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ABSTRACT

An extensive study of the Leitz Hektor or type
121 triplet lens has revealed fairly simple relationships
between the aberrations and the design parameters at large
apertures, These relationships, although more complicated
than the direct well known relationships for small apertures
of triplet systems, nevertheless, are simple enough to
allow the designer to systema{ically correct the zonal
spherical between £/3.5 and £/2,5 in both the monochromatic
aﬁd chromatic stages of design, The design principles

developed for the type 121 triplet have been applied

successfully to the type 122 triplet: they have been found

by i1nterpolative rather than extrapolative design techniques,

Interpolative design is a feature of this work,

Initially the 3rd, 5th and 7th order Buchdahl
aberration coefficients of the '"3rd order type 121 triplets"
have been mapped with respect to all the monochromatic
design parametérs. This '"limited interpolative study'" has
revealed that most of these coefficients approach zero in

a small region, In particular, in this "optimum region"

the first three orders of spherical aberration are near

zero or pass through zero, This property gnables the

"optimum region' to be located accurately and rapidly with

a comparatively small amount of calculation,



The spherical aberration (to 7th order) of some
systems in the "optimum region'" is predicted to be zero at
two zones (the 0,707 and the marginal zone); This two-zone
éorrection, however, fails to hold at apertures between
£/3.5 and f/2.5 due to the presence of 9th order and highef
order spherical aberration, However, it has been found

that these outer zones of the monochromatic system are

controlled by the Petzval sum and the spherical aberration

residual; thus allowing two zone correction for an aperture
of»f/2.5 in the presence of higher order aberrations,

When correcting the chromatic aberrations of the
type 121 a similar situation has been found with the large
apertures (> £/3.5). The longitudinal chromatic aberrat=-
ion residual, in particular, is linked to the Petzval sum's
influence on the spherical aberration of the zones beyond
£f/3.5 and, the transverse chromatic aberration residual
has a smaller but still significant effect also, Thus it

has been found that adjustment of the chromatic aberration

leads to a system with a smaller Petzval sum,

On the basis of this property, it was predicted
that the 3rd, 5th and 7th order spherical coefficients
must converge to a minimum with a small Petzval sum when
the chromatic aberration is optimized for all zones,

This has been confirmed by repeating the maps of the 3rd,

5th and 7th order spherical aberration coefficients with
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respect to the monochromatic and chromatic design parameters,
The aberration coefficients are found to converge to an

optimum set in a single region of the entire design space,

This model of the system!s behaviour explains many published

properties of triplets,

It has also been predicted from the study of the
spherical aberration that the 9th and higher orders of

spherical aberration must converge to a minimum in step

with the 3rd, 5th and 7th orders, This has been confirmed

by mapping the 9th and 11th order Buchdahl spherical aberrat;

ion coefficients with respect to the design parameters,

Thus in the "optimum regionﬁ the 3rd, 5th, 7th, 9th and 11th
order spherical aberration coefficients are near to, or pass
through, zero,

The type 121 with optimum zonal spherical aberrate
ion for £/2.5 has been developed and compared with published
Pentac £/2,5 designs,

Finally the principles developed for correcting
the zonal aberrations beyond f£/3.5 have been applied to the
systematic development of the type 122 triplet, This haé

resulted in the easy location of two zone correction,



INTRODUCTION

The original aim of this work was to investigate
the potential of the Hektor or the type 121 triplet with a
view to producing a four-component~system with good zonal
correction for an aperture of f/2.5 whilst, at the same
time, achieving a moderate semi-field of at least 10°,

It was hoped that it would be possible to develop the design

systematically from a given set of glasses with the aid of
the existing analysis and techniques of workers such as

(2.1) (4.3) (5.1) .14

Cruickshank s R.E. Hopkins , Kingslake
others, However, a preliminary study of this triplet which
is described in Section 1, showed that the effectiveness of
existing systematic optical design techniques ceases at £/3,5,
This is so bec;use beyond this point designers seem to rely
largely on experience or some automatic correction process
that uses a merit function or the like in order to improve
a triplet design, Consequently, in the course of this work
the aim has become essentially the more general one of
finding how to design systematically beyond an aperture of
£/3.54

The work is divided into three sections:
(1) In Section 1., the theory is discussed, the programmes

described and a preliminary study is made of some type 121

triplets which are generated from a given set of glasses.,



A discussion of this work leads to the development of an
interpolative method of design for triplets,

(2) In Section 2, a practical method of interpolative
design is created and applied to the optimization of a
"monochromatic type 121 triplet', In parﬁicular, the
design principles are discovered for controlling the
aberrations of monochromatic triplets with apertures
beyond £/3.5.

(3) In Section 3, the technique is discavered for the
"interpolative design' of the''chromatic system' and the:
control of its aberrations at apeértures beyond £/3,5,
Then the optimum ''chromatic type' 121 is developed for
£f/2.5 and compared with other f/2.5 systems, Finally
in Section 3, the type 122 triplet is developed using
the design principles which were discovered for the type
121,

From another point of view this thesis may be
considered to be divided into two main parts only, Sectionl
and the sections follo&ing it, because these divisions
deal with the design process in two essentially different

ways: "interpolative and extrapolative'', Section 1 deals

"with the principle of-”extrapoiation” whereas Sections 2
and 3 deal with the principle of interpolation,
The familiar extrapolative method of design

used in Section 1 begins a design from a promising set of



thin-lens parameters and then the design is developed by
. searching around this starting point, On the other hand

the interpolative method does not start with a promising

region but begins by making a complete map of the optical
system?s potential with respect to its design parameters,
Although this appears to be a férmidable task
when carried to the limit, it is shown in Section 2, that
it can be approximated sufficiently by using the Buchdahl
aberration coefficients, This approach allows a

"limited=interpolative technique'! which yields good results

in the design of a system such as the type 121,



HISTORICAL REVIEW

Early Work,

In 1893 H. Dennis Taylor(22°1) patented a
photographic objective with a flat field that was sube
stantially free from astigmatism; besides being recti=~
linear and achromatic, This anastigmat was achieved
with three simple lenses (the minimum number of lenses
possible) two outer positive lenses and an inner negative
lens which were separated in air, The system in general
has since become known as'the Cooke Triplet Objective or
the Taylor Triplet,

Later Taylor (1904}22'2) described the design
and construction of the "Franklin-Adams astrographic triplet;
a Cooke photographic leﬁs modified for ''celestial purposes',
In particular in this paper he outlined his reasons for
creating a triplet: showing how by varying the distribut=-
ion of power between a pair of separated positive lenses
he could balance the spherical aberration of any 'desired
negative lens', Thus he was led to the triplet arrangement,

The elegance and power of his invention is evident
from the way he develops it to an advanced initial design by
" simple reasoning, He shows for example that the power of
the back lens should be stronger than the front in order to

*
reduce zonal aberration, He sees that a high refractive

* practical designs have the power of the back lens 13 times
the power of the front lens,



index for the inner lens will produce low Petzval,

Also he finds that if the front air space is smaller than
" the back one then coma, transverse colour and distortion
are improVed.

(22,3) .
concerning

The final paper of Taylorts
;riplets was published in 1923.f This papef was in&ited
so that Taylor couid"expreéé his views on optical design
in a bélated attemﬁg,to mége up for his absence from a
conference heldﬁgwé Yeargibefore at Cambridge, to discuss
"The Fﬁture of Geometrical-OpfiEs”. Consequehtly his -
remarks are closely linked to the material presented at
Cambridge, Ihdééd, looking back on this meeting of 45
years ago, one gains consideréble insight into the develop~
ment of triplets and the opticai.desfgn process since that -
time, Thus We digress for.a moment to consider some
aspects of tﬁis occasion,

After the 1914-18 war a considerable controversy
arose concerning the most effective method of lens design:
whether it should be by analytical algebraic methods
(British) or by precision ray-tracing (German), This had
been induced largely by Taylor's claimé that he designed
lenses without ray-tracing using instead only analytical
solutions and workshop models, Indeed his outstanding

success with triplets had influenced men such as Professor

Filon and Professor Cheshire to seek the interest of



Cambridge mathematicians in developing higher order aberrat-
ion theory with the aim of getting accurate analytical
solutions without using time consuming precision ray=tracess.
Their endeavours culminated in this Cgmbridge conference(23)
in 1921,

At the conference two fypeé,of people were
present: the optical analyst like Commander T.Y. Baker and
practical designers like A.‘Warmisham.and Conrad Beck,

Baker opened the conference by putting the case
for development of algebraic aberrafion theory, AHe.said_
that if a ray i€ incident on a system with coordinatesix.
and/@ then its transverse aberration may be written in a
power series of the form

PP! = A<><'5 + B°<73+ C°<{31+ DP3 + 5th degree térmé
+ 7th degree terms + .;...;...

where.the coefficients are functions of the systems constructw
ion parametefs. L He said the cubic terms are what the
optician callé the "first order“xaberrations.

| He pointed out that in certain senses it may be
éaiaiéhat algebraic formulae ére available, by means of
which; first order aberrations can be written down for a

system of lenses and to a certain extent optical designers

make use of such formulae, He continued saying "But an

# The terms first order, second order and third order are
used indiscriminately throughout the literature to denote
the lowest order of aberration,
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instrument cannot be wholly designed by an elimination of
first order coefficients because the '"higher order"
coefficients cannot be neglected, He said that the
expressions for higher order aberrations lead to hope-
less difficulties adding that even the second order
expressions are far more complicated than the first,

Thus in order to overcome the.oufstanding difficulte
ies of.analyticél design Baker proposed the puréuit of new
approximate forms of the aberration function instead of
. finding general-coefficients in the higher order terms of
the aberration power series, The forms he hoped for were
expected to allow the calculation of the most correct form
of a lens, Also he wanted the parameters to be such that
those of one system could be compounded with another,

These new forms were to be‘simpler than the few known 5th
order expressions and were to converge more rapidly,
Indeed complexity of existing expressions and their slow
convergence'were the main worries of the analyst of that
time.,

Conrad Beck in reply to Professor Cheshire's

questibn, (What are the methods adopted in optidal factories
for designing optical instruments?) pointed out that success~
ful designing on paper depended on the invention that lay
behind it, Furthermore he said '"No one can make a new
instrument by computation, There are no mathematical

formulae capable of solution that will give the data for
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an optical system of 20 to 60 variables, Computing is
no more than a clumsy trial and error method of testing
the design and improving it by nri&l,ﬁ: In his conclud-
ing remarks Beck says ﬁA'mathematical formula may be .of

no practical use for direct application but may be of the

utmost value in revealing tendencies, and pointing out

unproductive directions of research!

Warmi sham however outlined his "practice in
designing photographic lenses'', This we find to be
essentially the optical design process used by designers.
to this day especially with regard to a triplet, It is
evident that he finds analytically an, initial arrangement
of powers, and separations with prescribed primary sPherical;
‘Petzval sum, transverse and longitudinal chromatic_abérrat—
ion and focalvlength._ The remaining degrees of freedom
represented by the shapes he uses to eontfolgthe'iﬂ,f Sl
first order coma, astigmatism and aistortion analytically,
This. thin system is fhickened_and the first order aberrat=
ions of the thick system computed,

At this stage the system is modified to reduce

the "first! order aberrations to ''likely" amounts usually

by changing the shapesj This is done with finite difference

equations connecting the aberrations with the change in

shapes Thus he obtains a triplet system of known focal

length that has known amounts of the seven primary aberrate

10NS,
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+ Finally he submits the system to trigonometrical

computation and determines the aberrations accurately,

Then he says: "If the likely amounts of first order

aberrations left in the system were well chosen, they are

more or less accuratély balanced over the required aperture
and field by higher order aberrations.,. It is ‘generally

sound to assume that the usually small outstanding aberrate

ions -revealed by trigonometrical work can be eliminated by

altering the first order terms an equal amount, the higher

order aberrations remaining substantially unchanged, It

may, however, be necessary to go further back and make

radical alterations in powers and separations if large

higher order aberrations are revealed,

I believe most designers of photographic lenses
economise in trigonometrical work where possible, For all
ordinary work fhe calculation of coma is confined to three
skeleton rays in the meridian plane, If this gives a good
result, other things being good, it is time to make a model
rather than compute a pencil of skew rays,

)(22.3)

Taylor (1923 s outlined again the development

of his triplet objective, He described how initially he
tried to correct the curvature of field and linear astigmatism
of a positive lens, by means of a negative lens of the same
glass and power, using the separation to give sufficient
positive power, ‘HoweVer he found rectilinear images could”

only be formed by splitting the positive lens and placing



3

the negative component between them,
At this point Taylor has only referred to his

3rd order analysis in very broad terms, however, it seems

that his initial design method is the same as that of say
Warmisham, It apbears-that Taylor obtained an initial

thin lens arrangement of powers and sgparations by solving
five equations for an assumed set of»four 3rd order
residuals for spherical, Petzval sum; longitudinal chromatic
and transverse chromatic aberrations and a fifth condition
for the total power, He says nothing about solving for

the shapes and thickening of the thin system but we assume

he must have done this, Instead of assessing his rough

analytical design with ray-traces Taylor constructed the

design and measured its aberrations, On the basis of this

assessment he chose new 3rd order residuals for the thin
lens analysis and repeated the whole design process if

necessary, Thus Taylor used a method in which he mapped

design parameters against the actual optical;performance.

This method worked for Taylor because, he had the skili
and experience for assessing actual aberrations of a
finished system and correlating them with the "initial
design'e Thus in view of this gift of Taylor®s his choice
of title ”Optécal Designing as an Art'". is appropriate,

It éfpears in the 1920's that the geometrical

design process had gone as far as it could with existing
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knowledge and computing facilities, Indeed the designers
of that time expected that the main hoepe for improved design
techniques lay in the development of aberration_ theory
rather than comput;ng equipment,

Modern Work,

After Taylor (1923) the triplet design process

seems to have remained dormant until R.E.‘Stephens (1948Y(1)

examined the design process of triplet anastigmats of the
Taylor Type. He developed the thin lens analysis of friplets
on a more systematic basis than before, taking into account
both near and infinitely distant object planes, discrete
values of dispersion and triplets with cemented components,
His work enables the designer tolgeﬁerate a thin
lens system from a given set of thin lens parameters which
consists of the total power A, the Petzval sum P, the
longitudinal chromatic aberration.ASé, the transverse chromatic
aberration AM/M and the height h3 which is.the intersection
height at lens 3,
He then describes how this solution is thickened
and assessed on the basis of 3rd order aberration theory
(Seidel sums), .After>assessment he assumes that the Seidel
sums may be réduced to desired values by computing the
system again with a new set of values of .P,AS;,AM/M, S~1,
S-.11, S-111, S-V which differ from the original values by

negative changes expected on the introduction of thickness,



In the final adjustment he says that the 3rd
order thick system is examined trigonometrically and
using these residuals a different set of P,AS;, AM/M,
S-1, S-11, S-lli, and S~V are chosen for the calculation
of the final system, Several trials may be required at
this stage., However if the final system is not satisféctory

then he says '"start again with a new glass selection}

Although Stephens suggests that his methods.
"should facilitate the production of good designs without
~extensive experience on the part of the designef"; he gives
little guidance with regard to starting a design and finish-
ing it. Basically his design process is that of designers
from the time of Warmisham at least,

)(3°2)pointed out that no one had

Lessing (1958
shown how to select the glass for a triplet, Designers
like Stephens for example made their glass selection on the
basis of a sequence of trials or frqm published designs,

. Thus he finds that although much has been written about the
preliminary calculation of triplets in most cases the
glasses are assumed selected,

Q2

Lessing (1958) sets out to overcome this by
assuming two conditions in addition to the usual five
conditions of the preliminary design stage, The condit-

ions he uses are two properties concerning the distribution

of power in a triplet which were mentioned by Taylor:
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(1) that the power of the back lens is one and a half

‘times the first lens, (2) that fhe powers of the lenses
are small, In other words Lessing's method reduces to
finding the glass combinations,tﬁat give thin lens arrange-
ments which satisfy additional power conditions that are
supposed to ensure small zonal spherical aberration and
Petzval sum, In the final paper of this work Lessgié?i959)
also discusses the selection of glass that will give a thin
lens solution with specified longitudinal chromatic aberrat-
ion and diaphragm position,

Cruickshank (1956, 58, 60) (2+122+2,2.3)

emphasized
that all triplets with cemented components can be generated
from the simple Cooke-triplet or as he called it a type 111
triplet (see Figure 1.,1.1),  Thus in view of the fundamental
importance of the_simpléltriplet he has examined its propert-
ies in a systematic wayi

He proposed that the Friplet could be better
thought of as a positive lens wiih a corrector system in

front of it, especially, as the power contributed by the

front two lenses is zero in many triplets. Thus he replaced

the parameter h, of Stephens'-analysis by the new thin lens

EafameterQC , the power of the correctore. This gives a
very simple set of five equations for the initial arrange-
ment, With this modification the designer can generate
a triplet from a given set of parameters_(§,70, P, L, T)

where.



= total power,
Petzval sum,

= longitudinal chromatic aberration,

H ©C 9 -0
n

= transverse chromatic aberration,.

Cruickshank(z'l)

showed, firstly, that most
triplets occur in the range -2<A< 0.4 and, secondly,
that the primary spherical aberration of a triplet is

approximated by a quadratic function of X thus:

. | ,
QH = ag + aﬂ& + ak

where (] is the 3rd order Buchdahl spherical coefficient
of the Seidel form, Consequently he showed that if the
parameters P, L; T and the glasses are correctly selected
then there are two solutions, Also he pointed oﬁt that
most published triplets appeared to be developed from the
smaller negative value of;b’, whereas, the larger negative
value had more potential, However, apart from examining

the properties of the thin lens sodution, Cruickshank (1958)

also applied the 5th order Buchdahl coefficiehts to the

correction of the final thick system, Thus after 30 years

fhé wishes of Commander Baker were partly‘satisfied by the
publication of Buchdahl's aberrafion coeffiéients (1954)
and their use by Cruickshank in obtaining "a good balance
between the primary and higher order aberrations,'

| Cruickshank (1960)(2°2) discussed in detail the

general principles of generation of triplets with cemented

7
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components, This he illustrated with an example of a
Pentac (212) objective which he developed from a.'""typical
set of aberration residuals” (X, P, L, T) and fictitious
glasses, The final ad justment of the system was made
with 5th order aberration coefficients, He shows a plot

of the 5th order coefficients of the Pentac versus ¥ which

indicates the optimum’} very clearly. This example

illustrates the use of fictitious glasses in finding the

initial solution of a triplet system with cemented components

and also the use of the Buchdahl coefficients as a measure

of the correction state of the design, It shows clearly

the benefit of being able to see the trend of the design

with 5th order coefficients,

Cruickshank and Hills (1960) (2+%)

followed up
Cruickshank's earlier application of 5th order Buchdahl
aberration coefficients to triplets with a discussion' of
their use in "Optical Design', In particular they showed
the total aberration of the point image may be analysed

into symmetrical and asymmetrical types which may be broken
down into surface congfibutions; a property belonging to

the Buchdahl coefficients, They illustrated their discuss-
ion with thé final stages of design of a telephoto system,

)

R.E. Hdpkiqg (1962)(4‘3 recognised that the out-

standing problem with triplet design is not how to develop

a solution from a given set of parameters but how to select
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the best lens from an infinite number of 3rd order solutions.

In view of this he made a systematic study of a regipn of
triplet solutions., He corrected the solutions to the same
3rd order values and then analysed them by calculating the
5th order Buchdahl aberration coefficients.

Thus he has obtained 5ome very interesting maps
of functions of 5th order coefficients versus various thin
lens parameters., In particular he introduces a parameter
'AV.as a measure of the glass variations and he finds that
the 5th order coefficients tend to become smailer near

25, Thus he has examined nine degrees of freedom

AV

whereas other workers have only examined the eight

geometrical degrees«of freedom,

This work of Hopkins seems to be the first serious

attempt to map thoroughly the trends in design potential

with Buchdahl coefficients and a computer,




SECTION 1,

A PRELIMINARY STUDY
©F

THE TYPE 121 TRIPLET,
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CHAPTER 1,1 THEORY OF THE BASIC TRIPLET OUTLINED,

1,1,1 The Basic-=Triplet and the Basic-Parameters &;y;;
: 1

P, L, T,

(2.1) that any system of the

It has been shown
triplet type has an EQUIVALENT TRIPLET.or as we shall
call it a BASIC TRIPLET (see top diagram of figure 1,1.,2),
Thus in this work all the triplets with cemented components
in place of simple components are treated-as being generat-.
ed from the basic triplet,

It is defined to be a system of positive power
consisting of three thin lenses in air‘separated by real
spaces and whose powers are afranged in a characteristic
pattern of (+ = +), The components are of glasses (Na, Va),
(Nb, Vb), (Nc, Vc), their powers are denoted by ¢a’ ¢b’ ¢c
.and the front air space by ta and the back by tb. The
apertdre stop coincides with the middle lens b,

| The '"basic triplet' satisfies five paraxial
conditions; two of them are power conditions the other three
are aberration conditions, It is defined to have the
following for an object plane ai infinity: a total power %ﬁ
a Petzval sum R,, regidualslongitudinal chromatic aberrat-
ion R6’ residual transverse chromatic aberraﬁioth7 and its
two leading components with an effective power X . These
conditions are represented analytically by the thin lens

(l)ll

equations in which three of the ''construction parameters



=2/

(ﬁa, ﬁb’ @C) are obtained as implicit functions of

(1), {2.1)

""performance parameters (é,ﬂ?, R4, R6’ R7) as follows:

- C
1/yoazjza ﬁjyoj = % _ 1.1
e
1/Y0a;%:a ¢jyoJ =X 1.2
C
Zj:a (bJ/N,j = R, 1,3
. c 2
1fu'o£: Bivo; IV = Ry 1.4
J:a
C B
1/u'o;§:a gjyoj'yilvj - R? 1.5

where yj;is the height of the principal paraxial ray
(Ya’ ua) at the j%& component and yoj_is the height: of
axial paraxial ray (Yoa’ uoa) at the jth'component. The
angle ué. is the inclination of axial paraxial ray after
refraction at the jth component,

When considering the paths of the pair of
paraxial rays defined above, it is convehienf to introduce
other construction parameters, the separations, into the
analysis; Thus, since the diaphragm is at the middle lens

the path of the principal paraxial ray is such that

Yy = 0s v ly = =t [ty 1,6
Yob = Yoa(l - taﬁa) 1,7
Yoo = Yob = t2¢Yoa M ' 1.8

ocC



In proceeding to explicit expressions for the
'powers and separations it.is convenient to define the glass
constants, intersection heights and the residuals R,, R6
and R7 in terms of new parameters, Thus the glass constants
are expressed ‘as ratios giving %he relative distributions of

the refractive indices and Venumbers by:(z'l)

5 : 1.9

14 1.10

Va/Vb =X ? Valvc

Na/Nb :/5 s Na/Nc
while fof the- remainder we also write

Yob/Yoafquob’ Yo -TL .11

P=R,.N¥, L= Ré.Va/yoa’ T = R,V /u, 1,12

Using equations 1,9 to 1,12 and putting the total power

% = 1 and also remembering that the paraxial rays are chosen
= - = B

such that (yoa =1, u = 0) and (yb = 0, ul = 1) then

equations 1,1 to 1,8 become

9, +Ylob¢g‘+ o , 1,13

D, +NopePp =X 1,14

o, +f o, +3’¢) =P : 1,15

0a M*Lib(b +5eroc c L 1.16

(1 + Tt b - tbgnoc . =T 1,17
(1= ¢,0) =My 1.18

MNob - D =M, 1.19

From these we obtain the following explicit expressions for

# This residual of the Basic Triplet is related to the

Buchdahl coefficient of the Seidel form as follows R4:2.0;
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the powers and separations of the initial arrangement of

the basic triplet:

0y = My, - L7 = ) - l.20
P ='§(1 -70)2/(}(910}3 - ) - 1.21
B, =X = Moy : 1.22
t = (1 -9 _)/p, 1,23
ty =1 - (L + D7 /E(1 - %) 1,24
where ¥ =§ + 1 -8 + 1) ' 1.25
and, _, is given by
G2+ GNZ. + GM  + Gy=0 | 1.26
where . |
G, = H2 4il(x - P) L 1.27

G, =M (P - L= 2 ) +<[E(1 %) -% (% - P)| 1.28
Gy =Af(F+.L) =[5 (1 - 0% (X~ P+ LY 1.29
GO = -L/ﬁ}% _ 1,30
Therefore three initial arrangements are possible;
one for each of the roots of the cubic equation (1.26),
In geﬁeral, there is only one root of this equation that
yields an initial arrangement satisfying the conditions
(é? 0, (0&) 0, (bb? 0, ﬂc,?o”ta;>0’ tb70)-'. The system generated
from this arrangement is usually a real triplet, This
root, in general, is not far awéy from qlob = 0,7 .
There are some special triplet solutions that,

although they have initial arrangements with at least one
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separation negative, yield acceptable systems on thickening;
these unusual solutions will not be studied here, In this

work only the solutions in the region ofh = 0,7 are
- . . [~

ob

examined,

1,1,2 The.Replacement ofba Single Thin Component with a

Ceménted Pair of Thin Lenses.,

Now consider replacing one of fhe components of
the basic triplet by a cemented pair of thin lenses, The
values of the residuals Ql’xll’ Pl,'Ll, T1 of’ a particular

initial arrangement will remain unchanged by the replace-

ment if the powers (ﬂl, ¢2) of the components (Nl’ Vi ﬂl),

'(N27 VZ’ ¢é) replacing the jth lens of the basic triplet
satisfy the following ' . ) )
o, + 0, = éj _ o 1.31
BNy + 0,/N, = /N, 1.32
¢,1/V1 + 05/, = @J./vj | 1,33
where j = a, b, c. Thus thin lenses may be replacgd by

pairs of thin lenses which have the same'power; Petzval

and longitudinal and transverse chrématic aberration,

(2.1)

(This ‘can be éxtended to replace groups by other groups

which consist of greater or lesser numbers of components).
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1.1.3 The Basic Parameter k'.

A convenient way of representing this replacement

(2.2)

is to use a parameter k' that denotes the distribut-

ion of power in the doublet, However, in this work it has

been noticed that care must be taken in defining k! because

it must account for the order of the comgonénts as well as

the magni-tude of their powers in order to avoid ambiguities

or at least awkward steps in the logic,

Just as he has had to specify the order of the
signs of the powers of the components a, b, c in the basic
triplet, the designer now has to make a similar decision
when a single component is replaced by a compound one,

A doublet for example, may be inserted with either its
positive or negative component leading and thus, the type
121 triplet (a triplet with a cemented doublet in place of
lens b, see Figure 1.1.1)’lE may have either the power pattern
+(+ =)+ or +(- +)+. These possibilitieé ére'éccounted for
if the parameter k' is defined as follows:

'kg defn. ¢2/¢1 1,34
where ¢2 is the power of the back component and ¢1 the
power of the front component of the jth doublet,

It is convenient to name the two ways a doublet

'may be inserted, Thus when the main power of the doublet

‘eads, for example, if we have a positive doublet with the

(2.1)

% (Figure 1.,1,1 reproduced from Cruickshank!s paper, )
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positive power in ﬁhe front, then we will call it a
positive normal doublet replacement (aenoted by PND) .
If the negative‘componeﬁt ts allowed to lead then we will
call it a positive reversed doublet replacement (PRD)
Similarly, the negative doublet replagement is eifher an
NND (negative normal'dpublet) or an NRD‘(negative reversed
dbpblet)f_ So for example, a power pattern +(+ =)+ is-a
"type 121 NRD'"',

Each replacement of a componenf of the basic
triplet by a doublet introduces a new degree of freedom
in ‘the form of a parameter k! which takes two ranges of
values, For the normal form we find -1.0<5kﬁD<10 and
for the reversed form -oo< k!

RD

formally distinguishing between the k primes with the sub-

<-1,0 , " Although we are
scripts ND and RD these will be omitted when the numerical
value is quoted, because the magnitude of k! is sufficient

to signify the type of replacement,

1,1.,4 Fictitious Glass,

Sp far we have assumed that a triplet with compound
compoﬁénts is generated from a basic triple? of real glasses,
However this need not be so, because,it is only required
that the glasses of the compound arrangement be real, that

is, (Nl’ Vl)’ (NZ’ VZ) of equations 1,32 and 1,33 be real,

in order to generate a real system, It is of no consequence

when generating a real system whether the glass (Nj’ Vj) of
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the basic triplet, as given by these equations,is real or

"not; if the glass is. imaginary it is called a '"fictitious

glass'', : |
b%*i%kﬂwa#qu
In this way the limitations imposedais relieved
to some extent, It 1is now possible to think of the

basic triplet as a continuous function of the "basic glasses"

j
glasses, Using this concept it is possible to penetrate

(N;, V,, j = a,b,c) which comprise both real and fictitious
regions of the design. not available to the simple triplet(z'z).
Also in thinking of the basic glasses as continuous variables,
even if their ranges are limited, is. also equivalent to
saying el ,/3 R 5 s }’ are continuous in certain fegions.

