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ABSTRACT 

Substantial evidence now exists for two distinct vascular circuits within skeletal muscle. 
The nutritive capillary circuit directly nourishes skeletal myocytes, whereas another 
slightly larger set of non-nutritive vessels is probably interspersed within connective 
tissue of the septa and tendons. The fluctuation of flow between these two circuits 
allows sensitive control of nutrient delivery, which is often independent of changes in 
total flow. These innate flow patterns can be manipulated in vitro by the infusion of 
vasoactive agents into the perfused rat hindlimb. Certain vasoconstrictors (including 
serotonin) increase connective tissue flow at the expense of muscle capillary flow, 
denying access of glucose and insulin to the myocytes and inducing acute insulin 
resistance. In vivo, insulin itself causes increased flow to the muscle capillaries, and this 
insulin-mediated capillary recruitment is often blocked in insulin resistant states. 

This thesis primarily investigates the uptake of blood-borne metabolites during serotonin 
infusion in the perfused rat hindlimb, including glucose, fatty acids (FFA, both albumin-
bound and derived from chylomicron-triglyceride) and amino acids. In addition, the 
effect of elevated plasma FFA on the action of insulin to recruit capillaries was 
investigated in the euglycaemic, hyperinsulinaemic clamp in vivo, from the metabolism 
of 1-methyl xanthine. 

When the ratio of non-nutritive to nutritive flow was increased in the perfused rat 
hindlimb, the insulin-mediated uptake of glucose, Na-palmitate (albumin-bound) and a-
aminoisobutyric acid were reduced. Unlike the other fuels tested, with high non-nutritive 
flow the uptake of FFA from chylomicron-triglyceride hydrolysis was increased. It was 
therefore reasoned that non-nutritive flow was accessing a population of adipocytes 
within the muscle connective tissue, most likely in the perimysium. This perimysial 
adipose tissue is responsible for muscle 'marbling'. 

In the experiments determining the effect of FFA on insulin-mediated glucose uptake in 
vivo, FFA inhibited both insulin-mediated capillary recruitment and glucose uptake, thus 
elevated FFA in vivo were able to induce a state of insulin resistance, likely to be partly 
mediated by reduced capillary recruitment or nutritive flow. Accordingly, elevated FFA 
prevent perfusion of the nutritive capillaries to some degree, resulting in predominantly 
non-nutritive flow. This likely results in the reduced access and uptake of insulin, 
glucose, amino acids and albumin-bound fatty acids by myocytes, contributing to their 
buildup in the plasma. However, increased flow through the non-nutritive vessels of the 
muscle connective tissue, increased the exposure of lipoproteins to lipolytic enzymes. 
Thus, non-nutritive flow probably nourishes connective tissue adipocytes and increases 
the potential for fat accretion within the muscle. 

The results within this thesis offer important insights into nutrient access in skeletal 
muscle, in particular with elevated FFA in vivo. A reduction in nutritive flow, caused by 
elevated plasma FFA, is likely to reduce the uptake of glucose, amino acids and FFA 
into the myocytes, however increase fat deposition in the muscle connective tissue. This 
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may contribute to the reduction in oxidative capacity, and accelerated 'marbling' and 
insulin resistance of human muscle, 



CHAPTER 1 

1 Introduction 

1.1 Skeletal muscle fuel metabolism and the whole body: a perspective 

Skeletal muscle (SM) makes up approximately 38% of the entire human body 

mass and therefore largely influences whole body substrate uptake and utilization (127). 

Lipid and carbohydrate are the predominant fuels for SM metabolism, however the 

carbon chains from amino acid catabolism may contribute up to 15% of the muscle 

energy during exercise (273). In addition, SM utilizes 25% of the whole body oxygen 

consumption during rest, which can exceed 90% during intense exercise (reviewed in 

(90)). 

1.1.1 Vasoconstrictors affecting fatty acid, amino acid and glucose uptake 

1.1.1.1 Skeletal muscle lipid uptake 

In vivo, FFA oxidized by SM are obtained from a number of sources. These 

include albumin-bound fatty acids, circulating lipoproteins or cytoplasmic deposits 

within the cell. More recently the presence of adipocytes interlaced between muscle 

fibres has been suggested as an alternative source, however their importance remains to 

be determined (283). 

TG may be transported to peripheral tissues as micellar lipoproteins (including 

very low-density lipoproteins (VLDL) and chylomicrons). VLDL are mainly released 

from the liver during fasting, and are thus assembled from endogenous TG. Post-

prandial delivery of FFA occurs via chylomicrons assembled in the enterocytes 

(reviewed in (109)). FFA are released from the core of the lipoprotein by the enzyme 

lipoprotein lipase (LPL), situated in the capillary lumen (55) (68) (272). 
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During a period of elevated lipid requirements, FFA are mobilized from adipose 

tissue (AT) stores (interfibirillar or elsewhere). Albumin acts as a blood-borne carrier for 

the FFA. Due to their lipophilic nature, albumin-bound FFA and FFA derived from 

lipoprotein hydrolysis are firstly adsorbed onto the luminal surface of the capillary 

endothelial cell. A number of mechanisms have been postulated for FFA crossing the 

endothelium. FFA traverse the endothelium either unbound, bound to albumin, or bound 

to a fatty acid transport protein (283). Fatty acids may also pass between endothelial 

cells bound to albumin, however it has been reported that the albumin molecule is 

probably too big to pass through these clefts (reviewed in (283)). One postulated method 

for FFA to traverse the endothelial cell is the 'flip-flop' of un-ionized FFA. In this 

model FFA rapidly 'flip' from the luminal to the abluminal plasmamembrane (104) 

(103). However, whether FFA cross the endothelial cell (in particular through the 

cytoplasm) either unaided or via facilitated transport is a contentious issue. SM uptake 

of FFA from the blood has been reported to be a function of FFA concentration by some 

authors (67), however others have reported the uptake to be saturable (278) (279). 

Saturable uptake implies a carrier-mediated mechanism for transport into myocytes. 

Over ten putative membrane fatty acid transporters have been described, and the most 

important include fatty acid binding protein (FABP), fatty acid transport protein 

(FATPpm) and fatty acid translocase (FAT) (reviewed in (104) (31)). The 0-pleated 

sheets of all these transporters are thought to form a tertiary structure resembling two 

halves of a clam-shell that shield the hydrophobic FFA from the cytoplasm. FFA are 

then adsorbed from the outer leaflet of the endothelial cell and cross the interstitial space 

on an albumin carrier (reviewed in (283)). A similar transport mechanism to the 

endothelium is thought to occur across the sarcolemma and the membranes of other 

parenchymal tissues. Once adsorbed from this membrane, the FFA are thought to be 

bound by a cytoplasmic FABP which is the intracellular equivalent of albumin. This 

reduces the unbound FFA concentration, increasing the gradient from the extracellular 

FFA, and thus facilitating uptake. 

Approximately 90% of the FFA entering the resting myocyte are esterified into 

lipid droplets located adjacent to the mitochondria (272) (157). Thus, the myocyte has a 

ready reserve of FFA available for 0-oxidation within the mitochondria. The glycerol 
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moiety for TG synthesis is thought to be from glucose-derived dihydroxyacetone 

phosphate, which forms glycerol-3-phosphate (207). This has recently been challenged 

by Guo and Jensen (101) who demonstrated that the minute amounts of glycerol lcinase 

(the enzyme that phosphorylates glycerol into glycerol-3-phosphate) in rat and human 

SM are likely to substantially contribute to trigylceride synthesis (and therefore whole 

body glycerol uptake). Alternatively, glycerol-3-phosphate may be provided from lactate 

(297). However the most widely accepted hypothesis is that glycogen supplies 

dihydroxyacetone phosphate that is then converted to glycerol-3-phosphate (207). 

Alternatively fatty acids may be oxidized in the mitochondria (very-long chain fatty 

acids are first shortened, and often oxidized in the peroxisomes (reviewed in (283)) or 

used to synthesize phospholipids and other cell components (e.g. prostaglandins). 

1.1.1.2 Skeletal muscle carbohydrate uptake 

The hydrophilic property of glucose impedes transport across the plasma 

membrane, therefore facilitated transport is mandatory. By 1992 five SM glucose 

transporters (members of the GLUT family) of approximately 45IcDa were identified 

(reviewed in (13)). Since then more have been discovered, including GLUT9 in 

leukocytes and brain; however this transporter appears to be absent from SM (36). In 

SM, sarcolemmal GLUT1 transports glucose during the basal state while glucose uptake 

simulated by insulin is facilitated by GLUT4 (reviewed in (308)). Insulin binding to the 

a-subunit of the insulin receptor stimulates tyrosine kinase activity of the n-subunit 

(reviewed in (237) and (114)). This causes rapid phosphorylation and activation of 

insulin-receptor substrate-1 (IRS-1) (115). Wortmannin has been shown to inhibit 

insulin-stimulated glucose uptake (189), suggesting phosphatidyl inositol 3 kinase (PI3- 

Kinase) is also involved in one of the intracellular insulin signaling pathways. Insulin-

receptor substrate-1 (IRS-1) may thus stimulate P13-Kinase, which then may activate 

protein kinase B (PKB/Akt). PKB/Akt acts to transport GLUT4 from an intracellular 

pool to the membrane. The steps involved in the signaling pathway between PKB and 

GLUT4 translocation, as yet, remain unidentified, however much research has been 

done into the mechanism for GLUT4 translocation to the membrane. SNAP 23, Vamp 2 
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and syntaxin 4 form a complex in SM known as SNARE (soluble N-ethylmaleimide-

sensitive factor attachment protein receptor) that is required for vesicle-membrane 

fusion. Other ancillary proteins that may be involved have been identified, including 

Mune 18c, synip, VAP 33 and rab 4 (reviewed in (79) and (114)). While GLUT4 is 

considered to be the major glucose transporter that is activated by insulin, GLUT8 has 

recently also been identified to be insulin sensitive (36). 

The body has only a limited capacity for carbohydrate storage and is therefore 

readily converted to fat. Once inside the cell glucose is irreversibly phosphorylated by 

SM hexokinase to glucose-6-phosphate, which is then able to undergo glycolysis or 

glycogen synthesis. Insulin attenuates glycogen synthase kinase-3, therefore activating 

glycogen synthase (190). 

1.1.1.3 Skeletal muscle amino acid uptake 

Many of the amino acids are comparatively bulky and are hydrophilic, therefore 

also require facilitated transport. A number of SM amino acid transporters have been 

identified, and they vary in their sensitivity to insulin and their dependence on sodium 

(292). These transporters contain a cluster of membrane spanning regions that form a 

hydrophilic channel across the membrane, through which the amino acids can pass. 

Amino acids may be carried by multiple transporters, but selectivity is usually 

determined by the side chain. The A, L, NM and ASC systems are dominant in SM. 

System A is a uniporter that carries the amino acids alanine, serine, glutamine, 

methionine or glycine ((43), reviewed in (29) (42) (292)). System L carries the large, 

neutral amino acids valine, leucine, isoleucine, methionine, phenylalanine, tyrosine or 

tryptophan (reviewed in (292)). System NM  transports glutamine, asparagine or 

histidine, while the major substrates for the ASC transporters are alanine, serine or 

cysteine (2) (42). Insulin greatly affects systems A and NM  ((165) (29) reviewed in 

(56)), and the effects of insulin and exercise are additive (309). 

After entering the myocyte amino acids may be transaminated before entering 

the tricarboxcylic acid cycle for oxidation (reviewed in (273) (90)). In particular, valine 

and isoleucine are able to form the TCA intermediate succinyl-CoA, however leucine 
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and isoleucine can form acetyl CoA which can enter the TCA cycle (reviewed in (90)). 

While most essential amino acids undergo metabolism in the liver, the periphery 

(including SM and AT) is the major site of degradation of the branched chain amino 

acids (BCAA, valine, leucine and isoleucine). They may also be used for the synthesis 

of cell components, including enzymes and transporters, and often activate mRNA 

translation and gene expression. Amino acids are not stored as polymers in the body, 

however the largest pool of protein found in the body is in the myocyte. 66% of SM 

amino acids are components of the myofibrillar proteins actin and myosin (reviewed in 

(90)). Myofibrillar protein breakdown can be measured by detecting 3-methyl histidine 

(3-MH) release from muscle. 

1.1.2 Nutrient uptake is affected by delivery (blood flow) 

The delivery of nutrients to SM via the bloodstream is not only dependent on 

substrate concentration and flow rate, but is also largely influenced by the location of 

blood flow in SM. While it would appear likely that fuel uptake closely correlates with 

muscle total flow, we have shown that the uptake of nutrients is more closely associated 

with capillary flow than total flow to the muscle (209). Vasoactive agents such as insulin 

therefore may act to recruit capillaries without necessarily affecting total flow. For this 

to occur, flow must be drawn from another area within the muscle. There is now 

substantial evidence that two parallel circuits exist in the SM, and flow to each can be 

intimately regulated by the addition of certain vasoactive substances (reviewed in (46) 

(48)). Blood flow may therefore increase in one area (e.g. capillaries) at the expense of 

the other (possibly muscle septa and tendons). The uptake of glucose, amino acids and 

fatty acid (both albumin bound and free-fatty acid (FFA) derived from chylomicron-

triglyceride (TG)) therefore will depend on the extent of capillary perfusion. An 

imbalance between capillary recruitment and de-recruitment will affect nutrient uptake 

and storage and may therefore predispose to certain metabolic syndromes, including 

diabetes. Both vasoactive agents and fuels themselves may affect glucose uptake by 

muscle. While flow may influence substrate uptake, uptake may also has some effect on 

total flow (in particular a reduction in capillary recruitment with insulin in diabetes), 

however this remains to be determined. Clearly the two factors, uptake and both total 
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and capillary flow, cannot be separated, and both factors are crucial in understanding the 

haemodynamic actions of insulin and mechanisms of insulin resistance. 

1.1.2.1 Insulin acts to increase blood flow to muscle 

While insulin stimulates glucose, fatty acid and amino acid transport and 

metabolism, it is now widely accepted that insulin also produces significant 

complementary increases in blood flow (reviewed in (15)). This additional vasodilatory 

action of insulin is thought to be largely nitric oxide (NO) dependent (260) (37) (231). 

NO is formed from the enzyme nitric oxide synthase (NOS) during the conversion of L-

arginine to L-citrulline (reviewed in (17)). This reaction requires oxygen and NADPH as 

cofactors and is stimulated by a rise in cytoplasmic Ca2+  levels. Insulin acts on PKB/Akt 

in the endothelial cell via a P13-Kinase activated pathway, which is postulated to 

phosphorylate and activate PKB/Akt and then NOS (62). Insulin also promotes the 

association of calmodulin with NOS to disrupt the suppressive effect of calveolin on the 

enzyme's activity (250). NO diffuses to the vascular smooth muscle cells and stimulates 

cyclic guanosine monophosphate (cGMP) production and subsequent vasodilatation. 

NOS is found throughout the vasculature and myocytes of SM (250) and NO may thus 

be generated in the myocytes, endothelial cell or smooth muscle. 

Insulin has a haemodynamic action to increase capillary flow independently of 

changes to total flow 

Dissociation between total flow and skeletal muscle metabolism 

Insulin is believed to have a haemodynamic action in SM to increase total flow 

to the muscle and subsequently increase glucose uptake (148) (16) (4). Despite this well 

documented action, not all studies have shown increases in total flow with insulin (136) 

(200). Some researchers have shown increases in insulin-mediated glucose uptake 

(IMGU) with increased total flow (16) (83), but others have not (240) (177) (244) (124) 

(186). Pitkanen et al. (201) also infused the endothelium-dependent vasodilator sodium 

nitroprusside, and found increases in total leg flow and flow dispersion, but decreased 
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glucose extraction in resting muscle of healthy men. Moreover the increases in glucose 

uptake often precedes increases in total flow (83) (148). Similarly, oxygen consumption 

was unrelated to forearm blood flow in vivo (83). The uptake of glucose and oxygen by 

in vivo SM preparations therefore appear to be unrelated to total flow. 

Metabolism is associated with capillary flow - evidence for capillary recruitment 

Dissociation of the effects of insulin on glucose uptake and flow have also been 

shown in our laboratory in vivo. While total flow showed no clear relationship to IMGU, 

it was clearly proportional to capillary flow when determined by the conversion of the 

exogenous substrate 1-methyl xanthine (1-MX) to 1-methyl urate (1-MU), by the 

capillary-endothelial enzyme xanthine oxidase (209). Despite similar increases in total 

flow with both insulin and epinephrine, only insulin increased capillary flow (1-MX 

metabolism, (209)). In addition, collaborators of our laboratory in the U.S.A have 

reported no increase in total flow with 3 mU/mg/kg insulin, although an increase in 

capillary flow was evident (as determined by the distribution of albumin microbubbles) 

within 30 minutes of insulin infusion (287). Moreover, N(omega)-nitro-L-arginine 

methyl ester (L-NAME, an inhibitor of NOS) partially prevented insulin-stimulation of 

1-MX conversion (289). Therefore insulin acts to recruit capillaries independently of 

changes in total flow, and this process is partly mediated by NO. 

Definition of capillary recruitment 

Capillary recruitment is the opening of previously quiescent capillaries for 

increased filtration. Recruitment is therefore an additional mechanism to distension 

(increase in capillary lumen volume) for increasing capillary perfusion. Distension is 

controlled by the vasodilatation of smooth muscle high in the vascular tree coordinating 

flow to all capillaries, therefore increasing total flow to all distal capillaries (reviewed in 

(172)). Recruitment may only affect certain subsets of capillaries by accessing the 

preceding terminal arteriole, thereby reducing the area between perfused capillaries and 

maximizing the area of substrate diffusion (reviewed in (248) (172)). Arteriolar 
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resistance will therefore exert primary control over the exposed capillary surface area 

for the exchange of nutrients. 

Skeletal muscle resistance vessels 

SM generates substantial whole body arterial blood pressure due to a large 

resistance to increases in cardiac output. Flow through SM resistance vessels is 

demonstrated by the equation: 

Q = P/R 

Where: Q is the flow, P the pressure and R the resistance. Moreover, the 

resistance is related to the arteriole diameter by the equation: 

R= 1/r4  

Where: R is the vascular resistance and r is the arteriole diameter. Therefore, a 

small increase in the radius will produce a large decrease in vascular resistance, 

resulting in large increases in vessel flow. 

Classification of resistance vessels in the skeletal muscle microcirculation 

Precapillary arterioles can be classified according to their proximity to the feed 

arteriole. The arteriole directly downstream from the feed artery is usually designated as 

the 1 st  order arteriole (1A, approximately 100 pm) (248). All subsequent arterioles are 

classified in increasing order. The next apparent diameter reduction down the vascular 

tree represents the beginning of the 2 nd  order arteriole (2A). A transverse arteriole is 

usually a 3 rd  order arteriole, and, depending on the classification system used, the more 

distal 4th  and 5th  order arterioles (<151.im) directly precede the capillary modules 

(capillaries arising from a common arteriole). The 3 rd  to 5 th  order arterioles (<40 1.1m) are 

thought to be responsible for capillary recruitment, therefore recruitment occurs in 

multiple capillary modules (172). A similar classification method is used for the venular 

vessels, where the post-capillary venules are designated 4 or 5V. 1 st  order venules (1V) 

are those leaving the muscle and often lie adjacent to the 1 st  order arterioles. 
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Vasoactive agents 

The capillary endothelial surface area and hydrostatic pressure are of primary 

importance in determining capillary filtration, and these factors are largely influenced by 

the arterial and venular tone. Capillary filtration of the SM microcirculation can be 

manipulated by the use of vasoactive agents. Agents that constrict or dilate resistance 

vessels may alter both resistance and the distribution of blood flow within the SM. 

Topically applied serotonin (5-HT) to the microvasculature of the rat cremaster 

muscle elicits dose-dependent changes in vessel tone (298). Concentrations ranging 

from 10-8  to le M causes substantial dilation of 4 th  order arterioles (classified in this 

case as the arterioles just preceding the capillaries), while at 10 4  M, constriction of the 

1st  order arterioles occurred (298). 

Despite the arterial vessels being classical 'resistance vessels', changes in venous 

resistance may also exert control over capillary hydrostatic pressure. It is now evident 

that circulating vasopressin, angiotensin (All) and catecholamines have constrictor 

effects on venules. The former two however produce only minor venular constriction 

compared to the arterioles. Norepinephrine (NE, 0.1 i_tM) increased arterial pressure and 

decreased venular pressure by a similar extent despite constriction in Al-A4 and V3-V1 

(9). No change in constriction of the V4 may be due to only minute amounts of smooth 

muscle in these vessels. NE had greater constrictor effects on more distal arterioles. As 

already stated insulin may increase arteriole diameter through the release of NO (260) 

(37) (231) (307). In addition, prostaglandins stimulated by AIL bradykinin (24) and 

insulin (310) (284) also have vasodilatory effects. Infusion of either a NOS inhibitor, or 

an inhibitor of prostaglandin synthesis, prevented insulin-mediated reductions in 

forearm vascular resistance, suggesting the co-release of both with insulin (284). 

Prostaglandin release from the perfused rat hindlimb, had no effect on glucose uptake, 

however the dilatory effect of prostaglandins may be absent in this preparation, as it 

appears to be with insulin (310). It is therefore generally thought that vasodilators 

increase capillary filtration and vasoconstrictors decrease capillary filtration, however 

our laboratory has identified vasoconstrictors that are able to both increase and decrease 

substrate uptake by the perfused rat hindlimb (as discussed later in this chapter). 
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It is widely thought that the arterioles determine the extent of capillary perfusion, 

however for this mechanism to occur, arterioles must predetermine which capillary 

modules are to be perfused before the blood reaches the capillaries themselves (an 

unlikely phenomenon). In addition, adjacent fibres from different motor units (the group 

of muscle fibres innervated by a single motor neurone) can be supplied by a common 

capillary therefore dilation of the preceding arteriole would potentially supply 

unworking muscle fibres (reviewed in (172)). Moreover, the smaller order arterioles 

(larger, generally 1st  and 2nd  order) lie adjacent to the corresponding venules, allowing 

diffusion of muscle-derived substances into the arteriole. However, as discussed above it 

is the more distal arterioles that are responsible for capillary recruitment. 

The primary controlling unit of capillary recruitment has recently been suggested 

to be the capillaries themselves (248) (172). One recently suggested hypothesis is that 

substances released from metabolically active muscle act locally to hyperpolarize 

adjacent endothelial cells. The endothelial cell may then transmit this membrane 

potential along the endothelial walls via gap junctions (membrane low resistance areas) 

to preceding resistance vessels (reviewed in (241) (248) (249)). Maximal perfusion of 

highly active muscle then occurs via signal transmission from the small arterioles 

(regulating capillary perfusion) to feed arteries external to the muscle (reviewed in 

(248)). 

The direct application of NE, acetylcholine (ACh) and bradykinin (BK) to 

capillary endothelial cells of the rat extensor digitorum longus (EDL), constricted (with 

NE) or dilated (with ACh and BK) upstream arterioles (168). Super-perfusion 

experiments that were designed to omit the diffusion of released substances to the 

arterioles, led the authors to conclude that a dilatory signal was electronically conducted 

from the capillary to the arteriole via the endothelial cells. Therefore, a muscarinic 

receptor antagonist applied to the arteriole did not prevent vasodilatation after ACh 

administration to the capillary. Similarly K +  caused depolarization of the endothelial cell 

membrane (reviewed in (172)). Substances released from the muscle fibres may cause 

local vasodilatation of post-capillary venules and subsequent vasodilatation in proximal 

arterioles. 



11 

It is also possible that capillary filtration is controlled by vasodilatation of the 

post-capillary venule by insulin. Endothelial NOS (eNOS) is distributed throughout the 

SM vasculature, including the venular vessels (250). A shear-stress related increase in 

NO release has been detected in the venules of SM with increased flow rates (142). A 

signal may then be transmitted up the vascular tree to the resistance vessels. Moreover, 

reduced oxygen tension and pH in the venule, with contraction, may stimulate RBC to 

release ATP. Direct application of ATP to venules results in dilation of upstream 

arterioles (52), and increases in venular ATP concentration cause dilation of adjacent 

arterioles (105). Moreover, the diffusion of oxygen via arterioles to adjacent tissue has 

been reported (70). Although capillary hydrostatic pressure is maximal with increased 

arteriole diameter and decreased venular diameter, it would seem logical that dilation in 

both would occur to allow removal of the extra flow and muscle metabolites. 

As discussed above, capillary flow may be influenced by both the arteriole and 

venular network, and these changes are not always dependent on total blood flow. It 

therefore follows that fuel partitioning and uptake in SM will not always follow total 

flow. Anomalies in SM substrate uptake and blood flow have been well documented. 

The differences have been attributed to SM flow heterogeneity (46) (48). 

Skeletal muscle capillaries 

In 1923 August Krogh observed that a large number of capillaries in resting SM 

in frogs and guinea pigs contained either no RBC, or contained RBC that were 

stationary (147). Either electrical stimulation or massaging of the muscle resulted in 

substantial capillary recruitment. This phenomenon had already been noted after the 

application of heavy metals (reviewed in (147)). Krogh's model for oxygen exchange, 

however, described the capillaries of SM to be of homogenous distribution, so that all 

areas received oxygen from the nearest capillary (146). Despite this, it is widely 

recognized that the vessels in most muscles have a more random anatomical spacing. 

Goldman and Popel (86) have recently published complex computational models for 

certain capillary arrangements in SM and found that maximal tissue oxygen occurs in 

tortuous capillaries with concomitant cross-connections to other capillaries. Therefore, 
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due to the tortuosity of capillaries in shortened SM, Krogh's model may not be 

applicable (203). 

1.1.3 History of anomalies of substrate delivery in skeletal muscle 

1.1.3.1 Isolated, incubated muscle preparations 

Insulin has been shown to increase 3-0-methylglucose uptake in the incubated 

soleus, however this was a smaller increment than obtained in hindlimb perfusion 

experiments (despite having a larger basal glucose uptake) (138). Although the creatine 

phosphate levels are comparable to fresh muscle, it is likely that in the soleus, the inner 

core may be anoxic, resulting in a higher basal glucose uptake, that is not apparent in 

muscles with less mitochondria (for example in the extensor digitorum longus (EDL)). 

The above effects are independent of the muscle vasculature, regulating flow patterns, 

and are often vastly different from in situ and in vivo preparations. During in vivo 

muscle preparations SM oxygen and nutrient supply is regulated by haematocrit, 

haemoglobin oxygen saturation, nutrient concentration and vascular delivery (reviewed 

in (116)). 

1.1.3.2 A dual skeletal muscle microcirculation 

In 1977 Grubb and Snarr (100) reported that IMGU was not further increased 

after a critical flow rate in perfused rat hindlimb. They suggested that the excess flow 

was escaping into another set of vessels that were "too thick" for optimal exchange. 

Individuals that were prone to psychological "nervous attacks" were noticed to have 

higher venous oxygen saturation than "less excitable" subjects (113). Similarly, infusion 

of NE to simulate this effect, resulted in increased flow however no change in calculated 

oxygen consumption (113). The bisphasic response of adrenaline on SM oxygen uptake 

was demonstrated in 1931 by von Euler (291) in the perfused hindleg of dogs. 

Adrenaline was found to both decrease and increase oxygen consumption (V02) at 

concentrations of 10 -8.5  and 10-9  — 10-10  M respectively. 
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A key paper in presenting the anomalies of blood flow and oxygen uptake was 

reported by Pappenheimer (192), where a reduction in blood flow during intravenous 

administration of adrenaline to the isolated perfused dog hindlimb, increased V02. 

Alternatively, in the isolated perfused dog gastrocnemius, increased flow caused by 

electrical stimulation of the associated tibial nerve, reduced the arterial/venous oxygen 

extraction. The transient increase in V02 noted after stimulation contributed to the 

complicated recovery period and suggested these vasoconstrictor nerves have different 

localities and responses. These experiments also suggested that vasoconstrictor nerves 

may allow alterations in innate flow patterns within SM to allow perfusion of different 

areas (with different endothelial surface areas), depending on muscle requirements. 

Importantly, these observations did not correlate with changes in total blood flow to the 

muscle; from this he proposed that a dual vascular system existed within SM (192). 

Alternative metabolic effects in a muscle with constant total flow, led Renkin to 

propose two metabolically and spatially distinct areas of the vasculature within SM 

(219). It appeared that certain vasomodulators were acting to increase capillary 

perfusion, while different doses or different vasoactive substances increased flow to the 

"escape" vessels that bypassed the capillary network. 

Failure to produce convincing evidence for the existence of true arteriovenous 

anastamoses in SM (199) (257) (106) (11) led to the search for other possible anatomical 

candidates to encompass the "escape" circulation. Barlow et al. (12) recorded an 

increase in the clearance of 24Na injected into the muscle bed during simultaneous 

infusion of intravenous epinephrine. The opposite response occurred with epinephrine 

infusion when the 24Na was injected into muscle septa and tendons. Lindbom and Arfors 

(156) noted that feeding arterioles of the tenuissimus muscle often supplied both muscle 

capillaries and vessels of the neighboring connective tissue (CT). This view was 

supported by Grant and Wright (95). Using intravital microscopy, Borgstrom et al. (32) 

showed that the rabbit tenuissimus muscle contained capillaries and adjacent CT that 

were supplied by the same feed arterioles. 

Our laboratory has produced mounting evidence to infer two distinct regions of 

SM blood flow (46) (48). The effects produced by the addition of certain 

vasoconstrictors cannot be explained simply by increases in oxygen consumption, due to 
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the energy used by smooth muscle (the proposed "hot pipes" theory). While this may 

contribute to some of the energy consumed during vasoconstriction, certain 

vasoconstrictors cause a decrease in SM oxygen consumption (211). In addition, the 

effects of vasoconstrictors on metabolism are absent in incubated muscle systems (211), 

implicating the importance of substances delivered via the vascular route. Moreover, 

these metabolic effects are not seen during concomitant infusion of a vasodilator, 

implying vascular effects of these agents. Changes in vascular permeability, and thus 

conditions for metabolic exchange, were ruled out, as the vasoconstrictor, 5-HT, that 

decreases oxygen uptake in the perfused rat hindlimb, is known to increase vascular 

permeability (reviewed in (167)). Taking these results into consideration, the most likely 

explanation for the two responses is the existence of two distinct, parallel pathways in 

SM in which blood can flow that are linked by a common transverse arteriole. One 

consists of the muscle capillaries and the other of a different set of vessels probably 

located in the muscle septa and tendons (181). 

Nutritive flow 

The pathway offering the greatest potential for nutrient exchange and therefore 

having the highest metabolic capacity (i.e. oxygen consumption), is paralleled by 

increases in the uptake of glucose, and the efflux of purines, pyrimidines and lactate 

(46). This occurs with no increase in total blood flow to the muscle. This vascular route 

has been termed nutritive due to the positive effect on metabolic rate, and is thought to 

consist of capillaries directly nourishing myocytes. Therefore, increasing access to this 

area is analogous to the capillary recruitment seen with insulin. The capillaries run 

parallel to the muscle fibres and are in close contact for nutrient exchange. Whether the 

increase in flow is the stimulus for increased metabolism, or visa versa, remains to be 

determined. Isolated SM was found to undertake a transient overcompensation in 

oxygen consumption after a period of oxygen deprivation. This oxygen payback was 

determined to be around 70% of the total oxygen lost during anoxia (76) (230) and 

suggested that oxygen can influence its own uptake. Therefore an increase in oxygen 

delivery (and that of other substrates) may increase its own metabolism. Another 
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possibility is that a shear stress-related paracrine signal, caused by the increased flow, is 

responsible for the increased metabolism (reviewed in (46)). It is important to note that 

increased metabolism by resting muscle (when exposed to appropriate vasoconstrictors) 

is always associated with increased perfusion pressure. As eluded to earlier, insulin does 

not affect pressure or oxygen uptake by the perfused hindlimb; this may be significant. 

Manipulating the degree of capillary recruitment allows almost instantaneous 

alterations of exchange efficiency. Until now, insulin has been discussed as a major 

effector of capillary recruitment, however other vasoactive substances are able to 

manipulate the micovasculature for maximal perfusion. These have been termed Type A 

vasoconstrictors and include low frequency sympathetic nerve stimulation (102), a 1 - 

adrenergic agonists (including NE (<0.1p,M) (180)), All (53), vasopressin (53) and low 

doses of various vanilloids (98). 

