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Abstract 

This thesis presents two applications of representation theory of locally com-

pact groups. The first is concerned with random walks, the second with Mackey's 

Intertwining Number Theorem. 

Firstly, we consider the random walk on a collection of chambers bounded 

by hyperplanes in a given subspace E of Rn+ 1 . Initially, a particular transition 

probability is used in the first part of this analysis, and the identification of 

the collection of chambers with a reflection group provides necessary tools for 

obtaining a criterion for the recurrence of that walk. Next, the techniques of 

representation theory are used to deal with the generalization of the random walk 

when transition probability is considered to be a general probability measure on 

the group concerned. 

Secondly, Mackey's Intertwining Number Theorem for one dimensional rep-

resentations of open and closed subgroups of a given locally compact group G 

is generalized. A similar result to Mackey's is obtained in the case where the 

representations are finite dimensional. The recent developments in the theory of 

A7r, spaces (in which such spaces are recognized as preduals of spaces of intertwin-

ing operators of induced representations) are being simplified under the condition 

that the subgroups are open and closed. These results, together with the fact that 

the space of intertwining operators between two representations can be identified 

with the dual of the G-tensor product of the corresponding representation spaces 

(endowed with the greatest cross-norm) are used to carry out the analysis. 
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Chapter 1 

Introduction 

An interesting question concerning random walks on simple lattices was answered 

by mathematicians many years ago. In 1921, 1361ya discovered a very beautiful 

application of several-dimensional Fourier series to random walks (see [C. He 

thought of a particle moving on the n-dimensional lattice Zn  according to the 

following rule. The particle starts at time 0 at the origin and moves at time 

m > 1 by a unit step to one of 2n neighboring lattice points with probability 

each. The problem is to compute the probability of the event that, after in 

steps, the particle arrives at a fixed lattice point and to study the behavior of the 

particle as rn tends to infinity. 

Using Fourier analysis, POlya proved that for n < 2 the ultimate behavior of 

the walks is recurrent, while for n > 3, it is transitory: the particle ultimately 

stops visiting the ball lz I < R, for any R < cc. 

Polya's idea is to think of the probability of the particle arriving at a fixed 

lattice point after m steps as the corresponding Fourier coefficient of a square 

summable function on the standard n-dimensional Torus. Using the independence 

of the individual steps, this function can be simplified as a function depending 

only on x, in and n. Finally, the expected number of times the particle visits 

the origin is just the sum of the probability arriving at the origin over all 
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nonnegative integers. 

Formally, suppose P(s, = k) denote the probability of the particle arriving 

at the lattice point k after m steps. Let f be a square summable function on the 

standard n-dimensional Torus Tn.  = {(x 1 ,x2 ,...,xn ) : 0 < xi < 1, 1 < j < n}. 

Then 
f(x)  = E  p(sm  oe27ri<k,x> .  

kez 
Using the independence of the individual steps e we have 

m  
f(x) = E 	E(272)--e27ri<e1,.> 	27ri<e,x>  

E e27ri<ei,x> m  , 	

7 

= (2n) -1  

en el 

[ 
[cos  271- x i  + . . + cos 27rx,,r 

= [fm(x)ri  

Hence 

P(s, = k) = J(k) = (fiT)^(k) = fTn  f7(x)e -271-i<k 's > dx, 

and in particular, the probability of the particle arrive at the origin is given by 

P(s, = 0) = fTn je7T (x)dx. 

Then the expected number of times the particle visits the origin can be derived 

and is given by 

p(sm = 0)  = Ln(1_ fri (x)) -ids, 

from which the 1361ya's result is obtained. A succint elementary account can be 

found in [9]. 

In this thesis, as our first application of theory of representations, we consider 

a random walk on a collection of chambers bounded by hyperplanes in a given 

subspace E of Itn+1 . The aim is to study the ultimate behaviour of the walk 

under a given transition probability. 
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Chapter 2 deals with the constructions of the collection of chambers for the 

walk. We consider the subspace E of Rn+ 1  given by 

n+1 
E = {(xi, ,xn+i) ERn+1  : E xt 

The set of vectors, which are called the system of roots, given by 

A = { ei — 	1 < < n} lei — 

spans the subspace E, where the vectors ei, 1 < i < n 1 form a canonical basis 

in Rn+ 1 . We define E-hyperplanes Pr ,k, r in A, k in Z as 

Pr,k = 	E E: (x, r) = k}. 

Let L be the dual lattice in E generated by the system of root A; 

L = {x E E:x .Em iri ,miEZ}. 

Accordingly we define the lattice L* of L as 

L* = {x E E: (x,r) E Z, forall r E A}. 

In this chapter, we also give a brief review of general results concerning the 

geometry of the reflection group required to carry out our analysis. The group in 

concern is the infinite group A generated by the reflections with respect to the 

hyperplanes Pr ,k. The main point in this chapter is the fact that the group A 

is a semidirect product of the normal abelian subgroup T generated by the set 

of all translation along r, r in A, and the subgroup S generated by the set of 

reflections with respect to Pr,0, r in A. 

Chapter 3 deals with a particular random walk by considering a particle mov-

ing on the collection of chambers in E bounded by the hyperplanes Pr ,k, r E A, 

k E Z, according to the following rule. The particle starts at time zero at the 

chamber Co  bounded by the hyperplanes P,, o , i = 1, , n, and Pr0 , i , and moves 
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at times m > 1 by a step across a wall into a neighboring chamber with the 

transition probability it given by 

1 
	 if C' is one of the n + 1 adjacent chambers of C, 
n + 1 
0, 	otherwise. 

The steps are statistically independent of the preceding steps. The fact that 

this walk can be considered as a random walk in the infinite group A enables 

us to investigate the recurrence of the walk using the properties of the Fourier 

transform of functions on A. Here we obtain the result that the ultimate behavior 

of the walk is recurrent if n = 2 and transitory if n > 2. 

In Chapter 4, we generalize our result using general probability measure it 

with assumption that the support of it generates the group A. Using theory of 

representations, particularly the method of "little groups" introduced by Wigner 

and Mackey, we construct all irreducible unitary representations of A and analyze 

the ultimate behavior of the walk. Here we are led to the conclusion that the 

random walk is recurrent or transitory according as 

lim1 	T r {(I — 0 (ps )) -1 } dx 
Oil EIL. 

is infinite or finite respectively. 

Chapter 5 is devoted to our second application of representation theory of lo-

cally compact groups, namely, a generalization of Mackey's Intertwining Number 

Theorem for one dimensional representations (see [16]). To explain this result, 

let G be a locally compact group, H and K be open and closed subgroups of G. 

Let 7r and 7 be one dimensional unitary representations of H and K respectively. 

Mackey's result suggest that the intertwining number (see page 68) of the two 

induced representations and (TY  (see page 69) of G can be expressed as a sum 

of intertwining numbers of representations 7rs and 71' of the groups Hz n KY , X, y 

in G (see [16]). We prove that the result holds in the case where 7 and -y are 

finite dimensional representations of open and closed subgroups H and K. 

(C, C') = 
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To achieve this we use the results in the theory of AI, spaces (see [2], [23]), 

especially the fact that the space of intertwining operators of induced represen-

tations can be recognized as the predual of a corresponding Aqp  space. 

Notations 

In this thesis we use the following notations. The bold letters Z, N, R, C denote 

integers, positive integers, real and complex numbers respectively. As usual, for 

any positive integer n, Rn denotes Euclidean n-space, where for every x E Rn  we 

may write 

X = (Xi, X2) • • • X72)) 

for some x l , 	, 	E R. For any pair x, y E Rn , x = (x1 ,x2 ,...,x,), y = 

(Yi, Y2) • • • y.), (x, y) = 	xiyi defines an inner product on Rn. 

Let S be a set. The notation C s  denotes the set of all functions defined on 

S with values in C. It is widely accepted in functional analysis that we write 

tv instead of t(v) for any linear transformation t acting on v, unless there is 

any danger of confusion. We use the notation is  to denote a constant function 

1 defined on S. Clearly, is(s) = 1 for all s E S. We denote es  the indicator 

function at s in S: 
1, if t = s, 

e s (t)={ 
0, otherwise. 

For any group A, eA is the identity element of A. The set of all formal linear 

combination of A with complex coefficient is denoted by C[A]. 
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Chapter 2 

Geometry 

This chapter is devoted to review some background information involving the 

geometry of reflection and translation groups required in this thesis. Some stan-

dard results are quoted without proof; complete proof can be found in [1] and 

[6]. In Section 2.1, we construct a collection of chambers in a given subspace 

E of (n + 1)-Euclidean space Rn+ 1 . We discuss translations and reflections in 

the subspace E in Section 2.2. Section 2.3 give some important results and their 

elementary proofs on reflection and translation groups. 

2.1 Construction of the Collection of Chambers 

in E 

The three-dimensional simple lattice Z' is defined as the set of all triples v 

(vi , v2 , v3 ) with integer entries. This can be thought of as the set of all lin-

ear combinations of 1(1, 0, 0), (0,1, 0), (0, 0, 1)} with integer coefficients. In other 

words, every v E Z3  can be written in the form 

v = (v i  , v2 , v3 ) = ( 1, 0, 0) + v 2 (0, 1, 	+ v3 (0,0,1), 
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where v i , v2  and v3  are integers. Any simple lattice Zn, for any positive integer 

n, is defined similarly. 

We consider the vector space Rn+ 1  over the scalar field R. Let 1 denote the 

element (1, , 1) of Rn+ 1 , and E be the annihilator of 1 with respect to the 

inner product (., .). Then E is a closed subspace of itn+ 1  and is of dimension n. 

Hence we have 
n-1-1 

E = {(x1,x2, • • • ,xn+i) E Rn+1  : E x t  = 0) f.s2 Rn . 
i=1 

Let A be the set of vectors (called the system of roots) given by 

= fe z  — ei+i  : 1 < j < n} U {e 1  — 

where { e i , e2, 	, en+1} is the canonical basis for Rn+1 . It is clear that A spans 

E. Indeed, every x E E can be written in the form 

x = (x i ,  

(Xi, X2, . 	X n , — X1 — X2 — • • • — Xn), 

(x 1  x 2 )r2 	(x i  + x 2  + 	xn )rn . 

For the rest of this thesis we use the following notations unless otherwise stated: 

r i  = e i  — e, +1 , 1 < i < n, and 

To = el — en+i = E ri. 
i=1 

For n = 2, the subspace E is given in figure (2.1). 

We define the lattice L in the usual way as the set generated by the system 

of roots A given by 

L = {x E E : x =Em ir„m i  E Z,ri E A}. 	 (2.1) 

Here each lattice point v in L is a linear combination of vectors 7. 1 , 	, rn  with 

integer coefficients. Accordingly, we define the dual lattice L* of L as 

L* ={x E E : (x,v) E Z, for all v E L}. 
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x2 
' 	- 	, • 	I . ..c-._. ........ 	, 	. 	I r 1 	i 	. 	, , 

N. 	1 /  , - - -14,1 	, 
'a-- 	

2 	, , .5 r 
•5 , . . ro 	, 5' , . 	 , ., S. , 'S , . 

Figure 2.1: Subspace E for n = 2 

Since the lattice L is generated by the system of roots L, the dual Lattice L* is 

given by 

L* = {x E E : (x,r) E Z, for all r E L}. 	 (2.2) 

We consider the E-hyperplanes Pr  ,k given by 

Pr ,k - {x E E: (r, x) = k,r E L,k E Z}. 

The subspace E is cut out into regions or chambers by Pr  ,k . For n = 2, let x be 

an element of P,,,o. Then x = (x 1 ,x2 ,x3 ) with x 1  +x2 + x3  = 0 and (x,r 1 ) = 0. 

But (x, ri ) = 0 if and only if x i  — x 2  = 0. Hence Pri ,o  is the intersecting line 

between two planes 

1 + x2  + x3  = 0 

and 

x i  — x 2  = 0. 

8 
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In general, for n = 2, Pr, , k is the intersecting line between two planes 

x1 + x2 + x3 = 0 

and either 

for i = 1, 2, or 

for i = 0. 

x i  — 	— k = 0, 

xo  — x3  — k = 0, 

For n = 2, the E-hyperplanes Pr 1, k ,  i = 0, 1, 2, k = —1, 0,1, are depicted in 

figure (2.2). 

Pr)  -1 
, 

Pr, ,-1 Pr, ,O Pr, ,1 
	

Pr, ,-1 Pr, ,O 	Pr, ,1 

•Figure 2.2: The E-hyperplanes Pr , k , = 0,1, 2, k = —1, 0,1, for n = 2 

2.2 Reflections and Translations in E 

A reflection s with respect to a hyperplane H is a transformation that carries 

each vector to its mirror image with respect to the hyperplane H. We recall that 
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the reflection s r,k with respect to E-hyperplane Pr ,k, for all r in A and k in Z, is 

given by 

sr,k(x) = x 2 
((r , x) — k)r 

(r,r) 

for all x in E (see [6]). Since for each r E A, 

(r, r) = (ei — ei+i, ei — 

(ei, ei) — (ei, ei+i) — (ei+i, ei) 	(ei+i, ei+i) = 2, 

it follows that for all r in A, x E E, we have 

sr,k(x) = x — ((r,x) — k)r, 	 (2.3) 

2,From the formula of the reflection s r,o , r in A, and our definition of the 

lattices L and its dual L*, we derive the following lemma. 

Lemma 2.2.1 Let L, L* be as in equations (2.1), (2.2) respectively and s r ,o be 

the reflections with respect to the hyperplane Pr,o , r in A. Then, for all r in A, 

the following statements hold. 

I. 5r,0  is a linear transformation preserving the inner product 	In partic- 

ular, s r,0  is an orthogonal transformation. 

2. sr ,oL = L. 

3. sr ,oL* = L* .  

Proof. 1. Since the second statement is a direct consequence of the first, we only 

need to show the first. We observe, for all x E E, for all r in A, 

s r,o (ax) = ax — (r, ax)r = ci(x — (r, x)r) = 
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for all real numbers a. Also, we have 

sr,o(x + y) = x + y — (r, x + y)r, 

= x — (r,x)r + y — (r, 	, 

= s r ,o (x) + sr,o(Y), 

for all x, y E E, r in A. Hence s r,o  is a linear transformation for each r in A. We 

check, for all x, y E E, 

	

(sr,o(x) , sr,o(Y)) 
	

(x — (r, x)r, y — (r, Or), 

(x , y) — (r, y)(x,r) — (r, x)(r, y) + 	x)(r,y)(r,r), 

= (x,Y) 

for all r in A. The reflection s,.,0 therefore preserves the inner product (., .) for 

all r in A. 

2. Let v = mi ri  + 	+ mn r„ be an element of L. Then, for i = 0, . . ,n, by 

linearity and definition of sr„o, 

Sri (Mir' + • • • + rn11. 7.71) 

Mi. Sri ,O(r1 + • • • + MII STY,O(rn 

(ri — (ri, ri)ri) + .. . + rnn(rn + (ri,rn)ri), 

	

miri + 	+ mi_1ri-1 + (mi —E(ri,rj))ri mi+iri+i + 	+ mnrn• 
a=i 

Since (r i ,r;) is an integer, for all i,j = 1, 	,n, we conclude that s,,o(v) is an 

element of L for all i = 0, 	, n. Hence we have sr,oL C L, for all r in A. 

Conversely, for any i = 0, 1, ... n and v in L, the equation 

V = sr i ,o(v/) 

has vector solution v' in L, indeed 

V' = (s ri ,o s ri ,o )(v ) = sri ,o (v). 
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Hence v is an element of s r„oL, for all i = o,... , n. In other words, L C sr , 0L, 

for all r in A. Part (2) therefore follows. 

3. Let x E L*. Then (x, r) E Z, i = 0, 	, n. We observe 

(sr , o (x) , r) = (x — (r, x), ri ), 

(x,ri ) — (r , x) (r , ri) E Z. 

for all i = 0,, , n. Hence sr,o(x) E L* for all x E L* ,  r in A. Thus, we have 

s r ,oL* C L*. Conversely, given x E L* ,  it follows that s r ,o (x) is an element of 

s r ,oL*, for all r in A. But, since s r ,oL* C L*, we have s r ,o (x) E L* . Hence 

sr ,o (x) = y for some y E L*, from which it follows that x = s r ,o (y) for some 

y E L*. Hence x is an element of s r ,o L*. Thus we have L* C sr,oL*, for all r in 

A. We conclude therefore that s r ,oL* = L*, for all r in A. 

The translation tv  by a vector v in L is given by 

t (x) = x v, 

for all x in E. Since for all x, y E E,i = 0, 	, n, tr (x) — t r (y) = x — y, the 

translation t r  by a vector r preserves vector subtraction for all r in A. 

