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Abstract 

This thesis contains structure theorems for several types of Artinian 
rings, in particular, finite rings, commutative Artinian rings containing an 
identity, finite commutative rings containing an identity, and semisimple Ar-
tinian semigroup-graded rings. Chapter 1 provides an introduction to Artinian 
rings, semigroup-graded rings and some algebraic coding theory. Except for 
a small percentage of lemmas which are referenced, all the theory contained 
in Chapters 2 to 5 is new. It is original work either by myself or in collab-
oration with my supervisor Andrei V. Kelarev. Some results obtained while 
conducting my Ph.D. research have appeared in [8] to [22]. 

Chapter 2 contains theorems about the generators and weights of some 
polynomial codes. A class of ideals in polynomial rings is considered which 
contains all generalized Reed-Muller codes. Necessary and sufficient condi-
tions are given for such an ideal to have a single generator. A description is 
also given of all quotient rings (/m&)[x i , , x 7 ]// which are commutative 
PIRs where I is generated by univariate polynomials. Formulas are given for 
the minimum Hamming weight of the radical and its powers in the algebra 
F[x i , , xm]/(ei  (1 — , xna- (1 — xb7,7)) for an arbitrary field F. 

Chapter 3 contains theorems about the tensor products and quotient 
rings of finite commutative rings containing identity elements. For such rings 
R and S, necessary conditions are given for the tensor product RO& S to be 
a PIR. These conditions are shown to be sufficient when R and S are PIRs. 
Conditions are given for the ring R[x]l(f(x)) to be a PIR when R is a PIR 
and f(x) is a monic polynomial. For a polynomial ring Q = R[xi, , x 72 ], and 
an ideal I c Q generated by univariate polynomials, conditions are given for 
Q I I to be a PIR when R is a PIR and Q// is finite. Conditions are also given 
for Q// to be a direct sum of finite fields or Galois rings. 

Chapter 4 contains theorems about radicals of finite rings and PIRs. For 
a class R, of finite rings, necessary and sufficient conditions are given for R to 
be a radical class and also a semisimple class. The hereditary radical classes 
are characterized. Conditions are given when several such classes consist of 
PIRs. 

Chapter 5 contains structure theorems for Artinian semigroup-graded 
rings. Consider a semigroup S and an S-graded ring R = ED, EsR, with sup-
port supp(R). Some finiteness conditions are given on supp(R) when R is 
semisimple Artinian. Various necessary and sufficient conditions are given for 
R to be semisimple Artinian when S is a semilattice, a finite semilattice, an in- 



verse semigroup and a Clifford semigroup. Semigroup identities are given for a 
semigroup variety V which ensures that a semigroup algebra FS is semisimple 
Artinian, where F is a arbitrary field and S is a finite semigroup. 
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Chapter 1 

Introduction 

1.1 An overview of this thesis 

An overview of this thesis is given here followed by a description of each chap-
ter. This thesis contains structure theorems for Artinian rings. Each chapter 
concentrates on a different type of Artinian ring or class of Artinian rings, and 
each ring R may or may not be finite, commutative or contain an identity. 
Except for a small percentage of lemmas which are referenced, all the theory 
contained in Chapters 2 to 5 is new. It is original work either by myself or in 
collaboration with my supervisor Andrei V. Kelarev. Some results obtained 
while conducting my Ph.D. research have appeared in [8] to [22]. 

In Chapter 2, all quotient rings R = S[x i , 	, x,]1 I are described which 
are finite commutative PIRs, where S = &/m& and I is an ideal generated 
by univariate polynomials. This is generalized in Chapter 3 with S being a 
finite commutative PIR. Chapter 2 also has a theorem containing conditions 
for R = F[xi, , x ri]l I to be a PIR where F is an arbitrary field. Formulas 
are then given for the minimum Hamming weight of the radical and its powers 
in the algebra F[x i , , x7,]/(4 1 (1 — . , xar,”' (1 — 4'n )). To achieve the 
generalization stated above in Chapter 3, conditions are given for the ring 
R0 S to be a FIR when R and S are finite commutative PIRs. The necessary 
condition is then proved when R and S are not both PIRs. Conditions are 
also given for R = S[x i, , I to be a direct sum of finite fields or Galois 
rings, when S is a finite commutative FIR. 

Since these rings R are commutative Artinian rings with identities, then 
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R is a PIR if and only if the radical Ar(R) is a principal ideal. The investigation 
of radicals is continued in Chapter 4. There, the more general concept of a 
radical g and a radical class of finite rings is studied. These rings are not 
necessarily commutative nor do they necessarily contain identities. Necessary 
and sufficient conditions are obtained for a class of finite rings to be a radical 
class, semisimple class and hence a radical semisimple class. Characterizations 
of radical semisimple classes are given, including classes consisting of PIRs. 

The polynomial ring R = F[xi,...,x 72 ] where F is an arbitrary field, is a 
simple example of a commutative semigroup-graded ring, see p.12. The study 
of this ring R from Chapter 2 is continued in Chapter 5, where some struc-
ture theorems for semisimple Artinian semigroup-graded rings are presented. 
Several semigroups are used, including semilattices, inverse semigroups and 
Clifford semigroups. The conditions given are for a semigroup-graded ring 
to be semisimple Artinian. The ring R = F[xl,...,xn ] is also a semigroup 
algebra over the field F, see p.12. Chapter 5 concludes with a theorem giv-
ing semigroup identities which ensure that a semigroup algebra over a finite 
semigroup is semisimple Artinian. 

Chapter 2 : Generators and weights of polynomial codes 

In Chapter 2 necessary and sufficient conditions are given for certain rings R 
to be PIRs. Formulas are then given for the minimum Hamming weight of 
a certain ideal in a particular algebra. All rings considered are commutative 
Artinian rings with identities. Most of Chapter 2 appears in [20]. 

Let R = s[x i , 	, x.]1(f1(x1), • • • , fri(x.)) where S is either &/m& or 
an arbitrary field F. Since R is an Artinian ring, it is a PIR if and only if 
N. (R) is a principal ideal. Theorem 11 gives conditions for R to be a PIR when 
S = F. 

11. The ring R = F[xl , 	xn] / (fi(xi), • • • f.(xn)), where the ft (x i ) are 
monic, is a PIR if and only if the number of nonsquarefree f(x) is < 1. 

Corollary 13, the main result of [42], is an immediate corollary to Theo-
rem 11. Generalized Reed-Muller codes, C, coincide with powers of the radical 
of the algebra, A = 	 — 1), where p = char Fq , 
qi  =p and ci  > 1 for i = 1, 	, n, [5], [24]. Corollary 14 gives conditions 
for the existence of a single generator polynomial for C. Theorem 15 gives 
conditions for R to be a PIR when S -=- 27m& and R is finite. 
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15. The ring R = &p. [x i ,... , xrdl(fi(xi), • • • , fn(xri)), where the f(x) are 
monic, is a FIR if and only if 

(i) the number of nonsquarefree mod p fi (xi )' is < 1; 

(ii) if f(x) is not squarefree mod p then gcd(f-, TL .-7) = 1. 

Theorem 18 provides formulas for the minimum Hamming weight w(J), 
where J = CAI (R)) h  is any power of the radical Ar(R), of the algebra R = 
F[x 1 , , x,]1 (x7 1  (1 - Al) , . . . , x (1 - x)). The ideal J is a generalization 
of a generalized Reed-Muller code. 

Chapter 3: Finite commutative principal ideal rings with 
identities 

In Chapter 3 every ring R is a finite commutative ring with an identity, with 
the exception of a polynomial ring such as R[x i , 	, xr ]. For such rings R and 
S, conditions are given for the tensor product R 	S to be a PIR. Sufficient 
conditions are then given for a certain quotient ring to be a PIR. Several parts 
of Chapter 3 appear in [22]. 

In the theory of finite commutative rings R with identities, the PIRs play 
a central role, see [71]. Every such ring R is a direct product of local rings, 
where each local ring is a homomorphic image of a polynomial ring over a PIR. 
A theorem is often proved for the special case of a FIR before attempting a 
local ring proof. 

In Chapter 3 a series of lemmas give conditions for several rings of the 
form R S to be PIRs. Lemma 25 proves that if R is a Galois ring, and S is 
a chain ring, then R 0 S is a FIR. Lemma 26 proves that if R and S are chain 
rings which are not Galois rings then R 0 S is not a FIR, unless R 0 S = 0. 
Since a FIR is a direct product of local PIRs, Lemmas 25 and 26 form the 
basis of the proof of Theorem 27. 

27. The ring R 0 S is a FIR if and only if, for each prime p, RI, or S is a 
direct product of Galois rings, where R and S are finite commutative PIRs 
with identities. 

Lemma 29 proves that if R and S are finite local rings and S/pS is not 
a FIR then R S is not a FIR. Lemma 30 proves that if R and S are finite 
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local rings which are not both PIRs and R0 S 0 is a PIR then R is a Galois 
ring and SlpS is a finite chain ring which is not a Galois ring. Lemma 30 is 
used to prove Lemma 31, a partial generalization of Lemma 27. 

31. If R S is a FIR then, for each prime p, Rp  or Sp  is a direct product of 
Galois rings, where R and S are finite commutative rings with identities. 

Theorem 27 is used to prove Theorem 33, that a certain ring of the form 
Q = R[x i , , xn ], („fi(xi), • • • , fn (xn )) is a PIR, since Q 0 7,1=1 R[x ill(fi (x j )). 
The main result needed to prove Theorem 33 is then Lemma 35. 

35. The ring Q = GR(pm,r)[x]l (f (x)) where In >  2 and  f (x) is monic and 
not squarefree mod p, is a PIR if and only if gcd(f, UP (f)) = 1. 

33. Let R be a finite commutative chain ring with char(R) = pm , and let 
f(x) for 1 < i < n be monic polynomials over R, then Q = R[x i , ,xn1/ 
(h(xi), • .., fn(xn)) and all rings R[x2,]/(fi  (xi )) are PIRs, if and only if one of 
the following conditions is true. 

(i) R is a field and the number of nonsquarefree f(x) is < 1; 

(ii) R is a Galois ring, the number of nonsquarefree mod  p fi (x i )' is < 1 and 
if f(x) is not squarefree mod p then gcd(f ,  , UP (f)) = 1; 

(iii) R is not a field or Galois ring, n = 1 and f i  is squarefree mod p. 

Let R and S be finite local rings. Lemma 41 proves that R0 S is a direct 
product of Galois rings if and only if so too are R and S. Lemma 42 proves the 
same statement with finite fields instead of Galois rings. Let S = R[x]1(f(x)) 
where R is a chain ring and f is monic. Lemma 43 proves that if S is a direct 
product of Galois rings then R is a Galois ring and f is squarefree modulo p. 
Lemma 44 proves that if S is a direct product of finite fields then R is a finite 
field and f is squarefree. These lemmas are used to prove Theorem 45. 

45. Let R be a finite commutative chain ring with char(R) = pm, and let 
.ii(xi) for 1 < i < n be monic polynomials over R, then Q = R[xi, • • • , xn11 
(fi(xi), • • , fn(xn)) satisfies 

(i) Q is a direct product of finite fields if and only if R is a finite field and 
all the L are squarefree; 
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(ii) Q is a direct product of Galois rings if and only if R is a Galois ring and 
all the fi  are squarefree modulo p. 

Chapter 4 : Radicals of finite rings and principal ideal 
rings 

In Chapter 4 several necessary and sufficient conditions are given which charac-
terize radical semisimple, radical and semisimple classes of finite rings. Further 
conditions are given for such classes to consist of PIRs. All rings considered 
are finite but it is not required that these rings are commutative or contain 
identity elements. 

Radicals are basic structural tools of ring theory, see [38]. A radical class 
R., consists of all rings R E R which are 0-radical, hence satisfy g(R) = R, 
for some radical mapping g. A semisimple class S, consists of all rings S E S 
satisfying co(R) = 0 for some radical mapping cp . A radical semisimple class 
satisfies both these conditions for some radical mappings g and co. Theorems 49 
and 50 provide necessary and sufficient conditions to characterize these classes 
when they consist of finite rings. The same conditions are true for the subclass 
of finite commutative rings. 

49. A class of finite rings, or finite commutative rings, is a radical class if and 
only if it is closed for homomorphic images and ideal extensions. 

50. A class of finite rings, or finite commutative rings, is a semisimple class if 
and only if it is closed for ideals and ideal extensions. 

Let R. be a radical semisimple class of finite rings. In Theorem 52 the set 
ArR  of all nilpotent rings are shown to be of the form .A.r, for a set it of primes. 
Two characterizations are given for R. Theorems 53 and 55 prove respectively, 
that R, coincides with certain classes denoted by 'R.,, A4  and Ric . Conditions 
are derived in Theorems 56 and 57 for two classes of rings to consist of PIRs. 

• 56. A hereditary radical of finite rings consists of PIRs if and only if it is 
subidempotent. 

57. A semisimple class of finite rings consists of PIRs if and only if its radical 
is supernilpotent. 

Theorem 58 proves that the class of all finite commutative PIRs with 
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identity is a radical class. 

Chapter 5: Semisimple Artinian semigroup-graded rings 

In [97], Zel'manov proved that if a nonzero semigroup ring KS is right Ar-
tinian, then the semigroup S is finite. In Chapter 5 several necessary and 
sufficient conditions are given for various S-graded rings R = EBsEsR, to be 
semisimple Artinian under certain finiteness conditions on supp(R) c S. All 
rings considered are Artinian but it is not required that these rings are com-
mutative or contain identity elements. Most of Chapter 5 appears in [21]. 

Consider the two finiteness conditions on supp(R), 

(i) supp(R) intersects a finite number of maximal subgroups of S, 

(ii) supp(R) contains a finite number of idempotents. 

Condition (i) is proved true for a semisimple Artinian S-graded ring in Theo-
rem 59. Condition (ii) then follows for this ring by Corollary 60. Two theorems, 
62 and 64, are then proved for all S-graded rings satisfying conditions (i) and 
(ii) respectively. 

62. For any semigroup S, the following conditions are equivalent. 

(i) Every S-graded ring R = Epses  R, with a finite number of idempotents in 
supp(R) is semisimple Artinian if and only if all subrings Re  are semisim-
ple Artinian for all idempotents e of S; 

(ii) S is a semilattice. 

64. For any semigroup S, the following conditions are equivalent. 

(i) Every S-graded ring R = M 
— sEs Rs with supp(R) intersecting a finite 

number of maximal subgroups is semisimple Artinian if and only if all 
subrings Rc = elgEG  Rg  are semisimple Artinian for all maximal sub-
groups G of S; 

(ii) S is a Clifford semigroup. 

6 



Following from Theorem 62 is Corollary 63, the class of semisimple Ar-
tinian rings is S-closed if and only if S is a finite semilattice. Two theorems, 65 
and 68, respectively give conditions for special B-graded rings, and faithful 
S-graded rings, to be semisimple Artinian rings. 

65. A special B-graded ring R=  beg  Rb is semisimple Artinian if and only if 
B is a finite semilattice and all components Rb are semisimple Artinian, where 
B is a band. 

68. Let S be an inverse semigroup, and let R = —se" Rs be a faithful S-graded 
ring with a finite number of idempotents in supp(R). If RG is semisimple 
Artinian for all maximal subgroups G of S, then R is semisimple Artinian. 

Theorem 69 uses a third finiteness condition on S, that being, (iii) S has 
a finite number of idempotents. 

69. For any inverse semigroup S, the following conditions are equivalent. 

(0 every S-graded ring R = sEs  Rs  is semisimple Artinian if and only if 
R is semiprime and all subrings RG = ED 9, E G Rg  are semisimple Artinian 
for all maximal subgroups G of S; 

(ii) S has a finite number of idempotents. 

Finally Theorem 70 states equivalent conditions for a certain semigroup 
variety V, involving semigroup identities, which ensure that a semigroup alge-
bra FS is semisimple Artinian, where F is an arbitrary field and S is a finite 
semigroup. 

1.2 Motivation for the theorems in this thesis 
and its connections with the mathematical 
literature 

Chapter 2 considers certain commutative Artinian algebras and some error-
correcting codes associated with them. Several authors have established that 
many interesting codes are ideals in certain algebras. Berman [5], in the case 
of characteristic two, and Charpin [24], in the general case, proved that all 
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generalized Reed-Muller codes coincide with powers of the radical of the al- 
gebra A = Fq [xi, 	, xri ]/(x7' — 1, . . . , 	— 1), where Fq  is a finite field, 
p = char Fq  > 0 and qi  = p , for i = 1, , n, and gave formulas for their 
Hamming weights. These codes form an important class containing many 
codes of practical value. Code properties of ideals 'in algebras A have also 
been considered by Poli [81]. 

This approach helped to improve some parameters of the codes. For ex-
ample, Berman [5] showed that in certain cases, abelian group codes, [6, §4.8], 
have better error-correcting properties than cyclic codes. Using the underly-
ing algebraic structure, a new fast decoding algorithm for Reed-Muller codes 
was developed by Landrock and Manz in [66]. Since these radicals have such 
good code properties, Chapter 2 determines when these radicals possess a sin-
gle generator polynomial. It also determines when more general commutative 
Artinian algebras are PIRs. If the radical, Ar(R), of a commutative Artinian 
algebra R, is a principal ideal, then the same is true of all its powers and R 
is then a PIR. Chapter 2 also gives formulas for the Hamming distance of the 
powers of Ar(R) when the coefficient ring is a field F in Theorem 18, a special 
case of which is given in [5] as Theorem 1.2. 

The polynomial codes in Chapter 2 are Jacobson radicals of commutative 
Artinian rings. Jacobson radicals have been studied for several classes of rings, 
see [53]. We refer to the surveys of [52] and [56] for descriptions of the Jacobson 
radicals of commutative semigroup rings. For recent results on the Jacobson 
radical of graded rings we refer to [27], [63] and the surveys [48], [55] and [62]. 