The infusion of type A vasoconstrictors into the perfused rat hindlimb causes 

substantial red blood cell (RBC) washout (180), indicative of the recruitment of nutritive 

capillaries that are not perfused at rest. Vascular corrosion casting revealed higher flow 

dispersion throughout the hindlimb after infusion of the Type A vasoconstrictors, 

despite no increase in cast weight. Moreover, these vasoconstrictors increased the 

amount of fluorescent dextran that could be trapped in these capillaries after removal of 

the constriction (180). Nutritive flow in SM is currently determined using a variety of 

techniques including laser doppler flowmetry (45) (44), the conversion of 1-MX by the 

capillary endothelial enzyme xanthine oxidase (209) and following the intravascular 

pathway of albumin microbubbles (287). 

Vasoconstrictors (Type A) thought to increases the perfusion of this area, 

probably act by impeding perfusion of a second area (termed non-nutritive). Flow can 

then only pass through the capillaries. Maximal perfusion of this nutritive area is 

thought to occur during stages of increased metabolic requirement, for example during 

exercise. 

It is of interest to determine whether capillary recruitment with the Type A 

vasoconstrictors acts via similar mechanisms to insulin-mediated capillary recruitment 

(as discussed earlier). Diversion of flow to the capillary network (after the addition of a 

Type A vasoconstrictor) and an associated pressure increase, appears to stimulate 
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metabolism (oxygen and glucose uptake, lactate output etc.). Increased metabolism may 

therefore produce a signal molecule that is released from the myocyte, which may then 

cause vasodilatation (along with that from shear-stress) to further promote access to this 

pathway. In preparations such as the perfused rat hindlimb however, the vasculature is 

already fully dilated, so no complementary dilatory effect of the Type A 

vasoconstrictors would be seen. Type A vasoconstrictors may also cause some 

constriction of the post-capillary venules, increasing capillary hydrostatic pressure and 

thus facilitating exchange. These two factors thus suggest that increased uptake is from 

increased delivery, which can be manipulated via vasoactive agents through either 

constriction or dilation). 

Non -nutritive flow 

Blood diverted to the non-nutritive shunt vessels accesses an area within the SM 

with poor potential for nutrient exchange. Vasoconstrictors accessing this area are 

termed Type B and include 5-HT (211), high doses of NE (2.511M (180)), and high 

doses of vanilloids (98). A significant reduction in oxygen consumption with no 

decrease in total flow is observed in perfused hindlimb muscles, that is not apparent in 

incubated muscle systems (211). 

Less than half of the blood flowing into SM is thought to access this area in 

resting muscle (108). These non-nutritive vessels are located within individual muscles, 

as fluorescent microspheres remain trapped in dissected muscle after selective perfusion 

of non-nutritive sites. In addition, there appears to be a reduction in surface muscle flow 

as recorded by a decrease in the external laser doppler signal with 5-HT (measuring non-

vectorial movement of RBC). Whether this is due to a decrease in flow dispersion or 

whether the non-nutritive vessels are not on the muscle surface remains unresolved. 

Using internal probes, non-nutritive sites can be detected within the muscle, but are not 

as frequent as nutritive sites (45). Other researchers suggest that these vessels are on the 

edge of muscles (311) and our laboratory has made convincing measurements of non-

nutritive flow in muscle tendons (181). The tendon vasculature is connected to vessels 

present in the muscle perimysium (CT surrounding the fibre bundles). This CT may 
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therefore house the non-nutritive vessels. If so, the tendon may reflect non-nutritive flow 

changes on a smaller scale. 

Studies using microsphere entrapment have shown that the non-nutritive vessels 

are slightly larger than the true muscle capillaries, and are thus produce less resistance to 

flow (288). As discussed earlier, 5-HT constricts larger arterioles or possibly even feed 

arteries, therefore it is likely that during 5-HT infusion the flow passes down the 

pathway of least resistance (the non-nutritive vessels). High doses of NE similarly 

constrict larger arterioles and/or feed arteries. This too would attenuate capillary flow, 

thus redirecting blood through non-nutritive vessels. 

Non -nutritive flow and insulin resistance 

5-HT infusion decreased IMGU in the perfused rat hindlimb (211) and decreased 

conversion of the exogenous substrate 1-MX to 1-MU (209). In addition, an analogue of 

5-HT (a-methyl 5-HT) caused insulin resistance in vivo with diminished metabolism of 

1-MX due to insulin (210). Non-nutritive flow therefore produces an acute state of 

muscle insulin resistance, probably by denying access of glucose and insulin to the 

capillaries. During long stages of physical inactivity and enhanced non-nutritive flow, 

changes in gene expression may lead to detrimental glucose tolerance and ultimately 

contribute to insulin-resistance (reviewed in (47)). Reports on SM blood flow with 

insulin resistance have been conflicting. It has been reported that NIDDM patients have 

a lower basal leg blood flow that remains unstimulated with insulin (149). Others have 

found no change (258). While there is no clear association between total flow and 

insulin resistance, it is likely that insulin resistance is associated with decreased capillary 

flow. 

1.1.4 Mechanisms of fuel metabolism and insulin resistance 

Insulin resistance may be loosely defined as a diminished insulin response 

(reviewed in (34)), resulting in decreased IMGU by SM, which is largely due to 

attenuated translocation of GLUT4 to the plasma membrane (reviewed in (237)). It is 
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likely that capillary flow (and thus glucose and insulin delivery) is reduced in Type 2 

diabetes, and an imbalance of fatty acid and glucose may also largely determine SM 

insulin sensitivity. 

1.1.4.1 Substrate competition 

Infusion of fatty acids in vivo causes many of the alterations seen with insulin 

resistance (including hyperinsulinaemia, hypertriglyceridaemia and hypertension) and 

may therefore be a major contributing factor to the pathophysiology of obesity and 

diabetes (239). These diseases represent a defect in the uptake and release of substrates 

by most tissues, in particular AT, SM and liver. AT resistance to insulin results in 

uncontrolled lipolysis and a large release of FFA into the blood. Released FFA may 

have adverse affects on SM insulin sensitivity and glucose uptake. Since SM accounts 

for the majority of insulin-mediated glucose uptake by the body, investigation into the 

defective mechanisms in this tissue are of fundamental importance. 

The Randle Cycle 

Mechanisms for the reduction in glucose uptake/phosphorylation and glycogen 

synthesis with insulin resistance are not well understood; FFA have largely been 

implicated as a mediator. Elevated FFA appear to be linked to the reduction in oxidative 

and non-oxidative glucose disposal in SM. In 1963 Randle (206) proposed the 

Glucose/Fatty Acid Cycle as a mechanism for increased fatty acid oxidation inhibiting 

glucose uptake/oxidation, and this has been demonstrated in both rats and humans (128) 

(300) (135) (176) (224) (220). Under the Randle hypothesis, a buildup of cellular 

glucose 6-phosphate occurs from elevated mitochondrial ratios of acetylCoA/CoA and 

NADH/NAD+ (from increased FFA uptake and oxidation) that regulate pyruvate 

dehydrogenase by pyruvate dehydrogenase kinase. The additional buildup of 

cytoplasmic citrate (an allosteric regulator of phosphofructokinase) augments this effect. 

Elevated glucose-6-phosphate levels will inhibit hexokinase and ultimately reduce 
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insulin-mediated glucose uptake. Subsequent pyruvate build-up may also increase 

lactate formation, a substrate for gluconeogenesis, thus contributing to hyperglycaemia. 

Lack of evidence for the Randle cycle in human SM 

While the Randle Cycle has gained considerable acceptance, it could not be 

demonstrated in the perfused rat hindquarter with oleate or palmitate using 

supraphysiological insulin concentrations (232). In addition, in pmi28 myotubes 

palmitate but not mysitic or stearic acid decreased IMGU (266). There appears to be 

even less evidence for its existence in humans. Despite Boden et al. (27) demonstrating 

an increase in the ratio of mitochondrial acetylCoA/CoA with elevated FFA, no increase 

in muscle citrate or glucose-6-phosphate was observed (226) (27). Moreover, FFA have 

been shown to inhibit pyruvate dehydrogenase but only modestly inhibited glucose 

oxidation (135). SM hexokinase activity was not different between lean humans and 

those with NIDDM (134). In addition, effects on glucose disposal are dependent on FFA 

concentration (26). Importantly, elevated FFA are not always reported in patient with 

NIDDM, and therefore may not be causative (202). 

Type-II diabetics have a large intracellular pool of TG in SM (73) (92) (110) 

which may cause increased rates of lipid oxidation (a key component of the Randle 

cycle). Ellis et al. (69) have published data suggesting that the intracellular 

accumulation of long chain acylCoA is as important as the blood-borne FFA (27) (227) 

in determining muscle insulin-sensitivity, which appears to be negatively correlated to 

the intramyocellular store (reviewed in (111)) and to the activation of glycogen synthase 

by insulin (197). This is despite the fact that larger intramyocellular pools also occur in 

athletes (who are highly insulin sensitive). This apparent paradox may be explained by 

the differing morphology and location of the intracellular pools, which are larger and 

more closely associated with the mitochondria in athletes (reviewed in (111)). 

While increased fat oxidation may cause some decrease in glucose disposal, an 

initial defect in glucose oxidation (as suggested by Randle) may not be the cause. 

Reports on glucose-6-phosphate levels in muscle after the infusion of TG emulsions 

such as Intralipid®  have been conflicting (227) (27). It appears that the onset of glucose 
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uptake is time dependent. Boden et al. (27) reported an initial decrease in glycolysis was 

compensated for by an increase in glycogen synthesis, causing no net change in glucose 

uptake. After approximately 2 hours of Intralipid ®  infusion, glycogen synthesis was also 

attenuated causing a reduction in muscle glucose uptake. In contrast, Roden et al. (227) 

however, saw an initial reduction in glucose transport/phosphorylation due to elevated 

FFA followed by reduced glycolysis and glycogen synthesis. 

Alterations in dietary FFA may modify membrane phospholipid content. 

Membrane phospholipids are indicative of insulin sensitivity and may alter insulin 

binding, and the extent of saturation of membranes lipids is also correlated to the 

amount of lipid stores within the myocyte (reviewed in (111)). Alternatively FFA may 

act indirectly to inhibit muscle glucose disposal (i.e. effects on other tissues), for 

example, alter insulin-secretion (41) and hepatic glucose and TG production. 

The Reverse Randle Cycle 

Despite Randle's proposition that enhanced FFA oxidation decreases that of 

glucose, it has been shown that SM glucose oxidation is actually higher in Type 2 

diabetics than people with normal insulin tolerance under fasting hyperglycaemia 

(reviewed in (133)). Once glucose has entered the myocyte there appears to be no 

reduction in glucose disposal with insulin resistance, suggesting that it is the transport 

that is limiting its utilization (227). 

The 'Reverse Randle cycle' was proposed in a study utilizing the 

hyperglycaemic, hyperinsulinaemic clamp in the human forearm (253). These 

researchers found that a decrease in glucose-6-phosphate impaired glucose oxidation, 

however if glucose uptake was maintained during a period of elevated FFA, FFA 

oxidation was inhibited, despite no reduction in glucose oxidation. This is in direct 

opposition to the Randle cycle and suggests this cycle may be peculiar to rat heart and 

diaphragm. 

Failure to reproduce this cycle in the perfused rat hindlimb, led Reimer et al. 

(217) to suggest that increased glucose degradation to glycerol-3-phosphate increases 

the potential for FFA esterification to form TG (instead of undergoing oxidation). 
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Moreover, glycerol-3-phosophate acyl transferase is stimulated by insulin (170), 

however with insulin resistance it would be expected that reduced stimulation of this 

enzyme would reduce the potential for FFA to deposit as intracellular TG. However, 

insulin resistance is associated with increased SM TG deposits (73) (92) (110). SM LPL 

is also reduced in type-2 diabetes (202), and is thus not likely to be contributing to the 

increased SM TG. 

Increased levels of malonylCoA increasing long chain acyl CoA with insulin 

resistance 

Increased glucose oxidation leads to the build-up of long chain acyl CoA, which 

may be the cause of insulin resistance. SM acetyl CoA carboxylase is regulated by 

phosphorylation or cytosolic citrate. A combination of insulin and glucose (and high 

fructose) have been shown to activate acetylCoA carboxylase 13, therefore increasing 

malonylCoA formation (65) (238). The phosphorylation and inactivation of acetylCoA 

carboxylase by AMP-activated protein kinase (AMPK) reduces FFA synthesis. In 

addition, malonyl CoA perturbs the passage of long chain fatty acylCoA's into the 

mitochondria via allosteric inhibition of carnitine palmitoyl transferase 1 (reviewed in 

(234) (107)). AMPK also phosphorylates and subsequently inhibits hormone sensitive 

lipase, preventing FFA release. Therefore AMPK increases FFA oxidation, but inhibits 

FFA synthesis (preventing energy-requiring processes). AMPK also phosphorylates 

glycogen synthase, resulting in increased glucose oxidation and decreased fatty acid 

oxidation (reviewed in (107)). 

By a similar mechanism it has been proposed that SM hexokinase IV 

(glucolcinase) is inhibited by long chain Acyl CoA via the hexosamine-phosphate 

pathway (275). The resulting decrease in glucose-6-phosphate, causes a build up of 

cellular glucose which has adverse affects on GLUT4 translocation (attenuating glucose 

uptake and utilization) (134). It has recently been reported that there is a colocalization 

of acylCoA synthetase-1 and GLUT4 in adipocytes suggesting direct influence of one 

over the other (256). 
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Reduced lipid oxidation may contribute to intracellular accumulation of long 

chain acylCoA's increasing diacylglycerol and activating protein kinase C (in particular 

6 and 0 isoforms) therefore inhibiting IRS-1 and insulin receptor activation (97). These 

mechanisms are outlined in the diagram below (Fig. 1). 

Amino acids may also alter the metabolism and storage of glucose. Leucine 

inactivates glycogen synthase kinase-3, therefore increasing glycogen storage (196). 

Glutamine also stimulates glycogen synthesis in addition to attenuating the rate of SM 

protein synthesis and breakdown (reviewed in (221)). 

1.1.5 Summary 

Many possible mechanisms may therefore be causal of insulin resistance. Most 

are controlled by substrate competition and availability and are likely to be greatly 

influenced by the existence of two vascular networks operating in parallel within SM. 

Altering the extent of capillary recruitment or capillary de-recruitment may provide 

some link between the inability of insulin to recruit capillaries and insulin resistance. 
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Figure 1. Possible mechanisms for substrate-induced insulin resistance (133). 

1.2 Substrate affecting skeletal muscle blood flow 

While insulin may affect nutrient uptake by increasing muscle total flow, we 

believe that uptake is more closely correlated with capillary flow. The previous section 

discussed the potential biochemical mechanisms for SM capillary recruitment with 

insulin. Possible controlling mechanisms are shown here in Fig. 2. Two main ideas have 

been proposed. The first is that insulin may act directly on the muscle, endothelial cell, 

SM or vascular smooth muscle to produce NO. In fact, NOS is located throughout the 

myocytes and SM vasculature (250). Another possibility is that increased metabolism in 

the myocytes (from insulin infusion) results in the production of metabolites that cause 

the release of NO. The metabolites (e.g. adenosine, IC, CO2 etc) might act locally to 

hyperpolarize the capillary endothelial cell, which is then transmitted to the preceding 
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arterioles (as discussed in the first section of this chapter). Alternatively, released 

metabolites may act on more remote locations in the SM vasculature by diffusion, to 

either act directly on the smooth muscle or the endothelial cell, resulting in NO 

production. Whether the vasodilatory effect of insulin is due to direct effects on the 

endothelium (i.e. due to insulin signaling in the endothelial cell) or due to metabolic 

effects in the myocytes, will be difficult to determine. One approach will be to utilize 

substances that inhibit metabolism in muscle cells, and then subsequently determine if 

the vasodilatation with insulin is retained. 

1.2.1.1 Insulin signaling and elevated fatly acids 

In insulin resistance we believe that the ability of insulin to recruit capillaries is 

either reduced or absent. It is likely that abnormal levels of glucose, fatty acids and 

possibly amino acids play some role in contributing to this endothelial dysfunction. Any 

point in the pathways postulated in Fig. 2, may be disrupted by abnormal substrate 

levels, which may affect insulin sensitivity. 

insulin 

+ 
Metabolites (adenosine, K+, CO2 etc) 

+ NO 	 + 
Vascular smooth muscle relaxation 

	

+ NO 	Ail 	+ NO 

	

Muscle 	insulin 	Endothelial Cell 

+ 	 + 

	

insulin 	 insulin 

Figure 2. Possible mechanisms for insulin-induced capillary recruitment 
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Glucose, amino acids and fatty acids have some effects on muscle total flow. 

Glucose itself has been shown to increase leg blood flow (49) but fructose has not (290). 

Lundholm et al. (159) infused an amino acid cocktail into the human leg which 

produced positive effects on glucose uptake, lactate efflux, leg blood flow and oxygen 

consumption. In contrast, FFA are usually reported to have adverse affects on muscle 

blood flow, in particular, FFA have been reported to effect nitric oxide-induced 

vasodilatation by insulin (261). As a result total flow is reduced. However FFA may also 

have important effects on capillary flow. By using an in vivo assay to measure 

exogenous 1-MX metabolism by xanthine oxidase (an enzyme located in muscle 

capillary endothelial cells) we can determine the effects of abnormal substrate levels on 

the extent of capillary perfusion. It is therefore of interest to determine if elevated FFA 

interfere with insulin-mediated capillary recruitment. 

Insulin has been linked to the stimulation of eNOS via activation of PKB/Akt 

(62), probably in both muscle and endothelial cells. In addition, as described in the first 

section, NOS is distributed throughout the vasculature (including the endothelial cells 

lining capillaries, arterioles and venules, and also in the vascular smooth muscle and the 

myocytes themselves (250)). Insulin can therefore activate NOS and stimulate NO 

production in any of these tissues. 

FFA have been found to attenuate endothelial dependent dilation but not 

endothelial independent vasodilatation, suggesting direct effects of the FFA on the 

endothelial cell (262) (155). Disruption of P13-Kinase affects PKB/Akt situated 

downstream from IRS-1 (the primary substrate for the insulin receptor) which directly 

phosphorylates NOS (62). Therefore, FFA and FFA derivatives (e.g. ceramide) are able 

to influence endothelium dependent vasodilatation and possibly capillary recruitment. 

Palmitic acid also decreased insulin stimulated phosphorylation of the insulin receptor, 

IRS-1 and PKB/Akt (266). Moreover, FFA have been shown to enhance the activity of 

PKC 0, which subsequently inhibits insulin signaling, in particular IRS-1 associated 

P13-Kinase (97). 
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Another possibility is that FFA are able to interfere with the NO release or 

insulin signaling in the vascular smooth muscle. Insulin has been shown to increase 3H 

2-DG uptake by perfused aortic vascular smooth muscle cells of lean Zucker rats, which 

was inhibited in the obese Zucker despite significant amounts of GLUT4 in this tissue 

(10). While these results suggest that vascular smooth muscle is an insulin-sensitive 

tissue, there is little evidence to infer that the vascular smooth muscle associated with 

SM is also. 

Knockout mice for the endothelial cell insulin receptor have been shown to have 

no deficiency in SM glucose uptake/disposal (285). From this it is reasoned that the 

muscle is the key factor regulating insulin sensitivity. These experiments, however, may 

have been more convincing if an insulin clamp was used, instead of a glucose tolerance 

test, to determine insulin sensitivity. The vascular responsiveness to insulin in these 

mice remains to be determined. However, Huang et al. (118) found in eNOS knockout 

mice that some dilation was maintained with ACh, due to the release of an unknown 

endothelial derived hyperpolarizing factor. Insulin may therefore stimulate a signal in 

SM (possibly from increased metabolism, e.g. adenosine, K+, CO2 etc) that acts locally 

on capillary endothelial cells. By a mechanism discussed earlier the metabolites may 

hyperpolarize the endothelial cell and this is conducted to the arteriole for the production 

of NO. NO may then diffuse to the underlying smooth muscle for vasodilatation, and 

capillary recruitment. Alternatively the metabolite may diffuse throughout the muscle to 

ultimately reach the endothelial cell of the preceding terminal arteriole and produce NO 

or NO may diffuse from venules adjacent to arterioles. Due to the presence of NOS in 

the myocytes (250) it is also possible that metabolites released from glucose oxidation 

may act locally to produces NO in the myocyte. 

As suggested earlier, one metabolite that may be upregulated as a result of 

glucose metabolism, is adenosine. Dela and Stallknecht (61) saw no increase in the 

interstitial concentration of adenosine with insulin (as measured by microdialysis). 

Abbink-Zandbergen et al. (1), however, showed that addition of the adenosine receptor 

antagonist theophylline, to an insulin clamp in humans, prevented the insulin-induced 

increases in total blood flow. Therefore insulin may release adenosine in a similar 

manner to exercise or hypoxia (163). During hypoxia it is thought that the release of 
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adenosine from the SM may directly affect smooth muscle or endothelial cells. 

Alternatively adenosine may act on receptors on the SM to release K +  for subsequent 

vasodilatation (either directly or indirectly (163)). 

It is therefore an appealing hypothesis that metabolites released from SM may 

cause vasodilatation ('metabolic coupling'). However against this fact, fructose infusion 

with concomitant increases in carbohydrate oxidation did not increase blood flow in 

humans (290). 

A proposed mechanism for the reduction in glucose uptake with FFA has been 

shown (reviewed in (194)) where FFA inhibit P13-Kinase and IRS-1 phosphorylation. 

The inhibition of P13-Kinase by FFA does not appear to be confined to the endothelial 

cell. The inhibition of muscle P13-Kinase will also affect muscle metabolism, and 

appear to develop at the same time (i.e. after 2 hours in humans). Therefore the effects 

on the myocyte and endothelium cannot be separated. Moreover, while FFA are known 

to attenuate endothelial dependent vasodilatation, they have also been shown to reduce 

endothelial independent vasodilatation (160). 

1.3 Summary of literature and research aims 

Two vascular networks exist in SM. One is likely to consist of the muscle 

capillaries, and the other, the associated CT (septa and tendons). Insulin may therefore 

recruit capillaries by drawing flow from the CT, resulting in no change in total flow to 

the muscle. Certain vasoconstrictor agents have also been shown to alter the distribution 

of flow between the two compartments, without changing total flow. Most current 

studies to date report on the effects of increased metabolites on total blood flow, but as it 

now appears apparent that the perfusion of certain subsets of capillaries is more 

important, this effect needs to be determined. Conversely, the elevated FFA associated 

with insulin resistance may contribute to the inability of insulin to recruit capillaries 

(therefore denying access of glucose and insulin to the muscle). Clearly the effects of 
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substrate metabolism and blood flow can not be separated as each exert control over the 

other. 

Research aims: 

1. To determine how vasoactive agents affect the uptake of blood-borne metabolites 

(glucose, amino acids and fatty acids (both albumin bound and fatty acids derived 

from chylomicron-TG)) in SM. 

This will be approached by using vasoconstrictors in the perfused rat hindlimb to 

determine the uptake of radiolabeled substrate. 

2. To determine whether elevated FFA interfere with insulin-mediated glucose uptake 

and capillary recruitment? 

This will involve the use of the euglycaemic hyperinsulinaemic clamp to 

determine the effects of elevated FFA on muscle [ 3H] 2-deoxyglucose uptake 

and insulin mediated capillary recruitment (1-MX metabolism). 
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CHAPTER 2 

2 General Methods 

2.1 Introduction 

To assess the uptake of blood-borne metabolites by SM, the perfused rat 

hindlimb was used in chapters 3, 4 and 5. The surgery and general perfusion protocol is 

described below. Any deviations or other details from this method are outlined in 

individual chapters. The experiments assessing blood flow in the rat in vivo (Chapter 6) 

are outlined in the "methods section" of that chapter. 

2.2 Perfused rat hindlimb 

2.2.1 Animals 

Male hooded Wistar rats were cared for according to the Australian Code of 

Practice for the Care and Use of Animals for Scientific Purposes (1990 Australian 

Government Publishing Service, Canberra). Rats were housed in the local animal house 

and kept on a 12 hour light/dark cycle maintained at 22°C. All animals were allowed 

free access to water and a standard laboratory chow (Gibson's, Hobart) of 21.4% 

protein, 4.6% lipid, 68% carbohydrate and 6% crude fiber with added vitamins and 

minerals. 

2.2.2 Krebs buffer 

Krebs Henseleit buffer consisted of 

118 inM NaC1 

4.74 mM KC1 

1.19 mM KH2PO4 

1.18 mM MgSO4 
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25 mM NaHCO3 

5.0 mM (Chapter 5) or 8.3 mM glucose (Chapters 3 and 4). 

2.2.3 Perfusion buffer 

The perfusion buffer used in chapters 3, 4 and 5 are outlined in the individual 

chapters and consisted of Krebs buffer containing either 6% Ficoll ®  (Chapters 3 and 4) 

or a combination of bovine serum albumin (BSA) and bovine RBC (Chapter 5). After 

gassing the buffer for >30 min with either carbogen (95% 02: 5% CO2) (Chapters 3 and 

4) or a mixture of 95% air: 5% CO2 (Chapter 5), CaC12 was added to a final 

concentration of 2.54 mM. All buffers were filtered through a 0.45 1.1.1n filter before use. 

Individual recipes for each perfusion type are outlined in the methods section of each 

results chapter. 

2.2.4 Surgery for perfusion of the rat hindlimb 

An intraperitoneal injection of pentobarbitone sodium was given to anaesthetise 

rats (5-6 mg 100e body weight) before the surgical procedure. Surgery was performed 

essentially as described previously (233) (53), with minor changes outlined below. 

Ligatures were placed around various blood vessels to isolate the left hindlimb for 

perfusion (shown in Fig. 1). 

After loss of sensory perception, a string ligature was tightly tied around the left 

tarsus and the base of the tail to prevent perfusion of the left foot and tail. The 

abdominal skin was cut to gain access to the underlying midline of the body wall. An 

incision was made along the midline and extended up from the pubic symphis to the 

xyphoid process covering the sternum. Both the left and right epigastric vessels were 

ligated with cotton and a small section of the body wall between the two ligatures (upper 

and lower) was removed from either side. A ligature was tied around the left skin vessel 

(adjacent to the left femoral vein and artery). The testes were tied and removed, and the 
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Figure 1 Surgery for the perfused rat hindlimb 

Diagrammatic representation of blood vessel ligation and cannulation. Modified from 
Ross (229) and Greene (96). 



32 

bladder and seminal vesicles were tied together and the seminal vesicles were removed. 

Two ties were placed around the lower descending colon at a distance of approximately 

5 min and a cut was made between the two ties. A third tie was placed around the 

duodenum and the superior mesenteric vessel, just proceeding the stomach, and the 

gastrointestinal tract was subsequently removed in its entirety. A single ligature was 

placed around the left iliolumbar, ureter and the internal spermatic vessels. An identical 

ligation was performed on the same vessels of the right side. In all experiments only the 

left hindlimb was perfused, therefore flow to the contralateral limb was prevented by 

ligating the right common iliac vessel. 

The inferior vena cava was separated from the descending aorta, and two silk ties 

were placed under each at the level of the renal and iliolumbar vessels. In some 

experiments, heparin was subsequently injected (200 IU) into the vena cava above the 

renal vessel. A one-minute delay was allowed, to ensure adequate circulation of the 

heparin before commencement of the surgery. The vena-cava tie, adjacent to the renal 

vessel, was secured and an 18 Gauge Terumo Surflow cannula (with needle) was 

inserted into the vein. The needle was removed to allow blood flow and the cannula 

secured with the lower tie. The same procedure was followed for cannulation of the 

aorta, however this was achieved using a 20 Gauge Terumo Surflow cannula attached to 

a 1 ml syringe containing 0.9% saline. Insertion of this cannula was facilitated by the 

use of a small needle threader. The entire surgical procedure did not exceed 30 minutes. 

The rat was immediately placed on a water-pad heated to 37°C, and tubing was 

attached to the aorta cannula for delivery of the perfusion buffer. The hindlimb was not 

without flow for more than two minutes. A tube was attached to the venous carmula to 

allow collection of the venous effluent in a waste bucket, or for re-circulation into the 

buffer reservoir (see chapters 3, 4 and 5 for exact method). The rat was then killed with 

a lethal dose of nembutal by intracardiac injection. A string ligature was tied around the 

rat belly at the level of the L4 vertebra to impede extraneous flow. 
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2.2.5 Perfusion apparatus 

Most experiments were conducted in a non-recirculating manner (as shown in 

Fig. 2) unless otherwise indicated. The perfusion equipment was encased in a perspex 

cabinet heated to 37°C. The apparatus shown in Fig. 2 is detailed below. 

Perfusion buffer (described in each results chapters 3, 4 and 5) was aspirated 

from the buffer reservoir via a Cole-Parmer Masterflex ®  pump at a constant flow (of 

either 4 or 8 ml/min). The buffer was initially pumped into a small bubble trap within a 

water-jacketed heat exchange coil maintained at 37°C. The buffer then passed through 

silastic tubing (Dow Corning) surrounded by a carbogen-gassed lung (95% 02 / 5% 

CO2), unless indicated otherwise. Finally, the buffer was pumped into a small bubble 

trap proximal to the rat (containing an infusion port (for delivery of infused substances) 

and a side-arm attached to a pressure gauge to monitor the arterial perfusion pressure 

(PP) throughout the experiment). The buffer then entered the arterial cannula for 

perfusion of the left hindlimb. The venous effluent passed through a 0.5 ml Clark-type 

electrode to measure hindlimb oxygen consumption (V02) and for venous sampling, 

before entering the waste container. The PP and V02 was continually monitored via a 

WinDaq data acquisition system on a computer adjacent to the cabinet. 

2.2.6 Vasoactive agents 

During the perfusion vasoactive agents were either added as a bolus to the 

reservoir, or infused into the port proximal to the hindlimb via an LKB Microperpex ®  

Peristaltic pump. The dose of agent used is detailed in each chapter. 

2.2.7 Perfusion Protocols 

The perfusion protocols used in Chapters 3, 4 and 5 are shown below. The 

concentrations of all infusions are outlined in the individual chapters. 
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2.2.7.1 Protocol A - Chapter 3 

The uptake of the non-metabolizable substrate [41] 2-DG into the non-

recirculating perfused rat hindlimb was determined under the conditions described 

above. Time 0 is the beginning of hindlimb perfusion, and all other additions are 

indicated in the boxes. The following perfusion types were conducted: 

1. controls (vehicle) 

2. insulin (Ins, 75 nM) 

3. serotonin (5-HT) + Ins (3 AM and 75 nM respectively). 

After 30 min of 2-DG infusion the radioactivity in the hindlimb muscles was 

determined. 

2.2.7.2 Protocol B - Chapter 3 

The uptake of [ 14C] palmitic acid into the non-recirculating perfused rat hindlimb 

was determined as described in the protocol above. Time 0 is the beginning of hindlimb 

perfusion, and all other additions are indicated in the boxes. The following perfusion 

types were conducted: 

1. controls (no additions) 

2. Ins (75 nM) 

3. 5-HT (3 ilM) 

4. 5-HT + Ins (3 11M and 75 nM respectively). 

After 30 min of [ 14C] palmitic acid infusion the radioactivity in the hindlimb muscles 

was determined. 
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2.2.7.3 Protocol C - Chapter 4 

To determine the effects of 5-HT and vasopressin (vaso) on chylomicron TG 

hydrolysis, the following re-circulating perfusion types were conducted: 

1. controls (no additions) 

2. 5-HT (0.5-1 gM) 

3. 5-HT + carbamyl choline (0.5-1 gM and 100 gM CCh respectively) 

4. vaso (0.5 nM) 

5-HT and vasopressin were added as bolus doses to the reservoir of some 

perfusions. In some experiments the vasodilator CCh was infused to reverse the effects 

of 5-HT on PP and V02. CCh infusion commenced before the buffer was recirculated. 

After discarding the first 30 ml of perfusate (of the 130 ml perfusion medium containing 

CLE) the remaining 100 ml was recirculated through the hindlimb for 1 hour. 

