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Summary 

Information on the life cycle and associations of the mountain pinhole borer, 

Platypus subgranosus Schedl (Coleoptera : Curculionidae : Platypodinae) is reviewed. 

Existing unpublished data combined with data collected in this study are used to 

provide quantitative descriptions of aspects of P.subgranosus biology. 

The within-tree spatial pattern of attack was found to be highly aggregated both 

at high and low density of attack. Aggregation was very high around host tissue 

infected with the pathogenic fungus Chalara australis Walker and Kile. A minimum 

spacing between pinholes of approximately one centimetre was indicated but densities 

were not sufficiently high for this to result in spatial regularity. 

Use of larval head capsule width and body length in a non-hierarchical 

classification procedure confirmed the presence of five instars. Initial oviposition 

occurred when the gallery ranged between 5 and 25cm in length. The natality rate at 

initial oviposition was roughly one egg per centimetre beyond an initial length of 4cm. 

Initial oviposition in galleries established in the late summer/autumn period occurred at 

roughly the same date irrespective of establishment date. This was paralleled by a faster 

rate of gallery development for autumn compared to late summer establishment. 

Timing of emergence exhibited an analogous trend to that of initial oviposition. It is 

postulated that these trends as well as a trend for emergence and subsequent gallery 

establishment to occur less commonly in spring/early summer than late summer/autumn 

are a response to high mortality of eggs and early instars in summer from desiccation. 

For a sample of galleries established in the late summer/autumn period, initial 

oviposition occurred in winter one to eight months after gallery establishment with eggs 

usually laid in a batch with median size of seven. First to third instars appeared through 



the following spring and early summer with fourth and fmal instars appearing in 

summer and subsequently the fmal instar predominating through winter until pupation 

in the following spring. Emergence began in early summer. 

A new model of insect phenology based on conditional probabilities is 

developed and compared to existing ordinal regression and gamma entry time models. 

The sex ratio of emergents over the population is very close to unity but 

individual galleries can deviate markedly from this with an excess of either sex. The 

mean number of emergents per gallery was 19.7 with a maximum of 92. The gallery 

failure rate was 8% but negligible mortality of immature stages was observed. 

Development time ranged from ten months to two years depending on the 

timing of gallery establishment as predicted by the linear day-degree model. Threshold 

temperature for development and total day-degrees above this threshold from gallery 

establishment to emergence, DD, were estimated from field data at 11°C and a mean of 

DD ii  of 4047 respectively. A new estimation procedure based on maximum likelihood 

is developed to estimate the parameters of the day-degree model under ambient 

temperatures. Both gamma and inverse normal distributions were found to adequately 

describe the empirical distribution of DD ii . Only for the gamma, though, was the 

estimation algorithm successful. 

The implications of P .subgranosus biology for rainforest ecology and 

management are discussed. 

xiv 
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1. INTRODUCTION 

Platypus sub granosus Schedl (Coleoptera: Curculionidae: Platypodinae) is a 

small brown cylindrical beetle commonly called the mountain pinhole borer. It is about 

4mm long and lmm in diameter and is typical of the platypodid beetles in shape and its 

habit of boring a system of tunnels, called a gallery, in the wood of trees or logs and 

introducing, feeding on, and rearing its brood on symbiotic (ambrosia) fungi which 

grow on the gallery walls. P.subgranosus belongs to the group of Coleoptera classified 

by this habit as ambrosia beetles. P.subgranosus appears to be endemic to Australia 

where it is common in the cool temperate rainforests of Tasmania and the Victorian 

central highlands. Its main host tree is myrtle beech, Nothofagus cunninghamii Oerst. It 

is similar in appearance and habits to other species of platypodid beetles, P.apicalis 

White, P.gracilis Broun and P.caviceps Broun (Milligan 1979), which attack 

Nothofagus spp. in cool temperate rainforests in New Zealand. 

P.subgranosus was first described by Schedl (1936) from specimens contained 

in the South Australian Museum. The specimens examined by Schedl were collected 

from Waratah, Tasmania (Lea and Carter) (A.Simson collection) and from the Dividing 

Range, Queensland (Blackburn collection). Apart from the above Queensland collection 

P.subgranosus has only been recorded in or near temperate rainforests in Tasmania and 

Victoria. The first investigations of the biology of P.subgranosus were carried out by 

Hogan (1944,1948) in Victoria. Hogan (1948) described the immature stages, life 

history and habits, techniques for insectary rearing and observations on symbionts, 

parasites and predators of P.subgranosus. Webb (1945) identified the fungus 

Leptographium lunelbergia from P.subgranosus gallery walls. After Hogan's work no 

other published studies on P.subgranosus have been found by the author until Howard 

(1973) gave the first report on a wilt disease affecting N.cunninghamii in Tasmania and 

observed that dying trees were attacked by an ambrosia beetle, Platypus sp., and had 

extensive discoloration of the stem sapwood. The wilt disease was given the colloquial 
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name 'myrtle wilt'. Elliott et al. (1983) established the important role ethanol plays as a 

primary attractant and boring stimulant for P.subgranosus. They established that 

ethanol is the major volatile produced by fermentation of logs under anoxic conditions. 

Later work has concentrated on the relationship between attack by P.subgranosus, 

myrtle wilt and infection of N.cunninghamii by the pathogenic hyphomycete Chalara 

australis Walker and Kile, a vascular stain disease, which has been identified as the 

cause of 'myrtle wilt' (Kile and Walker 1987, Kile and Hall 1988, Kile 1989, Kile et al. 

1990a). 

Death of N.cunninghamii due to myrtle wilt is virtually synonymous with attack 

by P.subgranosus (Elliott et al. 1987). Elliott et al. (1987) carried out an extensive 

survey of the incidence of P.subgranosus attack on N.cunninghamii in rainforests 

undisturbed by fire, roading or logging in Tasmania. They found that the cumulative 

death of N.cunninghamii, where the time since death was judged by the amount of dead 

foliage or fme branches remaining, ranged from 9 to 53% of the stand stocking with an 

average of 24.6% for the 20 sites surveyed. The average annual death rate was 

estimated to be 2.4 trees ha-1  or 1.6% of live trees. The incidence of attack was not 

found to be strongly related to stand or site variables with the exception of altitude 

where incidence decreased with increasing altitude and they suggested this relationship 

was determined by the effect of temperature on development of both P.subgranosus 

and C.australis. Attacked trees were also found to be clumped which was hypothesised 

to be the result of either or both of (i) the spread of C.australis via root grafts rendering 

freshly infected trees highly attractive to attack and (ii) the close proximity of a tree to 

a source of emerging beetles. 

The possibility that P.subgranosus is a vector of C.australis rather than simply a 

secondary factor attacking trees already infected by C.australis was investigated by 

Kile and Hall (1988). Their work indicated that infection by C.australis is not primarily 

due to vectoring by P.subgranosus. The adult beetles were rarely found to be carrying 
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spores of C.australis and the fact that the saprophytic survival of the fungus is 

considerably shorter than the beetles life cycle suggested that emergent adults from 

infected trees would not be a source of infection for newly attacked trees. 

P.subgranosus is more probably (Kite et al. 1990a) an indirect source of infection 

through frass contaminated with conidia Mile and Hall 1988), created by gallery 

excavations in infected tissue of live trees, producing air- or water-borne inoculum. 

This inoculum then enters the tree through wounds which in some cases could be 

pinholes produced by initial P.subgranosus attack. Another source of air- and 

water-borne inoculum are the conidia from mycelial felts on the bark of infected trees 

or other wood surfaces (Kile et a/. 1990a). Wound infection can occur without beetle 

attack (Kile et al. 1990a) and the most likely cause of between-tree disease foci is 

wound infection, apparently without beetle attack, via air- and water-borne inoculum. 

Local spread is then likely to be due to below-ground spread via root grafting or attack 

by P.subgranosus (Kile et al. 1990a). The relative importance of P.subgranosus in the 

etiology of myrtle wilt is still unclear. As well as contributing to disease spread by the 

creation of tree wounds (pinholes) and liberation of infected host tissue (frass) Kite et 

al. (1990a) consider it likely that the development of P.subgranosus galleries promotes 

within-tree spread of C.australis. The importance of P.subgranosus probably depends 

most on the relative importance of infected frass as a source of air- and water-borne 

inoculum. Kile et al. (1990a) reported limited initial research by Kite showing that a 

summer peak in inoculum levels is indicated which corresponds to the peak in frass 

production by adults and final instar larvae (Hogan 1948). On the other hand, 

sporulating felts are produced most abundantly in the autumn-winter period. 

P.subgranosus adult frass is fibrous while that of the final instar larva is fme and 

granular (Hogan 1948) and whether this difference has any effect on the role of frass as 

a source of inoculum is yet to be investigated. However both types of frass, when 

produced more than approximately 2 years after tree death, have an infected proportion 
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decreasing to zero with time (Kile and Hall 1988). 

P.subgranosus is the most important insect pest of Tasmania's rainforests (Elliott 

and deLittle 1984). The impact of myrtle wilt on rainforest adjacent to recent 

disturbances can be severe and the importance of P.subgranosus in the ecology and 

management of these forests is considerably increased if it contributes significantly to 

the spread of myrtle wilt. Kile et al. (1990a) in a survey of myrtle wilt using a line 

transect running perpendicular to a recently developed road in north-east Tasmania 

found that the incidence of myrtle wilt decreased significantly from about 70% at the 

roadside down to a 'background level' (i.e. that in the undisturbed forest) of about 5% at 

a distance of 500m or more from the road Mile et al. 1990a). 

Apart from its relationship with N.cunninghamii and myrtle wilt, P.subgranosus 

is also economically important as a borer of freshly cut logs on landings and 

marshalling yards in or 'near rainforests. Logs cut from eucalypts, radiata pine and 

rainforest species are all susceptible to attack (Elliott and deLittle 1984) which can 

result in the degrade of valuable saw and veneer logs. 

Currently Tasmania's rainforests are not managed on a large scale for timber 

production and a moratorium on logging in rainforests is currently in force (Hickey and 

Felton 1987). Rainforests species forming an understorey to old-growth eucalypts are, 

however, logged in normal clearfall operations of the eucalypt overstorey. In any future 

management of commercial rainforest (Hickey and Felton 1987) (i.e. rainforest 

allocated primarily for wood production) harvesting operations and silvicultural 

treatment of stands, such as thinning stands of pole sized myrtle to allow production of 

sawlogs under rotations of around 100 years (Hickey and Felton 1987), will need to 

take into account the impact of C.australisIP.subgranosus on the residual stand's health. 

Also where rainforest is managed for nature conservation or recreation the health and 

appearance of stands will be affected by disturbances such as fires, roading, walking 

trails etc. increasing the incidence of myrtle wilt. 
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In view of the importance of P.subgranosus from both an ecological and 

economic point of view, the lack of quantitative information on its life cycle, 

particularly the immature stages, and the large amount of uncollated data collected 

previously by the Forestry Commission, this study was instigated to provide a 

comprehensive account of the basic biology of P.subgranosus in Tasmania by new field 

investigations and collation of existing data. Because of the nature and environment of 

P.subgranosus biology, data collection was restricted to the field since laboratory 

experimentation was impractical given the available time and equipment. 

It was also intended that mathematical models be developed from these data for 

a number of reasons. First, to summarise the data to allow trends and features of 

P.subgranosus biology to be more easily seen; second, to provide, in some cases, a 

framework for hypothesis testing; and third, to provide models that can be incorporated 

in an overall simulation/prediction system of population dynamics. In the course of 

modelling the data in this study new techniques were developed to (i) model data on 

insect phenology and (ii) estimate the parameters of the linear day-degree model of 

development from field data. Also, generalised linear models (McCullagh and Nelder 

1983) were used extensively because of the nature of the data which was often in the 

form of counts or proportions and an appendix is included giving a brief introduction to 

the theory of generalised linear models which emphasises their application in this 

study. Apart from the above cases, the statistical/mathematical techniques and models 

used are, for brevity, not described in general but instead are described as the results of 

their use are reported. 

The other main organisational feature of this thesis is in Section 2 where a 

general description of P.subgranosus biology is given. This description is based on 

previously published work as well as the findings of this study. It therefore provides a 

more detailed summary of the results of this study than is given in the main summary 

and is useful for readers who do not wish to read through the detail of later sections. 



6 

Also results of this study which are more observational than quantitative in nature are 

given in Section 2. 
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2. GENERAL DESCRIPTION OF P.SUBGRANOSUS BIOLOGY 

2.1 HOST TREES 

The primary host tree of P.subgranosus is myrtle beech (N.cunninghamii) and 

apparently healthy trees of this species can be successfully colonised by the beetle. 

Damage, stress, fire scorch or close proximity to disturbances such as roading make 

myrtle beech more susceptible to attack by P.subgranosus. Trees smaller than 100nun 

diameter are not usually attacked unless damaged or fire-scorched. As well as 

N.cunninghamii, live but damaged or fire-scorched specimens of temperate rainforest 

species leatherwood, Eucryphia lucida (Labill.) Bai11., sassafras, Atherosperma 

moschatum ,  Labill., celery top pine, Phyllocladus aspleniifolius (Labill.) Hook.f., and 

horizontal, Anodopetalum biglandulosum A. Cunn. ex Hook.f., can also be attacked and 

galleries successfully established (Elliott and deLittle 1984) although brood production 

from these other rainforest species is not known. Apart from N.cunninghamii these 

species rarely die after attack by P.subgranosus and this can be attributed to the fact 

that only N.cunninghamii is naturally susceptible to the pathogenic fungus C.australis 

which produces 'myrtle wilt' and is closely associated with attack by P.subgranosus 

(Elliott et al. 1987, Kile and Walker 1987, Kile and Hall 1988). Hogan (1948) lists 

eucalypt species E.regnans F.Muell., E.delegatensis (gigantea) R.Baker, E.obliqua 

L'Her. and, E.cypellocarpa (goniocalyx) L.Johnson as sources of emergent 

P.subgranosus although the conditions under which these species were attacked was not 

stated. However, from the title of his work it is probable that his work was confmed to 

attack on rue-killed or scorched eucalypts. Unhealthy radiata pine (Pinus radiata 

D.Don) is also attacked by P.subgranosus (Elliott and deLittle 1984). Even sawn timber 

and edgings of Huon pine [Lagarostrobus franklinii (Hook.f.) C.J.Quinn], a species 

which is noted for its resistance to insect attack, can be attacked. Attack of freshly 

sawn timber does not result in successful brood production because the timber dries out 

relatively quickly compared to the length of the life cycle, resulting in the desiccation 



8 

of eggs and larvae before new adults can be produced (Elliott and deLittle 1984). 

2.2 DESCRIPTION 

2.2.1 Adults 

The adults have the typical elongate cylindrical form of platypodids with the 

female slightly longer than the male. The length and diameter of the adults is roughly 

4nun and lnun respectively (Fig 2.1). The sexes are dimorphic with the most obvious 

difference being the size and sculpturing of the elytra. In the male the elytral declivity 

forms an abrupt angle with the elytral disc (Fig 2.2a) while in the female the elytral 

declivity is feebly convex and perpendicularly aplanate at the apex of the elytra (Fig 

2.2b). This difference between the sexes is easily discernable with the naked eye and 

can be used to sex individuals in the field. In the male the elytral declivity is densely 

covered with yellow setae while setae are much less dense on the apex of the elytra in 

the female. The elytra of the female is uniformly dark brown while for the male it is 

dark brown at the apex and light brown at the base. In both sexes the pronotum is light 

brown while the legs are light brown to yellowish in colour. Hogan (1948) provides 

details of adult morphology and a full description of the adults is given by 

Schedl (1936). 

222  Immature stages 

The eggs are featureless, oval, elongate and glistening white (Fig 2.3). They are 

roughly 0.7mm long and 0.4nun wide and are covered with a slightly sticky secretion 

which causes them to adhere to one another and to the gallery walls. Unless kept in air 

of high humidity they collapse within a few hours (Hogan 1948). 

The larvae are apodous being legless and generally white with later instars 

white to creamy coloured. There are five instars in all (Hogan 1948, Section 5.1 this 

study). The mouthparts of the 1st instar are visible within the egg just prior to hatching. 

When freshly hatched the 1st instar is a translucent white colour becoming more 

opaque white with time. It is about the size of the egg with a head capsule width of 
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( ____ 2= _____ ) 

FIG 2.l(a) Platypus subgranosus adult male, dors-3.1 view . 

( ____ 2= _____ ) 

FIG 2.l(b) Platypus subgranosus adult female, dorsal view . 



2mm 

FIG 2.2(a) Platypus subgranosus adult male, lateral view. 

10 

2mm 

FIG 2.2(b) Platypus subgnanosus adult female, lateral view. 
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500pm 

FIG 2.3 Platypus subgranosus egg 

500pm 

FIG 2.4 Platypus subgranosus first instar larva, ventral 
view. 
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around 0.36mm and it is roughly oval shaped and dorso-ventrally flattened with a 

lateral row of fleshy protuberances on either side of the body on the epipleurae 

(Fig 2.4). These protuberances increase in size towards the posterior of the body and 

each contains a single seta. The protuberances and setae are presumably an aid to 

locomotion within the tunnels. 

The second instar is also dorso-ventrally flattened but the body is more 

pear-shaped narrowing towards the head. The fleshy protuberances are not as obvious 

as for the 1st instar and the body is slightly longer (0.8 to 1.7mm) with a head capsule 

width of approximately 0.44nun. 

The third instar loses the flattened pear-shape and takes on the cigar shape of 

this and later instars with the epipleural proturberances further reduced. The prothoracic 

segment and an abrupt narrowing of the last few abdominal segments are now obvious 

in this and later nstars (Fig 2.5). The third instar is 1 to 3mm long with a head capsule 

width of approximately 0.6mm. 

The fourth instar is longer than the third (2 to 4mm) and is more of a bent cigar 

shape with a head capsule width of approximately 0.83nun. The fourth and fifth instars 

are very similar except for one main distinguishing feature. The fifth instar has a row 

of 4 chitinous loops on the dorsal surface of the prothoracic segment (Fig 2.6) which is 

absent in the fourth instar. These loops (Fig 2.7a) consist of back-pointing bristles 

(Hogan 1948) which are obviously aids to locomotion in the galleries and a means of 

gaining purchase on the tunnel walls while boring. The larvae although appearing, to 

the naked eye, to have a smooth surface are actually covered with setae and bristles 

(Fig 2.7b). Ocelli are absent and the antennae have been reduced to vestiges (Fig 2.7b). 

The full grown larva is between 5 and 6mrn long with a head capsule width of 

approximately 0.96mm. The pupa are exarate and ivory white grading to a cream 

colour with mouthparts and elytra becoming more sclerotised with age. 
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FIG 2.5 Platypus subgranosus third larval instar 
latero—ventral view. 

2mm 
  ) 

FIG 2.6 Platypus subgranosus final ins tar larva, dorsal 
view. 
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FIG 2.7(a) 

FIG 2.7(b) 
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( 500pm ) 

Platypus subgranosus final instar larva, 
dorsal - view of head capsule and prothoracic 
segment showing chitinous loops. · 

( 500pm ) 

Platypus subgranosus final instar larva, 
lateral view of he~d capsule. 
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2.3 LIFE HISTORY AND HABITS 

2.3.1 Timing of adult emergence and flight 

Emergence in Tasmania can begin as early as September and continue through 

until about April although a small number of individuals can be observed in the winter 

months. Most emergence occurs in the summer between January and March although 

the peak month varies from year to year (Section 6.3). There appear to be no definite 

brood flights. A similar timing was reported by Hogan (1948) .  for the Central Highlands 

of Victoria. Flight of both males and females is weak and slow and occurs on sunny 

days with few individuals observed when conditions are cold or wet. Males generally 

emerge in the late morning and afternoon of suitable days while females emerge in 

morning and are less readily trapped in flight (Hogan 1948, Section 6.7 this study). The 

males alight first on susceptible wood and are more commonly seen than females which 

are usually inside the wood before midday. 

2.3.2 Host selection, density and pattern of attack 

The density of attack on logs and trees has been observed on localised areas of 

the surface at up to 22 per 100cm2  (Slade 1978) and over larger areas at 420 per m 2  

(Section 4.1). Susceptible wood varies greatly in its attractiveness to attack. Elliott et 

al. (1983) demonstrated that ethanol can act as an attractant and boring stimulant on 

vigorous, uninfested trees which would not normally be attacked. They also identified 

ethanol as a naturally produced volatile in soaked myrtle beech logs. As mentioned 

above, N.cunninghamii is the most susceptible species in that apparently healthy trees 

are attacked which is probably a consequence of this species natural susceptibility to 

infection by the C.australis fungus (Kile and Walker 1987, Kile 1989) and the fact that 

trees infected by C.australis are rendered highly attractive to a P.subgranosus (Kile et 

al. 1990b, Section 4.2.1 this study). The within-tree pattern of attack appears to be 

aggregated at both low and high densities. Aggregation of attack is particularly intense 

around tissue infected by C.australis. A minimum spacing between galleries of roughly 
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one centimetre is suggested by this study (Section 4.2.1). 

2.3.3 Construction of the gallery and development of immature stages 

The initial entry point in the wood is made by the male which bores a hole 

roughly 1.5mm in diameter and lOrnm deep in a few hours. The male then waits within 

the tunnel at its entrance for the arrival of a female which alights on the log and 

searches for a tunnel occupied by a male only. Pheromones are apparently emitted by 

the male attracting the female which moves directly from male to male without any 

random searching in between (Hogan 1948). The male then leaves the tunnel briefly to 

allow the female to enter and copulation occurs within the tunnel. Copulation on the 

surface has been observed occasionally (Hogan 1948). The species is monogamous and 

the parent beetles remain in the gallery until they die, the male only coming out of the 

tunnel temporarily to allow the next generation of adults to emerge. 

The female takes over the development of the gallery while the male stays near 

the entrance of the tunnel clearing out frass generated by the female. Some unmated 

males were observed in this study in the spring following gallery initiation to have 

developed the gallery up to a length of about 8cm. A similar habit is documented for 

P.apicalis by Milligan (1979). The adult frass is fibrous while that of the fmal instar 

larva is fine and granular so that the type of frass expelled can be used to identify the 

activity within the gallery. The gallery consisting of the initial tunnel is extended 

radially across the grain and then tangentially along the sapwood/heartwood boundary 

until it reaches roughly 5 to 25cm in length at which time initial oviposition occurs 

(Fig 2.8a) (Section 5.2). At this stage, which takes between roughly 40 and 250 days 

from gallery establishment (Section 5.3), eggs are laid singly or more commonly in 

batches. Hogan (1948) gives an upper limit of 6 for the size of these batches but in this 

study single batches of between 10 and 16 were common and one group of 27 eggs was 

observed. The mean (standard deviation in brackets) of the number of eggs laid and 

length of gallery at initial oviposition was observed in this study to be 8.4 (6.6) and 
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12.1cm (3.9cm) respectively (Section 5.2). Slade (1978) recorded a maximum of 23 

and minimum of 6 eggs per batch. The number of eggs laid in this initial oviposition is 

dependent on the length of the tunnel at a rate of roughly one egg for every centimetre 

beyond an initial length of 4cm (Section 5.2). The rate of gallery development for this 

initial section excavated by the adults ranges from roughly one centimetre for every 10 

to 20 days. Attack late in the summer resulted in a slower rate than attack in autumn 

(Section 5.2). Earlier attack, however, was not found to produce a different length of 

gallery or number of eggs laid at initial oviposition. This trend was reflected in timing 

of emergence discussed later, where late summer attack, within the late summer/autumn 

period, did not result in first brood emergence, on average, any earlier than autumn 

attack. The explanation for this trend could be that oviposition is delayed until winter 

to minimise mortality of egg and early instar larvae due to desiccation. 

Oviposition continues throughout the development of the gallery so that eggs 

can be found along with pupae and brood adults in the same gallery. These new adults 

must emerge and establish new galleries to begin the next brood so that generations can 

overlap across but not within galleries. 

After initial oviposition the female, in most cases, does no further excavation of 

the gallery as evidenced externally by a long period when no adult frass is produced. In 

some cases, after an initial batch of eggs is laid the female extends the same 

unbranched tunnel one or two centimetres and may lay a second batch of eggs. 

Milligan (1979) reports that for New Zealand Platypus spp. after the initial batch of 

eggs is laid, the female excavates a branch off the main tunnel at its curvature and 

running again tangentially to the sapwood/heartwood boundary but in the opposite 

direction and then lays a second batch of eggs at the end of this branch before ceasing 

further gallery extensions. This habit was not observed for P.subgranosus in this study 

and the only branches to the main tunnel were found when fmal instar larvae were 

present. The larval instars develop within the initial section of gallery (Fig 2.8b) until 
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the final instar begins excavating tunnels branching from, and extending the main 

tunnel (Fig 2.8c). The variation in development rate of the gallery system and immature 

stages can be seen in Fig 2.8(b,c) where the two more developed galleries in (c) were 

established eleven days before that in (b) in logs from the same tree and of similar size 

and position on the ground. 

Evidence of larval excavations is provided externally by the fine granular frass 

which usually collects on the bark below the gallery entrance. The female continues to 

lay eggs in the larval branches from, and extension to the original tunnel. During the 

gallery development larvae and adults feed on the ambrosia fungi discussed later. 

The pupal cells are excavated by the fmal instar perpendicular to, and 

alternately on one side and then the other (i.e. top and bottom in a standing tree) of the 

tunnel with the long axis of the pupal cell running parallel to the grain of wood (Fig 

2.8d). The larvae lie with their head facing the tunnel from which the cell was 

excavated with the entrance of the cell blocked with frass. 

Roughly half the total' number of eggs are laid at initial oviposition which 

occurs between late autumn and the following spring roughly 1 to 8 months after 

gallery establishment. Hogan (1948) describes oviposition as occurring in the warmer 

months with eggs and immature larvae relatively rare in winter although he does not 

say which stages are present in winter or qualify his observations with detail on the 

time of gallery establishment. In this study (Sections 5.3 and 7.3), where gallery 

establishment was in late summer and autumn, the egg stage was the only stage found 

in the first winter with early larval instars (1st to 3rd) appearing in the following spring, 

the 4th and final instars appearing in the following summer and the fmal instar then the 

main over-wintering stage until pupation in the second summer after gallery 

establishment (Fig 2.9). For galleries established in early summer (Nov-Dec) which can 

result in first brood emergence in the following summer (Section 7.4), the main 

over-wintering larval instar, assuming summer oviposition allows larvae to have 
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developed by winter, has not been documented. In fact the timing of appearance of all 

immature stages in the case of spring/early summer attack and gallery establishment 

shown in Fig 2.9 is conjecture since no observations have been made for this case in 

this study. However, this description for one year development fits in well with Hogan's 

description above. 

The difference in timing of the occurrence of the different immature stages, 

including variability in the over-wintering stage, is largely a function of the timing of 

gallery establishment (e.g. early, mid or late summer) in that such timing determines 

the accumulated temperature (day-degrees) that are available for development before 

winter when development slows down or ceases. No studies have been undertaken to 

establish the thermal requirements for development of each life stage separately largely 

because laboratory studies are not feasible with wood boring insects such as 

P.subgranosus. However, in this study (Section 7.3) an estimate of the lower threshold 

temperature and day-degrees above this threshold required for development from 

gallery establishment to emergence of the first brood was obtained using two sets of 

emergence data, in one case with emergence after a single year and the other, after two 

years (see below). 

2.3.4 Length of Life Cycle 

First emergence for a gallery usually begins in the second summer after gallery 

establishment although first emergence after as little as 10 months has been observed 

(Hogan 1948, Section 7.4.1 this study). The time taken to develop depends principally 

on the temperature individuals are exposed to. Using the simple day-degree model a 

lower threshold temperature for development was estimated to be roughly 11°C. 

Thermal requirements from gallery establishment to emergence and oviposition to 

emergence were estimated at approximately 4000 and 3400 day-degrees above 11°C 

respectively (Section 7.4). These estimates were based on ambient air temperatures 
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under the forest canopy and microsite variation such as direct exposure of gallery 

entrance to sunlight, aspect, topography, log or tree diameter and moisture content will 

all result in variability in the temperature individuals are exposed to. Also the timing of 

oviposition will affect the accumulated temperature exposure and as discussed above 

early summer gallery establishment is more likely to result in the first emergence 

occurring in the next summer. Emergence from the same gallery usually continues in 

the 3rd and 4th summer if attacked material does not dry out or is not overtaken by 

wood rot fungi. In this study (Section 6.5) 63% of total emergence occurred in the first 

summer of emergence (i.e. second summer after attack) with 36% and 1% occuring in 

the following two seasons respectively. Very similar observations on emergence of 

P.apicalis and P.caviceps are described by Milligan (1979). 

Interestingly, the observation that the timing of gallery establishment, when this 

occurs in late summerutumn, does not affect the timing of initial oviposition 

mentioned above was also found to hold for emergence. Of the galleries established in 

late summer/autumn, those established early in this period did not produce emergence 

any earlier on average than those established late (Section 7.5). However, galleries 

established in early summer produced emergence in the following summer (Section 

7.3). Why early summer gallery establishment produces emergence after one year and 

establishment in late summer/autumn two years is explained in terms of the thermal 

requirements for development of P.subgranosus (Section 7.3). 

For spring/early summer attack and gallery establishment to result in emergence 

in the following year initial oviposition presumably occurs in summer (Fig 2.9). 