The polynomial rings in Theorem 18 of Chapter 2 are commutative semi-
group rings. Conditions for them to be PIRs are contained in Corollary 13. 
Commutative semigroup rings which are PIRs have been investigated in [49] 
and [51] and a complete description of commutative semigroup rings which are 
PIRs was obtained in [34]. All graded commutative PIRs were described in 
[33]. 

Chapter 3 considers tensor products and certain quotient rings of finite 
commutative rings and determines when they are PIRs. Finite commutative 
rings are interesting objects of ring theory and have many applications in 
combinatorics. Tensor products of Galois rings have been determined in [95]. If 
we want to use certain ring constructions in combinatorial applications of finite 
rings, then a natural question arises of when a ring construction is a PIR. This 
question has been considered in the literature for several ring constructions, 
as mentioned in the preceding paragraphs. 
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Chapter 4 considers radical classes and semisimple classes of finite rings 
and determines when radicals of finite commutative rings contain PIRs. Rad-
icals are important structural tools of ring theory. This gives motivation for 
investigating radicals in the class of finite rings. First, we shall develop the 
radical theory of finite rings and prove several theorems which seriously dif-
fer from the corresponding facts obtained earlier in the class of all associative 
rings. In particular, we describe all radical semisimple classes of finite rings. 
This description is quite different from the description of radical semisimple 
classes of arbitrary rings due to Stewart and Gardner, see [39], [87]. 

As many interesting error-correcting codes are radicals in finite commu-
tative rings, it makes sense to answer the following question. When does each 
ideal in every radical ring have a single generator polynomial? Second, we 
describe all radicals with this interesting property. 

Chapter 5 determines several structural theorems for Artinian semigroup-
graded rings. Zel'manov proved that if a nonzero semigroup ring KS is right 
Artinian, then the semigroup S is finite, see [97]. Several analogues of this 
theorem for graded rings have appeared in the literature recently, see [28], 
[50], [60]. The strongest result has been obtained in [60]. 

Many constructions of rings are examples of semigroup-graded rings. 
These include polynomial and skew polynomial rings, direct and semidirect 
products of rings, matrix and structural matrix rings, Rees matrix rings, 
Morita contexts and generalized matrix rings, group and semigroup rings, 
monomial rings, smash products and cross products and group-graded rings. 
More examples are given in [62]. 

Graded rings satisfying various important finiteness conditions have been 
considered in many papers, see [2], [7], [26], [28], [31], [32], [47], [50], [60], [58], 
[59], [61], [74], [75], [76], [92], [91]. Subrings of simple Artinian rings were 
considered in [37]. 

1.3 Some Preliminary Theory 

Arbitrary rings 

Let R be an arbitrary ring. If R has an identity then the characteristic, 
char(R), of R, is the smallest positive integer n such that n1 = 0. If such an 
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integer does not exist then char(R) = 0. We denote by R0 S = RO S, the 
tensor product over ," of the rings R and S. The notation I < R means I is 
an ideal of a ring R. Define the quotient ring S===--' RI I of R for some ideal 
I a R. A homomorphic image of R is isomorphic to some quotient ring S of R. 
An ideal extension R, of I by S, is a ring R such that R// '-' S for some ideal 
I a R and ring S. An idempotent r of a semigroup or a ring R is an element 
r E R satisfying r 2  = r. If every ideal of a ring R has one generator, then R 
is called a principal ideal ring, PIR. 

There are several algebraic structures involving the terminology radical, 
which are related to each other. These include the following. 

• a radical g, of a class R, of rings; 

• a g-radical ring R; 

• a radical class R, of rings; 

• a radical g(A) of a ring A with respect to a radical class of rings R,; 

• the radical rad(I), of an ideal I < R of a ring R; 

• the radical N(R) of an Artinian ring R. - 

We now provide definitions of these structures and illustrate some rela-
tions between them. 

Definition 1 A nilpotent element r, of a ring R, satisfies rn = 0 for some 
positive integer n. A nil ideal I, of a ring R consists of nilpotent elements. 
A nilpotent ideal I, of a ring R satisfies /N  = 0 for some positive integer N. 
The nilpotent index or index of nilpotency of an ideal I is the smallest positive 
integer N satisfying /N  --= 0. For a commutative ring R, with ideal I, define 
the radical of the ideal / as rad(I) = li = {r E R: 3n > 0 with rn E I}. The 
set, rad((0)), of all nilpotent elements of R, is the nilradical of R, [41] p.19. 

Definition 2 Let U be a class of rings satisfying 

(i) AEU,A-BBEU; 

(ii) / a A, A E U 	/ E U; 
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(iii) / a A, A e U = A// 

Let g be a function which assigns an ideal g(R) to each R e U. Then g is 
called a radical if it satisfies 

(M1) g(R)/I C g(R/I) for every ring R with ideal I; 

(M2) g(R) is the largest ideal among all ideals I of R such that g(I) = I; 

(M3) g(R/g(R)) = 0 for each R. 

A ring R is said to be radical or g-radical if g(R) = R. The class {R E U : 
g(R) = R} is called the radical class defined by g. A ring R is said to be 
semisimple or g-semisimple if g(R) = 0. The class {R e U : g(R) = 0} is 
called the semisimple class defined by g. Let R. be a radical class of rings 
defined by g. For any ring A E R. let g(A) be the largest ideal of A such that 
g(A) E R then g(A) is the radical of A with respect to R, [38] p.13. 

Definition 3 A ring R satisfies the descending chain condition if every de-
scending chain of ideals in R is finite. A ring R is left Artinian (right Artinian) 
if it satisfies the descending chain condition on its left ideals (right ideals). The 
ring R is Artinian if it is left and right Artinian, [82] p.167. 

It immediately follows that a finite ring is an Artinian ring. Almost all 
classes of rings considered in this thesis are Artinian rings. Since the Jacobson 
radical and nilradical .Ar(R) of an Artinian ring R are identical, [1] p.89, we 
refer to this ideal as the radical of R. An equivalent definition is that the radical 
N-(R) of an Artinian ring R is the unique maximal nil ideal of R, [82] p.200. 

Consider the following example. Let U be the class of all rings and for 
each R E U, let g(R) be the largest nil ideal. Then g is a radical, its radical 
class being the class of all nil rings. The semisimple class of g is the class 
of rings with no nonzero nil ideals. If R is Artinian then g(R) = MR), the 
largest nilpotent ideal of R. In general, g(R) is not an Artinian ring if R is 
Artinian. 

A major part of ring theory is concerned with describing how far a ring is 
from being a semisimple Artinian ring. As shown in [82] p.xvii, p.169, a simple 
Artinian ring is a matrix ring over a division ring and a semisimple Artinian 
ring is a finite direct product of simple Artinian rings. 
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Definition 4 Given some collection {Ai  : i E /} of ideals of a ring R, R is a 
subdirect product of the rings {RI A i  : i e /} if the canonical homomorphism 
Co R FLEI is an injection. A ring is prime if the product of any two 
nonzero ideals is nonzero. A semiprime ring is a subdirect product of prime 
rings, see [82] p.143, 164. 

Definition 5 A semigroup ring R[S], or RS, is the set of all functions f : S 
R from a semigroup S to a ring R under the following standard definitions of 
addition and multiplication. For every f, g E R[S] and s E S, 

(f + g)(s) = f (s) g(s) 

( fg)(s) = 	f(a)g(b) 
ab= s 

Elements of R[S] may be written as f = EsEs f(s)s. A semigroup algebra 
F[S], or FS, is a semigroup ring which is also a vector space over some field 
F, [77] p.33. If S is a group G, then R[C], or RC, is a group ring and F[G], 
or FG, is a group algebra. 

The term algebra is used throughout this thesis to denote a ring which 
is also a vector space over some field. An interesting example of a semigroup 
ring is the set of all arithmetical functions f : C —> on an arithmetical semi-
group G. Its corresponding semigroup algebra is the Dirichlet algebra Dir(G), 
which is a unique factorization domain, see [64] p.23. A simple example of a 
semigroup algebra is the polynomial ring R = F[x i , , xn] = F[S] considered 
as an algebra over some field F. The semigroup is S = ED 7,'_ 1 &+  where &+ is 
the additive semigroup of positive integers. An element of F[S] is a mapping 
f : S F assigning to any s = (s i , , sn ) e S an element f(s) = a, E F, 
and this mapping is represented by the polynomial f = Eses  asei l • • • xnsn . 

Definition 6 Let S be a semigroup. A semigroup-graded ring, or S-graded 
ring, is an associative ring R with the decomposition R = ED.Es R. into a direct 
sum of Abelian groups such that for all s,t e S, R,Rt  C R5t , [62]. 

A semigroup ring R[S] is an example of a semigroup-graded ring where 
R[S] is graded by S. A simple example of a semigroup-graded ring is the poly- 
nomial ring R = F[x i , 	, x ii ] where F is an arbitrary field. Here R = 'OA  sS  R8 
is graded by the commutative semigroup S = 	, the additive semigroup of 
positive integers s > 0. For any integer s > 0, R, is the additive Abelian 
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group of all linear combinations of monomials of total degree d, such a mono- 
mial being given by f (x i , 	, xn ) = a fl xip where Ein_ i  bi  -= d and a E F. 
Commutative rings graded by 	are used widely throughout commutative 
algebra, [73] p.21, and algebraic geometry, [43] p.9, 426, where they are known 
as graded rings. The terminology graded rings refers more generally to the 
rings given in Definition 6. 

Let F be an arbitrary field and f = MEI  a E F[x] be squarefree. By the 
chinese remainder theorem for ideals, [35], Exercise.2.6 p.80, F[x]1(f (x)) = 
fl iE/  F[x]/(a(x)), a finite direct product of fields. Since F[x] is a Euclidean 
ring, it is a PIR. As any homomorphic image of a PIR is a PIR, then F[x]/I is a 
PIR for any ideal /a F[x]. In particular this applies when F is a finite field Fq . 
But R[x] is not a Euclidean ring when R is not a field and the determination 
of ideals / which make R[x]// a PIR is an interesting problem. 

Finite commutative rings with identity 

The Galois field GF(pr) = Fq  is the finite field with q = pr elements. The ring 
Z./m& of residues modulo m is written as &,-„, here to shorten the notation, 
since the p-adic integers are not mentioned in this thesis. The Galois ring 
GR(pm , r) of characteristic pm and order pmr satisfies GR(pi ,r) G F (71) and 
GR(pm ,1) Ipm , see p.29 of this thesis and [71, §16]. 

A local ring is a ring containing only one maximal ideal m. Let R be a 
finite commutative ring with identity. The structure of R is given in [71]. The 
ring R is a direct product of local rings. Each such local ring is isomorphic to 
a homomorphic image of a polynomial ring of the form G R(pm , q)[x 1 , , x 
see Lemma 28. If R is a PIR then it is a direct product of local PIRs. These 
local rings are called finite chain rings since the ideal lattice of each chain ring 
is a chain, 0 = mN  C MN-1  C • C m, where N is the nilpotent index of the 
chain ring. The radical of a finite chain ring R satisfies Ai(R) = m, where R 
has maximal ideal m. 

For any ring R and prime p, the p—component of R is defined by 

Rp  = fr E R pkr = 0 for some positive integer kl. 

Let R be a finite commutative ring with identity. It may be decomposed as 
R = ripcp Rp , a direct product of its p—components Rp , where P is a finite 
set. Each ring Rp  is a direct product of finite chain rings, R. p =fT EI  C , such 
that char(C) = pi] for some integers i, ij  > 1, where I is a finite set. 
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Algebraic coding theory 

This section contains a few standard definitions of coding theory which are 
needed in Chapter 2. 

Definition 7 A code C is a subset of the vector space (Fq )n. A codeword 
c E C has Hamming weight w(c) if it has w(c) nonzero co-ordinates. An 
(n, k, d) linear code C is a subspace of dimension k of (Fq )n, with length n, 
Hamming distance d =minimum{w(c) : c E C} and can correct t = [(cl - 1)/2] 
errors per codeword. A polynomial code C over Fq  is an ideal of the ring 
R Fq [x 1 , , xm] I I for some ideal I. Since R is an algebra over Fq , C is 
a linear code. The generators of this ideal are the generators of the code. A 
cyclic code of length n is an ideal of Fq [x]I (xn - 1) such that (n, q) = 1. A 
nonlinear code is a code which is not isomorphic to a linear code. A binary 
code has co-ordinates in the field F2 = CF (2). See [70]. 

Definition 8 ([70, Ch.13 §3].) Given two binary codes C 1  and C2 with the 
same length n define the binary code C3 as 

C3 = 	* C2 = {(21,12t +71) : 	E C1,72 E C2} 

where (alb) is the concatenation of the vectors a and b. Define the binary r -th 
order Reed-Muller code C (r, m) as follows. For any positive integers m and r 
where 0 <r < m, C (r, m) has codewords of length 2', 

C(0, m) = {0, 	, where 0= (00... 0) and 1= (11 ... 1); 
C(m,m) = (GF(2)) 2m  ; C (r + 1,m + 1) = C (r + 1, m) * C (r, m). 

C(r,m) is a linear (2m, Mo  (7), 2m-r ) code, which is not usually cyclic 
but it is an extended cyclic code. The first order binary Reed-Muller code 
C(1, m) is a (2', m + 1, 27Th_1) linear code and all codewords except 0 and 1 
have weight n/2 = 2m -1 . 

Example 9 C(0,1)={ 00, 11 } C(1,1)={ 00, 10, 01,11 } 
C(0,2)={0000, 1111 } 
C(1,2)=C(1,1)*C(0,1)={ 0000, 0011, 1010, 1001, 0101, 0110, 1111, 1100 } 
C(1,3)=C(1,2) * C(0,2)={ 00000000, 00001111, 00110011, 00111100, 
10101010, 10100101, 10011001, 10010110, 01010101, 01011010, 
01100110, 01101001, 11111111, 11110000, 11001100, 11000011} 
C(1, 2) is a cyclic even weight (4, 3, 2) code. C(1, 5) is a (32, 6, 16) linear code 
with 64 codewords and t = 7. 
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NASA uses error-correcting codes to correct errors introduced into their 
transmission channels, when sending pictures of the various planets to earth 
via their space probes. In 1972, the Mariner 9 space probe transmitted black 
and white pictures of Mars to Earth using C(1, 5), see [89] p.4. 

A description of generalized Reed-Muller codes is given in [6, §1.10] and 
their connection with the codes of Berman [5], is given in [6, §4.8]. 
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Chapter 2 

Generators and weights of 
polynomial codes 

This chapter is devoted to two ring constructions and one theorem on the 
Hamming weight w((Ar(R)) h ) for a certain algebra R. The rings considered 
are Artinian and of the form R = S[xi, , xri] I f (x 1), • • • , fri(xn)) where S 
is either Z"/m& or an arbitrary field F. Only the case when R is finite is 
considered when S = ZlinZ'. Necessary and sufficient conditions are given 
for R to be a PIR for each of the two rings R. Formulas are then given for 
the minimum Hamming weight w(J) where J = JV(R))l is any power of the 
radical .A1 (R) of the algebra R = F[x i , , x]/ (x' (1 — . . . , x (1 — 

Since most of this chapter appears in [20] the notation is the same for both, 
yet has some slight differences to that used in Chapter 3. 

2.1 Generators of polynomial codes 

Several authors have established that many linear codes are ideals in certain 
algebras. Berman [5], in the case of characteristic two, and Charpin [24], in 
the general case, proved that all generalized Reed-Muller codes coincide with 
powers of the radical of the algebra A = Fq [x i , , xii1/(x7 1  — 1, , x1,7 — 1), 
where Fq  is a finite field, p = char Fq  > 0 and qa  = pCi , for i = 1, , n. We 
determine when this radical and more general radicals have a single generator 
polynomial. 
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Lemma 10 An Artinian ring R is a PIR if and only if its radical AI -(R) is a 
principal ideal. 

Proof. The 'only if' part is trivial. An Artinian ring is a direct product of 
local rings ([1], Proposition 8.7). If the radical of a local Artinian ring is a prin-
cipal ideal, then all ideals are principal by Lemma 32 or [1], Proposition 8.8. 0 

Thus since A is an Artinian ring, the question of when the radical is a 
principal ideal is crucial for all other ideals to have a single generator. For 
example, it is well known that cyclic codes are ideals in the algebra A = 
Fq [X]/(Xk  — 1), and each ideal in A is generated by one polynomial, see p.13. 
This property is convenient both for representing the code and for developing 
encoding and decoding algorithms. Similar questions have been considered in 
several papers. For example, Charpin [23] described extended Reed-Solomon 
codes which are principal ideals. 

Theorem 11 answers this question for even more general algebras 

F[x i ,... , xn]/(fi (x 1 ),...  

where 	, fn  are arbitrary univariate polynomials and F is an arbitrary 
field. As an immediate corollary (see Corollary 13), we get the main result of 
[42]. 

A few authors have considered codes over the ring &/m.& = & 77, of 
residues modulo m. A new motivation for the study of these codes has been 
provided recently by [44] where it is shown that many important nonlinear 
codes can be viewed as binary images of linear codes over Z.4. Thus, introduc-
ing codes over 77 77,, makes it possible to apply to nonlinear codes the techniques 
developed earlier for linear codes, or in particular polynomial codes. 

Theorem 15 describes all finite rings 

, xril/(h(xi), • • • , f.(x.)) 

which have radicals that are principal ideals. It turns out that in this case the 
description is essentially more complicated, and does not follow from our first 
theorem. 

After that, we give formulas for the minimum Hamming weight of the 
radical and its powers in the algebra 

F[x i ,... ,x,]/(x71 (1 — xbi9, 	, 4,- (1 — 
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If f = glni • • • gkInk , where f E F[x] and g i , 	, gk are irreducible poly- 
nomials over F, then by sp(f) we denote the squarefree part g i  • • • gk  of f. 
We assume that sp(0) = 0 and regard 0 as a squarefree polynomial. Since 
the Jacobson radical and nilradical Al(R) of an Artinian ring R are identical, 
[1] p.89, we refer to this as the radical of R. 

