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Abstract 

The thermal ecologies of two elevationally isolated populations of adult female 
Tasmanian Tiger Snakes (Notechis ater sp.) were investigated using stomach 
implanted radiotelemetry and a comprehensive microclimate monitoring programme. 
The study sites were Egg Islands, in the Huon Valley in southeastern Tasmania, and 
at Lake Crescent, on the lower Western Central Plateau of Tasmania. 

The study had four primary ~ims: (i) to determine the microclimatic conditions 
associated with retreat site and basking site selection; (ii) to record and compare 
behavioural thermoregulatory response to micrometeorological variation; (iii) to 
monitor diel rhythmicity and range of body temperatures; (iv) to determine voluntary 
thermal limits and eccritic body temperatures. This information was used in two 
ways: firstly, to identify the preferred physical microhabitat of this species; and 
secondly, to develop two predictive models of adult female Tiger Snake activity. 
The first is a relatively simple empirical model based on microclimatic correlates of 
body temperature; the second, a biophysical approach involving analysis of the 
snake's energy budget. Development of the first model required identification of 
those environmental parameters and quantities which: (i) trigger emergence; (ii) 
determine the amount of time necessary for the daily warm-up phase in differing 
micrometeorological conditions; (iii) allow the animal to move about within its 
home-range; and (iv) trigger entry into retreat sites. In order to develop the second 
model detailed information on body temperatures and on the pertinent microclimatic 
variables within the animal's immediate vicinity were required. It also required 
information on the physical dimensions and behavioural characteristics of the animal. 
In addition, other questions relating to the thermal ecology of this species are asked. 

The determined correlates of body temperature and daily patterns of activity included 
total down-welling radiation, global radiation, ground surface temperature, ground 
heat-flux, and inground temperature. Cloud cover and wind direction were found to 
influence the snakes thermoregulatory behaviour. 

The telemetry results, determined in a temperature gradient chamber, showed 
elevational differences in eccritic mean body temperatures and voluntary thermal 
limits of non-gravid females, but similar temperatures for gravid females. The field 
telemetry showed diel rhythmicity and the range of body temperatures for four Egg 
Island females which showed differences between gravid and non-gravid females. 

The empirical model was found to explain daily activity and validate assumptions 
made necessary to develope the biophysical model. 

The biophysical model is a modified integrated parameter model, based on empirical 
relationships, and was tested against the field telemetry derived body temperature 
data. The model was found to explain a minimum of 65% and a maximum of 84% 
of the variance desplaying a high level of significance. The results show that the 
snakes are optimising their thermal uptake. 
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1 INTRODUCTION 

Animals interact with their physical environments in complex ways which determine 

their distributions, behaviour, predator-prey interactions and feeding strategies. Our 

understanding of these relationships may be limited and the complexities involved 

necessitate a focal point. Gates (1975) considers that, as energy is a primary requirement 

of any animal, many of the relationships and responses can be addressed successfully 

through the unifying focus of energy exchange. Energy transfer between animals and 

their physical environments is a continuous and variable process influenced by the 

intrinsic properties of both. The relationship may vary with season, time of day and 

location, and involves physiological and behavioural responses to a geometrically and 

spectrally variable incident radiation. 

Temperature is an important resource to animals living in cool environments, particularly 

in seasonally extreme areas, with relative importance increasing with increasing latitude 

and elevation. To a reptile, temperature is one of the most important components of 

its environment and it will spend a large part of each day responding to its thermal 

environment. Because reptiles rely primarily on external heat sources for growth, 

reproduction and maintainence activities, it is important when studying the ecology of 

any reptile to look at the various paths of heat exchange available. 

The daily and seasonal activity patterns of reptiles are strongly influenced by their 

thermal requirements (Porter eta!. 1973; Huey, 1982). Consequently, in studying 

the daily activity patterns of Tiger Snakes (Notechis ater), attention will be focused on 

available thermal energy, rather than on food or chemical potential energy, and on the 

biological and physical exchange mechanisms acting in thermal energy transfer. 

Thermoregulation in snakes has been studied less thoroughly than in lizards possibly 

due to their dangerous and secretive reputations, however, several recent studies have 

attempted to interpret the thermoregulatory behaviour of elapid snake species based 

on body temperature measures. These have included taking body temperatures from 

the cloaca with glass thermometers (Dredge, 1981; Schwaner, 1989), surgical 

implantation ofradiotelemeters (e.g. Shine and Lambeck, 1990), and a few by force

feeding radiotelemeters (Shine, 1987b). Radiotelemetry studies have been conducted 

in four Australian snake families (Acrochordidae, Boidae, Colubridae and Elapidae) 

(Shine,l987b) and many have dealt with thermoregulatory behaviour. The current 

study differs from most previous work in this area in that it combines behavioural 
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observations of free-living snakes with a comprehensive evaluation of habitat 

microclimate. The results will allow for a meaningful interpretation of the thermal 

ecology of this species by identifying and quantifying the sources and sinks of 

thermal energy within each animal's home-range. 

1.1 BIOPHYSICAL ECOLOGY, A MULTIDIMENSIONAL SCIENCE 

Biophysical ecology is a subdiscipline of ecology which utilises an analytical approach 

towards understanding the interactions between the biotic and abiotic components of 

an ecosystem (Gates 1975, 1980). To this end, it applies mathematical and physical 

laws to the principles of biology. By definition, biophysical ecology assumes a 

reductionist approach, in contrast to a holistic one, towards ecology. It is a simplification 

which may lead to a neglect of other important aspects of an ecosystem; for example, 

competition for other resources besides energy, such as animal/plant interactions, 

trophic levels and predator/prey relations. Instead, it focuses on the energy/mass 

exchange mechanisms which serve to link lifeforms with their physical environments 

(Gates, 1980). 

1.1.1 Defining biophysical mechanisms 

In determining the energy budget of an animal the physiological, behavioural and 

physical mechanisms of energy exchange need to be addressed. The sources and 

sinks of thermal energy available to a terrestrial vertebrate include metabolism, radiation, 

convection, conduction, and the latent heat of evaporation (Gates 1975, Campbell, 

1977). Each of these affect an animal's energy balance. The principal climatic 

factors simultaneously interacting on most terrestrial animal energy budgets include 

radiation, air temperature, wind and vapour pressure. 

In the context of animal/thermal environment interaction the animal and its physiological 

and behavioural adjustments are considered the dependent variables on the largely 

independent climate. Thermoregulation is a dynamic and multifaceted process in 

which the animal attempts to achieve or maintain a body temperature, within a thermal 

zone, in response to actual or anticipated change to heat load; and it is dependent on 

ecological and physiological factors (Huey, 1982). 

In the current study it is intended that an appropriate evaluation of snake/environment 

energy interaction will allow determination of the microclimatic conditions influencing 

adult female Tasmanian Tiger Snake activity during summer. However, only the 

behavioural and physical mechanisms of energy-exchange are considered here and the 

physiological mechanisms must remain for future research. 
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1.2 THE TASMANIAN TIGER SNAKE 

The Tasmanian Tiger Snake is a large proteroglyphic terrestrial snake belonging to the 

family Elapidae. All proteroglyphs have relatively short non-rotating fangs and typically 

neurotoxic venoms, and include the most dangerous snakes in the world. Following 

the classification and nomenclature used by Gow (1976) and Cogger (1983), the 

Tasmanian Tiger Snake (Notechis ater humphreysi) is a subspecies of Notechis ater 

(Krefft, 1866), however, the relationships of the various sub-species (currently four) 

are obscure and the subject is contentious and will not be entered into here. The 

genus is generally confined to southern Australia and N. ater is widely distributed, 

occurring in the Flinders Ranges, in south-western West Australia, on south-eastern 

South Australia offshore Islands, and on many islands of Bass Strait and in Tasmania. 

In Tasmania the species grows in excess of 1.5m and is often melanotic or dark 

brown with banded individuals common in some areas. The live-born young are 

sometimes strongly banded, particularly from the lowland areas, and are generally 

more cryptic than adults. The Tasmanian Tiger Snakes are diurnal and at certain 

times may be observed foraging in the middle of the day. Diet may vary with the age 

of the snakes; when young readily feeding on tadpoles, frogs, skinks and even fish, 

and as adults they will hunt small birds and mammals. Body size determines the size 

of prey taken. 

The Tiger Snake in Tasmania occurs from sea-level to above 1200m elevation. Habitat 

is varied and includes: dry sclerophyll woodland, rocky outcrops, creek margins, 

marshland, tussock grassland, farmland, alpine and coastal heathland, and dune areas. 

The species is commonly associated with the borders between open areas and dense 

cover; and at higher elevation with dolerite outcrops and especially those with a 

northern aspect. Dredge (1981) considers Tiger Snakes to be absent from Tasmanian 

rainforest and wet sclerophyll and to be largely confined to drier areas within the 

state. 

The writer undertook a survey of annual sightings of snakes in Tasmania in 1991 and 

the results for the 1990 sightings of Tiger Snakes are given in Fig.l.l. The data 

show the peak of activity to occur in February and a minimum of activity in July (the 

coldest month); however, these data are for the State as a whole and activity varies 

depending on local conditions and elevation. 
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Tiger Snake sightings: 1990 
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Fig. 1.1 Tiger snake sightings for 1990, Tasmania state wide. 

1.3 OBJECTIVES AND JUSTIFICATION OF RESEARCH 

The primary aims of this study are fourfold: (i) to determine the microclimatic conditions 

associated with retreat site and basking site selection; (ii) to record and compare 

behavioural thermoregulatory response to micrometeorologic variation; (iii) to monitor 

diel rhythmicity and range of body temperatures; (iv) to determine voluntary thermal 

limits and eccritic body temperatures. In this study the four primary aims are investigated 

for two elevations within the State during the summer season 1992/93. 

This information will be used in two ways: firstly, to identify the preferred physical 

microhabitat of this species; and secondly, to develop two predictive models of adult 

female Tiger Snake activity. The first, a relatively simple empirical model based on 

microclimatic correlates of body temperature; the second, a biophysical approach 

involving analysis of the snake's energy budget. Development of the first model 

requires identification of those environmental parameters and quantities which: (i) 

trigger emergence, (ii) determine the amount of time necessary for the daily warm-up 

phase in differing micrometeorological conditions, (iii) allow the animal to move 

about within it's home-range, (iv) trigger entry into retreat sites. In order to develop 

the second model detailed information on body temperatures and on the pertinent 

microclimatic variables within the animal's immediate vicinity are required. It also 

requires information on the physical dimensions and behavioural characteristics of the 

animal; i.e. exposed surface area, surface albedo, body-wall thicknesses, thermal 

conductance, and behavioural mechanisms of thermoregulation. 
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1.3.1 Questions 

The present study asks if it is possible to model Tiger Snake activity patterns based 

solely on microclimatic parameters and energy budget analysis in Tasmania, and if 

these models are adequate for predicting Tiger Snake behaviour. 

A study of this kind will also suggest other questions relevant to the thermal ecology 

of this species and although answering these questions is not central to the theme of 

this study they are nonetheless pertinent to an understanding of Tiger Snake thermal 

ecology. The more obvious of these are given below: 

Optimising thermal environments 

Do Tasmanian Tiger Snakes make optimum use of their thermal 

environments? For example, will they minimise exposure to wind while maximizing 

exposure to solar radiation during their daily warm-up phase? Do they bask in 

exposed positions only for the time necessary to elevate body temperatures to optimal 

levels? To what depth do they go within retreat sites at night in summer and do they 

select locations in retreat sites that maximise body heat retention? 

Elevational differences 

Are the voluntary thermal limits of two elevationally isolated populations 

of Tiger Snakes different in Tasmania? Do they exhibit different selected body 

temperatures at elevational extremes that favour maximal seasonal activity and does 

this explain observed differences in activity patterns? Are Tiger Snakes at higher 

elevation less likely to travel long distance to reach suitable basking sites, than are 

those at lower elevation, in response to a cooler and less predictable environment? 

Sexual and asexual differences 

Are females more closely associated with a particular home-range than 

males outside of the mating season in Tasmania? Do the largest females hold the 

thermally optimal sites? Do gravid females thermoregulate more precisely than non

gravid females, and to what extent do optimal body temperatures and activity patterns 

of gravid females differ from non-gravid females? 

Answers to the above questions are relevant for predicting activity patterns based on 

microclimatic parameters in this species and, therefore, have been included in the 

discussion. 
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STRUCTURE 

Chapter two outlines the biological considerations necessary to understand the thermal 

ecology of animals in general with an emphasis on reptiles, as an introduction to the 

study. Chapter three describes in detail the theory of energy exchange and the main 

models available for animal energy budget analysis, and then introduces the integrated 

parameter model used in this study. Chapter four describes the regional setting and 

the study sites. Chapter five details the methods and materials used in data aquisition. 

Chapter six analyses the data obtained and discusses implications arising from the 

data and relationships within the measured variables. The animals are found to 

behave within simple biophysical limits, selecting sites which maximise their thermal 

opportunity. Some previously used predictors of animal body temperature are shown 

to be unsuitable. Chapter seven integrates the information into predictive models of 

Tiger Snake behaviour, relating behaviours to meteorological conditions. Various 

relationships are presented which describe the thermoregulatory behaviour within a 

physically coherent framework which allows for future improvements of our 

understanding of the animals themal ecology. The thesis concludes by summarising 

the findings of the study and suggests directions for further research. 
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2 BIOLOGICAL CONSIDERATIONS 

2.1 THERMAL BIOLOGIES 

'The thermoregulatory activities of animals are nearly as varied and complex 

as the terminology devised by students of thermoregulation to describe 

those activities" 

(Pough and Gans, 1982, p. 17) 

2.1.1 Introduction 

Some confusion exists in the literature regarding relevant terminology and, in light of 

the problem, this chapter aims to provide working definitions of the biological terms 

used throughout this thesis together with a brief overview of the thermal strategies 

utilised by animals. The following focuses on reptiles, however, reference is made to 

other vertebrate groups where pertinent and where information on reptiles may be 

lacking. 

Animals are termed endothermic, if they have physiological mechanisms for maintaining 

internal temperatures within narrow limits (±2"C or less, Bligh and Johnson, 1973) 

independent of ambient temperatures (i.e. homoiothermic or 'warm-blooded'). Animals 

are termed ectothermic if they lack physiological temperature control mechanisms and 

their body temperatures fluctuate with that of their surroundings (i.e. poikilothermic 

or 'cold-blooded'). Both homoiotherm and poikilotherm are arbitrary distinctions of 

internal thermal state based on stable laboratory conditions. The use of the term 

ectotherm (Cowles, 1940) is here considered more appropriate than poikilotherm in 

describing those cold-blooded animals capable of thermoregulation through behavioural 

response to an external heat-source ('behavioural homoiotherms'). Animals with a 

wide temperature tolerance are termed eurythermic, while others with only a very 

narrow tolerance are termed stenothermic. 

Between the extremes of thermoconforming ectotherms and thermoregulating 

endotherms, animals exhibit varying degrees of thermoregulatory ability (Whittow, 

1970). Even within a species seasonal switching of thermal-strategy may occur, 

from thermoregulator to thermoconformer and visa-versa (such animals may be termed 

heterothermic). Many reptiles (considered ectotherms) are capable of withstanding 

7 



energy shortages during winter by allowing deep body temperature (Tb) to fall near 

ambient, some as low as 1-4"C (Schmidt-Nielsen, 1983). Thermoconforming animals 

in winter are said to be hibernating (most vertebrates that hibernate are small), while 

in a state of physiologically maintained inactivity, or in torpor. However, physiological 

inactivity may also occur in animals in summer (aestivation). 

In general, the daily activities of ectotherms are determined far more by the thermal 

characteristics of their environments than are those of endotherms (Gans and Pough, 

1982); for example: resource utilization, competition and habitat partitioning (Ruibal 

and Philibosian, 1970; Huey and Slatkin, 1976; Huey and Webster, 1976; Huey, 

1982). Endotherms, however, are generally less responsive to small scale fluctuations 

in their physical environments and the dependency on microclimatic parameters may 

be less obvious. 

Endothermal heat production does occurs in reptiles (Bartholomew, 1982), but it is 

of a much lower magnitude than in homoiotherms, and may afford such species 

limited independence of microclimatic constraints (e.g. brooding pythons). Reptiles 

are not 'cold-blooded' in the sense that diurnal body temperatures of freely moving 

reptiles are equal to that of their environment; reptile body temperatures are often 

elevated over environmental temperatures and maintained within narrow limits by a 

complex of physiological and behavioural adjustments. 

2.1.2 Defining body temperature 

No single temperature actually defines the Tb of a terrestrial vertebrate (Pough and 

Gans, 1982) as heat is unevenly distributed throughout the body. In this discussion 

Tb refers to the deep (or core) body temperature. In a snake the elongated and 

flexible body form may result in regional differences in Tb due to the animal occupying 

several microhabitats at the same time. For these reasons it is important to standardize 

any method of measuring Tb's so that the results obtained will permit accurate 

interpretation of the thermal status of different animals. In practice animal Tb's may 

be taken from the oesophagus (Dredge, 1981), stomach, deep rectum or cloaca 

(Schwaner, 1989), depending on the species; or by the more sophisticated method of 

radiotelemeter implantation into a body cavity. However, oesophageal, rectal or 

cloacal sites may not be representative of true core temperatures and are easily influenced 

by handling (e.g. Castilla and Bauwens, 1991). There are difficulties not only in 

defining Tb but also in accurately determining mean Tb values. In light of this, and 

in view of the lack of standardized methods employed by many researchers a degree 

of caution is necessary when evaluating the literature. 
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As the body core temperature is defined as: "The mean temperature of the tissues at a 

depth below that which is affected directly by a change in the temperature gradient 

through the peripheral tissues" (Bligh and Johnson, 1973, p. 944) the term is considered 

inappropriate for small to medium ectotherms, as their body temperatures are affected 

directly by changes in temperature gradient. Consequently, the term 'deep body' 

temperature may more accurately define the body temperatures of reptiles (Pough and 

Gans, 1982). 

2.1.3 Temperature range 

Generally, terrestrial animals have Tb's which can vary greatly from environmental 

temperatures. Reptiles differ in the range of temperatures they can tolerate and these 

ranges may also differ with time. The Tb range tolerated by endotherms is generally 

much less than that tolerated by ectotherms. All reptiles have a Tb range associated 

with activity, termed the 'activity temperature range' (Pough and Gans, 1982), within 

which they may engage in maintenance activities and where there exists an optimum 

temperature (or temperatures) for physiological function. The activity range is delimited 

by voluntary thermal limits (VT min and VTmax) which are selected by the animal. In 

ectothermal vertebrates this implies selected or 'preferred' body temperatures. However, 

while it is correct to say that ectotherms select preferred temperatures, when allowed 

to by environmental conditions, it is incorrect to assume that there is a single optimum 

environmental temperature for metabolic processes. Selected temperature is not fixed, 

but may vary with time, hormonal, and physiological state (Dill, 1972; Garrick, 

197 4; Hutchison and Kosh, 197 4; Lang, 1981; Lillywhite, 1980; Patterson and 

Davies, 1978; Regal, 1966, 1967, 1980; Shine and Lambeck, 1990). Selected Tb's 

in reptiles have been recorded to vary even on a daily basis (Regal, 1967; Hutchison 

and Kosh, 1974). For this reason the term eccritic (Gk. ekkrinein, to select) temperature 

is commonly used as a synonym for selected Tb. Reptiles also have extended Tb 

ranges defined by critical thermal limits (CTmin and CTmax) beyond which animals will 

eventually die; i.e. though not considered to be physiologically lethal, the CT may be 

ecologically lethal in animals unable to find shelter (Pough and Gans, 1982). CTmax is 

probably the most widely used correlate of temperature for activities in reptiles (Huey, 

1982). VT min and VT max are the points at which the animal seeks heat or shelter. In 

the ectotherm a basking range occurs between VT min and the activity range. A 

thermoregulating reptile may only tolerate extension of its activity range by incurring 

energetic expense through physiological and/or behavioural compensation. 
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2.1.4 Acclimatisation 

The limits of thermal tolerance are dependent on a reptiles's previous thermal history. 

Reptiles are capable of physiologically extending their Cf ranges if new environmental 

temperatures are approached gradually and experienced over extended periods; such 

animals are then considered to have acclimatised to the new temperature. Change in 

temperature tolerance may occur in response to climate change and under natural 

conditions can prepare the animal for survival during periods of extreme temperature. 

Available information suggests that there is no clear understanding of the physiological 

mechanisms involved in modification of the CT range (Schmidt-Nielsen, 1983). It is 

known however that metabolic enzyme systems play an important role (Hochachka 

and Somero, 1973) in that biochemical processes, in which the rates of reaction may 

vary by two to four times for every lO"C variation in Tb (also referred to as the Q10), 

somehow compensate to newly experienced temperatures (Schmidt-Nielsen, 1983). 

Thus biochemical thermal sensitivity may vary as a function of thermal history of the 

animal. Natural acclimatisation is an important environmental adaptation as in many 

highland areas in Tasmania seasonal temperature change can be extreme and during 

winter animals may tolerate temperatures that if experienced during summer may be 

lethal. 

2.1.5 Evaluating animal response 

Because previous thermal history determines thermal tolerance it is important, when 

looking at animal/temperature regime response, to know the thermal history of the 

animal in question. This can be achieved through habituation of the animal to a 

specific temperature under laboratory conditions; a process known as acclimation, 

which will allow for a more accurate interpretation of animal response to a particular 

range of temperatures. This is important because one cannot know the extent to 

which environmental temperature is limiting activity without having first determined 

the eccritic temperature, activity range and the VT (or CT) limits of the animal under 

controlled conditions. Physical environments will, on occasion, prevent reptiles from 

achieving eccritic temperatures (Licht et al., 1966; DeWitt, 1967; Porter et al., 1973; 

Huey and Webster, 1976; Muth, 1977; Magnuson et al., 1979). In practice the 

animal's response to a laboratory controlled temperature gradient is determined only 

after it has had sufficient time to acclimate to the artificial temperature. In ectotherms 

it may be as short as 24 hours or as long as 20 days (Schmidt-Nielsen, 1983). 

Alternatively, if the reptile is to be evaluated based on the current field conditions, the 

temperature response should be determined as soon as is practicable after capture in 

order to avoid acclimation to the artificial temperature regime. , 
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2.2 FACTORS INFLUENCING TEMPERATURE REGULATION 

2.2.1 Photoperiod 

Homoiotherms are known to experience regular daily Thfluctuations which are entrained 

to daily light cycles (e.g. Rose, 1985), but are independent of exogenous thermal 

cues. Diel Tb cycles in reptiles, though governed by photoperiod in at least some 

lizard families (e.g. Anguidae, Agamidae, Iguanidae and Scincidae) and dependent on 

a functional parietal organ (Stebins, 1963; Hutchison and Kosh, 1974; Avery, 1979; 

Heatwole and Taylor, 1987), are usually not independent of exogenous thermal 

regimes. Thus, a meaningful interpretation of Tb in reptiles, when applied to 

microclimatic data, will require additional information concerning normal activity 

patterns as functions of time and date of sampling. 

2.2.2 Cost-benefit of thermoregulation 

Metabolic rate varies directly with Tb and, as such, any change in Tb will incur 

metabolic cost (Huey, 1982). Similarly, locational change and postural adjustments 

require energy expenditure (Avery, 1982). These costs need to be determined when 

assessing the net benefit of thermoregulation (Huey and Slatkin, 1976). In theory, 

cost-benefit models predict that precise thermoregulation will be beneficial only if 

associated costs are low; i.e. physiologically optimal benefit can only be ecologically 

optimal if the energetic costs and risk of predation are minimal (Huey and Slatkin, 

1976; Hainsworth and Wolf, 1978; Magnuson et al., 1979; Huey, 1982). From the 

above, the predicted energetic costs for a thermoregulating reptile would be low when 

associated with open habitats, and high in heavily shaded or forested habitats; however, 

the risk of predation may override these considerations. Hence, many reptile species 

may thermoconform (be non-baskers), or be less precise thermoregulators (Lee, 

1980), when associated with dense vegetation (high energy cost habitats), or when 

occurring in tropical zones (Huey and Slatkin, 1976; Huey and Webster, 1976). 

These and other cost-benefit considerations (e.g. time, social interactions, competition, 

food availability) may collectively determine thermal strategy and thermoregulatory 

precision. An accurate thermal map of the home range (body or environmental 

temperature) is important for quantifying thermoregulatory costs, and for facilitating a 

meaningful interpretation of Th and associated behaviour. 

2.2.3 Surface area:mass ratio and heat storage capacity 

. The surface area: mass ratios of reptiles affect their thermoregulatory behaviour by 
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influencing the rates of energy exchange with the environment. As surface area:volume 

ratio varies inversely with mass the surface areas of small animals are relatively large. 

Further, as heat exchange with the environment (via radiation, convection, conduction 

and in part evaporation) occurs at the animal's external surface, the potential rate of 

heat exchange with the environment in small animals is relatively great. The elongate 

body form and relatively large surface area:mass ratios of snakes is associated with 

substantial energy cost in endotherms (Schmidt-Nielsen, 1983). In the Mustelidae, 

which display an elongate and narrow body form, heat exchange, when outside of the 

thermal neutral zones, is approximately double that of more conventional shaped 

mammals of comparable size (Brown and Lasiewski, 1972). When a snake's body is 

extended the increased and relatively high surface area to mass ratio will allow for a 

rapid rate of heat exchange, and when tightly coiled will minimise this exchange 

(Bartholomew, 1982). The low mass specific metabolic rates of reptiles may help 

explain why so many lizards are small; as small ectotherms need not spend much 

energy thermoregulating. The limited heat storage capacity of small reptiles means 

that they are track the immediate thermal conditions more closely than larger animals. 

Body heat storage capacity is a function of body mass and specific heat. The average 

heat capacity (Cp) of living protoplasm is approximately 3.43 J g·' ·e' (Bartholomew, 

1972) and is Tb dependent; the exact value may vary interspecifically and even 

intraspecifically (Schmidt-Nielsen, 1983 ). 