However, the observation that such early attack occurs much less often than late 

summer/autumn attack fits in with the hypothesis that summer oviposition involves 

higher risk of egg and early instar larvae mortality due to desiccation. This 

disadvantage is offset to a degree by the reproductive advantage of producing brood 

adults in one rather than two years. 
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2.3.5 Number and sex ratio of emergents 

The average number of emergents per gallery over the life of the gallery, which 

is usually three years (see above), was roughly 20 with a median of 15 and minimum of 

one and maximum of 92 (Section 6.1). The above average is very similar to that 

observed for P.caviceps emerging from Nothofagus in New Zealand by Holloway 

(W.A. Holloway, Forest Research Institute, unpublished data) who obtained an average 

of 21.4. The frequency distribution of total emergents per gallery is reverse J-shaped 

and not bell-shaped (Section 6.1) so that a small number of very productive galleries 

are responsible for the bulk of the population. A similar situation occurs for Platypus 

spp. in New Zealand (Milligan 1979). 

Elliott et al. (1983) reported obtaining 11000 emergent P.subgranosus in a 

single summer from a 12 metre log of 60cm diameter which is equivalent to 900 per 

metre or 486 per m2  of log surface. With a mean emergence of 20 per gallery, 11000 

emergents equates to roughly 24 successful galleries per m2. This is a low number of 

attacks per m2  compared to some of the attacked material obtained in this study 

(Section 4.1). 

The sex ratio is very close to one over the population although there is 

considerable heterogeneity between galleries in the sex ratio both significantly less than 

and greater than one. The most extreme case being a gallery which produced 41 males 

and only 14 females. There was a slight trend for males to predominant in the first 

week or two of emergence with females catching up by the end of the summer (Section 

6.2). A similar trend was observed by Milligan (1979) for P.gracilis where 70% of 

emergents were male in the first two weeks of the flight season; the corresponding 

figure for P.subgranosus was 62% in the first 5 days and 53% in the first 10 days after 

emergence commenced for the gallery. 
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2.4 Symbionts- 

Platypodid beetles are called ambrosia beetles because of their habit of 

cultivating and feeding on ambrosia fungi (.xylomycetophagy) which grow on the 

gallery walls obtaining nutrients and moisture from the wood. Hogan (1948) cites 

evidence that the frass from gallery excavations is not ingested by the beetle. In 

particular (a) in freshly opened galleries wood particles can occasionally be seen 

between the wall of the gallery and the abdomen of the female being passed back 

beneath the body; (b) in making the original entry the male passes wood particles out 

beneath the abdomen; (c) the frass ejected shows no evidence of maceration as would 

be the case if passed through the gut of the insect; and (d) against the possibility of 

only a portion of the wood being consumed is the fact that beetles go for prolonged 

periods, often six months or more without boring, and subsistence is evidently provided 

from substances within the gallery over this period. Further to these observations the 

author has observed, under a stereo light microscope in a freshly opened gallery, an 

adult P.subgranosus browsing, unperturbed, on the dark brown fungi attached to the 

gallery walls. 

When freshly excavated the galleries soon develop a semi-translucent shining 

coating identified by Hogan (1948) and Milligan (1979) in the case of the New Zealand 

Platypus spp. as yeasts. As the gallery section ages the yeasts are replaced with dark 

coloured fungi (Hogan 1948, Milligan 1979) identified by Webb (1945) in 

P.subgranosus galleries as Leptographium lundbergia Lagerberg et Melin . Kile and 

Hall (1988) consistently isolated Hormoascus platypodis (Baker & Kreger-van Rij) von 

Arx and Raffaelea sp. from both the beetles and gallery walls and a species tentatively 

identified as a Leptographium sp. in galleries from N.cunninghamii which had been 

dead for two or more years (their disease categories 4-6). They found that scrapings 

from the light and moderately dark coloured gallery walls commonly contained 

conidiophores of H.platypodis and Raffaelea sp. while those from dark coloured walls 



25 

consisted of isolated conidiophores, conidia, hyphae, comminuted wood and 

amorphous debris. 

The importance of these and other fungii isolated by Kile and Walker (1987) as 

P.subgranosus symbionts is not fully known but it appears that H.platypodis and 

Raffae lea sp. are probably the main symbionts. Many ambrosia beetles, such as 

P.apicalis and P.gracilis (Milligan 1979), carry their symbiotic fungi in specialised 

organs called mycangia which can be minute pits on the rear half of the prothorax 

(Francke-Grossmann 1967). However, Kile and Hall (1988) found no such specialised 

organs using scanning electron microscopy. Superficial pits on the pronotum were 

discounted as candidate mycetangia by Kile and Hall (1988) and they found that there 

were evidently no structural modifications or regular fungal deposits in other potential 

mycetangial areas such as coxal cavities, integumentary folds and the buccal cavity. 

Kile and Hall (1988) concluded that P.subgranosus carried the inoculum of the 

symbiotic associates largely on the dorsal cuticle of the body or possibly in mouthparts. 

2.5 Predators and parasites 

P.subgranosus appears to be largely free of major predators and parasites. This 

is partly due to the habit of the male of staying close to the gallery entrance with it's 

abdomen pointing outwards therefore providing an effective barrier to predators 

attempting to enter the gallery. 

The bothriderid beetle Oxylaemus leae Grouvelle, which has recently been 

transferred to the genus Teredolaemus Sharp (Lawrence 1985), has been observed to 

emerge from P.subgranosus galleries. Hogan (1948) suggested that T.leae is a predator 

of P.subgranosus but Lawrence (1985) suggests that the mouthparts of the larvae of 

T.leae indicate a mycetophagous feeding habit (Pal and Lawrence 1986). This suggests 

that T.leae is an inquiline, feeding on the ambrosia fungi of P.subgranosus. Mass 

emergence tents (Section 3.2) produced only 203 emergent T.leae compared to 27,227 

P.subgranosus although the bulk of the T.leae emerged in the 2nd and 3rd year of 
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P.subgranosus emergence and in these years was a higher percentage, ranging up to 

approximately 50%, of total emergence over the two species. No T.leae were found in 

emergence cages placed over individual gallery entrances or in dissections of galleries 

(Sections 3.1 and 3.2). 

The buprestid beetle Nascioides quadrinotata Van de Poll has been collected in 

small numbers from mass emergence tents containing N.cunninghamii logs (Section 

3.2) set up to obtain emergent P.subgranosus but it does not occupy P.subgranosus 

galleries and therefore is not associated directly with P.subgranosus (H.Elliott 

pers.comm.). Morgan (1966) reported the biology and behaviour of the buprestid 

Nascioides enysi Sharp which attacks Nothofagus spp. in New Zealand. Morgan 

associated .N.enysi with a wilt disease of its host Nothofagus, similar to myrtle wilt. 

However, later work by Milligan (1972) discounted the possibility of N.enysi causing 

the wilt disease. 

Hogan (1948) reported the presence of a parasitic mite, identified as belonging 

to the genus Schiebea OUDMS. of the Rhizoglyphidae, in P.subgranosus galleries. This 

mite was a problem for the insectary rearing of P.subgranosus when wood was taken 

from the field where P.subgranosus was numerous and had been established over a 

long time (Hogan 1948). In dissections of 381 galleries in this study (Section 3.1), a 

single mite was found in each of two galleries and in both cases was parasitising the 

parent female P.subgranosus. The mite was not identified but it could be that 

mentioned by Hogan (1948). 

Parasitic nematodes have been recovered from dissected P.subgranosus but at 

an incidence of only roughly 1% of the sample of roughly 200 beetles (R.Bashford 

pers.comm.). These nematodes have been sent for identification. Zervos (1980) 

described a nematode, Bispiculum inaequale, parasitising the three New Zealand 

platypodid species. The incidence of parasitism was higher in the case of the New 

Zealand platypodids with around 50% of both males and females containing 
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B.inaequale. 

In this study (Section 3.1) three specimens of the larva of the wingless, cucujoid 

beetle Hymaea succinifera Pascoe were found in P.subgranosus galleries. This larva 

(Fig 2.10) was roughly lOrnm long and 1.7inm wide and flattened dorso-ventrally. 

When placed in a petri dish with live P.subgranosus final instar larvae it did not attack 

and consume the larvae but crawled over them harmlessly. When left overnight with 

the larva one P.subgranosus larva was observed to be bleeding body fluid but was still 

alive. Although it was not possible to induce H.succimfera larvae to feed they survived 

for a long period, at least a month or more, in a petri dish kept at a constant 

temperature of 10°C and at low humidity. A specimen of this larva was also observed 

in the field crawling on one of the logs of N.cunninghamii set up in this study (Section 

3.1). It is possible that this larva is a facultative predator of P.subgranosus in that it 

opportunistically invades' P.subgranosus galleries when the male dies and there is no 

longer any guard of the gallery entrance or when cracks in the log or tree allow 

entrance to exposed sections of the gallery. However, Dr. J.F. Lawrence (CSIRO 

Division of Entomology) believes it is more likely that the H.succinifera larvae feed 

primarily on fungi, perhaps the ambrosia fungi (Lawrence pers. comm.). Dr. Lawrence 

also obtained specimens of these larvae (Lawrence pers. comm.) in addition to T.leae 

larvae from dissections of P.subgranosus galleries in N.cunninghamii logs (Lawrence 

1985). 

The rate of gallery failure observed in this study due to either death of the 

parents, an unmated male or an abandoned gallery was 8%. Mortality in the larval stage 

was negligible and what little was observed could possibly be attributed to storage of 

discs awaiting dissection in coolstore for, in some cases, up to a month (Section 3.1.2). 



( 	
5nin 	 ) 

FIG 2.10(a) Larva of H.succinzfera, ventral view. 
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( 	200um 	 ) 

FIG 2.10(b) Mouthparts of H.succinifera larva, ventral view. 
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3. MATERIALS AND METHODS 

The data used for this thesis were obtained from a number of sources. Primarily 

data were obtained from the author's own experimental material. Unpublished data 

collected by researchers from the Silvicultural Research and Development Division 

(SILV) of the Forestry Commission, Tasmania (FC) and the Division of Forestry and 

Forest Products within CSIRO (DF&FP) were used with the kind permission of 

Dr.H.Elliott (SILV) and Dr.G.Kile (DF&FP). 

3.1 Author's experimental material and methods 

3.1.1 Study area, preparation of logs and attack 

To provide information on the life cycle of P.subgranosus 9 healthy myrtle 

(N.cunninghamii) trees from the Arve study area (Fig 3.1a) were felled and cut into 

logs on 24/1/1984. The study area corresponds roughly to site 1 of Elliott et al. (1987) 

and is described in detail in Elliott et al. (1983). The site is at an altitude of 350 m with 

a gently sloping south-easterly aspect. The vegetation consists of an overstorey of 

mature eucalypts, E.obliqua and E.regnans, with a rainforest understorey consisting 

primarily of N.cunninghamii, sassafras (A.moschatum), leatherwood (E.lucida), celery 

top pine (P.asplentifolius) and horizontal (A.biglandulosum). The rainforest community 

is described as thamnic using the classification of Jarman et al. (1984). 

The felled myrtles had diameters, over bark, at felled height ranging from 15 to 

43 cms and exhibited no evidence of attack by P.subgranosus or symptoms of myrtle 

wilt. The logs were arranged in a convenient way near where the tree had fallen. All 

the logs except those from tree 8 lay under the canopy where the removal of the subject 

tree had not drastically affected the light conditions. Tree 8 was located beside the 

Arve Loop road (Fig 3.1b) so that the logs for this tree were exposed to a much greater 

degree than those from the other subject trees. The logs obtained were of varying 

R  lengths (Table 3.1) and each log was painted with Hydroseal on each cut face and 
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Table 3.1 Details of logs prepared for this study 

Tree  Loga  Diameter  length  surface  attack 
s.e.  1.e.  area  density 

 

(cm) over-bark  (m)  (100cm2 )  (No/m2 ) 

1 15.0 17.7 1.39 71.4 35.0 
2 13.2 14.7 1.77 77.6 47.7 
3 12.7 12.9 1.60 64.3 23.3 
1 36.4 43.2 1.03 128.8 25.6 
2 28.2 37.8 1.39 144.1 35.4 
3 27.9 28.2 1.36 119.9 65.1 
4 27.7 28.6 1.29 114.1 48.2 

5 17.7 27.5 1.46 103.7 94.5 

6 24.2 25.8 1.38 108.4 79.4 

7 16.7 17.2 1.37 73.0 39.8 

8 15.3 16.0 2.39 117.5 72.3 

9 16.5 17.5 1.05 56.1 42.8 
10 14.4 15.2 1.29 60.0 45.0 

11 15.6 17.4 1.91 99.0 66.7 

12 12.8 14.2 1.94 82.3 31.6 

7 1 13.0 13.5 2.13 88.7 57.5 
2 17.7 19.7 1.53 89.9 81.2 

3 19.1 23.0 1.53 101.2 102.8 
4 20.8 24.4 1.09 77.4 56.9 
5 13.7 17.9 1.63 80.9 13.6 

6 26.5 33.0 0.87 81.3 16.0 

8 1 33.5 35.0 0.92 99.0 77.8 
2 29.6 32.0 1.13 109.3 87.8 

3 28.6 29.2 2.04 185.2 83.7 
4 21.5 22.0 2.18 149.0 67.8 

9 1 30.0 36.5 1.68 175.5 27.4 

2 28.7 31.0 2.00 187.6 31.5 

3 22.4 28.0 2.13 168.6 6.5 

4 13.1 16.2 2.53 116.4 '24.9 

5 17.7 24.4 2.05 135.6 6.6 

a.  Logs were cut from forks and larger branches as well as the main 
stem and were numbered on the ground after they were conveniently 
organised so that log numbers do not necessarily represent an 
ascending sequence up the tree stem. 
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where any branches had been pruned off to prevent the log drying out and splitting at 

the ends. Each log was then labelled on each end using yellow spray paint with a tree 

and log number. The yellow paint did not induce P.subgranosus attack. 

The logs were allowed to be attacked naturally by P.subgranosus and attack 

documented and labelled roughly weekly from when they were felled until the last 

labelling of attack on 7/5/84. At each measurement date, galleries that had been 

established since the last measurement were labelled with coloured drawing pins placed 

as close as possible to the entry hole without disturbing the activity of the male. The 

first attacks occurred in the week prior to 9/2/84. Only logs from trees 5 to 9 had 

sufficient numbers of galleries to be worthwhile studying and only logs from these six 

trees were used in this study. A thermohydrograph was placed in a Stephenson screen 

located under the canopy, midslope and in close proximity to the logs from trees 5 and 

7. Traces were collected mostly weekly by Forestry Commission district staff. In all, 

1673 galleries were labelled for 10 measurement dates. 

3.1.2 Destructive sampling of galleries 

For 5 sampling occasions at roughly 2 weekly intervals from the establishment 

of the logs until May 1984 a disc was cut from one or two logs which were selected in 

an ad hoc manner. Between June 1984 and December 1985, the logs were randomly 

sampled on 7 occasions. At each sampling occasion one log was sampled randomly 

from each one of the 5 trees. A further random number was drawn to determine 

whether the disc was to be taken from either the small or large end of the log. The 

discs were roughly 15 to 20 cm thick. After the disc was cut the face of the log was 

painted with Hydroseal. The discs were taken back to Hobart for dissection. Discs were 

split vertically along the grain using a hatchet, then sectioned horizontally using a 

bandsaw and finally, segments of galleries were exposed using a chisel. Individual 

galleries were tracked and their life stages collected up to and including the second last 
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0 ph sampling occassion in May 1985. However, by the time of the last sampling 

occasion in December 1985 the galleries were so well developed and involved so many 

branches due to larval excavations that many branches overlapped or even merged with 

branches from separate gallery systems. For this reason in a large number of cases it 

was impossible to determine to which gallery an exposed segment belonged. Combined 

with this was the task of keeping track of large numbers of slivers of wood and where 

they belonged in the 3-dimensional 'jigsaw puzzle'. So for these discs all labelled 

galleries were recorded for the disc and all individuals of each life stage obtained by 

dissecting the disc were recorded without tracking individual galleries. Discs awaiting 

dissection were kept in a coolstore at 5°C. 

Each gallery was given a code and as individual life stages were found they 

were sexed in the case of adults and the diameter of the head capsule was measured 

transversely at its widest point for all larvae with the exception that only a sample of 

head capsules were measured on the final instar. The length of the larva was also 

measured where possible (i.e. if the body had not been damaged in the dissection of the 

gallery). Again only a sample of final instars were measured for body length. 

Measurements were taken live by using a fme camel hair brush to hold down the larva. 

An eyepiece micrometer on a stereo light microscope was used to make the 

measurements with a maximum error of 0.04mm (x25 magnification scale) for early 

and 0.083 (x12 magnification scale) for late instar larvae. To complement the 

individuals obtained above, the preserved specimens in the Forestry Commission 

collection were measured for head capsule width and body length at the x50 

magnification scale. There were 50 preserved specimens of which 30 were final instar 

in the Forestry Commission collection. 

The length of the section of the gallery excavated by the adults was 

approximated where possible by measuring widths of individual wood slivers 

containing sections of the gallery. 
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3.1.3 Emergence cages 

On 6/2/85 for a sample of 72 labelled galleries, emergence cages were placed 

over the gallery exit. These cages used plastic sampling vials roughly 8cm long with a 

diameter of 2cm. A level area was made using a chisel where necessary to give a seal 

between the vial and the log. Gaps remaining between the log surface and vial were 

sealed using BluetakR around the base of the vial. The vial was secured to the log by 

means of wires passing through holes drilled through the vial at right angles to one 

another roughly half-way along the vial. The wires were then strained around nails 

hammered into the log which enabled a very strong attachment to be made. The space 

around the wire as it passed through the drill holes was large enough for air to circulate 

into the vial and any water to leak out but not large enough for emergents to escape. 

The cages were checked weekly in summer and less regularly at other times of 

the year until the logs were relocated in the Forestry Commission insectary at Surrey 

House, Hobart. Half the logs were transported on 4/12/85 and the remainder on 

10/12/85. No emergence had occurred up until 4/12/85. The first emergence (4 males, 1 

female) occurred between the 4th and the 10th of December in one of the cages of tree 

8. Since the cages were sealed at the end, the cage had to be removed to clear out frass 

and check for emergence. This had not been a problem before the logs were relocated 

since only a few traps needed to be cleared of frass. An advantage of the sealed vials 

over open-ended vials covered with gauze was that in this last case, cages pointing 

skywards can fill with water and flood the gallery. However, in the insectary for ease 

of clearing out emergents the ends of the vials were cut off and light gauze placed over 

the vial using elastic bands for attachment (Fig 3.2). The logs were placed on their ends 

in the insectary and traps checked and cleared daily from 12/12/85 to 30/12/85 and then 

weekly until 21/3/86 and fmally on 6/5/86. The logs were regularly hosed with water 

during the 85/86 summer which combined with an exceptionally wet summer ensured 

that the logs remained wet and did not split. On the 16/12/85 a thermohydrograph was 
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placed in a Stephenson screen next to the insectary and a continuous trace of 

temperature and humidity taken until 6/5/86. Logs were checked for emergence in the 

1986/87 summer but no emergence was observed and by this stage the logs had dried 

and cracked to a degree where survival of any later brood was highly unlikely. 

3.2 Emergence experiments of Silviculture Division, Forestry Commission 

Emergence data were also provided from emergence cages placed over 

individual galleries by H.Elliott and R.Bashford (SLLV) over consecutive summers 

between the 79/80 and 82/83 summers in the Arve study area. A total of 58 cages were 

established, 12 of which had known date of attack in the 80/81 summer. Logs were 

kept at the study site and emergents were collected from summer 81/82 until summer 

84/85. Cages were checked and cleared weekly in summer and intermittently at other 

times. 

Mass emergence tents were also established in the Arve study area by Elliott 

and Bashford. Large numbers of emergents were obtained by placing heavily attacked 

logs under black plastic tents with a semi-transparent plastic collecting bottle attached 

to the tent. Five tents were established and emergents were collected over consecutive 

summers between the 81/82 and 83/84 summers. 

Thermohydrograph recordings were made within a Stephenson screen from 

5/11/81. 

3.3 Calculation of day-degrees 

To obtain the day-degrees for any period within the time from first attack 

(28/12/80) for the SILV cages until the last emergence for the author's cages (6/5/86) 

temperatures recorded using thermohydrographs at the study site and Hobart insectary 

were used. The temperature traces recorded at the Hobart insectary from the 17/12/85 

to the 5/6/86 were digitized using a digitising tablet and FORTRAN 77 routines from 

the ARC/INFO (ESRI 1987) library with a temperature recorded approximately every 

15 minutes. These data were integrated between measurement intervals using the 
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trapezoidal rule with adjustment for the arc of the recording arm of the 

thermohydrograph. Special purpose routines were written in APL*PLUS (STSC) to 

carry out the integration. Unfortunately there were too many gaps in the continuous 

tracings from the Arve study site to allow the day-degrees to be calculated by 

integrating the temperature/time trace directly. To overcome this problem an 

approximation to the cumulative day-degrees for any date after 28/12/80, starting from 

this date, until 16/12/85 was obtained as described below. 

For the Arve study site thermohydrograph sheets obtained from the site covering 

the period 5/11/81 to 17/12/85 were available. Daily minimum and maximum 

temperatures for the Hastings Meterological Station for the period 1/1/79 to 31/10/87 

were obtained from the Australian Meterological Bureau. From most of the sheets 

obtained by the author and those of Elliott and Bashford, a number of daily minimum 

and maximum temperatures were obtained and matched to the corresponding 

temperatures from the Hastings Station. One hundred and ninety (190) pairs of 

(maximum,minimum) were obtained and for 175 of these pairs the time of day (24 h 

clock) at which the maximum and minimum occurred was also recorded. Various linear 

and nonlinear regression models relating each of the study site minima and maxima 

(dependent variables) to those at the Hastings Station (predictor variables) were fitted 

using GENSTAT (Genstat 5 Committee 1987). The best model for study site maximum 

temperature (Ymax) was a simple linear regression 

Ymax = PI 4" 132X 
	

(3.1) 

where X is maximum temperature at Hastings Station. Fitting separate parameters 

for each of 'winter' (April to October) and 'summer' (November to March) was found to 

significantly ( P<0.01) improve the model. The R 2  for this model was 0.82. Residual 

plots showed no serious problems with this model. The relationship for minimum 

temperature was not as good as that for maximum. After fitting various models the best 

was found to be 
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A 
Ymin  = 	ar2X 	CC3Ymax 	 (3.2) 

where Y and X • have definitions corresponding to Y and X and /1" is the 

predicted maximum from eqn (3.1). Eqn (3.1) can also be expressed as 

Ymin = Ti Y2Xnain 73Xmax 

The R2  for this model was 0.56 and again there were no trends evident in plots of 

residuals. Parameter estimates and their standard errors for eqns (3.1) and (3.2) are 

given in Tables 3.2 and 3.3 respectively. 

The model used for the time of day of the maximum and minimum temperature 

was simply the monthly (i.e. January,February,...,December) mean time of day. These 

means are given in Table 3.4. It can be seen that these means follow a consistent trend 

for maximum temperature with the earliest time of about 1300 hours in winter 

increasing to a peak of roughly 1600 hours in summer. A trend is much less distinct in 

the case of time of minimum. Minima are generally found to be difficult to model due 

to topography and its effect on cold air drainage, wind chill and other local variables 

(M.Nunez, pers. comm.). 

Using this database of maxima and minima and time of day (predicted if not 

obtained from thertnohydrograph sheets directly) a cubic spline was fitted to these data 

in sets of 3 days (i.e. one day either side of the day of interest). An example of this fit 

is given in Fig 3.3. Points were taken off the predicted spline curve in 15 min intervals 

and integrated using the trapezoidal rule. To do this functions were written in 

APL*PLUS to read the daily maxima/minima data in sets of 3 days, fit the spline and 

integrate over the middle day to obtain day-degrees for this day. The results were 

accumulated so that total day-degrees could be obtained for any given period. In the 

above integration of the thermohydrograph trace and the fitted spline curve a number of 

different threshold temperatures were used. Starting from 0°C, each integer-valued 

threshold from 0 to 20°C was used so that if the temperature predicted from the spline 

curve or obtained directly from the therrnohydrograph trace (i.e. after 17/12/85) was 



Table 3.2 Regression parameters of daily maximum temperature model 
: eqn (3.1). 
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Season 	i3 j 

Summer (Nov-Mar) 	2.77 
(1.12) 

Winter (Apr-Oct) 	-3.27 
(1.08) 

P 

0.7530 
(0.0515) 

0.9609 
(0.0742) 

Table 3.3 Regression parameters of daily minimum temperature model : 
eqn (3.2). 

at 
	 a2 	 a3 

-0.589 
	

0.5763 
	

0.3855 
(0.708) 
	

(0.0901) 
	

(0.0581) 

Table 3.4 Mean monthly time of day' of minimum and maximum temperature 

Month 
	

Mean Timeb  No. Obs 
minimum  maximum 

January  6.4  (0.2)  15.9  (0.1)  29 
February  6.3  (0.2)  15.1  (0.2)  20 
March  5.5  (0.4)  14.7  (0.2)  23 
April  6.2  (0.4)  13.9  (0.3)  12 
May  5.0  (0.5)  13.6  (0.2)  16 
June  6.2  (1.0)  12.9  (0.8)  13 
July  7.1  (0.8)  13.4  (0.3)  16 
August  6.2  (1.0)  13.6  (0.4)  12 
September  7.4  (0.4)  16.1  (0.7)  7 
October  6.2  (1.3)  13.0  (0.4)  10 
November  5.1  (0.3)  13.0  (0.6)  7 
December  4.8  (0.5)  14.4  (0.3)  10 

a. 24 h clock 
b. Standard error of the mean given in brackets. 



40 

below the particular threshold temperature the corresponding time unit was excluded 

from the integration. As a result the accumulated day-degrees for each threshold from 

1/1179 to any later date up until 31/10/87 was available. 

Other methods of calculating accumulated day-degrees using daily temperature 

minima and maxima have been used. A common method is to constrain a sine curve to 

pass through the daily minima and maxima (Baskerville and Emin 1969; Allen 1976; 

&inner et al. 1974). The method of Stirmer et al. (1974) allows the sine curve to be 

asymmetrical so that minima and maxima do not need to occur 12 h apart, however, 

the shape of the sine curve is fixed for all days. Dallwitz and Higgins (1978) used a 

linear interpolation method rather than a sine curve where typical 'cycle values' of the 

daily temperature cycle are used (Dallwitz and Higgins 1978; Samson 1984; Allsopp 

1986). Using their method, which is implemented in the DEVAR computer programme 

(Dallwitz and Higgins 1978), the value of temperature at time t is given by Tt  where 

Tt = Tmm + (Tmax - Tmin  )Ct  

Tmm and Tmax  are the observed daily minimum and maximum under consideration, and 

Ct  is the value of the cycle function ranging between 0 and 1. The value of Ct  can be 

obtained by linearly interpolating between 'cycle points', c 1 , which can be obtained as 

say, typical monthly values at 2 hourly intervals using a sample of days in each month. 

Such cycle points are calculated as 

ci = (Ti  - T1)/(Tu  - T1) 	 , i=1,...,12 

where Ti is mean monthly temperature at the ith time of day, Ti  and Tu  are the mean 

monthly minimum and maximum temperature respectively (Dallwitz and Higgins 1978, 

Samson 1984). The cycle points are used by the cycle function and temperature is 

integrated by DEVAR using the trapezoidal rule and the linearly interpolated Values of 

The method used here of fitting spline curves to daily minimum and maximum 

,tit:74,07fG,Pet;e-,, 
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temperatures using time of day of the minimum and maximum as the abscissa scale is 

more similar to the method of Dallwitz and Higgins (1978) than sine curve methods but 

differs from DEVAR in that nonlinear interpolation (i.e. cubic spline) between daily 

minima and maxima is used instead of linear interpolation to obtain T t  . Also the 

method here allows the time between minimum and maximum temperature to vary by 

month while DEVAR uses a fixed 12 h period. Both methods allow seasonal variation 

in the shape of the temperature curve between daily minima and maxima; DEVAR via 

the cycle points, c1 , and the method here via the time of day of minimum and 

maximum temperature. It was not possible given time constraints to compare the above 

methods to actual day-degrees (i.e. calculated via digitisation, as described above, or 

planimeter measurement of thermograph traces) however, the likely magnitude of the 

error in estimation of day-degrees is relatively small and given the use of day-degrees 

in this study is only a minor consideration. 

3.4 Little Florentine experiment 

An experiment to study the effect of various treatments applied to healthy, 

unattacked N.cunninghamii (a small number of A.moschatum were also included) on 

attractiveness to P.subgranosus attack and incidence of myrtle wilt was set up in 

December 1985 near the Little Florentine river in south-central Tasmania (study site 2 

of Elliott et al. 1987) jointly by SILV and DF&FP. This experiment is described in 

detail as Experiment 2 of Kile et al. (1990b). For this study, 7 of the treated 

N.cunninghamii, of which 5 were treated by inoculation with C.australis and two were 

'saprung' (i.e. tree 'ring-barked' with a chainsaw cut to the depth of the sapwood), and 

one A.moschatum (saprung) were selected because of the large amount of attacked they 

sustained. With assistance from SILV staff the author obtained co-ordinates of 

P.subgranosus pinholes established on the selected trees as follows. 

A clear plastic sheet was wrapped around each tree from the base of the tree to 

a height of roughly 1.5 to 2.0 metres. Because of the buttressing of the tree bole and 
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uneveness of the ground around the base of the tree some triming of the plastic sheet 

was required. Attack had been marked weekly between 19/12/85 and 14/5/86 with 

coloured drawing pins, the colour designating the date when attack was recorded, by 

SILV and DF&FP researchers. The location of the drawing pins was recorded on the 

plastic sheet using waterproof marking pens. Dieline copies of the sheets were made 

and the locations digitised using a digitising tablet and ARC/INFO (ESRI 1987) 

routines. Boundaries of the sheet were also digitised to allow arc distances, both 

clockwise and anti-clockwise around the tree, to be calculated. Inoculation points and 

the saprung chainsaw cut were also recorded onto the plastic sheet and digitised. 