Theorem 11 Let fi(xi),... , fn (x ii ) be univariate polynomials over an arbi-
trary field F, and let R = F[x l , ,x7,]1(fi(xi), • • , fn (xn )). Then the rad-
ical Ar(R) is a principal ideal of R if and only if the number of polynomials 
fi, • • . , fri which are not squarefree does not exceed one. 

We shall use the following description of the radical. 

Lemma 12 ([3, §8.2]). The radical Ar(R), of 

R = F[xi, 	, xri]l (h(xi), • • • , fn(xn)) 

is equal to the ideal generated by the squarefree parts of all polynomials 	, f. 

Proof of Theorem 11. The 'if' part immediately follows from Lemma 12. 
Indeed, if all are squarefree, then ARR) =- 0. If fa  is not squarefree, 
and all the other polynomials are squarefree, then ARR) is generated by the 
squarefree part of fi (x i ). 

The 'only if' part: Suppose to the contrary that the radical of R is a 
principal ideal, but two polynomials, say fi  (x i ) and f2 (x2 ), are not squarefree. 

Assume that 	, fk 0 and f J k +1 • • • f n = 0. Then it follows from 
Lemma 12 that the radical Ai(R) is equal to 

Al {F[x l , • • • , xk]i (mxi), • • • , fk(x0)} [xk+i, • • • ,Xr]• 

To simplify the notation we may assume that k = n, i.e. all 	, fn  are 
nonzero. 

Then R has finite dimension as a vector space. Therefore it is a direct 
sum of local rings ([1], Proposition 8.7). If the radical of a local Artinian ring 
is a principal ideal, then all ideals are principal by [1], Proposition 8.8. Thus 
R is a PIR. 
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Since R/(x3 ,... , xn ) is a homomorphic image of R, it is also a PIR. 
Hence we may assume that n = 2. Let fi(x1) = g ia l(xi) gkak(xi) where 
.91(xi), • • • ,gk(x1) are irreducible over F and a 1 > 1. Since (el  1 , f2) D f2 ), 
the ring F[xi,x2]/(g(xi), f2(x2)) is a homomorphic image of R and so it is 
a PIR too. Therefore we may assume that from the very beginning f i(xi) =---- 
g 12,(x 1 ). Given that gi(xi) is irreducible, we see that Q = F[x i ]/(g i (x i )) is a 
field. If we regard f2(x2) E F[x2] C Q[x2 ] as a polynomial over Q it is not 
squarefree. Consider the factorization f2(x2) = h 113. 1  (x2) . . . h (x2 ) where all 
h i (x2 ) E Q[x2 ] are irreducible and13 1  > 1. Clearly, Q[x 2 ] = (F[xi]/(.91(xi)))[x2] 
= F[x i , x 2 ]/(g i  (xi)) is a homomorphic image of F[x i , x2 ]. Denote by h(xi, x2) 
a polynomial in F[x i , x2] whose image in Q[x2 ] equals h i (x2). Consider the 
ideal I generated by g i (x 1 ) and h(x i , x2 ) in F[x i , x2]. We see that 

F[xi,x2]// r="" {F[xi,x2]/(g1(xi))}/{(91(xi), h(xi,x2))/(.91(xi))} 
Q[X2]/111 (X2) 

is a field, because h i  (x2 ) is irreducible over Q. Therefore I is a maximal ideal. 
By [41], Proposition 38.4(b), the ring F[x i , x2] must not have ideals which lie 
strictly between / and / 2 . However, (gi(xi), h 2  (xi, x2), gi(xi)h(xi, x 2 )) strictly 
contains / 2  and is contained in I. This contradiction shows that at most one 
of the polynomials , fn  can be squarefree. 

Theorem 11 immediately gives the main result of [42]. 

Corollary 13 ([42]) Let F be a field, m < n, 	, am  nonnegative integers, 
b 1 ,... ,b, positive integers, and let 

R = F[xi, . • • , xr] I (4 1  ( 1 	xbi l ) , • • • , 	( 1  — 47)). 

If char F = 0, then the radical of R is a principal ideal if and only if at 
most one of the a l , 	, a, is greater than 1. 

If char F = p > 0, then R is a PIR if and only if one of the following 
conditions is satisfied: 

(1) a 1 ,. ,am  <1 and p divides at most one number among b1, • • • ,bm; 

(2) exactly one of a l , 	, am , say a l , is greater than 1 and p does not 
divide each of b 2 ,... 
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Proof of Corollary 13. Consider the polynomial f = xa(1 — x"). By [3], 
Lemma 2.85, a polynomial is squarefree if and only if it is coprime with its 
derivative. If char F = 0, then we see that f is squarefree if and only if a = 1. 
If however char F = p > 0, then f is squarefree if and only if a = 1 and p does 
not divide b. Thus Theorem 11 completes the proof. 0 

A second corollary to Theorem 11, Corollary 14, shows that the gen-
eralized Reed-Muller codes which contain only one generator polynomial are 
defined using polynomials x1: — 1 with ci  > 1 for at most one i, i = 1 , n. 

Corollary 14 Let A = Fq [xi,... ,x]1(4 1  —1, 	, x7,7 —1), where Fq  is a finite 
field, p = char Fq , qi  = pc' and c i  > 1 for i = 1, . . . ,n. Let Ch = GAT (R)) h  
be a generalized Reed-Muller code, where 1 < h < N, and N is the nilpotent 
index of A. Then Ch has only one generator polynomial if and only if n = 1 
or Ci > 1 for at most one i. 

Proof For i = 1, 	, n, the polynomial xt — 1 = (xP — 1) c2  E Fq [x] is 
squarefree if and only if c i  = 1. 0 

Let m = pai l • • • pakk be a positive integer, where p 1  < • • • < pk  are primes. 
Suppose that we want to describe all finite rings 

R 	 ,x,,]/(h(zi), • • • , fn(xn)) 

which have radicals that are principal ideals. Since .T m  is isomorphic to the 
direct product fl and the radical of a finite direct product is a 
principal ideal if and only if the radicals of all direct components are principal, 
it easily follows that we need only to consider the case where m = pa for a 
prime p. 

Let m = pa. Any element of ZZm  is uniquely represented by an element 
of the integer interval [0, m — 1] = {0, 1, . . . , m — 1} C Denote by B[x] the 
set of all polynomials f E &m [x] such that all coefficients of f are represented 
by elements of B = [0, p — 1]. Let f f denote the natural homomorphism 
of .T.,n [x] onto ■&.p [x] (i.e., reduction of coefficients modulo p). 

For any polynomial g E aTp [x] there exists a unique polynomial g' E B[x] 
such that g' = g. Hence, for any polynomial f E &,,[x] there exists a unique 
polynomial f' E B[x] such that f' = 7. Evidently, 7 = g if and only if f' = g'. 
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Similarly, if a> 1, then there exists a unique polynomial f" E B[x] such 
that f — f' —pf" E p2 7Z,. For a = 1, we put f" = 0. 

Using this terminology, for any f E ATni [x], we define unique polynomials 
d = d f ,u = uf E B[x] and f E .Tp  [x]  by  the following conditions, d = d', u = 
u', i = sp(f), f = drt and f = f" — (ud)". It follows that f' — ud E  p&rn [x].  
Since f' E B[x] then (I)" = 0 for any f and we also get f = f" + (f' — ud)". 

A polynomial f E a.pa[x] is regular if it is not a zero divisor. It follows 
from [71], Theorem 13.2, that p divides f if and only if f is a zero divisor. 
Therefore if f is a zero divisor then f = pre for some integer 1 < r < a — 1 
and monic polynomial e(x) E R[x]. By [71], Theorem 13.6, if f(x) is regular 
then there exists a unit u E R and monic polynomial e(x) E R[x] such that 
f = tie. 

Let R be defined as in Theorem 15, with the f(x) being univariate 
polynomials. It follows from [71], Theorem 13.2(c), that R is finite if and only 
if all the fa (x i ) are regular. Theorem 15 and Corollary 16 are true when the 
f(x) are regular polynomials but for simplicity we assume they are monic. 

Theorem 15 Let m = pa, where p is a prime and a is a positive integer. The 
radical Ar(R) of the ring 

R= avm,[xi,...,xn]1(fi(xi),• • 	fn.(xn)) 

where fi(xi), ••• , fri (xn ) are monic, is a principal ideal if and only if the fol-
lowing conditions are satisfied: 

(i) the number of polynomials 	, fn  which are not squarefree modulo p 
does not exceed one; 

(ii) if a > 1 and f = fi  is not squarefree modulo p, then f  is coprime with 
nf. 

Proof of Theorem 15. If a = 1, then .T/paa .  is a field, and the assertion 
follows from Theorem 11. Further, we assume that a> 2. 

The radical ./V(R) contains the ideal pR, because (pR)a = 0. If all 
polynomials 71 (x 1 ), .. • , f (x) are squarefree over aTp then 

RIpRL' &p[xi,•• • ,xn]1(fi(xi), • • • ,in(xn)) 
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is semisimple by Lemma 12, and so Ai(R) = pR is a principal ideal. 

Suppose that exactly one polynomial, say f =fi , is not squarefree. Let 
u, d be polynomials in am [x] as defined above then it follows from Lemma 12 
that 

(R) = (df,P) = {-A 1-(& m[x1]1(h))}[x2, • • • ,x7,]1(f2, • • • fn.). 

Therefore J\/(R) is a principal ideal if and only if N- (&,,,[xi1/(fi)) is principal. 
So we may assume that n = 1, x = xl , and R =  

Suppose that I is coprime with ri-L7 = T.L. Denote by h a polynomial in 
&,,[x] such that h =h' and h is the product of all irreducible divisors of f 
which do not divide f. Put g = d + ph E &,[x]. We claim that the radical 
J\/(R) is equal to the ideal I generated in R by g. 

It follows from Lemma 12 that N(R) = (p,d). hence g E AT(R) so 
I C (R). Therefore it remains to show that p,d E (g) = I. 

The choice of h ensures that f  - hu is not divisible by any irreducible 
factor of f which does not divide f. If we look at an irreducible factor of 
f which divides f, then it does not divide h, and so it does not divide hu, 
because Tt is coprime with f. Thus f — hu and a are coprime. 

Hence there exist A, B E &,,[x] such that A = A', B =-- B' and 1 = 
A( f — hu)+ Bd. Notice that f' — ud = p[( f' — ud)"]+p2 w for some w E ATm [x], 
because (f' — ud)' = 0. There exists a unique polynomial f* = (f*)' E ATm [x] 
satisfying f* = f. Since pa is the characteristic of & in  then paw = 0 for all 
W E m [x]. We can lift the equation from & fli [x]lp&m,[x] ■Tp [x] to &m [X] 
and multiply by pa-1  to get the following. 

,,a —1 = pa-1 [A(f* — hu) + Bd] 
= pa-1 [A{f" + (f' — ud)" — hu} + Bd] 
= p"[A{pf" + (f' — ud) — phu} + pBd] 
= pa-2 [A(f l  + pf") — Au(d + ph) + pBd] 
= pa-2 [A f — (Au — pB)g]. 

Therefore pa-1 e (g, f) C &,,[x], and so pa-1  E I. 

Since pa- 1  belongs to both I and .AI(), we can factor out the ideal 
generated by pa- 1  in R and consider the ideal Ilpa- 1 1-  in Rlpa- 1 R. Also 
clearly ,Tpa  /pa-1 zpa &p.-1 . We identify f,g e .T2). [x] with their images 
in f, g E &pa-i[x]. We can now lift the equation from .Tp [x] to &pa-i [x] 
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and multiply by pa- 2  and repeat the argument above with pa-lw = 0 for all 
w E a-i[x] to get pa-2 c  (g ,  f) C ..  ZL 1 [X] . Identifying pa-2 e &pa  rx, [ i with 
its image pa-2 c  --pr, _ zL 1 [x] then pa -2  E //pa-1 / so pa-2  E I. Repeating this 
argument a - 3 times we get p E I. 

Next we prove that d E I. Since g,p E / then d = g - ph E I. Thus 
/ = N(R). This means that Ai(R) is a principal ideal. 

Conversely, suppose that the radical is a principal ideal generated by 
some polynomial g E m [x]. 

Since (y) = (d) = .A.r(a"p [x]/(/)), we get q = i + f for some t = 
t' E .Tm, and e(x) E a'n,[x]. There exists an integer s = s' E m such that 
ts 1( modp). Since s(g - ef) = std =- d and (g) = (d) then g generates the 
same ideal as s(g - e f) in R = mIx11 (f), so we can replace g by s(g - e f). 
To simplify the notation we assume that -g = d, and so g' = d. 

Given that p E Ai(R), we get p = Af +Bg for some A, B E a'n,[x]. Since 
(Af Bg)' = (A' B' g')' = 0, it follows that A' f' + B'g' = 0. Therefore 
B' = -A whence B' = -Ain + pz for some z = E a'n,[x]. 

Further, p = (A' ± pA")(f' + pf") + (B' + pB")(g' pg") p 2 w,  , for 
some w E a'm [x]. Notice that f' = (ug')' because f' =7 =ug'. Since 
u = u' and g = g' then ug' = (ug')/ + p(ug')" = f' + p(ug')". It follows that 
f' - ug' = -p(ug')". Therefore we get 

pa- 1 = pa-2 [(A' pA")(f' + pf") + (-A'u + pz + pB")(g' + pg")] 
= pa-2 [Al (f' - ug' + pf") - A'upg" + pA" f' pg'(z + B")] 
= pa-1 [A' (-(ug')" + f") - uA' g" + A"(ug')' g'(z + B")], 

Given that pa = 0, then pa- iv = pa-lw if and only if eT = Tv where v, w E 
a.m [x]. Hence 

1 = A'(-(ug0" + f") - U(A1  g") + A"((ug00 g'(z + B") 
= A' - u(A'g") A"rtg' g'(z B"). 

Since all irreducible factors of Ti divide -g7  = d, they also divide the poly-
nomial -T./(A'g") + g' (z + B"), and we see that Ti must be coprime 
with f. This completes the proof. 0 

When n = 1 Theorem 15 becomes Corollary 16. 
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Corollary 16 Let f(x) E &,„,[x] be a manic polynomial which is not square-
free modulo p, where m = pa, p is prime and a> 2 is a positive integer. _Define 
R -= ,Tni [x]l(f(x)) then R is a FIR if and only if U f  is coprime with f. 

The proof of Theorem 15 shows that if R = &,,[x]l(f(x)) is a PIR then 
Ar(R) is generated by g = d + ph e Z",,[x] where h satisfies h = h' and Ti is 
the product of all irreducible divisors of f not dividing f. 

Example 17 Define R = X27 [x] I (f (x)) where f (x) = x 7  +4x5  + 18x5 + 1 lx4  + 
9x3 +6x 2 + 7x + 8 E .&. 27 [x] . The set B = [0, 1, 2] defines the set of polynomials 
B[x]. The notation f', f" may be continued to define f"', f" etc. but only the 
polynomials f' and f" actually need to be calculated. So f = f' + 3f" + 3 2 f"' 
where f' =- x 7 +x5 +2x4 +x+2, f" = 19x 6 +24x5 +21x4 +21x3 +20x 2 +26x+5, 
f"' = x+2 E .&.27[x]. Since f(x) = x 7  +x5 +2x4 +x+2 = (x+1) 3 (x 2 +x+2)(x 2 + 
1) E .&.3[x], where (x +1), (x 2  + x + 2) and (x 2  + 1) are irreducible over &3, 
then (x) =sp(f) = (x+1)(x 2 +x+2)(x 2 + 1) = x 5  +2x4 ±x 3  +x 2  + 2 E &3 [x] 
and since f = dri, then TL(x) = (x + 1 ) 2  = x2  ± 2x + 1 E &3[x]. Since 
d = d', u = u' E B[x] C &27[x] are the same polynomials as d, u E a.3[x] then 
d  = x5 ±2x4 ± x3 ± x2 + 2, u = x 2  + 2x + l and 
ud = x7  4x6  + 6x5 5x 4 3x3 n

X 
 2 O + 4X ± 2 E &27[x]. 

So f' — ud = 3(8x6  + 7x5  + 8x4  + 8x 3  + 8x 2  + 8x) = 3(f' — ud)" and 

f = (f' - ud)" + f" 
= (8x6  + 7x 5  + 8x4  + 8x3  + 8x 2  + 8x) 

+(19x 6  + 24x5  + 21x 4  21x3  20x 2  + 26x + 5) 
= 4x5  + 2x4  + 2x3  + x 2  + 7x +5 = x5  + 2x4  + 2x3  + x2  ± x ± 2 
= (x + 2)(x 2  + 1) 2  E &3[x]. 

The ideal Ar(R) is principal since gcd(f,U) = 1. As (x 2  + 1)1f then d --- 
h(x2  + 1), h = (x +1)(x 2  + x + 2) = x3  ± 2x2  ± 2 E &3[x] and h = h' = 
x3  + 2x2  + 2 E &27[x]. .1V(R) is generated by g = d +3h = (x 5  + 2x4  + x 3  + 
x2  + 2) + 3(x 3  + 2x 2  + 2) = x5  + 2x4  + 4x3  + 7x2  + 8. Calculations for this 
example were done using the software [69]. 

2.2 Hamming weights of polynomial codes 

Let F be a field, a l , 	, 	nonnegative integers, b 1 , 	, b,„ positive integers, 
and let 
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Formulas are given here for the minimum Hamming weight of the radical and 
its powers in the algebra R. Ideals of the form (4' (1-4 1 ), , xnan (1-xnb.)) are 
called periodic ideals, see [65], Definition 6.16, p.2817. Denote by I the radical 
Af(R) of R. Lemma 12 tells us that I is generated by the squarefree parts of 
the polynomials x7 1 (1 - Al). The Hamming distance or minimum Hamming 
weight wH(I) of / in the basis B {x11  • • • xenn < ei < ai + bi for 1 < i < n} 
is the minimum number of nonzero coordinates in B of nonzero vectors in 
I. It is an important characteristic, and in particular determines the number 
of errors the code I can detect or correct (see [68]). Clearly, wH({0}) = 0. 
Formulas are given for the Hamming weight of powers of / with respect to the 
basis B. 

