| 8w | 694 ety | we| Lve 0T 8T
x 0T'ZT | 99°6 | 06 | vl | 2i's| s8'%w | L% vy | sce| Lve ot 7T
* 0T'zT | £9°6 | s6'r | zvr | zs| ety | eyl vty | oseel vtz 0T 0T
x 2€°9 8w | ozW 9rw | zze| 8wt 9 9
x e | 8ze z z
S— uoT3TpPuUO) °1°a (T)
°UOTSIO0L | uoTsior] °XoTg | ‘uoTsiol| °XoT4 | *UOTISIOL| °X9TJ TRUOTSIOL} °XOTJ|TeINXaT]
0T 6 8 L 9 S y ¢ ¢ T poureIqo XTi3e0
syIewey i sopou | £3ITTTqIXOT3
.=l *ON 9POW 3O ‘(zH ut) ‘Aouenboig| Jo Iaquny Jo 12pig

TABLE 6.1



117

6.2.2 D.L. Condition

The first two modesy(which are both flexural% could easily be
obtained experimentally, and their frequencies compare very well with
the calculations. Because much work was carried out, in studying the
single~cable bridge, on flexural modes, the writer does not find any
necessity to measure any more flexural mode shapes here.

However, the frequencies of both the third and the fourth flexural
modes’(modes 4 and 6, respectively), were also measured and showed
reasonable agreement with calculations, (within 13% and 7%, respectively).
Also, the mode shape of the fourth flexural mode,(mode 6L'was measured,
and good agreement was obtained.

Initially, to get the third flexural mode, (mode 4), in the laboratory,
the vertical deflections of the bridge were restrained at %‘ﬁ 0.4, 0.6,
and to get the fourth flexural mode,(mode 6), the vertical deflection of
the midspan was restrained. However, by some skill and care and much
force with steady finger excitation, both modes 4 and 6 could, with prac-
tice, be obtained without any restraints.

To get the first two torsional modes, the longitudinal centre line
of the bridge had to be restrained,(as far as possible% to avoid the
mixture of modes, or the likelihood of the flexural modes to happen first,
(because of the lower frequency of the first two flexural modes). The

longitudinal centre line of the bridge was very lightly restrained at

x
(L)= 0.22, 0.5, 0.78, and the first torsional mode, (mode 3) could easily be

obtained and measured, showing good agreement with calculations. An
X _
==
mode 3, and to facilitate getting mode 5,(second torsional mode), which

additional restraint was then added at 0.5 on each side to prevent
could, thus, be obtained and also measured easily, showing good agreement
with calculations. The two side restraints of the midspan were then
removed and, with care, mode 5 could still be obtained and measured, a
very pleasing result. It was certainly not expected, when the model was
designed, that so many flexural and torsional modes of oscillation could
be obtained, and measured in detail, so readily.

The use of the light restraints is to prevent the unwanted modes
from coming in while counting oscillations. The restraints affect
neither the frequency nor the mode shape of the wanted mode. With some
skill and care, the number of restraints could be reduced,or completely
eliminated. In a real bridge, there are, often, no restraints, and the
excitation is usually due to wind force, and the mode which happens is,
usually, the one whose natural frequency is equal to the frequency of

the exciting force. Or, there may be a mixture of modes. But with our
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laboratory model, suitable excitation was achieved with the finger, (because
of its convenience, the frequencies being too small for mechanical devices
which we had available), and skill is needed to excite the structure in the
required natural mode, especially when two or more modes have close fre-
quencies, (1ike modes 4 and 5 of Fig. 6.2, (frequencies are 4.69, 4.85 Hz,
respectively) ). Moreover, the frequencies of the model are much higher
than the corresponding frequencies of a real bridge, a fact that makes it
harder to excite and measure higher modes.

The procedure may be repeated and extended to measure the rest of the
ten calculated modes, using more restraints and more exciting force, but the
writer thinks that four flexural and two torsional modes are quite enough
to measure in the laboratory, and it was with much gratification that these

. six modes were adequately covered.

Figs. 6.2 show the calculated vibration modes of the D.L. condition,
(laboratory measurements are superimposed), from which it can be said that
the number of the intermediate stations used in the analysis has, generally
speaking, no remarkable effect on any of the frequencies or the mode
shapes. The main thing is to decide how many modes are required, and how
many stations are adequate to define each mode. It must be known also
that the number of torsional modes obtained is always equal to the number
of flexural modes, and each is, generally speaking, equal to the number of
stations per cable. For some cases, the number of the useful modes may
be less than the matrix ordeg,(like the case of our laboratory model), and
not more than, say, ten modes can be obtained, even if the matrix is 18 x 18

or greater.

Suppose it is wanted to know the first two torsional modes and the
first three flexural ones. In such a case, at least three intermediate
stations can be used in the analysis so that three flexural modes can be
obtained. In this case, also, three torsional modes will be obtained,
more than the required number, (two).

If three flexural and four torsional modes are required, the number
of stations per cable must be not less than four, i.e. the span must be
divided, at least into five segments, and so on.

However, adequate accuracy can be obtained if the span is divided
into six or eight segments (by five or seven stations per cable, respec~
tively) . This will give all the possible useful ten modes.

In all cases, modes 1, 2, 4, 6, 8 were found to be flexural, while

modes 3, 5, 7, 9, 10 are torsional.



x /1
0.0 o.] 0.2 0.3 0.4 0.5 o 0.7 0.8 0.9 /.0
.y L
Y"‘.# F.“s
0 i' . Mode 1
RS
+1 "F.ﬁf"

Relat ve /?m//?l‘a'a/es

0 f----%--nug | I"’.’#ﬂg Mode 2

ok ,_—"g" - "7* MM/E ‘i'.

Relat/ve ﬂmfﬁ tudes

| \.*“- ‘#." ‘.h... | -“‘r
+/ | am s A
-’ ot AT ,-"K'" .
> i ., "L,
’ ~ " \

0 i i_ v Mode 6

' " ‘\ '0

\‘ 4 \.‘ S
+I —‘.?-5‘." ‘\%“_OT
-/ ._T
3! s — 4 Mode &

LY ’ A 4

. KN s I “. l’
RN | et
+’o.o o] “ o2 0.3 0.8 0.9 1.0
qullencfe, , Hz-
Mode I | Mede 2 |Mode 4| Mode 6| Mode &
X Measured- 2.56 | 3.15 | 443 | 5.34
........ Matrix as it l's, (a,,mme‘{rl‘c)- 247 | 3.24 | 4.69 | 5s.72 7.-92
@ Matrix made symmelric by . . ]
averaging the oz‘F«Jf:,an:Igle..e.t;. 2.47 | 3.23 | 434 | 532 | 3-96

Fiy. 6-2.1.- Fivst Five Flexural Modes,Dead Lo 3d Conditron.
Al o f Carationc Par Cﬂble =Q




Relative ﬂ»rf/}'r,"aa’es

/120

L L 3 s
0.0 ] 4 8 'é“ T "‘}3‘ ;_ J.o
-—! -‘--— e
o ‘“\\ - MoJc i
\‘ -’
“e oV F=2.47 Hg.
‘\- - ’.
+1 - Ml TS ———z
-] . -
o e AT Mode 2
T, ‘,."' [=3.25 Hz.
=) e _-‘.““40

+/

Relative ﬂmp/r'tua/ej .

+/

+I

+1

F~ — s pa Mode 4

o 4 .. o F___ ? H
.~ .’ . . =4.74 ng.
- -® “u I
b, - - rl
e, - - ot
. ™ ., -
e
- -
e S pric
Ld LY - \‘
- b - - .
3 L) . L) .
@ £y * 0y
& Y » Ly
& b - . LY
7 . S ‘l M
v g oage ‘
A P ) e
LY &
., o *, ’ F: .
“ . “ p 5.72 Hz.
-, & “ #
\‘-‘ " e e
=, b Y]

R '\‘ ‘,‘ ‘\‘ ’& Mo Je 8
% s, N 4 % Py P=—*?-Qo HZ.

Mo

Fig. 6.2.2.- First Five Flexural Modes For the
| Dead Losd Condition.

No. of Stalieps Per Cable - 7



Relative /?m‘pﬁ'tu/es

Relstive Am ,o/f«?‘ wdes
<+

i
—

[+

<

+

+1

+1

! /
l 2 &
o 3 E] 2 ) 5
3 [
e e e g "
- -
" ﬁ.
- .
-
& -
- L
-
.r' -
- L
-
‘\ -
L s
-
-~
e af
-
“ -
-
~J L
b ----'---
- [
- - - -
.’ “‘ . _‘--‘ n‘~‘h‘
- -
\‘ "
- -
-, - .‘
- ,
- -‘
“ -
- -
e enad o=
‘.‘_- -
& -
~ e s e
"0~ o ‘\\ .
- - * g
e '4‘ .\.‘ 'c'
. - b0 -
s -t b, TP -
--------------
. 'pcu- Ly g e
'l' .\ ® ‘.‘
- A o .
. .,
- LY 4 “
’ . ! [y
¢ a L4
¢ ¢
gt
P L) "
L} 4 . ]
. s Y [
- " Al ’
b ; . ’
LS ¢ i s
*s 04 . P
- L -
e B T
'.-.‘. "..!
o 21 ~,
I ] 7 LY
'o \‘ s .
-
¢ 5 ! .
A a 4 LY
. % 4 -
¢
“ " .s ’ \ l’
\ ¢ L] . '\‘ ¢
. . - .~ o
» . #
. @ Y - Y @
Sap e ~ & Sy ge?

+1

)

Mode 1
F=2.47 Hz.

Mo de 2
f=3.25Hz,

Mode 4
F=4.32 Hz.

Mode 6
f=s.72 Hz.

MoJea
F=7.95 Hz.

Fig.6.2.3.- First Five Flexural Modes, Dead Load Conditiom.

No. of Stations Fer Cable =s



122

2/L.
"
% z 3
- P et bd i
," “.“n
Uy "' ‘\\‘J_
y 0 N
\$ ““ “
~ - 8
“%\M T
X
L
ol
A
VU
X f
o - o - - " _wp -
+ TP
N
N
\
\
8 -~
<
o 0 T 42 g
"-‘-? “, \\
@ Y - ‘\‘ -
M “-..,“ 5 Ls .----
+’ it T cenl =
o & o 3
3 z #

Mode. 1
F=2.48 Hz.

Maode 2
F=3.22 Hz-

Moc’e 4-
F=4.20 HZ-

Fig.6.2.4.- First Three Flexural Mades, Dead Load Condjtian.

No. of Stations Fer Cable =3.