3.5 Rotary trap collections 

Between 24/2/86 and 26/3/86 rotary trap collections of flying P.subgranosus 

were carried out throughout the day on 8 separate . days at the Little Florentine study 

site (site 2 of Elliott et al. 1987) by H.Ellion and R.Bashford (SILV). The trap was 

cleared hourly between 6.00am and 8.00pm and the number of male and female 

P.subgranosus collected were counted. 

3.6 Work of A.Slade 

The density of attack along the bole of standing N.cunninghamii was recorded 

on 50 trees by A.Slade (SILV) in 1978 in north-west Tasmania (sites 11 and 12 of 

Elliott et al. 1987). Myrtles suffering various degrees of myrtle wilt were selected and 

the maximum density per 100 cm2  was recorded within 5 m sections of the bole to a 

maximum height of 28 m. 

A number of ad hoc destructive samples of P.subgranosus galleries were carried 

out using a chainsaw cut made perpendicular to the wood grain to expose galleries. 
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4. ATTACK 

4.1 Timing and density of attack 

As described in Section 2.3.1, the flight season for P.subgranosus generally 

ranges from September to April. Variation in the timing and density of attack will 

depend on temporal and spatial variation in the timing of emergence, the presence of 

nearby trees and/or logs containing emerging beetles and the attractiveness of the trees 

and/or logs subject to attack. Fig 4.1 shows the rate of attack based on total attack for 

logs at the Arve study site (Section 3.1.1) and trees treated in the experiment at the 

Little Florentine site (Section 3.4). The dates give the times at which new pinholes 

were marked with coloured pins and the rate is the number of these pinholes for the 

previous period divided by the period length. In each case the experimental material 

was established after the potential start of the flight season and given that it takes some 

time for the material to become attractive to the beetles (Elliott et al. 1983) early attack 

seen in Fig 4.1 probably understates the potential attack at that time. Nevertheless, the 

peak of attack appears to be in February and March with a decline in April and May, 

although there is considerable variation in these trends and considerable attack can 

occur as late as May [Fig 4.1(a)]. This peak of attack occurs, as expected, around the 

peak time for emergence (Section 6.4). 

The density of attack is defined here as the number per square metre of log or 

tree surface area. For a number of different sized logs, given they are equally attractive 

to P.subgranosus and equally close to a source of emerging beetles, it would be 

expected that the total number of attacks on a log would be proportional to its surface 

area. Fig 4.2 shows the number of attacks versus log surface area for the logs at the 

Arve study site (Section 3.1.1). For a particular tree there is a general trend for attack 

to increase with surface area although there is a large degree of variation about this 

trend. This variability probably reflects the differing attractiveness of the logs. No 

obvious relationship between density of attack (number m - 2) and log mid-diameter 
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was found (graph not shown). The relationship between number of attacks and surface 

area will only be fully expressed when attack is so dense that beetles initially attracted 

to a log or tree must find an alternative site on another log or tree because the limit on 

space required for gallery establishment has been reached. Fig 4.3 shows the 

cumulative density of attack against time for several of the Arve logs and Little 

Florentine trees. The C.australis inoculated trees (Section 3.4) have been rendered 

highly attractive to P.subgranosus with attack reaching a density of 420 per square 

metre. This level of attack has not been sustained on the Arve logs (Section 3.1.1) 

which would explain the weak relationship in Fig 4.2. The plateauing of density of 

attack seen in Fig 4.3 is due largely to the petering out of emergence since new attack 

was observed, for both sets of material, in the following flight seasons but was not 

recorded. An idea of the limiting density of attack is obtained from the within-tree 

spatial pattern of attack. 

4.2 Within-tree spatial pattern of attack 

4.2.1 Mapped attack from the Little Florentine experiment 

Maps of the within-tree spatial pattern of attack for 8 trees from the Little 

Florentine experiment (Section 3.4) are shown in Figs 4.4 and 4.5. Trees 11, 12 and 26 

were ring-barked ('saprung') and the remaining trees were inoculated with C.australis 

(Section 3.4) with the inoculation point shown with an I in Fig 4.4. All the above trees 

including the ring-barked trees, with the exception of tree 11, showed symptoms of 

myrtle wilt. Tree 11 was the only A.moschatum with a significant amount of attack and 

for this reason was mapped. It provides a useful comparison to the C.australis infected 

N.cunninghamii trees. For all the inoculated trees with the exception of tree 9, the 

aggregation of attack around the spread of C.australis vertically within the vascular 

system of the tree is very obvious [Fig 4.4 (a-d)]. In ring-barked tree 12 [Fig 4.5(a)] 

such a pattern emanating from points along the ring barking is also obvious. 

Aggregation of attack is also fairly obvious in the case of ring-barked tree 26 
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[Fig 4.5(b)] although lines of C.australis spreadIP.subgranosus attack are not as 

distinct. For tree 9 the overall attack does not appear obviously aggregated [Fig 4.4(e)] 

but considering only early attack (Jan,Feb) [Fig 4.4(f)] the streaming effect emanating 

from inoculation points is fairly obvious. Tree 9 appears to be exceptional in that later 

attack did not remain concentrated around the initial lines of attack created by the 

spread of C.australis. 

4.2.2 Nearest neighbour distance for mapped attack 

To quantify the spatial patterns of attack in Figs 4.4 and 4.5 nearest neighbour 

distances were calculated (Diggle 1983). Nearest neighbour distance (nnd) is the 

shortest distance from an event (a pinhole in this case) to the nearest event. Other 

methods of studying fully-mapped spatial point patterns such as point to nearest event 

(Diggle 1983) can be used but nnd is of intrinsic interest since the spacing mechanism 

between galleries is most likely to be related to the presence of galleries already 

established. For n pinholes there are n(n-1)/2 inter-event distances and these were 

calculated using the arc distance both clockwise and anti-clockwise around the tree 

(Section 3.4). So for a particular pinhole the 2(n-1) list of distances was used in a crude 

search to find the nearest neighbour of the pinhole under consideration. The empirical 

distribution function (EDF) of nnd (Diggle 1983) was obtained by calculating the 

frequency of nnd in classes of 0-1,1-2,2-3,3-4,4-5,5-6,>6 cm and then calculating the 

cumulative relative frequency which gives the EDF. The EDF of the observed nnd is 

given by bi(y) where 

bi(Y) = n -1  #(.Yi Y) 	 , i=1,...,n 

yi is observed nnd, y are values for tabulation of y i  (e.g. 1 to 6 cm classes above with 

last class calculated by difference) and # means "the number of'. The observed EDF 

was compared to EDF's calculated for 49 Monte-Carlo simulations of a completely 

spatially random pattern (CSR) of n points on an area defined for each tree in Figs 4.4 

and 4.5. EDFs can be calculated using the same values of y for each simulation so that 
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A 
j=2,...,50 defmes the simulated EDF's and Gi(y) is the sample mean of the 

simulated values for each class of y. Under a hypothesis of CSR all rankings of the 
A 	 A 
Gi(y), j=1,...,50 are equi-probable so there is only a 2% chance of G 1(y) ranking either 

1st or last if CSR is true. Thus the hypothesis of CSR can be tested graphically by 
A 

inspecting the linearity of plot of G1(y) versus 01(y) compared to upper and lower 

simulation envelopes. The upper and lower envelopes are found simply by ranking, for 

each tabulated value of y, the values of laj(y), j=2,...,50. If Gi(y) goes outside the 

bounds of the simulation envelope CSR is rejected at the 98% level (i.e. based on 49 
A 

simulations). If Gi (y) is under the lower envelope it indicates regularity in spatial 

pattern and above the upper envelope indicates an aggregated pattern. 

Visual inspection of the mapped attack discussed above suggested that only for 

trees 9 and 11 was the pattern not obviously aggregated. To further investigate their 

pattern of attack EDF plots were constructed and these are shown in Fig 4.6 for tree 9 

and Fig 4.7 for each of tree 11 and tree 48. Tree 48 was included for comparison even 

though CSR is overwhelmingly rejected simply by visual inspection of Fig 4.4(c). Fig 

4.6(a) suggests that there is not a radical departure from CSR for all attack on tree 9 

and if any, the departure is towards regularity and not aggregation. Fig 4.6(b) which 

shows the early attack on tree 9 does, however, suggest a rejection of CSR and an 

aggregated pattern. Fig 4.7 demonstrates for both tree 11 and 48 a more emphatic 

rejection of CSR due to aggregation. This is visually obvious for tree 48 as mentioned 

above but not so obvious for tree 11 [Fig 4.5(c)]. An interesting feature of the 

aggregated patterns reflected in Figs 4.6(b) and 4.7 is the less than expected, for an 
A 

aggregated pattern, number of nnd less than lcm [i.e. G 1(y) falls around or below G 1(y) 

at y=1]. This suggests a tendency for the male to space its gallery at least lcm from 

already established galleries. 

An approximate test of CSR can be obtained by comparing the observed mean 

nnd to that expected under CSR. Diggle (1983) used an approximation derived by 
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Donnelly (1978) that mean nnd, 57, under CSR is normally distributed with expected 

value and variance given by 

NG) = 0.5(n - 1 1A1)0'5  + (0.051 + 0.042n - 0'5) n - 1(A) 

7474(j) = 0.070 n - 2 1A1 + 0.037(n - 5  1 A1)0'5  1(A) 

where 1A1 is surface area of the region, A, over which points (or pinholes) are 

distributed and 1(A) is the length of the boundary of the region A. The case of tree 

stems is slightly unusual since the vertical boundaries in Fig 4.4 and 4.5 are not real 

being required purely to display the map of attack in two dimensions. To calculate the 

above values of 6(j')  and Va2 j'),  the boundary of A was taken to be the length of the 

horizontal boundaries shown in Figs 4.4 and 4.5. Table 4.1 gives the observed mean 

nnd, 6(5') and dez/(5?) [=1 ren(5?)] and, in the case of trees 9, 11 and 48, values of N(j) 

and 4d(5,) calculated using the 49 Monte Carlo simulations carried out to construct the 

&(Y) versus 01(y) plot. The values in this last case are more reliable than Donnelly's 

approximation since they take into account the shape of A, but both estimates agree 

fairly well with the exception of X(S,) for tree 11. This could be due to the low number 

of pinholes in this case. For the more densely attacked trees a mean nnd of about 2.5 

cm appears to be a general value. A regular grid of 2.5x2.5 cm on an area of 1 m 2  with 

2.5 cm boundary region would allow 38x38=1444 pinholes. Such a high density may 

occur locally (e.g. along the lines of attack in the inoculated trees) but is unlikely to 

occur over a large surface area. 

4.2.3 Distribution of attack along the bole 

The data collected by A.Slade in northwest Tasmania (Section 3.6) on the 

distribution of attack along the bole of 50 standing N.cunninghamii trees, showing 

various degrees of myrtle wilt symptoms, were used for the following. Slade recorded 

the diameter at 1.3m height, height and attacked bole length of each tree as well as the 

within-tree maximum density of attack recorded for 100 cm 2  areas within height classes 

along the bole of 0-5,5-10,10-15,15-20 and 20-25 m. Fig 4.8 shows the 



Table 4.1 Statistics on nearest neighbour distance (nnd) 

tree no. number 
attacks 

meana 
nnd 

4(5) 1' dez/1(5) b  Zc (Y) d  6‘2/2(50 d  

9 406 2.773 2.724 0.073 0.69f 2.697 0.056 

9e 255 2.934 3.446 0.116 -4.40h 

10 472 2.260 2.470 0.061 -3.44h - - 

11 74 3.371 4.176 0.266 -3.02g 5.603 0.373 

12 129 4.685 5.581 0.267 -3.35h - 

26 277 2.938 3.568 0.115 -5.46h 

40 295 2.533 3.410 0.107 -8.21h - 

45 188 3.165 4.085 0.161 -5.71h - - 

48 471 2.347 2.862 0.071 -7.28h 3.092 0.067 

a. Mean of observed nearest neighbour distances. 
b. SI-  is the mean nearest neighbour distance under CSR and 4 and A2/1  are 

Donnelly's approximations to the expected value and standard deviation 

of.; .7* 
C. 	Statistic (mean- ic) I al compared to standard normal deviate 
d. Mean and standard deviation of mean nearest neighbour distance based 

on 49 simulations of CSR. 
e. Tree 9 early (January and February) attack. 
f. Probability > 0.20 
g. Probability < 0.002 
h. Probability < 0.001 
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proportion of total maximum attack versus bole height class where total maximum 

attack is the sum over the 5 bole height classes of the maximum recorded attack. Only 

trees at least 20m tall have been included in Fig 4.8. Fig 4.9 shows length of bole 

attacked versus tree bole height with numbers 1 to 4 representing myrtle wilt symptom 

classes ; 1 more than half the crown still green; 2 some green foliage remaining up to 

half of the crown; 3 foliage completely dead but over half still attached; and 4 less than 

half the dead foliage still attached. 

4.3 Discussion 

The results above show the close correlation of P.subgranosus attack and host 

tissue infection with C.australis. The highly aggregated pattern of attack on inoculated 

trees reflecting the movement of C.australis up the vascular system of the tree is quite 

striking. The exception to this was tree 9 where later attack did not strictly follow the 

streaming pattern of earlier attack. This could be the result of transverse flow of 

inoculum between vessels possibly aided by a more rapid development of galleries in 

this tree (Kile and Hall 1988). 

The within-tree spatial pattern of P.subgranosus attack is also aggregated in 

trees uninfected by C.australis as demonstrated by the saprung sassafras (tree 11). This 

is probably due to the release of aggregation pheromones by pioneer beetles suggested 

by Elliott et al. (1982) as a secondary mechanism for inducing attack, the primary 

mechanism being the release of host produced volatiles. Hogan (1948) suggested 

pheromones as the explanation for the fact that females search for unmated males in a 

systematic fashion going directly from gallery to gallery without randomly searching in 

between. The release of anti-aggregation pheromones, for example as discussed by 

Borden (1988) for the striped ambrosia beetle Trypodendron lineatum Olivier, at high 

densities could be the cause of the regular pattern of total attack on tree 9, but contrary 

to this, tree 10 had a higher density of attack than tree 9 (Fig 4.3b) and did not exhibit 
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any tendency for regularity in spatial pattern as cumulative attack became more dense 

(Fig 4.4d). 

The estimate of a minimum spacing between galleries of roughly one centimetre 

was based on the fact that the frequency of nearest neighbour distances in the 0-1cm 

class was less than expected under CSR while that for the 1-2cm classes and above was 

greater than expected (Figs 4.6a and 4.7). If aggregation occurs with no minimum 

spacing then the EDF plot should also lie outside the simulation limits for the 0-1cm 

class. Nearest neighbour distances less than lcm were recorded but some of these could 

be due to errors introduced by the method of transcribing pinholes to plastic sheets 

(Section 3.4). Byers (1984) estimated a minimum distance between galleries of the bark 

beetle Ips typographus (L.) of 2.5cm. He noted that at high attack densities, galleries 

tend to be regularly spaced. In this study, aggregation was evident at low densities (tree 

11) and remained so at high densities with the exception of tree 9. The fact that this 

was so despite the suggested minimum spacing of lcm probably reflects the fact that 

densities did not reach a sufficient level for a minimum spacing of lcm to have much 

impact on the spatial pattern of attack. As Borden (1988) has noted a spacing 

mechanism is probably more crucial for bark beetles which are limited to a 

2-dimensional resource compared to wood boring beetles which can exploit the 

3-dimensional resource of the wood. Once a sufficiently large diameter tree or log (i.e. 

greater than 12cm, Elliott et al. 1982) is colonised there is little competition for space 

between P.subgranosus galleries which are not restricted to the sapwood but can 

commonly extend through the heartwood. 

Attack can occur along the entire length of the tree bole as demonstrated by the 

data of A.Slade but the intensity of attack declines rapidly with increasing height above 

the ground. This is probably a consequence of initial attack near the ground attracting 

further attack due to the release of aggregation pheromones and/or the possibility that a 

greater volume of primary attractant host volatiles are released nearer ground level. 
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5. DEVELOPMENT STAGES 

In this section the natality and gallery development rates and phenology of 

immature stages of P.subgranosus are quantitatively described based on the data 

obtained by destructive sampling of galleries described in Section 3.1.2. Firstly the 

larval instars are classified numerically, using principally, head capsule width and, 

secondarily, body length. Numerical classification is required for all but the final instar 

because there are no morphological features which allowed instars to be classified as 

they were obtained. The final instar can be identified by the row of chitinous loops on 

the prothoracic segment (Section 2.2.2, Fig 2.7a). Quantitative descriptions of gallery 

development and initial oviposition are given. The phenology of the immature stages is 

then described in terms firstly, of simple statistics and secondly, probabilistic models. 

The general form of these models is described including a new model developed here. 

Finally, brood size and gallery failure rates are described. 

5.1 Classification of larval instars 

The general description of the larval instars was given in Section 2.2.2. This 

description assumed that there are 5 instars based on the work of Hogan (1948). Hogan 

obtained 50 larvae in the same way as those obtained in this study and by measuring 

head capsule width decided on 5 instars with mean widths given in Table 5.1. There is 

no need to use head capsule width to distinguish between the 4th and 5th (final) instars 

because of the chitinous loops on the prothoracic segment of the final instar which is 

absent in earlier instars as mentioned above. Individual larvae collected from disc 

dissections needed to be classified into an instar class. As mentioned in in Section 

3.1.2, as individuals were extracted from galleries head capsule widths were measured 

for all instars except for the fmal instar for which a sample were measured. This gave 

222 head capsule widths with 49 from final instars. For a further sample of 15 and 78 

for each of the final and earlier instars, respectively, body length was also measured. 

To complement this sample all 50 preserved specimens in the Forestry Commission 

.. 



Table 5.1 Statistics on larval head capsule width (mm) 

Data/statistic 1st 2nd 3rd 4th Final 

Hogan/mean 

author/sample 

0.346 

45 

0.439 

42 

0.587 

32 

0.772 

54 

0.945 

49 

/mean 0.372 0.458 0.609 0.815 0.970 

/median 0.36 0.44 0.60 0.83 0.96 

/mode 0.36 0.44 0.60 0.83 0.996 

/standard 0.028 0.028 0.030 0.049 0.044 
deviation 
/standard 0.0042 0.0043 0.0052 0.0067 0.0064 
error 
/minimum 0.28 0.44 0.56 0.72 0.83 

/maximum '0.40 0.52 0.664 0.913 1.079 

63 

Table 5.2 Statistics on larval body length 	mm) 

statistic 1st 2nd 3rd 4th Final 

sample 24 31 17 25 45 

mean 0.848 1.017 1.732 2.785 4.436 

median 0.800 0.880 1.400 2.573 4.560 

mode 0.800 0.800 1.400 2.490 4.150 

standard 0.138 0.285 0.639 0.502 0.594 
deviation 
standard 0.028 0.051 0.155 0.100 0.089 
error 

minimum 0.640 0.760 1.080 1.743 2.573 

maximum 1.160 1.740 3.400 3.760 5.440 



collection, 30 of which were final instars, were also measured for both head capsule 

width and body length. Fig 5.1(a) shows the frequency of head capsule width where the 

frequency is the number of individuals at each unit on the x25 magnification scale. Fig 

5.1(b) shows the classification of the first four instars obtained using the numerical 

classification procedure described below. Figs 5.2 and 5.3 show the relationship 

between head capsule width and body length on each of linear and logarithmic scales 

for body length. There are 5 definite peaks in Fig 5.1(a) which supports Hogan's 

conclusion. The difference between the first and second instar peak value is quite 

small. It can also be seen from Fig 5.1(a) that some individuals fall in the region 

between the peak frequencies where these peak values are taken to be the typical head 

capsule widths for the instars. The measurement error explains to a degree some of the 

overlap between 4th and final instar and the appearance of individuals between peak 

frequencies. For example a 4th instar with actual head capsule width of 0.83 mm (i.e. 

10 units on the x12 scale), with a one unit measurement error on the x12 scale could 

have a measured value of 0.747, 0.83 or 0.913 mm. Measurement errors would be 

unbiased so that mean head capsule widths will reflect the actual typical instar value. 

The fact that the frequencies fall off symmetrically about the peak frequency values 

adds support to the unbiasedness of the measured values. Using the preserved 

specimens which were measured to greater precision (x50 scale, 1 unit =0.02 mm) 

measured values generally ranged 1 or 2 units either side of the typical values seen in 

Fig 5.1(a). This variation represents real population variation since variations of 2 units 

occurred too often to be purely measurement error. 

It was possible to distinguish freshly hatched 1st instars (Section 2.2.2) from 

later instars but it was not possible to discriminate conclusively, using general 

appearance, between 2nd and 3rd, 3rd and 4th or even 2nd and a more developed 1st 

instar. For this reason when the individuals were collected an attempt to classify the 
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larva, with the exception of the final instar, was not made at that time, instead 

measurement of head capsule width was relied upon to allow larvae to be classed. 

To aid classification a non-hierarchical classification procedure was employed. 

Since body length was measured for some individuals it was used along with head 

capsule width in this procedure to provide extra discrimination between instars. Since 

the procedure employed using GENSTAT does not allow missing values, for those 

individuals with no measured body length an estimate was used based on a regression 

of the logarithm of body length on head capsule width (Fig 5.3). The estimated 

coefficients for the regression were, with standard errors in brackets, 1.0447 (0.0565) 

for the intercept and 0.2799 (0.0078) for the slope with an R 2  value for this regression 

of 0.904. A regression of the log of body length on the log of head capsule width was 

tried but gave a worse fit ; R2=0.894. These estimated body lengths do not provide 

extra discrimination to that of head capsule alone but they do allow the classification 

procedure to use both measurements. The algorithm used was one for which the 

criterion of goodness-of-fit of the classification is the within-class sums of squares and 

products which does not require assumptions that (a) the data is multi-normally 

distributed or (b) the within-class dispersion matrix is constant across classes. The 

algorithm used by GENSTAT alternates between transferring and swapping individuals 

between classes until no further improvement in the criterion can be made. The 

classification used to provide a starting point for the algorithm used the cut-points on 

the head capsule width scale of 0.4, 0.52, 0.68 and 0.9 mm. There were 5 obvious 

misclassifications from the procedure with a single final instar with width and length of 

0.83 and 2.573 mm allocated to the 4th class and four, 4th instars each with width of 

0.913 and lengths of 2.905, 2.656 and 2.49 (the last of the lengths was not measured) 

allocated to the 5th class. These individuals were reallocated to their correct class. 

Table 5.1 gives statistics for larval head capsule width for the 5 instar classes derived 

from the above classification procedure. Table 5.2 gives the corresponding statistics for 
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non-missing values of body length. The modes in Table 5.1 correspond to the peak 

frequencies in Fig 5.1. The classification of instars in Fig 5.4 is based on the minimum 

and maximum value of head capsule width for each instar class given in Table 5.1 and 

Fig 5.1(b). This is possible since using body length in the classification procedure has 

not caused any overlap in head capsule width between the derived classes but has 

assisted in determining the boundaries of the classes. Thus all 173 pre-final instar 

larvae were allocated to one of 4 instar classes. 

All of the mean, median and mode values for each instar class derived in this 

study are larger than the values given by Hogan with the exception of the 2nd instar 

which had a mode and median value very similar to Hogan's value (Table 5.1). Hogan 

does not say how his values were calculated but it can be assumed that since they are 

quoted to 3 decimal places that they are means and not modes or medians where the 

precision is only that of the measuring instrument. Hogan also quotes an error of 0.003 

for all 5 instar means which again must have been a standard error of the mean, where 

the number of individuals in each class was so similar that a single error for all classes 

could be quoted, since stereo light microscopes could not give such precision. Taking 

Hogan's values to be means, his values are consistently and significantly (P<0.01) 

below the means obtained here by roughly 0.02 mm. This difference at one unit on the 

x50 magnification scale could easily be due to a difference in instrument calibration 

rather than a real population difference. 

Hogan, using Dyar's Rule (Dyar 1890) of a constant ratio of head capsule width 

for a given instar class to that of the preceding class, obtained a value of 1.29 for this 

constant ratio. Table 5.3 gives the values of this ratio for Hogan's data and for this 

study using class means. The mean value of the ratio in this study was calculated to be 

1.27. The standard errors of the ratios given in Table 5.3 were approximated using 

eqn (10.12) of Kendall and Stuart (1977). According to Przibram's Rule (Chapman 

1982) the ratio should be the cube root of 2 (i.e. approximately 1.26). The ratio 



Table 5.3 Larval head capsule width and Dyar's Rule 

Data/statistic 1st 2nd 3rd 4th Final mean 

Hogan/mean 0.346 0.439 0.587 0.772 0.945 

/ratioa 1.269 1.337 1.315 1.224 1.286 

/expectedb 0.346 0.446 0.576 0.743 0.958 

author/mean 0.372 0.458 0.609 0.815 0.970 

/ratioa 1.230 1.329 1.339 1.190 1.272 

/se(ratio) 0.119 0.103 0.104 0.090 

/expectedb 0.372 0.474 0.603 0.766 0.975 

a. Ratio of this instar's width to that of previous instar 
b. Using 1st instar mean width as the start of geometric series and 

common ratio given in the mean ratio column. 
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obtained in this study for each of instars 2 to 5 given in Table 5.3 did not differ 

significantly (P>0.1) from Przibram's Rule. Using the first instar mean head capsule 

width and a geometric series based on the above ratios for each of Hogan's and this 

study, the predicted 2nd to 5th instar widths are given in Table 5.3. 

5.2 Gallery development and initial oviposition 

The length of the initial section of the gallery up to initial oviposition (i.e. from 

the entry point to the end of the section excavated by the adults) was measured where 

the gallery was unbranched (Section 3.1.2). There were 244 such measured gallery 

sections of which 111 had eggs where, in most cases, these were located at the end of 

the gallery. One of the 111 galleries had two batches of 8 eggs each with one batch at 

the end of the gallery and one batch found one centimetre from the end. For two other 

galleries the eggs were found 2 to 3 cm from the end of the gallery. For the following, 

the gallery length at initial oviposition is also taken as the full length of gallery in these 

three exceptional cases. As well as the total of 870 eggs, 52 1st to 4th instars and 15 

fmal instars were also found in these 111 galleries. For the remainder of this section on 

gallery development and initial oviposition, the number of eggs will be taken to be the 

combination of eggs and larvae above since negligible mortality of larvae was observed 

(Section 5.4). Fig 5.4 shows the relationship between gallery length and each of days 

and day-degrees above a threshold of 11°C (DDl i) (Section 3.3) where galleries in 

which eggs were found are identified separately. The threshold value of 11°C is based 

on the work described in Section 7.3. Table 5.4 gives some statistics on natality and 

length of gallery at initial oviposition. Fig 5.5 shows the relationship between the 

number of eggs and length of gallery. Above a minimum length of about 4cm the 

relationship appears linear so a linear regression was fitted with a Poisson error 

(Appendix 1) for the number of eggs using GLIM (NAG 1986). An adequate fit was 

obtained with 43% of the deviance (Appendix 1) explained and within the range of the 
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Table 5.4 Statist icsa  on natality and gallery development at initial 
oviposition 

Variable 	mean 	median s.d.b 	minimum maximum 

natalityc 
	

8.44 	7 	6.57 	1 	36 

gal leryd 
	

12.13 	12 	3.93 	5 	26 
length (on) 

a. Based 
b. Standa 
c. Number 

adult 
d. At ini 

on 111 measured galleries at the end of which eggs were found 
rd deviation 
of eggs laid including larval instars found at the end of the 
section of the gallery 
tial oviposition 

Table 5.5 Phenology of pre-adult stages 

Stage time 	sample 
unit 	size 

mean median s.d.a minimum maximum 

egg day 	1457 229.0 216 90.9 37 651 
DDii 862.7 575 669.2 89 3545 

instar day 	47 301.4 295 60.5 161 414 
DDii  1465.0 1389 630.3 300 2549 

instar 2 day 	36 .264.1 257 73.7 161 405 
DDii  1120.5 986 679.3 300 2447 

instar 3 day 	26 333.5 322 81.7 210 651 
LV)11 1732.9 1664 118.2 857 3545 

instar 4 day 	50 374.5 326 112.3 263 651 
DDii 2021.3 1712 716.4 1241 3545 

instar 5 day 	319 457.3 405 131.4 263 651 
/3/311 2591.5 2448 735.2 1241 3545 

pupa day 	83 639.9 651 16.3 609 651 
A91 1 3427.2 3545 170.0 3138 3545 

a. 	standard deviation 
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data sensible predicted values are obtained. Predictions below 3.6 cm, roughly the 

point where the regression line intercepts the abscissa, and above 30 cm should be 

constrained to zero and the predicted natality at 30cm respectively to give sensible 

predictions for these ranges. The corresponding log-linear (ie. log link Appendix 1) 

model gave a worse fit than the linear with 40% of the deviance explained. 

The possibility that the diameter of the log could limit the development of the 

gallery and therefore affect natality was investigated. The relationship between each of 

length of gallery, number of eggs and natality rate [i.e. number eggs/(length-3.55)] at 

initial oviposition and the mid-diameter of the log in which the gallery was established 

was graphed. There were no obvious trends (graphs not shown) in all three cases. The 

smallest diameter in the sample was 12.8 cm. 