2.2.4 Limited endothermy 

Limited endothermy occurs in some reptiles, especially the larger species (Bartholomew 

and Lasiewski, 1965; Bartholomew eta!., 1965; Bartholomew, 1982), and large to 

medium sized reptiles may warm-up faster than they cool (Heatwole and Taylor, 

1987). This latter characteristic has been shown to be absent in experiments on dead 

animals (Bartholomew, 1982), indicating physiological thermal control, however, in 

smaller reptiles the rates of heating, or cooling, may be reversed in forced convective 

situations (Fraser and Grigg, 1984). Endothermy, while characteristic of all mammals, 

can vary in magnitude (Dawson and Grant, 1980). The basal metabolic rates of both 

endotherms and ectotherms are labile; for example the rates of active varanid lizards 

can overlapping those of inactive mammals (Bartholomew, 1982; Pough and Gans, 

1982). 

2.2.5 Limited insulation 

In contrast to endotherms, small ectothermic vertebrates characteristically lack insulative 
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coverings. Fat as an insulating material, while peripherally minimal in ectotherms, 

may be considered superior to exterior insulation in that heat transfer through it to the 

surface of the animal is under homeostatic control via blood flow to the periphery. 

The thermal conductivity (k) of fat (0.205 Wm ·Ioet, Gates, 1980), when compared 

to soils or to lizard skin (0.502 wm·Ioet, Porter and Gates, 1969), is relatively low 

and therefore it has a relatively high insulation value (though this is largely a function 

of density). Air also has a low k and can be influential in energy transfer. However, 

since reptiles may possess only limited ability to trap air next to the body surface (in 

the uncoiled position), the importance of air as an insulative layer to these animals 

may be minimal. 

2.2.6 Variation in body temperature 

Terrestrial reptiles may vary eccritic Tb's in response to: season (in snakes: Carpenter, 

1956; Hirth and King, 1969; Gibson and Falls, 1979; Schwaner, 1989; Shine and 

Lambeck, 1990), digestive state (Regal, 1966; McGinnis and Moore, 1969; Cogger, 

1974; Gatten, 1974; Witten and Heatwole, 1978; Bradshaw et al., 1980; Bozinovic 

and Rosenmann, 1988; Schwaner, 1989; pers. obs.), health (pers. obs.), gender 

(Schwaner, 1985; Shine and Lambeck, 1990), and reproductive status (Schwaner, 

1989). Such observations have led some investigators (Lang, 1979; Pough, 1980) to 

postulate that reptiles (and amphibians) may have multiple physiologically optimal 

temperatures (Huey, 1982). 

Seasonal shifts in Tb have been interpreted as a response to changing physical 

environmental constraints (Lillywhite, 1987) or as resulting from an inverse relationship 

between eccritic and acclimated temperatures (Scott and Pettus, 1979). However, the 

cost of thermoregulatory behaviour, in terms of energy, time and risk of predation, 

may offset any energy gains to be accrued from the behaviour (Huey and Slatkin, 

1976). 

2.2. 7 Thermoregulatory precision in reptiles 

Not all reptiles thermoregulate precisely while active (Ruibal, 1961; Heatwole, 1970; 

Rubial and Philibosian, 1970; Hertz, 1974; Huey 1974a, b, 1982; Huey and Webster, 

1975, 1976; Lee, 1980). Thermoregulatory precision has been demonstrated to be 

influenced by environmental heterogeneity (Soule, 1963), weather (Licht eta!., 1966), 

time of day (Regal, 1967), food availability (Swingland and Frazier, 1979), competition 

and predators (DeWitt, 1967; Regal and Connolly, 1980). 
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Imprecise thermoregulation and eurythermy may increase potential activity periods 

and thus outweigh the advantages of precise thermoregulation and stenothermy (Huey, 

1982). 

2.2.8 Activity periods in reptiles 

Limits to potential daily and seasonal activity periods in reptiles are primarily determined 

by thermal and moisture (hydric) characteristics of the habitat (Bartlett and Gates, 

1967; Porter and Gates, 1969; Porter et al., 1973; Tracy, 1982) and by the characteristic 

biologies of the species (Huey, 1982). Time of activity may be further limited by 

food and water availability (e.g. Porter et al., 1973; Huey and Slatkin, 1976), 

competition (Magnuson et al., 1979), predation (McFarland, 1976), gender and 

reproductive status (Rose, 1981; Schwaner, 1989; Shine, 1991; Shine and Lambeck, 

1990). Interspecific differences in activity times are more commonly seen in reptiles 

than in endotherms (Schoener, 1977) and the activity periods of most reptiles are 

comparatively short, especially in temperate zones (Avery, 1979). The annual activity 

periods of lizards have been shown to be negatively correlated with altitude (Huey, 

1982). However, not all individuals in a reptile population are likely to be active 

every day even in ideal weather conditions (Bradshaw eta!., 1980). 

Huey (1982) considers that there are two themoregulatory strategies available to 

sequestered reptiles: (i) they may select thermally buffered retreat sites which afford 

them warm and stable microhabitats (Heatwole, 1970; Porter eta!., 1973; Huey et 
a!., 1989); (ii) they may change position within retreat sites (Schall, 1977). In fact, 

reptiles may be able to control Tb more precisely inside retreat sites than outside 

(DeWitt, 1967) and by moving between the surface and a depth of 20cm (Porter et 

a!., 1973; Huey eta!., 1989) they may achieve or maintain eccritic temperatures over 

a large part of each day (DeWitt, 1967; Huey, 1982). 

2.3 BIOLOGICAL THERMAL EXCHANGE MECHANISMS 

2.3.1 Body temperature gradient 

Generally, the body core (abdomen and thorax) is the main centre of metabolic heat 

production (M) in an animal at rest (Schmidt-Nielsen, 1983) with the skin and muscle 

mass (body shell) accounting for a lesser amount. Hence, in resting homoiotherms 

the outer body is generally cooler than the inner body with the resulting temperature 

gradient (~T) providing for passive heat transfer, via blood circulation and conduction, 

to the body surface and subsequent dissipation into the environment. However, this 
_.· . 

14 



situation will often be the reverse in reptiles where these same mechanisms may be 

used to transport heat to the body core. Heat exchange occurs across highly variable 

and geometrically complex animal surfaces and it is from these that all heat flux 

occurs. 

2.3.2 Heat-exchangers 

Many animals employ countercurrent heat-exchangers in thermoregulation (Schmidt

Nielsen, 1983). These are blood vessels situated in close proximity to each other, 

and typically arranged in such a way that permits heat exchange to occur between 

efferent (arterial) blood flow away from the body core and afferent (venous) flow, 

thus preheating or cooling the blood before it re-enters the core. These systems allow 

the animals in which they occur to better control heat exchange, even in extreme 

temperatures. These mechanisms have not as yet been demonstrated to occur in 

snakes, however as Shine (1991) points out, snakes may preferentially shunt blood 

through small subcutaneous blood vessels in solar exposed body parts so that the 

body parts still remaining under cover may be warmed. The flattened necks, typical 

of basking elapids, accommodate major blood vessels which may be acting in heat

exchange. 

2.3.3 Evaporative water loss 

Vertebrates typically exhale air saturated with water vapour which may result in 

considerable loss of water and heat from the respiratory tract. In conditions of heat 

stress, small vertebrates exploit routes of heat exchange involving a deliberate increase 

of evaporative water loss (EWL); i.e. through sweating, panting, gular fluttering, 

licking or urinating on external body parts, or by deliberately seeking out moisture 

with which to wet their exteriors. 

Most reptiles, unlike most amphibians, have integumental barriers to restrict EWL 

which may allow for activity even in extreme aridity (Gans and Pough, 1982). 

However, cutaneous water loss can be substantial, though passive, in reptiles 

(Bartholomew, 1982; Mautz, 1982) The lack of evaporative cooling from the skin 

means that many small reptiles are prone to overheat as they must depend largely on 

conduction, convection and radiation as routes of heat exchange. Some reptiles are 

well known to 'pant' when heat stressed (e.g. geckos), but the amount of water lost 

by this method may be too small to play a major role in temperature regulation 

(Schmidt-Nielsen, 1983). Nonetheless, the palate and pharynx of many species are 

highly vascular with major blood vessels clearly visible just under the epithelium, 
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including Tiger Snakes Notechis spp. and other elapids (pers. obs.), and in many 

lizards, with obvious potential for heat transfer. 

2.4 SUMMARY 

This chapter has outlined the terminology of thermoregulation and the thermal repertoires 

available to reptiles in particular. It has indicated the dependence reptile activity has 

on microthermal environments and the biological mechanisms which may be operating 

in thermoregulatory response. It has also outlined the difficulties involved in 

interpretation; for example, in accurately defining or determining body temperature 

and in inferring normal thermoregulatory behaviour. The biological considerations 

figured highly in selecting an appropriate Tiger Snake monitoring programme and 

played an important part in the interpretation of results. 
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3 THEORETICAL CONSIDERATIONS 

3.1 ENERGY BALANCE 

For an animal to maintain a constant body temperature (i.e. be in a steady state with 

the environment), heat must be lost from the body at the same rate it is absorbed from 

the environment and is produced through metabolic processes. The general energy 

balance between environmental variables and a terrestrial animal is illustrated by a 

simple equation (following Oke, 1978) in the form: 

1. 

where: 

Q. net total radiation absorbed 

M metabolic heat gain 

QH sensible heat flux 

QB latent heat flux 

<2a ground heat flux 

dQs net change in body heat store 

All the terms in Equation 1. are spatially averaged for the entire animal surface area 

and expressed as fluxes (Wm-2
). For a terrestrial animal with a higher Tb than the 

environmental temperature the equation may be rearranged in the form: 

2. 

When environmental temperature equals body heat store there can be no net loss or 

gain of heat. If environmental temperature exceeds body temperature, 6Qs must 

increase unless balanced by Q, Qw QE and QG. However, in the latter situation Q •• 

Qr and QG are positive and, as Cfmax iS approached, QE becomeS increasingly important 

in balancing 6Qs. Therefore, for 6Qs to remain at constant levels, QE must account 

for all heat gain and increase with increasing temperature. However, there is usually 

a limit to the amount of water available for QE> an amount which varies depending on 

the species and the habitat. 

Generally, for a terrestrial vertebrate in a cooler environment to increase 6.Qs it must 
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maximise M and Q. and reduce QH> QG and Qw M is limited in most reptiles; hence, 

when colder than the environment, they may maximise Q. by means of postural 

adjustments to maximise solar exposure (heliothermy), or they may select warm 

substrates and gain heat through conduction (thigmothermy). They may also manipulate 

their surfaces to adjust albedo and/or increase solar exposure by dorso-ventrally 

flattening their bodies. These adjustments are reversed when VT max is reached and the 

animal may then adopt a 'shuttling' heliotherm mode of thermoregulation. Reptiles 

may be able to further maximise the rate of heat gain and minimise the rate of heat 

loss by adjustments to heart rate (increased for the warm-up phase) and peripheral 

circulation (also increased during the warm-up phase). 

3.1.1 Radiation 

Radiation is exchanged at the animal's surface in the forms of direct sunlight, scattered 

skylight, reflected sunlight, and thermal radiation emittance from the sky, habitat and 

animal surfaces. Approximately 99% of incident solar energy is contained within the 

wavelength range 0.25-4.0 Jlm (Iqbal, 1983). Near-infrared wavelengths (0.75-4 

Jlm) comprise approximately 46% of the available thermal energy and are largely 

absorbed by terrestrial animals (Gates, 1980). Animal surfaces generally are highly 

absorptive to radiant energy in the middle to far-infrared wavelengths (5-25 Jlm) 

(Schmidt-Nielsen, 1983). In the far-infrared most hydrocarbon surfaces approximate 

'blackbodies' with animal surfaces reflecting less than 5% of energy available, hence, 

they also have high emissivities (;;::95%) at this range (Gates, 1980). The absorptance 

or emittance of longwave radiation is independent of the degree to which visible 

radiation is being absorbed or reflected; i.e. animal coat or skin colour does not 

influence absorptance or emittance in mid to far-infrared wavelengths. However, 

surface pigmentation determines the amount of shortwave radiation absorbed in the 

visible waveband, which is an important source of solar energy (approximately 45% 

of available solar energy), and near-infrared absorptance. Norris (1967) noted that 

the ability of some reptiles to change skin colour seldom followed variation of the 

ultraviolet or infrared spectral ranges, however, skin colour change can be induced by 

changing air temperature. Porter (1967) concluded from his work on the 

thermoregulatory and ultraviolet significance of black peritoneums in some lizards, 

that while the pigmented membrane appears to be insignificant in thermoregulation, it 

is important for preventing entry of significant amounts of ultraviolet radiation into 

the peritoneal cavity 
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3.1.2 Radiant flux 

Thermal radiant transfer between an animal and any radiating surface occurs at a rate 

specified by the Stephan-Bolztmann law; for a blackbody this is in the form: 

3. 

where: 

R radiant emittance 

CJ Stephan-Bolztmann's proportionality constant = 5.673 * 10-8 W m-2 •K4 

T, surface temperature 

Most objects do not behave as blackbodies and are said to be greybodies because they 

have a radiant emittance less than that of a blackbody; their radiant emittance is given 

by: 

R = ecr(T, + 273.16/ 

where: 

e emissivity of the surface 

e is defined as: 

e= 

where: 

LJ, downwelling longwave radiant flux 

L i upwelling longwave radiant flux 

Li- LJ. 

CJT4- L!. 
I 

Net radiant emittance (R *) between two surfaces may be given as: 

where: 

el' e2 emissivities of the two surfaces 

Tl' T2 temperatures of the two surfaces 

A effective radiating area 

19 

4. 

5. 

6. 



Equation 6. is a useful simplification which assumes that one or both surfaces have 

emissivities close to unity and may be used with reasonable accuracy only if the 

temperature difference between the surfaces is less than lOOC (Gates, 1980). 

When dealing with radiant energy flux on an animal surface, it is useful for the sake 

of simplification to consider the animal as a uniform geometric shape. If a rectangular 

shape is assumed, for a snake, for example, then the net radiant flux on the dorsal 

surface (Qd) may be calculated from: 

Q.d = KJ. + LJ. - KJ.o:s - cr(T. + 273.16/ 

where: 
KJ. down-welling global radiation 

o:s albedo of the snake surface (Ki IK J.) 
T. snakes's surface temperature 

and the net radiant flux on lateral surfaces (Q.) may be calculated from: 

Q.1 = O.SKJ.o:r + O.SD + O.SLJ. + 0.5cr(T, + 273.I6t- cr(T. + 273.I6t 

where: 

0.5 is an assumed sky-view factor 

D diffuse sky radiation 

o:r albedo of the ground surface 

T, ground surface temperature 

Diffuse sky radiation may be defined as: 

D = KJ. - I cosZ 

where: 
I direct solar radiation 
Z zenith angle of the sun 

7. 

8. 

9. 

The net radiant flux density on a snake at ground-level would then be the sum of 

Equations 7 and 8; assuming the ventral surface is in contact with the ground along its 

entire length. 

3.1.3 Conduction 

Increased temperature gradient between body core and shell, or animal and- habitat 
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surfaces, will result in increased thermal conduction; as will decreased distance between 

the different temperatures. Conductive heat transfer from the body core to the animal 

surface may be illustrated in a simple form by considering the net heat production (M 

-Q~ passing through an insulating layer (In), where the rate of heat flow is inversely 

proportional to the quality of insulation (K = 1/In) and directly proportional to the 

temperature difference (Tb- T,); in the form: 

where: 

K overall thermal conductance of the body tissues 

Tb deep body temperature 

T, body surface temperature 

10. 

Overall thermal conductance (K) of the body shell can be accurately determined if the 

deep body and surface temperatures, and thermal conductivities between these points, 

are known. By ignoring M - QE, K is defined as: 

K=kA 
d 

11. 

where: 

k thermal conductivity 

A surface area 

T2 - T1 core minus surface temperatures 

d tissue thickness 

The combined thermal conductances of a snake in contact with the ground surface and 

open air is can now be described as: 

K = k(T,- Tb) I dd + k(T,- Tb) I dv 

where: 

dl dorsal body wall thickness 

dv ventral body wall thickness 

3.1.4 Convection 

12. 

Increased wind speed (U) results in accelerated heat transport to or from a surface, 

and if of sufficient velocity, will take the form of forced convection. The rate of heat 

transfer by forced convection (he) between a terrestrial animal's surface and the air is 
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proportional to the temperature difference. This proportionality constant is the 

convective coefficient (h) which is a complex function of wind speed, air and surface 

characteristics. Gates (1975) explains that, assuming a cylindrical shaped animal, the 

interaction of wind with an animal surface takes the form: 

u112 

he= h' - (T - T ) 
fi/2 I a 

13. 

where: 

h' convective coefficient for a cylinder (3.89 W m·1 s·1 ·c1
) 

ii mean wind speed 

d characteristic dimension 

T. air temperature 

The animal may modify its rate of convective heat exchange behaviourally by changing 

its posture or shape; e.g. by coiling, flattening or by simply seeking shelter from the 

wind. 

A terrestrial snake living on the ground surface, and within the surface boundary 

layer, may be protected from the effects of forced convection and free convective heat 

transfer may predominate. As free convection is assumed for the purpose of modelling 

the snake's energy budget it is dealt with in section 3.3.3. 

3.1.5 Evaporation 

Relative humidity (RH) influences the amount of heat lost through the latent heat of 

vaporization (A.) and is a function of the temperature at which vaporization occurs. 

The rate of evaporation (E) is directly proportional to the vapour density difference 

between the site of vaporization and the free air outside of the animal's boundary 

layer, and is thus a function of animal surface temperature (T
8
), air temperature (T.), 

RH, boundary and cutaneous resistances to water vapour (rb and rc respectively). 

If solute concentration at the animal's surface is ignored then A.E may be described by 

the functional notation: 

A.E = f (T,, T,, RH, rb, rJ 
14. 

The quantitative value of latent heat is known and varies with temperature; e.g. for an 

animal at 20°C the heat loss to evaporation is 2.45 * 106 J kg· I, and at 30°C it is 2.43 
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* 106 J kg- 1 (Oke, 1978). In endotherms at moderate temperature this loss may be 

equivalent to only a few percent of total metabolic heat production. However, it 

represents a much larger percentage of metabolic heat production in ecto~herms. 

If the air is very dry, then a steep vapour pressure gradient may exist across the 

boundary layer; a situation which is reversed in very humid conditions. The rate of 

water loss is given as: 

15. 

where: 
a (T.) vapour density of saturated air at the animal surface (kg m -3) 

dl CT.) vapour density of free air outside of the animal boundary layer (kg m-3
) 

Therefore, E will decrease with increasing RH at constant T., and increase with 

increasing T. at constant RH; and if both RH and T. are held constant then EWL will 

increase with increasing T
8

• 

3.2 BIOPHYSICAL MODELLING 

"The complexities of heat exchange between an animal and its environment 

have caused some animal ecologists to use oversimplified approaches to 

the subject (e.g., a Newton's law formulation). A theoretical model of 

heat transfer between an animal and its environment is not only absolutely 

essential in the interest of coherent insight into many animal ecology 

problems, but is also necessary to define the methods of measurement". 

Gates, 1975 (p. 251) 

Hall and Day (1977) define a model as an abstraction or simplification of a system; 

Jeffers (1982) defines a model as a" ... formal expression of the relationship between 

defined entities in physical or mathematical terms". The sheer complexity of natural 

systems analysis forces over-simplification when attempting evaluation. A model is a 

compromise between abstraction and the 'real' world. Thus, when developing an 

ecological model to define any natural process it is important that a balance be found 

which will provide sufficient detail for validity and predictive precision, yet remain 

simple enough to allow for a clear understanding of the processes involved (Bakken 

and Gates, 1975). Hence, theoretical modelling might be considered a contradiction 
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in terms and can only be expected to provide a view of the 'real' world through a 

series of successive approximations. 

Early biophysical models were used to predict equilibrium body temperatures for 

reptiles under particular environmental conditions (Norris, 1967; Bartlett and Gates, 

1967); or the thermoregulatory effects of colour or posture (Norris, 1967; Muth, 

1977). Biophysical models are used in determining the behavioural implications of 

energy exchange and for predicting the activity patterns of both predators and prey 

(James and Porter, 1979; Porter and James, 1979). Christian et al. (1983) used 

biophysical modelling to demonstrate that seasonal and weekly adjustments to home 

range by the Galapagos land iguana, Conolophus pallidus, occurred in response to a 

changing thermal environment. Crawford et al. (1983) used multiple regression 

analyses (using wind speed, radiation load, ground surface and air temperatures) to 

calculate an operative temperature (Te) which allowed for accurate prediction of basking 

behaviour in a terrapin (Pseudemys scripta). Temperature is an important ecological 

resource for which ectotherms will compete (Magnuson et al., 1979; Roughgarden et 

al., 1981), and, as such, biophysical modelling should allow prediction of activity 

periods and habitat usage in these species (Spotila and Standora, 1985). 

3.2.1 Integrated parameter modelling 

Integrated, or 'lumped', parameter models often combine all sources and sinks of 

energy by assuming the animal to be a simple cylinder or other simple geometric 

volume. 

Net heat production in an animal is M - QE and for a general energy budget to be 

accurate it must account for In. As conducted body heat is inversely proportional to 

In and directly proportional to the temperature difference Tb - T •' the energy balance 

for an animal may be given in terms of its Tb in a similar form as that proposed by 

Gates (1980) for the steady state scenario. In a small to medium size reptile peripheral 

insulation is limited, thus the insulative term can be ignored and the energy balance 

expressed as: 

M- QE + Q.- ecr(T. + 273.16)4- hc(f.- T.)- Q0 = 0 

where: 

Q. total amount of radiation absorbed by the animal 

he convective heat flux 

~ substrate conductive heat flux= K(Tb- T,), where T, is ground surface temperature 
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Although an integrated parameter model such as this is inherently simplistic and 

general in detail, it provides a way to reasonably approximate a reptile's energy 

budget. This is especially true for snakes which have geometrically simple forms. 

The electrical analog shown in Figure 3.1. illustrates the energy flow through an 

animal without plumage or pelage (following Bakken and Gates, 1975). According 

to Kirchoffs law net heat flow at any point in the circuit must equal zero: 

he 

~ 
QEr M-QEb 

Qa 

R 
~Qs 

Figure 3.1. Electrical analog of the heat flow in an animal without pelage or plumage 

where: 

~Qs net change to body heat store 

Ts body surface temperature 

Tr ground surface temperature 

k thermal conductivity through the body 

he convection heat transfer 

R radiant emittance 

QG conductive heat flux to the substrate 

QEr evaporative energy loss from the respiratory surface 

QEb evaporative energy loss from the exterior surface 

M metabolic heat production 

Time-dependent analyses of energy exchange mechanisms are necessary to evaluate 

animals in transient stages of energy flux (Gates 1975, 1980). Hence, for the 

purposes of defining mechanical heat transfer, the body core loses or gains heat from 

storage (11Qsclfb/dt) via conduction to the body surface k(Tb - T .). and net heat 

production (M- QEJ is in the form: 

M - QBb = k(Tb -T ~ + ~Qsdfb/dt 
17. 

where: 

dfb difference in body temperature 

dt difference in time 

and to conserve energy at the surface requires: 
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Q. + k(Tb- T J = ecr(T, + 273.16)
4 

+ hc'(T,- T,) + QE, 
18. 

Therefore, the general integrated isothermal model for a time-dependent energy budget , 

will include Equations 17 and 18 in the form: 

M - QEb - D.QsdTh/dJ 
Q. + M - QEb- D.Qs dTh/dt = ecr (Th- + 273.16)

4 

M - QEb - !J.QsdTh!dJ 
+hc(Tb-T.-

k 

k 

19. 

Equation 19. will account for all of the environmental factors affecting the energy 

status of an animal in any given habitat (Gates, 1980). However, the quantities M, 

Q,b (evaporation from the integument) and QEr (evaporation due to respiration) may be 

time dependent as they vary with the 'environmental' temperature and will further 

complicate the solution. The analysis is simplified if a steady-state is assumed, in 

which case none of the terms used will be time dependent and !J.QsdT'oldt = 0; the 

energy budget may then take the form of Equation 20. (Porter and Gates, 1969; 

Morhardt and Gates, 1974; Gates, 1980). If the values forM, QEb• QEr, Tb, k and he 

are known, then any value of Q. will have a corresponding value ofT. to balance the 

equation in the form: 

M- QEb M- QEb 
Q, + M- QEb = ecr(T,- + 273.16)

4 
+ hc(Tb- T.- ) + QE, 

k k 
20. 

Hence, Tb's may be predicted from environmental data using energy budget analysis 

(Eq. 20.) by solving for Tb at different T.' s until a balance is found and therefore 

define climate. Using virtually the same methods Gates (1980) considers that this 

procedure may also be used to calculate the Tb's of animals in burrows. 

3.2.2 Climate space 

The predictability of Q. and T. from M, QEb• QEr, k and he at critical thermal (CT) 

maximum and minimum limits permits one to define the microclimatic parameters for 

the animal in a climate-space (Fig.3.2.). 
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By treating microclimate as an exploitable resource, climate space evaluation for a 

given species permits identification of its thermal ecological needs. The original 

concept of climate-space by Porter and Gates (1969) was extended to predicting the 

behaviour of several reptiles, e.g. Spotila (1972), Porter eta!. (1973), Tracy (1976) 

and Scott eta!. (1982). Originally the climate space represented a four dimensional 

space made up of the climatic variables: Q •• T., ii and RH. Of these, three microclimatic 

parameters may be used to construct a simple three-dimensional space. When plotted 

Q on the abscissa and T. on the ordinate allow for predictive estimation of the 

quantities of Q., T. and ii needed to satisfy the thermoregulatory limits of a given 

species (Gates, 1975, 1980). An example of a climate space for a hypothetical animal 

is given in Figure 3.2. To include ii requires that the steady-state energy budget be 

solved (Eq. 20.). 

Figure 3.2. Upper and lower thermal limits 

for an hypothetical animal in climate space. 

Lines ab and cd are for still air, ef and gh are 

for a wind speed of 2.0 m s·1
• The line T. 

lengths represent absorptance and the upper ('C) 

and lower lines the thermal tolerance limits 

(following Gates, 1980). 
radiation 

Although it is not intended in the current study to determine the climate-space of the 

Tasmanian Tiger Snake in the above form, as the CT's were not determined, it is 

intended to determine a modified climate space based on VTs. Further, the method 

outlined above may not be the most suitable for a terrestrial snake which might 

minimise its exposure to wind and be more closely associated with inground and 

ground surface temperatures than with air temperature. In order to develop a complete 

and predictive climate space model for snake behaviour, however, would require 

information on CT's and microclimatic parameters for all seasons of the year. The 

present study is based only on a relatively short summer season, therefore, the 

complete model cannot here be developed. 