2.2.7.4 Protocol D - Chapter 5 

To assess the uptake of the amino acid analogue a amino isobutyric acid (AIB), 

the following perfusion types were conducted: 

1. Controls (no additions) 

2. Ins (18 mU/m1) 

3. AII (50 nM) 

4. All + Ins (50 nM and 18 mU/m1 respectively) 

5. 5-HT (1 gM) 

6. 5-HT + Ins (1 jiM and 18 mU/m1 respectively) 
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The hindlimbs were perfused according to the protocol shown above (protocol 

D). After a 40 min equilibration period, 50 mM AIB was infused with 400 Ci [ mg AIB 

and 40 Ci [311] mannitol for 30 min at a dilution of 1/100 (final concentration 0.5 mM 

AIB). Perfusions assessing the uptake with insulin used 18 mU/m1 of Ins added as a 

bolus to the perfusion buffer. In some perfusions, either 1 [tM 5-HT or 50 nM All were 

infused 5 min prior to AIB infusion. AIB was infused for the remainder of the 

experiment (30 min). 
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Figure 2. Apparatus for the non-recirculating constant flow, pump-perfused rat hindlimb 



2.2.8 Calculation of oxygen consumption (V02) 

Muscle oxygen consumption was calculated using the Fick Principle: 

V02 = cPv02_12._()__ now/1000 x 60 

Muscle weight (g) 

*Where fl=  calculated from the Bunsen coefficient 

a = the volume (m1) of oxygen dissolved per ml of plasma at 0°C and 760 

mmHg. a is 0.0214 in plasma at 37°C. 

fl= a 1(22.4 x 760) 

= 0.0214 ml/L / (22.4 mM x 760mmHg) 

= 1.257 i.tmol/L/mmHg 

*Where Pa02 = arterial P02 using the calibrations from the oxygen electrode for 

the arterial, air and oxygen and using their known F02. 

Pa02 cal Ar — cal Air  x (PO2 at 100% - P02 in Air) + PO2 in Air 

Cal 100%02 cal Air 

Where: cal Ar = electrode arterial calibration 

cal Air = electrode air calibration 

cal 100%02 = electrode oxygen calibration 

P02 at' 100% = 760 mm Hg — 47 mmHg (H20 vapour pressure at 37°C, due to 

the use of a wet oxygen electrode). 

= 713 mmHg 

PO2 in Air = 154 mmHg 
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*Where /3,02 = venous P02 calculated the same as the 13,02 however the value 

for cal Ar was replaced by the value for the venous effluent. 

*Where flow = perfusion flow rate in ml/min, which is defined in chapters 3, 4 

and 5. 

*Where muscle weight = total perfused muscle mass, which has been previously 

been determined to be 1112th  of the body weight (for a single perfused hindlimb (223)). 

2.3 Measurement of plasma glucose and lactate 

Venous samples were immediately spun in an Eppendorf centrifuge and the 

plasma eluted into another vial. Venous and arterial (from the buffer reservoir) samples 

were analysed for glucose and lactate using a YSI 2300 STAT Plus Glucose Analyser. 

2.4 Radioactivity uptake into muscle 

After all hindlimb perfusions the soleus, plantaris, extensor digitorum longus 

(EDL), gastrocnemius red (G.Red), gastrocnemius white (G.White), and the anterior 

tibialis were removed. Individual muscles were weighed and then freeze-dried overnight 

to obtain dry weight. Muscles were re-hydrated in 1 ml of distilled H20 and dissolved in 

1 ml of eSoluene (tissue solubiliser; Packard). Muscles were digested for a few days in 

a 40°C water bath before addition of 100 ill of acetic acid and 16 ml of Amersham 

Biodegradable Counting Scintillant. Dissolved muscle samples were counted for 

radioactivity using a dual label program (to detect [ 14C] and [3H]). 

As used in Protocol A, muscles were counted for [3H] 2-DG and [ 14C] sucrose, 

and in Protocol B for [ 14C]palmitic acid and [3H]mannitol in Chapter 3. In chapter 4, 

muscles were counted for [ 14C]oleic acid and [3H] CO (Protocol C). In chapter 5, 

muscles were counted for [ 14C] AIB and [3H] mannitol (Protocol D). 



2.5 Perfusate radioactivity 

In all perfusions, venous samples were taken at regular intervals and a known 

amount was added to Amersham Biodegradable Counting Scintillant for determination 

of perfusate radioactivity (using the program described above). As used in Protocol A, 

perfusate samples were counted for [3H] 2-DG and [ 14C] sucrose, and in Protocol B for 

[ 14C]palmitic acid and [ 3H]mannitol in Chapter 3. In chapter 4, samples were counted 

for [ I4C]oleic acid and [3H] CO (Protocol C). In chapter 5, samples were counted for 

[ 14C] AIB and [3H] mannitol (Protocol D). 

2.6 1-MX metabolism 

The metabolism of the exogenous substrate 1-MX by the capillary endothelial 

enzyme xanthine oxidase was determined in chapters 3 and 6. Precipitation of the 

samples with perchloric acid is outlined in those chapters. Samples were then loaded 

onto a C-18 reverse phase high performance liquid chromatography column. The 1-MX 

disappearance was calculated from arterio-venous plasma 1-MX difference and 

multiplied by femoral blood flow. More specific details are given in the individual 

chapters. 

2.7 Statistics 

All tests were performed using the SigmaStatTM  statistical program (Jandel 

Software Corp.). In order to ascertain differences between treatments, the statistical 

significance of differences between groups of data was assessed by one or two way 

analysis of variance (ANOVA) for sets of experiments containing multiple groups. For 

experiments comparing only one experimental group to the controls, student's t-tests 

were used. Significant differences were recognized at P<0.05. One, two or three 

symbols were used to show significance of P<0.05, P<0.01 and P<0.001 respectively. In 
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the perfusion chapters (Chapters 3, 4 and 5) the symbols used to show significance were: 

"" (to show significance from controls), `#' (to show significance from 5-HT), '^' (to 

show significance from 5-HT+CCh), `+' (significant from insulin infusion), `8c.' (to 

show significance from All infusion) and `$' (to show significance from All and insulin 

infusion). In the in vivo experiments (Chapter 6) the symbols used were "" (to show 

significance from Ins treated group) and "1 . ' (to show significance from Lip + Ins treated 

group). 



CHAPTER 3 

3 Hormonal effects on FFA uptake by the constant flow perfused rat 

hindlimb 

3.1 Introduction 

We have previously reported that the vasoconstrictor, 5-HT is able to reduce 

capillary (nutritive) flow in SM perfused with a BSA/Krebs buffer. This was determined 

by measuring the metabolism of infused 1-MX, a substrate for the capillary endothelial 

enzyme, xanthine oxidase (211). Reduced capillary flow was associated with decreased 

muscle oxygen consumption and marked insulin-resistance with regard to insulin-

mediated glucose uptake, both in individual muscles and across the entire hindlimb 

(211). We have proposed that this is due to decreased access of insulin and glucose to 

the myocytes, and may contribute to hyperinsulinaemia and hyperglycaemia 

respectively. 

Other researchers have shown that elevated plasma FFA levels are also 

associated with insulin resistance. This may be a consequence of either reduced FFA 

uptake by limb tissues or elevated FFA release from AT. Increased FFA uptake and 

oxidation have generally been considered as the primary cause of reduced insulin-

mediated glucose uptake by muscle (206), but the exact mechanism for insulin 

resistance via substrate competition is unresolved. Recently, the SM of insulin resistant 

humans has been shown to have a reduced capacity to oxidise FFA (132). 

The perfused rat hindlimb is a widely accepted model for determining the effect 

of substrate uptake by SM, and is preferable over cultured myocytes and incubated 

muscle preparations, as the vasculature remains intact. Thus, vasoactive substances can 

be delivered through the vessels, as occurs in vivo. Using fluorescent microspheres to 

monitor blood flow distribution we have shown that as a percentage of total flow, the 
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isolated hindlimb is primarily comprised of SM, with bone, skin and fat contributing 

only minimally (208). The perfused rat hindlimb gives comparable rates of oxygen 

consumption to SM in vivo (164) (233) and perfusing the hindlimb with a Krebs 

Henseleit buffer and bovine serum albumin (BSA) produces acceptable levels of glucose 

uptake (164). Red blood cell (RBC) may also be added (304) to emulate blood in vivo. 

Additionally, we have shown that oxygen uptake is correlated with muscle or nutritive 

capillary flow (304) (208) and is thus commonly used as a surrogate indicator of 

capillary flow. While the rat hindlimb is commonly perfused with bovine serum albumin 

(BSA)/Krebs, it was found that FFA liberated from hydolyzed circulating TG 

preferentially bound the BSA rather than being taken up by the myocytes (Chapter 4). 

Trapping fatty acids generated from hydrolysis in the vasculature may be advantageous, 

due to removal of the components of uptake and oxidation. Alternatively, Ficoll®  may 

be used to measure the uptake of FFA from isolated or artificial lipid solutions. 

Whereas lipid is hydrophobic, glucose is highly water-soluble and is therefore 

readily transported in the blood stream. As a result, glucose uptake can be easily 

measured in the perfused rat hindlimb and in vivo. Glucose substrates that are both 

metabolized and not-metabolized have been used. [ 3H] glucose is often used as a 

measure of whole body glucose disposal. Constant infusion of [ 3H] glucose into the rat 

in vivo, and arterial sampling to monitor the specific activity, gives a measure of hepatic 

glucose release and whole body disposal. This substrate is however disadvantageous as 

it is both taken up and released by muscles, thus no real measure of muscle uptake can 

be made. [ 14C] glucose is also used, but is readily metabolized and measurements of 

metabolism must also be made. Fluorescent glucose analogues are also used (186) (150). 

We have commonly used [ 3H] 2-deoxyglucose (2-DG) both in the perfused rat hindlimb 

(211) and in vivo (305). This substrate is taken up by myocytes and immediately 

converted to [3H] 2-deoxyglucose- 6-phosphate, with no further metabolism. [ 3H] 2- 

deoxyglucose- 6-phosphate can then be separated from [3H] 2-DG to give a measure of 

glucose content in the myocytes and in the extracellular space (vessels and interstitial 

space) respectively. 

The present study aimed to examine the effect of low nutritive flow mediated by 

5-HT infusion in the Ficoll®-perfused rat hindlimb, on fatty acid and glucose uptake. 
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Due to the addition of extracellular [ 14C] or [3H] markers to all experiments, the uptake 

of [3H]2-deoxyglucoe (2-DG) and [ 14C] palmitic acid were determined in separate 

perfusions. To minimize variability, both perfusion buffers contained 8.3 mM glucose 

and 1.2 mM palmitic acid. As a consequence we were unable to determine whether the 

FFA had any effect on glucose uptake. Rather, focus was on assessing whether low 

nutritive flow, with expected haemodynamic insulin resistance, had any effect on the 

uptake of [ 14C] palmitic acid. 

3.2 Materials and Methods 

3.2.1 [14C] palmitic acid solution 

Palmitic acid (369.2 mg), 1.4 ml 1 M NaOH, 28 ml of distilled H20 and 80 ptCi 
,14 L C] palmitic acid (Amersham) were heated at 75-90°C for 20 min until saponified. The 

solution was then cooled to 50-60°C prior to the addition of Krebs-Ringer bicarbonate 

buffer (90.6 ml) containing 6% (wt/vol) BSA. Finally, the mixture was passed through a 

1.2 pm filter and stored at —20°C until used. 

3.2.2 Unlabeled palmitic acid solution 

Unlabeled Na-palmitate (albumin-bound) was prepared by the same protocol as 

the [ 14C] palmitic acid solution, with the omission of the [ 14C] palmitic acid. 

3.2.3 Mannitol solution 

To monitor perfusate in the interstitial and vascular space of the perfused muscle, 

a solution containing 65 mM mannitol and 401ACi [ 3H] mannitol (NEN) was prepared. 
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3.2.4 [31I] 2-Deoxyglucose solution 

A solution of 90 1.1Ci [ 3H] 2-deoxyglucose (2-DG, Amersham), 2 mM sucrose 

and 50 pCi [ 14C] Sucrose (Amersham) was prepared. [ 14C] Sucrose was used in these 

perfusions instead of [ 3H] mannitol in order to correct for volume in the extracellular 

space when infusion [ 3H]2-DG. 

3.2.5 Hindlimb Perfusions 

General protocol 

The left hindlimbs of 140-160 g rats were perfused in a non-recirculating mode 

with 6% (wt/vol) ®Fico11 (Amersham Pharmacia Biotech.) containing Krebs-Henseleit 

buffer (section 2.2.2 of the Methods chapter) and 1.27 mM CaC12 at 8 ml/min. The 

buffer was continually gassed via a sialastic tube oxygenator with carbogen (95% 02 : 

5% CO2), and the temperature was maintained at 37°C in a heat-exchanger coil. The rat 

and apparatus were in a temperature-controlled cabinet at 37°C. All other details are 

described in section 2.2 of the Methods chapter of this thesis. 

[3H]2-DG, 1-MX, 

[14C]sucrose, palmitate 

5-HT, Vehicle 

Insulin, Vehicle 

0 	10 20 30 40 50 60 70 80 90 100 
4 	e 	e 	4 

4 indicates venous sample 

Figure 1. Perfusion protocol for [3H] 2 -DG uptake 
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Perfusion protocol for PH] 2-DG uptake 

The uptake of the non-metabolizable substrate [3}1] 2-DG into the perfused rat 

hindlimb was determined under the conditions described above (Fig. 1). Time 0 is the 

beginning of hindlimb perfusion, and all other additions are indicated in the boxes. The 

following perfusion types were conducted: 

1. controls (vehicle) 

2. insulin (Ins, 75 nM, Humulin®, Aza Research Pty Ltd) 

3. 5-HT + Ins (3 gM and 75 nM respectively). 

After completion of the surgical procedure (described in section 2.2.4 of the 

Methods chapter), the rat hindlimb was perfused for 40 min with 6% eFicoll/Krebs 

buffer (sections 2.2.2 and 2.2.3 of the Methods chapter). Following this equilibration 

period, Ins (if used) was infused for the entirety of the experiment. The infusion of 5-HT 

(if used) was commenced at 50 min and continued for the entirety of the experiment. 

The effect of 5-HT infusion alone was not determined as this vasoconstrictor has 

previously been shown to have no effect on basal [ 3H]2-Deoxyglucose uptake (211). At 

60 min, the buffer reservoir was changed and the rat hindlimb then perfused (while 

maintaining the infusion of Ins and 5-HT or vehicle with medium) containing the 

following constituents: 

-26 ml unlabeled palmitic acid solution (described in section 3.2.2, 1.2 mM final) 

-1.3 ml [ 311] 2-Deoxyglucose solution (described in section 3.2.4) 

-232.7 ml gassed 6% eFicoll/Krebs buffer 

-0.65 ml 10 mM 1-MX. 

The hindlimb was perfused with this mixture for 30 mm (time 0 to 30 min in 

Figure 1) and venous samples of 1.5 ml were taken every 10 min. The total perfusion 

time was 90 min. 
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Perfusion protocol for 144  palmitic acid uptake 

[14C]palmitate, 1-MX, 

[3 H]mannitol, palmitate 

5-HT, Vehicle 

Insulin, Vehicle 

10 20 30 40 50 60 70 80 90 100 
• 	4 	4 	4 	4 	4 

indicates venous sample 

Figure 2. Perfusion protocol for [ 14C] palmitic acid uptake 

The uptake of [ 14C] palmitic acid into the perfused rat hindlimb was determined 

as described in the protocol above (Fig. 2). Time 0 is the beginning of hindlimb 

perfusion, and all other additions are indicated in the boxes. The following perfusion 

types were conducted: 

1. controls (no additions) 

2. Ins (75 nM, Humulin®, Aza Research Pty Ltd) 

3. 5-HT (3 1AM) 

4. 5-HT + Ins (3 1.1M and 75 nM respectively). 

After completion of the surgical procedure (described in section 2.2.4 of the 

Methods chapter), the rat hindlimb was perfused for 40 min with 6% ®Ficoll/Krebs 

buffer. Following this equilibration period, Ins (if used) was infused for the entirety of 

the experiment. The infusion of 5-HT (if used) was commenced at 50 mm and continued 
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for the entirety of the experiment. At 60 mm the buffer was changed and the rat 

hindlimb then perfused with medium containing the following constituents, while 

maintaining the infusion of ins and 5-HT or vehicle: 

-26 ml [ 14C] palmitic acid solution (described in section 3.2.1, 1.2 mM final) 

-2 ml mannitol solution (described in section 3.2.3) 

-232 ml gassed 6% ®Ficoll/Krebs buffer 

-0.65 ml 10 mM 1-MX. 

The hindlimb was perfused with this mixture for 30 min (time 0 to 30 mm in 

Figure 2) and venous samples of 1.5 ml were taken every 10 min. The total perfusion 

time was 90 min. 

3.2.6 Perfusate glucose and lactate determination 

The concentrations of glucose and lactate in each venous perfusate sample were 

determined as described in section 2.3 of the Methods chapter. 

3.2.7 Perfusate radioactivity measurements 

Perfusate samples containing radioactivity were immediately centrifuged to 

remove RBC. Samples (200 1.1.1) were then added to. 6 ml Amersham Biodegradable 

Counting Scintillant and counted using a dual label counting system (for the detection of 

[3H] and [ 14C]) as described in Chapter 2 section 2.5 

3.2.8 Muscle radioactivity uptake 

After perfusion, the soleus, plantaris, EDL, G.Red, G.White and tibialis of the 

left hindlimb were removed. The muscles were digested and analysed as described in the 

Methods chapter, section 2.4 of this thesis. 
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3.2.9 Calculation of muscle extracellular space 

In all perfusions either [ 14C] sucrose or [3H] mannitol was infused to determine 

the muscle extracellular space. The extracellular space (ml.g -1 ) was calculated from the 

amount of radioactivity in each muscle (dpm.g -1 ) and the specific activity of the infused 

solution (dpm.m1-1 ). 

3.2.10 Determination of 1-MX conversion 

Perfitsate samples of 100 p.1 were de-proteinised with 25 ul 2 M perchloric acid, 

centrifuged, and an aliquot of 40 1.t1 injected onto a reverse-phase HPLC column. Values 

obtained from the HPLC were used to calculate the disappearance of 1-MX. Full details 

are given in Chapter 2 section 2.6. 

3.2.11 Statistical Analysis 

Statistically significant differences for oxygen uptake (V02) and perfusion 

pressure (PP) between groups over the 30 min perfusion period were assessed using 

two-way, repeated-measures analysis of variance (ANOVA). All other tests were 

conducted using one-way ANOVA. 

P values less than 0.05 were considered to be significant. One, two or three 

symbols were used to denote P values of <0.05, <0.01 and <0.001 respectively. The 

symbols used were "" (to show significance from control perfusions), `+' (significant 

from Ins infusion), and 'ft' (significant from 5-HT infusion). 

3.3 Results 

Only the uptake of [ 14C] palmitic acid and [3H] 2-DG were determined in 

separate experiments. The other measurements (V02, PP, 1-MX metabolism, glucose 

uptake, lactate efflux, wet weight to dry weight ratios of the muscles, and the muscle 

extracellular space) were pooled and shown in Figures 3, 4, 5, 8 and 9. 
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Figure 3 shows the time course for the effects of 3 1.1M 5-HT, 75 nM Ins, and 5- 

HT + Ins on V02 (panel A) and PP (panel B). Maximal stimulation with 5-HT (with or 

without Ins) occurred at the beginning of perfusion with the palmitic acid perfusion 

medium (0 min on graph). 5-HT (without Ins) decreased V02 from 22.0 ± 0.5 to 9.7 ± 

0.8 gmol/g/h during maximum stimulation (P<0.001) when compared to control 

perfusions (Fig. 3, panel A). This was accompanied by increased PP from 41.6 ± 1.3 to 

167.7 ± 13 mmHg (Fig. 3, panel B, P<0.001). Using a combination of 5-HT and Ins, 

V02 and PP were also significantly different when compared with control perfusions 

(from 22.0 ± 0.5 to 9.6 ± 0.6 gmol/g/h (P<0.001) and from 41.6 ± 1.3 to 180.7 ± 7.8 

mmHg (P<0.001) respectively). Overall, the addition of 5-HT with or without Ins 

significantly reduced oxygen consumption by the perfused rat hindlimb. Since in this 

system V02 is a surrogate indicator of nutritive capillary flow, capillary flow was 

deemed to be reduced with 5-HT infusion. 

The metabolism of 1-MX, by the capillary enzyme xanthine oxidase, is a further 

indicator of capillary perfusion. The metabolism of 1-MX was also reduced when 

comparing 5-HT to control perfusions (from 5.8 ± 0.4 to 4.5 ± 0.4 nmol/min/g 

(P=0.024), Fig. 4). Furthermore, 1-MX metabolism was reduced with the co-infusion of 

5-HT and Ins, in comparison to the infusion of Ins alone (from 5.9 ± 0.5 to 3.8 ± 0.4 

nmol/min/g (P=0.004)). 

While we have established a reduction in capillary flow with 5-HT infusion in 

these experiments, insulin resistance was also tested. The total glucose uptake and 

lactate efflux by the entire perfused mass was determined from arterio-venous 

differences (Figure 5, panels A and B respectively). Glucose uptake across the total 

perfused mass was stimulated by approximately 3-fold (from 12.2 ± 0.7 to 29.2 ± 1.7 

gmol/g/h (P<0.001)). 5-HT reduced the insulin-mediated glucose uptake across the 

entire hindlimb (from 29.2 ± 1.7 to 23.1 ± 1.8 innol/g/h (P=0.005)). Lactate efflux 

(panel B) significantly increased with Ins infusion (from 37.7 + 1.4 to 48.9 + 4.1 

ttmol/g/h (P=0.01)) when compared to control perfusions. 

, A set of experiments using the non-metabolizable glucose tracer, 2-DG were 

conducted to confirm a state of ins-resistance with 5-HT in the individual hindlimb 

muscles. Ins significantly increased 2-DG uptake in all hindlimb muscles tested (Fig. 6, 
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panel A). This increase was greater than 6-fold (from 13.6 ± 1.4 to 82.1 ± 4.6 innol/g/h 

(P<0.001)) when averaging the uptake into all muscles (Fig. 6, panel B). The addition of 

5-HT to Ins perfusions however decreased 2-DG uptake in all muscles, in particular in 

the EDL and tibialis. Averaging the hindlimb muscles, panel B shows the addition of 5- 

HT reduced hindleg insulin-mediated glucose uptake from to 82.1 ± 4.6 to 41.6 ± 6.7 

gmol/g/h (P<0.001). 

Panel A of Figure 7 shows the uptake of [ 14C] palmitic acid by the hindlimb 

muscles. While the infusion of Ins tended to increase the uptake of [ 14C] palmitic acid, 

this was not significant. The infusion of 5-HT significantly reduced the uptake of [ 14C] 

palmitic acid in the EDL and the tibialis. When insulin was co-infused with 5-HT, there 

was also a significant reduction in fatty acid uptake by the muscles with predominantly 

white fibres (EDL, G.white and tibialis). 5-HT decreased insulin-mediated [ 14C] palmitic 

acid uptake from 38.3 + 2.6 to 11.2 + 4.0 ilmol/g/h in the EDL (P<0.001), 14.6 + 2.2 to 

6.0 + 1.7 imnol/g/h in the G.White (P=0.036) and 33.6 + 0.6 to 10.2 + 3.7 partol/g/h in 

the tibialis (P<0.001). When averaging the uptake across the selected muscles (Fig. 7, 

panel B), the co-infusion of 5-HT and Ins significantly reduced the uptake compared to 

insulin infusion alone (from 26.9 ± 2.3 to 13.4 ± 2.7 gmol/g/h (P=0.02)). 

The extracellular space (radioactivity in the blood vessels and interstitial space) 

of the hindlimb muscles was determined using either [ 14C] sucrose or [ 3H] mannitol as 

extracellular markers. Negligible difference was recorded between all groups within 

each muscle sampled (Fig. 8). Wet weight to dry weight ratio of the muscles was 

increased in some muscles during 5-HT infusion, however was mostly unaltered 

between experimental types (Fig. 9). 
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Figure 3. Hindlimb oxygen consumption (V02, panel A) and perfusion pressure (PP, 

panel B) in the constant flow, Ficoll®  perfused rat hindlimb. Perfusions were control 

(0), 75 nM Ins (0, from -20 min), 3 1AM 5-HT (N, from —10 min), or the infusion of 

both Ins and 5-HT (V). Rat hindlimbs were perfused with [3 1-1] 2-DG solution or [ 14C] 

palmitic acid buffer (from 0 mm to 30 min). Values are means + SE (n=10-11) and 

given in gram wet weight. Significance symbols are denoted by "1" (from control) and 

`+' (from Ins), where two or three symbols represents P<0.01 and P<0.001 respectively. 
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Figure 4. Hindlimb 1-MX metabolism (a surrogate indicator of capillary/nutritive flow) 

in the constant flow, Ficoll ®  perfused rat hindlimb perfused with either [ 14C] palmitic 

acid or [3H] 2-DG. Perfusions were control (white bar), 75 nM Ins (black bar), 3 [tM 5- 

HT (grey bar) or 5-HT + Ins (cross-hatched bar). Values are means + SE (n=10-11) and 

given in gram wet weight. Significance symbols are denoted by " 1" (from control) and 

`+' (from Ins), where one or two symbols represents P<0.05 and P<0.01 respectively. 
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Figure 5. Hindleg glucose uptake (panel A) and lactate efflux (panel B) during constant 

flow, Ficoll®  perfusion with either [ 14C] palmitic acid or [3H] 2-DG. Perfusions were 

control (white bar), 75 nM Ins (black bar), 3 JAM 5-HT (grey bar) or 5-HT + Ins (cross-

hatched bar). Values are means + SE (n=10-11) and given in gram wet weight. 

Significance symbols are as described in the methods section of this chapter. 

Significance symbols are denoted by "" (from control), `+' (from Ins) and `#' (from 5-

HI), where one, two or three symbols represents P<0.05, P<0.01 and P<0.001 

respectively. 

55 



5 6 

140 

120 

100 

▪ 80 

"6 60 

• 40 

20 

0 

T.) 

E 

2 
u 
as 

w 
co 

•—• 

' 0)  

• 
'13 
E 

-6 

100 

80 

60 

40 

20 

ui 
C 

ui 

I- 
I 
In 

CD 

Figure 6. The uptake of [31.1] 2-DG (R'g) by the rat hindlimb perfused with 

Ficoll®/Krebs buffer containing 8.3 mM glucose and 1.2 mM palmitic acid. Perfusions 

were conducted with no extra additions (white bars), with the infusion of 12.5 mU/m1 

Ins (black bars) and with a co-infusion of 3 IAM 5-HT and 75 nM Ins (hatched bars). The 

effects of individual hindlimb muscles are shown in panel A and the average effect 

across all muscle samples is shown in panel B. Values are means + SE (n=5-6) and 

given in gram dry weight. Significance symbols are denoted by "" (from control) and 

`+' (from Ins), where two or three symbols represents P<0.01 and P<0.001 respectively. 
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Figure 7. The uptake of [ 14C] palmitic acid by the rat hindlimb perfused with 

Ficoll®/Krebs buffer containing 8.3 mM glucose and 1.2 mM palmitic acid. Perfusions 

were conducted with no extra additions (white bars), 75 nM Ins (black bars), 3 1AM 5-HT 

(grey bars) and 3 1AM 5-HT + 75 nM Ins (hatched bars). The effects of individual 

hindlimb muscles are shown in panel A and the average effect across all muscle samples 

is shown in panel B. Values are means + SE (n=5-6) and given in gram dry weight. 

Significance symbols are denoted by ' 1" (from control) and `+' (from Ins), where one or 

three symbols represents P<0.05 and P<0.001 respectively 
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Figure 8. Muscle extracellular space (comprising the vascular volume and interstitial 

space) of selected muscles of the rat hindlimb perfused with Ficoll ®/Krebs buffer 

containing either [3H] 2-DG or [ 14C] palmitic acid. Perfusions were: control (white 

bars), 175 nM Ins (black bars), 3 1AM 5-HT (grey bars) or 5-HT + Ins (hatched bars). 

Values are means + SE (n=10-11) and given as grams wet weight. Significance symbols 

are denoted by '*' (from control) and `+' (from Ins), where one or two symbols 

represents P<0.05 and P<0.01 respectively 
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The weights of all muscles were compared before and after drying to determine 

if oedema was present. Hindlimb perfusions at 37°C using a Krebs buffer containing 

BSA instead of Ficoll®  usually yield a wet weight to dry weight ratio of approximately 5 

(unpublished results). These perfusions averaged approximately 5.5, which was 

indicative of marginally higher levels of oedema (Fig. 9). The infusion of 5-HT 

significantly increased the oedema in the plantaris and the red and white gastrocnemius 

muscles. 

3.4 Discussion 

The main finding from this chapter was the reduced muscle FFA uptake across 

the entire hindlimb when non-nutritive flow predominated. This corresponded with 

insulin-mediated glucose uptake also being impaired. When individual muscles were 

analysed separately this effect was only significant in those with predominantly white 

muscle fibres (EDL, tibialis and G.White). These results imply that fuel-partitioning 

responds differently in individual muscles and caution must be taken when measuring 

total uptake or release of metabolites from or into the perfusate. 

The population of adipocytes interlacing the perimysium and individual fibres. 

must also be considered when dissecting whole muscles. The results from Chapter 4 of 

this thesis imply that intermuscular AT actively contributes to muscle lipolytic activity. 

Those experiments measured the uptake of chylomicron TG into hindlimb muscles with 

predominantly non-nutritive flow (reduced capillary flow). Unlike the albumin-bound 

FFA, the uptake of FFA derived from chylomicron-TG is dependent on the exposure 

and activity of LPL. We found more hydrolytic activity (probably due to increased 

exposure to LPL) with 5-HT infusion in the red muscles. Due to the reduction in 

metabolism and increased hydrolytic activity, it was reasoned that non-nutritive flow 

increased TG access to adipocytes in the muscle CT, in particular the perimysial adipose 

tissue (which we have given the acronym `PAT'). 

Uptake of albumin-bound FFA is however not dependent on LPL activity and is 

likely to be more dependent on endothelial surface area and FFA transporters (278) 

(279). Therefore FFA uptake was expected to decrease with reduced capillary perfusion 
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(5-HT infusion). While this appears (from Fig. 7) to be apparent in only the muscles 

with predominantly white fibres, it is likely to have occurred also in the red muscles. 

The uptake into the myocytes of the red muscle is, however, probably masked by FFA 

extraction into PAT. This may also explain why the insulin-mediated uptake of 2-DG is 

not reduced to the same extent with 5-HT in the red muscles (as insulin may stimulate 

glucose uptake into PAT as a precursor for TG synthesis). 

Reduced muscle uptake of FFA during haemodynamic insulin resistance implies 

that TG deposits within the myocyte will be also reduced. Classically, it is thought that 

elevated plasma FFA during insulin resistance are re-assembled into lipoproteins in the 

liver for metabolism in the periphery, leading to increased SM TG. As expected, a 

correlation between insulin resistance and muscle TG levels (94) (144) (195) (197) and 

increased lipid oxidation (99) have been recorded. 

Despite reports of increased intramyocellular TG with insulin resistance, there 

are many emerging papers showing that FFA uptake is decreased with impaired glucose 

tolerance (281) and women with visceral obesity (51). In addition, reduced lipid 

oxidation has been recorded in subjects with NIDDM (132) and visceral obesity (51). 

The findings reported in this chapter are thus in agreement with those reported by 

Turpeinen et al. (281), showing that the uptake of FFA is reduced when insulin-

mediated glucose uptake is impaired. Therefore intracellular accumulation of TG may 

be a result of reduced lipid oxidation, rather than increased fatty acid uptake. Obese 

Zucker rats have been shown to have higher ratios of SM FFA uptake and glycerol 

release than their lean counterparts (280). It is possible that in those experiments, that 

the FFA uptake was into the PAT. Large PAT deposits may also explain why these 

obese rats have very high levels of glycerol release. 

The presence of FFA in these perfusions may have had some influence on 2-DG 

uptake into the muscles. Others have shown that FFA have no effect on basal glucose 

uptake (122) (176), but reduce insulin-mediated glucose uptake by SM. Insulin (1 

mU/m1) has been shown to increase FFA uptake by the perfused rat hindlimb (217). 

Despite this effect, no reduction in glucose uptake was seen, therefore indicating the 

absence of the Randle cycle in resting perfused SM. In addition, Ikeda et al. (122) used 

1 mU/m1 insulin in the perfused rat hindlimb and found no reduction in glucose uptake 
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with a combination of 1 mM oleic acid and 0.5 mM palmitic acid (122). However at 0.5 

and 0.1 mU/m1 insulin glucose uptake was decreased with the same FFA addition, with 

a concomitant decrease in insulin clearance. At the very high insulin concentration used 

in these experiments (75 nM/12.5 mU/m1) glucose uptake was most likely unaltered by 

the presence of 1.2 mM palmitic acid. In addition, the rates of 2-DG uptake in this 

chapter are comparable to those reported by Rattigan et al. (211). 