Let w(r) be the Hamming weight of r E R and let w(J) be the minimum 
Hamming weight of an ideal J c R with respect to B. For positive integers 
b 1 ,. , bn, write bi  = pc'd, where p does not divide d, and i = 1, 	, n. We 
may assume that c = e l  > c2 > 	> c,„ > 0. Denote by z > 0 the number 
of elements c l , 	, en, which are equal to 0 or, in other words, the number of 
elements b1 , , b„ not divisible by p. Let [1, n] = {1,2, , n}. Denote by L 
the set of all i such that ai  > 7P. Let S = [1, n]\L For any T C [1, n], put 
aT = EaET ai 

Theorem 18 Let F be a field, al , . , an  nonnegative integers, b1,... ,b,„ pos-
itive integers, and with I = Ar(R), let 

R = F[x i , 	, x„]1 (4' (1 x bi l) , 	, 42n (1 - xnbn)). 

If char F = 0, then 

{

2e  if + • • • + ae_i + 1 < h < a l  +•• + ae  - 
0 if + • • • + ak  - k < h. 

If char F = p > 0, then 

2 
w(/h ) = 	{21L1+ITI w (h 

TC[1,n-z] 

if h < ai + • • • + an-z 
- aL - aT; S\T)} otherwise. 

Proof. Suppose that F has zero characteristic. We may assume that 
a l  > > ak  > 1 and ak+i , .. • , a < 1. Then the radical I is generated by 
all polynomials x,(1 - 41), for i = 1, . , k. It follows that I is also generated 
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by all polynomials gi = xi (1  _ ) for i = 1, . . . , k. Since g = 0 
ibi -Fai (bi— 1) ) and g -t = x1(1 7  x 	modulo 4i(1 - x in, we see that the linear span 

of all powers gl has Hamming weight 2, for j = 1, . . . , - 1. Therefore, the 
theorem in Section 2 of [90] gives us the following formula for the Hamming 
weight w(/') of /h : 

w(/h) = 02' if al  + • • • + 	--E+1<h<a i  + • • • + 
if a l  + • • + ak - k < h. 

Let F be a field of characteristic p > 0. First, we consider the case where 
a l  = • • = an, = 0. By the definitions of z and the di , the radical I is generated 
by all elements fi  = 1 - xd. , for i = 1, , n - z. 

Following Berman [5], for a > 0, denote by .e a  the number of exponents 
ci  such that ci  > a. In particular, .e 0  = n- z and L = 0. Put ma  = Ea(P - 1 )Pa . 

The nilpotency index of I is N 
Then there exists b such that a=b+1 
that h = Eca=b+ 1 Ma ± t(P — 1 )Pb  
(t ± 1)(p - 1)pb . Then w(/h ) is equal 
[90]) 

= pr"±rn1±. "+mc  . Suppose that h < N . 
ma < h < Eca_b  ma. We can find t such 
s and t(p — 1)pb  < h — 
to the following number 

(s;c7517, 1 [M24a < ] or  

w(h; 	• • • , en) = 
290 

4-1-1+-eb+2+.–+fc+t(1± SP-1) 

if h > pmo+mi+•••+mc 

otherwise. 

where [-xl is the smallest integer > x. 

Next, consider the case where n = 1. Put a = al, b = b 1 , c = cl,d = c11. 
Then R = F[x]1 (xa (1 - xb)) and b = ped. It is routine to verify that the radical 

—\ of R is generated by g = x(1 _ xb-l-a(b1) ) and f = xa (1 — xd). Since xa-1  g = 0, 
the linear span V of g, xg, . .. , xa 2  g annihilates f. Hence I = V + (f). For 
any v E V and y E ( f) it is clear that w(v + y) < w(y). Exactly as in the case 
of characteristic zero, w(V) = w (v2) = 	= w (v\a-i ) 	= 2. For h > a, we get 
/h  = (f) h . Thus we have the following formula 

if h < a 
w(/h ) = 2  w(h; c) otherwise. 

In the general case, the algebra R is a tensor product of algebras 

= F[x i ]l (xa'(1 — 
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where i = 1, 	, n. The radical of R is generated by all gi xi(1  _  

and f, = 4(1 — x 4̀ ). As we have seen, the weight of the radical h of every Ri  
is equal to the weight of an element of the form g or f ik . It follows from the 
theorem in Section 2 of [90] that the weight of /h  is equal to the weight of some 
element of the form q' (x i ) • • qn" (Xn ) , where q, c Ifi,gil and k 1 +- • • + k > ?I. 
Therefore, 

w(/h  ) =- min fll w(ei) 	+ • • + km > n; all ki  > o}. 

Combining the formula above with the formulas for the weights of /!', we 
get the following 

2 	 if h < 	+ • • • + an-z 
w(/h ) = 	min {2IL I + I T lw(h — aL  — aT ; S\T)} otherwise. Tc[1,n - z] 

0 

A special case of Theorem 18 is given in [5] as Theorem 1.2. 

We conclude this chapter with a discussion of some semigroup algebras 
and error-correcting codes. Let a > 0 and b > 1 be integers. Define Cb as 
the cyclic group of order b. Let So be the finite cyclic semigroup such that 
each s E S satisfies Sa±b  = Sa  . A finite Abelian group G is a direct product 
of cyclic groups, and similarly a finite commutative semigroup S is a union 
of groups and finite cyclic semigroups. We now consider tensor products of 
semigroup algebras over finite cyclic semigroups. The ring F[x]/(1 — x b ) is 
a group algebra FCb. Similarly the ring F[x]/(xa(1 — x b )) is a semigroup 
algebra FSo. Lemma 19 is proved in the special case when S is a finite group 
S =1-1L i Cb, as the example on p.165 of [80]. This proof can be modified to 
prove Lemma 19. 

Lemma 19 The ring 07_ 1 F Sai , bi  is isomorphic to the semigroup algebra FS 
where S = TEL, S ai,bi • 

Define the group G = fl Cb and semigroup S = fI = Sc4 ,bc  By 
Lemma 19, 

F [x i , 	, xn ]/(1 — 	,1 — x„bn) 	0 1 F[x]1(1— x b2) 	FG, 

F[x 1 , 	, x]1 (4 1 (1 — x in 	, 4:1(1 —x)) r=-) 0 1 F[xj1 (xa(l —x) FS. 
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These identities provide the motivation for the following definitions of 
codes. Let Fq  be the finite field with char(Fq ) = p > 2. A cyclic code of length 
b is an ideal of the group algebia Fq [x]/(x b  — 1) Fq Cb  where (b,p) = 1. 
An Abelian group code is an ideal in an Abelian group algebra, see [6] p.227. 
Analogously we can define a semicyclic code as an ideal of the semigroup 
algebra Fq [x]/(xa(1 — Fq Sa, b, where (b,p) =- 1. More generally, we can 
define a multivariate semicyclic code as any ideal of the semigroup algebra R = 
Fq [x i, , (x 1(1 — , , xnan (1 —x)) = Fq S, where S =fli Saj,bj 
and n > 2. We can also define a commutative semigroup code as an ideal in a 
commutative semigroup algebra. 

Let R = Fq [x i , 	, xn]l (x7 1  (1 — 	— xnbn)) have nilpotent 
index N. Consider the codes Ch = A RV for 1 < h < N — 1, the distinct 
powers of the radical N(R). The minimum Hamming distance d = d(Ch) = 
w(Ar(R) h ) is given in Theorem 18 with char(Fq ) = p > 2. By Theorem 11 
and Corollary 13, the code Ch is a principal ideal if and only if R is a FIR 
if and only if at most one of the polynomials f(x i ) = xia'(1 — x tbz), for 1 < 

< n, is not squarefree. Let sp(f) denote the squarefree part of a polynomial 
f (x) E Fq [x]. Consider the case when R is a FIR and fi  (xi) is a nonsquarefree 
polynomial, hence f2 , 	, fn are squarefree. By Lemma 12, Ar(R) is equal to 
the ideal generated by the squarefree parts of all polynomials 	, fn . By 
Corollary 40, since R is a PIR then Al (R) = (sp(h)). Hence the code Ch has 
a single generator polynomial g =sp(fi) h • 

28 



Chapter 3 

Finite commutative principal 
ideal rings with identities 

This chapter is devoted to two ring constructions and all rings considered are 
commutative and have identity elements. Conditions are given for the tensor 
product RO&S to be a finite commutative PIR. Conditions are then given for 
a quotient ring Q// to be a finite commutative PIR, where Q = R[x i , . . • , 
R is a FIR and / is an ideal of Q generated by univariate polynomials. Several 
parts of this chapter appear in [22]. 

3.1 Tensor products of rings 

The tensor product over 	is written as 0. For any ring R and prime p, the 
p—component of R is defined by 

Rp  = fr E R pkr = 0 for some positive integer kl. 

Let R be an arbitrary ring, p a prime, and let f E R[x]. Denote by 
the image of f in R[x]IpR[x]. We say that f is squarefree (irreducible) modulo 
p if f is squarefree (respectively, irreducible). A Galois ring GR(pm ,r) is 
a ring of the form (Z./pm&)[x]/(f(x)), where p is a prime, m an integer, 
and f (x) E .Thin .T[x] is a monic polynomial of degree r which is irreducible 
modulo p. If R = GR(pm ,r) = pm &)[y] I (g(y)) 0 is a Galois ring which 
is not a field then m > 1, because (. p&)[y] I (g(y)) is a field, given that g(y) 
is irreducible modulo p. 
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If the ideals of a ring form a chain, then it is called a chain ring (see [41] 
p.184). By Lemma 22, every finite local PIR and every field is a chain ring. 
The radical of a finite ring R is the largest nilpotent ideal Ar(R). 

Lemma 20 A finite ring is a PIR if and only if its radical is a principal ideal. 

Proof The 'only if' part is trivial. If R is finite, then it is an Artinian 
ring. Therefore it is a direct product of local rings ([1], Proposition 8.7). If the 
radical of a local Artinian ring is a principal ideal, then all ideals are principal 
by Lemma 32 or [1], Proposition 8.8. 0 

The ring G R(pn , r) is well defined independently of the monic polynomial 
of degree r (see [71, §16]). Notice that G R(pm ,1) 	/pm  and G R(p, r) 
GF(pr), the finite field of order pr. Lemma 21, first proved in [95], shows that 
a tensor product of Galois rings is a PIR. 

Lemma 21 ([71], Theorem 16.8). Let p be a prime, k 1 , k2 , r 1 , r2  positive inte-
gers, and let k = 	k2 }, d = gcd(r i ,r2 ), m = lcm(ri,r2)• Then 

R(pk i , r 1) 0 G R(pk2  , r 2) r="" 	G R(Pk  Tr') • 

In particular, 

GF (p1 1 ) G F (p") 	F (pm). 

Lemma 22 ([71], Theorem 17.5). Let R be a finite commutative ring which 
is not a field. Then the following conditions are equivalent: 

(i) R is a chain ring; 

(ii) R is a local PIR; 

(iii) there exist a prime p and integers m,r,n,s,t such that 

R 	G R(pm , r)[x] I (g (x) , prn -1  x t ) , 

where n is the index of nilpotency of the radical of R, t = n—(m-1)s> 0, 
g(x) ---= xs ph(x), deg(h) < s, and the constant term of h(x) is a unit 
in GR(prn,r). 
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Let R be a chain ring as defined in Lemma 22(iii). The characteristic of 
R is pm and its residue field is RI Ar(R) 	GF(pr). The polynomial g(x) is 
called an Eisenstein polynomial. Since GR(pm,r)IpGR(pm,r) 	GF(pr), we 
get RIpR L' GF(pr)[x]1(xs). By Lemma 24, R is a Galois ring if and only if 
s =1. 

Lemma 23 Let R = GR(pm,r)[x]l(g(x),pm -lxt ) be a chain ring, and let 
s > 2. Then the radical of R is generated by x. 

Proof. Clearly, p is a nilpotent element of R. Therefore (x) is a nilpo-
tent ideal, because g(x) = xs + ph(x). Hence (x) C Ar(R). Given that 
g(x) = XS + ph(x) and the constant term of h(x) is a unit in GR(pm, r), it 
follows that p E (x). Since RI(x) GF(pr) is a semisimple ring, we get 
(x) = Ar(R). 0 

Lemma 24 ([71], Exercise 16.9). A chain ring of characteristic pm is a Galois 
ring if and only if its radical is generated by p. A PIR of characteristic pm is 
a direct product of Galois rings if and only if its radical is generated by p. 

Lemma 25 If R is a Galois ring, and S is a chain ring, then R0 S is a FIR. 

Proof. Let char (R) = pm , char (S) = qn , for primes p, q and positive 
integers m, n. If p q, then R S = 0 is a PIR. 

Suppose that p = q. Let g be the generator of the radical of S. Denote 
by (g) the ideal generated by g in R 0 S. Clearly, (g) is nilpotent, and so 
(g) c Ar(R 0 5). 

If R is a finite field, let R = GF(pv). If R is not a finite field, it is 
noted in the proof of Lemma 23 that p E gS, and so p E (g). In either case, 
since SIgS-r=3  GF(pu) and RIpR GF(pv), for some integers u,v > 1, we 

get (R S)I (g) -r=2  GF(pu) G F(pv) HGF(p") where w = lcm {u, v} and 

d = gcdfu, vl, by Lemma 21. Therefore (g) = IV(R 0 S). By Lemma 20, 
R S is a PIR. 0 
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Lemma 26 Let R and S be chain rings which are not Galois rings, and let 
char (R) = pm, char (S) pn, for a prime p and positive integers m, n. Then 
R0 S is not a FIR. 

Proof. Suppose to the contrary that P = R 0 S is a PIR. Then PIpP 
is a PIR, too. By Lemma 22, R 	GR(pu , q)[x]l (xs + ph(x),pu - ixt). Since 
GR(pu , q)IpG R(pu , q) 	G F (pq), we get RI pR r=J GF(pq)[x]l (xs). If s = 1, 
then R = G R(pu , q) is a Galois ring. Therefore s > 2. Similarly, Slp S 
GF(pr)[x]I(xt), for some t > 2. It follows that H = GF(pq)[x]1(x 2 ) 0 
GF(pr)[y11(y 2 ) is a homomorphic image of PIpP, and so H is a PIR. Fur-
ther, H = (GF(pq) 0 GF(pr))[x,y]1(x2 , y2 ). By Lemma 21, GF(pq) 0 GF(pr) 
is a direct product of finite fields. Denote by F one of these fields. Then 
F[x,y]I(x 2 , y2 ) is a homomorphic image of H, and so it is a PIR. However, 
if we set I = (x, y), then I is a maximal ideal, and 12  c (x2 , xy) c I. This 
is impossible by [41], Proposition 38.4(b). This contradiction completes the 
proof. 0 

Theorem 27 A tensor product R 0 S of two finite commutative PIRs is a 
FIR if and only if, for each prime p, at least one of the rings R p  or sp is a 
direct product of Galois rings. 

Proof The 'if' part. Take any prime p. Suppose that Rp  is a direct 
product of Galois rings, and Sp  is a PIR. Hence Si,, is a direct product of chain 
rings. Since tensor product distributes over direct products, Lemma 25 shows 
that Rp  Sp  is a PIR. Hence R 0 S is a PIR, because it is a direct product of 
a finite number of rings Rp  0 Sp, for some p. 

The 'only if' part. Given that R and S are PIRs, obviously Rp  and S 
are PIRs, for every p. Consider the decompositions of Rp  and S into direct 
products of chain rings. If both of these decompositions contain chain rings 
which are not Galois rings, then we get a contradiction to Lemma 26. Thus at 
least one of the rings 14, or Sp must be a product of Galois rings. 0 

For rings Rp  and Sp , which are p components , it is false that Rp  sp 0 
being a PIR implies that both Rp  and sip are PIRs. For example let Rp  = 
and Sp = GR(pm,r)[x]I(xs) then by Lemma 21, 

Rp 0 Sp = 	(G R(pm , r)[x]I (xs )) 	G R(pm , r))[x] 1 (xs) 
GF(pr)[x]I(xs) SlpS. 
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By Lemma 22, Sp  cannot be a PIR when m > 2 and s > 2, yet Rp  Sp  
GF(pr)[x]1(xs) is a PIR since GF(pr)[x] is a PIR for all integers r, s > 1, see 
p.13. This provides motivation to prove Lemma 29, which relies on Lemma 28. 

Lemma 28 ([711, Theorem 17.1 p.337-338.) Let R be a finite local ring sat-
isfying char (R) = pm for a prime p and positive integer m. If AI(R) has 
a minimum of k generators then R GR(pm,q)[x i ,... ,xk]IJ for some pri-
mary ideal J, GR(pm,q) is the largest Galois extension of .T1(pm) in R, and 
RIAr(R) GF(pq). 

Lemma 29 Let R and S be finite local rings satisfying char (R) = p tm , char (S) = 
pn, for a prime p and positive integers m,n > 1. If SlpS is not a PIR then 
R0 S is not a PIR. 

Proof. If .A1(S) has a minimum of k generators then by Lemma 28, 
S 	.T1(73n )[x].,• • .,xk]IJ for some primary ideal J. Since S is not a PIR, 
k > 2. Let R = .T1(pm) and consider the following sequence of homomor-
phic images, with J' JIpJ. (R0 S)Ip(R 0 5) —> (RIpR) 0 (SlpS) = 
'T1(73 ) 0 (&i(P)[x].,...,xk]lf) 	 = SlpS. Since a ho- 
momorphic image of a FIR is a PIR and S/pS is not a PIR then .T/(pm) S is 
not a PIR. Now let Ar(R) have a minimum of 1 generators then by Lemma 28, 
R 	&I(r)[xi,•• • ,x1]II for some primary ideal I and 1 > 1. Let R 
a' 

 
/(pm) be the canonical homomorphism. This induces the homomorphism 

ROS ..T/(pm)0S. Since &/(pm)0S is not a FIR then ROS is not a FIR. 