3.2.3 Physical models as alternatives 

Extrapolating laboratory measurements of metabolism and evaporation to the natural 

environment is a persistent problem in physiological ecology. To facilitate an 

understanding of the thermal environment, while avoiding the difficulties associated 
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with accurate micrometeorological measurement and interpretation, an alternative 

method has evolved which utilises animal forms as 'environmental thermometers' to 

derive single-number indices of microclimate. Operative environmental temperature 

(TJ (Winslow eta/., 1937) and standard operative environmental temperature (Tes) 

(Gagge, 1940; Bakken, 1976) are similar but distinct pseudo-temperatures frequently 

encountered in the literature when reference is made to the concept of environmental 

temperature (Bakken eta/., 1981; Bakken eta!., 1985). Both T e and T es• as modified 

for ecological studies (Morhardt and Gates, 1974; Bakken and Gates, 1975; Bakken, 

1976; Robinson eta/., 1976; Mahoney and King, 1977), respectively, are indices of 

potential and actual sensible heat flow. They define the combined and highly variable 

interactions occurring between all environmental variables and the physical 

characteristics of individual animals. The potential heat flow to and from the animal 

is Tb- T e and must be used with a thermal resistance or conductance term. Tes is the 

direct index of heat flow (Bakken, 1981a) and often used specifically to relate the 

thermal environment to the metabolic requirements of endothermic animals. Both T e 

and T es can be calculated from animal or environmental heat exchange parameters 

(Campbell, 1977; Gates, 1980), or, more simply, may be measured directly by the 

use of physical models or taxidermic mounts as environmental thermometers which 

are designed specifically to represent particular species or type (e.g. gender, size class 

etc.). Tes includes accounting for convective heat loss which involves using heated 

mounts and adjusting Te accordingly. While detailed energy budget analysis is required 

to fully define a thermal environment (Porter and Gates, 1969), physical models or 

mounts provide a simple means of making replicate measurements in confined situations 

where the use of micrometeorological instrumentation may otherwise be cost-restrictive, 

physically difficult or impossible (e.g. perches) (Bakken and Gates, 1975, Bakken, 

1976; Bakken et al., 1985). Further, such models are useful for comparing the 

thermal equivalence of different sites (Bakken et al., 1981). Examples where physical 

models have been used successfully in ecological studies are given in papers by: 

Bakken and Gates, 1975; Bakken, 1976, 1980, 1981a, 1989; Robinson et al., 1976; 

Mahoney and King, 1977; Walsberg eta/., 1978; Webb, 1980; Bakken eta/., 1981; 

Chappell and Bartholomew, 1981; Roughgarden et al., 1981; Saltzmann, 1982; 

Walsberg, 1982; Crawford et al. 1983; Buttemer, 1985; 1990; Buttemer et al., 1986. 

While analysis of microclimatic data is considered adequate for simple habitats (e.g. 

Porter eta!., 1973; Bakken, 1989), in more complex situations physical models may 

estimate T e more accurately (e.g. Porter and James, 1979). They may avoid 

compounding instrument errors and the problem of using over-simplified or 

inappropriate microclimate models for conditions near the animal. If physical model 

temperatures are combined with empirical thermal relationships, they can provide test 
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bodies by which to validate data and to evaluate the relative effects of single parameters 

(Porter eta/., 1973; Bakken et al., 1985; Bakken, 1989). 

Mechanistic models (without plumage or pelage) and mounts (covered with original 

skins and plumage or pelage) may be made from electroformed animal casts, and may 

be used with or without heated (usually hollow) cores. The choice of Te and T es (both 

in W "C"1 m "2), and the type of environmental thermometer used, is an arbitrary one 

depending upon the situation and intended purpose. All cooling may be assumed to 

act at the core and model body temperature (T bm) represents a nearly instantaneous 

equilibrium Tb, so that heat storage may be ignored (Bakken, 1980). 

Te is essentially equal to the steady-state temperature a small reptile would attain under 

stable climatic conditions (Bakken and Gates, 1975; Bakken eta!., 1985; Bakken, 

1989). For use with reptiles, temperature sensors (thermocouples) are suspended in 

the centre of the hollow model cavity and respond primarily to the thermal radiation 

field within (Bakken, 1989). Hence, the data obtained are mean values of the 

combined wall temperatures within the cavity. 

Te, as defined in the literature, is the temperature of an ideal isothermal blackbody 

enclosure with the same convective conditions as the general environment, resulting 

in the same net sensible heat flow from or to the same animal surface or body core 

(Winslow eta!. 1937; Bakken and Gates, 1975; Bakken, 1976; Robinson eta!., 

1976). In ecological studies, body temperature is usually used instead of surface 

temperature as it is more easily measured. From the above definition, mechanistic 

models forTe must be assumed to take full account of wind. Further, it must also be 

assumed that all heat exchange parameters can be averaged over the entire animal. 

Bakken eta!. (1981) consider that the theory of Te and T es• as modified for ecological 

studies, can be illustrated as follows: the animal model has an isothermal core of 

constant temperature, which may or may not be surrounded by an insulative layer of 

thermal conductance (K.r), and M and QE act at the core. Hence, the heat transfer 

equations can be reduced to a form similar to Newton's law of cooling: 

M- QE = K.(Th - T.) 
22. 

where: 

K. overall thennal conductance 

T. operative temperature for the whole animal in the general environment 

Following Bakken (1976) Ke between the core and the environment is: 
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K. =KJhc + R) I (Kst +he+ R) 

where: 

K st conductance of the animal surface 

he convective heat flux 

R equivelent radiation conductance (4A creT,\ where A (m2 I volume) is the effective 

radiation area 

and Tc can be defined as: 

T. ::: (hcT. + RTs + Qn) I (he + R) 

where: 

Qn net absorbed solar and thermal radiation 

23. 

24. 

Te can be measured with an unheated model or taxidermic mount, in which case only 

the physical animal characteristics (size, shape, colour and pelage) and the environmental 

conditions will determine the value (Bakken eta!., 1981). 

Tes is defined as the temperature of an isothermal blackbody enclosure with a fixed, 

standard convective condition which would result in the same net sensible heat flow 

to or from the same animal with the same surface (Gagge, 1940; Bakken, 197 6). The 

choice of a standard convective condition is arbitrary. It can be defined as follows by 

applying Equation 22 to the definition (Bakken et al., 1981): 

where: 

T., = Tb - (K.IK) (Tb - T.) 

= Tb- (M- QE)IK., 

K., is the value in the standard laboratory enclosure of operative temperature T., 

25. 

It should be noted that because physical models lack circulatory and respiratory 

systems they cannot be expected to show distribution of heat through the 'body' as 

would the live animal. Nor is it practical to expect such models to accurately simulate 

the appropriate physiological (e.g. vasoconstriction or vasodilation, increased or 

decreased cardiac output) and postural responses without undue complications in 

design. Simulation of more subtle behavioural and postural responses may not be 

possible, or even known, and a model may not be able to achieve the intimacy of 

surface contact as might the live animal. The latter consideration may be especially 
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relevant to the current study on an animal which habitually has the larger part of its 

ventral surface in close contact with an irregular ground surface. 

3.3 THE INTEGRATED PARAMETER MODEL: ASSUMPTIONS AND 

DESIGN 

The use of accurate microclimatic data in studies of thermoregulation has largely been 

a neglected area of research amongst biologists; possibly due to the perceived difficulties 

involved in accurately measuring animal microclimates or in being able to apply such 

measures at the level of the animal. Nonetheless, the method has the advantage over 

other physical models in that it uses all of the microclimatic variables to infer the 

energy status of animals and, when used in combination with appropriate radiotelemetric 

techniques, may have the advantage in that it uses the actual animal as an environmental 

'thermometer'. The combined method uses real Tb values to account for behavioural, 

structural and physiological adjustments, and may be more flexible than physical 

models in that it is not limited by predetermined animal position or posture. 

This study attempts to estimate snake Tb using an integrated parameter model. The 

model is developed based on actual Tb response to microclimatic variables and on 

observed thermoregulatory behaviour. 

3.3.1 General assumptions 

In dealing with the large number of variables required to model Tiger Snake Tb, it has 

been necessary to make a number of simplifying assumptions. These include 

assumptions concerning the snake's anatomy, physiology, posture, incident radiation, 

radiation balance and convective heat exchange. Wherever possible assumptions 

were validated through observation or from the field data. 

Monteith (1973, p. 156) gives total evaporation rates for reptiles as ranging from 4 to 

9mg of water per ml of oxygen consumed, from which he concludes that nearly all 

metabolic heat production is dissipated by the latent heat of pulmocutaneous evaporation, 

so that in reptiles M - A.E ::= 0. Hence, it is assumed that M = A.E and that the terms 

cancel each other and may be dropped from the energy balance equation. Values for 

K of 0.502 wm·2.C1 (Porter and Gates, 1969) and for specific heat capacity (Cp) of 

3.43 Jg" 1.C1 (Bartholomew, 1972) are also assumed for the snake's body. The 

snake's potential to increase or decrease thermal energy uptake by modifying cardiac 

output and circulation is ignored at this stage. 

In the model, diffuse radiation (D) is assumed to be isotropic, with perfect Lambertian 
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reflection, and all incident radiation is assumed to be reflected or emitted only once. 

For emitted longwave radiation both cr and ES are assumed to equal one. For 

shortwave radiation as is assumed not to vary as the snake stretches it's skin during 

the early warm-up phase, and ar is assumed to be uniform within the snake's 

immediate vicinity. Gates (1980) gives values for dead-skin solar reflectances of 

three reptile species (an alligator and two lizards) for when the sun is low and high in 

the sky. The mean albedo values for the three reptile species were: low sun: 0.139, 

high sun: 0.137. While it is recognised that these values are colour dependent they 

are initially assumed for as. 

Based on the intimacy of Tiger Snakes with the inground and ground surfaces, Tb's 

at emergence are assumed to equal T g at five centimetre depth within night-time 

retreats. This assumption was validated through measurement of Tb in free-living 

snakes. 

3.3.2 Model design 

Q, and convective effects at the level of the snake were complicated parameters to 

evaluate, especially as Tiger Snakes have the ability to increase their exposed surface 

areas. For simplification, the snakes are treated as flat slabs rather than cylinders, 

while basking, based on the common elapid habit of flattening bodies during early 

basking periods. This is valid as a large part of the ventral surface area of this species 

is often in direct contact with the ground surface and is therefore approximately flat. 

This assumption simplifies estimation of snake surface areas and facilitates the analysis 

of radiant flux form the snake's dorsal and lateral surfaces. It also simplifies the 

analysis of convective heat exchange and ground heat flux. The analysis of convective 

heat exchange was further simplified by assuming that Tiger Snakes minimise exposure 

to wind during basking periods by remaining under the roughness height of surrounding 

vegetation, and that free, not forced convection, resulted from their microhabitat 

selection. This assumption was later validated through wind speed measures over 

basking pads at snake height. 

For the purpose of modelling radiative and convective heat exchange in snakes, snake 

bodies were divided into four non-equal parts: the neck, fore-body, hind-body and 

rear. The tail was assumed to play no part in thermoregulation and was excluded 

from the calculations. The head was included as part of the neck and assumed to 

have the same dimensions. 

The body dimensions were assumed to remain in relative proportion for all size 
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classes, and each section was assumed to have the same surface area on the ventral 

and dorsal surfaces. Mean external body dimensions were estimated from actual 

measurements on live basking animals. The animals used for this purpose included 

animals smaller and larger than those used for body temperature telemetry. The 

measurements where taken from the middle of each body section and the body 

dimensions where then calculated for a standard one metre snout-vent length (SVL) 

snake. The dimensions for the standard animal are given in Table 3.1: 

Table 3.1. Mean live body dimensions assumed by the model for a standardised one 

metre long unfed Tiger Snake in extreme basking and non-basking postures 

LENGTH(m) WIDTH(m) HEIGHT(m) 

BASKING 

HEAD/NECK 0.130 0.045 0.005 

FORE-BODY 0.310 0.050 0.015 

HIND-BODY 0.310 0.050 0.015 

REAR 0.250 0.035 0.010 

NON-BASKING 

HEAD/NECK 0.130 0.030 0.013 

FORE-BODY 0.310 0.035 0.022 

HIND-BODY 0.310 0.035 0.022 

REAR 0.250 0.025 0.015 

The model requires knowledge of mean internal body wall thicknesses. These were 

determined through dissection of road-killed animals and calculated for the standard 

one metre SVL snake. These dimensions were: dorsal body wall = 0.0099m 

(sd=0.0013, n=6); posterior stomach wall = 0.0006m (sd=O.OOOl, n=6); ventral 

body wall= O.OOllm (sd=O.OOOl, n=6). These measures were taken in flat postures 

and are assumed not to change with the posture of the basking animal. The model 

assumes that conductivity values are the same for all body structures, therefore the 

skin and internal body tissues are here considered collectively to form the body walls. 

Thus the dorsal wall is considered to be 0.0105m thick and the ventral wall 0.0017m 

thick in the standard animal. 

The model assumes the snake's basking posture is to have the body extended or 

loosely looped with the head and cloaca pointed toward the sun. This posture is 

occasionally seen in Tiger Snakes and is considered to be a reasonable assumption as 

these snakes will often lay extended or loosely looped during early basking phase. 

The model is used to calculate the rate at which Tb is increased following emergence, 

therefore, it assumes maximum surface area exposure and that dorsal surfaces will be 
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positioned normal to the sun. These assumptions were later validated through the 

observation that Tiger Snakes will often use ground-cover vegetation (e.g. grass 

tussocks) to achieve this position. 

The model is presented as a simplified flow diagram in Figure 3.3 and is detailed in 

the form of a computer programme in Appendix 5. 

3.3.3 Convective heat flux 

Estimation of convective flux for free convection requires evaluation of Grashof (Gr) 

and Nusselt (Nu) numbers and the empirical relationships of Monteith (Table A.5a 

p.224, 1973). Gr is physically described as the ratio of the buoyancy force times the 

inertial force to the square of the viscous force of a fluid (Monteith, 1973). The 

model assumes a viscous force (kinematic viscosity) of 1.5 * 10·5m2s- 1
, which is the 

value for air at 20°C at sea-level. Gr is given as: 

Gr = agd3(f,- T.)/v2 

26. 

where: 

a coefficient of the thermal expansion of a fluid (1(273 for a perfect gas) 

g gravitational acceleration (9.81ms-1
) 

d characteristic dimension (slab length) 

v kinematic viscosity 

Nu is proportional to the ratio of the coefficient of heat transfer by convection to that 

by conduction in the same fluid at rest and is a function of Grin the form: 

Nu = p Gr"' 
27. 

where: 

p and ro are empirical constants 

note that Nu is also a function of the Prandtl number (Pr), but as Pr varies independent ofT. 

this term was not used. 

During the field study, Tiger Snakes were invariably found to bask at sites having 

wind speeds of ~0.5ms·1 at a height of two centimetres. The values for Gr were thus 

determined to be <10 5 for these conditions. Hence, the model assumes empirical 

values for Nu (Monteith, 1973) of: 

Nu = 0.5 Gr0
·
25 

28. 

Qr may now be calculated, assuming the value for thermal conductivity of air at 

20-30°C, from: 
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QH = Nu k, (T, - T,)/d 
29. 

where: 

k. thermal conductivity of free air (2.6 * IO.\vm.1"C"1
) 

The energy budget is solved using QH, the net radiative flux on the dorsal (Q,d) 

(Eq.7.) and lateral (Qai) (Eq.8) surfaces; in combination with specific heat capacity 

(Cp) and overall thermal conductance (K) of the snake body. 

The rate of heat transfer due to conduction (Qc) to the ground surface is given as: 

<Jc = Ke mod (Tg- Tb) 
30. 

where: 

Ke mod overall thermal conductance assumed (0.502 W m-2 "C1
) (Porter and Gates, 1969) 

The heat flux on each of the four body parts is calculated from: 

S = Q,l2V A) + Q,pA- QJDA+2V A) 
31. 

where: 

S heat flux on each body part (W m -2) 

VA lateral surface area (m2
) 

DA dorsal surface area (m2
) 

The net heat flux then becomes: 

ST = (Sl + S2 + S3 + S4) * [(Ke mod/ dv) (T,- Tb)] 
32. 

where: 
ST net heat flux (h1

) 

dv ventral body wall thickness (m) 

The value for Tb can now be calculated for each ten second period from: 

Tb = Tb + (10 ST) I (Ms Cpmo) 
33. 

where: 
Ms snake mass (g) 
Cpmod specific heat assumed by the model (3.435 Jg-1"C"\ Bartholomew (1972) 

and T, = Tb. 

The model interpretes the environmental variables each loop and outputs are in ten 

second time-step changes in estimated Tb and T •. (Fig.3.4). 
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3.4 SUMMARY 

This chapter has outlined the theory of animal energy balance and the mechanisms of 

energy transfer between animals and their environments. In so doing it has introduced 

the sources and sinks of thermal energy available to the animal including: metabolism, 

radiation, convection, conduction, and the latent heat of evaporation. It has also 

introduced the biophysical modelling techniques available, including: integrated 

parameter modelling, climate space theory and physical (mechanical) modelling. The 

final section gave the reasons which lead to the choice of the integrated 

parameter/telemetry combined method. It has listed the necessary assumptions and 

described the model design to be used in determining the thermal status Tiger Snakes. 

This will be used for predicting Tiger Snake activity based on microclimate. 
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4 REGIONAL SETTING, SITE SELECTION AND 
DESCRIPTION 

4.1 REGIONAL SETTING 

Tasmania is an island comprising approximately 67000km 2 which is situated between 

the latitudes 40" and 44" South and longitudes 144" and 149" East. The island is 

located directly south of southeastern continental Australia. Topography is rugged 

with much of the island elevated to form numerous mountain ranges in the northwest, 

west, southwest, south and northeast. The most extensive lowland areas occur in the 

central north, midlands and southeast (Fig.4.1). 

A large Central Plateau forms a distinct topographical feature, approximately located 

in the centre of the island, which is generally well defined by an escarpment and 

covers an area of more than 10000km2
• It has an average elevation of a little over 

600m in the south to approximately I lOOm on its northern boundary with glaciated 

landforms typical in the west and gently undulating terrain characteristic of the east 

(Pemberton, 1986). The Plateau area contains literally hundreds of freshwater lakes, 

interspaced with marshes and streams that tend to drain southeast into the Derwent 

basin. 

4.1.1 Climate 

The island's climate is generally under the influence of Southern Ocean westerly 

winds and may be described as cool temperate maritime. As a consequence of the 

island's topography, the predominant westerlies result in a marked west to east 

annual rainfall gradient with rain-shadow effects in the midlands and southeast. Mean 

annual rainfall may vary from more than 2500mm in the West Coast Ranges to less 

than 500mm in the Midlands. A lee-trough effect is evident over much of the eastern 

half of the island and tends to channel wind from the north and northwest. The wind 

regime is further influenced by strong sea-breezes during summer and katabatic winds 

during winter. The highest mean wind speeds are recorded from the vernal equinox 

in September through to mid-summer (Langford, 1965). The mean coolest month of 

the year is July and the mean warmest month is February. The Central Plateau 

experiences the coolest temperatures with frosts possible in any month above 600m. 

Snow may fall in all seasons above 1100m, but most frequently from June to September 

(Ogden and Powell, 1979). 
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Study Site I 

0 50 

Fig.4.1 Tasmania in relation to mainland Australia, study sites (1 & 2) indicated. 
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4.2 SITE SELECTION: SURVEY AND CRITERIA 

It was realised early in the study that the limited time available for field work would 

not allow for the finding and monitoring of a large number of animals. Tiger Snakes 

within reasonable travelling time of the University, situated as it is in close proximity 

to a densely populated urban centre, are generally scarce and widely distributed. 

Hence, only limited time was available to travel to, find, mark and monitor snake 

movements in order to establish study sites. 

A pre-study survey was conducted during March and April 1991. The survey was 

targeted at members of the University of Tasmania, Department of Parks, Wildlife 

and Heritage, conservation groups and forestry workers. In particular, herpetologists, 

biologists, national park rangers, geographers, geologists, foresters and expert bush 

walkers were sought and interviewed. For details of the questionnaire used in the 

survey refer to Appendix 1. 

The results of the survey yielded seventeen possible sites within a one hour drive of 

Hobart. Each of these were field surveyed for population size and suitability during 

October and November 1991. The criteria adopted for site suitability are listed below 

together with the reasons: 

a) a healthy population, as ill-health might influence thermoregulatory behaviour; 

b) a minimum of six adult females within a relatively small area, in order to 

ensure enough animals for study and so that all could be frequently observed; 

c) isolation from human interference, to ensure as far as possible that the study 

animals would not be killed or removed by collectors; 

d) a relatively undisturbed site, so that the results obtained would be pertinent 

to interpreting normal behaviour; 

e) a relatively homogenous site, in order to reduce the number of environmental 

variables; 

f) ease of access, due to the large quantities of equipment required; 

g) close proximity to the University, in the event of any unforeseen problems 

and in order to reduce travelling time; 

h) close proximity to medical support, in the event of a bite; and 

i) close access to an electrical power source, in order to recharge batteries. 

The best site obtained from the survey which satisfied most of the criteria (a,b,c,d,e,h 

and i) was at Egg Island, situated as it is in the middle of a large river with a relatively 

large and undisturbed snake population, and situated relatively close to townships on 

either side. 
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4.3 THE STUDY SITES 

To gain as much perspective of Tiger Snake microhabitats in Tasmania in the limited 

time available, the field study was conducted on two elevationally isolated snake 

populations: the main focus of the study being the sea-level population at Egg Island 

in the Huon valley; and the other site used only for comparative purposes at Lake 

Crescent (830mASL). In addition, brief observational studies were made in the 

general Egg Islands area, Huon valley area, Lake St. Clair area (737mASL) and at 

Clarence Lagoon (lOOOmASL) 

4.3.1 Egg Island Canal 

The Egg Islands are formed of alluvial deposits, are approximately 9.8km long, and 

situated in the Huon River below the township ofHounville, in southeastern Tasmania. 

147'00 

Fig .4. 2 Egg Islands in the Huon River Valley, South-east Tasmania,Study site 1 indicated. 

(Extract from South-East Tasmania, 1:150 000, 1973) 
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The larger of the two Egg Islands is the southern island which is approximately 

7 .1km long and bisected in its thinnest part by a 370 x 9m canal. The canal is 

situated -43"05'10" south and 147"01'0" east between the townships of Franklin and 

Cradoc, at a point where the river is approximately 730m wide. The canal was 

originally dug by Henry E. Clark in 1884 with a horse-drawn long-handled scoop. 

When first excavated the canal was 6.0m wide and 0.6m below low-water (R. H. 

Cato, pers. com.). However, the canal is now approximately 11.0m wide at its 

widest point and in several places it is in excess of 1.0m below low-water. The Egg 

Island study site comprised the entire canal area to ten metres inland from each shore 

(Fig.4.2). 

The shores are in the form of levees which were formed when the canal was excavated. 

Consequently, the levee soils uniformly comprise a dark grey silt which grades into a 

humic black soil only where levees adjoin nearby marshland. The organic content of 

the levee soils was determined from six soil samples; taken from the middle of the 

southern levee (three) and from its border with the marsh (three). These were burned 

at 450"C for five hours in the laboratory and determined to have mean organic 

contents of 5.1% and 12.6% respectively. The levees represent the only entirely dry 

soils on that part of the island and therefore represent a distinct and isolated topographical 

area. The latter is reflected in wildlife concentrations and in the vegetation, which on 

the levees is confined to thin strips with the densest stands occurring on the 

levee/marshland border. The major plant species found at the canal site are listed in 

Table 4.1. 

Table 4.1 Major plant species occurring at the Egg Island Canal site 

SPECIES SITE TYPE 

Monocot species: Gahnia trifida levee/dry sites 

]uncus sarophorus marsh 

J. pallidus levee/dry 

J. krausii levee banks 

I solepis nodosa levee banks/moist 

Carex appressa levee/dry 

Poa labilliarderi levee/dry 

Dicot species: Eucalyptus ovata elevated sites 

Pomaderis ape tala dry sites 

Acacia verticillata levee/marsh border 

A. dealbata dry sites 

Melaleuca squarrosa moist sites 

Pteridophyte: Pteridium esculentum levee/dry sites 
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The island lacks surface rock and has very little fallen timber. As a consequence, 

cover is afforded the animals largely from the denser ground-level sub-canopies and 

ground litter. The islands are relatively flat and the levees represent the highest 

elevations in the immediate islands area with a mean elevation of approximately 1.5m 

above high water (Fig.4.3). 

Fig.4.3 The Egg Island canal site at low tide. 

Both sides of the Huon River valley are flanked by hills which obstruct sunlight into 

the valley in the early morning and late afternoon. The highest peaks relevant to 

incoming solar radiation at the canal site are: Woodstock Hill to the east (86.) with a 

height of 327m and an obstructed solar view to 7 .s·; Mansfields Hill to the west 

(270.) with a height of 512m and an obstructed solar view to 8.6·. 

The nearest meteorological station is at Grove, 13km NNE ( -42.59·s 147 .OYE) at 

60m elevation. A rainfall station is maintained at Huonville (6.5km, NNE) and also 

was, until 1991, at Franklin post office. Information was taken from all of the above 

to infer the local climate. The predominant local winds experienced during the study 

period were from the southwest and northeast, due at least in part to the north/south 

orientation of the river valley, and which included night-time katabatic flows and 

afternoon sea breezes. Mean annual rainfall is approximately 800 to 1000mm (889mm 

during the years 1989-1990) with the highest mean number of rainfall days occurring 
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between July and October (Bureau of Meteorology data from Franklin post office). 

The following information was taken from Bureau of Meteorology unpublished records 

for Grove. Extreme monthly mean air temperatures are 22.2 and 9.4•c in January 

and 11.4 and 1.9·c in July (1952-1986); however, temperature values for Grove 

may not pertain to the study area due to its littoral situation. Snow is a rare occurrence 

in this part of Tasmania, however, frosts occur an average of 14 days in July and 0.4 

days in January (1957-1991). Mean lOcm soil depth temperatures range between: 

15-2o·c (0900 EST) and 22-29·c (1500 EST) in January, and 4-TC and 7-9·c 

respectively in July (1964-1991). Daily mean sunshine hours are 7.7 hours in 

January and 3.0 hours in June (1960-1991). 