The fictitious glass_consiants expressed as

functions of k! are:

- y l t :
Np = (1 + k"N, /(1 + k*.N;/N;) 1,35
- ( 1)V 1 | . |
Vp = (1 + k ) (1 KNV V) 1.36
where (Nl’ Vl) and (NZ' Vz) are given glasses,

F,

a doublet, there are two possible arrangements, which are

For each fictitious glass (N, VF) arising from

distinguished by having different parameters kﬁD and kﬁD

each being the reciprocal of the other thus:

- 1 : 1,3
ki = /KA 37
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vL,l.S Optical Parameters and the Division of the Degrees

of Freedom,

In this work we consider that the fundamental
degrees of freedom available in the optical s§§tem afe
bo{ two types, geometric#l (curvatures, thicknesses and
separations) and physical (refractive indices and V-
numbers). In -general, these fundamental variableé are
used in the final® stages of design when balancing or
optimising the various aberrations, On the other hand
the parametric degrees of freedom of the ''basic triplet”
that are used in the initial stages of design, cannot be
classified as -either simple geometrical or physical
parameters since each is a function of both types of the
fundamental degrees -of freedom;

However, a broad distinction may be madei The
parameters %,Xﬁ, k', P, L, T may be classified as either
degrees of freedom depending on V or not depending on V,
This is the distinction made in this work, We begin with
a study of the monochromatic parameters (4, k', P) and
leave the ‘chromatic parameters L and T until the monochromatic
désign pfinciples are established, In this wéy the thin
lens parameters are separated into those that are dependent
on V and those that are not,

§
N

% (Referencessrs 2.4, 4,2, 6.2, 8. 13,2)
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1,1.6 Notes on Classification.of Design Parameterse,

(1)

The use of the te}ms Construction Parameters
and Performance Parameters is in keeping with the
philosphy of design that is followed in this work, We
will use the term construction parameter to mean any of
those parameters which are used &o define the structure
of the optical system at each stage.of development,.eg.
},)?, k', P, L, T, N, V_ etc, in the thin stage or
curvatures and>separations in the thick stage,

Also we will use the term performance parameter
Fo mean parameters that are chosen to define the properties
of the system at the various stages of the design, eg.,

(8)

aberration residuals of all kinds For convenience

the construction parameters can be subdivided further into
""basic constructiqn parameters and fundamental construct-

ion parameteré”, Also each of these classes may be

diVided into chromatic and monochromatic parameters,

Thus we may speak of.chromatic—b;sic—construction-parameters,
monochromatic—basic-construction—parameters, chromatice~
fundamental-construction-parameters and monochromatic-
fﬁndamental—construction-parameters. These construction
parameters are associated with either chromatic or mono-

chromatic performance parameters.,. (See application of

these Chapter 2,1)



141,7 Summary.,

In thié chapter the basic theory has been
developed for finding the initial arrangement of triplets,
with constructions involving coﬁpound cémponents,.so that
they have certain 3rd order residuals.specified, | We
began with the thin lens analysis of a simple triplet and
showed how its initial arrangement cén be conve:ted into
the initial arrangement of a more complex triplet type,
Also we showed how this conversion, which consisté of the
replacement of a single thin lens by a group of thin lenses,
is equivalent to a change in the glass parameters of the
initial thin lens arrangement of the simple triplet.
Treating the thin lens analysis of the triplets in this
way allows the replacement of a single coméonent by .a
doublet to be represented by a single parameter k! that
defines the distribution of power within the doublet,

Thus in this chapter a general triplet system
has been defined '"The basic triplet' and in keeping with
our approach to design we think of it as being the set of

'ta’ t. that are

powers and separations ¢a’ ﬂb, ) b

C.
generated from the set of parameters @,)7, P, L, T, N, N,
Nc’ Va’ Vb, Vé. We call these ''basic parameters " and in
particular we call (Na, Va), (Nb, Vb), (Nc’ VC) the

"basic glasses'" that may be either real or fictitious,

When the basic glasses are all real glasses we have the

simple Taylor Triplet which we call the type 111, When



the -basic glasses are fictitious the basic triplet is
generated from a set of basic parameters that now
contain a k! for each doﬁblet.

In this preliminary study of triplet objectives
the systems are restricted to an infinitely distant

object plane and a centrally placed stop.



CHAPTER 1,2  THE SYSTEMATIC DESIGN OF A 3rd ORDER TYPE

121 TRIPLET,

1.2.1' General Considerations,

A type 121 triplet (the middle lens is a
cemented doublet, see Figure 1,1.1) has the following
construction parameters available for controlling the
optical characteristics of the system: four glass types,
seven curvatures, four axial thicknesses, tw; separation
distances and the location of the aperture stop. These
fundamental parameters are shown in the bottom diagram of
Figure 1,1,2 where they are as follows:
(1) The four glasses are (Nl’ Vi), (NZ’ VZ), (N3,’V3),

(N, V,). |

(2) The curvatures are c, to Coe

(3) The axial thicknesses are dz, d4, d5, d7.

(4) The separations are d3, d6'

(5) The stop position is not shown but it will be given
as the distance p'! from the back surface of lens 1
whenever it is required,

The glass parameters (index of reffaction‘N and
the dispersion V) are not considered to be confinuous
variables in this primitive design, }ndeed the choice of
glass in the initial example that is described in Chapter
1,4 is made onithe basis of the experience of other

designers(z'l’ 4'2).
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The position of the apérture'étop is also not

(1, 2.1, 4.2) in the

considered to be a continuous variable
preliminary design of the type 121, It is kept at the
front principal point of the cemented lens group in the
Thickened-Type 121 and at the thin lens b in the Thiné>
Lens Type 121,

The four axial thicknesses are not considered
to be continuous variables; they are’giveﬁ fixed values
that allow sufficient aperture for a large variation in
the design parameters,

The nine remaining fundamental parameters

C dj, dé) may be considered to be contine

12 72 *°*° 772

uously variable over large ranges, Thus there are nine

(c c
variables available for controlling nine design quantities;
This nﬁmber exceeds by one the minimum number which is
required for the design of a fully corrected system of
moderate ape?ture and field, These minimum requirements
(1, 2.1, 4.2) are aé follows:

(1) Scale of the system (equivalent focal length).
(2) Petzval sum, |
(3) Longitudinal Chromatic Aberration.

(4) Lateral Chromatic Aberration,

(5) Third Order Spherical Aberration Residual Rl’
(6) Third Order Coma §esidua1 RZ' |
(7) Third Order Astigmatism Residual Rj.

(8) Third Order Distortion Residual R5,
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In this work the attack on the design of the
type 121 triplet is concerned iq the initial sfages with
the behaviour of a primitive stage of the design, the 3rd
Order Triplet which is defined below, This ihitial design
is generated systematically by a well known process(l’ 2.1, 4.2)

which is outlined in the following section,

1,2,2 The Systematic Design Process of the 3rd Order Type

121 Triplet 'Outlined.

If the designer sets out to conétruct a '"3rd order
type 121 triplet" from a given set of glasses he can do it
systematically in three sfages starting from the ''basic
triplet" and going via the thin lens arrangement of the
‘type 121 to the ”Thick Type 121" as shown schematically in
Figure 1,1,2, Using this method in.this chapter the design
theory is started from a given set of glasses and ''basic
parameters”.and developed to the stage where the thick
system has-the following features detérmined:

(1) The scale of the system (equivalent focal length)
ft = R

9°

(2) Axial thicknesses d,, d d

dg, dge

(3) The 3rd order coma residual R2 = 0,

4’

(4) The 3rd order condition for a flat tangential field

R3 = 0,

(5) The 3rd order distortion residual Rg = Oe



in this approach to designing a type 121 it is
assumed to have the following continuous independent
variables: _
(1) The ''basic parameters' %,:V, P, L;.@&;n the first stage.

(2) The shapes Sl’ S S, in the second stage.,

2 T4

These parameters account for the nine degrees of freedom
available with the type 121 for controllihg nine features
of the design, However we décided above to only use five

of them in the initial stage, The triplet with these

featurés we will call thé "3rd order type 121 triplet'',

The nine features to be controlled in the finished

design of the type 121 will be denoted by R, to R, of which

1 9
only RZ’ R3, R, and R, have ‘been defined for the 3rd order

5 9
triplet; the remaining ones will be defined as they occur
in more advanced stages which -are dealt with in later éhapters.
So from the beginning we know that the aesigner is free to
choose any nine features but he has only seleéted five
initially,
In order to compute the 3rd order type 121

triplet the designer supplies the following:

(1) Four glasses (Nl’ Vl)’ (NZ’»VZ)’ (N3, V3) and (N4, V4).
(2) Basic parameters @1, xl’ P, Ly, Ty, ki

(3) The axial thicknesses d,, d,, d., d., and he is given

2? 747 757 77

the following:
(4) The stop position p! which for the 3rd order triplet

is kept at the first principal point of lens group b,
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(5 R, = R, = R5 = 0 (R3 is the 3rd order condition for

a flat tangential field),

The main steps in the systematic design of a 3rd
order type 121 triplet are shown schematically in the flow
diagramEE Figure 1,1,3; the ensuing description refers to
this diagram,

The design is started by selecting the data and
computing the fictitious‘glass constants (Nb, Vb). This’
enables the cubic equation (1.,26) of the basic triplet to
be set up and solved iteratively, starting withYlob = 047
Then the basic-triplet is converted into the initial arrange~
ment (powers and separations) of the type 121lausing k! to

convert ﬁb to ¢2 and ¢3.
The Thin-Lens Type 121 is obtained by analytically®*

(2.1) finding the shapes which make the 3rd order Seidel

(13,1), 13,2)

coefficientscré,cré ande5 zero Thus the

Thin-Lens Type 121 (stage 2, Figure 1,1,2) has unit power
and zero.3rd order comé; astigmatism and distortion,

In the third stage the system is thickened using
Berekts Method which prbduces the Thick-Type 121 with its

powers §,, ﬂz, ¢3, ¢4 and total power unchanged from those

# This flow diagram is only intended to illustrate the design
process of a 3rd order system in a compact form that will
.assist the reader to grasp the essential steps in this
design process, '

%% Experience has shown that this design process may be

started from a given set of approximate shapes there being



of the Thin-Type 121, However, the thickening process

causes changes in the -aberration coefficients G}, 53 and WE
so that they!differ from R2, R3 and R5.
In the fourth stage the coefficients Gé, Gg.and

G; of the Thick~Type 121 are reduced to the prescribed

values R R_. and R

2? 73 5

in the cycle ABCDETFG (Figure 1,1,3) using Newton's

(4.1)
[ 4

by adjusting the shapes iteratively

method This well known method finds difference

| EEE

quotients (AGL/Sj for given finite shape changes de
~in each cycle, These difference quotients are used in
place of differentials in estimating the required shape
changes., The cyclic process is continued until the three
conditions are met,

On completion of this design process tﬁe designer
has a thick type 121 triplet of unit focal length, zero 3rd
order coma, distortion and a flat tangential field, Its
stop is located at the front principal ‘point of the cemented
doublet which is usually between surfaces 3 and 4.

The remaining sections of this chapter briefly

describe all the theory of this systematic design process

%% (cont.) . , -
no need to find the 3rd order thin triplet exactly for

this iterative process, Thi-s dispenses with the shape
analysis aften the first solution or if approximate shapes
are available from other similar designs the analysis 1is
not required,

#%% k=2,3,5 j=1,2, 3, 4 for the type 121,
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necessary for programming the 3rd order triplet, However
at this point the reader at first reading may prefer to go
directly to Chapter 4 where a preliminary study of some 3rd
order type 121 triplets is discussed, This study may be
understood without absorbing background theory from the rest
of this chapter or the discussion of programming from
Chapter 3. The reader only needs to know for this purpose
the contéﬁts discussed so far and also thaf a programme
called the basic programme (denoted sometimes by BP121),
which computes the 3rd order type 121 triplet from the data
described above, has been written, |
Moreover, any programming details that have been
discussed as the need has arisen in later chapters, have
been treated under separate headings so that the reader may
by-pass them if he wishes without serious loss of continuity
in the discussion of the systéms properties,
However, the writer believes tha; a better

appreciation of the optiéal.design process is gained from

a discussion of the basic programme and theréf@re he prefers
the logical development of the design theory and programm-
ing of it prior to becoming.involved in the numerical details
of the Stﬁdy of the actual systems, . This of course is not
the way he approached the problem which was via a desk
calculator and ekisting,design techniques created for this

facilitye. However, this was before a computer was available, -



Now after some experience with both phases he believes that
an understanding of the known theory and flexiblé programm-
ing of it, before looking at numerical results of examples,

I

is preferable, n view of existing knowledge this seems

to be the most objective approach,

\

1.2.3 Theory of the 3$d Order Typé 121 Triplet,

1.,2,3,1 Stage l:- Finding the initial arrangement of the
| 121, |
In this st%gé the'p0wers and separations are
compﬁted from the given initial conditions, To begin, the

fictitious glass cbnstants‘(NF, VF) are computed as follows:

o : ' v
NF = (1 + k )nl/(l + k .nllnz) 2,1

_ tyy /( t
where n,.=N,, n, = Ng 243
Vl = Yz’ V2 = V3 . ) 2.4:
and k' = k! ‘ 2.6

Now we can proceed with finding the initial arrange~
ment of the 'basic triplet'. that iS'Construéted from the

following "basic glasses':

Na = nl’ Nb = NF, NC 'N4: 2671

and Va = Vl, Vb = VF, VC = Vc]: 2'.8
Briefly, the ratioso(,/ﬁ ,-§ and 4~ are obtained

and theée, together'with the given basic parameters %1,)71,
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P, L;, T/, k] are used in equations 1,27 to 1,30 to

calculate the coefficients G Gl’ GZ’ 03. Then.equation

0°?
1,26 is solved iteratively, starting wjthfqob = 0,7, and
then, the powers and separations (ﬂa, ¢b’ ﬂc, t s tb) of
the ''basic ‘triplet' are computed using equations 1,20 to
1,25,

In concluding this stage the basic friplet is
conyerted into the initial arrangement of the type 121,
Although this conversioﬁ only requires the replacement of
ﬂb by ¢2 and ¢3, it is preferable to keep all three operat=
ions formally detailed, even if they seem trivial, in order

to establish, if possible, a general design procedure,

So.that in this case we have:

B, = 9, - | 2.9
B, = ki.f, 2.10
"0, = k3P | 2.11
B, = 0 2.12
dy = t_ 2,13
d, :_tg 2.14

At this point the triplet system has a focal length f'= 1,
a Petzval residual of R, = P/Na’ a longitudinal chromatic
residual of R6 = L.yoa/Va, a .transverse chromatic residual

= u Y/ = X t - k! t - k!
of R, = T /V_, X=%, and k' = k], The value of k k!
also implies that we have givencg.and/g the values

Qg:_Nf/Na’ /3 - VF/Va 2415
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1,2643.2 Stage 2:= Finding initialvshapes_éf the thin
solution,
The three remaining degrees of freedom of the
thin system are used to control its 3rd order coma, astigmat-
ism and distortion, For this purpose thé shapes of the
fiést, second and fourth components, Sl’ SZ ana S4 are used,
The shape of the third component is given by putting Sj = 52

in the cementing condition:

Sj+1 = Z(Sj + 1) - 1.

where | Z =‘}Nj+1 - 1)/(Nj - 1)]/kt 2416

(In this work the shape of the leading component of a doublet
is selected to be the independent one,)
The shapes are defined by
s =[tc, e/ - cz)]j 2017
after Coddington,

The 3rd order correction is defined in terms of

(13.1, 1343, 2.6)

the 3rd order Buchdahl coefficients of the

Seidel form, These are represented by 7, 0, Gg, q; and

cré being the coefficients of primary spherical, coma,

astigmatism,FPetzval cgrgature and distortion respectively,
At this stagé 6f the design we want the system to

have shapes that make the primary residuals zero, that is we

want G, = R, = 0,03 = R 0,9, =R 0 2,18

2 37 5~
As we are looking at this design for the first time, we must

find an initial solution for the shapes by solving the follow=-

ing three thin lens equations(z'l’ 2.5, 2.6, 2.7) for the
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thin lens type 121,-

1
@ - 2
5 %_l(aZIS + a,,58 + a,,) 2,19
G s 2
3 = i;l(a318 & a325 + a33)J 2,20
1 2 :
g - < : :
ag = szl(a_,)ls + a.5zs + a55)j 2,21
where 1 = number of components of system which for the type

121 is four, The placing of the stop at the middle thin
lens reduces 2,20 and 2,21 to equations of two variables,

S, and 84, that are solved by a simple iterative method,

1
The equation 2,16 is used to convert S3 to SZ in equation
2,19,

Thus at the end of Stage 2 we have a thin-lens
type 121 with the following specifications

Refractive index N1 N2 N3 N4

V-numbers VoV, VL, Y,
Powers : ¢1 ¢2 ¢3 ¢4 , .
Shapes S1 S2 S3 S4 . 2,22
d; = d, =d, = d5 = d7 = 0
d3 =t , dy = tb
b ot wem wey
P=P L =1L T =T
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1.2,3.3 Stage 3:=- Developing a thick system from the

thin solution,

1,2,3.3,.1 Adjusting Powers,

In tﬁis step the lenses are assigned axial thick-
nesses that are sufficient to provide for an adequate
aperture, (Indeed in this study of the éype 121 triplet

system the values of d2, d d, and d6 are éhosen, if

4? 75

possible, to allow for the variation in the aperture for a
large range of the parameters ﬂ?, kt* and P.) After thicken-
ing, the powers of the system are kept the same as those of
the thin solution, This is achieved in two steps(2'7)l

(1) The curvatures and intersection heights of each lens

are recomputed, following the general method of Berek, so

as to adjust their powers to those of the thin lens, A
paraxialeray (p-ray) with initial co-ordinates (Yol =1,
Vo1 = 0) is traced, The thick curvature of the leading

surface of each of the basic groups of components that we

have denoted by a, b and ¢ is given by

*

*
c, = CI/(I + 1 ./1

pl ) 2,23

01

where % denotes the thick quantity,
%
This requires 1Pl

is started with 1

which is not known, therefore, the process

and then the remaining curvatures and

pl
intersection heights are determined by:
£ % A
C.eV. = C.oV. ‘2.24,.1
J yJ J YJ



- d 2424,2

Yir1 = V1 j+1°Voj+1
' £ . %
The values obtained for cjjﬁqd Yj’ of course, will only

be approximations to the required values, because of lpl'

* _ *
However, these approximatécvalues of cj and Yj allow us
, £ _
to cadlculate a better estimate of 1pl with which to re-
13 * X ¢
calculate <y of the lens group,. In general, -three

repetitions are sufficient to adjust the curvatures and
intersection heights,

(2) The separations are altered so as to keep the total
power of the thick system the same as that of the thins
system, The object and image planes are not shifted.

Thus the separations after thickening are given by:

* o
t ER T
dy = t, + 1, - 1pb 2.25,1
* .
t x
d6 := tb + lpb Lad lpc 202502

1,2.3.3.2 Adjusting the Thick Lens Residuals,

The stop is placed -at the first principal point
of the middle lens group (b), so that its distance from
the pole of the rear surface of lens group (a) is -

pt = t, = 11 » 2,26

and the distance of the entrance pupil from the pole of

the front surface of the system is therefore

P = (Da,pt -« Ba)/(Aa - Ca,.p?) 2,27
(2.5)

where Aa, Ba, Ca and Da are paraxial coefficients o

(2.6)

Now the 3rd order. coefficients are obtained

from the results of two paraxial ray traces,



the p-ray (Yoi =1, Vo F 0) 2.28
and the g-ray (y1 =P, vy = 1{ 2629

As a result of thickening, the aberratioﬁ
residuals G;,<T3 and‘Té are, in general, significantly
different from those of the thin system and therefore
must be reduced to the_target values by making appropriate
changes in shape, (This involves finding the partial
differential coefficients of the primary aberration coeffic-
ients with respect to the shapes. This is normally a
lengthy computation, However, in this work, it has been
found that a simple approximation to the partial different-
ial coefficients is sufficient for, at least, systems of
the triplet type. The computation using the simple approx-
imation is shorter and allo&s more efficient programming,
It is described and discussed along with other methods in
appendix 2.,1,)

On the basis of computational experience with
several types of triplet it has been found that an empirical
relationship may be assumed between the residuals RZ’ R3

and R, of the thick system and the independent shapes of

5

its basic thin system, so that we may formally write:

- G = f
R, = 75 = £,(S_, S, S_)

= . =
Ry, =073 = £2(Sa, Sb,.Sc) 2,30
R5 - Gg - fB(Sa’ Sps Sc)

where Sa’ Sb’ Sc signify the independent shapes of the lens

groups associated with the initial arrangement, For the
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1+ Sy = Sys S = Sge

(17.1, 18)

type 121 then, Sa = S

S S

b? “¢

necessary to correct the residuals of the thick system

The approximate chénges in Sa’

therefore are given by the solution of three simultaneous

""small error”(17'1) equations:

(i) a;ds_ + bidSb + ¢ dS_ = -dR,

-(ii)’ a,dS_ + b,dS, + c,dS_ = -dR, 2.31
(iii) a,dS_ + B,dS + c,dS_ = «dRg

where for X = a, b, ¢ we have

(1) X, = 39T, /¥(8,),

(ii) X, = 30T/ (Sy) 2,32
(1ii) X, = AT,/ (sy) ¢

(Several methods for estimating X by Newtonks Method are
discussed in the appendix 2,1).

After the new shapes have been computed the
calculation is restarted at the end of stage 2, This
cycle is repeated until GE = Ry, (3G§ + UZ) = R, and

Gg = R5. The'"3rd order triplet'" has, by definition,



1,2.,4 Summarx.

We have seen that the design process consists of
four stages: |
(1) The initial solution to get Powers and Separations,
(2) The selection or calculation of shapes to control

3rd order residualé, coma, astigmatism and distortion,

(3) Thickening of the thin solution and computing of the
3rd order residuals of the thick system,

(4) The bending of the system to ad just R,, R3 and R5.
This involves repefition of stages 2 and 3 until
target values are reached, We have found that the
adjustment of the shapes can be accomplished by a
simple iterative process when the contributions of:
each lens are used to compute the partial different=-
ial coefficients of the residuals with respect to the
shapes., (See appendix 2,1)

On completion of this design‘process the triplet

has 3rd order residuals of coma = RZ’ distortion = R5 and

a flat tangential fieldi
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APPENDIX 2,1 METHOBS FOR CALCULATING THE DIFFERENTIAL
COEFFICIENTS OF THE ABERRATION RESIDUALS

VERSUS THE SHAPES,

A.2.,1,0 Introduction,

A simple iterative method* which is based on the
additive property of the surface contributions of the
Buchdahl coefficients has been devised in this work for
optimizing the residuals} It is éonvenient.for us to
approach the description of this method through a descript-
ion of earlier techniques used in this laboratory,

/ Prior to this work, the partial differential
coefficients were estimated in either of the following two
ways:

A,2,1,1 Method 1, Using Thin Lens DifferentialsCoefficients,

Expressions for the thin lens partial different=-
ial coefficients were obtained by differentiating equations
2,19, 2,20, 2.21 and these were used in place of the thick
differential coefficients, However, the differential
coefficients given by these expressigns need to be recomputed
frequently if the initial residuals are relatively large

in comparison with the target values,

# First discovered with the type 121 later used in 111,

112, 122, 212 and 222,



Ag2,1,2 Method 2. Using Thick Lens Differential
coefficients,

This method involves the direct computation of
the partial differential coefficient using finite differ~
ences in the shapes, From the equation 2,32 we see that
there are nine of these partial differential coefficients
and that they are divided into three equal sets, one for
each of the lens groups a, b and c, A separate computate
idn'mﬁst be made for each group and this involves recomput~
ing the thick system starting from the initial arrange-
ment each time a shape is altered,

For example, consider findiﬁg the differential
coefficient of the lens group (a) of the type 121 triplet,

Let the independent shapes of the initial thick
system be Sll’ Sél and 841 where the first subscript'deﬁotes
the order of the lens component and, the second subscript
denotes the order of the triplet system; in this case-the
initial’ system obtained during the calculation of'the:diff-
erential'coefficienté. The residuals of the initial system
are Rz,'R3'and R5. In order to estimate the partial
differential coefficients of group (a) the 121 jthem is
éomputed with the independent shape of group (a)aby a small
amount §,, resulting in residuals (Rz)a, (R3)a and (R5)a.
This analysis for the differential coefficients of group
(a) is set out in the following table tégethef with that

of the differential coefficients of the other lens groups

(b) and (c).
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Shape Change Input (Shapes) Output Residuals
ds, Bs,_ as_ S, - Sy S Ry Ry Rg
solution © O O Sin Sar Sa (Ry)y (R (Rg)y
chaggingAS1 Si1+051 ' (R,), (Ry) (Rg)
chagging ASZ ' 521+ASZ (RZ)b (R3)b (R5)b
charclging As, S,11085(R,) (R3)'C (Rg) .

°

thus the differential coefficients of group (a) are
ST,1y8, «Ry/hs; = {(Ry), - (Ry) [ |/As,

S5 As, “AR,/88, = [(Ry), = (R;),]/AS, 2.33

i}

O35, =molhs, = ((Rg), = (R, ]/ns,

and a similar set of expressions is required for lens group
(b) and lens group (c).

A,.2:%,3 Approximate Differential Coefficients,

Each of the 3rd order coefficients may be expressed
‘as the sum of the contributions from the surfaces since
n
R. =0, =2 G, where j =1, 2, 3, 4, 5 and n = number of
J J kel K
surfaces of the system, Therefore we may expand the
residuals of the triplet into the contributions from each

of the basic lens groups a, b, c, for example,

(R); = (Ry)jz + (R)), + (R, 2.34

(Ry) = (Ry)gg + (Ry) o+ (Ry) oo 2.35
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where for example (Rz)1 = residual of the initial system
(R2:)aa = residual due to lens group a
for a change in shape of ﬂSa = ASl.
If Asl is small then (RZ)ab = (Rz)1b + € 2,36
and (R)),_ = (R,),_+€ 2.37

where€ = infinitesimal,

Therefore iflssl is chosen properly it is sufficient in the
practical design of triplets to ignore the contributions
from lens groups other than the one in which the change in
shape is made,

Thus for example,

Bcéfbsaz {fRz)aa - (RZ)I;]/ASa
where (Rz)aa is the contribution of group (a) due tokaa
and (Rz)la is the corresponding contributions in theipreced~
ing system, This property of the residual that its
significant change is confined, in general, to the lens
group in which the shape change occurs, suggests that the
differential coefficients of all the lens groups may be
computed simultanedusly from only one calculation of the
system instead of three, Thus we come to the short method
that was developed in this work for computing the approximate

partial differential coefficients,



A.,2,1,4 Method 3. Using Simultaneous Shape Changes,

If instead of a single shape change we calculate

the system with shapes (Sa)2 = (Sa)1 +1§Sa, (Sb)Z = (Sb)l + A4S

and (SC)2 = (Sc)l +l§Sc and if these changes ASa, ASb and A S,

b

are small given values then we may write:
@T BS @q’" Asx>m —L(R%ﬂx —(R\wx /ASx 2,38

where now j = 2, 3, 5 and X = a, b, ¢ and m = the order of
the system in the iterative process.,

In practice we found that (AGE/ Sy, is a
sufficiently good estimate of the partial differential
coefficient of the mth stage of the iterétioﬁ. Therefore
we have been able to develop a very simple iterative process
for the adjustment of the 3rd order coma, astigmatism and
distortion because the differential coefficient can be
estimated simultaneously from the results of each stage of
aberration adjustment without doing any auxiliary calculat-
ions,

In.order that the notation of this method is clear
we write the expression for dne of the partial differential
coefficients, Thus fdf example, the differential coeffic-
ientzof coma relative to a change in the shape of lens (a)
ih the first iterative stage of the type 121 is

(T/se) m BT fsy, < (@ - @] /s,
where the ASa of the type 121 has the small valueAS1

throughout the iteration,
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CHAPTER 1,3 PROGRAMMING THE 3RD ORDER TRIPLET,

1.3.1 Introduction,

In this chapter the construction of the basice
programme is déscribed with the aid of flow diagrams,
The basic-programme generates from a given set of thin lens
parameters the 3rd order type 121 triplet, However, apart
from this immediate objective of computing the 3rd order
type 121 system the programming of all triplet types has
been kept in mind also, Thus the design process has been
programmed in a form that is intended to be both general

and flexible,

1,3.2 General Considerations,

Considered as a whole the computation of the 3rd
order triplet is complicated, however, it is found that it
can be reduced to simple units which may be treated with
comparative ease, This becomes clear when one compareg
the flow diagrams of this chapter with the flow di#gram
and the analysis of Chapter 2, The programmes of this
work are seen to be made up of a number of "building blocks"
or sub~routines, (A similar approach has been described
by R.E. Hopkins and G. Spencer(4'2).)