Lemma 30 Let R and S be finite local rings which are not both PIRs, satis-
fying char (R) = pm , char (8) = qn , for primes p,q and positive integers m, n. 
If R0 S is a PIR then (i) or (ii) is satisfied. 

(i) p q or R = 0 or S 0 in which case R0 S = 0; 

(ii) p = q, R 0 S, R is a Galois ring and SlpS is a finite chain ring 
which is not a Galois ring, or R and S may be interchanged. 

Proof. Condition (ii). Let R 0 S and R be PIRs and S be a ring which 
is not a FIR. 
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By Lemma 29, SlpS is a PIR. Since char (SlpS) = p, SlpS can only 
be a Galois ring if it is a finite field Fq  where char (Fq ) = p. Since S is a 
local ring, S IpS r=j  Fq  implies (p) = .IV(S) is a maximal ideal of S. By [71], 
Exercise 16.9, if S is a local ring, then N(S) =- (p) if and only if S is a Galois 
ring. Since S is not a FIR, it is false that SlpS F. Therefore S/pS is a 
chain ring which is not a Galois ring. 

Assume R is not a Galois ring. It follows that R 0 S is a PIR, and 
both R and SlpS are chain rings which are not Galois rings. The conditions 
appearing in the proof of Lemma 26 are that R0 S is a PIR, and both R and 
S are chain rings which are not Galois rings. This condition on S implies the 
same condition on S/pS. Therefore we can follow the proof of Lemma 26 ex-
actly to arrive at a contradiction. Hence R is a Galois ring, so (ii) is satisfied. 0 

In general, if S/pS is a finite local PIR then by Lemma 22, SlpS 
GF(pr)[x]I(xs) for some integers r, s > 1. Therefore S 	GR(pm ,r)[xi, • • • 
,xk]l(I + pJ) where I = 	+ pa), for some integer m > 1 and polynomial 
a(x i , 	, xk) and ideal J. If S/pS is not a Galois ring then s > 2. 

The converse of Lemma 30 is false. For example, if R = &pm and 
S -= GR(pm ,r)[x]/ (xs) where s > 2 then R S = pm GR(pm , r)[x]/(xs) r=2  

prn OG R(PM  r))[x]/(xs) G R(pm , r)[x] I (xs) = S is not a PIR by Lemma 22, 
yet SlpS GF(pr)[x]I(xs) is a FIR which is not a Galois ring. Therefore as 
proved in Theorem 31, only the necessary condition of Theorem 27 is true 
when R and S are not both PIRs. 

Theorem 31 If a tensor product R 0 S of two finite commutative rings is 
a FIR then, for each prime p, at least one of the rings R p  or Sp  is a direct 
product of Galois rings. 

Proof If R and S are both PIRs then the theorem follows from Theo-
rem 27. Assume R and S are not both PIRs. Since R0 S is a FIR then for 
each prime p, Rp  0 Sp is a PIR. Consider the case when .Rp  and S. are local 1 
rings. If f4, and Sp are both PIRs then by Lemmas 25 and 26, 14 or S must 
be a Galois ring. If 14, and Sp  are not both PIRs then by Lemma 30, R I, or 
Sp  must be a Galois ring. Now consider the case when Rp  and Sp  decompose 
into direct products of local rings. Since tensor product distributes over direct 
products, if both decompositions contain rings which are not Galois rings then 
Rp  Sp  will contain a factor in its representation as a direct product, which 
is a tensor product of two rings, where neither ring is a Galois ring. Such a 
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factor is not a PIR by Lemma 26. Thus at least one of the rings Rp  or sp is a 
direct product of Galois rings. 0 

We now give a more general version of Lemmas 10 and 20 for a local 
ring. 

Lemma 32 If R is a local ring with maximal ideal m, which is not necessarily 
Noetherian but satisfies n nrrin = 0 then the following conditions on R are 
equivalent: 

(i) m is principal; 

(ii) R is a PIR; 

(iii) R is a chain ring, hence R is Noetherian. 

Proof (iii)(ii) Let 71 E m \m 2  then since R is a chain ring, 7T 1% me for 
e > 1, so (7r) 	me for e > 1 hence (7r) = m. Now since all ideals are of the 
form me = (ire) then R is a PIR. (ii) 	>(i) is immediate. 
(i) 	>(iii) This is similar to the proof of Theorem 31.5 in [73]. Let m = (7) 
then me = (ire) for all e > 1. Since nnmn = 0 and every ideal a satisfies a c m 
then for some e> 1, a C me and a ,Z me+ 1 . As ideals a, b, c in a ring R satisfy 
aCc < > a:bCc:b then a ct (71 e+1 ) implies a : (ire) (it') : (7 .e) = (7r), 
hence a : (71 e ) = R. Now since (a : b) = R = b C a, then (7re) C a, hence 
a = (71e) = me. So every ideal of R is a power of m, hence R is a chain ring. 

3.2 Quotient rings of polynomial rings 

Let R be a finite ring, Q = R[xi, 	, xn ] a polynomial ring. Theorem 33 
describes all rings of the form 

R[x 1 , . 	xr]l (f i(x 1), • • • , fn(xn)) 

which are finite PIRs. This gives a generalization of the main result of [42]. 
Theorem 27 is used in the proof of Theorem 33. Ideals of the form (f 1 (x 1 ), . . , fn(xn)) 
are called elementary ideals (see [65], Definition 1.14). A few definitions are 
needed before we can state these results. 
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If F is a field, and f = gln 1  • g kink , where f E F[x] and g1 ,. , gk are 
irreducible polynomials over F, then by SP(f) we denote the squarefree part 
gi • • • gk of f. We assume that SP(0) = 0. 

Let R = GR(prn, r) = (&/pmX)[y)/(g(y)) 0 be a Galois ring which is 
not a field hence m > 2. We say that a polynomial f (x) E R[x] is basic if all 
nonzero coefficients of f (x) belong to the subset 

B = {ayb  where 0 < a < p and 0 < b < r} 

of the Galois ring R, where r is the degree of g(y). Clearly, for every f E R[x], 
there exist unique basic polynomials 

, f" E B[x] ç R[x] such that f — — p f" E p2  R[x]. 

For any f  E R[x], there exists a unique basic polynomial SP(f) E R[x] 
such that SP(f) = SP(7). Therefore there exists a unique basic polynomial 
UP(f) E R[x] such that 7 = SP(f) UP(f) or, equivalently, f' — SP(f) UP(f) E 
pR[x]. Since f' is basic, UT = 0 for any f, and so (f' — SP(f)UP(f))" = 
—( SP(f)UP(f))". We introduce the following notation 

I = f" + (f' — sP(f)uP(f))" = f" — (sP(f) UP(f))". 

For any f,g E GR(pn ,r)[x], it is clear that f = g if and only if f' = g'. 

Let R be a finite commutative local ring. A polynomial f(x) E R[x] is 
regular if it is not a zero divisor. By [71], Theorem 13.6, if f (x) is regular then 
there exists a unit u E R and monic polynomial e(x) E R[x] such that f = ue. 
All the theorems in Chapter 3 are true for regular polynomials f(x) but for 
simplicity we assume that these polynomials are monic. 

A finite direct product is a PIR if and only if all its components are PIRs 
(see [96], Theorem 33) and every finite PIR is a direct product of chain rings 
(see [71, §6]). By taking Lemmas 46 and 47 into consideration, the main case 
of describing all polynomial rings 

Q = 

which are finite PIRs is the case where R is a finite chain ring. It follows from 
[71], Theorem 13.2(c), that Q is finite if and only if all the f(x) are regular. 
The following theorem gives new conditions for Q to be a PIR. 

Theorem 33 Let R be a finite commutative chain ring, and let Ii,. • • , fn be 
univari ate monic polynomials over R. Then 

Q 	R[x i , . • , x.11(h(xi), • • • fn(xn)) 
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is a PIR and all rings R[x i]l (fi (x i )) are PIRs, if and only if one of the following 
conditions is satisfied: 

(i) R is a field and the number of polynomials f i  which are not squarefree 
does not exceed one; 

(ii) R is a Galois ring of characteristic pm, for a prime p, and a positive inte-
ger m > 2, the number of polynomials 	, fn  which are not squarefree 
modulo p does not exceed one, and if f = fi  is not squarefree modulo p, 
then f is coprime with UP(f); 

(iii) R is a chain ring, which is not a Galois ring, R has characteristic pm, 
for a prime p, n = 1 and f i  is squarefree modulo p. 

Lemma 34 Let R be a Galois ring of characteristic pm , f (x) a monic poly-
nomial over R, and let Q = R[x]1(f(x)). Then Q is a direct product of Galois 
rings if and only if f (x) is squarefree modulo p. 

Proof Lemma 38 shows that f(x) is squarefree modulo p if and only if 
Q1pQ is semisimple, i.e., .A1(Q) = pQ. By Lemma 24, this is equivalent to Q 
being a direct product of Galois rings. 0 

Lemma 35 Let R = GR(pm,r) be a Galois ring, where m > 2, let f (x) E 
R[x] be a monic polynomial which is not squarefree modulo p, and let Q = 
R[x]1 (f (x)). Then Q is a PIR if and only if UP(f) is coprime with f. 

Proof Given that f is not squarefree, we get UP(f) 0 and SP(f) 0. 

Suppose that I is coprime with UP(f). Denote by h a basic polynomial 
in R[x] such that it is the product of all irreducible divisors of f which do not 
divide f.  Let g = SP( f) + ph E R[x]. We claim that the radical Ai (Q) is equal 
to the ideal / generated in Q by g. 

It follows from Lemma 38 that Ar(Q) = (SP( f), p) . Hence g E A1 (Q), so 
/ C N- (Q). Therefore it remains to show that p, SP(f) E I. 

First, we prove that pm -1  e I. It suffices to show that pm-1  E (g, f) in 
Mx], because / C Q = R[x]/(f). The choice of h implies that f - hUP(f) 
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is not divisible by any irreducible factor of f which does not divide f. If an 
irreducible factor of  f divides  f, then  it does not divide it, and so  it does 
not divide hUP(f), because UP(f) is coprime with f. Thus f — hUP(f) 
and SP( f) are coprime. Hence there exist basic polynomials v, w E R[x] such 
that ii = 77(f — hUP(f)) + w SP (f). There exists a unique basic polynomial 
f* E R[x] satisfying f* = f. Since pm is the characteristic of R, pmu = 0 
for all u E R[x]. Therefore A = -24 is equivalent to pm - 1  A = pm- 1 B for all 
A, B E R[x]. We can lift the equation I = u(f - h UP( f)) + w SP( f) from 
R[x] I pR[x] r=.  ' G F(pr)[x] to R[x] and multiply by pm-1  to get the following. 

pm-1 = pm-l [v(f* — h UP( f)) + w SP( f)] 
= pm-l [v{r + (f' — UP( f) SP( f))" — h UP(f)} + w SP( f)] 
= pm --2 [v{pf" ± (f' — UP( f) SP( f)) — ph UP(f)} +pw SP( f)] 
= pm-2 [v( f' + p f'') — v UP(f)( SP( f) + ph) + pw SP( f)] 
= pm-2 [v f — (v UP( f) — pw)g] E R[x]. 

We have used the fact that f' —  UP( f) SP(f) = p[(f' — UP ( f) SP ( f))"]+p2u for 
some u E R[x], because (f — UP( f) SP(f))' = 0. Thus pm- 1  E (g, f) C R[x], 
and so pm-1  E I. 

Since pm-1  belongs to both I and Ar(Q), we can factor out the ideal 
generated by pm- 1  in Q and consider the ideal Ilpm- lI in Qlpm- 1 Q. Also 
clearly Rlpm - 1 R ' -' GR(pm - 1 , r). We identify f,g E R[x] with their images in 
(RIpm - 1 R)[x]. We can now lift the equation 1 = -17(f — h UP( f))+w SP( f) from 
(RI pR)[x] to (RI pm - 1  R)[x] and multiply by pm- 2  and repeat the argument 
from the preceding paragraph taking into account that pm -la = 0 for all u E 
(Rhim-l R)[xl. Then we deduce pm -2  E (g, f) C (R/pm-1 R)[x]. Identifying 
Pm-2  C R[X] with its image pm-2  C (R/pm-1 R)[X], we get pm-2  E Ilpm-1 I. 
Given that pm -1  E I, it follows that pm-2  E I. 

Repeating this reduction m — 3 times we get p E I. 

Next we prove that SP( f) E I. Since g,p E I, then SP( f) = g — ph E I. 
Thus I = Ar(Q), because AT(Q) = (p, SP(f)). This means that AT(Q) is a 
principal ideal, and so Q is a FIR. 

Conversely, suppose that the radical is a principal ideal generated by 
some polynomial g E R[x]. 

Since (g) = ( SP( f)) = Ar(. &1(q)[x]1(7)), we get -. -9,-  = i SP(f) + -ef for 
some t = t' E R and e(x) E R[x]. There exists  an  integer s = s' E R such 
that ts —= 1( modp). Since s(g — ef) = stSP(f) = SP(f) = SP(f) and 
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(7) = (SP(f)) then g generates the same ideal as s(g - ef) in Q = R[x]I (f), 
so we can replace g by s(g - ef). To simplify the notation we assume that 

= SP (f), and so g' -= SP( f). 

Given that p e .N(Q), we get p = vf + wg for some v, w E R[x]. Since 
(vf + wg)' 	(v'f' + wig')' = 0, it follows that v'f' + w'g' = 0. Therefore 

= -v' UP( f) whence w' = -v' UP( f) + pz for some z = z' E R[x]. 

Further, p = (v' +pv")(I +pf")+(w' +pw")(g' +pg") +IA,  for some u E 
R[x]. Notice that f' = ( UP( f)g')' because f' = f = UP(f)g'. Since UP(f) 
and g' are basic, UP( f)g' = ( UP( f)gi)' +p( UP( f)g')" =f' +p( UP(f)g')" . It 
follows that f' - UP( f)g' = -p(UP(f)g')". Therefore we get 

pr"-.1  = pm-2 [(v/ + pv")(if + pf") + (-v' UP (f) + pz + Pw")(.9' + Pg")] 
= pm-2 [v' (f l  - UP( f)g' + pf") - v' UP( f)pg" + pe f' + pg' (z + w")] 
= pm-1 {11(-( UP( f)g')" + f") - UP(f)e g" + v"( UP( f)g')' + g' (z + w")], 

Given that pm = 0, then pm- 1 A = pm - 1 B if and only if A = B where A, B E 
R[x]. Hence 

1 = 7(-( 	+ f") - UP (f)(7) g") + v"((UP(f)g')') + g'(z + w" 
= v' f- UP(f)(eg") + v" UP( f)g' + g'(z + w"). 

Since all irreducible  factors  of UP(f) divide g' = SP ( f), they also  divide  
the polynomial UP(f)(v'g")+v" UP( f)g' + g'(z + w"), and we see that UP(f) 
must be coprime with f. This completes the proof. 0 

Example 36 We demonstrate Lemma 35 in the case when Q is a finite local 
ring. Let R = G R(pm , r) then R I(A1(R)) G F (pr). For c E GF (pr)[x] define 
cb  E R[x] as the unique basic polynomial satisfying = c, then cb  and c have 
the same coefficients identified under the canonical injective mapping of sets 
B ---+ F (pr ) . Notice that B is not the isomorphic copy of GF(pr) contained in 
R. For example if R = 	/(32) then as sets B =- {0, 1, 2} c {o, 1, 2, ... , 8} = R, 
R (Ar (R)) 	G F (3) = {0, 1, 2} yet F = {0, 3, 6} is the isomorphic copy of 
GF(3) contained in R. 

Let R = GR(pm,r) and let e E R[x] be a monic irreducible polyno-
mial, [71] p.254, f = en for some integer n > 1 and Q = R[x]I(f). By 
[71], Theorem 13.7(b), =  ce  for some monic irreducible c E GF(pr )[x] and 
integer > 1. Therefore SP(f) = SP(f)  = c and  SP(f) = cb. Now be-
cause cen = 7 = sP(f)uP(f) = c UP(f) then UP(f) = c"-  and UP(f) = 
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(cen--1.)b. Evidently f --,--- (en)" — (eb (etn—i) b )". It follows from Lemma 38 
that ./V(Q) = (P, GO. Therefore since (7) = (ee) C (d) c Fpr[x] then 
Q 	(Q) = (G R(Pm , r)[x] I(f)) (P, cb) r="" G F (pr )[x] I (c) 	G 	degree(c)). 

Hence Q is a finite local ring. Therefore by the chinese remainder theorem 
for ideals, [35], Exercise.2.6 p.80, for an arbitrary monic polynomial f, the 
ring R[x]/(f) is a finite local ring if and only if f = en where e is a monic 
irreducible polynomial and n > 1. By [71], Theorem 13.6, this is also true 
when f and hence e are regular but not monic. We see that for such a local 
ring Q which is not a Galois ring, it is a PIR if and only if c does not divide f. 

Lemma 37 Let R be a chain ring of characteristic pm which is not a Galois 
ring, let f (x) be a monic polynomial over R, and let Q = R[x]l(f(x)). Then 
Q is a PIR if and only if f is squarefree modulo p. 

Proof. By Lemma 22, R GR(pm,r)[y]l(ys +ph(y),pm —l yt ). Since R is 
not a Galois ring, evidently s> 2. Lemma 23 implies that p E yR. 

The 'if' part. Suppose that f is squarefree modulo p. Then Q lyQ 
GF(pr)[x]l(f) is semisimple by Lemma 38. Thus Ar(Q) is a principal ideal. 
Lemma 20 tells us that Q is a PIR. 

The 'only if' part. Suppose that Q is a PIR then the ring Q IpQ 
GF(pr)[x, y]Ays, f(x)) is a PIR. This ring is isomorphic to the tensor prod-
uct of GF(pr)[y]Ays) and GF(pr)[x]I(f(x)). Both of these rings are PIRs. 
Lemma 24 and Lemma 34 both imply that GF(pr)[y]/(ys) is not a direct 
product of Galois rings. By Lemma 24, G F (pr)[x] I (f (x)) must be a direct 
product of Galois rings. Lemma 34 completes the proof. 0 

Lemma 38 Let F be a finite field, P = F[x i ,... ,x„], and let I be the ideal 
generated by fi(xi), • • • , fr. Then the radical of PII is equal to the ideal 
generated by the squarefree parts of all polynomials • . • fn. 