Similar to Lemma 2.2.1, concerning the translations t r , r in A, and the lattices 

L and L*, we have the following lemma. 

Lemma 2.2.2 Let t r  be a translation by a vector r, r in A, L and L* be as in 

Lemma 2.2.1. Then we have 

1. tr L = L, and 

2. tr L* = L*. 

12 



Proof. 1. Let x = min 	mrirr, be an element of L. Then trs ( ) = 
min 	(mi  + 1)r, 	mr,r,,, i = 0, 	,n. Hence tr,(x) is an element 

of L, for all i = 0, ,n. Thus we have t rL C L, for all r in A. Conversely, 

x — r, remains an element of L. Hence x = t ri (x — ri ) is an element of t r,L, for 

all i = 0, ,n. We thus have L C t rL, for all r in A. Therefore, we conclude 

tr L = L, for all r in A. 

2. Let x E L*. Then for all i = 0, 	,n, 

(tr (x), ri ) = (x 	r, ri) = (x, ri )(r, ri ) E Z. 

Hence tr (x) is an element of L* for all x E L*, for all r in A. Thus, we have 

t r  L* C L* ,  for all r in A. Conversely, let x be an element of L* and r in A. 

Obviously, x — r is in L*. Hence x = t r (x — r) is an element of t r L*. Thus we 

have L* C t r L*, for all r in A. Therefore (2) follows. 
0 

We have the following useful lemma concerning the relation between the re-

flection S r ,k and the translation t r , r in A, k in Z. 

Lemma 2.2.3 Let s r,k be as in equations (2.3) and t r  be a translation by r, r in 

A, k E Z. Then 

I. s r , k  = tkr sr ,o , and 

2. tr  = Sr,1 8r,0• 

Proof. 1. For x E E, we have 

(tkrsr,o) (x) = tkr(x — , )r), 

x — (r, x)r -I- kr, 

= x — ((x,r) — k)r, 

sr,k(x), 

13 



for all r in L. Part (1) thus immediately follows. 

2. For every x E E, we have 

(s r,isr,o)(x) = s r , i (x — (r, x)r), 

• x — (r, x)r — ((r, x — (r, x)r) — 1)r, 

• x — (r, x)r — (r, x)r (r , x) (r , r)r r, 

• x r = t r (x), 

for all r in L, since (r, r) = 2. Hence we obtain tr  = sr,isr,o• 
0 

2.3 Translation and Reflection Groups 

Lemma 2.2.1 and Lemma 2.2.2 give us a motivation to construct groups generated 

by the reflections and translations we have discussed in those lemmas. This 

motivation is formulated in the following two lemmas. 

Lemma 2.3.1 Let S be the group generated by s r,o, T be the group generated by 

r in L, L be as in Lemma 2.2.1 .Then the following statements hold. 

1. T = ft, : v E Ll L. 

2. st, = t sms, for all sES,vE L. 

3. sL = L, for all s E S. 

4. T n S = {eA}, where e is the identity element. 

Proof. 1. Let v be an element of L. Then v =m-r• m 2  E Z. Hence we have i=i 	2 2,  

t v  = tE7 mir  

14 



tmiri trn2r2 • • • tra nrn  

(t„)mi (t r2 )m 

Hence to, is an element of T. Thus we have ft„ : v E Ll CT. Conversely, let t be 

an element of T. Since T is obviously a commutative group, we may write 

t = (t ro )P° 	(trn)Pn, 

tporo+•••+pnrn 

= t (po +Pi )ri +•-• -1- (PO+Pn )rn 

for some pi E Z, i = 0, ... ,m. Hence t is an element of ft, : v E LI. Thus 

T C {t, : v E L}. Finally, let us define a function 7r : L 	T given by 

ir(v) = tv, 

for all v E L. Then 7r is clearly a one to one function from L onto T. Moreover, 

7r is a homomorphism, since for all v 1 , v2 in L, we have 

7r(v i  ± v2 ) = tv i +v, = tu i t,, = 7r(vi)ir(v2)• 

Hence 7r is an isomorphism from L onto {t, : v E L}. 

2. Let s be an element of S and v be an element of L. Then 

(st,)(x) = s(t,(x)) = s(x v) = sx sv = t„(sx) = (t„s)(x). 

Thus we obtain for all s in S, v in L, 

stv  = t svs. 

3. Since the group S is generated by s r ,o , r in L, part (3) follows directly from 

Lemma 2.2.1 (2). 

4. Let u be any element of T n S. Then u = t, for some v in L and u = s for 

some s in S. Now by (2) we obtain 

Utv  = sty  =- tsvs = tsvtv• 
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Since u = t„, for some v in L, we find t = t„. Hence we have 

V = SV. 

But, since s = t i,, we obtain 

V = tv (v) = 2v. 

Thus v must be identical to zero. This implies that tv  is the identity transforma-

tion, or in other words, u = eA. 

0 

Having discussed the relation between the generators of the groups S and T, 

we close this chapter with an important lemma concerning the groups S and T 

which will be used in our work in Chapter 3 and 4. 

Lemma 2.3.2 Let A be the group generated by s r ,k, r in A S and T be as in 

Lemma 2.3.1. Then the following statements hold. 

I. S is a subgroup of A and T is a normal subgroup of A. 

2. A = TS, in the sense that every element a in A can be written uniquely as 

a = tvs, 

where t v  E T and s E S. 

3. For s 1 , s2 E S, and for tvi ,tv2  E T (41 5 1)(42 32) = tv S where v = yid si(v2) 

and s = sis2. 

Proof. 1. The statement that S is a subgroup of A is obvious from the definitions 

of the groups S and A. Now from Lemma 2.2.3 (2), it implies that t r  E A, for all 
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r in L. Hence we infer that T is a subgroup of A. We shall prove now that T is 

normal. Let a E A. Then by Lemma 2.2.3 (1) there exist an integer in such that 

a = su i  ,k, 3.2 ,k, • - • surn,krn 

Sul,Otk2 U2SU2 ,0 • • • t k7flUm•S Urn,05 
	 (2.4) 

where ki  are integers and ui in A,i =1,...,m. By Lemma 2.3.1 (3) and the fact 

that L is invariant under the acts of tk,, we conclude that a(v) is an element of 

L for every v in L. Therefore, by the same way we proved Lemma 2.3.1 (2), we 

have 

at = t ama. 

Thus ata -1  is an element of T from which it follows that T is a normal subgroup 

of A. 

2. To prove (2) it suffices to prove that A = TS and T n S = {CA}. By Lemma 

2.3.1 (4) we have the latter. Obviously TS C A. We shall now show that A C TS. 

By Lemma 2.2.3 (1), every element a in A can be written as in equation (2.4). 

Since S and T are subgroup of A, and, by Lemma 2.3.1 (2), TS = ST, it follows 

that TS is a subgroup of A and hence a is an element of TS. Thus A = TS. 

3. By Lemma 2.3.1 (2), we have 

(tvi  S i)(tv2S 2 ) = 41 ( 5 142 ) 32 = tvi  tsi v2 5 1 S 2 = 	-Fsi (v2 ) 8 1 3 21 

for all s i , s2 E S and for all t 1 ,t,,2  E T. 

0 
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Chapter 3 

Random Walk 

There has been much work concerning the theory of random walks on groups. 

The theory was first raised by Kesten (see [11]) and a number of influental and 

valuable papers are presented for example by Kaimanovich and Vershik (see [10]), 

Varopoulos (see [28]) and others. A good survay may be found in [29]. 

The main results in this chapter are given in Theorem 3.4.4 and Corollary 

3.4.5 which can be derived directly from Varopoulos' result (see [29] page 12). 

In Chapter 2, we defined hyperplanes Pr,k, r in L, in the subspace E of Rn+ 1  

from which we obtained a collection of chambers. The purpose of this chapter 

is to study a particular random walk defined in this collection of chambers and 

analyze the ultimate behaviour of the walk. 

First, we established the fact that the collection of chambers can be identified 

with the reflection group A. Then the symmetric transition probability of the 

walk can be regarded as a function on the group A. We use the properties of 

the Fourier transform of functions on the group A to simplify our formula which 

leads to the criterion for the recurrence. 

18 



3.1 A Random Walk with a Particular Transi-

tion Probability 

Let C be the collection of chambers which are region in E cut out by E-hyperplane 

Pr,k, r in ,L and k in Z. Suppose a particle moves on the collection of chambers 

C according to the following rule. For n = 2 (E is 2-dimensional subspace), the 

collection of chambers is depicted in figure 3.1. 

VAVAWMAYAV 
WMAWMAVA 
VAWAVWAV 
WMAWMAVA 
VAVAWMAYAV 

Pro,1 

Figure 3.1: Random walks on the collection of chambers C 

The particle starts at the chamber Co  and moves at times m > 1 by a unit step 

to an adjacent chamber, where Co  = E E : (ri , x) > 0 for i = 1, , n, and 

(ro , x) < 1} with probability 7,±1.  each. The steps are statistically independent of 

the preceding steps. 

Let p be the transition probability on the collection of chambers C. Then p 

is given by 

	 if C' i 
n +1 ' 	

s one of the n + 1 adjacent chambers of C, 
,a(C, C') 	

1 

= 
0, 	otherwise. 
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It is beneficial for our purposes to consider the transition probability i as a 

function on A x A instead of a function on C x C. For this purpose we shall prove 

the following Lemma. 

Lemma 3.1.1 The group A permutes the collection of chambers C simply tran-

sitively, in other words, for the fixed chamber Co , the rule 71) : A —4 C given by 

0(a) = aCo , for all a in A, is a one-to-one mapping from the group A onto the 

collection of chambers C. 

Proof. This is proved in detail in [1]. Here we only show that the group A 

permutes the chambers. This is immediately follows, because 

1. The transformation s r,0  is orthogonal and the translation tr  preserves vector 

subtraction, for all r in L. In other words, under the action of a, for all a 

in A, the shape of every chamber is unchanged. 

2. L* is invariant under the action of s r,o  and of tr , for all r in 

0 

Because of the fact that b is one to one mapping from the group A onto 

the collection of chambers C, we can identify each element in C with a unique 

element in A. Therefore, we can write a 2 ) = I.L(Ci , C2), if C1  = ai Co  and 

C2 = a2CO 3  for a l , a 2  in A and C1 , C2 in C. As a result, we can consider the 

transition probability it as a function on A x A rather than on C x C. For brevity 

we set the notation Sr to denote s r,o , for all r in L, unless otherwise stated. 

Lemma 3.1.2 For every a, a l , a2  in A, 

1. 	aa2) = Ft(ai, a2). 
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= 
n + 1 
0, 	otherwise. 

1 
, if a 1 -l a 2  E {Sr i  Sr2 • • • I •Srn 7 3 7.0,1}7 

2. p(ai,a2) = geA, ai. -1 a2) 

Proof. 1. Let 0(a 1 ) = aiCo = Ci  and zp(a2 ) = a2Co  = C2. Then ga l , a2 ) = 

it(Ci., C2). There are two possibilities; ,a(a l ,a2) = 0 or p(a l ,a 2 ) = 	If 

a2 ) = 0, then C1  is not adjacent to C2. Suppose p(aai, aa2) 0 0. Then 

aCj. is adjacent to aC2 . But, since A acts on C transitively a-l aCi  = C1  is 

adjacent to a-laC2  = C2, which is a contradiction. Hence p(aa i ,aa2 ) = 0. If 

(a 1 , a2 ) = T-14_7, then C1  and C2 have a common boundary. Since this boundary 

will be mapped on the common boundary of aC i  and aC2  by the element a in A, 

we have it(aCi , aC2 ) = p(aal , aa2) = 

2. To show the first equality, by (1) we observe 

/4(4, a2)  =(aC l ai , a1 l a2 ), 

= 	A , ai -1  a2) 

We will now show the second equality. Using the definition of tt, we have 

p(a 1 , a2) = it(e A, ai -l a2), 

it(Co, a1 -l a2Co), 
/ 	1  

n+ 1
, if a1 -l a2 E {sri , sr2, • 

	

0, 	otherwise. 

' 7 Srn, Sro,I} 

From the foregoing result, the function ji can be considered as a function 

defined on the group A, so that we may write pt(a) instead of p(eA , a), for all a 

in A. 
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Lemma 3.1.3 The probability of the particle arriving at a after m steps (starting 

at eA) is given by 

(iL x it x ... x p)(a), 	 (3.1) 
m times 

where x denotes convolution product of functions on the group A defined by 

	

(f x g)(a) . E f(ab—l )g(b), 	 (3.2) 
bEA 

	

. E f (b)g (b- I  a), 	 (3.3) 
bEA 

where f,g are elements in the space OA) of all summable functions on A. 

Proof. For simplicity we let tem (a) to write the expression in (3.1) above. The 

proof is by induction on the number of steps m. Obviously for m = 1 the 

statement is trivial. Suppose now that the statement is true for some positive 

integer m = p. Then the probability of the particle arriving at a after p+ 1 steps 

is given by 

E itxP (c) p(c, a). 
ceit 

By equation (3.3) 

E IL " (c) it(c, a) 
cEA 

= E00"(c)P(c -l a), 
cE A 

. 1, x(P-F1)(a). 

Hence the statement is true for in = p + 1. By the principle of mathematical 

induction the statement is true for all m in N. 

0 

In the following two sections we explore some important results from Fourier 

transforms of functions on A which will be used as a technical tools to achieve 

the criterion for recurrence of the walk. 
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3.2 Fourier Transforms of Functions on A 

In this section we shall mainly study about functions on the group A and derive 

some important results from their Fourier transform. The main object is to 

formulate explicitly the probability of the particle arriving at the origin after in 

steps. We also give the Fourier transform of convolution functions. 

The indicator function eci, of the identity element eA of A is given by 

6eA (a) = 
	1,  

0, otherwise. 

Then for all a in A, every function f on A can be written as 

f(a) = (e,A  x f)(a), 

In fact, for all a in A, 

(E,A  x f)(a) = E e„(b)f(b-la), 
bEA 

= f(a). 

By Lemma 2.3.2 (2), each a E A can be written uniquely in the form 

a = tvs, 

for some v in L and s in S. Therefore, for a in A, we may write a in the 

form a = (v, s), for some v in L and s in S, in particular, eA = (0, es). As a 

consequence, each function f on A can be thought of as a function on L x S. We 

write f(v, .$) instead of f (a) = f (t v s) for each v E L and s E S. 

We recall that the Fourier transform of any function f (v , s) in the space L 1  (A) 

of all summable functions on A with respect to v E L is given by 

f(x, s) = E f(v , 
5 ) e -27z(s,v) 

vEL 
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defined for all x E E and for all E S. We shall observe that j(x, s) is periodic 

with respect to L*. Let x' be an arbitrary element of L*. Then 

= E f (v , 

vEL 

= E f(v , 

vEL = E  f(v , 

vEL 

= f (X , S), 

since (x', v) is in Z, for all v in L*.  Therefore, we can think of f (x, s) as a function 

on (EIL*)x S. 

Lemma 3.2.1 The probability of the particle arriving at the origin after 171 steps 

is given by 

kt x7 1 (0 , es) =(E„ x 	m)(x, e s)dx , 	 (3.4) 
E I L. 

where E„ is the indicator function at eA• 

Proof. By Lemma 3.1.3, IL xm(0, es) represents the probability of the particle 

arriving at the origin after m steps. We observe now that the inverse Fourier 

transform of (pxr")^(x, s) is given by 

IE/L

( tem y(x ,$ ) e272(X,V)dx ,  
• 

= fE/L . (EeA X ILX7nr(X,S)621"(z'v)dX, 

for all (v, s) in A. In particular, substituting (0, es) for (v, s), the probability that 

the particle comes back to the origin after m steps is given by 

ttx m (0 , es) = I(E„ x 
E L* 
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To simplify this further, let us look at the Fourier transform of the transition 

probability p and its convolution with any function f in CA . This convolution 

function will be used later in Section 3.3 for defining an operator on the Hilbert 

space Cs. 

Lemma 3.2.2 Let f be an element in CA.  Then the Fourier transform of it(v,$) 

and (f x 1.1)(v ,$) are given by 

(I n 
2E_I 	e-27re(x,r0)60(s)} 

A(X, S) 
n +1 	. 

and 
n 

f (x ssr) 	e2rz(x,3r0) f( x, ssro )} (f x p)"(x , s) = 	 
n +11( 	z 

respectively, where Ei are the indicator functions on S at s r„ 0 < j < n. 

Proof. The Fourier transform of p(v, s) is given by 

/(x, s) = E (E e, x 
vEL 

for all x in E and s in S. But, by Lemma (3.1.2) we have 

1  

p(v,$) = 	+ 1  
	, if (v, s) E {(0, sr i ), (0, sr2), 	(0, srj, (ro,sr.)}, 
n 
0, 	otherwise. 