Although the immediate objective in this work has

been the 3rd order design stage of the type 121 it has been

found from experience that it is best in this sort of problem
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to programme the smallest steéep.with the general applicat-
ion in mind, If this approach is adopted then instead
of finishing with a programme of limited use the designer
will have a research facility that will not only enable
him to handle the variations in the development of hi;
immediate system but also will allow him to adapt it to
other triplet t&pes and possibly even to other systems,
with little alteration,

The programme that satisfies these general concepts
we will call the basic~programme, For convenience we denote
it by the symbol BP121 that stands for the basic-programme
of the type 121 triplet, the programme that generates the

3rd order type 121 triplet,

1.3.3 The Basic Programme as a Sgb-Routine.

Programming with the general application in mind
it soon becomes obvious to the designer that although the
basic programme is constructed of many sub-routines it is
also itself a sub=routine when considered in the context
of the complete design proéess. This point must be grasped
at the beginning if effective flexible programmes are to be
written, Thus the material has been presented in Chapter 1
and 2 with the general application in mind, Indeed, this
general approach has been essential for the successful treatw

ment.of the later parts of this work which are described in

sections 2 and 3,



It is a straight forward matter to programme the
type 121 directly froh the equations of Chapter 2 and the
flow diagram Figure 1.1,3, HoWever, this approach yields,
in general, a lengthy inflexible programme suitable for the
immediate calculation but almost béyond comprehension of
anyone except the actual programmer, This sort of thing
occurs all too readily when using a modern pneumonic
programming language such as Algol that allowé the beginner
and, for that matter, even theqekperiénced worker who ‘
sacrifices flexibility for expediency, to make lengthy trans-
lations of the computing schemes similar to those of Chapter 2,
If we are to proc§éd effeciently'with this type
of optical design problem; we need a high speed computer and
a flexible and reasonably effecient programme, Frém
experience gained in this work, it is apparent that flexibil-
ity is the importanf proﬁerty in all cases, a conclusion
shared with other workers(4'2).
Flexibility is achieved by programming in units
of logic er suberoutines Whenever possiblee. Indeed we find

(11)

that Algol is eminently suitable for flexible programm=-
ing because it is endowed with many special features for
constructing a great variety of suberoutines or, to use the
Algol term, procedures,

Effort spent in creating these sub-routines for

general application gives the designer great power,



1,3.,4 The initial Design Programme or Basic Programme,

The initial design programme developed here, in
geﬁeral, possibly only differs from initial desién programmes
of other designers in the arrangement of the logic and not
in the main concepts, Although, of course, there are also
minor differences in the selection of design parameters
because they have been defined for general application to
the triplet family in this programmé, However, in the
search for generality, it has been found that the well known
initial design process of the triplet(z'l’ 4.2, 4.3) which
was described in Chapter 1.2 can be constructed almost
entirely from sub-routines thus facilitating the programming
of the more advanced stages of design whcih are dealt with
later in this thesis as they arise,

Although many designers have written programmes
employing sub~routines similar to manf of those uéed here,
it is believed that this is one of the few attempts(4'2) to
write each main unit of the logic of the design process in
the form of a sub-routine, Thus the design proces$ has
been reduced to a set of basic suberoutines that may be

assembled in almost any form required to meet the changes

in the research problem, Consequently the final programme

in each phase of the research consists of an executive-

control routine that operates on a basic set of sub-routines,

The simplest form of this initial design programme is the



"basic programme” if, and only if, it is written so that
it can be incorporated in the more advanced stages of.

research without major changes,

1,3,5 Main Types of Sub=Routine or Procedure Defined,
(4.2)

In this '"building block" appfoach to programme-
ing the design process, it is evident that the procedures
~can be-conveniently divided into two._main classes, those
depending on the structure of the optical systém and those
that are not, We will call those that dépend on the
structure of the system or, in other words, those depend-

ing on the design. concepts, the Usysfem‘procedures”, and
those that perform fundamental optical, arithmetical and
algebraical operations, ''basic procedures'', So for example,
a sub-routine which calculates the position of the front
principal point of an arbitrary . lens group or solves three
simultaneous equations is a ''basic procedure or basic sube
routine'', Whereas one that carries out a design stage such

as computing a thin system from a given set of shapes and

powers is a system procedure or system sub-routine,

1.3.,6 Description of the Basic-Procedures and System -

Procedures used in the Basic Programme,

In the following list the procedures are arranged
in the two main groups as defined above, The first

contains the basic-procedures and the second the system-



procedures, In each group the. procedures are arranged
according to the order in which they occur ih the basic «
programme, Each one is accompanied by a brief descripte=
ion of its function? The group of procedures for flexible
triplet programming is as follows:

Basic Procedures,

1, Procedure Sum,

This adds n consecutive numbers between specified

limits, |
2., Procedure S.E.

This procedure finds the solution of three
simultaneous equations whose coefficients and parameters
are given,

3, Procedure Fictitiou§ Glass,.

This computes the fictitious refractive index.
and Venumber of a cemented doublet that is specified in
the procedure call by its position in the triplet,

4, Proce?ure Initial Solution,
-.This finds the basic triplet from the given set
of thin lens parameters
NJ., Vj,a{ 23 ,g +¥ s P, L, T where j = a, b, c.
5. Procedure Ray Trace (x, y)

. Traces a paraxial ray through fromn = x ton = vy,

The initial ray coordinatés y and v are specified in the

procedure call,



6. Procedure Paraco (x, y).

(4.4)

Computes the paraxial coefficients of the
part of an optical system between given surfaces n = x
to n = ye

7. Procedure 1p (x, y, z).

Computes either the front or back principal
point distance of any system defined to be between
given surfaces n = x and n = y. The infergef z
determines which principal point is calculated,

8, Procedure Thick (x, y).

This procedure thickens the thin lens group
between surfaces n = x and n = vy,

9., Procedure ac(y).

Computes the Buchdahl 3rd order aberration

coefficients(z’é) of the optical system of 1 to n
surfaces, The y is used to differentiate between
systems,

Procedures 1 to 9 are the set of '"basiceprocedures"

required for computing the Sfd order tripiet. The point
to be 6bserved here is that the structure. of the 'basice
procedures" is independent of structural changes in the

triplet optical system, So the details of the computat-

ion of the 3rd order triplet that depend on the system's

structure are reduced by this means to a few procedure calls,

This enables the designer to write a greatly simplified

programme,
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In order to complete the 3rd order triplet

programme we require the system procedures that deal with

the structure of the triplet; they are as follows:

System Procedures,

1.

3.

Procedure Ac(x) s

This procedure which is shown in Figure 1,45
assembles the necessary basic prdcedures to carry out
the task of obtaining the thick triplet from a given

set of shapes and powers, It also computes the 3rd

" order aberration coefficients of the thick system,
The parameter X differentiates between systems at successe
ive stages of iteration (see changing shapes, Chapter 1,2),

"Procedure Bending,

This procedure which is shown in Figure 1,4
carries out thé shape changes required to adjust RZ’

R, and R The final system of this procedure is the

3 5°
"3RD ORDER TRIPLET",
Procedure Compound Parameters,

This converts the basic triplet into the initial

arrangemént of the complex triplet which is the type 121

in this example (see Figure 1,3),

Basic Glass,

This allots the basic glass constants (Na’ v,

a

(Nb, Vb)’ (Nc, VC) of the basic triplet, The procedure

is similar in form to the procedure Compound_Parameters

being mainly the computation of the fictitious glass



constants of lens group b,

At this point allﬁthe“procedurés necessary for.
assembling the programme of the 3rd order type 121 triplet
are available,

‘This 1list ofvprocedures forms the basis of the
programming technique used here and clearly it enables the
designer to comprehend easily the processes involved in the
design problem, Thus the main advantage of this approach
is the flexibility it affords the designer in advanced
stages of design, In the first place he can confidently
carry the main features of his problem in his mind more
easily because he can think of the steps in the problem as
a set of operations; he is not overwhelmed by details,
Secondly, any change in the design process can, in general,
be reduced to a rearrangement of the procedures or to the |
construction of a new procedure that doés not disturb the
existing basic procedures.‘ In general, alterations'are
confined to the executive control routineé and they are
usually of a minor nature, For example a typical change
in the design process is when the designer changes from
finding a triplet with R, = Ry = R5’= 0 + 0(5) to finding
‘one that, in addition to these residuals, has its spherical
residual specified to 7th order (i.e. R; = 0 + (9)),

This, as we shall see (Chapter 1.4), is handled by the
inclusion of a procedure to compute the spherical coefficw

ients of 3rd, 5th and 7th order and an additional executive

control routine,



143,7 Description of the Basic-~Programme,

The basic-programme computes the triplet with

R2 = R3 = R5 = 0 to 3rd order from a given set of basice

construction-parameters ?,X;, kt, P, L, T, Sl’ S S

27 T4
V3)Aand (N4, V4).

and glasses (Nl’ Vl), (N VZ)’ (N

3,

The power is automatically adjusted to unity,

2’

Following the programming principles discussed
above we have found that the basic-programme-feduces to
the simple linear assembly of five sub-routines shown in
Figure 1,2, The sub-routines are represented by blocks:
which are numbered 1,1 to 1,5 in this figure, The blocks
1,1, 1,3, 1,4 and 1,5 stand for four system=-procedures and
block 1,2 for a basic—procedure*. The main details of all
these sub-routines, withfthe exceptioﬁ of procedure ''basic
. glasses" (block 1,1), are shown in auxilia;y flow diagrams
(Figures 1.3 to 1,6), The procedure basic-glasses is
trivial merely being mainly the computation of the fictit-
ious glass constants for the lens group b,

Experience has shown that the set of sub-routines
which have been constructed in this work endow the basice
programme with great flexibility, The main reason for
this flexibility is that the system=proceédures keep all
% This is only a basic procedure with respect to triplet

systems, In the general design process for all lens
types this would be a system procedure also,
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the systems construction<parameters in a compact and
readily accessible form, In the interests of clarity

and conciseness we have confined the flow diagrams to
depicting the essential steps only, details of the triplet
theory are described.fully in Chapters 1,1 and 1,2,

The qomputing of the Buchdahl coefiicients is available

in the literature where it has been described by several
workers apart from the originator(;3'1”2'4’ 2'6).

The procedure Bending (Figure 1,4) is perhaps
the most significant sub-routine because it embodies the
design stages 2 and 3 of Chapter 1,2 in which the design
progresses from the initial arrangement'through the thin
system to the thick system of Prescribed RZ’ R3 and R5
(the 3rd order triplet). This procedure employs the
remaining control-routine of this programme, procedure
Ac(x) (Figure 1,5) which is a complex system-procedure
that contfolg several basiceprocedures, It generates
the thick system and its 3rd order aberration coefficients
from a given set of shapes and thin lens parameters,

Although bending and Ac(x) are the largest
control-routines it is clear from the flow chart of
Figure 1,2 that the procedures basic=glasses and compound=
parameters Figure 1,3 also play significant roles, They
allow a smooth progression from the data through the
initial solution to the 3rd order triplet, Also they

make the business of altering the programme for the
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generation of a triplet of a different structure a

trivial affair, If, say, we want to construct a Tessar
programme from our type 121 programmes, thén only simple
changes are required in the control-routines, For example,
when constructing the cpntrol-routine'compound—parameters
(Figure 1,3) for the Tessar, §

is equated to ﬁb’ $. and ¢4

2 3

become functions of the k' of the lens group c of the Tessar

and the separation d5 replaces dé, Of coursey d6 is retaine

ed elsewhere as the thickness of lens 4,

Thus in general the changes required in the basic
programme for a change in triplet structure consist of the
following:

(1) change of a few subscripts,

(2) alterations in a few procedure calls - simple numerical

~or parametric . changes,

(3) replacement of a single command by a double command or
the reverse, as in procedure compound=-parameters of the
Tessar programme,

However, what is most important is that these
alterations are confined to a small number of instructions
in the five controi-routines.

The schematic form of the programme®s flow chart
(Figure 1,2) shows very clearly the cybernetic-nature of

the optical design process, It is evident that the process

is one in which the observable quantities are a set of
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input-parameters and a corresponding set of output-

parameters, In this work with the type 121 "inpute

-

parameters' are the thin lens parameters @,76, kt, P, L,

S S N, 4¢.. N V., e.o V4, and the output-

1?2 727 747 71 4 1

parameters are the thick lens "performance-parameters'

T, S

. , )
Rl’ R2 ccacas R8’ R9 (R9 = focal length).



BASIC PROGRAMME (BP121)

BEGIN

READ DATA

COMPUTE

BASIC 11
- GLASSES

INITIAL

SOLUTION | 12

COMPOUND

PARAMETERS| 13

BENDING 1-4

PRINT
LENS 15
DATA

END

Fig. 1.2



SUB-ROUTINE (1-3) COMPOUND PARAMETERS

BEGIN
¢11= ¢a
¢2 = ¢bx k1
d3:= Op* k2
= bc
d3: = tq
dg: = tb
END

Fig., 1.3



SUB-ROUTINE. BENDING
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ASSIGN
INITIAL

SJ and de

1
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|
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Fig. 1.4
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COMPUTE
309 ORDER

ABERRATION
OEFFICIEN

SUB-ROUTINE Ac(X)

BEGIN

I
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|
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COMPUTE
THIN LENS
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Fig. 1.5



SUB -ROUTINE INITIAL SOLUTION

BETIN

COMPUTE
INITIAL
SOLUTION

DATA

y:=07
]

S:=0

S:10 = _ STOP -NO SOLUTION

I=

o =AW ety)
|

Mob:= Y- 90
‘ 1L
.46 <
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>_
Y:i=Mob COMPUTE
THIN LENS
- S:=5+1 DATA

END

Fig., 1.6
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CHAPTER 1,4 A PRELIMINARY STUDY OF SOME 3RD ORDER
SOLUTIONS OF A TYPE 121 SYSTEM VERSUS k!

USING FAMILIAR TECHNIQUES.

1,4,.1 Introduction,

In this chapter a preliminafy study of some
3rd order type 121 triplets that are generated from a
given set of glasses and thin lens residuals is described.
From this work, we are able to elucidate some of the
properties that the parameter k! brings to the triplet
family in the early stage of the design, By the early
stage, we mean, the stage at which the system has specif-
ied 3rd order co@a, astigmatism and distortion and also

has its spherical aberration corrected to 7th order,

1.,4,2 General ‘Discussion of Triplet Properties and Design.

Methods.
The initial design methods for triplets'of-

. o1
Cruickshank(z'l’ 2'2), Hopkins(4 3) (5.1)

s Kingslake and
others, are very similar, Cruickshank?®!s method differs
from other methods in two particular instances, initially
in the choice of one of the thin lens parameters ané in the
final stages of design, possibly, in the order to which he
adjusts the aberration residuals before resorting to ray-
tracess (However, since'the publication of Cruickshank

(2.4)
and Hills in 1960 it is expected that the 7th order correcte.
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-ion of spherical aberration using Buchdahl coefficients
is now commonplace,)

The systematic design methods used by Cruickshank
form the basis of this preliminary study,. In his approach
to the initial design of the type 111 triplets he introduces
the thin lens_parameterﬂQ and uses$ it to control spherical
aberration, Thus for a given set of glasses and thin lens
parameters P, L and T he finds that the 3rd order spherical

(2.1) function of &

aberration is an approximately quadratic
(for -1<X¥ <o),

He also shows that the spherical aberration curve
may be raised or lowered by changing glass valueé. Further-
more, it is mentioned by R.E. Hopkins that changing- the

Petzval sum(4'3)

also shifts the spherical curve vertically,
Therefore for a given set of glasses it is possible to find
many 3rd order triplet solutions with specified marginal
spherical by adjusting A’ and P, Of course, generally, the
designer intuitively aims at a small Petzval (thus restricte
ing P), so that in the case of a simple triplet he would
most likely look first toX” and then to the glass constants
in order to optimize'spherical(z'l).

As for the basic chromatic.parameters L and T it
is generally accepted that they affect only the chromatic
residuals éignificantly and so after ¥ and P are determined

little can be done with the design, apart from small changes

R, and R

29 Rg The point coming out of this

in residuals R 5e
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is that, with an ordinary type 111 triplef, once the glass

is fixed then}x(z'l) is the only significant parameter left
for adjusting the sphericél,aberration. Consequently once

X is used to control the marginal spherical of the type 111
triplet then the triplet is determinéd, there are no further
geometf;cal degfees of freedom available for controlling

its zonal spherical, (As a result of more recent work"
Cruickshank uses ﬁ?to control coma and R4 to control spherical
of the type 111 triplet(z's).

Consequently if a Cooke triplet design has large
zonal spherical nothing can be done exéept to start again
with either a modified or a completely new set of glasses,
This is the point made by Cruickshank that any improvement
in triplets liés with glass selegtion and therefore the
design is limited because the real glasses from a set of
barameters taking discrete values, He suggests that this
might be overcome by using fictitious glass .values or their
equivalent, thelparameter kt, This brings us to the reason
for tackling the type 121;- it is expectéd to offer some
control over zonal spherical and thus gi&e a triplet of
wider aperture than the £/3,5 of ordinary tripletss

Of course it is well known that cemented(ls’ 16)
surfaces provide éontrol,over higher order zonal spherical
but it seems that little'systematic knowledge has been

acquired about them, The fictitious glass concept, however,

is suitable for the systematic study of systems with cemented



surfaces and the type 121 appears to be a suitable type

to start with,

1.4,3 Initiating the Preliminary Study of the Type 121,
We have shown theoretically iﬁ Chapter 1,2 that
for a given set of glasses the 3rd order triplet of the
type 121 cén be computed from the set of basiceparameters
@,}0, P, L, T and k?*, This is one more parameter than
in the set for generating the 3rd order type 111 triplet.
It has been shown(z.a)'that'the'3rd, 5th and 7th
order spherical aberration coefficients of the type 111
triplet are quadratic functions of ¥ for a given set of

glasses, basic parameters (%, P, L; T) and 3rd order

residuals (RZ’ Rss R5). Thus we may write:

) 2

G, = a  + af” + azx 4,1
- 2

My =b +b¥ + by 4,2

~ 2 '

Iy = c°.+ c£¥'+ ij . 4,3

Now since the transverse spherical aberration residual to

7th ‘order is given by(13'2’ 2'4):

t

3 5 o 7
€Sph = G&e +/“1(. + T}f + 0(9) 4,4

Then it follows because of equations 4.1, 4,2 and 4.3 that
1
éSph of the type 111 triplet is also a quadratic function

of X and we may write:

. , |
é,;ph = d + dlx + d,% 4,5

69
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where d = a €+ b €+ c é1
o o o o
d1 = ale3 + b1€5 + c1€7
d, = aze3 + b2C5 + c2€7
(Note: Géﬁh will be taken to mean the predicted spherical

aberration to 7th order urnless stated otherwise,)
Thus with the 3rd order type 111 triplet the

: t
predicted spherical aberration curve of ES varies as in

ph
(2.8)

Figures 1.,7.1, 1.7,2, 1,7.3 These figures show how

the sphérical aberration curve Géph versus¥ varies with the
basic-~glass parameters Va and Vc and also, with changes in
the Petzval aberration coefficient G .

The curves show that for any given set of basic=

glasses and basic-parameters there are two values of ¥ at

which the spherical aberration of the 3rd order triplet is

ZeTo, The solution on the left is called the left-hand

(2.1) (4.3)

solution or left solution and fhe solution on the

right is called the right-hand solution or right solutiom,

The spherical curve may be moved vertically b&

(2.1, 4.3)(0r G;)(Z.é)

"changing P s the glass in the first

element or in either one of the crown elements and the

(4'3). Indeed the curve may be

thickness of the elements

moved so far vertically that there are no solutions with
t

Géph = R/ =0 or it may be moved just far enough to make

the solutions coincide when the curve is tangential to the

7(/-axis.

70 "
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In view of the above properties of the spherical

curve of the type 111 triplet the preliminary study of the

type 121 has been devised to find how k! affects this

spherical curve, Thus the questions examined in this study

are as follows:

(1) Are the spherical aberration coefﬁicients ( G},/bl,qvl)
and the marginal spherical (eéph) reasonably approxe
imated by quadratic functions of,%’when k* is constant?

(2) What happens to the spherical curve when k! is changed?

1,4.4 Selecting the Initial Values of the Basic~Parameters,

In order to start this preliminary study of the
type 121 triplet we have first to make a glass selection,
To simplify this selection the well known practice of making

(1, 2.1, 3,2)

simple triplets from two glasses such that

(N, V) = (N_, V). This makeslg = ¢ =1 and leaves only

a’ c?

c(and/S as effective ”basic~g1aés parameters',

In the selection of of and/3 we have been guided
by the wish which was expressed earliér, to construct a
large aperture system, This, it has been shown, requires
a higho and a high/g (2°2), Also we note that it has been
found that large & values give long systems and therefore
this must be considered when excessive length is undesirable,
It is also a general rule to make the front énd back compon-

ents of a triplet of high N, High V glass and the middle lens

of low N, low V glass,
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Thus the glasses and the initial value of k!

chosen for the preliminary study of the 3rd order type 121

tripleté have been chosen so that the basic-glasses comply

with the selection principles outlined above so that they
giveod = 1,6975 and /2 = 1,0429,

These real glasses are the following Jena Types:

Type N v

d d
lens 1 Jena SK16 1.62101‘ 60,18
lens 2 Jena BaFlOy 1,67038 47,31
lens 3 Jena F8 1,5959 = 39,13
lens 4 Jena SK16 . 1,62101 60.18

and the initial k® = «2,50wwhich gives Ny = Np = 1,5498

V., = VF = 35,086, Finally the values used for P, L and T

are of the same order as values obtained for well known
triplet systems being P = 0.35, L = 0,20 and T = 0.05,
This leaves Aas the only independent parameter since RZ’

3* 75 9
triplet,

R R, and R, are implied in the definition of the 3rd order

1.4.5 The Spherical Aberration of the Type 121 versus®¥

and versus kt,

14445,1 The Basic=Programme for Spherical Aberration.

In order to study the dependence of spherical

aberration on the independent parameter X we have used a



modified form of the basic~programme called BP/S/121,

This programme cbmputes the 3rd order type 121 triplets
for either a range of X values between/’\c1 qnd}té in steps
of A%, or a single value of X for a given set of §, P, L,
T, kt, Rz, R
procedufe called Sph357 that generates the 3rd, 5th and 7th

3 R5. This programme contains a new basice

order Buchdahl spherical aberration coefficients (QE"MI‘ T})
of each triplet and from these also computes the predicted

t
transverse spherical aberration Eép (equation 4.4).

h
The construction of this modified programme BP/S/121
is.the first example of the technique used throughout this
work to simplify the writing of these design programmes,
The flow diagram Figgye 1,8 shows that the new programme
consists essentially of the linear assembly of one controle
routine called T121 and a basiceroutine called Sph357,
The control-routine reduces the body of thg basiceprogramme
(BP121) to a single instruction (see Figure 1,8), Thus all
the complexity associated with generating a 3rd order triplet
is.reduced to.a single instruction or operation in this and
in all éuture programmes,
Thus for example, from the set of data which

consists of the values selected above and also suitable values

for the other parameters as follows:



BASIC PROGRAMME BP[sf21

BEGIN
READ
DATA
BEGIN _-___________\
X=X
3\ ,
COMPUTE c ::DUET‘E
BASIC SYSTEM
GLASSES (T121)
,\-:i‘
INITIAL 'yC PUTE ’ X:=X+AX
SOLUTION 35P s‘gﬂjmusmc BL R
COEFFICIENTS
(Sph 357)
COMPOUND
PARAMETERS ORINT
LENS
DATA
BENDING )
XX —=
END
>
END

Fig., 1.8
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N, = 1.62101 V, = 60,18 d, = 0,1
N, = 1,67038 V, = 47,31 d, = 0,07
N; = 1.5959 Vy = 39,13  dg = 0,02
N, = 1,62101 V, = 60,18 d, = 0.07

§ =1 R, = 0 S, = 0.7

P = 0,35 Ry = 0 S, = =2.0 approximate
) ' ‘ shapes
ide = 0,2 R5 =0 54 = -0.4

T = 0,05 €= 0.2
kt = 2,5
and X = ~0.5

the programme BP/S/lZl has generated a 3rd order type 121
triplet, In doing sé it has supplied the essential details
of the system at the various stages which are shown in
Figures 1,1,2 and 1.8, Thus after reading in the data it
has computed the following:

(1) The Basic Triplet.,

g = 1,7146 ° . N_ = 1,62101 V_ = 60,18

a t =0,16709 2 - @

P, = -3.1038 a N, = 1.54983 V, = 35,085
t,=0.16722

p= 1.8818 . = 1.62101 V_ = 60,18

(2) The Initial Arrangement (Thin-Lens Type 121)

= 1.7146 S, = 0.61190

p,= 2.069; t,=0,16709 S, =-2,7336

§,=-5.1731 t,=0.,16722 S, = 0.32753
= 1.8818 S, ==0.35334

4 4
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(3) 3rd OrderzTriplet (Thick-Lens Type 121),

3rd Order Residuals

c, = 2.22522 dy G; = 0.1137
c, = -0,585687 d, = 0.1 0, =0

cy = =2.52857 d, = 04093184 (3 = -0.055215
cy, = =5.58035 d, = 0.07 @, = 0.165644
cg = 2.862875 d. = 0,02 G, =0

cg = 04998400 d, = 0.1095

c, = -2.087722 d, = 0.07

Finally it has computed the spherical'aberration coefficients
and then from them computed the marginal spherical for the

given 6 = 0.2 which is equivalent to an f/2.5 system since

fr =1, Thus we have
0; = 0.11370
/ﬁ = 7.3268
'71 = 557,06
€t 01 384'
and . Sph = 0., 0

1.4.5.2 The Effect of X and k! on the Spherical Aberration.

The above example has been repeated for the range
of X from %1 = 0 to ?(2 = =-1,0 in uniform steps of AX = 0,1
and for k' = =2,22, -2,50 and ~-2,.857, The wvalues of G},

1
the different values of k' in Figures 1,9, 1.10, 1,11, and

t ' .
M T. and éSph obtained are shown plotted against X for

1,12, These curves are closely approximated by quadratics

t
in 2;. Thus the behaviour of GSP of the type 121 when k!t

h
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is constant, is similar to that of the type 111 when, for
.example, Va is constant (Figure 1.,7,1), However, it is
evident from the figure that increasing k? raiges the
spherical coefficient and spherical aberration curves and
decreasing k! lowers them, This is a very useful property
because simply by varying k' a range of triplet right and
left hand solutions may be obtained with their marginal
spherical specified to 7th order, (We will call them R
solutions and L solutions.)

Thus with the parameter k' the designer can
accomplish what he normally has to do with real glasses or

the Petzval sum in the design of the type 111 triplet,
] -

(See Figures 1,7.1, 1.,7.2). Thereforeéf?étitious glasses

e, .
w

seem to be as effective aé}féél glasses'in shifting the
spherical curves, |

With the data of the above example R and L solut-
ions are available from near k' = -2,66 to at least k' = -2.,857,
The next stage of this preliminar? study,which is discussed
in fhe following section}deals‘with the selection and develop~-

ment of solutions in this region,
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144,6 Right and Left Hand Solutions versus k',

1,4,6.,1 The R and L. Programme,

For each k' chosen in the region of the triplet
solutions there are two sblutions,vthe'well known right
and left hand solutions of a triplet system, These are
computed with a programme LR/BP/S/121 that is derived very
simply from the programme BP/S/121; its flow chart is Figure
1,13, For convenience we will call it the R and L programme,

There are two parts io this programme, The first
part is merely BP (see Figure 1,8) which is arranged so as to
produce three separated points}E on the eéph-curve for the
purpose of fitting it with the quadratic inﬂﬂ?(equation»4.5).
The second part computes the approximate solutions X . and

L

%'R that make € = R1 by solving the quadratic equation,

t
Sph
(RI is supplied in the data), - The remainder of the programme
iterates the sub-routine T121 (see Figure 1,14) about the

: . .t + =5
region of either )LL or 71R until €Sph = R1 - 10 7, In the
early stage of the design which we are studying now, R1 is
set to zero, but it may be given a value other than zero by
the designer in order to balance the higher aberrations in the

final stagesiof the design,

1,4,6,2 Controlling Spherical with k',

The first solutions of the type 121 with R; = 0

are at A, and A, on the € ~-curve at k! = 2,857 (Figure

t
2 Sph
1,12); the points P, and P, appearing near A, and A, are

# For convenience we have used X = 0, -0.5, -1,0,



PROGRAMME  LR|BP|S|121
BEGIN

BP

SOLVE
QUADRATIC
IN X FOR

XL, XR

- P

| TERATION SPHERICAL
SPHERICAL. RESIDUAL

(Rq)

SUB-ROUTINE] ADJUST
N

Fig, 1.13




SUB-ROUTINE ITERATION SPHERICAL

BEGIN
COMPUTE
NEW
COMPUTE X
3'dORDER
SYSTEM
(T 121)
Sph 357
Sph357
COMPUTE
3[dORDER
SYSTEM
S1 :=€sph | (T121)
| | -5 X =X+ AX
;|R1 "Sl'l'm > |
<
END

Fig, 1.14
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the solutions predicted by the quadratic approximation
whereas Al’ A2 are the actual solutions arrived at by the
iteration,

As we are aiming initially at well corrected

zonal spherical another pair of solutions (A A4)' with

32
smaller spherical coefficients, were chosen at k! = -2,66,
This new k' was selecféd by interpolating between k! = -2,857
and -2,5, Let us now examine the potential of both pairs

of solutions to see if one of the four is significantly

better thanvthe others,

1,4,6,3 Discussion of Type 121 Solutions.