The galleries were established over a 3 month period in the late summer/autumn 

of 1984 (Section 3.1.1) so to investigate any differences in gallery development and 

oviposition between galleries established early versus late in this period, for the 111 

galleries above, the time, in units of both days and DD H , from the first gallery 

establishment on 9/2/84 to initial oviposition was calculated. This data relates to 9 

dates when gallery establishment was recorded (Section 3.1.1) ranging from 16/2/84 to 

7/5/84 with corresponding days from 9/2/84 of 7,15,21,29,40,49,56,63,88 and number 

of galleries dissected being 1,8,14,12,14,21,19,9,13. Fig 5.6 compares the natality rate 

across the establishment dates. The single value for 16/2/84 (i.e. 7 days) was 3.52 and 

is not shown in Fig 5.6 to maintain a reasonable scale for the later dates. Figs 5.7 and 

5.8 show the relationship between number of eggs and length of gallery, respectively, 

for each of days and DD H  from 9/2/84. These graphs do not show any striking 

differences between early and late establishment in natality rate, absolute number of 

eggs or length of gallery at oviposition. However, the mean time from gallery 
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establishment to initial oviposition (taken as the date of disc sampling if eggs were 

found in a single adult section of gallery) was found to decrease with later gallery 

establishment date as seen in Fig 5.9. Correspondingly the rate of gallery development 

taken over the period from establishment to initial oviposition in units of centimetre per 

time unit (i.e. day and DDI 1) was found to increase with later establishment as seen in 

Fig 5.10. Fig 5.11 shows that there is no obvious difference in the calendar date of 

oviposition for early compared to late gallery establishment and as a result the 

difference in timing of establishment is reflected in the rate of gallery development. 

Since the galleries dissected were sampled randomly (Section 3.1.2) it is unlikely that 

the trends seen in Figs 5.9 and 5.10 are due to sampling bias. To confirm this, 

cross-tabulation of the 111 galleries by tree number and date of attack did not suggest 

that any particular tree was responsible for the trends. This trend of shorter time to 

initial oviposition with later gallery establishment was reflected in an analagous trend 

(Section 7.5) in the timing of emergence for caged galleries occurring in the same logs 

as those destructively sampled (Section 3.1.3). It was found that galleries established 

early in the late summer/autumn did not produce emergents, on average, any sooner 

than those established later in this period. 

5.3 Phenology of immature stages 

Data on each immature life stage were obtained by dissection of galleries of 

known establishment date (Section 3.1.2). Table 5.5 gives some statistics on the 

phenology of each immature stage in terms of days and DD 11  from gallery 

establishment. The results in Table 5.5 have not been adjusted for the relationship of 

timing of initial oviposition with timing of gallery establishment as discussed in the 

previous section. A flow on effect to later stages would be expected, however, the 

numbers of galleries dissected at later sampling dates were too small, for reasons given 

in Section 3.1.2, to allow this to be investigated. Considering the timing of gallery 

establishment as random any resulting differences in phenology are incorporated in the 
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variation in time interval over which a particular stage occurs. 

The sample sizes in Table 5.5 are the number of individuals collected in each 

stage from varying numbers of galleries at each sampling occasion. The large number 

of eggs obtained is a result of a large number of galleries dissected at the earlier 

sampling occasions, due to the simplicity of the gallery, while later sampling occasions 

where larvae were appearing involved fewer galleries, as mentioned above, because of 

their complexity (Section 3.1.2). The small number of early instars obtained is due, 

unfortunately, to the fact that the timing of their occurrence within the summer 

following gallery establishment was not well covered by the sampling. The 9th and 

10th sampling occasions occurred on the dates of 9/11/84 and 25/1/85 which straddled 

the period during which most individuals passed through the 1st to 4th instar stages. 

Small sample size has caused the anomalous result in Table 5.6 where the 2nd instar 

has a mean time to occurrence which is less than the 1st instar. Fig 5.12 shows the 

number per gallery of each stage at each of the dates of sampling starting from the 4th 

sampling occasion at which eggs were first found. A logarithmic scale has been used in 

Fig 5.12 to allow mean number of early instars to be discernible on a common scale 

with mean number of eggs. Figs 5.13 and 5.14 show histograms of the timing of 

occurrence of the stages where the 1st to 4th instars have been combined because of 

their individually small sample size. 

5.4 Models of insect phenology 

5.4.1 Theory 

Models of insect phenology are required within systems of models for 

simulating or predicting population dynamics. Models are also a useful way of 

summarising and/or smoothing phenological data as a means of determining general 

trends. When studying the life cycle in the field of a bark or wood boring insect such as 

P.subgranosus it is not possible to observe a cohort over time (i.e. longitudinally) 
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because destructive sampling of the galleries is required to observe pre-adult stages. 

The data obtained from destructive sampling is generally cross-sectional in nature 

whereby at each of a number of sampling occasions at times 4,  i=1,...,s , a sample of 

the population (e.g. a number of galleries are dissected) and the number of individuals, 

njj  , in development stage j, j=1,...,a (e.g. egg, larval instars, pupa, adult) are observed. 

Kempton (1979) developed a framework for modelling such data involving an 

initial population size given by unknown parameter No, and models for each stage of (i) 

the stage duration time and (ii) the stage death rate. Kempton made use of statistical 

distributions to model stage duration times (including entry time to the first stage) and 

in particular used the gamma distribution. Kempton used chronological time units but 

physiological time units such as day-degrees could equally well be used. The 

parameters in models of (i) and (ii) and the parameter No, because they are all 

estimated from the same data, are highly correlated and Kempton employed some 

simplifying assumptions to make the mathematics tractable and estimation feasible. In 

particular he assumed that the stage-specific mortality rate can be replaced by an 

age-specific mortality rate (i.e. the probability of death is a function of the individual's 

age and not its current stage) and that stage duration times are independent both 

between and within individuals and are gamma distributed with a common shape 

parameter across stages. Assumptions on the nature of the sampling are also implicit 

with Kempton's approach. These assumptions are (a) sampling efficiency is equal 

across stages (e.g. physically small stages such as eggs and early instars are not more 

easily missed or destroyed when sampling compared to late instars, pupae or adults); 

(b) sampling efficiency is equal across sampling occasions; and (c) individuals are 

correctly or unbiasedly allocated to their actual stage of development. Of the above (a) 

and (c) ensure that the proportion, p ii  , of individuals in each stage at each sampling 

occasion is an unbiased estimate of that in the population. The assumption in (b) is 

required for the unbiased estimation of initial population size (i.e. total brood size per 
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gallery, leaf etc.), age-specific mortality and recruitment to the first stage. Ensuring (b) 

is usually managed by employing a sampling unit relevant to population size, such as a 

gallery for wood boring insects or leaf for leaf-eating insects, and selecting sampling 

units randomly. In this context initial population size, No, is mean number of eggs laid 

per sampling unit. Kempton's simplified model is given by 

N(nii) 	= No co(t1)Pi(4) 	 (5.1) 

where 

= 9>4(Y 5. ti  < Yi+i  I survival to age ti  

fr
ti  
o igi(Y)- gi+I(Y)iclY  
ti 

f o gi(Y)dY  

, j= ...,a-1, 

co(t) is the function determining the probability of surviving to age t, gi(y) is the 

probability density function (pdf) of Yj  = h43, Xh , Yi is the time from to  to entry to the 

jth stage, and Xh is the time spent (or duration) in the hth stage. The reproductive 

property of the gamma distribution (Johnson and Kotz 1970) states that if the Xh are 

gamma distributed with index ah (= Kempton's ) and common scale parameter /3 

(= reciprocal of Kempton's b) so that 

9)(Xh= x) 	= x cch -1  e xp (-x /13) 
	 ah  ,p> x > 0, 

Pah  r(cch) 

i-1 then gj(y) is a gamma pdf with index 	ah  and scale parameter f3. 

Kempton assumed the nij are approximately Poisson distributed with expected 

value given by eqn (5.1) and used maximum likelihood to estimate the parameters 0, to, 

xo, N1  and mean stage durations xj , j = 1,...,a , where 0 is the age-specific mortality rate 

assumed constant for all stages so that 

0)(0 = exp(- 0 (t-to)) 

to is the time of the start of the process, xo is the mean time of entry to the first stage, 
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N1  is the number entering the first stage where N1  is given by 

= N0(1+0P)x0113  

and xi  = aj /3, j=1,...,a (i.e. the means of the gamma distributions for X i  , 

Summing the pi(4) in eqn (5.1) over j=1,...,a gives 

where 
ti 

G(t) = f o gi(y)dy 

where G(t1) is simply the cumulative density function (cdf) corresponding to the 

gamma pdf gi(y). G1(4) is the proportion of the surviving population which is in at least 

stage 1 at time 4 . This proportion initially will be less than one (i.e. the remainder 

being individuals that have not entered stage 1 so that for these X0=Y1  > 4) but 

increases with time until it reaches one when all surviving individuals have entered at 

least stage 1. Thus there is recruitment of new individuals to the first stage which 

operates through the distribution of X0  and which offsets the effect of mortality, in 

determining population size at time 4 . Recruitment in some insect species can continue 

while some individuals have already completed development but in general recruitment 

will decline to zero with time due to the decline in natality with age. Thus in general 

pi(4) in eqn (5.1) does not equal p ii  since the pii necessarily sum, across the a stages, to 

one. If we divide pi(4) by G1(y) to give pi (4) then this last term gives the probability of 

being hi stage j conditional on being in at least stage 1. Summing the p i  (4) across the 

stages now always gives one so that this, purely phenological model, is given by 

pii 	= p i  (4) 	= 1G(t) - G +1 (4) )/G1(6) 	 (5.2) 

This modification of Kempton's model is introduced because interest may lie in 

predicting only the proportion of the population, rather than the absolute number of 

individuals, in each stage over time. Predicting the average number of individuals in 

each stage, as seen above, requires estimation of the population size at time 4 via 
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estimation of initial population size, No , survival, m(4), and recruitment, Gi(ti). In fact 

it may not be possible to estimate population size over time if sampling assumption (b) 

above does not hold. Also, independently of the nij , direct observations of mortality 

rates may have been made and in this case a mortality model can be estimated 

separately to the model for pij• Two other models besides model (5.2) which predict the 

proportion of the population in each stage are discussed below. 

We now, in contrast to Kempton's model given by eqn (5.1), model the n ij  

conditional on Ni  , the total number of individuals sampled at time ti where Ni 

Given random sampling where Ni  is a small fraction of the total population then for 

each sampling occasion the nij are multinomially distributed given N i  . In this case no 

model of survival or initial population size is involved and the assumption (b) about 

sampling can be relaxed. 

Dennis et al. (1986) adopted such an approach where the probability p ij  was 

obtained from a probability density function but with a completely different genesis to 

Kempton's gj(y). Dennis et al. based their model on the model of balsam fir bud 

phenology developed by Osawa et al. (1983). These models belong to a class of models 

called ordinal regression models in the statistical literature (McCullagh 1980). Ordinal 

regressions are used to describe data of the type considered here where a number, a, of 

ordered classes (e.g. insect life stages) are observed to contain a number of individuals 

for each of a number of samples or cohorts. Also, corresponding to each sample, one or 

more predictor variables (days or day-degrees in our case) may have been measured. 

An underlying, unobserved and continuously distributed variable X, with pdf g(x), is 

assumed to be controlling the proportions in each ordinal class via a-1 unknown, 

ordered cut-point or signpost parameters, otj , j=1,...,a-1, and parameters of g(x) such as 

the mean and variance may be functions of the predictor variables. The variable X is 

often called a latent variable. Thus individuals at time t i  have a distribution of X with 

pdf g(x,ti), where X could be, for example, the unobserved level of a hormone 
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controlling development. Individuals with a value of X falling below al  fall in stage 1, 

between a2  and a3 in stage 2, and so on until those with X above a.a.4  fall in the final 

stage. In effect the trajectories over time (in days or day-degrees) of the proportion in 

each stage are traced out by the changing values of proportions below al , between a2  

and a3, and so on, as the mean of the distribution of X shifts with increasing t while the 

c) remained fixed. An example of these trajectories is given in Fig 5.15. Fig 5.15 was 

derived from the model of Dennis et al. (1986) described below, which was fitted here 

to their published example data set on the phenology of the Western spruce budworm 

Choristoneura occidentalis Freeman. McCullagh (1980) defined the ordinal regression 

model in terms of the cumulative frequencies at each sample occasion, m ii  = LI  nth  , 

and the cdf of X, G(x) so that 

X(rnii) 	= N 9)(Xi< ai) 

= 	G(cci  + zi) 	 (5.3) 

where p and zi  are vectors of regression parameters and predictor variables respectively, 

and the fmal class is obtained by difference. If = N(m.ii )/Ni  and Thi  = a + pzj  , then 

G-1(1.1 defines the link function in generalised linear model terminology (Appendix 

1). Commonly used statistical distributions for X and their corresponding link functions 

are the norrnal/probit [G -1  = 0-100], logistic/logit [G-1  =log(pi 1-111)] and extreme 

value/complementary log-log [G-1  = log(-log(1-1.1))]. Since X is not observed it is not 

strictly correct to say that X has a normal or logistic etc., distribution since only the 

link function has been specified in eqn (5.3) via G. The distribution of X, corresponding 

to the link functions given in the above order, could equally be log-normal, log-logistic 

or Weibull respectively (i.e. corresponding distributions on a logarithmic scale). Thus 

the data does not allow discrimination between smooth transformations of the 

underlying variable using a criterion of goodness of fit, but only between alternative 

link functions and models for n  (i.e the model is unique up to a smooth transformation 
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of X). For the following the distribution of X will be referred to keeping in mind the 

above qualification. 

When X belongs to the normal or logistic family of distributions the term in the 

model p z, dropping the ith subscript for the moment, specifies the mean of X, px, 

(given unit variance for X) in terms of the regression equation px  = -004-P izi+P2z2+...), 

however, this model is over-parameterised with Po  and the ai  parameters not uniquely 

defined so (Jo must be subsumed in one of the (xi , al  in GLIM and GENSTAT, to allow 

the model to be estimated. The constraint Po  E al  can be achieved by the 

reparameterisation, ai  , where a l  =a1  = (Jo and later cut-point parameters (i.e. 
* * 

j=2,...,a-1) are given by (xi  = a i+ai  (for the remainder the ai  will refer to this 

reparameterisation and the * will be dropped). The variance of X for normal and 

logistic distributions is necessarily unity in the above parameterisation (5.3) since it is 

not possible to add an extra unique parameter to specify the variance. In the case of the 

Weibull (used here as the reference distribution instead of the extreme value 

distribution because it is more familiar to most researchers) the term p z specifies -ln(b) 

where b is the Weibull scale parameter (Johnson and Kotz 1970) rather than the mean 

of X and the shape parameter is necessarily a constant which is subsumed in a l . 

Dennis et al. (1986) used a different parameterisation of the logistic model, 

based on the model of Osawa et al. (1983) who used the normal cdf for G(x). Dennis et 

al. defme G(x) as 

G(x) = 1 I [1 + exp[-(x - t)Il(b 2t)]) 

so that the mean and variance of the logistic are t and ir2b2t/3 respectively. This 

relationship between the mean and variance is retained when x is replaced by the 

cut-point parameters so that the model of Dennis et al. can be re-expressed as 
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= Ni  exp(oti 	+ Pzi)1(1+exp(cci 	+ Pzi)) 

(5.4) 

-1/b and zi  = ,/ti . The link function, G-1 , is therefore logit. The same number of 

parameters are involved in the ordinal regression model with unit variance, eqn (5.3), 

as that in eqn (5.4) so that the assumption of unit variance is no more restrictive than a 

mean of t and variance eb2t/3. The choice of model can be based on the goodness of 

fit of each model if there is no a priori preference for one model over the other. 

McCullagh (1980) described the maximum likelihood estimation of the ordinal 

regression model using the cumulative data, mii . His method takes into account the 

dependency between the values of the mii for a given sample occasion. Alternatively 

the models (5.3) and (5.4) can be expressed in terms of the expected value of the nii so 

that 

(nii) 	= N1  (G(aj+ 	+ Xi)) 

and maximum likelihood (ML) estimation used, assuming a multinomial likelihood for 

the independent n1 . This is the method used by Osawa et al. (1983) and Dennis et al. 

(1986) to fit their models. Thompson and Baker (1981) show how the above model can 

be fitted by maximum likelihood as a modified generalised linear model (Appendix 1) 

using a Poisson distribution for the n ii . Given that the tails of the distribution are 

completed so that the ML estimates of the n ii  sum across j to the total N1 , which is 

ensured numerically by specifying an arbitrary but large positive (upper tail) and small, 

possibly negative, (lower tail) value to dummy parameters a a  and ao  respectively, then 

the kernel of the Poisson likelihood (Appendix 1) is identical to that of the multinomial 

(Wedderburn 1974). This method was employed here using GLIIVI and used to fit 

eqn (5.4) to the spruce budworm data mentioned above. 

A new approach to modelling insect phenology based on conditional 

probabilities is now described. We start from the same point as the ordinal regression 

model in that the N i  are considered fixed and the proportion in each stage is modelled 
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as a function of time. Taking each stage in turn, starting with the first stage, the 

probability of an individual being in stage j is modelled conditional on being in stage j 

or later. These conditional probabilities or continuation ratios (Fienberg 1980, 

contributions to discussion of McCullagh 1980 by Plewis, Fienberg and Pregibon) are 

modelled as functions of t so that 

9)4(in stage j at time 4 I in stage j or later) = G(Poi + J3ij  4 ) 

where G-1  is a link function as described above and Poi and 	j=1,...,a-1, are 

unknown parameters. The expected value of n is then given by 

j 
(nii) 	= (Ni - k=1

-i  
nik) G(P0j Pi; ) 

G(Poi Pit 

, j = 2,...,a-1 

• j = 1  
(5.5) 

and the unconditional probabilities by pii where 

Pii = G(Poi + 1311 4) 
j-i 

= 	1E-4 Pild G(Poi + J3ij t1)  

a-1 
= (1-2, k=1 Pik) 

, j= 1 

, j = 2,...,a-1 

, j = a. 

(5.6) 

The unconditional probability for the final stage is thus obtained by difference so that 

no model is required for it. The a-1 models given by eqn (5.5) can be fitted using 

maximum likelihood assuming binomial n  conditional on the Ni for the first stage and 
-1 

the N = 	- k-1 llik) for the next a-2 stages. These models can be fitted as 

generalised linear models using GLIM or GENSTAT (Appendix 1). Note that the nii for 

which the binomial sample size, Ni , is zero must be weighted out of the regression. 
A 	 A 

The estimate of rtii given by Ni pq , where the pii are calculated using eqn (5.6) with 

estimates of the poi  and pu  obtained from the fit of model (5.5), are directly 

comparable to the estimates obtained from the gamma entry time model, eqn (5.2), and 

ordinal regression models, eqns (5.3) and (5.4). The deviance (Appendix 1), based on a 
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multinomial distribution for n ii , can be used to compare the fit of the three classes of 

model. Fig 5.15 compares the predicted proportion in each stage from model (5.4) to 

that from (5.6) (with G4=logit) obtained from the fit to the spruce budworm data. 

The conditional probability model involves a-2 (a.3) more parameters than the 

ordinal regression model. An assumption in this last case is that each stage responds 

equally to a common underlying variable X (i.e. controlled by the link function and P's 

which are common to each stage) which therefore allows a more parsimonious 

description of the data than the approach introduced here. A common underlying time 

scale and link function for each stage is also required in practice for the conditional •  

probability model (i.e. so that the unconditional probabilities can be calculated) and 

either days or day-degrees must be chosen as the time units here. However, the fact that 

separate models are applied to each stage (i.e. common link function but separate P's 

for each stage), on a common time scale, results in the extra parameters required and a 

more flexible model than that of Dennis et al. since different stages can have a 

different response to the chosen time scale. However, any resultant improvement in fit 

must be balanced against the lesser degree of parsimony. 

5.4.2 Application to immature stages of P.subgranosus 

The ordinal, eqns (5.3) and (5.4), conditional probability, eqn(5.5), and the 

gamma entry time, eqn (5.2), models were fitted to P.subgranosus frequency data 

consisting of 191 sample occasions (i.e. number of dissected galleries, Section 3.1.2) at 

which immature stages were found. Kempton's complete model, eqn (5.1), wasP not 

fitted for reasons discussed later. To fit the above models it was found necessary to 

pool the number of 1st to 4th instar larvae with the number of eggs since the data on 

these early instars were inadequate in themselves to allow a reasonable model of their 

phenology to be constructed. When they were considered separately and the conditional 

model fitted the resulting probability trajectories were barely discernible above zero 
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when graphed on the same scale as those for eggs, final instar larvae and pupae. This 

was due to the fact that, as mentioned in Section 5.3, few early instars were found since 

the peak of their occurrence was missed by the sampling dates. Taking the three 'stages' 

consisting of (1) pooled egg and 1st to 4th instar larvae (2) fmal instar larva (3) pupa, a 

number of ordinal and conditional probability regression models were fitted as well as 

the gamma entry time model. In the case of the ordinal models combinations of logit or 

complementary log-log link, constant variance as in eqn (5.3) or mean and variance as 

in eqn (5.4), and the mean a function of days or DD I  I  were tried. Logit and 

complementary log-log links and both days and DD I1  were used for the conditional 

probability model. Also each of days and DE) 11  were used in the gamma entry, time 

model where in both cases to was not estimated but set to zero since the first 

ovipositions occurred relatively soon after gallery establishment (Table 5.5). The data 

involved 573=191x3 frequencies; n ij , i=1,...,191, j=1,2,3. Using the conditional 

probability approach the complementary log-log link was found to give a better fit than 

the logit link, however the choice between days and DDI  I  was not as straightforward. 

The fit of the model to the pooled egg and early instar larvae data suggested the DD I  

scale was best while that for the final instar larva suggested the day scale was better. 

One constraint on the conditional probability models is that, as mentioned earlier, a 

common time scale is required for each stage even though the developmental response 

for each stage to this scale can vary as quantified by different estimates of po  and pi . 
The presence of different threshold temperatures for development (Section 7.1) for each 

stage could be responsible for the difference in response to the DD H  scale seen here, 

however, it was not possible in this study to determine stage-specific thresholds. 

The gamma entry time model (5.2) was fitted using a nonlinear optimisation 

algorithm which maximised the multinomial likelihood (or minimised the deviance). 

GENSTAT's FITNONLINEAR directive was used (Appendix 2) again employing the 
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Poisson distribution for nij  given the constraint that the predicted proportions sum 

across the stages to one. Joint estimation of the gamma scale parameter /3, and mean 

stage duration times x0, x 1  and x2  , proved difficult. It was found necessary to alternate 

between optimising p alone and then the xi 's. Even when this was done it was found 

using a contour plot of the likelihood surface that the xo  and x2  parameters were very 

highly negatively correlated and for this reason standard errors of these parameters 

could not be obtained. 

To compare the fit of the conditional to ordinal and gamma entry time models, 

unconditional probabilities, pj,  were calculated as given by eqn (5.6) and a value of the 

deviance calculated by summing the deviance contribution over the 573 observed and 
A 

predicted frequency pairs; nij ,Ni pij. Table 5.6 gives the goodness of fit and Tables 

5.7, 5.8 and 5.9 the parameter estimates for each of the above models. Table 5.8 also 

gives the deviance calculated using conditional probabilities. Table 5.6 shows that, of 

the ordinal regression models, the complementary log-log link with z9DD II  gives the 

best fit to the data and is considerably better than the model of Dennis et al. (1986). 

The conditional probability model using complementary log-log link and DDII gave 

the best fit of all the models requiring one extra parameter for a 4.1 drop in the 

deviance compared to the best of the ordinal regression models. Fig. 5.16 shows the 

trajectory and data for the proportion in each of the three stages for each of days and 

DD II  using the complementary log-log link ordinal model and Fig 5.17 compares the 

complementary log-log link ordinal and conditional probability models. On both the 

day and DD II  scales these , two models produce very similar trajectories and as 

expected they give a similar fit to the data (Table 5.6). Fig 5.18 shows the trajectories 

for the gamma entry time model. In the case of the day scale (Fig 5.18a) the proportion 

in the combined egg/early instar stage declines more slowly and the fmal instar stage 

has a wider spread in time of occurrence than that seen in Fig 5.17. The gamma entry 

time model using the DD 11  is totally inadequate for describing the phenology of 
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P .subgranosus phenological data 
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model 

ordinal 

ordinale 

condit- 
ional 

gamma 
entry 
time 

eqn Link z 	variancea deviance degrees of 
freedomb 

%deviancec 
explained 

(5.3) logit days 	constant 343.7 379 76.2 

Mu 278.1 379 80.8 

clogd days 234.5 379 83.8 

clog Mu 222.7 379 84.6 

(5.4) logit 'days ir2b2days/3 333.6 379 77.0 

40 11  7r2b2DAID 11/3 373.3 379 74.2 

(5.5) logit days 325.7 378 77.5 

logit Dpii 261.6 378 81.9 

(5.5) clog days 	- 233.6 378 83.9 

clog MI' 218.6 378 84.9 

(5.2) - days 283.3 378 80.4 

_ Mil 443.0 378 69.4 

a. Scale parameter of the type 1 extreme value distribution and shape 
parameter of the Weibull distribution (Johnson and Kotz 1970) for the 
complementary log-log link, not applicable to the conditional 
probability model 

b. Sample size (573) - no. regression parameters - no. constraints (191) 
c. 100{(null deviance - deviance)/null deviance} where 'null deviance' is 

the deviance for the model consisting of common, across sample 
occasions, proportion in each stage estimated from stage totals as 
0.807, 0.151 and 0.042 for the combined egg and early instar, final 
instar and pupa stages respectively. 

d. Complementary log-log 
e. Model of Dennis et al. (1986) 
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Table 5.7 Parametera estimates for ordinal regression models of 
P.mibgreuumuis pheno logy 

model  link 

ordinal 

logit  days 

M il  

clog  days 

Ordinald  logit  "days 

logit  .4)1911 

ot2b 

7.312 4.038 -0.0172 
(0.223) (0.194) (0.0006) 

6.090 3.251 -0.0025 
(0.182) (0.124) (0.0001) 

3.744 2.409 -0.00986 
(0.105) (0.109) (0.00031) 

2.963 2.035 -0.00145 
(0.085) (0.070) (0.00004) 

12.380 7.998 -0.300 
(0.420) (0.368) (0.011) 

6.199 4.859 -0.086 
(0.260) (0.212) (0.004) 

a. Standard errors given in brackets 
b. Parameterisat ion which gives the cut-point between final instar and 

pupa stage as (04-14a2) 
c. Complementary log-log 
d. Model of Dennis et al. (1986) 
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Table 5.8 	Parametera estimates for conditional probability models of 
P. subgranosus pheno logy 

stageb link t Po 131 deviancec 

egg,  instars 1-4 logit days 6.817 -0.01571 293.5 
(0.303) (0.00082) (189) 

LOH  5.836 -0.00238 203.1 
(0.260) (0.00011) (189) 

final  instar days 12.09 -0.01851 32.2 
(1.93) (0.00304) (27) 

LOII 11.18 -0.00314 58.6 
(1.46) (0.00043) (27) 

egg,  instars 1-4 clogd days 3.779 -0.00997 208.8 
(0.174) (0.00051) (189) 

Mil 2.810 -0.00136 170.6 
(0.135) (0.00007) (189) 

final  instar days 5.443 -0.00887 24.8 
(0.747) (0.00121) (27) 

LO II  5.922 -0.00177 48.0 
(0.682) (0.00021) (27) 

a. Standard errors given in brackets 
b. Proportion in pupa stage obtained by difference 
c. Deviance based on conditional probabilities. Degrees of freedom given 

in brackets. 
d. Complementary log-log 

Table 5.9 Parametera estimates for gamma entry time model of 
P .subgranosus phenology 

X1 	 X2 

days 23.5 134.8 299.3 217.6 
(0.2) - (2.1) 

D.1911 413.1 930.0 1871.6 750.0 
(4.5) 

a.  Standard errors given in brackets. Some standard errors could not be 
estimated due to near singularity of the Hessian (Appendix 1). 
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P.subgranosus as indicated by its poor fit to the data and the unrealistic trajectories 

seen in Fig 5.18(b). 

For comparison the model of Dennis et al. (1986) was fitted to their example 

data set on spruce budworm phenology and compared to the fit of the logit/constant 

variance/day-degree ordinal regression and logit/day-degree conditional probability 

models. The transcript of the GLIM session in which the model of Dennis et al. was 

fitted is given in Appendix 3. This model gave a better fit (deviance of 34.8 with 65 

degrees of freedom) than the constant-variance ordinal model (deviance of 58.0) but a 

worse fit than the conditional probability model (deviance 25.9 with 60 degrees of 

freedom) using unconditional probabilities in this last case as was done above. These 

deviances cannot be compared in a formal test since the models are not nested 

(Appendix 1) so a judgment on which is the best model must rely on other factors such 

as built-up experience with each model, bias and precision of predictions and 

theoretical grounds such as a justification for an underlying variable X. 

5.5 Brood size, mortality and gallery failure rate 

As described in Section 2.3.3, after an initial oviposition at which a mean of 

roughly 8 eggs are laid the female continues to oviposit throughout the gallery. So 

countering any age- or stage-specific mortality is the continual recruitment of new 

individuals. Negligible mortality was observed in all immature stages with predation 

and parasitism very rare (Section 2.3.7). The only mortality observed in gallery 

dissections was for early instar larvae where three 1st, and one 2nd instar larvae were 

dead out of a total of 47 and 36 respectively. The cause of this mortality is uncertain. 

Although direct observations of mortality can be difficult, for example in the case of 

predation, it was felt that the very small amount of mortality observed was a genuine 

reflection of low mortality in the population. 

Fig 5.19 shows a scatterplot of the total number of individuals in all stages (i.e. 
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brood size) for each of the above 191 sampled galleries against each of days and DD ii . 