While FFA and insulin appear to influence glucose uptake, glucose and insulin 

may also influence FFA uptake. Although insulin tended to increase FFA uptake into 

most muscles, this was not significant. Ohashi et al. (188) evaluated the effects of 

different concentrations of glucose and insulin on FFA uptake by the perfused rat 

hindquarter. With high plasma glucose, FFA uptake was increased with low insulin 

concentrations, however at higher insulin concentrations (5 mU/m1) the uptake was 

reduced. At 12.5 mU/m1 insulin used in these experiments there was no significant 

change in FFA uptake. 

Capillary perfusion was determined by the activity of the capillary endothelial 

enzyme, xanthine oxidase, to convert the infused 1-MX. All perfusions contained FFA, 

which are shown to reduce insulin-mediated capillary recruitment in vivo in Chapter 6 of 

this thesis. In these perfusions there was no increase in capillary flow with insulin 

infusion and 1.2 mM palmitic acid. Without FFA in the perfusion buffer, we have 

previously shown that insulin was also unable to increase access to xanthine oxidase in 

perfusion. This is in contrast to in vivo experiments where insulin increases capillary 

flow independently of changes in total flow to the muscle (as discussed in the 

Introduction chapter of this thesis) and re-enforces the view that the perfused hindlimb is 

fully dilated in the basal state. As such, insulin is unable to further increase capillary 

perfusion as indicated by 1-MX metabolism (Fig. 4). 

In summary, the predominantly non-nutritive flow pattern induced in these 

experiments by the vasoconstrictor 5-HT resulted in significant reduction in FFA and 

insulin-mediated glucose uptake across the entire hindlimb. While these experiments 

determined the acute effects of non-nutritive flow on FFA and insulin-mediated glucose 

uptake, long term non-nutritive flow may result in a down-regulation of fatty acid 
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transporters in muscle, and ultimately contribute to significant chronic elevations in 

plasma FFA. 
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CHAPTER 4 

4 Effects of CT or non-nutritive flow on chylomicron TG hydrolysis by 

the constant flow perfused rat hindlimb. 

4.1 Introduction 

Chapter 3 showed the effects of predominantly non-nutritive flow on the uptake 

of albumin-bound FFA. While this is dependent on the capillary surface area, the uptake 

of FFA from circulating TG requires initial hydrolysis, and is therefore dependent on the 

distribution of lipolytic enzymes (in particular LPL). LPL is attached to the vascular 

endothelium by proteoglycans, which allow protrusion of the enzyme into the vascular 

lumen. Here it acts to hydrolyze TG from circulating TG-rich lipoproteins 

(chylomicrons and very-low density lipoproteins) into FFA and glycerol. The resulting 

FFA are taken up by tissues capable of lipid oxidation (e.g. muscle) or storage (e.g. AT, 

muscle) (55) (68). 

The hydrolysis of TG to FFA and glycerol has been found to be proportional to 

the active amount of LPL in the vasculature (157) (272) and ultimately may depend on 

whether circulating TG has access to the active form of LPL or other hydrolytic 

enzymes. The uptake of circulating TG is highest in slow twitch red fibres, medium in 

fast twitch red and least in fast twitch white (272) (161). In SM, an important 

determinant of muscle metabolism is the supply of substrate to the myocytes and is 

therefore controlled by the proportioning of flow between two distinct vascular circuits 

(48) (180). The first is termed nutritive and describes flow predominantly to the muscle 

cells. Blood flowing through the second circuit, termed non-nutritive, almost certainly 

passes through vessels of the CT associated with the muscle (181). Flow through this 

route results in the physical isolation of nutrients and hormones (including oxygen, 

glucose, TG and insulin) from the myocytes (46). As a result there is limited opportunity 

for muscle nutrient uptake. Since TG hydrolysis is dependent upon its exposure to 
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hydrolytic enzymes, it follows that the total hydrolysis of TG entering the muscle will be 

greater when the predominance of flow is through the circuit in which the majority of 

the hydrolytic activity is distributed. To date there have been no studies describing the 

location of SM TG hydrolytic activity including LPL, and its relative distribution in 

muscle nutritive capillaries or in CT vessels (non-nutritive for muscle) (181). 

It is now believed that nutritive circulation is through capillaries in close contact 

with the muscle fibres, and, as a result, the clearance of ions and oxygen is accelerated. 

When flow is largely through the non-nutritive pathway, the flow is thought to pass 

through muscle CT; in this state the clearance of ions and oxygen is decreased. 

Vasoconstrictor action to constrict vessels leading to CT vessels (Type A 

vasoconstrictors) under conditions of constant total flow will therefore re-divert flow 

into the muscle capillaries (nutritive) and consequently increase metabolism. 

Alternatively, vasoconstrictors impeding flow to muscle capillaries (Type B) will 

increase CT (non-nutritive) flow. 

To measure TG hydrolysis in the perfused rat hindlimb, lipoprotein emulsions 

can be synthesized using a mixture of radiolabeled and cold TG, cholesterol esters, and 

phospholipids and apoproteins for forming a shell around the hydrophobic TG (215). 

Alternatively, chylomicrons can be synthesized endogenously. Chylomicrons can be 

extracted from the lymph of rats fed radiolabeled palmitate and corn oil (161), however 

this method often results in very low yields of labeled TG, and is technically more 

difficult than preparing artificial emulsions. 

Thus, the present study addresses the issue of whether vasoconstrictors 

(including 5-HT (Type B) and vasopressin (Type A)) that specifically alter the 

proportion of non-nutritive and nutritive flow in the constant flow perftised rat hindlimb 

(46) (48), alter the rate of hydrolysis of circulating TG. 

4.2 Materials and Methods 

4.2.1 TG emulsion 

Chylomicron lipid emulsion (CLE) was prepared essentially as described by 

Redgrave and Callow (214) and each ml contained 7.5 mg triolein, 0.33 mg cholesteryl 
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oleate, 0.22 mg cholesteryl acetate, 2.6 mg phosphatidyl choline, 10 gmol N-[2- 

Hydroxyethyl]piperazine-N'[2-ethanesulfonic acid] (HEPES, pH 7.4), 150 punol NaC1 

and 0.25 ml heat-inactivated rat serum (HIRS) as a source of apolipoproteinCII (apoCII, 

acts as a cofactor for LPL). CLE contained either 1.25 ptCi [ 31-1]-cholesteryl oleate (CO, 

[cholestery1-1,2,6,7-3H(N)]-cholesteryl oleate, Amersham) or 0.42 pCi [ 14C]-triolein 

(TO, [carboxyl-' 4C]riolein, Amersham) and hydrolysis/uptake of each measured 

separately. The mixture was sonicated at an output frequency of 23 KHz, for two rounds 

of 1 min each. All emulsions were used on the day of preparation (using fresh HIRS). 

4.2.2 Heat-inactivated rat serum (HIRS) 

Donor animals were anaesthetized and blood collected by an intracardiac 

puncture. Blood was slowly withdrawn using a 21-gauge butterfly needle attached to a 1 

ml syringe containing 0.1 ml citrate. The syringe was changed several times during one 

collection. This procedure reduced the amount of suction and therefore the amount of 

platelet activation. Serum collected in this way was devoid of any platelet-derived 5-HT. 

Serum platelets were eliminated by clotting with thrombin (30 gl/m1). The remaining 

serum was heated at 56°C for 30 min to inactivate endogenous lipases (18). 

4.2.3 Hindlimb perfusions 

Hindlimb surgery was essentially as described in section 2.2.4 of the Methods 

chapter. Heparin was not used as an anticoagulant, as this has the potential to displace 

LPL from the vascular endothelium and distribute it throughout the perfusate. The left 

hindlimb of the rat was perfused in a recirculating mode at 37 °C with 100 ml of 

perfusion medium comprising Krebs Henseleit buffer (described in the Methods chapter, 

section 2.2.2) containing 6 % (wt/vol) Ficoll®  (Pharmacia Biotech) (unless indicated 

otherwise) with 8.3 mM glucose and 1.27 mM CaC12. The buffer was continuously 

gassed with 95 % 02:5 % CO2 via a silastic tube oxygenator while maintained at 37°C in 

a heat exchanger coil. Constant flow perfusions were conducted at 8 ml/min; constant 
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pressure perfusions at 85 mmHg. After a 40 min equilibration period the buffer reservoir 

was changed to one containing 125 ml of the 6% Ficoll ®  and 5 ml of CLE. 

4.2.4 Modulation of CT flow 

5-HT is one of a number of vasoconstrictors previously shown to increase non-

nutritive or CT flow at the expense of muscle nutritive flow in the constant flow 

perfused rat hindlimb (46) (48). Although other members of this group such as high dose 

NE, high frequency sympathetic nerve stimulation and high dose vanilloids give similar 

results in terms of increasing non-nutritive flow. 5-HT is the least complicated (produces 

a mono-component dose-response curve (63)) and was the model vasoconstrictor of 

choice. Thus, as shown in Fig. 1, 5-HT (Sigma) was added as a bolus into the buffer 

reservoir of the appropriate perfusions to give a final concentration of 0.5-1 ptM (to 

achieve a peak perfusion pressure of approximately 100 mmHg above basal). After 

discarding the first 30 ml of perfusate (of the 130 ml perfusion medium containing CLE) 

the remaining 100 ml was recirculated through the hindlimb for 1 hour. Samples (2.5 

ml) were withdrawn from the venous line every 15 mm. 

In some experiments the vasodilator CCh was infused at a final concentration of 

100 1.1M to reverse the effects of 5-HT on PP and V02. CCh infusion commenced before 

the buffer was recirculated. This was designed to allow the PP and V02  to return to near-

basal states before TG recirculation and prevent perfusion under predominantly non-

nutritive conditions. Infusion was continued for a further 12.5 min after recirculation. 

The type A vasoconstrictor vasopressin was added as a bolus dose (0.5 nM) to 

the reservoir of some perfusions to investigate the effects of increased V02  and PP on 

chylomicron TG hydrolysis. 
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Figure 1: Perfusion protocol for measuring chylomicron triglyceride hydrolysis by the 
perfused rat hindlimb 

4.2.5 TG hydrolysis 

,-.,- 
Perfusate samples (1 ml) from perfusions using [' 4C] -TO were added to 4 ml 

methanol:chloroform 2:1 in 10 ml glass tubes with screw caps. The tubes were vortexed 

(3 x 30 s) and maintained at room temperature (22 °C) before centrifuging at 2500 xg 

for 10 min. The entire lower layer was removed with a glass pipette into a 5 ml test tube 

and evaporated to dryness in a water bath at 40 °C under a stream of nitrogen. The 

residue was reconstituted into 10011.1 of the chloroform:methanol mixture and 15 i_t1 was 

immediately applied to a Merck silica gel 60 F254 aluminium sheet (Merck). Standards 

(10 IA of 10 mg/ml) of TO, CO, and oleic acid were also applied as spots. The plates 

were run using a mixture of n-heptane:diethyl ether:glacial acetic acid (80:20:1). Plates 

were visualized in an iodine tank and TO and oleic acid spots were scraped into separate 

plastic tubes and counted with 4 ml of Amersham Biodegradable Counting Scintillant. 

Recovery of counts after thin layer chromatography was periodically checked by 

comparing the total radioactivity scraped from one lane of the silica plate (a lane was 
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designated for each perfusate sample) with the known amount of radioactivity of the 

corresponding perfusate sample before solvent extraction. The recovery was between 90 

and 110 percent. 

4.2.6 Muscle radioactivity uptake 

After perfusion, the soleus, plantaris, G.White and G.Red, tibialis and EDL 

muscles of the perfused hindlimb were removed. Within the context of this study it is 

important to note that interfibrillar CT adipocytes are contained within each muscle. 

Excised muscles were counted for radioactivity using the method described in section 

2.4 of the Methods chapter. 

4.2.7 Statistical analysis 

The statistical significance of differences between groups of data was assessed 

by one or two way analysis of variance (ANOVA) for sets of perfusions containing 

multiple groups. For perfusions comparing only one group to the controls student's t-

tests were used. Significant differences were recognized at P<0.05. One, two or three 

symbols were used to show significance of P<0.05, P<0.01 and P<0.001 respectively. 

Symbols used were 's', `#' and '^' to show significance from controls, 5-HT and 5- 

HT+CCh respectively. 

4.3 Results 

The Clearance of chylomicron TG by perfused muscle has not previously been 

studied and it was therefore necessary to conduct a number of preliminary experiments 

to determine an optimal procedure. The commonly used albumin-containing perfusion 

medium was not entirely satisfactory as FFA released by LPL were subsequently bound 

by the albumin and little was taken up by the hindlimb. A second difficulty encountered 

was the high contamination of serum albumin by lipases. Thus lipase substrates such as 

p-nitrophenyl palmitate were rapidly hydrolysed (data not shown) causing basal rates of 
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hydrolysis to be largely attributable to these contaminants when using albumin-

containing perfusion medium. Accordingly, we chose to use Ficoll e-containing 

perfusion medium. With this medium there was no hydrolysis due to the perfusion 

medium alone and the uptake of released FFA occurred so that muscle-specific uptake 

could be compared at the completion of each perfusion. 

Figure 2 shows the time course for the effects of 0.5-1 gmol 5-HT, 0.5-1 11M 5- 

HT with 100 ptM CCh or 0.5 nM vasopressin on changes in V02 and PP in the constant 

flow, Ficoll®  perfused rat hindlimb. Changes in VO2 and PP both reached a maximum at 

15 min which then declined as the vasoconstrictors were metabolised by the hindlimb 

during the recirculating perfusion. However, changes in VO2 and PP were significantly 

different (P<0.05) from controls at all time points for 5-HT and vasopressin. The 

addition of CCh blocked the pressor and oxygen effects by 5-HT. Mean values for 

muscle [ 14C]-FFA uptake (60 min), oxygen uptake (15 min) and perfusion pressure (15 

min) are shown in Table 1. VO2 was inhibited by approximately 38.9% and muscle 

[ 14C1-FFA uptake increased by approximately 227.2 % by 5-HT (Table 1). The increase 

in TG hydrolysis and the decrease in oxygen uptake due to 5-HT were each significant 

(P <0.05 and P<0.001 respectively). FFA found in the perfusate of 5-HT perfusions 

were also significantly higher than the controls (P<0.05). These high hydrolytic rates 

were reversed when 5-HT effects were blocked by CCh and thereby supporting the view 

that the effects were indicative of flow redistribution, and not due to 5-HT receptor-

mediated effects on muscle cells. 

Addition of vasopressin to the buffer reservoir produced no significant decline in 

chylomicron TG hydrolysis (Table 1), despite an increase in V02 (Table 1). However, 

the perfusate FFA with vasopressin were significantly higher than those for the control 

perfusions (Table 1). 

Constant pressure perfusions were also conducted. These confirmed the high 

hydrolytic rates with 5-HT (Table 2). Since these perfusions deliberately used BSA 

rather than Ficoll® , FFA released from TO became bound to the BSA and allowed 

measurement of its appearance in perfusate samples. Corrections due to endocytosis 

were not necessary, however basal rates of TO hydrolysis in control perfusions may 
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Figure 2. Time course for the effects of 5-HT, 5-HT with CCh and vasopressin on 

oxygen consumption (V02) and perfusion pressure (PP) in the constant flow Ficoll ®- 

perfused rat hindlimb. All perfusions were conducted at constant flow (8 ml/min) using 

a recirculating mode (total buffer volume = 100 m1). Basal values are at t = —6.25 min. 

Additions at -6.25 min were vehicle •), 0.5-1 [iM 5-HT (0), 0.5-1 1AM 5-HT + 1001AM 

CCh (V) or 0.5 nM vasopressin (V). Values are means ± SE. **,P<0.01; ***,P<0.001 

for treatment versus vehicle (n=10-12). Due to the differences among most groups, 

values were only compared to control perfusions. 

71 



72 

Constant Flow Ficoll ®  Perfusions 

Control 5-HT 5-HT+CCh vasopressin 

TG hydrolysis (nmolFFAII I .g-1 ) 184 ± 28 602 ± 132** 231 ± 24#  255 ± 68" 

V02  (pmol.g-1 .11-1 ) 16.7 ± 0.6 10.2 ± 1*** 19.2 ± 2.1 4" 21.3 ± 0.9*"4  

PP (mmHg) 70.6 ± 5 170 ± 27*** 62.4 ± 7 ± 8" 

Muscle FFA (nmol.g-1 .11-1 ) 161 ± 25 508 ± 133* 200 ± 6.34  169 ± 55°  

Perfusate FFA (nmol.g-1  .11 1 ) 23.5± 12 93.1 ± 15* 30.7± 19 86.3 ± 22* 

Table 1. Effect of 5-HT, 5-HT + CCh, and vasopressin on TO hydrolysis, V02 and 

PP by the perfused rat hindlimb at constant flow. 

The TO substrate was a chylomicron-lipid emulsion (214). Perfusions were constant 

flow, recirculating and set at 8 ml/min. TO and oleic acid radioactivity analyses were 

conducted on perfusate samples taken at intervals of 15 min throughout perfusions of 60 

min duration (Fig. 2). Average rates of FFA formation (perfusate FFA) over 60 min 

were measured by thin layer chromatography. Muscle [ 14g-oleic acid uptake into the 

hindlimb were at 60 min. Values for maximal changes in V02 and PP were taken 15 min 

after recirculation. Values are means ± SE (n=5-7). One symbol, P<0.05; two symbols, 

P<0.01; three symbols, P<0.001. Symbols are and `#' to show significance from 

control and 5-HT perfusions respectively. 
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have been affected by contamination of the serum albumin by lipases (as confirmed by 

the high activity of serum albumin perfusate to hydrolyse p-nitrophenyl palmitate). As 

with the Ficoll®  perfusions, TO hydrolysis was however also increased with 5-HT in 

these constant pressure perfusions (Table 2). Increases in TO hydrolysis were not a 

result of 5-HT activating the enzyme (Table 3). 

The uptake of [ 14C]-FFA and [31-1]-CO into hindlimb muscles after one hour of 

chylomicron recirculation is shown in Figure 3. Panel A illustrates that perfusing the 

hindlimb with 5-HT increased the uptake of [ 14q-FFA into certain muscles. The 

increased uptake was significant in the soleus, plantaris and G.Red muscles. The 

percentage uptake of [ 311]-CO into hindlimb muscles from Fico11 ®  perfusions is shown 

in Figure 3, panel B. After TG hydrolysis the chylomicron retains the CO, and therefore 

the uptake of [31-1]-CO into muscles may be due to either endocytosis of the chylomicron 

or chylomicron remnant. Even if the reported CO uptake was of the nascent 

chylomicron, the uptake of [ 14C]-FFA into the muscles of the 5-HT perfusions were still 

considerably greater than that recorded for endocytosis. Therefore the [ 14C]-FFA found 

in the muscles are likely to be attributable to TG hydrolysis. Alternatively CO uptake 

exceeded that of TO in the vasopressin perfusions. This is suggestive of uptake of the 

chylomicron remnant. If this were the case then the FFA formed from TG in the 

chylomicron must remain in the perfusate. In fact, the perfusate FFA levels with 

vasopressin are significantly higher than the control value (Table 1). 

Figure 4 is a plot of the percentage content of slow oxidative fibres against the 

uptake of [ 14C]-FFA in a hindlimb preconstricted with 5-HT for each muscle. [ 14q-FFA 

uptake when flow is predominantly non-nutritive significantly correlates (r=0.987, 

P<0.001) with the percentage content of slow oxidative fibres. 
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Constant Pressure BSA perfusions 

Control 	5-HT 

TO hydrolysis (nmolFFA.11 1 .g-1 ) 201 ± 35 421 ± 63* 

VO2  (pmol.e.h-1 ) 16.2 ±2.9 6.7± 1.8* 

PP (nunHg) 84 ± 3 91 ± 8 

Table 2. Effect of 5-HT on TO hydrolysis, V02 and PP by the perfused rat 

hindlimb at constant pressure. 

A set of BSA Perfusions were conducted at constant pressure (set at approx. 85 mmHg). 

The TO substrate was a chylomicron-lipid emulsion (214). TO and oleic acid 

radioactivity analyses were conducted on perfusate samples taken at intervals of 30 min 

throughout perfusions of 120 min duration. Average rates were calculated and means ± 

SE (n=4) for V02  (30 min) and PP (30 min) are shown. *,./3<0.05 for 5-HT vs. control. 
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LPL activity (nmol.min-l .g-1 ) 

G.Red 
	

G.White 	 Plantaris 

Vehicle 198±52 110±40 150±60 

5-HT 180±30 90±30 70±5 

Table 3. LPL activity in muscle homogenates after BSA-perfusion with vehicle or 

5-HT. 

To assess whether 5-HT activated LPL during perfusion and therefore had a direct effect 

on the rate of TG hydrolysis, perfusions were conducted in which vehicle or 5-HT was 

infused for 20 min. Muscles were then excised, homogenized and assayed for LPL 

activity using the technique of G. Bengtsson-Olivecrona and T. Olivecrona (18). No 

difference was seen in the activity of muscle LPL after perfusion with 5-HT. Values are 

means ± SE (n=4-5). 



1200  
_Ng 

o. 9 0 0 

u. 
4 E = 600 

0.24 

0.08 

1500  - 

## 

300 Ii 

0.00 
co 
*• 

0. 

AA 
## 
** 

0 
'a 
rg 
6 ;13 

I- 

 

A 

 

AA  
## 
** A 

  

A 

     

Figure 3. Uptake of [ 14q-oleic acid and [311]-cholesteryl oleate ([3I-1]-CO) into 

hindlimb muscles in constant flow Fico11 6-perfused rat hindlimb using a chylomicron 

lipid emulsion (CLE) and heat-inactivated rat serum (HIRS) as a source of 

apolipoprotein CII. The effects of 5-HT (0.5-1 j.tM, 5-HT, black bar), 5-HT and CCh 

(0.5-1 1AM 5-HT + 100 p,M CCh, white bar) and vasopressin (0.5 nM, hatched bar) were 

measured for each CLE type and compared to perfusions with no additions (control, 

grey bar). CLE contained either or [ 14g-triolein ([ 14C]-TO (panel A)) or [ 311]-CO (panel 

B). The values in panel B are the percentage of total circulating CO that is taken up by 

each muscle. Values are means ± SE (n=4-7). Significance from 'no additions', from '5- 

HT' perfusions or from `5-HT+CCh' perfusions, are shown by "K ',` #' and '^' 

respectively, where one symbol denotes P<0.05, two symbols, P<0.01; and three 

symbols, P<0.001. 
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Figure 4. Uptake of FFA from a synthetic chylomicron emulsion using the mean values 

for uptake with 0.5-1 i.tM 5-HT for each hindlimb muscle and their corresponding 

percentage content of slow oxidative fibres. The linear regression produces an r 2  = 0.975 

(P<0.001). The percentage content of slow oxidative fibres was taken from reports by 

Ariano et al. (5) and Armstrong and Laughlin (6). Means are values ± SE (n=5-7). 



4.4 Discussion 

The importance of SM in total circulating lipid clearance is often 

underestimated, and all previous reports have neglected the effect of flow partitioning on 

TG clearance in muscle, due to the presence of nutritive and non-nutritive routes. Here 

we report that the hydrolysis of TO was markedly increased in the perfused rat hindlimb 

when a high proportion of CT flow occurred. In contrast, increasing the proportion of 

nutritive flow (vasopressin infusion) had no effect on TO hydrolysis. The reason for this 

is not clear, however the results indicate that the hydrolytic enzyme (presumably LPL) is 

not located exclusively in the non-nutritive vessels. 

Recruitment of CT flow for these experiments was induced by the addition of 5- 

HT, a representative Type B vasoconstrictor, which has previously been reported to 

decrease oxygen uptake, lactate output, glucose uptake (211) (212) and tension 

development of aerobically contracting muscle (64). All of these changes are 

characteristic of Type B vasoconstriction (46) and are representative of decreased 

nutrient delivery to muscle, and decreased muscle metabolism secondary to increasing 

the proportion of non-nutritive or CT flow within muscle (48). 

When CT flow was increased by addition of the vasoconstrictor, 5-HT, there was 
14- a marked increase in TG hydrolysis (indicated by [ L] .. FFA uptake) in the soleus, 

plantaris and G.Recl muscles. Uptake of [ 14C]-FFA greatly exceeded that of the CO with 

5-HT. This implies that uptake due to endocytosis of the chylomicron (causing TO 

radioactivity to be found in the muscle without any detectable amounts of hydrolysis) or 

of the chylomicron remnant (where all of theco--oleic j 	acid or [ 14q-TO in the muscle 

is due to hydrolysis) could not account for the observed increase. It is important to note 

that the reported increase in TG hydrolysis occurred without any stimulation of LPL 

activity by 5-HT. This indicates that the TG hydrolysis due to 5-HT is likely to be the 

result of a vascular effect whereby the exposure of TG to TG hydrolytic activity, 

presumably LPL is increased. From this, it would also seem likely that the distribution 
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of TG hydrolytic activity is greater along the non-nutritive or CT circuit that nourish 

interlacing adipocytes than along the nutritive route supplying muscle cells. 

Evidence that the vessels of non-nutritive flow are those of the CT associated 

with muscle has been supported by direct visualisation, during various pharmacological 

intervention (95) (181). The increased TG hydrolytic activity associated with flow 

through this region implies access to LPL associated with an active population of 

interfibrillar adipocytes. This population may correspond to the interfasicular fat cells 

responsible for the marbling effect of meat. The amount of muscle marbling is reported 

to be highly variable (269), which may contribute to the large error bars for the 5-HT 

data. In addition, the amount of muscle marbling can be used as a marker for red 

oxidative (type 1) muscle fibres (301). From the present study the uptake of [ 14C]-FFA 

from TG hydrolysis correlated with the percentage of slow oxidative fibres when flow 

was predominantly non-nutritive (i.e. with 5-HT, Fig. 4). Thus increases in CT blood 

flow proposed to occur with age, hypertension and diabetes (48) (181) (242) may 

therefore allow increased fat deposition and perimysial marbling within the muscle. 

Reports of fat cells being nourished by CT vessels have been implied from 

anatomical studies by Erikson and Myrhage (72) and Lindbom and Arfors (156). In 

addition, Camps et al. (35) reported diffuse LPL mRNA levels in the CT of SM. The 

location of adipocytes in this region would be consistent with the findings herein of 

increased TG hydrolysis where flow is significantly redirected through these vessels. 

From this it follows that the non-nutritive vessels supply the CT and the closely 

associated adipocytes. 

It therefore appears likely that the vascular system plays a significant role in 

partitioning lipid and carbohydrate between muscle and CT fat cells. This type of fuel 

partitioning is likely to be under the control of the local release of vasomodulators. 

Whereas predominantly nutritive flow (such as in exercise) allows delivery of glucose 

and FFA to muscle cells, non-nutritive flow to CT adipocytes could promote either TG 

hydrolysis or the deposition of FFA to form adipocyte TG. The presence of insulin and 

glucose in this latter circuit is likely to further nourish and stimulate adipocyte TG 

enlargement by providing glycolytically-derived glycerol phosphate. Since the two 

vascular networks are in parallel, FFA and glycerol hydrolysed from TG by the LPL 
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situated along the non-nutritive circuit must first enter the venous circulation and 

redistribute throughout the body before it is presented to the myocytes. This implies a 

mechanism evolved for the storage of excess fat rather than for use by neighbouring 

myocytes. van der Vusse (283) has suggested muscle CT fat cells may be an important 

store of TG. 

Many reports on muscle TG hydrolytic activity do not discern between 

myocytes, CT and fat cells. Any measure of such activity, including LPL from a whole 

muscle sample will contain all of these components. If the TG hydrolytic activity 

described in this study is of non-nutritive origin then data from whole muscle samples 

will be more dramatically effected than has previously been recognised (67). Therefore 

assays of muscle homogenate that are significantly contaminated by CT adipocytes may 

overestimate muscle TG hydrolytic activity, including that of LPL. Similarly no 

discrimination is made between the two flow regions possible in SM. A combination of 

these factors poses further difficulty when interpreting the data of any muscle 

preparation that receives nutrient by the vascular route. 

Until recently little has been reported on the presence of perimysial adipose 

tissue (which we have given the acronym 'PAT') or 'marbling' in humans. The most 

comprehensive studies to date are carried out for the meat industry, where marbling 

affects the tenderness and palatability of a cut of steak. In cattle intramuscular adipose 

tissue occurs mainly at perimysial sites however a small amount is deposited in the 

endomysium (182) (301). The amount of muscle marbling is higher in muscles with type 

1 fibres (301) where intramuscular deposition is a combination of increased hyperplasia 

and hypertrophy (cell number and size respectively (174)). Perimysial adipocytes are 

arranged in discrete compartments (approximately 100 pri in diameter in cattle), each 

surrounded by newly synthesized CT, and supplied by blood vessels (182) (174). With 

5-HT, flow appears to be redistributed through tissue where there is higher fatty acid 

extraction but decreased metabolic capacity. The blood vessels supplying perimysial 

adipocytes (174) are therefore strong candidates for the 'non-nutritive' network. 

Continual flow through these vessels will increase fatty acid uptake to these adipocytes 

and accelerate rates of marbling. 
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Gondret et al. (88) have proposed that the deposition of PAT may be a result of 

increased lipogenic enzymes, acetyl CoA carboxylase (rate-limiting step in FFA 

synthesis) and malic enzyme and glucose-6-phosphate dehydrogenase. Despite only 

small active levels of these enzymes being present in SM (AT and liver are the main 

lipogenic tissues), their sudden increase in later life in rabbit correlates to the accelerated 

rate of muscle marbling. Mourot and Kouba (169) found increases in malic enzyme to 

be the dominant factor in PAT accretion. Increases in TG synthesis are likely to be due 

to a combination of increased fatty acid synthesis and possibly increased uptake from 

the blood. TG are synthesised from the successive esterification of fattyacylCoA units 

(pre-synthesised or from the circulation) to a glycerol-3-phosphate backbone (derived 

from ATP-dependent phosphorylation of glycerol or reduction of dihydroxyacetone 

phosphate). Only small amounts of glycerol kinase are found in AT therefore most of 

the glycerol-3-phosphate produced is thought to be from glycolytic intermediates. 

Adipose glycerol kinase is however active in certain obese individuals where glycerol 

formed from lipolysis is re-esterified (40). Therefore, uptake of glycerol and fatty acids 

from blood will increase TG synthesis, particularly in certain forms of obesity. Insulin 

has been shown to increase AT LPL and decrease or not change the levels and activity 

of SM LPL (55). The addition of insulin will further stimulate LPL in the non-nutritive 

adipocytes. 

Previously ultrasound was used to detect increases in PAT (218). Ultrasound has 

been now superceded by the better resolution capability of computed tomography, 

where lipid is recorded as a negative attenuation. Using this technique, Sipila and 

Suominen reported an increase in muscle attenuation (decreased levels of PAT) in 

elderly male and female athletes (255). In addition, perimysial fat accretion was found to 

break up the collagen network between the fibre bundles (182) resulting in a reduction 

in muscle work capacity. While an increase in muscle density is recorded with training, 

the opposite appears to be true for obesity. Reduction in muscle density has been 

correlated with age and body weight (137) (254) (236). Negative attenuation of the mid-

thigh is also inversely related to insulin sensitivity (254) (93). Despite these correlations 

computed tomography is, however, unable to distinguish between fat located within the 

muscle fibres (intramyocellular) and fat located between the muscle fibres (PAT). 
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Indeed, many studies (including muscle biopsy) may actually be measuring a 

combination of both TG stores. 

Newer methods using 1 11 NMR spectroscopy are able to distinguish the two TG 

compartments in human muscle (245) (28) (195) (269). TG methylene proton signals 

occurring at 1.4 and 1.6 p.p.m. and are thought to represent TG inside the muscle fibres 

and TG in AT between the fibres respectively. At present it is unclear why the TG in 

these two compartments resonate at different frequencies, but is likely to be due to their 

different spatial arrangement/orientation in each cell type. This may include association 

of the TG with different structures (for example perilipin in AT) or location of the 

intramyocellular lipid in a more polar environment (270). Alternatively intramyocellular 

TG is contained in a spherical droplet unlike the tubular accumulation of PAT (28). 

These methods have increased in popularity (and are preferred over muscle dissection 

and painful needle biopsy) due to non-invasive measurements of live subjects. 

Intramyocellular TG content has been positively correlated with insulin 

resistance (reviewed in (91)) despite our reported decrease in capillary blood flow. 