South Egg Island has been used for grazing in the past, but at present the only form 

of disturbance occurs from infrequent visits by fishermen and power and 

communications maintenance crews. Fires are reported to occur every few years and 

the last fire was deliberately lit during the summer of 1988/89 (K. Lowe, pers. 

com.). The relatively high frequency of fire is evident from dense patches of Bracken, 

Pteridium esculentum, (a fire-weed) which cover extensive areas on both levees. 

For the purposes of study the Canal site was divided into three sub-sites; designated 

Sl, S2 and S3. Both Sl and S2 are each 50m long and lOrn wide and located on the 

south shore levee, approximately 300m apart; and both represent the most densely 

populated snake sites in the canal. Individual home-ranges represented further 

subdivisions of S 1 and S2, and the details of the microtopography, vegetation and 

height are given in Figures 4.4 and 4.5 respectively. Sub-site S3 was located on the 

north shore levee and was 200m long and lOrn wide (Fig.5.1). The latter was a 

relatively large site and, due to the scarcity of snakes on the north shore levee, was 

used for comparative purposes only. 

4.3.2 Lake Crescent 

Lake Crescent is situated on the south-eastern edge of the lower Central Plateau and 

was initially chosen as a comparative study-site based on the observations of Dredge 

(1981). It is a natural lake situated on Jurassic dolerite which outcrops extensively 

around the lake's perimeter. Only the western lake area was used in the study, which 

included two sub-sites: the south shore of Brownwater Lagoon (approximately one 

kilometre west from the lake) and Clyde Marsh (on the western shore of Lake 

Crescent); both located in the approximate area 140• 08' East, -42. 11' South (Fig.4.6). 

Brownwater Lagoon is a shallow seasonal waterbody, approximately 400m across at 

its widest extent, which regularly dries up during the late summer months. Clyde 
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Fig .4. 6 The comparative study area of Lake Cresent, South-east Central Plateau. (Extract 

from Lake Sorell (8313-IV), 1:50 000, 1974.) 

Marsh may also become very low, or dry, due to the lake's current use as an 

irrigation reservoir; which regularly results in a sudden lowering of the water-level. 

Marshland is common on the western shore of the lake and the local vegetation may 

generally be described as predominantly Eucalyptus rodwayi woodland/poa spp. 

grassland, interspaced with E. delegatensis and E. paucijlora 

woodland/grassland/heathland.Climatic records are largely unavailable for the Lake 

Crescent area and the local climate must be inferred from mean values pertaining to 

elsewhere on the Plateau. The predominant winds in the general Plateau area are NW 

to SW and annual mean rainfall is approximately 740mm per annum; with the highest 

number of rainfall days occurring between August to October (unpublished records 

from Mt. Serat: -42.13°S 147.06°E, Bureau of Meteorology, 1983-1989). Extreme 
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mean air temperatures for the plateau area are: 18.4"C maximum and 6.5"C minimum 
;; 

in January; 6.3"C maximum and -0.5"C minimum in July (Pemberton, 1986). 

Pemberton (1986) gives 1740 hours as the annual mean sunshine hours for Lake St. 

Clair (western plateau area) and estimates that this value could be as high as 1900 

hours in the east (Lake Crescent). 

The area is used extensively for grazing of both cattle and sheep which maintain a low 

ground cover. The area is also regularly subject to firewood cutting/collecting, 

hunting and fishing activities; all of which have contributed to littering and a common 

scarring of the landscape from numerous four-wheel drive tracks. In the recent past 

the Lake Crescent area was well known for its snake populations (Dredge, 1981), 

however, there has been a sharp reduction in numbers in recent years, possibly due to 

local hunters and fisherman who admit to regularly killing snakes on sight or actively 

hunting them. Firewood collecting also results in the removal of potential retreat-sites 

and may result in increased encounters between man and snake. 
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5 DATA ACQUISITION 

5.1 INTRODUCTION 

The methods and techniques used in data acquisition are dealt with in the following in 

three sections covering: animal measures and monitoring, telemetry techniques and 

microclimate measurement and monitoring. Animal handling techniques have been 

included and described in detail as it is felt this is an important aspect of the study; 

and if done correctly will minimise the danger both to the operator and subject, and 

ensure as far as possible a valid non-stressed response from the animal. 

For the field study no single method would allow estimation of all aspects of 

thermoregulation (see Biological Considerations, Sections 2.2.6-2.2.8). Indices used 

to measure thermoregulatory adjustments in reptiles have included shuttling behaviour 

and percentage of time spent in the sun (Spellerberg, 1972), and the percentage of a 

population in the sun (e.g. Huey, 1974b). However, these indices alone may lead to 

misleading conclusions concerning environmental limits to thermoregulation unless 

they are accompanied with detailed information concerning normal behaviours and 

microhabitat parameters (Heath, 1964; Huey, 1982); e.g. the amount of time animals 

are afforded opportunity to thermoregulate in full sun (Huey et al., 1977). 

5.1.1 Strategy 

In order to reduce the number of variables, related to gender and body mass differences, 

only adult females were used in the study. The strategy adopted for field studies was 

as follows: 

(i) find a suitable population; 

(ii) study normal behaviours; 

(iii) mark all adults; 

(iv) conduct a trial field study; 

(v) monitor Tb of a single female; 

(vi) record behavioural thermoregulation in telemetered and control animals; 

(vii) monitor microclimatic variables, 

(viii) map home-site use; 

(ix) determine VTs and mean eccritic body temperatures in the laboratory. 

The field studies ran for ten weeks during the summer of 1991/92 (from 21.12.91 to 

1.3.92). 
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The initial trial study of the Egg Island· canal site was conducted in the last week of 

December. The aim was to test the methods of measurement, to study home-site use, 

determine normal daily activity patterns in females, and to fmd, measure and identify 

as many animals in the area as possible. This was followed by a nine week period 

during which four eight-day, one five-day and two one-day field studies where 

conducted. These included: four eight-day studies at Egg Island; one five-day and 

two one-day studies at Lake Crescent. Each eight-day field study at Egg Island 

required three days for mapping, transporting, setting-up, finding, observing, catching, 

implanting, releasing and re-catching the telemetered animal, with five days for 

monitoring the animal and microclimatic variables. In addition to the eight days 

required for field-work, a further three days were required to determine mean eccritic 

body temperatures in the laboratory. The initial five-day study at Lake Crescent 

involved exactly the same procedure as the Egg Island site, except that the study was 

terminated early due to the sequestering behaviour of these higher altitude animals. 

Following the initial Lake Crescent study the mean eccritic body temperature was 

determined. The sequestering behaviour and eccritic Tb's were monitored for four 

weeks until the snakes became more active. 

The following are detailed descriptions of the methods and equipment used in the 

measurement and monitoring programmes; these are dealt with as: (i) animals, (ii) 

telemetry, (iii) microclimate. 

5.2 ANIMAL MEASUREMENT AND MONITORING PROGRAMMES 

The sea-level site at Egg Island was first surveyed and found suitable for study in 

early November 1991, but the animals in the area were not caught, sexed, measured, 

marked and released until late December. The animals at the 830mASL Lake Crescent 

site proved more difficult to find, possibly due to collecting activity in the area the 

previous year and possibly also due to season. As a consequence of limited time, the 

low number of active animals and the dispersed nature of the population, the Lake 

Crescent animals could not be caught and marked prior to commencing the monitoring 

programmes. 

5.2.1 Capture records and sexing 

Upon initial capture, and prior to marking, all animals were sexed, measured for total 

body length, tail length, midbody diameter and weighed. In addition, note was taken 

of the general condition, scarring and other gross morphological features, time and 

site of capture. 

· Sexing was accompli~hed by gentle probing of the epithelium just under the anal . 

49 



scale, external and caudolateral to the cloaca, with a small blunt silver lacrimal probe 

of approximately one millimetre diameter. If this instrument is lubricated with a small 

amount of soapy water and gently rolled between middle finger and thumb it will pass 

through into the hemipenes of males easily, requiring very little force, and presents 

very little risk of damage or discomfort to the animal if the tail is held straight. 

However, adult females also have a small fold in this area but, while the probe may 

be easily inserted several centimetres in adult males, probes will not penetrate more 

than a few millimetres in females. This is the only certain way of sexing Tiger 

Snakes, when males are not in breeding condition, other than by internal examination 

or by applying undue force in an effort to evert the organs (either through palpation or 

injection of an isotonic solution into the mid-ventral base of the tail in animals too 

small to be probed). Other methods used to sex adult Tiger Snakes in the past have 

included relative tail lengths and shape (Dredge, 1981), and male aggression (a 

widely held belief by the Tasmanian public). However, tail measurements made on 

entire animals during this study showed no noticable difference between the sexes, 

with tail lengths as a percentage of total body lengths found to be 16.41% (sd=1.362, 

n=20) in females, and 16.51 %(sd=1.552, n=14) in males. Note that animals with 

tail tips missing were not measured and this is collective data (live and road-killed 

snakes) taken from several areas within the State, and ranging from different elevations: 

sea-level to 1 OOOm. Although Tiger Snakes may give the impression of aggression 

while in defensive posture, no aggressive animals were encountered, nor were males 

found to be more noticeably aggressive than females, during the course of this study 

(early November to early March). 

Sexual dimorphism in body size has not been observed to occur in mainland Tasmanian 

Tiger Snake populations by the writer. However, it has been reported that males are 

slightly larger than females in areas of N.S.W. and Victoria (Shine,1987a), and 

Schwaner (1985) found that males grew significantly larger than females on four of 

the islands he studied, while not on others. At the Egg Island canal site all adult 

females encountered were noticeably smaller than the males, in animals where sex 

had been determined; adult female mean SVL was 83.86cm (sd = 2.95, n = 8), male 

mean SVL was 108.62cm (sd = 12.88, n = 5). The female measures represent the 

largest animals encountered and which were selected for study based on their size. 

These sexual differences are not apparent in snake populations just a few hundred 

metres across either side of the river, at Cradoc or at Franklin, where females of 

>LOrn SVL are common (pers. obs.). As the canal area is subject to frequent use by 

small pleasure craft, and as the largest females appear to be concentrated in this area 

and more closely associated with particular home-sites than males, a pseudo-selection 

may be occurring in that the larger females are more visible to human visitors and 
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therefore more frequently killed or collected. Smaller females are often found living 

on the edges of the more open home-sites and may, therefore, simply take up residence 

in the absence of a larger animal. Further, males may have become larger through 

selective pressure imposed by the need to compete for the limited number of suitable 

sites and the females they contain. 

5.2.2 Identification and marking 

For the purposes of this study Tiger Snakes were deemed to be adults if they measured 

~0.8m SVL. This is an arbitrary minimum body length parameter based on a 0.8lm 

SVL gravid female specimen donated from Longford Tasmania. The resident population 

at the Egg Island canal site was initially found to contain thirteen adults: eight females 

and five males (all males were >90cm SVL), with a smaller undetermined number of 

subadults. All thirteen animals were identifiable by early January 1992 either from 

painted tail tips, to indicate capture site, and/or from prominent scars on the body (a 

number of animals at both field-study sites carry scars, many of which indicate severe 

injury earlier in life). 

In addition to tail paint, animals were clipped on two ventral scales; the first, a 

square-shaped clip on the tenth ventral scale anterior to the anal scale to identify it as a 

study animal; and the second, a V -shaped clip anterior to the first and corresponding 

to the identification number of the animal. Scale clipping was necessary to identify 

animals after skin-shedding and two clipped ventral scales were found to be necessary 

due to a high incidence of torn or scarred scales present in the population from natural 

causes. All scale clipping was undertaken soon after capture and involved first 

cleaning and wiping the area with a 10% iodine surgical swab (Deseret® Povidone 

Iodine Swab Stick). On no occasion was noticable bleeding induced by the procedure, 

as it only required that the scale be clipped to a depth of a few millimetres, or until 

contact was made with the external ventral body wall. Animals showed only little 

sign of discomfort during scale clipping, however, as a precaution against it interfering 

with normal activity patterns, no animal was used for two weeks following the 

procedure. 

5.2.3 Egg Island animal selection criteria, numbers and monitoring 

Adult females were selected for telemetry if they seemed to be associated with a 

particular home-range and retreat-site. This was necessary to ensure the relevant 

placement of instruments and so that the animals would remain within range of the 

receiver, at least at night, as a precaution against loss of telemeters in dense cover. 
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This criteria immediately disqualified two of the smaller adult females, and would 

also have disqualified all but one male had they been used. Animals were also 

selected based on body size as it was considered important to minimize the size of the 

transmitter relative to body mass in order to avoid unduly influencing digestive basking 

behaviour. The selection criteria for minimum body mass became ~300g, due to 

relatively small size of available study animals, which held transmitters to ~3% of 

body weight. These criteria limited the choice to five females, four of which were 

used (A1, C1, A2 and B2). The four selected animals were observed over the entire 

field study period and recaptured for implantation as needed. A fifth female (A3), 

although initially selected, was not used as she was later found to move about 

extensively and use several sites within a 260m area, on both sides of the canal and 

often in dense cover. Females <300g and/or not closely associated with a discernable 

home-range were used for observational purposes only. 

It was only possible to monitor Tb of a single animal at any one time. All other 

females within the study area were treated as controls and monitored concurrently 

with the telemetered animal for behavioural comparison. During monitoring, telemetered 

and control animals were left as undisturbed as possible and great care was taken to 

achieve this. Whenever possible, animals were observed from beyond their visual 

range, through binoculars, as it was intended that monitoring of the animals and their 

microenvironments should go unnoticed. However, dense ground cover and the 

snake's relatively poor eyesight often meant that they could be observed from within 

ten metres without disturbing them. 

At Egg Island each telemetered animal's Tb was recorded continuously over a five 

day period and the position of the animal checked every two hours between 0700 

hours and 1900 hours EST, or until the animal re-entered the night-time retreat. In 

addition, the animal's posture and position were recorded continuously from the time 

of emergence (from the night-time retreat) to when the animal left the basking-site/sites. 

The thermoregulatory behaviours of other nontelemetered adult females within the 

vicinity were also recorded at two hourly intervals if circumstances permitted. Seven 

of the eight adult females in the population were continuously sought and used for 

this purpose (six discounting the telemetered animal). These were located at two 

sub-sites (S 1 and S2) approximately 300m apart (four at S 1 and three at S2) on the 

south shore of the canal (Fig.5.1). Animals at a third sub-site (S3) on the north shore 

were also recorded, but this site was used only infrequently by snakes inhabiting a 

densely vegetated marsh area. These few animals usually only appeared on the levee 

in a northerly wind or on very overcast days with little incoming solar energy. 

Animals at S3 were usually either juveniles or relatively large animals, usually observed 

only once or twice, and based on the relatively large body size of the latter were 

considered to be mostly males (see Section 5.2.1). 
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Fig.S.l Sketch map of the South Egg Island study site showing the location of sub-sites 1 

& 2. 

5.2.4 Lake Crescent animal selection criteria, numbers and monitoring 

The procedure outlined for the Egg Island animals did not apply to animals at the 

Lake Crescent site. Here the purpose was simply to compare behaviour with the 

sea-level animals, under known meteorological conditions, regarding the percentage 

of animals basking, the number of animals active, and the distances travelled between 

basking and retreat sites. 

The method used was to walk the Lake Crescent area in a predetermined pattern for 
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two hours in the morning (between 0900 and 1100 hours), repeat the same walk at 

midday (1200 to 1400 hours) and again in the afternoon (1500 to 1700 hours). The 

number of animals observed, behaviour, location and the microclimatic variables: c, 

V, U, ii, Ta and Tr, were measured and recorded. 

On three occasions, approximately two weeks apart, a single adult female was captured 

at Lake Crescent (on the 18.1.92, 6.2.92 and 20.2.92 respectively). Apart from the 

first which was telemetered and released, these were immediately transported to the 

. University and placed into a temperature gradient in order to determine mean eccritic 

body temperatures. Selection of animals for this purpose was simply to take the first 

adult female encountered on each occasion. 

5.2.5 Procedure for determining eccritic temperatures 

At the end of each field trip animals were transported as soon as was possible to the 

University in order to determine VT limits and mean eccritic temperatures. 

On arrival at the University, a telemeter was implanted if not already in place (all Egg 

Island snakes still carried telemeters at this stage), and within twelve hours of capture 

each animal was placed by itself into a temperature gradient chamber for a period of 

sixty hours. The animal was allowed twenty-four hours to settle down and, following 

this period, the eccritic Tb was recorded continuously for a further thirty-six hours. 

A settlement period was found to be necessary as during this time animals exhibited 

long hours of escape behaviour, evident as numerous spikes of short duration on 

body temperature charts. The amount of time an animal could be left in the temperature 

gradient was limited due to the danger of acclimating the animal to the captive conditions 

and the possibility of influencing thermal response. 

The temperature gradient was established in a large wood and glass cage, 2m x 1m x 

0.9m, which was lined with brown paper along the floor and walls to ensure the 

animal could not see out and would remain as undisturbed as possible. In order to 

minimize influencing the movements of animals within the cage, the cage contained 

no furnishings except for a low shelf along the back wall (at a height of 3cm and a 

width of 15cm, to accommodate the secretive nature of the species) and running the 

length of the cage in the same direction as the temperature gradient. To further avoid 

influencing behaviour, the heat sources were applied to the outside of the cage and 

were not visible to the animal as a single point source. Food or water was not 

included as it may have influenced movement and initiated digestive behaviour. The 

lack of food or water may be considered nonstressful in a species which habitually 
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may go without these substances for periods longer than the required sixty hours. 

The temperature gradient chamber was housed within a darkened room in the basement 

of the Zoology Department (Fig.5.2) with an ambient air temperature range of 

approximately 19-21"C. Heat sources were placed at one end of the cage and included 

a double-element metal-encased bar heater positioned 20cm under the floor of, and 

extending the width of, the cage, and two 240W spot lights directed at the corner of 

the floor and wooden side of the cage. The other end of the cage was air cooled by a 

fan placed on the floor of the room and directed to force a continuous stream of air 

from outside the room up onto the side of the cage. This resulted in a temperature 

gradient within the cage of approximately 21.5 to 39.o·c (±2.C). 

Eccritic temperatures were recorded using the field telemetry equipment (Fig.5.2) 

which is described below. 

Fig.S.2 Temperature gradiant chamber in use with field telemetry equiptment. 

(photo, R.Mawbey) 
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5.2.6 Stress of handling 

The writer was the only person to catch and restrain snakes during this study. 

Handling by field assistants only involved supporting the caudal-half of the snake's 

body during periods when the heads were fully immobilised for the purposes of 

measurement, sexing, marking, implantation and removal of telemeters. 

All handling procedures were conducted gently and as quickly as possible, and were 

undertaken without the use of chemical restraints and without exposing any animal to 

temperature extremes outside of known physiological limits. 

Handling stress was kept to a minimum by limiting maximum handling time per 

animal to ten minutes; on each of four occasions. These occasions were: (i) capture 

and restraint for initial examination and marking procedures; (ii) capture and restraint 

for implantation; (iii) capture for transporting to the temperature gradient; (iv) restraint 

in order to remove telemeters. Snakes were held and transported in soft calico bags, 

or were in the temperature gradient; with the exception of two gravid animals (Cl and 

Cr3) which were housed in a cage after the field work was complete for reasons 

explained below. Newly captured snakes were sexed, weighed, measured, marked 

and released at the first opportunity. 

5.2.7 Use of captive and road-killed animals 

Prior to beginning the field study, four adult Tiger Snakes were housed in captivity: 

two from sea-level and two from the Lake Crescent area (830mASL). These animals 

were collected over the eighteen month period prior to commencing the study and 

were purposely handled frequently until they became tolerant. They were used to 

develop techniques for nonsurgical implantation and removal of telemeters, to test 

telemeter function before implantation into free-living animals, and to measure live 

body dimensions while in various basking postures in order to estimate body thickness 

and exposed surface areas. For the above reasons, these animals were not over-fed 

while in captivity; they were fed an average of one dead medium-sized adult mouse 

every ten days in an effort to keep them as representative of wild animals as possible. 

Tiger Snakes are prone to over-feed while in captivity and, despite the relatively small 

number of meals, all managed a 2-6% increase in body weight over the captive 

period. 

In addition to the above animals, use was also made of dead animals (road killed), 

when available and if not too extensively mutilated, in order to determine: dead skin 
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reflectances, stomach thickness/body length ratios, body wall thickness/body length 

ratios, tail length/body length ratios and the relative position of the pyloric sphincter. 

The latter in order to determine the resting position of a stomach implanted telemeter, 

in the unfed animal. All donated road-killed animals were males. 

5.3 TELEMETRY 

5.3.1 Capture and restraint 

Capture of adult animals was achieved by the use of bare hands and open-mouthed 

bags made from lightweight fish landing-net frames and white calico. Capture usually 

involved a slow stalk directly towards the animal followed by a rapid but gentle grasp 

of the cloacal region, picking it up and coaxing the animal as soon as possible into a 

bag. Speed was considered important in order to minimise risk and stress both to the 

animal and to the handler. Alternatively, if time of emergence from the burrow and 

the choice of basking pad could be deduced from the micrometeorological conditions, 

one simply waited in ambush for the snake. Capture of animals to be telemetered was 

undertaken in late afternoon, in order to minimize time in the bag (held to less than 

two hours) and to avoid possible temperature stress to the animal. Following 

implantation, the snake was held in the bag for an hour to calm it and to guard against 

regurgitation. Release occurred at the entrance to the night-time retreat, after first 

checking the transmission, at a time when the particular animal would normally enter 

for the night. This ensured minimal movement by the animal over the ensuing few 

hours as a precaution against regurgitation. Release simply involved laying the 

opened bag on the ground and allowing the animal to leave at will. 

5.3.2 Implanting procedure and precautions 

After approximately thirty minutes in the capture bag following capture, in a cool 

place to calm the animal, the snake was grasped firmly, through the thin material of 

the bag, directly behind the head, and the head gently extracted. The emphasis during 

handling was to minimise any undue stress and possible injury to the animal in order 

to ensure, as far as possible, acceptance of the telemetry package and normal behaviour 

following release. For these reasons pinning the neck (e.g. with a 'jig' to a foam 

mat) was considered too stressful and not used. No restraining methods other then 

those using the hands and bag were found to be necessary during implantation. Only 

the head and neck of the animal were extracted from the bag, which served the dual 

purpose of preventing undue movement and, upon release of the head, meant that the 
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animal would naturally pull back into the bag, thus avoiding the need for further 

handling following the procedure. The prevention of undue movement was also an 

important safety precaution on occasions when telemeters had to be implanted in the 

absence of field assistants. 

Positioning the telemetry package required first coating the forepart with a small 

amount of liquid paraffm. The use of a low irritant lubricant ensured that the package 

slipped between the jaws and into the oesophagus with ease. Holding the snake in 

the left hand, with the gular area between middle finger and thumb, the wax coated 

package was introduced to the animal and it was allowed to bite and hold it (Fig.5.3). 

Fig.5.3 Introducing the telemetry package into the tiger snake (A2).(photo, S . Van !.hoff) 
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The relatively thick wax coat on the package prevented damage to the short fangs and 

fragile mouth parts, and to the instrument. The recurved teeth usually held the 

package in place while allowing it to be easily worked to the back of the mouth; this 

part of the procedure was accomplished in only a few seconds with the fingers of the 

right hand. The package was then gently pushed into the throat with a pair of large 

blunt forceps (Fig.5.4). The lack of a sternum in snakes allows for the easy palpation 

of solid objects within the digestive tract and positioning the package into the rear of 

the stomach was a simple matter of gentle massage (Fig. 5.5). The wholy procedure 

was usually completed in less than five minutes. Upon completion the bag was tied 

and left undisturbed for an hour. 

Fig.5.4 The package is gently pushed into the throat with a pair of large blunt 

forceps. (photo,S. V anthoft) 

During telemeter implantation and removal care was taken not to introduce lubricant to 

the hand holding the snake, or to the head, in order to maintain a firm grip. While 

holding the head venom tended to stream from the fangs, especially if pressure were 

inadvertently applied to the epithelium immediately behind the fangs or to the venom 

glands, and care was taken to ensure no broken skin was present on the hand holding 

the snake. Hands were washed thoroughly following each handling procedure. The 

option of using gloves was discounted as their use limits dexterity and makes it 

impossible to know exactly the minimum pressure required to restrain snake heads. 
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Fig. 5. 5 The lack of a sternum in snakes allows easy palpation of the package when in the 

snake. (photo,S.Vanthoff) 

5.3.3 Duration and telemeter removal 

Telemetry packages usually remained inside the Egg Island animals for eight days, 

and a package was carried by the first Lake Crescent animal for six days. At Egg 

Island this time included five field days followed by the three days required to 

transport animals to the University and determine eccritic body temperatures. Two 

Lake Crescent animals carried telemeters for three days only while in captivity. 

In order to remove a telemeter the snake was grasped in exactly the same manner used 

for implanting. After securing the animal's head, a small dose of liquid paraffin 

( z2ml) was introduced into the oesophagus via a small syringe and short (Scm) 

smooth plastic tube (size 14 intravenous catheter) with blunted tip. The tube was 

slowly inserted to its full length and the dose slowly given (Fig.5.6). The only 

danger to the animal from the relatively short tube lies in the possibility of it scratchino-
o 

the lining of the oesophagus; hence the reason for the blunted tip. The tube was kept 

short because of the possibility that a longer tube might penetrate the thin-walled 

oesophagus and lung if the snake should manage to struggle. There is little danger of 

accidentally administering into the trachea as the glottis of the snake is very obvious , 
positioned on the floor towards the front of the mouth, and therefore easily avoided. 
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Fig. 5 . 6 Administering small dose of liquid parrafin prior to the removal of the package. 