The scatter in Fig 5.19 is very wide demonstrating the large between-gallery variance 

in brood size. Given zero or negligble mortality and a steadily declining recruitment the 

total brood size will, with time, approach from below an asymptotic value which should 

roughly equal the observed mean emergence rate (number per gallery). Asymptotic 

regressions were fitted to the scatterplot data shown in Fig 5.19. The best form of the 

model was found to be 

= exp(P0  + Pi  /to 	 (5.7) 

where 

Ni  is total brood size, pc, and P I  are unknown regression parameters and 4 is either days 

or DD ii . Model (5.7) was fitted as a generalised linear model with Poisson error for N i  

and logarithmic link function (Appendix 1). The parameter estimates and their standard 

errors are given in Table,5.10. The asymptote is given by exp(130) which was estimated 

as 18.9 with approximate 95% confidence interval (including adjustment for 

over-dispersion, Appendix 1) of 15.2 to 23.6 using t=days. Corresponding estimates for 

t=DD II  were 15.0 and 12.7 to 17.8. The trajectory of predicted mean brood size over 

time and the 95% confidence interval for predictions, based on the above regressions, 

are also shown in Fig 5.19. 

Of the total of 381 galleries destructively sampled (Section 3.1.2) approximately 

8% failed to produce any brood. Observed failure was due to either an unmated male 

(4%), which in some cases had extended the gallery to a length of 8 cm, or death of 

either parent (2%). A further 2% of galleries appeared to have been abandoned with the 

length of the tunnel at around 4 to 8 cm. This was probably due again to the male 

being unmated and then abandoning the gallery. 

5.6 Discussion 

Numerical classification using head capsule width is a standard technique for 

classifying larval instars when there are no instar-specific morphological features 

• 



deviancec 0 d %deviancee 

-141.14 
(21.96) 

-268.10 
(43.51) 

974.9 

1002.0 

5.158 

5.300 

22.1 

20.0 

regressor 
 

Po 

1/days  2.940 
(0.110) 

1/AD11  2.711 
(0.083) 
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Table 5.10 Parameter estimatesa and fit of regression modelsb of brood size 

a. Standard errors adjusted for over-dispersion (Appendix 1) given in 
brackets 

b. Poisson error, logarithmic link (Appendix 1) 
c. Residual deviance, measure of goodness of fit (Appendix 1) 
d. Dispersion parameter (Appendix 1) 
e. Percentage of deviance for model consisting of exp( 1610 ) only where 

exp(!810 ) gives average brood size over time. 
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which are easily observed (Imms 1964). An easily seen morphological feature specific 

to the final instar of P.subgranosus allowed this instar to be quickly and accurately 

identified. Visual inspection of frequencies of head capsule widths such as those 

displayed in Fig 5.1 is often sufficient to decide on the boundary values to be used to 

allocate individuals to an instar. The use of a non-hierarchical classification procedure 

to determine the boundary values allows objectivity and optimality in classification. 

Objectivity, in that the same criterion is used for any set of head capsule widths and 

optimality, in that the classification procedure optimises the above criterion where the 

optimum here was a minimum within-class (i.e. instar) sum of squares. The 

classification procedure used here generalises to a number of simultaneously measured 

and continuously varying morphological features. For example, larval body length was 

used here in addition to head capsule width to classify larvae. It is not possible to 

determine the extra discriminatory power of body length to that of head capsule width 

since instar number is not known a priori. It is therefore difficult to say how useful the 

addition of body length was in the classification but it is felt that it resulted in only a 

marginal improvement. 

A problem with classification here was the fact that measurement error was a 

considerable percentage of head capsule width; for example around 10% for the early 

instars. Given this degree of measurement error the values of head capsule width 

between the peaks could be due largely to this error rather than real population 

variation. Even so there is little variation in head capsule width at the scale of 

measurement used here so that classification by visual inspection could, in practice, 

have been used without much difficulty (i.e. it is fairly easy to decide on class 

boundaries from Fig 5.1). However, the non-hierarchical classification technique used 

here would be more useful for a species for which there is more population variation 

than that seen here. 
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The observed relationship between number of eggs laid at initial oviposition and 

gallery length is fairly easily explained. The length of gallery determines the surface 

area of gallery wall on which ambrosia fimgii can grow which thus determines the limit 

on food resources available to the larvae hatching from the initial batch of eggs. The 

number of eggs laid appears, to be under the control of a physiological mechanism 

which is dependent on some way of determining the length of gallery excavated up to 

initial oviposition. The fmal instar larvae extend the gallery and it can be assumed that 

the length of these extensions is also related to the food requirements for growth and 

pupation. 

The trend of delayed initial oviposition and corresponding slower gallery 

development rate for galleries established early in the late/summer autumn period 

cannot be fully explained at this time. The time from gallery establishment to initial 

oviposition is not known so time to disc sampling has been used to approximate this 

unobserved time. So in effect, the observed times are left-censored because initial 

oviposition could have occurred any time from soon after gallery establishment up until 

the sampling date. This means that time to initial oviposition and resultant gallery 

development rates have been over- and under-estimated respectively. However, the 

trends seen in Figs 5.4, 5.9 and 5.10 should be unaffected because the above bias 

should apply equally to all establishment dates. Also the fact that a corresponding trend 

in timing of first brood emergence was observed (Section 7.8) gives support to the 

above trend in timing of initial oviposition. Timing of initial oviposition does not 

depend on gallery length, allowing for the observation that at least 4 cm of gallery is 

required before oviposition can occur, since oviposition was observed to occur for a 

range of lengths between roughly 5 and 25 cm. One possible explanation for the delay 

in initial oviposition until winter is that summer oviposition could result in higher egg 

and early instar mortality due to desiccation. A trend of timing of initial oviposition to 

occur later for galleries in small diameter logs which are more susceptible to drying out 
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was not observed here. However, if under genetic control, timing of initial oviposition 

was preset to winter then selection for winter oviposition due to the resultant higher 

survival rate for eggs and early .  instar larvae might operate. Spring/early summer 

gallery establishment does occur and for this to result in emergence after as little as 10 

months, as has been observed (Section 7.3), then initial oviposition in summer must 

presumably occur (Fig 2.9). However, spring/early summer emergence and gallery 

establishment is much less common than that in late sumxner/auttu -nn which would 

suggest that there is selection for late summer/autumn emergence. 

Francke-Grossmann (1967) describes moisture content of the host plant as, in general, 

one of the most important factors for successful establishment and breeding of 

ambrosia beetles. 

The mean number of eggs at initial oviposition of 8.4 is less than half the mean 

brood size and emergence rate (Section 6.1), both estimated at around 19, which 

indicates that subsequent oviposition is important in determining final brood size. The 

length of gallery excavations by final instar larvae probably determines the number of 

eggs from these later ovipositions. 

The fact that the peak of occurrence of early instar larvae was missed by the 

sampling, having occurred early in the summer after gallery establishment, and that few 

early instars were found suggests that these stages are passed relatively quickly. Apart 

from the egg stage, the final instar larva is the predominant stage in terms of length of 

stage. This is understandable given that the final instar is responsible for the bulk of 

gallery excavations. Also time is required for feeding to allow this instar to build up fat 

reserves for pupation and, possibly, for emergence and flight of the brood adult 

although it is not known if brood adults feed before emerging. 

Judging from Figs 5.12 to 5.14, 5.16 and 5.17 the ordinal and conditional 

probability models have been very useful in smoothing the highly variable phenological 

data obtained here. Both the ordinal and conditional probability models give a similar 
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fit to the data here and to the spruce budworm data. The complementary log-log link 

was superior, in terms of goodness of fit, to the logit link and thus presumably to the 

probit link since these last two links produce very similar predictions. One advantage of 

the conditional probability model is that the response of each stage to the time scale is 

quantified separately which can be more revealing than a common across-stage 

response. For example it was found that the DD II  scale gave a much poorer fit than the 

day scale for the final instal -  larva and vice versa for the combined egg and early instar 

class which suggests that the estimated 11°C development threshold (Section 7.3) might 

be too high for the fmal instar larva. The choice between ordinal and conditional 

probability models is not clear-cut. If the latent variable X exists and operates as 

described by the ordinal models then these models should be used but in the case of 

discrete stages, as is the case here, McCullagh (discussion to McCullagh 1980) suggests 

that the conditional probability (i.e. continuation ratio) model is more relevant. 

McCullagh suggests that the ordinal regression model is more suited to the case where 

the ordinal classes are the result of a coarse grouping of some finer scale. Also, it may 

be difficult to suggest a continuous variable which could result in the discrete processes 

of hatching and ecdysis. Even so, it is difficult to choose between the ordinal and 

conditional probability models other than on empirical grounds. An important practical 

advantage of the conditional model (5.5) is that initial parameter estimates are not 

required for GLIM's maximum likelihood estimation algorithm whereas good initial 

estimates are required for the ordinal regression models (5.3) and (5.4) to give the 

estimation algorithm a reasonable chance of success. Such good initial estimates are 

often difficult to obtain due to the unobserved nature of X. 

The complete model of Kempton (1979) involving estimation of initial 

population size, mortality and stage durations was not used here because mortality of 

immature stages was virtually non-existent and the estimation of population size at time 

t was approached by using the asymptotic model of brood size given by eqn (5.7). 
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The reduced version of Kempton's model, called here the gamma entry time model, 

was used to predict the number in each stage conditional on sample size at time t which 

meant that it could be directly compared to the ordinal and conditional probability 

models in terms of fit to the data. The gamma entry time model gave a better fit to the 

P.subgranosus data than the logit ordinal and conditional probability models on the day 

time scale but a worse fit than the complementary log-log link versions of these 

models. A problem with gamma entry time model is the early appearance of final instar 

and pupa stages at about 100 and 300 days respectively (Fig 5.18a) whereas the ordinal 

and conditional probability models are much more in keeping with the data (Table 5.5, 

Fig 5.13) with the corresponding figures being 200 and 440 days respectively (Figs 

5.16a and 5.17a). The gamma entry time model was totally inadequate using the DD 

time scale (Fig 5.18b). Stedinger et al. (1985) extended the ordinal regression model of 

Osawa et al. (1983) to allow for extra variation in the multinotnial proportions, p ii , due 

to spatial variation in insect development rates by using a Dirichlet-multinomial 

distribution. However, the variation in these proportions appears from the deviances in 

Table 5.6 to be adequately described by a multinomial. 

The asymptotic regression model of brood size using the day time scale gave an 

estimate of total brood size per gallery of 18.9 which is not significantly different 

(P>0.1) from the estimate of mean number of emergents per gallery of 19.7 based on 

an independent data set (Section 6.1). A smaller estimate of total brood size of 15.0 

was obtained using DD ii . This appears from Fig 5.19(b) to be due to a greater 

concentration of galleries at the lower end of the time scale than in Fig 5.19(a). Given 

the possibility of the threshold temperature of 11°C being too high for final instar 

larvae and the close correspondence of the asymptote obtained from the day time scale 

with the mean emergence rate, then the model based on the day time scale is 

considered to be the more reliable model of mean brood size over time and therefore 

recruitment. 
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6. EMERGENCE 

6.1 Number of emergents per gallery 

Estimating the total number of emergents per gallery is important in establishing 

the fecundity and reproductive potential for P.subgranosus. Data on total emergence for 

individual galleries were available from cages placed over the gallery entry holes. Two 

sets of cages were used; those established by the author (SGC) with emergence 

occurring in the 85/86 summer (Section 3.1.3) and those established by Elliott and 

Bashford (SILV) with emergence occurring between 1981 and 1985 (Section 3.2). 

Table 6.1 gives statistics on the number of emergents for each set of cages. Only cages 

for which emergence was greater than zero have been incorporated in Table 6.1. The 

number of unsuccessful galleries is estimated in Section 5.5 using data from destructive 

sampling of galleries (Section 3.1.2). The flooding of galleries in some cases, due to 

cages trapping rainwater, does not allow reliable estimation of the number of 

unsuccessful galleries from the cage data. The mean and median number of emergents 

is less for the author's cages since only a single year of emergence occurred (summer 

1985/86). Desiccation of the logs resulted in no further emergence in the 1986/87 

summer (Section 3.1.3). For this reason the SILV cage data gives a better estimate of 

total emergence because the logs were kept at the study site and individual galleries 

produced emergence up to the third summer after emergence began (i.e. first summer 

of emergence) . When emergence for only the first summer of emergence for these 

cages was used the results, with mean, standard error of the mean and median number 

of emergents 14.0, 2.0 and 9.0 respectively, were very similar to the corresponding 

figures, given in Table 6.1, for the author's cages. Fig 6.1 shows the distribution of 

number of emergents per gallery for the S1LV cages. The mean number of emergents 

per gallery using the SILV data, was 19.7 with a median of 14.5 and ranged from 1 to 

92. 



Table 6.1 Statistics on emergence per gallery 

Statistic 	author's cages 1985/86 	SILV cages 1981-85 

sample size ' 
	

59 
	

58 

mean 
	

14.7 
	

19.7 

median 
	11.0 
	

14.5 

mode 
	1 
	

1 

standard deviation 14.7 18.7 

standard error 1.9 2.5 
(of mean) 

minimum 1 1 

maximum 76 92 

lower quartile 4 6 

upper quartile 20 26 
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6.2 Sex ratio 

A total of 2011 emergents were collected from the 117 cages (SGC 59, SILV 

58) which had at least one emergent. Of this total 1042 were males. Fig 6.2 shows the 

frequency of galleries with a given proportion of total emergents that were male. The 

hypothesis of a sex ratio, which is defined here as the number of males divided by the 

number of females and is specified by the parameter T, equal to one (H0) is accepted 

at the 10% significance level (i.e. the probability of a random value from the X2  1 
A 

distribution being greater than the calculated statistic is at least 0.1) with 	= 1.0753 

and a single degree of freedom chi-square statistic (x 2) of 2.65 (P>0.1). The figures for 

the two sets of cages separately were males (SGC 440; SILV 602), females (SGC 428; 

SILV 541) sex ratio (SGC 1.028 ; SILV 1.113) and chi-square (SGC 0.17; SILV 3.26). 

For each set of cages considered separately, 1/0  is accepted at the 5% level but is 

rejected for the S1LV traps at the 10% level. At the individual cage level, X2  values 

were calculated for each of the 70 cages (SGC 31; SILV 39) for which the number of 

emergents was 10 or more (i.e. giving an expected number of males under 1/0  of at 

least 5). The remaining 47 cages were aggregated to give 97 males to 86 females with 

X2  of 0.66 (P>0.1). Of these 47 cages 12 had no females while 7 had no males. In the 

case of no males, there was in all cases only a single female while for the case of no 

females there were 8 cages with a single, 3 cages with 2 and one cage with 5 males. Of 

the 70 cages for which individual x2 values were calculated, 9 (12.9%) (SGC 4; SlLV 

5) had a X2  value greater than the nominal value at the 10% level (i.e. 2.706). The 

heterogeneity chi-square for these 70 cages with 69 degrees of freedom was calculated 

as 99.0 which indicates significant (P<0.01) between-gallery heterogeneity in sex ratio. 

Although the chi-square statistics indicate that a sex ratio of unity cannot be 

rejected using this data it appears that there is a slight preponderance of males since 37 

of the 70 cages mentioned above had a sex ratio greater than 1, 4 had a ratio of 1 and 
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the remainder of 29 had a ratio less than 1. 

Over the population the sex ratio is very close to unity but there is some 

heterogeneity in sex ratios between galleries. For the SILV cages, two cages accounted 

for 64% of the difference between the number of males and females with number of 

males for the two galleries being 41 and 22 with corresponding number of females of 

14 and 10. 

When only emergence occurring in the same summer as the first emergence for 

a cage (i.e. the new emergence season was considered to start on the 1st of November) 

was considered, the sex ratio for the SILV cages was 1.02 resulting from 363 males 

compared to 355 females with a x 2i  value of 0.089 which is well below the nominal 

10% value. The corresponding values for subsequent emergence were 239 males to 186 

females with a sex ratio of 1.285 and a X2  value of 6.61 which is greater than the 1% 

nominal value. 

The sex ratios for the 5 tent traps (Section 3.2) of 1.21, 1.59, 1.68, 1.26 and 

1.46 with corresponding x2i  values 69.1, 217.6, 185.7, 144.9 and 75.6 and with total 

number of emergents of 7340, 4148, 2893, 10697 and 2149 respectively, clearly 

demonstrates that males are caught more readily than females in the collecting 

container. The sex ratios for the individual cages, where there is no possibility for bias 

to enter the collection procedure, indicate that the sex ratios observed in the tent trap 

data do not reflect the population sex ratio which is very close to unity. 

Investigation of the variation in sex ratio over the emergence period using the 

cage data indicated a slight trend for more males to emerge in the first few weeks after 

emergence begins for a gallery. The cumulative number of females after this period 

then, with some minor variations, gradually approaches that of the males involving an 

approach to 1 of the sex ratio. For the SILV data only emergence occurring in the same 

summer as first emergence for the gallery was considered. Various groupings of 

emergence within periods after first emergence were tried. Table 6.2 shows the number 



117 

Table 6.2 Sex ratio of emergents and its relationship to days from first 
emergence for cage 

Days from 
1st emergence 

author's cages SILV cages 

ed 9Y NV x2i  ecr 97 I' (Pa) x2i  

Ob-5 124 90 1.38 (1.38) 5.4d 83 78 1.06 (1.06) 0.2 
5-10 48 56 0.86 (1.18) 0.6 43 36 1.19 (1.11) 0.6 
10-15 44 63 0.70 (1.03) 3•4c 23 14 1.64 (1.16) 2.2 
15-20 17 13 1.31 (1.05) 0.5 11 5 2.20 (1.20) 2.3 
20-25 48 53 0.91 (1.02) 0.2 23 28 0.82 (1.14) 0.5 
25-30 13 15 0.87 (1.01) 0.1 8 8 1.00 (1.13) 0.0 
30-40 35 33 1.06 (1.02) 0.1 30 26 1.15 (1.13) 0.3 
40-50 40 51 0.78 (0.99) 1.3 26 29 0.90 (1.10) 0.2 
50-60 22 16 1.38 (1.00) 0.9 31 29 1.07 (1.10) 0.1 
>60 49 38 1.29 (1.03) 1.4 85 102 0.83 (1.02) 1.5 

Table 6.3 Sex ratio of emergents and its relationship to days at 15 
degrees (C) from first emergence for cage 

Days from 
1st emergence 

author's cages SILV cages 

ee ?9 (lia) X21  ee 9q (vpa) x 

0b-5 122 86 1.42 (1.42) 6.2e 83 78 1.06 (1.06) 0.2 
5-10 49 58 0.84 (1.19) 0.8 13 21 0.62 (0.97) 1.9 
10-15 39 56 0.70 (1.05) 3.0c 55 29 1.90 (1.18) 8.0f 
15-20 19 20 0.95 (1.04) 0.0 11 5 2.20 (1.22) 2.3 
20-25 35 37 0.95 (1.03) 0.1 25 31 0.81 (1.14) 0.6 
25-30 19 20 0.95 (1.02) 0.0 1 4 0.25 (1.12) 1.8 
30-40 35 28 1.25 (1.04) 0.8 39 30 1.30 (1.15) 1.2 
40-50 17 33 0.52 (0.99) 5.1e 22 25 0.88 (1.12) 0.2 
50-60 38 44 0.86 (0.98) 0.4 28 31 0.90 (1.09) 0.2 
>60 67 46 1.46 (1.03) 3.9d 86 101 0.85 (1.02) 1.2 

a. cumulative 
b. includes is t emergence for cage 
C. 	significant at 10% level 
d. significant at 5% level 
e. significant at 2.5% level 
f. significant at 1% level 
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of males and females, sex ratio for the period, sex ratio for cumulative emergence and 

the X2  value for each of the SGC and SILV data for 5-day periods to 30 days and then 

10-day periods to 60 days and an above 60 days class. Table 6.3 shows the 

corresponding values grouped by the same classes as days but using units equivalent to 

days at 15 degrees (i.e. the number of day-degrees above a 0°C threshold divided by 

15). The same data used to construct Tables 6.2 and 6.3 were also analysed using a 

binomial/logistic regression model (Appendix 1). The number of male emergents for a 

particular gallery and period was considered binomial conditional on the corresponding 

total number of emergents. The classes shown in Tables 6.2 and 6.3 were each used 

separately as a categorical factor, DAYS and DAYS 15 respectively, as the regressor 

variable in the analysis along with the factor SOURCE specifying the source of the 

data, SILV or SGC, and the interaction of these two factors. Thus the number of males 

(Nm) was considered binomial conditional on the cumulative total emergence (N) and a 

logistic model in the above factors was used. Thus the logit of Nm  [i.e. 

log(N,d(N - Nni)] is equivalent to log(T) which is sometimes called the log-odds since 

is the odds of an emergent being male. The generalized linear model (glm) 

(McCullagh and Nelder, 1983) with binomial error for Nm  and logit link was used to fit 

the above model using GUM so that in the usual glm notation exp(n) gives the 

predicted odds or sex ratio where r = log(T) (Appendix 1). The glm approach differs 

from the simple chi-square tests given in Tables 6.2 and 6.3 in that a model for is 

constructed by progressively adding terms SOURCE, DAYS (or DAYS15) and the 

interaction SOURCE by DAYS (or DAYS 15). Likelihood-ratio tests constructed from 

the above fits using deviances (Appendix 1) were used to determine the significance of 

the term added to the model. This approach complements the classic chi-square test in 

that the null hypothesis is not that 'II =1 but that tIf , which may differ from 1, does not 

differ across classes in the factor added or in the case of the interaction the difference 
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in log(T) between SILV and SGC does not change across DAY (or DAY15) classes. 

The data need not have been grouped into classes but the actual days (or days-15) from 

first emergence observed for the particular gallery and period used as the regressor 

variable. However, grouping was carried out to smooth the data so that any trends in 

log(T) with DAY or DAY15 classes might be recognised. Table 6.4 shows the results 

of the glm analyses. 

Both the classic chi-square tests of T = 1 and the glm analyses show that any 

divergence from a sex ratio of one is minor. The glm analysis using DAYS indicated no 

significant differences in sex ratio between DAYS, SOURCE or their interaction and 

the minimal adequate model is a simple constant sex ratio which from Table 6.4 is not 

significantly different from 1. The individual chi-square tests in Table 6.2 have 

detected a significant departure from T = 1 in the case of the author's data for the 0-5 

and 10-15 day periods. In Table 6.3 the 40-50 and >60 classes also appear significant 

along with the 10-15 class for the SILV data. In both tables the trend is for more males 

emerging earlier with the females making up the difference later in the summer 

although this timing differs between data source. The glm analysis using DAYS 15 did 

detect a highly significant interaction between SOURCE and DAYS 15 factors. This 

was almost entirely due to the reversal of sex ratios for the 10-15 class (see Table 6.3) 

where in both cases the sex ratio was significantly different from one. Considering the 

period classes in Table 6.2 and the results for DAYS in Table 6.4, the results indicate 

no significant trends in, or departure from unity of the sex ratio remembering that of 

the 20, x  in Table 6.2 only 2 (or 10%) were greater than the nominal 10% 

significance level which is as expected if T = 1. The evidence for departure from unity 

is stronger using DAYS15 classes where in Table 6.3 there are 5 (or 25%) X2  values 

above the nominal 10% level. The significant interaction between SOURCE and 

DAYS15 shown in Table 6.4 reflects the difference in timing in the recovery of the 

female emergence as mentioned above. 



Table 6.4 Results of likeihood ratio tests for binomial/logistic 
regression of number of males on DAYS,DAYS15 by SOURCE. 

additional  deviance  deviance 
 log(41) 	se( logeIlla 

model term  (df)  change (df) 

constant  910.4 (594)  -  0.02522 0.05022 

SOURCE  910.4 (593)  0.0 (1) 

DAYS  900.5 (584)  9.9 (9) 

SOURCE.DAYS  888.7 (575)  11.8 (9) 

replacing terms involving DAYS with DAYS15 

DAYS15  895.8 (584)  14.6 (9) 

SOURCE.DAYS15  872.3 (575)  23.51) (9) 

a. standard error 
b. significant at 1% level 

Table 6.5 Proportion of emergence by month based on data for 1981-86 

month proportion s.e.(proportion)a 

January 0.2412 0.1622 
February 0.4447 0.1884 
March 0.2300 0.1596 
April 0.0325 0.0673 
May 0.0209 0.0542 
June 0.0027 0.0197 
July 0.0000 0.0003 
August 0.0000 0.0022 
September 0.0010 0.0121 
October 0.0131 0.0431 
November 0.0067 0.0309 
December 0.0071 0.0319 

a.  Multinomial standard errors scaled by multiplying by 4 64.83 

120 
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6.3 Timing of Emergence 

Emergence data for both sets of individual cages and for the tent traps were 

classified according to the month and year in which emergence occurred. For the SII,V 

cages emergence was recorded over the years 1981 to 1985 inclusive, for the author's 

cages 1985 and 1986 and for the tent traps 1981 to 1984. Fig 6.3 shows the number of 

male and female emergents by month and source of data. Fig 6.4 shows number of 

emergents by month and year. The peak of emergence occurs in early summer either in 

January or February. The peaks for males and females occur in the same month. The 

distribution of emergence across the months is skewed with relatively little emergence 

in late spring, early summer (Nov,Dec), a sudden pulse of emergence over January and 

February and then a gradual decrease until emergence ceases around June. These are 

general trends and as can be seen in Fig 6.4 variations in timing of emergence will 

occur from year to year. As discussed in Section 7, the length of time taken to 

complete development depends on the accumulated day-degrees and the timing of 

emergence will reflect year to year variation in accumulated day-degrees to a given 

month. 

To test if the differences in the timing of emergence between years were 

statistically significant the number of emergents in the years by month contingency 

table was analysed using a log-linear model with Poisson errors and logarithmic link 

function (McCullagh and Nelder 1983, Appendix 1). After fitting the marginal factors 

YEARS and MONTHS the residual deviance indicated a significant departure from the 

no-interaction model. Thus the probability of emerging in a particular month varies 

significantly from year to year assuming a multinomial distribution of emergents across 

months. Without knowing the history of galleries (i.e. attack date and subsequent 

accumulated day-degrees) observing emergence by month can be viewed, across years, 

as sampling from a mixture of multinomial distributions. Taking the 6 years of data 
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available here and using the residual deviance to estimate the dispersion parameter 

(McCullagh and Nelder 1983) (I), the probability of emergence by month is given in 
A 

Table 6.5 with corresponding standard errors given by i/(tp p1(1-p1)IN) where pi  is the 

probability for month i and N is the total number of emergents collected over the 6 

years which was 29238. The above standard errors assume that across years the p i  have 

a multivariate beta distribution. The total emergents over the j years in the ith month, 

I nij  and N = Inj , then have, across the months, a compound multinomial 

distribution with variance proportional to a standard multinomial for the ni (Mosimann 

1962, Stedinger et al. 1985). 

6.4 Mean temperature at the start of emergence 

The mean ambient temperature at the Arve study site at the start of emergence 

for the author's cages, calculated for the period 3/12/85 to 8/12/85 was 15.2°(C). This 

figure was obtained by averaging the day-degrees (above zero) accumulated within 

each of the 6 days between the above dates. For the SILV cages the first emergence 

date observed for a cage (i.e. to exclude emergents which are late with respect to their 

cohorts) was obtained. Using the day-degrees, as described above, for each of the 6 

days prior to each cage's first emergence date the mean temperature occurring during 

the 6-day period was calculated. These mean temperatures were then cross-classified by 

the year and month of emergence. For the 80/81, 81/82 and 84/85 summers the first 

emergence occurred in January with mean temperatures being 17.0, 17.0 and 13.4 

respectively. For the 82/83 and 83/84 summers first emergence occurred in December 

and November respectively with mean temperatures of 11.6 and 12.4°C. 

6.6 Length of emergence period for a gallery 

As mentioned in Section 2.3.4, once emergence begins for a gallery it can 

continue over a period of several years. The author's emergence material was relocated 

to Hobart at the start of emergence early in the summer of 1985/86 and there was no 

further emergence the following summer probably due to desiccation of the logs 
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(Section 3.1.3). The emergence cages of Elliott and Bashford give a better indication of 

the total emergence period for a gallery. The longest period of emergence observed for 

their cages was 705 days for a gallery that first produced emergents on 15/4/82 and 

fmally on 20/3/84 two years later. Fig 6.5 shows the frequency of male and female 

emergents by days since first emergence for the gallery from which they came for the 

58 SILV cages. For these cages 36.4% of total emergence occurred in the second 

summer after emergence for the cage began and 0.8% in the third summer. There was 

no emergence recorded later than the third summer. Fig 6.6 shows the corresponding 

figure to Fig 6.5 for the author's cages. 