(3.5) 

Hence 

S) = 1 
Ez(s)) 	e-27r1(x,ro)E0(s)} 

n +  

where ei, 0 < i < n, are indicator functions on S at s r,. 

Let f be a function on A. By the definition of convolution function in equation 

(3.2), we observe 

(f x 	= 	(f x  
vEL 

z )e -27r2(x,v) 
vEL (v , ,e)EA 

25 



By (3.5) and the fact that (0, sr, ) -1  = (0, sr,) for all i = 1, 	,n and (ro, 	= 

(ro , s ro ), we find 

(f x  

IL n 1+ 1{ (E
i=1  f((v , s)(0, srj)e- 

	

27r, s,v 	f  ((v 3 )(7,0, sr0 )) e -27,z(s 7 0 

Using Lemma 2.3.2 (3), we have 

(v , s)(ro, sr.) = tustr o sro  = (v sro, ss, ) and (v, s)(0, sr, ) = tos, = (v, ssr,), 

from which we obtain 

1 (x, (f x 	(x, s) 
n 1 	

ssr,) E f (v sro, ssro)e-272v)  

1 	n 

n 1 lEe=i  

+ E f (v sro , 
vEL 

SS ro )e -272 {(x,v+sro) — (x,sr0 ) }  

1  

	

1 { (F
px, ssr,  )) 	e2ri(x,sro)/(x, ssro  )1 

n 	=1 	 `YI 
•=zi 

c-7A 3.3 The Bounded Linear Operator P(x) 

The fact that S is isomorphic to the symmetric group Sn+1 is evident. Indeed, a 

simple way to see this isomorphism is to note that the reflection s i  interchanges 

the vector ei and ei ±i  and leaves all the other basis vectors fixed. Therefore, each 

generating reflection in S is a permutation of the basis vectors, implying that 

the entire group S is contained in the group of permutations of the basis vectors. 

Moreover, the imbedding of S into Sn+1  is actually onto. 

Let Cs be the vector space of all complex valued functions on S over the scalar 

field C. We regard j(x, .) as a function in Cs for all x in EIL*. For simplicity 

we shall write si to denote s r, for all i = 0, , n. 
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For each x E EIL*, we wish to define a bounded operator P(x) on the space 

Cs so that 

P(x) (x , s) = (f x 	(x , s), 

n 	+1 {
( E f (x, ssi)) 	e28,o) 	sso)} 	(3.6) 1  

Using equation (3.6), we can accomplish this by defining the operator P(x) on 

Cs according to the formula given by 

(P(x)0)(s) = 	1 1  { (t.  0(ssi)) 	e27" (x 'sr°) 0(sso)} • n + 	i.=1  

for all function 0 in Cs and .s in S. 

Observe that the set of indicator functions 16, : s E Sl on S form a basis for 

the space Cs. Any function W E Cs can be written uniquely as W = EsE5II) ( 3 )es 

and therefore, can be identified as the (n+1)!-tuple (0(s))sEs  with respect to the 

basis {E, : s E S}. Accordingly, we can introduce an inner product (., .) on Cs 

defined by 
1 

(0,0 = — E o(s)0(3), II sEs 

for all 0,0 E Cs, where W(s) denotes the complex conjugate of W(s). 

Cs equipped with this inner product is a complex Hilbert space. 

operator P(x) has at least one eigenvelue. 

The space 

Hence the 

Lemma 3.3.1 The operator P(x) is self-adjoint for each xE 	L* with respect 

to the inner product (.,.) defined in equation (3.8). 

Proof. For simplicity let us define bounded linear operators Si, i = 0, 	, n, and 

K(x), x E EIL*, from Cs into itself by 

(Si0)(s) = 	 (3.9) 

and 

(K(x)0)(s) = 627ri(s ' s" ) (So5)(s), 
	 (3.10) 

(3.7) 

(3.8) 
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for all in Cs. Then for all x in E/L*, the operator P(x) can be rewritten as 

P(x) = n  + 1  {K(x) + t 1 Si} 1 	 . (3.11) 

Therefore, to prove Lemma 3.3.1 it suffices to prove that Si, i = 1,... ,n and 

K(x) are self-adjoint for all x in EIL*. To do this, let 0,1k be elements in Cs 

and i in {O,1,2,..., n}. Then 

1 
(si O, 	= — 

Isl sEs 
1 

=SI s E S (' (s' )°( s ).  

Changing variable from s to ss i , we find 

1 
(S0) = 	Eck(s)0(ssi), 

sEs 
= (3.12) 

Similarly, if if x E EIL*, then 

(K(x)cb, ) = 	I sE s 
1 	

2„icx,-0)0(ssoo(s). — E e  ISI sEs 

Changing variable from s to sso , we obtain 

1 v. —27rz(x,sr0)0(s)0(S.50), (K(X)01 
) = 151 tiS 

i o(s)e2r2(x,sro)0(330), 
ISI .stS 

= (0, K(x)0), 	 (3.13)  

since soro = — ro  and e2 '72(5 ,sro) = e -21"(x'sr0 ). From equations (3.12) and (3.13) 

we conclude that Si, i = 1,...,n and K(x) are self-adjoint. Therefore P(x) is 

self-adjoint for each x E E/L*. 
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Consequently, each eigenvalue of P(x) is real, for all x E El L*. Moreover, we 

have the following lemma. 

Lemma 3.3.2 Let A be an eigenvalue of P(x),x E E I L*. Then 

1. iAl <1. 

2. P(0) has 1 as a simple eigenvalue with all nonzero constant functions as 

the corresponding eigenvectors. 

3. If x 0, then (I — P(x)) is invertible. 

Proof. 1. Let, A be an eigenvalue of P(x), x 	0. Then for a corresponding 

eigenvector (,o, we have 

Acp = P(x)yo. 

Hence for all s in S, 

Acp(s) = P(x)(p(s), 
{(ti  (pt. ss,)) 

n +1 	
e2r0 ) (s so) } (3.14 ) 

Since co is nonzero function, there exists t in S such that k(t)1 	0 and hence 

Esesi49 (s)i 0. Therefore, summing the absolute value of equation (3.14) for all 

s in S, we obtain 

+ 2ro) co (sso ) n  1  E 	co(ssi . 
Al 	

) 
ko(s)I — 

sEs 	 + sEs 
1  E E Wssi)1, n + sesi=o  
1 E E i(P(ssi)i, 

n 	i.o ses 
= E kto(s)I, 

sEs 
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since EsEs  (p(ss i ) = 	o \-/) ) 7 	cls for all i = 0, 	,n. Hence we find IAI < 1. 

2. If x = 0, from equation (3.7) we find 
n 

(P(0)0)(S) 	

1 

 E o(ssi), n + 1 j=0  

for all 0 E Cs. Hence if 0 is a constant function, then P(0)0 = 0. Therefore, 

P(0) has an eigenvalue 1 with all nonzero constant functions as the corresponding 

eigenvectors. To prove that the eigenvalue 1 is a simple eigenvalue, we have to 

show that the eigenspace corresponding to eigenvalue 1 is of dimension one. 

Let P(0)0 = 0. Then by equation (3.7) we have 

We observe that 

Ti 
0(3) = 	E o(ssi). n + 1 . 9=o 

(3. 15) 

E E 10(3) — 0(33i)1 2  = E E {I0(3)1 2  + 10(ssi)1 2  — 2Re (0(s)0(ssi))} , 
sES i=0 	 sES i=0 

= E {(n + 1 )10(3)1 2  + 	10(33i)1 2  
.9Es 	 i=o 

—2Re (0(s)t 0(ss i ))} . 
i=o 

ELo (k(ssi) = (n + 1)0(s). Hence equation (3.16) By equation (3.15), we have 

becomes 

(3.16) 

E E 10(3) — 0(33)1 2  = E {(n 1 )10(s)i 2  +E 10(33i)1 2  — 2(n + 1 )10(s)1 2 } 
sEs i=o 	 sEs 	 i=o 

n 

= E 	10(3si)1 2  — (n + 1)(8 )1 2 } 
sES i=0 

Ti 

= E E 10(ssi)1 2  — + 1) E 10(3)1 2 , 
i=0 sES 	 sES 

= 0, 

since EsEs ko(ssi)i 	EsEs i(P(s)i for all i = 1, 	,n. Thus 0(s) = 0(ssi ) for all 

s in S and i = 0, 	, n. In other words, by equation (3.9), we have 

Si ck = 0, 
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1 

= IT' g6(ssi)(k(ssi)  l. s   

Hence the norm MI 

(S , Sic6) 

for all cb in Cs, for all i= 0, 	, n. 

= 

of Si  is given by 

for all i = 	, n, from which it follows that Si 	= 0, for all i, 	j in 

{0, 	, n}. Hence we have q5(ss i  .s j ) = 4)(s), for all s in S for all i, 	j in 

{0, 	, n}, and in particular, 4)(es 	s) = 0(e) for all i,... , j in {0, 	, n}. 

Hence it implies that is a constant function, since {so, s n } generates S. 

Therefore, nonzero constant functions are the only eigenvectors of P(0) corre-

sponding to eigenvalue 1. As a result, the eigenspace corresponding to eigenvalue 

1 is of dimension one. 

3. (/ — P(x)) is invertible if and only if 1 is not an eigenvalue of P (x). To prove 

part (3) we can prove its contraposition, hence it suffices to prove the implication: 

if 1 is an eigenvalue of P(x) then x = 0. Before doing this, by equation (3.9), we 

observe 

IISM = sup 11 ,9/011 = 1 7 
11011= 1  
q5EC s  

for all i = 0, 	, n. Also, by equation (3.10), 

II K (x)01 1 2  =  
1 

TT
\--, e2irt(r,sro ) 0(sso)e27rzfr , sroOSSO) 5  
stds 

1 
I0(3 )1 2  = 11011 2 ) 1 51 SES 

for all (i) E Cs . Hence we have 

IlIc(x)11 == sup  MIc (x)011= 1 - 

11 011= 1  
oecs 

(3.17) 

(3.18) 

Let x be in E I L* and 1 an eigenvalue of P (x). Then for a corresponding 

eigenvector 0, we have 
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i=1 

1 
= n 1 {(K(x)0,0) + E(SiC 0)1. 

i=1 
(3.19) 

= (P (X )01 
1 

= 	 

But by Schwarz inequality, together with equations (3.17) and (3.18) we have 

i(K(x)0,0)I 	iiK(x)zkilii011 	 = 

and for all i = 1, 	, n, 

l(SiO,0)1 5- Ilsi01111011= Ilsi1111011 2  = 11011 2 - 

If l(K(x)0, 0)1 < 11011 2  or l(Sitk, 0)1 < 11011 2  for some i, i = 1, 	,n, then by 

equation (3.19) we obtain 

11011 2  = n+1 (K (x)0, 0) + t( si0,0) 
i.1 

< 110 1 1 2 , 

   

which is a contradiction. Thus we have l(K(x)0,01= l(S',)1= MOP, for all 

i = 1,...,n, from which by Schwarz inequality we find 

SLzk = ai0, 

for all i = 1, 	, n, and 

for some constants lad, i = 0, ...,n. By equations (3.17) and (3.18), we have 

jcbM = IIII for all i = 0, 	, n. Since V) is nonzero function, we obtain 

aj = 1, for all i = 0, 	, n. Hence from equation (3.19) we have 

which implies Ai = 1, for all i = 1,...,n (see Appendix A for a detailed proof). 

We have therefore, 

Sizk = 	 (3.20) 
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for all i = 1, 	, n, and 

K(x)0 = 	 (3.21) 

From equation (3.20), we have 0(ssi) = 0(s) for all s in S and i = 1, 	, n, from 

which it immediately follows that 0 is a nonzero constant function. Also, from 

equation (3.21) we have 

0( s ) = (K(x)0)(s) = e21((x'"0) 0(sso). 

But since 0 is non zero constant function, we have e 211 (x'"0 ) = 1. In other words, 

(x,sro ) E Z for all s E S, which implies (x, r) E Z, for all r E L. Thus x must 

be an element of L* and hence x = 0 (mod L*). Therefore, we conclude that as 

an element of E/L*, x must be equal to 0. 

0 

An alternative proof for part (1) of Lemma 3.3.2 above can be derived from 

equations (3.17) and (3.18) by observing that 

1  

K(x) 	si 
n +1 	1=1 

<
1 

n 1 {iiK(x)ii + 
i=1 

< 1. 

This implies that all eigenvalues of P(x) are less or equal to one in absolute value, 

since P(x) is a bounded self-adjoint linear operator in a complex Hilbert space. 

It is worth mentioning that for every x E E/L*, P(x) has finite number of 

eigenvalues. For every x E EIL*, let Is  = {0, 1, , be the index set of 

eigenvalue of P (x). 

Lemma 3.3.3 There is only one eigenvalue of P(x) which tends to 1 as x tends 

to 0. 

II P(x )II = 
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Proof. Consider polynomial of t given by 

det(tI — P(x)) = [1 (t — A(x)). 	 (3.22) 
iErs  

For x = 0 equation (3.22) becomes 

det(tI — P(0)) = H (t - Ai(0)). 
iE/o 

Suppose there are more than one eigenvalues of P(x) which tend to 1 as x tends 

to 0. Then 

det(tI — P(0)) = (t —1)r 1-1(t — Ai(0)), r >1. 
iE/o 
i00 

But, since 1 is a simple eigenvalue of P(0), it follows that r = 1. This is a 

contradiction, in other words the supposition is false. 
0 

For x close to 0, let A 0 (x) be the eigenvalue of P(x). The projection operator 

E0 (x) of Cs onto the eigenspace of P(x) corresponding to the eigenvalue A 0 (x) 

is given by 

E0 (x) = —271 2  i(z/ — P(x)) -1 dz, 	 (3.23) 

where C is the closed curve in C with the condition that A 0 (x) is the only eigen-

value of P(x) in the interior. Indeed, if 7,b(x) is an eigenvector of P(x) with an 

eigenvalue A i (x), then 

(z/ — P(x)) -l zk i (x) = (z — 

We observe now 

.E0 (x)0 i (x) . iTrzi  jc. , (z/ —  

= 2172  ic  (z/ — P(x)) -1 (x)dz, 

= 2172  ic  (z — A i (x)) -idzOi(x), 

1 iko(x),  

0, 	otherwise. 
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Therefore E0 (x) is the projection operator onto the eigenspace corresponding to 

the eigenvalue A 0 (x). 

The constant function is  defined by is(s) = s for all s in S is an eigenvector 

of the operator P(0) corresponding to the eigenvalue 1. Now let 

00(x) = Eo(x )1s. 

Then 00 (x) is an eigenvector of P(x) with the eigenvalue A o (x), for small x. Let 

us write 00 (x, s) for 0o (x)(s). 

Lemma 3.3.4 Let A0 (x) be the eigenvalue of P(x) which tends to one as x tends 

to zero. Then for small x in E I L* we have 

Ao (x) = Ao ( — x). 

Proof. Let 00 (x, s) be the eigenvector corresponding to the eigenvalue A 0 (x) for 

small x in EIL*. We observe, from the definition of P(x) in equation (3.7), 

(p(x))(s)  = n1 	{ e27,-, (-.,.,0)0(sso ) 	E o(ssi)} 

= (P(—x)0)(s), 

for all E Cs  and for all s E S. In other words, we have P(x)0 = P(—x), for 

all V; E Cs. Hence for small x in E IL* we obtain 

 

= (Eo (x)i)(s), 

= (E0 (—x)i)(s), 

= 00(—x, s). (3.24) 

By equation (3.24), we observe 

A0 (x)00 (x,$) = P(x)00 (x , s), 
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4 2 
where c = n(n 1) 2  
powers of 

and 0(114 4 ) denotes terms containing fourth and higher 

= P(x)00 (—x,$), 

= 
= ) o (—x)00 ( —x, s), 

= Ao (—x)00 (x , s), 

since A o (—x) is real. We can conclude, therefore, A o (x) = Ao (—x), for small x in 

EIL*. 

0 

Lemma 3.3.5 Let Ao (x) be the eigenvalue of P(x) which tends to one as x tends 

to zero. Then we have 

Ao (x ) = 1— c(x, x) 0( 1 144), 

Proof. Since for small x in E L* , A o (x) = Ao (—x) and \o(0) = 1, using Maclau-

rin's formula we find 

Ao (x) = 1 + A0,2(x) + 0 (114 4 ), 
	 (3.25) 

where A0,2(x) denotes the second degree term in x and 0(11x11 4 ) denotes terms 

containing fourth or higher powers in 11x11. If we write 0 0 (x, s) in the form 

00(x,$). a(x,$)+20(x,a), 

where a(x , .$) and 3(x, s) are real and imaginary parts of 00 (x, s) respectively, by 

equation (3.24) then we obtain 

c( —x, s) = a(x, s), 
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and 

(— x , s) = — /3 (x , s). 