123

2/
o 35 f

3

& S

T

N o - s Mode 2

L Tl _ F=2.28Hz

34_’[ '..*..'.°“'~-..,.____.________“-_____ ..--"‘"-“ §

“: Second Flexural Mo de

/) = S
-\\6} --"..--""'"" ‘-\.\

h -
£ el S Mode 3

~~~~~~~ e ‘a" P:3.33 Hz.

% ............ | ..-.-.‘-,--’

LY +’ ------------ @ we ome @ w® O
a Fivst Tevsiong! Moade
)
Q - e e aaame Cab/e- "’,

e e wmmee . Cable. 2-2
0

L
2

X
£

Fig. 6.2.5.— Flexural and Torsional Modes, Dead Load Condition.

No. of Stations Fer Cable=1.



Relatyve Amplitudes

N e AT Pt oy

g - '* ‘\‘ / % "T' \\“ J

-Q [} ’ . L

N K YA : 2 Mode 9
3 {’F 7~ *\I

T p V' . *\ ! N ’

") A / .

> +1 o N

™

L ¥

LY

}‘MoJe | o

|
I| .
. ] 4
o o
S L
c.9

to

,

/

\
‘
.
g

F'rquenc ies , He

Mode3 | Mode 5| Mode 7| Mode 9| Mode to
X Measured- 3.8% | 4.95
Tmenees Cable '-'}-Mafﬂ'x es it is 8s q.66 |12.0
—-—|Cable 22 (asymmetric)- 413 | 4. 740 of
trix made symmetric by ‘
© -‘:1:.;;"5 the -PF.J:‘aynal elements| 413 4'85. 7.42 [9.66 |[2.99

Fry.6.2.1\ - Frrst Five Torsienal Mades, Dead Load Condition.
At . F <patinc Par Cable = 9.




Relative Amplitudes

Relative A mf/r'tua’e;

: 1 " 2/l . ,
- 5
I ‘ 1 z TN (3
i - T
- /- --"""h... -
-'f \n‘..
i -
op-"..-.h‘ s
\."q..‘.l‘“.- o --...
1} . T
=l B SIS, PR o
. /"" q\ ,-I'-.- “"I-‘
i . .‘\ " LR
Oié Ao )
“u B -
| e \‘\ L
+l '*s‘-..‘ . _----__.- M— . ._.__.-:-“".’
.--' nx\ o ’_———_.
- T ‘, o 2 % / -
/ \\ ," “\\/’ \
o Dl
LN ,o"\\ ,-H .
\\“ ‘.'o \“ '/ '\.“ L,
+; ‘k‘ -.,.-w"‘q‘ l/ * - —— - *

T R \J/ |
"", / ‘lN - -! - e
, “ . \‘
S NA VD N
" \ "‘ \‘/
o 5o K }\ ",
" / g N AN |./ Y ‘
Q“ "' \. ! \“ ” . - 'I
+' ""94' \-/! DT \.-/ e [T e
| Tl cemen-mme Cable )
! | amssnne Cable 2-2
]
i l
| ’ |
o ! -~ 3 L 5. 32 2
E2 %2 Cl 2 @ 4 8

/L.

*"""‘-* Mode 3

F= 414 H3.

Mode s
F=4.85 He.

- Mode 7

F=7.42 Hz.

Mo de 9
F=9.46 Hz.

MoJe lo

F=12.1 Hz.

FI’ 6.2. 2‘,.. First Five Tovsional MoJes, Dead Load CO”Jn'tfon.

No. of Stations Per Cable =7.



Relztive Amplitudes

Relztive ﬂmpﬂ«'tuJes

126
x/L

o~
e
0]~
wine
&M

- —~_
0 i e Mede 3

e | F= 4.4 Hz-

Loy
= ~ T -,
/ \ o o

OZ ‘ f"' , % MaJe s

" N . =485 Hz.

K | ",' *\\“/ # MoJe 7
0 ~ - .
. TN PZAR

N N F=7.42 HZ..

\‘_,," N N 3 . « MOJe 9
S /N AN\ S| f=T-67 e

\‘-"‘ —L \u"/ “":‘/ Y Mode 1o

".,'\ / \\ ‘,',\\ i /\“’4 ':’ F_-,-_- (2.1 HZ-

-+l

........ - Cable 11
———— Cable 2-2

A

2
/L

Fig. 6.2.3.. First Five Torsiona] Modles, Dead Load Condytion.

3
z 73 /

i1 L
€ 3

No. of Stations Per Cable = 5.



-~/
0 Mode 3
F=4.16 He.
o
3
:l::
X
§
AN
W
2
% = — .
2 e ™~ = TS
0 V S 3 Mode 5
\.‘.“‘- ““‘O \‘ /a F:q-.gs Hz_-
4/ i T \\_.____ _‘_/‘

L

+
—
L
,
[
1
\
LY
LY
'l
,
'l
rd
/
X
LY
LY

Relative Amplitudes
[»]
¥ \
J/
03 .
~
=il

........... Cable 1-1
S——r | [ 3234

>~
|
Dw

z/L.

’:0'3.6.2.4'.,. First Three Torsional Moades, Dead Load Condition.
No. of Stations Fer Cable = 3.



128

For the flexural modes, modes 2, 4, 8 are symmetric, while modes
1, 6 are antisymmetric. But for the torsional modes, modes 3, 7, 9 are
symmetric, while modes 5, 10 are antisymmetric.

When only three intermediate stations per cable are used, three
flexural and three torsional modes are obtainable, (modes 1, 2, 4 and 3,
5, 7, respectively). In other words, the sixth mode, here, is mode 7
of the case of a number of stations per cable more than three, (in order
to get equal number of flexural and torsional modes). Similarly, if four
stations per cable are used, the analysis will give modes 1, 2, 4, 6 as
the four flexural modes, and modes 3, 5, ¥, 9 as the four torsional modes:
and so on.*

It is obvious that the smaller the number of stations per cable, the
lower will be the accuracy of the results. As mentioned above, five or
seven stations per cable are more than enough, and wiil give all the five

flexural and five torsional modes.

6.2.3 L.L. Condition (a) of Fig. 6.1

Suspension bridges must have suitable dynamic properties under live
load. This topic appears to have received little or no attention. The
implications of the results of the following study may be of considerable
importance in design.

When the full span of one side only is uniformly loaded, there is no
remarkable change in the resulting modes, regarding both their frequencies
and shapes. = A slight reduction is noticed in all the ten frequencies,
and the amplitudes of the two cables become slightly different, (instead of
being equal for the D.L. condition). For the '"flexural" ﬁodes, it is
noticed that the amplitudes of the loaded side are slightly greater than
those of the unloaded side,** while for the "torsional mode, the contrary
happens, as shown in Fig. 6.3

The reduction in frequency when adding loads is expected, according
to the rule which says that adding mass reduces the frequency. Also, the
amplitudes of a loaded cable must be less than those of the unloaded one
because cables,(and suspension structures in general), usually stiffen by
loading. This justifies what happens to the "torsional" modes, but what

happens to the "flexural' modes still needs some justification.

*
If only one central station is used, (for each cable), only two modes

will be obtained: the first (symmetric) flexural mode, (mode 2), and
the first (symmetric) torsional mode, (mode 3). Here only symmetric
modes are obtained since they can have non-zero amplitudes at mid-
span, (unlike the antisymmetric modes).

** As it was previously noticed in the single-cable bridge, Chapter III.
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The terms '"flexural" and '"torsional" modes are not accuracte for L.L.
conditions since neither of them is purely flexural or torsional, but each
flexural mode contains some torsion, and vice versa. However, a mode
which is mainly flexural can be said to be "flexural", and vice versa.

This proved to be appropriate when compared with the D.L. condition.

6.2.4 L.L. Condition (b) of Fig. 6.1

When the same L.L. of the previous case was divided equally among the
two sides in a torsional manner, such that the left half span of one side,
1-1, is uniformly loaded and the right half span of the other side, 2-2, is
uniformly loaded, the frequencies reduced a bit further. The areas under
any mode shape of both cables became absolutely equal, but with a reversed
distribution.

For "flexural" modes, (i.e. modes which are mainly flexural with
relatively little torsion), the amplitudes of the loaded half of each cable
are greater than those of the unloaded half,(as in the previous loading
condition, (a) of subsection 6.2.3, and as also happened in the single-
cable bridge, Chapter III). The contrary happened to the "torsional"
modes, Fig. 6.4.

This phenomenon is in agreement with what happened in the previous
loading condition,(i.e. loading increases the amplitudes of the "flexural"
modes and reduces those of the "torsional modes).

The slight reduction of the frequencies in this case seems to be due
to the reduction in the stiffness of the structure due to distributing the
load on the two sides instead of applying it on one side only. This reduc-
tion in the stiffness is due to the non-linearity of the structure which
makes the reduction in the stiffness of side 1=1 due to halving its load,
more than the increase in the stiffness of side 2-2 due to transferring
half the load from side 1-1 to side 2-2. This process results in an
overall reduction in the stiffness of the entire bridge, and consequently

a reduction in its frequencies.

(Note: Calculations and measurements of the flexibility matrix of the
laboratory model of the single~cable bridge, for dead and live load condi-
tions, showed that each flexibility coefficient for any live load, (P/z),
is greater than the average of the corresponding flexibility coefficients

for both the dead load condition and the condition of twice the live load,fa)
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APPENDIX TO CHAPTER VI

6.3 COUPLING OF BENDING AND TORSION | -

For a system like the one shown QQL(:)-

in Fig. 6.5, the displaced position

can be defined at any time using

either of the following two methods:

wjtasT o

(i) Using the vertical deflections eSS
vy and vy, of sides (1) and (2) f“"“ga'_"l"‘!!"-{
reépectively; or

(ii) Using the translation X of the
centre of mass, G, and the rota=- EJ‘S" C’“f’”’.’
tion 6 of the line (1)-(2). B

The first method is the one used by the writer in the dynamic analysis
of the two-cable bridge. The method is very simple and easy, and can be
used also for plates, shells,and complex space frames as well, using the
finite elements procedure. It is quite sufficient, in order to define the
mode, to know the necessary displacements of an adequate number of stations
located properly on the structure. The flexibility coefficient,8;,, for
example, is simply the vertical deflection of side (1) due to a unit load
acting vertically there.

The second method is perhaps a little more complicated. Here we have
two kinds of influence coefficients: the first represents the translation
X of the centre of mass G. It equals the vertical displacement of G due
to a unit vertical load acting at G. The other influence coefficient
represents the rotation 6 of line (1)=(2). It is the angle of rotation due
to a unit torque at G.

The equations of motion can be written as

m ;& = - kl.V]_ - kz-Vz ’ (6.1&)
I 6 = kyoe vyl = koovpeln . (6.1b)
where m = mass of the system;
X = dzx/dt2 = acceleration of the centre of mass G;

ky, ko, = stiffness of springs (1) and (2), respectively;
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vi= (X~ 21.8), vop = (X+ 2,.6), are the displacements of sides
(1) and (2), respectively;

I = mass moment of inertia;

6 = angular acceleration = d26/dt?; and

t = time.

Substituting for vy and v,, and rearranging, Egs. 6.1 become

L+ . = - (6.2)
I.606 021 azz 0 0

where o317 = (ky + k)3 a12 = apy = (ko.lo= kyj.21); d22 = (klilz + kgﬁzz ).

If kyj.%7 = kp+%2, then ajp = 0 and there will be no coupling between
the angular and the linear motions. With zero coupling, a force applied
to the centre of mass, G, produces only linear motion, while a torque applied
to the system produces only angular motion, (Ref. 6.3, pp. 123-127 ).

In the case of a suspension bridge, for the D.L. condition, or for
any flexural loading, k; = k,, 21 = 22, and v = *vy, and this is the reason

for getting uncoupled flexural and torsional modes.

If v

1 v, = X, we have 6 = 0, Eqs. 6.1 become

=
]
fi

- 2k1.X _ (6.3a)

I 6 =0 (6.3b)

This means that 6 = 0 = 0, and the system finishes up with only flex—
ural motion,(as it is assumed that v; = v, = X). This will result in
solving Eq. 6.3a for only the flexural modes, a case which can be solved

using a single~cable bridge dynamic analysis, which saves much time.

If vi=~v, X= 0, Eqs. 6.1 become, after some algebra
m X = 0 (6.4a)
I 6 =-2kyj.2;2.0 (6.4b)
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This also means that X = X = 0, and the system finishes up with a
pure torsional motion,(as it is asmumed that X = 0, v] = =vp). This will
result in solving Eq. 6.4b for only the torsional modes.

Here, also, the stiffness matrix, kj(=k,), is the same as in Eq.
6.3a, i.e. for the single-cable bridge. I = m.27%2/3; £] = b/2 (= half

the distance between the centres of the cables).

* * * *

This treatment can be followed for the D.L. condition or any flexural
loading, in which pure flexural and pure torsional modes are obtainable,
separately, by solving, independently, Egs. 6.3a, 6.4b. If the stiffness
matrix, ki, is not existent or difficult to obtain, (as usually happens in
suspension structures), the L.H.S. and the R.H.S. of both equations are
premultiplied by the inverse [kl]—l, to use the flexibility matrix procedure,

which is much easier, (in addition to avoiding the difficulty of kj).

For any torsional loading, kj;%; # koly, and the flexural and torsional
modes become impure, such that each "flexural" mode contains some torsion,
and vice versa. In such a case, the terms '"flexural" and '"torsional"
modes become no longer valid or applicable, since neither of them is purely
flexural or torsional. But all the modes will be a combination of flexural
and torsional components.

In this case, the solution can be obtained either by solving Eq. 6.2,
or using method (i) mentioned above (early in this section), which uses the

deflections v; and vy in the flexibility matrix.

% @ * *

Eq. 6.2 can be rewritten in the form

m 0 X 011 012 X 0

L+ ° = , (6.5)
0 I 0 a1 002 0 0

In this case, the displacements X and 6 are coupled by the off-diagonal
term oo = asy = (kofy - ki7). If k%7 # kp%p, a linear acceleration X
applied at G will produce both a linear displacement X and a rotation 6.
Similarly, an angular acceleration ) applied to the bar will likewise cause
both 6 and X displacements. This type of coupling is called static coupling,

distinguished by the off-diagonal terms of the stiffness matrix.
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When k%, # kgez, it can be seen that there is some point C,
v |
(Fig. 6»6% along the bar such that kj%; = kplp ., If the co-~ordinate X is

Frg. £.6-"-. Co-Ordinate X Erwyﬁ foinl C. -

defined through point C, the equations of motion will have the form

m(XC + ef) = —kl.vl— kz.vz (6.6a)

1.8+ mek = ky. vy.8) - kpovp.2) (6.6b)

' 1
Rearranging and noting that kijf; = ko2, (Ref. 3.1), these equations

reduce to

¢l = _ (6.7)

where IC = mass moment of inertia for the bar about C: and

' .
(222 = kl(Q,]_ )2 -+ kz(lz )2.

It is obvious that the coupling here is due to the term e which
appears only in the off-diagonal elements of the mass matrix. This is
called dynamic coupling. In this case, in order to displace the system
only vertically, (i.e. in the X direction), it is required to apply both a

vertical force at C and a torque as well. Similarly, to rotate the bar



151

through an angle 6, it is required to apply both vertical force through C
and some torque simultaneously.

If the X-co-ordinate is chosen somewhere else, neither the mass matrix
nor the stiffness matrix will be of the diagonal type. This means that both
static and dynamic coupling will be obtained.

On the other hand, the co-ordinates may be chosen somehow such that
both the static and the dynamic couplings can be eliminated. In such a
case, both the mass and the stiffness matrices will be of the diagonal type.
In this case, the co-ordinates are called the principal co-ordinates of the
system, (Ref. 3.1). Here the equations of motion can be written in the

form

m; O A ki O A 0
- -4 i o e (6-8)

0 myp o 82 0 kzg ) 1\2 0

where the displacements A, and A, are functions of X and 6. In this case,

the natural frequencies will be given, directly, from the two uncoupled

.. equations as

wy = vy /my sup =k .

22/my,

6.4  CONTINUOUS MASS SYSTEMS

Beams, plates, and shells, and similar structures are continuous mass
systems for which the mass matrix is not a diagonal matrix, but its off~
diagonal elements are non-zeros. In our model, 92.5% of the D.L. is lumped
at nine stations each side, for which a diagonal mass matrix becomes quite
reasonable.

For a real bridge, the dead weight is the self weights of the cables,
hangers, jbints, deck, flooring, etc., and it is not lumped at the hanger
positions as in our model. But the big number of hangers* makes it appro-
priate to use a diagonal mass matrix without remarkable error. Also for
other continuous mass systems, like beams, plates and shells, etc., the
finite elements technique can make it possible to divide the system into
segments with the mass of each acting at its centre of gravity, converting

the system into a lumped mass system.

*
Our model was solved as a lumped mass system, with 18 masses which form

the diagonal of its 18 x 18 diagonal mass matrix. Using Eq. 6.3a
the diagonal mass matrix reduces to 9 x 9.

*% For a real suspension bridge, the number of hangers each side is
usually of the order of 100.



CHAPTER VII

NOTES ON AERODYNAMIC INSTABILITY

These notes are intended to be a self-contained summary of existing
published material on the topic, written for the structural designer whose
knowledge of aerodynamics is small. The reader is advised to go through
them critically, and to have in mind throughout the likely flexural and

torsional modes of his suspension structure as calculated in Chapter VI.

7.1 INTRODUCTION

It has long been the practice to take static wind load into account
using data derived from measurements made on models in wind tunnels. In
the past, many bridge failures have been caused by the action of wind.

Some of these have resulted from insufficient allowances for static wind
pressures. Other bridges, adequately designed to withstand such pressures,
collapsed by oscillations caused by steady winds. This dynamic action of
wind is termed "aerodynamic instability'.

The phenomenon of aerodynamic instability was recognized by engineers
after the tragic failure of the Tacoma Bridge in 1940, and has been of vital
importance in suspension bridge design ever since. Extensive work on the
topic was started immediately after the disaster in the U.S.A. by Steinman,
(Ref. 7.1), and F. Bleich, (Ref. 7.2), and others. This was followed in
the U.K. by a similar extensive work by Scruton, (Refs. 7.3, 7.4), and
Walshe, (Ref. 7.5), and others. The problem is still being investigated
in the U.S.A., (Ref. 1.23), in Japan, (Ref. 1.24), and at the National
Physical Laboratory in the U.K. as well, (Ref. 7.6).

Recent bridge structures have increased dimensions and flexibility and
decreased dead weight and damping characteristics, (Ref. 1.23). Increased
flexibility decreases the natural frequency of vibration, and reduction in
dead weight reduces the rigidity of the structure and consequently produces
a magnification of wind effects relative to the inertia of the structure.
Also, modern fabrication techniques have decreased the ability of the struc-
ture to absorb energy by sliding friction between component parts, and thus

less energy is required to initiate and maintain vibration.
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It was shown, (Ref. 7.3), that the wind speeds capable of exciting
oscillations are approximately proportional to the values of the natural
frequencies. Hence, modern long=-span, flexible suspension bridges, with
their low natural frequencies, may be expected to be more vulnerable to
aerodynamic action than other types of bridge.

The oscillations of structures excited by wind may be ascribed to
the separation of the airflow around bluff structural shapes. The most
common cause of wind-excited oscillations is vortex-excitation which tends
to excite oscillations in a direction transverse to that of the wind-stream,
and at wind speeds dependent on the natural frequencies of oscillation,
(Ref. 7.4).

These oscillations may be prevented by sufficiently high structural
damping, or by using streamlined cross-sections, or by both methods. The
effect of wind can be greatly reduced by equalising the'pressure above and
below the deck. This issue will be discussed in detail in Sec. 7.8.

Most structural shapes are aerodynamically bluff, and the airflow
separates from the surface to form a wide wake of turbulent air. The wind
can cause oscillations in many ways, mostly attributed to separated airflow.
The decay, maintenance, or growth of oscillations will depend on the balance
of the energy taken from the airstream with that dissipated by structural
damping.

A first step in the assessment of the tendency of a proposed structure
to oscillate in wind is the determination of the natural frequencies and
modes of oscillation and the structural damping. A method of getting the
natural frequencies and modes has been described in Chapter VI. For
structural damping, recourse must usually be made to an estimate based on

observations of similar existing structures.

7.2 DEFINITIONS

In this section, an attempt is made to define the basic terms asso-
ciated with the aerodynamic instability. The danger of definitiongis, of
course, that the terms are too limiting. Usually they relate to simple
mathematical models of real behaviour, not to the real behaviour itself,

and the designer must be aware of this.

(a) Self-Excited Vibration: 1Is an oscillatory motion where the alter-
nating force that sustains the motion is caused or controlled by the
motion itself. When the motion stops, the alternating force