#TABLE 5.1

Spherical Coefficients 3rd, 5th, 7th Order,

Left hand Solutions Right Hand Solutions

Ay ) Aj B
k! -2,857 -2.,66 -2.857 2,666
¢, 0.1536 -0.,2060 -0,0890 -0.3365
My -4.4078 -3.636 -7.9309  -4.710
71 14,2029 220.0 253,94 328.,0

At first sight (see Table 5.1) the solutions Ay
appears to have significantly better zonal correction than
the others because of its very small set of spherical
coefficients, However, this prediction is not supported
by the LA'-curves which have been obtained from actual

ray-traces and which are compared with the predicted LA'=-



Gmrves!,E in Figure 1,15, These curves show that there is
little to choose between the four solutions below £/3.5,
while beyond £f/3.5 there is ‘also not much difference between
them, because, they all suffer from massive under~correction,
. Even so, any of these solutions may be considered as being
sufficiently well corrected on axis for a system working at
a maximum aperture of.f/3.5. (In passing we note that the
prediction is better when the higher-order coefficients//‘f1
and‘T1 are small, (See Figure 1,15 where the solution A1
has best agreement between the predicted and ray-trace
LAtwcurves,.)
In order to further assess the potential of these
solutions we turn to the coefficients that describe the

(2‘8).that we need

off-axial aberrations, It is well known
only look at a few coefficients that are characteristic of
the 5th and 7th order comatic and astigmatic aberrations in
order to select the most promising solution at this early
stage, Previous workers in this laboratory have found it
is sufficient in the early stages of design to plét the
following coefficients in order to assess the off-axial
correction:

(1) for coma, the 5th order coefficientsxﬂ2 and»aﬁ and for

r-’
the 7th order /, and

2 15°
(2) for astigmatism, the 5th order coefficients-ﬂ4 and A%O
/T -~
and for the 7th order 4 and '11.

1
. t - &
% Predicted LA Céphje
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These coefficients have been computed for the
“systems at k! = «2,857 and -2,66 for the usual range of
?U= 0 to =-1,0 in steps of A?C:: -0.1., The results of
this work are plottea in four diagrams, Figures 1,16 to
1;19. In Figure 1.16‘we have these characteristic
astigmatic coefficients for k' = «2,857 and in Figure 1,17
we have plotted the comatic coefficients for the same
system& Similarly we have plgtted the same péirs of
astigmatic and comatic coefficients of the systemsat

kt = -2,66 in Figures 1,18 and 1,19, It is seen that k!t
has fhe same general effect on these comatic and astigmatic
curves as it has on the spherical curves, An increase in
k* raises them and vice versa,

It is evident from the figures that solutions
near # = -0.5 are the>most promising because their 5th and
7th order comatic coefficieﬂts are a minimum and aléo their
astigmatic coefficients are not excessive at this minimum,
Consequently if we proceed with the develdpmeﬂtof a_sdlut-

ion in the region of (X = =0.,5, k?* = -2,66) we are confident

that a'reasonable-f/3.5‘system may fesult. However, there

is no justification at this stapge for anticipating the

existence of a type 121 system that will perform well at

or near f/2.5. Indeed, in view of these results we are

inclined to believe that f/3.5 cannot be exceeded with the

type 121,
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1,4,7 Discussion of the Design Process as a Result éi

" Work with the Type 121,

It is clear that when the familiar systematic

design process outlined. in Chapter 1,2 is combined with

5th and 7th order coefficients the development of a

system of moderate field (less than 200) and aperture

(less than £/3.5) becomes a simple matter; especially

with a flexible programme like the one developed in this
work.,

Sovusing the well known systematic design process
we have arrived at the point beyond which systemafic design
ceases to be straight forward, léfgely'it seems, . because
fhere are no aberration coefficiénfs readily availablelfér
orders higher than the 7th (except for the 9th and 11th
order spherical'coéfficients).* The need for coefficients
of higher order than the 7th is obvious if accurate pre=-
dictions are to be made at apertures in excess of f/3,5.
This is demonstrated by thé divergence of the predicted
LAt~curves from those of the ray-trace LA'-curves in

Figure 1,14,

# (a) 9th and 11th order coefficients,'Buchdah1(13'4’ 13'8)
During this part of this work the Elliott 503 computer
could only handlge the simultaneous computation of a 3rd
order 5q1ution'and its spherical coefficients of 3rd, 5th
and 7th order, However, in a later part of this investig-
ation more storage became available which enabled the 9th
and 11th order spherical coefficients to be computed as
well, This is discussed in Chapter 3.2,
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There are only a few design principles available
for the design of modern pﬂotographic'objectives (that is,
systems with fields 20° and apertures £/3,5), Of the
few empirical principles that have emerged from design
experience it is generally accepted ihat the higher order
aberratio#s are fairly stable; it appears that they are not
significantly altered by small changes in the final design
stage, So, it is said, that they can be-off-set or balanced,
to some extentﬁ by an equivalent lower-order aberration
residual of oéposite sign, ft is said that this makes
geometrical optical design possible, This stability of
the higher order spherical aberration is supported obviously
by the pattern of the LA'-curves of the four solutions of
Figﬁre 1.15, Here, although the zonal spheriéal below f/3.5
varies within sﬁall limits from one solution fo the other,
that above f/3,5 remains almost unchanged be1ng hlghly
asymptotic, (The solutions are equally good below f/3 5
and equally bad above.) So this conclusion about Stability
seems to be tr1v1a1 in this case, Moreover we shali éee
that if we take stab111ty at face value as.W1th LA'-curves,
then we are likely to miss subtl@ behaviour beyond £/3.5

We are now faced with jhe.dilemma of wha} fo do
ﬁexf. The presént soiutioné predict. at the best an £/3.5
system, therefore, wé are left with the old adage ''change

the glass'" and start again’in an. attempt to control the
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higher orders,

To have to start again with another glass select=-
ion seems inevitable since the experiences of other designers
leads us to believe that the higher orders cannot be reduced
effectively by changes in the geometrical design parameters,
They seem to assert that the higher orders can only be off;
set by balancing them with the lower order residuals,
However, balancing is a compromise that only gives good
results at a particular zone of the aperture or a particular

point in the field,

1.,4,8 Methods of Design - Some General Considerations,

.There are two types of opt;cal design methods in
use today, The first is in the manner of the work descfibed
in this preliminary study of the type 121, This method*
assumes some-knbwledge of the whereabouts of the optimum .
region of the design parameters as well as the basic
behaviour of the aberrations with respect to the design
parameters, This method enaﬁles the designer to produce
workable systems of moderate aperture and field with a
minimum amount of computing effort, Such an optical design
me£hod is fashioned primarily by the need to conserve
computing effort,

%# Methdd is used to mean something more than process,

We have a design process but this can be used in
several methods,
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On the other hand, the Qpposite of this method
has come into being with the advent of digital computers;
it is "automatic lens design', With this, the emphasis
is on the complete removal of the designer.from decisions
in the optimizing of the design and almost no limit is
placed on computing effort with this technique, Although
this “méthod” of automatic design has enabled improvements

(6.2)

to be made in known systems theAdesigner is never
sure whether the programme has attained the best solution
for the type of design being studied, Doubt has been
vexpressed as to whether there are '"other valleys”(s’ 6'2X
in the multi-variable space of the design,

The method used in the rest of this thesis lies
between the two extremes of design technique mentioned
above, It is a semi-automatic method, In this new
approach semi-automatic design programmes which embody
the systematic design process of Chapter 1,2 are used to
map the 3rd, 5fh and 7th order residuals of fhe 3rd order
triplets which are generated in a régular pattern through-
out a range of the thin lens pérameters corre;ponding to
all real systems of, say, the type 121, From this mapp-
ing a set of design principles which incorporate the thin
lens parameters emerge for controlling the thick lens

residuals, especially at large apertures,. (We note, of

course, that the pendulum of fashion is moving away from



automatic design in some schools of research, In

(4.2)

particular R.E. Hopkins is one of the first to make

clear statements about the relative merits of the automatic
or semi~automatic approach to design, It seems that he
has also anticipated much of what has been said and done

in the programming of the design process in this thesis,)



SECTION 2,

MONOCHROMATIC DESIGN



€HAPTER 2.1 THE DESIGN PROCESS AND INTERPOLATIVE DESIGN.

2e1,0 Introduction,

In Section 1 we have discussed the familiar
analysis of optical systems of the triplet type and showed
how they may be generated from the 'basic triplet", From
this we have seen that it is possible to design a ''basic
programme' that simplifies the study of the triplet systems
of different constructions, Following this, a preliminary
study of the construction of a triplet of the type 121 from
a given set of glasses and thin lens parameters has led to
many possible 3rd order solutions that arise from different
values of kt, All these solutions are almost equally
suitable up to £/3,5 on axis, but they differ in their off=
axial correction,

However, our aim with the type 121 is to design
for an aperture of £/2.5 and so we have to decide which of

the solutions aboVe(4'3)

-will develop into the best wide
aperture system on balancing the higher order aberrations

with the aid of ray-traces, Thus conventional design

methods have led us to a more generalggroblem. It becomes

not just a question, in this work, of the design of the

tvpe 121, but the procedure that should be adopted in order

to design a modern photographic objective systematically at

large aperturés.
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A study of the literature shows that there is

"no _method at present for designing wide-aperture systems

systematically. So if we afe to do more than just find
a useful solution of the type 121 then our problemsis first
to discover if possible how to control the higher order
aberrations at %arge apertures in a systematic way and,
secondly, locate the best solutionvfor our requirements,
If we look at the optical design process in a
very general way we learn that all intélligent opticai
design is a cybernetic process(4'3’ 20, 21): being the
achievement of a goal through the monitoring of the input
'to a controlled process by feed back from its output,
An effective feed back controi can only be constructed
with certainty, when the relationship between the input
and output is fully understood, In optical design this

(4.3)

reduces to mapping or charting

performance parameters

versus initial design parameters before attempting to

satisfy some performance criteria, Thus the effectiveness
of a design process must rest inevitably on the accuraéy,
scope and significange of the maps it conétructs and uses,
This leads us on occasion to ask if the designer
has sufficient information for making predictions at various
stages of design or if he is guessing the behaviour of out-

put versus input, The designer may deny guesswork, saying



that he has adjusted parameters or chosen his solution as

(21)

a result of his experience or the experience of others,
having no need to pursue anything éther than the solution
of his immediate design problem with thé utmost economy of
effort, Howevér, in saying or implying this, he is
indirectly referring to a mental picture that has been put
together thrbugh years of design expefiénce. The weakness
here, of course, is that the controlled process may be:
constructed from insufficient and theréfore possibly mis~
leading information, Such design 'is not really syétematic.

It would appear that systematic design ceases
when the designer has to conjectﬁre about the behaviouf of
the performance parameters with respect to the design
parameters,

Throughout the literature we are regaled with
comments about'designer's tastes, referring no-doubt to
their different preferences in-the selection.of parameters
at various stages or levels'of‘the.design process, - This
widespread variation in the selection of design parametérs
and, consequently, in design teéhnique is to be expected
with the computing facilities and state of the theqretical
knowledge of the past, However, with the recent growth
of computers and compufer languages, coupled with the advances
in theoretical optics of the last 20 years, it is to be

expected that the design process is being better organized
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by 6ptica1 designers, In this work a serious attempt

has been made to do so, Finally we note that although

this fesearch deals only with triplet types it can be

argued, however, that the principles may have wider applicate~

ion,

2el,.1 The Design Process,

Let us consider the essential features of the
design methods that are possible with today's knowledge
and; in éoiéqing, try to find the preferred sequence for
the design process,

Although the various theoretical techniques
available to the designer may be employed in whatever
order he desires, neveritheless it seems that they should
occupy particular positions in the design process, This
is apparent when the design process is repfesentedAby a
flow diagram that is constructed with the>design procedures
arranged in a logical sequence as in Figure 2.1,

The design process as it applies to the triplet
system is depicted in Figure 2.1, It starts from the

"basic parameters" (é,??, P, L, T, N, N, N,V ,V

a VC)

c b?
passes through the thin lens solution to a set of 'perforw
mance-parameters' (91, ¢2, ¢3, ta, tb) which are converted
'with the aid of the shape-parameters into the thin lens

""fundamental parameters', the curvatures and separations,
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(These sets of different parameters are numbered (1) to
(4) in the diagraﬁ.) Then starting with the thin solut-
ion.”the 3rd order analysis'' generates the thick system
with prescribed 3rd order coma, astigmatism and distortion
by adjusting the shapes, Having qomputed a 3rd order system .
the designer is at pdsitioﬁ (5) in the flow diagram at which
he must decide how to assess the systém, whether to use.
aberration coefficiénts that are computed from paraxial
quantities or whether to use exact quantities that are
computed from trig-ray-traces, for example, spot diagrams,
O.T.F., etceo In this finallstaée of the design process
these quantities which we have called 'performance parameters"
are compared with a set of target valués or toleramces,
Although this discussion has so far been concerned
with the design process of the triplet it is evident,
however, that it can be;?ési}y corverted to the general
design process. For example, the suberoutine thin solut-
ion of Figure 2,1 could be replaéed by the thin solution
of , say, a telescope doublet and so on for all the parameéers
and all the othef stages, Clearly the design process
consists of a sequence of levels or degfees of appfoximat-
ion to the final system, It seems to the author that the
“breferred process' is the hatural sequence of these degrees
or levels of design,
In order to adjust the residuals to the target.

values many designers seem to prefer to use the thick system's
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"fundamental parameters', (the curvatures and thicknesses etc,)

that occur in position (5) of Figure 2.1, So, in keeping

(13.1) has created an

with this design technique, Buchdahl
analysis that gives the surface contributions of the
aberration coefficientsAand, also, has developed different-
ial coefficients of his aberration coefficients with respect
to the '"fundamental parameters'(curvatures, thicknesses etc,)

(2.4) have used both

Cruickshank and Hills (1960)
the Buchdahl surface contributions and the Buchdahl differ=
ential coefficients to improve a long focal length telephoto
design .of small aperture and field that was generated init-
ially from a set of thin lens parameters, Other designers(s),
in later work than theirs, have used large computers to
automatically optimize some thick systems with respect to
their '"fundamental parameters'', Thus all of these désigners
in the final stage of their designs start at position (5)
and confine their cYbernetic'procesé to a loop between

positions (5) and one of the assessment sub-routines (LA',

spot diagram, O.T.F., etc,).

20142 In terpolative and Extrapolative Techniques in Optical

Design,

As far as the author can discover all familiar

design methods appear to be based on '"'extrapolation' tech-

nigues rather than "interpolation' technigues, Indeed,

"extrapolation'" seems inevitable when the designer bases
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"hls design process on the "fundamental parameters"

(curvatures, thicknesses etc,) Also, since these parameters
do not embody the characteristics of the particular type of
system being designed, then the designer must explore
cautiously around the starting point in order to avoid’
unrealistic systems, Moreover, even if he proceeds
cautiously and achieves a useful system, he will not be sure
that it is the best possible one of its types

Under a heading '"Problems for the Future', which
he says have not been solved, Feder(s) sums up extrapolation
teébniques when he says: "I am unhappy about the rate of
convergence of any of the methods with which we are familiar,™
All these methods have in common one thing, they are all
extrapolative methods, They collect information about the
" behaviour of a function in the neighbourhood of a point,...
.This is similar to a blind man trying to predict the shape
of a mountain by feeiing the ground around him with a cane,"

So if a designer begins by assuming a set of thin
lens parameters or even if he starts with a real system,
then he is committing himself to an extrapolation technique,
Consequently he must proceed blindly, relying either on his
intuition or the decisions of his programme,

On the other hand, there is the ideal design
principle of interpolation, This means he removes supposite
~ion by mapping the entire design with respect_to all the

design parameters; at first sight a formidable task, Feder
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comments on this saying "It must have occurred to many
people that it would be better to evaluate a merit function
§ over a network of points distributed over the region of
the independent variables and to interpolate between these
computed systems, a solutiqn. However, when one calculates
the number of points necessary,. one is overcome by hopeless~
ness, If we suppose that 10 points are computed for each
variable, then it is necessary to compute for an eight=
surface lens 1025 times in order to make a workable network,"
Clearly Feder proposes working between the thick
lens parameters of position (5) of Figure 2,1 and a merit
function @ that is made up of several performance parameters,
This approach does not look promising with regard to either
the choice of the design parameters or the starting point
in the design process*. How can the designer have a real=
istic interpolativé method when he has chosen a set of
fundamental parameters (curvatures, thicknesses etc,) as the
independent variables? This means that he is going to let
the programme enter a multi~dimensional-space of unknown
structure in which it is allowed to £o11ow any p;th that
shows improvement in the design, The generality of‘this
approach would appear to be its downfall, For example, the
# R.E. Hopkins, London (1961)(4'1) Optical Design on Large
Computers says: "Experience with these programmes has
convinced us that it is not feasible to blindly explore

in a multi-dimensional space and reduce a Merit Function
to its lowest possible value etc.."
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eight surfaces of Feder's example are indistinguishable =
they can be varied in any order and, for that matter, so
can the other fundamental variables, such as, thickness,
reffactive index etc.. Consequently this process may
become either an aimless or an infinitely slow™ journey
through a multi~variable space that is fraught with |
impractical systems which appear without the designer
knowing how,

In addition to an unfortunate choice of independ-
ent variables (fundamental parameters), the choice of a
merit function @ as the dependent variable is unfortunate,
because its construction is such that it must be calculated

(4'1). This requires

for all field angles and aperture-zones
a huge amount of computation for each assessment, Consequent=
ly,although Feder and others who pursue a purely automatic
approach do propose interpolation they have not, it seems,
as yet, constructed or proposed a realistic cybernetic=
process,

The question now,_ as far as we are concerned, is
can we construct a workable "interpolative design process'

using established ''theoretical tools" of optical design,

We attempt to answer this question in the next section,

* Reference Kingslake, pp39-42, Vol,3, Applied Optics
and Optical Engineering,



2.163 A Limited Interpolative Design Method Using

Aberration Coefficients.

If we are to make satisfactory progress with the
interpolative method of design we must choose design
parameters that Ean be £reated in a particular ordér,

This will allow us the practical advantage of dividing the
design process systematically into manageable steps,

The ''basic parameters' are eminently suitable
because they have the neceSéafy}prgperties;ikhpynarebbbihA"
disfinguishable and separable, | We,éaw in Chapter 1,
Section 1, that they can be separated according to their
dependence on V and so we can divide the'desigﬁ process
into a monochromatic-stage and'a chromatic-stage. Also,
they are individually distinguishable and, furthermore, each
one can be associated with a dependent variable of a similar
type until a fairly advanced stage of design is reached,

While Workers5 such as Feder, seek to go from a
real system to an exact measure of its performance in one
step in order to assess and improve it, we, on the other
hand, propose to study the behaviour of the system in detail
at an earlier stage of the design process, Thus we will
be content initially with a complete assessment of the system's
potential to 7th order made with respect to its basic
parameters,

The Buchdahl coefficients of 3rd, 5th and 7th order

represent indirectly the behaviour of all the rays of all
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the pencils of the symmetrical optical system for a pre=
scri;bed cpiour;'this facty, it seems;'is often overlooked,
In contrast with this, the exact assessment quantities like
O.T.F. or the radius of gyration of a spot diagram only
contain information about a particular pencil of rays and
so an emormous amount of computation is required to gain

the same results as a single computation of the coefficients

(except in the final stages of the design of systems with
large apertures and fields when coefficients to 7th order
are not enougH.L

It has been established that the set of 3rd, 5th
and 7th order coefficients enabie us to estimate most
geometrical optical quantities with reasonable accuracy up
to a maximum aperture of f/3.,5 and a maXimﬁm field of between

° ° )(13.5)

20 - 30 , Buchdahl (1958 2.4)

, Cruickshank and Hills (1960f
This accuracy is sufficient for our initial purpose since it
is not our aim to measure the design potential with the precise
performance parameters (O.T.F., LA', etc,) at this early stage,
All we are aiming to do now is to understand how the main
featﬁres of the design vary with reépect to its basic paramet;
ers, Obviously, we must discover, initially, whether there
are several regions of equal promise or, whether is only a
single optimum region for a particular lens type that is con=-
structed from a given set of glasses,, For this purpose,
merely seeing how the relative magnitude of the coefficients

varies with respect to the design parameters should be sufficient
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This question has not been treated comprehensively by past

workers because of the enormous amount of computation

involved., No one knows conclusively how any system depends

on its design parameters to 5th order, let alone 7th order,

The only comprehensive reéults in the literature
stem from extrapolative'surveys of triplets, Cruickshank,

(as we saw earlier), has done a lot of pioneering work with
coefficients and triplets but in all cases his coefficient
surveys are restricted to small ranges of the basic parameters;
broadly speaking, his work is extrapolative(z’l’ 2.2, 2‘8).
Hopkins also has surveyed some triplet solutions but this work
is confined to the 5th order and it appears that his surveys
are extrapolafive also,

From this discussion we conclude that a “limitedlf
interpolative-study”-of a design with the aberration coeff-
icients and thin lens parameters (baSic-parameters).séems to
be the most logical and practical first stage in the design
process, Not just a study of a small region of one or two
thin lené paraméters but a systematic map of the coefficients
of 3rd, 5th and 7th order for a range of the 'basic parameters'
that will exhaust the design potential to 7th order, i This
will, of course, only map the design's potential with suff-
icient accuracy up to an aperture of about f/3.,5 and up to a

o(13.1, 13,5, 2°4).. Beyond these values,

field of about 20

#:Limited is used-heré to mean limited to a finite range &£
the parameters, However, the range, although finite, is
chosen to exhaust the potential of the design,
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we will have to resort to other means for mapping what are,
in effect, coefficients of order greater thani the 7th,
However, we will leave this .till later, All we want to
know now is where the best system is most likely to occur

when our approximation does not go beyond the 7th order,

2.1.,4 Implementing a Limited Interpolative Study of the -

Type 121,

Although by choosing the basic'parameters as design
or construction parameters and the aberration coefficients as
‘performance parameters, we make a limited interpolative study
pbssible, we need, however, to think about how we are going
to break the problem down, In view of our earlier discuss-
ion we will thinklof the system as being designed for mono-
chromatic work in d-light only and, thus, we will have no
practical need to be concerned With the chromaﬁic residuals
R6 and R7 of the thick system,. Consequently we will fix L
and T and think of the final design as being one of the
family of triplets with construction constants @, L, T,-RZ,
R3 and.RS.

in this the monochromatic stage are (X, k', P),

So all we have left as independent variables

If we vary the design parameters (¥, k', P) we can
generate a set of triplets with the same (@, L, T, RZ’ R3, RS)
and these triplet systems will have different aberration
coefficients or residuals, By doing this we will be mapp-

ing aberration coefficiént—space against (%, k', P)-space



79

for a constant set of values of (@, L, T, R, R3, RS)'
Consequently the process of systematic design will be
initially an interpolative-monochromatic-study in ()9, k',
P) -space, whereas the earlier work in Section 1 is only an
extrapolative-study in (X, k', P)=space anut the point

P=0,35with L = 0,2 and T = 0,05, Thus by mapping all

the independent variables of the ''monochromatic systém"

versus the dependent variables as completely as possible

Yo 7th Ofdéni wé will be working interpolatively in our

. .
. attick on the type 121, This approach is supported by

Buchdahl's remarks when he says: "If one proceeds up to

and including the 7th order terms one then has the con-

venient set of '"28 performance'' numbers describing the:
w(13,5 )

""monochromatic' behaviour of the system as a whole,

24145 Limited Interpolative Design Compared with Other

Design Techniques.,

The design process we will use does not allow the
designers?! taste or intuition to select alternative paths

or loops in the flow diagram, We assert that each selected

level or stage of the cybernetic design process should be

used in its turn to study systematically its performance

parameters versus the basic parameters before advancing to

the next more sophisticated stage., Thus in each new stage

new performance: parameters will be surveyed with respect to
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the original design-parameters which are the”Basic Paramet-
ers“of this work,

The different paths possible in the optical design
process are shown in Figure 2.2, The process can be started
at either position (A) or position .(B), Automatic design
is started in general at (B) with the specifications of a.
real system and‘passes directly into ‘the loop which is
denoted by path (3), The process continues in path (3)
until the performance parameters chosen By the designer
satisfy the tolerance conditions,

_Désigners in the past have mainly worked from
position (a). After generating a 3rd order system from
thin lens residuﬁls they pass into the loop denoted either
by path (2) or path (3), Mostly designers have favoured
path (3), that is changing fundamental parameters as soon
as their initial process has produced a crude real system,

The techniques for adiusting th; fundaméntal
parameters in path (3) are of two typés, being based on
either trigonometrical ray-traces or paraxial ray-traces,
The trig ray-trace methods ﬁsually involve direct calculat-
ion of differential coefficients from finite changes in
fundamental-parameters, This seems to be a nai&e approach
to éptical design; it relies too much on where the designer

starts his process, Also, it does not seem possible for

the designer to get a very clear picture of ''design trends"

because of the large number of parameters involved except,
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perhaps, when dealing with very simplefsfstems. This
direct approach to optical design would‘seem'to be defeaéed
by the overwhelming amount of computation required for the
complete assessment of an optical system, |

The dra@back of large amounts of computation has
been alleviated, to some extent, with the advent of Buchdahl-
coefficients, Thus, workers using path (3) héve been pro-
vided with the means for computing differential coefficients
with respect to fundamental-parameters analytically to 5th
order at least, (Cruickshank and Hills pioneered this

technique, 1960.)(2°4)

We have not shown details of the
path followed by this type of calculation, howevér it would
be included in the block ''change of fundamental parameters
etc,'" in path (3),

Cruickshank and R.E. Hopkins have made some use of
path (1) when they mapped 5th order coefficients of simple
tripléts with respect to some thin lens construction-paramet-
erse They have selected likely systems‘from these simple
maps and used some differential method, usually path (3), to
correct them, It is evident that all three paths of the

design process have been used by designers at some time,

Indeed, probably most combinations of these paths may have

been used, However, it does not appear that any have
proposed the thorough mapping that we have asserted is

necessary for systematic design,
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The limited interpolative method that we have
used starts ét position (A) and continues in path (1) until
a complete map of the coefficients of 3rd, 5th and %th
order versus the basic parameters is produced, Then the
most interesting region is selected and mapped in detail
'so as to predict the optimum system accﬁrately. This
optimum system initiates loop (2) in which the design
process continues until tolerances are satisfied,

The method we have used seems to follow the
basic rules of research, We appear to have usgd the optical
tools in the most suitable way, Initially we map the
phenomena with our coarsest instrument, the aberration
coefficients, in order to observe the whole potential of
the design, We follow this with detailed maps of promis-
ing regions, using more sophisticated optical tools that
approximate the real system more closely than the coeffic-
ients,

It is anticipated that by studying the type 121
triplet system in this general way, that useful design
principles will emerge which will help us to design other

triplets,
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CHAPTER 2.2 A LIMITED INTERPOLATIVE STUDY OF THE

MONOCHROMATIC TYPE 121,

2.2.,0 Introduction.,

Ideally, given a large high speed computer, all
that needs to be done for our interpotative survey is to
include, in the final stage of the basic programme, a
sub-routine that computes the Buchdahl coefficients and
then arrange for this programme to generate 3rd order
systems at régular intervals of 2&, k' and P. However,
the Elliott 503 computer used in this work is only large
enough to handle the basic programme and, therefore, we
have had to compromise and do this sort of mapping in two
stages; the first with the basic programme or some equival-
ent programme, and the second with a programme that was

written by P.W. Ford (1959)(12°1)

for computing the
Buchdahl coefficients of a given system,

The first stage does not require much data
preparation but the second involves punching up the
specifications of each system individually, So just to

"map a monochromatic design is a large task, but the results
seem to Have justified this extensive piece of preliminary
work.,

Instead of inSis£ing on éqgai interyals for each

of the basic parameters we gain an advantage by relaxing

this for 2?. This enables us to employ the left and zight
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hand solutions programme (LR/BP/121) which for each set of
values of the parameters (k', P, L, T, RZ’ R3, RS) auto=
matically generates type 121 triplet systems that are corr=
ected for 3rd order coma, astigmatism and distortion at

X = 0, =0,5, =-1,0 and in addition it generates the 3rd
order left and right hand solutions at X = %L and X = ;(R
and the turnipg point solution at X = R%P' Also, the
solutions are corrected for 7th order spherical, So now
the problem of making a network in (fv, k?t, P)-space.is no
T

more than arranging sets of curves like those of UE’ALI’ 1

1
and(fsph of Chapter 1,4 in a rectangular array, As for k!
and P it has been found that by taking k! in steps of -1 and
P in steps of 0,1 a sufficiently dense network is formed,

Thus the network used here 1is

X = 0, =0,5, =1,0
by k! = =2, =3, =4, =5
by P=0.,1, 0,2, o... 0.6
at L = 0,2, T = 0,05, R, = Ry = R, = 0,

2.201 The Spherical Coefficients of the Monochromatic

Type 121 System versus ¥, k', P,

2e2el,1 Description of Results Obtained for the Spherical

Aberration Coefficients,

Although of necessity the spherical aberration
coefficients of 3rd, 5th and 7th order are computed before

the rest of the coefficients it is, for all that, the logical
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sequence in designing a system, In optimizing the spherical
aberration we are achieving .the optiﬁum axial image and at
the same time improving all the off-axial images.,

In Figure 2,3 the Spherica1<c6efficients of 3rd,
5th and-?th,o;der and the predicted marginal spherical ééph
in transverse measure are plotted with respect to X, k! and
P, This figure can be interpreted as a map of the zonal
and marginal spherical to %th order of the type 121 triplets
that can be constructed from a given set of glasses, Or, in
other words, we aré saying that in our cybernetic process, if
we hold %, L, T and the basic glasses (Na’ Va) and (Nc, Vc)
constant for the 3rd order 121 systems generated from..the
four real glasses, then the sphefical aberration parameters
GE, Aﬁ, 71 and ééph

Here, then, we are oBserving the potential of the "axial=

depend on (X, k', P) as in Figure 2,43,

monochromatic'" twpe 121 system to 7th order in a single .

rectangular array,
The essential quantitative features of this T
figure are: .
1, The horizontal scale of each set of rectangular axes is
90 = +1 to =3 in units of Ak = 1.
2. The quantities piotted’On the vertical axes are shown
~‘th’1fthd in being 07, Al;, T, and &
in e le and margin being U7, M4y, 1 Sph*

Their scales are shown on their corresponding vertical

AXES e
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3. The sets of rectangular axes from left to right occur
at intervals of AP = 0,1 from P = 0,1 to P = 0,6; the
value of P is above each éet oanxes;

4, The curves plotted on each set of axes range vertically
from k' = «5 to k! = =2,

5. All the systems have @ -1, L=0.2, T = 0.05,

R2 = R3 = R5 = 0, Na = Nc = 1,62101, Va = VC = 69.18.