However it remains uncertain whether increased myocyte TG is a result of or a cause of 

insulin resistance. Most reports would suggest that an increase in intramyocellular TG is 

a major cause of insulin resistance (144) (195) (197). Studies on the off-spring of type II 

diabetics which have a high risk factor for the disease revealed an elevated 

intramyocellular TG accumulation in the soleus (195). How tissue TG modulates insulin 

secretion and action is unknown. While the deposition if intramyocellular TG is 

increased preceding or during the early stages of insulin resistance, the deposition of 

PAT appears to be later on in life (301) (174) perhaps when muscle insulin resistance 

has been established. Therefore measurement of PAT content by proton magnetic 

resonance spectroscopy in the off-spring of Type 2 diabetic parents is similar to the 

offspring of healthy adults (123). However, acceleration of perimysial adipocyte 

accretion in the muscle of humans over 60 years old (both an increased size and number) 

was accompanied by obvious changes in vessel structure (242). 

In conclusion, TG hydrolysis was enhanced in the perfused rat hindlimb by the 

addition of the model vasoconstrictor 5-HT. 5-HT had no direct effect on LPL activity 

and thus alterations in TG hydrolysis are likely to be due to the ability of 5-HT to alter 
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flow patterns within muscle. Increases in non-nutritive flow (possibly with hypertension 

and insulin resistance) may therefore enhance perimysial, endomysial and tendon fat 

deposition, leading to increases in muscle adiposity. This is more likely to occur later in 

life and result in changes that are detrimental for muscle function. 
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CHAPTER 5 

5 Effect of predominantly nutritive and non-nutritive flow patterns on 

amino acid uptake and release by the perfused rat hindlimb. 

5.1 Introduction 

Chapter 3 of this thesis examined insulin-mediated glucose and palmitic acid 

uptake by the perfused rat hindlimb with the infusion of an agent (5-HT) that increased 

the ratio of non-nutritive to nutritive flow. This resulted in the decreased uptake of these 

metabolites. Long-term reductions in capillary flow may therefore contribute to elevated 

circulating levels of FFA and glucose. While lipid and carbohydrate fulfill the majority 

of SM fuel requirements, they are also able to utilize amino acids. As with glucose, 

amino acids are soluble in water (and plasma). Solutions of radiolabeled and cold amino 

acids can thus be infused into the vasculature of the hindlimb. Non-metabolizable amino 

acids such as a amino isobutyric acid (AIB) and a methyl amino isobutyric acid 

(methAIB) are often used (29). Here we have examined the uptake of the amino acid, a 

amino isobutyric acid (AIB) by the perfused rat hindlimb. Despite the high affinity of 

MB for the muscle system A transporter, the uptake of this derivative in the perfused rat 

hindlimb is very low when compared to other amino acids such as alanine (120). This 

non-metabolizable amino acid derivative is, however, advantageous for distinctly 

studying uptake of AIB only, as it is not incorporated into protein, and provided 

intracellular levels remain low, it is not re-released into the perfusate. 

In addition, we have determined the release of an indicator of SM myofibrillar 

(actin and myosin) degradation, 3-methyl histidine (3-MH) as well as net release of 

histidine. Almost 90% of 3-MH released from the body originates from SM (295). The 

anabolic effect of insulin involves both increased amino acid uptake and decreased 

amino acid release from muscle (29). As a result, the intracellular amino-acid pool is 

elevated. While insulin has been shown to attenuate total protein breakdown (tyrosine 

release (228) (166)), myofibrillar protein breakdown (3-MH release) is unaltered in the 
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perfused rat hindlimb (228) (130). In these experiments, however, we have altered the 

proportion of capillary/nutritive flow in the perfused rat hindlimb by the addition of 

certain vasoconstrictors with or without insulin. Altering the delivery of insulin under 

these conditions may affect 3-MH or histidine release or MB uptake. 

5.2 Materials and Methods 

5.2.1 Perfusion buffer 

Bovine RBC were washed in Krebs buffer which is gassed with 95% air:5% 

CO2. RBC were filtered through muslin and packed cells were added to 1.27 times 4% 

BSA/Krebs buffer (Chapter 2 section 2.2.2), 228 1.1.1/1 heparin, 2.54 mM CaCl2, 8.3 inM 

glucose and 1.32 g/1 pyruvic acid. Throughout the perfusion, the RBC buffer was 

continuously gassed with 95% air:5% CO2, both into the medium and through the 

artificial lung of the apparatus. 

5.2.2 Perfusion protocol 

The left hindlimbs of 180-200 g male Hooded Wistar rats were perfused with 

bovine RBC in a Krebs buffer at 4 ml/min and 37°C. Surgery was performed as 

described in Chapter 2 section 2.2.4, and the perfusion apparatus used is shown in Fig.2 

Chapter 2. The Clark-type oxygen electrode was calibrated using 100% oxygen and 

100% nitrogen, and measured dissolved oxygen in the perfusate only. 
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Figure 1. Perfusion protocol for the determination of AIB uptake by the perfused rat 

hindlimb. 

The hindlimbs were perfused according to the protocol shown above (Fig. 1). 

After a 40 min equilibration period, 50 mM AIB was infused with 400 Ci [ 14C] AIB and 

40 Ci [3H] mannitol for 30 min at a dilution of 1/100 (final concentration 0.5 mM AIB). 

Perfusions assessing the uptake with insulin used 18 mU/m1 of insulin (Ins, Humulin, 

Eli Lilly) added as a bolus to the perfusion buffer. In some perfusions, either 1 p.M 5-HT 

(5-HT) or 50 nM All (All) were infused 5 min prior to AIB infusion. AIB was infused 

for the remainder of the experiment (30 min). Venous samples were taken during basal 

conditions and 10, 20 and 30 minutes after AIB infusion. 

5.2.3 Radioactivity of hindlimb muscles 

Immediately after perfusion, the hindlimb muscles were removed and digested 

according to Chapter 2 section 2.4 for determination of radioactivity. 
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5.2.4 Radioactivity of plasma samples 

Venous samples were immediately centrifuged to remove RBC and 100 IA1 of 

plasma was added to 6 ml of Amersham Biodegradable Counting Scintillant for 

determination of radioactivity. Samples were counted for a dual-label ([3H] and [ 14C]). 

5.2.5 3-Methyl histidine release 

Derivatization of primary amines with fluorescamine (4-phenylspiro[furan-

2(3H), 1'-phthalan]-3,3'-dione) produces fluorescent fluorophors (Fig. 2). Un-reacted 

fluorescamine however, is rapidly destroyed by contact with water (282). Fluorescamine 

and all hydrolysis products are non-fluorescent (282), allowing easy detection of 

derivatized amino acids. In this chapter a modification of methods by Wasnner et al. 

(296) and Nakamura and Pisano (175) were used. Arterial and venous perfusate samples 

(taken 10 mins after the beginning of AIB infusion (70 min)) were derivatized with 

fluorescamine, and the 3-MH and histidine fluorophors were detected by C18 reverse-

phase HPLC with an in-line fluorimeter. 

Figure 2. Derivatization of primary amines with fluorescamine (modified from (282)). 
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Perchloric acid (2 M) was added to all perfusion samples to remove protein. 

Samples were then neutralized with 2.5 M K2CO 3 . Perfusate samples (501.11) were added 

to 200 pl 0.2 M boric acid buffer (pH 9) containing 10 iiM L-histidinol (Sigma) as an 

internal standard, and mixed before the addition of 250 11,1 of acetonitrile and 

fluorescamine (0.2 mg/ml, Sigma). The derivatization was performed at room 

temperature for 5 min in the dark. HC1 (250 i.t1 of 2M) was added and samples were then 

incubated at 80°C for 1 hour. After cooling to room temperature, samples were adjusted 

to pH 6.5 using 150 1.11 of 2.5 M K2CO3. Samples (100 ill) were then separated on a C18 

reverse-phase HPLC column, and run using a gradient of 10 mM sodium phosphate 

buffer in 20-40% acetonitrile (pH 7.5), as the mobile phase. Samples were run at 1.5 

ml/min and 3-MH, histidine and histidinol had retention times of approximately 10, 11 

and 20 mins respectively. Peaks were detected using a WinDaq data acquisition program 

attached to an in-line fluorimeter (excitation wavelength of 365 nm and an emission 

wavelength of 460 nm, sensitivity 100). Standards of 3-MH (Sigma) and L-histidine 

(Sigma) were conducted regularly to check the consistency of derivatization and 

separation. 

The area under the fluorescent curve for each standard concentration was 

determined (volts.$) and plotted against the standard concentration. The equations 

generated from the standard curves for 3-MH and histidine were used to calculate the 

concentration of these amino acids in the arterial and venous samples. The difference in 

venous and arterial concentration was used to calculate the release of the respective 

amino acids by the perfused hindlimb, using the equation: 

Rate = 6.3-MH or histidine (nmol/ml) 

x flow rate (ml/min) x 60 / muscle weight (g) 

= nmol/g/hr 

5.2.6 Statistics 

To determine statistically significant differences, one or two way analysis of 

variance was used (ANOVA). Significance was recognised at P<0.05. One, two or three 
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symbols were used to denote values of P<0.05, P<0.01 and P<0.001 respectively. 

Symbols used were "" (to show significance from control), `+' (to show significance 

from Ins), `#' (to show significance from 5-HT), `8,c' (to show significance from All) 

and `$' (to show significance from AII+ Ins). 

5.3 Results 

Due to the variability in basal oxygen tension (resulting from different batches of 

RBC) all differences are reported in terms of "change in oxygen consumption". The 

dissolved venous oxygen content and perfusion pressure (PP) of all experiments are 

shown in Figure 3 (panels A and B respectively). The maximal vasoconstrictor effects 

occurred at the beginning of constrictor infusion (10 min before AIB infusion). Venous 

dissolved oxygen content significantly increased by 5.8 ± 0.9 mmHg (P<0.001) during 

maximal stimulation with 5-HT, indicating decreased uptake by the hindlimb. Similarly, 

PP was significantly increased by 56.9 ± 11 mmHg (P<0.001). With the addition of 18 

mU/m1 (108 nM) Ins to the buffer, 5-HT increased venous dissolved oxygen (by 6.4 ± 

1.3 mmHg, P<0.001) and PP (by 66.9 ± 15 mmHg, P<0.001) by a similar amount. Ins 

infusion did not significantly alter dissolved oxygen content or PP from control 

perfusions. Infusion of 50 nM All significantly decreased venous oxygen content 

(indicative of increased oxygen uptake, and increased capillary flow) by 11.5 ± 1.5 

mmHg during maximal stimulation (P<0.001). This was accompanied by an increased 

PP of 41.4 ± 6.3 mmHg (P<0.01). Co-infusion of Ins with All, however, significantly 

reduced the vasoactive effect of All (venous oxygen decreased by 6.5 ± 1.4 mmHg 

(P<0.001 vs control and P=0.003 vs All), and PP increased by 18.3 ± 4.4 mmHg (not 

significant from control)). 

The uptake of AIB by the individual hindlimb muscles with all treatments is 

shown in Figure 4, panel A. Ins significantly increased AIB uptake into all muscles. 

When averaging the uptake across all muscles tested (Figure 4, panel B) Ins increased 

the uptake by approximately 2 times, from 434 ± 59 to 940 ± 87 nmo1/30min/g 

(P=<0.001). 5-HT infusion tended to decrease the uptake, however this was not 

significant (P=0.075). The infusion of 5-HT with Ins significantly decreased the uptake 
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of AIB compared to Ins infusion alone, in three of the six muscle tested (EDL, G.White 

and tibialis). This reduction in AIB uptake was significant for the average of the muscles 

tested (from 940 ± 87 to 658 ± 20 nmo1/30min/g (P=<0.05)). The infusion of MI did 

not significantly increase AIB uptake by the hindlimb. The co-infusion of Ins with An 

did not further increase AIB uptake above the uptake by ins stimulation alone. 

Very little difference was recorded between extracellular space and W.Wt. to 

D.Wt. ratio of the hindlimb muscles, with any of the treatments used (figures 5 and 6 

respectively). 

3-MH release from the tissues is an indicator of myofibrillar protein degradation. 

These values are shown in Figure 7. All infusion (50 nM) significantly increased the 3- 

MH release from the hindlimb compared to all other groups (P<0.001 for all groups vs 

All), including All + Ins (from 10.2 ± 0.7 to 3.9 ± 0.2 nmol/g/h). Ins alone did not 

significantly decrease 3-MH release compared to control perfusions. 5-HT infusion (1 

1AM) did not alter 3-MH release from control perfusions. 

Histidine release from the perfused rat hindlimb is shown in Fig.8. Histidine 

release was significantly inhibited by the infusion of 18 mU/m1 Ins (from 121 ± 15 to 55 

± 20 nmol/g/h, P<0.05). As with the 3-MH, histidine release was significantly increased 

by the infusion of All compared to all other groups, including AII+Ins (from 99 ± 12 to 

203 ± 17 nmol/g/h, P<0.001). 5-HT infusion (1 1AM) did not alter L-histidine release 

from control perfusions, however 5-HT+Ins significantly decreased histidine release 

compared to 5-HT infusion alone (from 128 ± 23 to 9.1 ± 5.8 nmol/g/h, P<0.01): 
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Figure 3. Change in oxygen partial pressure (Vp02, Panel A) and perfusion pressure 

(PP, Panel B) in the rat hindlimb perfiised with bovine RBC and BSA/Krebs buffer at 4 

ml/min, 37°C and either Ins (18mU/m1), 5-HT (1 iM), All (50 nM) or a combination of 

these agents. Insulin was added from the beginning of the experiment, while all 

vasoconstrictors were added 10 minutes before AIB infusion. At 0 min, [ 14C] AIB were 

infused in all experiments for the remaining 30 min. Symbols are 0, control; •, Ins; IN, 

All; 0, AII+Ins; V, 5-HT; V, 5-HT+Ins. Significant differences from control 

experiments are denoted by *, ** or *** to show P<0.05, P<0.01 and P<0.001 

respectively. Values are means ± S.E., n=5-6. Due to the differences between all group, 

only comparisons to control perfusions were made. 
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Figure 4. The uptake of [ 14C] AIB by the rat hindlimb perfused with bovine RBC and 

BSA/Krebs buffer at 4 ml/min, 37°C and either Ins (18 mll/m1), 5-HT (1 uM), All (50 

nM) or a combination of these agents. Insulin was added from the beginning of the 

experiment, while all vasoconstrictors were added at 10 min before AIB infusion. At 0 

min, [ 14C] AIB infused in all experiments for the remaining 30 min. The uptake into the 

individual muscles is shown in Panel A, and the average uptake for those muscles tested, 

is shown in Panel B. Bars are control (white), Ins (black), All (cross hatched), AII+Ins 

(grey), 5-HT (right hatched) and 5-HT+Ins (horizontal stripe). Significant differences 

are denoted by one, two or three symbols to show P<0.05, P<0.01 and P<0.001 

respectively. Significant differences are denoted by " 1", '+', '&', and '$' to show 

significance from control, Ins, All and AII+Ins respectively. Values are means ± S.E., 

n=5-6, for muscles after 30 minutes of AIB infusion. 
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Figure 5 Muscle extracellular space in the rat hindlimb perfused with bovine RBC and 

BSA/Krebs buffer at 4 ml/min, 37°C and either Ins (18 mU/m1), 5-HT (1 iiM), All (50 

nM) or a combination of these agents. Insulin was added from the beginning of the 

experiment, while all vasoconstrictors were added at 10 min before AIB infusion. At 0 

[ 14C] MB and [3H] mannitol were infused in all experiments for the remaining 30 

min. Bars are control (white), Ins (black), All (cross hatched), AII+Ins (grey), 5-HT 

(right hatched) and 5-HT+Ins (horizontal stripe). Values are means ± S.E., n=5-6, for 

muscles dissected after 30 mins of AIB infusion. 
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Figure 6 Muscle W.Wt:D.Wt. ratio in the rat hindlimb perfused with bovine RBC and 

BSA/Krebs buffer at 4 ml/min, 37°C and either Ins (18 mU/m1), 5-HT (1 1.IM), All (50 

nM) or a combination of these agents. Ins was added from the beginning of the 

experiment, while all vasoconstrictors were added 10 min before AIB infusion. At 0 

min, [ 14C] AIB was infused in all experiments for the remaining 30 min. Bars are control 

(white), Ins (black), All (cross hatched), AII+Ins (grey), 5-HT (right hatched) and 5- 

HT+Ins (horizontal stripe). Significant differences from AII+Ins are denoted by `$' 

(P<0.05). Values are means ± S.E., n=5-6, for muscles dissected 30 minutes after AIB 

infusion. 

94 



888 

888 

888 

888 

888 

12 

10 

8 0 

o 
2 E 
A S 4 

2 

2 
0 

Figure 7 3-methyl histidine release by the rat hindlimb perfused with bovine RBC and 

BSA/Krebs buffer at 4 ml/min, 37°C and either Ins (18 mU/m1), 5-HT (1 iiM), All (50 

nM) or a combination of these agents. Insulin was added from the beginning of the 

experiment, while all vasoconstrictors were added 10 mm before AIB infusion. At 0 
, [ 14C] AIB was infused in all experiments for the remaining 30 min. Bars are control 

(white), Ins (black), All (cross hatched), AII+Ins (grey), 5-HT (right hatched) and 5- 

HT+Ins (horizontal stripe). Significant differences are denoted by one, two or three 

symbols to show P<0.05, P<0.01 and P<0.001 respectively. Significant differences are 

denoted by `8L', and IP to show significance from All and 5-HT respectively. Values 

are means ± S.E., n=5-6, using venous samples taken 10 min after the beginning of MB 

infusion. 
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Figure 8 Muscle histidine release by the rat hindlimb perfused with bovine RBC and 

BSA/Krebs buffer at 4 ml/min, 37°C and either Ins (18 mU/m1), 5-HT (1 gM), All (50 

nM) or a combination of these agents. Insulin was added from the beginning of the 

experiment, while all vasoconstrictors were added 10 min before AIB infusion. At 0 

min, [ 14C] AIB was infused in all experiments for the remaining 30 min. Bars are control 

(white), Ins (black), All (cross hatched), AII+Ins (grey), 5-HT (right hatched) and 5- 

HT+Ins (horizontal stripe). Significant differences are denoted by ` 4", `8,e, and `ti' 

to show significance from control, AIL AII+Ins and 5-HT respectively. Values are 

means ± S.E., n=5-6, using venous samples taken 10 min after the beginning of AIB 

infusion. 



5.4 Discussion 

This chapter demonstrated that the uptake of AIB, and the access to products of 

protein breakdown, are altered by the addition of vasoconstrictors (5-HT and AID that 

have previously been shown to modify the ratio of muscle nutritive and non-nutritive 

flow in the perfused rat hindlimb (211) (212) (180) (53). 

Insulin significantly increased [ 14C] AIB uptake into all hindlimb muscles, 

probably due to insulin's stimulatory effect on the System A transporter. Insulin has 

been shown to increase the uptake of methAIB into incubated soleus muscle (277), and 

in cultured L6 muscle cells 100 nM insulin increased AIB uptake by greater than 50% 

(165). In the perfused rat hindlimb, in this study, insulin (108 nM) increased AIB uptake 

by a similar amount. 

AIB uptake was not further increased from control perfusions by capillary 

recruitment (AII infusion). Angiotensin, however, has been shown to cause significant 

protein breakdown (33), thus, the net movement of certain amino acids out of the muscle 

by the System A transporter may inhibit the uptake of AIB, despite an increase in 

capillary perfusion, causing no net effect on AIB uptake. There was a marked dilatory 

effect of insulin against AIL that was absent during insulin or 5-HT+Ins infusions. This 

resulted in a small increase in oxygen consumption, despite no net pressure effect 

compared to control perfusions. Thus, the effect of All (with insulin) on AIB uptake 

would be less than expected if the oxygen consumption reached the same level as with 

An alone. However as insulin is also present, the effect of insulin to increase amino acid 

uptake would oppose that of All to increase amino acid release. Due to the net uptake of 

AIB in these experiments, insulin appears to have a stronger effect than All on protein 

metabolism. 

5-HT tended to decrease the uptake of AIB into all muscles, however this was 

not significant. 5-HT infusion reduced insulin-mediated AIB uptake in four of the six 

muscles tested, and significantly decreased AIB uptake across the whole hindlimb when 

compared to insulin infusion alone. This implies that the infusion of the constrictor, 5- 
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HT (shown in Chapter 3 to reduce IMGU), is likely to reduce the uptake of all amino 

acids by the muscle, contributing to muscle protein wasting. 

In addition, 3-MH and histidine release from muscle were also influenced by the 

infusion of All, 5-HT, insulin or a combination of these agents. 3-MH is an indicator of 

myofibrillar protein (myosin and actin) breakdown. 3-ME is formed through a post-

translational methylation of histidine residues of actin and myosin (reviewed in (306)). It 

is often monitored in preference to tyrosine or phenylalanine (indicators of total muscle 

protein degradation) which are not metabolized or produced by SM, but can be 

resynthesized into muscle proteins (306). Moreover, to measure these amino acids, 

protein synthesis inhibitors such as cyclohexamide must be added to the perfusate. 3- 

MH measurement is therefore preferable as it is not re-utilized for protein synthesis. 

As shown by others (228) (130), in this study insulin did not decrease muscle 3- 

MH release compared to control perfusions, however histidine release was significantly 

reduced. Histidine accounts for 2% of the total amino acids released by the perfused rat 

hindlimb (reviewed in (90)). Reduced histidine release with insulin has also been shown 

by Meek et al. (166). Thus, from this study it appears that insulin inhibits the breakdown 

of certain cellular proteins, however not actin and myosin. 

All infusion (capillary recruitment) increased the release of both 3-MH and 

histidine, which is likely to be due to either a reduction in muscle protein degradation, or 

a build-up of these amino acids in the previously-unperfused capillaries. While 

increased 3-MH release with All may be a phenomenon of washout from newly 

recruited vascular space, this was found to be unlikely, as a combination of insulin with 

All did not increase the release of 3-MH. While it is likely that the reduction in pressure 

with insulin and All, may cause some reduction in muscle amino acid efflux, Brink et 

al. (33) have shown that All has significant effects on muscle protein breakdown and 

wasting, and as is evident from this study, on both myofibrillar and other cell proteins. It 

would therefore be of interest to determine the effects of other vasoconstrictors that do 

not influence amino acid metabolism directly but alter the proportion of nutritive and 

non-nutritive flow. 

5-HT infusion alone had no effect on the release of either amino acid. Since non-

nutritive (connective tissue) flow is likely to have reduced muscle capillary perfusion, 
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along with a reduction blood access to muscle amino acid transporters, then it would be 

expected that 5-HT would decrease the efflux of histidine and 3-MH. The release of 

these amino acids however remained unaltered with 5-HT infusion, suggesting 5-HT 

may also have some metabolic effect to increase muscle protein degradation. A 

combination of 5-HT and insulin significantly reduced the release of histidine compared 

to all other perfusion types except insulin alone, however had no effect on 3-MH 

release. This re-enforces the idea that insulin has no effect on the breakdown of 

myofibrillar proteins. 

It has been shown that amino acids are able to exert control over muscle protein 

synthesis and amino acid balance (158) (268) (277). Others have shown that branched 

chain amino acids decrease the rate of protein breakdown. Kadowaki et al. (130) 

measured 3-MH release from the rat hindlimb perfused with RBC containing either 

insulin or amino acids. Neither had any effect on 3-MH release. Similarly, the inclusion 

of 0.5 mM AIB in these perfusions is not likely to affect this process, as is not 

metabolized by the myocyte. The RBC-based perfusion medium, however, contained 

small amounts of 3-methyl histidine and histidine (probably from the RBC). It is 

therefore conceivable that there was some uptake of these amino acids by the perfused 

muscle. From these experiments however there was clearly a net release of these amino 

acids into the perfusate. 

SM holds the largest pool of protein in the body (reviewed in (306)). The 

conservation of body protein is under complex control and is dependent on the degree of 

fasting and the age and fat depots of the rat (89). Older rats have been shown to have 

higher levels of protein synthesis and less proteolysis than younger rats (89). In 

incubated soleus and epitrochlearis muscles from obese Zucker rats, basal AIB uptake 

was reduced compared to their lean counterparts (80), which may be a reflection of 

down-regulation of the system A transporter, due to chronic non-nutritive flow. 

These results show that 5-HT and All are able to alter amino acid uptake and 

release by perfused muscle, which appears to be a combination of metabolic effects and 

alterations in the ratio of nutritive and non-nutritive flow. All clearly stimulates muscle 

protein degradation and 5-HT may have similar effects. Insulin appears to inhibit the 
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breakdown of histidine-containing proteins, but not myofibrillar proteins. With regard to 

amino acid transport into the myocytes, the uptake of MB was stimulated by insulin. 

However, increasing the proportion of muscle non-nutritive flow (with 5-HT infusion) 

reduced insulin-mediated AIB uptake (which is probably indicative of general amino 

acid uptake) by skeletal myocytes. Thus, non-nutritive flow may contribute to muscle 

wasting. 
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CHAPTER 6 

6 Substrate effects on hormone action: Lipid infusion impairs insulin-

mediated capillary recruitment (nutritive flow) and muscle glucose 

uptake in vivo. 

6.1 Introduction 

SM accounts for approximately 80% of the insulin-mediated glucose uptake after 

a meal (58) and becomes resistant to insulin in Type 2 diabetes (59), hypertension (129), 

obesity (57) and severe forms of stress (193). However, the mechanisms by which 

muscle insulin resistance develops are not fully understood. One factor that may be 

central is lipid availability. For example, insulin sensitivity in humans is reduced in 

obesity (57) and especially when individuals possess an abnormally high proportion of 

abdominal fat (38). In addition, lipid infusion in humans (25) (293), and in rats (140) 

gives rise to insulin resistance in muscle. Furthermore, genetically obese Zucker rats 

have elevated plasma levels of free fatty acids and show marked muscle insulin 

resistance (19) as do rats fed high fat diets (267) (264); although the type of fatty acid 

appears rather critical as oils of fish origin are protective against the effects of animal fat 

diets (265). 

Explanations to account for the link between lipid availability and muscle insulin 

resistance have until recently focused on the Randle glucose-fatty acid cycle (206) in 

which fatty acid metabolites collectively contribute to the inhibition of oxidative and 

non-oxidative glucose metabolism. Recently, there has been a number of studies (119) 

(246) (97) suggesting that fatty acids or their metabolites inhibit insulin signaling at 

points preceding activation of glycogen synthase or glucose transport. 

Insulin in vivo has haemodynamic effects additional to its well-described direct 

metabolic action on muscle. Although the precise role of the haemodynamic effects are 
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unknown, it is possible that they contribute to the overall metabolic response by 

enhancing access for both insulin and glucose to muscle (14) (303) (209). There appear 

to be two components to insulin's haemodynamic actions, one involving an increase in 

bulk flow and another involving capillary recruitment. A number of laboratories have 

reported an effect of insulin to increase bulk blood flow to muscles (14) (125) (154) (78) 

(84) (54) (222) and that this effect is impaired in states of insulin resistance (14) and 

when lipid is infused in otherwise normally responsive subjects (262). However, the role 

of the increase in total blood flow mediated by insulin is controversial. There have been 

claims that insulin-mediated changes in total blood flow relate poorly to muscle glucose 

uptake under several circumstances, including insulin dose and time course (303). In 

addition, there have been studies where total flow changes persist when glucose uptake 

is inhibited (244). Also, most vasodilators that augment total blood flow to the limbs do 

not enhance insulin action nor do they overcome insulin resistance (177) (178) (150). 

Because of techniques unique to our laboratories, we have been the first to report 

a direct effect of insulin to increase capillary recruitment (or nutritive flow) within SM 

of anaesthetized rats (209) and the forearm of humans (50). Insulin-mediated capillary 

recruitment appears to be independent of changes in bulk blood flow to the limb in both 

rats and humans, particularly if physiologic levels of insulin are used (287). 

Measurement of capillary exposure (or nutritive flow) in anaesthetized rats was assessed 

using 1-MX metabolism. Hind limb metabolism of this infused substrate targeted for 

capillary endothelial xanthine oxidase was shown to increase in the presence of insulin 

(209). In addition, if a-methyl 5-HT (a-met5HT), an agent that prevented capillary 

recruitment in the hind limb was administered (210), or if TNFa was infused (305), the 

ability of insulin to increase either total blood flow or capillary recruitment in the hind 

limb was markedly impaired and insulin-mediated glucose uptake was blocked by 50- 

60%. 

Since there appears to be a link between insulin-mediated capillary recruitment 

and insulin-mediated glucose uptake in muscle, it was considered important to explore a 

model of insulin resistance where insulin-mediated muscle glucose uptake is impaired. 

Thus the aim of these experiments was to assess whether fatty acid-induced muscle 
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insulin resistance was accompanied by impaired capillary recruitment at physiologic 

insulin. 

6.2 Methods 

6.2.1 Surgery 

Details were essentially as described previously. In brief, 250 g rats were 

anaesthetized using Nembutal (50 mg.kg -1  body weight) and had polyethylene cannulas 

(PE-50, Intramedic®) surgically implanted into the carotid artery, for arterial sampling 

and measurement of blood pressure (pressure transducer Transpac IV, Abbott Critical 

Systems) and into both jugular veins for continuous administration of anaesthetic and 

other intravenous infusions. A tracheotomy tube was inserted, and the animal was 

allowed to spontaneously breathe room air throughout the course of the experiment. 

Small incisions (1.5 cm) were made in the skin overlaying the femoral vessels of both 

legs, and the femoral artery was separated from the femoral vein and saphenous nerve. 

The epigastric vessels were then ligated, and an ultrasonic flow probe (Transonic 

Systems, VB series 0.5 mm) was positioned around the femoral artery of the right leg 

just distal to the rectus abdominis muscle. The cavity in the leg surrounding the flow 

probe was filled with lubricating jelly (H-R, Mohawk Medical Supply, Utica, NY) to 

provide acoustic coupling to the probe. The probe was then connected to the flow meter 

(Model T106 ultrasonic volume flow meter, Transonic Systems). This was in turn 

interfaced with an IBM compatible PC computer which acquired the data (at a sampling 

frequency of 100 Hz) for femoral blood flow, heart rate, and blood pressure using 

WINDAQ data acquisition software (DATAQ instruments). The surgical procedure 

generally lasted approximately 30 min and then the animals were maintained under 

anesthesia for the duration of the experiment using a continual infusion of Nembutal 

(0.6 mg.min-1 .kg-1 ) via the left jugular cannula. The femoral vein of the left leg was used 

for venous sampling, using an insulin syringe with an attached 29G needle (Becton 

Dickinson). A duplicate venous sample was taken only on completion of the experiment 

(360 min) to prevent alteration of the blood flow from the hindlimb due to sampling, and 
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to minimize the effects of blood loss. The body temperature was maintained using a 

water-jacketed platform and a heating lamp positioned above the rat. 

6.2.2 Experimental Procedures 

A 60 min equilibration period was allowed after surgery so leg blood flow and 

blood pressure could become stable and constant. Rats were then allocated into either of 

three protocols A, B, or C (Fig. 1). Protocol A involved 6h infusion of saline with a 2h 

euglycemic clamp (Humulin R, Eli Lilly & Co., Indianapolis, 3mU.min -1 .kg-1 ) 

commenced 4h into the saline infusion (Ins). Protocol B (Lip) involved an initial bolus 

dose of heparin (10 units) before a 6h infusion of 10% Intralipid TM  / heparin (33units.ml-

1 ) at 20 1.11.min-1  with a 2h saline infusion commenced 4h into the lipid infusion. Protocol 

C (Lip + Ins) was identical to Protocol B except that a 2h euglycemic clamp replaced the 

2h saline. Volumes were matched between all three protocols (209) (210) (305). As in 

previous similar studies and since 1-MX (Sigma Aldrich Inc) clearance was very rapid, 

it was necessary to partially inhibit the activity of xanthine oxidase, particularly in non-

muscle tissues. To do this, an injection of a specific xanthine oxidase inhibitor, 

allopurinol (71) (10 imole.kg-1 ) was administered as a bolus dose 5 minutes prior to 

commencing the 1-MX infusion (0.5 mg.min -l .kg-1 ) (Fig. 1). This allowed constant 

arterial concentrations of 1-MX to be maintained throughout the experiment. 

As shown in Fig. 1, a 50 IACi bolus of 2-deoxy-D-[2,6- 3H]glucose (2-DG) 

(specific activity = 44.0 Ci.mmo1 -1 , Amersham Life Science) in saline was administered 

45 min before completion of the experiment. Plasma samples (20 p.1) were collected at 5, 

10, 15, 30 and 45 minutes to determine plasma clearance of the radioactivity and for the 

calculation of R'g. At the conclusion of the experiment, the soleus, plantaris, EDL, 

G.Red and white and tibialis muscles were removed, clamp frozen in liquid nitrogen and 

stored at -20°C until assayed for [3H]2-DG uptake. 