Proof. Since every finite field is perfect, and any set of univariate poly-
nomials in pairwise distinct variables forms a Grobner basis of the ideal it 
generates, this lemma is a special case of more general results of [3, §8.2]. 0 

Proof of Theorem 33. The ring Q is isomorphic to the tensor product of 
the rings R[x]/(f(4), for i = 1, 	, n. Since char (R) = pm where m = 1 if 
R is a field, then Ri  = (Ri )p  for i 1, 	n and Q Qp . 

40 



(i): Suppose that R is a field of characteristic p. Then all the R[x i]/(fi  (x 2 )) 
are PIRs. Theorem 27 tells us that Q is a PIR if and only if at least n — 1 
of the rings R[x i]l(fi (x j )) are direct products of Galois rings. By Lemma 34, 
this is equivalent to the fact that at most one of the polynomials f(x) is not 
squarefree. 

(ii): Suppose that R is a Galois ring. By Lemma 35, all R[x i]l(fi (x i )) 
are PIRs if and only if, for each polynomial f(x) which is not squarefree 
modulo p, UP(f) is coprime with L. Further, suppose that this condition is 
satisfied. As in case (i), we see that Q is a PIR if and only if at most one of 
the polynomials f(x) is not squarefree modulo p. 

(iii): Suppose that R is a chain ring which is not a Galois ring. Since 
the class of finite direct products of Galois rings is closed for homomorphic 
images by Lemma 24, we see that each R[x i]l(fi (x j )) is not a direct product 
of Galois rings. Theorem 27 shows that n =--- 1. By Lemma 37, Q is a PIR if 
and only if fi  (x 1 ) is squarefree modulo p. 0 

For finite rings, our Theorem 33 immediately gives the following Theo-
rem 1 of [42]. 

Corollary 39 ([42]) Let F be a field of characteristic p > 0, a 1 , 	non- 
negative integers, b 1 ,.. ,bn  positive integers, and let 

then R is a PIR if and only if one of the following conditions is satisfied: 

(1) , an  <1 and p divides at most one number among 6 1 , .. • 'b.; 

(2) exactly one of a 1 ,. , an , say a l , is greater than 1 and p does not 
divide each of b2,.. • ,bn• 

Proof Consider the polynomial f = xa(1 — ?). By [3], Lemma 2.85, a 
polynomial is squarefree if and only if it is coprime with its derivative. Since 
char (F) = p > 0, then f is squarefree if and only if a ---- 1 and p does not 
divide b. Thus Theorem 33 completes the proof. 0 

In our second Corollary to Theorem 33, we give an explicit generator g 
for the radical of Q when Q is a PIR. 
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Corollary 40 Let R = GR(pm ,r) be a Galois ring, where m > 1, let fi,. • • , f”, 
be univariate monic polynomials over R with fi.(xi.) not squarefree modulo p 
and let 

Q 	R[Xl, • • • 7 Xn1/(fl ( X 1)7 • • • 7 fn(In)) 

be a PIR. Let 1V(S 1 ) = gSi where S i. = R[xi]l(ii(xi)), then AI(Q) = gQ 
where gQ is the ideal generated by g = g(x i ) in Q. 

Proof. By Theorem 33, since Q is a PIR and fi  (x i ) is not squarefree 
modulo p then the rings Ri  = R[x]/(f) for 2 < i <n are Galois rings. Since 
tensor product distributes over direct products, in Lemma 25 we can replace 
the phrase 'S is a chain ring' by 'S is a direct product of chain rings', hence 
'S is a PIR'. Then in the proof of Lemma 25, Ai(R S) = g(R S) where 
S is a PIR, R is a Galois ring and g is defined by N(S) = gS. Using this 
Lemma with g defined by Al(S1 ) = gS1 , R2 a Galois ring, then both S1  and 
S2 	R2 0 Si are PIR's and it follows that N(S2 ) = gS2 . Repeating this 
argument with Si + i Ri+1 0 Si for 2 <i <n — 1 gives N.  (Q) = gQ . 0 

Let Q be the FIR defined in Corollary 40. Let R be a Galois ring 
which is not a finite field. From the proof of Lemma 35 using the ring 
• = R[x i ]l (f (x i )) one may choose g = SP( f (x i )) + ph(x i ). Also if f(x) for 
1 < i < n are squarefree modulo p then either by Lemma 21 and Lemma 24, 
or by the same proof as Corollary 40, N(Q) = pQ. If R is a finite field then 
g =sp(h), the squarefree part of fi ,  generates Ai (Q). 

Theorem 33 provides conditions for the ring Q to be a PIR. Theorem 45 
provides similar conditions for Q to be a special type of PIR, its proof requiring 
Lemmas 41 to 44. 

Lemma 41 Let R and S be finite local rings satisfying char (R) = pm , char (S) = 
IP, for a prime p and positive integers m, n > 1. The ring R 0 S is a direct 
product of Galois rings if and only if so too are R and S. 

Proof The 'if' part. This is true by Lemma 21, since tensor product 
distributes over direct products. 

The 'only if' part. Since R0 S is a FIR then by Theorem 31, either R or 
S is a direct product of Galois rings. Assume R is a direct product of Galois 
rings. Since R 0 S is a direct product of Galois rings, then by Lemma 24, 
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.A1 (R0 S) = p(R S) and .,V(R) = PR. Here pR is the ideal generated by p in 
R. Let g be the generator of .AI(S) in S, .IV(S) = gS, and denote by g(S R) 
the ideal generated by g in R0 S. Since tensor product distributes over direct 
products, in Lemma 25 we can replace the phrase 'S is a chain ring' by 'S is 
a direct product of chain rings', hence 'S is a PIR'. Then from the proof of 
Lemma 25, J\/(R S) = g(R 0 S) where S is a FIR and R is a direct product 
of Galois rings. By Lemma 24, only p can generate the radical of R0 5, hence 
g = p. Therefore by Lemma 24, S must be a direct product of Galois rings. 0 

Lemma 42 Let R and S be finite local rings satisfying char (R) =pm , char (5) 
pTh , for a prime p and positive integers m,n > 1. The ring R 0 S is a direct 
product of finite fields if and only if so too are R and S. 

Proof The 'if' part. This is true by Lemma 21, since tensor product 
distributes over direct products. 

The 'only if' part. Since R 0 S is a direct product of finite fields then 
.A.r(R 0 S) = 0. The proof is identical to the 'only if' part of Lemma 41 until 
it shows ./V(R 0 S) = g(R 0 5). Then g = 0, so S is a direct product of finite 
fields. If R is a direct product of Galois rings which are not all finite fields 
then so too must be R 0 S, by Lemma 21. This contradiction implies R is a 
direct product of finite fields. 0 

Lemma 43 Let S = R[x]l(f (x)) be a direct product of Galois rings where R 
is a chain ring and f is monic. Then R is a Galois ring and f is squarefree 
modulo p. 

Proof By Lemmas 34 and 37, f is squarefree modulo p. Assume R is 
not a Galois ring then by Lemma 22, R GR(pm,r)[y]/(ys ph(y), pni—l y t ) 
where  s > 2. It follows that SlpS GF(pr)[x,y]l(f(x),ys) GF(pr)[x]l 
(f (x)) GF (pr)[y] I (ys). Since s > 2 then G F (pr)[y] I (ys) is a finite chain ring 
which is not a finite field, yet GF(pr)[x]l(f(x)) is a direct product of finite 
fields since f (x) is squarefree. Consider the following ring. For some integer 
q> 2, by Lemma 21, GF (pq) 0 (G F (pr)[y] I (gs)) r=j frRG F (79 1 )[yll (gs)), where 
d = gcd(q,r) and l = lcm(q,r). Since  this  ring is not a direct product of 
finite fields then neither is (G F (pr)[x] I (f (x)) OG F (pr)[y] I (gs)) = SlpS. This 
is a contradiction, by Lemma 24, since S is a direct product of Galois rings. 
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Therefore R must be a Galois ring. 0 

Lemma 44 Let S = R[x]l(f(x)) be a direct product of finite fields where R 
is a chain ring and f is monic. Then R is a finite field and f is squarefree. 

Proof. By Lemmas 34 and 37, f is squarefree modulo p. Assume R is 
not a finite field then by Lemma 22, R G R(pm , r)[y] I (ys + ph(y), pm -10 
where m > 2  or s > 2. It follows that SlpS GF(pr)[x,y]l (f(x),ys) 

GF(pr)[x]l(f (x)) OGF (pr)[yi (ys). Let s ?_ 2 then  GF(pr)[y]1 (ys) is a finite 
chain ring which is not a finite field, yet G F (pr)[x] I (f (x)) is a direct product 
of finite fields since f (x) is squarefree. Consider the following ring. For some 
integer q > 2, by Lemma 21, GF(pq)0(GF(pr)[y]/(ys)) FIRGF(p 1 )[y11 (ys)), 
where d = gcd(q,r) and l = lcm(q,r). Since this ring is not a direct product 
of finite fields then neither is (GF(pr)[x]l (f (x)) GF(pr)[y]l (ys)) = S IpS. 
This is a contradiction since S being a direct product of finite fields implies 
SlpS = S. Let m > 2 and s= 1 then by the comment following Lemma 22, 
R = GR(pm,r). Since f is squarefree modulo p then S = R[x]l(f(x)) is a 
direct product of Galois rings of characteristic pm > p, which is a contradic-
tion. Therefore s = 1 and m = 1 so R is a finite field, and f being squarefree 
modulo p implies f is squarefree. 0 

Theorem 45 Let R be a finite commutative chain ring satisfying char (R) = 
Pm , and Q = R[xi,... ,x,-,]1(fi(xi), • • • , fn(xn)) where f i  , fn, are monic 
polynomials, then 

(i) Q is a direct product of finite fields if and only if R is a finite field and 
all the fi  are squarefree; 

(ii) Q is a direct product of Galois rings if and only if R is a Galois ring and 
all the fi  are squarefree modulo p. 

Proof Define Si  = R[x i]/(fi (x i )) for i = 1, 	, n, then Q 'LJ 
Since R = Rp  then Q = Qp  where Hp  is the p—component of R. 

(i) The 'if' part. If R is a finite field and f is squarefree then by the 
chinese remainder theorem for ideals, [35], Exercise.2.6 p.80, R[x] I (f (x)) is a 
direct product of finite fields. By Lemma 21, a tensor product of finite fields 
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is a direct product of finite fields, and since tensor product distributes over 
direct products, then Q is a direct product of finite fields. 

The 'only if' part. By Lemma 42, if S i  0 S2 is a direct product of finite 
fields then so too are Si  and S2. By iterating this argument, if Q 0 1 S, is 
a direct product of finite fields then so is each S i . By Lemma 44, R is a finite 
field and all the f, are squarefree. 

(ii) The 'if' part. If R is a Galois ring and f is squarefree modulo p then 
by Lemma 34, R[x]1 (f (x)) is a direct product of Galois rings. By Lemma 21, 
a tensor product of Galois rings is a direct product of Galois rings, and since 
tensor product distributes over direct products, then Q is a direct product of 
Galois rings. 

The 'only if' part. By Lemma 41, if S i  0 S2 is a direct product of Galois 
rings then so too are S i  and S2. By iterating this argument, if Q 07,L 1 S, is a 
direct product of Galois rings then so is each S. By Lemma 43, R is a Galois 
ring and all the L are squarefree modulo p. 0 

The case now considered is when R is a finite local ring which is not 
necessarily a PIR. Lemma 46 follows immediately from Lemmas 34 and 37. 
Lemma 47 is close to being a converse to Lemma 46. 

Lemma 46 Let R be a local ring satisfying char (R) = pm and f E R[x] is 
a monic polynomial. If R is a chain ring and f is squarefree modulo p then 
S = R[x]1(f(x)) is a finite commutative chain ring. 

Lemma 47 Let R be a local ring satisfying char (R) = pm and f E R[x] is a 
monic polynomial. If S = R[x]l(f(x)) is a finite commutative chain ring then 
RIpR is a chain ring. 

Proof. Assume R is a local ring which is not a chain ring. By Lemma 28, 
R L')  GR(pm ,q)[m.,.. • ,yk]l J for some primary ideal J, and integers p, m, q > 1, 
k> 2. Since S is a PIR then so too is SlpS GF(Pq )[Yi, • .. ,yk ,x]1(7, f (x))  
AOB, where J = J , A = GF(pq)[y i , ,NUJ and B = GF(pq)[x]l (f (x)). 
The ring B is a FIR since it is a homomorphic image of the FIR, CF(pq)[x]. 
By Lemma 29, if A = A/pA is not a PIR then A 0 B SlpS is not a FIR 
which is a contradiction. Hence A = RIpR is a chain ring. 0 
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It has not been proved in this thesis that if S = R[xj1(f(x)) is a finite 
commutative chain ring then R is not a chain ring'. Therefore Theorems 33 
and 45 are only proved for the case when R is a chain ring. 

Consider the case when the ideal / R[x] contains several univariate 
polynomials / = (fi (x),.. . , fr (x)). Let R be a finite local ring then g E R[x] 
is primary if (g) is a primary ideal in R[x], see [71] p.254. Lemma 48 follows 
from [71], Theorem 13.11. 

Lemma 48 Let R be a finite local ring. Let f e R[x] be a monic polynomial 
then f = n is= , gi  where the gi  are monic primary coprime polynomials, for 
some integer s > 1. This factorization of f is unique up to associates. That 
is, if f = ft=i  hi  then s = t and after renumbering, (gi ) = (hi ) 4 R[x]. 

For R a finite local ring, we may now define a greatest common divisor 
of two monic polynomials f , f2 E R[x]. For j = 1,2, let fi  = fl gP)  where 
the gp)  are monic primary coprime polynomials. Define gcd(fi , f2 ) = fl gp) 
where gP)  divides both fi  and f2 . Then by Lemma 48, gcd(fi , f2 ) is well-
defined and is unique up to associates. Similarly gcd(h, • • • , fr) is defined 
for , fr  e R[x]. It is then true that (gcd(fi ,... , fr )) = 
Therefore the theorems in Chapters 2 and 3 of this thesis which are true 
for rings of the form Q = R[x]/(fi (x)) are also true for rings of the form 
Q = R[x]l(fi (x),... , fr (x)) where the A are monic. 

(fi, • • • , fr ). 
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Chapter 4 

Radicals of finite rings and 
principal ideal rings 

This chapter is devoted to several constructions of classes of rings. All rings 
considered are finite but it is not required that these rings are commutative or 
contain identity elements. For a class I?, of finite rings, necessary and sufficient 
conditions are given for R, to be a radical class and also a semisimple class. 
The radical semisimple classes 7Z, of finite rings are characterized along with 
their subsets ArR, of nilpotent rings. Classes consisting of PIRs are character-
ized, namely the hereditary and semisimple classes, and the class of all finite 
commutative PIRs with identity. 

4.1 Radical classes and semisimple classes of 
finite rings 

We describe radical semisimple classes of finite rings, and describe all radical 
classes consisting of finite PIRs. All rings considered in this chapter are finite 
but do not necessarily contain identity elements. 

Theorem 49 is a special case of results in [94]. Theorem 50 and Corol-
lary 54 are special cases of results in [83] and [84]. See also [67] and [93]. For 
the convenience of the reader we provide proofs of Theorem 49, Theorem 50 
and Corollary 54 in the special case of a finite ring. The remaining results are 
new results. 
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For every finite ring R, let g(R) be a certain ideal of R. The mapping g 
is called a radical if it satisfies the following properties: 

(MI) p(R)/I c(R/ I) for every finite ring R with ideal I; 

(M2) g(R) is the largest ideal among all ideals I of R such that g(I) = I; 

(M3) g(RI g(R)) = 0 for each R. 

A ring R is said to be radical or g-radical if g(R) = R. The class of all 
g-radical rings is called the radical class of g. 

Theorem 49 A class 7?, of finite rings, or finite commutative rings, is a rad-
ical class if and only if it satisfies the following properties: 

(R1) 7Z, is closed for homomorphic images; 

(R2) R. is closed for ideal extensions. 

Proof. We consider only classes of finite rings since the case of finite 
commutative rings is similar. The 'if' part. Suppose that a class 7Z, of finite 
rings satisfies properties (R1) and (R2). 

For any ring R, denote by g(R) the sum of all 7?,-ideals of R. 

Consider an ideal I of R which is a sum of two ideals A, B e 7Z. The 
ring (A + B AAA n B) is a homomorphic image of A, and so it belongs 
to R, by condition (R1). Since A + B is an ideal extension of B by A + BIB, 
it follows that A + B is in 7Z, by condition (R2). 

Given that R is finite, easy induction shows that all sums of 7Z-ideals in R 
belong to R. In particular, g(R) is a largest 7?.-ideal of R. Thus condition (M2) 
is satisfied. 

Let I be an ideal of R such that I D g(R) and I I g(R) =  
As we have just proved, both rings g(R) and g(RI g(R)) belong to R. Since 
I is an ideal extension of g(R) by g(RI g(R)), it follows that I E R. By the 
definition of g(R) we get I C g(R). Hence I = g(R), and so g(RI g(R)) = 0. 
Thus condition (M3) holds. 
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Consider a ring R with ideal I. Since g(R)// E R., it follows that 
Q(R)/I C g(RI I), i.e., condition (M1) holds. 

Conditions (M1), (M2) and (M3) show that g is a radical, hence 7-Z is the 
radical class of g. 

The 'only if' part. Let R. be the radical class of a radical g. 

Take any ring R in R., and let I be an ideal of R. Condition (M1) tells us 
that RI I = g(R) I I C g(RI I). Hence RI I E 7Z, and so condition (R1) holds. 