disappears.



(b)

(c)

(d)

(e)

(£)
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Forced Vibration: Is an oscillatory motion where the sustaining
alternating force exists independently of the motion and persists
even when the vibratory motion is stopped.
Critical Wind Speed: Is the wind speed at which any disturbance will
lead to oscillations with constant amplitudes. Below this speed
movements will not develop, and if the structure is disturbed,the
amplitudes reduce with time. Above this speed, any disturbance will
lead to oscillations with increasing amplitudes. These amplitudes
may continue to grow until structural failure occurs, or they are
limited by non-linearities in the system, (e.g. aerodynamic forces
are usually non-linear with amplitude), (Ref. 7.5). At the critical
wind speed, the net damping,(aerodynamic + structural), becomes zero.
(The aerodynamic damping is positive when the bridge is in still air
but its value is influenced by the wind such that it becomes negative
and numerically equal to the structural damping at the critical wind
speed, (Ref. 7.3).)
Critical Damping: Is that at which a structural system released from
a displaced position will just return to its equilibrium state without
passing through it.
Lesser damping is defined as a percentage of "critical', or as the
"logarithmic decrement'.
Angle of Attack: Is the angle between the deck surface, (horizontal
if not torsionally displaced), and the direction of the wind. It is
usually considered positive when the wind is striking the section
from the underside.
The geometric angle of attack, (Ref. 7.7), is the angle between the
still deck surface and the airstream. The effective angle of attack
is the angle between the deck surface and the direction of relative
wind velocity, VR. (VR is the velocity of wind relative to the
velocity of the centroid of the section, X; during oscillation, see
Fig. 7.1).
Flutter: A dynamic instability of an elastic body in an air stream,
(Ref. 7.8). This phenomenon happens at the critical (= flutter)
wind speed.
Flutter may be classified into two main categories.
(i) Classical Flutter: This involves the combination,(or coupling),
of both the torsional and flexural modes of the same general
form, (Ref. 7.9). Flutter frequency is intermediate between

the frequencies of the torsional and flexural natural modes.
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Classical flutter usually means oscillation in which the direct
aerodynamic dampings for motion in each single degree-of-freedom
are positive, (so that when each single degree—éf—freedom is
isolated,the motion is damped by the wind) . But when coupled

motion occurs an instability can take place, (Refs. 1.24, 7.5).

Classical flutter is associated with small angles of attack,
(Ref. 7.10).

Coupled oscillations occur when the ratio between the natural
frequencies of the isolated torsional and flexural oscillations
is very close to unity, (Ref. 7.3).

(ii) Stall Flutter: 1Is any flutter of a lifting surface in which the
aerofoil sections are in stalled flow during at least part of
each cycle of oscillation, (Ref. 7.8).

It involves a nearly pure simple harmonic motion and is a true
instability in that the fluctuating flow and aerodynamic forces
‘are generated by the oscillation and maintain it by supplying
energy.

There is no upper wind-speed limit for a stalling instability,
(Ref. 7.5), but it usually happens with large angles of attack,
(more than 15°), (Ref. 7.10).

Bisplinghoff, Ashley, and Halfman, (Ref. 7.8), argue that a single-
degree-of~-freedom flutter can happen. This is all right according
to their definition of flutter as an aerodynamic instability. Accord-
ingly, the catastrophic torsional oscillations of the Tacoma Bridge

may be regarded as a single-degree-of-freedom flutter.

Galloping: Is vibration at large amplitudes and low frequency, (Ref.
7.11). It is actually an example of stall flutter, and seems to be
usually of the flexural instability type, (Ref. 1.24); once it is
started, the disturbance is very persistent and continueé with great
violence, (Ref. 7.10), even if the wind stops. Some authors state
that this means that it can be regarded as a free vibration, but the
writer is unable to comment. Galloping is usually associated with
transmission lines and the like.

This sort of instability happens if the 1lift slope is negative and
numerically greater than the drag, (Refs. 7.5, 7.11). As with stall
flutter, there is usually no upper wind-speed limit for galloping

oscillations.
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(h) Buffeting: 1Is a transient vibration due to aerodynamic impulses
produced by the wake behind the structure, (Ref. 7.8).
Here, the forces are little affected by the motion and would be present

even though the structure were infinitely rigid.

7.3 AERODYNAMIC FORCES

This brief section is included here to introduce the reader to some
of the concepts used in flutter theory. Though incomplete it is hoped that
it gives the structural engineer some idea of the sort of calculation that
can be attempted. For simplicity, aerodynamic forces due to steady wind
only will be considered. Classical flutter theory appears to consider only
éteady wind.

Fig. 7.1 shows a unit length strip of the deck of a suspension bridge.

Fig. 7.1

Let the width be B, the cross-sectional area be A, and the centroid be at

G at mid-width. Let the bridge be subject to a steady wind with velocity
Vw in the direction shown in the figure. Under the effect of that steady
wind, let the bridge be undergoing some mode of vibration with both tor-
sional and flexural components. At any time, during one cycle of oscil~
lation, let the angle of rotation of the section be 9,(from the horizontal),

and let the velocity of the centre of gravity G be ﬁ,(downward).
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At that time, if the geometric angle of incidence of the wind is o,
the effective angle of incidence, (between the relative velocity and the deck
surface), will be o + d o. (do. is very much less than 0 since X is often
very small compared with Vw°)

Here, the resulting wind force can be resolved into two components:

the drag force F_ in the direction of the relative wind velocity V_, and the

D R
lift force FL in the perpendicular direction, where
-
4 ;, 2
}D = CD s (apVR) LA (7.1b)

in which CL and GD are non-dimensional lift and drag coefficients (respec-
tively) that vary with a; p is the density of air; and the quantity
(%pVi) is the aerodynamic pressure.

Also, there will be some aerodynamic twisting moment Mt on the deck

where

2
- L
M= Cy . (V) .A . B (7.1c)

in which CT is a non~dimensional torque coefficient depending on a.

Consider first the 1lift and drag forces only. They will have a vertical

component, Fv’ where

Fv e FL cos B + FD sin B (7.2)

If the rate of change of FV with respect to B is positive, then the
motion will be damped and the structure will be stable. But if dFV/dB is
negative, then any motion will bwild up and helped by FV, and the structure

will be unstable. Thus, the structure will be flexurally unstable if

(dFv/dB) <0 (7.3)

This reduces to

(dFL/dB) 4 FD <0 (7.4)

See Refs. 7.10, 7.11.
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In oither words, since the drag is always positive, this flexural

instability, (perhaps galloping), will happen if the negative lift slope is

numerically greater than the drag value.

between 30° and 150°, (Ref. 7.10), Fig. 7.2.

Frg.7.2.- Life and Drg Curves.

This can happen for values of o

The foregoing discussion is based on the assumption that the hori-

zontal oscillation (in plane of paper) is prohibited.

In other words, it

is assumed that the bridge is stable against oscillation in the direction

normal to the plane of a cable.

Let us continue on that assumption, and let us take the aerodynamic

torque into consideration.
motion which has flexural and torsional components.

motion takes the form

[m] [X] + [k][X] = [F]

where [m]

2 x 2 mass (and inertia) matrix;

06

0

[i] - [X = acceleration column vector;

(k]

i

stiffness matrix;
x

L6 J
" ¥

it

[X]

= displacement column vector; and

[F]

it

M
t

The resulting oscillation will be a coupled

Here, the equation of

(7.5)

= column vector of aerodynamic exciting forces.
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D’ and CT are functions

of @ , and consequently they are functions of § which is a fraction ofo .

As mentioned before, the coefficients CL, C

The values of CL, CD, and CT are usually determined experimentally by a
wind tunnel test.

It is to be noticed, here, that the aerodynamic forces FV and Mt are
functions of the torsional displacement 6 only, but not the translational
displacement X, though they do involve k, because the velocity of the wind
relative to the plate must be considered.

Eqs. 7.5 can be solved for the oscillation modes and frequencies.

In the case of a real bridge, the span may be divided into n segments with

known mass and inertia values, and the displacements will be (X3, Xp, ...y

X s 015 02, eevy 0.

7.4 INSTABILITY OF THE COMPLETED BRIDGE

There has been a long history of undesirable oscillations and failures
similar to those of the First Tacoma Bridge. The earliest modern records
describe damage to the Menai Straights Bridge in 1826, 1836, and 1839, and
the Brighton Chain Pier in 1836, (Refs. 7.3, 7.8).

Most of the bridges involved had stiffening systems that were abnorm-
ally weak in tersion. The dangerous vibration mode was first antisymmet-
rical torsional with a node at midspan.

Improved behaviour has generally been achieved by increasing the
torsional stiffness and modifying the cross—-sectional shape to reduce the
instability of the air-loads which are developed.

* %k Kk %

The stiffening system of the suspension bridge, generally, has many
sharp corners and is anything but aerodynamically streamlined. As a result,
the airflow over the bridge involves separation and formation of complicated
vortex patterns, (Ref. 7.8).

Periodic shedding of vortices on alternate sides of the structure can
give rise to an alternating transverse force,(in a direction normal to that
of the wind). Airflow of this nature has been known to produce oscillations
of bluff structures, and such oscillations occur over a range of wind speeds.
These oscillations start at the critical wind speed and persist as the wind
speed increases, (Ref. 7.5).

It is to be noticed that trouble occurs only if the frequency of the
eddy-shedding coincides with one of the natural frequencies of the structure
on which it acts. Then a resonance occurs which may be destructive,

(Ref. 7.10).
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Vortices are formed, in the wake, at high wind speeds. The flow
pattexrn appears to depend mainly on the value of Reynolds number R,
(Ref. 7.11). Fer a wide range of values of R, the vortices are shed from
the structure in a regular pattern, alternately clockwise and anticlockwise
from either side, Fig. 7.3. This pattern is known as a '"vortex street'.
The frequency of the eddyQShedding is called the Strouhal frequency, and

the excitation due to this eddy-shedding is called K&rmédn vortex excitation.

- o e

(b) Diagrammatic

F9.7.3.— Kéyman Vorlices For a
Cylinéﬁcal Bady.

The frequency of vortex-shedding depends on wind speed, the cross—
sectional shape, and Reynolds number, (Ref. 7.4). It is usually non-

dimensionally defined by the Strouhal number, Sn’ where

f.d (7.6)

n VR

in which £

\Y

eddy-shedding frequency;

R relative velocity of the cylindrical body, (or bridge section),

with respect to the fluid; and

o
H

typical length = diameter of cylinder, (or width of bridge).



161

It was found that the Strouhal number Sn is constant for a cylinder,
(about 0.20), and for other shapes it ranges between 0.14 and 0.30, (Ref.5.3).
This Strouhal number Sn is, almost, the inverse of the reduced velocity Vr
familiar to the British wind tunnel analysts, like Scruton, Walshe, and

others, (Refs. 1.20, 7.3, 7.5). They write

Vw
Vr = “f*:-é- . (7.7)
where VW = wind velocity;
f = frequency of the bridge or its model, (for both sectional or
full models); and
B = width of the bridge,(or model) .

The eddy-shedding on alternate sides of the structure causes a harmon-
ically varying force on the structure in a direction perpendicular to that

of the stream, (Ref. 7.10). The intensity of this periodic force, FK, is

usually given in the form

|
[

2
[CK.GﬁpV ).A]l.sin wt

K
where CK = Karman-force coefficient =~ 1.0 for values of Reynolds number
from 102 to 10’ ;
w = circular frequency = 2 £ ; and
t = time.

This periodic force may cause the structure to vibrate in a direction
normal to the flow direction.

This force is similar to the 1lift force FL explained above. Thus,
it may be expected here also, (in the case of vortex shedding), that there
is also a '"drag force" in the direction of the flow itself. This "drag
force" also fluctuates and may cause the structure to oscillate in the
direction of the flow. It is reported that piles can oscillate in the

direction of a current of water as well as transversely.

* * * *

Small flexural oscillations of a span may be initiated by traffic,
by wind gusts, or by the longitudinal component of the wind acting on the
cambered span as an aerofoil, (Ref. 7.1). However, flexural oscillations

have rarely proved dangerous though they can be a nuisance to traffic.
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Most bridges which have failed have done so in torsional motion, (Ref. 7.5).
Coupled flexural and torsional oscillation may lead to catastrophic response
of the vibrating structure.

Conversely to galloping, a flexural oscillation with very high fre-
quency and low amplitude could possibly cause the collapse of the structure

due to fatigue,(by successive bending), (Ref. 7.10).

7.5 INSTABILITY DURING ERECTION

A more dangerous condition of instability may be during erection. The
torsional frequency is reduced due to the joints not being made. As a
result, the ratio of torsional to flexural frequencies approaches unity.
This leads to the trouble of classical flutter,(due to the coupling of tor-
sional and flexural oscillations, (Ref. 1.23)).

On the other hand, the aerodynamic excitation is proportional to the
length of the suspended structure. But the contribution of the cables to
the structural damping remains that of the full span. Thus, the control
exerted on oscillations by structural damping would be expected to decrease
as the length of the suspended structure increases. The ratio of the
aerodynamic excitation to the structural damping is thus a maximum when the
length of the suspended structure extends over the full span. Accordingly
the conditions of stability, in that regard, would be the least favourable,
(Ref. 7.5).

Reduced natural frequencies which might prevail during erection would
reduce the critical wind speed, possibly, to a value within the range of
natural winds. However, the critical wind speed can, almost, be doubled
if temporary joints are made such that they can transmit torsional forces

from one panel of the deck to the next, (Ref. 7.5).

* * * *

Instability during erection may be classified into the following four

categories.

(i) Oscillation of the towers before cable erection.

(ii) Galloping of the cables before deck erection.

(iii) Oscillation of the deck before the final dead-load configuration is
achieved.

(iv) Oscillation of (tubular) deck units during lifting from the water to

their final loaction.

Remedies suggested for each of these instability phenomena will be

presented in Sec. 7.8.
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7.6  WIND TUNNEL TESTS

Extensive investigations, by testing models in wind tunnels, followed
the collapse of the Tacoma Bridge. A very large wind tunnel was built at
the University of Washington, in 1941, where a model for the Tacoma Bridge
was tested and showed aerodynamic oscillations similar to those which had
been obseyved on the prototype. In 1946, similar wind tunnel tests were
started, at the National Physical Laboratory in England, to give guidance
on the aerodynamic aspects of the design of the proposed Severn Bridge.

The object of model tests is to provide data from which the oscillatory
behaviour of the full-scale bridge can be predicted. There are two types
of models used. These are (1) full models; and (2) sectional models.

A full model is an aeroelastic model of the complete bridge. It is a
geometrically similar model, and its elastic and inertial properties are
scaled to produce, to prescribed scales, the natural modes and frequencies
of the prototype. Thus, the oscillations of the model, caused by wind,
occur at wind speeds and amplitudes which can be related to full-scale. .

A sectional model is a geometrically similar copy of a short typical
length of the suspended structure of the bridge. It is rigid but mounted
on springs which represent the combined stiffness effects due to gravity,
(cables), and elasticity of the full-scale bridge. The flexural and tor=-
sional motions of the bridge are simulated by vertical and pitching motions
of the sectional model, (Ref. 7.5).

Generally, the wind-tunnel tests of the sectional models involved no
more than the observation and measurement of the critical wind speeds and
frequencies bounding the ranges over which oscillations were maintained by
- the wind. Occasionally, the damping rates of oscillations in the wind-
stream were measured.

In the case of full models, critical wind speeds, frequencies, and
oscillation modes as well, can be recorded. The effect of inclined winds,
both horizontally and vertically, is simulated by inclining the model,
(because the direction of the tunnel wind-stream cannot be varied).

However, it is clear that the full models are unsuitable for routine
comparisons between different forms of suspended platforms, owing to the
length of time required for construction and the high cost. Furthermore,
a sectional model can be built with a greater scale that makes it possible
to show the fine details which cannot appear in a full model with sufficient
accuracy.

The results obtained with sectional and full models, (Ref. 7.3), led
to the conclusion that sectional model tests were sufficient for reliable
full-scale prediction. Nearly all the results showed very good agreement

between the two methods of test, (sectional and full models). This
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supports the conclusion that reliable predictions of the stability of
proposed suspension bridges may be based on sectional-model tests only.
Tests may be carried with the full length and with a part of the
length of the sectional model, to provide information on the influence of
the length/width ratio of the model.
The disadvantage of the sectional model is that it does not give
accurate values for the critical wind speeds and frequencies of oscilla~-

tion. But for the purpose of comparison, at least, adequate results are

obtained.

* * * *

The application of the results of model tests to prototype predic-
tion requires a knowledge of the values of the structural damping for both
model and prototype. There is as yet no reliable method for calculating
these values for a proposed bridge. However, prediction of structural
damping depends, to a great extent, on experience with similar existing

structures, (Ref. 7.4).

7.7 TYPICAL RESULTS

Except where coupled motions are involved, the aerodynamic stability
of a. structure depends on the aerodynamic shape, the frequency of oscilla-
tion, and the structural damping. Oscillations may be prevented by modi-
fications to one or more of these factors, (Ref. 7.4).

In the case of coupled motions, a new factor is involved; it is the
natural frequency ratio for corresponding wave-forms of the torsional and
flexural modes of vibration, (Ref. 7.3). It is only to be feared if the
torsional stiffness is so low and the flexural stiffness is so high that
they bring the natural frequency ratio close to unity, (Ref. 7.8). A
coupled motion has a flexural and a torsional component, with a frequency
distinctly different from the frequency of any of the natural modes of the