6.6 Daily rate of emergence 

Using the author's emergence data (Section 3.1.3) the daily rate of emergence 

was calculated for the periods over which emergence was observed in the summer of 

85/86 at the Hobart Insectary. Starting from 17/12/85 for the 19 periods between dates 

at which cages were checked and cleared, which were mostly week-long periods with 

the exception of the first 3 which were single day periods, the rate of emergence was 

calculated as a per day and per gallery rate for each period and this rate, expressed as 

100 x the number of emergents day --1  gallery-1 , is graphed against period mid-point in 

Fig 6.7(a). The mean temperature for the corresponding period, calculated as 

accumulated day-degrees above zero for the period divided by period length, is also 

shown in Fig 6.7(a). It would be expected that the emergence rate would increase from 

zero to a peak and then trail off to zero again as the pool of individuals which complete 

their development in the 85/86 summer and autumn dwindles to zero. There is such a 

general trend in Fig 6.7(a) but there is also a large amount of fluctuation about such a 

general trend. These fluctuations appear to be positively correlated to fluctuations in 

mean temperature although the correspondence between the peaks (and thus troughs) in 

emergence rate and mean temperature is not totally consistent. The sudden pulse in 

emergence starting at around the 70 day mark appears out of line with the general trend 

-„, 
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of decreasing emergence, as mentioned above. To investigate these trends further the 

relationship between emergence for a gallery and period as a proportion, Pe , of the total 

pool of emergents remaining (i.e. the total emergence for a gallery minus the 

emergence that has already occurred to the start of the period) and the corresponding 

proportion, Pd , of the period length compared to the total period remaining (i.e. the 

total emergence period for the gallery minus the time from first emergence to the start 

of the period under consideration) was used. The values of Pe  and Pd  were obtained for 

each gallery and each period with the exception of the last period where Pe  and Pd  are 

both by definition equal to one. These proportions are analogous to those used earlier 

(Section 5.3.1) to model the phenology of each life stage using conditional probabilities 

(i.e. continuation ratios, Fienberg 1980) and they can be modelled as conditionally 

independent (i.e. for a gallery Pe  for one period does not depend on that for the 

previous period) binomial proportions. These values of Pe  were fitted using GLIM as a 

glm with binomial Pe  , logit link function (Section 5.4, Appendix 1) and predictor 

variable log (Pd  1(1-Pd)). The model can be expressed as 

log{Pe l(1-Pe))= J3 + Pi log(Pd  /(1-Pd)) 

which expresses the odds of an emergent appearing in a given period compared to it 

appearing later (but within the total period of emergence for the gallery) as proportional 

to (Pd  /(1-Pd)) 131 . This model, therefore, takes into account the total number of 

emergents and the length of the period over which emergence occurs for each gallery. 

Using the above model and estimates of Po  and pl , with standard errors in brackets, of 

-0.171 (0.106) and 0.420 (0.045) respectively, the predicted number of emergents were 

aggregated across galleries for the 19 periods (the last period by difference) and the 

predicted rate of emergence calculated. Fig 6.7(b) shows observed (as in Fig 6.7a) and 

predicted rate for the period mid-points. It can be seen from the close correspondence 

of observed and fitted emergence rates in Fig 6.7(b) that the between-gallery variation 

in the total number of emergents, start, and length of emergence period, all of which 
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are involved in producing the predicted rates in Fig 6.7(b), are largely responsible for 

the observed fluctuations in observed emergence rate. With a larger sample of galleries 

these fluctuations would possibly be less pronounced. Fig 6.7(c) shows the difference 

between observed and predicted emergence rate as well as mean temperature for each 

period. Some extra variation in emergence rate beyond that explained by the factors 

mentioned above is explained by mean temperature but its effect is not consistent. 

Fig 6.8 shows the emergence rate and mean temperature over the observed 

emergence period for the mass emergence tents. Since the number of galleries 

producing emergents is not known for each tent the emergence rate is expressed as the 

number per day. This rate is therefore not directly comparable to that in Fig 6.7 or 

between tents. Tents 2 and 3 are not shown in Fig 6.8 for brevity since they showed 

very similar trends to tent 1. An interesting feature seen in Figs 6.7(a) and 6.8 is the 

consistently occurring pulse in the emergence rate after the main peak of emergence. 

This pulse appears to be associated with an increase in mean temperature when such an 

increase occurs roughly a month after the main peak in emergence. With a much larger 

number of galleries involved the emergence rate over time appears much smoother, 

apart from the pulse mentioned above, for the mass emergence tents compared to the 

individual emergence cages. 

6.7 Time of day of flight 

Fig 6.9 shows the total number of males and females caught in a rotary trap at 

the Little Florentine study site (Section 3.5) over eight days of trapping between 

24/2/86 and 26/3/86. It can be seen that females are less readily caught than males and 

that males were mostly caught after midday while females were caught mostly before 

midday. The low number of females caught explains the sporadic trend with time of 

day. In contrast there is a clear trend of males reaching a peak in mid-afternoon 

(1400-1600 hours) and then declining towards evening. These trends were also reported 

by Hogan (1948). 
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6.8 Emergence and log diameter 

In Section 5.2 it was reported that natality at initial oviposition was a function 

of gallery length. If smaller diameter logs restrict the development of the gallery and/or 

caused higher mortality due to desiccation of immature stages then the number of 

emergents per gallery would reflect this. No evidence was found for a lower mean 

number of eggs or gallery length at initial oviposition in smaller compared to larger 

diameter logs (Section 5.2). Fig 6.10 shows the number of emergents per gallery, 

averaged over cages with at least one emergent, for each log which was sampled by 

cages (Section 3.1.3). Tree numbers from which the logs were taken (Section 3.1.1) are 

shown in Fig 6.10. There is a weak overall trend for mean number of emergents to 

increase with increasing diameter of the log but within trees this trend is inconsistent 

with only tree 7 showing such a trend. The high value of emergence of 54 for tree 7 

seen in Fig 6.10 was obtained from a single cage. The lowest value for tree 7 was for a 

log with a diameter of 12.8 cm where the mean emergence was calculated from four 

cages with consistently low values of 1,3,4 and 5 emergents. It appears then, that above 

a limit of approximately 15 cm for diameter of log, brood production is not limited by 

diameter but below this it can be drastically reduced. Low values of mean emergence at 

larger diameters are possibly due to other factors such as the suitability of the wood for 

boring. 

6.9 Discussion 

The mean number of emergents per gallery is consistent with the estimate of 

brood size obtained from destructively sampled galleries (Sections 5.5 and 5.6) and is 

very similar to that obtained by Holloway (W.A. Holloway, Forest Research Institute, 

unpublished data) for P.caviceps obtained from Nothofagus spp. logs in New Zealand. 

Holloway obtained a mean of 21.4 emergents per gallery from 23 of a total of 25 cages. 

The two excluded cages had one and zero emergents respectively. The mean including 

the single emergent cage was calculated here as 20.6. Hogan (1948) reported a mean 
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emergence of insectary reared P.subgranosus of 9.8 but conceded that parasitic mites, 

which were a serious problem for insectary rearing, could have reduced final brood size 

compared to field conditions. The number of progeny per gallery observed in this study 

is also similar to that reported by Borden (1988) for the striped ambrosia beetle 

T.lineatum of Europe and North America. 

The distribution of the number of emergents per gallery is reverse J-shaped and 

is similar to that reported by Milligan (1979) for P.apicalis, P.caviceps and P.gracilis 

for which roughly two thirds of total emergence is produced by a highly productive one 

third of galleries. This is comparable to that obtained here where the mean for the 

SILV cages in Table 6.1 is half way between the median and the upper quartile. 

Milligan (1979) reported a population sex ratio very close to unity but with 

considerable between-gallery heterogeneity as was the case here. He also reported a 

similar trend to that reported here for males of P.gracilis to predominate in the first 2 

weeks of the flight season. Also similar to observations here, P.apicalis and P.caviceps 

begin emergence in the second summer after gallery establishment (not counting the 

summer when establishment occurs) with 25% (P.caviceps) and 40% (P.apicalis) of 

total emergence occurring in the third and fourth summer where most of this occurs in 

the third summer. 

Considerable variation was observed here in the timing and duration of 

emergence within the first summer of emergence. Emergence rates per gallery over the 

summer were predicted accurately by a model which incorporated, for each gallery, 

time of the start and duration of emergence combined with total number of emergents. 

Mean temperature beyond these factors did not consistently correlate with emergence 

rate. 

Given that extra variation is involved when galleries producing first, second 

and, a small number, third summer emergence are acting in combination then it is not 

surprising that definite brood flights are not observed (Hogan 1948). Although with a 
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large number of galleries sampled by mass emergence cages a defmite peak in 

emergence was observed. 

The reason for the late pulse in emergence, which occurred consistently over a 

number of years during the general slow-down in emergence in the latter part of the 

summer, is not clear. The association of this pulse with a peak in temperature roughly 

one month previous is also consistent over a number of years. A possible explanation is 

that the pulse represents the brood resulting from oviposition occurring after initial 

oviposition (Sections 2.3.3 and 5.2). 

The average field temperature at the start of the emergence season can be used 

for some insect species as an indication of the lower threshold temperature for 

development, To, (Gilbert 1988). With To set as the average temperature then the 

variation in development rates produced by variation in individual values of To, which 

is under genetic control (Gilbert 1986), will be ensured whereas low values of To , 

relative to field temperatures, will not produce such variation. Gilbert (1988) suggests 

this variation is beneficial at a time of year when survival is erratic. With the early 

spring emergence in species such as the small white butterfly Pieris rapae L., that 

Gilbert (1988) is referring to, development will initially be slow and matched to food 

availability. Gilbert (1988) also maintains that given the selective advantage of early 

emergence, then emergence will begin as early as individuals can possibly hope to 

survive. The relationship between development rate and temperature is examined in 

detail in Section 7.3, but suffice it to say here that the average field temperature at the 

start of the emergence season observed in this study is in general far too high to be a 

realistic value for To. P.subgranosus begins emergence mostly in January or later when 

average field temperatures are high. Given the above arguments, if there were no 

advantage but instead a disincentive to early emergence then the average field 

temperatures at the start of emergence will be higher than To  as was observed here 

(Section 6.4 and 7.3). Such a possible disincentive, mentioned earlier (Section 2.3.3, 
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2.3.4 and 5.6), is the higher mortality of eggs and early instar larvae from desiccation 

when oviposition occurs in summer. This disincentive will be balanced to a degree by 

the reproductive advantage that early summer gallery establishment and subsequent 

same summer oviposition obtains by producing an emergent brood after only one year 

instead of two (Section 7.3). This could explain why risky summer oviposition occurs 

at all. 
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7. DEVELOPMENT TIME 

In the general description of the life cycle of P.subgranosus given in 

Section 2.3.4, the development time from gallery establishment to first emergence was 

described as ranging from approximately 10 months to 2 years. The development time 

for individuals from egg to adult is not directly observable since laboratory rearing was 

not possible and destructive sampling of galleries was the only way of obtaining 

immature stages (Section 3.1.2). Gallery establishment and emergence for the same 

gallery are observable (Sections 3.1.1 and 3.1.3) and, initially, attention here is 

concentrated on this observed 'development time', however, the development time from 

egg to adult can be inferred from observing the time from gallery establishment to 

oviposition (Section 5.2). Development observed for some galleries to be completed in 

a single year compared to the usual time of two years was implied to be the result of 

spring/early summer attack in the first case as opposed to late summer/autumn attack in 

the latter case in Section 2.3.4 (Fig. 2.9). Different gallery establishment dates result in 

different temperature profiles, over time, that galleries are exposed to. Models relating 

development rate to temperature are introduced in the following section. A maximum 

likelihood procedure developed here to estimate the parameters of the day-degree 

model from emergence data obtained under ambient temperatures in the field is then 

described. This procedure is then applied to emergence data obtained by the author 

(Section 3.1.3) combined with data collected by Elliott and Bashford (Section 3.2). The 

resulting day-degree model is used to explain the observed chronological development 

time in terms of physiological time units. 

7.1 Development time as a function of temperature 

Temperature is a major determinant of the rate at which physiological processes 

proceed and is thus a major determinant of the length of time taken for insect 

development which occurs within a definite temperature range. Various mathematical 

models have been used to describe the relationship of development time and 
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temperature. The simplest and most widely used model is the thermal-summation or 

day-degree model or method (Howe 1967). This approach integrates the temperature 

(7) over time (t) (which numerically involves summing the temperature for small time 

intervals) above a threshold temperature (To). The threshold temperature is the 

temperature below which no development occurs and above To  the rate of development, 

A., is linear on (or proportional to) temperature. The rate parameter A. can be expressed 

as the proportion development per day-degree above To. The total day-degrees above 

threshold To  required to complete development in time 1 is given by D(To) where 

1 
D(To) = f fT(t)--r0 )5(t)dt 	 (7.1) 

0 
where 	 5(t) 	= 1 for T(t)>T0  

= 0 otherwise. 

The rate of development is given by 2.=1/D(To). A consequence of this relationship is 

that the proportion of development up to time t', P(t'), is given by 

P(t') = A.f (T(t)-T.0 )5.(t)dt 	 (7.2) 

where 	 and 	5(t) = 1 for T(t)>T0  

= 0 otherwise. 

In laboratory studies the relationship between temperature and development can 

be studied by exposing a number of cohorts each to a separate fixed temperature and 

observing the time for individuals from each cohort to completely develop. The 

generalised relationships between each of development time, 1, and rate A. and 

temperature is shown in Fig 7.1. As temperature approaches a lower limit for 

development 1 increases to infinity (development cannot be completed) and the A. versus 

T curve asymptotes to zero. At the other end of the temperature scale as T increases 

above the optimum, Too  , for the species (or individuals since Too  will vary within and 

between populations) then A. will start to decrease (and 1 increase). Ignoring for the 

moment the slight curvature in the A. versus T relationship and assuming a linear 
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relationship passing through the development zero point (1 -10. as T To) with slope X, 

the parameters X and To  can be estimated from data on length of development time 

collected under constant temperature regimes by regressing observed development rate, 

r (i.e. 1//), on T. For each cohort the mean of the individual values of r can be used as 

the regressand in a least squares fit. The regression equation is 

= a + p 	 (7.3) 

where 	 ri  is the mean rate for the ith cohort, 

Ti  is the temperature for the ith cohort, 

a = - XT0  and p. A,. 

Since temperature is fixed over time, eqn (7.3) can be obtained from the integral on the 

right hand side of eqn (7.1) which gives 

1/X = (Ti  - To) 

which is a re-arrangement of eqn (7.3). 

Nonlinear models of the relationship between development rate and temperature 

have been used (see Wagner et al. 1984 for a review) to take into account the observed 

nonlinearity in the relationship between r and T mentioned above. This nonlinearity is 

not directly observable in data obtained under fluctuating temperatures, which can be 

either artificially produced or are those obtained under ambient conditions in the field 

(Allsopp 1986), since a graph equivalent to Fig 7.1 cannot be constructed. The 

nonlinearity produced by temperatures approaching and exceeding Topt  is not of great 

importance for field based studies where temperatures very rarely approach this value 

(Gilbert 1988). The nonlinearity at lower temperatures is more relevant to field based 

studies but the error introduced by assuming the day-degree model as an approximation 

to the real situation may not have any practical significance. Attention is therefore 

restricted to the day-degree model for the moment and the implications of the 

assumptions involved for this study are discussed later. 
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7.2 Estimation of the day-degree model using ambient temperatures. 

In the field temperature varies continuously with time so it is not possible to 

estimate A. and To in the way described above. The model in this case is expressed for 

an individual emergent as 

1 = f A.{T(t) - To }3(t)dt 	 (7.4) 

which is the sum of the proportional components of development, given by eqn (7.2), 

until development is completed when P(t'=1)=1, assuming that development starts at 

time zero without loss of generality. 

The integral in eqn (7.4) can be approximated using numerical integration via 

the trapezoidal rule given a value for To such that 

1 	D(r0) 	 (7.5) 

where 

D(TO) = k Sk((11-To)+(Tk+I -Tc)lAt/2 	 (7.6) 

ok = 1 for Tk, Tk+1>To , 

= 0 otherwise 

k is a subscript referring to the kth point taken from the observed temperature/time 

trace, At is a small time interval tk +i-tk, Tk is the temperature at time tk and ok  is an 

indicator variable and the summation proceeds until kAt = I. When a recorded 

continuous temperature/time trace from an instrument such as a thermograph is not 

available Tk can be obtained by a number of methods (Section 3.3) including fitting a 

sine curve to daily maximum and minimum temperatures, linear interpolation between 

typical shape values of the daily temperature cycle or fitting spline curves to daily 

minima and maxima temperatures using time of day of the maximum and minimum as 

the abscissa scale. This last method was used in this study (Section 3.3). 

For n emergents With length of development time /i  , j=1,...,n days, least squares 

estimates of To and A. obtained by minimisation of the following function, with respect 
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to the parameters, 

	

- 

	 (7.7), 

is used by the computer program DEVAR (Dallwitz and Higgins 1978, Allsopp 1986). 

In the case of nonlinear models the term A. Di(ro) in eqn (7.7) is replaced by the 
r  

integral J 0Y(T)dt where 5(7) is a nonlinear function relating proportional 

development to temperature T which is itself a function of time t. The distributional 

assumptions underlying the above least squares fit are not clear. Sharpe et al. (1977), 

using constant temperature data, developed distributional theory for development time, 

1, from assumptions about the distribution of individual development rates, r=1//. The 

random variable considered for the following is, dropping the subscript, D(r0), the 

day-degrees above To  required for an individual to complete development. Distributions 

of development times tend to be positively skewed while distributions of rates show 

little skew (Stirmer et al. 1975, Sharpe et al. 1977). It was therefore thought likely that 

the distribution of D(To) would also be positively skewed. Two alternative distributional 

models were used here. Firstly, a normal probability density function (pdf) was used for 

X=1/D(To) and the pdf of Y=D(To) can then be obtained from the distribution of X and 

the transformation Y=1/X as shown by Sharpe et al. (1977). The distribution of Y is 

then positively skewed (Sharpe et al. 1977). Alternatively a gamma pdf, which was 

used by Howe (1967) and which also exhibits positive skew, was used directly for 

Maximum likelihood estimation is employed in each case using the assumed 

distribution for each of X and Y, however, since D(ro) is not directly observed if To  is 

unknown, the likelihood is obtained for the observed variable, 1. This likelihood is 

obtained by expressing X or Y as a transformation of I. 

Considering first the case of X normal, mean A. and variance a2 , then the 

	

log-likelihood, 	for the /i  is given by 
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..e = -nlog(a2)12 +17=1 (-(xi  -20212a2  + logHT(1j) - to)3(10] + 2log(xj)) 

(7.8) 

where xi  = 1/Di(ro), T(ii) is the temperature at emergence and 3(9 is as described for 

eqn (7.1). The first two terms in eqn (7.8) are simply those derived from the normal pdf 

for X. The last two terms' are due to the transformation relating X and 1, that is 

X=1/D(T0) where 1 appears as a limit in the integral (7.1) used to obtain D(T). These 

terms combined are the logarithm of the Jacobian, /, of the transformation where 

= Idx1d11 = [T(1i)-Th].5(101D(To) 	 (7.9), 

where 1.1 denotes the 'absolute value of '. The term (5(/ i) ensures that d.x1d1 _?.0 so the 

absolute value operation is no longer required. However, 	is zero if T(I) 	which 

means that there is a zero probability, according to the model, of observing T(I i ) 

(i.e. emergence when temperature is below the threshold). This is logical if r o  is a fixed 

constant as given in the above development. Further discussion of this point is left to 

the discussion section. 

As far as maximum likelihood estimation is concerned, the Jacobian term 
A 

effectively sets an upper limit to ro  as the minimum observed value of T(li ), called 

T(1) for the following. This can be seen to be the result of maximising the likelihood 

oZ with respect to to. This is achieved in part by maximising the term 2log(x) since 

increasing log(x) [i.e. decreasing D(ro)] is achieved by increasing To. Alternatively 

maximising the term T(I)-to in .S° will tend to force ro  downwards. Experience with 

log-likelihood (7.8) in this study showed that the term 2log(x) dominates all other terms 
A 

in oe causing to  to increase to the point where 	becomes undefined when ro 	(1). 

When field emergence dates are all that are known, then T(l) also provides an upper 

limit for To. In this case the usual estimate of To  is the mean field temperature when 

II am indebted to Stephen Wallace for pointing out the need to include 	in the 

likelihood. 
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emergence begins (Gilbert 1988, Section 6.9 this study). However, extra information on 

-ro  is available when 1 and the temperature profile from time zero to I are known as is 

the case here. A value for To  which gives emergents, which have completed 

development in either one or two calendar years, the same mean D(ro) is the objective 

here. It is the term -Inj =1(xj4)2/262  in .29  which in effect attempts to give all 

emergents a common mean value for D(Th), so for the following it alone was used in 

the maximum likelihood estimation procedure and will be taken to be equivalent to .2. 

It is in fact the kernel (Appendix 1) of the log-likelihood for normal X. The effect of 

the Jacobian on estimation of To  was maintained by restricting r0  to be less than T(1). 

Maximising this likelihood is then simply equivalent to least squares estimation. 

In this study a number of emergents were observed to have emerged between 

dates on which emergence cages were checked and, if necessary cleared. Taking m to 

be the number of emergents relating to I then the log-likelihood is now 

= - =1 mj (xj - A)2/2a2 	 (7.10) 

Incorporating n  in the above way in eqn (7.10) assumes that each of the m i  

individuals emerge at the same time (i.e. after /j  days). This approximation should not 

seriously affect the estimates if the time between observations is short relative to l. 

Howe (1967) suggested this interval should not be more than 1/10th of 1 which was 

easily satisfied in this study with a value of around 1/100th of 1. 

The variance of X, a2 , can be ignored for the moment since it does not affect 

the MLE's of either A or Th. Considering for the moment fixed To, the MLE of A is 
A 

simply = E j  mi 	mj  which is obtained by solving the partial differential equation 
A 

.4192. = 0. The MLE A, is an unbiased estimate of A since the xi are assumed 

independent with expected value A. The least squares estimate of A obtained from (7.7) 

as used by DEVAR, including now the weighting factor n  as in (7.10), is given by 

= j mj DjeroY j mj /4(to) 

the ratio of the weighted sum to the weighted sum of squares of the Di(Th), which is 
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A  A 
different to X. The calculation of the expected value of A, does not appear to be 

analytically tractable but even so using the approximation that the expected value of 

the ratio is the ratio of expected values and the variance of D('ro) is approximately 

O2/A.4  [based on eqns (10.11) and (10.12) of Kendall and Stuart 19771 gives 
A 

N(As) a A, /(1+cs2/A,2). This represents an under-estimation by approximately 

100 ( 1-1/(1+o-2/A2)} percent. 

Removing the constraint that To is fixed, the joint estimates of To and A. can be 

found using a one-dimensional search along To for the maximum of the log-likelihood 

(7.10) with a maximum value for To set to Tmin(/) as mentioned above. The reason the 

search is only one-dimensional is that while the MLE's are the joint solution to the 

simultaneous equations a .22/dro=0, d .27dA,=0, substituting the solution to a =279A=0, 

given above as m yi / in , into the expression for ( 9.274 makes a..29/aTo a 

function of, in terms of the parameters of interest, only To 

An estimate of a2  is given by the usual ,  residual mean square, 

i  mi  (xi  - A,)2 1/(n-2), where this estimate in the general setting of likelihood is 

equivalent to the residual mean deviance (Appendix 1). 

The probability density function (pdf) for Y = D(T)) using a gamma distribution 

is given by 

Y(Y=Y) = (Y-4 ) e- 1  exP{ -(Y- )//3 ) 	 (7.11) 
r(e) 

where 	 Ø,J3, 4 > o, y>4 , 

9,13,g are the shape, scale and location parameters respectively and F(.) is 

Euler's gamma function. The expected value of Y is given by 0P+4 which is equivalent 

to 1/A, where A. is given in equation (7.2) as the rate parameter. A location parameter is 

required since the value of Y for the first individuals that complete development will be 

a considerable proportion of the mean of Y. The kernel of the log-likelihood of 

assuming the above gamma distribution for Y is shown in Appendix 4 to be equivalent 
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to 

= 0I, ( mi /og(pi) - ) 	 (7.12), 

where pi = m yi  A and 0 can be treated like a2  in eqn (7.10) as a nuisance parameter 

and estimated separately from A. and To. The logarithm of the Jacobi= of the 

transformation between Y and / plus the term -/og(y-4) have been excluded from Y 

(Appendix 4) for the same reason that the Jacobi= was excluded from in the case of 

normal X. 

Eqn (7.12) is equivalent to the kernel of the log-likelihood assuming a Poisson 

distribution for m expected value The Poisson likelihood and the fact that A 

appears linearly in it were exploited using GENSTAT's FITNONLINEAR directive 

(Appendix 5) to obtain MLE's of A and To. Note also that there is no need to estimate g 

in this parameterisation of the gamma. 
A 

For fixed To  the MLE of A is given by ; = i  in;  yi imp -1  which is simply 
A 

the inverse of the mean day-degrees above To. The estimator 1/Ag  has expected value 

0+4, and is thus an unbiased estimator of the expected value of Y. From the theory of 
A 

maximum likelihood (Bickell and Doksum 1977) ; is an asymptotically unbiased 

estimate of A. A similar duality occurs for 1/1 which is an asymptotically unbiased 

estimate of the expected value of Y. 

The joint MLE's of A and To  can again be found using a one-dimensional search 

along To  for the same reason that was given for the normal likelihood for X. 

A practical problem with the specification of the model above is that fitting the 

model requires the calculation of the integral D i (To) and this generally requires a 

special purpose computer program such as DEVAR which uses the trapezoidal rule, 

eqn (7.6), and the least squares estimation given by eqn (7.7). Even if such is available 

the memory required for some data sets can be enormous. In this study (Section 3.3) 

numerical integration of a combination of temperature/time traces and spline curves 

fitted through daily minimum and maximum temperatures using 15 minute time 
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intervals for a range of roughly 400 to 850 days resulted in a very large database for 
A 

the calculation of Dj(T0). In the iterative ML estimation algorithm described above, 
A 	 A 

Di(To) needs to be re-calculated when To is updated at each iteration. The computational 

burden this imposes on the algorithm could make it impractical to implement. An 

alternative method used in this study, which does not require the integration to obtain 
A 

Di(TO) to be carried out within the ML estimation procedure, involves carrying out the 

integration given in eqn (7.6) prior to using the ML estimation procedure by using 

pre-specified integer values of To ranging from say, 0 to 20 degrees. Then employing 

the resultant values of D(J), f=1,...,21, where f indexes the integer values of To, in the 

search for the MLE of To involves using the current iteration's estimate of To and linear 
A 

interpolation to obtain Di(T.0), where 

EA) = Di(ft)+1 i-Co-int(0))[Di( ft+1)- Di( ft)] 
A 

A = int(ro) + 1, 	int(.) means 'integer part of ', 
A 

and searching for the value of A(o) which maximises the log-likelihood. This allows 

the algorithm to be implemented using standard optimisation software such as the 

FITNONLINEAR directive in GENSTAT which was used in this study. Appendix 5 

gives the GENSTAT commands to implement the algorithm for log-likelihood (7.12) 

using the data obtained for this study and described in the results section. 

For the following the fit of the model is expressed in terms of the deviance, 2 

(Appendix 1), rather than the log-likelihood, .2°. When 	is given by (7.10) then 

(7.13) 

and when <2' is given by (7.12) then 
A 

2 = (milog(mj 
A 	

- pp) (7.14). 

The deviance divided by the degrees of freedom (n-2) gives an estimate of (I) 

which is equivalent to a2  in the case of X normal and 1/0 when Y is gamma 

(McCullagh and Nelder 1983, Appendices 1 and 4 here). Maximizing eY (with respect 

to X and To) is equivalent to minimizing 2 
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7.3 Fitting the day-degree model to P.subgranosus emergence data 

7.3.1 Data 

Data on the time from attack to emergence were provided firstly by the author's 

emergence cages of which 59 produced emergents all occurring in the second summer 

(85/86) after attack (Feb-May,1984) (Section 3.1.3) and secondly by 12 out of the 58 

emergence cages of Elliott and Bashford (SILV) for which the time of attack was 

known (Section 3.2). Only emergence occurring in the same summer in which 

emergence for the cage began for both sets of cages (i.e. the first brood from the 

gallery) is considered for the following. Of the 12 SILV cages, 11 produced emergents 

in the first summer after attack. Attack for the SILV cages occurred early to 

mid-summer (28/12/80 for 11 cages and 12/1/81 for the remaining cage) and 

emergence began late in the following summer with the exception of one cage where 

the gallery was established on 28/12/80 and only produced a single male and female 

collected on 16/2/83, two summers later. For the author's cages, attack occurred late in 

the summer of 83/84 and the first emergents did not appear until December 1985. 

Fig 7.2 shows the distribution of days from attack to emergence separately for 

each set of cages where the SILV cages are identified by the years 80-83 and the 

author's cages by the years 84-86 which in each case is the period during which cages 

were established and observed. Each of gallery establishment and emergence were 

observed at roughly weekly intervals. Considering only the first year of emergence for 

a gallery, a total of 381 emergence occasiOns (i.e. the number of galleries with at least 

one emergent totalled over the collection dates), producing a total of 952 emergents, 

were recorded. The majority of these data came from the 59, 84-86 emergence cages 

which accounted for 334 of the emergence occasions and 865 of emergents. 

For a particular gallery and emergence occasion n  individuals are observed to 

have emerged (completed development) between the date the gallery was checked and 
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the date it was previously checked and, if necessary, cleared. For each individual the 

date on which it emerged is unobserved. The parallel situation applies to attack for 

which only the period between checking dates in which gallery establishment occurred 

was known. Since the period between checks of attack and emergence was roughly a 

week in each case and this is a short time interval relative to total development time, 

for the following the approximation that all mj  individuals emerged on the date when 

they were collected and that gallery establishment occurred on the date it was 

discovered will be used. The difference between these two dates gives l. This 

approximation should have little effect on the estimation of the parameters as 

mentioned earlier. 

7.3.2 Maximum likelihood estimation 

Initially all 381 values of m and corresponding values of D(To) for T0=0,...,16 

were used in the fit of the model. Fig. 7.3 shows the value of the deviance (7.14) for 

integer values of to  and the corresponding MiLE of X. The corresponding figure for 

deviance (7.13) (graph not shown) was very similar to Fig. 7.3. It can be seen from 

Fig 7.3 that there is not a clear optimum value ( in terms of minimum deviance) for To  

other than a general region somewhere below 10 or 11 degrees. As would be expected 

under these conditions the iterative search algorithm using linear interpolation did not 

converge for either of log-likelihoods (7.10) or (7.12). 