Consider a ring R with ideal I such that I, RII E R.. Condition (M2) 
implies that I C g(R). Hence RI g(R) (RI I) I (g(R)I I) is in R., i.e., 
g(RI g(R)) = R/g(R). However, condition (M3) tells us that g(RI g(R)) = 0. 
Therefore RI g(R) = 0, and so R = g(R). Thus condition (R2) is satisfied. 0 

A ring R is said to be semisimple or g-semisimple if g(R) = 0. The class 
of all g-semisimple rings is called the semisimple class of g. 

Theorem 50 A class S of finite rings, or finite commutative rings, is a 
semisimple class if and only if it satisfies the following properties: 

(Si) S is closed for ideals; 

(S2) S is closed for ideal extensions. 

Note that for arbitrary rings, in contrast to the finite case, a class closed 
for ideals and ideal extensions need not be a semisimple class (see [38]). Thus 
the exact analog of Theorem 50 is not true for arbitrary rings. 

Lemma 51 Every class closed for ideals and ideal extensions is also closed 
for finite subdirect products. 

Proof Let S be a class of rings closed for ideals and ideal extensions. It 
suffices to consider the case where a ring R is a subdirect product of two rings 
RIA, RI B E LS, where A, B are ideals of R such that A n B = 0. 

Since (A+B)IB is an ideal of RIB E S and the class S is closed for ideals, 
we see that (A+B)/B E S. Clearly, A A/0 = A/(AnB) (A+ B)113 E S. 
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Given that S is closed for ideal extensions and A, R1A E S, it follows that 
R E S. This completes the proof. 0 

Radical classes of arbitrary associative rings closed for finite subdirect 
products were investigated in [40]. 

Proof of Theorem 50. We consider only classes of finite rings since the 
case of finite commutative rings is similar. The 'if' part. Suppose that S 
satisfies the properties (Si) and (S2). 

For any ring R, denote by g(R) the intersection of all ideals I of R such 
that R1I E S. 

Consider ideals A, B of R such that RIA, RIB E S. Clearly, RAA n B) 
is a subdirect product of RIA and RIB. Hence RI(A n B) E S in view of 
Lemma 51. 

Given that R is finite, easy induction shows that R/ 0(R) E S. 

Clearly, R/(R) E S implies g(RIg(R)) -= 0, and so g satisfies (M3). 

Denote by R. the class of all rings without nonzero homomorphic images 
in S. 

If R E R and I is an ideal of R, then R// E R., because all homomorphic 
images of R1I are also homomorphic images of R. Thus R. satisfies condition 
(R1). 

Let R be a ring with ideal I E R such that RII E 7Z.. Suppose that a 
homomorphic image R1J is in S. Given that S is closed for ideals and //J is 
an ideal in R1J, we get IIJ E S. By the choice of I it follows that IIJ= 0. 
Hence RIJ is a homomorphic image of R/I E S, and so RIJ = 0. Therefore 
R satisfies condition (R2). 

Thus R. is a radical class by Theorem 49. 

Denote by go (R) the largest 7?.-ideal of R. By the proof of Theorem 49 
the mapping go is a radical. We shall show that go = g. 

Take any ring R and put K = g(g(R)). 
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Look at any element r E R. Clearly, rKg(R) C rK and g(R)rK C 
g(R)K C K. Hence (rK + K)IK is an ideal of 0(R)/ K. Given that S is 
closed for ideals and Q(R)/K E S, we get (rK +K)IK E S. 

Consider the mapping a: K —> (rK + K)IK defined by a(x)= rx+ K. 
We get a(xy) = rxy + K C RKK + K C g(K)K + K C K and a(x)a(y) = 
rxry +K C RKRK +K C g(R)K +K C K. Hence a is an epimorphism. Let 
Z be the kernel of a. For any x E Z, a E g(R), we get rax E g(R)K C K and 
rxa E Kg(R)C K. Hence Z is an ideal of K. Clearly, KIZ'L)(rK+K)IK 
S and p(R)/K E S imply that o(R)/Z E S. By the definition of K it follows 
that K = Z. Hence rK C K. 

Similarly, Kr C K. Thus K is an ideal of R. 

Given that S is closed for ideal extensions, R/ (R), Q(R)/K E S yield 
R/K E S. The definition of g(R) shows that g(R) = K; 

Thus g(g(R)) = g(R). This means that g(R) E R.. Therefore g(R) C 
co(R). 

Given that S is closed for ideals, since (o(R)/p(R) is an ideal of R/g(R) E 
S, we get co(R)/ g(R) E S. The definition of the class R. implies that (R) /0(R) = 
0. Hence g(R) D (p(R). 

Thus g(R) = co(R). Therefore g is a radical. Evidently, S is the semisim-
ple class of g. 

The 'only if' part. Let S be the semisimple class of a radical g. Denote 
by R. the radical class of g. 

Consider a ring R with ideal I such that I, RI I E S. Then p(R)/I C 
g(RII) = 0 in view of condition (M1), and so g(R) c I. Since g(g(R)) = 
g(R), the condition (M2) yields that g(R) C g(I) = 0. Thus R E S, i.e. 
condition (S2) holds. 

Consider a ring R E S with ideal I. Suppose to the contrary that g(I) = 
J O. 

For any x E R, it is easily seen that J is an ideal in J + xJ, and the 
quotient ring (J + xJ)IJ is a homomorphic image of J. By Theorem 49 we 
get J+xJ E 7.  
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Similarly, for any x,y E R, J + xJ is an ideal of J + xJ + Jy and the 
quotient ring (J+xJ+Jy)1(J+xJ) is a homomorphic image of J+xJ. Hence 
J+xJ+Jy E 7. 

It follows from the proof of Theorem 49 that g(R) is the largest 7Z-ideal 
of R. Hence A = Ex,yER(J + xJ + Jy) E R. Clearly, A is an R.-ideal of 
R. Therefore g(R) DADJ 0. This contradiction shows that S satisfies 
condition (Si), which completes the proof. 0 

Lower and upper radicals of finite rings were considered in [36], but there 
is no overlap with our results. 

For any nonempty set 7T of primes, denote by .Ai, the class of all nilpotent 
rings whose characteristics are products of primes in 7r. If R is a radical class, 
then by .AiR  we denote the set of all nilpotent rings in R. 

For any ring R and prime p, put 

Rp  = fr e R pmr = 0 for some m> 01. 

Theorem 52 Let R, be a radical semisimple class of finite rings. Then MR, = 
.1■1; for some set it of primes. 

Proof Let iv be the set of all primes p such that R. has a nonzero nilpotent 
ring whose additive group is a p-group. 

Let A E ./■.r7z,. Then A = Eepe, A. Hence all Ap  E R by Theorem 49. 
Therefore A E .A/T,, and so AiR  C Ac. 

For any p E 7r, R. contains a nonzero nilpotent ring B = B. Hence 
0 B/B 2  E R.. Choose a nonzero x E BIB' with px = 0. Then the zero 
ring (x) is in R., because it is an ideal of B/B 2 . Every abelian p-group has a 
chain of normal subgroups with all factors of the chain being groups of order 
p. Therefore if we take any zero ring on a p-group, then it has a chain of ideals 
with all factors isomorphic to (x). Given that R. is closed for ideal extensions, 
we see that R. contains all zero rings on p-groups. 

Look at R = Rp  E J'4 .  Let Rn = 0 and Rn- 1  0. Then (R'') 2  = 0, 
and so we have R72-1 , R/Rn -1  E R. Hence R E R. Thus R contains all 
nilpotent rings whose additive groups are p-groups. 
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Now take any A E Mir . Then A = @pc, Ap  is a sum of nilpotent rings 
Ap  E R. Therefore .A/ 	This completes the proof. 0 

Theorem 53 Let 7Z be a radical semisimple class of finite rings. Denote by Ir 
the set of primes dividing nonzero characteristics of nilpotent rings in R. Let 
M be the set of all matrix rings M over finite fields such that M E R. Denote 
by R,,,A4  the class of all rings R which have an ideal I E Al,,. such that RI I is 
a finite direct product of matrix rings in M. Then 

= R,,,A4 . 

Conversely, for every set 7 of primes and every set M of matrix rings over 
finite fields, the class 7?.,,A4  is a radical semisimple class. 

Proof Take any B E R. As R is closed for ideals, the largest nilpotent 
ideal N(B) of B is in R.. Therefore N(B) E .Al,,.. Every finite Jacobson 
semisimple ring is a direct product of finite matrix rings. Therefore BIN(B) 
is a direct product of matrix rings in M. Thus R. C 7Z„,m . The reversed 
inclusion is obvious. 

It is routine to verify that 'R,,,A4  is closed for ideals, homomorphic images 
and ideal extensions, and so it is a radical semisimple class by Theorems 49 
and 50. 0 

A radical g is said to be hereditary if QM = I n g(R) for every ring R 
with ideal I. It is easily seen that a radical is hereditary if and only if its 
radical class is closed for ideals. Therefore we get the following corollary. 

Corollary 54 All hereditary radical classes are precisely radical semisimple 
classes. 

Note that this corollary is not true in the case of arbitrary associative 
rings. In arbitrary rings radical semisimple classes are precisely the varieties 
generated by finite sets of finite fields (see [39], [87]). In particular, such radical 
classes do not contain nonzero nilpotent rings. We see that the situation in 
the finite ring case is quite different. 
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Theorem 55 Let 1C be a class of finite simple rings. Denote by R, K  the class 
of all finite rings which have ideal chains with all factors in 1C. Then Ric is a 
radical semisimple class. Conversely, every radical semisimple class coincides 
with Ric for some class 1C of finite simple rings. 

Proof. Given that 1C consists of simple rings, it is routine to verify that 
7?-k is closed for ideals, homomorphic images and ideal extensions. Therefore 
it is a radical semisimple class by Theorems 49 and 50. 

Conversely, let 7Z be a radical semisimple class. Denote by 1C the class 
of all simple rings in 7Z. Every finite ring in 7Z has an ideal chain with simple 
factors, and by Theorem 49 all these factors are in 7?,, and so they belong to 
1C. Hence 7?, C R ic. Clearly, 7Z ic  C 7Z, by Theorem 49. Thus 7Z, = 7Z, K . 0 

4.2 Classes of principal ideal rings 

If every ideal of a ring R has one generator, then R is called a principal ideal 
ring, PIR. A radical is subidempotent if its radical class does not contain any 
nonzero rings with zero multiplication. A radical is subidempotent if and only 
if its radical class does not contain any nilpotent rings. 

Theorem 56 A hereditary radical of finite rings consists of PIRs if and only 
if it is subidempotent. 

Proof. If a radical is subidempotent and hereditary, then every radical 
ring is Jacobson semisimple, and so is isomorphic to a finite direct product of 
matrix rings over finite fields. Therefore all radical rings are PIRs. 

Conversely, suppose that a radical is not subidempotent. Then its radical 
class 7Z, contains a nonzero ring R with zero multiplication. It is clear that 
RxRE 7?,. However, R x R is not a PIR. 

A radical class is supernilpotent if it contains all nilpotent rings. A radical 
is supernilpotent if its radical class is supernilpotent. 
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Theorem 57 A semisimple class of finite rings consists of PIRs if and only 
if its radical is supernilpo tent. 

Proof Let S be the semisimple class of a supernilpotent radical. Take 
any ring R E S. Since all nilpotent rings are radical, it follows that R has only 
zero nilpotent ideals, and so R is a finite direct product of matrix rings over 
finite fields. Therefore R is a PIR. 

Conversely, suppose that S is a semisimple class of a radical which is not 
supernilpotent. Then there exists a ring R E S with zero multiplication. As 
above, R x R belongs to S but is not a PIR. 0 

If in the definitions above we consider only finite commutative rings, then 
we get the concepts of a radical of finite commutative rings, and its radical 
and semisimple classes. The exact analogs of Theorems 49, 50 and Theorem 55 
remain valid. 

Theorem 58 The class R, of all finite commutative PIRs with identity is a 
radical class. 

Proof If R has an ideal / with identity then R is isomorphic to the 
direct product / x (RI I). Therefore R, is closed for ideal extensions. Theo-
rem 33 of [96] tells us that every ring in 7Z, is a direct product of chain rings. 
A homomorphic image of a chain ring is a chain ring. Hence R, is closed for 
homomorphic images. Theorem 49 completes the proof. 0 
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Chapter 5 

Semisimple Artinian 
semigroup-graded rings 

This chapter is devoted to several structure theorems for Artinian semigroup-
graded rings. All rings considered are Artinian but it is not required that these 
rings are commutative or contain identity elements. Consider a semigroup S 
and an S-graded ring R = ED, EsR, with support supp(R). Two finiteness con-
ditions are considered on supp(R), (i) supp(R) intersects a finite number of 
maximal subgroups of S and (ii) supp(R) contains a finite number of idem-
potents. These conditions are used in giving several necessary and sufficient 
conditions for R to be semisimple Artinian when S is a semilattice, a finite 
semilattice, an inverse semigroup and a Clifford semigroup. Here R may be 
a special B-graded ring, or a faithful or arbitrary S-graded ring. Semigroup 
identities are given for a semigroup variety V which ensures that a semigroup 
algebra FS is semisimple Artinian, where F is a arbitrary field. Most of this 
chapter appears in [21]. 

5.1 Idempotents and supports 

Let S be a semigroup. An associative ring R = ses  Rs  is said to be S-graded 
if R3R C Rst  for all s,t E S. The support of R is the set 

supp(R) = Is E S Rs  01. 

For a semigroup ring R = KS we have supp(R) = S, so we are interested in 
finiteness conditions for supports of semigroup-graded rings. One condition of 
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this sort was obtained in [60], if S entirely consists of idempotents and R is 
right Artinian, then supp(S) is finite. (This theorem was generalized in [28] 
and in [50]). 

We shall show that in general the support of a right Artinian semigroup-
graded ring may contain infinitely many idempotents. However, if we require 
that R be a semisimple Artinian ring, then the number of idempotents in 
supp(R) is finite. In fact, we shall prove the following stronger theorem. 

Theorem 59 Let S be a sem,igroup. The support of a semisim,ple Artinian 
S-graded ring intersects a finite number of maximal subgroups of S. 

Proof. Suppose to the contrary that there exists a semisimple Artinian 
S-graded ring R = ED, E, Rs  such that the set M of all maximal subgroups 
intersecting supp(R) is infinite. 

Consider the set P of all right ideals of the form Rasi = esEasi R.,  
where G E M. A semisimple Artinian ring is right Artinian and Noetherian, 
and so it contains only finite chains of right ideals. Hence P does not contain 
infinite chains. If P has an infinite set of pairwise incomparable elements 
RG 1 81, RG2 si, • • •, then it has an infinite ascending chain RG i si c RG1s 1 
RG2s i c • • •, a contradiction. Therefore P has only finite sets of incomparable 
elements. The last exercise in [30, § 1.1] tells us that if every chain and every set 
of pairwise noncomparable elements in a partially ordered set P is finite, then 
P is finite. Hence there exists an infinite set N C M such that RGsi = RHsi 
for all G, H E N. 

Consider the set Q of all left ideals of the form RsiG = ED.sesic R., 
where G runs over N. Since a semisimple Artinian ring is left Artinian and 
Noetherian, the same argument as above shows that Q is a finite set. Therefore 
there exists an infinite set L c N such that Rs I G  = Rsi H  for all G,H E L. 

Take any G, H E L. Given that G and H intersect supp(R), there 
exist g E G, h E H such that R9  0, Rh 0. Since R9  C Rasl = RHsi, 
we see that g E HS', and so gS 1  C HS', whence GS 1-  = gGS1  C HS'. 
Similarly, GS 1  D HS 1 . Therefore GS' = HS 1 . The same reasoning shows 
that S I G = S 1 H. Thus G and H generate the same left and right ideals in 5, 
for all G, H E L. 

Thus L is contained in a single H-class of S. This H-class is a maximal 
subgroup of S by [46], Theorem 2.2.5. Therefore all subgroups in L coincide. 
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This contradiction completes the proof. 0 

Corollary 60 The support of a semisimple Artinian semigroup-graded ring 
contains a finite number of idempo tents. 

Example 61 Let F be field which is a twisted group ring of an infinite group 
G due to Passman [78]. Clearly, F is G-graded, F = ENEG Fg . Consider the 
subring R = Fen  + Fen of the 2 x 2 matrix ring F2, where eii  denotes the 
standard matrix unit. It is easily seen that 

R  F O 
F O 

is a right Artinian ring. Denote by S the set 

{(g,i) I g E G,i = 1, 21. 

Introduce a multiplication on S putting 

(g, 1)(h, 1) = (gh,1), (5. 1) 
(g, 2)(h, 2) = (h, 2), (5. 2) 
(g, 1)(h, 2) = (h, 2), (5.3) 
(g, 2)(h, 1) = (gh, 2). (5 .4) 

Then it is routine (although tedious) to verify that S is a semigroup and R 
is an S-graded ring, R = EBses  Rs  with components Rs  = Ro, i) = Fgeii . The 
support of R is equal to S. Clearly, all elements (g, 2), g e G, are idempotents. 
Thus R is a right Artinian S-graded ring with infinitely many idempotents in 
the support. 

Next, we obtain conditions sufficient for a graded ring with support in-
tersecting a finite number of maximal subgroups or with finitely many idem-
potents in the support to be semisimple Artinian. 

A semigroup entirely consisting of idempotents is called a band. A com-
mutative band is called a semilattice. Semilattice-graded rings were considered 
in [25], [45], [54], [88] and other papers. 

Theorem 62 For any sem,igroup S, the following conditions are equivalent: 
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(i) every S-graded ring R = (1) ses  R, with a finite number of idempotents 
in the support is semisimple Artinian if and only if all subrings Re  are 
semisimple Artinian for all idempo tents e of S; 

(ii) S is a semilattice. 

Proof (i) = (ii): First, we'll show that S is a band. Suppose to the 
contrary that S has an element x such that x x 2 . Denote by R any nonzero 
ring with zero multiplication. Let R x  = R, and for xsES put R, = 0. 
Then R = 169 R 5  is an S-graded ring, and Re  = 0 for all idempotents 
e e S. Therefore condition (i) implies that R is semisimple Artinian. This 
contradiction shows that S is a band. 