system, (Ref. 7.2).

7.7.1 Shape

Both model and full-scale experience show that the stability of plate-
girder-stiffened bridges compares unfavourably with that of truss-stiffened
bridges, (Ref. 1.20). The results of the sectional~model tests are con-
firmed by full model tests. Truss-stiffened bridges are usually stable
against flexural oscillations, and the tendency to instability in torsional
oscillations, if any, can be corrected by suitable design of the suspended

structure, (Ref. 7.3). Bridges stiffened by plate girders are liable to
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both flexural and torsional oscillations, (Ref. 7.5). Their torsional
flexibility and the continuous blocked area which they present bluff to the
wind appears to render them very prone to instability.

The form of structural details such as handrails and roadway stringers
have a marked effect on the stability. Models with plain decks, without
stringers or handrails, proved to be unstable at both negative and positive
angles of incidence,(but were stable at zero incidence), (Refs. 1.20, 7.3).
Substantial improvements were effected by fitting stringers and handrailing
which act as aerodynamic spoilers by shedding eddies, of mixed frequencies
and directions, along the span. Such spoilers on the deck upper surface,
(handrails), improve stability at positive angles of incidence, while those
on the lower surface,(stringers),are effective for negative wind slopes.

A new concept is to adopt a shallow steel-plated hollow box section
for the stiffening system. Such a form provides a high degree of torsional
stiffness and yet is lighter and more economical to construct, (Ref. 7.5).
The cross—-section is somewhat streamlined, and it has been used successfully
in the modern European long-span suspension bridges like the Severn, Bosporus,
and Humber bridges. Here, the road-deck is provided by the top surface of

the box.

7.7.2 Frequencies and Frequency Ratio

As mentioned in Sec. 7.1, a first step in the assessment of the ten-
dency of a structure to oscillate in wind is the determination of the natural
frequencies and modes of oscillation. Stability is promoted by a large
ratio of the torsional/flexural natural frequencies of the structure,

(Ref. 5.3). Thus, a primary object of the design should be to achieve a
frequency ratio significantly greater than unity, (to avoid coupling),
(Refs. 1.24, 7.3).

Increases in the torsional stiffness of both the deck and the towers
increase the frequency ratio. A closed deck system has a relatively high
torsional stiffness.

The flutter characteristics, (critical wind velocity and flutter
frequency), of the whole suspension bridge are the same as those of an inde-
pendent section of the bridge, (Ref. 7.2). Therefore, it may be concluded
that this sort of coupled oscillationg,(where flexural and torsional vibra-
tions show the same vibration form), can be studied on sectional models,

provided they have the same dynamic properties.
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7.7.3 Damping

- The damping rate for each natural oscillation depends on the struc~-
tural damping, and on the damping forces due to the air, (aerodynamic
damping), (Ref. 7.3). The aerodynamic damping is positive in still air but
its value decreases with the increase of the wind speed, until it becomes
negative* and numerically equal to the structural damping at the critical
wind speed, (Ref. 7.3).

Structural damping derives from the capacity of the structure to dissi-~
pate energy during vibration, (Ref. 7.4). In actual structures, energy
losses are due to internal hysteresis in materials, friction in sliding and
fretting, and to aerodynamic resistance. Prediction of structural damping
depends on experience of similar existing structures or on tests. The
aerodynamic damping is dependent on the amplitude of oscillation, and the
structural damping may also depend on the amplitude, (Ref. 7.4).

For oscillations of flexible suspension spans, the structural damping
is represented by a varying logarithmic decrement of the order 0.002 to
0.130, (Ref. 7.1). It is sometimes expressed as a fraction of the critical
damping, of the order 2% to 9%, (Ref. 7.12), for steel .and concrete, respec-
.tively;** It is mainly caused by the girder, and its value for trusses is
greater than that for plate girders, (Ref. 7.1).

It is perhaps worth repeating that at any wind velocity lower than the
critical velocity, the structural (positive) damping is greater than the
aerodynamic (negative) damping, (Ref. 7.1). As a result, any initial oscil-
lation decreases and finally disappears, (Ref. 7.2). At the critical wind
velocity, the motion is a steady state motion. Above the critical velocity,
the aerodynamic damping,(negative),exceeds the value of the (positive) struc~
tural damping. The result is that the initial amplitudes increase steadily,
(Ref. 7.2), until structural failure occurs, or it is limited by non-linear-
ities in the system, (e.g. the aerodynamic forces are usually non-linear

with amplitude), (Ref. 7.5).

7.8 CURING AND SECURING THE AERODYNAMIC BEHAVIOUR .
Aeroelastic problems would not exist if the structure were perfectly
rigid, (Ref. 7.8). Modern suspension bridges are very flexible, and this
flexibility is responsible for the various types of aeroelastic phenomena.
Structural flexibility itself may not be objectionable. However,
aeroelastic phenomena arise when structural deformations induce additional

aerodynamic forces. These additional aerodynamic forces may produce

*
Negative aerodynamic damping means that the wind feeds energy to the

structure.
Kk
Some designers, however, are not prepared to use these high damping

values and say that damping is very much less.
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additional structural deformations which will induce still greater aero-

dynamic forces. Unless these aerodynamic forces and the structural deform-

ations are limited, the result will be a complete destruction of the structure.
In fact, securing the bridge against the aerodynamic instability is

much better than curing an aerodynamically unstable bridge. Aerodynamic

stability can be achieved by designing the suspended structure to withstand

the aerodynamic conditions of the site.

7.8.1 Existing Bridges

Existing aerodynamically-unstable suspenion bridges can be cured by
using stays from tower tops to intermediate points at the top of the deck,
(tolresist downward deflections of the antisymmetric torsional or flexural
modes) . This concept was used by John Roebling in some of his bridges,
(Niagara, Cincinnati, and Brooklyn). As an alternative, stays may extend
from the bottom of the tower, (at the road 1eve1)’to intermediate points of
the cable. The writer prefers this type as the stays are not affected by
the tower-top movements. Instead, stays may extend from fixed points on
the shore, or from the tops of the piers, to intermediate points at the
bottom of the deck. The effect of these is a direct resistance to upward
displacement,(or upward swing),of the points of attachment, and possibly
an indirect and lesser resistance to downward displacement’(or downward
swing% of the same points of attachment, (Ref. 7.1).

-Transverse diagonal stays may be located between opposite suspenders
in the transverse planes near the quarter points and other intermediate
points of the span. The function of these stays is to prevent or resist
outmof—phase,(i.e. torsional),oscillations, since the cable of each side is
joined to the stiffening girder of the other side. Transverse horizontal
struts between the cables may be used, (in conjunction with such transverse
diagonal stays), in order to prevent the out-of-phase horizontal longitud-
inal movements of the cables, near the midspan, in the case of the first
antisymmetric torsional mode. Such diagonal stays and horizontal struts
do not help against vertical oscillations.

Another means of preventing the first antisymmetric torsional mode is
by providing adequately proportioned centre stays in the planes of the
cables. Their effect is to prevent the relative ldngitudinal motion of
the cables and the suspended structure at midspan. Full effectiveness of
the stays can be provided if they are given sufficient initial tension to
prevent reversal of their stress in the cycle for any anticipated amplitude

of oscillation, (Ref. 7.1).
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Artificial damping devices may perhaps be installed to increase the
absorption of the energy of undulations or oscillations, but there appears
to be no proven methods. Of course,stay cables may provide damping as
they are pulled about.

The addition of a second lateral bracing system at the level of the
lower chords of the stiffening system, (in addition to the top bracing
underneath the road deck), improves the torsional rigidity a great deal.
This second bracing system raised the uncoupled natural frequency ratio,
for the Golden Gate Bridge, from 1.25 to 1.96.

The rigidity of the suspension bridge is increased by its dead weight.
The addition of the second deck to the George Washington Bridge raised the
frequency ratio from 1.22 to 1.97. (This was possible because the bridge
was initially designed to have a second deck to satisfy the future require-

ments of the increasing traffic.)

7.8.2 Proposed Bridges

New bridges are to be designed carefully to achieve an aerodynamically
stable structure. Wind tunnel testing has now become essential on both
sectional and full models of the bridge as well as some models of the towers.
Experience from past research work and field observations on existing bridges
must be made use of in order to get the most economic and aerodynamically
stable structure. The aim is to secure the bridge against any possible
aerodynamic forces that may arise on the site, so that complete safety is
achieved with no need for- any remedy.

Firstly, as has been emphasized in the foregoing notes, plate-girder
stiffening systems compare unfavourably with open-truss systems. Truss=
stiffened bridges are usually stable against flexural oscillations, and their
tendency to instability in torsional oscillations can be corrected by suitable
design of the suspended structure. Design features which have a corrective
influence are, (Ref. 1.20):

(1) Separation of traffic lanes by open slots or gratings which permit easy
flow of air through them. This helps in equalizing the pressure at
the top and the bottom sides of the deck. Even if large eddies should

form, no large pressure difference could be maintained, (Ref. 7.10).

Improvements are obtained by increasing the number and width of such
slots, (or gratings). It may be suggested that the entire deck is
covered by gratings, but it must be kept in mind that the dead weight
of the deck helps in improving the rigidity of the structure, (Refs.
7.1, 7.3). It was found, (Ref. 7.1),that some 757% of the aerodynamic

forces will be eliminated if vents over some 257 of the width of the

bridge are provided.
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(iii)

(iv)

(v)

(vi)

(vii)
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Placing the road deck at the top of the stiffening system improves
the stability. This makes it possible to install a double lateral
system of bracing; one in the plane of the top chord and the other
in the plane of the bottom chord of the stiffening trusses. This
forms a four—-sided closed section which ensures high torsional stiff-
ness, (Refs. 7.3, 7.9). The result is an increase in the torsional
frequencies and the frequency ratio, and consequently an increase in

the critical wind velocity, and inhibition of flutter.

Sidetracks, (e.g. footpaths, cycle-tracks, etc.), mounted outside the
stiffening trusses. They act as horizontal fins,(or wind-deflecting
devices), since they reverse the aerodynamic effect otherwise produced,
(Ref. 7.1).

Downward velocity of the windward girder plus horizontal velocity of
the wind is claimed to contribute an upward pressure resultant
opposing and damping the oscillation, (instead of a downward pressure
resultant amplifying the harmonic motion).

Castellated handrailing, or other types of handrailing designed to
break up the continuity of the airflow pattern. These act as aero-
dynamic spoilers, at the top of the deck, by shedding eddies and
suppressing instability at positive angles of attack.

Truss—type deck-stringers in preference to the plate girder type. If
sufficiently deep, they considerably promote stability. They act as
aerodynamic spoilers at the bottom surface of the deck and suppress
instability at negative angles of incidence.

Lattice type wind bracing in preference to the plate girder type.

The most favourable position for_tﬂé toﬁ bréciﬁg is just underneath
the roadway deck, where the spoiiing egfgcts are most pronounced,
(Ref. 7.3). The most favourable pogitionmfor the bottom bracing is
at the level of the bottom chord of:tﬁgyg%iffeﬁiﬁg trusses, so as to
get the maximum possible torsional stiffness.

Stiffening truss chords of high width/depth ratio. The writer thinks
that this increases the separation between the chord centre-lines,

and consequently increases the stiffness of the two trusses. More-
over, it increases the separation between the top and the bottom
bracing systems, and this increases the torsional stiffness. Also,
the reduction of the depth of the chords reduces the aerodynamic (drag)
forces due to the reduction in the area subject to horizontal wind

forces.
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(viii)Since concrete has greater structural damping than steel, (about

(ix)

(x)

(x1)

(xii)

three times as much), (Refs. 7.4, 7.12), it may be prefgrable to use
concrete towers. The large weight of concrete towers makes them
more rigid, aerodynamically speaking. But this will have an adverse
effect on the cost of the foundations. (It is noted that the Humber
Bridge has concrete towers.)
However, in case of using steel towers, it must be noticed that
riveting is better than welding or friction grip bolts, with respect
to internal damping, (Refs. 7.4, 7.10, 7.11). During the erection
of the towers, unfavourable wind effects may be avoided by leading
wire cables, with inherent hysteresis damping capacity, from the
tower tops to earth, (Refs. 7.4, 7.5).
To minimize the aerodynamic forces during erection, it is recommended
not to construct the roadway deck, (nor the side-track decks), before
the stiffening girders are complete, (otherwise significant aerody-
namic forces may be applied to the incomplete structure), (Refs. 5.3,
7.5).
Floor forms in place before pouring a concrete deck may cause aero-
dynamic sensitivities even if the stiffening trusses are completed,
(Refs.. 7.1). The reason is the absence of the self weight of the
roadway deck, and consequently a great reduction in the rigidity of
the structure. In this case, a method of restricting instability
is to attach elements having a non-linear response to deflection,(e.g.
guy ropes), which inhibit resonance by modifying frequency as amplitude
increases, (Ref. 7.4). However, it will be also useful if the floor
forms are placed just before concreting,panel by panel.
A cable anchor device at the main span is very effective in inhibiting
the first antisymmetric torsional mode, (Ref. 7.9). Sometimes the
cable is connected directly to the stiffening girder at midspan, (e.g.
the Mackinac Bridge, (U.S.A.), and the Tancarville Bridge, (France)).
The result is inhibiting the relative (out-of-phase) longitudinal
movements of the cable centres.
Galloping of the cables,(especially before erecting the suspended
structure), can be corrected by wrapping them to produce a smooth
surface, (Ref. 7.4).

’ X 0k k%
Modern long-span suspension bridges have streamlined tubular decks.
These aerofoil decks proved to be aerodynamically stable, especially
when suspended by inclined hangers. The system of inclined hangers
replaces all kinds of stays suggested by John Roebling in the last

century, and then extended and confirmed by Steinman some 100 years
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later, (Ref. 7.1). It also substitutes for the vertical hangers.
During lifting of units, cross restraining wires, to the adjacent
units, are adopted to prevent pitching and yawing oscillations of the
units, (Refs. 7.5, 7.13).

Tests demonstrated the necessity of maintaining a high torsional
stiffness during erection, (Ref. 7.5). This required the use of an
interconnection device to transmit torsional stresses from one unit
to the next. Tests also showed that in this case no advantage is
gained by deck ventilation, (Ref. 7.5). But the high "aerodynamic
efficiency" is related to the degree of '"streamlining" of the cross-

section, (Ref. 7.13).



CHAPTER VIII

NOTES ON THE DESIGN, ERECTION, AND ECONOMY

OF SUSPENSION BRIDGES

8.1 INTRODUCTION

These notes are included here for the reader unfamiliar with the
relevant design and construction methods. They form the context in which
static and dynamic analysis must be viewed. It is hoped also that they
help build up an appreciation of suspension bridges, so that the complex-
ities of their aerodynamic behaviour, as summarized in Chapter VII, can be

- to some extent understood.

A little repetition occurs, from Chapter I, so that this chapter may
be read separately.

The number of suspension bridges designed and erected in both the
last and the present centuries, has been very great. As mentioned before,
in Chapter I, primitive man built primitive suspension bridges in some
parts of the world since prehistoric times. In modern times we use
better materials and improved machinery, which have rendered possible the
bridging of spans of a new order of magnitude.

The era of the modern suspension bridge is summarized by the

following table:

Bridge Clear Span (ft) Year Completed
Brooklyn 1595.5 1883

George Washington 3500 1931

Golden Gate 4200 1937

Verrazano Narrows 4260 1964

Humber 4600 ft = 1410 m (now being built)

In a paper in 1968, Fukuda,6 (Ref. 2.4) described a five-span bridge
with a 1500 m span, tentatively designed for the crossing of the Akashi
Straits in Japan. The main span here is about 100 m longer than that of
the Humber bridge, but the writer is not sure whether this five-span bridge

in Japan has been built or not.
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As Steinman said, (Ref. 1.6), the decades immediately ahead will see
the realization and the construction of other bridges of even greater spans.
Also, there is a remarkable jump in reducing thé time of construction.

The construction of the Brooklyn Bridge took 13 years, while the Bosporus
Bridge was opened to public traffic in 1973, only three years and three

months after commencing its construction.

Another jump in suspension bridge design, construction and economy,
is the great reduction in the depth of the stiffening system. Steinman's
Mackinac Bridge, (completed in 1958), has the deepest suspended deck in the
world, (38 ft) on a span of 3800 ft. This was reduced to only 10 ft deep
tubular, (or box—girder% decks in both the Severn and the Bosporus Bridges,
(in 1966 and 1973, respectively% over spans of nearly the same order.

The Humber Bridge, (4600 ft span), has also a box deck only 15 ft deep

(= 4.5 m). In 1966 the Tagus and the Severn Bridges were built (in Port-
ugal and U.K., respectively), both with a span of the order of 3300 ft.
The first has a truss deck 35 ft deep while the second has a tubular deck
only 10 ft deep, (Ref. 5.3).

Experience in comparing alternative superstructure designs for Severn,
Bosporus, and Humber, and studies for other suspension bridges of comparable
span, indicates that for any given span within a range from 750 to 1500 m,
(i.e. from 2500 ft to 5000 ft), and with a single-level deck, the all-welded
aerofoil form of box girder with asphalted battle-deck floor, coupled with
triangulated suspender system is of the order of 207% cheaper than the
conventional open stiffening truss. And, with proper attention to certain

details, it is at least equally aerodynamically stable, (Ref. 8.1).

There is much written on the design, construction, and economy of
suspension bridges. A complete book may not be sufficient to cover the