The minimum temperature at which emergence was observed to occur, Tnin(1), 

was calculated as the minimum, over the 381 emergence occasions, of the maximum 

temperature occurring in the period between the dates on which the cages were 

checked. These maxima were used because emergence could have occurred at any time 

in the period so a conservative minimum value for to  should be based on the maximum 

of the daily maxima for the period. The value so obtained was 13°C for emergence 

occurring between the 15th and 22nd of April 1982. Tmin(/) thus provides an upper limit 

for To  consistent with Fig 7.3. 
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The problem of a lack of a clear optimum value for ro  was recognised to be the 

dominance of the 84-86 data in the fit. As mentioned earlier, all the emergents in the 

author's data set were exposed to the same winter periods but different proportions of 

the two summers (i.e. attack and emergence both occurred in summer) so the 

differences in the length of development within this data set can be assumed to largely 

reflect differences, apart from individual variation in thermal requirements for 

development, in the proportion of time spent in the upper end of the temperature scale 

(i.e. different length of time exposed to summer temperatures) rather than at the lower 

temperature range. In other words the 1984-86 data alone does not provide much 

information about to. Where the ambient temperature ranges above and below To the 

time below To does not, according to the model, contribute to development which 

explains the large difference in number of days taken for development between the 

84-86 data and the 80-83.data shown in Fig 7.2. A similar separation on a day-degrees 

above 0°C scale is apparent in Fig 7.4. It is this difference reflected in the different 

exposures to winter temperatures between the two data sets that will allow to  to be 

estimated. So to make the data more balanced between the two data sets, which could 

be considered samples from two temperature regimes, 47 of the m values were 

randomly selected from the 84-86 data and these data were combined with the 47 

values in the 80-83 data to give 94 values of m and corresponding values of D(to)  for 

To=0,...,16. The above random selection was repeated 10 times to give 10 such data 

sets. Fig 7.5 shows deviance (7.14) versus integer values of ro for the 10 data sets. 
A 

Fig 7.6 shows the mean, over the 10 data sets, of deviance (7.14) and Ag versus to 

There is now a clear optimal region for To somewhere between 9 and 11 degrees. 

Fig 7.7(a) shows the deviance (7.14) surface, for one of the 10 data sets, for a grid of to 

and A values and Fig 7.7(b) shows the corresponding deviance contours. Again the 

optimal region for to lies roughly between 9 and 11 degrees with corresponding region 

for A roughly between 0.00020 and 0.00025. The direction of contours in Fig 7.7(b) 
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A 	A 	 A 
demonstrates the positive correlation between To and A B  as would be expected : as To 

A 	 A 
increases D(o) decreases and Ag  therefore increases. The iterative search algorithm 

using log-likelihood (7.12) was employed in GENSTAT (Appendix 5). For the case of 

log-likelihood (7.10) the random subsampling did not improve the estimation of To. The 

graphs (not shown) corresponding to Figs 7.5 and 7.6 did not show a clear optimum 

region but looked very similar to Fig 7.3 and as a result the search based on 

log-likelihood (7.10) failed to converge for every subsample. The reason for the failure 

of the algorithm based on normal X is not clear but possible explanations are discussed 

later. 

Table 7.1 gives some statistics on the subsample MLE's of To based on 

log-likelihood (7.12) along with those for the corresponding MLE's of A. Taking the 
A 

mean of the To's gives a point estimate of 10.74, however very little difference in 

goodness of fit would be Obtained whatever value was used for T o  in the range 10 to 11. 
A 

For the following the abbreviation DDll will be used to denote the value of r(ro), 
A 

where To is taken as 10.74°C, obtained by the interpolation given in Section 7.2. 

7.3.3 Adequacy of the day-degree model, inverse normal and gamma distributions 

Individual values of Mon were used to construct histograms one for each of the 

80-83 and 84-86 data using all 334 emergence occasions in this last case. These 

histograms are shown in Fig 7.8 and it can be seen that there is now a large degree of 

overlap in the histograms for the two data sets. Table 7.2 gives statistics separately for 

each data set for days from attack to emergence, DA)  (i.e. To=0) and DDII. It can be 

seen from Table 7.2 that only for DDii is there no significant difference in the means 

between the two data sets. The range of values of DD II  is also very similar for both 
A 

data sets. The day-degree model given by eqn (7.5) with a value of To around 10 or 

11°C has been able to explain the large difference in mean development time between 

the two data sets as seen in Fig. 7.2. 

Fig. 7.9 shows the observed frequency histogram of Y=DD ii  using all 952 
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Table 7.1 Statistics for MLE's of temperature threshold (To) and rate (A) parameters 
estimated from 1981-85 emergence data combined with 10 random samples from the 
1985/86 data. 

mean standard 
deviation 

minimum maximum 

A 
Threshold (T0) 10.7408 0.5177 9.6734 10.9983 

A 
se(T0 ) 1.4754 0.1766 0.0866 1.8731 

Rate ( s ) 0.2237x10 -3  0.1341x10-5  0.221510-3  0.2256)( 10-3  
se( g ) 0.0487x10-3  0.1271x10 -5  0.0467)( 10-3  0.0511 )(10-3  

Deviance 2.6506 0.2116 2.2645 2.9280 

Table 7.2 Statistics on days and cumulative day-degrees from attack to 
emergence based on all first year emergence data with known attack date. 

sample 
size 

mean standard 
deviation 

standard 
error 

min max 

Days (81-85) 87 458.1 58.8 6.3 393 780 

Days (85/86) 865 679.5 35.4 1.2 610 841 

A90a  (81-85) 87 5486 662 71 4560 8888 

A90 	(85/86) 865 6980 557 19 5993 9443 

AD 11 	(81-85) 87 4056 473 51 3239 6207 

AD I I  (85/86) 865 4046 511 17 3210 6282 

13130 11 	(81-84) 952 4047 507 16 3210 6282 
, 	(85/86) 

a. 	Day degrees accumulated above a /0.0 threshold temperature 
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381 
(=X, j = i mi) values along with fitted frequencies for each of the inverse normal, based 

on the transformation Y=1/X with X normal with mean A and variance a2  (Sharpe et al. 

1977), and gamma distribution models. For the gamma an estimate of 4 was obtained 

using the method of moments (Johnson and Kotz 1970) as 3133. The frequencies for 

the inverse normal were obtained using estimates of A and a2  obtained simply as the 

mean and variance of the 952 values of 1/DD 11 . The two models produce similar 

shaped distributions each of which appears visually to be an adequate representation of 

the empirical distribution. Using a modified Kolmogorov-Smimov test with statistic 

d = max J  - F where -Pi  is the cumulative probability under the model to x i  or yi  , 

as the case may be, and Fi  is the observed cumulative probability given by 

I mj  / L 7=-1 mi  where n=381, the fit of the normal to 1/DD I I  was slightly superior 

(dn.x= 0.038) to the fit of the gamma to DD ii  (dn,ax= 0.065). Stinner et al. (1975) used 

a beta distribution for development time under constant temperature regimes. Using the 

beta here for DD II , with lower and upper limits of 3200 and 6290 respectively, the fit 

of the beta was worse (d = 0.192) than either of the above models. In the case of the 

normal and gamma distributions the dmax  statistic did not lead to a rejection (P>0.05) of 

the null hypothesis that the empirical was not different from the theoretical distribution. 

7.4 Development time from initial oviposition to emergence 

Attention above has been restricted to development time from gallery 

establishment to first brood emergence because these events are observed externally. 

Also any simulation/prediction system based on field data is likely to have as starting 

point for development, observations on gallery establishment rather than 

difficult-to-observe oviposition. Nevertheless, development time from initial 

oviposition (Sections 2.3.3 and 5.2) to first brood emergence, assuming the initial batch 

of eggs laid produces the first brood of emergents, is also of interest. The distribution 
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of times, in units of DD 1 , from initial oviposition to emergence based on the 865 

emergents obtained in the 85/86 summer is given in Fig 7.10 along with a fitted gamma 

distribution using a value for 4 of 2600. The values of DD I  I  used to construct Fig 7.10 

were calculated by subtracting the mean value of M il  accumulated from gallery 

establishment to initial oviposition for the particular establishment date for the gallery 

(Section 5.2) from the observed value of DD II , for the individual emergent, 

accumulated from gallery establishment to emergence. An average time to initial 

oviposition was not used because of the relationship between establishment date and 

time to oviposition (Section 5.2). As can be seen in Fig. 7.10 the gamma fits quite well. 

7.5 Effect of timing of attack on timing of emergence 

Given the effect of timing of attack on the timing of initial oviposition reported 

in Section 5.2, the possibility that a similar effect occurred for timing of emergence 

was investigated. Attention was restricted to the 84-86 data because there were only 

two attack dates for the 80-83 data, both of which were in early summer. Fig 7.11 

shows the mean time from attack to emergence versus time from the first observed 

attack over all galleries (i.e. 9/2/84). Mean time from attack to emergence was 

calculated as the mean, over all galleries with same attack date, of mean time for the 

gallery (i.e. over all first year emergents). A similar trend to that seen in Fig 5.9 is 

obvious in Fig 7.11 in that development time is longer for early versus later attack 

within the late summer/autumn period. The longer development time was found (graph 

not shown) to be due to the time difference between attack dates since earlier attack 

produced emergents no sooner than later attack. This is contrary to the case of 

spring/early summer versus late summer/autumn attack where in the former case the 

extra exposure to summer temperatures allows shorter calendar time to emergence as 

quantified by the day-degree model above. The 'thermal advantage' of earlier 

established galleries within the late summer/autumn period is not similarly exploited. 



M
E
A
N
 
D
A
Y
S
 
A
T
T
A
C
K
 
T
O
 
E
M
E
R
G
E
N
C
E 

750 

730 

710 

690 

670 

650 

630 

- + 

- + 

(b) 

4. 

(a) 

t 
+ 

- • . 

0 
	

20 	40 	60 	80 
	

100 

DAYS 9/2/84 to GALLERY ESTABLISHMENT 

161 

M
E
A
N
 
D
A
Y
-
D
E
G
R
E
E
S
C
i
i
]
 A
T
T
A
C
K
 T
O
 E
M
E
R
G
E
N
C
E
  

0 
	

300 
	

600 
	

900 

DAY-DEGREES[11] to GALLERY ESTABLISHMENT 

FIG 7.11 Mean of gallery mean time from attack to emergence versus 

time from 1st to later gallery establishment in units of (a) days 

(b) day-degreestil], with (+) standard error bars 

de 

47 

44 

41 

38 

35 



162 

7.6 Discussion 

The day-degree model of the development rate/temperature relationship has 

been criticised for its inability to account for curvature in the observed rate versus 

temperature relationship obtained in laboratory studies (Wagner et al. 1984). Nonlinear 

models such as the general model of poikilotherm development of Sharpe and 

DeMichele (1977) have been used to account for the above nonlinearity. However, 

temperatures above the optimal temperature at which the insect is adversely affected 

(Fig 7.1) rarely occur in the field (Gilbert 1988) and this is especially so here where 

both the rainforest canopy and surrounding wood damps temperature extremes inside 

the galleries. The simple day-degree model, though, will under-estimate development 

rate near the lower threshold, To  (see Fig 7.1) (Howe 1967) so it is the adequacy of this 

model at temperatures around To that is more important here. However, Howe (1967) 

questioned the extra efficacy of purely empirical nonlinear models such as those based 

on the cumulative density functions of statistical distributions such as the logistic and 

normal. It is not easy to see the biological significance of the parameters of these 

purely empirical nonlinear models. A lower threshold temperature on the other hand 

has a natural interpretation and, given that it is under genetic control, is a useful 

concept for genetic studies (Gilbert 1984, 1986 and 1988). Also the curvature in the 

development rate versus temperature relationship at lower temperatures can be 

explained in terms of individual variation in To  (Howe 1967, Gilbert 1984). The 

day-degree model assumes To  is constant but a version of the day-degree model that 

allows - To  to have a statistical distribution could be developed using stochastic 

differential equations [i.e. since To  appears within the integral in eqn (7.2)]. It 

however, beyond present resources to investigate such a model here. A further 

advantage of the day-degree model is that it gives a physiological time scale which was 

exploited here to allow estimation to be based on the assumed distribution of D(T0). 

Nonlinear models do not necessarily perform better than the day-degree model 
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for all development stages (Allsopp 1986, Richmond and Bacheler 1989) and given the 

greater difficulty of fitting these models often due to the large number of parameters 

involved, Sharpe and DeMichele's (1977) model freparameterised by Schoolfield et al. 

(1981)] has six parameters, they may not be a practical alternative to the day-degree 

model in the case of field-collected data. The practical problem of fitting any model 

when the development time is as long as that seen here was overcome using the linear . 

interpolation method described here for the day-degree model where the accuracy in 

the calculation of day-degrees for different threshold temperatures was maintained 

without a large requirement for computer memory. The day-degree model was found to 

adequately describe the data in this study, in particular the difference in development 

time resulting from early summer versus late summer/autumn gallery establishment. 

The gamma and normal distributions both adequately described the empirical 

distribution of development time and rates respectively but the reason(s) for the failure 

of the maximum likelihood estimation procedure in the case of the normal is not clear 

at this time. The estimation based on the gamma distribution on the other hand was 

highly successful in locating an optimum value for To. A possible explanation of the 

failure of normal X (inverse normal Y=1/X) is the scale of X. Since X is the inverse of 

development time in physiological time units, D(rç ), where D(To) is large but 

decreasing with increasing To, then the weighted sum of squares, eqn (7.13), used to 

estimate the parameters will be very small. The role of the Jacobian is to account for 

the change of scale as D(To) varies with To, however, the adjustment to the likelihood 

due to the Jacobian only managed to provide an upper limit for To  as mentioned in 

Section 7.2. The reason for the success of the gamma likelihood could be due to the 

way it was expressed in eqn (7.12) as that of a Poisson for the number of emergents 

which, like , is observed. 

The least squares minimisation given by eqn (7.7) and used by DEVAR gives a 
A 	 A 

biased estimate, xs , of the rate parameter A. The bias of A,, was approximated earlier by 
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a formula given in terms of X and a2 , the variance of X. Using the mean and variance 

of X=1/D 1 1 this bias is roughly -1.3%. The ML estimate of X based on the normal 

distribution for X and gamma distribution for Y have the advantage that they are 

respectively unbiased and asymptotically unbiased. 

The day-degree model here has been based on ambient temperatures under the 

canopy, however, it is the air temperature within the gallery that P.subgranosus is 

directly exposed to. The temperature inside the gallery would be damped by 

surrounding wood compared to outside temperatures and would probably also lag 

behind outside temperatures. It was beyond the resources of this study to collect 

within-gallery temperatures but in practice, if the day-degree model is used to predict 

P.subgranosus emergence, as discussed in Section 8.3, then temperature recording 

would also be restricted to ambient temperatures outside the tree or log. 

The observation that attack and subsequent gallery establishment early in the 

late summer/autumn period did not translate into earlier emergence compared to 

galleries established late in this period has been discussed earlier (Section 2.3.3 and 

5.6). To reiterate, this observation is explained as a flow on effect of initial oviposition 

being delayed for early establishment to about the same calendar dates as late 

establishment. This winter oviposition was hypothesised to be a response to high 

summer mortality of eggs and early instars due to desiccation. 
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8. IMPLICATIONS FOR RAINFOREST ECOLOGY AND FOREST MANAGEMENT 

8.1 P.subgranosus and myrtle wilt 

The role that P.subgranosus plays in the ecology of Tasmania's cool temperate 

rainforests depends to a large degree on its role in the spread of myrtle wilt. Myrtle wilt 

is recognised as a major factor in the ecology of these rainforests. It can be locally 

severe with cumulative deaths reaching roughly 50% of the myrtle component of the 

stand. The gaps in the canopy caused by myrtle wilt are important in regeneration 

processes (Hickey and Felton 1987) and can result in locally altered stand structure. 

Given a low and stable incidence of myrtle wilt in undisturbed rainforest, myrtle wilt 

may be viewed simply as a component of natural regeneration processes along with 

other natural disturbances such as wildfire and windthrow. Alternatively, the mean 

incidence of dying N.cunninghamii observed in undisturbed rainforest of roughly 2.4 

trees ha-1  or 1.6% of live' trees per year (Elliott et al. 1987), being of the same order as 

serious epidemics such as Dutch Elm Disease in Great Britain, could represent part of a 

trend for myrtle wilt to be increasing to a serious epidemic. Kile et al. (1990a) suggest 

that if this is true it could be due to the development of new, more aggressive strains of 

the pathogen or promotion of disease development through greater human access to, 

and disturbance of rainforest. Current research by the Silvicultural Division of the 

Forestry Commission, Tasmania, is addressing the problem of the status of myrtle wilt 

using rate-of-spread plots in which the spread of the disease is monitored on permanent 

plots. In rainforest managed for timber production or public amenity, any silvicultural 

management practices will need to consider the impact of myrtle wilt on stand health 

and timber production. Kile et al. (1990a) have discussed possible management 

practices which will reduce the incidence and impact of myrtle wilt. As for the role of 

P.subgranosus in the spread and management of myrtle wilt, current opinion is that, 

quoting Kile et al. (1990a), 

'..while P.subgranosus is not a direct vector of C.australis it has the potential to 
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be of significance in disease spread through liberation of contaminated frass, creation 

of wounds (pinholes) in stressed trees, and through promotion of spread within trees 

already infected.', and 

'As P.subgranosus is a secondary agent it seems unlikely that attempts to 

manage beetle populations would have a significant effect on disease development, 

except possibly if frass contaminated with C.australis is important as inoculum.' 

It can be seen from the above that the most important task in P.subgranosus 

research is determining the role of the beetle in the spread of myrtle wilt. Strategies for 

controlling P.subgranosus populations and infestations may be required within a 

management programme for the control of myrtle wilt if P.subgranosus is important in 
• 

the spread of myrtle wilt. Such strategies should be similar to those discussed below for 

controlling P.subgranosus infestations of freshly cut logs in current forest operations. 

8.2 Possible measures to Control degrade of valuable logs due to 

P.subgranosus attack 

A moratorium on logging in rainforest, excluding mixed forests with more than 

5% eucalypt crown cover which are harvested and regenerated to eucalypt, is currently 

due to end. Given current logging of mixed stands and future logging of pure rainforest 

including possible clearfell, selective logging and thinning in pole sized stands, 

P.subgranosus attack of, and gallery development in high value logs is an important 

problem for forest operation managers. Valuable sawlogs and veneer logs of species, 

including the eucalypts E.regnans, E.obliqua, E.delegatensis and rainforest species 

N.cunninghamii, A.moschatum (sassafras) and P.aspleniifolius (celery top pine), can be 

seriously degraded by P.subgranosus attack. No estimate of economic losses due to 

such degrade is available and no organised programme of control of such degrade is 

currently practiced. Removal of logs from landings and marshalling yards from winter 

operations before the flight season begins in summer and quickly processing logs in 

summer operations are currently recommended to minimise damage due to 
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P.subgranosus attack (Elliott pers. comm.). Given the dwindling supply of eucalypt 

sawlogs from old-growth stands in Tasmania and the pressure from sawmillers to 

exploit the large resource of rainforest species, the largest volume of these• being 

myrtle, the logging of high quality rainforest set aside for timber production will 

require a more organised programme to protect valuable logs from pinhole borer attack. 

Pest-management strategies have been adopted with mixed success to control 

the damage caused to high grade logs by the striped ambrosia beetle T.lineatum in 

British Columbia (Borden 1988). These strategies have been based on observations or 

hypotheses on T.lineatum population behaviour (Table 1 of Borden 1988). There are 

some similarities in the biology and habits of P.subgranosus to that of T.lineatum. In 

particular the hypothesis that population levels are dependent on the supply of host 

material (i.e. logs, stumps, dead or dying N.cunninghamii infected with C.australis) is 

as relevant to P.subgranOsus as T.lineatum. There is only circumstantial evidence for 

this hypothesis both in the case of T.lineatum (Borden 1988) and P.subgranosus and 

this is largely by default given that no other significant population control mechanisms 

have been observed. Brood mortality is very low for P.subgranosus and of the few 

parasites and predators associated with P.subgranosus, as with TIneatum (Borden 

1988), none appear to play any significant role in regulating populations. Apart from 

the lack of suitable host material, the only other suggested factor which could limit 

brood production is egg and early instar larvae mortality due to desiccation (Section 

5.6). A modified version of Table 1 of Borden (1988) which sets out pest-management 

strategies based on observed or hypothesised population behaviour is given in Table 

8.1. Probably the most important strategy in the control of damage to high value logs 

is to limit the resource of suitable host material available during the flight season. This 

involves good forest hygiene by removing slash from logging and quick processing of 

logs. However, given that summer logging is most often required in wet forests, there 

will always be a time when some logs are vunerable to attack. In these cases it may be 
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• Table 8.1 Pest—management strategies and tactics that exploit observed or hypothesised behaviour of 
AR..nikmuummts populations. 

Pest management 
Observation or hypothesis 
	Strategy 	Tactic 

Regulation levels depend on 
supply of suitable host 
material 

Aggregation of population on 
available hosts is odor mediated 

Regulate the amount of 
host resource 

Protect host from attack 

Manipulate host—seeking 
population by providing 
a false chemical message 

Reduce logging slash 
Winter logging where possible 
Remove logs from landings as 

soon as possible 
Process logs at mills as soon 

as possible 

Kill beetles on host with 
residual insecticide 

Repel beetles from hosts 
using artificial 
repellents 

Attract beetles to water— 
soaked waste or pulp logs 
which are then removed 

Intercept host—seeking beetles 
by mass—trapping them 

• using ethanol—baited 
traps 
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necessary to employ other tactics. Browne (1952) reported that creosote, 

pentachlorphenol, sodium pentachlorphenate, and possible formaldehyde can be 

partially effective in inhibiting ambrosia beetle attack on debarked tropical hardwood 

logs. Browne suggested that these substances inhibited attack by countering the effect. 

of primary attractants. Repelling attack using turpentine oil (a mixture of 

monoterpenes) has been found effective against T.lineatum (Borden 1988) for up to five 

days. Experiments to investigate various artificial repellents should be carried out in 

Tasmanian rainforest to determine if a similar tactic can be employed against 

P.subgranosus. Water misting of logs has been used as a cheap method of deterring 

attack by T.lineatum (Borden 1988) but operational problems have meant that this 

method has not been widely adopted. A possible problem with water misting logs in 

mill yards or log marshalling yards for the case of P.subgranosus is that logs with 

established galleries, if left long enough might be allowed to produce a brood which 

can then emerge and attack other logs in the yard. If the logs are left to dry in the 

exposed environment of the log yard then survival of such broods will be minimal. This 

tactic is based on the hypothesis, given support in this work, that brood survival is 

dependent on a high humidity within the galleries during, in particular, the time when 

eggs and early instar larvae are present. 

Exploiting the chemical host-seeking mechanism of ambrosia beetles is another 

way of protecting exposed logs. Aggregation of attack is due firstly to primary 

attraction due to volatiles released by stressed or dying trees and decaying logs. Elliott 

et a/. (1982) have identified ethanol as a primary attractant for pinhole borer attack. 

Soaking logs speeds up the fermentation process and trap logs of suitable size (i.e. large 

enough to allow a large number of beetles to establish their galleries) soaked over the 

winter and moved to strategic locations between flight paths of the beetle and landings 

or log yards could be used to reduce attack on valuable logs cut and stored in summer. 
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Given the known problem of a high incidence of defect in myrtle (Walker and Candy 

1982) there would be little difficulty in finding reasonably sized waste and pulp logs 

which could be used as trap logs. 

Alternatively, or in combination, ethanol baited traps could be designed to mass 

trap the beetle. Aggregating pheromones are suspected as being a secondary attractant 

(i.e. after pioneer beetles have begun boring) for P.subgranosus attack (Elliott et al. 

1982). Mass trapping using pheromone-baited trap logs is an important tactic in the 

control of T.lineatum (Shore and McLean 1985, Borden 1988), however, the 

pheromone(s) of P.subgranosus has yet to be identified so a similar use of 

pheromone-baited traps is not yet possible. 

It should be emphasised at this point that given the ubiquity and enormous 

population size of P.subgranosus the only effective method of protecting high value 

logs may be simply removing them from landings and processing them through mills 

before the beetle has a chance to attack. 

8.3 Monitoring P.subgranosus populations 

Given the costs associated with any pest-management programme using tactics 

such as those given in Table 8.1, a cost-effective method of monitoring P.subgranosus 

populations may be useful in deciding if control measures are required in any particular 

year. The relatively long development time of one or, more often, two years for 

P.subgranosus, as mentioned by Milligan (1974) for the case of the New Zealand 

Platypus spp. which have similarly long development times, allows a good amount of 

lead time for control measures to be implemented which can defuse potential 

population explosions. Such a lead time is not available in the case of T.lineatum with a 

development time of around 9-10 weeks (Borden 1988). A monitoring programme to 

assess population levels combined with built up experience on the relationship between 

population levels and damage would allow forest managers to determine the risks 

associated with various forest operations and whether control measures are required. 
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• 	Any monitoring programme would need to be quick and cheap, involve a 

minimum of equipment, and be able to forecast population levels one and two summers 

ahead. In logged coupes assessment of the number of pinholes on logs left by the 

operation could be combined with routine logging residue assessments. These are 

currently carried out using line intersect sampling and De Vries (1979) gives an 

example of such a sampling scheme combined with subsampling to assess bark beetle 

populations. In surrounding rainforest, line transect sampling could be used in a 

multi-stage sampling scheme. For example, in the first stage all trees on the transect are 

sampled and their disease status with regard to myrtle wilt assessed. In the second stage 

a subsample of trees suffering myrtle wilt are sampled and an estimate of the total 

number of pinholes determined. This could be done by delimiting the main area of 

attack on the bole and randomly sub-sampling small areas using a calibrated plastic 

sheet. Sampling would be best carried out at the end of the last summer or in winter so 

that emergence in the following summer can be predicted. The number of pinholes can 

be easily and cheaply estimated as seen in the suggested sampling schemes above, 

however, the number of emergents produced from these galleries for any future period 

is not so easily estimated. Firstly, the proportion of active galleries needs to be 

estimated. This can be done relatively easily by observing if there is any fresh frass 

produced by the gallery, or by testing if there is a live male at the gallery entrance. If 

the abdomen of the male is seen it can be gently prodded with say a toothpick or probe 

to test if it is alive. Given that the gallery is active, the stage of its development needs 

to be known. The time taken from gallery establishment to first brood emergence will 

depend on the day-degrees accumulated from gallery establishment (Section 7.3). Also 

galleries which have already produced their first brood emergence in the previous 

summer will produce only an average of 36.4% of the total of emergence for the 

gallery in the coming summer, 62.8% occurring in first brood emergence and 0.8% in 

the third year of emergence (Section 6.5). Therefore the expected number of emergents 
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for a gallery will depend on which brood, if any, will emerge in the next summer. The 

timing of first brood emergence cannot be predicted from the models developed in this 

study unless the date, or more roughly the period in which, gallery establishment 

occurred and the accumulated day-degrees from this date (Section 7) are known. The 

date or period within which gallery establishment occurred is not available from a 

single sampling occasion, however, a rough guide to the age of the gallery can be 

obtained by examining the type of frass being produced. If the frass is fibrous then it 

can be assumed that the gallery was established in the previous summer and first brood 

emergence will not occur until the summer following the next summer. Alternatively, if 

granular frass is evident it indicates that final instar larvae are present which means that 

pupation and emergence should occur in the next summer. The difficulty in this last 

case is that it would not be known if the larval frass was from later broods than those 

emerging in the first summer of emergence for the gallery unless the frass can be 

reliably aged. Old frass tends to form a solid, faded mass and determining the age of 

frass based on such appearances could be sufficiently accurate to allow the estimates of 

mean emergence per gallery in the first and second summer of emergence, obtained in 

this study (Section 6.1 and 6.5), to be applied. 

From such a classification of the development stage of the gallery using frass an 

overall estimate of total emergence for each of the next two summers can be obtained. 

If more detail on the timing of emergence within the summer is required, for instance, 

to allow scheduling of operations to avoid, or mass trapping to coincide with the main 

period of emergence, then the models of the distribution of development times (i.e. the 

day-degree and gamma distribution models developed in Section 7) could be employed 

to predict emergence rates for periods within the summer period. This would require a 

database of time of attack to be accumulated and estimates of daily minimum and 

maximum temperature to be obtained as was done in this study (Section 3.3). In the 

first case this database could be obtained by repeat sampling, say monthly through the 
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summer and at the end of the summer, at which time the number of new galleries 

could be estimated using the multi-stage sampling discussed above. Day-degrees can be 

accumulated using daily minimum and maximum temperatures as was done in this 

study (Section 3.3). Given an estimate of total emergence for the summer then this total 

can be distributed over the summer using the cumulative density function of the gamma 

distribution and the day-degree time scale (Section 7.2) with a development threshold 

temperature estimated in this study at 11°C (Section 7.3.2). 

In conclusion, although P.subgranosus does not have the biotic potential of 

T.lineatum and many bark beetles in terms of generation time, even though brood 

production is similar, it has the potential to reach very high population levels given 

enough resource of suitable host material. Dead and dying myrtle infected with 

C.australis are highly attractive to attack by P.subgranosus and high densities of attack 

can occur on these trees (Section 4). Disturbances such as logging and roading as well 

as providing host material in the form of logs and slash increase the incidence of myrtle 

wilt. There is therefore the potential for P.subgranosus to cause serious damage to saw 

and veneer logs and, given a possible contributory role in the spread of myrtle wilt, 

cause elevated levels of this disease in adjacent rainforest. From the above it can be 

seen that more refined control measures must wait until the type and extent of future 

rainforest management, the relationship between P.subgranosus and myrtle wilt, the 

effectiveness of measures to control myrtle wilt, and the generality of the results from 

this study, are better known. 
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9. CONCLUDING REMARKS 

No study of this nature can hope to be complete as populations and the 

environmental conditions to which they are exposed are dynamic and, given the long 

development time of P.subgranosus, it was only possible to follow a single cohort in 

• detail in this study. Even so, a number of observations in this study have led to 

interesting and plausible hypotheses on the behaviour of P.subgranosus at the 

population level. In particular, the relationship between gallery length and brood size at 

initial oviposition and the delay in initial oviposition until winter are useful new 

observations. Combined with the lack of relationship between timing of gallery 

establishment and timing of first brood emergence for late summer/autumn 

establishment and infrequent spring/early summer establishment these observations 

have led to the hypothesis that egg and early instar mortality due to desiccation is an 

important factor in the timing of gallery establishment and initial oviposition. 