(photo,S.V anthoff) 

Following administration of the liquid paraffin the neck of the snake was held in an 

upright position and the oesophagus gently massaged for several minutes. The 

telemeter was then located, through palpation, and by applying gentle pressure to the 

posterior end moved to the cardiac sphincter. In relatively small animals (Egg Island 

females), the sphincter represented the major obstacle to be overcome during the 

removal operation. It required some several minutes of gentle pressure with the back 

(blunt end) of the telemetry package before it would open sufficiently wide to allow 

the package through. This problem did not eventuate with females larger than 400 

grams (Lake Crescent animals). It was then a simple matter of massaging it back 

along the oesophagus to a position immediately behind the jaws. In order to eject the 

package from the mouth it was necessary to release the head. However, this was not 
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as dangerous as it might appear because the bulge formed by the package in the neck 

of the animal prevented the snake from turning it's head. In order to keep the head 

under control the snake was laid on it's back, and held securely with the index fingers 

pressed up against the point of the jaw. From this position the package could then be 

eased out of the mouth with the thumbs (Fig. 5.7). At this point the snake could be 

released and allowed to eject the package itself, or alternatively, when it was desirable 

to keep control of the animal, the head was given a gentle shake to dislodge the 

package from the teeth. Releasing the snake while the package was in the throat did 

not result in expulsion, the package was simply reswallowed. 

Fig.5.7 The package is removed. (photo,S.Vanthoff) 

The telemetry method used in this study appears to have caused the snakes little or no 

harm as at least one animal fed with a telemetry package present in the stomach (Al) 

and two animals were observed to have fed within three weeks following removal 

(A2 and B2). Eight days were selected as the length of time telemeters would remain 

in the animals based on the likelihood of regurgitation increasing over time; and on 

the minimal time required to complete the field studies and determine eccritic body 

temperatures. If any animal had have avoided recapture, which none did, regurgitation 

should have occurred within a few weeks (Shine,1987b) and posed no long term 

ingestive/digestive problems. 
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5.3.4 Telemetry equipment and calibrations 

During telemetry, the body temperature of the animal was continuously sampled 

every fifteen seconds and the data stored on computer. The field telemetry equipment 

included a telemetry package, directional antenna, receiver, custom-built digital data 

processor (digital pulse counter) and PC computer. Power was supplied by one of 

three heavy-duty sealed 12 volt batteries. 

Fig.S.S Telemetry package and magnet (photo,S.Vanthoff) 

Two telemetry packages were used in the study. Each included a low-powered, 

hermetically coated, TELONICS Inc.® CHP-IMP transmitter with magnetic switch, 

S2 temperature sensor, internal whip antenna and battery. Each package had approximate 

dimensions of 3 x 1.5 x 1cm (Fig.5.8), a total weight of nine grams and an estimated 

operational life of three and a half to four months at 37"C. Both telemetry temperature 

sensors were found to have a maximum temperature lag period of approximately one 

and a half minutes. The transmission frequencies were factory set at 151.210 (receiver 

channel 8) and 151.190 MHz (receiver channel 9). In order to minimise the risk of 

introducing disease or parasites from one site to another, the latter frequency was the 

only one used at Egg Island and the former frequency the only_ one used in Lake 

Crescent animals. The telemetry packages used weigh approximatelY. the same as an 
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average three week-old laboratory mouse, a small to medium size food animal, and 

were thus easily accommodated by the snakes. The pyloric ~phincter marked the 

maximum caudal position of the package in the unfed snake and was determined by 

dissection of road-killed animals to have a mean distance from the snout of 60.6% 

(sd=3.329, n=6) the SVL of the animal. Both telemeters functioned perfectly over 

the study period. 

Both telemeters were calibrated during the week before commencement and the week 

following completion of the field study period. Calibrations were conducted in a 

thermostatically controlled waterbath using a Dobros® mercury reference thermometer 

with a maximum inaccuracy of ±o.03"C at o·c. Upon recalibration, the channel 9 

telemeter (Snake Island) was found to have suffered a maximum drift of 0.027"C at 

between 20-22"C, and the channel 8 telemeter (Lake Crescent) a maximum drift of 

0.019"C at between 16-18"C. As both these differences lay within the accuracy range 

of the reference thermometer, and within the telemetry temperature sensor's 

manufacturer specified 0.1 ·c resolution, no post measurement corrections were 

required. 

The directional antenna used in the study was simply formed from a normal yagi TV 

antenna cut in half. This resulted in a six element, 77.5 x 163cm antenna, which in 

the field was mounted on top of a 1.5 x 0.03m steel tube driven approximately thirty 

centimetres into the ground. While snakes were active above ground this resulted in a 

maximum receiving range of approximately fifty metres (±lOrn) depending on 

background interference, rainfall and density of cover. This range was considered 

adequate in the circumstances as the vegetation was often very thick at the Egg Island 

site. The maximum distance travelled away from the night-time retreat, by any of the 

telemetered females on any one day, was forty-five metres. Most days the animals 

remained within thirty metres of the antenna; although reception was often lost due to 

moisture when snakes were in the marsh area or under wet vegetation. The antenna 

was placed at one of three locations around the edge of the home-range; the actual 

position depending on the time of day and on the position of the animal. Care was 

taken to hide the antenna from the animal either through positioning it behind available 

vegetation or by simply laying it on the ground pointed at the animal. 

A tent was used to house the receiver, digital data processor, computer and batteries. 

This was positioned approximately twenty-five to thirty metres away from each burrow 

entrance and where it would not be obvious to the snakes. The coaxial cable attaching 

the antenna and receiver was twenty five metres long, longer than needed for fixed-site 

reception, as additiona,_ length was necessary for determining the position of hidden 

animals through triangulation. 
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Two receivers were used during the study. The first was a nine-channel Austec® 

Model 31 Tracking Receiver used for all but the last field trip where it was damaged. 

The replacement receiver was a Yaesu® VHF/UHF, FRG-9600 Communications 

Receiver with a frequency range of 60-905 MHz. The former required constant 

adjustment in the field and was subject to a good deal of background noise (especially 

during wet weather). Hence, for most of the field study period it was necessary to 

adjust reception through the night in order to secure night-time values. The latter 

receiver required very little adjustment. 

The receiver output was in the form of an audible beep and a signal which was 

recovered and converted into machine readable form for data conversion and storage 

by computer. This was achieved through the development of a digital data processor 

capable of squaring and counting the pulse intervals (for details of the circuit refer to 

Appendix 2). The length of the interval between pulses was used to generate a 

number which was inversely proportional to temperature; i.e. the pulse repetition rate 

increased with increased body-temperature. The pulse interval was sampled every 

fifteen seconds and storage of the large amounts of data thus generated required a PC 

computer with a relatively large data storage facility; a Tandy® 1400HD PC was used 

for this purpose. A simple programme was written by Mr. Paul Waller (Central 

Science Laboratory, University of Tasmania) in BASIC to perform the data sampling 

which is listed in Appendix 3. 

The raw telemetry data was converted to body-temperature values using sensor specific 

polynomial calibration factors (Fig.5.9). 

5.4 MICROCLIMATE MEASURING AND MONITORING 

PROGRAMMES 

Microclimatic variables pertinent to calculating snake surface and body temperatures 

(Ts and Tb) were monitored concurrently with the telemetered animal's body temperature 

for periods of five days. These were monitored immediately adjacent to, and within, 

each animal's home-range. The microclimatic variables monitored included: inground 

temperature (Tg), ground heat flux (Q 0 ), ground surface temperature (Tr), mean wind 

speed at a height of 1.6m (U) and at a snake height of 2cm ('u), wind direction (V), 

relative humidity (RH), air temperature (T.), down-welling global radiation (KJ.), 
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Fig.5.9 Calibration curves for temprature sensitive radio telemeters. 
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down-welling longwave radiation (LJ.) down-welling diffuse radiation (D), percent 

cloud cover (c) and rainfall. In addition, ground-surface albedo (ar), slope, aspect 

and sky-view factor at basking sites and day-time retreats were recorded in order to 

determine the amount of solar energy available to the animal. 

5.4.1 Soil instruments, methods and assumptions 

Tg's were measured using Campbell Scientific Instruments<» (C.S.I.) Model 101 

thermister probes (with a maximum digitizing and probe component error ±O.S"C). 

Although the probes are supplied as water-proof units, seams were further water-proofed 

with a silicon sealant. The thermisters were water-bath calibrated using a Dobros<» 

mercury reference thermometer: before and after the field study period. During the 

latter period the probes were thrice calibrated in sealed-room air against a Cassella<» 

Assman-type reference thermometer. Maximum drift was determined to be 0.35·c in 

only one probe at the cessation of field-work. The Tg data were corrected automatically 

for error on sampling using the C.S.I. CR21 data-logger offset facility. 

Fig.5.10 Installation of ground temperature thermisters (T ) . 
g 

Tg thermister probes were placed as close as possible to night-time retreats. In order 

to avoid disturbing sequestering snakes; this usually meant that placement was no 

closer than three metres. Only sites subject to similar solar exposure and in similar 

situations as retreat-sites were selected for this purpose. The thermisters were installed 

at depths of 2, 5 and 20cm (Fig.5.10) and were attached to·a C.S .I. CR21 data-logger 
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programmed to sample the soil temperature every ten seconds and to calculate mean 

T
8
's every fifteen minutes. The data were stored on a portable tape-recorder. Both 

the data-logger and tape-recorder were housed inside a C.S .I. weather-proof case. 

Both were checked for function every two hours between 0700 and 1900 hours EST. 

Q.'s were measured using three new Middleton171 Model CN3 soil heat-flux plates 

supplied with factory determined calibrations. These were carefully placed five 

millimetres under the soil surface in three different situations within the telemetered 

animal's home-range. Sites chosen for this purpose were either those used by the 

animal for basking and day-time retreat or, if animals moved about extensively, those 

assumed to be representative of the night-time retreat-site and basking-sites. Whenever 

possible two of the plates were positioned at the side of, or under, basking-pads and 

the leads carefully hidden. The heat-flux plates were attached to the C.S.I. CR21 

data-logger and the data sampled and stored in the same way as the Tg data. 

For modelling purposes, inground T g values were assumed to represent the entire 

study area. This assumption was based on the homogenous levee soils and similar 

northerly aspect along the entire south shore of the Egg Island canal site. Thus, Tg 

values measured at a telemetry site were assumed to be representative of inground 

values available to all sequestering animals where retreat-sites were in similar situations. 

Q.'s were not assumed to be similar to each other, even when in close proximity, due 

to the highly variable sky-view factors. 

5.4.2 Screen instruments, methods and assumptions 

The term screen refers here to the frame upon which a Stevenson's screen, with T. 

and RH sensor, is mounted. Screen height refers to the standard height ( 1.6m) used 

by the Bureau of Meteorology. 

The screen variables monitored in this study included T •' RH, Kt, V and U. The 

screen height used was the Bureau standard and the frame was aT-shaped steel frame 

on which to mount the instruments (Fig.5.11). The screen carried the following: a 

C.S.I. Model 201 T. thermister probe and RH (±2%) sensor; a Kipp and Zonen® 

CMll pyranometer used to determine Kt; a Met One® Model 024 wind direction 

sensor and Model 010 cup anemometer with an inertial start-up speed of 0.44ms-1
• 

The screen also carried a C.S.I. CR21" data-logger and all data was sampled, processed 

and stored using the same method as the soil data. The screen was placed approximately 

thirty metres away from retreat-sites, outside of home-ranges, in an open position not 

visible to the animals. It was carefully levelled and pegged securely. Data-logger 
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Fig. 5.11 Screen instruments, pyrgeometer and diffusograph in use at Egg Island sub-site 2. 

The township of Franklin can be seen in the background. 

function was checked two-hourly and the levelling of instruments checked daily or 

after high wind. 

The T thermister- RH C.S.I. 201 sensor was calibrated in sealed room air and found 
a 

to exactly correlate with a Cassella~ Assman-type reference psychrometer, before, 

once during and following the field study period. Additional T a and RH readings 

were taken when animals were discovered further than 300m away from the screen 

using a Brannan~ Model BS 2842 psychrometer. This latter instrument was also 

calibrated as for the C.S.I. 201 sensor. 

Also attached to the screen data-logger, and recorded and checked in the same way, 

were instruments for measuring L.J, and D. These were: an Eppley~ Model SF3 

pyrgeometer (L.J,) which was mounted on top of a 1.4m galvanised iron post (Fig.S.12); 

and a second Kipp and Zonen~ CM11 pyranometer mounted onto a diffusograph 

frame to measureD (Fig.5.13). This was placed on a l.lm high wooden table at the 

study site with the long-axis aligned to point true north. The diffusograph frame used 

is similar in design to an Eppley frame, but differs in that the mat-black painted 

occluding ring forms a complete circle around the pyranometer. The frame was 

constructed following a design by Dr. M. Nunez. 
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Fig.5.12 The pygeometer to measure longwave radiation (LJ,) 

Fig. 5.13 The pyronometer mounted into a difusograph to measure difuse sky radiation (D) 

(design Dr.M.Nunez). . 
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As the diffusograph shading ring obscures an area of sky larger than the solar disc, 

the raw D data required adjustment by a geometric correction factor to determine true 

D values. The method used for this purpose was that of Iqbal (1983), which 

provides both a geometric correction and an additional factor to account for cloud 

cover (c). The geometric correction was adjusted by: +0.07 for cloudless skies 

where c~lO%, +0.04 for partly cloudy skies where 10<c<90%, and +0.03 for 

overcast skies where ~90%. For details of the computer programme used to determine 

D correction factors refer to Appendix 4. 

As it was not possible to monitor the microclimatic variables as experienced by a 

snake from screen height at distance from the animal's position, it was assumed that 

T., RH and V as monitored by the screen were pertinent to observed thennoregulatory 

response. It must also be assumed that methods used to monitor radiation variables at 

screen height are valid when applied to ground-level and calculated for sky-view 

factor and albedo. 

Fig. 5.14 Hand held narrow field (2.5°) infrared thennometer for ground surface temperature 

readings (1).(photo,S.Vanthoff) 

5.4.3 Surface instruments, methods and assumptions 

Only the T r and u of basking-pads and day-time retreats of non-telemetered adults 

were measured and recorded. Telemetered females were not used for this purpose as 

it was found to be virtually impossible, using the available instruments, to achieve T r 
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and u measurements without disturbing the animals. The instruments used for the 

surface measurements were a Barnes~ Model14-220-1 hand-held narrow-field (2.5") 

infrared thermometer (Fig.5.14) and a Selbys Scientific~ Model TA 3000 hot-wire 

anemometer (Fig.5.15). 

Fig.5.15 Hot-wire anemometer used for 2c.m.high surface wind readings (ti). 

The method was to undertake a two-hourly search for all females on basking pads in 

the area and, when found, to measure Tr (from a height of 0.5m) and u on and over 

the pads. Each of these variables were recorded as a mean of three readings; this was 

found to be necessary due to microtopographic heterogeneity at many of the pads 

used. Pads also often displayed several very different Tr's due to the extended 
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basking postures of animals in early and late wann-up phases. The hot-wire anemometer 

proved to be very sensitive to wind direction and required rotation until a maximum 

value was found. The u value was measured over a position on the pad which 

corresponded to the middle of the animal's body. 

For the purpose of the study, the importance of surface emissivity in characterising 

exact surface temperature using an infrared thermometer was ignored and surface 

emissivities were assumed to equal one. The relatively small diameter of a hot-wire 

anemometer would not be representative of the exact convective conditions as 

experienced by the snake; due to the larger diameter and therefore boundary layer of 

the latter. However, the purpose of the wind readings at two centimetres was to 

determine if snakes were minimising wind exposure at snake-height (i.e. u ~0.5ms. 1 ), 

and thus experiencing free convective heat exchange. The instrument proved adequate 

for the purpose. 

5.4.4 Cloud-cover and precipitation 

Cloud amount and type were estimated as tenths of visible sky cover at three levels: 

low, middle and high, every two hours between 0700 and 1900 hours EST. Rainfall 

was measured using a 203mm rain-gauge which was placed in an area open to the 

sky. The gauge was checked and emptied each twelve hours: at 0700 and 1900 hours 

EST. 

5.4.5 Mapping 

Mapping was only undertaken at the Egg Island site and was in two forms: the first, 

in estimated form prior to commencing each telemetry study; the second, in detailed 

form only after each study was completed. Detailed mapping could not be achieved 

prior to telemetry studies as it would firstly, have resulted in disturbing animals, and 

secondly, the extent of the area required for mapping could not be known until the 

habitual movements of animals had been determined. A further limiting factor on 

when to map was the common habit of two adult females occupying overlapping 

home-ranges; possibly due to limited availability of suitable sites. Thus, detailed 

mapping would have resulted in disturbing at least one adult female had it been 

undertaken prior to the telemetry. 

Each animal selected for telemetry was observed for a minimum of forty-eight hours, 

prior to capture, in order to determine normal activity patterns. On capture of each 

animal for implantation, the home-site was measured for distances between the sites 

73 



most frequently used by the animal for basking or retreat. More detailed mapping 

was not possible at this stage as it was necessary to implant and release the animal 

within two hours of capture. 

Following the completion of the telemetry studies at each sub-site, each home-range 

was marked-off by string and divided into one metre quadrats. The quadrats were 

then mapped for microtopographic features, including: mean slope, mean aspect, 

ground cover and height (Fig. 4.4a, b, Fig. 4.5a, b). Each home-site was also 

mapped for meanT, (Fig.6. 17a, b), at solar zenith angles of between thirty and forty 

degrees, during the morning and again in the afternoon. However, due to the 

experimental design requiring the placement of each telemetered animal into a temperature 

gradient within twelve hours of capture, it was not possible to map the mean surface 

temperature differences in detail until after completion of the telemetry studies. The 

latter was accomplished during the first week of March, within four days following 

the capture of the last telemetered animal. 

Microtopographic maps were needed to evaluate the affect of potential convective 

shields on animal energy budgets. Knowing the mean temperature differences within 

each home-range was considered important for two reasons: the first being that it 

could not be possible to know if animals were optimising thermal environments 

without these values, and secondly, the maps allowed for calculation of pad T,' s 

post-study from field notes. The latter, by relating the T, values of a fixed point, 

unoccupied by the snake, to that of the mean difference between the two surfaces. In 

this way it was possible to estimate T, of basking pads without disturbing the telemetered 

animals. 

Each mapped area included the combined home-ranges of two snakes. The combined 

mapped surface area of the S 1 pair (Al and Cl) encompassed a surface area of 88m 2
, 

and that of the S2 pair (A2 and B2) a surface area of lOOm 2 (Fig.4.4a, b respectively). 

5.4.6 Surface albedo 

Surface albedo (ar) was determined for all basking pads used by the animals during 

the study. The method involved inverting a pyranometer over the pad at a height of 

thirty centimetres and dividing the mean reflected value by the mean value of KJ. 
(Wm-2

). The ar was calculated in this way for when the sun was low (:::::30.) and 

when overhead, and only on clear days with <10% cloud-cover. The latter consideration 
meant that ar could only be calculated for both solar positions on four of the field 

study days at the Egg Island site; as most field-study days experienc;ed > 10% cloud 
cover. 
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Due to the lack of a spectro-reflectometer, it was also attempted to determine snake 

surface albedo (a.s) by the latter method; in which only dead (road-killed) snakes 

were used. The snakes were coiled to form a disc of a known radius on a uniform 

background and a pyranometer was suspended twenty centimetres above the snakes 

and the value recorded. However, no geometric correction factor could be found 

which would satisfactorily correct for a.r. Hence, only estimated values of as where 

determined; the mean values for road-killed animals with different skin colours were 

~ 0.182 (sd = 0.0146, n = 6) reflectance (solar angle 30-40•) and ~0.18 reflectance 

(solar angle >60.). As these values were the highest mean combined values of both 

as and a.r, and as a.r was greater, they represent extreme and overestimated values 

for a.s. 
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6 DATA ANALYSIS 

6.1 INTRODUCTION 

The results presented in the following were selected on the basis of their relevance to 

subject discussion and are mainly taken from the four Egg Island telemetry study 

periods where environmental effects can be related to snake body temperature (Tb). 

The results used are confined where possible to three consecutive days, from each 

study, where both Tb and the microclimate records are both virtually uninterrupted. 

Confining the results used to three days for each study was found to be necessary due 

to the volume of data and because of the need to examine all climatic variables 

collectively as they all influence Tiger Snake thermoregulatory behaviour. 

All climatic variables that were determined to show strong positive correlations with 

Tb have been dealt with individually and in some detail. However, wind direction is 

not discussed separately, as it was determined to have no correlation with Tb at 

screen height, and is discussed in relation to the other variables where applicable. 

Relative humidity is not discussed as it showed only negative correlation with Tb, as 

measured at screen height, and this can be explained by evaporation of early morning 

dew, as animals emerged from night-time retreats, and rainfall. As the available data 

for this variable could not be otherwise associated with Tb it is not dealt with further. 

The results of each measured variable are discussed separately in order to facilitate an 

understanding of their relationship with the snake and of their effect on the energy 

budget of the animal. 

The derivation of empirical and biophysical relationships is discussed in the final 

Chapter. 

6.2 DATA PROCESSING AND COMPILATION 

The data-logger tapes were down-loaded using C.s.v~ PC 201 software and stored 

on disk. The computer stored Tb data were calculated for fifteen minute means and 

dumped to disk. The collective data was then concatenated on the SPARC Sunstation 
'GEO' and files were generated using Microsoft EXCEL® (Version 3.0). Spread-sheet 

data were compiled from data-logger, PC computer and field notes for further 
processing. 
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6.3 BODY TEMPERATURE PROFILES 

This section shows diel rhythmicity in Tb in free-living snakes on Egg Island over 72 

hours for each animal. In order to interpret the results presented in this chapter, an 

appreciation of the thermal needs of the study animals is required, therefore, the mean 

eccritic Tb's and voluntary thermal limits (VTs) are dealt with first. 

6.3.1 Eccritic means and voluntary thermal limits 

The VT limits and mean eccritic Tb's for the four Egg Island and three Lake Crescent 

animals, together with the sampling dates, are presented in Table 6.1. These data 

clearly show non-gravid Lake Crescent females (Fig.6.1a, b) to have relatively low 

mean eccritic Tb's when compared to the non-gravid Egg Island animals (Fig.6.2a 

and b). They also show a higher mean eccritic Tb in the gravid Lake Crescent female 

(Fig.6.1c) than for non-gravid females from the same area. Both gravid females had 

similar mean eccritic Tb's (Figures 6.lc and 6.2c) and both showed slightly higher 

eccritics than any of the non-gravid animals. The Egg Island gravid female displayed 

the highest mean eccritic Tb recorded. Note the similarity between the plotted Tb's of 

both gravid animals which appears to belie their geographical isolation. 

Table 6.1 Mean eccritic body temperatures and voluntary thermal limits of all 

telemetry study animals 

DA1E ELEVATION vrmin('C) vrmax('C) ECCRITIC MEAN ('C) 

14.01.92 Sea-level 27.82 34.79 31.49 

24.01.92 830m 21.82 34.54 25.82 

02.02.92 Sea-level 26.17 34.88 30.57 

07.02.92 830m 22.02 30.47 25.48 

18.02.92 Sea-level 24.19 35.72 31.04 

21.02.92 830m 24.36* 35.68* 31.68* 

02.03.92 Sea-level 24.75* 34.34* 32.09* 

* Gravid female body temperatures 

The VT max's shown in Table 6.1 are maximum point values only and, as these 

temperatures were not achieved by any animal measured in the field, they may only 

represent temperatures the animals are willing to tolerate while stressed by captivity; 

they may not be levels of Tb that would be tolerated by free-living animals. The data 

presented in Table 6.1 are isolated 24 hour samples and, due to the small number of 

animals measured, must be interpreted with caution. Nonetheless, the elevational 
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Fig. 6.1 Eccritic body temperature profiles of non-gravid Lake Crescent females 
(a.and b.) and a gravid female (c.) recorded over 24 hours in a temperature 
gradient chamber. 
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Fig. 6.2 Eccritic body temperature profiles of non-gravid Egg Island females 
(a.and b.) and a gravid female (c.) recorded over 24 hours in a temperature 
gradient chamber. 
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differences observed in the non-gravid animals may account for the low numbers 

found to be active during mid-summer at Lake Crescent. Lower eccritic Tb's in 

animals at higher elevation, should this be the case for all females in the population, 

can be seen to be of advantage in the relatively cool and seasonally extreme environment 

by permitting snake activity during the spring and autumn. 

The differences in eccritic Tb's shown by the gravid and non-gravid Lake Crescent 

animals may be indicative of a seasonal shift in eccritic temperatures. Many more 

snakes were active on the date the gravid female was captured than on previous visits: 

an average of two snakes per hour were sighted during late February compared to one 

per 3.5 hours on the previous occasions. However, a change in physiologically 

optimal temperatures of this magnitude (approximately six degrees) for the whole 

population is unlikely over such a short period (14 days) and the data suggest the 

gravid animal had a higher mean temperature requirement than non-gravid females in 

the same locality. 

6.3.2 Field telemetry data 

The Tb profiles of free-living Egg Island females are presented in Fig. 6.3. Gaps in 

the profiles correspond to occasions when reception was weak either due to rainfall or 

dew (especially at night) or to when animals were in dense vegetation during the day. 

The shape of the Tb profiles can be related to the weather conditions at the time and 

these relationships are discussed in detail in Section 7.3. The mean, maximum and 

minimum Tb's, together with the times these values were recorded, are listed in Table 

6.2. 

Table 6.2 Daily mean, maximum and minimum summer body temperatures (0 C) of 

adult female Tiger Snakes during twelve days at Egg Island 

DATE Tb Max. TIME Tb Min. TIME MEAN SD 

10.01.92 33.99 17:34 15.51 07:18 24.23 6.10 
11.01.92 33.30 13:55 13.79 06:38 23.96 6.54 
12.01.92 34.12 17:19 16.28 07:10 24.11 6.50 
28.01.92 33.28 16:57 
29.01.92 33.93 12:24 13.94 07:33 22.49 6.53 
30.02.92 33.51 11:08 13.76 07:18 22.34 7.97 
13.02.92 33.49 14:36 16.31 11:12 20.98 4.69 
14.02.92 33.88 13:05 13.82 09:30 22.72 6.20 
15.02.92 34.19 11:09 12.49 08:13 25.77 6.1 
27.02.92 33.28 15:34 13.44 07:29 25.28 7.21 
28.02.92 33.1 10:04 13.87 08:04 23.08 7.39 
29.02.92 32.74 17:26 13.97 08:17 23.75 6.84 

Mean Tb maxima= 33.57, Mean Tb minima= 14.29 
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Fig.6.3 Body temperature profiles over 72 hours for free living Egg Island females AI, 
A2,B2,Cl 
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These data show minimum Tb to usually occur in the early morning, except on days 

with little incoming radiation, and most often to occur on or just prior to the snakes 

emerging from night-time retreats. The relatively late minimum Tb's recorded on 

days 13-14.02.92 coincided with a late emergence by all animals in the area. This is 

thought to have been due to a moisture laden cool southerly air flow and overcast sky 

conditions which had persisted for several days. All maximum Tb's shown are 

surprisingly similar and demonstrate the ability of these animals to reach eccritic 

temperatures even in adverse weather conditions. 