topic. However, a brief discussion on the topic is presented in the

following sections.

8.2 DESIGN OF SUSPENSION BRIDGES

Telford and Roebling were among the leaders of suspension bridge
designers in the last century. The presentation of the deflection theory
by Melan in 1888 has made a great revolution in the suspension bridge design
ever since. It was the first non-linear theory of suspension bridges, and
was further developed by Melan in 1906. It is still in use in suspension

bridge design.
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Other methods followed by other authors have been stated in Chapters
I and II. Preliminary design methods were presented by many authors like
Steinman, Hardesty and Wessman, and Pugsley, (Refs. 1.3, 1.7, 5.3).

The elastic theory was systematised and simplified by Steinman, (Ref.
1.7) for use in design by a series of charts giving girder bending and
shears, etc. for a variety of bridge and loading conditions. Corrections
were made after that to approximate the results to those of the deflection
theory. Supplementary small adjustments for departures from the typical
dip-span ratio, (1:10), dead-load to live-load ratio (w:p = 3:1), etc., were
also given. This theory gives reasonable results for relatively short
spans and stiff girders.

On the other hand, the method presented by Hardesty and Wessman in
1939 is relevant to relatively long-span suspension bridges with slender
decks. This method suits modern suspension bridges where the cable is
becoming the main carrying element. The method starts by studying the
lengths of uniform live load that give maximum cable deflections at the
quarter span points and at the centre. The method then assumes that the
loading that gives these maximum deflections is identical with that giving
maximum bending moments at the same points in the stiffening girder. The
authors assume that the main cables and the hangers are inextensible, but
they give various ways of refining the process, including allowances for
the effects of cable extensibility due to load and temperature changes,
and for the effects of side-span interaction.

In 1953 and 1962, Pugsley presented and extended his '"elastic found-
ation analogy" method for both short and long-span suspension bridges. In
this method the author treats the structure as an elastic deck supported on
an elastic foundation provided by the cable. The main factor in his
method is the relative stiffness of the bridge given by the ratio between
the elastic stiffness of the girder to the gravity stiffness of the cable.
This method is thus relevant to whether the cable, the girder, or both,
are the main carrying element in the structure.

Another approximate method was presented earlier by Pugsley, using a
flexibility coefficient approachy (Ref. 1.15). This method was applied in
the analysis of our laboratory model of the single-cable bridge. It was
also employed for the analysis of the erection stresses of both the Forth
and Severn bridges. Reference can be made to Chapter II for more details

on that method.
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All the above methods, and the majority of other methods presented
for the analysis and design of suspension bridges, assume that the bridge
is a plane structure. In other words, they do not include the torsional
stiffness of the deck. However, a three-dimensional analysis of suspen-
sion bridges, taking into account the torsional stiffness of the deck, has
been presented here in Chapter V, and utilised for both static and dynamic
analyses. The method used by the writer in designing his laboratory model
of the two-cable suspension bridge may be modified, extended, and used in

designing real bridges.

It should be noticed that, as is usual, the last element to be designed
is the first one to be erected. This implies that the anchorages and the
tower foundations, which are to be erected first, must be designed last.

Before going further, let us specify the major elements to be designed,
and the major design decisions. These are: (1) spans' arrangement;

(2) structural system; (3) cross-section; (4) dip-span ratia;
(5) cable construction; (6) hanger arrangement; (7) stiffness and
proportions of the stiffening system; (8) tower arrangeﬁent; and

(9) foundations and anchorages.

Each of these will be discussed briefly in the following subsections.

8.2.1 Spans' Arrangement

For a real bridge, the main span is chosen according to the crossing

and the geology of the site, as well as economical considerations. This
means that there is not much choice regarding the main span. The side=-
main span ratio may also be dictated by the foundation requirements. How=

ever, this ratio ranges for existing long-span suspension bridges between
0.17,(George Washington), and 0.50,(Mackinac) . This ratio largely deter=-
mines the slope of the cable as it meets the deck near the anchorage, thus
affecting the anchorage design. Also, shorter side spans tend to make the
tension in the backstays much greater than in the main cable, (Ref. 1.7).

In the case of a side-main span ratio of 0.5, this slope would be zero
if the backstays are loaded and each has a length equal to half the length
of the cable in the main span. For the George Washington Bridge, the
straight backstays have a slope of nearly 45° to the horizontal, which is

the highest backstay slope in the world.
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8.2.2 Structural System

This is related, (Ref. 5.3), to loaded or unloaded backstays, self-
anchored or external anchorages, whether the cable is connected directly to
the stiffening girder at midspan, etc.

If the side spans are unloaded, the horizontal component Ho of the
cable tension dug to dead load remains constant. If they are loaded, H0
will vary from one span to the other if the towers are rigid, or if the
cables are anchored at the tower tops, (Refs. 1.26, 2.3 - 2.5). If the
cables rest on movable saddles at the tower tops, as is usual, or if hinged
or rocker towers are used, (Ref. 1.7)*, or if the towers are flexible, H
can be taken as the average of Ho values in the different spans, (Ref.blB)**,

In a self-anchored suspension bridge, a strut is built (usually at
deck level),between the two anchorages, which relieves them of any hori-
zontal pull, (Ref. 1.4). Obviously, the deck itself may be desighed and
made use of to carry, in thrust, that horizontal pull. When the deck
carries the horizontal thrust, in addition to the traditional bending,
shear, (and torsion), its cross-section will increase, and this possibly
means more aerodynamic stability. Whether this is advisable is a matter
of the relative safety and economy of providing separate anchorages versus
self-anchoring. The former is usually the more economic; certainly so,

it appears, for long spans.

The Florianopolis Bridge is the first large American suspension bridge
built with rocker towers. It was completed in 1926 (in Brazil)
with a main span of 1114 ft. Other examples of suspension bridges
with rocker towers are the Elizabeth Bridge at Budapest, Hungary,
(built in 1903 with 951 ft span), and the self-anchored suspension
bridge over the Rhine at Cologne, Germany, (built in 1915 with a
span of 605 ft).

k%

This is the reason for adopting a dip-span ratio for the side spans
much smaller than that for the main span, in order to equilibrate
the cable under full dead load, (Ref. 1.7).  We have

Ho = sz/(SD), and if w is assumed to be nearly constant over the

main and side spans, (L2/D) must be identical for both the main
and side spans, in order to maintain H, constant all through.
This means that the dip-span ratios for the main and side spans
are to be proportional to the span lengths. Or, in other words,
the ratio between the sags of the different spans is to be equal
to the square of the ratio between the span lengths.
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The main cable is usually arranged to pass some small distance above
the stiffening girder at midspan. This clearance causes a direct increase
in the tower heights and in the lengths of all hangers. If this clearance
is small, in the case of vertical hangers, the horizontal displacements of
the central zone of the main cable may lead to significant inclinations of
the central short hangers. When these central short hangers become
remarkably inclined, the horizontal component of the cable tension will not
become constant any more, but it will vary throughout the span. And this
may need significant alterations and modification in the design. There
is also the danger of fatigue of the central hangers and their connections
to cable and girder, or indeed, also, the danger of these hangers being
simply overloaded.

In some bridges the cable is connected directly to the stiffening
girder at midspan. This connection can transmit horizontal forces to the
cable. Thus, the horizontal component of the cable tension may alter
across this point. Examples of this type are the Mackinac Bridge in U.S.A.,
(3800 ft span) and the Tancarville Bridge in France, (1995 ft span). The
cables of the Tancarville Bridge were connected to the deck at midspan in
order to help in achieving a large ratio between the frequencies of tor-

sional and flexural vibrations, (Ref. 5.3).

8.2.3 Cross=-Section
This includes (a) roadway arrangement; (b) type of stiffening girder;

and (c) cable spacing.

(a) Roadway Arrangement

The width of the bridge depends on the requirements of the traffic
over the bridge. Usually a suspension bridge has a single deck, but in
some cases, where the traffic intensity is considerably high, two decks
are used. Examples of double-deck suspension bridges are George Washington
and Verrazano Narrows Bridges, both built by Ammann in the U.S.A. Both
these bridges are among the largest suspension spans in the world.

However, the addition of a second deck, or the increase in the self
weight of the single deck, as well as the allowance for a heavy traffic
over the bridgei all these factors improve the aerodynamic stability of

the structure.
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(b) Type of Stiffening Girder

The stiffening girder may take the form of two trusses, two plate
girders, or a box,(tubular% section.

The plate-girder decks are not common in suspension.bridges. They
were used in the First Tacoma Bridge in the U.S.A. in 1940, (2800 ft span),
and the Rodenkirchen Bridge in Germany in 1954, (1240 ft span). The latter
is still existing but the first one, as is well known, collapsed only four
months after its opening for public traffic. The main disadvantage of the
plate girder deck is the great lateral wind pressure on the solid webs,
and the very low torsional stiffness. Indeed, it can possibly be said
fairly, at this stage, that the failure of Tacoma was the result of low
torsional stiffness which evolved naturally as an economic solution to an
over-stylized or over-simplified method of design of a real suspension
bridge as if it were a single-cable bridge.

The trussed deck has been used efficiently for a long time. But
recent investigations showed that for long-span suspension bridges with a
single-level deck, the all-welded aerofoil form of box girder is of the
order of 20% cheaper than the conventional open stiffening truss, and that
it is at least equally aerodynamically stable. Modern long-span suspen-
sion bridges, like the Severn, Bosporus, and Humber, have been built using
the tubular deck system, for the sake of both economy and aerodynamic

stability.

(c) Cable Spacing

The cable spacing plays an important part in the torsional behaviour
of a suspension bridge. It has been shown in Chapter V that the parameter
GJ/b2 is involved in getting the deflections of both cables,@s in Eqs. 5.6).
Furthermore, the torsional stiffness GJ is, in practice, approximately
proportional to the spacing, b, between the two cables.

The cable spacing affects, ttemendously, the lateral bending stiff-
ness of the deck spanning between the towers and loaded horizontally by
wind. In other words, the lateral deflections,(or oscillationsk due to
lateral wind forces, are greatly dependent on the spacing between the cables.

The First Tacoma Bridge was designed to have a theoretical maximum
lateral deflection of 21 ft at full wind pressure, but its actual maximum
lateral deflection at midspan never exceeded 4 ft, even during the gale which
destroyed it, (Ref. 1.6). (The wind speed during that gale was only one
third of the maximum design wind speed:) The bridge was the most flexible

*
of all modern suspension bridges. It had a width-span ratio, L/b, of 1:72

* This lateral slenderness, however, was not a factor in the failure of
the bridge.
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which is much smaller than that of any other bridge built before or after.
This width~span ratio for existing bridges ranges between 1:56, (Mackinac
Bridge, built in U.S.A. in 1958 with 3800 ft span), and 1:13, (Alvsborg
Bridge, built in 1966 with 1370 ft span). Generally, the ratio ranges
between about 1:50 and 1:40 for long spans and about 1:15 and 1:25 for
short spans. For the Humber Bridge, (now under construction), however,

the ratio reduces to 1:64.

8.2.4 Dip~Span Ratio

A typical dip=-span ratio for the main cable is about 1:10. Until
the first few decades of this century, the economic cable dip-span ratio
was recognised as varying from 1:10 to 1:8, (Ref. 8.2). For modern long-
span suspension bridges, the ratio varies from 1:12 to 1:10. Generally
it is noted that the ratio is amaller,(i.e. smaller sag),for the longer
spans. This is useful, actually, because the smaller the sag the shorter
will be the hangers and the towers. But the reduction of the sag causes
an increase in the horizontal component of the cable tension. However,
the governing factor has been, always, economy.

It was shown by Pugsley, (Ref. 1.3, p.30), that the cable flexibility
is directly proportional to the sag. A reduced sag, thus, increases the
cable stiffness and hence the total stiffness of the structure. This
leads to higher natural frequencies, and a reduced tendency to aerodynamic

oscillations.

8.2.5 Cable Construction
There are three common types of cable construction.

(a) Parallel Wires, Individually Spun in Site
This method was first invented and patented by John Roebling in 1841

and has since been used on almost all the major suspension bridges.

(b)  Structural Cables
‘ A structural strand is an assembly of wires formed helically around
a centre wire in one or more symmatrical layers. A structural cable is
composed of several strands laid helically around a core, (Refs. 2.8, 8.3,
8.4).

Structural cables have been used in many, relatively, short span
suspension bridges. The largest bridge using spiral strands at present in
service is the Tancarville Bridge, built in France in 1959, with a main span
of 1995 ft.
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(c) Parallel Wire Cables with Prefabricated Strands

In this case, parallel wires are preassembled in the shop into bundles
or strands. This type was used in the main cables of the Newport Bridge,
(Refs. 8.5, 8.6). The bridge has a main span of 1600 ft and was completed
in 1968. Tender figures for the cost of this bridge showed a saving of

.17.5% for the completed cables, as compared with the conventional spun
cable,* (Ref. 5.3). The primary objective in using strands rather than

wires is to reduce the erection cost and time.

In all the above three cable types, the individual wires are galvan-
ized,** and the final cable is bound into a unit and covered with a pro-
tective coating. The major disadvantage of the spiral strand is that
bearing between the wires reduces, a great deal, the allowable stress and

the modulus of elasticity.

8.2.6 Hanger Arrangement

There are two main types of hangers: (1) vertical hangers;and
(2) inclined hangers.

In the case of the conventional vertical hangers, the horizontal pull
in the cable is constant, but when inclined hangers are used it is not so.
Inclined hangers were used in both the Severn and the Bosporus Bridges.
The main advantage of inclined hangers is to increase the damping proper-
ties, (in addition to a slight increase in the stiffness of the structure).
This system is relevant to tubular decks where the hanger slopes can be
maintained nearly constant by varying their spacings. But in the case of
a truss, the uniform spacing of the hanger connections causes varying
hanger slopes with consequent difficulties in avoiding slackness in the

hangers at the midspan.

* * * *

Sometimes, inclined hangers may be inserted from the tops of the
towers to the deck, in addition to the conventional vertical hangers.
This arrangement was used by John Roebling in some of his bridges in the

last century.

* It should be noted that "spinning" refers to Roebling's method of
running out thin parallel wires to form a cable. No twisting is
involved. There is nothing in common with spinning wool, by
twisting, to form a thread.

*% The steel is high tensile and fairly notch~sensitive. However,
designers apparently do not fear the dangers of hydrogen embrittle-
ment.
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8.2.7 Stiffening System: Proportioning

About the year 1910, authorities recommended, for the stiffening
trusses of suspension bridges, a minimum depth-span ratio of 1:40. This
recommendation of minimum depth-span ratio, however, was later reduced to
the range from 1:90 to 1:50 for spans between 2000 and 3000 ft, (Ref. 1.6).
Nearly a generation later, the ratio could be greatly reduced to 1:168 in
the Golden Gate Bridge, (in 1937, span = 4200 ft), then to 1:178 in the
Verrazano Narrows Bridge in 1964.

In one jump, and using a tubular deck, the ratio could nearly be
halved two years 1ater7(in 1966), by building the Severn Bridge with a depth-
span ratio of 1:324. The ratio was slightly reduced further in the Bosporus
Bridge in 1973 to 1:358. The Humber Bridge, which is now being built,

will have a ratio of 1:313.
| This makes false the claim that the vertical slenderness of the First
Tacoma Bridge, (depth-span ratio = 1:350), was a main factor in its failure.

What seems to be obvious is that the use of the aerofoil form of box
girders, instead of the traditional truss decks, for long span suspension
bridges, made it possible to reduce the depth-span ratio down to about one-
eighth of what was recommended about half a century earlier. Future
decades may perhaps witness further reductions in the depth-span ratio and
further increases in spans, with the development of thé materials and

methods of construction.

8.2.8 Tower Arrangement

Under the dead load condition, the towers are assumed to be vertical
carrying only central vertical loads. Let us assume also that the cables
are fastened at the tower tops.

Under vertical live load on the bridge deck, the tower tops move in
the spanwise direction due to the extension of the backstays. If these
vertical live loads are not symmetrical about the longitudinal centre line
of the bridge, the towers will also twist. Additional tower deflections
in the spanwise direction occur also due to the longitudinal wind pressure
on towers. Also the towers will deflect laterally due to the lateral wind
pressure on the entire bridge, (including the towers).

This means that the towers are designed to carry the following loads:
(i) Vertical reaction from the cable of both the main and the side spans.
(ii) Self weight acting vertically, (central).

(iii) Horizontal wind force in the spanwise direction.

(iv) Horizontal wind force in the lateral direction.
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If the backstays are loaded, i.e. if the deck in the side spans is
supported from the backstays, additional horizontal spanwise force, equal
to the difference between the horizontal cable pull in the main and side
spans, will act at each tower top.

Deflections of the tower tops due to all the horizontal forces will
cause the large vertical loads to become eccentric, producing bending
moments and stresses. Also the twist of the towers, due to torsional
loadings on the bridge, may be increased by these horizontal forces and by

tower top movement.

8.2.9 Foundations and Anchorages