Hence, using Maclaurin's formula, a(x, s) and )3(x , s) can be written in the form 

a(x , s) = 1 + a 2 (x , s) + 0 (114 4 ), 	 (3.26) 

and 

0(x, s) = ,31 (x, s ) + o(ii x 1 1 3 ) 
	

(3.27) 

respectively, where a 2 (x, s) and /31 (x, s) are the corresponding second degree and 

first degree terms in x of Maclaurin series of a(x , .$) and )3(x, s) respectively, and 

0(114 3 ) denotes terms containing third and higher powers of 11x11. 

We observe now 

Ao (x)00 (x, s) = P(x)00 (x , s), 

e272(x,sro)00 (x,  sso ) 	E 00(x , „i)  . 	(3.28) 
n 1 	 i=i 

Comparing real and imaginary parts in equation (3.28), we obtain 

	

0 (x)a(x , s) 	
1 

1
f

a(x , ss o ) cos 2r (x, sro ) — 
n  

0(x, S30) sin 27r (x, sro ) 	E (x, ss i ) 	, 	(3.29) 
2=1 

and 

1  
	  Ao(x )3(x,$) 	

f 
/3(x, sso ) cos 27r(x, sro ) / 

n -1- 1 t 

a(x , ss o ) sin 27r(x, sro ) 	E ,3(x, ss i ) 	(3.30) 

On the other hand, multiplying equation (3.25) with equations (3.26) and (3.27) 

respectively, we obtain 

0 (x)a(x , s) = 1 + A0 , 2 (x) + a2(x,$)-F 0 (114 4 ), 
	(3.31) 

and 

Ao (x) /(3(x,$)= #1(x,3)-F 0 (114 3 )- 
	 (3.32) 
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Using equation (3.31) and comparing second degree of equation (3.29), we find 

A0 , 2 ( X) + CY2 ( X , S) = 1 	, 1 „ 
	 cx2(x,sso) — —

2 
277- (x,sro)) 2  n + 1 I. 

—27r(x, sro ),(31 (x, sso) 	E a2 (x,ss1 ) 1. 	(3.33) 
t.i 

Using equation (3.32) and comparing first degree of equation (3.30), we find 

1 
(31 (x, s) = 	

1 
{th(x, sso ) 27r(x, sro ) 	En  gi (X, SSi)} . 	(3.34) 

n +  

We shall now evaluate A o (x). Using Schur's orthogonality relations (see [26]), 

we obtain 
1 

—

1 

E(x,sro ) 2  = ( ro  , ro  ) ( x , x 
1'9 sES 

We recall from Riesz's representation theorem on Hilbert spaces that there exists 

a unique vector bs  E E such that 

01(x,$ ) = 	 (3.35) 

Let us make the assumption that (b3 , x) = (sb, x), for a fixed vector b E E, which 

will be justified later. Then by equation (3.35), 

)31(x, sso) = (ss o b, x). 

By Schur's orthogonality relations, we observe 

1 
—

1 E(x, sro)(sso b, x) 
ISI sES 	

ro) (8-1 x, sob) 
sES 

1 
= —n

(ro, sob)(x , x). (3.36) 

Thus if equation (3.33) is summed up for all s E S we obtain 

Ao,2(x) = 	 — 
1 

1 	
21r2 
	

27 (ro , ro)(x, x) — —(ro , sob)(x, x) , 
n 	n 
—c(x, x), 	 (3.37) 

where c is a constant given by 

27r 
c= 

n(n 	1)
(27r 	ro , sob)). 	 (3.38) 
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We shall now evaluate (sob, ro). From equation (3.34) and (3.35), given x E 

EIL*, 

1 
(sb, x) 	n  +  1  {27r(x,sro ) + E(ss i b, x)} , 

1=0 
1 

n + 	1 
{(s (27rro  + rt.  s i b) , x)} . 

i=o 

Hence we find 

( 
1  

sb = 	 s 27 ro  t s i b)} , 
n1 	 1=0  

from which it follows immediately 

(3.39) 

b= 
n 	+1  1 {

27rro  + E sib} . 
1=0 

(3.40) 

By equation (2.3) in Chapter 2 Section 2.2, we have 

s i b = b — (ri ,b)ri , 	 (3.41) 

for all i = 0, 	, n. Using equation (3.40) and substituting sib by equation (3.41) 

we observe 

b = 
n+

1 1  {27ro + (b — (r1 , 
i=o 

n 	+1  1  {27rro  + (n + 1)b — rt(ri , b)ri } . 
1=0 

We obtain thus 

E (ri , b)ri  = 2irr0 , 
i=o 

and hence collecting variable r ip, we get 

E (ri, b)ri = (27 — (ro, b))ro. 
1=1 

Since 7.0  = 	ri  and {7. 1 , r2 , 	, rn } is an independent linear set, we find 

(r1 , b) = 21-  — (ro, b), 
	 (3.42) 
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for all i = 1, 	, n. Furthermore, if we sum up equation (3.42) for all i = 1, 	, n, 

we obtain 

(ro , b) =  

= (27r — (ro , b))n. 

Hence solving for (ro , b), we have 

2rn 
(ro, b) = 

n 	1
. (3.43) 

Since so  is an orthogonal transformation and s oro  = —7-0 , from equation (3.43) 

we obtain 
27rn 

(ro , sob) = — (soro , sob) = 	 
n + 1

. 

Hence the constant c given in equation (3.38) becomes 

	

27r 	2rn47r2  
c = 	(2r 	) =  	 (3.44) 

n(n + 1) 	n + 1 	n(n + 1) 2  

Therefore by equations (3.25) and (3.37) together with equation (3.44) we obtain 

47r 2  
Ao(x) 

 

	

=1 	 
n(n + 1)2 

(x, x) + 0014 4 ). 

We shall now show that our assumption that th(x, s) = (sb, x) is valid. For a 

fixed x let us write 

01 (x, s) = h(s). 

Then by equation (3.34) we have 

h(s) =  1  n  + 1  {k(s) 	o h(s s i)} 

where k(s) = 27 (x , sr 0 ) , from which we obtain 

	

{(/ — P(0))h} (s) = n +1  i k(s). 	 (3.45) 

In the closed subspace {15.} 1  of the annihilator of {1s}, equation (3.45) obviously 

has a unique solution for h, since the operator (I — P(0)) is invertible in {1s} 1 . 
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To show the validity of our assumption, it is enough to show that (sb, x) and h 

lie in the subspace {1s}±, since s is a linear transformation on E, for each s in 

S. For this purpose, for a fixed x, let us consider 

f (s) = (sb, x) 

To show that f(s) E (1s) 1 , we shall show that EsEs f (s) = 0. Let y E E and 

i E {1,..., n}. By equation (2.3), we have 

= siy 	(ri,Y)ri. 

Hence we obtain 

sy = ss iy 	(ri ,y)sri , 

for all s in S, from which it follows that 

E (ri  , y )sri  = 0. 
sES 

Since y and i is chosen arbitrarily, we find 

E sr = 0, 
sEs 

for all i = 0, 	, n. Since {r0 ,...,rn } generates E, there exist real numbers 

770 , ... ,nn  such that 

b = 7/pro + i1r1 -Fn2r2+...  + .77nrn• 

Therefore, we obtain 

E f (s) = E (sb, x) = Ei j E (sri  , x) = 0. 
sEs 	sEs 	z=o sEs 

We shall now show that h defined by h(s) = (31 (x , s), for all s in S and for 

a fixed x, is in the space (1,0'. Let {E2 (x) : x E Ix } be the set of projection 

operators to the eigenspaces corresponding to the operator P(x). Then we have 

I=  
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where / is the identity operator and E0 (x) is the projection operator correspond-

ing to the eigenvalue A 0 (x). Hence 

is =.ris = Eowis +EEi(x)1s. 	 (3.46) 
ioo 

The inner product of each side of equation (3.46) with 00(x, s) = Eo(x)ls is given 

by 

(i s , 00(x, 8)) = (4, 00(x, s)), 

since (950, Oi(x,$)) = 0, for all i 	0. Hence (1s, 00(x, s)) is a real number. On 

the other hand, 

(1.9,00(x,$)) = 

— 	(a(x , s) 	.$)), 
sEs  

Hence we have EsEs  13(x, s) = 0 from which comparing first degree terms in x we 

get, 

E ,31 (x,$). o. 
sEs 

In other words the function h is in the space (1s)'. Hence /31 (x, s) and (sb, 

both satisfy equation (3.45). But the solution of (3.45) should be unique in the 

space (1 s )'. Therefore we conclude that [31 (x, s) can be written as (sb, x) for a 

vector b in E. 

0 

3.4 Evaluation of the Ultimate Behaviour of the 

Walk 

In Chapter 3 we obtained that the probability of the particle arriving at the origin 

after m steps is given by an integral expression. This integral is just the inverse 
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Fourier transform of the convolution function e eA  x ktxm at (x, es) and can be 

expressed as an integral of the inner product involving the operator P(x) given in 

Lemma 3.4.1. Our main theorem in this section is given in Theorem 3.4.2 which 

is straight forward from Lemma 3.4.1. 

Lemma 3.4.1 The probability of the particle arriving at the origin after m steps 

is given by 

(0,es) = 'SI I 	(P(x)mees ,e„)dx. 
E I L• 

Proof. Using equation (3.6), for all x in E/L* and s in S, we have 

P(x)e e; x(x, s) = (e„ x  

For any positive integer m, 

P(x) 771  e e; (x, s) = (e„ x pxmr (x, s). 

In particular, for s = es, we find 

P(x)m EeA "(x, es) = (E,A  x itxmy (x, es). 

But the Fourier transform of ecA (V , s) is given by 

Ee,:(x, s) = E E e A( )  1 5 ) e-21rz(s ' v>  , 
vEL 

for all x in EIL* and s in S, from which it follows that for all x in EIL*, 

(3.47) 

Ee"A(x, s) = {  
1, if s = es , 

0, otherwise. 
(3.48) 

In other words, as a function on S, ee,"(x) = ees , where e„ is an indicator 

function at the identity es  defined on S. Therefore 

(P(X )m„)( 65) =  

= (E eA  X it x In  r (X , es). 
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Hence from equation (3.4) we obtain 

xm  ( 0 1 eS) = I 	X  itxmY(X)eS)dX = I 	(P(X) mE„)(es)dX. 	(3.49) EIL* 	 EIL• 

Now by the definition of the inner product (, ) on Cs, we have 

(P(x)me„,e„) 1 = s I sEs 

1 (P(x)mE„)(es ). IS1 

Hence equation (3.49) can be written in the form 

it X271  (0 eS) = SI 	 (P(x)m E„, e e )dx 

In order to estimate ti'm(0, es) we recall from basic fact in linear operator 

theory that for every bounded linear operator T on a Banach space X with 

1171 11 <1, it follows that (I — T) - ' exists as a bounded linear operator on X and 

CO 

(I — T)' 

Using this fact together with Lemma 3.4.1 we have the following theorem. 

Theorem 3.4.2 The expected number of times the particle visits the origin is 

given by 

00 E  it xm 

rn.o 
0,es) =limISI I 	((I — OP(x)) -1 E„,E„)dx. eti 	EIL* 

Proof. Let x be an element of EIL*, and 101 < 1. Then (I — OP(x)) is invertible 

and its inverse is given by 

(I — OP(x)) -1  = I ± OP(x)+ 9 2 P(x)2 	 (3.50) 
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Using monotone convergence theorem, the expected number of times the par-

ticle visits the origin is given by the series 

00 
E em(0, es) = lim E Omem(0, es), Oil m=0 m=0 

00 
= limE is' I ONP(x)mE„,E„)dx, oil  

7Th=0 
	EIL* 

lim=E (emP(x)me„,E„)dx, e i i 	JELL * m=0  
00 

= lirn H  f ( E Om P(x)me„,e„)dx, oil 	EIL* m=0 

= HM IS' I ((.1 —  oil 	EIL* 
(3.51) 

Alternatively, we can prove Theorem 3.4.2 as follows. From the previous 

calculation we have 

00 	 00 

E emo, es ) = lim E OT1 	EIL* 
I em( P(x)me„,6„)dx. 

m=o 	 m=0  

Since for all x in EIL*, by Schwarz inequality, 

1 
I (P(x)mEes, 	11P(x)11m I lEes11 	< 1 , 

it follows that 

0. 
=E em(P(x)-Ees ,E,$ )dx, 

Oil 	E/L* m=0 
oo 

= lirn SI 	OmP(x)mses ,Ees )dx. 81-1 	EIL* m=0 	
(3.52) 

Now let, for p in N, Bp  = EPm=o  OmP(x)m. Then for k> 1 we have 

Bk — Bl= E omp(x)m 
m=i+i 

Hence we obtain 

11 13k — B i ll 5_ E om 11P(x)11m• 
m=i+1. 

E itxm(O, es) 
M=0 
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Since IIP(x)II < 1, it follows that {Bk} is a Cauchy sequence and hence it is 

convergent. Let 

urn Bk B. 
k—K:o 

Then we obtain 

00 

B(I — 9 P(x)) = E Om P(x)m (I — 9 P(x)), 
rn.o 

CO 	 CO 

= E Om P(x)m — E em-FiP(x)m-Fi, 
m=0 	 m=0 

= 1. 

Hence we have 
00 

(I — 0P(x)) -1  =  
m=o 

for all x in EIL*. Therefore, equation (3.52) becomes 

E em(0, es) = limiSi f 	((I — 0P(x)) -1 Ees ,Ees )dx, 
eu 

which completes the proof. 

0 

The convergence of the integral in the right hand side of equation (3.51) 

depends on the behavior of (I — P(x)) -1 . The integral can be expressed as the 

sum of two integrals, the first an integral over E I L* with Ilx11 > for some small 

positive real numbers, and the second an integral over EIL* with lix11 < 8. Since 

for x 0, (I — P(x)) is invertible and (I — P(x)) -1  is bounded, it follows that the 

first integral is convergent. We will now investigate the behavior of the second 

integral. 

Lemma 3.4.3 Let 8 be a small positive real number. Then 

lim  1.11x1I<MI — 0 P (x)) -1  E „ , e„)dx 
Oil 

= — Ai(x)) -1 Ei(x)Ee s ,Ees )dx + 	6  i(Ees,00(x, 5 ))1 2   dx  
' i$0 EIL (x, x)(c + 0(1142)) * 

m=0 
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where c is a constant given by equation (3.44), and 0(11x11 2 ) denotes terms con-

taining second or higher powers of lix11, and 0(x, s) is the eigenvector correspond-

ing to the eigenvalue A0 (x). 

Proof. Let 101 < 1 and {.\ 2 (x) : i E Ix } the set of eigenvalues of P(x) with 

{E1 (x) : i E /} the corresponding orthogonal projections from the Hilbert space 

Cs to the corresponding eigenspaces. From equation (3.50) we observe that 
00 

(I — op(x))1 =  

00 

E E rA i (x)mEi(x), 
ier.D 
co 

E E OmA i (x)mEi (x), 
ierz 
E(1 — 0A i (x)) -1 Ei(x). 
iEh 

Hence 

— 9 P (X)) 1  Ees Ee s )dX 
E L• 

= 11,11 <s((1 — 9 Ao(X)) -1  Eo(X)E „ E e s )dX 
E / L* 

flls ii <o(Di —  
E L* i$0 

1.1xii<6((1 — 0 Ao(X)) -1  E0(X)E„,E„)dX 
E L* 

— 0 A i (x)) -1  Ei(x)e , e es )dx 	(3.53) +Eioo  g(( 1  

To complete the proof we shall now examine the integral in the first term in the 

right hand side of equation (3.53). Let (¢0 (x, s) be an eigenvector corresponding 

to eigenvalue A 0 (x). Then 

Eo(x)Ees  = (Ees, 0o(x,$))00(x,$). 	 (3.54) 

Using equation (3.8.4), we observe 

fllsii<6 ((1 — 0A0 (x)) -1 E0 (x)E„,E,$ )dX 
E L• 
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= j1C11<5(1 — 0 Ao(x)) 1  (E es (ko(x s)) ( 0 (x, s), es )dx 
E L• 

= [ in.11<6(1 — °Mx)) 1 1(6es, 00(x, s)) 1 2  dX, 
L" 

1  

111; 1/1f,5  1 — 0 (1 — c(x, x)+ 0(11x114))1(Ees,00(x,$))12dx, 

where c is given by (3.44). Hence we have 

lim 	 ii<6.((/ — OP(x)) -1 E„,E„)dx 
en E 1 L . 