This diagram is an array of two dimensional (¥, k') sect-

ions of (X, k', P)-space.

2e241,2 Discussion of the Properties of the Spherical

Aberration Coefficients,

The behaviour of the spherical coefficients and the
marginal spherical with respect to the basic parameters
(X, k', P) is very interesting, The graphs of this limited
interpolatiye survey of Figure 2,3 present an unexpectedly
clear and simple picturé of the design'pateﬁtiallof‘the
”axial—moﬂochromatic system', For each of the quantities
7 ’Akl”Tl

wards the X -axis from above and below as P increases, The

t . ’ X
and.G%ph the groups of k'-curves converge to-

rate of convergence is greater for the curves lying beneath
the }Q-axis than for those above it,
In the region close to k' = «3 the magnitudes of
t
AL ,jf , and € are less dependent on P than J7, Never=
1 1 Sph 1 A

theléss., the turning points of the (k' = «3)-curves of all
1

these quantities (Crl,lkl,rrl) and(%éph approach zero as P

increases from P = 0,1, This sﬁggests that there is a region



Fig., 2.3
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of (¥, kt, P) that gives zero marginal spherical as well

as nearly zero zonal spherical,

close to XY =

-0.5, k!

This "optimum region'" is

-3,0, P = 0,55 and in this region

we expect to be able to design a system with a nearly

perfect monochromatic image on axis for all apertures up

1
to about £/3.5, because,(Ti,/MI,qyl and(?sph approach zero

almost simultaneously,

This result supports the idea now proposed by the

author that this simultaneous convergence of the spherical

aberration coefficients versus the monochromatic basic

parameters is a characteristic property of triplets,

(If this is so then a significant principle can be estab-

lished,)

In varying k! we are changing the magnitudes of

the basic glass parameters (Nb, Eb) of the middle lens group,.
However, with the glasses chosen in this example of the type
121, we are, in effect, only changing one basic parameter
significantly, the parameter Vb. This is shown clearly in
' - = = = 60,1
Table 2,1 where for N = N_ 1,6210 and v, VC 60,18

we have:

Table 2,1
-2.,0 1,528 33,36 26,8
2.5 1,550 35,08 25,1
«3.0 1,561 36,02 24,2
-4,0 1,573 37,00 23,2
-5,0 1,578 37.51 22,7
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By close inspection of Figure 2,3 we estimate that.the
optimum k' lies about midway between -2,0 and -3,0 and this
corresponds to a basic glass with Vb = 35,08 (at k'-2.5).
Consequently the d;fference-between the basic V-values of
lens groups a and b is AV = (Va - Vb) = 25,1(at k?* = =2,5),

The parameter AV is used by R.E; Hopkins as a
basic- parameter in his study of a set of Cooke triplets or
type 111 triplets with Né = N_ = 1.6200, V_ = v, = 60,28,
which are almost equal to those of the type 121,

.In this study he, in effect, varies V., systematicw

b
ally whilst keeping the other basic glass parameter N

b
nearly constant by careful glass selection, Therefore,  in
this respect his study of the initial design principles of
the type 111 is analogous to our study of the type 121
‘except that, as we shall see, it. is extrapolative rather than
interpolative, |

He shows that the 5th.order Buchdahl coefficient
of spherical aberration (ﬁtl) and also the comatic.coeff-
icients- of the 5th order (Ai2,143,,u7 and/“B) "all tend to
become smaller for the solutions close to AV = 25 ', This
is significant in the light of our more detailed study of
a more complex triplet type. However, -for the present we
will confine our- comparison between Hopkins! work and the
type 121 to the spher1ca1 coeff1c1ents<r A&l, Tl and come

back to the other coeff1c1ents of the off axial aberrations

(4AZ,JM3,/R7 and‘ﬂs) when we look at the off-axial image.,
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The property thatl&l becomes smaller near

AV = 25 (observed by Hopkins) is also a feature of the

set of converging parabolas ofA%E versus (X, k', P) in
Figure 2.3; However, in order to be equivalent to
Hopkins® work it is necessary to replace (X, k', P) by

the Hopkins' parameters (K, AV, P), It can be shown that
these sets of parameters are equivalent 'basic-parameters"

as far as the broad features of the spherical aberration
coefficients of 3rd, 5th and 7th order of both this work

and that of Hopkins are concerned, Firstly, in both

studies the P=-parameters are measures of the Petzval blur
and, therefore, they are equivalent, Also, we have already
shown that k! can be replaced by AV and, so, we are only

left with Hopkins' K and our X, However, K can be shown

to be the simple function of;b; it is K = (¢a.yoa)/(1 -X)
where Yoa = 10, Thus the main effect of replacing X by K
will be to produce the mirror image of the parabolas of the
type 121, They will be modified only slightly in shape.

by the factor Qa because the power ﬂa is shown by Cruickshank
to be a linear function ofﬂ?. Furthermore, the comparison
of these two studies of the type 111 and the type 121 is
credible because the ''basic glasses'" are almost identical,

Hopkins has only computed the 5th order coefficients

of specific solutions of type 111 triplets and, consequently,
he has not observed that the 5th order spherical aberration

has a parabolic form; nevertheless, this has been observed
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(2.8)

for the type 111 by Cruickshank However, Hopkins

notices that the 3rd order spherical parabolas are raised

or lowered by changing either P or AV, These facts, when

considered in conjunction with his observation that he finds

My smaller near AV = 25 with P a maximum, supports our

Gﬁﬁclusion that he is observing some of the facets of

convergent behaviour similar to that of Figure 2,3,

Perhaps the most interesting feature of the results
of the '"limited interpolative survey'" is that the parabolas
of the three orders of spherical aberration behave in such
a regular way converging, it seems, to a single optimum
solution for the monochromatic '‘axial-system' of the type
121, Also, in the light of Hopkins' work this seems to
occur with type 111 triplets and, we conjecture, possibly
with more complex triplets, However, althoﬁgh we have
found evidence indicating that the simple type 111 triplet
has similar behaviour to the type 121, this "optimum region"
is probably not accessible to it, because DV can oﬁly assume
a finite number of di:screte walues (the type 111 basic
triplet is constructed from real basic-glasses), But we

avoid this glass-restriction when we create a basic glass

from a cemented pair of lenses, hence the type 121 has

exciting potential,
Thus it appears at this early stage that the

""basic-triplet" and its parameters the 'basic-parameters"
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are fundamental quantities in the design-process, So _much

so, that as a result of this work the author feels that

design principles based on the basiceparameters such -as

(X, k', P) or (K, AV, P) apply to triplet systems in

general, = Further evidence to support this idea will be

pfoduced in appropriate places as they arise in this thesis,

20262 The Petzval Coefficient and the Separations versus

(¥, k', P),

2020260 Introduction, -

Before looking at the other higher order coeff~
icients there are two types of quantiéiés that we will
consider now becausé their general behaviour bears on the
later work, The first is the remaining 3rd order coeff-
icient that is not controlled during the present design
process, namely, the Petzval coefficient G;. Secondly,
we want to consider the behaviour of the separations of
the lens groups of the triplet which are the quantities
d3 and dg of the type 121 (ref, Figure 1.1.2), It is also
appropriate that we choose to discuss these quantities
immediatély after the spherical coefficients because like
the spherical coefficients (CTI,ALI,’Ti) the quantities
Tar d3
LR/BP/121, whereas the remalnlng higher order coefficients

d, and d6 are part of the output of the programme

that are discussed after th1s section are obtalned using

1
the coefficient programme of P. W. Fo d( 2e 1)
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We look upon these quantities U;, d3 and d6 as

another set of performance parameters generated from the
L4 R u

basic-parameters (96, k', P) and so we plot them in the

same (5&, k', P)=network as before (see Figure 2,4 and 2,5).

2.24241. The Petzval Coefficient versus (X, k', P),

The Petzval coefficient versusX -curve (Figure 2,4)
may be approximated by a quadratic function of X and so once
more we find that we have groups of parabolas converging
towards each other as P increases, Only this time the
order of the curves is inverted, the bottom curve is at
k! = -2 and the top at k' = =5, However, although the
‘parabolas are converging they are, at the same time, rising
to higher values, and so, as is to be expeéted, the net
effect of increasing P is to increase(Ta. But balancing
the apparent ill-effect of 1arge(T; we see that as P approaches
the region of optimum spherical aberration of the monochromatic
system, between P = 0,5 and P = 0.6, (T; becomes almost

independent of changes in X and k', Indeed, it is clear

that little is to be gained by attempting to improve the

Petzval sum with the design parameters (X, k', P), So,
at this stage, we will accept fhe(T; associated with the

optimum spherical region and make no attempt to improve

it at the expense of the zonal correction,
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2¢202¢24 The Separations versus (X, k!, P),

In Figure 2,5 the separations d3 and d6 are
plotted on the same axes, On any pair of rectangular
axes in Figure 2,5 the left hand group of curves shows

the variation of dy versus X and k' and the right hand

group is that of d6 versus X and k!?, The outermost
curves of the two groups are k! = =5 and the innermost
curves are k! = =2,

As P increases there is only a slight tendency
for thevgroups of (d3, d6)—curves to converge towards
each other, but they do shift as a whole towards X = 0,

Thus the sum of the separations is almost unchanged for

all values of X,and P, This is equivalent to saying that
the length of the system is independent of X and P,

However, both d3 and d6 increase as k! increases and, there-
fore, it follows that the length of the system increases

as kt? (of AV) increases,

We note for future referencé that the intersect=
ion points of the cor?ésponding pairs of (d3, d6)-curves
shift towards %= 0 as P increases from P = 0.1, In
particular, the intersection point of the pair of (d3, d6)-
curves at k' = «3 appreaches X = -0;5 as P approaches
P = 0.6, So the intersection point of the k' = =3 curves
possibly passes through the region of "optimum spherical
aberration' which we estimate to be near the point (X = =0.5,

k* = =3, P = 0,55). Thus these systems may have equal
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air spaces, dy = dge
: (2.1)
Cruickshank . observes for the type 111
triplets that "an increase in P enlarges the front air
space, particularly for large negative values of Xy and
diminishes the back air space," This observation is
consistent with the behaviour of groups of curves shifting
towards 23:,0 as P increasés, just as we have in Figure 2.5

for the separations d, and d6 of the type 121,

(4.3)

3
R.E. Hopkins says in his discussion of the
type 111 triplet: ”This.simple triplet objective helps us
to understand mor complicated objectives, | For example,
if a wide angle objective is needed in a triplet;'one can
see that it is necessary to use a small AV, This keeps
the lens short and ﬁn becomes larger for any given value
of P,"

ﬁn is the estimated image height 4io 5th order
relative to the Gaussian image height, at which the
sagittal and tangential fields Crosse This image height
ﬁn is obtained from the Buchdahl coefficients G;'AAll and

AAlO being given by the equation

— - 1 , _
H = \20'3/(4«‘11 - Mlo)]z/o-seu(
(4.3)

(The equation quoted in R.E. Hopkinst® paper contains
two misprints,)

It is not possible to form good images beyond the interw

section point of the tangential and sagittal fields,
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However, we also have observed that the length

of the type 121 triplet (d, + d6 + constant) decreases as
=)

k! (or OV) decreases, and so the concept of the equivalence

of the basic parameters k! and AV and the fundamental nature

of these basic parameters receives further support,

Nevertheless, for the mpmeﬁt; we will not discuss whether a
short system or small AV will improve the field until we

study the astigmatic aberration coefficients.

2¢2¢3 The 5th and 7th Order Comatic and Astigmatic

Coefficients versus (X%, k', P),

2¢26360 Introduction,

The first part of the '"'limited interpolative study"
of the type 121 has been concerned mainly with the behaviour
of the marginal spherical aberration and the spherical
aberration coefficients, and; consequently, is a study of
the system?s axial potential, The point to be dealt with
now in the second part of the interpolative study is con-
cerned with mapping all the remaining aberration coefficients
of the 5th and 7th order and, therefore, is a study of the
system!s'"off-axial" potential,

These remaining aberration coefficients of the 5th
and 7th order of the systém are shown in Figures 2,6 to 2,17
in which they are arranged according to their aberration
type (after Buchdahl) and therefore neither the order of the

aberrations nor their numerical sequence is adhered to,
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They are arranged in three principal groupé: Figures
2,6 to 2,10 are the combined 5th and 7th o;dérrcomatic
or c-type coefficients, Figures 2,11 and 2,15 are the
combined 5th and 7th order or S~type coefficients and
Figures 2,16 to 2,17 are the 5th and 7th order coeffice
ients of distortion,

The nomenclature fér the aberration types has

(13'3). He defines two

been proposed by Buchdahl
aberration types that are based on the earlier work of
Steward and.calls them the ¢ and S types, This nomene
clature in effect classifies the coefficients according
to the type of deformation they produce in the point
image, denoting whether it is either symmetrical (S-type)
or asymmetrical (c-type)., (Some of the practical aspects
of this nomenclature are discussed and illustrated very
clearly in an example by Cruickshank and Hills(2’4).
In barticular, they show graphically how the different
aberration types of 3rd, 5th aﬁd 7th order contribute to
the blur patch of the point imageJ

Although the spherical aberration and Petzval
(2.4)

sum may also be classified as S~-type aberrations,
and the distortion as a c~type aberration, we prefer,
however, in this work, to call them by their usual names

and treat them as separate quantities from the c¢c and S

types as we have in Figures 2.3 and 2,4, Thus with this
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nomenclature, the five familiaf aberration types of
spherical, coma, astigmatism, Petzval and distortion are
retained when we study aberrations beyond the 3rd order,
This simplifies the cybernetic process of design, because,
each '"basic pérameter” can still be associated with a
single type of aberration when we include the higher
orders, Thus each coefficient is associated with one of
the familiar defects of the point image of the aberrated
system,

However, not only can the comatic and astigmatic
coefficients be divided into 3rd, 5th and 7th ordérs, but
also each order can be separated into linear, cubic and
quintic forms, This is illustrated in Table‘Z.l.l where
the components(2'4)€; and G; of the total aberration of a
monochromatic ray (¢, €, ﬁn) are shown resolved into . .
these '"minor forms', Thus the comatic types are associated
with odd powers of H and even powers of ¢ ; the reverse occurs
with the astigmatic types,.

It is evident that the linear forms of coma are
3

funcfions of ﬁ, the cubic forms are functions of H™ and the
5

quintic forms are functions of H , On the other hand, with
the astigmatic typés, the linear, cubic and quintic forms
are associated with 6, (3 and 65 respectively.

We have used the grouping of the’coefficients of

the Table 2,1 when plotting them in the (X%, k', P)-network,
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Thus each of the Figures 2;6 to 2.15 depicts the
coefficients of a particular '"minor form'" of the astigmatic
and comatic aberrations, For example, in Figure 2,6 the
coefficients that contribute the linear 5th order coma are
plotted in.the (X, k', P)-network, Similarly, in sub=-
sequent figures, are the coefficients of cubic 5th order
coma (Figure 2,7), fhe coefficients of linear 7th order
coma (Figure 2,8) and so on,

The remaining Figures, 2,16 and 2,17, show the
5th order distortion coefficient (44,,) and the 7th order
distortion coefficient ( 7;0) versus (X, k', P),

2¢2e361 The Comatic Coefficients versus X, k!, P,

The pattern exhibited by the spherical coeffic-
ients, the sphericaltaberrafion, the Petzval coefficient
and the separations of theAtype 121, persists with remain-
ing aberration coefficients; In all cases the curves of
each group converge towards each other as P increases
(see Figures 2,6 .to 2,17), However, the most interesting
feature is that all the comatic coefficients, Figures 2;6‘
to 2,10, approach zero simultaneously near29=‘~0.5, kt = 3,
P = 0,55, Therefore, the‘”optimum* region“ is expected
to give a system with almost equal air. spaces (see section
2.2.2,2) that has both the zonal spherical and the coma
nearly zero for all orders up to and including fhe 7th

order, Of course, this is only so if the system is used

# The contributions of G},.Aﬁ and 71 almost zero,
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in monochromatic light of the wavelength in which it is

designed in this case Ad.

20203462 The Astigmatic (S-type) Coefficients versus
X, k', P,

The behaviour of .the astigmatic coefficients is

different from that of the comatic coefficients, because,
although all the curves of each group of each astigmatice
coeﬁficient converge towards each other, they do not
necessarily converge to zero, For example, in Figure 2.11,

the /A, -group slowly approaches zero as P increases so that

10
near the "optimum region'" (X = -0.5, k* = -3,0, P = 0,55),

A&lo tends to zero, but, the Alll—curves, although converg-

ing, approach a value between 4L11 = =0,4 and -0.5;' (It

has been shown that a value °£~Axll = =0.,5 occurs with type

(2.8)

111 triplets, Cruickshank Thus in the optimum region

we may expect a negative residual of linear 5th order

astigmatism which from the point of view of balancing

2
aberrations, is useful in offsetting the positive (Ug +d,) H

sagittal curvature of field)
Further inspection and comparison of the other

astigmatic coefficients shows that the optimum region of

the spherical and the comatic coefficients is also the

optimum region of the astigmatic coefficients, Clearly in

the "optimum region' the astigmatic coefficients are mini-

mized since all except ALll approach zero simultaneously in
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this region; nowhere else it seems can this be improved
on in ( Xﬂ k', P) -space,

2.243.,3 Discussion and Comparison of the General

Properties of the Aberration Coefficients of the

Type 121 Triplet with those of other types of

sttemg,

R.E. Hopkins(4'3)

observed that the comatic
coefficientsAAz,/%3,/U7 andAMB of the type 111 triplet,
which has Na = Nc and Va = Vc’ Ubecdme smaller close to
AV = 25 at large P," Clearly this also applies to the
behaviour of the equivalent type 121 triplet (see Figures
2,6, 2.7) where k' = =3 is equivalent td AV = 24.2, see
section 2.,2.,1,2,
However, it seems that he has only observed part

pf the complete picture that we see now with the type 121
triplet, Fof it is evident from the complete set of
comatic coefficients (Figures 2,6 to 2,10) that not only
are the 5th order comatic coefficients A, Mo, U, and/’b8
near zero but, indeed, all the comatic coefficients of both
5th and 7th order converge nearly to zero in the ""optimum
region“. In view of this, and, the agreement shown to
exist between some of the spherical coefficients (O—i,lﬁl)
and the comatic coefficients (412,143,'a7,'48) of these
systems, we can suspect, therefore, that all the higher

order comatic coefficients of the type 111 converge in a

720
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similar way to those of the type 121,

The 5th order estimation of
1
- - 2
= a -
Hn Lz 3/(lk11 ’('{10)1 / 0.364

(see section 242.2.2), used as a measure of the off-axial
potential of a triplet, seems interesting when we examine

all the astigmatic coefficients of 5th and 7th order of

the type 121, AWe see by inspection of Figures 2,11 to

2,15 that most of the astigmatic coefficients of the type
121, like its comatic coefficients, tend to a minimum that

is near zero in the "optimum region', The exceptions are
'011' possibly 4110x and of course fhe 3rd order coefficient.
which ¢is prescribed to be —G;/3 (recall that 01 increases
with P), So in the "optimum region' the 5th order'ﬁn
measures the only astigmatic quéntities that become numeriece=
ally larger as the basic parameter P is increased, They are
the coefficients of linear 3rd order astigmatiém ((T%) and
linear 5th order astigmatism (4&10 and 4111). - Therefore

Sth order ﬁn would appeér, in view of this, to be.a valid
quantity for estimating the potential field of a type 121
system in the preliminary design stage, However, considerw

. . (4.2, 13,5)
ing the quality of predictions of 5th order coefficients

the 5th order ﬁn may be expected to give reasonable accuracy

only if the design is for moderate fields which are smaller

% '4&0 passes through zero near P = 0.5, Béyond P = 0.5,
My gbecomes increasingly negative likefajl.



than, at most, 20° semifield,

Indeed, Cruickshank(z's)

has shown that the 5th
order prediction of ﬁn limits the accurate estimation of
the field of a type 111 triplet to a maximum semi-field

angle of about 10°, Actually ﬁn to 7th order is given

by the quartic equation

4 2
_ t - -
where H = tan Vk and Hn = H/0,364,
This equation is reduced to the 5th order expression of

4

Hn by neglecting the H term,
Cruickshank has shown for the type 11l triplet
that when near V, = 10° the neglect of TiB and 7i9 causes

ﬁn to be overestimated by only 10% but this can increase

| 4
to between 50 and 100% near V, = 20°; at this angle the H

term equals the ﬁz term, Consequently, the 5th 6rder ﬁn
must be used with care being evidently applicable gnly to
systems of moderate field.

However, if ﬁn is found to be sufficient for

predicting the maximum useful field of a triplet in the

"optimum region'' then, it seems to imply that(T3,/M10 and

Akll are the only significant astigmatic coefficients in

the '"optimum region'', Theréfore, it seems reasonable to

assume since R.E. Hopkins finds that ﬁn is satisfactory

for predicting the field of his type 111 triplets (with N

Nc,f—'Va QFVC), that the astigmatic coeffi;ients of these

*® VL = W “*frf'égld“ﬁﬂg; AI%&JN %J bFWAHM\U;wQ

A Y

/22
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triplets converge with respect to (K, AV, P) in the same
way that those of the type 121 (with Na = Nc’ Va = VC)
converge with respect to (X, k', P).

Although/%'l1 increases while the other astigmatic
coefficients decrease, it is clear that some of these other
astigmatic coefficients have significant values in the
""optimum region'', Of courseAL4,AA5 andAﬂé, the coefficients
of cubic astigmatism, and’T4,fT5 andtTg, the coefficients of
quintic astigmatism,have the largest values and therefore
seem to rival and, perhaps, even surpass the significance of,
saysdhgqe. However, for exaﬁple, with apertures near £/2.5
and semi-fields of about V = 45° this is not so, because,
the relative significance of these coefficients can only be
judged by faking other factors into account, These factors
are, in particular, the aperture, field and either the focal
length or the overall magnification of the system, (i,e,
scale of the system),

For example, with the type 121, typical values
okall,444,,a5 and'“é in the ”0ptimum'regi§n” arelill = 0.4,

A = 8,4&5 = 4 and/*6 = 5, For the purpose of demonstrat-

4
ing thaf/411 = 0,4 is the most Significant quantity in this
example it is sufficient to compare the maximum contribut-
ions that/411 and (Li5,446) make to the Z~component of the
aberration residual C—'Z. Taking H = 1, (V = 45°) andf = 0.2

(£/2.5) we have the values shown in Table 2.2,1
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TABLE 2,2.1

(: 0.2,' -I-T = 1.0, fr = 1,0

Maximum contribution /
due to Aéz
“ ' _4
11 = -0,4 ‘AﬁleH = =-0,4 x 0,2 = -Q.S
A 3 =2 -3
A:s,ﬁé:s A (M4+/A6)( H =13 x 8x 107" = 0,104

Clearly the/Lll coefficient is.eight times more significant
in this case where;( = 0.2,-ﬁ =1, (We are not interested
in whethef a good iﬁége will actuélly be formed at H = 1

in this example, From this it seems that,A¢11 is the
quantity that limits the field of a triplet of moderate
focal length at large field angles (45° semi;fielﬂ;

It is obvious that with a monochromatic type 121
triplet design, nothing much can be done about the magnifude
of/‘A/11 with the degrées of freedom available because it
only varies slowly with either the basic parameters (X, k', P)
or their edﬁivalent the basic parameters (K, AV, P) (see
Figure 2,11), We also notice that nothing much can be done
about the magnitudes of M ,/M5 and 4%. |

Of course the dominance of/ﬂl1 (assuming 718 and

Tig

of fairly large aperture and field that have great disparity

are small) only applies to short focal length systems

between ( and H as we have shown withf’: 0,2 and H = 1,0,



s
Whereas, if we want a system with P and ﬁ‘nearly equal,

say ¢ = 0.1 (£/5).% and H = 0.1 (V = 5,8°) then# , ‘loses

its significance (Table 2.,2.2).

| H=¢ = 0,1, £*=1,0
Gk H =o \,p=o02 ,(“ =, 0
. A€,
_Maximum contribution _ B
‘ due to F o= Ofl F = 0.2
M = =0.4 i = 4 x 1067° 8 x 1q'°

4

M,o=8, U, =5 it 1.3 x 107 1.04 x 1073

However, this change in significance is of no practical
importance until the image is magnified either throﬁgh
auxiliary optics or by increasing the focal length of the
system, So if the sysfem has H = F = 0.1 and f' = 100mm
then/(/{-11 contributes éz = 4 x 10_4mm and 0“‘4’AL6) cone
tribute‘E; =1 x 10-2. Therefore, the significance of the
astigmatic coefficients is reversed with monochromatic
triplet sfstems of moderate aperture and field that have
iong focal lengths (100mm or more). In this examp1e1%4,
Jbs and ‘% contribute the significant part of the aséigmat-
1sm, Thus éystems limited by/&4,,“5 and/q6 are fore example
projection lenses, telephoto lenses and felescope objectives,
Although the dominant astigmatic coefficients of

systems with small fields, moderate apertures and either

long focal lengths or short focal lengths and auxiliary

magnification areM, , U andll  , nevertheless it seems that



&

‘'the maximum possible field is predicted by ﬁn and therefore

is always determined by T So we have the

3711 10°
general rule:cr3,l‘*11 and'bﬁo predict the limit of the field

A and M

andﬂi4,yu5 and/ﬂb determine the quality of the image at high
magnification, We can look upon this as a geheral rule
beéause this sort of situation appears to have been encountered
by Cruickshank’and Hills (1960) when they designed a
""telephoto system of very long focal length'" (1500mm) and with
a small ¢and ﬁb

(e = 0,071 (£/7), H = 0.1314 (V = 7.5°).
The pertinént coefficients of their final design stage IV are

examined in Table 2,3,

TABLE 2.3

Stage IV Coefficients of Telephoto Design,

M 4 = 23,03
/L( 5 = - 8.38'
/L(6 = «15,11
M o = =13,30
Ay = = 3404 » .
F = 0,071 H = 0.1314
Maximum contribution ! _— Yol -1
due to ' e:z (£1 = 1.0) €2 (£t = 1500mm)
=% -5 | -2
Mo M fH = -8 x 10 -12 x 10
3 =4 -5 -3
Ay Mg W +#4)0=H 5 x 10 7.5 x 10




— ' 1
Thus H = [?Gé/oull -‘Mloﬂz = 0,148 and tberefore

the predicted maximum semi~field angle V = arctan H - 8,5°,
In this final stage of the telephoto design the
contributions ofdill and of (415,4i6) are balanced,
However, the }ntéresting point here is that the predicted
seﬁi-field given by the 5th order H is 8,5° wﬁich compares
fairly well with the value of 7.5° given by the designers.,
ﬁowever, when H is computed to 7th order the predicted semi=
field is 7040', a remarkable agreement,
When we examine the.coefficients of this telephoto
of Cruickshank and Hills, in the iight of our experience

with the limited interpolative study of the type 121, we

observe a most interesting result which has apparently

gone unnoticed, We find great similarity in the broad

behaviour of the convergence of the coefficients of the

four final stages quoted by the designers and that of

triplets, (We have re-computed the 3rd, 5th and 7th order
coefficients of the telephoto in unit focal length for the
four design stages, see Table 2.4, In the published

results(2'4)

s the focal length véries slightly between
stages énd also only the 3rd and 5th ordersAare giveny,)

In particular we note that in going from stage 1
to stage 4 they have reduced”a4,/ﬂ5 anq‘“r, but they have
not been able to alter/"(—l0 and.ﬁgl appreciably; Algo, in
going from stage 1 to stage 4 the coefficiénts of both the
linear astigmatism @g) and the Petzval sum (0'4) increase,

whereas, allthe other 3rd order and 5th order coefficients

decrease,

/27
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Stage 1. Stage 2. Stage 3 Stage L4
-0,20767 0.13030 0.26212 0.086191
-0.019716 0.11597 -0,021919 0,055843