The total blood volume withdrawn from the animals before the final arterial and 

venous samples did not ,exceed 1.5 ml and was easily compensated by the volume of 

fluid infused. 
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All other procedures were as described previously (305), including analytical 

methods for glucose, 1-MX, allopurinol and oxypurinol assays. Free fatty acids were 

assayed using a NEFA C Colorimetric Kit (Wako). 

6.2.3 2-DG uptake assay 

The frozen muscles were ground under liquid nitrogen and homogenised using 

an Ultra TurraxTm. Free and phosphorylated [ 3H]2-DG were separated by ion exchange 

chromatography using an anion exchange resin (AG1-X8) (145) (126). Biodegradable 

Counting Scintillant-BCA, (Amersham, USA) was added to each radioactive sample and 

radioactivity determined using a scintillation counter (Beckman LS3801, USA). From 

this measurement and a knowledge of plasma glucose and the time course of plasma 2- 

DG disappearance, Rig, which reflects glucose uptake into the muscle, was calculated as 

previously described by others (145) (126) and is expressed as pg.miri l .g-lwet weight of 

muscle (126). 

6.2.4 Data analysis 

All data are expressed as means ± SE. Mean femoral blood flow, mean heart 

rate and mean arterial blood pressure were calculated from 5 second sub-samples of the 

data, representing approximately 500 flow and pressure measurements every 15 

minutes. Vascular resistance in the hind leg was calculated as mean arterial blood 

pressure in millimetres of mercury divided by femoral blood flow in ml.min -1  and 

expressed as resistance units (RUs). Glucose uptake in the hind leg was calculated from 

arterio-venous glucose difference and multiplied by femoral blood flow and expressed 

as pmol.min-I . The 1-MX disappearance was calculated from arterio-venous plasma 1- 

MX difference and multiplied by femoral blood flow (corrected for the volume 

accessible to 1-MX, 0.871, determined from plasma concentrations obtained after 

additions of standard 1-MX to whole rat blood) and expressed as nmoles.min-1. 
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6.2.5 Statistical analysis 

In order to ascertain differences between treatment groups at the end of the 

experiments (i.e. hindleg glucose uptake, R'g, and 1-MX metabolism) one way analysis 

of variance was used. Statistical differences between treatment groups for repeated 

measures throughout the 6 hours (i.e. blood pressure, heart rate, femoral blood flow, 

vascular resistance, blood glucose and GIR) were determined using two way repeated 

measures analysis of variance. All comparisons were made using the Student-Newman-

Keuls method. The correlation between 1-MX disappearance and hindleg glucose uptake 

was determined by linear regression. All tests were performed using the SigmaStat TM  

statistical program (Jandel Software Corp.). Significance was determined by P values 

less than 0.05. One, two or three symbols were used to denote P values of <0.05, <0.01, 

<0.001 respectively. The symbols used were "" (to show significance from Ins treated 

group) and T (to show significance from Lip + Ins treated group). 

6.3 Results 

6.3.1 Haemodynamic effects 

Figure 2 shows the arterial blood pressure (BP), heart rate (HR), femoral arterial 

blood flow (FBF) and hind leg vascular resistance (VR) for the three different protocols 

of saline for 6h with Ins over the last 2h (Ins), Intralipid TM/heparin  for 6h and Ins over 

the last 2h (Lip + Ins), and Intralipid TM/'heparin  for 6h and saline replacing Ins over the 

last 2h (Lip). Although there was a trend for FBF of Lip + Ins treated rats to be less than 

Ins treated rats at the closing stages of the clamp (340-360 min), this was not significant. 

There was no significant difference between Ins, Lip or Lip + Ins treated rats for any of 

• the other three parameters BP, HR, or VR. 

6.3.2 Glucose metabolism 

Blood glucose levels for the three Ins, Lip and Lip + Ins treated groups are 

shown in Fig.3. Blood glucose was allowed to set its own level during the first four 



107 

hours (0-240 min), and in general this remained constant at approximately 5 mM. 

However, there was some variability for Intralipid TM  /heparin treated rats and for one 

group (Lip) there was a small transient fall at 120 min which then recovered, so that at 

240 min all three groups were similar. In addition, there was a rise in the blood glucose 

level in the Lip treated rats at the 360 min time point; which was significantly higher 

than both Ins and Lip + Ins treated groups. The inset shows glucose infusion rate (GIR) 

to maintain euglycemia for Ins and Lip + Ins treated groups. For Ins treated group the 

GIR increased from zero to 9.0 ± 0.3 at 250 min (10 min), then to 11.9 ± 0.6 mg.kg" 

1 .min-I  at 360 min (120 min), while that for Ins + Lip group decreased from approx. 9.0 

at 250 min to 1.5± 0.6 mg.kg -1 .min-1  at 360 min. The differences in GIRs to maintain 

euglycemia became significant as early as 20 min after commencement of the Ins 

infusion. 

Measurements for arterial plasma free fatty acids were taken immediately prior 

to the commencement of the 2 hour Ins clamp. Four hour infusion of 10% Intralipid TM  

/heparin significantly increased arterial plasma free fatty acids to 3.9 ± 0.6 mM 

(P<0.001) in Lip + Ins treated animals and to 5.3 ± 0.6 mM in Lip treated animals 

(P<0.001) compared to animals receiving no lipid infusion (0.3 ± 0.1 mM). There was 

no significant difference between the free fatty acid levels in the two groups receiving 

Intralipid TM  /heparin. 

Hind leg glucose uptake values for Ins, Lip + Ins, and Lip groups are shown in 

Fig. 4. Infusion of Intralipid TM  /heparin alone (Lip) for 6h did not affect HGU and the 

value determined at the end of the experiment was similar to saline (basal) values 

previously reported at the end of 2h (305). However, the combination of Intralipid TM  

/heparin for 4h prior to, and during the 2h clamp significantly reduced the stimulatory 

effect of Ins from a net of 0.45± to 0.25 mol.min -1 ; an inhibition of 44%. 

6.3.3 1-3HJ 2-DG uptake 

[3H]2-DG was administered for the final 45 min of each experiment. Figure 5A 

shows uptake values for soleus, plantaris, EDL, G.Red and white, as well as tibialis 
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muscles removed at the completion of the experiment Values for soleus and plantaris 

muscles were 7.9 ± 0.7 and 4.9± 0.51Ag.miri l .g.1 , respectively, following infusion of 

Intralipid TM  /heparin alone (Lip) for 6h. Ins infusion alone (Ins) increased the values for 

R'g in soleus (3.2 fold), plantaris (2.4 fold), EDL (2 fold) and G.Red (2.4 fold) when 

compared to Lip treated animals (Fig. 5). Notwithstanding the presence of the lipid in 

the control situation which may have influenced the rate of basal 2-DG uptake, the 

magnitude of stimulation by Ins at 3mU.min -l .kg-1  was less than previously reported for 

the higher dose of 10mU.min-1 .kg-1  of 6.5 fold for soleus and 7.8 fold for plantaris 

muscles (305). Intralipid TM  /heparin (Lip + Ins) infusion markedly inhibited the 

stimulatory effect of Ins in three of the six muscles (soleus, plantaris and G.Red). In 

addition, Figure 5B shows that Lip + Ins significantly inhibited R'g for the combined 

muscles (aggregated on proportional weight) from a net stimulatory effect by Ins of 6.4 

to 2.0 This represents an inhibition of 69%. 

6.3.4 1-MX metabolism 

No significant difference was found between the experimental groups in arterial 

plasma concentrations of 1-MX (Fig. 6A) or oxypurinol (3.5± 0.5 pM, Ins; 4.0 ± 1.2 

p.M, Ins + Lip; 4.0 ± 0.7 1AM; Lip), the metabolite of allopurinol and inhibitor of 

xanthine oxidase. 

Ins infusion alone (Ins) significantly increased hind leg 1-MX metabolism 

relative to Lip group (P<0.01) (Fig. 6C). However, the increase in 1-MX metabolism 

with Ins was inhibited with Intralipid TM  /heparin infusion (P<0.05). 

When individual data for hind leg glucose uptake were plotted against 

corresponding values for 1-MX disappearance and analyzed by linear regression a 

positive correlation was noted (Fig. 7A; r = 0.6, P = 0.014). There was no correlation 

between hind leg glucose uptake and FBF (Fig. 7C), nor between FBF and 1-MX 

metabolism (Fig. 7B). 
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Figure 1. Study design. In two (protocols A and C) the euglycemic-

hyperinsulinaemic (3mu.min-l .kg-1 ) clamp was commenced 4h after the start of saline 

(protocol A, Ins) or Intralipid TM/ heparin (protocol C, Lip + Ins) infusion. During 

protocol B (Lip) saline replaced Ins at 4h. Duplicate arterial and femoral venous plasma 

samples were collected at 360 min, as indicated by sfe) P , for HPLC analysis and plasma 

glucose determinations. Heparin, allopurinol and [ 31-112-DG were injected as indicated 

by P at 0, 295 and 315 min, respectively. Arterial samples were also taken for 

monitoring plasma [3H]2-DG radioactivity at 5, 10, 15, 30 and 45 after injection (not 

shown). Arterial samples for glucose determinations are indicated by 4. Venous 

infusions are indicated by the bars. 
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Figure. 6. Arterial 1-MX (A), end arterial femoral blood flow (B) and hind leg 1-MX 

disappearance (C) values of Ins, Lip + Ins, and Lip groups. Values are means ± SE. 

Significant differences from Ins are indicated by *,P <0.05; and **, P<0.01. 
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6.4 Discussion 

The main finding emerging from this study was that Intralipid TM/heparin caused 

a marked decrease in insulin-mediated capillary recruitment in muscle. This was evident 

as an inhibition of 65% of the insulin-mediated metabolism of infused 1-MX and 

occurred in conjunction with insulin resistance at the whole body level characterized by 

diminished GIR and an equally marked reduction in insulin-mediated metabolic changes 

in the hind leg. These included an inhibition of 45% of the insulin-mediated glucose 

uptake by the hind leg, and an inhibition of 69% of the insulin-mediated uptake of 2-DG 

by muscles of the lower leg. The reductions in insulin-mediated changes occurred at 

physiologic insulin levels (287) and a total exposure to Intralipid TM/heparin for 6h that 

included 2h during the hyperinsulinaemic euglycemic clamp. This impairment of 

insulin-mediated capillary recruitment by Intralipid/heparin is the second 

haemodynamic defect of insulin to be reported as impaired bulk leg blood flow in 

humans (261) treated with Intralipid TM/heparin has been described. 

A second finding to emerge from this study was the positive correlation between 

hind leg glucose uptake and 1-MX metabolism (Fig. 7A). This contrasted with hind leg 

glucose uptake and femoral arterial blood flow, where there was no significant 

correlation. The absence of a correlation between leg glucose uptake and FBF resulted 

from the absence of a difference for FBF between any of the three treatment protocols, 

Ins, Lip or Lip + Ins. This was despite individual animal differences for hind leg glucose 

uptake and 1-MX metabolism. 

The present study represents yet another where we have documented a close 

relationship between glucose uptake and capillary recruitment under hyperinsulinaemic 

euglycemic clamp conditions. Previously this has been described for a-methyl 5-HT 

(210). Other studies with TNFa (305), and exercise-trained rats (213) also show parallel 

adjustments between insulin-mediated hind leg glucose uptake and capillary 

recruitment. A recurring correlation between insulin-mediated glucose uptake and 

insulin-mediated capillary recruitment, implies but does not necessarily prove causality. 

In one of the prior studies, we reported a marked inhibition of insulin-mediated glucose 
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uptake when insulin-mediated capillary recruitment was blocked pharmacologically by a 

peripherally acting serotonergic agonist, a-methyl 5-HT (210). This intervention was 

based on experiments using the isolated pump-perfused rat hind leg where the 

vasoconstrictors, a-methyl 5-HT or 5-HT were found to redirect flow from nutritive to 

the non-nutritive route (179). Indirect evidence that serotonergic agonist-mediated 

insulin resistance did not result from a direct effect on muscle glucose uptake and 

metabolism was obtained using isolated incubated muscle preparations (211) where the 

vascular distribution of insulin and glucose is not involved. In that preparation, 5-HT 

had no effect on insulin-mediated glucose uptake (211). Thus, it would appear likely that 

insulin-mediated glucose uptake becomes partly inhibited by denying access for insulin 

and glucose to regions of the muscles of the perfused hind leg or the hind leg in vivo. 

Similarly, an increase in nutritive blood flow whether mediated in perfused muscle by 

vasoconstrictors (48), or in vivo by insulin (209), leads to increased muscle glucose 

uptake. However, even if insulin-mediated capillary recruitment contributes in part to 

the increase in muscle glucose uptake by this hormone in vivo by acting to enhance 

access for itself and glucose, no information emerges from the present or previous 

studies (209) (210) (305) as to mechanism. Given that an increase in bulk blood flow is 

not involved, increased capillary (nutritive) flow must then result from a redistribution 

of flow from the non-nutritive route. That being so, a net vasodilatation of sites 

controlling entry of blood to the nutritive route mediated by insulin is likely. We know 

that insulin-mediated capillary recruitment is NO-dependent (289) and there are a 

number of possible mechanisms to account for the effect. Firstly, insulin may act at 

insulin receptors on endothelial cells to produce NO, which in turn permeates adjacent 

vascular smooth muscle cells to lower the vascular tone of pre-capillary sphincters. In 

favor of this mechanism is that this process is NO-dependent and is thus consistent with 

our preliminary data (289), that eNOS knock-out mice are insulin resistant (66) and 

there are data that TNFa interrupts insulin signaling to eNOS in this cell type (139); 

against, is the fact that to do so insulin must access the sites that it is going to dilate. 

This requires that some flow is occurring before insulin arrives at these sites. Also 

against this possibility is the preliminary report that vascular endothelial insulin receptor 

knock-out mice are not insulin resistant (286). Secondly, insulin may act at insulin 
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receptors on the vascular smooth muscle cells (131) to cause vasorelaxation. This 

mechanism would also be NO-dependent (289), but free of endothelial cell involvement 

in signaling. However, accessing is also a key issue as it is for a direct endothelial effect. 

The mechanism has some attraction as TNFa is known to inhibit insulin signaling in 

vascular smooth muscle cells, although to date this has been restricted to the ERK1/2 

activation step (85). Thirdly, insulin may act at insulin receptors on SM to activate 

glucose transport and metabolism to produce a metabolite (e.g. adenosine) that 

permeates adjacent tissue to react with appropriate receptors on endothelial and/or 

vascular smooth muscle cells to result in vasorelaxation. Such a mechanism would 

resemble that occurring in exercise where vasodilatory metabolite(s) are released by 

working muscle to facilitate local blood flow. This mechanism would not necessarily be 

NO-dependent, but would be inhibited by agents that inhibit muscle glucose 

metabolism. A variant of this third mechanism is where a form of NOS is activated in 

SM independently of glucose metabolism. NO could then permeate neighboring tissue 

as above. The terminal half of this mechanism (82) might be simulated by AMPK 

activation with AICAR addition. Regardless, all mechanisms will be sensitive to 

inhibitors of insulin signaling. 

From the present study it is clear that elevated plasma free fatty acids resulting 

from the infusion of Intralipid TM/heparin has led to an inhibition of insulin-mediated 

capillary recruitment and glucose uptake in muscle. The question now arises as to how 

this has occurred. Until recently, the focus has been on the metabolic effects of the fatiy 

acids on muscle glucose metabolism. In 1963 Randle et al. (206) proposed the notion of 

competition between glucose and free fatty acids as oxidative fuel sources in muscle 

(glucose-fatty acid hypothesis). Despite a number of studies (74) (77) (153) examining 

the effect of fatty acids on SM glucose metabolism, it is still controversial whether 

insulin resistance in diabetes and obesity result from increased plasma fatty acids. A 

number of sites in glucose metabolism have been reported to be inhibited by fatty acids 

and it is generally agreed that raising free fatty acids increases fatty acid oxidation at the 

expense of carbohydrate oxidation. Sites in glucose metabolism include inhibition of 

hexokinase by long-chain acyl CoA (275), which by reducing glucose 6-phosphate 

concentrations could lead to the inhibition of glycogen synthesis and glycolysis. 
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However, this may not be the explanation as plasma free fatty acid concentrations of 

approx. 0.75 mM in humans, give rise to an increase in intramuscular glucose 6- 

phosphate concentrations (26). There have been independent reports that glycolysis 

(128) and glycogen synthesis (41) are inhibited. Some have found inhibitory effects on 

glucose uptake (274) (75) but most did not (20) (300) (30) (21). A complication in 

identifying the precise site(s) is that the effects of fatty acids on insulin-stimulated 

glucose metabolism are time-dependent (27) (227). Roden et al. (227) claim that the key 

event is glucose transport. Non-invasive NMR of stable isotope-enriched fuels in the 

muscle of healthy humans showed that the reduction in glycogen synthesis by elevated 

plasma free fatty acids was preceded by a fall of muscle glucose 6-phosphate 

concentrations starting at approximately 1.5h (162). However, This could not be 

explained by changes in the amount of insulin-regulatable glucose transporter protein in 

either oxidative or glycolytic muscle. In view of this, recent studies have focused on 

insulin signaling. A particularly valuable approach has been to assess signaling in 

muscle in vivo. With this approach, Griffin et al. (97) reported a decrease in IRS-1 

associated P13-Kinase activity, and a blunting in insulin-stimulated IRS-1 

phosphorylation. Since this was accompanied by a marked increase in protein Icinase C 0 

activity, Griffin et al. (97) propose that activation of PKC 0 is responsible for the 

decrease in insulin signaling, glucose transport and dependent metabolism including 

glycolysis, glucose oxidation and glycogen metabolism. 

If capillary recruitment is a consequence of glucose metabolism and mediated by 

a generated product, then impairment of glucose metabolism by fatty acids acting via 

PKC 0 would be expected to curtail the component of 1-MX metabolism increased by 

insulin. However, if we assume insulin signaling mechanisms are similar in most tissues, 

then impairment of insulin signaling in vascular tissue by any of the mechanisms 

discussed above could also inhibit insulin-mediated capillary recruitment. On balance, 

existing data would favor the latter direct mechanism to affect vascular tissue. There is 

some data that helps this argument. Thus Lind et al. (155) have demonstrated 

impairment in endothelial function by free fatty acids in human forearm in terms of a 

reduced response to local intra-arterial methacholine relative to nitroprusside. In 

addition, Steinberg et al. (261) have shown that free fatty acid elevation impairs insulin- 
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mediated vasodilatation and NO production in the legs of insulin-sensitive subjects 

undergoing euglycemic-hyperinsulinaemic (40mU.m-2 .min-1 ) clamps. 

In conclusion, elevation of plasma free fatty acid levels for 6h during a 

hyperinsulinaemic-euglycemic clamp at physiologic insulin, leads to whole body insulin 

resistance with impaired insulin-mediated muscle glucose uptake and capillary 

recruitment. We propose that the fatty acids induce an impairment of insulin signaling in 

vascular tissue. The reduction of insulin-mediated muscle glucose uptake may in part be 

due to reduced access for insulin and glucose. 
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CHAPTER 7 

7 General discussion 

7.1 Summary of thesis results 

This thesis primarily investigated the interplay between hormone and substrate to 

influence muscle fuel uptake, by altering regional muscle blood flow. A key approach 

involved the uptake of metabolites by perfused rat SM when a high non-nutritive to 

nutritive ratio was maintained pharmacologically. During hyperinsulinaemia and a high 

non-nutritive to nutritive ratio, the uptake of palmitic acid, a amino isobutyric acid 

(AIB) and glucose were reduced. This paralleled reduced oxygen uptake and lactate 

efflux previously reported by this laboratory (46) (211). The reduced uptake is likely to 

be a combination of reduced insulin and substrate access to the muscle cells, thus 

creating an acute state of haemodynamic insulin resistance. Chronic effects of non-

nutritive flow may therefore contribute to the elevation of these fuels in the plasma. 

Moreover, the reduction in uptake of fuels by myocytes (if maintained for extended 

periods) may alter muscle oxidative capacity and long-term insulin sensitivity. In 

contrast, the hydrolysis of chylomicron-TG was increased with predominantly non-

nutritive flow. This was attributed to an increased exposure of the chylomicrons to 

lipolytic enzymes (probably LPL) located in non-nutritive vessels adjacent to CT 

adipocytes. Continual nourishment of non-nutritive adipocytes may lead to fat accretion 

between the muscle fibres. A further effect studied concerned the influence of FFA on 

glucose uptake by muscle, and on muscle's action to augment this process by increasing 

access for itself and glucose in vivo. Thus, the latter part of this thesis showed elevated 

FFA to attenuate the vasodilatory action of insulin on capillary recruitment. Elevated 

FFA may therefore augment non-nutritive flow and the associated adverse metabolic 

effects. This inability of insulin in the presence of fatty acids to shift flow from the non-

nutritive vessels may be an innate protective mechanism by the muscle to prevent excess 
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FFA uptake into the myocytes. FFA may therefore indirectly modulate capillary flow, 

thus exerting some control over fuel partitioning in SM. 

7.2 Implications of this work 

Combined results from chapters 3 and 5 showed that the infusion of 5-HT with 

insulin reduced muscle uptake of glucose, fatty acids and amino acids. As this was 

common to all fuels tested (with the exception of chylomicron TG), it appears that this 

drug causes a defect in bulk clearance, which is most likely due to changes in muscle 

blood flow distribution and capillary recruitment. The high proportion of non-

nutritive/nutritive flow stimulated by 5-HT may adversely affect fuel partitioning within 

the muscle. It is likely in a healthy human there is considerable oscillation between 

blood flow in the nutritive and non-nutritive networks. For example, during rest, flow is 

likely to predominantly partition into the non-nutritive network in parallel with a 

reduced metabolic requirement. However during periods of exercise, flow to the 

nutritive capillaries increases. Low physical activity and fat rich diets may impinge 

sufficiently to create a state where the magnitude of these oscillations is reduced and 

flow predominantly occupies the non-nutritive vessels. This will result in less uptake 

and release of metabolites from the muscle and may produce adverse metabolic effects, 

including acute haemodynamic insulin resistance, and in the longer term phenotypic 

characteristics of chronic insulin resistance. 

Chronic insulin resistance is associated with reduced oxidative capacity of 

muscle, which may be a reflection of chronic non-nutritive flow (as above). Obese and 

diabetic muscle have been shown by others to have reduced oxidative enzyme activity 

(succinate dehydrogenase) and increased glycolytic capacity (a-glycerol-phosphate 

dehydrogenase) despite no significant difference in muscle fibre type (110). Such results 

suggest that the impairment in oxidative metabolism chronologically precedes the 

change of fibre type (which has previously been suggested as the cause of insulin 

resistance. Hernandez et al. (112) showed that in SM biopsies of hypertensive men there 

was a significant decrease in beta-hydroxy-acyl-CoA dehydrogenase, citrate synthase 

and hexokinase, but no change in muscle TG or FFA, suggesting reduced oxidation and 
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reduced FFA uptake. Reduced oxidative enzymes in SM has also been positively 

correlated with insulin resistance (22). In some animal models the relationship is less 

clear. For example, Pujol et al. (204) reported increased activity of citrate synthase and 

beta-hydroxy-acyl-CoA dehydrogenase in SM of obese Zucker rats, while Ide et al., 

(121) showed that the SM of obese Zucker rats had reduced ability to oxidize palmitic 

acid. 

Chapter 4 of this thesis reported that increased non-nutritive or CT flow at the 

expense of muscle capillary (or nutritive) flow using the model vasoconstrictor 5-HT (5- 

HT), increases chylomicron TG hydrolysis in muscles with predominantly slow-

oxidative fibres. Therefore vessels diverting flow away from muscle capillaries with 5- 

HT (and reducing oxygen uptake) are probably accessing a highly active perimysial 

adipose tissue (PAT). Since the perimysium is the major site of intramuscular fat 

accretion in red muscles (182) the vessels running through the perimysium are likely to 

be those of the non-nutritive network. Therefore SM blood flow has the potential to 

deliver unesterified fatty acids to the muscle for oxidation, or to the adjacent CT for 

storage. As shown by Rattigan et al. (209), when non-nutritive flow predominates to 

create an acute state of insulin resistance, there is a breakdown of control over this 

partitioning whereby insulin is unable to recruit muscle capillary flow. Therefore it 

would be expected that excess glucose and lipid would be delivered to the muscle CT. 

The presence of insulin in this circuit would stimulate glucose uptake into PAT and 

provide the glycerol-3-phosphate backbone needed for subsequent TG synthesis. By this 

mechanism, insulin should further stimulate fatty acid uptake and storage into non-

nutritive adipocytes of red muscles. Altering the access of lipoprotein-TG to LPL 

enables fuel partitioning between the SM fibres and the adipocytes interlaced between 

them. Healthy muscle may contain small amounts of PAT between the muscle fibre 

bundles. With insulin resistance however, continual deposition may force the fibres 

apart, or fat cells may enlarge in conjunction with fibre atrophy as a consequence of 

reduced muscular activity. PAT probably evolved as a storage depot for excess TG 

adjacent to the myocytes. Adipocyte accretion within SM is therefore more likely to be 

the result rather than the cause of insulin resistance. Whether these cells contribute to 

insulin resistance once it has been established remains to be determined. The release of 
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factors such as TNF a, leptin and adipocyte related protein (ACRP) from PAT may 

contribute to the general systemic (paracrine?) signals that affect metabolism and insulin 

sensitivity in SM. 

Excess TNFa secretion clearly has adverse effects on insulin action (305). It is 

primarily secreted by adipocytes to regulate size of fat cells (reviewed in (205)), but has 

recently also been shown to be produced by SM (183). A number of reports have shown 

that TNFa release is increased with insulin resistance (191) (183). Excessive PAT may 

contribute to this increased TNFa production with insulin resistance. Reports on the 

action of TNFa to inhibit IMGU by SM however have been conflicting. While Del 

Aguila et al. (60) reported that TNFa decreases IMGU by muscle cells in culture, Storz 

et al. (266) showed no decrease in IMGU by cultured differentiated muscle cells despite 

significant reductions in early events in the insulin-signaling cascade (i.e. reduced 

tyrosine phosphorylation of IR and IRS1 and P13-Kinase). However, in these 

experiments it is possible that the activity of GLUT1 had increased to compensate for 

the reduced GLUT4 activity. Nolte et al. (184) however saw no decrease in the 

phosphorylation of the insulin receptor, IRS-1 and the association of P13-Kinase (thus 

no decrease in IMGU) in isolated SM acutely pretreated with very high levels of TNFa 

for extended periods (e.g. up to 8 hrs) before insulin stimulation. However, TNFa may 

exclusively interrupt insulin-signaling to produce NO in endothelial cells in vivo (139), 

in which case, effects of TNFa in in vitro preparations may not be expected. 

Leptin is another paracrine signaling molecule secreted from fat cells which has 

been shown to have beneficial effects on SM fatty acid uptake and metabolism (259) in 

addition to its well documented action on the central nervous system (reviewed in 

(216)). Leptin receptors are situated in SM, and leptin promotes lipolysis and lipid 

metabolism, thus decreasing SM TG (151). Yaspelkis III et al. (302) showed that leptin 

administration to rats fed a high fat diet ameliorated the decrease in IMGU by SM, by 

increasing GLUT4 translocation to the plasma membrane. Excessive release of leptin in 

humans (87), from large fat deposits (possibly including PAT) can cause leptin 

resistance contributing to both decreased FFA oxidation by muscle (259) and increased 

appetite (reviewed in (216)). 
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Recently another signaling molecule released exclusively from adipocytes, 

adipocyte related protein (ACRP or AdipQ), was discovered. Fruebis et al. (81) 

produced a recombinant form of ACRP that was found to increase both SM fatty acid 

uptake and oxidation. It also decreased plasma glucose by an unknown mechanism. The 

release of ACRP has been shown to be reduced in obesity (117). Excess PAT may 

contribute to this phenomenon, resulting in decreased FFA uptake. 

Chapter 6 of this thesis showed that the infusion of IntralipidTM  and heparin 

during a euglycaemic/hyperinsulinaemic clamp in rats prevented insulin-mediated 

capillary recruitment. It will be of considerable interest to determine if the signal for 

insulin-induced capillary recruitment originates from the muscle, endothelial cell, or 

smooth muscle, and where FFA interfere with this signal. Some evidence comes from 

experiments by Baron and coworkers involving FFA-impaired endothelial dependent 

vasodilatation (as measured by total leg blood flow (262)). NO production was 

attenuated (261), but no evidence could be found for NOS inactivation within isolated 

aorta (251). If endothelial cells lining SM blood vessels react in a similar manner to 

isolated aorta, then it is of interest to determine how FFA act to indirectly inhibit eNOS. 

One possibility is that elevated FFA induce a signaling molecule that interferes with 

eNOS. Alternatively, FFA may inhibit the release of a molecule that normally acts on 

the endothelium for NO production, which is released directly or indirectly from SM 

glucose metabolism. Alternatively, FFA may inhibit insulin signaling in the myocytes, 

endothelium or both. As discussed in chapter 6, FFA have been shown by others to 

inhibit events earlier in the insulin signaling cascade such as at PKC theta (97) or 

phosphorylation of the insulin receptor, IRS-1 and PKB/Akt (266). 

There seems little doubt that FFA therefore interfere with endothelial dependent 

vasodilatation (262) (261). Whether FFA interfere with capillary recruitment during 

exercise by the same mechanism is unknown, and unlikely. Insulin-mediated capillary 

recruitment is generally thought to be endothelial NO dependent (289), however with 

exercise-induced dilation this remains contentious. In exercise, NO may be released by 

the muscle, as discussed earlier. Acute exercise increases NOS (e and nNOS) in SM 
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myocytes (225). Regardless, elevated FFA do not attenuate exercise increases in blood 

flow (187) as they do with insulin (261). 

7.3 Future considerations 

Reduced nutritive capillary flow with insulin resistance will reduce oxygen, 

insulin glucose, amino acid and lipid availability to the muscle fibres and contribute to a 

decline in metabolic capacity. This thesis underscores the importance of regional muscle 

blood flow in fuel partitioning and insulin sensitivity, which can be manipulated through 

diet, exercise or possible pharmacological agents. 

Determining the cellular mechanism for capillary recruitment will help to 

develop drugs to increase muscle metabolism and insulin sensitivity. Insulin is initially 

detected by the extracellular domain of the insulin receptor that is located on both the 

endothelial plasmamembrane and the sarcolemma. This causes a conformational change 

that stimulates autophosphorylation of certain residues on the intracellular domain of the 

insulin receptor, then attracting and causing phosphorylation of the downstream IRS 1. 

This allows association of IRS! with P13-Kinase to activate PKB/Akt. PKB/Akt is now 

thought to be involved with both GLUT4 translocation (reviewed in (114) (133)) and 

NOS activation (62) through divergent pathways. In SM this would provide a direct 

coupling of metabolism to dilation. If we are able to determine where FFA interfere with 

this signal we may be able to initiate mechanisms to prevent it. Moreover, the 

administration of drugs that enhance signalling effects at an early point in insulin 

signaling (i.e. before PKB/Akt) are likely to be beneficial. Alternatively, substances that 

increased SM glucose metabolism may also enhance capillary recruitment, particularly 

if the dilatory signal emanates from skeletal muscle. 

Controlling dietary intake may be beneficial in the prevention and treatment of 

insulin resistance. In addition to their protective effects against muscle insulin resistance 

(263), n-3 polyunsaturated fats have been shown to have beneficial affects on blood 

flow (23). In addition, cod protein extracts have recently been shown to enhance IMGU 

in cultured muscle cells and isolated muscles (152). This effect could be simulated by 
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the addition of the same mixture of amino acids (152). A mixed cocktail of amino acids 

has also been shown to have positive effects on muscle blood flow (159). 

The most beneficial treatment for NIDDM is exercise. Exercise has been shown 

to have positive effects on IMGU by muscles, and reductions in TG in fat depots. 

Exercise also has positive effects on eNOS (225). Unlike visceral fat, PAT has been 

shown to be very resistant to stimuli such as exercise. For example, regular walking 

does not reduce the amount of fat infiltrating SM (255). For many people however drugs 

targeted at enhancing capillary recruitment will need to be administered during periods 

of low activity because the same individuals who are insulin resistant are also almost 

always obese, and either unable to exercise or non-compliant. 