The design df the foundations and anchorages of suspension bridges is
beyond the scope of this thesis. However, a few notes are given.

It is essential to design the foundations for the towers sufficiently
large and massive to be immovable in case of impact from floating objects,
(Ref. 8.7), or collision by ships. The pier top is set so that the steel~
work of the tower is clear of splashing by salt water.

The safety of a suspension bridge depends upon the security of the
anchorages, (Ref. 1.7). The anchorages are usually designed to resist a
very high pull from each cable, at some slope above the horizontal. Over-
turning moments at the top of each anchorage are usually high. There are
two types of anchorages:

(1) Tunnelled anchorages, where its weight, (submerged), plus the weight of
the overburden would be sufficient to prevent its being drawn against
the friction on its base. This system was used in the Forth Bridge,

(Ref. 5.2). Sometimes the anchorage is into rock.

(ii) Gravity type anchorages, where each cable is anchored into a solid
block of mass concrete, the two blocks being joined by a massive cross-
wall at the rear, (Ref. 8.8). In this case, the pull in each cable
is counteracted by the weight of the mass anchorage. This type was

used in the Severn Bridge.

It appears that designers consider it sufficient that the resultant
of the cable pull on the gravity anchorage and its self weight and the
superimposed load should make an angle with the vertical less than the angle
of friction of the soil under the anchorage, (Ref. 1.7).

If the gravity anchorage is resting on rock, the toe pressure must not
exceed the allowable foundation pressure, so that the anchorage can be safe
against settlement. The heel pressure must not be less than about half
the toe pressure to minimize the tilting or overturning of the anchorage.

* * * *
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The foregoing notes and comments on published work treat the suspen-
sion bridge more or less as a plane or two-dimensional, structure. The fact
that suspension bridges are three-~dimensional, however, must be considered.
The major distinction is the behaviour of the bridge under torsional
loadings. This requires taking the torsional stiffness of the girder into
consideration. The problem has been tackled herein by the writer in
Chapter V, and carefully checked against the behaviour of the three-~dimen-
sional laboratory model. This model was also designed by the writer taking
into account the torsional stiffness of the deck.

In the following suisection, the method of designing the laboratory

three-dimensional model is extended to suit the design of real bridges.

8.3 SUMMARY AND FURTHER NOTES ON THE DESIGN

As previously said, a designer usually needs:
(1) a preliminary design method which must be clear, short and quick, and
possible on a small computer; and (2) a final design method which must be
accurate enough énd reliable, and usually relevant to the use of big com=-

puters.

In fact, all the available methods, for both preliminary and final
design of suspension bridges, are not designing methods, but they are
actually methods of analysis. The authors always design the bridge as if

it is existing with all its dimensions and details known in advance!

The following preliminary design procedure is suggested by the writer:

1. The main span, L, is chosen first according to the crossing and the
geology of the site and other factors. The lengths of the side spans
are decided according to the foundation requirements, etc.

2. The dip-span ratio, D/L, for the main cable is then chosen. For spans
of the order 3000 ft (or over), a ratio of 1:11 or 1:12 is reasonable,
while for shorter spans (2000 ft or less), a ratio of 1:9 or 1:10 is
more appropriate.

3. Now comes the step of estimating the intensity of the dead load, Wi,
per unit area.* Unfortunately there is no rule, until now, for giving
an estimate for the dead load of suspension bridges. However, a
survey of some of the existing bridges may help.

Modern long-span suspension bridges with tubular slender decks have
apparently less self weight than those with the conventional stiffening
trusses. Each of the Severn and the Bosporus weighs about 0.5
tonne/mz. The Forth Bridge, which is the lightest bridge with stif-

fening trusses, weighs about 0.65 tonne/m?2.

* The width of the bridge, here, is regarded as the spacing between
the centres of the two cables, b.
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The George Washington Bridge (with two decks) has a self weight of
about 1.8 tonne/ﬁz. This means an average of about 0.9 tonne /m?

for each deck. The Tancarville Bridge (built in France in 1959 with
a span of 1995 ft) weighs more than 1 tonne/m?, (stiffening trusses
17.6 ft deep were used). The Chesapeake Bay Bridge, built in the
U.S.A. in 1952 with 1600 ft span, weighs about 0.77 tonne/n?.

In short, for spans of the order 3000 ft (or over), a dead weight of
about 0.6 tonne per square metre (of the area of the deck between the
planes of the two cables), is reasonable. For shorter spans (2000
ft or less), this self weight of the bridge may be taken as 0.8

2
tonne/m .

The cable spacing, b, is chosen according to the relevant width-span
ratio, and also to satisfy the reasonable bridge width for the expected
traffic. The intensity of the dead load per unit length of the
bridge, w, is then obtained as the product of the width, b, between
the two cable centres and the weight wy per unit area of the deck

(between the planes of the two cables).
The sum of the horizontal pull in the two cables, 2Ho, is given by
2H = wL2 /8D.

If the live load is about 307% of the dead load, as is usual, this
means that the increment, h, in HO due to live load will be about
0.3 HO. This means that the design value for H = H0 + h will be
about 1.3 Ho’

If the backstays are unloaded, then the main cables will have their
critical sections at the side spans. If they are loaded, however,
the cables are designed to carry the maximum possible tension (at the
position of maximum cable slope with the horizontal). Usually, the
tension at any section in the main span does not exceed 110% of the
horizontal pull; (for a dip-span ratio of 1:10, maximum cable tension
equals 1.077H). Knowing the working stress of the cable material,

. / . .
the required cros%Sectlon can be obtained.

i

The non-dimensional stiffness factor $* = EI/ZHOL2 may be given some
trial value. Values of this parameter, for some of the existing
bridges are shown on Fig. 2.5. A moderate value, for one of the long-
span suspension bridges with stiffening trusses, is that of the Forth

Bridge (= 4.3 x 10~3). Modern bridges with tubular decks, like the
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Severn, Bosporus, and Humber, usually have slender decks, for which

the parameter 52 may have a value less than 1 x 10"3.

Once Sz, and the modulus of elasticity, E, for the deck material

become known, the moment of inertia, I, of the deck can be obtained.

The depth of the deck is then determined, as in subsection 8.2.7.
That is, for stiffening trusses, a depth-span ratio of 1:120 -~ 1:180
is reasonable, while for tubular decks, a ratio of 1:300 - 1:360 is

adequate.

Once the depth becomes known, the top and the bottom chords of the
deck section can be calculated, to give the required moment of

inertia.

The torsional stiffness of the deck is then checked, using, as sug-
gested by the writer, the non-dimensional parameter (GJ/EI) . (L/b)2.
Unfortunately, there is not enough information available about that
parameter. Its value for only one_existing bridge (the Forth Bridge)
could be obtained (= 190). For our laboratory model of the two-
cable bridge this value is 250.

However, the deck section can be designed according to step 9, and

its torsional stiffness can easily be computed.

(Note: usually G = 0.4E, for steel decks).

A preliminary design has been described above, and the main compon-

ents of the bridge, mainly the cable and the deck cross-~section, could be

designed. This can be followed by a preliminary analysis, for that pro-

posed design, (as given before in Chapters V and VI), to get the stresses

in and the deflections of the main cables, the deck, the towers, and the

hangers, etc. Also, the vibration frequencies and modes can be obtained.

The dimensions of the bridge may then be altered if needed, and the

self weight can be re-estimated. The bridge can then be analysed again,

and the above procedure may need to be repeated until satisfactory results

are obtained.
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Note: It would be very useful if designers, besides checking aerodynamic
stability of the bridge, could give some indication of its fatigue life.
(Some comments on the importance of this appear in Chapter III. The main
danger appears to be fatigue in connections.) The analytical tools appear
to be available, but their application would need considerable development.
More knowledge is needed of the damping properties of suspension bridges

and of transient excitation by wind.

8.4 CONSTRUCTION AND ERECTION OF SUSPENSION BRIDGES

The order for the erection of a suspension bridge is (i) foundations

and anchorages; (ii) towers; (iii) cables; (iv) suspenders; and (v) deck.

8.4.1 Construction of Piers and Anchorages

(a) Piers

Each pier is usually solid concrete and sufficiently long to support
the bases of the two tower legs. The pier tops are usually reasonably set
above the water level so that the towers, (especially if made from steel),
are clear of splashing by salt water.

Piers may be built, as a non~tidal operation, inside temporary steel
cofferdams up to high tide level. Alternatively, a perimeter concrete
wall is built to enclose the base concrete. This perimeter wall forms a
cofferdam so that the internal portions can be carried out as a non~tidal
operation. The external wall is divided into a series of vertical ele-
ments, the size being such that concreting can be started at low tide and
the level of wet concrete rises at a rate greater than that of the water
outside. In this way the maximum use is made of each tidal period,

(Ref. 8.7).
(b) Anchorages

The procedure followed in building the piers can also be used for the
anchorages. The external surfaces of the anchorages are usualy tanked
with asphalt to ensure watertightness.

The anchorage block is perforated by steel tubes concreted in-place
through which prestressed HT steel screwed rods are passed to secure steel
slabé to the upper face. The strand shoes are attached to these slabs,
and the spaces between the strands are sealed, (Ref. 8.8).

Usually it is impossible to paint the strands effectively in the
tapering spaces between the strands, as they leave the splay saddle. The
protection of the wires is thus regrettably reduced to the galvanizing
alone, (Ref. 5.2).
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8.4.2 Erection of Towers

The tower bases, and some limited height of the towers, are usually
set by a derrick boat. Later, the creeper derrick is connected to the
tower legs. If the legs of the towers are not vertical, hammerhead der-
ricks are used (between the tower legs) instead of the creeper derricks,
as in the San Franciso-Oakland Bridge built in U.S.A. in 1936, (Ref. 8.6).

The towers are usually built of structural steel, although stone,
concrete, and timber have been used, (Ref. 1.7). The Humber Bridge will
have concrete towers.

When the tower legs are fabricated steel cells, internal diaphragms,
access ladders, and hoist supports are assembled, (Ref. 8.9).

Diagonal bracing or cross girders are usually erected between the
tower legs to ensure the torsional stiffness of the towers. The main

saddles are built up, perhaps, in mild steel plates and assembled and

welded in jigs. The cable grooves are formed by welding in layers of
plate, and the grooves are ground smooth. Strand spacers are welded in,
(Ref. 8.10).

8.4.3 Construction of Cables

A temporary footwalk system for cable spinning is constructed for
each cable to enable men to adjust the wires as they are erected to form
the cables and subsequently to compact and wrap them. These footbridges
(or catwalks) are located about four ft below the level where the cables
are to be, and extended from anchorage to anchorage across the waterway
(or the gorge). The footwalks of the two cables are interconnected by
crossbridges to prevent any overturning due to wind.

On days of high wind and gales no wire might be spun at all. This
makes advantageous the method of preassembled strands used in the Newport
Bridge, where the shop fabrication of the strands in good working conditions
saves a great deal of the erection cost and time. But, unfortunately,
this method is relevant for only short span suspension bridges, (not more
than 2000 ft).

On a good day, however, more than 500 miles of wire can be spun,
(Ref. 8.9), using a spinning wheel. In the Forth Bridge, eight wires
were spun at a time, (Ref. 5.3).

When completed, the cables are squeezed, by hydraulic jacks, at
intervals throughout their length into a compact and approximately circular
formation. After compaction, the cables are tightly bound with temporary
galvanized steel straps at about 1 m spacings. The cables are then care-

fully measured along their length, and permanent cable bands are bolted in

position, (at the hanger positions).
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The last major operation on the cables is wrapping them round from
end to end between the cable bands with galvanized wires under tension.
The temporary straps round the cables are removed ahead of the wrapping
and a coat of red lead paste is applied to it. Alternatively, a plastic
covering for the cables, (essentially a glass-reinforced acrylic-resin
system), was developed and used for the second time on the Newport Bridge.
It promises long life, does not require painting, and is less expensive
than wire wrapping, (Ref. 8.11).

On completion of the cable wrapping, the catwalks are dismantled,
(Ref. 8.10).

8.4.4 Erection of Suspenders

Suspenders (or hangers) are then pinned to the cable bands. On the
erection of the deck, they are also pinned to the deck suspender lugs.
Sometimes, hangers are formed of wire ropes looped over the cable bands.
However, single strands formed of larger wires are more resistant to
corrosion and less liable to damage at road level, (Ref. 8.8)

Before erection, the hangers are laid up in some Metalcoat, and,

after erection, a further coat of this material is also applied.

8.4.5 Erection of the Deck

The scheme should aim to balance the dead-load distribution along the
span, so as to minimize the distortion of the cables during erection.
Usually, the erection proceeds, simultaneously, from the two towers outwards,
using traveller derricks.

A deflection model, however, may be built to obtain some information,
in advance of the calculations, relating to cable and deck deformations
during erection. Such a model for the Severn Bridge, (Ref. 8.10), showed
that erection should be started in the centre of the main span outwards and
that this span could be completed without counter balancing erection in the
side spans. The erection of the two side spans together can follow after
the completion of the main span. (This is for the case of loaded backstays.)

Whether the deck is tubular or of the truss type, it is not possible
to close the transverse joints until about half the main span is erected,
(Refs. 1.7, 8.9, 8.10). Thus, temporary joints made with grip bolts and
sufficiently flexible to permit bending along the axis of the bridge are
devised. The reason for this is that the main cables have to stretch some
0.3% between the anchorages as the deck is erected and its dead weight comes

on to them.
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When using stiffening trusses, the roadway may be made of reinforced
concrete or orthotropic steel plates. On the other hand, the top plate
of a tubular deck acts as an orthotropic steel plate. In either case, a
wearing surface of mastic asphalt is laid over a layer of hot rubber/
bitumen compound. Tubulér decks offer clear advantages in painting and
surfacing, compared to stiffening trusses.

All external surfaces of steelwork and any internal surfaces which
might be subjected to atmospheric corrosion are grit-blasted, zinc-
sprayed, and then given two, three, or four coats of paint, (Ref. 8.9).
In the Newport Bridge, (Ref. 8.11), all the exposed steel of the super-
structure, as well as the concrete roadway, were coated with a two~com-
ponent epoxy compound. This coat reduces maintenance cost and protects

the concrete from damage due to deicing salts.

Throughout construction, safety measures for the workmen are con=
sidered of prime importance. During erection of the suspended structure,
safety nets are usually provided under three panels of each of the working
fronts. Samples of these nets are tested by dropping a weight shaped like
a man's body at different places from heights up to 30 ft, (Ref. 8.9).
Experience has shown that men work more quickly and freely on structural
steelwork if safety nets are provided beneath them. A safety boat must

be always in attendance in the waterway.

8.5  ECONOMICS -OF SUSPENSION BRIDGES

The great majority of bridge designers believe that the most economic
structure is the one for which the first cost of construction is a minimum.
(Ref. 8.12). But, actually, the most economic structure is the one which
will do the work required of it for as long a time as necessary, safely,
and with the least possible expenditure for operation, maintenance, and
repairs, all these being obtained with the smallest practicable initial
cost of construction.

A suspension bridge is usually cheaper than any other bridge type
for exceedingly long spans, or at the crossing of a gorge or a river of
great depth and swift current where it would be too expensive to build

piers in the stream, (Ref. 8.13).
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Usually, suspending the stiffening girder from the backstays is mnot
economic, if it is practicable to build a trestle approach, (Ref. 7.13).
And even if it is not, it may be better te substitute short spans for the
trestle supporting them, at intervals, on piers. The only case in which
it is economic to use loaded backstays appears to be when there is deep

water beneath the side spans as well.

8.5.1 Economics of the Stiffening Girder

With regard to the stiffening girder, the first economic point to
consider is that the deck and the floor system should always be made as
light as the ruling conditions will allow, because the heavier the floow
the greater the load on the cables, (Ref. 8.13), though of course dead load
is an aid to stability. The weight of the stiffening girder is a direct
fﬁncfion of the live load since the dead load is entirely carried by the
main cables (through the suspenders). As stated before, recent investi-
gations showed that for long-span suspension bridges with a single deck,
the aerofoil form of box girder is about 207% cheaper than the conventional
stiffening trusses, and that it is at least equally aerodynamically stable,
(Ref. 8.1). A box girder is also much easier than the trusses in painting
and maintenance. Complete segments (or panels) of the tubular deck can be
prefabricated in shop or on shore, and then floated and lifted to the
required position. This process is easier and quicker than assembling
truss members on site over the safety nets and in bad weather. Stiffening
plate girders are of course to be avoided. A double-~deck suspension

bridge may be adopted if the traffic is too heavy for a single deck.

8.5.2 Economics of the Cables

Eye~bar cables were used in the past in the suspension bridge cor-
struction for a long time. The longest eye-bar suspension bridge in the
world is the Florianopolis Bridge, built in Brazil in 1926 with a span of
1114 ft. About the middle of the last century John Roebling patented the
use of the wire cables instead. In the competitive bidding of the George
Washington Bridge at New York (in 1927), the wire design had a favourable
margin of $2 million, indicating that the eye-bars cannot of course compete