6.4. RADIATION 

6.4.1 Relationships 

Diffuse solar radiation (D) and solar zenith angle (z) (calculated using the Applied 

Environmetrics Tables of Beer, 1990), enabled calculation of the direct component (I) 

of global radiation (K..J,) from: 

KJ. = I cos z + D 

where: 

I= KJ. - D I cos z 

34. 

The grouped values for I, D, K..J, and L..J, were then plotted against Tb to determine 

the relationships with Tb (Figures 6.4a-11a). The strength of the relationships for all 

four forms of radiation, in both grouped and single data sets, were then tested using 

Pearsons correlation coefficient r (Figures 6.12-13a, b). From the grouped sets the 

coefficients of determination indicated K..J, (r=0.5) and K..J,+L..J, (r=0.536) to be more 

closely related to Tb than either D (r=0.18) or L..J, (r2=0.08) when evaluated separately; 

and similarly there was no difference between I and K..J,. 

The relationships thus derived, showed the grouped data sets for K..J, (Fig.6.12a) and 

for total incoming radiation (K..J,+L..J,, Fig.6.12b) both to have highly significant 

relationships with the rate of Tb increase. Further, K..J,+L..J, for the overall data sets is 

more closely associated with Tb than is K.!. alone. 
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Fig.6.12 Correlations of incoming radiation with Tb, showing the grouped 
data sets forK.!. (a) and for K.!.+L.!. (b) 

Despite the apparent strength of the combined radiation index (KJ-+LJ-) for predicting 

Tb, the data for individual days, under similar conditions and rates of Tb increase, 

show K J, will on occasion be the stronger predictor. This occurred between the two 

Egg Island sub-sites during clear-sky periods where snakes generally bask on grass 

pads at S 1 and on bracken litter/earth pads at S2. Figure 6.13a shows K J..+LJ.. to be 
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the stronger on Sl (earthen pad, 11.01.92) while K.J.. is the stronger on S2 (grass 

pad, 30.01.92) under similar conditions (Fig.6.13b). 
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Fig. 6.13 Correlations of incoming radiation K.!.+L.!. and K.!.with Tb, showing the 
strength of the relationships for earthen pads (a) and for grass pads (b) 

On overcast days both radiation indices were weaker predictors of Tb at both sub-sites 

(Fig.6.14a and b), and during periods of persistent rain both became unreliable as an 

index of Tb, giving similar results (Fig.6.15). The results of the correlations with 

equations for lines of best fit are shown in Table 6.3. 
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Fig. 6.15. Correlations of incoming radiation K-L+L-L and K-Lwith Tb on rain days 

Table 6.3 Correlations of Tb with K.l- and KL+L.l-

TEST GROUP EQUATION (TB=) 2 r r n-2 

COMBINED Tb=-43.151+25.954*LOG(K.J..) 0.500 0.707*** 78 

COMBINED Tb=-124+51.632*LOG (K.l-+L.l-) 0.536 0.732*** 78 

CLEAR S1 Tb=7 .8962* 10"(1.1968e-3(K.l-)) 0.954 0.977** 4 

CLEAR S1 Tb=2.7477*10"(1.3239e-3(K+L)) 0.975 0.987*** 4 

CLEAR S2 Tb=7.6555*10"(1.3383e-3(K)) 0.951 0.975* 4 

CLEAR S2 Tb=2.3108*10"(1.4237e-3(K+L)) 0.899 0.948* 4 

CLOUD S1 Tb=13.493*10"{7.4430e4(K)) 0.731 0.855** 11 

CLOUD S1 Tb=8.4932*10"(6.6269e4(K+L)) 0.774 0.880** 11 

CLOUD S2 Tb=-109 .68+ 51.902*LOG(K) 0.566 0.752* 11 

CLOUD S2 Tb=-245.27+94.009*LOG(K+L) 0.653 0.808** 11 

RAIN Tb=42.519+25.915*LOG(K) 0.419 0.647 14 

RAIN Tb=-117.73+49.560*LOG(K+L) 0.421 0.649 14 

significance level: * = P~0.05, ** = P~0.02, *** = P~O.Ol 

When both radiation indices are plotted against Tb they suggest the quantity of radiant 

energy required to elevate snake Tb to eccritic levels and these empirical relationships 

are detailed in Section 7.1; however, these relationships pertain only to non-gravid 

animals. Note that Tb rates plateau for a period at similar quantities of K-L with both 

cloud a!Jd rain (Fig.s 6.14-15). 

94 



40 11.01.92 400 

300 

30 
200 

Qg(Wm"2) 

100 
20 

10 -+----.r--"""T""--r----r-~-,.-.....----..,.....----.---r----r-+ -100 
0 4 8 12 16 20 24 

Time(hours) 

40 30.01.92 400 

300 

30 
200 

Tb(0 C) Qg(W/m"2) 

100 
20 

l .., 
·'" ! ................................ 0 

10 -100 
0 4 8 12 16 20 24 

TWC) Time(hours) ................ Qg(W/m"2) 

40 14.02.92 400 

300 

30 
200 

Tb(0 C) Qg(W/m"2) 
100 

20 

.......................... 0 

10 -100 
0 4 8 12 16 20 24 

Time(hours) 
Tb(OC) 

................ Qg(W/m"2) 

Fig. 6.16. Continued over 

95 



40 29.02.92 

30 

20 
, ....... /'' ... ·i .. \ .......... 

~·; \r. '-."········ 
, ... 

400 

300 

200 
Qg(W/mA2) 

100 

··••··••··••··••··••·· 0 

104-~--.-~~.-~~-r--~-r~~-r--~-r-100 

0 4 8 12 16 
Time(hours) 

20 24 
TbCC) 

Qg(W/m"2) 

Fig. 6 .16. Q
8 

and Th over 24 hours, showing the relationship of between Qg and 
emergence 

6.4.2 Ground heat-flux 

Accurate interpretation of ground heat-flux (Qs) in the immediate vicinity of the 

animal was relatively difficult to determine due to the high degree of ground surface 

heterogeneity at some of the basking-sites used and because of movement by the 

animals. Nonetheless, Qs was found to be a reliable indicator of when snakes would 

enter night-time retreats in situations where animals were on the ground surface, but it 

was not as reliable in situations where snakes were on tussock grass pads (the usual 

situation at S2). The dependence of Qs's on sky-view factor, even between small 

tussocks, meant that a lag occurred at S2 from the time Qg became negative and the 

time snakes entered their retreats (Table 6.4, Fig.6.16: 30.01.92 and 14.02.92). In 

addition, snakes on grass tussocks had more radiant opportunity, when the sun was 

low, as they were largely independent of ground surface aspect (unlike the snakes at 

S 1) and the elevation allowed them access to the last of the sun's rays. Conversely, 

the entry into night-time retreats of those snakes which usually basked on the ground 

surface in the late afternoon (Sl) coincided closely with Qs as it approached zero 

(Fig.6.16: 11.01.92 and 29.02.92). This occurred even in low radiant energy situations. 

The data suggest that the female snakes at Egg Island are maximising their thermal 

opportunities in the late afternoon by delaying entry into night-time retreats until there 

is no more incoming radiant energy; however, Tb would usually be decreasing at this 

stage and entry become increasingly more likely as Tb approached or dropped below 

3o·c. Entry was often triggered by a cloud passing over the sun or a small gust of 

wind, both of which were shown by the telemetry to result in a rapid increase in heat 
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loss at this time of day. 

Contrary to the above, Q
8 

could not be related to emergence, as it became positive in 

the early morning, and snakes would often emerge from night-time retreats more than 

a hour later. 

Table 6.4 Q, and time of entry into night-time retreats 

DA1E TYPE OF PAD TIME OFEN1RY G.or:vvm-2) 

10.01.92 EARTH/BRACKEN LITTER 18:31 0.3 

11.01.92 18:00 0_6 

12.01.92 18:01 3.5 

27.02.92 17:45 -0.1 

28.02.92 17:15 2.9 

29.02.92 17:51 0.1 

28.01.92** GRASSES 18:36 7.04 

29.01.92 16:45 -4.0 

30.01.92 17:40 -29.0 

13.02.92** 15:53 -20.1 

14.02.92 16:10 -15.6 

15.02.92 17:13 -8.25 

**Rain 

6.4.3 Cloud 

Cloud occurred on most days and influenced both the quality and quantity of incoming 

radiation. Cloud-cover was in excess of 80% on 75% of telemetry study days and 

cloud-effects depended on both the type and height of cloud. Generally, these effects 

are indicated in plots as sharp spikes in incoming radiation (Figures 6.4a-11 a). 

However, the radiation plots represent fifteen minute mean values only, while cloud 

effect is almost instantaneous, and breaks in cloud-cover can result in relatively rapid 

rates of Tb increase (e.g. O.s·c minute-1
) which might be masked by the method of 

sampling used. The influence of cloud on Tb is well illustrated in Fig.6.6a where the 

snake in this case is fully exposed to the sky and waits for long periods between 

cloud-breaks, represented as sharp peaks in the plots of incoming radiation. 

The effects on Tb seen in Table 6.5 are not solely due to cloud cover. Nonetheless, 

as cloud influences the available radiant energy (i.e. solar and thermal radiation) it 
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can be seen in Table 6.5 to have a profound effect on Tb and consequently on Tiger 

Snake behaviour. This contrasts with the fmdings of Dredge (1981) and is discussed 

further in Section 7 .4. 

Table 6.5 Days where cloud cover was ~0%, during morning basking periods, and 

the effect on Tiger Snake Tb 

DA1E CLOUD( c)% EFFECT (OBSERVED) ON Tb 

10 Jan. e=90 lag then steep increase 

12 Jan. c >90 slow increase, goes backward, eccritic at 11 a.m. 

28 Jan. c= 90 slow increase, eccritic at 10:15 a.m. 

29 Jan. c >90 slow increase, Tb goes backwards 

13 Feb. c= 100 very slow increase 

14 Feb. c=90 starts slow, Tb plateau at =25°C, enters early 

15 Feb. c=90 steep increase, Tb plateau at =29°C, eccritic at 11:00 a.m. 

6.5 PRECIPITATION 

Contrary to widely held belief, Tiger Snakes are active in the rain (in summer) and so 

rainfall can influence their thermoregulatory behaviour. For this reason rainfall has 

been included in the results. 

Rainfall data (mm) are shown separately for overnight (0700-1900 hours) and daytime 

(1900-0700 hours) periods in Table 6.6. Rainfall data (0900 to 0900 hours, Bureau 

of Meteorology) for Huonville (6.5km NNE) are included for regional comparison. 

Table 6.6 shows the percentage of the Egg Island females found to be above ground 

in exposed positions during rain periods. All females studied were observed on or 

near basking pads during rainfall on at least one occasion and two of the seven 

females were on basking pads on every one of the rain days. Although snakes 

emerged on days with light showers they usually did so later than on fine days as 

evident on the Tb profiles (Fig.6.8). If rain or thick cloud prevented them from 

reaching eccritic temperatures until late in the day or if they experienced steep drops in 

Tb, they often entered night-time retreats earlier than usual in mid afternoon (Fig.6.8). 

The precipitation data further supports the hypothesis that Tiger Snakes will attempt 

to maximise their thermal opportunity at sea-level in Tasmania and will attempt to 

increase their Tb's even on wet days in summer. Snakes that are above ground at 

such times may not be visible to the casual observer as they often utilise available 
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ground cover and may only become visible between showers. Not all of the population 

will be above ground however, as is evident from Table 6.6. 

The above behaviour was not found to be the case at Lake Crescent, possibly due to 

lower environmental temperature, and no snakes were observed in rain above 800m. 

Snakes were observed, however, to attempt to bask between showers at Clarence 

Lagoon (lOOOm) during February. 

Table 6.6 Rainfall data (mm) and percentage of the adult female population observed 

on or near basking pads 

DATE OVERNIGHT 0700-1900 HOURS HUONVIT..LE %BASKING 

27.12.91 0 0.1 0.4 71 

28.12.91 0 1.1 0 43 

08.01.92 0 0.1 0 57 

11.01.92* 0 0.1 0.4 43 

26.01.92 1.6 0.1 0.2 71 

27.01.92 0 0.4 1.0 57 

28.01.92* 2.1 0.1 0.6 71 

29.01.92* 0.3 0.3 0 57 

31.01.92 0 0.1 0 57 

10.02.92 0.1 0.1 0.4 57 

11.02.92 0 6.7 8.0 43 

12.02.92 1.6 0.1 0.2 43 

13.02.92* 0.1 0.2 2.0 43 

* Telemetry study days used in the discussion 

6.6 TEMPERATURE 

6.6.1 Ground surface temperature 

Mean ground surface temperature (T,) differences, in one metre quadrats for the Egg 

Island female home-sites, are presented in Fig.6.17a, b. The data used to compile the 

thermal maps were taken within four days of completion of the telemetry studies and 

are representative of meanT, differences occurring in each home-site on a typical and 

partly cloudy day. Each of the maps in Fig.6.17 contain the combined home-sites of 

two animals. They show the relative positions of the burrows (night-time retreats) 

and all basking pads; the use of the pads varying with time of day and weather. The 

data show these locations to have usually been the warmest ground surfaces available 
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Fig. 6.17 a Deviation from the mean ground surface temperature('C) in one metre 
quadrats at the Egg Island Sub-site 1. 
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Fig.6.17 b Deviation from the mean ground surface tempcrature('C) in one metre 
quadrats at the Egg Island Sub-site 2 
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to the snakes in early morning and late afternoon, and pad choice by the snake was 

always wind dependent. However, early morning pads next to night-time retreats 

were usually cooler than the mean basking-site temperatures and were used only 

briefly until such time as the animals had warmed sufficiently before moving to the 

more suitable sites (usually at Tb> 18.C). Snakes would often undergo this initial 

warming phase with part of their bodies still inside the night-time retreats. On cold 

days with a southerly wind and/or thick cloud all snakes would remain within one 

metre of night-time retreats for long periods, often for several hours. 

The Lake Crescent basking pads and those of most of the other snakes observed 

above 800m were found to be approximately located within one metre of the entrance 

to night-time retreats (94.1 %, n =17) and, unlike the basking pads most often used 

by the Egg Island animals, these were often the only pads the higher elevation snakes 

were observed to use. 

The Tb's and pad Tr's for eight-one hour basking periods are presented in Table 6.7. 

Simple correlations were performed on all fifteen minute mean Tr and Tb values 

which gave variances of: 0.606 (n-2=48) for the grouped data, and 0.672 (n-2=38) 

for the non-gravid female data; both of these show highly significant relationships 

(P<0.001) between pad T ;s and Tb's. The strength of this relationship is not 

surprising for an ectotherm in close contact with the ground surface. The closer 

relationship between Tr and Tb for non-gravid females is explained by the basking 

behaviour of the gravid female (during the ten weeks of observations) which moved 

onto early morning pads later than the non-gravid females and avoided the hotter bare 

earth surfaces, thus purposely slowing her rate of Tb increase by moving off pads 

while still several degrees below her mean eccritic temperature (Table 6.1, Fig.6.11). 

The method of measuring pad T r's would have resulted in unknown sampling errors, 

especially on grass pad surfaces, as these could not be measured directly without 

disturbing the animals. Tr of telemetered animal pads was inferred from mean surface 

temperature differences and through interpolating between pre-basking and post-basking 

values. The importance of surface temperatures to the thermal ecology of these 

animals warrants a more detailed measurement technique than was possible here. 

It was often possible to predict the movement or location of animals by surface 

temperature differences alone. For example, no snakes were ever found on T r' s 

greater than 35"C which meant that animals would not be found on solar exposed 

earthen surfaces for the larger part of sunny days as they spent most of such days on 

or under the cooler grasses or secreted in the marsh area. The exact location of 
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day-time retreats varied with wind direction. This situation was the reverse in early 

morning and late afternoon; however, on overcast days, animals genera!ly spent 

relatively longer periods on the warmest suitable surfaces available. Generally, animals 

were often easy to find until T ;s approximated their mean eccritic temperatures and 

thereafter finding them became progressively more difficult until searching for them 

became pointless (i.e. on Tr's >35°C). Nonetheless, each animal could be relied upon 

to reappear again onto afternoon pads as surface temperatures dropped below 3YC. 

Table 6.7 Emergence times, pad surface temperature (T,) and body temperature (Tb) 

relationships during one hour basking periods on two consecutive days for each animal 

DATE ANIMAL/SUB-SITE EMERGED TIME PAD T,(0 C) Tb(OC) 

10.01.92 A1/S1** 07:22 07:30 15.5 15.69 

08:30 19.5 20.337 

11.01.92 A1/S1** 06:45 07:00 13.5 15.56 

08:00 28.0 32.18 

29.01.92 A2/S2++ 07:33 07:45 14.1 14.01 

08:45 16.4 24.39 

30.01.92 A2/S2++ 07:42 07:45 17.3 13.87 

08:45 23.7 32.5 

14.02.92 B2/S2++ 09:30 09:30 12.5 13.86 

10:30 15.5 19.14 

15.02.92 B2/S2++ 08:50 09:00 13.5 16.62 

10:00 24.0 29.95 

28.02.92 *C1/S1** 08:30 08:30 24.1 13.93 

09:30 32.5 31.2 

29.02.92 *C1/S1 ** 08:17 08:30 17.0 15.32 

09:30 31.8 28.68 

*gravid female,++ grass pads,** earth and litter pads 

6.6.2 Inground temperature 

Fifteen minute mean inground temperatures (T 
8
's) are compared with Tb and air 

temperature (T.) profiles in Figures 6.18a-21a. Rank correlations were obtained for 

the grouped data which showed T 
8 

at five centimetre depth to have a strong relationship 

with Tb (r2 = 0.757, n = 788, P<O.OOl); however, T
8 

at two centimetres showed a 

stronger relationship (r =0.865) and T 
8 

at twenty centimetres showed no significant 

relationship (r = -0.28). The strength of the relationship between T /2cm) and Tb is 

readily understandable as this variable tracks ground surface temperature which strongly 

influences Tb during daylight hours (Section 6.6.1). The poor correlation between 

T/20cm) and Tb suggests the animals do not usually retreat to this depth in the soil. 
103 



(OC) 

Tb( 0 C} 

a. 11.01.92 

40 

35 

30 

25 

20 

15 

10 

5 --o--

0 
0 4 8 12 16 20 24 

Time (hours) 

b. 11.01.92 

40 
Thin= -0.15331 + 1.1146x = Tg (5cm), R"2 = 0.944 

35 1-------------------------------~~------VTm~ 

30 

25 0 

20 

15 

10 
10 15 20 25 30 35 40 

• Tb in 

0 Tb out 

Th(°C) 

Ta(0 C) 

Tg(°C) 2cm 

Tg(0 C) 5cm 

Tg(°C) 20cm 

Fig.6.18 11.01.92 a) Temperature regime over 24 hours. b) Climate space using Tg (Scm) 
over 24 hours 

104 



40 

35 

30 

25 

(oC) 20 

15 

10 

5 

0 
0 

40 

35 

30 

Tb(°C) 
25 

20 

15 

10 
10 

a. 30.01.92 

4 8 12 16 20 

Time (hours) 

b. 30.01.92 

Tb in= - 4.8747 + 1.3925x = Tg(5cm), R"2 = 0.997 

o #,_ Q)O Oo00 ~ 1-: I 
Cb 0 000' 

0 

0 

0 

15 20 25 30 35 

Tg(°C) Scm 

1111111111111111 

--o--

24 

Tb(OC) 

Ta(0 C) 

Tg(0 C)2cm 

Tg(0 C)5cm 

Tg(0 C) 20cm 

VTmax 

VTmin 

• Tb(0 C) in 

0 Tb(0 C) out 

40 

Fig.6.19 30.01.92 a) Temperature regime over 24 hours. b) Climate space using Tg (Scm) 
over 24 hours 

105 



(oC) 

Tb(°C) 

40 

35 

30 

25 

20 

15 

10 

5 

0 
0 4 

40 

a. 14.02.92 

-- "\...._ 
.................. .._..._'-· 

--o-

8 12 16 20 24 

Time (hours) 

b. 14.02.92 

Tb in= - 11.244 + 1.8240x = Tg(5cm), R112 = 0.972 

Tb(OC) 

Ta(0 C) 

Tg(0 C)2cm 

Tg(0 C)5cm 

Tg(0 C) 20cm 

35 r---------------------------------~-------VTmu 

30 

25 

20 

15 

10 
10 15 20 25 30 35 40 

• Tb(0 C) in 

0 Tb( 0 C) out 

Fig.6.20 14.02.92 a) Temperature regime over 24 hours. b) Climate space using Tg (Scm) 
over 24 hours 

106 



40 

35 

30 

25 

(oC) 20 

15 

10 

5 

0 
0 

40 

35 

30 

Tb( 0 C) 25 

20 

15 

10 
10 

a. 29.02.92 

4 8 12 16 20 

Time (hours) 

b. 29.02.29 

Thin= - 9.4617 + 1.6701x = Tg(5cm), R"2 = 0.972 

15 20 25 30 35 

24 

40 

--o-

• Tb in 

o Tb out 

Th(OC) 

Ta(0 C) 

Tg(0 C)2cm 

Tg(0 C) Scm 

Tg(0 C) 20cm 

Fig.6.21 29.02.92 a) Temperature regime over 24 hours. b) Climate space using Tg (Scm) 
over 24 hours 

107 



The strength of the relationship between T 
8
's (5cm) and Tb's varied with ground heat 

flux and air temperature and is shown for each of the corresponding twenty four hour 

periods in a modified climate space in Figures 6.18b-21b. The strength of the 

relationship for when the animals were in and out of night-time retreats was tested for 

eight days data using Pearson's r correlation coefficient (Table 6.8). 

Table 6.8 Correlations (r) of Th with T, (Scm) and T •• for when animals are in and 

out of night-time retreats 

DATE T
1
(5cm)in Ta<Scm)out T.in T.out 

11.01.92 0.891 *** 0.150 0.845*** 0.539** 

12.01.92 0.929*** 0.416*** 0.144 0.403*** 

29.01.92 0.391 *** 0.010 0.189 0.821 *** 

30.01.92 0.994*** 0.066 0.369** 0.261 

14.02.92 0.945*** 0.493*** 0.346* 0.531 *** 

15.02.92 n/a 0.179 n/a 0.432** 

28.02.92* 0.895*** 0.150 0.319** 0.092 

29.02.92* 0.945*** 0.326 0.931*** 0.326* 

significance level: * = P:::;;0.05, ** = P:::;;0.02, *** = P:::;;0.01 

The results show a highly significant relationship exists between Tb and T g(Scm) 

when animals are inside night-time retreats, however, animals are not always found at 

this depth throughout the night but at the time of emergence their Tb's often closely 

correlated with T
8 

(5cm) (Fig.6.18a-21a). 

Animals would occasionally chose to remain just inside burrow entrances, or near the 

surface and remain visible, on nights when their body temperatures (and thus their 

body heat stores) were greater than either the air or inground temperature (Fig.6.21a, 

6.22). Figure 6.21a shows a plotted Tb of an animal which remained just inside the 

burrow entrance until just prior to midnight after which she slowly descended. This 

is indicated by the modified climate space below (Fig.6.21b), where each point on the 

graph represents the 15 minute mean Tb and which shows this behaviour allows the 

animal to maintain her Tb within voluntary thermal limits for a relatively long period, 

and well above T 
8
(5cm). The point at which animals would descend into burrows 

appears to be related both to decreasing T, (e.g. Fig.6.18a, 16:30hrs, where the 

animal descends and then re-emerges with an increased air temperature at 17:00hrs) 

and the Tg's (Fig.21a); however, as Tb, T, and T 
8 

are all responding to incoming 

radiation (e.g. at approximately 14:00hrs in Fig.6.9) knowledge of this quantity 
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might in future allow prediction of the behaviour. This relationship could not be 

further tested here due to the low number of recordings. 

Fig.6.22 Cl in her burrow 

6.6.3 Air temperature 

Air temperatures for each Egg Island female are plotted with Tb and T 
8 

profiles in 

Figures 6 .18a-21 a, and rank correlations obtained for the grouped data show a significant 

relationship with Tb (r2=0.788, n=899, P=<0.001). The relationship between T.' s 

and Tb's are shown for each of the corresponding twenty four hour periods in 

Figures 6.23-24 and the strength of the relationship when the animals were in and out 

of night-time retreats is shown in Table 6.8. 

Emergence from night-time retreats was always associa~ed with increase in 'r. (Figures 
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6.18a-21a), however, the data in Table 6.8 show that air temperature can not always 

be closely associated with reptile Tb during active periods, especially on clear days, 

despite its wide acceptance among ecologists for this purpose. For example, animals 

will sometimes emerge at relatively low temperatures (e.g. 5.3"C at Lake St. Clair in 

October, 8.7°C at Egg Island, 11.0 1.92) and T. does not indicate potential Tb as 

demonstrated by modified climate space using Ta (Figures 6.23-24). This is because 

T. is just as much a dependent variable of the radiation regime as is Tb and will 

closely correlate with the latter for this reason. 
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Fig 6.23 Modified climate space showing the relationship between Tb and Ta, on earthen pads (a) 

and on grass pads (b) 
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Fig 6.24 Modified climate space showing the relationship between Tb and Ta, on earthen pads (a) 

and on grass pads (b) 

6.7 WIND SPEED AT SNAKE HEIGHT 

Figure 6.26 shows the absence of a relationship (r2=0.125, n=66) between the wind 

speed at screen height (1.6m) and at snake height (2cm). Wind speed at two centimetres 

above basking snakes was almost invariably found to be ~0.5ms·'. The data presented 

are from twelve days (three consecutive days from each field study) spanning the two 
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month summer period. On only two occasions were Tiger Snakes seen on basking 

pads in wind speeds of >0.5ms-1 and on both occasions the snakes were in the 

process of moving off the pads. While both the wind speed and direction at screen 

height are important in describing the nature of the broader local climate it is clear that 

the snakes are selecting basking pads which are below the local vegetation roughness 

length (height) and so may be considered to be within a small but discrete surface 

boundary layer. Thus the model assumption that the animals do not undergo forced 

convection on the pads is valid. Also, this suggests the screen air temperature may 

not always be a reliable predictor for Tb except when the local surface boundary layer 

is strongly coupled with the boundary layer above (i.e. at screen height, Table 6.8). 