If S is not commutative, then it follows from [46], Theorem 4.4.1, that 
S contains a nontrivial left or right zero band. Assume that S has a left 
zero subband L = {e,m}. Take any field F and consider the semigroup ring 
R = FL. Let Re  = F , Rrn  = Fm, and for s E S\L put R, = 0. Then 
R =IED, Es Rs is an S-graded ring, and for any idempotent e E S either Re  = 0 
or Re  r=-) F. Therefore condition (0 tells us that R is a semisimple Artinian 
ring. However, R has a nilpotent ideal {re — fm I f E F}. This contradiction 
shows that S is a semilattice. 

(ii) 	(i): Suppose that S is a semilattice. Consider an S-graded ring 
R = El)sEsR3 with a finite number of idempotents in the support. 

Suppose that R is semisimple Artinian. Pick any idempotent e in S. 
Then the ideal Res = Ee sEes R, of R is semisimple Artinian, too. It is easily 
seen that Re  is isomorphic to the quotient ring Res/Resve} • Therefore Re  is 
semisimple Artinian, as well. 

Conversely, suppose that all rings Re  are semisimple Artinian for all 
idempotents e E S. Recall that every semilattice is a partially ordered set 
with respect to the order defined by x < y <=> xy = x. Let Isupp(R)1 = n. By 
induction we define idempotents e l , . . , en . Choose a minimal element e l  in 
S with the property that Rei 	0. Suppose that idempotents e l , , ek  have 
already been defined for some 1 < k < n. Put Sk = {el, 	,ekl. Choose a 
minimal idempotent in supp(R)\Sk. It is routine to verify that R has an ideal 
chain 

Rei Rs i CRs2 C...CRs,R, 

and each factor Rsd Rsk _ 1  is isomorphic to R„ for k = 2, ... , n. Since the 
class of semisimple Artinian rings is closed for ideal extensions, it follows that 
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R is semisimple Artinian, as required. 0 

A class IC of rings is said to be S - closed if every S-graded ring R is in 
K provided that all subrings Re  are in K for all idempotents e of S (see [58]). 
Corollary 60 and Theorem 62 immediately give us the following 

Corollary 63 The class of semisimple Artinian rings is S-closed if and only 
if S is a finite semilattice. 

5.2 Inverse semigroups 

A semigroup S is said to be inverse if, for every s E 5, there exists a unique 
s E S such that ss-i s = s and s -1  ss-1  = s -1 . Inverse semigroups form an 
important class arising in many interesting situations (see [79]). Rings graded 
by inverse semigroups were considered in [61] and [91]. A semigroup is said 
to be completely regular if it is a union of groups. A Clifford semigroup is 
an inverse completely regular semigroup. Rings graded by Clifford semigroups 
have been considered in [4]. 

Let B be a semilattice. A semigroup S is a semilattice B of subsemigroups 
Sb, where b E B, if S = UbE BSb is a disjoint union of the subsemigroups Sb, and 
Sa Sb C Sab for all a, b E B. Theorem 4.2.1 of [46] tells us that every Clifford 
semigroup is a semilattice of groups. 

Theorem 64 For any semigroup S, the following conditions are equivalent: 

(i) every S-graded ring R = 18), Es  R, with support intersecting a finite num-
ber of maximal subgroups is semisimple Artinian if and only if all sub-
rings RG = ED9Ec R9  are semisimple Artinian for all maximal subgroups 
G of S; 

(ii) S is a Clifford semigroup. 

Proof (i) = (ii): First, we claim that S is a completely regular semi-
group. Suppose to the contrary that S has an element x which does not 
belong to any subgroup of S. Take any ring R 0 with zero multiplication. 
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Put Rx  = R, and for xis ES put R, = 0. Then R = ED ses  Rs  is an S-graded 
ring, and RG = 0 for all subgroups G of S. This contradicts condition (i) and 
shows that S is completely regular. 

If S is not inverse, then it follows from [46], Theorem 5.1.1 (3) and 
Proposition 2.3.3, that S contains a nontrivial left or right zero band. Assume 
that S has a left zero subband L = te, ml. As in the proof of Theorem 62 the 
semigroup ring R = FL gives us an example of an S-graded ring contradicting 
condition (i). Therefore S is inverse. Thus S is a Clifford semigroup. 

(ii) = (i): Suppose that S is a Clifford semigroup. Consider an S-graded 
ring R = ED ses  R, with support intersecting a finite number of maximal sub-
groups of S. Then Theorem 4.2.1 of [46] tells us that S is a semilattice Y 
of groups Gy , y e Y. Clearly, R = ED E y  'Icy  is a semilattice-graded ring. 
Theorem 62 shows that R is semisimple Artinian if and only if all the rings 
RGv  are semisimple Artinian for all y E Y. 0 

We shall describe special band-graded rings which are semisimple Ar-
tinian rings. The concept of a special band-graded ring was introduced by 
Munn [72]. Let B be a band, and let R = ED I9EB Rb be a B-graded ring. If each 
ring Rb has identity l b , and ' a l b  = l ab , for all a, b, then the ring R is called a 
special band-graded ring or a special B-graded ring. If B is a semilattice, then 
all special B-graded rings are strong semilattice sums of rings (see [25] for a 
definition). 

Theorem 65 Let B be a band, and let R = bE g Rb be a special B-graded 
ring. Then R is semisimple Artinian if and only if B is a finite semilattice 
and all components Rb, b E B, are semisimple Artinian. 

We need two lemmas from [57]. Recall that a rectangular band is a band 
satisfying the identity xyx = x. 

Lemma 66 ([57], Lemma 2) Let a band B be a semilattice S of rectangular 
bands 11„, R = ED bEB Rb a special band-graded ring, lb the identity of Rb. For 
each s E S choose an element h, in H, and set 

Q, = 	Rb, Is = fx E Qs I ihs xihs  = 0},I = 
bEH 	 „Ess  

Then I is a locally nilpotent ideal of R. The quotient ring RI I is a special 
S-graded ring RI I = ED sEs  F,, where F, Rh. The ideal I and rings F, do 
not depend on the choice of the elements h,. Besides, I = 0 for every s E S. 
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Lemma 67 ([57], Lemma 4) Let S be a finite semilattice and R = esEs  Rs  
a special semilattice-graded ring. Then R is isomorphic to the direct product 
rises Rs. 

Proof of Theorem 65. If B is not a semilattice, then R contains a nonzero 
locally nilpotent ideal I by Lemma 66. Hence B is a semilattice. Theorem 4 
of [57] tells us that B is finite. Lemma 67 says that R is isomorphic to the 
direct product fibEB Rb. Therefore R is semisimple Artinian if and only if all 
the Rb are semisimple Artinian. 0 

A Brandt sem,igroup is an inverse completely 0-simple semigroup. (A 
semigroup is completely 0-simple if it has no proper nonzero ideals). Wauters 
and Jespers [91] proved that, for every Brandt semigroup S with a finite num-
ber of idempotents, an S-graded ring R is semisimple Artinian if and only if 
R is semiprime and all group-graded subrings RG are semisimple Artinian for 
all maximal subgroups G of S ([91], Theorem 3.5). We describe all inverse 
semigroups S satisfying this property. 

We say that the grading is faithful if, for any s,t E S and r E Rs , each 
of the equalities rRt  = 0 and Rtr = 0 implies that r = 0, (see [29] and [61]) .  

Theorem 68 Let S be an inverse semigroup, and let R =- —.9€.5 R3  be a faith-
fully S -graded ring with a finite number of idempo tents in the support. If Rc 
is semisimple Artinian for all maximal subgroups G of 5, then R is semisimple 
Artinian. 

Proof Given that S is inverse, the main theorem of [61] tells us that if 
all the RG  are semisimple, then R is semisimple. 

We proceed by induction on the number n of idempotents in the support 
of R. 

Suppose that n = 0. If R, 	0 for some s E S, then the equality 
ss-ls = s implies R3lis--1 	= Rs , because R is faithfully graded. Hence 
Rs-i Rs  0, and therefore R3-1 8  0. This contradicts the fact that 5 -1 8 is an 
idempotent. Therefore R = 0, and the assertion is trivial. 

Next, assume that n> 1. Take a ring R = ED sEs  Rs  such that the number 
of idempotents in supp(R) equals n. 
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Choose an element in E supp(R) such that the ideal M = sirnsi is  

minimal. Denote by N the set of all nongenerating elements of M. Clearly, 
RN = 0 by the minimality of m, and so we may factor out N in S and assume 
that from the very beginning N = 0. Then M = MIN is a 0-simple semigroup 
by [46], Proposition 3.1.5. 

For any idempotent 0 e E M, there exist elements a, b E M such that 
aeb = m. Hence RaReRb = Rrn , and so Re  0, i.e., e E supp(R). Therefore 
M has a finite number of idempotents; whence it has a primitive idempotent 
and is a completely 0-simple semigroup by [46], Theorem 3.3.3 (4). Thus M 
is a Brandt semigroup by [46], Theorem 5.1.8. 

For any 0 s E M, there exist a, b E M such that m = asb. Hence 
0 Rin  = RaR,Rb , because R is faithfully graded. Therefore R, 0 for all 
s E M. It follows that M has a finite number of idempotents. 

Given that RG  is semisimple Artinian for all maximal subgroups G of 
M, it follows from [91], Theorem 3.5, that Rm  is semisimple Artinian. 

Clearly, Rm is an ideal of R, and RI Rm is an S-graded ring with 
supp(R/Rm ) C supp(R)\M. Therefore RI Rm  has fewer than n idempotents 
in the support. By the induction assumption R/Rm is semisimple Artinian. 
Since the class of semisimple Artinian rings is closed under ideal extensions, it 
follows that R is semisimple Artinian, too. This completes the proof. 0 

Theorem 69 For any inverse semigroup S, the following conditions are equiv-
alent: 

(i) every S-graded ring R = e sEs  R, is semisimple Artinian if and only if 
R is semiprime and all subrings RG =- e gEG Rs are semisimple Artinian 
for all maximal subgroups G of 5; 

(ii) S has a finite number of idempo tents. 

Proof (i) = (ii): Suppose that every S-graded ring R is semisimple 
Artinian if and only if R is semiprime and all subrings RG  are semisimple 
Artinian for all maximal subgroups G of S. We'll show that S has a finite 
number of idempotents. 

Denote by E the set of all idempotents of S. Let F be a field, and 
let R = FLEE Re be a direct product of isomorphic copies Re  of F. For all 
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esEs Rs s e S\E, put R,= 0. Then it is easily seen that R. 	is an S-graded 
ring. Clearly, R is semiprime. If G is a maximal subgroup of S with identity 
e, then RG = Re 2--.' F is semisimple Artinian. Hence R is semisimple Artinian 
by condition (i). It follows that R is a finite direct product of the fields Re . 
Therefore the set E is finite. 

(ii) = (i): Let S be an inverse semigroup with a finite number, say 
n, of idempotents. Fix an S-graded ring R = ED ses  Rs . We must verify 
that R is semisimple Artinian if and only if it is semiprime and all subrings 
Rc = IEDgEG R9 are semisimple Artinian for all maximal subgroups G of S. We 
proceed by induction on n. 

If n = 1, then S is a group and condition (i) holds. 

Suppose that n> 1. Note that if S is a completely 0-simple semigroup, 
then S is a Brandt semigroup by [46], Theorem 5.1.8; whence any S-graded ring 
is a generalized matrix ring, and so condition (i) follows from [91], Theorem 3.5. 
So we assume that S is not completely 0-simple. Consider two possible cases. 

Case 1. S is a semigroup with zero. Every ideal of an inverse semigroup 
is generated by idempotents in view of [46], Theorem 5.1.1. Given that S has 
only a finite number of idempotents, it has a minimal nonzero ideal M. Since 
M has a finite number of idempotents, it follows from [46, § 3.2] that M is 
a completely 0-simple semigroup. Therefore M is a proper ideal of S. Hence 
the induction assumption applies to M and to S/M. Note that RIRm  is an 
S/M-graded ring. 

Suppose that R is semisimple Artinian then R is semiprime. Take any 
maximal subgroup G of S. First, consider the case where G is a subgroup 
of M. Since Rm is an ideal of R, it is also semisimple Artinian, and by the 
induction assumption RG is semisimple Artinian. Second, consider the case 
where G does not belong to M. Then G is a maximal subgroup of S/M. Since 
R/Rm  is a semisimple Artinian S/M-graded ring, the induction assumption 
implies that RG is semisimple Artinian, again. 

Conversely, suppose that R is semiprime and all RG are semisimple Ar-
tinian for all maximal subgroups G of S. Since Rm is an ideal of R, it is 
also semiprime by [38], Example 2.5(ii). By the induction assumption Rm  
is a semisimple Artinian ring. Since Rm  has an identity, R is isomorphic to 
a direct product of Rm  and R/Rm. Hence R/Rm  is semiprime, too. All 
maximal subgroups of S/M are maximal subgroups of S. Therefore the in-
duction assumption yields that RIRm is semisimple Artinian. Since the class 
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of semisimple Artinian rings is closed for ideal extensions, R is semisimple 
Artinian, as required. 

Case 2. S has no zero. Denote by K the kernel of S. It follows from [46], 
Proposition 3.1.4, that K is a simple semigroup. Since it has a finite number 
of idempotents, it is a completely simple semigroup. Given that K is inverse, 
[46], Theorem 5.1.1(3), implies that K is a group. 

Suppose that R is semisimple Artinian. Then R is semiprime. Take 
any maximal subgroup G of S. If G = K, then RG  is semisimple Artinian, 
because it is an ideal in R. If G K, then G is a maximal subgroup of S/K. 
Since S/K is a semigroup with zero, and so is covered by Case 1, and R/RK 
is an S/K-graded semisimple Artinian ring, it follows that RG is semisimple 
Artinian. 

Conversely, suppose that R is semiprime and all RG are semisimple Ar-
tinian for all maximal subgroups G of S. Since K is a maximal subgroup of 
RK is semisimple Artinian, and so it has an identity. Hence R is isomorphic 
to the direct product of RK and R/RK. In view of Case 1, since SIK is a 
semigroup with zero and R/RK is an S/K-graded ring, we see that R/RK is 
semisimple Artinian. Therefore R is semisimple Artinian, too. This completes 
the proof. 0 

If p is a positive integer, then a group is called a p' -group if it has no 
elements of order p. For convenience, we shall call all groups 0'-groups. 

A class of all semigroups satisfying a certain set of identities is called a 
variety. The investigation of semigroup varieties is one of the most impor-
tant directions of semigroup theory (see [85], [86]). Therefore it is interesting 
to determine whether it is possible to find semigroup identities which ensure 
that a semigroup algebra is semisimple Artinian. This is accomplished in the 
following theorem. 

Theorem 70 Let V be a semigroup variety, and let F be a field of character-
istic p> 0. Then the following conditions are equivalent: 

(i) for every finite semigroup S e V, the semigroup algebra FS is semisimple 
Artinian; 

(ii) all semigroups in V are semilattices of p'-groups; 
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(iii) V satisfies the identities xm+ 1  = x and (xy)m = (yx)m, where m is an 
integer not divisible by p. 

Proof We shall prove implications (i) = (ii) and (i) = (iii) simultane- 
ously. 

Take the free semigroup F1  of rank one in V. Let x be the free generator 
of F1 . If x xF1 , then V contains the two-element semigroup Z2 = / X Fl 
with zero multiplication. The semigroup algebra FZ2  is not semisimple: its 
radical contains x — x2 . This contradiction shows that x E xFi. Hence there 
exists a positive integer m such that en -E l  = x. Therefore F1  is a group of 
order m. If m is divisible by p, then the radical of the group algebra FFi  
contains x + x2  + • • • + xm, a contradiction. Therefore m is not divisible by p, 
and V satisfies the identity xi"' = x. 

If L = {a, b} is a left or right zero band, then the semigroup algebra FL 
is not semisimple: its radical contains a — b. Therefore V does not contain 
nontrivial left and right zero bands. Theorem 4.1.3 of [46] tells us that S is 
a semilattice of completely simple semigroups. Every completely simple semi-
group is a rectangular band of groups. If a completely simple semigroup is not 
a group, then it follows from [46], Exercise 2.6.3, that it contains a nontriv-
ial left or right zero band. This contradiction shows that S is a semilattice 
of groups. Since these groups satisfy the identity xm+ 1  = x where m is not 
divisible by p, it follows that they are p'-groups. Therefore S is a union of 
p'-groups. Thus condition (ii) holds. 

Consider the free semigroup F2 of rank two in V. Let x, y be the free 
generators of F2. Given that F2 is a semilattice of groups, it is clear that 
xy and yx belong to the same maximal subgroup G of F2. By the identity 
xm+ 1  = x the elements (xy)m and (yx)m are both equal to the identity of G. 
Hence (xy)m = (yx)m, and so V satisfies the identity (xy)m = (yx)m. Thus 
condition (iii) holds. 

(iii) = (ii): Suppose that V satisfies the identities xm+ 1  = x and (xy)m = 
(yx)m for a positive integer m not divisible by p. Take any semigroup S in 
V. The identity xm+ 1  = x shows that S is a union of p'-groups. Therefore S 
is a semilattice of completely simple semigroups. The identity (xy)m = (yx)m 
implies that S does not contain nontrivial left or right zero bands. As above, 
all completely simple semigroups without nontrivial left and right zero bands 
are groups. Therefore S is a semilattice of p'-groups. 

(ii) = (i): Take a finite semigroup S in V. Let S be a semilattice Y of p'- 
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groups Gy , where y E Y. Then FS = evEy  FGy  is graded by the semilattice 
Y. By Maschke's theorem the group algebras FGy  are semisimple. Therefore 
FS is semisimple by [88], Theorem 1. Every semisimple finite dimensional 
algebra is semisimple Artinian. This completes our proof. 0 
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