with wire cables for extremely long spans, (Ref. 1.7). It is very inter-

esting to note that eye-bars were considered so recently as the late 1920's.
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In the construction of the typical parallel-wire cables of John
Roebling, the wires are placed wire by wire, in the field, where a travel-
1ing wheel pulls one or more loops or bights of wire from one end of the
bridge to the other. This process is known as "air spinning". For con-
venience, the wires for large cables of this type are sometimes assembled
initially in small bundles, known as strands.

The idea of avoiding the laborious wire-spinning process has teased
the imagination of designers and contractors in the suspension bridge field
for many years. One method of accomplishing this goal, (Ref. 8.5), was
developed and reduced to practice during the late 1920°'s and early 1930's.
In this method the "parallel-strand cable" consisted of a group of prefab-
ricated, machine-made helical strands.

The urge still remained to develop prefabricated parallel-wire
strands. A workable method was eventually reached, and the parallel-wire
strands could be achiieved successfully in the Newport Bridge in 1968,
(span - 1600 ft).

Parallel-wire strands are better than helical-wire strands because
of less weight for equal load carrying capacity, (Ref. 8.14). Similarly,
parallel strand cables made up of helical strands are better than helical~
strand cables for the same reason. For long spans, the conventional air

spinning of the individual wires is more economic.

8.5.3 Economics of Towers

The towers are usually built of structural steel, especially for long-
span suspension bridges. However, reinforced concrete towers have been
used for smaller bridges. The longest suspension bridge with concrete
towers is the Tancarville Bridge, built in France in 1959, with 1995 ft
span and 404 ft high concrete towers.* (The steel towers of the Severn
Bridge are 445 ft high). The latest suspension bridge with concrete tower
is the Bordeaux Bridge, built in France in 1967, with 1292 ft span and 344
ft concrete towers, (Ref. 5.3). Stone and timber towers were also used
in the past in suspension bridge building, (Ref. 1.7).

As was previously mentioned, the height of towers depends on the dip-
span ratio of the main cables. This means that the cost of the towers
depends not only on the unit price of the towers' material and erection,
but also on the dip-span ratio of the main cables. The general trend
these days is to reduce the tower heights (by reducing the cables' sag),
and to use structural steel or even somewhat high-tensile steel to get
light-weight towers. For economy in the construction of the towers (and

the piers), the sidetracks are supported outside the cables, (Ref. 7.3).

*  The Humber Bridge (4600 ft span) will have concrete towers 536 ft high.
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8.5.4 Economics of Piers and Anchorages

There are three general cases of governing conditions to consider for
the sake of economy of foundations, (Ref. 7.13):

(i) Foundations on bed rock.

(ii) Foundations on piles.

(iii) Foundations on clay or similar material without piling.

If the bed rock is fairly close to the surface, it will be advisable
to found upon it. But otherwise it will be cheaper to put in shallow
foundations, obtaining the necessary supporting power either by piling or
by spreading the base. If piles are to be ﬁsed, they may be friction or
bearing piles, depending on the depth of the bed rock.

The piers are the foundations of the towers, and so they are also
affected by the dip=span ratio of the main cables. In other words, a
reduction in the cables' sag will lead to a corresponding reduction in the

piers' costs as it reduces the towers' heights and costs as well.

On the same bases, the costs of the anchorages increase by the reduc-
tion of the cables' sag, (due to the resulting rise in the cable tensions).

The maximum of economy in the gravity type anchorages, if the site is
rocky, is obtained by making both the weight of the anchorage block in its
rear, and the foundation area in the front, as large as practicable, (Ref.
8.13). The first expedient tends to increase the resisting moment against
overturning, and the second to reduce the intensity of bearing at the toe
of the face, where, of course, it is greatest. These anchorages are thus,
for the sake of economy, long and narrow, low in the front and high in the
rear. Also a separate anchorage is provided for each main cable. These
individual anchorages are connected in the front below the ground so as to
increase the base area. They are also joined in the rear by a great wall
above the ground in order to increase the weight there.

If the site is clayey or something similar, tension and compression
piles are, perhaps, to be used to support the anchorages. Piles should
obviously be driven as closely together as practicable near the front of the

anchorage, and spread somewhat near the rear.
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8.6 SUGGESTIONS

8.6.1 Steel Stress-=Ribbon Concept

This is a new unusual concept in suspension bridge construction, (Ref.
8.15). In this concept, the suspension bridge is built with central sags
of less than 2% of the span length using currently available materials and
technology.

This returns the suspension bridge structure to the primitive fashion,
where the roadway is put directly on the main cables. The only difference
here is that the deck shares the axial forces with the high tensile cables.
This means that there are no hangers. There are here also no towers, but
the stress—-ribbon is anchored to stiff abutments at the ends.

Recent studies reported in the press suggest that highway bridges
with a span length of up to 2000 ft are practically and economically feas~
ible using the stress—~ribbon concept. The study was based on the use of
high tensile steel wires for the cables, and structural steel plates for
the deck.

At sites where long high pipeline crossings are required, the stress-
ribbon structure offers some important advantages. The pipe itself forms
the deck, and advantage can be taken of its unused 1ongitudinal tension
capacity. The pipe is erected on high tensile steel cables attached to
the anchorages and pretensioned to a reasonable stress level.

The writer thinks that the cross-sectional area of the pipe is much
more than that of the cables. Thus, if the pipe can be made of high
tensile steel or any other high quality steel, the cables can then even be
dispensed with, and the entire load can be carried by the high tensile
steel pipe. The same may perhaps be done with the highway suspension
bridges, where the cables can be dispensed with and the entire load can be
carried by a high tensile steel deck. In this case the deck will be func~
tioning in both bending and axial tension, as well as in torsion (in case

of torsional loadings).

* * * *

The steel stress—ribbon bridge gains its high stiffness from the very
high axial tension which is caused by the low sag. The success of the
stress~ribbon structure depends on the existence of sound rock at the anchor-
age points. A typical sequence of steps in the construction of a stress-

ribbon suspension bridge would be as followst



Tower L¢3

Cross B'rtcfnj l
or Diaphvagms and Spanwise
Cross Girders. Divectlion

Fiy-g.1.- Typical Cross-Section of
3 Modern Stee] Tower.



194

(a) Construct tensioning anchorages at each abutment.

(b) String high tensile steel tendons between the abutments and
tension them.

(c) Erect and join steel deck segments, directly supported on the
tendons.

(d) Adjust the tension forces in the deck and the tendons to their

optimum levels.

Cost savings of up to about 40% in special applications are said to
be possible using the stress-ribbon concept.

There are a few bridges of this type built recently, in the last
decade, in both Europe and Japan, (Ref. 8.16). The first of these is the
Bircherweid Bridge (in Switzerland), built in 1967 with 131 ft span. The
latest bridge of this type is the Rhone Gent-Lignon Bridge, built in 1971
with 426 ft span. The Freiburg Bridge, built in Germany in 1969 with
three spans, ‘approximately 131 ft each, has a prestressed concrete slab

deck.

8.6.2 A New Shape for the Towers

The typical cross—=section of a tower leg comprises one or more hollow
rectangular cells made of structural steel. The two legs of each tower
are placed such that the greater dimension of the section of each leg is in
the spanwise direction of the bridge, (Refs. 5.2, 7.6, 8.8). A typical
cross-section of a modern suspension bridge tower is shown in Fig. 8.1.

To iﬁprove the aerodynamic stability of the tower, (in the spanwise
direction), the writer suggests perforated tower legs, the holes in both
legs are to be made in the side of the greater dimension (to minimize the
effect of lateral wind). It is to be noted that for the longitudinal wind,
the tower with its two legs and bracing web members, in between, acts as a
vertical truss, or vierendeel.

The idea of perforated towers came to the writer from designing many
of the concrete and steel towers for transmission lines in 1968-1971 in
Egypt and other Middle East countries. This idea is in agreement with the
conclusion which prefers the open stiffening truss to the stiffening ﬁlate_
girder with solid web, (see subsection 8.2.3).

Typical cross~section, elevation, and side view, for the suggested

tower are shown in Fig. 8.2.
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CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

A summary of the work presented in this thesis has been given in
the preface. The general conclusions and recommendations of the analytical

and experimental investigation are set out below.

STATICS OF THE SINGLE~CABLE BRIDGE

(i) The increase in the horizontal component of the cable tension, h, due
to any L.L. is almost linearly proportional to the intensity of that
live load.

(ii) The stiffness of the bridge increases by increasing the L.L. intensity.

(iii) If the Deflection Theory is to be used in analysing a suspension bridge,
the integration constants must be obtained in terms of the dimensions
and properties of the bridge in order to avoid any ill=-conditioning
that may arise from evaluating them in terms of one another.

(iv) Timoshenko's Energy Method showed the best agreement with measurements
on our laboratory model while the Deflection Theory gave reasonable
agreement but with less accuracy. The reason is perhaps an over—
estimate in evaluating h when using the Deflection Theory.

Pugsley's Flexibility Method, and Charlton's Energy Method give nearly
the same result showing an overestimate of the deflections everywhere
in the span.

(v) The extensions of the hangers are not considerable and can be ignored
without any significant error. In other words, the deflection curve

of the deck can be considered identical with that of the main cable.

DYNAMICS OF THE SINGLE-CABLE BRIDGE

(1) The iterative procedure is reasonable for a preliminary design where
only the first few modes of vibration are wanted. For this purpose,
it is relevant to use the flexibility matrix of the vibrating structure

since the iterative procedure then converges first to the lowest mode.
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(iii)

(iv)

(v)
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Since suspension structures are non-linear, it is recommended that the
flexibility matrix be evaluated for each loading condition separately.
It was noticed that suspension structures stiffen by loading, and this
results in a reduction in the magnitudes of the flexibility coefficients
as the L.L. increases.

Rayleigh's quotient gives an upper bound to fundamental frequency.

This estimate for the fundamental frequency approaches the correct
frequency value as the guessed mode shape approaches the correct funda-
mental mode shape.

Similarly to the displacements due to static loading, the displacements
of a vibration mode under a loaded zone are greater than those of the

unloaded zone, Fig. 9.1.

~——~_11]

Fig. 9-1.. Fundamentsl Mode.

The fundamental frequency increases as the L.L. increases, while the

contrary appears to apply to the second frequency.

DYNAMICS OF SUSPENSION CABLES AND NETS

(1)

(i1)

For the suspension cables, as in suspension bridges, any increase in
the fundamental frequency, (due to L.L.), is always associated with a
reduction in the second frequency, and vice versa.

Experimental observation, and symmetry and antiSymmetry,can be made use
of to simplify the analytical solution of the dynamic problems of sus=-
pension cables and nets, and suspension bridges as well. A great
reduction in the order of the frequency and mode equationscan thus be

achieved.



198

STATICS OF THE TWO-CABLE BRIDGE

(1)

(i1)

(iii)

The energy procedure presented herein is recommended for solving the
problem of three-~dimensional suspension bridges taking the torsional
stiffness of the deck and the effect of torsional loading into consid-
eration. The method is approximate, but it is recommended for design
purposes, both statically and dynamically.

The principle of superposition can be applied to two-cable bridges,
without considerable errors, in both the vertical deflections and cable
tensions.

The torsional stiffness of the deck of a suspension bridge increases
with the increase of the torsional loads. In other words, the bridge

stiffens, both in flexure and in torsion, as the load increases.

DYNAMICS OF THE TWO-CABLE BRIDGE

(1)

(ii)

(iii)

(iv)

The energy method of the static analysis of two-cable bridges, presented
herein, can be used successfully in evaluating the flexibility matrix
for the dynamic analysis.

A new method for reducing the number of degrees of freedom is presented.
The structure can be dynamically analysed by assuming that it has a
reduced number of "joints", if the mass and the flexibility matrices are
accordingly modified. No remarkable error was found when the number of
"joints" was halved.

Whether the flexibility matrix is made symmetric, (by an averaging
procedure), or used as it is, (asymmetric), in a procedure of finding
the eigenvalues and eigenvectors of symmetric@n?asymmetthjumtrices,
the results are not remarkably different.

The dynamic analysis and the method of eigenvalue economization pre-
sented herein for suspension bridges are applicable to, and recommended

for, many other structures, including lumped and continuous mass systems.

AERODYNAMIC STABILITY

(1)

The flexibility matrix procedure is very usefully applicable to aero-

dynamic problems. The equation [m][i] + [k][X] = [F] can be premulti-
plied by the flexibility matrix, [k]“' in order to facilitate the solu-
tion. A real structure can be divided into n segments with known mass
and inertia values, and the displacements (X1, Xp, ¢eeuy X 3

n
01, 62, coey en) can be determined for all modes of vibration.
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Alternatively, the displacements may preferably have the form
X1y X0y eony Xn s Y1, Yo, ceey Yn), where the X's are the displace-

ments of one side, and the Y's are those of the other.

To the author's knowledge, and most surprisingly, this very important
suggestion has not apparently been made before. It seems almost
impossible to believe that the latest papers on flutter handle struc-

tural aspects by differential equations only.

This procedure is recommended for other structures as well, (e.g.
aircraft wings). (Note that damping is not included in the above

equation and that it can be introduced if required.)

(ii) For flutter calculations on suspension bridges it must be strongly
emphasised that what matters is the relative natural frequencies of
flexural and torsional modes of similar shape. It is desirable that

structural designers learn how to do flutter calculationms.

For a modern suspension bridge, there is a possibility of a heavy live
load on one side of the bridge (due to stoppage of traffic, for example)
for a period of time. Designers may be well-advised to carry out the

necessary relevant checks for stability against flutter under live load.

(iii) The structural damping is greatly increased by the construction of the
deck, but the aerodynamic forces also depend on the existence of the
deck. It is thus desirable to design the cross=section of the deck
such that any oscillation caused by aerodynamic forces will certainly

damp out.

DESIGN OF SUSPENSION BRIDGES

A procedure for the design of suspension bridges is presented in

section 8.3, and it is recommended for the design of real suspension bridges.
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APPENDIX A2: NOTATION

A : Cross=—sectional area of the bridge deck;
AE : Effective cable stiffness;
as, bi ¢ Fourier coefficients of vertical deflections;
[aij] ¢ TFlexibility matrix of the cable;
: Total deck width, (two-cable bridge);
b ¢ Width between centres of cables, (two-cable bridge);
c, c' : Integration constants;

CL, CD, CT : Non-dimensional 1lift, drag, and moment coefficients,

respectively;

c = /(HO + h)/ET;

D ¢ Central dip of the main cable;

§D : Change in the central dip of the main cable due to cable
extensibility and tower movements = §Dj; + 6Dy

ds : Elemental length of the cable;

EI : Bending stiffness of the deck;

[F] : Exciting-force column vector;

FL’ FD ¢ Lift and drag forces, respectively;

f ¢ Frequency in Hertz;

GJ : Torsional stiffness of the deck, (two-cable bridge);

: Horizontal component of cable tension, (D.L. + L.L.);

: Value of H for D.L. only, i.e. L.L. = 0;

o

h : Increment in the horizontal component of cable tension due
to L.L., (single-cable bridge);

hl’ h2 : Values of h for cables 1-1 and 2-2, respectively,
(two~cable bridge);

I : Mass moment of inertia;

[T] : Identity matrix;

K : Curvature of the deck = d2v/dx?;

xy Twist of the deck, (two-cable bridge);

[k] :* Stiffness matrix of the vibrating system;

[k]™1 : TFlexibility matrix of the vibrating system ='[61j];

L : Span length;

9 : Length of main cable, (D.L. condition);

SL : Shortening of the span due to tower movements = §Lj + 6Ly}

S ¢ Extension of the main cable due to h;
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Final B.M. in the deck for any loading condition;

Twisting moment in the deck, (two-cable bridge);

B.M., due to L.L., on the girder when treated as isolated
and simply supported at its ends;

Mass matrix of the vibrating system;

Inverse of the mass matrix;

The zero matrix;

Point~load;

Intensity of L.L. on the single-cable bridge;

Intensities of L.L. on sides 1~1 and 2-2, respectively,
(two-cable bridge);

Intensity of L.L. portion carried by the cable,
(single~cable bridge) ;

Intensities of L.L. portions carried by cables 1-1 and 2-2,
respectively, (two~-cable bridge);

Reynolds number;

Stiffness matrix of the cable only = [aij]'1

Time;

Tension in hanger i due to L.L. only;

Potential (or strain) energy;
Horizontal deflection of a point on the cable;

Horizontal and vertical deflections, respectively, of point
i on the cable due to a point-load acting at j;

Vertical deflection of a point on the girder;

Wind velocity;
Relative wind velocity;
Reduced wind velocity = Vw/f.B);

Vertical deflection of a point on the cable;

Vertical deflection of point i on the cable;

Vertical deflections of cables 1-1 and 2-2, respectively,
(two-cable bridge);

Intensity of D.L. on the bridge;

Tension in hanger i due to D.L. only;

Horizontal and vertical co-ordinates of a point on the cable,
with the left end of the cable as the origin;

Start and end, respectively, of L.L., p, of the single-cable
bridge (or p; on side 1-~1 of the two-cable bridge),
measured from the left end of the span;

Start and end, respectively, of L.L., p,, on side 2-2 of the
two—~cable bridge, measured from the left end of the span;
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[X] ¢ Column vector of displacements;

X : Velocity of vibrating system = dX/dt;

[X]0 ¢ Guessed (or assumed) mode shape;
42

[X] : Column vector of accelerations = —— [X];
at?

B = h/H;

B1, Bo = h,/Hg, hg/Ho9 respectively;

0 ¢ Angular rotation of a section;

8 Angular acceleration of a section;