— A 2 (X)) -1  Et(X)Ees, Ees)dX +filxil<5 
1(e e s 1 ( Mx , S))1 2  = Eioo  jfiEs in g((1 	 E I L (X, X)(C + 0 (MX11 2 )) dx •(3.55) 

• 

Hence by equations (3.53) and (3.55), Lemma 3.4.3 follows. 

Theorem 3.4.4 The expected number of times the particle visits the origin is 

finite if n > 2 and infinite if n = 2. 

Proof. Again, all terms inside the sum in the right hand side of equation (3.55) 

are bounded, since A O (x) is the only eigenvalue which tends to one as x tends 

to zero. Hence the convergence of the integral in the left hand side of equation 

(3.55) depends only on the integral 

1(6es, 0o(x, s))1 2  
(x,x)(c+ 0 (11x11 2 )) •  

Moreover, as x tends to zero, 1(6e s , 0o(x, s))1 2  tends to (e., 1)12 = 	Hence the 

convergence of this integral depends on the denominator of the integrand. But 
co 

c + 0  11 x 112 is bounded and tends to c as x tends to zero. As a result, E p(0, es) 
m=0 

is infinite or finite according to the value of the integral 

111x11<6 	\dx, 
\ X 7 X 1 

which is infinite for n = 2 and finite for n> 2. We conclude therefore 
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Corollary 3.4.5 The ultimate behaviour of the walk is recurrent if n = 2 and 

transitory if n> 2. 

Proof. Case 1: n > 2. 

Here we have that the expected number of times the particle visits the identity 

is finite. This means that the actual number of visits to the identity is finite with 

probability one. This result is true for any element a in A, hence we have that for 

any R < oo, the particle ultimately stops visiting the chambers within a distance 

R of eA , which says that the random walk is transitory. 

Case 2: n = 2. 

Suppose that the probability of the particle ultimately return to the identity 

is p. Then the probability of visiting the identity for at least m times is pm -4 , 

including the visit at time m = 0. As a consequence, the probability of visiting 

the identity for exactly m times is given by 

pm-1 _ pm = pm-1(1 _ p ) .  

As a result, if p <1, the expected number of visits is 

= E mp---1 (1 - p), 
m=1 

= (1 - p) -1  < 00 . 

But this is a contradiction, since we have shown in Theorem 3.4.4 that the ex-

pected number of visits is infinite. Hence the particle visits the identity infinitely 

many times with probability one. Therefore, we conclude that the random walk 

is recurrent for the case n = 2. 

0 
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Chapter 4 

Generalization 

In Chapter 3 we have discussed a particular random walk and obtained the cri-

terion for the ultimate behaviour of the walk. The content of this chapter is a 

generalization of our result for a random walk with a general probability measure 

it under the assumption that the support of it generates the group A. Since the 

technique in this generalization come from the theory of group representation, 

we devote Section 4.1 to discuss some general results of the representation theory 

of groups. In Subsection 4.1.1 we use the method of "little groups" introduced 

by Wigner and Mackey to construct all irreducible unitary representations of the 

group A. Finally, the generalization of our result is given in section 4.2 

4.1 Representations of Groups 

Let G be a separable locally compact topological group and 7-1 be a Hilbert space 

over the scalar field C of complex numbers. A unitary representation of G in 7-1 is 

a homomorphism p of G into the space of all unitary operators from the Hilbert 

space 7-1 into itself. In other words, 

P(.902)= P(.90P(.92), gi,g2 E G. 
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A unitary representation p is said to be continuous if the mapping 

g —> p(g)v, g E G 

from G to 7-1 is continuous for all v in 7-1. The space '1-/ is called the representation 

space and the operators p(g) representation operators. The dimension d(7-1) of 7-1 

is called the degree of the representation p. 

In this chapter, for brevity, we shall simply say locally compact group for 

separable locally compact topological group, and unitary representation for con-

tinuous unitary representation. 

A unitary representation p of G in 7-1 is called irreducible if '1-1 {0} and there 

is no proper closed subspace of 7-1 invariant under the action of representation 

operators p(g), for all g in G. 

Unitary representations p i  and p2 of G in Hilbert spaces 7-1 1  and 7-12  respec-

tively are said to be equivalent if there exists a unitary isomorphism T from 7-1i  

onto 7-12  such that 

Tpi(s) = 

for all s E G. 

Let G be a finite group. Left regular representationsL and right regular rep-

resentation R of G in CG  defined by 

(L(s)f)(u) 	f(s -lu), 	 (4.1) 

(R(s)f)(u) = f (us), 	 (4.2) 

respectively, for all f in CG  and s, u in G. 

Let np  be the degree of the irreducible representation p of G. Then a map 

from C[G] into ilMnp (C) given in matrix form by 

(P) = P(f) 
	

(4.3) 
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is the Fourier transform of the function f. Any representation p of G in CG 

extends to a representation of C[G] by the rule 

p(f) = E f(s)P(s). 
	 (4.4) 

seG 

Let G be a locally compact group and K an open and closed subgroup of G 

so that the index [G : K] of K in G is denumerable and discrete. Let a be a 

unitary representation of K in a Hilbert space K. Let L2 (G/K, a) be the Hilbert 

space of all functions f on G with values in 1C such that 

1. f(kg) = a(k)f(g), for all k E K and g E G, and 

2. 1f11 2  = E (f(g), f(g)) <00. 

gEG/Ii" 

The operator pga  acts on the vector space L2 (GIK,a) according to the rule 

(Pg.f)(g) = Aggo), 

for all go, g E G, f E L2 (G,u). Then p defines a unitary representation of G and 

it is said to be a representation of G in L2 (GIK,a) induced by the representation 

a of K in K. We may write this representation with India. 

4.1.1 A Construction of Irreducible Representations of 

the Group A 

If the group G is a semidirect product of a normal abelian subgroup K and a group 

H, we can construct all irreducible representations of G an induced representation 

of irreducible representation of certain subgroup of H, by the method of "little 

groups" of Wigner and Mackey and the representations of G are unique (up to 

isomorphism) (see [26]). 

It can be easily seen that this method can be generalized to an infinite group 

G where the index [G: K] of K in G is finite. From Lemma 2.3.1 (1) and 2.3.2 

52 



(1), we have 

A = TS 

where Sn, 4. 1  is the symmetric group of all permutations of n +1 elements. Hence A 

is a countable group and if we endow the group A with the discrete topology, then 

A is a locally compact group. Since L is a normal abelian group, all irreducible 

unitary representations of L are of degree one and form a group X given by 

X = {xx  : x E E,xx (v) = e'i(s'v), for all v E Ll. 

The group A acts on X by 

(axx)(v) = x.(ava -1 ), 	 (4.5) 

for all a in A, v in L, xx  in X. We note that the multiplication ava -1  is a 

multiplication in the group A. Since L is a normal subgroup, the element ava -1  

is in L, so that equation (4.5) has sense. In particular, for all s in Sn+1 , by Lemma 

2.3.1 (3) in Chapter 2, we have 

svs-1  = ((0, s)(v, es))(0, 	= (sv,$)(0, s -1 ) = (sv, es) = sv. 

Let Sx be the stabilizer of xs  in Sn+17 

Sx  = E Sn+1 sXx = Xx}. 

Using the method of "little groups" introduced by Wigner and Mackey, we obtain 

that all irreducible representation px  of A are of the form 

ps  = Indts.(x, 0 (7), 	 (4.6) 

where 0 denotes the tensor product of the representations, xx  E X and a is an 

irreducible representation of Ss. 

If x is not in L*,  then Sx = feA l. In fact, if s is an element of ST , then by 

the definition of Ss, we have 

xx(v)= (sxx)(v)= x (svs-1 ) = xx(sv)- 
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Hence by the definition of the homomorphism x x , we obtain for all v in L 

2,,(x,sv) e 	e 	. 

This implies that for all v in L we have 

e2711((x,v)--(x,s0) == 1 ,  

from which we find 

(sx — x, sv) = (sx, sv) — (x, sv) = (x, v) — (x, sv) E Z, 

for all v in L. Hence sx — x is an element of Z. But since x is not in EIL*, it 

follows that s must be equal to e A . We have therefore S' = {eA }. Hence the only 

representation of S' is the identity representation 1. Equation (4.6) therefore can 

be written in the form 

Px = Indt{e}(Xx 01) = Indtx x . 

Since the group A is isomorphic to the semidirect products of the groups L 

and Sn+1 , and the group Sn+1  is of finite order, we have 

llfll = E (f(x),i(x))= E (f(s),f(s))< 00, 

xEAIL 
	

SESn+1 

for all f in L2 (Al L,xx ). Hence the representation space of px  is the Hilbert space 

L2 (AI L,xx ) of all complex valued functions f on A such that 

f (v, s) = xx(v)f (0, s), for all v E L, s E Sn+1. 	 (4.7) 

It is worth mentioning that the Hilbert space L2 (Al L,xx ) is of finite di-

mension. The dimension dim(L 2 (A/L, Xx)) of L2 (A/L, xx ) is equal to the index 

[A : L] of L in A. Since A is isomorphic to the semidirect products LS n+i  of L 

and 5n+1 , we have 

dim(P (A/L, xx ) ) = [A: = 
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In fact, we observe that for a fixed x in E/L*, 

(x,v ,  f(v, s) = xx(v)f(s) = 627,)f(s)  

for all f in L2  (Al L, xx ). Hence if we define functions ef on A by 

	

27:(x,tv) 	• 	= e 	if s 	t 

	

, 	, ET (v , s) = /1 0, 
otherwise, 

for all (v, s) in A, then we find that the set {et  : t E Sn+1} is an orthogonal basis 

for L2  (Al L, xx ). Indeed, we have ef(v, s) = e 21"(x'v) Ef(s) = xx (v)Ef(s) and 

if ti  = t 2 , 
(ext,,fT2) = I 

1 	 isn1+11 ,  
sn-Fil s 

	----- 
Esn+ , 	 0, 	if t1 	t2. 

Hence for x not in L* the Hilbert space L 2 (A/L,xx ) is isomorphic to the Hilbert 

space C s.+ 1 . Hence the representation operator px (a) can be considered as an 

operator on the space Csn+1. 

For all a in A, the representation operator px (a) acts on Csn+1 as follows. Let 

f be in Csn+1, v in L and s,t in Sn+1 . Then 

(P.(v, es)f)(s) = (Px(v,es)f )( 0 ,$), 

. f((0, s)(v, es)), 

= f (sv , s), 

2irt(x,so f  ( 0  , . 	 s) , e  

. e272(x ,so As ) ,  

and 

(p x (0 , t) f)(s) = f ((0 , s)(0 ,t)) = f(0, st) = f (st). 	(4.8) 

Hence for all a = (v, t) in A, 

(P.(a)f)(s) = (P.(v ,t) f)( 0 , s), 
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= (pz (v,  , es)(0,t) f)(0, s), 

= (p z (v , e) f)(st), 

= e21so A st ) ,  

for all s in Sn+1. 

We summarize here that for each x not in L* we have an irreducible represen-

tation px  of A which acts on the Hilbert space Cs  n+ 1  according to the rule 

(pz (v, t)f)(s) = e 21" (s'8v )  f (st), 	 (4.9) 

for every f in Csn+1, v in L and s, t in Sn+1. 

The representation operators px (a) and ptz (a), x in E/L*, a in A and t in 

Sn+ 1 , are related in a simple fashion given in the following lemma. 

Lemma 4.1.1 For all t in Sn+1 and a in A we have 

ptx(a) = L(t)px (a)L(t -1 ), 

where L is left regular representation of Sn+1. 

Proof. Let t be in Sn+1, a = (v', s') in A. Then for all f in Csn+ 1  we observe 

(L(t)p(a)L(t 1 ) f)(3) = (L(t) p x (71 , s')L(t - 1  ) f)(t - 1  s), 

= (Px (v',.5')L(t -l )f)(t-ls), 

= e2iri(s 4-1 .sv') ( gt-i ) f)(t -1 ss i )  , 

= erz<tx,svi) f(ss , ) ,  

= (,otr(v',.if)( 3 ), 

. (Ptx(a)f)(s). 

Hence we find 

(L(t)px (a)L(t -1 ) f Xs) = (p tx (a) f)(s) . 
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Since this is true for all s in 8n+1  and f in Csn+ 1 , we have 

Ptx(a) = L(t)pr (a)L(t -1 ). 

for all a in A and t in 

0 

4.2 Generalization 

In Chapter 3 we have discussed a random walk problem with symmetric transition 

probability on the collection of chambers C. We will now generalize our work to 

a random walk on it with a general probability measure. 

As defined in Chapter 3, we think of a particle moving on the collection of 

chambers C. The particle starts at time 0 at the the chamber Co  and moves at 

time t > 1 to one of adjacent chambers in C with general transition probability 

measure p such that the support Supp(p) of p 

Supp(p) = fa E A: p(a) 0 01 

generates A. Here we have E aEA 11 (a) = EaESupp(g) P(a) = 1. The steps are 

statistically independent of the preceding steps. 

Our generalization of Lemma 3.4.1 is given in the following lemma. 

Lemma 4.2.1 The probability of the particle visiting the origin after m steps is 

given by 

/i x m  ( 0  eS) = IS n+11 	(C (Px)r Es, E s )dX, 
E L• 

for all s in Sn+1. 

Proof. The probability of the particle visiting the origin after m steps is exactly 

en' (0, es) and by Lemma 3.2.1 we have 

p xrn (O, es)  = 	(em x 	(x , es)dx, 	 (4.10) 
EIL• 
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where (u' x Ee,)"(x, s) is the Fourier transform of the function (tem x ee,)(v, s) 

with respect to the variable v in L. Thus we have 

P xm (0 , es) = f IL  (tt xm ) ^ (s, es)E e s ^  (x , es)dx 
E• 

Using equation (3.48) in page (43), we obtain 

/1'(J, es) IEIL (Itxmr (x , es)dx, 
* 

= I E EIL* veL
(itxm)(1))6S)e-272(x'v)dX. 

Changing variables of integration from x to —x we find 

itxm(0 , es ) = I E em(v, es)e 2—(xmdx, 
vEL 

= 	E 
EIL* (v,$)EA  

(4.11) 

By equation (4.9) we have 

(p,(v, s)e„)(es)  

Hence from equation (4.11) we have 

it xm (O, es) = f 	E itxri ( V,S )(Px(V , S ) ,6„)( es)dX  
(v,$)EA  

f.  aTz,uxm(a)(px(a)6„)(es)dx E/L  , 

= Isn+it (a)px(a)ees ,Ees )dx. 
aEA 

By equations (4.3) and (4.4), equation (4.12) becomes 

xm  (0, es) = IS.+1 I f 	((it'  (Px)) m Ees ,Ee s )dX. 
EIL* 

Let s be an element of Sn+1 . Then, by Lemma 4.1.1, we obtain 

"n (0, eS) 	1 5'71+ 1 1 1E4*  « 71  (Psx)rees ,Ees )dX, 

= ISn+111E/LY1-1'  (Psx)rE„,Ees )dX. 

(4.12) 
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By equation (4.4) and Lemma 4.1.1 we have 

ps.(ftx-) =  
aEA 

. E px-(a)L(s)pr (a)L(s—i). 
aEA 

By Lemma 4.1.1, for all s in S, 

( 71  (P.)) 771  = Psx(P xm ) = L(s)( il  (Px)) 7 n gs -l ). 

Hence 

/1'(O, es ) = ISn+il JEIL. (L(s)(tt (Pr)r L(s -1 )E„,e,$ )dx, 

= ISn+I.I JEIL.(( 11  (Prx) L(s -1 )E L(s -1 )ses )dx, 

= ISn-Fil fEIL.((7-; (P.)rL(s)E„,L(s)ees.)dx, 

= ISni-il JEIL.((fix,)r ( 	Es,Es)dx. 

0 

For the representation space Csn -F1 , the set {Es  : s E Sn+1 } forms an orthogo-

nal basis. Therefore, the trace of (it (pz ))m is given by 

Tr {(7:t (P5)r} = ISn+ii E (( 1  (p.))-Es,Es). 
SESn-I-1 

Hence we have 

tem (0, es)  . 	1 	
Tr {(71 (pz )m}dx. 

ISn-Fil 1E4 .  
(4.13) 

Similar to our property of the operator P(x), x in EIL*, whose eigenvalue are 

less or equal to 1 in absolute value, we have a useful criterion of the representation 

operator It—  (pr). 