Indirectly, this mortality would exert some control on populations given that 

late/summer autumn gallery establishment causes first brood emergence to take two 

years rather than a single year which limits population growth. 

The attractiveness of host tissue infected with C.australis to P.subgranosus 

attack has been demonstrated by Kile et al. (1990b) and the more detailed statistical 

analyses of their data carried out in this study reinforces their conclusions. Their work 

gives further support to the hypothesis that P.subgranosus is not a vector of C.australis. 

The observation that myrtle wilt is always associated with P.subgranosus attack is thus 

explained by the primary attractant role of C.australis infection rather than Howard's 

(1973) original hypothesis that the platypodid beetle attacking myrtle is a vector of the 

pathogen which causes myrtle wilt. 

The mathematical and statistical modelling techniques used in this study were 

found to be very useful in summarising, at times, highly variable data. In particular, the 
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day-degree model of development and the models of the distribution of development 

rate and time, in day-degree time units, using normal and gamma density functions 

respectively, adequately explained observed development time from attack to first 

brood emergence. The maximum likelihood estimation procedure for estimating the 

threshold and rate parameters of the day-degree model from field data which was 

developed in this study could be used in similar field based studies. Also the 

comparison of models of insect phenology carried out in this study is particularly 

relevant to insect pest species in which the timing of control measures requires accurate 

prediction of the timing of occurrence of immature stages. For wood boring insects this 

is of less interest from a pest control viewpoint since there is little ability to target 

immature stages with control measures. For insects such as the Tasmanian eucalyptus 

leaf beetle, Chrysophtharta bimaculaia Olivier (Coleoptera: Chrysomelidae), a serious 

defoliator of eucalypts (Elliott and deLittle 1984), models of phenology are very 

important for the prediction of the optimum timing of control measures and the models 

and methodology used in this study could be applied in this way. The introduction in 

this study of the complementary log-log link and the conditional probability model, 

which in both cases proved superior to two existing phenological models, may be of 

interest to other population modellers and researchers. 
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APPENDIX 1. Generalised Linear Models 

Generalised linear models and modelling are a class of models and modelling 

techniques developed originally by Nelder and Wedderburn (1972). A number of the 

models such as log-linear models for contingency tables and probit analysis for 

bioassay were commonly used prior to the 1972 but Nelder and Wedderburn unified 

these and other models into one general class of models called generalised linear 

models or glm's. The glm's of Nelder and Wedderbum should not be confused with the 

General Linear Model which is a matrix based class of models which incorporates both 

linear regression modelling and analysis of designed experiments. There is some 

overlap between glm's and the General Linear Model. There was nothing essentially 

new in the method of estimation and hypothesis testing used by Nelder and 

Wedderburn (1972), estimation was by maximum likelihood using Fisher's scoring 

algorithm and hypothesis"testing used Neyman-Pearson likelihood ratio tests. However, 

the attraction of Nelder and Wedderburn's glm was the fact that a wide class of models 

could be fitted using a single algorithm: iteratively re-weighted least squares (IRIS), 

and these models could be tested using the likelihood ratio statistic to generalise the 

residual sum of squares to the deviance. This allowed the familiar regression analysis 

of variance table to be constructed for error distributions other than the normal. The use 

of glm's are available in the computer packages GLEV1 and GENSTAT. 

A glm is specified by (i) the linear predictor 	(ii) the link function Ii = g(t) 

where ji is the expected value of y the dependent variable, and (iii) the error 

distribution of y. The linear predictor is simply the linear combination of regressor or 

predictor variables, x i ,...,xp  , and unknown regression parameters so that 

= j Pj xij 

where the ith subscript refers to the sampling unit of y. Note that glm's are univariate 

models (i.e. one dependent variable only) and that the x's can be qualitative, called 

factors, as well as quantitative (i.e. variates) variables. 
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The link function, g(.), must be a one-to-one differentiable function such as the 

logarithmic, exponential, reciprocal or power functions with a positive exponent in this 

last case. In the case of log-linear models g(.) is the exponential function. For bioassay 

where the expected value of the proportion of response is p=p  then commonly used 

link functions are the ; probit = (I}-1(p) where cto is the cumulative normal integral; 

the logit tJ = log{p1(1-p)) ; and the complementary log-log lj = log(- log( 1-p)). Note 

that since the transformation or link is applied to the expected value, which is itself 

given by the model, there is usually no problem with the transformation being 

undefined which can be a problem if the transformation is applied to the data (e.g. if y 

is zero or one in the above case). Problems with the link function can occur for 

example if the exponential link is used and for a particular sample all the regressor 

variables are zero. However, most of these problems can be overcome by selecting a 

link function which is sensible given the nature of y and the x's. The logit link function 

has the property, employed in Section 6.2, that the linear predictor is equivalent to the 

expected log-odds where pl(1-p) is the odds of say death, success or being male 

(Section 6.2) depending on the definition of y. The logit and complementary log-log 

links are also used extensively in Section 5.4 where in the case of the ordinal regression 

models these links are used as cumulative density functions on an unknown metric 

scale given by X. In the case of the conditional probability models the inverse of these 

links define transformations of the time scale t. 

The error distribution, as originally specified by Nelder and Wedderbum (1972), 

must belong to the class of exponential distributions so that the probability density 

function (pdf) of y, is given by 

99(Yi) = exP{ [Yi Oj - b(4)]/ai (0) + c(Yi ,(1))) 	 (A1.1) 

where 0 is called the canonical parameter, which involves the p since the expected 

value of y is given by b'(0) where the prime denotes differentiation with respect to 0, 

is a dispersion parameter which does not involve the p and is therefore considered a 
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nuisance parameter, the function ai (0) is usually specified by 0/w 1  where the wi  are 

known prior weights (for example for the normal distribution 0 is usually denoted by 

a2) and the term c(y i  ,0) is used to collect terms in the pdf not involving the Pis. The 

log-likelihood is given by 

= fyi 0 - b(R)Vcei 	+ c(yi 4)- 
The kernel of the log-likelihood is that part of ,ry involving only the parameters 

of interest and is given by dropping the term c(y i  ,0) from .2' above. The variance of y 
2 	 2 

is given by Or i  /wi  where Ti is the variance function given by bi"(0) the second 

derivative of bi  (0). Since the expected value of yi  , pj,  is given by bi  (0) then, ignoring 

the wi for the moment, the variance of y is a function only of pi  and 0. This is the basis 

of quasi-likelihood theory (McCullagh and Nelder 1983) which relies purely on the 

functional relationship between the mean and the variance to provide the iterative 

weights for the Fisher scoring algorithm. The Fisher scoring algorithm is a method of 

obtaining the maximum likelihood estimates of the fts. It involves a Newton-Raphson 

search in which the expected rather than observed value of the Hessian matrix is 

inverted to determine the step size along the steepest descent gradient given by the 

vector derivative (3.29/43. The Hessian is given by the matrix derivative with (i,j)th 

element d/(313 

Some commonly used distributions and their variance functions are the normal 
2 	 2 	 2 	 2 

(ti= 1), Poisson (ri  = p), gamma (ri  = p2) and binomial [ri  = p (1-p)]. Less 
2 

commonly used is the inverse Gaussian distribution for which Ti p3. Several 

distributions can share the same variance function, for example the gamma, log-normal 

and Weibull distributions. Thus quasi-likelihood requires the weaker assumption of a 

given variance function compared to likelihood which assumes a given distribution for 

y. For the Poisson and binomial distributions the scale or dispersion parameter, 0, is 

one and does not need to be estimated. However, in some cases the residual variation in 

y after fitting the model is either greater than or less than expected for a Poisson or 

..• 



187 

binomial which is termed over-dispersion and under-dispersion respectively. In the 

case of over- or under-dispersed data standard errors of parameter estimates can be 

adjusted by multiplying them by In). In general (1) will be unknown but it can be 

estimated as described below. 

One of the most useful features of glm's is the deviance. The deviance is a 

generalisation of the familiar residual sum of squares and is based on the likelihood 

ratio statistic in a way that exploits the special structure of glm's. The likelihood ratio 

statistic is given by exp( 2 a  - ) where ...Za  is the log-likelihood for the model with 

parameters /3 1 ,...,tia  [called model(a) for the following] and 4 is the log-likelihood 

for that with parameters P i ,.. .A and a<b. Thus the parameters in model(a) are nested 

within model(b). The deviance for a model, say model(a) above, is defined as 

= -2 (..ea  - ...e) where oef is the log-likelihood for the model which is saturated 
A 

with parameters (i.e. there are as many parameters as observations so that 1.4 yi). In 

some cases, such as y normal, ...ef  will be zero and 2 is then simply, in the case of y 

normal, the familiar residual sum of squares. The above likelihood ratio statistic is 

asymptotically chi-square distributed with b-a degrees of freedom and from this it 

follows that .0 is in general asymptotically chi-square distributed with n-a degrees of 

freedom. For the case of the normal and inverse Gaussian distributions the distribution 

of the deviance is exactly chi-square. An estimate of the dispersion parameter can be 

obtained by dividing the deviance of the finally selected model by its degrees of 

freedom (McCullagh and Nelder 1983). The significance of adding extra terms to the 

linear predictor can be tested by the change in deviance. This change when scaled by 

dividing by the dispersion parameter is approximately chi-square distributed with b-a 

degrees of freedom when the null hypothesis c7e0: Pa+1=,.•.,=Pb =0 is true and when is 

known. If is estimated then the scaled change in deviance divided by (b-a) should be 

compared with an F-distribution with ((b-a),(n-b)) degrees of freedom. 

A number of distributions other than those with pdf given by eqn (A1.1) can be 
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fitted as glm's. An important example employed in this study is the case of the 

multinomial. Models for which the data is sampled as a multinomial do not fit directly 

into the glm framework which is restricted to univariate distributions. However, if the 

fitted values from the model are constrained to sum to the marginal total representing 

the multinomial sample size, then the Poisson error structure can be used since it gives 

the same kernel log-likelihood as the multinomial in this case. Constraining the fitted 

values in this way occurs in a number of contexts. For contingency table data (e.g. 

Section 6.3) if a Poisson error and logarithmic link function (i.e. canonical link function 

for the Poisson distribution) are used then the fitted values are constrained in the above 

way as long as a factor which corresponds to the margin defining the multinomial 

sample size is included in the model. In the case of the ordinal regression models used 

in Section 5.4 the fitted values are constrained to total the multinomial sample size by 

completing the tails of the distribution for X using suitable end-point parameters 

(pg.92). 

A number of extensions to generalised linear models in terms of the systematic 

component (i.e. the model for p.) have also been developed. In particular, the composite 

link functions developed by Thompson and Baker (1981) were employed to fit the 

ordinal regression models in Section 5.4. The composite link function allows the 

expected value 1.1. to be a linear combination of a number of link functions each with 

their own linear predictor. Where p. is the expected proportion of a population 

distributed along X which lies between aj_i and oti, and G defmes the cumulative 

density function for the distribution of X, then the difference between cumulative 

probabilities at abscissa values of cti_i and ai gives the required proportion in the 

(q_bq ] interval. Thus i is a linear combination (i.e. a difference) of two link 

functions which both have the same form but have different linear predictors. 



APPENDIX 2. GENSTAT program to fit the gamma entry time 

model to P.subsTanommphenological data 

" open data file " 

OPEN 'LIFE.DAT' ; 2 ; I 

UNITS [573] 

" data consists of 573 records (see Section 5.4.2 pg.95) of 

DAYS (days from gallery establishment to sampling), DDEG 

(day-degrees above 11°C threshold corresponding to DAYS), 

NUM (number of individuals in each of 3 'stages'), and mu 
(total number of individuals) " 

READ[LAY=f ; CHAN=2 ; SKIP=* ; END=*] DAYS,DDEG,NUM,TOT \ 

; FIELD=6,8,2(4) ; SKIP=8,3(0) ; DECIMALS=0,2,2(0) 

" starting values for to , p, and xo, xl and x2 " 
SCALAR TO,B,X[1,2,3] ; VALUE=0,416,930,1871.6,750 & \ 

GYI[1,2,3] 

VARIATE PR[1,2,3],FVV[1,2,3] 

" factor defining stage " 

FACTOR[LEVELS=3] LSF ; VALUE=!((1,2,3)191) 

expression defining the model : 

gamma ntrvalues obtained via a chi-square distribution 

where GNI gives the degrees of freedom for the stages " 

EXPRESSION GG[1...12] ; VALUE=!E(GYI[1]=2*X[1]/B), \ 

!E(GYI[2]=2*(X[1]+X[2])/B),\ 

!E(GYI[3]=2*(X[1]+X[2]+X[3])/B), \ 

!E(Y=2*(TIME-TO)/B), \ 

!E(PR[1]=CHISQ(Y;GYI[1])),!E(PR[2]=CHISQ(Y;GYI[2])), \ 

!E(PR[3]=CHISQ(Y;GYI[3])),!E(FVV[1]=PR[1]-PR[2]), \ 

!E(FVV[2]=PR[2]-PR[3]),!E(FVV[3]=PR[3]), \ 

!E(FV=(LSF.EQ.1)*FVV[1]+(LSF.EQ.2)*FVV[2] \ 

+(LSF.EQ.3)*FVV[3]), \ 

!E(FV=TOT*FV/PR[1]) 

CALC TIME=DDEG 

"calculate fitted values using initial parameter estimates" 

CALC #GG[1] & #GG[2] & #GG[3] & #GG[4] & #GG[5] & 4G6[6] 

CALC #GG[7] & #GG[8] & #GG[9] & #GG[10] & #GG[11] & #GG[12] 
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" calculate Poisson (=multinomial due to scaling in (JG[12]) 

likelihood " 

CALC PD=LLPOISSON(NUM;FV) 

PRINT PD 

" fit gamma entry time model " 

MODEL[DIST=poisson] NUM ; FIllh0=FV 

RCYCLE B 

FITNONLINEAR[PRINT=mod,est,mon ; CALC=GG ; CONST=omit] 
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APPENDIX 3. Transcript of GLIM run used to fit the model of 
Dennis et al. (1986) to their spruce budworm data 

[o] GLIM 3.77 update 1 (copyright)1985 Royal Statistical 
[o]  Society, London 
[o] 
[i] ? $units 84 $ 
[i] ! read data consisting of 
[i] ! DDEG day-degrees, TOT total individuals in stage, 
[i] ! LSF stage number 1-5 instars, 6 pupa, 7 adult 
[i] ! NUM total individuals in stage 
[i] $data DDEG TOT LSF NUM $ 
[i] $read 
[i]  58 16 1 16 58 16 2 0 58 16 3 0 58 16 4 0 
[i]  58 16 5 0 58 16 60 58 16 7 0 82 10 110 
[i]  82 10 2 0 82 10 3 0 82 10 4 0 82 10 5 0 
[i]  82 10 6 0 82 10 7 0 107 30 1 23 107 30 2 7 
[i]  107 30 3 0 107 30 4 0 107 30 5 0 107 30 6 0 
[i]  107 30 7 0 155 47 1 3 155 47 2 44 155 47 3 0 
[i]  155 47 4 0 155 47 5 0 155 47 6 0 155 47 7 0 
[i] 237 64 1 0 237 64 2 6 237 64 3 45 237 64 4 13 
[i] 237 64 5 0 237 64 6 0 237 64 7 0 307 74 1 0 
[i] 307 74 2 2 307 74 3 9 307 74 4 48 307 74 5 15 
[i] 307 74 6 0 307 74 7 0 342 72 1 0 342 72 2 0 
[i] 342 72 3 1 342 72 4 34 342 72 5 37 342 72 6 0 
[i] 342 72 7 0 388 103 1 0 388 103 2 0 388 103 3 1 
[i] 388 103 4 10 388 103 5 87 388 103 6 5 388 103 7 0 
[i] 442 81 1 0 442 81 2 0 442 81 3 0 442 81 4 7 
[i] 442 81 5 53 442 81 6 21 442 81 7 0 518 76 1 0 
[i]  518 76 2 0 518 76 3 0 518 76 4 0 518 76 5 10 
[i]  518 76 6 65 518 76 7 1 609 40 1 0 609 40 2 0 
[i] 609 40 3 0 609 40 4 0 609 40 5 0 609 40 6 14 
[i] 609 40 7 26 685 42 1 0 685 42 2 0 685 42 3 0 
[i] 685 42 4 0 685 42 5 0 685 42 6 0 685 42 7 42 
[i] ! note that there appears to be an error in Dennis et 
[i] ! al. (1986) where the total number of individuals, NUM 
[i] ! here, does not correspond to the sum across the 7 
[i] ! stages for DDEG=388,442. The numbers in each stage 
[i] I have been assumed correct and the total adjusted 
[i] ! here. 
[i] $fac LSF 7 $ 
[i] $yvar NUM $ 
[i] ! set up macros to fit composite link functions 
[i] ! using Poisson deviance 
[i] ! see Candy, S.G. 1985. Using factors in composite link 
[i] ! function models. MAI Nimaletter, 11: 24-8. 
[i] $MAC M2 $calc %DR.1 $endmac $ 
[i] $MAC M3 $calc %VA.%FV $endmac $ 
[i] $MAC M4 $calc %DI=2*(%YV*%log(%YVAFV)-(%YV-51V)) $ 
[i] $endmac $ 
[i] $MAC MEXT $extract %PE $endmac $ 
[i] $MAC MI $ 
[i] $calc %I.--Ane(%PL,O) $swi %L MEXT $ 
[i] ! 
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[i] ! 
[i] $calc LP1=%PE(7)*X $ 
[i] $calc LP1=LP1+%PE(1)*(1+C1JL)/X+%PE(2)*%eq(LSF,2)/X $ 
[i] $calc LP1=LP1+%PE(3)*%eq(LSF,3)/X+%PE(4)*%eq(LSF,4)/X $ 
[i] $calc LP1=LP1+%PE(5)*%eq(LSF,5)/X+%PE(6)*%eq(LSF,6)/X $ 
[i] $calc LP1=LP1*%le(LP1,20)+21*%gt(LP1,20) $ 
[i] $calc LP2=%PE(7)*X $ 
[i] $calc LP2=LP2+%PE(1)*(1+CLT)/X+%PE(2)*%eq(LSF,3)/X $ 
[i] $calc LP2=LP2+%PE(3)*%eq(LSF,4)/X+%PE(4)*%eq(LSF,5)/X $ 
[i] $calc LP2=LP2+%PE(5)*%eq(LSF,6)/X+%PE(6)*%eq(LSF,7)/X $ 
[i] $calc LP2=LP2*%le(LP2,20)+20*%gt(LP2,20) $ 
[i] $calc F1=%exp(LP1)/(1+%exp(LP1)) $ 
[i] $calc F2=%exp(LP2)/(1+%exp(LP2)) $ 
[i] $calc FD1=%exp(LP1)/(1+%exp(LP1))**2 $ 
[i] $calc FD2=%exp(LP2)/(1+%exp(LP2))**2 $ 
[i] $calc WC2=TOT*(FD1*%eq(LSF,2)-FD2*%eq(LSF,3))/X $ 
[i] $calc WC3=TOT*(FD1*%eq(ISF,3)-FD2*%eq(LSF,4))/X $ 
[i] $calc WC4=TOT*(FD1*%eq(LSF,4)-FD2*%eq(LSF,5))/X $ 
[i] $calc WC5=TOT*(FD1*%eq(LSF,5)-FD2*%eq(LSF,6))/X $ 
[i] $calc WC6=TOT*(FD1*%eq(LSF,6)-FD2*%eq(LSF,7))/X $ 
[i] $calc WGM=TOT*(FD1*(1+CUL)-FD2*(1+CLT))/X $ 
[i] $calc WB=TOT*(FD1-FD2)*X $ 
[i] $calc %LP=%PE(1)*WGM+%PE(2)*WC2+%PE(3)*WC3 $ 
[i] $calc %LP=%LP+APE(4)*WC4+%PE(5)*WC5 $ 
[i] $calc %LP=%LP+%PE(6)*WC6+%PE(7)*WB $ 
[i] $calc %FV=TOT*(F1-F2) $ 
[i] $calc %FV=%FV*%gt(%FV,0)+0.0001*%le(%FV,O) $ 
[i] $endmac $ 
[i] ! 
fil ! 
[i] $own M1 M2 M3 M4 $ 
[i] ! initial estimates of cut-point parameters ori  
[i] ! and regression parameter P 
[i] $assign %PE=45,80,125,190,250,300,-0.6 $ 
[i] $calc X=%sqrt(DDEG) $ 
[i] 	specify abitrarily small (CLT) and large (CUL) 
[i] ! starting and finishing points for X 
[i] $calc CLT=-Toeq(LSF,1) : CUL=10*%eq(LSF,7) $ 
[i] $use M1 $use M4 $ 
[i] ! deviance using initial estimates 
[i] $calc %S=%cu(%DI) $print %S $ 
[o]  355.3 

$cycle 8 1 $ 
[i] ! fit the model 
[i] $f it -%GM+WGM+WC2+WC3+WC4+WC5+WC6+WB $disp me $ 
[o] deviance = 79.995 at cycle 1 
[o] deviance = 38.343 at cycle 2 
[o] deviance = 34.883 at cycle 3 
[o] deviance = 34.841 at cycle 4 
[o] deviance = 34.841 at cycle 5 
[o] d.f. = 77 
[o] 
[o] Current model: 
[o] 
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[o] 	number of units is 84 
[o] 
[o] 	y-variate NUM 
[o] 	weight 
[o] 	offset 
[o] 
[o] 	probability distribution is defined via the macros 
[o] 	MI, M2, M3 and M4 
[o] scale parameter is to be estimated by the mean deviance 
[o] , 
[o] terms = WGM + WC2 + WC3 + WC4 + WC5 + WC6 + WB 
[o] 
[o] 	estimate 	s.e. 	parameter 
[o] 	1 	101.0 	4.025 	WGM 
[o] 	2 	71.22 	4.770 	WC2 
[o] 	3 	121.6 	5.285 	WC3 
[o] 	4 	186.2 	6.677 	WC4 
[o] 	5 	289.9 	9.555 	WC5 
[o] 	6 	400.3 	13.35 	WC6 
[0] 	7 	-0.8416 	0.02689 	WB 
[o] 	scale parameter taken as 0.4525 
[o] 
[i] ! Note that GLIM's degrees of freedom for the deviance 
[i] ! is incorrect since the constraint that the fitted 
[i] ! values sum to.the sample size at each sampling 
[i] ! occasion, produced using CLT (=o0 and CUL (=c6), 
[i] ! has not been taken into account. The correct degrees 
[i] ! of freedom here is 84-7-12=65. 
[i] ! Also, if a multinomial error structure is assumed 
[i] I then the standard errors in the above table should be 
[i] 1 divided by V' 0.4525 
[i] $return 
[i] ? $stop 
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APPENDIX 4. Equivalence of likelihoods for gamma D(To) and Poisson m 

Considering for the moment a single emergent and its contribution to the 

log-likelihood based on the pdf (7.11). The pdf (7.11) can be re-expressed as 

9)(Y = y) = Oe A' (3 ( exp(-A' ))° 	 (A4.1) 

(y-4)r(0) 
where 

= (y4X, = 1/13' and pi = op. 

The individual's contribution to the log-likelihood for 1, 	is 

= 9(log(g) - if) - log(y-g) + logt[T(1)-To]S(1)) + cD(0) 

(A4.2) 

where the term 0(0) is used to collect components of which do not involve the 

parameters of interest, A' and To. The third term in eqn (A4.2) is the logarithm of the 

Jacobian of the transformation from y to 1. Only the first term in eqn (A4.2) is required 

for maximum likelihood estimation for the same reasons discussed in Section 7.2 for 

the likelihood for 1 based on normal X. Note that the term 2log(x) in the log-likelihood 

(7.8) has a similar effect to -log(y-g) here. Considering the first term of eqn (A4.2) as 

equivalent to ...e without loss of generality and summing over the data, assuming the n  

individuals have common value of yj, gives 

= 

= 	milog(pi)-iii) 	 (A4.3) 

where pi=mipi  and noting that milog(mi) does not involve the Ai  and thus A,' and can 

therefore be ignored. The right-hand side of eqn (A4.3) is proportional to the kernel of 

the log-likelihood for Poisson m , the number of emergents, where p i  is the expected 

value of mi  and is given by p.j.  = mi(yi-g)A.' remembering that yj  = Di(ro). The scaling 

constant in (A4.3) is 0, the shape parameter of the gamma distribution and thus 

(=1/0) does not have the usual interpretation of a dispersion parameter for the Poisson 

(McCullagh and Nelder, 1983). Since 0 appears as a scaling constant within the 
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expression for the log-likelihood, it can be estimated independently of pi as the 

reciprocal of the residual mean deviance (Appendix 1). Equivalencing n  to its 

expected value and re-arranging terms the model for mi  can be re-parametrised as 

pi  = m yiA, where X=A;/(1+4A,'). Expressing A in terms of the gamma pdf parameters 

gives A=1/(013+4). Note that pi is simply the sum of eqn (7.5) over rni  emergents. 

Therefore ML estimation of A and To using the log-likelihood (7.12, A4.3), representing 

Poisson nzi  with expected value miDi(ro)A, , is equivalent to fitting a gamma 

distribution using ML to D(m) while simultaneously obtaining the MLE of To. The 

parameterisation is different in each case so that separate estimates of the gamma 

distribution parameters p and 4 cannot be obtained from MLE's of A and To obtained in 

the above fit, however, it is these last two parameters that are of direct interest because 

they specify the day-degree model. Separate estimates of p and 4 are required to 

inspect the adequacy of the gamma as a model of the distribution of D(ro) (Section 

7.3.3). 



APPENDIX 5. GENSTAT commands to fit the day-degree model 

using Poisson m. 

JOB 'P.subgranosus day-degree linear model ' 

" day-degree data IDDEGU]=Ly0D,f=1,...,17 see Section 7.2 

pg. 146) is on two files HADDEG1.DAT and HADDEG2.DAT the 

day-degrees for each threshold temperature from 0 to 16 

degrees (0 to 8 on HADDEG1.DAT and 9 to 16 on HADDEG2.DAT) 

from attack to emergence date. The 3rd file DDEGSEL.DAT 

holds the 10 random subsample codes where ISEL[]=1 include, 

=0 exclude observation (Section 7.3.2 pg. 151). MF is the 

number of emergents (i.e. m) " 

OPEN 'HADDEG1.DAT' ; CHAN=2 ; WIDTH=120 
OPEN 'HADDEG2.DAT' ; CHAN=3 ; WIDTH=120 
OPEN 'DDEGSEL.DAT' ; CHAN=4 
OUTPUT[WIDTH=130] 1 
UNITS[381] 
TEXT DATE 
READ[LAY=f ; CHAN=2 ; SKIP=* ; END=*] DATE,MF,DDEG[1. .91 \ 

; FIELDWIDTH=8,3,9(10) 
READ[LAY=f ; CHAN=3 ; SKIP=* ; END=*] DATE,MF, \ 

DDEG[10...17] ; FIELDWIDTH=8,3,8(10) 
READ[LAY=f ; CHAN=4 ; SKIP=* ; END=*] GND,DATE, \ 

ISEL[1...10] ; FIELDWIDTH=4,8,10(2) 
" scale day-degrees to avoid large numbers " 

CALCULATE DDEG[1...17]=DDEG[1...171/1000 
set up initial values (TCTo), DDI is an index to DDEG 

where DDI[1] is the integer value of T0+1 and DDI[2] the 

integer value of .T0+2 (see Section 7.2 pg. 146) " 

SCALAR DDI[1,2],TO ; VALUE=10,11,9.0 
set up model calculation in DDL " 

EXPRESSION DDL[1...5] ; VALUE=!E(DDI[1]=INT(T0+1.0)), \ 

!E(DDI[2]=INT(T0+2.0)),!E(DIF=TO-INT(TO)), \ 

!E(DDEGL=DDEG[DDI[1]]+DIF*(DDEG[DDI[2]]-DDEG[DDI[1]])), \ 
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!E(Fitted=MF*DDEGL) 

MODEL[DISTRIBUTION=Poisson] Y=MF 

RCYCLE[METHOD=g ; TOL=0.0004] TO ; 0 ; 16 ; 0.2 ; 9.0 

SCALAR I ; VALUE=1 & SPSE[1...4] 

" for each random selection fit the model 

and extract the parameter estimates and their s.e. 

Note that the rate parameter, A, is estimated using 

Fitted as the linear component of the model " 

FOR[NTIMES=10] 

RESTRICT MF,Fitted ; COND=ISEL[I].EQ.1 

FITNONLINEAR[PRINT=model,summary,estimates ; \ 

CONSTANT=omit ; CALC=DDL ; SELIN=y] Fitted 

RKEEP EXIT=EX ; ESTIMATES=PAR ; SE=SEP ; DEVIANCE=DEV 

EQUATE OLD=!P(PAR,SEP) ; NEW=SPSE 

PRINT EX 

RESTRICT MF,Fitted 

CALCULATE I=I+1 

ENDFOR 

STOP 

197 