A Eigenvalue;

u Poisson's ratio for the deck material;

P : Density of air;

w Angular frequency; and

w ¢ Angular frequency of the normal mode [X]i'
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APPENDIX A3: ABBREVIATIONS

ASCE : American Society of Civil Engineers;
D.E. : Differential equation;

D.L. : Dead Load;

Hz. : Hertz = cycle per second;

ICE : Institution of Civil Engineers, (U.K.);
L.H.S. : Left hand side;

L.L. : Live Load:; and

R.H.S. : Right hand side.
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APPENDIX A4: SINGULAR MATRICES

A4.1 MATHEMATICAL DEFINITIONS

A singular matrix is defined by either of the following two defin-

itions which have the same meaning.

(i) A square matrix [A] is called singular if there exists a vector
[X] # [0] such that [A][X] = [0], or [A'][X] = [0], where [A'] is
the transpose of [A]. Note that [X] # [0] if a single element of
[X] is unequal to zero, (Ref. A4.1). This means that a singular

matrix has no inverse.

Proof:
Let [A][X] = [B] (A4.1)
If [X] = [0], therefore [B] will be equal to [0], whatever [A] is.
If [X] # [0], then we may write

-l
[A] . [B] (A4.2)

[X]

A non zero solution [X] can be obtained, from Eq. A4.2, if [B] #[0]
and if the inverse [A]m1 exists.

Eq. A4.2 is similar to Eq. A4.l. If [B] = [0], therefore, [X] will
be equal to [0], provided that [A]™" exists. But if [B] = [0], [X] # [0],
this means that Eq. A4.2 is not true, and, consequently, this means that
[A]" does not exist. Thus, if [A][X] = [0] while [X] # [0], therefore,

[A] will have no inverse and is called singular.

(ii) A square matrix [A] is called singular if its determinant ]Al is zero,
(Ref. A4.2). It is obvious, here, that the matrix has no inverse.
This is because

[(a1°! = adj[a] + | (A4.3)

where adj[A] is the adjoint of the matrix [A]. Thus, if |A| = 0, then the

inverse [A]"“1 becomes unobtainable.
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If we have a system of simultaneous equations as in Eq.f4.1, the

solution can be obtained as in Eq. A4.2 if [A]'_1 exists. If [A]m1 does

not exist, or in other words if IA, = (0, then the process of solution

breaks down. In practice this means that the equations are not inde--

pendent. One, or more, can be obtained from the others.

A4,2 COROLLARY

"Any rectangular matrix is also called singular".

This is because the rectangular matrix can be made square by the

inclusion of one, or more, rows (or columms) of zeros. Having at least

one row (or column) of zeros, a matrix becomes certainly singular.

Engineers are more likely to think in the terms that a rectangular

matrix means: number of equations # number of unknowns.

A4.3 APPLICATION TO STRUCTURES

In the study of structures, it is common to use either the flexi-

bility matrix or the stiffness matrix. In some structural systems, the

stiffness matrix is given or easily obtainable, but often the flexibility

matrix is very much easier to obtain, for most structures. For suspension

structures, in general, it may be impossible to obtain the stiffness matrix

due to the singularity of the flexibility matrix.

The singularity of the flexibility matrix of a suspension structure

*
may be concluded if any of the following phenomena is noticed.

(a)

(b)

(c)

The computation procedure may fail to find the watrix inverse if the
determinant of the matrix is zero.

If the computational procedure is not accurate, or the matrix itself
has some impurities, or due to the accumulation of the round-off
errors, or any other errors that are likely to happen during the
inversion process, a silly inverse may be obtained with very big
elements which seem to be vefy far beyond the capacity of the struc-
ture and the possibility of happening.

Sometimes all, or most of, the elements of the inverse have an
opposite sign to what is expected. This impossible solution means
that such inverse is not acceptable (or reliable), and, so, the

original matrix is considered to be singular (with no inverse).

*

All these cases were met by the writer in the study of Chapters III, IV.
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The {irst case, case (a), was met by the writer when the flexibility
matrix for both the D.I.. and L.L. conditions of the single-cable bridge
(Chapter III), was evaluated and sought to be inverted in one program.
Here, the inversion process stopped once a division by a zero pivot was
met.

The second case, case (b), was met when the above flexibility matrices
were punched on the punch tape in the E~Format* using one program, and then
were sought to be inverted by a separate program for matrix inversion.

This shows, in spite of using the E~Format in storing the matrices, how
the accumulation of the very small round-off errors can give non-zero
pivots in place of zeros. Fortunately, the obtained inverses were so
funny that they could not be believed.

In the dynamic study of the suspension nets, Chapter IV, the third
form of singular flexibility matrix was met. The flexibility matrix of
the net model was measured and fed to the computer. All the elements of
the inverted matrix had a negative sign, while it is expected, for example,
that the iqfluence load at any joint will produce, no doubt, a deflection

in the same direction at the loaded joint (at least).

* * * *

In all these cases, corrections to the calculated deflections were
added to include the cable(s) extensibility (and the tower movements in
the case of the single~cable bridge) . However, Charlton,(Ref. 1.17), in
his potential energy method, used the stiffness matrix (of the cable only)
which was obtained by inverting the flexibility matrix. Charlton's method
is based on Pugsley's influence coefficients,(Ref. 1.15),for inextensible
cables, but when corrections, due to cable extensibility and tower move-
ments, are added, the flexibility matrix proves also to be singular for
some cases, (see below).

Charlton could not get the stiffness matrix of the cable directly
but, rather, he had to invert the flexibility matrix, which is easy to
obtain. It seems to the writer that the stiffness matrix for an inexten-
sible cable is meaningless, and that it is not likely to exist. This is
because the number of equations is more than the number of unknowns by
one (i.e. the actual flexibility matrix is rectangular, and consequently
singular according to the corollary of Section A4.2). Furthermore, for
an inextensible cable, the occurence of any deflection at any joint is
accompanied, no doubt, by deflections at all (or at least some of) the
other joints of the cable. This contradicts at once the characteristics
of the stiffness matrix, and makes it obviously not existent. This will

be clarified by a following example,(Section A4.4).

- ;
i.e. each element in the meffix has the form of a decimal and exponential

parts (eg. 0.325 x 10 ).
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The existence of the stiffness matrix for extensible cables also
seems to be questionable. This matter was investigated by the writer.

The flexibility matrix of the single~cable bridge was calculated for the
D.L. condition assuming a number of equidistant stations of 9, 8, 7, ...,
3, 2 to get a matrix of the order 9, 8, 7, ..., 3, 2 respectively. Fach
time corrections due to cable extensibility and tower movements were
included. The matrix was singular when its order was 9, 8, 7, 6, but it
could be inverted properly when the number of stations was reduced down to
five or less, (until two). This means that our single-cable bridge model
cannot have more than five modes of vibration.* The same result was
obtained when the deck was removed, (i.e. considering the cable only).
This is, again, due to the singularity of flexibility matrices with higher
order.

Thus it can be seen that the flexibility watrix for a single~cable
bridge (or for the cable only) is not certainly singular if the cable
extensibility is considered, and that the number of possible vibration modes
may be less than or equal to the matrix order (which is equal to the number
of stations). But if the cable is inextensible, the flexibility matrix is
certainly singular (if its order is equal to the number of stations), and
in this case, the number of possible modes will be certainly less than the

number of stations to which the span is divided.

A4.4 Examples

Fig. A4.1 shows the two~stations'inextensible wire system (0-1-2-3).
According to all the previous work of Pugsley, Charlton, and others, (Refs.
1.15, 1.17, 1.18), and according to the writer's work presented herein
(Chapters III, IV, VI)**, the system has two degrees of freedom if only
vertical deflections are considered. But, actually, it is a single-degree
of freedom system. The system's shape can be identified at any time and
for any loading condition if only one component of the joint deflections
becomes known (or calculated), either analytically (from the geometfy of

C

the system) or graphically (using the three circular arcs C3’ CO’ )

(the suffix refers to the centre of the arc)).
Thus it has only one degree of freedom and its flexibility matrix is

1 x 1, and accordingly it has only one mode of vibration with only one

* The number of possible modes is equal to the order of the largest
possible non-singular flexibility matrix.

*% In his study in these chapters, the writer took the cable extensibility
into account.
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natural frequency. Once the displacement of (say) jeint (2) is given,
the mode shape becomes completely defined. If the fiexibility matrix is
written as 2 x 2 it must be reduced to 1 x 1 by writing the deflection of
(say) joint (1) in terms of the deflection of joint (2). This wmeans that
the matrix 2 x 2 represents two equations in only one unknown, and two
equations in one unknown means, simply, a rectangular matrix which is
necessarily singular according to the corollary of Section A4.2.

Thus, a 2 x 2 flexibility matrix for the inextensible system of ¥Fig,
A4.1 is singular and has no inverse, i.e. there is no 2 x 2 stiffness
matrix for that system. This is clear from investigating the displaced
position of the system due to an influence load, I.L. A unit (vertical)
deflection at joint (2) will certainly be accompanied by some (vertical)
deflection at joint (1), whatever the loads acting at joints (1) and (2)
are. It can never happen that the deflection of either of the joints has
some value while the other joint is held in place or restrained against
vertical deflections.

We can get a 1 x 1 stiffness matrix by inverting the 1 x 1 flexi-
bility matrix or by evaluating (if possible) the (vertical) load required
at (say) joint (2) to produce a unit deflection at the same joint and in
the same direction, regardless of what deflections will happen at the

other joint, (1).

Similarly, the 9 x 9 flexibility matrix of Pugsley and Charlton
{(Refs, 1.3, 1.15, 1.17, 1.18) for the nine stations' inextensible cablie
is merely singular since it represents only eight independent variables,
while the ninth one may be ewvaluated as a function of these independent
eight. This means that the flexibility matrix must be only 8 x 8 and
then it can be inverted to give an 8 x 8 stiffness matrix.

This can be demonstrated using, as a simplificiation, Fig. A4.2
which represents a five-stations' inextensible cable. If the number of
the degrees of freedom or the order of the flexibility matrix is equal to
the number of stations, the flexibility matrix would be 5 x 5. But it is
clear that the deflections of four joints only are quite sufficient to
obtain the deflected shape for any loading condition, while the deflection
of the fifth joint is obtainable by the intersections of two circular arcs
whose centres are the far ends of the two segments intersecting at that

joint.
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Thus we have only four unknewns, and if we write for them five
equations, the 5 x 5 matrix becomes singular. The correct solution is
therefore obtained using a 4 x 4 flexibility matrix, whose inverse will
also be a 4 x 4 stiffness matrix.

The 5 x 5 stiffness matrix cannot exist at all because, starting
from the right (for example), a unit vertical deflection can be applied
at joint (5) while joints 4, 3, 2 can be prevented from vertical displace-
ments, but joint (1) will have some vertical deflection if the arcs Cg
and C; intersect somewhere. If the two arcs do not intersect, this means
physically, that a wnit vertical deflection at (5) is too much for the
cable to undergo, and, if it happens, the cable will break somewhere to
allow for that gap between the two arcs Cg and C; . The mathematical
meaning of this phenomenon is that the 5 x 5 stiffness matrik will never
exist,

If the two arcs C( and C; intersect somewhere, this means that joint
(1) will undergo some vertical deflection, and that we can get a 4 x 4
stiffness matrix regardless what deflections will happen at the fifth
joint (joint (1) in this case). If the two arcs Co and C; do not inter-
sect, the result will either be a singular structure or a singular 4 x 4

flexibility matrix (i.e. the 4 x 4 stiffness matrix is also not existent.

A4.4.1 Numerical Examples

Consider the symmetric flexibility matrix

2.5 =3
[A] =
-3 3.6

which is singular.

This matrix may be obtained for a system with two degrees of freedom,
or for a suspension structure with two joints (or two stations). The
system will have two eigenvalues (one of which is zero), and two eigen-—

vectors. The solution is

= 23 e
r“){1 102
Ay = 0, = 5 and
szm 1 L']..Od
- e = o
X, ~1.0
Az s 6019 =
XZJ ) 1.2 .
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As 1s usual when the flexibility matrix is used in the dynamic anal-
ysis, if the eigenvalue A is a function of (lﬁnz), then £1 will be infinity,
where f; is the frequenty corresponding to A1. This frequency is to be
cancelled, and the other one only is considered reasonable.

If, due to non-linearity, the matrix is slightly asymmetric, e.g.

(A1 =
-3.1 3.6

which is not exactly singular, but not very far from singularity, (deter-

minant = 0.01), in this case the solution becomes

X3 1.16
Ay = 0.0016, = ; and
X 1.0
L 42 ], Ellagel
B3 1.0 |
A, = 6.098%4, =
X 1.24
| Xa ), )

which is not very far from the first solution when the matrix was symmeiric

and singular. In this case, the matrix [A;] could be inverted to give

360 290
~1
]

1
310 250

which seems to be silly, and not reliable.

This means that an averaging procedure (to make a matrix symmetric),
or any other approximation, may slightly alter the mathematical properiies
of the matrix, such that it seems to become non-singular while, really, it
is singular.

In this example, the first frequency is not infinity, but it is so
large that it cannot be trusted (here it is about 61 times the second fre-
quency) . The mode shapes are not affected much by these approximations.

The idea may become more clear by considering the 3 x 3 symmetric
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flexibility matrix

2 =0.5 0
[A] = -0.5 2.5 =5
0 =5 3.79

which is also singular.

The solution gives, as expected, three eigenvalues and three eigen-
vectors. One of the eigenvalues is zero (with infinite frequency) and
is rejected, while the other two are ''reasonable'" and give reasonable

frequencies. The solution is

j 1 o
X3 1.0
Ay =0, X2 = 4.0 ;3 and this mode is rejected since
X3/, 3.17 its frequency is infinity;
i - .
X1 1.00
XZ = 6.211, X2 = -8.48 3 o
X3, 10.38
Xy 1.00
A3 = 2.05, [X2f = |-0.10 .
X3 . f0“17_

In general, if the (n x n) flexibility matrix is singular, it will
have, at least, one zero eigenvalue (which is to be rejected due to infinite
frequency), and not more than (n ~ 1) 'reasonable" eigenvalues and eigen-
vectors will be obtained. In some cases, due to several approximations,
or due to the accumulation of the round-off errors, the determinant of the
flexibility matrix may be very small instead of zero. In this case, one
of the eigenvalues will also be very small (giving very high frequency)
which can, here also, be rejected.

This means that the variables are not independent of each other, but
some of them can be obtained in terms of the others. If the correct number
of variables is used, the resulting matrix will become non-singular and all

the eigenvalues (and eigenvectors) will be acceptable.
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A4.5 CONCLUSIONS

The general conclusion out of the foregoing discussion is that for
a nine stations' inextensible cable, the flexibility matrix must not be
larger than 8 x 8. In other words, the stiffness matrix also (if it
exists) will not be larger than 8 % 8.

The question now is: Are the 9 x 9 flexibility matrices given by
Pugsley and Charlton (Refs. 1.3, 1.15, 1.17, 1.18) singular or not?

Charlton answered this question by inverting his 9 x 9 flexibility
matrix to get a 9 x 9 stiffness matrix, and he used the latter in an approx=-
imate analysis (using stationary potential energy) and got reasonable
results out of that.

This needs some justification. Perhaps the reason 1is the long
list of approximations set out by Pugsley and Charlton. Pugsley linear-
ised the problem by using the tangent coefficients, and he used an approx-
imate method in evaluating the increase, due to L.L., in the horizontal
pull in the cable, h. This is in addition to some other approximations
used by him to simplify the analysis. The same approximations were made
by Charlton except that he used the secant flexibility coefficients instead
of the tangent flexibility coefficients. Furthermore, he made the matrix
symmetric by averaging its off-diagonal elements. He then went further
and used the Fourier series approximation in his energy analysis.

Finally, the writer wants to point out that the use of extensible
cables (or, in other words, taking the cable extensibility into consider-
ation) makes the problem different. The movement of each joint will not
be restricted by a circular arc. But it will be possible (theoretically
and experimentally) to locate all the joints in position * by aid of the
influence vertical loads (and some horizontal loads), provided these loads
are within the safe carrying capacity of the system.

In other words, the writer, by considering the cable extensibility,
did not fall in error by taking the order of the flexibility matrix of
each structure, equal to the number of its joints. (Note that the
vertical deflections only are dealt with).

However, the flexibility matrices of the single-cable bridge and
the suspension nets proved to be singular. Also, the flexibility matrix
of the two-cable bridge gave some complex eigenvalues and eigenvectors.
But all the matrices could be measured, and they actually were measured.
This shows that the three structures, themselves, are not in any sense
singular, and that the singularity, perhaps, arises from the methods of

solution, somehow.

One joint will have a unit vertical deflection (and perhaps some horizontal
displacement) while all the other joints will have no vertical deflec-
tion (but they may have some horizontal deflections). This is for
each column of the stiffness matrix.



ABSTRACT

A historical review of the construction and erection of suspension
bridges, and of the literature on them, is presented. Suspension bridges
are 6ften analysed as plane structures, as if a bridge has only one cable
supporting a narrow deck with no torsional stiffness and no torsional
stresses. The statics and dynamics of a 1aborator§ model of such a single-
cable bridge are-investigated both experimentally and analytically,
followed by a short chapter on the dynamics of suspension cables and nets.

A real suspension bridge has usually two or more cables supporting a
deck with some width and some torsional stiffness, and undergoes torsion.
A laboratory model for a two-cable bridge was designed and built. A
method for the static analysié of such a two-cable bridge is derived and
used for both the static and dynamic analyses of the model. Measurements
of the static deflections and natural frequencies and modes of vibration
of the model showed good agreement with calculations.

A chapter comprising some notes on the aerodynamic instability of

suspension bridges is also included.