Lemma 4.2.2 Let it be a transition probability measure , and A be an eigenvalue 
- 

of 11 (pr),  x inside a chamber. Then PI  <1. In other words, the norm II I-t-  (p)II 
N 

of the representation operator A (Ps)  is less than 1. 
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Proof. We recall that 

II Tt (p)II = max{ IAI : A is an eigenvalue of il (Px)}, 

since ii (px ) is a self-adjoint operator (see equations (B.1) and (B.2) in Appendix 

B). Let A be an eigenvalue of it (pr), x inside a chamber. Then for a corresponding 

eigenvector f we have 

Af = 
	 (4.14) 

By equation (4.4), we have 

A f (s) = (7t ( px)f )(s), 

	

. 	E 	it(v i , si)(px (v' , s') f)(s), 
(v ,  ,s , )Esupp( 4) 

E  

	

. 	,(v, ,  s , ) ,27ri (s,seof(ss , ),  (4.15) 
( v1,s9 Esuppw  

for all s in Sn+1. Let so  be an element in Sn+1  such that If (-50)1 = maxsEsn+ i If (3) I-
Then we find 

	

Af(so)  . 	E 	[(v,, sf),271-ics,s0v,)f(sos,). 	(4.16) 
(v' ,s9ESupp(g) 

Since f is nonzero function, we have f (so ) 0 and hence from equation (4.16) 

we observe 

IA1 = ia(v , , s , )e27,z(x ,so vi) f (sos')  1  
I E 
(v' AEsupp(,) 	 f(so) I ' 

< 	E 	iL(7./, .9 , )1,27,i(x,sov , ) f(sosi) 
 I, 

( svi, lEsuppw 	 f (so) 
<1.  

(4.17) 

Hence each eigenvalue A of it (pr ) is less or equal to one in absolute value. Suppose 

there exist an eigenvalue A of it (pr)  with A = 1. Then from equation (4.16) we 

find 

1 < 	E 	gv, ,  s , ) ,2iri(x,so vi) f (SOS ' )  

(I,' ,s0ESupp(g) 	 f(so) • 
(4.18) 
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Suppose there exist an element (v', s') in Supp(y) such that le21"(s's°v1 ) f("si)  I < 1. f(so) 
Then inequality (4.18) leads to a contradiction. Hence we have 

1,27n(x,sovi) f (S0S 1 )  1  = 1  
f (so) I 	 ' 

for all (v', s') in Supp(p). By using the result in Appendix A we have 

e27, (x , sov i>f(sos') .---- f (so), 

for all (v', .s') in Supp(A). 

By Lemma (4.1.1) together with equation (4.14), we have 

(4.19) 

(4.20) 

L(u)f = L(u)7t (19.)L.-11 , (u)f, 

= Pux(P)L(u)f, 

for all u in Sri+1 .This shows that L(u)f is an eigenvector of p us (p) with eigenvalue 

one. Hence by equation (4.20) we obtain 

627r:(ux,so v) (L(u)so)(sos) = (L(u)f )(so), 

for all u in S and (v, s) in Supp(p). By definition of left regular representation 

given in equation (4.1), we find 

f(u-1 sos ) = 6 2711 (UX ,S0V ) f ( u -1 so ) ,  

for all u in Sri+1 , (v, s) in Supp(p). Since the group A is generated by the set 

Supp(it) = {(v', s') E A : p(v', s') 0} and A is isomorphic with the semidirect 

products of L and Sn+i , it follows that the set G(S) = {s' E Sn+i : ge, s') 0 

0 for some v' in L} generates STi+1 . Hence letting u -lso  = w, we get 

If(ws)1 = If (w)I, 

for all w in Sr,+1  and s in G(S). From definition of right regular representation 

R in equation (4.2), it immediately follows 

(R(s)iii)(w) = Ifl(sw) = If(sw)1 = If(w)1 = If Kw), 
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for all w in Sn+1  and s in G(S). In other words, R(s)If I 	IfI for all s in G(S). 

But for each s in 5, there exists k in Z such that s = s i 	sk with s i , 	, sk in 

G(S). Hence for each s in G(S) we obtain 

R(s)If I = R(s i  . • • s k)i f I = R(51) • • • R(sk)i f I = fl, 

Hence for all s,u in Sn+i , (R(s)1f1)(u) = 'Mu), and in particular, 

Ifi(s) = (45 )1.fp(e) = KO, 

for all s in Sn+1 . In other words, f is a constant function in absolute value. Hence 

f (t) 0 for all t in Sri+1, since f is a nonzero function. Since f is an eigenvector 

of 71 (Pr)  with eigenvalue one, by equation (4.15) we obtain 

-27t(x tv) f(ts) E fz(v, s )6 	— — 1, 
(v,$)EA 	 f (t) 

for all t in Sn+1. By similar argument in obtaining (4.19), we have 

l e -271-z(x,tv) f(t8 ) 	1  
f (t) 

for all t E Sn-Fi. Hence, by Appendix A page 85, we find 

6-27rz(x,tv) f(ts) 	1 
f (t) 

for all t, s e Sn+i  with IL ( v, s) 0 0, for some v E L, from which we obtain 

ps(v,$ )f = 

for all (v, s) in Supp(p). Since Supp(p) generates A, we have 

10.(a)f = f, 

for all a in A. This implies that the subspace of C sn-0 generated by f is a 

nontrivial subspace invariant under the action of Ma), for all a in A which 

contradicts to the fact that Pr  is irreducible. Therefore our assumption is false. 
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Using similar argument we can see that it is impossible for it (pr ) to have a 

nonzero eigenvector f corresponding to the eigenvalue -1. (Also see Appendix B, 

Lemma B.0.13, page 87). As a result, we can conclude that 11I L  (Px)il < 1 for all 

x not in L*. 

Using this result, we close this section with the following theorem which is 

our generalization of Theorem 3.4.2. 

Theorem 4.2.3 The expected number of times the particle visits the origin is 

given by 

0. 
E Y x m(0,  es) = 1P111  isn,1+1 1 LIL.Tr {(I — 0 71  (px )) -1 }dx 
m= 1  

where Tr {(I — (px ))1 denotes the trace of the operator {(.1 - 	(ps )) -1 1. 

- 
Proof. We note that for all x in E/L*, the representation operator it (Px) is 

a bounded linear operator from the Hilbert space Csn+ 1  into itself. Since the 

operator norm (Px)11 1 , if I 0 1 < 1, then (1-0 71 (ps )) -1  exists as a bounded 

linear operator from Cs.+1 into itself and 

00 

(I — 0 (px )) -1  
m=1 

Since equation (4.2.1) in Lemma 4.2.1 holds for all s in Sn+1 , we can change 

the factor 15'7,44 1 in those equation for the sum over Sn+1 . Hence the expected 

number of times the particle visits the origin is just the sum EZ =0  fern(0, es), 

and by monotone convergence theorem, from Lemma 4.2.1, we observe 

00 	 CO 

E kix - (3, es) 
m=0 

E rem(o, es), 
en m.0  

9 .1- 1 m0 sEsn+i 
E 

E 	((kt"  (Px)res,Es)dX, 
IL• 
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= lirn E 	E (0 771 (it (ps )rEs ,Es )dx, ail 

	

SESn+1 	M=0 
00 

= lirn E EIL  (E Om (it'  (Px)) n E s ,es )dX, 
811 

	

sESn+i 	• m=0  
- 

= lirn E EIL  ((/- —0 (p,)) -1 6 5 ,e 5 )dx, 

	

sesn+i 	* 

= 111111 1  LW sEs + iEn 	— 	
(Ps)ries,Es)dx, 

1 
=urni 	, 	Tr RI — 0 (px)) -1 1 dx. 

011 ISn+i i fEIL• 	1/4 
0 

It is clear that the formula in equation (4.13) is valid for any function f in 

Ll(A) in place of p. We can obtain a formula for ,a xm(a) for any a in A using 

equation (4.13): 

Note that I.Lxin (a) = (R(a)it')(0, es), where R is the right regular representation. 

Using (4.13) we set 

fix in (a) = (R(a)( iu x m))(0, es) = sn1+1  L/L* Tr {ps (R(a)em)} . 

By equations (4.2) and (4.4), we observe 

px(R(a)ern) =  
beA 

beA 

Letting ba = c, 

MR(a)px 7n) E px 7n(c)ps (ca -1 ), 
cEA E  p x,n (c)px(opx(a_i ),  

cEA 

= Miem )Px(a). 

Hence we have 

1 

Yxm (a)  = 	fEIL* Tr  { (71 (Px))xm  Px (  dx. 
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Therefore the expected number of times the particle visits the element a is given 

by 
00 

= lim , 	, 	E OTr 	(pr))" pr (a -1 )) dx. 
0 1 1 	LIL* 

Using the fact that 11 -I;  < 1, we have 

Co 

E em(a) = lim 
0 1 1  1Sn+11 fE/L 

Tr ((I -0 71  (pr )) -1  pr (a -1 )) dx. 
i.o 	 " 

Therefore, the conclusion of our results can be stated as follows. 

Theorem 4.2.4 Let it be the transition probability measure. Then the random 

walk induced by 1.L is recurrent or transitory according as the integral 

limTr{(I -012 (pr )) -1 }dx 	 (4.21) 
E/L* 

is infinite or finite respectively. 

When we compare this result with the corresponding result in Chapter 3, we 

find that the ultimate behaviour for the symmetric random walk and the random 

walk with general probability measure are very similar which depends on the 
- 

behaviour of the operators (I - P(x)) -1  and (I- it (pr )) -1  respectively. In fact, 

it can be seen easily that (pr ) = P(x) when p is considered to be the symmetric 

transition probability as in Chapter 3: 

Let the probability measure of the random walk be defined as in Chapter 3. 

Then the function p can be written as 

1 	n 

it = 	 E E (0,s, )  + e (rO,S0) 7  n+ 1 Li  

where E(0,,,), i = 1, . . . , n, and 6( r0 ,,„) are indicator functions of the elements 

(0, se), i = 1, ... , n, and (ro , so ) of A. 
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By equations (4.3) and (4.4) we observe that, for all x not in L*, 

71  (P. ) = P.(0, 

E 	6(0,)(a) + e(r0 ,80 )(a)) px (a), 
a€A i=1 

1  

n + 1 

 n 

Hence for all x not in L*, for all 1 in Cs, we have 

(71  (Px)0)(S) = 	1 	( [ 7t 	PX(° ) Si) + PX(r0/ SO)] lk) (s)- n + 1 

Using equation (4.9) we obtain 

(71  (p.))(s) = 	EzP(ssi)+6 -27'sr'cb(sso)) 
1  ( n  

n + 1 

= (P (x)0)(s), 

for all s in S. Since this is true for all in Cs and for all s in S, it follows that 

jA (pr ) = P(x) for all x not in L*. The integral given in Theorem 4.2.3 therefore 

becomes 

lim 1 
	

Tr {(I — OP(x)) -1- } dx = lim 	Eqr 
91-1 isn.+ 11 LIL 	 911 JEIL• sEs 

= EMISI f - 
Oil 	EIL* 

OP (x)) -1 6s, e s )dx, 

OP(x)) -1  ee,E,)dx. 

4.3 Random Movement 

We can generalize further our discussion into a random movement on the col-

lection of chambers C. We shall show that our result in Theorem 4.2.3 remains 

valid and hence the ultimate behaviour of the movement is recurrent or transitory 

according as the integral in equation (4.21) is infinite or finite. 

aEA 

1 
n + 1 
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Suppose a particle stars at time m = 0 at the chamber C o  and moves at times 

m > 1 to any chamber in C with general transition probability p so that the 

support Supp(p) generates A. We also assume that the steps are statistically 

independent of the preceding steps. Hence in this case the particle at any time 

m > 1 can take either no step or a unit step to an adjacent chamber or even 

jump to another chamber according to the transition probability p we defined. 

Lemma 4.3.1 The probability of the particle arriving at the origin after in steps 

is given by 

it xm  (0, es) = ISn+11 fEIL. ((7t (Px)rEs,Es)dx, 

for all s in 

Proof. The reasoning we have given in proving Lemma 4.2.1 remains valid in this 

case. 

0 

In evaluation of the expected number of times the particle visits the origin, we 

use the fact that the representation operator It (pr) is a self-adjoint operator. In 

our situation for random movement we do not enjoy this property, but fortunately 

we have the following lemma. 

Lemma 4.3.2 For all x not in L* the norm II /1  (P)jl of the operator 71 (pr ) is 

less or equal to one in absolute value. 

Proof. From equation (4.4), we observe that 

II 7/ 	= 	E 	it(a)Pr(a)II, 
aESupp(p.) 

E 	= 	E ft(a) = 1, 	(4.22) 
aESupp(A) 	 aESupp(4) 
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since the representation operator px (a) is unitary for all a in A. 

Finally using this lemma, by similar argument in obtaining Theorem 4.2.3, 

we can prove the following theorem for the random movement. 

Theorem 4.3.3 The expected number of times the particle visits the origin is 

given by 

E 	 1  x- (0, es) = urni  
m.o 	 oil IS7,+ 1 I fEIL.Tr{(I —0 (Ps))-1}  dx. 

where Tr {(I— (px )) -1 1 denotes the trace of the operator {(I— (10x))1. 

Hence we have the same conclusion with our previous discussion of random 

walk that the ultimate behaviour of the movement is recurrent or transitory 

according as the integral 

lim I 	Tr{(I — 0 71 (px )) -1 }dx 
811 JE/1. 

is infinite or finite respectively. 
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Chapter 5 

Intertwining Number Theorem of 

Locally Compact Groups 

The main purpose of this chapter is to generalize Mackey's result on the inter-

twining number theorem for locally compact groups (see [16], Theorem 3', page 

588). 

Let G be a locally compact group and H, K be open and closed subgroups of 

G. Let 7 and 7 be two one dimensional representations of H and K respectively. 

Then Mackey's Intertwining Number Theorem states that the intertwining num-

ber of the two induced representations U' and ITY of 7r and 7 respectively, is 

equal to the sum of the intertwining numbers of the representations 7rx and -yY of 

HX n I<', where xy -1  runs through the set of all double coset representatives of H 

and K in G. Using Mackey's notations, the result can be stated by the formula 

/(u-, tr) = 	E 1(7r ,-y, D(x, y)), 
D(x,y)ED f 

where D1 is the family of all double cosets D(x,y) = Hxy -1 K for which the 

indices of H n K Y  in H' and K Y  are finite (see Section 5.2, page 77). 

We intend to prove the fact that this result holds in the situation where the 

representations of the subgroups are finite dimensional. To achieve this, we will 
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use results in the theory of Al, spaces (see, for example, [2] and [23]). Recent 

developments in this theory suggest that, under certain conditions, the Apq  spaces 

can be recognized as preduals of intertwining operators of induced representations. 

First, we state the simplified versions of these results under the condition that 

the subgroup are open and closed. Then we apply them to prove the generalized 

Mackey's Intertwining Number Theorem. We begin with some definitions and 

basic facts we need in our analysis. 

5.1 Definitions and Basic Facts 

In this section we review some definitions and basic facts of representations of 

locally compact groups, intertwining operators and tensor products. Some useful 

information may be found, for example, in [2], [5], [22], [26]. 

Let G be a locally compact group and H be an open and closed subgroup of G. 

A representation r of H on a Banach space 7-1(r) is a continuous homomorphism 

ir from the group H into the group U(H(r)) of all isometries of 7-1(r) onto itself. 

Let (7(7))* denote the conjugate space of H(r). The map r* from H to the 

space U((7-1(7))*) of all isometries from (HM)* into itself given by 

7r*(h) = (r(h - 1 ))*, 

is a representation of H on the Hilbert space 7-t(e) = (H(r))* (see [2], page 38), 

where (r(h-1 ))* is the adjoint operator of r(h -1 ). 

Let pi  and p2  be representations of G in Banach spaces '1-4 191) and 7 ( 92) 

respectively. We define an intertwining operator T for pi  and p2  as a bounded 

operator from H(pi ) into 7- (p2 ) such that 

rPi(g)= p2(g)T, 

for all g in G. We denote HomG(7-t(pi), 'H(P2)) the space of all such intertwining 
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operators. The dimension of this space is called the intertwining number of the 

operators to'  and 102  and is denoted by I(pi, p2). 

The definition of the p-induced representation Ppr of G induced by a repre-

sentation 7r (on a Banach space 7-40 of a closed subgroup H can be found in 

many places in the literature (e.g. [2], [22], [23]). 

Here, we consider the representation spaces of the subgroups to be Hilbert spaces 

and define the corresponding induced representations accordingly. Moreover, we only 

consider open and closed subgroups of G so that the homogeneous spaces obtained 

are denumerable and discrete. 