0.01392Y 0,058489 0.080015 0.10128
-0.040672 -0,040665 -0.055664 -0.010400

2.1024 2.1166 1.,8192 1.7101

-33,163 -27.180 -12,. 40y -13,153
-27.439 -21,287 -16.594 -12,889
-18,288 -14,190 -11,081 - 8.5970
-53.558 -46,619 -19.44L -18,894
-19,502 -17.098 - 7.0100 - 6.,8728
-32.973 -30,208 -13.64L8 -12.393
-10,020 - 6,4995 - 5,0588 - 4.5813
- 8.0LL46 - 6,066Y4 - 4.5227 - 4.2517
- 1.8727 - 1,0386 -43.,192 - 0.55896
-12,223 -10.821 -13,288 -12,448
- 4.,0766 - 3.8827 - 3.7467 - 3.L047
10.261 10.398 8.4776 7.3967
-556,76 -457.78 -55.994 -102,68
-682.84 -576.75 -256.78 -194,27
-512,61 -431.L6 =190, 41 ~14l4,57
-1239.9 -1097.4 -448,20 -3%88.69
-454,C7 -399.56 ~137.38 -125,05
-1227.1 -1121,7 -493,99 -410,60
-979.94 -870.19 -477.24 -412,08
-3L8. 4L -761.59 -411.72 -360.50
-362,39 -323,65 -171.05 -151,28
-48,.885 -45,245 - 23,347 - 21,394
-596,32 -526,58 -268.54 -2€3,82
-403,86 -363.60 -237.59 -236,08
-103,59 -92,9L4 - 50,351 - 50,074
-211,31 -192,38 -130.80 -131,94
-126.47 -95.062 - L4.638 - 47.804
-103.53 -85,920 - L4y,533 - 47.311
-12,201 -8.9326 1,2868 - 1,9156
-119,.29 -107.40 -124,36 -113,28
-24.04u1 -23,352 - 21,920 - 19.371
61,747 62,925 51.422 43,479

Table 2.4
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Therefore, since'U4'increas¢s while most of the
other coefficients approach a minimum, the designers are,
in effect, optimizing the system by inpregsing'a baéic
parameter (P), which is like the basic pérameter (P) of a
triplet. Clearly when we look at thejr'results from this
point of view, the pattern of convergence of the coeffica-
ients of 3rd and 5fh order, quoted by the desigﬁers of this
telephoto system, is very like the convergence that we have
found with the type 121 and tfpe 111 triplets, Thus, if
we consider their stages 1 and 4 to be the monochromatic
systems occurring at two values of a “basic-paramefer“ P,
then the lines joining the stages in coefficient-space,
approximate the contours of the'coefficients versus P,

This is so because the other basic=parameters are cohstant,
or nearly so in these final stéges'of the telephoto, We
see by inspection of Table 2,4 that the contoﬁrs so formed
will have the same trend as those of the monochromatic
type 121, that is, most of the 3rd and 5th order coeffic-
ients approach zero as P increases,

The similarity between the convergence of the
5th order .coefficients of the telephotd'and the triplets,

is found to extend also to the telephoto's 7th-order

coefficients (see Table 2.4), Therefore, even with this

teleph . we find that the spherical coefficients

of the first three orders tend to a minimum in the "optimum

region'',



Cruickshank and Hills have used an "extrapolative
technique' that is based on the differential coefficients
of the Buchdahl-aberration-coefficients formed with respect
to the '"fundamental-parameters' (curvatures, thicknesses,
etce) e However, in spite of it being an extrapolative
technique, and, even though we only have the results of
four design chgnges, the simultaneous convergence of most
of the aberration coefficients with respect to the '"basic

parameter'" P is evident, Therefore, the property of con-

vergence of the spherical aberration coefficients would

appear to offer a very simple way of finding the optimum

system,

In view of the evidence presented above, the

author believes that a design process based on finding the-

/29

simultaneous minima of the spherical aberration coefficients,

of 3rd, 5th and 7th orderj offers the most systematic way of

locating the optimum system, (It may well be the only
way of doing this systematically,) Indeed, this would
appear to offer a new approach from which, it seems, a
simple design process for optimizing optical systems auto-

matically could be developed,
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CHAPTER 2,3 THE POTENTIAL OF THE MONOCHROMATIC TYPE 121,

243,1 The Field of the Type 121 versus (X, k', P),

We assume that 5th order ﬁn is sufficiently
accurate for estimating the potential of small fields and
use it now to examine the potential field of the type 121,

In Figure 2,18,1 the 5th order ﬁn and the corres-
ponding semi-field angle V = ©° are plotted against P, k!
and AV at L = 0.2, T = 0,05 for %= 0, «0.,5 and -1,0,

The full lines show ﬁn at ¥ = =0.5, the broken lines ﬁnat
%= 0 and the dotted lines ﬁn at X = -1,0, This diagram
depicts, in two dimensions, the variation of the field of
the monochromatic type 121 triplet throughout the region
of (X, k*, P)-space or (X ,AV, P)-space that is expected
to produce any real system worthy of consideratioﬁ.
HoWever, Figure 2,18,1 is of interest only because it shows
the trend in ﬁn; values of ﬁh greater th;n 1 are extremely
inaccurate.(z's)

As P increases the field is augmented whereas
when either k! or AV increases the field is diminished,
Furthermore, since promising systems, in general, oécur in
the range X): 0 to -1,0 then it is clear from Figure 2,18,1
that ﬁfcén have little effect on the field, For example,
at (k' = «3, P = 0.5) in going from} = 0 to -1,0 the semi-
field decreases from 30° to 25.70, a variation of only 4,3°,

This is typical of the effect of X on the field in the
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MONOCHROMATIC TYPE 121
Predicted Field

I T .
-5 -4 -3 -2 k
2267 2318 2416 2682 AV

Fig. 2.18,1



optimum region; it is, at most, only of the order of a
few degrees,

The greatest value of ﬁn in Figure 2,18,1 1is
about 3,0; it occurs near k! = -4, P = 0,5 and ¥ = O,

Just beyond this point ﬁn has imaginary wvalues only and
therefore the semi-field of the type 121 cannot exceed
47°, Fields of this magnifude occur at some distance
from the optimum region and so the aberrations must
necessarily be very large and therefore such large fields
cannot be considered feasible,

It is evident that the field is not critically
dependent on any of the ''monochromatic parameters" (), k!,
P) and so wgrghooséiéyétems anywhere in a small region
centred on k! = -3, P = 0.5, X= =0,5 without causihg more
than a few degrees variation, Thus there is sufficient
freedom for optimizing the other aberrations in the optimum
region,

In Figure 2,18.,2 the'"7th order ﬁn” (see section
2.2.3,3)is plotted versus (X, k', P), This shows that
5th order ﬁn overestimates the semi-field, for example, at
k?* = =3, P = 0.5 and X .= -0.5 by 50%:vthe range of values
given by 7th order ﬁn for V is more likeithose obtained
for practical triplet systems, Also,it is evident that
in the "optimum region' the semi-field angle is still not
critically dependent on the basic parameters (X, k', P)

when we include the 7th order terms,

/3)
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2.3.2 The Five Types of Aberration Plotted in Three

Principal Sections of (¥, k!, P)-Space,

Now let us compare the five types of aberrations
and the field as X, k' and P converge on the optimum
region, In Figures 2,19, 2,20 and'2.21 several performance
parameters of the monochromatic type 121 are plotted in the
three principal sections of (¥, k¢, P)—spaée which inter-
sect the optimum region at the point with ){: -0.5, k'b= -3
and P = 0,5, L = 0,2 and T = 0,05,

In these diagrams the behaviour.of the aberrat-
| forngoctq & T
ions to 7th order, the.maximum semi~field”, (Hn) to 5th
order and the symmetry of the separations (R8 = dj - d6)
are compared, All these performance parameéers have been
.reduced to the same order of magnitude,ufor‘the sake of
clarity, by either multiplying or dividing itby powers of
ten as necessary. Also, in the interest of clarity, the
scale of some quantities is varied from one diagram to
another, for example the scales of R8 in Figure 2,19 and
2,20 differ by a power of ten,

The limited interpolative study has shown that
the coefficients of each type of aberratién have a common
behaviour, Consequently at this'stage it is sufficient
to plot one coefficient of each type in order to assess
the potential 6f:-the-type-12titriplet,~ Thus Wg%ﬁéVey R

‘ v
koo b

-

%# 7th order ﬁn will be 30% less than 5th order ﬁn'
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(A§2; 7}) for coma and (%44,'T

4) for astigmatism,

The scale factors of the performance parameters

are as follows:

Fig. 2,19 - ‘ Fig, 2,20 Fig, 2.21

T, 1071 - 107t . 107}
T 1 1 1
iy 10*! 10t . - qof!
T, 10F3 10t3 10t3
Z—éph 1_0"1 1072 102
R, 107t © 1072 ' 107!
Ay 10t! 10t T 10+t
T, 10%3 1073 1073
Ay 10 10 10
T, 1072 1072 1072
Mlz 1 t 1
The actual value of the performance parameter = graphical

value x scale factor,
The Figure 2,19 shows that the following quantit-'
ies, ‘ |
1, the spherical aberration ééph ='QE€3 +4“165 +,Ti€7,
(P = 0.2),
2. the sphérical coefficients 0, M4 , T,
3, the comatic coefficients /kz, 772,‘
4, the parametef Rg = (d3 - d6) which is a measure of
symmetry,

passes through zero in a small range of k'(=3<k<=2,7)

Cat (%= -0.5, P = 0.5, L.= 0,02, T = 0.05)«
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Parameters
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In this region residuals of zonal spherical and coma of
the 3rd, 5th and 7th orders are very small and therefore
the type 121 made in this region can be expected to be
well corrected for the zonal spherical and coma up to an

aperture of f/3,5 at least,

243.3 The Type 121 Versus Type 111}

The best solution lies near k! -2,7, At this
point we will expect its semi~-field to be less than about
200, its Petzval coefficient to be about 0,2 and its air-

spaces to be symmetrical, If a larger field is required

it can only be achieved by decreasing k% or AV (Figure 2.19),

or by increasing P (Figure 2,20) but unfortunately both

changes increase the Petzval sum, Since P has the most

serious effect on.the Petzval sum then decreasing k‘ appears
to be the most attractive way of improving the field but this
improvement can_only be achieved by introducing large negate
ive contributions from the spherical coefficients; GE is: the

worst offender, This means that larger fields are only

possible at very small apertures, For example, a semie

‘field of 20° (using 7th order ﬁn) is associated with

GI = «0,8 (see Figure 2,19), and if we set the zonal

tolerance LA? at ¥ 0.005** and as LA? =(T1(2 then the
max

system>with a 20° semi-field can only be used at apertures

# Figure 2,19 glves 5th order values V —690 2%0
Figure 2,18,2 gives 7th order value V= e 18

% 0,005 for ft =1 if f' = 100mm then tolerance is ¥ 0.5mm,
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of less than £f/6, This aperture at semi-fields of about
20° has been predicted for the type 111; Therefore it is
not worthwhile to aim f;r a large field with the type 121
when the equivalent performance can be achieved with the

simpler system,

2,3.,4 The Uniqueness of Type 121,

‘The uniqueness of the type 121 is demonstrated

/
<

by Figure 2,19, All the curves of this figure are con=-
tinuous functions of the basic parameters k' or AV and
therefore we are able to attain any point on them, On
the other hand the equivalent graphs of the type 111 are
discontinuous functions of AV and therefore consist of
sets of points determined by the real glasses,

Figure 2,19 shows that the minimum of the spher-
ical and the coma is very sharply defihed, consequently it
is very unlikely that this optimum region can be achieved
with real glasses; It seems far more probable that the
simple triplets of real glasses will take values of AV
only somewhere near the '"optimum region' at most, Thus
the simple type 111 triplet systems may have slightly
larger fields than the type 121 but their apertures will
be limited by the primary spherical aberration (since G&
is the most sensitive to AV of G},‘Ai, T}).

Clearly if we accept the results of Figures2,18
to 2,21 then there is no region of ( X, k', P)-space out~

side the "optimum region' that exhibits a real improvement
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of the field of the type 121 over that of the type 111
triplet without a great loss of image quality; Thus

if we seek a wide field at small apertures with a triplet
system, then we will not look beyond_the simple construct=-

ion of the type 111, On the other hand it is now clear

that if we want a high state of correction of zonal

spherical and coma at a large aperture in conjunction

with a moderate field then we will seek solutions in the

optimum region of the type 121,

Figures 2,19, 2,20 and 2,21 confirm the unique-
ness of the optimum region that was inferred from the
interpolative study of the coefficients; Moreover, Figures
2.,18,1, 2,18,2 and 2,19 also demonstrate the uniqueness of
the type 121 in that the curves of fhese diagrams. are con-
tinuous functions of the basic glass parameter A¥Y,

The rest of this thesis is devoted mainly to
developing the best type 121 from the optimum region with

the emphasis on controlling the zonal spherical aberration

between f£/3.,5 and f/2.5.

26365 Discussion of Design Principles Emerging from
Section 2,
The interpolative method of optical design that
has been developed in this section has’given-us a clearer
and simpler model of the design process, From this has

arisen the concept of the 3rd, 5th and’ 7th‘order aberrat-



/37
ions of the type 121, converging, with a few exceptions,
towards zero points that are contained in a small '"optimum
region'', This concept of simultaneous convergence also
accounts for many results obtained by other we}kers-for at
least simple triplets and also it seems it may even apply
to more complex systems such as the telephoto objective of
Cruickshank and Hills, Thus we feel that the design
principles established between the '"performance parameters"
and the basic parameters' of the type 121 triplet embody
general design principles and, therefore, can assist us to
understand other optical systems, We note that R.E.

Hopkins(4'3)

says, ''this simple triplet objective actually
helps us to understand more complicated objectives,"
As a result of the work of this section we

postulate that this optimum region is uniquely and simply

located by the minima of the first three orders of spherical

aberration coefficients, Thus for a given type of system-

constructed from a given set of glasses it appears that

most of the coefficients are minimized once the spherical

coefficients are minimized, After this it seems that all

that one can do is to make minor adjustments at the expense
of the axial image, ‘

With the type 121 we have the simplest arrange-
ment for getting continuous variation of the monochromatic
parameters, Moreover, with this arrangement we should be

able to create a type 121 triplet of wider aperture than.



38

the less flexible type 111 triplet and its derivatives
(triplets with a single lens for group b),

We are holding the '"basic chromatic parameters"
constant at this stage. However, we feel justified in
ignoring their effects on the monochromatic system because
other workers have found with simple triplets that they
do not affect the monochromatic design significantly,

But, of course, their observations mainly apply to apert=-
ures of £/3.,5 or less and therefore our assumption may have

to be modified later,
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- CHAPTER 2,4 OPTIMIZING THE COEFFICIENTS OF THE MONO-

CHROMATIC TYPE 121,

244,0 Introduction,

| In this chapter the techniques for locating the
optimum monochromatic system precisely are developed and
applied. Following this we discover how to control the
zonal aberration of the monochromatic system at larger
apertures,between £/3,5 and /2,5,

The interpolative study of the t?pe 121 has
established the general properties of the system with
respect to the basic parameters (X, k', P), As a result
of this work we are confident fhat there is one optimum
monochromatic system of large aperture, So now we are
concerned with finding a way of locating this system which
we expect to be the system with minimum zonal spherical and
coma for at least an aperture of f/3,5 and possibly for an
aperture of f/2,5, Since the coefficients of the type 121
converge in a very regular way we can seek the ideal system
by studying the behaviour of particular types of solution
(eege right hand, left hand etc.).

In the preceding work we have studied the 3rd
order triplet that has R2 = R3 = R5 = 0, L = 0,2 and

T = 0,05 but from now on we will apply more restrictions

to the correction state at each stage as we progress to=-

wards the final system, The first of these which we intro-~



duce in the next subesection will control the Petzval

curvature of the thick system,

2.4,1 Equivalence of P and R4.

We have three monochromatic degrees of freedom,
the basic parameters X, k', P which can be used to control
any three residuals of the thick system, Already X has
been used to control the marginal spherical residual (Rl)
to 7th order when finding the R and L solutions versus
X, k', P but now let us, in addition to this, control
the Petzval coefficient (Of4) with the basic parameter P,
Thus we will be generating type 121 systems with R1 = RZ =
R3 = R5 = 0 and 0,4 = Ry

have monochromatic 3rd order triplets with prescribed

which, in other words, means we

Petzval sum and with their marginal spherical zero to 7th
order,

| By specifying systems with.Qz = R, we are in
effect constructing a map of the performance parameters

versus X, k', R The question arises, therefore, as

40
to whether or not this map will differ greatly from the

(X, k', P)-map, that is, will the coefficients still

/Lde

converge in the same simple way in this new grid of (X%, k',

R4) as they do in the (¥, k', P)=-grid.
This is soon answered without recourse to ex-
tensive mapping of (X, k?, R4)-space; Simply by

inspection of Figure 2,4 it is clear that the variation
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of Gg:is very small -over a large range of’k, k', P and
consequently the map of the performance parameters versus
%f, k', R, will be essentially the same as the map of
% s k', Po ~ Indeed, the only significant change will be
a small change in the form of the curves; they will be
slightly flatter in the (X., k', R4)-grid. (This can be
seen by inspection of the (X, k', P)-maps.)

Thus the general behaviour of the coefficiénts
with respect to R4 is inferred from the interpolative
study of (X, k', P), Nevertheless although it is fairly
obvious, this behaviour, however, has been confirmed by
plotting some of the coefficients versus (% , k', R4) but
it is not considered necessary .to reproduce the graphs
here,

To sum up: at this stage we are seeking the
system that has:‘

1, Zero marginal spherical to 7th order

€Sph =R = 0+ (09) at f= 0.2
2., 3rd order 'coma zero, Ovz =.R2 = 0.
3, 3rd order distortion zero, G‘é = R5 = 0,
4, A flat-tangential-field, 303 + 0, = 0,

5, Minimum zonal aberration, i.e,, an optimum set of
spherical coefficients of 3rd, -5th and 7th order,
6. Specified Petzval, G‘; = R,
We propose locating this optimum system by mapp-
ing the spherical coefficients of the right and left hand

solutions in (k*t, R4)-space;
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2e442 The Pfogramme for Computing Solutions with

Prescribed Petzval,

The programme for computing the R and L solut-
ions with prescribed Petzval is derived from the earlier
programme that finds R and L solutions with frescribed P,
the programme RL/BP/S121,(Chapter 1.4), . In this new
version of the RL-solution~programme -the sub-routine T121
is iterated with respect to the basic parameter P until
the target value of Cré = R, is reached. This step is
performed by a new sub-routine TP121 (see Figure 2;22)
that is called in place of the sub-routine T121 in the main
executive control routine of the programme, This new

programme is denoted by the code-number RL/BP/SP121,

2e4e3 The Range of R

4;

If we plot R, against P for the R and L solut-

4
ions and extrapolaté the graphs we arrive at the upper
and lower limits of the Petzval residual R, , In Figures
242301cto 2,23,4 the range of the upper and lower limits
of R, is examined as k! changes,

From the theory of the basic triplet it is clear
that an initial arrangement cannot be found when P< O.
For example, at k' = =5 (Figure 2.23,1) P of the R-solut-
ion is zero at R, = 0.16 and therefore no R-solutions will

be found by the RL-programme below this value of R4. This

has been confirmed by the results shown in Figure 2.25,1,
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SUB ROUTINE TPI121

BEGIN
P:=PR |
COMPUTE
NEW
Py
T121
T121
51:=04
P:=F?|+AP
4851 >
ISI-RAI.IO
<
END

Fig, 2.22
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It is clear that the lower limit of P must be
known if we are to avoid costly programme failure when
making a large survey of an unfamiliar system, Therefore
it is advantageous to estimate the lower limit of P by
linear extrapolation of a simple exploratory survey, before

proceeding with a more comprehensive one,

2.4.4 The Spherical Coefficients of the R and L.

Solutions versus (k'l7R4LL
In order to exhaust the potential of the mono-

chromatic type 121 it has been found sufficient to compute

solutions at k¢ “5, =4, -3, =2,7 for R, = 0,14 to 0,22

4

in steps of dR4 = 0,01, The results of this work are
shown in Figure 2,24,
It is evident that the spherical coefficients

G} and,T1 of the R and L solutions of the monochromatic
type 121 approach zero in the region bounded by =3<k< 2,7

and 0,2 <R, < 0,24 at L. = 0,2, T = 0,05, Here, however,

4
My tends to a finite negative value as R4 increases from
0.2 to 0,24 and so there is no possibility of making/(aL1
zero although this can be done with Q_i and'Tl. But there
is the possibility of balancing some of the negative resid=
ual due to,AL1 with some small positive residuals due to

01 and‘TE.' This means, of course, that the '"optimum

region'" may give systems that not only have zero marginal

spherical but ones that also have the spherical coefficients
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of the first three orders alternating in sign as well,
A system having these properties can be shown to have two
zones with zero spherical aberration, the marginal and the

0,707 zone,

2¢4e5 Zonal Spherical Aberration and the Sign Pattern

of the Coefficients,

The spherical aberration to 7th order of the zone

of radius F is,
6;ph =T 7 M0 T.0

where 05 €% Pavon
Now if the marginal zone is corrected then the roots or
turning points of the zonal spherical equation (G%;ph)’
besides the root Qf@mm, are found by solving the three
well known equations(17'1’ 18, 19).

Thus 1f we set:

S - _ 2, ¢! 2 _
(1) CSph =0 , (2) df Csph)/df =0 (3) d (Csph)/d(’ =0

then these equations have the following roots

(e, 0= | waT

I
e-e, € - [t
3T

(3) p = |-3m0 x Jour -5 T,
157,

t
The shape of the:ééph curve depends on the order of the
signs of the coefficientsOH,lkl,qvl, consequently there
-y .
- are two possible forms whené}sph = 0 at P = fompe

They are:



¥
(1) There is a maximum or a minimum at the 0,707 x@w«f;
zone i‘ two successive coefficients are alike,

(2) There is a root at the 0,707 xfwsx zone if the sucs~

cessive coefficients alternate in sign,

2e4.6 Coincident R and L Solutions and Tangential

Solutions,
A better understanding of the way the spherical
(73 W‘
coefficients’ of the type 121 converge,by plotting G-l’ALIW“
71 of both the R and L. solutions on the same scale versus

R see Figure 2,25,1 to 2,25,.,4. A different set of axes

4
is used for each k?t,

The set of diagrams emphasizes how the magnitudes
of GE and 7’1 of the R and L solutions change at a much
greater rate than the corresponding Valueé of /Ll. Indeed,
A¢1 remains almost constant while (TI changes from large
positive to large negative values and while q«l changes in
the opposite manner to (U, Clearly the relative magnite
udes of the spherical coefficients change most rapidly near
the optimum region of (k!', P) that is around k! = =3,

R, = 0.20,

Now consider the behaviour of the intersection
points of each pair of R«L curves of each coefficient,
As k' increases from k' = =5 both the intersection point
of the (ri-curves and the intersection point of the /rl-

curves advance to the right while that of the Ailacurves

retreats to the left, This trend is reversed on passing
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through k! = «3, Figure 2.,25,3, Consequently there is
the possibility that the intersection points of the three
orders of spherical coefficients will occur at the same
~value of R4 at some point just beyond k! = -3, When this
happens the ééph-parabola is tangéntial to the X -axis in
the (X, kt, R4)~grid and Ul, Akl and (rl are a minimum
for this particular value of k',

Initial attempts to compute R and L solutions in
the range =3 <’k’4$;-2.7 with the programme RL/BP/SP121
failed as the intersection points approached each other,

For example, at k! = «2,7 (Figure 2,25,4), the RL-programme

failed to converge on solutions after R4 = 0.18, However,
the extrapolated curves of this graph of k' = «2,7 (enclosed
by the square) intersect near R, = 0,20 and this solution,

if it exists, satisfies the conditions that the coefficients
shall be a minimum and that they shall alternate in sign,
Since this optimum solution occurs when theégéph versus X
curve is tangential to the %:—axis then it is appropriate to
call it the '"tangential solution“.

The RL-programme fails to converge on either an
R-solution or an L~solution near the tangential solution
because of the very small Va?iatfbn Of<3ééh with A near the
turning point of the Eéph-curve. This causes the programme
to go into a loop of indefinite length when it iteratesézéph
with respect to 7:. (The unsatisfactory nature of this type

of programme was confirmed by later work in this region,
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Although no RL-solutions were found beyond R4 = 0,18 at
k* = -2,7 with the RL-programme, it was found later by
other means that the tangential solution existed at R4 =
0,22 showing that R.H. and L.H. solutions exist beyond
R, = 0.18), |

Thus, provided solutions are not sought in close
proximity to the tangential solutions then the RL-type of
programme is satiéfactory; Howevef, it seems that with’
the type 121 triplet, at least, that the most interestingv
region‘ié in the vicinity of a tangential solution,- .

Therefore, in order to proceed with: further development of

the type 121 a method for computing systems in the tangente

. . 6' _ . . . B

ial region of the Sph curve is essential,

24,7 Symmetrical - Tangential Solutions-and the . o -
Svmmetfy Parameter RB' - ®

The preceding work has shown that certain of the
tangential sodutions are the ones with the best potential
for correction of the zonal-spherical aberration to 7th
order but these 'solutions cannot be investigated with a
) ith X o In th ti
Sph wit . hn e optimum
region of(T&,Xkl andtTi of- the type 121, €

programme that controls €

¢
Sph‘1s nearly

independent of/}jso that iterations based on its depend=-

ence on;%7conyerge very slowly in this region, Therefore,

a performance parameter that is more sensitive to X near

1
the tangential solution thané;sph»and one that is also «

t
linked to the .behaviour OfE:Sph is required if we are to
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compute the optimum solution, In the following the
symmetry of the type 121 system is-sthn to have these.
properties,

The ()f, kt, P)-interpolative study showed that
as the(fsph-curve at k' = -3 approached the tangential con=

dition with increasing P, the separations of the components

(a d6) of the R and L solutions tend to become equal

3
(Figure 2.25)., Later, the symmetry-performance parameter
(R8) and the marginal spherical (ES '** (’ RD were
ph’ max

pPlotted in each of the principal sections 1ntersecting in
the optimum region (Figures 2,19, 2.20, 2,21%, This work
showed R8 passes through zero near either a minimum or a
zero value ofézsph in each of the principal sections,
. However, although this evidence suggests that the optimum
tangential solution is symmetfical, it is not conclusive,

The connection between the symmetrical solutions
and the tangential solutions is analysed in Figures 2,26
to 2,27, In Figure 2,26 the ( X, k!, R,)=coordinates of
the R and L solutions are plotted for solutions computed
from k' = -2;9 up to kt' = «2,7 with the RL—programme
(RL/BP)SPlzl). The graph beyond this point of Kf= -2,7
has been obtained by fitting curves to these results,

Clearly, coordinates of the turn1ng p01nt of each R -curve

of Figure 2,26 are the coordinates of the tangent1a1 solute=

i

ion such that 'XT -7(L =‘)(R, tg Kl = kb, (R4)Tg = (R,) =

(Ry) g (where Tg = tangential, L = Left-hand, R = Right=
hand}.
# Rg = dj = dg , 1ntroduced in section 2,3,2,

Y SN RN N VX R T T
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In Figures 2.27.1 to 2.27.4 the dependence of
the front and back air-spaces (d3, d6) of the R and L
solutions of the type 121 on (X, kt, R4) is established
as follows, The separations of the L-solutions against
k' are shown in Figure 2,27,1 where the intersection ﬁoints
have been found by extrapdlating the curves beyond k! = -2,7,
giving the (k!', R4) coordinates of the symmetrical-Le-
solutions, Simiiarly the ¥ =coordinates of these L-solut-
ions have been determined in Figure 2.27.3, This analysis'
is repeated for the R-solutions in Figures 2.27.,2 and 2,27,.,4,
So from Figures 2,27.1 to 2,27.4 we see that the R and L
solutions converge to idéntical symmetrical solutions such
that Koo =X =Xp, k&g = Kb = kfs (R gg = (R = (Ry)pa
Now on comparing the coordinatqs of the symmetrical solutiong

of . 2.2 ot ﬁ;m»%&my‘ Uras
rof Figure 2,26 we find that they are equivalent, Thus

?
Y =X ; k. = k! ; (R)) = (R,) and sinceQ? » = R, =0
SS Tg S5 Tg 4°SS 4" Tg Sphina, 1
” t - - t
at (;ch, kTg,(R4)Tg) then Rg = R; = 0 at ()css, kics (Ry)gg)e
. So the ‘link between R8 and R1 is proved,
The other property.we require in the performance

1
parameter that replaces € is that its differential with

Sph
respect to j(shall not approach too closely to zero as €éph
approaches zero. The superiority of R8 over eéph in this
respect is obvious in Figure.Z.Zl and also it is demonstrated
in the following numerical example, (The two solutions in

this example have merely been chosen for the sake of show-

-t
ing how small the variation of é%ph can be when k' approaches
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its optimum region near k! = -3, Thus the first solution

is a right hand one and the second is a symmetrical one.)

Specifications ‘ 1
§
of System X k R4 R8 ESph
R-solution -0.500 -2,70 0.19 0.012 0,000l
S-solution -0,541 =2,.70 0.19 0,000 0,0000
and R, = Ry = R, = 0, L = 0,02, T = 0,05,

where ARg/yy®™ 100 AGSph/A%.

2.4,.,8 The Parameter R, and the Turning Point Solutions
(o] N

).

versus (X, k', P) and (X, k', R

4

We have found the connection between the parameter

. N
for the spherical aberration residual OEESph = Rl) and the
: o

ey

parameter for the symmetry (RB) for the case when the
spherical aberration parabola is tangential to the)ﬁ-axis.
Now we ask ''How do,es‘R8 vary with’X, k! and P or X 5 k' and
R4 in generél?”