Turbulence from above will occasionally penetrate through to snake height but the 

principal is clear: the snakes chose sites which minimise their exposure to forced 

convective conditions. 
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Fig. 6.25. Wind speed at snake height (2cm) and at screen height (1.6m). 

6.8 SUMMARY 

The non-gravid snakes for each elevation had similar eccritic mean temperatures and 

voluntary thermal limits. The mean at sea-level was higher than that at 830m. The 

maximum voluntary thermal limit was never observed for animals in the field. The 

gravid animals are a special case, having similar temperatures in spite of their different 

elevational origins. 
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Incoming radiation is a very strong predictor of snake Tb when the animal is out of 

the night-time retreat. Both K.j, and K,J, + L,J, are effective but K.l,+L,J,, i.e. combined 

global and thermal incoming radiation, is best for all conditions. 

Ground heat flux, <2s is always difficult to measure due to local surface heterogeneity 

and changing sky view effects. <2s was a reliable indicator for the time of snake entry 

to night-time retreats from earthen basking pads but less so from tussock basking 

pads. If the animals are actively selecting basking sites to maximise their thermal 

opportunities then at different times they will select different pads. <2s therefore will 

be an unreliable predictor of Tb if the animals are not using earthen basking pads. ~ 

was never a good predictor of time of emergence. 

Cloud cover is a persistent but variable feature and affects the snake Tb' s. In part, 

using KJ,+L,J, as predictors of Tb avoids the variation of Tb associated with cloud 

cover. 

The sea-level animals are active in the rain, while those at the Lake Crescent were not. 

Precipitation events are associated with reduced Ta, K.j, and L.j, and so the animals at 

sea-level were basking between showers in an attempt to reach eccritic temperature. 

Those at Lake Crescent probably were experiencing very low radiation levels during 

rain and would thus not even attempt to bask. 

The snakes select basking pads which are in general the warmest surfaces available 

early in the morning and late in the afternoon, dependent upon wind direction and 

speed. They do use pads which are sub-optimal but these are located close to the 

mouths of the night-time retreats and are used only briefly before moving to more 

suitable pads. Also it was clear that the animals select to avoid their voluntary thermal 

maximum and so could not be found on basking pads when Tr;::: 35°C, although as 

the pads cooled during the afternoon the animals would re-emerge onto the basking 

pads as T ,53 5° C. 

The in ground temperature at 5cm was a good predictor of Tb when the animals were 

in the night-time retreat. T
8 

at 20cm was very poor and since T
8 

at 2cm varied closely 

with Ta it was not a good predictor of snake Tb when the animal was in the burrow. 

The animals descend into the burrows when the Ta and T
8 

are both falling and usually 

when T.<T
8
(5cm). 

Emergence from night-time retreats was always associated with increasing Ta, but this 

varied so widely that a clear relationship for either time of emergence or body temperature 
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could not be derived. 

The data for wind speed at snake height and screen height validated the assumption 

that the animals were not experiencing forced convection and suggested that they 

were indeed choosing sites to maximise thermal opportunity. Also the wind data 

suggests the reason for the poor performance ofT. in predicting Tb. 

Other measured variables, e.g .. RH and wind direction , were not found to be related 

toTb. 
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7 MODEL PERFORMANCE AND.CONCLUSIONS 

7.1 INTRODUCTION 

In Chapter 1 the question was posed: is it possible to model Tiger Snake activity 

based solely on microclimatic parameters and energy budget analysis in Tasmania, 

and if so are these models adequate for predicting Tiger Snake behaviour? 

This chapter outlines those microclimatic conditions which are associated with retreat

sites and basking-site selection, and the behavioural thermoregulatory response of 

Tiger Snakes to micrometeorological variation. In the following, Section 7 .2. Empirical 

Relationships deals with those variables and quantities associated with emergence, 

those which determine the time required for daily warming, those which allow animals 

to freely move about the home-range, and those which trigger re-entry. Section 7.3 

Biophysical Relationships discusses the analysis of the snake's energy budget and 

presents the results of the integrated parameter model. Section 7.4 Integration combines 

the results into a form which predicts snake thermoregulatory behaviour for three 

different weather conditions. Section 7.5 concludes the thesis with suggestions for 

future research. 

7.2 EMPIRICAL RELATIONSHIPS 

From the results in Chapter six it was attempted to derive simple empirical relations 

for each of the micrometeorological variables and Tiger Snake Tb. The following 

observations pertain only to non-gravid females. 

7 .2.1 Predicting emergence 

From the study, Ts<Scm) was a good predictor ofTb when animals were in night-time 

retreats. T
8
(2cm) varied closely with T. and snake Tb was only rarely correlated with 

Ti20cm). On every occasion recorded emergence followed an increase in T g(Scm) 

and, due to the delayed increase in T s<Scm) relative toT. and T 
8
(2cm), the time of 

emergence was more closely associated with this variable than with any of the other 

variables measured (Figures 6.18a-21a). Q
8 

was discarded in favour ofT
8 

because it 

is a difficult flux to measure or estimate for any point. 
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From the above, emergence occurs when TsC5cm) as began its daily increase although 

the temperature at which this will always occur remains unknown. 

7 .2.2 Predicting Tb by Incident Radiation 

Incoming radiation is a very strong predictor of snake Tb when the animal is out of 

the night-time retreat. Of the incoming radiation variables, KJ. and LJ.. were found to 

have highly significant relationships with Tb (Section 6.4). Overall KJ..+LJ.. was 

found to be a stronger predictor of Tb than KJ. on its own. However, cloud effects 

and ground characteristics determine which form of radiation (total incoming or global) 

will be the stronger predictor. KJ. is a stronger predictor on its own on vegetation 

and as this is a more likely scenario for Tiger Snake basking pads in Tasmania it was 

selected as the radiation index of Tb. However, the index is weakened in cloudy 

conditions and is unreliable on rainy days. Empirical values for KJ.. and Tb as 

determined by the study are given below. The value KJ. is used in the absence of LJ. 

as its measurement only requires one instrument (a pyranometer) and because of the 

infrequent availability and use of pyrgeometers. Further, availability of satellite data 

for KJ. makes its use more practical for regional comparisons. 

From the above, the plotted values for KJ.. show an approximate relationship between 

the quantity ofK-l-(Wm-2
) and Tb: 

if 300 < KJ. < 400wm·2 then Tb = 25-3o·c 

and 

if 400 < KJ. < 500Wm·2 then Tb = 30-35"C 

It follows that as VT is always less than 35·c the snakes will be at eccritic temperatures 

at or a short time following KJ. ~ 400Wm ·2• As KJ. is dependent on time of day and 

day of year and then is further moderated by cloud amount, snake Tb is dependent 

upon cloud cover during summer when KJ. can be ~400Wm -2 for most of the day. 

However, this relationship does not pertain to the gravid female who was observed 

on several occasions to purposely slow her rate of Tb increase as it approached 30T 

by moving off into shade. 

7.2.3 Predicting surface movement by Tr 

Tiger snakes select basking pads which are in general the warmest surfaces available 

early in the morning and late in the afternoon, dependent upon wind direction and 

116 



speed. When active through the day, these animals avoid their VT maximum, so they 

will not be found on Tr ~35°C and will instead be located on sites with Tr :535°C 

(usually in the shade of a rock, log or low vegetation at 30-33.C). Thus snake 

activity will be increased on days that allow them to reach and maintain their eccritic 

Tb's and where the Tr's of their environments remain relatively cool. Such days in 

Tasmania in summer are usually overcast and often with high-level cloud. 

7.2.4 Predicting entry into night-time retreats by Qg 

From Chapter six, Qg was not found to be a good predictor of time of emergence in 

any situation, however, Qg is a reliable indicator of entry into night-time retreats in 

open habitats. The relationship for snakes entering burrows is however only pertinent 

to burrows located on earthen/ground litter sites relatively free of vegetation. It is not 

a reliable predictor of entry for snakes living in tussock grassland situations (Section 

6.4, Table 6.4) as a consequence of increased surface heterogeneity and changing sky 

view effects. 

Based on these fmdings, Tiger Snakes enter night-time retreats when Qg is approximately 

equal to or less than zero, but this is only relevant in the absence of rain. 

7.2.5 Predicting location by wind 

The data for wind speed at snake height and screen height validated the assumption 

that snakes do not experience forced convection while basking and suggests that they 

choose sites to maximise thermal opportunity. This thermoregulatory behaviour 

allows limited predictability of the choice of basking-site as animals will attempt to 

minimise exposure to wind during the warming phase. 

Based on the above observations, Tiger Snakes will be located on the lee-side of 

convective shields in positions which allow them maximum solar opportunity. 

From the above discussions it is plain that different aspects of Tiger Snake activity 

can be reasonably predicted from microclimatic conditions. The gravid animals are a 

special case and warrant further investigation. 

7.3 BIOPHYSICAL RELATIONSHIPS 

From the results in Chapter six, and based on the observations outlined above, the 
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following model assumptions are considered to have been validated. 

7.3.1 Validation 

Female Tiger Snakes maximise their thermal opportunities during daily warm-up 

phase by orienting their bodies and displaying thermoregulatory behaviour which 

maximises thermal uptake. Therefore, the model assumptions that Tiger Snakes will 

orient their bodies at an angle normal to the sun's rays, and flatten bodies in order to 

maximise thermal uptake, are considered valid. The model assumption that Tiger 

Snakes adopt an open posture during initial warm-phase was confirmed through 

observation and is also considered valid. 

Tiger Snakes minimise their exposure to wind by taking advantage of available 

convective shields, therefore, the model assumption that Tiger Snakes are experiencing 

only free convective heat exchange is valid. 

Their Tb's approximate inground temperatures at five centimetre depth at the time of 

emergence from night-time retreats and so the model assumption that Tiger Snake Tb 

equals TsC5cm) is also valid. 

Grouped Data 
35 

30 

25 

Tb(°C) 
20 

15 1!1 Basking Model 

+ Non-basking Model 
10 

10 ~ 20 25 30 35 
Modelled Tb(0 C) 

Fig.7.1 Grouped data sets showing the slight advantage of the non-basking sub-model over 
the basking sub-model in the models ability to predict Tb. 

7 .3.2 Model performance 

As described in Chapter three, the model is radiation driven. The model's predictive 

ability was tested against measured rates of Tb increase, using Pearson's r correlation 
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coefficient, in basking and non-basking postures. Data sets selected for this purpose 

included complete ten-one hour basking periods beginning on the next quarter of the 

hour immediately following the emergence from night-time retreats. Tests were 

conducted on grouped and ungrouped data, which included: clear sky (c$10%) against 

cloudy skies (c>lO%), and non-gravid females against the gravid female (Table 7.1). 

Table 7.1 Correlation matrix for Egg Island measured Tb's and modelled Tb's in 

basking and non-basking postures 

TEST GROUP EQUATION (TB=) ? r n-2 p 

GROUPED 2.05270+0.91571 (BASKING), 0.705, 0.840, 48, P<0.001 
DATA 1.43+0.94273(NON-BASKING), 0.718, 0.847, 48, P<0.001 

NON-GRAVID -2.133+ 1.1768(BASKING), 0.721, 0.849, 38, P<0.001 
FEMALES -2.6691 + 1.1953(NON-BASKING), 0.733, 0.856, 38, P<0.001 

GRAVID -2.099+0.98802(BASKING), 0.837, 0.915, 8, P<0.001 
FEMALE -2.0002+0.99125(NON-BASKING), 0.836, 0.914, 8, P<0.001 

CLEAR SKIES 0.58574+0.93093(BASKING), 0.777, 0.882, 13, P<0.001 
(CLOUD$;10%) 0.60065+0.93709(NON-BASKING), 0. 777, 0.882, 13, P<0.001 

CLOUDY SKIES -1.6997+ 1.1517(BASKING) 0.648, 0.805, 33, P<0.001 
(CLOUD>10%) -2.0856+ 1.1596(NON-BASKING) 0.664, 0.815, 33, P<0.001 

The results (Figures 7.1-3) are all highly significant (P<0.001) and show that a 

minimum of 65% and a maximum of 84% of the variance can be explained by the 

model. Both the basking and non-basking sub-models show no or very little difference 

in their ability to predict Tb under cloudless conditions, or for the gravid female. The 

non-basking model shows a slight advantage over the basking model for the grouped, 

non-gravid and cloudy sky data. 

Based on the superior performance of the non-basking sub-model, an attempt was 

made to improve the value of r for the grouped and cloudy sky data by varying the 

assumed values for snake albedo and overall thermal conductance by five percent 

each. Results presented in Table 7.2 show a decreased variance from 0.733 to 0.716 

for both when albedos where increased and decreased. This had a maximum effect 

on modelled Tb of±0.02"C. These data suggest 0.132<as<0.146 and support the 

assumed snake albedo value of 0.139. 
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Fig. 7.2 Modelled Tb against measured Tb for (a) non-gravid and (b) gravid females 

Table 7.2 Correlation matrix for modelled non-gravid female Tb's in non-basking 

posture, where the assumed values for snake albedo were varied plus and minus five 

percent 

EQUATION (TB model=) 

-2.6080+1.2000(albedo = 0.132) 
-2.6691+1.1953(albedo = 0.139) 
-2.6114+1.2008(albedo = 0.146) 

0.716, 
0.733, 
0.716, 

r 

0.846 
0.856, 
0.846, 

n-2 

38, 
38, 
38, 

p 

P<O.OOl 
P<O.OOl 
P<O.OOl 

The models performance was not altered by changing the overall thermal conductance. 

The model's inability to distinguish between postures, or the slight bias towards the 
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non-basking postures, and the high level of significance, are indicative of the model's 

dependence on the radiational environment rather than on physiological or behavioural 

adjustment. Varying the assumed snake albedo and body tissue thermal conductance 

had little or no effect, which further suggests the models independence of any biological 

response. 

0.) Cloudy Skies 
I ; \ 

1!1 Basking Model 

+ Non-basking Model 

10 15 ~ 25 30 35 

Modelled Tb(°C) 

b) Clear Skies 

1!1 Basking Model 

+ Non-basking Model 

10 15 ~ 25 30 35 

Modelled Tb(0 C) 

Fig.7.3 Modelled Tb against measured Tb for (a) cloudy skies and (b) clear skies 

The results showed that the animals are capable of achieving higher Tb's than the 

physical model was able to predict, the exception being the non-gravid female which 

was over-predicted due to her habit of leaving basking-pads before reaching the 

laboratory determined mean eccritic temperature. This is taken to be a strong indication 

of the non-gravid animal's ability to maximise thermal uptake even when in low-energy 

environments. Tiger Snakes are therefore highly efficient absorbers of all forms of 

radiation. This suggests an inadequacy in the model in that it is not accounting for 

physiological or behavioural adjustment by the animal. A full integrated parameter 

model would take account of these factors and thus could be expected to give a more 
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accurate interpretation of Tb increase by the animal. Clearly the modyl is not complete 

and more work is required in these areas. 

The model treats the snake as an environmental thermometer and, while both this 

method and physical models neglect any physiological response, the integrated parameter 

method used may have an advantage in that it is the animal which is determining its 

position within the environment. However, due to the absence of mechanical models 

for comparison this is only inference. 

The value of the model lies in the assumption that it is representative of the true 

radiation budget of the animal. However, the values for snake surface albedo and 

emissivity, body tissue heat capacity and conductance, are assumed. Variability in 

solar load may to a large extent be discounted as a source of error, as the data selected 

to run the model was only taken from animals which had uninterrupted solar exposure 

for a full hour. Further, any random errors due to pad surface temperature variability, 

and associated errors in heat conduction between the ground and the snake, and 

convective heat flux, are not known. The models predictive ability may in future be 

further increased if these factors can determined and more appropriate values included 

in calculation. 

7.4 INTEGRATION 

The following is a descriptive account of the behaviour of lowland Tiger Snakes in 

Tasmania in summer. It concerns the daily routines of females and how the routines 

is modified by weather conditions. For the sake of illustration a general case is 

presented for snakes living on both earthen and grass basking-pads. Most animals 

observed used three morning pads regularly, sometimes with a fourth and fifth pad 

used only intermittently depending on conditions. 

The time of emergence depends on the weather conditions: if clear the animal will 

usually emerge early (often within two and a half hours after sun rise) depending on 

the burrows location in relation to the sun; if cloudy it may be up to one hour later 

again (most often within half an hour of clear sky emergence); if raining the time of 

emergence, if at all, will usually be late (sometimes several hours after clear sky 

emergence). The presence of a cold wind may delay emergence still further or 

prevent the animals from emerging at all. 

Basking-pads used by Tiger Snakes in the late afternoon are usually different from 
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the morning sites and are located where the snakes can take advantage of the last of 

the suns rays. In the following, the clear sky scenario is discussed in detail in order 

to illustrate full use of an animal's habitat on Egg Island. Cloudy skies and rainy 

days illustrate the moderating effects of adverse conditions on the animal's use of its 

microhabitat. 

It is important to realise that most basking-pads do not represent a single set of 

conditions; the pad often includes several microclimates and a number of these may 

be used at the same time by the snake. 

7.4.1 Clear sky conditions 

Generally, the behaviour of Tiger Snakes is more predictable on clear summer days 

than at other times due to the intensity of incident radiation. At Egg Island animals 

often emerge early and move to basking-sites while air temperatures are still far cooler 

than inground or body temperatures. The following is an hypothetical case but is 

describing real values. 

The empirical model predicts that on clear sky days Tiger Snakes will emerge from 

night-time retreats when Tg (5cm) begins to increase (Figures 6.18a-21a). The animal 

may only spend a few minutes warming at the burrow entrance before moving to the 

first pad usually located within one metre of the burrow entrance. This pad is often 

not the warmest surface available but it is always sheltered on most sides from the 

wind. The length of time spent at the first pad will depend on the intensity of the 

radiation and on wind speed and direction. If it is a bright still day the animal may 

move immediately to a more exposed third and well used basking-site (foregoing 

stopping at a second) with an open sky view and East or Northeast aspect. However, 

if wind is significant (i.e .. turbulent), the animal will usually stop to bask at the 

second pad and the wind will determine the position and posture the animal assumes 

on the pad. The third pad is usually the one most often used as the snake often 

reaches it sometime before reaching eccritic temperature; animals were most frequently 

recorded to move between the second and third pad at Tb:?:23·c. The distance 

travelled to this pad is often between 3-6m (or more) from the burrow entrance. On 

bright mornings the snake may reach this pad within five, but usually ten to twenty, 

minutes after leaving the burrow. 

The integrated parameter model predicts that the animal will be at mean eccritic 

temperature within one hour of leaving the first pad (refer to Table 6.4: 11.02.92, 

30.01.92 for measured temperatures of clear day animals on earthen and Poa grass 
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pads respectively). Ground surface temperatures will increase rapidly, depending on 

the surface material, and during January and February may be in excess of 60"C on 

earthen pads during the latter half of the morning, and in excess of 30"C on the 
' 

grasses. The empirical model, based on VT's, predicts that the snake will avoid 

earthen of ground litter pads at such times and will be located on or under the grasses 

depending upon the activity it is engaged in and on its thermal status. At midday the 

animal may also need to avoid the solar exposed grass surfaces and snakes will be 

generally difficult to locate at such times. This situation will continue until the late 

afternoon as the snakes, which may have been hunting under the grasses or in the 

marsh during the mid-morning, often appear asleep and are sequestered underneath 

the overhanging vegetation of their day-time retreats. The cool of the late afternoon 

brings them out again as surface temperatures drop to <35"C and they may actively 

seek elevated Northwest or Western aspects in the absence of wind in order to catch 

the last few hours of sun. Female Tiger Snakes often bask together at this time (as do 

other elapids, Shine, 1991) as several converge from the surrounding area to warmer 

sites. 

According to the empirical model entry into night-time retreats will occur as the angle 

of the sun drops to a point where Qg approaches zero or becomes negative. The 

point of entry being determined by wind gusts or cloud over the sun, if this should 

occur, or until shade covers the ground surface as the snakes will attempt to take 

advantage of any radiation available to them during this time of the day. The snake 

will have left the communal basking-site by this time and taken up position on the last 

of the days pads which is usually located within half a metre of the night-time retreat 

and is slightly elevated; but the use of this last pad is often only for a relatively short 

period (if used at all) before it enters for the night and this will depend on its rate of 

heat-loss. 

The depth snakes descend into retreats may depend on the temperature differences 

between the snake and its environment and if the snakes are much warmer than the 

ground or air temperatures they may delay descent well into the night, until they have 

cooled sufficiently to avoid sharp increases in body heat loss. 

7.4.2 Cloudy sky conditions 

Possibly due to the unpredictability of short-term variation in radiation intensity on 

cloudy days the snakes can be at their most unpredictable at these times. 

Cloudy mornings necessitate long basking periods, as animals must wait for sufficient 
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radiative energy to raise their Tb's. If accompanied by a cool southerly air flow (a 

common case in Tasmania) this often means that snakes will remain on the basking-pads 

nearest their burrows (often within one metre) for many hours. However, cloud on 

still days often results in Tiger Snakes venturing to more distant pads. As the 

intensity of radiation increases later in the morning, a break in cloud cover can result 

in rapid increase in Tb (0.5"C or more) and result in snakes leaving their pads; 

however, long overcast periods will see them return and they may need to shuttle on 

and off pads all day. A blanket of high-level cloud on relatively warm days with low 

wind speed can result in high levels of diffuse radiation and give adult snakes the 

opportunity to roam extensively and spend long periods hunting. 

The presence of cloud does not prevent Tg (5cm) from increasing and the snake 

usually emerges a little later then on clear days. The integrated parameter model most 

often under-predicts the animal's Tb but the correlation shows the animal's inability 

to reach eccritic temperature for several hours. The length of time required will vary 

depending on cloud height and form. Cumulus cloud being the most unpredictable in 

this regard can allow the animal the energy it requires in just a few minutes. However, 

the high energy burst may not be detected by the model, which is using the fifteen 

minute mean values of the instruments. Animals usually do not enter night-time 

retreats early on cloudy days unless the cloud is dense and accompanied by cold air. 

Entry depends on the cloud type and amount as frequent cloud breaks will encourage 

the animal to bask. On entry Qg will not always be negative at such times. 

Cloudy skies are common and persistent in the region (Nunez, 1988), and as such 

they must be considered when attempting to model Tiger Snake activity. Cloud 

occurred on most days during the study as is evident as spikes in the radiant energy 

and Tb graphs in Figures 6.4a-11a. It is clear that cloud cover directly effects the 

quantity and quality of incoming radiation and therefore influences snake 

thermoregulatory behaviour (Table 6.5). Cloud cover was concluded by Dredge 

(1981) at Lake Crescent to have no effect on Tiger Snake activity. This finding is 

clearly unsatisfactory for the lowland snakes where the effects of cloud cover were 

real but cloud was not a good indicator of snake activity on its own. Therefore, it 

must be concluded from the limited evidence available that Tiger Snakes at higher 

elevation may be responding to cloud differently and will require further investigation. 

7 .4.3 Rain days 

Rain days usually resulted in d~reased numbers of snakes active on the surface, 

however, Tiger Snakes are active in the rain. Animals often emerge between showers 
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late in the morning especially if the air temperature is relatively warm. Their activity 

above ground is limited often to the immediate vicinity of the burrow and their activity 

periods are comparatively short (Fig.6.8). 

Even on rain days with little radiant energy, T s (5cm) is increasing at the time when 

the snake emerges. The integrated parameter model both under and over-predicts the 

animal's Tb due to the animal seeking shelter between showers, however, the correlation 

is within three degrees centigrade and the model shows the animals inability to 

increase its temperature over its environment, predicting a low Tb. Animals often 

enter night-time retreats in the mid-afternoon on persistently wet days, especially with 

wind, and not all recordings sho~ed Qs to be negative at these times. 
j 
I 

7.4 SUMMARY AND CONCLUSIONS 

The study has demonstrated that differences in eccritic body temperatures and voluntary 

thermal limits occur in Tiger Snakes from different elevations in Tasmania. This may 

explain the observed differences in seasonal activity between the two elevationally 

isolated populations. Differences in eccritic body temperature are not seen in the 

gravid females however, which suggests these females require similar physiologically 

optimal temperatures. 

This study has shown that female Tiger Snakes optimise their thermal opportunity at 

sea-level in Tasmania. This is evident by: minimised exposure wind at snake height, 

by maximised exposure to incoming radiation at every opportunity during warm-up 

phase (even to the extent of basking on wet ground between showers), by basking on 

the warmest ground surfaces available during warm-up phase (morning and afternoon), 

by maximising body-heat retention through selecting situations which minimise 

temperature differences with environments (even if this requires them to remain exposed 

to the ground surface at night). 

Elevational differences in thermal ecologies have been indicated which include: lower 

mean eccritic body temperatures and voluntary thermal limits at higher elevation in 

summer (which may favour maximal seasonal activity in the cooler spring and autumn 

months and which might explain observed differences in activity patterns); Tiger 

Snakes at high elevation travel less distance to reach suitable basking sites than 

snakes at sea-level (possibly as a consequence of a cooler, less predictable and 

seasonally extreme environment). 
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The study has indicated that females are more closely associated with particular 
I 

home-ranges than are males on E~g Island; the largest females observed always held 

the thermally optimal sites. Gravid female Tiger Snakes thermoregulate more carefully 

than non-gravid females (indicat~ by slightly higher mean eccritic temperatures and 

by leaving basking-pads early on warm days). 

The snakes select basking pads which are in general the warmest surfaces available 

early in the morning and late in the afternoon, which is dependent upon wind direction 

and velocity. They do use pads which are sub-optimal but these are located close to 

the mouths of the night-time retreats and are used only briefly before moving to more 

suitable pads. Animals selected sites to avoid their voluntary thermal maximum and 

so could not be found on basking pads when T,;;::: 35°C, although as the pads cooled 

during the afternoon the animals would re-emerge onto the basking pads as T ;=;35°C. 