One potential substance that may be beneficial in improving nutritive flow is 

tetrahydrobiopterin (BH4). BH4 is a cofactor for NOS dimerization and is synthesised 

from guanosine triphosphate (reviewed in (173)). Intravenous administration of BH4 

significantly increased myocardial blood flow, as assessed by positron emission 

tomography in healthy volunteers (294). Recently BH4 has also been shown to improve 

arginine uptake into rat cardiomyocytes, probably through upregulation of arginine 

transporters (247). It has also been shown that BH4 is released from endothelial cells, 

and it is likely to diffuse to underlying smooth muscle as a cofactor for NOS in this 

tissue (reviewed in (243)). Importantly, BH4 incubation improved endothelial dependent 

vasodilator in aortic strips of fructose fed rats, suggesting a deficiency in these rats 

(252). Moreover, administration of a pteridine derivative (6-methyl-5,6,7,8 

tetrahydrobiopterin) abolished endothelial dysfunction in aortic rings of streptozotocin 

diabetic rats (198). 

Vitamin C treatment of cultured human umbilical vein endothelial cells 

increased the activity of eNOS without increasing the expression of this enzyme. The 

increased activity was thought to be due to augmented levels of BH4 (8). This effect was 

also seen with the administration of the BH4 precursor sepiapterin but not another 

scavenger of superoxide anions, Mn (III) tetra kis (4-benzoic acid) porphyrin chloride 

(8), and it was concluded that vitamin C increased the delivery of BH4 to eNOS 

independently of its antioxidant effect. Another beneficial effect of vitamin C is the 

antioxidant property of scavenging free radicals, which drastically reduce the half-life of 
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NO (271). Vitamin C improved endothelial dysfunction in the forearm of type II 

diabetics (276). 

Oxidative stress is associated with a reduction in PKB/Akt and GLUT4. This 

effect can be prevented by the administration of lipoic acid, which induces marked 

dilator responses with insulin in diabetic aorta. Lipoic acid also stimulates PKB/Akt and 

glucose transport in 3T3-L1 adipocytes by reducing oxidative stress (235), and 

stimulates P13-Kinase and PKB/Akt and glucose uptake in L6 myotubes (143). 

Statins (HMGCoA reductase inhibitors) also have the ability to increase eNOS 

independently of their effect to lower cholesterol. Two week administration of 

mevastatin increased coronary blood flow by 30% \(reviewed in (3)). 

S-acyl cysteine sulfoxide (SACS) isolated from garlic was shown to be 

beneficial in alloxan diabetic rats (7). Inducible NOS (iNOS) is upregulated as an 

inflammatory response by TNFa but is shown to be down-regulated by SACS, while 

SACS activated eNOS and suppressed hydroxyl radical production (141). Another 

substance isolated from garlic, Alliosan, has also been shown to be beneficial in 

augmenting the skin microcirculation of healthy volunteers (as assessed by Laser-

Doppler fluxometry) (299). 

The effects of these substances on capillary recruitment (and dissociation of total 

flow effects) may be assessed using currently established methods in our laboratory or 

the laboratory of our collaborators in the USA. The metabolism of the capillary 

endothelial enzyme, xanthine oxidase, can be assessed by the metabolism of 1-MX as 

used in this thesis. Alternatively, contrast enhanced ultrasound could be employed, 

where circulating albumin microbubbles depict areas of capillary blood flow. 

While increased FFA may produce some reduction in total flow, it is likely that 

capillary recruitment is also affected. Insulin effects on capillary recruitment in vivo 

occur after 30 minutes of infusion (287). If insulin was acting directly on the endothelial 

cell, myocyte or vascular smooth muscle to produce vasodilatation then we may expect 

recruitment earlier on. Ultimately this can be tested by infusion of a substance that 

interfere with the translocation of GLUT4. By disrupting a signal further downstream in 

the cascade from PKB/Akt (which has effects on NOS), the effects may be separated, as 
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vasodilatation may remain, but metabolism may not. If neither occurs, then it is likely 

that the metabolism caused the vasodilatation. Recently it has been shown that the 

protease inhibitors (indinavir, ritonavir and amprenavir) significantly reduce IMGU by 

directly inactivating GLUT4 (171). Indinavir inhibited insulin-mediated GLUT4 

transport to the plasmamembrane and glucose uptake of incubated rat muscles, however 

did not decrease insulin stimulation of P13-Kinase activity or PKB/Akt phosphorylation 

(185). However, Caron et al. (39) incubated differentiated 3T3-F442A cells with 

Indinavir and found reduced insulin binding to the insulin receptor, and reduced MAP 

Kinase activity, but no reduction in IRS-1 phosphorylation. The effect of these 

substances however needs to be determined on capillary recruitment in vivo. 

7.4 Summary of conclusions 

In vivo, the elevated FFA associated with insulin resistance will prevent capillary 

recruitment with insulin, probably by interfering with endothelial cell insulin signaling. 

Flow will therefore favorably partition into the non-nutritive (likely to be perimysial) 

vessels and affect the uptake of blood-borne nutrients. Due to the denial of insulin and 

glucose to the myocytes, non-nutritive flow will induce a state of muscle insulin-

resistance for glucose. The uptake of fatty acids and amino acids will be similarly 

affected. Hydrolytic activity for circulating chylomicron TG, however, could be 

expected to be more active in the non-nutritive vessels of the red muscles, thereby 

elevating FFA levels. Moreover, the elevated FFA (from increased TG hydrolysis, and 

decreased muscle uptake) will magnify the high non-nutritive to nutritive muscle blood 

flow. FFA may thus be indirect mediators for non-nutritive flow, a mechanism 

preventing their excessive FFA uptake by SM. Ultimately, continual elevation of fatty 

acids will increase non-nutritive flow and contribute to the inability of muscle to take up 

amino acids, fatty acids and glucose in the presence of insulin, and accelerate adipocyte 

accretion (human marbling) associated with muscle fibres. Finally, an important case for 

the future will be determining the role of PAT in contributing to the production of both 

endocrine and other signaling factors in SM. 
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Increased chylomicron triglyceride hydrolysis by 
connective tissue flow in perfused rat hindlimb: 
implications for lipid storage 

L. H. Clerk, M. E. Smith, S. Rattigan, and M. G. Clark' 

Division of Biochemistry, Medical School, University of Tasmania, Hobart, Australia 7001 

Abstract Skeletal muscle has two circulatory routes, nutri-
tive (in contact with muscle) and non-nutritive (part of 
which is located in the connective tissue), and the balance 
of flow between the two is controlled by neural input and 
circulating vasomodulators. The purpose of this study was 
to assess muscle triglyceride hydrolysis given that the two 
circuits may have a differing vascular distribution of hydro-
lytic activity. The isolated rat hindlimb was perfused with 
6% Ficolle and a radiolabeled chylomicron-lipid emulsion 
containing apolipoprotein C-I!. Serotonin (0.5-1 .LM), a 
model vasoconstrictor previously shown to preferentially in-
crease connective tissue flow, inhibited hindlimb oxygen up-
take (from 16.7 ± 0.6 to 10.2 -± 1.0, mean ± SE, n = 7 
(P <0.001)) and stimulated [HQ-labeled fatty acid uptake 
into muscles (from 184 ± 28 to 602 ± 132, mean -1-  SE, 
n = 7 (P = 0.009)). These effects were reversed by the 
vasodilator carbamyl choline. Vasopressin resulted in in-
creased oxygen consumption but no change in triglyceride 
hydrolysis. Cholesteryl oleate uptake (an indicator of en-
docytosis of the chylomicron or remnant particle) was unal-
tered by serotoninal It is concluded that chylomicron tri-
glyceride hydrolysis is enhanced by vasoconstrictors that 
increase connective tissue flow in the perfused .rat hind-
limb. Increased hydrolysis appears to be primarily due to an 
increased access of triglyceride to hydrolytic enzymes, pre-
sumably lipoprotein lipase associated with the fat cells com-
monly observed interlaced amongst bundles of muscle 
fibers.—Clerk, L. H., M. E. Smith, S. Rattigan, and M. G. 
Clark. Increased chylomicron triglyceride hydrolysis by con-
nective tissue flow in perfused rat hindlimb: implications 
for lipid storage. J. Lipid Res. 2000. 41: 329-'335. 

Supplementary key words lipoprotein lipase • nutritive flow • non-
nutritive flow • oxygen consumption • perfusion pressure 

The uptake of lipoprotein triglycerides (TG) into target 
tissues requires initial hydrolysis and this is thought to be 
facilitated by the enzyme lipoprotein lipase (LPL). LPL is 
attached to the vascular endothelium by proteoglycans 
which allow protrusion of the enzyme into the vascular lu-
men. Here it acts to hydrolyze TG from circulating TG-
rich lipoproteins (chylomicrons and very low density lipo-
proteins) into free fatty acids (FFA) and glycerol. The  

resulting FFA are taken up by tissues capable of lipid oxi-
dation (e.g., muscle) or storage (e.g., adipose tissue, mus-
cle) (1, 2). 

The hydrolysis of TG to FFA and glycerol has been 
found to be proportional to the active amount of LPL in 
the vasculature (3) and ultimately may depend on 
whether circulating TG has access to the active form of 
LPL or other hydrolytic enzymes. In skeletal muscle an 
important determinant of muscle metabolism is substrate 
supply to the myocytes and is controlled by the propor-
tioning of flow between two distinct vascular circuits (4, 
5). The first is termed nutritive and describes flow pre-
dominantly to the muscle cells. Blood flowing through the 
second circuit, termed non-nutritive, almost certainly 
passes through vessels of the connective tissue associated 
with the muscle (6). Flow through this route results in the 
physical isolation of nutrients and hormones (including 
oxygen, glucose, TG, and insulin) from the myocytes (7). 
As a result there is limited opportunity for muscle nutri-
ent uptake. As TG hydrolysis is dependent upon its expo-
sure to hydrolytic enzymes, it follows that the total hydrol-
ysis of TG entering the muscle will be greater when the 
predominance of flow is through the circuit in which the 
majority of the hydrolytic activity is distributed. To date 
there have been no studies describing the location of skel-
etal muscle TG hydrolytic activity including LPL, and its 
relative distribution in muscle nutritive capillaries or in 
connective tissue vessels (non-nutritive for muscle) (6). 

The concept of a dual vascular system in skeletal muscle 
was proposed as early as the 1940s. Experiments done by 
Pappenheimer (8) showed that norepinephrine adminis-
tration to the gastrocnemius nmscle of dogs resulted in an 
increase in oxygen consumption while stimulation of vaso- 

Abbreviations: 5-HT, serotonin; 	apolipoprotein C-II; CO, 
cholesteryl oleate; LPL, lipoprotein lipase; HMS, heat-inactivated rat 
serum; V0 2 , oxygen consumption; PP, perfusion pressure; CLE, chylo-
micron lipid emulsion; TO, triolein; FFA, free fatty acid (unesterifiecl); 
TG, triglyceride; BSA, bovine serum albumin; HEPES, N12-hyclroxy-
ethyl] piperazine-N' [2-ethanesulfonic acid]; CCh, carbamyl choline. 
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choice. Thus 5-HT (Sigma) was added as a bolus into the buffer 
reservoir of the appropriate perfusions to give a final concentra-
tion of 0.5-1 p.M (to achieve a peak perfusion pressure of ap-
proximately 100 mm Hg above basal). After discarding the first 
30 ml of perfusate (of the 130 ml perfusion medium containing 
CLE) the remaining 100 ml was recirculated through the hind-
limb for 1 h. Samples (2.5 ml) were withdrawn from the venous 
line every 15 min. 

In some experiments the vasodilator CCh was infused at a final 
concentration of 100 p.i to reverse the effects of 5-HT on PP and 
V09. CCh infusion commenced before buffer was recirculated. 
This was designed to allow the PP and VO2 to return to near-
basal states before TG recirculation and prevent perfusion under 
predominantly non-nutritive conditions. Infusion was continued 
for a further 12.5 min after recirculation. 

The type A vasoconstrictor vasopressin was added as a bolus 
dose (0.5 nm) to the reservoir of some perfusions to investigate the 
effects of increased V09 and PP on chylomicron TG hydrolysis. 

Triglyceride hydrolysis 
Perfusate samples (1 ml) from perfusions using [ 14C1TO were 

added to 4 ml methanol—chloroform 2:1 in 10-ml glass tubes 
with screw caps. The tubes were vortexed (3 X 30 s) and main-
tained at room temperature (22 °C) before centrifuging at 2500 g 
for 10 min. The entire lower layer was removed with a glass pi-
pette into a 5-ml test tube and evaporated to dryness in a water 
bath at 40°C under a stream of nitrogen. The residue was recon-
stituted into 100 ill of the chloroform—methanol mixture and 15 
p.1 was immediately applied to a Merck silica gel 60 F254  alumin-
ium sheet (Merck). Standards (10 pi of 10 mg/ml) of TO, CO, 
and oleic acid were also applied as spots. The plates were run using 
a mixture of n-heptane—diethyl ether—glacial acetic acid 80:20:1. 
Plates were visualized in an iodine tank and TO and oleic acid 
spots were scraped into separate plastic tubes and counted with 4 
ml of Amersham Biodegradable Counting Scintillant. Recovery 
of counts after thin-layer chromatography was periodically 
checked by comparing the total radioactivity scraped from one 
lane of the silica plate (a lane was designated for each perfusate 
sample) with the known amount of radioactivity of the corre-
sponding perfusate sample before solvent extraction. The recov-
ery was between 90 and 110%. 

Muscle radioactivity uptake 
After perfusion, the soleus, plan taris, gastrocnemius white and 

red, tibialis and extensor digitorum longus muscles of the per-
fused hindlimb were removed. Within the context of this study it 
is important to note that interfibrillar connective tissue adipo-
cytes are contained within each muscle. Excised muscles were 
freeze-dried overnight to obtain dry weight and later re-hydrated 
with 1 ml of water and 1 ml of Soluene® (tissue solubiliser; Pack-
ard). When digestion was complete, 100 ill of acetic acid was 
added together with 14 ml of Amersham Biodegradable Count-
ing Scintillant. 

Statistical analysis 
The statistical significance of differences between groups of 

data was assessed by unpaired, two-tailed Student's 1-test. Signifi-
cant differences were recognized at P.< 0.05. 

RESULTS 

Clearance of chylomicron TG by perfused muscle has 
not previously been studied and it was therefore necessary 
to conduct a number of preliminary experiments to deter- 

mine an optimal procedure. The commonly used albit-
min-containing perfusion medium was not entirely satis-
factory as FFA released by LPL were subsequently bound 
by the albumin and little was taken up by the hindlimb. A 
second difficulty encountered was the high contamina-
tion of serum albumin by lipases. Thus lipase substrates 
such as p-nitrophenyl palmitate were rapidly hydrolyzed 
(data not shown) causing basal rates of hydrolysis to be 
largely attributable to these contaminants when using 
albumin-containing perfusion medium. Accordingly, we 
chose to use Ficollkcontaining perfusion medium. With 
this medium there was no hydrolysis due to the perfusion 
medium alone and the uptake of released FFA occurred 
so that muscle-specific uptake could be compared at the 
completion of each perfusion. 

Figure 1 shows the time course for the effects of 0.5-1 
p,mol 5-HT, 0.5-1 Rm 5-HT with 100 Rim CCh or 0.5 nm va-
sopressin on changes in V0 2  and PP in the constant flow, 
Ficoll® perfused rat hindlimb. Changes in V0 2  and PP 
both reached a maximum at 15 min and then declined as 
the vasoconstrictors were metabolized by the hindlimb 
during the recirculating perfusion. However, changes in 
V0 2  and PP were significantly different (P < 0.05) from 
controls at all time points for 5-HT and vasopressin. The 

0 	15 	30 	45 	60 
Time after recirculation (min) 

Fig. 1. Time course for the effects of serotonin (5-HT), 5-HT with 
carbamyl choline (CCh), and vasopressin on oxygen consumption 
(V02) and perfusion pressure (PP) in the constant flow Ficolle-
perfused rat hindlimb. All perfusions were conducted at constant 
flow (8 ml/min) using a recirculating mode (total buffer volume = 
100 ml). Basal values are at t = —6.25 min. Additions at —6.25 min 
were vehicle (•), 0.5-1 jim 5-HT (0), 0.5-1 p.M 5-HT + 100 p. 
CCh (•) or 0.5 nm vasopressin (V). Values are means ± SE. ** P< 
0.01; *** P< 0.001 for treatment vs. vehicle (n = 10-12). 
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Fig. 2. Uptake of [ 14Cloleic acid and [ 3 1-1]cholesteryl oleate ([ 3 1-1] 
CO) into hindlimb muscles in constant flow Fico11 6-perfused rat hind-
limb using a chylomicron lipid emulsion (CLE) and heat-inactivated 
rat serum (HIPS) as a source of apolipoprotein C11. Hindlimb mus-
cles dissected include the soleus (Sol.), plantaris (Plant.), extensor 
digitorum longus (EDL), gastrocnemius red (GR), gastrocnemius 
white (GW) and tibialis (Tib.). The effects of serotonin (0.5-1 p.m, 
5-1-1T, black bar), 5-HT and carbamyl choline (0.5-1 p.m 5-HT + 
100 p.m CCh, white bar) and vasopressin (0.5 nm, hatched bar) were 
measured for each CLE type and compared to perfusions with no 
additions (control, grey bar). CLE contained either [ 14C]triolein 
([ 14C1TO (panel A)) or [ 3 HICO (panel B). The values in panel B 
are the percentage of total circulating CO that is taken up by each 
muscle. Values are means -1-  SE (n = 4-7) * P< 0.05; ** P< 0.01; 
*** P< 0.001 for treatment versus vehicle. 

micron must remain in the perfusate. In fact, the perfu-
sate FFA levels with vasopressin are significantly higher 
than the control value (Table 1). 

Figure 3 is a plot of the percentage content of slow oxi-
dative fibers against the uptake of [ 14C1FA in a hindlimb 
preconstricted with 5-HT for each muscle. [ "C] FA uptake 
when flow is predominantly non-nutritive significantly 
correlates (r = 0.987, P< 0.001) with the percentage con-
tent of slow oxidative fibers. 

DISCUSSION 

The importance of skeletal muscle in total circulating 
lipid clearance is often underestimated, and all previous 
reports have neglected the effect of flow partitioning on 
TG clearance in muscle, due to the presence of nutritive 
and non-nutritive routes. Here we report that the hydroly-
sis of TO was markedly increased in the perfused rat hind- 
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Fig. 3. Uptake of FFA from a synthetic chylomicron emulsion us-
ing the mean values for uptake with 0.5-1 p.m serotonin (5-HT) for 
each hindlimb muscle and their corresponding percentage content 
of slow oxidative fibers. The linear regression produces an r2  = 
0.975 (P < 0.001). The percentage content of slow oxidative fibres 
was taken from reports by Ariano, Armstrong, and Edgerton (31) 
and Armstrong and Laughlin (32). 

limb when a high proportion of connective tissue flow oc-
curred. Recruitment of connective tissue flow for these 
experiments was induced by the addition of 5-HT, a repre-
sentative type B vasoconstrictor, which has previously been 
reported to decrease oxygen uptake, lactate output, insu-
lin-mediated glucose uptake (21, 22), and tension devel-
opment of aerobically contracting muscle (23). All of 
these changes are characteristic of type B vasoconstriction 
(7) and are representative of decreased nutrient delivery 
to muscle, and decreased muscle metabolism secondary 
to increasing the proportion of non-nutritive or connec-
tive tissue flow within muscle (5). 

When connective tissue flow was increased by addition 
of the vasoconstrictor, 5-HT, there was a marked increase 
in TG hydrolysis (indicated by[ 4C]FA uptake) in the 
soleus, plantaris and gastrocnemius red muscles. Uptake 
of [ 14CiFA greatly exceeded that of the CO with seroto- 
nin. This implies that uptake due to endocytosis of the 
chylomicron (causing TO radioactivity to be found in 
the muscle without any detectable amounts of hydrolysis) 
or of the chylomicron remnant (where all of the [14C1 
oleic acid or [ 14C]TO in the muscle is due to hydrolysis) 
could not account for the observed increase. It is impor-
tant to note that the reported increase in TG hydrolysis 
occurred without any stimulation of LPL activity by 5-HT. 
This indicates that the TG hydrolysis due to 5-HT is likely 
to be the result of a vascular effect whereby the exposure 
of TG to TG hydrolytic activity, presumably LPL, is in-
creased. From this, it would also seem likely that the dis-
tribution of TG hydrolytic activity is greater along the 
non-nutritive or connective tissue circuit that nourishes in-
terlacing adipocytes than along the nutritive route supply-
ing muscle cells. 

Evidence that the vessels of non-nutritive flow are those 
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Nutritive and non-nutritive blood flow: rest and exercise 
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J.M. YOUD and J.M.B. NEWMAN 
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ABSTRACT 
There is growing evidence to support the notion of two vascular routes within, or closely associated 

with skeletal muscle. One route is in intimate contact with muscle cells (hence is known as 'nutritive') 

and the other functions as a vascular shunt (and has had the interesting misnomer of 'non-nutritive'). 

Recent findings suggest that the 'non-nutritive' route may, in part, be those vessels in closely 

associated (interlacing?) connective tissue that nourishes attached fat cells, and may form the basis of 

'marbling' of muscle in obesity. In addition, embolism studies using various size microspheres indicate 

that the 'non-nutritive' vessels are likely to be capillaries fed by terminal arterioles that branch from the 

same transverse arterioles as those supplying terminal arterioles of the muscle capillaries (i.e. two 

vascular systems operating in parallel). The proportion of flow distributed between the two routes is 

tightly regulated and controls muscle metabolism and contraction by regulating hormone and 

substrate delivery as well as product removal. Because a high proportion of nutritive flow may elevate 

the set point .for basal metabolism, a low proportion of nutritive flow in muscle at rest confers an 

evolutionary advantage, particularly when food is scarce. In addition, the proportion of flow that is 

carried by the non-nutritive routes at rest affords a flow reserve that can be switched to the nutritive 

route to amplify nutrient supply during exercise. Alternatively the non-nutritive route may allow flow to 

escape when active muscle contraction compresses its nutritive capillaries. Thus rhythmic oscillation 

of blood flow between the non-nutritive and nutritive networks may aid the muscle pump. 

Keywords amplification of nutrient delivery, connective tissue adipocytes, connective tissue flow, 

microsphere embolism, muscle capillary flow, resting muscle metabolism. 
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The metabolic needs of the muscle are met by changes 
in blood flow that are in turn tightly regulated by central 
neural mechanisms, local reflexes, circulating mediators 
and locally produced vasoactive substances. The 
microcirculation of muscle plays a major role in the 
control of metabolism and it now seems probable that 
muscle metabolism at rest and during exercise may be 
controlled by the distribution of blood flow within 
muscle, albeit between nutritive and non-nutritive 
routes. The reader is directed to our previous reviews 
on this topic (Clark et al. 1995, 1997, 1998a, b). The aim 
of this article is to throw some new light on the identity 
and function of the so-called 'non-nutritive' vascular 
route of skeletal muscle at rest and during exercise. 

Concept of nutritive and non-nutritive flow routes in muscle 

The concept of two vascular routes, one nutritive and 
the other 'non-nutritive' in muscle presents serious 
implications for some commonly held theories. For 

example, because the two routes operate in parallel, 
changes in the proportion of flow distributed between 
the two routes as mediated by adrenaline or other 
vasoactive substances, inevitably results in arteriove-
nous extraction fractions that differ although the total 
blood flow does not change. Indeed it has been 
observations of this kind that have given rise to the 
concept of two routes. Thus, these have involved 
studies where total blood flow into muscle did not 
correlate with (a) metabolic or heat transfer responses 
or (b) the clearance of intramuscular injected or infused 
'radioactive substances. We have recently reviewed the 
earlier literature (Clark et aZ 1998b) and the reader is 
referred therein for references. 

The key observations that impact on our present 
interpretations are those of Zweifach & Metz (1955), 
Barlow et al. (1958, 1961), Grant & Wright (1970), 
Lindbom & Arfors (1984, 1985) and Borgstrom et al. 
(1988). Barlow et al. (1961) simultaneously recorded 
clearance of radioactive ions (either 24Na, 42K or 131 1) 
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is. Indeed they have shown that the vascular arrange-
ment of the tenuissimus muscle exists as a basic unit in 
hind leg musculature generally. Moreover, vascular 
connections between the muscle tissue proper and 
adjacent connective tissue septa have also been 
reported as a feature in several muscles of different 
species [e.g. rat (Eriksson & iNilyrhage 1972, Grant & 
Wright 1970), cat (Myrhage & Eriksson 1980) and 
monkey (Hammersen 1970)]. Importantly, these same 
connective tissue vessels have been variously associated 
with the interlacing fat cell deposits, and thus may be 
nutritive for connective tissue and the associated 
adipocytes although they are clearly 'non-nutritive' for 
muscle. As both connective tissue and adipocytes 
would have considerably lower metabolic activity than 
muscle, the overall oxygen extraction and lactate 
production would very likely fall when flow is switched 
from the nutritive capillaries of muscle to these 
connective tissue vessels. 

RECENT EVIDENCE FOR 
NON-NUTRITIVE ROUTES IN MUSCLE 

The mechanically pumped constant flow perfused rat 
hindlimb has proved to be a useful in vitro model system 
to investigate haemodynamic effects on skeletal muscle. 
It has provided important new information concerning 
the regulation of flow within muscle. In particular, we 
now know that vasoactive agents can control skeletal 
muscle metabolism and performance by their effects on 
the vasculature (Clark et al. 1995, 1997). Thus, our 
studies have shown that vasoconstrictors, which 
increase the perfusion pressure in the constant-flow 
perfused rat hindlimb, can be categorized into two 
types depending on their metabolic actions in the 
hindlimb. One type A results in an increase in oxygen 
consumption (Colquhoun et al. 1988), lactate (Hetti-
arachchi et al. 1992), glycerol (Clark et al. 1994), urate 
(Clark et al. 1990) and uracil (Clark et al. 1990) efflux. 
These type A vasoconstrictors include a radrenergic 
agonists, angiotensins, vasopressin, vanilloids and low-
frequency (< 2Hz) sympathetic nerve stimulation (Hall 
et al. 1997). Angiotensin II, one of the type A vaso-
constrictors, was found to increase aerobic tension 
development, contraction-mediated oxygen uptake and 
2-deoxyglucose uptake by plantaris and gastrocnemius 
red and white muscles during electrical tetanic stimu-
lation of the hindLimb (Rattigan et al. 1996). Type B 
vasoconstrictors which can produce identical pressure 
to type A result in decreased oxygen consumption 
(Dora et al. 1991), lactate (Hettiarachchi et al. 1992), 
glycerol (Clark et al. 1995), urate and uracil efflux (Clark 
et al. 1995). These vasoconstrictors include serotonin 
(5-H1), high-dose noradrenaline, high-frequency 
(>5 Hz) sympathetic nerve stimulation and high-dose 
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vanilloids (Clark et al. 1995) and act opposite to type A 
to decrease insulin-mediated glucose uptake (Rattigan 
et al. 1993, 1995), aerobic tension development and 
contraction-mediated oxygen uptake (Dora et al. 1994). 
All effects of both types of vasoconstrictors occur 
while total flow is held constant and are caused by their 
vascular actions and not owing to direct actions on the 
skeletal muscle as all of the effects could be reversed by 
vasodilators (Colquhoun et al. 1988, 1990, Hetti-
arachchi et al. 1992, Rattigan et al. 1993), regardless of 
the mechanism of action of the vasodilators. In addi-
tion, none of the vasoconstrictors had any effect upon 
contractility or insulin-mediated glucose uptake of 
isolated incubated muscles where supply of nutrients 
was by diffusion and not dependent upon the vascu-
lature (Dora et al. 1994, Rattigan et al. 1993, 1995). It is 
also important to note that the sites responsible for 
types A and B vasoconstriction could be distinguished 
by their metabolic requirements for constriction. Thus 
removal of extracellular calcium or inhibition of oxi-
dative metabolism (cyanide, azide or by anoxic perfu-
sion) prevented type A but not type B vasoconstriction 
(Dora et al. 1992, Clark et al. 1994). 

The controversial nature of the non-nutritive route 

A major stumbling block in the acceptance of non-
nutritive flow in skeletal muscle has been the anatom-
ical identity of a discrete route associated with muscle 
that essentially denies nutrient exchange but is capable 
of high flow. The first stage in shedding some light on 
their location came from the use of flow measurement 
using fluorescent microspheres. The aim was to assess 
whether flow redistributed between muscles of 
differing fibre composition, or between muscle and 
non-muscle tissue when vasoconstrictors such as 
noradrenaline or serotonin acted to vasoconstrict in the 
constant-flow perfused rat hindlimb and stimulate or 
inhibit metabolism, respectively. Thus microspheres of 
15 urn  were infused under conditions of steady-state 
with or without noradrenaline or serotonin. Muscles, 
including soleus, plantaris, gastrocnemius red, gastroc-
nemius white, tibialis, extensor digitorum longus, 
remaining calf muscles, vastus, remaining thigh and 
trunk muscle, as well as bone, skin and subcutaneous 
white adipose tissue of the perfused leg were dissected 
free. In addition, tissues were collected from unper-
fused regions to check for leakage. For each sample, 
wet weight and microsphere content were determined. 
The results of Fig. 2 show that when compared with 
control (vehicle), neither noradrenaline nor serotonin 
infusion altered microsphere recovery in muscle, spine, 
skin, white adipose tissue or tissues of the lower 
abdomen. Of the muscles, only two, soleus and tibialis, 
showed a significant change and this was a decrease 
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Figure 3 Plot of tendon vessel flow as a function of oxygen uptake 
modified by vasoconstrictor addition. Experiments were conducted 
using the isolated constant-flow perfused rat hindlimb where oxygen 
uptake, an indicator of relative nutritive flow in this preparation, was 
altered systematically by addition of various doses of either 
noradrenaline (411), serotonin (N) or vehicle (0). Tendon vessel flow 
was determined from fluorescence signal strength of infused fluo-
rescein isothiocyanate-labelled dextran (M. 150 000) over the tibial 
tendon region of the biceps femoris muscle. Data are from Newman 
et al. (1997). 

micron emulsion. Quite unexpectedly we found that 
clearance was increased under conditions of predomi-
nantly non-nutritive flow (Clerk et al. 1999) (Fig. 4), 

indicating that lipoprotein lipase was more concen-
trated in the non-nutritive than the nutritive route. As 
lipoprotein lipase is synthesized in fat and muscle cells 
and secreted into neighbouring capillaries and adipose 
tissue contains more activity of lipoprotein lipase than 
muscle, the higher clearance of triglyceride during non-
nutritive flow would suggest an active presence of 
adipocytes on this route. Indeed adipocytes have been 
reported on connective tissue vessels in muscle, 
particularly on the vessels that pass through the 
perimysium and epimysium (Myrhage & Eriksson 
1980). Figure 5 shows such an arrangement where 
adipocytes can be seen attached to the connective tissue 
vessels on the superoanterior border of the rat biceps 
lemons muscle. It is also apparent from this picture 
that blood is supplied to both muscle and adipocytes by 
a common vessel (i.e. two systems are operating in 
parallel). 

As foreshadowed earlier, it would now seem likely 
that the so-called 'non-nutritive' vessels of muscle are 
connective tissue vessels that are closely associated with 
each muscle and which can be viewed as separate 
entities on relatively exposed thin tendons such as the 
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soleus plant. EDL G.red G.white tib. 

Figure 4 Effects of serotonin (0.5-1 pm) on the uptake of oleate 
from triolein-containing chylomicron emulsions into muscles of the 
perfused rat hindlimb. Hindlimb muscles dissected were soleus, 
plantaris (plant.), extensor digitorum longus (EDL), gastrocnemius 
red (G. red), gastrocnemius white (G. white) and tibialis (tib.). Data 
are from Clerk et al. (1999) and show effects of no addition (N) or 
serotonin (0); significant differences are marked by *. These effects 
were not the result of increased pinocytotic uptake by 5-HT (data not 
shown). 

tibial tendon of the rat biceps lemons (Grant & Wright 
1970). In addition, it is likely that these vessels are 
interspersed between fibre bundles and constitute loci 
where fat accretion can take place to possibly give rise 
to the 'marbling' of meat. There are sufficient available 
data to suggest that these vessels are high capacitance 
and low resistance and therefore capable of carrying 
high flow when muscle is at rest. Finally, although they 
may be larger than the nutritive capillaries nourishing 
muscle cells, these connective tissue adipocyte vessels 
do not allow the passage of 15-rim microspheres [i.e. 
when non-nutritive flow is high (Rattigan et al. 1997a)]. 