So far we have emphasized the tangential and
symmetrical properties of the symmetrical solution and
neglected the fact that it is>primari1y a turning point
solution, This, of course, is the minimum of the spherical

!

aberration parabola Géph = f(X) where k! = k%g = kés = k%P’

(tg = tangential, SS = symmetrical solution, TP turning

1l

point,)
There is only one k! = k%g for a given pair of the

parameters either (R, = 0, P = constant) or (Ry = 0, R, =
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constant) , whereas k%P is a continuous function of ¥ when

R; is relaxed and o&::ejther™:P JFor. R4 ils contf@lled. " iThe
question therefore arises as to whetherlthe property of
symmetry is associated with all the turninge-point solut-

ions in general, or whether symmetry is only associated

with the particular_tufnjng:point at Ry = 0, (The Tangente
ial er Symmetrical Solution as we know it now, ) £his quest~
ion is examined in Figuﬁés 2.27.5 and 2.,27.6,

8 éph versus X

are plotted on the same axes for k' = «3, ~4, and -5 and

In Figure 2.27,5 R, versus X and &
P = 0.1, 0.3 and 0,6, This analysis is repeated in Figure
2.27.6 for R, instead of P where R, = 0.16, 0.18, 0.20, 0.24,
These graphs show that the turning-point solutions are
symmetrical for a large range of either X, k! and P or ¥ ,
k! and R4. Thus by changing k?! we can create a range of
symmetrical systéms which vary in marginal Spherical Rl’
Consequently we can use RS’ R1 and R4 in place of X, k!, P,
The set of monochromati;.basic-parameters (X, k', P) is
thereby transformed into the set (R8, Rl’ R4) and so we have
now linked (9%, k!, P)=space with the (R8, R, R4)-space.

In Figure 2.27,7 and 2,27.,8 wet:have the same R8-

graphs as above only now they are plotted with a typical

coma coefficient,lzé2 in place of the marginal spherical

6sph = Ry

of the air space is not sufficient to ensure a system free of

From these graphs it is evident that the symmetry

the higher orders of coma, The higher orders of coma are

only minimized in the region of the optimum value of k?t,
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(kt = =3), If k' deviates from this then the higher

order coma increases rapidly provided the Petzval coefficw~

ient is small, But if we approach the region of optimum P
(P = about 0.6) or R4 (R4 = about 0.,24) then the influence
of k' and alsoX on the coma is greatly reduced, '~ This is

in agreement with our earlier observation regarding the
optimum region that the effectiveness of the 'basic~paramet=

ers'" is reduced at large P,

2.4.9 Conclusions,

At this stage we can predict several things about
the wide aperture monochromatic type 121, We can expect
it to have R

= 0, R, nearly zero and R4 0.2 and therefore

8 1
it will be symmetrical'with small zonal spherical and fairly
large Petzval sum, Its 3rd, 5th and 7th order coma contribute
ions will be small but its 5th order astigmatic coefficients
414,/a5 and/a6 will be large enough to contribute considerable
(13.3, 2.4)..

oblique spherical aberration Therefore it

appears that this higher order astigmatism will limit the
field if the system is of reasonable focal length or if it is

of short focal length and used with auxiliary magnification,
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CHAPTER 2,5 SYMMETRICAL SOLUTIONS AND CORRECTION OF

ZONAL SPHERICAL AT TWO ZONES.,

26540 Introduction,

In the preceding work on the R and L solutions
it was found that the RL-programme failed near the tangent-
ial solution, because ééph is nearly independent of X in
this region, However, the symmetry of the type 121, as
measured by R8’ was found to depend significantly on X in
the tangential region, and, in particular, a tangential

solution of the type 121 has R, = (d3 - dé) = 0, and,

8

t
éﬁSph = Ry = 0 + 9th order terms etc.,
The method devised for finding the tangential

solution consists of two iterative processes, In the first

one, X, is changed until R8 = 0, and then in the second k!

1
is changed until €S = R 0 + 0(9), The iteration is
ph 1 4

started at X :;(1 and k! = k! which are values known to be

4
1
near the tangential solution, These initial values of
and k! are estimated from the interpolative survey of the
coefficients versus (X , k', R4). In practice, it is
necessary to repeat the compound cycle consisting of the
adjustment of X followed by the adjustment of k! several

5

times before both R, and R1 are less than 10~ .

8

2e¢5.1 The SS Programme,

The programme for generating the tangential

solutions is derived from the basic programme BP121 by



s
iterating the sub-routine TP121 first with respect to X
and then with respect to k!, 'The main features of this
programme are shown in Figure 2,28, Basically it consists
of three loops, the left hand loop, the right hand loop-and
a loop embracing both the left and right hand loops. The
symmetry is adjusted to R8 in the left hand loop and the
spherical aberration residuélfféph is adjusted to Rl in the
right hand loop. Both loops are repeated until R8 and R1
are simultaneously zero, When this occurs the programme
prints out the lens data and goes to "END' where it receives
further instructions which may, for examplé, restart it
computing another system from f;esh data,

The programme is called the symmetrical solution
programme and it is denoted by the code number SS/BP/SPi21
which, for convenience, we will usually call the SS programme,
Moreover, although we are preoccupied with symmetry in this
case, it is, in general, more useful to think of R8 as ’
measuring the asymmetry and the programme as the asymmetrical-
solution programme, Consequently the symmetrical solution
is the limiting case as the asymmetry is reduced.

In view of the equivalence of (96; k', R4) and

(R, R R,) the SS programme can be used to find any solut-
8 4

1’
jon in a (X, k') plane of Figure 2,26, by giving Rg, R, and

R4 appropriate values, For example, if we set R8 equal to
zero then we will get turning point solutions only, or on the

other hand if in addition we make R1 = 0 then we will get

tangential solutions only,
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The SS programme is more flexible than the RL
programme because it has direct control of and k' through
R

and R8' By way of contrast, we recall how the R and L

1
programmes explored the R and L solutions, In that prep-
aratory work, k! and R4 were specified and then X was used
to control €éph whereas now, with the SS programme, X and
k* are associated directly with properties of the optical
system, At this point we can see the two types of pro=-
gramme in their proper roles: the RLe~programme is ideal
for limited interpolative study and the SSeprogramme is

best suited for examining a promising region of the inter=

polative study in detail,

26542 Spherical Aberration Coefficients of the Symmetrical

Solutions versus R,.

Now that X and k' have specific tasks we are left

with R, as the only independent parameter of the monochromatic

4
system, Already as a result of our interpolative study of
the coefficients we have tentatively proposed’ that R4 will
control the spherical coefficientscri,lli and'Tl. There=-
fore, in view of this, we now proceed to locate‘the systems
with the optimum set of these spherical coefficients by
varying R,.

The symmetrical solutions having R1 = R2 = R3 =
R. = R, = d were computed with the SS~programme over-ﬁhe

5 8

range of 0,14 £ R, € 0,22 in steps of AR4 = 0,01, In

4
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Figure 2,29, the spherical coefficienfs of these solutions

are plotted on the same axes against R Here the 3rd and

4.

7th order coefficients G& andrr1 pass through zero between

R, = 0.19 and 0.22 but M, s, as we inferred from the earlier

work of Section 1, remains almost unchanged, being negative

throughout this range of R In the region bounded by

4%

R = 0,19 and R, = 0.22 the successive coefficients alter=-

4 4

nate in sign and, as we already know, systems with this
property are expected to have zero spherical at two zones
of the aperture, (See section 2,4.5).

The valués 6f G&,Akl,’T and X , k', P of the

1

symmetrical systems from R, = 0,19 to 0,22 are as follows:

4

TABLE 2,5
R, @ M T x kP
0,22 0250 =-5,89 14,69 -0,466 -2,873 0.5789
0.21 171 =5,34 . 26,74 =0.490 =2,799 0.5356
0.20 .070 =~4.88 73,26 -0,515 =2,746 0.4925
0,19 -.020 =4.,47 126.3 -0,541 =2,707 0,4493
AR, .03 Ao .27/t 1,4248T-140,99 A% .075 Ak -.166 AP ,1296

This table shows how very small the region of
(X, k', P)=space is in which the zonal spherical is optimiz=
ed: it occupies only a very small region around the intersect-
ion point of the principal sections of (% , k', P)-space which
were shown in Figures 2,19, 2,20 and 2,21 of Chapter 2.4,

The region is contained within X = 0,075, k! = =0.166
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and AP = 0,1296 (or AR, = 0.03), In this micro-region
the greatesf change in the spherical aberration is due to

the change in 0'1.

2.5.3 Predicted Zonalepherical of Symmetrical Solutions

vVersus R4.

After isolating the region of alternating signs,
the SS-programme was modified to compute an additional
quantity, the longitudinal spherical aberration, LA' = eéph/e,
for 0OF% f’é 0.20 in steps of de = 0,02, Thus with this
modified programme both‘the predicted zonal sphericél and the
spherical aberration coefficients can be surveyed simultane=~
ously with respect to R4. (After this the SS-programme
will mean the modified SS-programme.)

With the SS-programme the predicted zonal-spherical
aberration has been computed for a set of R4 values (0.18,
0.19, 0.20, 0.,21) that span the optimum region which was
located in Figure 2,29. These results are plotted in
Figure 2,30 in which the two-zone correction is seen to
occur at R4 = 0.20,

The region of two-zone correction is mapped in
detail in Figure 2,31 where the predicted zonal aberration
is plotted in steps of dR4 = 0,001, From this graph the
system at R4 = 0.i98 was selected for further development

because it appeared to have the most even distribution of

zonal aberration,
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Theoretically, The LA!-curves of Figure 2,31
should intersect the axis in the intermediate zone of
F = 0,1414 but this is not so, This spreading of the
intersection points along the vertical axis is due to
roundingzoff the iterative sub-routine to six decimal
places, Indeed, experience with later R4-surveys and
spot diagrams have confirmed that dR4 = 0,005 is the

minimum effective interval of R4.

2.5.4 Failure of Zonal Predictions'at Apertures 2 £f/3.5,

The next thing to do is to compare the predicted
zonal spherical aberration with the actual zonal spherical
aberration computed'from zonal raye~traces and show whether
the two-zone correction is preserved in the presence of
the higher order aberrations, that is, aberrations greater
than the 7th order, This involvesquth the SS-programme
and the Raye~Trace programme, The system must first be
calculated with the SSeprogramme and then its specificat=-
ions must be given to the Ray-Trace programme, Thus the
SSwprogramme gives the ”predicted-LA’”'ana the Ray~Trace
programme the '"actual-LA'",

The Elliott 503 computer used in this work canw-
not store both the SS-programme and the Ray-Trace programme
simultaneously, consequently the cg;parison of the predicted
LA' and the actual LA' values is an unwieldy operation with

it, Also, the SSe-programme generates systems over a given
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range in specified steps whereas -the ray=-trace programme
requires the specifications of each system, Sé, in view
of these disadvantages, the search for a system with two-

g boca ¥ g U o occmno W p
zone correction has been conducted with the emphasis%qin

2

order to -avoid a quite impractical amount of data preparat=-
ion for;the rayestraces hence the detailed survey made in
Figure 2.31. This, of course, raises the. point that it
would be desirable to link the coefficients accurately
with the raye-trace anyway, because, apart from overcoming
the lack of gtorage of this computer it would also make
worthwhile savings in computer time even when storage is
no problem, We are, at this point, echoing our earlier
remarks aﬁout optimizing thoroughly at each level of the
design-process before proceeding to the next, We are,
in fact, now in this state of. transition from one level
of the design=-process to another as we pass from coeffic=
ients to LA%-curves,

The predicted zonal aberration of the symmetrical

solution at R, = 0,198 is compared, in Figure 2,32, with

4

the actual zonal aberrations which have been computed by
tracing rays at intervals of.df = 0.02, We see that

there is a very large positive contribution not accounted-
for by predictions based on 3rd, 5th and 7th order coeffic=
ients, From(’= 0 to / = 0,08 the ray-trace differs from

) at f = 0.10 by less

- "‘3
than 1 x 10.3, at(’»: 0.12 by less than 3 x 10 7, but,

the predictions by less than 1 x 10”

after e = 0,12, the ray-trace curve swings rapidly away
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from the predicted curve, From about.F = 0,14 the raye
trace LA*-curve becomes almost asymptofic. Therefore,
it appears that even with the spherical coefficientsvof
the first three orders it is not possible to predict the
zonal-spherical aberration of the optimum system with a
high degree of accuracy beyond ( = 0,10 (£/4,5) and also
it seems that the predictions are meaningless after

e = 0.14 (£/3.5). Moreover in this example, even the
predictions between ¢ = 0,10 and f= 0.14 are of doubt=

ful value,

2.5.,5 Balancing Higher Order Zonal Spherical Mainly
with Rl' |
We are faced with two questions at this stage,

Firstly does a system with two-zone correction exist in

the vicinity of the predicted optimum system? Secondly,

if one exists, we must also ask whether the familiar design

technique of balancing higher order residuals with lower

order residuals of the same type is sufficient for achieve

ing two-zone correction?

When we approached this problem for the first
time we had the above questions in mind so that we were
prepared not to accept it as conclusive if R1 failed to
give two=-zone éorrection.

Adhering to the familiar design technique of
balancing aberrations, an attempt was made to balance the

positive residuals of the marginal zones mainly with a

/60
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negative spherical residual Rl‘ At the same time it
was decided to decrease the Petzval residual by a small
amount[_\R4 simultaneously with the change in Ri. This
change in R4 was proposed because we had seen from
Figures 2,30 and 2,31 that such a change would tend to
reduce the lower zones whereas Z}Rl was expected to reduce
only the marginal zones significantly, Thus we expected
that a proper combination of R1 and R4 would bring about
an improvemenf of the.zonal spherical aberration of the
whole aperture,

Because we had gained no other experience of the
system?s response to R, and R

4
2,30 to 2.32, we decided to proceed cautiously and to

than that shown in Figures

reduce the marginal aberration of figure 2,32 in several
moderate stages, starting with R, = -0,005 and R, = 0.008,
The results of this first attempt with Rl = «-0,005 and

R4 = 0,190 are shown in Figure 2,33 whére we have both

the predicted LA'-curves at R, = 0.190 and R, = 0.194,

for R, = -0,005, plotted with the ray-trace=«LAt=curve for
R, = 0.190,

It is evident from the Figure 2,33 that the.
zonal aberrations have been reduced in all zones so that
the LA'«curve of the ray~-trace is now negative from f= 0,02
to (’: 0.18, However, the marginal zone (£, 0.18) still
has a large positive residual but, it is very much less

than that of the previous Figure 2,32, Nevertheless, this

improvement in the marginal zones has been achieved at the
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expense of the zones below P = 0,14 which are now decidedly
negative, |

Attempts (not shown) were made later to reduce
the marginal zones further by making R1 more negative than
~-0,005, However, it was found that this caused rapid
deterioration of the lower zones (f< 0,18) for only a
very small gain in the marginal zones,

So it seems that effectiveness of R, in controlle

ing the higher order zonal aberration is limited to part-

ial correction of the marginal zone, Therefore some addit=~

ional property is required for contrélling the intermediate

ZONE .

24546 The Effect of R4

Since R1 is the only partly successful in reduc-

on the Marginal Zoneg.

ing the marginal zones, our attention is turned to the

parameter R4. In the surveys of the predicted LA!-curves

4

zones of the predicted curve below € = 0,20, mainly by re~

of Figures 2,30 and 2.31, R, controls the magnitudes of all

ducing the effect of the 3rd and 7th order coefficients,
However, we have found from the comparison made between
the predicted LA!«curve and the ray-trace LA'=curve in

Figure 2,32 that the coefficients beyond the 7th order,

which we have ignored, are very large; it is the control

of these higher orders that faces us here,

The effect of R, on the ray-trace LA'~curves for

4

Ri = 0 is shown in Figure 2,34, These results throw an

)

762
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entirely new lighf on the behaviour éf the inner and
outer zones of the aperture,

Between ( = 0,14 and f= 0.16 the LA'-curves for
R1 = 0.19, 0,20 and 0,22 almost intersect in a common point
and, therefore, in this intermediate region (0.14< €< 0,16)

the zonal aberration is nearly independent of R4. Below
this intersection zone the zonal aberration is reduced as
R4 is decreased, just as it is with the predicted LA'=~
curves of Figures 2,30 and 2,31, but, above the intersect-
ion point the effect is reversed and the zonal aberration
is increased as R4 is reduéed.

It is clear from the figure that the rate of
change of the outer zones ((’) 0.16) is very much greater
than that of the lower zones (6(0.14). Indeed, it is
evident that the reduction of the marginal zones caused by
R, is enormous in comparison with the increase in that of

4

the lower zones, Thus R4 seems to be the main parameter

for controlling the aberration of the outer zones of the

monochromatic type 121 system,

2.5.7 The Combined Effects of R1 and R4 on the Marginal

Zones and the Intermediate Zones,

I1f we combine the results of the R1 and R4 studies

we find that not one but both parameters play a significant

part in controlling the zonal aberration of the monochromatic

tYEe 1210
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One zone in particular, the intermediate zone,
between e = 0.14 to P = 0,16, can only be zeroed by give
ing R1 a small negative value because it has been shown
to be independent of R4. From Figure 2,33, it is clear
that this change in Ri that zeroes the independent zone,
will reduce most of the zones a little, but it will not
be sufficient to make a significant reduction in the
marginal zone (67'0.18).

It seems that the thing to do in addition to
decreasing Rl is to increase R4 because this will reduce
the marginal zone effectively, (Figure 2.34), without
changing the intermediate zone at all, and, at the same
time, it will cause only a slight increase in the lower
zones, Also the increase in the lower zones is opposed
somewhat by the decrease in Rl' Here then, is a very
interesting combination of properties,

Now if we also cong€ider how the accuracy or
quality of the prédicted LAtwcurves varies with E and
combine this result with the way LA' varies with Rl’ R4
and € » then the possibility of two-zone gorrection becomes
a certainty,

We see from Figure 2,33 that the predicted and
ray-trace LA'~curves agree very well for e = 0 to ( = 0.14,
Therefore, combining this fact with'those of R1 and R4 we
can see that if the zone at f = 0,14 is made zero by a

change in R1 then we can expect the LA'-curves for R42 0,21
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to have positive zonal aberration below F’: 0.14 and

negative aberration above f’: 0.14, We expect this pattern
to be reversed at smaller values of R4, so that we will then
have negative residuals in inner zones and positive residuals
in the outer zones of the aperture, Thus, in:between

R4 = 0,19 and R4

ion by careful choice of R1 and R4 (because we see that

= 0,22, we expect to obtain two=zone correct-

during the transition the lower zones lag behind the outer

ZONesS,)

1 and R4o

Once the effects of R1 and R4 are understood it

24548 Optimizing LA! with R

is apparent that a routine method is needed for finding
the best system with correction at two zones, The obvious
thing to do is to compare graphically surveys of the predicte
ed LA'~curves versus R4 with those of the corresponding ray=-
trace LA*«curves versus R4. Thus from the first survey of
this kind we have the graphical pair, Figure 2.35(a) and
Figure 2,.,35(b). In Figure 2.35(a) we have the predicted
LAt'wcurves of the symmetrical systems, with R, = 0, plotted
at intervals of R, = 0il, and, in Figure 2.,35(b), the
corresponding LA'-curves calculated from zonal ray-traces,
The Figure 2.35(b) shows how the family of ray=
trace LA'=curves have been spread out above f’: 0.16, runn-
ing from a large positive zonal aberration to a large negat-

ive zonal aberration, The aberrations of these outer zones
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cause them to be distributed in a fan-like spread about
the system at R4 = 0,23 which has the S;shaped curve but,
unfortunately, it is tilted so that all zones have posit-
ive residuals,

In Figures 2,35(c) and 2.35(d) the surveys are
repeated for the same range of R4, but this time with a
negative spherical residual R1 = «0,0025 instead of Rl = 0O,
This confirms that the intersection point is at about
f: 0.16 and it also shows that the curves retain their
shape relative to each other fairly closely while they are
being bent as a group from left to right as R1 becomes more
negative, The S-type core of the group of ray~trace curves
is not far away from the optimum predicted system R4 = 0,20
of Figure 2,36(a),

From this point on 1t is only a matter:of repeate
ing the surveys with smaller values of R1 (seeFigures 2,36
c,d,e,f) until the intersection point coincides with the

vertical axis, In the final stages the parameter R4 is

stepped at the minimum effective interval (L\R4 = 0,005,
see‘section 2.5.3) in order to locate the two-zone correcte
#Odniwith the maximum precision possible with this technique.
Note the Figures 2,35(a) and (b) are reproduced again as
Figures 2.36(a)band (b) for the sake of comparison,

The work with,R1 and R4 is summarized in Figures

237 a, b and c. In these figures the predicted Securve

is shown with its corresponding ray-trace curve at the three

/66
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principal stages of development in the appiication of R1
and R,. The top Figure (2,37a) shows the predicted LA!-
curve for Rl = 0 and R4 = 0,198, In the second Figure
(2,37b) the effect of R, only is seen and in the final one

(2,37c) the ray-trace LA'-curve with the two-zone correcte-

ion is seen to appear when R1 and R4 are combined properly,

2.5.,9 The Final Adjustment of the Monochromatic System,

2,5.9.,1. Selecting the Optimum System, (The minimum

effective interval of R4.)
From the surveys of groups of LA'=curves we have

selected the symmetrical system at R1 = =-0,0015 and R4 =

0,215 for further development, This system also has
R2 = Ry = R5 = Rg = 0, L=0,2and T = 0.05; we will call
this system SS(1), However, before proceeding with the

development of SS(1) we will compare its spotediagrams with
those of systems either side of it so as to test our earlier

hypothesis concerning the minimum effective interval R4

(see section 2,5.3), For this purpose we have selected
systems that occur at intervals of AR4 = 0,005 and for
convenience called them SS(-1), SS(1) and SS(+1); thus they
are at R, = 0,210, 0.215 and 0.220 respectively, Their
spot-diagrams for a maximum aperture of f/2,5 (f = 0.2) and
Vv = 0°, 5° and 10° off-axis are shown in Figure 2,38,

The best axial-~image appears to occur at R4 = 0,215,

This is confirmed by the zonal spot densities of Table 2,6

in which the percentage spots occurring inside a circle of
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given radius are shown against the radius in the left hand

half of the table, The radius of the circle is measured
in units of f x 10_4.
TABLE 2,6
Changing R4 l Cha.ng_i_r_xg___lj._2

Marginal Spherical R1 = -0,0015

System SS(=1) Ss(1) Ss(+1) SS(2) SS(4) SS(3)

Petzval

R4 +210 e215 e220 . «215 e215 .215
Coma

RZ 0 0 0 -602 -.06 -,10

l
Radius@ﬂ Percentage Spots inside Circle of Radius (4 )at V=0°

1 80 82.5 73 77 78.5 67

2 80 87 92 - 83 80}5 7845
3 80 92 92 83 85,5 83

4 85 92 92 88 92 85,5
5 87 92 94,5 88 92 . 85.5
6 87 97 95.5 90 92 90

7 92 97 95.5 92.5 92 90

8 92 97 100 92.5 92 90

9 92 97 92.5 94.5 92
10

92 97 ' 92.5 94.5 . 94.5

Spherical Coefficients

7 .092 .135 .178 .124 .101 ,078
/“1 6,99 -7.,24 =750 «7.13 -6.,91 -6.69
71 -0,506 =21,08 =40,5 16,76 =7.75 1,40

I

We see that the pfocess of choosing the LA'~curve with the
minimum zonal aberrations in Figure 2,36(f) has enabled us
to differentiate the spot densities of the axial image to

within 3%, Such accuracy cannot be achieved with the
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aberration coefficients, This evident from inspection

of the spherical coefficients shown at the bottom of

Table 2,6, These would lead us to select SS(~1),

256942 Adjusting the Off~A;ia1 Image of the Monochromatic

System,

By inspection of Figure 2,38 it is clear that
there is no signifiéant difference 'in the appearance of
the comatic flares of the 6ff-axial images of the systems
SS(=-1), SS(1) and SS(+1), Therefore, the choice of SS(1)
as the best system because of its superior axial image
quality remains unchallenged when the field is taken into
account,

The ray-coordinates 6;.and G; in the_spot diagrams
are plotted according to Buchdahl's convention in which,
for example, a negative value of 6;_means that the ray
intercepts the image plane above the idéal image point when
the image is below the axis, Consequently, since the flare
is directed downwards and is therefore positive then a
negative residual of R2 is required to balance it,

The balancing has been performed in three stages
whose spot diagrams are shown in Figure 2,39, In order
to achieve this the system SS(1) has been recomputed for
= «0,06, The resulte

R, = =0,02, R, = 20,10 and finally R

2 2 2
ant systems have been called SS(2), SS(3) and SS(4).
If we select the system with the most symmetrical

off-axial spotewdiagrams, then SS(3) is the obvious choice,
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JABLE 2,7
System - 8s(2) Ss(4) - 85(3)
Petzval R4 0,215 0,215 0,215
Coma R, -0,02 -0,06 -0,10
Radius (r) Percentage spots inside circle of
ft x 10“4 units radius(r) at V = 5°,
1 40% 32% 23%
2 66 55 54
3 73 69 67
4 77 77 74
5 78 83 81
6 81,5 91 86
7 84 92 91
8 86 93 93
9 88 94 97
10 91 97 98
Radius (r) Percentage spots inside circle of
£t x 10™% units radius(r) at V = 10°,
9 10 7
2 19 18 18
3 40 35 34
4 49 49 51
5 54 54 54
6 59 57 59
7 65 62 63
8 67 65 67
9 72 69 69
10 7245 72 72
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If, on the other hand, wevconsider the spot density as well
as the symmetry of the axial and off~axial point images,
then we are inclined towards SS(4). We have already
examined the spot densities of the a&iai pencils of SS(2),
SS(3) and SS(4) in Table 2,6 and fouﬁd SS(4) to be the most
promising, Now we find nothing: tonalter this:conclusion
gﬁeniWe:gé“offéaxis.

The spot densities for 5° and 10° point~images
of the systems SS(2), SS(3) and SS(4) are shown in Table
2,7 which complements the corresponding part of Table 2,6,
There is little to choose between the densities of SS(2)
and SS(4) but the flare at SS(2) seems less acceftable than
that of SS(4)., We will disfegard SS(3) because it has
only 23% of the spots in the first ring, In view of these
and the above results we have developed SS(4) as the optimum
system,

Before concluding the study of R2 let us look at
the effect the changes in R2 have had on the group of LA'=-
curves that surround SS(1), Has this balancing of coma-
flare disturbed the two-zone correction significantly?
In.other words, does R2 interact with R1 and R4 appreciably?
This question is examined in Figure 2,40 from which it is
evident that there is a slight increase in the marginal
zone near R4 = 0,215, However, at this stage of the design,
it is not worthwhile to altér R,. (We have showed since

that the increase in R.4 of AR4 = 0,005 will restore the SS(4)
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LAtecurve to the equivalent of that of SS(1) as it appears

in Figure 2,36.)
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CHAPTER 2,6 THE BASIC GLASS PARAMETERS AND THE OPTIMUM

MONOCHROMATIC REGION,

2.6,0 Introduction,

In the preceding work we have examined the potent=
ial of thelmonochromatic-type 121 with respect to its basic
parameters A, k', and -P or their equavalent ;(; k' and R,
for a constant set of basic glass parameters (Na’.va) and
(Nc’ Vc). So in order to conclude our study of the mono-
chromatic design we must also consider the effects that
changes in the basic glass parameters will have on the
optimum region of (X, k', P)=space,. For instance, will
some other combination of (Na’ Va) and (Nc’ VC) cause an
improvement in the convergence of the aberration coefficw-
ients with respect to X, k' and P over what we have already
achieved with glasses that were chosen on the basis of rules

(2.1, 3.2, 4.3) for the type 111

developed by other workers
triplet?