7.4.1 The models 

This study has suggested that it is possible to model Tiger Snake activity based on 

microclimatic parameters and energy budget analysis in Tasmania. 

The study found several microclimatic indices of snake Tb which have been used to 

develop an empirical model of Tiger Snake activity. Tg(5cm) was been detennined to 

be a good predictor of Tb when animals are in the soil and especially just prior to 

emergence of animals from night-time retreats. Incoming radiation was found to be a 

strong predictor of Tb when animals were above ground, with both K J.. + LJ, and K J.. 

alone found to be effect. KJ, + LJ.. was the best predictor but due to difficulty of 

measurement K J, was used in preference. ii will determine the site chosen by the 

snake for basking and will always be ~0.5m-1 at the pad. Snakes at sea-level avoid T, 

;:::35°C during the day and will only move onto a surface as T ;=;35°C. Qg is a reliable 

indicator for the time of snake entry to night-time retreats from earthen basking pads 

and less so for grass basking pads 

The above indices are further modified by cloud cover which is a common occurence 

in Tasmania and affects snake Tb's. In part, using K.l..+LJ, as predictors of Tb may 

avoid the variation in Tb associated with cloud cover; however, KJ.. is easier to 

measure and has a slight advantage over KJ.. + Lj, on vegetative pads. 

The empirical model to predict Tiger Snake activity patterns with a reasonable degree 

of accuracy if allowing for individual choice by the animal and sexual and asexual 
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differences in behaviour. 

The integrated parameter model used the assumptions validated above for Tg (5cm)=Tb 

at emergence and ii =~0.5ms·1 above the pads. Other assumptions which were 

validated in the study where an open basking posture and the body held normal to the 

sun's rays. 

The model was tested for: grouped, gravid female/non-gravid female and clear 

skies/cloudy skies. All results were found to be highly significant (P<O.OOl) and 

showed a minimum of 65% and a maximum of 84% of variance can be explained by 

the model. Both the basking and non-basking sub-models showed none or very little 

difference in their ability to predict Tb under cloudless conditions, or for the gravid 

female. The non-basking model shows a slight advantage over the basking model for 

the grouped, non-gravid and cloudy sky data. Varying the snake albedo and tissue 

thermal conductivity had no or very little effect on its predictability. This, the high 

level of significance and the models inability to distinguish between postures are 

taken to be indicative of the models dependence on the radiational environment. The 

model has shown the snakes to be highly efficient absorbers of the radiational 

environment which are not limited in a low energy conditions. However, the model 

is not complete and will require further development to take account of its neglect of 

physiobehavioural response. 

7.4.2 Suggestions for future research 

It must be concluded that the models used here, in their present form, are not entirely 

adequate for predicting Tiger Snake behaviours. But they do make a reasonable and 

workable attempt to predict the daily activities for adults. However, observations 

have shown that juveniles may occasionally have increased activity when activity in 

adults is reduced; e.g. an occasion following several days of rain when numerous 

small Tiger Snakes appeared after several weeks absence when most adults were 

inside out of the cold. The results here pertain only to the size class studied and 

future models may address this age/size dependant behaviour. 

The importance ofT r to the snakes behaviour requires a more detailed appraisal as 

this variable was predicting the potential Tb and location of the snake, and is an 

important source of thermal energy available to a thigmothermic species like the Tiger 

Snake. This study could not measure this variable in more detail than it did, however, 

if it were attempted again far more effort would be directed towards obtaining continuous 

surface temperatures in all parts of the habitat. 
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This study was coarse in its attempts to relate wind velocity and air temperature taken 

at screen height to conditions at the animal surface, i.e. measurements inside the 

surface boundary layer are far more appropriate to the animal. Detailed measurements 

at several levels would be required to investigate and describe the degree of coupling 

between the surface boundary layer and screen height. 

The responses of the gravid females should be investigated with regard to hormonal 

controls of behaviour. Further, if this were done in combination with knowledge of 

the thermal requirements of gravid animals, it might be possible to use an integrated 

parameter model with behavioural responses to assess the reproductive status of 

females. 

The use of more complex body shapes and volumes in such models should be 

attempted although the current model will probably not be significantly improved as 

seen in the results obtained above for the two simple shapes. 

Finally, this modelling offers the potential to truly predict the distribution of Tiger 

snake populations in detail. Other distribution models can not approach the resolution 

offered by this method although the inputs for this model are so specific and are not 

routinely collected there is a long way to go before this becomes a reality. Initially the 

process requires a more intensive survey of the elevational differences in Tiger Snakes 

and of the two other snake species in Tasmania. Secondly, the major input variables 

need to be modelled accurately on a State-wide basis. Then the distributions of the 

different species of snakes in Tasmania may be amenable to detailed prediction. 
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Acclimation 

Acclimatisation 

Activity range 

Aestivation 

GLOSSARY 

short-term habituation of an organism to a different 
temperature which alters its thermal tolerance, induced 
by laboratory exposure to appropriate thermal 
conditions which mimic acclimatisation 

seasonal physiological change to the organisms 
thermal tolerance 

that temperature range in which normal activities can be 
undertaken; e.g. feeding, courting, mating etc. 

(L. aestas, summer) a period of inactivity in summer 
associated with a state of decreased body temperature 
and metabolic rate; it is distinct from hibernation in that 
it occurs in hot seasons of the year 

Ambient temperature the average temperature of the medium, outside of the 
boundary layer, in the immediate vicinity of the animal 

Aves (L. avis, bird) a class of vertebrates 

Blackbody a surface or an object that absorbs completely any 
radiation incident upon it and has perfect emittance 

Cold hardiness physiological mechanisms allowing for survival of the 
animal at subfreezing temperatures 

Conspecific belonging to the same species 

Core temperature "The mean temperature of the tissues at a depth below 
that which is affected directly by a change in the 
temperature gradient through the peripheral tissues" 
(Bligh and Johnson, 1973), reserved to define 
endotherm body temperature (see deep body 
temperature) 

Critical thermal Cfmin and Cfmax, critical body temperatures beyond 
which limits animals will eventually die, they are the 
points at which normal physiological functions will 
cease, are associated with cell necrosis and usually 
determined by the loss of righting response in an 
ectotherm 

Deep body temperature 
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Eccritic temperatwe 

Ectotherm 

Elapidae 

Endotherm 

Eurytherm 

Gravid 

Greybody 

Heliothermy 

Herpetofauna 

Heterotherm 

Hibernation 

temperature at a point deeper into the body than the 
cloaca and including the thoracic and visceral organs, 
reserved to define ectotherm body temperature (see core 
temperature) 

selected body temperature 

an animal which is dependent on an external source of 
therinal energy and termed cold-blooded; however, the 
organism may be effectively warm-blooded through 
behavioural thermoregulation 

Elapids, fix-fanged venomous terrestrial snakes with 
principly neurotoxic venom and belonging to the cobra 
family. All of the Australian vonomous land snakes are 
considered to belong to this group 

(Cowles, 1940) deriving heat energy from metabolism 
and termed homoiothermic or warm-blooded 

(Gk. eurys, wide) organisms adapted to a wide 
variation of body temperature, or ectotherm occurring 
in a habitat with a wide range of ambient temperature 

female with eggs or pregnant 

an entity which neither has perfect absorption or 
reflection of electromagnetic radiation with a radiant 
emittance a fraction of blackbody radiant emittance (R ) 
given by: 

R = ecr [Ts + 273.16t 
where: E is the emissivity of the surface, cr is a 
proportionality constant (Stephan-Bolztmann's 
'constant) = 5.673 * lO.s W m_2 .K4

; Ts is the 

temperature of the surface in degrees Centigrade; R is in 
watts per square meter 

thermoregulation by exposure to sunlight, a basking 
animal 

reptiles and amphibians 

(Gk. heteros, different) thermoregulating endotherm in 
which daily or seasonal body temperature varies more 
than ±2.K. 

(L. hibernus, wintry) a period of inactivity associated 
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Home-range 

Homoiotherm 

Home-site 

Phylum 

Poikilotherm 

with low ambient temperature and restricted food 
supply, and a state of decreased body temperature and 
metabolic rate; it is distinct from torpor in that it is 
relatively long-term 

foraging area; alt. territory 

(Gr. homoios , similar) endotherm, having 
physiological mechanisms which function to maintain a 
relatively constant body temperature (±2.K) 
independent of ambient temperature; alt homeotherm, 
homoeotherm, homotherm 

area containing all retreat-sites and basking-sites of an 
individual reptile 

(Gk. phylon, race or tribe), a primary division of 
animals thought to be related; e.g. Chordata, sub
phylum Vertabrata 

(Gk. poikilos, changeable) an animal with no 
physiological means of thermoregulation, may be 
termed a thermoconformer 

Selected preferred temperature range 

Stenotherm 

range of body temperatures maintained by an ectotherm 
in a laboratory controlled temperature gradient where 
conditions exist that affords an animal the opportunity 
to select a body temperature above or below its activity 
temperature range 

(Gk. stenos, narrow) an organism adapted to a narrow 
temperature range 

Stephan-Bolztmann's law 

Thermoconformer 

states that the intensity of radiant emittance (R) from a 
surface is proportional to the forth power of the 
absolute temperature of the surface; in the form: 

R = cr [Ts + 273.16t 
where: cr is a proportionality constant (Stephan
Bolztmann's constant) = 5.673 * lO.s W m·2 ·K4

, Ts is 
the temperature of the surface in degrees Centigrade; R 

is in watts per square meter 

an animal which makes no attempt to thermoregulate 
and the body temperature is allowed to vary with that of 
ambient temperature 

132 



Thermoregulator 

Thigmothermy 

Torpor 

an animal which maintains a body temperature within a 
specified and usually narrow range through behavioural 
or physiological means 

thermoregulation through conductance 

a period of inactivity, triggered by low ambient 
temperature and restricted food supply, associated with 
a state of decreased body temperature and metabolic 
rate; it is distinct from hibernation in thq.t it is relatively 
short-term 

Voluntary thermal limits 

Venebrata 

environmental temperatures at which the animal will 
cease normal activities and seek an environmental heat 

source 01 min) or shelter (V max) 

vertebrates (L. venebra, vertebra), those animals with a 
series of vertebra running dorsally from the head to, 
and including, the tail 
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APPENDIX 1 

THE QUESTIONNAIRE USED TO SURVEY POTENTIAL STUDY -SITES, 
RELATIVE POPULATION DENSITIES AND BEHAVIOURAL TRENDS IN 
TASMANIAN SNAKES 

1. Have you seen snakes at more than one location? Yes I No 

Please list the locations (be as specific as possible) 

a .. __________________________ _ 
b. __________________ _ 
c .. __________________________ _ 

2. How many snakes were seen? 

a. one I more than one 
b. one I more than one 
c. one I more than one 

3. What type of snake, or snakes, were seen at the above locations(if the 
species is unknown please give the dominant colour, size and pattern) 

a. __________________________ _ 
b. __________________________ _ 
c. __________________________ _ 

4. Give the approximate date of each sighting 

a. __________________________ _ 
b. __________________________ _ 
c. __________________________ _ 

5. Give the approximate time of day for each sighting 

a. __________________________ _ 
b. _____________ _ 
c .. __________________________ _ 

6. Please indicate if the snake I snakes were basking when sighted 

a. YES I NO I NOT SURE 
b. YES I NO I NOT SURE 
c. YES I NO I NOT SURE 

Comments 

Your name and phone number 
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APPENDIX 2 

A DESCRIPTION OF TIIE CIRCUIT USED TO DEVELOP TIIE DIGITAL 
INTERVAL COUNTER 

The audio output of the receiver was fed into an absolute value rectifier circuit to 

produce a single pulse which has the same duration and amplitude as the audio signal. 

This pulse is squared in a schmitt trigger and divided by two in a counter. The output 

of the counter is a pulse which goes high at the commencement of a signal and low at 

the commencement of the next one. Thus its width is proportional to temperature. 

This is used to gate a crystal controlled oscillator into a sixteen bit counter/latch.·· 

When the pulse goes low and the counter stops counting the sixteen bits are transferred 

to a V ART in two eight bit bytes where they are converted to a serial data stream and 

fed to the computer. This occurs at 1200 Baud with no parity, one stop bit and eight 

data bits. 

The two bytes are then recombined using the computer. The most significant byte is 

multiplied by 256 and added to the least significant to produce the same number 

stored in the sixteen bit counter. This number is inversely proportional to temperature 

as the audio pulse repetition rate increases as the temperature increases producing less 

time between signals and therefore are a smaller number. The crystal derived frequency 

of 1920Hz is used as an input to the counter as this is used for the Baud rate 

generator and was a convienient frequency in the circuit. 
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APPENDIX 3 

BASIC PC PROGRAMME TO PROCESS BODY TEMPERATURE 

This programme inputs data from the serial port and saves it to file: 

100 REM 

110 OPEN "COM1:1200, N, 8" AS #1 

120 A$=INPUT$(1,#1) 

130 B$=INPUT$(1,#1) 

140 A=ASC(A$) 

150 B=ASC(B$) 

160 A=A*256 

170 C=A+B 

180 PRINT C 

190 GOTO 120 
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APPENDIX 4 

BASIC PROGRAMME TO COMPUTE A DIFFUSE RADIATION CORRECTION 
FACTOR FOR A SHADING-RING, USING THE METHOD OF IQBAL, 1983. 

10 READ DAY 'DAY OF YEAR 

12 Pl=3.14159 

13 DAYA=2*PI*(DAY-1)/365 

14 DEC=-(0.0069J8-0.399912*COS(DAYA)+0.070257*SIN(DAYA)-

0.006758*COS(2*DA Y A)+0.000907*SIN(2*DA Y A)-

0.002697*COS(3*DA Y A)+0.00148*SIN(3*DAY A)) 

15 READ W,R 

16 REM WIDTH,W AND RADIUS,R OF SHADING RING 

17 READLAT 

18 LAT=LAT*PI/180 'LAT OF SITE RADS 

20 SAZ=-(SIN(DEC)/COS(LAT)) 

21 AZ=ATN (SAZ/(SQR(-SAZ*SAZ+1)))+PI/2 

22 REM AZIMUTH OF SUN AT SUNRISE 

25 PROD=(AZ)*SIN(LA T)*SIN(DEC)+COS(LA T)*COS(DEC)*SIN(AZ) 

26 X=(2*W)/(PI*R)*PROD*(COS(DEC)*COS(DEC)*COS(DEC)) 

27 K=1/(l-X) 

28 REM GEOMETRIC CORRECTION FACTOR K 

30 REM EDIT VARIABLES HERE 

31 DATA 9 

32 REMDAY 

33 DATA 80,400 

34 REM W,R 

35 DATA 43.0833 

36 REMLAT 

37 PRINT "GEOMETRIC CORRECTION K" 

38 PRINT USING"££.££££££";K 

40 PRINT "FOR CORRECTION FACTOR ADD" 

41 PRINT" +0.07 FOR CLOUDLESS SKIES" 

42 PRINT" +0.04 FOR PARTLY CLOUDY SKIES" 

43 PRINT " +0.03 FOR OVERCAST SKIES" 

44 PRINT" DAY" 

45 PRINT USING"£££";DA Y 

145 



APPENDIX 5 

INTEGRATED PARAMETER MODEL PROGRAMME TO CALCULATE 
SNAKE BODY TEMPERATURE (IN BASIC) 

1 KK=O:SIGMA=5.673*10A-8 

2 LAT=-43.0833:LONG=147.0167:K=.502 

3 P1=3.14159:AS=.139 

5 DIM TIME (lOO),D(lOO),L(lOO),TG(100),TR(lOO),TA(100) 

7 DIM DIR(100),P1(100),P2(100),P3(100),P4(100) 

10 INPUT "Enter snake number -e.g.,2-5)";SN 

12 PRINT:PRINT:PRINT 

15 INPUT "Enter snake's posture; 1=basking, 2=non-basking";SP 

20 IF SN=2 THEN GOSUB 1000 

31 IF SN=3 THEN GOSUB 2000 

32 IF SN=4 THEN GOSUB 3000 

33 IF SN=5 THEN GOSUB 4000 

35 PRINT:PRINT:PRINT 

37 INPUT "Enter day of year";DAY 

40 PRINT:PRINT:PRINT 

45 INPUT "Name of data file";F$ 

47 PRINT:PRINT:PRINT 

48 INPUT "What is value of ground albedo, e.g. 0.13?";AG: PRINT:PRINT:PRINT 

49 INPUT "Name of output file";G$ 

50 OPEN "a:"+F$ FOR INPUT AS #1 

51 OPEN "a:"+F$ FOR INPUT AS #2 

53 PRINT #2, DAY,SN,SP 

55 FOR Q=1 TO 200 

57 INPUT #1,TIME(Q),KC(Q),L(Q),TG(Q),TR(Q),TA(Q) 

58 KK=KK+1 

59 IF EOF (1) THEN 70 

60 NEXTQ 

70 LONGA =LONG * Pl/180 

80 THETA=2!*PI*(DAY-1)/365! 

90 DEC=-( .006918- .399912 * COS(THETA) + .070257 * SIN(THETA)- .006758 

*COS(2! *THETA) +.000907 *SIN (2! * THETA)-.002697 * COS(3! *THETA) +.00148 * 
SIN(3! *THETA) 
100 EQ =((7.500001E-05+ .001868 * COS(THETA)- .032077 *SIN(THETA)- .014617* 
COS(2! *THETA)- .040849 * SIN(2! * THETA))*229.18) /60 
105 FOR T= 1 TO KK 
110 TST=(4 /60)*(150-LONG)+(EQ)+ TIME (JJ) 
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115 H=I5! * (I2!-TST) * PI /180! 
I20 CZ =SIN (LATA) *SIN(DEC))+COS (LATA)* COS (DEC)* COS(H) 
130 Z = ATN(CZ ISQR (-CZ * CZ +I!))+ (PI 12) 
I40 CAZ =(CZ * SIN(LATA)- SIN(DEC)) I (SIN(Z) * COS(LATA)) 
I50 AZ = ATN (CAZ/SQR (-CAZ * CAZ + 1!)) +(PI 12) 
190 DIR(T) = (KC (T)- D(T)) ICZ 
210 Rl =PI I 4! 
220 R2 = (718) * 2! *PI 
230 R3 = PI 14! 
240 R4 = (718) * 2! *PI 
250 REM azimuth angles calculated 
260 Pl (T) =SIN (Z) *COS (AZ) *COS (RI) 
270 P2 (T) = SIN (Z) * COS (AZ) * COS (R2) 
280 P3 (T) = SIN (Z) * COS (AZ) * COS (R3) 
290 P4 (T) = SIN (Z) * COS (AZ) * COS (R4) 
295 NEXTT 
300 REM the heat budget equation is now solved for the sum of the 4 pieces 
400 FOR JJ = 1 TO (KK -I ) 
402 IF JJ = I THEN TB = TG (1) 
404 TS = TB 
460 TTA = (TA (JJ + I)- (TA (JJ))) /90 
462 TTG = (TG (JJ +I)- TG (JJ)) /90 
464 TDIR = (DIR (JJ + I) - DIR (JJ)) 190 
465 TPI = (Pl (JJ + I) -PI (JJ)) 190 
466 TKC = (KC (JJ +I) - KC (JJ)) 190 
468 TD = (D (JJ + I)- D (JJ)) 190 
470 TL = (L (JJ + I)- L (JJ)) /90 
472 TTR = (TR (JJ + I)- TR (JJ)) 190 
473 TTIME = 1013600 
474 D = D (JJ) : L = L (JJ) : TR =TR (JJ) : TIME= TIME (JJ) : PI =PI (JJ) 
475 TA = TA (JJ): TG = TG (JJ): DIR = DIR (JJ): KC = KC (JJ) 
476 GOSUB 4000: PRINT"********************************" 
4 77 FOR Z = 1 TO 89 
478 TA=TA+TTA 
480 TG = TG + TTG 
482 TR = TR + TTR 
483 TIME = TIME + TTIME 
484 L=L + TL 
486 D = D + TD 
488 KC = KC + TKC 
490 DIR = DIR + TDIR 
495 PI =PI +TPI 
500 GOSUB 4000 
510 NEXTZ 
520 NEXT JJ 
540 GOSUB 6000 
1000 L1 = .1105 
I010 L2 = .2635 
1015 MS = 345 
1020 L3 = .2125 
1030 TV= .0014 
1040 TD = .0089 
1050 IF SP = I THEN AI = .0042 ELSE AI = .0028 
I060 IF SP = I THEN A2 = .0112 ELSE A2 = .0079 
1070IF SP = I THEN A3 = .0112 ELSE A3 = .0079 
1080 IF SP = I THEN A4 = .0063 ELSE A4 = .0045 
1090 IF SP = I THEN VI = .0005 ELSE VI = .OOI2 
!100 IF SP = 1 THEN V2 = .0068 ELSE V2 = .0098 
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1110 IF SP = 1 THEN V3 = .0068 ELSE V3 = .0098 
1120 IF SP = 1 THEN V4 = .0018 ELSE V4 = .0027 
1125 IF SP = 1 THEN SA = .0976 ELSE A2 = .0932 
1130RETURN 
2000 L1 = .10595 
2005 MS = 318 
2010 L2 = .25265 
2020 L3 = .20375 
2030 TV= .0014 
2040 TD = .0086 
2050 IF SP = 1 THEN A1 = .0039 ELSE A1 = .0026 
2060 IF SP = 1 THEN A2 = .0103 ELSE A2 = .0072 
2070 IF SP = 1 THEN A3 = .0103 ELSE A3 = .0072 
2080 IF SP = 1 THEN A4 = .0058 ELSE A4 = .0042 
2090 IF SP = 1 THEN V1 = .0004 ELSE V1 = .0011 
2100 IF SP = 1 THEN V2 = .0062 ELSE V2 = .00899 
2110 IF SP = 1 THEN V3 = .0062 ELSE A1 = .00899 
2120 IF SP = 1 THEN V4 = .0017 ELSE V4 = .0025 
2125 IF SP = 1 THEN SA= 8.959999E-02 ELSE SA= 8.560001E-02 
2130RETURN 
3000 L1 = .10452 
3005 MS = 302 
3010 L2 = .24924 
3020 L3 = .20 I 
3030 TV= .OOI4 
3040 
TD = 8.500001E-03 
3050 IF SP = I THEN AI = .0038 ELSE AI = .0025 
3060 IF SP =I THEN A2 = .OI ELSE A2 = .007 
3070 IF SP = 1 THEN A3 = .OI ELSE A3 = .007 
3080 IF SP = 1 THEN A4 = .0056 ELSE A4 = .004 
3090 IF SP = I THEN VI = .0004 ELSE VI = .0011 
3100 IF SP = 1 THEN V2 = .006 ELSE V2 = .0088 
3110 IF SP = I THEN V3 = .006 ELSE V3 = .0088 
3120 IF SP = 1 THEN V4 = .0016 ELSE V4 = .0024 
3125 IF SP = 1 THEN SA= .0868 ELSE SA= .0832 
3130 RETURN 
4000 IF TS < TA THEN TS = TA + .OI 
4006 GI = 9.8IOOOI * L1 * (1(}1\4) * (fS- TA) I ((273.I6 + TA) * 2.28) 
4007 G2 = 9.81000I * L2 * (1(}A4) * (TS- TA) I ((273.16 + TA) * 2.28) 
4008 G3 = 9.810001 * L3 * (IQA4) * (fS - TA) I ((273.16 + TA) * 2.28) 
4010 N1 = .5 * (Gl".25) 
4012 N2 = .5 * (G2".25) 
4014 N3 = .5 * (G3".25) 
4016 Q1 = Nl * .026 * (TS- TA) ILl 
4017 Q2 = N2 * .026 * (TS- TA) /L2 
4018 Q3 = N3 * .026 * (TS- TA) !L3 
4020 HV = (.5 *D)+ (.5 * KC) * AG + (.5 * L) + .5 * (SIGMA* (TR +273.16) "4) -(SIGMA* 
(fS + 273.16) "4) 
4030 HA = DIR * P1 + L + D - DIR *PI *AS - D * AS -SIGMA * (TS + 273.16) "4 
4040 S 1 = HV * (2 * V1) + HA * AI - QI * (AI + 2 * VI) 
4042 S2 = HV * (2 * V2) + HA * A2 - Q2 * (A2 + 2 * V2) 
4046 S3 = HV * (2 * V3) + HA * A3 - Q2 * (A3 + 2 * V3) 
4048 S4 = HV * (2 * V4) + HA * A2- Q3 * (A4 + 2 * V4) 
4049 S5 = (.502 I TV) * (TR - TB) * (AI + A2 + A3 +A4) 
4051 ST = Sl + S2 + S3 + S4 + S5 
4055 TB = TB + (10 * ST) I (MS * 3.435) 
4060TS = TB 
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4070 PRINT USING"###.##"; TIME, TB, TS, TR, TG, TA, ST 
4075 PRINT #2, TIME, TB, TR, TG, T A, KC, DIR, D, L, ST 
4100RETURN 
5000 L1 = .11375 
5005 MS = 375 
5010 L2 = .27125 
5020 L3 = .21875 
5030 TV = .0015 
5040 TD = .0092 
5050 IF SP = I THEN AI = .0045 ELSE AI = .003 
5060 IF SP = I THEN A2 = .OII9 ELSE A2 = .0083 
5070 IF SP = I THEN A3 = .0119 ELSE A3 = .0083 
5080 IF SP = I THEN A4 = .0067 ELSE A4 = .0048 
5090 IF SP = I THEN VI = .005 ELSE VI = .0013 
5100 IF SP = I THEN V2 = .0072 ELSE V2 = .OI04 
5I10 IF SP = I THEN V3 = .0072 ELSE V3 = .OI04 
5I20 IF SP = 1 THEN V4 = .OOI9 ELSE V4 = .0029 
5125 IF SP = 1 THEN SA= .1126 ELSE SA= 9.880001E-02 
5130RETURN 
6000 CLOSE#I 
6010 CLOSE#2 
6030 INPUT "Do you want to read another file?";A$ 
6040 IF A$= "n" OR A$= "N" THEN GOTO 6050 
6045 ERASE TIME, KC, D, L, TG, TR, TA 
6047 ERASE DIR, PI, P2, P3, P4 
6049 GOTO I 
6050END 
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