Let H be an open and closed subgroup of G and 7r be a unitary representation 

of H on Hilbert space 7-47r). We consider the vector space of all functions f from 

G to 7-47r) satisfying the condition: 

f (hg) = 7r(h)f(g), 

for all h in H and g in G. Let us set f 2  = E EG/H(f(x), f(x)). We define _s  

L2 (r) to be the set of all functions f in the space under considerations for which 

11f11 is finite. Clearly, L 2 (7r) is a Hilbert space under the norm just defined. The 

induced representation U of G is then defined by 

(U"(s)f)(x) = f(xs), 

for all s,x E G and f E L2 (7r). It is easy to show that 1-4 Pr(s) is a unitary 

representation of G. 

Let 7r and 7 be unitary representations of open and closed subgroups H and 

K of G respectively. Let T be a bounded linear operator from L 2 (7r) into L2('Y)• 

T is called an integral operator if there exists a summable function (I), called the 

kernel of T, from G x G to .C(7(7r),7-1(7)) such that for a given f in L2 (7r), 

1. the function x 	(1)(y , x)f (x) is summable for all y in G I K , 
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2. y 	E )(y , x) f (x) belongs to L 2 (-y), and 
xEGIH 

3. (T f)(y) = E Cy, x)f (x), for all y in 	K, 
xEGIH 

(see [2], page 76). Note that we use the term "integral" only to be consistent 

with the case where the subgroups are not necessarily open and closed. 

For x in G, let HT be the subgroup of G consisting of all elements of the 

form x'hx, for all h in H. Then the map 7rs from HT into U(7-t(r)) given by 

e(b) = 7r(xbx -1 ) defines a representation of the group HT. The properties of the 

kernel of an integral intertwining operator of induced representations U' and U1' 

is described in the following lemma. 

Lemma 5.1.1 Let sto be the kernel of an integral intertwining operator of induced 

representations U" and Ul . Then the following statements hold. 

I. For all x in GI H, y in GIK, s in G, h E H and k E K, 

(1)(ky s , hxs)r(h) = -y(k)(1:1(y,  , x). 	 (5.1) 

2. (1)(x, y) is an intertwining operator of the representations 7rs and 0 ,Y of the 

subgroup HT 11 KY of G. 

Proof. 1. (cf. [2], page 77). Let T be an integral operator from L 2 (7r) to L2 (y) 

with the kernel (I). Then for all f in L 2 (7r) and y in G, 

(Tf)(Y)= E (1)(Y,x)f(x). 
TEGIH 

By hypothesis, T is in HomG(L2(r),L2(-y)). Hence 

( 21Pr(s)f)(Y)=(Ms)Tf)(Y), 
	 (5.2) 

72 



for all y in GIK and s in G. Now observe that 

(TU7  (s)f)(Y) = E 
xEGIH 

. E o( y , x)f(xs). 
sEGITI 

Changing variables xs '—p x, we find 

	

(TU7  r(s))(y) = E o( y , xs-l)f(x). 	 (5.3) 
xEG/H 

On the other hand, 

(U1' (s)T f)(y) = (T f)(ys), 

. 	E o(ys, x)f(x). 	 (5.4) 
xEGIH 

By equation (5.2) together with equations (5.3) and (5.4) we obtain, for all x in 

GIH, y in GIK and s in G, 

(I) (y , x .9 -1 ) = 4:0(y s , x). 	 (5.5) 

Let k E K and y E G. Let -yk and r h denote -y(k) and r(h) respectively. Then 

-Yk(Tf)(y) = (T f)(ky) 

. 	E 4: I )(ky , x) f (x), 
xEGIH 

	

. E 0(ky,hx)rhf(x), 	 (5.6) 
xEGIH 

for all h in H. Also 

"Yk(T f)(Y) = -Yk E 0(y ,x)f(x). 
sEGIH 

Hence, for all h in H, k in K,x in GIH and y in GIK, we have 

0 (ky , hx)r h = 7k0 (y , x). 	 (5.7) 
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By equations (5.5) and (5.7) we observe 

0(kys,hxs)rh 0(ky,hx)rh= -00(y, x). 	 (5.8) 

2. We shall show that, -0(y , x) = 0(y,x)71, for all x in GI H, y in GI K and b 

in Hx n KY . For this purpose, let b = y'ky = x'hx be in Hz n K. Then using 

equation (5.7) we observe 

-10 (Y , x) = 7y-1 by (1)(y,x), 

(I)(yby-ly,xgx-lx) 

(1)(yb,xb)71, 

0(x,y)71-b. 

Since this is true for all x in GIH, y in G/K and b in H n KY  , (2) follows. 

5.1.1 G-tensor Products of Banach Spaces 

Let V, X1 , X2 be vector spaces. An operator B from X1  X X2 to V is said to be 

a bilinear operator if for all x,y in X1  x X2 the maps Bs  from X2 to V given 

by B(y) = B(x,y) and By  from X1  to V given by By (x) = B(x, y) are linear 

operators. In other words, B is bilinear if it is linear in each of the variables x 

and y. 

A tensor product of X1  and X2 is a pair consisting of a vector space W and 

a bilinear operator B from X1  X X2 into W so that whenever (v 1 i) is a basis of 

X1  and (v2;) is a basis of X2, the set of elements B(v ii , v2i ) forms a basis for W. 

Since the existence of the space W is unique, we write W as the space X 1  0 X2 

and its element x 1  0 x2 , x 1  in X1  and x 2  in X2. 

If X1  and X2 are Banach spaces, then it is possible to endow norms in X 1  ®X2 . 

Let a be a norm in Xi  0 X2 defined by 

a(z) = inf 
yiEX2 
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for all z = E7_3.  xi  Oyi , where the infimum is taken over all possible representation 

of z. The norm a is called the greatest-cross norm. Then the completion of 

(g) X2 with respect to the norm a is a Banach space and denoted by X1  0 X2. 

The Banach space X 1  Ocr X2 is called the projective tensor product of Banach 

spaces X1  and X2. 

Let G be a locally compact group and p i  and )92  representations of G in 

Banach spaces 7-1(p i ) and H(p2 ) respectively. A bounded bilinear function B 

from 7/(p i ) x '1-1(p2 ) into a Banach space X is called G-balanced if 

B(pi (g)v,w) = B(v , p2(g)w), 

for all g in G and (v, w) in 7-11  x "H2. 

A G-tensor product of the Banach spaces 'H(p i ) and 7-i(p2 ) is a pair (H, Bo) 

consisting a Banach space 7-1 and bounded G-balanced bilinear function B0  from 

7-i(P1) x 7-I(p2) into 7-1, whose range spans 7-1, such that (7 -1, Bo ) has universality 

property: for every bounded G-balanced bilinear operator B from 71(pi) x H(p2) 

to a Banach space X, there is (necessarily unique) bounded linear operator TB 

from 7-1 to X such that B = TB B0 . The operator TB is said to be the operator 

associated with B. 

For any two representations pi  and /32  of G in Banach space 7-1(pi ) and 7-1(p2 ) 

respectively we can construct G-tensor product of 7-i(pi)  and 7-1(p2 ). Let L be 

the closed linear subspace of 7-t(pi)O cr  7-t(p2) spanned by the elements of the form 

Pi (g)x i 0 x 2 — 	0 p2(9) x2, 

for all g in G and for all (x 1 , x 2 ) in 7-11 x 7-12 . Then the quotient Banach space 

(Hi 0' 7-12)/L is a G-tensor product of 7-t i  and 7-12  and is denoted by 7-11 EG 712 
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5.2 A Space 

The purpose of this section is to examine a particular iq space arising from spaces 

of induced representations U and Pr  of a locally compact group G, where 7r 

and -y are unitary representations of open and closed subgroups H and K of G 

respectively. Recent developments in the study of Al, spaces, with some conditions 

on p and q, can be found in [2] from which we quote the definitions and results. 

Let G be a locally compact group and H and K be both open and closed 

subgroups of G. Let 7r and 7 be finite dimensional representation of H and 

K respectively on Hilbert spaces 1-1(7r) and 7-(7) respectively. Let U" and PY  

be the corresponding induced representations of G of representations 7r and -y 

respectively. Then there exists a natural isometric isomorphism from G-tensor 

product (L 2 (7r) 0(6 L 2 ( -y*)) of induced representation spaces L2(7r) and L2(11 

onto the Hilbert space HomG(L 2 (7), L 2 (-y)) of all their intertwining operators 

(see [22]). In other words 

(L2 (7r) 0'' .  L2('Y* )) *  '-.÷-' II omG(L2(7), L2(7)). 	 (5.9) 

Consider the projective tensor product 1-t(7r) 0' H( -y*). For x and y in G, let 

7-tx,y be the closed subspace of N(7r) OC R( -y*) spanned by the elements of the 

form 

irz (bg.  0 71 — 0 (7Y(b))*77, 

for all b in Hz n KY  , in 1-47r) and 7/ in 7-1(-y*). The quotient Banach space 

(7(7r) 0° 7((-y*))/7-tx ,y  is denoted by .4„ y . We note that Az., y  is (Hx n KY)-tensor 

product of Mr) and 7-4-y*). Hence we have As,y  = 7-1 (7 ) eirx.nr-cY)7--(( -y*). It can 

be seen easily (see [2], page 58) that for all s in G we have 

Hsx,sy  = Hx,y 	and 
	

AXS,y3 = Ar,y• 

For u 0 v in 7-47r) Ou '1A-y*) we write u 0,, y  v to denote element of Ax ,y  to 
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which u 0 v belongs. 

Lemma 5.2.1 Let x and y be elements in G I H and I K respectively. Then the 

following statements hold. 
CO 	 00 

Eft 0 g  E L2 (7r) 	L2 (7*) 	implies 	E f(x) 0 g(y) E N(7r)  

Proof. See [2], Proposition 4.1.2 page 56. 

0 

Lemma 5.2.2 For all x, y in G and af fi gi E L2(7r) 	L2(7*), 
CO 

t 	E fi (xt) Ox , y  gi (yt), 

is a mapping on the coset space G I (Hz 11 KY). 

Proof. (cf. [2] Proposition 4.1.5 page 59). Let s be an element in IP n KY . We 

observe that 
00 	 00 

E fi (xst) 0x ,y  gi (yst) E fi (xsx-ixt) 0,,y  gi (ysy -lyt), 
i.1 
00 

Erx(s)fi (xt) Oz ,y  -y*Y (s)gi (yt), 

00 
E fi(xt) ox,y  gi(yt). 
i=1 

0 

Let V = {(x, x) :xEGxG} be the diagonal subgroup of G x G. Let D be 

the family of all double cosets (H x K) : V and D(x,y) the coset in D to which 

(x , y) belongs. 

Lemma 5.2.3 Let af i  fi gi be an element in L2(700°.  L2(-y*). For x, 

if the indices of Hz n K11 in Hz and KY  are both finite, then the sum 
CO 

E fi(xt) 0 gi(yt), 

is finite for all D(x, y) in D. 

in G, 
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Proof. (cf. [2], page 65). Using Cauchy Schwarz inequality we observe that 
1 

2 	 2 

tEGI(HsaKY) i=1 

But 
(

E 	E Ilfi(xoliiigi(yoil 5 E 	E 	lific.0112 	E 	bi(yt)112 	. 
00 

i=1 tEGI (11.TnKY) 	 tEGI(11xnKY) 

E 	lifi(xt)II 2  = 
tEGAH.nicy, 

E 	E 	ilfi (xbt)112, 
tEG/Hx boix, (HxnKy )  

tEG/Hx bEHz /(H,Ky )  

E 
bEH. /(H.nh-y ) tEG/H. 

E 
bEH. /(H.nKy ) tEG/H 

*f 2 , 

for some constant M, since the indices of Hz* n K Y  in .fix and KY  are both finite. 

Similarly, we have 7 (11rnICY) Ilgi (xt)11 2 1V11 	II < - ligi 1127 for some constant N. Hence 

we obtain 
00 	 00 

	

fi (xt) gi (yt) 5 S E 	< 00, 
fore some constant S = MN, since at, fi 0 gi is in L2(7) (SG L2(7 * )• 

0 

In view of lemmas 5.2.2 and 5.2.3 we have the following definition (see [2], 

Definition 4.1.7 page 66). 

Definition 5.2.4 Suppose the indices of Hx n KY  in Hx and KY are finite for 

all x,y in G. The map klf on L2 (7r) 06 L 2 (-y*) is defined by 

(:=E°1"   GI(HxnKx) i=1 

for all E`,?:=-'1 fi 0 gi in L2(7r) 0 L2(7* ). 

fi (xt) Oz ,v  gi (yt), 

The value of (xlf (E zt i  fi  0 gi ))(x,y) for all x,y in G, belongs to the quotient 

space ,ZL,y . The properties of this image space are being discussed in [2] (page 

70). 
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Definition 5.2.5 The space iq is defined to be the range of klf with quotient 

norm (see [2], page 72). 

The generalization of Rieffel's result on classical ,47, spaces, (see [23]), is given 

in [2] (page 88, Theorem 4.4.3). It states, in our context, the following. 

Theorem 5.2.6 Suppose the indices Hz n KY  in Hz and KY  are finite for all 

x,y in G. If the elements of HomG(L2(7r),L2(-y)) are integral operators, then 

L2 (r) (gG L2 (-y*)'-= 4 

Proof. See [2], Theorem 4.4.7 page (88). 

0 

In the case where the subgroups H and K are open and closed subgroups, we 

have the following result given by Mackey [16]. 

Theorem 5.2.7 Let 7r and -y be representations of the open and closed subgroups 

H and K of a locally compact group G. Then an intertwining operator of the 

induced representations U'r and III .  of G is an integral operator. Furthermore, 

the corresponding kernel 01:1 satisfies the following conditions. 

I. (10(kys,hxs) = -yk (1)(y,x)r, for all h E H, k E K, x,y,s E G. 

2. EzEG/H 
11 4. 1(19vir11 2  _ 2 	< K, for all y E G and v E 7-(7r), for some positive 

constant K. 

" 	(11,;11 )2*  "2 < K', for all x E G and v E NH, for some positive 3-  EYEGIK 
constant K'. 

4. For all f E L2 (r), (T f)(x)=E EG11.1 (1)(y,x)f(x). 
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5. For all f E L2(7), (7  7)(x) = EyEG/K 0(y , x)* f (x). 

Proof. See [16], Lemma A, page 585. 

0 

Combining two theorems 5.2.6 and 5.2.7 we have 

Theorem 5.2.8 Let H and K be open and closed subgroup of a locally compact 

group G. Let 7r and 7 be representations of H and K and L 2 (7r) and L2 (-y) the 

corresponding induced representation spaces of G. If the indices of HT n KY  in 

HX  and KY  are finite, then 

r-s  -- = t g . 

Proof. This is a straight forward consequence of Theorem 5.2.6 and Theorem 

5.2.7. 

0 

The diagonal subgroup V acts on the coset space (G x G)/(H x K) on the 

right; and the stabilizer of the coset (Hx, Ky) under this action is (H x K)(T'Y) nV. 

The orbit is the double coset (H x K)(x,y)V . It is clear that (H x K)(T'Y) n V 

can be identified with Hz n K. Moreover, (xo , yo ) and (x11 Y1) belong to the 

same (H x K) : V double coset if and only if s oyc7 1  and x 1 yiT 1  belong to the same 

H : K double coset. 

Let Df be the set of all double cosets D(x, y) for which the indices of Hz n KY  

in Hz and KY  are both finite. 

Theorem 5.2.9 Let r and -y be finite dimensional representations of the open 

and closed subgroups H and K of G. If 0 is the kernel of a bounded intertwining 

operator and if 0(y, x) 0 for some x,y, then the double coset D(x,y) is in Df. 