Figure 5 Photomicroscopy of blood vessels of the superoanterior 
border of the rat biceps femoris muscle showing connective tissue 
adipocytes adjacent to the muscle. Blood is supplied to both muscle 
and adipocytes by a common vessel. 

523 



Acta Phys ol Scand 2000, 168, 519-530 	 M G Clark at at • Selective flow routes in muscle 

involving a selective increase in muscle nutritive flow 
consistent with our observations using the constant-
flow perfused rat hindlimb. The vasodilator, isopro-
terenol would appear to have selectively increased flow 
to the non-nutritive pathway at the expense of nutritive 
flow. In our experience (Colquhoun et al. 1990) 
isoproterenol opposes type A vasoconstrictor effects in 
the constant-flow perfused hindlimb by relaxing 
constricted sites in the vasculature that are reducing 
flow to non-nutritive routes. As already indicated above 
microspheres probably do not allow the discrimination 
between nutritive and non-nutritive routes of muscle 
and we know that agents such as serotonin do not alter 
the distribution of 15-pm microspheres, yet have a 
marked inhibitory effect on oxygen uptake and 
metabolism generally (Rattigan et al. 1997a). 

From our point of view the study of Kuznetsova 
et al. (1998) suggested that LDF measured nutritive 
flow in muscle. Accordingly, we have recently 
conducted a series of studies aimed at comparing 
muscle LDF signal during various states of nutritive 
flow in the constant-flow blood perfused rat hindlimb. 
In this work a single LDF probe was positioned over 
the mid region of the exposed biceps femoris. The LDF 
signal strength was found to directly relate to the extent 
of oxygen consumption when total flow was constant 
(Clark et al. 1999). Thus type A vasoconstrictors that 
increased metabolism in this preparation increased the 
LDF signal. Conversely, type B vasoconstrictors that 
decreased metabolism, also decreased LDF signal 
(Clark et al. 1999). These findings, although welcome in 
terms of paving the way for nutritive flow measurement 
in humans, raise a major question concerning the ana-
tomical location of the non-nutritive vessels and their 
relative invisibility to LDF detection when probes are 
placed over the muscle body. Initial consideration 
might suggest the data to be entirely consistent with the 
notion that the type B vasoconstrictors have acted to 
redirect flow from capillaries within muscle (and 
therefore the region of LDF measurement) to vessels 
outside the region in connective tissue. However, other 
possibilities cannot be ignored. For example, from LDF 
signal measurements (which are non-vectorial) made on 
blood cell-perfused isolated polymer tubes of single 
pass and triple pass (zigzag) configurations, each with 
identical flow rates, it was found that the LDF signal 
strengths were low and high, respectively (Clark et al. 
1999). This might imply that decreases in LDF signal 
caused by the type B vasoconstrictors in perfused 
muscle result from switching of flow from long zigzag 
capillaries that pass several times under the detector and 
give a high LDF signal, to short capillaries that pass 
fewer times under the detector and give a low LDF 
signal. Type A vasoconstrictors would have the reverse 
effect and with this model of the microvasculature, only 
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the length and therefore surface area available for 
nutrient exchange would distinguish nutritive from 
non-nutritive route. At the moment we favour a model 
consistent with the observations of Myrhage & 
Eriksson (1980) where the connective tissue vessels that 
operate in parallel to the muscle capillary networks and 
are visible on the distal edge of flat muscles such as the 
tenuissimus, are internalized to run between the fibres 
in the cylindrical bulk muscles. 

Site-dependent effects of microiphere embolism: 
clues to the nature of nutritive and non-nutritive routes 

As indicated above, vasoconstriction of the constant-
flow perfused rat hindlimb can either increase or 
decrease skeletal muscle metabolism possibly owing to 
flow redistribution through nutritive or non-nutritive 
flow routes, respectively. In a recent unpublished study, 
we have used microspheres of different size and 
number to assess whether specific occlusion of either 
flow route was possible, as well as to determine the 
largest average diameter at which flow can be redis-
tributed from one to the other route by microsphere 
embolism. Microspheres of 5.4, 11.8, 23.4 or 93.6 pm, 
with one size allocated for each series of experiments, 
were injected and their effects on flow recruitment and 
metabolism assessed. Injections were conducted during 
angiotensin II (high nutritive: non-nutritive flow) or 
serotonin (low nutritive: non-nutritive flow), or under 
control conditions and the effects on oxygen uptake, 
perfusion pressure and venous flow rate monitored. 
The effects were very much dependent on the size of 
the microspheres. Thus, the inhibitory effects of sero-
tonin on oxygen uptake were partly reversed by 5.4 or 
11.8 pm microspheres but not by the larger sizes (23.4 
and 93.6 pm). Similarly, only the smaller sizes (5.4 and 
11.8 pm) increased oxygen uptake during vehicle 
infusion. The stimulatory effect of angiotensin II on 
oxygen uptake was reversed by all four sizes of micr-
ospheres. Most importantly, the particular number of 
microspheres used in these experiments did not 
significantly affect the venous flow rate. The larger size 
microspheres of 23.4 and 93.6 pm were inhibitory 
during serotonin, angiotensin II and vehicle infusions 
with increased perfusion pressure. Interestingly, the 
number of the smaller microspheres required to reverse 
the inhibitory effects of serotonin differed. Thus 
1.5 X 107  of the 5.4 pm were equivalent to 3.0 x .  106  of 
11.8 pm in recovering -=1.6 pmol 11 -1  g  oxygen 
uptake previously inhibited by serotonin. Taken 
together, it would appear likely that the 5.4 and 
11.8 pm but not the 23.4 and 93.6 pm microspheres 
were capable of occluding the flow route recruited by a 
specific vasoconstrictor and re-diverting this flow 
through the opposite flow route. The size-dependent 
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There are two schools of thought concerning the origin 
of the oxygen deficit. Traditionally, it was thought to be 
the result of a delay in skeletal muscle blood flow and 
thus oxygen delivery to skeletal muscle. Recently, this 
view has been challenged (Grassi et al. 1996, Sahlin et al. 
1988) and attributed to a lag in mitochondrial meta-
bolism owing to poor substrate supply to the mito-
chondria. Two experimental approaches support this 
latter notion. In one, administration of dichloracetate, 
an activator of the pyruvate dehydrogenase complex, 
resulted in increased acetyl group availability and 
attenuation of creatine phosphate breakdown and 
lactate accumulation in human skeletal muscle during 
exercise (Timmons et al. 1998). In the second, increased 
fatty acid availability and enhanced muscle oxidative 
capacity (following a period of short-term training) 
were shown to attenuate creatine phosphate degrada-
tion, glycogenolysis and lactate accumulation during 
exercise (Chesley et al. 1996, Dyck et al. 1996). 
However, at this point of time it is unknown whether 
dichloracetate could affect microvascular flow, partic-
ularly the proportion of nutritive/non-nutritive flow 
within skeletal muscle. There are indications that a 
period of short-term training or prior muscle contrac-
tions (Matsuhisa et al. 1998) could very well increase the 
proportion of nutritive flow and could account for the 
observations (Chesley et al. 1996, Dyck et al. 1996) that 
creatine phosphate degradation, glycogenolysis and 
lactate accumulation were attenuated. 

Our view is that the presence of a secondary (non-
nutritive) route or shunt within muscle affords a 
distinct advantage in terms of amplification for nutrient 
delivers ,  during exercise. This is over and above the 
proportionate increase in total blood flow to muscle. 
The extent of the amplification depends on the ratio of 
nutritive/non-nutritive flow for resting muscle, which 
is unknown at present. Best estimates are based on the 
data of Lindbom & Arfors (1984) for the tenuissimus 
muscle receiving an approximate arterial oxygen tension  

of 70 mmHg and suggest that the ratio nutritive/non-
nutritive could be as low as 30/70, although the authors 
(Lindbom & Arfors 1984) claim a more conservative 
position of 80/20. There is also indirect data from 
hydrogen clearance measurements (Harrison et al. 1990) 
that nutritive/non-nutritive flow is low (i.e. 16% of 
total flow). 

It is claimed that at rest not all muscle capillaries are 
perfused (Harrison et al. 1990) and thus even with no 
change in non-nutritive flow the ratio nutritive/non-
nutritive could have the potential to increase when total 
flow to muscle is increased in exercise. However, at a 
maximum exercise rate it is likely that flow in nutritive 
pathways becomes maximal and that flow in non-
nutritive pathways becomes minimal. Harrison et al. 
(1990) were perhaps the first to recognize that the non-
nutritive pathway provides a flow reserve to be 
recruited during muscular contractions. Thus, if the 
ratio of nutritive/non-nutritive flow at rest is 0.3 then 
the combination of increased sympathetic nervous 
system vasoconstrictor activity, a 3-fold increase in total 
blood flow to muscle and the release of metabolic 
vasodilators is an increase of 9.5-fold for blood flow to 
muscle nutritive vessels (Clark et al. 1998b). Excessive 
(high frequency; >6 Hz) sympathetic vasoconstrictor 
activity is thought to increase non-nutritive flow at the 
expense of nutritive flow (Hall et al. 1997). In addition, 
vasoconstrictors of this nature decrease aerobic muscle 
contractility (Dora et al. 1994) and thus excessive 
sympathetic vasoconstrictor activity in combination 
with exercise would lead to a decrease in nutritive blood 
flow and a probable decline in performance. Further-
more, the sites of vasoconstriction that have this 
deleterious effect are not affected by metabolic vasod-
ilators (Dora et al. 1994). 

Until precise figures are available for oxygen uptake 
by individual muscles at rest and during exercise the 
relationship between blood flow and oxygen uptake 
(Vo2) for muscles of different fibre type cannot be 

Table 1 Oxygen/flow ratios for muscle at rest and during exercise 

Isolated dog gastrocnemius 

 

Perfused rat hindlimb in vitro 

   

Rest 

Exercise 

Rest Rest + All Exercise Exercise + All 4.46 6.69 

,Q„ (mL • min -I 	• 100 g-I ) 12.9 39.0 81.0 92.0 92.0 92.0 92.0 
V02  (pmol • min-I  • 100 g-I ) 31.2 178.6 535.7 53.6 93.8 102.7 133.9 
I/02/g. (mot • mL-I ) 2.4 4.6 6.6 0.58 1.02 1.12 1.46 

Modified from Clark et al. (1998b). Data are from Cerretelli et at (1984) for isolated autoperfused dog gastrocnernius muscle and from Rattigan 
et at (1996) for constant-flow blood cell perfused rat hindlimb at 37 °C. For the former (Cerretelli et at 1984) values are given at constant 
arteriovenous 02  difference of 4.46 and 6.69 pmol 0 2  mL-I  blood. In the latter (Rattigan et al 1996), the sciatic nerve was stimulated resulting in 
much of the calf muscle group (•,--20% of the hindlimb muscle mass) being active; addition of the vasoconstrictor, angiotensin (All) increases 
V0 2/Q, both at rest and during exercise. 

2000 Scandinavian Physiological Society 	 527 



Acta Physiol Scand 2000, 168, 519-530 	 M G Clark et at • Selective flow routes in muscle 

metabolism and exercise. In: M. Hargreaves & 
M. Thompson (eds) Biochemistry of Exercise X, pp. 35-46. 
Human Kinetics, Champaign, IL. 

Clark, M.G., Rattigan, S., Newman, J.M. & Eldershaw, T.P. 
1998b. Vascular control of nutrient delivery by flow 
redistribution within muscle: implications for exercise and 
post-exercise muscle metabolism. All Sports Med 19, 
391-400. 

Clark, M.G., Richards, S.M., Hettiarachchi, M. et at 1990. 
Release of purine and pyrimidine nucleosides and their 
catabolites from the perfused rat hindlimb in response to 
noradrenaline, vasopressin, angiotensin II and sciatic-nerve 
stimulation. Biochem J 266, 765-770. 

Clark, A.D.H., Youd, J.M., Rattigan, S. 8c Clark, M.G. 1999. 
Laser Doppler flowmetry detects changes in muscle 
nutritive flow: a rat model study. Circulation submitted. 

Clerk, L.H., Smith, ME., Rattigan, S. & Clark, M.G. 2000. 
Increased chylomicron triglyceride hydrolysis by connective 
tissue flow in perfused rat hindlimb. Implications for lipid 
storage.] Lipid Res in press. 

Coggins, M., Fasy, E., Lindner, J., Kaul, S. & Barrett, E.J. 
1999. Physiologic hyperinsulinemia increases skeletal 
muscle microvascular blood volume in healthy humans. 
Diabetes 48 (Suppl 1), A220. 

Colquhoun, E.Q., Hettiarachchi, M., Ye, J.M., Rattigan, S. & 
Clark, M.G. 1990. Inhibition by vasodilators of 
noradrenaline and vasoconstrictor-mediated, but not 
skeletal muscle contraction-induced oxygen uptake in the 
perfused rat hindlimb; implications for non-shivering 
thermogenesis in muscle tissue. Gen Pharmacol21, 141-148. 

Colquhoun, E.Q., Hettiarachchi, M., Ye, J.M. et al. 1988. 
Vasopressin and angiotensin II stimulate oxygen uptake in 
the perfused rat hindlimb. 	Sci 43, 1747-1754. 

Dora, K.A., Colquhoun, E.Q., Hettiarachchi, M., Rattigan, S. 
& Clark, AG. 1991. The apparent absence of serotonin-
mediated vascular thermogenesis in perfused rat hindlimb 
may result from vascular shunting. Life Sci 48, 1555-1564. 

Dora, K.A., Rattigan, S., Colquhoun, E.Q. & Clark, M.G. 
1994. Aerobic muscle contraction impaired by serotonin-
mediated vasoconstriction. J Appl Physiol 77, 277-284. 

Dora, K.D., Richards, S.M., Rattigan, S., Colquhoun, E.Q. & 
Clark, M.G. 1992. Serotonin and norepinephrine 
vasoconstriction in rat hindlimb have different oxygen 
requirements. Am] Physiol 262, H698-H703. 

Dyck, D.J., Peters, S.J., Wendling, P.S., Chesley, A., Hultman, 
E. & Spriet, L.L. 1996. Regulation of muscle glycogen 
phosphorylase activity during intense aerobic cycling with 
elevated FFA. Am Physiol 270, E116-E125. 

Eriksson, E. 8c Myrhage, R. 1972. Microvascular dimensions 
and blood flow in skeletal muscle. Acta Physial Scand 86, 
211-222. 

Freis, E.D. & Schnapper, H.W. 1958. The effect of a variety 
of haemodynamic changes on the rapid and slow 
components of the circulation in the human forearm.J Clin 
Invest 37, 838-845. 

Friedman, J.J. 1966. Total, non-nutritional, and nutritional 
blood volume in isolated dog hindlimb. Am] Physiol 210, 
151-156. 

Friedman, J.J.  1968. Single-passage extraction of 86Rb from 
the circulation of skeletal muscle. AmJ Physiol216, 460-466. 

Friedman, J.J. 1971.86Rb extraction as an indicator of 
capillary flow. Circ Res 28, 115-120. 

Grant, R.T. & Wright, H.P. 1970. Anatomical basis for non-
nutritive circulation in skeletal muscle exemplified by blood 
vessels of rat biceps femoris tendon.] Anal 106, 125-133. 

Grassi, B., Poole, D.C., Richardson, R.S., Knight, D.R., 
Erickson, B.K. & Wagner, P.D. 1996. Muscle 0 2  uptake 
kinetics in humans: implications for metabolic control. 
J Appl Physiol 80, 988-998. 

Hall, J.L., Ye, J.M., Clark, M.G. & Colquhoun, E.Q. 1997. 
Sympathetic stimulation elicits increased or decreased V02 
in the perfused rat hindlimb via alpha 1-adrenoceptors. Am 
J Physiol 272, H2146-H2153. 

Hammersen, F. 1970. The terminal vascular bed in skeletal 
muscle with special regard to the problem of shunts. In: C. 
Crone & N.A. Lassen (eds) Capillary Permeabiliry. The Transfer 
of Molecules and Ions Between Capillary Blood and Tissue, pp. 
351-371. Munksgaard, Copenhagen. 

Harrison, D.K., Birkenhake, S., Knauf, S.K. & Kessler, M. 
1990. Local oxygen supply and blood flow regulation in 
contracting muscle in dogs and rabbits. ] Physiol 422, 
227-243. 

Hellsten, Y., Frandsen, U., Orthenblad, N., Sjodin, B. & 
Richter, E.A. 1997. Xanthine oxidase in human skeletal ' 
muscle following eccentric exercise: a role in inflammation. 
J Physial (Load) 498, 239-248. 

Hettiarachchi, M., Parsons, K.M., Richards, S.M., Dora, K.M., 
Rattigan, S., Colquhoun, E.Q. & Clark, M.G. 1992. 
Vasoconstrictor-mediated release of lactate from the 
perfused rat hindlimb. J Appl Physiol 73, 2544-2551. 

Hudlicka, 0. 1969. Resting and post contraction blood flow 
in slow and fast muscles of the chick during development. 
Microvasc Res 1, 390-402. 

Hudlicka, 0. 1973. Basic mechanisms regulating muscle blood 
flow. In: Anonymous (ed.) Muscle Blood Flow: Its Relation to 
Muscle Metabolism and Function, pp. 29-54. Swets & 
Zeitlinger, Amersterdam. 

Jarasch, E.D., Bruder, G. 8c Heid, H.W. 1986. Significance 
xanthine oxidase capillary endothelial cells. Ada Physiol 
Scand (Suppl) 548, 39-46. 

Joyner, M.J. & Wieling, W. 1997. Sympathetic nerves continue 
to regulate blood flow in exercising muscles [comment]. 
] Physiol (Lond) 505, 549. 

Kjellmer, I., Lindbjerg, I., Prerovsky, I. & Tonnesen, H. 1967. 
The relation between blood flow in an isolated muscle 
measured with the Xe133 clearance and a direct recording 
technique. Ada Physio/ Scand 69, 69-78. 

Kuznetsova, L.V., Tomasek, N., Sigurdsson, G.H., Bank, A., 
Erni, D. & Wheatley, A.M. 1998. Dissociation between 
volume blood flow and laser-Doppler signal from rat 
muscle during changes in vascular tone. Am] Physiol 274, 
H1248-H1254. 

Lindbom, L. & Arfors, K.E. 1984. Non-homogeneous blood 
flow distribution in the rabbit tenuissimus muscle 
Differential control of total blood flow and capillary 
perfusion. Ada Physiol Scand 122, 225-233. 

0 2000 Scandinavian Physiological Society 	 529 



Nutritive 
Muscle 

Non-nutritive 
1 Connective 

tissue 

Tendon vessels as muscle shunts 

were essentially capillary-like. This and the inability 
to account for physiological data (Pappenheimer 
1941, Walder 1953, 1955, Barlow et al. 1958) provided 
the impetus for a search for vessels that would fulfill 
the role as a non-nutritive route in muscle. Zweifach 
& Metz (1955) were probably the first to realize that 
these non-nutritive vessels may be outside the capil-
lary bed of the muscle fibrils. In 1955 these authors 
described "preferential capillary channels at the edge 
of the spino-trapezius muscle of the rat". Barlow and 
colleagues (1959, 1961) added to this notion by con-
cluding that the secondary non-nutritive route was 
located in the septa and tendons. Their findings, 
along with others that preceded them, were based on 
clearance kinetics of 24Na± administered either intra-
venously or intramuscularly. In 1970 Grant & Wright 
noted that blood vessels in the tibial tendon of the 
biceps femoris muscle could be readily viewed and 
also claimed them to be the non-nutritive vessels of 
skeletal muscle (Grant & Wright 1970). These vessels 
were dilated by acetylcholine or histamine and con-
stricted by noradrenaline or adrenaline, but did not 
respond to changes in body temperature and were 
thus unlikely to be involved in thermoregulation. 

As yet, there have been no attempts to integrate 
metabolic data with anatomical studies. This is sur-
prising as the intravital microscopy studies of the rab-
bit tenuissimus muscle by Lindbom, Arfors and their 
colleagues (Lindbom & Arfors 1984, 1985, Borgs-
trom et al. 1988) would appear to provide key infor-
mation that could explain much of the metabolic data 
obtained by us and others with the perfused rat hind-
limb preparation. Most importantly, the microvas- 

Fig. 1. This illustration is adapted from Borgstrom et al. (1988) 
and shows a transverse arteriole of the rabbit tenuissimus 
muscle supplying both capillaries in muscle tissue and adjacent 
connective tissue. 

culature of the tenuissimus muscle shows two vascu-
lar compartments that could very well provide an 
anatomical basis for the notion of nutritive and non-
nutritive routes in muscle. 

The tenuissimus muscle is a muscle that is access-
ible and transparent, thereby allowing both the de-
tailed illustration and study of changes that affect 
flow in each of the two routes. Although this muscle 
may be considered by some as atypical in being rela-
tively flat, the vascular arrangement of the 
tenuissimus muscle is proposed to exist as a basic unit 
in all hind leg muscles (Myrhage & Eriksson 1980). 
The vasculature of the rabbit tenuissimus muscle is 
shown in Fig. I. Transverse arterioles supply both 
capillaries in muscle tissue proper and adjacent con-
nective tissue. Using intravital microscopy, Lindbom, 
Arfors and their colleagues measured microvascular 
blood flow at two points on several transverse arteri-
oles in the tenuissimus muscle of anesthetized rabbits 
(positions A and B, Fig. 1) while studying the influ-
ence of environmental (muscle bathing solution) oxy-
gen tension as well as perfusion pressure, isoproter-
enol, epinephrine, functional hyperemia (exercise in-
duced) and reactive hyperemia (Table 1). Under 
resting conditions the proportion of total flow pass-
ing into the connective tissue was approximately 44%. 
This dramatically increased to 91% if the bathing 
oxygen concentration was increased to 20 kPa even 
though total muscle flow dropped by 46%. Topically 
applied isoproterenol, a 13-adrenergic agonist and po-
tent vasodilator, also markedly increased the pro-
portion of connective tissue flow. Thus, despite total 
flow increasing from 0.73 to 2.65 n1 • s —  I, an increase 
of 263%, most of this flow (97%) was carried by the 
connective tissue vessels. It is important to note that 
this particular result emphasizes the potential ca-
pacity of the connective tissue route for flow, as under 
the conditions of isoproterenol-mediated vasodilation 
the connective tissue vessels carry 3.5-fold the total 
basal flow rate. Exercise induced functional hyper-
emia increased muscle capillary flow at the expense 
of connective tissue flow. Thus, capillary flow in-
creased from 56% to 76% of total flow with a corre-
sponding decrease in connective tissue flow from 44% 
to 24%. Lowering of the perfusion pressure also 
tended to favor muscle capillary flow at the expense 
of connective tissue flow. In contrast, neither epine-
phrine, nor reactive hyperemia (in response to oc-
clusion) altered the proportion of connective tissue to 
muscle flow, even though total flow was decreased and 
increased, respectively. 

Reciprocal control of flow between connective tissue 
and muscle 
Our studies using the constant-flow perfused rat 
hindlimb were initially intended to investigate the ef- 
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Control of hindlinnb metabolism from a redistribution of 
flow between muscle and connective tissue 

Several recent studies, particularly from our own lab-
oratory, suggest that the perfused rat hindlimb is a 
two compartment model and that changes in met-
abolism mediated by vasomodulators result from a 
redistribution of flow between these two compart-
ments. There is also strong evidence to suggest that 
the second compartment of muscle is that of connec-
tive tissue. Table 2 summarizes the data and shows 
that type A vasoconstrictors that act to increase met-
abolism of the hindlimb overall decrease the flow vol-
ume in tendon vessels, which can be viewed in an area 
essentially free of capillaries. 

Measurements were made in the constant flow per-
fused rat hindlimb using 6 mm pulse infusions of 
fluorescein isothiocyanate (FITC)-labeled dextran 
(Mr 150 000) while positioning a fluorescence sensor 
over exposed vessels of the tibialis tendon of the bi-
ceps femoris (Newman et al. 1997), the same vessels 
claimed by Grant & Wright to be representative of 
the non-nutritive route of muscle (Grant & Wright 
1970). Readings were taken during vehicle infusion 
and again under constant infusion of a type A (nor-
adrenaline), or type B (serotonin) vasoconstrictor 
(Newman et al. 1997). The intensity of the signal at 
steady state was inversely related to V02, the surro-
gate indicator of muscle nutritive flow. In addition, 
photomicroscopy of the vessels following injection of 
India ink clearly showed that the change in signal was 
due to the relative filling of the vessels. To our knowl-
edge, this was the first report of vasoconstrictors 
selectively directing flow to, or away from tendon ves- 

Table 2. Effects of type A and B vasoconstrictors on perfused rat hind-
limb characteristics likely to result from the redistribution of flow be-
tween skeletal muscle capillaries and connective tissue vessels of tendon 
and septa 

Type A 	Type B 	Ref. 

Metabolism (including V02, Ji_ac, ciciy etc.) 	T 
	

a 

Parameter 
Tendon vessel volume 
Vascular volume perfused 
Arterial cast (30 pal acrylate) 

Weight 
Volume 

Passage of microspheres (11.8 01) 	1.1±0.1 2.2±0.2 
Microsphere embolism (11.8 1.1M) 

1-Methylxanthine metabolism 
Chylomicron triglyceride hydrolysis 

Abbreviations: V02, oxygen uptake; J uc, lactate efflux, Jmy, glycerol ef-
flux. For microsphere embolism "—" and "+" indicate inhibition and 
stimulation of metabolism, respectively. Values for the passage of micro-
spheres are percent of total injected, which in each case was 2x10 6 . 
Refs: a, Clark et al. 1995; b, Newman et al. 1997; c, Newman et al. 1996; 
d, Vincent et al. 1998; e, Rattigan et al. 1997; f, Clerk et al. 2000. 

sels (Newman et al. 1997). Interestingly, Grant & 
Wright in their anatomical study of these vessels, 
noted that they were about twice the diameter of 
muscle nutritive capillaries (Grant & Wright 1970). 
According to Poiseulle's Law (Q=kPr4/1, where Q= 
flow; k=constant; P= pressure; r=radius; and 1= 
length of vessel), at the same vessel length and per-
fusion pressure, these functional shunts could be cap-
able of carrying 16 times the flow of a typical muscle 
capillary. Applying this reasoning, the potential ratio 
of flow rates was approx. 1:12 for norepineph-
rine:serotonin. These calculations combined with the 
fact that the vessels in question are located in a tissue 
of low metabolic activity makes the hypothesis of a 
significant non-nutritive flow pathway through ten-
don highly plausible. 

Another approach (Table 2) was the assessment of 
perfused vascular volume. In these experiments, 
again using the perfused rat hindlimb at constant 
total flow, the effects of each vasoconstrictor were 
compared in terms of vascular entrapment of fluor-
escein-labeled dextran (Fx) (Newman et al. 1996). Fx 
was infused at a constant rate and during this in-
fusion norepinephrine was also infused (if a new vas-
cular region was being recruited .then this would fill 
with Fx). Subsequently, infusion of the Fx was halted 
and a few minutes allowed for the material remaining 
to wash out. A second infusion of norepinephrine 
succeeded in releasing the previously entrapped Fx.. 
By varying the time between each infusion of nor-
epinephrine it was possible to deduce that approxi-
mately 31% of the pre-norepinephrine vascular vol-
ume had been recruited. Although there was no evi-
dence that norepinephrine had acted to derecruit a 
previously perfused vascular volume, recruitment of 
an additional vascular volume under conditions of 
constant total flow must have been at the expense of 
flow elsewhere (presumably from the non-nutritive 
connective tissue route). For serotonin, a type B vaso-
constrictor that inhibits metabolism, a new space was 
not recruited, but rather, vasoconstriction by this 
agonist resulted in the closing off of a space. Presum-
ably the de-recruited space represented a portion of 
the previously perfused muscle nutritive route. Again, 
since the total flow was kept constant, this would 
mean that flow has been directed to the non-nutritive 
route, consistent with the observed increase in tendon 
vessel volume induced by serotonin and discussed 
previously. 

The third piece of evidence in support of vasocon-
strictor-mediated redistribution of flow between skel-
etal muscle capillaries and connective tissue vessels 
comes from a comparison of the extent of arterial 
vascular tree filling for control (vehicle only), nor-
epinephrine and serotonin (Newman et al. 1996). For 
these experiments, corrosion casts were made using 
30 1..im spheres of methyl methacrylate. Whereas nor- 
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nutritive flow could be made, so it is unknown 
whether this changed. 

We have proposed elsewhere (Clark et al. 1998) 
that the presence of a secondary (non-nutritive) route 
or shunt within muscle affords a distinct advantage 
in terms of amplification for nutrient delivery during 
exercise. This is over and above the proportionate in-
crease in total blood flow to the muscle. The extent of 
amplification depends on the ratio of nutritive/non-
nutritive flow for resting muscle, which is unknown 
at present but could be as low as 16% of total (Harri-
son et al. 1990). We would argue that if this were the 
case then vasoconstriction from increased sym-
pathetic outflow during exercise could act to switch 
blood flow from the non-nutritive to the nutritive 
route, thereby amplifying nutrient delivery. Depend-
ing on the extent of vasoconstriction and the pro-
portion of nutritive/non-nutritive flow at rest, the am-
plification could approach 5-fold. Data from Takemi-
ya and colleagues (Takemiya et al. 1982) reported 
that tendon/muscle blood flow ratio of rabbit hind- 

4 
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Flow rate (m1;min -1 ) 
Fig. 2. Effect of flow rate on oxygen uptake, perfusion pressure 
and relative tendon flow in the pump perfused rat hindlimb. 
Animals were housed in cages with or without access to a 1 m 
circumference running wheel. Exercise-trained rats ran a mini-
mum of 10 km per week. Technical detail can be found else-
where (Newman et al. 1997). Significant difference between 
trained (0) and untrained (•) indicated by asterisk (P<0.05). 
Values are means -±SEM for n=7 in each group. 

limbs was greater than 2:1 and implications from a 
later paper from the same group (Takemiya & Maeda 
1988) showing that infused noradrenaline preferen-
tially decreased tendon blood flow, adds support to 
the notion that increased sympathetic outflow in exer-
cise may well act to redirect blood flow from tendon 
to muscle. 

The editors of Gray's Anatomy regard the non-nu-
tritive route as a route through which the blood pass-
es when the flow in the endomysial capillary bed is 
impeded, e.g. during contraction (Gray's Anatomy 
1973). Thus, rhythmic oscillation of blood flow be-
tween the non-nutritive and nutritive routes may aid 
the muscle pump. If this were so, then this would rule 
out the afore-mentioned possibility for flow amplifi-
cation. However, evidence from Lindbom (1986) from 
studies on the rabbit tenuissimus muscle and from 
Takemiya & Maeda (1988) would suggest that during 
exercise flow is proportionately increased to the 
muscle capillaries in preference to the connective 
tissue or tendons. This may mean that there is an 
active recruitment of flow from non-nutritive to nutri-
tive route. 

Unfortunately, most attempts to measure tendon 
vessel flow during exercise have not compared it to 
muscle blood flow and have invariably chosen to 
measure tendon vessel flow in the midportion or pen -
tendinous area. area. Thus, direct comparisons with data 
from the rabbit tenuissimus muscle above and direct 
assessment of our amplification proposal cannot be 
made. However, it is interesting to note that from the 
few studies conducted, exercise was found to both de-
crease (Astrom & Westlin 1994) and increase (Lang 
berg et al. 1998, 1999) tendon blood flow. Differences 
may relate to methodology, as Astrom & Westlin 
(1994) used laser Doppler flowmetry and Langberg 
et al. (1998, 1999) used clearance of injected 133Xe. 
There are also findings from rabbits where tendon 
blood flow was found to increase in exercise (Landi 
et al. 1983). In addition, a study by Bulow and Tond-
evold (1982) using radioactive 15 jim microspheres in 
dogs showed that exercise increased Achilles tendon 
blood flow aproximately 3-fold. However, blood flow 
to muscle was likely to have increased much more 
than this, and so there is still the possibility of blood 
flow being recruited to muscle at the expense of con-
nective tissue and tendon. Further experiments are 
clearly required to resolve this, avoiding the possi-
bility that tendon vessel flow in exercise is not re-
stricted due to mechanical effects. 

Effects of physical training on intrinsic resistance and 
capacitance of tendon vessels 

As indicated above, we have developed a technique 
for monitoring tendon vessel flow/volume during rat 
hindlimb perfusion when total flow is held constant 
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