80 



Proof. For all x, y in G, (I)(y, x) E HonliirnKY(71(rx ), 71 ('YY )) by Theorem 5.2.7 

(3). Hence there exists 0(y, x) in (H(rx) 0HsnKy 7-((-yY)*) such that 

(v ex,y  w,e(Y,x)) = (w, 4) (y, x)v), 	 (5.10) 

for all v E 7-1(rx) and w E (7-4-e))*. We observe now, 

E 	os,y  w,e(y ,x))12 =E i(tv,(N y ,x)012, 
TEG11-1 	 sEGIH 

5 	E 11w11 2 114)(y,x)v11 2 , 
xEGIH 

5 H4 2 11 71 2 114 2 , 	(5.11) 

by Theorem 5.2.7 (2). Let 	be a set of right coset representatives of Hr 

in KY. Then the double coset Hxy -1 K is a disjoint union of cosets 

From equation (5.10), we observe that 

( tV v ,e(e, xl iy -1 )) = (w,(1)(e,xliy -i )v), 

(w , (I)(y1 1 y-l y , x)v) 	by (5.1), 

= (w,-q,(1)(y,x)v) 	by (5.1), 

= (br,) * (w), (1) (Y,x)v), 

= (v ex,y ( Y2 ) * (w),e(Y,x)). (5.12) 

If 7r and 7 are finite dimensional and the index of Hx n KY  in KY  is infinite, 

then the set {/i} is infinite. Let {r i , , r7,} be an orthonormal basis in the space 

'7-1(7r1 0 H(-yY)*. Then the unit ball in H(n-x) 7-4-yY)* is compact and hence 

there exists a subsequence {l in } such that 

(re 0 ('An ) * )(ri) 

converges to some 7- 13  for each j = 1, . . . , in. Note that {rii , 	, 	} forms an 

orthonormal basis for H(e) 0 H(-yY)*; and since 0(y, x) 	0, there exists 
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such that r is not in the Null space of e(y, x). Hence there exists some positive 

number p such that (rip  0(y, x)) > p. Also, there exists positive number q such 

that 

(r, e(y, x)) > p whenever hr — r < q. 	 (5.13) 

Since (re  0 (-yrin )*)(ri) converges to ij , it follows that 

11( 7re 0 ( -)Tin ) * )(r i) — r . hh < q, 

for large n. By equation (5.13), we have ((r e  0 7L )(ri), 0(y, x)) > p, for large 

n. This contradicts the finiteness of (5.11). Therefore the set {l i } must be finite. 

Using a similar argument together with conditions 3 in Theorem 5.2.7 we find 

that [1-1' : n Kx] <00. 

Theorem 5.2.10 Let H and K be open and closed subgroup of a locally compact 

group G. Let 7r and -y be finite dimensional representations of H and K and 

L2 (7r) and L2 (-y) the corresponding induced representation spaces of G. Then we 

have 

Proof. This is a direct consequence of Theorem 5.2.8 and Theorem 5.2.9. 

0 

The intertwining number of the representations 7rx and -yY of HZ n KY  only 

depends on the double cosets D ,D(x, y) = Hxy'K to which xy —i belongs (see 

[16], Theorem 3'). Hence the intertwining number of rs and -yY can be denoted 

by 1(7r,-y,D). Generalizing Mackey's Intertwining Number Theorem (see [16] 

Theorem 3') we have the following result. 
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Theorem 5.2.11 Let H and K be open and closed subgroup of a locally compact 

group G. Let 7r and -y be representations of H and K and L 2 (7r) and L2 (-y) the 

corresponding induced representation spaces of G. Then we have 

I(7r, , D). 
DED f 

Proof. Let F be a bounded linear functional on L2(7r) 	L2 (-y*). Then there 

corresponds an operator T E HomG(L2 (7r), L 2 (7)) such that 

00 
(r,F) = E(gi , Tfi), 	 (5.14) 

for any r in L 2 (7r) Ø L2 (-y*) with the expansion r = 	fi  0 gi. Using the 

discussion preceding the Theorem 5.2.9 we observe that 

00 

E(gi, Tfi) = 
i=1 

E 
i=1 yEGIK 
oo 

i=1 yEGIK rEGIH 
00 
E 	(gi(y), 0(y, x)f(x)), 
i=1 (x,y)E(GxG)I(H xK) 
oo 

E E 	E 	(g i(yt), (y , x) fi(xt)), 
i=1 D(.,y)ED tEG (rixnKY) 
00 

= E E 	E 	02(yt), 0(y, x)f,(xt)), 
i=1 DED tEGI(HxnKY) 
00 

= E E 	E 	(f,(xt) 0.,y MYt), e(Y, x)), 
i=1 DED tEGI(HrnKY) 

E ( (IF 	fi  gi))  
DED 	i=1 

= 

Using (5.9) and Theorem 5.2.10, we obtain 

(5.15) 

(A)* 	HomG(L2(7r), L2(7))• 	 (5.16) 
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By equations (5.15) and (5.16), the intertwining number /(1/ 1r, U- ) is equal to 

the dimension of all functions 9 which is equal to the dimension of the space of 

all functions 0. Since the value of 0 is simply determined by its value 0(x0, yo) 

at (x0 , y0 ) E D, we have 

/(u-, u-Y) . E dD, 
DED 

where c/D is the dimension of all functions 0 which vanish outside the double 

coset D. Using Theorem 5.2.10, we have 

2-( u-, u-Y) . E 1(7,7, D). 
DED f 

0 
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Appendix A 

A Fact from Complex Numbers 

In this thesis we frequently use the following fact. 

Lemma A.0.12 Let {an }nN_1  be a set of positive real numbers with E nN  I an = 

ao . Suppose we have 

E ane ten = ao, 
n=1 

where On  is real number depending on n. Then each e'en = 1, for all n = 1, . . . ,N N. 

Proof. We use induction on N. For N = 1, it is obvious that the statement is 

trivial. Let us assume that the statement is true for some positive integer N — 1. 

Then we have 

act = E ceneten 
n=1 

 

N -1 
ten  E Gen e 

n=1 
+ 	ao. 	(A.1) 

     

Hence we have equality in (A.1). This implies that 

 

N_i 
E an eten 

n=1 
= a()  — cyN = ao aNI.  (A.2) 

On the other hand, 

   

  

N -1 

E ane t en 
— aNe

zeN 
n=1 

 

E an eten 

n=1 

 

= la c)  — aNe' eNI. 	(A.3) 
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From equations (A.2) and (A.3), we obtain 

aN1 = a0 — 
oN  I 

aN e 	' 

which implies that CZGN = 1. Hence equation (A.3) becomes 

= ao — aN (A.4) 
n=1 

  

Using induction assumption, equation (A.4) together with the fact that E nN-1.1  an  

= ao  — aN gives the result that e'en = 1, for each n = 1, . . . ,N —1. Thus we have 

e'en = 1, for all n = 1, . . . , N. Therefore, by Principle of Mathematical Induction, 

the statement is true for all N in N. 

Alternatively, we can prove the above as follows. We observe that 

E 1..venezen — va7i. 
n=1 

N 21 4  2 
= E (an  I ei"  + an — 2Re [an e'en]) , 

n=1 
N 	 [N 

= 	 0 2 E an  — 2Re E anez n] , 
n=1 	 n=1 

=0. 

Hence VcTi ezen — 	= 0 for all n = 1, , N from which we obtain e' en = 1 for 

all n = 1, 	, N. 
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Appendix B 

Some Further Properties of p,  ( lox ) 

In Chapter 3 we have some properties concerning the operator P(x) for all x 

in E I L* as given in Lemma 3.3.2. For a general random walk with probability 

measure it, the following Lemma is a generalization of those lemma. 

Lemma B.0.13 Let x be an element of E I L* , IL the probability measure and A 

an eigenvalue of it (px ). Then the following statements holds. 

I. Pti < 1. 

2. 12 (pp) has 1 as a simple eigenvalue with all nonzero constant functions as 

the corresponding eigenvectors. 

3. If x 	0, then (I— (px )) is invertible. 

Proof. 1. This is proved in Chapter 4 Lemma 4.2.2. Alternatively, we can prove 

(1) simply as follows. From equation (4.22) page 67, we have 72  (Mil < 1. In 

addition, it can be seen easily that the linear operator it (px ) is a self adjoint 

operator on a complex Hilbert space: In fact, for all f in Cs , we have 

(P.( 0 ,$)f)(s)= Ess , ) = (Sif)( 3 ), 
	 (B.1) 
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for all i = 1, 	, n, and 

(P.(ro,s0)f)(s) = e -21" (x ' 30r0) ./(sso) = (K(x)f)(s), 
	(B.2) 

where Si  and K (x) are linear operators defined in Chapter 3. Hence all eigenvalues 

A of IL (pr ) are less or equal to 1 in absolute value. 

2. By equations (4.9) and (4.4) we observe that for all f in L2 (A/L, xo ) and 

(v, s) in A, we have 

(po )f)(v, s) = 	E 	p(vo , so ) f (ss o ). 	 (B.3) 
(vo,so )ESuPP(A) 

Hence if f is a constant function, then for all (v, s) in A, 

(7i (po )f)(v, s) = f (sso ) 	E 	p(vo , so) = f (s s o) = f(vs). 
(vo,s0)Esupp(A) 

- 
Hence 11 (p0 ) has the eigenvalue 1 with all nonzero constant functions as the 

corresponding eigenvectors. Now let f be an eigenvector of it (p c) ) with the 

corresponding eigenvalue 1. Then for all (v, s) in A, we have 

(1; (Po) f )(I) s) = f (I) s)- 

Hence by equation (B.3), we obtain 

(17/ (po)f)(s) = 	 p(v0,s0)f(sso), 
(vo,s0)ESupp(g) 

= f (s). 

Let t be an element of Sn+1  such that If 	= max {If (s)I s E 

all (vo , so ) in Supp(p), since f is nonzero function, we have 

E 	y(vo, so) f (tso) = 1. 
f t) 

(vo,s0)ESupp(g) 	
(  

Sn+1} • Then, for 

(B.4) 
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Suppose there exists even only one (vo , so ) in Supp(p) with I < 1. Then f (t) 

equation (B.4) becomes 

E 	ii(vo,so
f(tso) 

(vo,so)ESupp(g) 	
f (t) 
f (tso) 
f (t) 

1, 

which is a contradiction. Hence we have 

 

 

f (t so)  
f (t) 

= 1, 	 (B.5) 

   

for all (vo , s o ) in SuPP(A)- 

Hence from equations (B.4), (B.5) and the fact that E(vo,so)ESupp(g) it(V01 so), 

by Appendix A, we obtain 

f (tso ) = 

for all (vo , so) E Supp(p). Since the group A is generated by the set Supp(p) = 

{(vo,so) E A : 	so) 0 01 and A is isomorphic to the semidirect product of 

L and Sn+1 , it follows that Sa+1  is generated by the set Is E Sn+1 : p(v, s) 

0, for some v in Ll. Hence we have 

f (tso ) = 

for all so  in Sn+1. Using the fact that (R(so)f)(t) = f (t), for all so  in Sn+1  and 

f ( v,  s ) = e-27rio,ofi s \ ) = f(s), for all (v, s) in A, we find that f is a nonzero 

constant function. Therefore, the eigenspace consisting of constant functions 

corresponding to the eigenvalue 1 is of dimension one, since it is generated by the 

single element 1 A • 

3. (/— (pr )) is invertible if and only if A = 1 is not an eigenvalue of 'it (p.). 

Let A = I be an eigenvalue of 71 (os ). Then by equations (4.9) and (4.4), for a 

1= 

E 1i(vo,s0) 
(v.,..)Esuppw 

89 



corresponding eigenvector f, we have 

i(s) = 	(p)n(s), 

E ii(vo, socps(vo, soms), 
(vo,s0)Esupp(,i) Ep(vo , 

(vo,s0)Esuppco 

(B.6) 

for all s in Sri+ i. Let t be an element of STi+i  such that If (t)1 = maxsEsn + i If(s)l. 

Then, for all (vo , so ) in Supp(,u), since f is nonzero function, we have 

(vo, soe 	
tv ) f(ts0)  =1. 	 (B.7) E 	ii  

(vo,so)ESupp(p.) 	 f(t) 

-z(x,s This implies, for all (vo , so ) in Supp(p), C 27 	vo) f (ts 0 ) = f(t) from which we 

obtain 

(px (vo , so ) f)(t) = f(t), 

for all (vo , so ) in Supp(p). Since Supp(p) generates A, we find that the restriction 

n function f I s+i of f in Sn+1  is a constant function. Hence from equation (B.6), 

for all s in S70. 1  we obtain 

Esoe _21ri (x,st,0 )  = 1 , 

(vo,s0)Esupp(p) 

from which we find e -27ri (x'svc)) = 1, for all (v o , so ) in Supp(p) and s in S. This 

implies e -21" (2 's" )  = 1 for all vo  in L and s in S. Hence for some k in Z, 

(x,svo ) = k for all vo  in L and s  in S. Since sL = L for all s in S, we have 

(x, v) = k for some k in Z, for all v in L. Therefore, x must be an element of L*, 

and as an element of EIL*,x= 0. 

cj 
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Appendix C 

General Random Walk 

In Chapter 3 we discussed how to estimate the ultimate behaviour of the sym-

metric random walk by exploiting the properties of the operator P(x) as given in 

Section 3.3. We will show here that our technique remains valid and we can arrive 

at similar conclusion for a general random walk with the transition probability 

measure it given by 

1.4v, s) — 

ito, if (V, s) = (ro, so), 

p i , if (v, s) = (O, s), i E {1, ... ,n}, 

0, 	otherwise, 

(C. 1) 

   

where Elt_ c, i, = 1. We assume that the support Supp(p) of it generates A. 

Our generalization of the operator P(x), x in E L* is a linear operator ic(x) 

given by 

(k(x)f)(s)= Poe21" (x 'sr°) f(sso) + E itif(ss,), 
i=1 

for all f in Cs  and s in S. 

With this generalization, we outline here some our lemmas in 3.3 which re-

mains valid. The technique we employ to evaluate the ultimate behaviour of the 

walk in Section 3.4 Chapter 3 can be used without difficulties 
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Lemma C.0.14 The operator K(x) is self adjoint for each x E El L* with respect 

to the inner product (.,.) defined in equation (3.8). 

Proof. A proof of this Lemma can easily be adapted from the proof for Lemma 

3.3.1. In fact, a linear combination of self adjoint linear operator with real coef-

ficients is self adjoint. 

0 

Lemma C.0.15 Let A be an eigenvalue of K(x), x in E I L* . Then the following 

statements hold. 

1. I Al < 1 . 

2. K(0) has 1 as a simple eigenvalue with all nonzero constant functions as the 

corresponding eigenvectors. 

3. If x 	0, then (I — K(x)) is invertible. 

Proof. This is proved in Appendix B page 87. 

0 

Lemma C.0.16 There is only one eigenvalue of K(x) which tends to one as x 

tends to zero. 

Proof. The proof given for Lemma 3.3.3 remains valid by changing the operator 

P(x) with K(x). 

0 

Lemma C.0.17 Let Ao (x) be the eigenvalue of K(x) which tends to one as x 

tends to zero. Then for small x in E I L* we have 

Ao (x) = Ao (—x). 
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Proof. The proof we have given for P(x) is derived from the fact that (P(x)0)(s) 

= (P( — x)0)(s) for all & in Cs  and s in S. But this condition is satisfied by the 

operator tc(x). Therefore Lemma C.0.17 follows. 

0 

Lemma C.0.18 Let A 0 (x) be the eigenvalue of K(x) which tends to one as x 

tends to zero. Then we have 

	

AO(X) = 1 — c(x,x)+ 0 (11xi1 4 ), 
	 (C.2) 

where c is positive constant given by 

c = 
27ry 

(2r (ro, sob)) 

and 0(114 4 ) denotes terms containing fourth and higher powers of x. 

Proof. By similar argument for obtaining A 0 , 2 + ce2  ( x , .9) and /31 (x, s) in page (36), 

using definition y in equation (C.1) we obtain 

1 
A0 ,2 (x) a2 (x , s) = goa2(x , ss o ) — 	 o (27(x, sro )) 2 , 

—2r p,o (x, sro )31 (x, sso ) 	E ttia2 (x, ssi). 	(C.3) 

and 

	

01(x s) = PoPi(x ss o ) + 271- (x , sro )) E 	ss i ). 	(C.4) 
2 = 1 

In addition, we observe that for all f in Cs 

E pii(ssi)) = E(yof(sso) + . . . + f(ssn)), 
sES i=0 	 sES 

= 	E Asso) + . + n f(ssn), 
sES 	 sES 

= (PO + • • • + tin) E .f(s), 
sES 

= 
sES 
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since EsEs  f(ss i ) = EsEs  f(s) for all i = 0, 	, n. With this remark it can be 

easily seen that equation C.2 is true. To complete the proof, we shall show that 

c is positive. By similar argument in obtaining equation (3.42) page 39, we have 

b) = 11o(27r — (ro, b)), 

for all i = 1, 	, n. Let pm = 	: i = 1, 	, n}. Then we have 

(ro , b) < 27r — itm(ri b), 

for all i = 1, 	, n. Hence summing both sides over i = 1, 	n, we obtain 

27rn 
(ro, b) < 	 < 27r. 

n itm 

Hence we have (ro , sob) = —(ro , b) > —27r completing the proof. 

0 

By similar argument for random walk problem, we conclude that the ultimate 

behaviour of the general random walk is recurrent for n = 2 and transitory for 

n > 2. 
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recurrent, 50 

reflection, 9 

reflection group, 14 

regular representation, 51 

representation operator, 51 

representation space, 51 

Riesz's representation theorem, 38 
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symmetric random walk, 57 
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