The problem as we see it will not involve the
basic glass parameters (Nb’ Vb) which belong to the middle
lens group b because, they have been studied implicitly
through parameter k!, Through this earlier work we have
shown V. to be the more important parameter of this pair

b

(Nb, Vb)' The conclusions made then agreed with similar

observations arising from R.E. Hopkins! study of the type

111 triplet concerning the related quantity AV,. (This
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work supported our claim concerning the generality

of the properties of the ''basic pafameters" of triplets.)
Therefore we must now considér the remaining

basic glass parameters of lens group a and lens group bwzof

the ''basic triplet'" of the type 121, Although in the type

121 these basic glasses of group a and group b are real

glasses we will, for convenience, treat them as continuous
variables, We lose nothing thaf is of value to us at

this stage by doing this since our purpose is simply to
determine whether or not the-”optimum-monochromatic—region”
which has been already established, is unique with respect

to the basic glass parameters,

2.,6,1 The Effect of Different Combinations of Basic

Glasses,

24641 ,1 Technique.,

In order to provide‘an answervto the above
question concerning the uniqueness of the optimum region,
we have studied the trends in typical coefficients of the
optimum~-monochromatic-system (SS(4)) for comprehensive
ranges of various combinations of the basic glass paramet-
erse We recall that the system (SS(4)) is symmetrical
and also has two-zone correction of spherical aberration,

a flat tangential field and well corrected coma, In this
study (SS(4)) has been recomputed at reéular intervals of
one or both of (Na’ Va) and (NC, VC). Therefore.this work

is a limited-interpolative-study of the basic glass paramet-
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ers about the point SS(4) in our multi-variable space,
Three combinations have been studied, they are:

N 1,54 to 1,70 in steps

Cc

v
c

1, The system SS(4) with Na

of dN = 0,04 and with V_ 56 to 64 in steps of
dv = 4,0,

2. The system SS(4) with N 1,54 to 1,70 in steps of

a
dN = 0.04, V_ = 56 to 64 in steps of dV = 4,0 and N_ =
1,62101, V_ = 60,18,

3. The system SS(4) with N, = 1,54 to 1,70 in steps of
dN

0,04, Vc = 56 to 64 in steps of dV = 4,0 and

H

N

1,62101, V_ = 60,18,
a a

The results are shown in Figures 2,41, 2,42 and 2,43,
In each figure the spherical coefficients of 3rd,

5th and 7th order ( G—l’ M 1) and repreéentative pairs

1°?
of 5th order comatic coefficients (Alz, Ab7) and 5th order
astigmatic coefficients (A¢4,/k10) are plotted against N

for threé values of V,

2.,6.1,2 Discussion of Type 121 versus Basic Glass,

From a cursory inspection of Figures 2,41, 2,42
and 2,43 it is evident that we cannot improve on our inite
ial set of glasses, Thus the selection of glass for the

(2.1) observations

type 121 on the basic of Cruickshank's
of the thin-lens parameters ~{ and/g of the type 121 is
sound and, therfore, supports the fictitious-glass-theory,

Indeed, with N_ = NC and V_ = Vc (Figure 2,42) the only

obvious improvement is made by increasing V to 64. This



reduces coma and astigmatism but it increases the primary
spherical and, therefore, the field is improved at the
expense of the aperture,

Figure 2,42 shows that there. is a slight improve=-
ment in coma and astigmatism when Va = 64 but this is not
enough to make us pursue such a change,

In Figure 2.43 we see that an increase in Nc and
Vc of the rear lens may produce a worthwhile improvement
in both the coma and astigmatism, For example, if we make
N% = 1,7 and VC = 64 then we get considerable reduction in
'ALIO’AAZ and A%7. As fpr the spherical it appears that
Uj, ALI and T

; are not significantly different from those

of SS(4) and therefore zonal correction should be good,

Consequently, in order to improve on the field Qf the type

121 already obtained, it would seem that an increase in the

refractive index and Ve-number of the rear lens group c

offers the most promise,

2¢be2 Proposing a Fictitious Glass for Lens Group Ce

It is clear that none of the improvements suggested

by the above results can be made with real glasses. The

practical alternative is to construct a "fictitious basic
glass'" with the desired N and V for lens group c. This
sort of thing, of course has been done with the Tessar

which has resulted in an improvement on the field of the

type 111 triplet,
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A study of successful Tessar designs shows that
their values of NC and VC are of about the same magnitude
as those predicted in the above glass study of the type
121, This encourages us to proceed along these lines in
an attempt to increase the field of the type 121 triplet
without losing its zonal correction, Thus the study of
the basic glasses (Na’ Va) and (NC, Vc) indicates that the
type 122 may combine the best features of both the Hektor
(type 121) and the Tessar (type 112),

We will leave the development of the type 122
until we have completed the design éf the type 121,
However, before returning to ihe type 121, let us select

the fictitious~glass for lens group c.

2¢64¢3 Selecting the Fictitious Glass,

In pursuance of the combination of a Tessar with
a Hektor, we have chosen the rear component of a Tessar
(the 7A) that has been designed and constructed in this
laboratorye. The flint component of this cemented doublet
is the Bausch and Lomb glass CF1(1,5282, 51.,4) and the
crown is the Chance glass DBC(1,6133, 57,5), The k! used
in this Tessar is k! = -1,8181 ,... and, therefore, this
is a positive reversed doublet (PRD see section 1,1.3).
A value of about k! = =1,8 is typical of the Tessars pub-

lished in Von Rohf(lg).
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The fictitious glass constants Nf and V_ correspond=

f

ing to k! = -1,8181 ... are N. = 1,734, Vo = 67,5, N_ and

VF are shown plotted against k' in Figure 2,44 in which the

crossed-points are those quoted above for'NF and VF'
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SECTION 3,

CHROMATIC DESIGN
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CHAPTER 3,1 DEVELOPING THE CHROMATIC TYPE 121,

3.,1,0 Introduction,

In the sub-section 1,1,5 we discussed the degrees
of freedom and concluded that they can be divided into
two classes which simplify the design process, Thus we
are able to pursue, for example, the ‘design of the type
121 in two stages, a monochromatic stage and a chromatic
stage;

The monochromatic stage was completed in Section
2 where the optimum monocﬁromatic type 121 system SS(4)
was developed from a particular set of real glasses,
The set of glasses chosen was shown to be about the best
that can be selected from the set of real glasses as far
as the monochromatic system is concerned,

In Section 2 the type 121 sysfem was optimized
with respect to the “monochromatic-basic-gonstmucfion
parameters" éﬁ, kt, P, Sl’ SZ’ 54, Na’ Nb’

V . Thus the remaining construction parameters are the
C .

Nc’ Va’ Vb and
""chromatic~basic-construction parameters' L and T which,
according to other workers, seem to have little effect

on the monochromatic aberrations, Also, we recall that
the initial values of L. and T have been selected on the
basis of the design experience of other workers with a
view to minimizing the chromatic aberrations of the

- "monochromatic systems' of which SS(4) is the final one,

Therefore, at this stage, we anticipate making only minor
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changes in the L and T of this final monochromatic system
SS(4) in order to develop an achromatic system from it,
there being no need it seems to alter its monochromatic
parameters,

We have already achieved an advanced stage of
design in the form of a well corrected monochromatic
system, therefore, from now on it seems futile to consider
any quantity less than the exact chromatic aberration that
~is calculated from trigonometrical-ray-traces made in the
final stage of the design process (see Figures 2,1, 2,2),
Admittedly chromatic aberration coefficients have been
developed, for example, by Buchdahl, but these only afford
accurate predictions up to an aperture of £/6.5(13’1);
Indeed, even from our own experience with LA* versus F of
the monochromatic system, we can conclude that the chromatic
predictions to 7th order are of little use beyond £/3,5,
Consequently, in our approach to studying and optimizing
the chromatic aberrations of the type 121, we will work
between the first and last stage of the designcprocess
mapping, for example, LA!'-curves for different wave—-lengths
against the basic parameters L and T,

We begin our attack on the chromatic aberration
of the type 121 by studying the chromatic aberration of
the axial pencil of rays because, this is a logical extens=-
ion of our work with LA' in Section 2, After we have

adjusted LA* we will consider the chromatic aberration of



Fig, 3.1

1§67



id

the field by studying the transverse chromatic aberration

versus field angle versus waveélehgth (>\). Thus we are

assuminglrinitiallv, that not only do L and T act independ-

ently of the '"basic-monochromatic-parameters' but also

that they act independently of each other, This appears

to be consistent with the opinion held by most workers in

optical design,

3.1,1 The Chromatic Aberration of the Optimum Mono-

chromatic System SS(4).,

We begin our attack on the chromatic parameters
by looking at the chromatic aberration of the optimum
monochromatic system SS(4),

-The zonal spherical aberrationzof SS(4) is plotted
for the five standard wavelengths ¢, d, e, F, and g in
Figure 3.1, This diagram shows implicitly the variation
of the longitudinal chromatic aberration with respect to f
from = 0 to = 0.20,

The parameters'L,and T have been selected in our
initial design so as to make the paraxial quantities lch!
and tch! zero for the ¢ and F wavelengths, or nearly so,
in the final system SS(4), However, we find for these

0,2 and T = 0,05) that SS(4) has lch!

initial values (L

0,00026, They are not zero but it is

= 0,0006 and tch!

evident from Table 3.1,1 that they are well within toler-

ance for f' = 4,00 inches, (Note the computed values in



Table 3.1

Computed Values for SS(4) Theoretical Values
Zonal Radius 1A' versus PFocal Range Tolerances
LA'd LA'c LA'F LA'c-IA'F | LZA' | Focal Range
.02 « 00005 -,00025 « 00075 - DO .6 o1
L « 0001 ~-,00032 . 00005
.06 « 00027 ~+ 0001 -, 00002
.08 .NN036 .00009 | =, 00021
.10 «00033 00023 -.60071 . 00094 .01 .0016 £/5
Focal Range .12 .000099 | .00025 | -,00156 .00L .008 0013 £/l
fails 14 -, 00031 .00018 | -,00285 « 00303 005 0008
Loat fatte *16 -.00052 | .oo0u8 |-.00432 | .00L48O 0047 .0008
.18 .00116 »00295 | -.00L459 . 00754 «0037 « 0006
«20 L0116 « 01450 « 00258 «012 «003 0005

LZA' = 6 wavelengthB/N'Bian'm
Focal Range = 1 wavelength/N'sian'm
(Conrady(17‘1)P438 and P199)

-3
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the table are for f; = 1,0, therefore they must .be multi=-
plied by 4,)

Actually, it is the zone at about e = 0,07 and
not the paraxial zone, that has a common image plaﬁe for
the ¢ and F wavelengths, They are focussed at x = =0,0005
from the ideal image plane, Beyond ¢ = 0.07 both the
spherical and longitudinal chromatic aberrations continue
to increase but the tolerances are not exceeded until p
lies in the range 0,12< f< 0,16, The focal range fails
after e = 0,12 and the zonal aberration fails after Q = 0.16,

In Figure 3,2 we have the axial—spot-diagréms of
the system SS(4) at an aperture of f/2,5 for the five stand=-
ard colours c, d, e, F and g and also the off-axiél spot
diagrams at 5° and 10° in d-light, (The off-axial diagrams
are included in d-light only, in this and all later arrays
of spot diagrams, with the exception of Figure 3.2, for the
sole purpose of detecting any unusual wvariation in the
monochromatic correctionestate of the field while we are
correcting the axial colour,)

The Figure 3.2 shows very clearly by the size of
the halo around c¢ and F spots that the blue end of the
spectrum is well out of adjustment. However, it is evident
from the Figures 3.1 and 3.2 that the system SS(4) would

be almost satisfactory for a maximum aperture somewhere

between P = 0,12 and f: 0.14 (£f/4 to £/3/5). In view of

this evidence the problem of controlling the chromatic
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aberrations is similar to the monochromatic design problem

already treated in that it is once again mainly one of

controlling the zones beyond f/3.5,

3.1.2 The Effect of Changing L.

In the first attempt to improve the longitudinal
chromatic aberration of SS(4) we decided to make lch' and
tcht! zero, This was achieved by iterating the 3rd order
triplet with respect to L and T until 1lch' and tch! were
‘within ¥ (10—5) of zero, Although this iterative process
was discarded after adjusting lch! and tch! in favour of
the more logical design process of relating L’and.T to
quantities computed from trigonometrical-ray~traces, never-
theless, the changes that occurred in thié instance form
an interesting step in colour control,

After automatically adjusting lch' and tch! to
zero by iteration, L has become L = 0,165, T has become
T = 0,025 and the focal plane of the é and F wavelengths
from the axial zone has changed from LA' = =0,0005 to
LA' = -0,00037, We see in Figﬁre 3.3 that the inner zones
have improved slightly but unfortunately at the same time:
the marginal and intermediate zones have deteriorated cbmg;
pared with those in Figure 3,1, The intermediate zones ,
hoWever, have greater longitudinal chromatic aberration and
the marginal zonesvhave greater spherical aberration than

system SS(4). In view of our initial assumptions we do

not ascribe any of these zonal changes to T, Thus a small
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change in L of L = -0,035 has had little effect on the
zones below {7= 0,15 but, it has on the other hand, pro-
duced significant changes in the intermediate and marginal
zones even though they are unsatisfactory changes, This
attempt to improve the chromatic aberration of the lower
zones by iteration has caused a substantial increase in
the chromatic aberration of the outer zones, but this is
not serious as the increase produced in the spherical

aberration of these marginal zones, Clearly, improvement

of both the longitudinal chromatic and the marginal spherical

aberration must lie in the direction of increasing L,

Let us now examine the effect of L alone, We
will make this new chromatic study of the type 121 at
T = 0.025 so that the systems from now on will satisfy our
original condition that tch! be zero. However,since if
is expected that changing T from 0,05 to 0,025 has no
significant influence on the axial image then we can assume
that the continuity between these later systems at T = 0,025
and SS(4) at T = 0,05 will be preserved as far as L aﬁd the
LAt'-curves are concerned,

The first change in L is shown in Figure 3,4
where L has been increased to L = 0,25 and, therefore,
except for T and L this sytem is the same as SS5(4) in all
other respects, This increase in L has reduced the longite
udinal-chromatic-aberration of all zones substantially and

also completely reversed the spherical aberration of the
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marginal zones, A further increase in L to L = 0,3 1is
seen in Figure 3,5 to have produced a very even balance
of chromatic aberration of all zones while, at the same
time, it has caused only a slight increase in the marginal
spherical in excess of that at L = 0,25,

Indeed, the system shown in Figure 3.5 is well
corrected for both zonal chromatic and spherical aberrat-
ion up to an aperture of f/3.,1 ( = 0.,16), The set of
curves is of similar shape to those of Pentacs (see Figure
3.27, chapter 3.3) designed by Argentieri and Cruickshank,
(These systems are similar in that they have over-corrected
marginal spherical combined with well-corrected longitudinal

chromatic aberration,)

3.1.3 Zonal Achromatism and Reduced Petzval, (The effects

on the zonal aberration of combining R4 and L,)

We have found by increasing L that we have achieved
reasonable achromatism for all zones up to an aperture of
f/3.1 but in doing so we have lost two-zone correction,

'However, in the following we see that a comparison of the

broad behaviour of the LA'=curves of this chromatic study

With that of the LA'-curves of the R4 study leads us to a

unique solution of the type 121 triplet, and, in addition

initiates a fresh understanding it seems of the general

problem of convergence of triplet solutions.
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If we consider the shape of the LA'-curve of a
particular colour as we progress through the Figures 3.3,
3.4 and 3,5 then we getéasgfoup;of;burves that is similar

to a group of LA'-curves versus R, which were plotted in

4
Figures 2,35 and 2,36, It is evident that LA! versus ¢

versus L is similar to LA' versus @ versus R Following

4.

this idea further, we see that the LA'-curves of Figures

3.4 and 3.5 are reminiscent of those with R, greater than

4

the optimum R ,~value of the monochromatic systems, There=

4
fore, it is evident that the spherical aberration of the
intermediate and marginal zones (the zones above the station=
ary zone at £/3.5) may be changed from positive to negative

by increasing either L or R This property offers the very

4.

interesting possibility of correcting the colour whilst at

the same time reducing the Petzval curvature, Thus by

applying this property we propose to recover the spherical
balance of the marginal zones without, we hope, losing the
chromatic correction,

The effect of L on LA' versus e with A constant
is shown in the top row of Figure 3,6 for c-light, d-light
and Felight;. 'Directly beneath the d=-light graph we have
the effect of R4 on LA' versus g in d=-light, Comparing
the d-light diagrams confirms that there is a remarkable

similarity between the effects of R4 and L on the mono=-

chromatic system,
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It is clear from the top row of graphs of
Figure 3,6 that the effect of L on the marginal zones
remains largely unaltered as the wavelength changes,

Therefore, the possibility of controlling the marginal

spherical of the chromatic system with R4 is seen to be

very probable at this stage,

The reduction of R4 was first performed for the
system with L = 0.25, We chose this system first, because
R4'was more likely to reverse a modest aberration of the
marginal zone than the larger aberration associated with a
larger value of L, (This decision was made as a result of
our earlier experience with marginal zones and R4.)

This system at L = 0,25, T = 0,025 with R4 reduced

by ,AR4 = 0,015 to R, = 0,20 is shown in Figure 3,7, As

4
we had anticipated; the marginal zones are reversed and also,
as we hoped, much of the chromatic correction is retained,
After the successful balancing with the smaller
value of L. we sought the reduction of the marginal zones
of the system with L = 0,30, This was pursued in three
steps, the results of which appear in Figure 3,8 where we
have LA' versus the five étandard wavelengths for R4 = 0,19,
0.185 and 0,180, From these it is evident that the redgct-
ion of R4 below R4

correction of the marginal zones, Thus R4 = 0,185 appears

= 0,185 begins to introduce serious under-

to be the optimum system at L. = 0,30 and T = 0,025, We

have called this system SS(15),
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The spot diagrams -of SS(lS)lare shown in Figure
3.9, An obvious improvement has occurred in the axial
colour of SS(15) over that of SS(4) -(see Figure 3,2) but
further improvement is required, Also, the comatic flare
is still rather large at 5° off-axiss However, we notice
that the off-axial spot diagrams follow the trend of the
axial spot diagrams, Consequently, the effect of L on
the off-axial spot diagrams can be inferred from'the axial
spot diagrams, Therefore, a plot of-the field in d-light
seems sufficient when the axial spot diagrams -are available
for all colours,

Before continuing with the correction of colour,
it was considered worthwhile to readjust-the coma of SS(15)

by further increasing the negative 3rd order coma residual

(RZ)' This was completed in two stages, the sequence
commencing at SS(15) with R2 = =0,06 and passing through
R2 = =-0,08 to R2 = =-0.2. The spot diagrams used to assess

this adjustment are not reproduced here because the effect
has been seen in other systems, for example, those in
Figure 2,39. However, we have reproduced the groups of
LA'-curves versus f versus wavelength for the two stages:

in Figure 3,10 so as to show that R, has a small yet signif=-

2

icant effect on the zonal spherical aberration beyond £/3.5,

It is evident that the reduction of R, has induced small

2

increments in both the zonal spherical and longitudinal

chromatic aberration, ‘ e
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Conclusions,

We can summarize the results of the study of L
and R4 with the following two rules:
1, The spherical aberration of the marginal zones ( > £/3,5)
is decreased by increasing either L or R .
2, As the chromatic aberration of the marginal zones is
reduced the optimum system occurs at smaller values of

the Petzval sum,

Clearly an earlier assertion of the independence of L and

%4,(°r P) does not apply to the marginal zones,

. 3.,1,.,4 Adjusting the Transverse Chromatic Aberration

with T and its Effect on the Longitudinal Chromatic

Aberration and the Petzval Curvature.

3.1.,4,1 Final Adjustment of L and R4.

After discovering how to control the zonal

aberrations with L and R, three closely related systems

4
were developed, The first of these was generated with
the aim of having the smallest possible Petzval associated
with the smallest possible chromatic and monochromatic
zonal aberrations, especially in the marginal zones, In
view of the work of the preceding section, this type of
correction-state was sought by simultaneously increasing

L and reducing R4 as far as praeticable. The optimum

system satisfying these conditions was obtained with L =

0.4 at the surprisingly low value of R, = 0.130 (c.f., SS(4)



P
with R, = 0,215, see section 2,5.9,2). The LA' versusp
versus wavelength curves of this system which we will

call SS(20) are plotted in-the left hand position of the:
middle row of Figure 3.11,

Beyond L = 0,4 it was found that little improve=
ment occurred in the longitudinal chromatic aberration of
the marginal zones. Moreover, the ability of R4 to control
the marginal zones deteriorates near L = 0,5 to such an
extent, that it cannot recover the correction-state once it
is disturbed by these extremely large values of L.

It is evident from Figure 3,11 fhat the marginal
spherical of SS(20) is larger than we would wish (that is,
LAt > 0,005 forf) 0.18). This, however, has been reduced
to our normal value of LA' = 0,005 in system SS(21) by °
increasing the Petzval residual by A R4 = 0.005‘to R4 = 0,135,
giving the more compact group of LA'-curves shown in the
middle diagram of Figure 3,11,

The spot diagrams of SS(20) and SS(21) are shown
in Figures 3,12 and 3,13, It is evident that the axial |
spot diagrams of SS(20) are much more compact than those of
SS(21), but SS(21) has less halo. However, we notice that
in spite of the last adjustﬁent of Rz, which was made inite
ially fo system SS(15), that both systems SS(20) and Ss(21)-
still sﬁow a considerable amount of coma-like flare at 5°
and a lesser, but still significant, amount at 10°, This

extra coma has been Balanced in system SS(24), which is

SS(21) with R, now equal to ~0.,14 instead of -0.,10, = The

2



RHO
20

cde f

L=04
T=001
Ry=0130

8820

L=04
Rd=043§
Rz.-01

L=04
T=0045

IFig;. 3"1 1

0 05 0

ss24

L z 0‘4

T: 0025
Ry: 0135
Rz 2 -0“4




SYSTEM S§520 X=0
0 V=5 V=10

\%

002

--002 r-

=002~

002
--002

.002%

--002 r

002 &=

Fig. 3.12



002

-002

002%
-002p~

-002%
- '002r-

Jk,;ﬂ-

002k

V=0

SYSTEM §521 X=0
V=5

Fig. 3.13

V=10



SYSTEM 8s24¢ X-0
=0 V=5 V=10

- 002
[-

002

—-oozr

.002%

-~002F

0024
--002

-002%=
--002 r

132 "ok YT

Fig. 301’4



’9/
LAt~curves of SS(24) are shown in the extreme right.hand of
the middle row of Figure 3.11 and its spot-diagrams are
shown in Figure 3,14,

When we consider the information we have obtained
about the performance of the systems SS(20), SS(21) and
SS(24) both on-axis and off-axis up to this stége, we find
that we cannot separate them conclusivelyé Each gystem is
superior to the others in one or more aspects of LA'-curves
or spot diagrams, Consequently, in the concluding stages
of the design ofi¢he type 121 we will study the effect of
the remaining parameter (T) on these three systems which

have good axial correction,

3.1.4,2 The Effect of T on the Axial and Off-Axial

Pencils of the Type 121,

The '"principal-performance-parameters'" used in the
study of T %re LA' and 6;, both of which are calculated
directly from trigonometric¢al ray-traces of the systgms
which are generated by the SS-programme; predictions are not
used for the reasons given above (see 3.1.0), The parameter
€; is the displacement of the principal-ray of specified
colour relative to the image point of the same principal=-

ray of the base colour (d-light), in the paraxial image plane.‘

It has been computed for the maximum aperture ({ = 0.2, £/2.5)

o} O (o]

at field angles of V = 2.5°, 5°, 7.5° and 10° for the five

standard colours, !

The effect of T on the axial and off-axial pencils

of the type 121 is portrayed in Figures 3,11 and 3,15 which
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are'complementéry diagrams, They show the effect of T in
the region surrounding the optimum systems S5(20), Ss(21)
and SS(24) which occupy the middle row in each figure.

In Figure 3,11 we observe the change in LA? versusf’versusx
caused by T and similarly in Figure 3,15 the change it causes
in E; versus H versus % (H = tan v),

We have varied T over a considerable range that

spans T = 0,025, Starting from the top of Figure 3,15, T
increases from T = 0,01 to T = 0,04 in steps of AT = 0,015
and in the process the order of thefz; curves versus H versus .

)\ is reversed, At the top of the page we have the coloﬁr
sequence c, d, e, F and g which becomes g, F, e, d and c at
the bottom, Clearly a minimum exists foré?; versus T and
for all practical purposes it occurs at T = 0,025 which is
the value arrived at previously after the automatic adjust=
ment of the tch! to zero, (see section 3.1.2).

Turning our atténtion back to the Figure 3,11 we

observe, contrary to our earlier supposition, that T has a
significant effect on the axial image, Once again, as we
50 Ry and L, it is the marginal zones (@ > 0,16)
that are affected; the zones below f = 0,16 are not, When

found with R

T is increased the marginal zones become more positive,
This is seen when we go from the top row of Figure 3,11 to
the middle row; during this process the marginal aberration
is doubled,

Again, as with L and RZ’ the marginal zoneé are

adjusted by changing R4. For example, in passing from the
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top left hand diagram of Figure 3,11 where T = 0,01 to
SS(20) in the middle row where T = 0,025, the marginal
zone is increased from about 0,005 to 0,01, This marginal
increase is reduced to thevinitial value that the system
had at T = 0,01 in going from SS(20) to SS(21), The réduct-

ion, of course, is caused by the change AR, = 0.005,

4
Similarly,'in going from'SS(ZO) to the bottom left hand
system, T changes to T = 0,045 and in this case, the marginal
correction is preserved by increasing R4 to R4 = 0,140,
ThusAT =/0,015 is balanced by L\'R4 = 0,005,

It is evident from Figure 3,15 that although T
changes the separations of theGE;-curves it has no significe
ant effect on their curvature which, of course, is the

distortion, This can only be modified by changing the

residual R_, The systems depicted in Figure 3,11 and 3,15

5
have R5 = 0 which we have not bothered to alter in view of
the small amount of distortion present, We have left
changing R_. until the stop is shifted out of the middle

5

lens into one of the air-spaces, in which case, we expect
that we will have to balance significant additional distort-
ion caused by the disturbance of the symmetry,

Conclusions,

Contrary to earlier expectations T does affect
the axial pencil, However, like L, it only influences
the marginal zones significantly although in this respect

it is not as severe as L,
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We can summarize the effects of T in two rules:

1, As T increases the spherical aberration of the marginal
zones ((}'0.16 or7f/3.5) increases. (Thus when T is
changed R4 must be changed in the same sense iﬂ_order
to preserve marginal correction,)

2, The transverse aberration.é;_has an optimum minimum with
respect to X, k*, P, L, T, (1f 6; is positive then it

will be reduced by increasing T.)

3,1,5 Discussion of some Important Properties Observed

during the Adjustment of the Chromatic Aberrations,

In Table 3.2 we have assembled some important
parameters of the systems with two-zone correction which
have been cémputed at the main stages of the adjustment
of L and T, We recall that these systems are SS(4) (the
optimum monochromatic system), SS(15) (the first major balance
of R4 and L) and the three final systems SS(20), SS(21) and-
SS(24) which we cannot as yet separate satisfactorily,

All of these systems are‘similar at apertures less than
f/3.5, however, they differ significantly beyond £/3.5,

The most important thing of immediate practical
use coming out of this table is that the spherical coeffic=
ients of these systems are almost unchanged during the
adjustment of k and T, Their signfpattern remains +== and

their order of magnitudes do not vary significantly, Thus

we have found that two-zone correction:is associated with a

charbcteristic set of spherical coefficients of which the




TABIE 3.2

BLOCK 1, BASIC PARAMETERS
System x k' P L T Na Va Nb \L) Ne Ve AV = va-vb
ssh -0,4772 | -2.859 |o0.5567 |o0.2 | 0.05 1,62101 | 60,18 | 1.5585 | 35.800 [1.62101 |60.18 | 2L.28
SS15 -0,5501 | -3.108 }o0,4377 |0.3 | 0.025 " " 1.5628 | 36,164 ", " 24.02
§520 -0.6298 | -3,105 |[o0.2210 |o.4 | 0.025 " " 1.5628 | 36.160 " " 24,02
$521 -0.6497 | -3.147 |o.2u1u |o.u | 0.025 " " 1.5634 | 36.213 " " 23.97
ss2l -0.6159 | -3.134 | 0.2420 |Jo.4 | 0.025 " " 1.5632 | 36.197 " " 23,98
BLOCK 2. PERFORMANCE PARAMETERS
Residuals
System R1 R2 R3 RL R5 R6 R7 R8
ssh -0.0015 | -0.06 0 0.215 } 0 0.0006 0.00027 0
SS15 " " " 0.185 | " 0,00219 |-0,000042 | "
$520 " -0.10 " 0.130 | ~0,00007 0 "
s821 " -0.10 " 0.135 | -0, 00007 0 "
ss2y " -0.14 " 0.135 | -0.00006 ) "
BLOCK 3.
Spherical Coefficients Power Ratilo
System o AL, T M Ea a3
ssh 0.1010 | -6.906 | -7.752 | 1.7997/1.5338 = 1.17 | 0.0832
SS15 0.1789 | -7.298 |-46.57 1,908 /1,530 = 1.25 0.1094
$820 0.1399 | -7.144 | -25.99 2,058 /1.587 = 1.30 0.1319
ss21 0,1634 | =7.251 |-37.98 2,04 /1.578 = 1,30 0.1316
Se2Y 0,116 § -7,034 | -2¢.80 2,041 /1,578 = 1,30 0.1320
Average 0.1LL9 | -7.090 }-29.57
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average values are about G; = 0,15, Aﬁ = =7, ﬂ; = =30,
This property has been uséd'in the later stages of this
design to locate the system with two-zone correction when-
ever the basic parameters have been altered, Thus all we
need do when, for example, we alter L, is first to generate
systems with the new L over a range of,,R4 in steps of
AR,

spherical coefficients Versus'R4 and from this graph locat=-

= 0,005, Then it is only a matter of plotting the

ing the system with the characteristic set of spherical

coefficients, The system selected in this way has two-
zone correction, (Note this method is also used with 122
system,)

The existence of the stable set of characteristic
spherical coefficients for two-zone systems haé an importe
ant implication, Since we are able to find the optimum.
£/2.5 system by the pattern of the 3rd, 5th and 7th order
coefficients, then it follows that the higher order
spherical coefficients (greater than'7th) are very stable
over a wide range of the basic parameters, This seems
remarkable in view of our eaflier work on optimizing LA®
with respect to the -basic parameters, when it was found
that the marginallzones were extremely sensitive to R4 and

L, and to a lesser extent to R2 and T, Therefore, this

stability of the higher aberrations requires further

investigation but we will leave this until section 3,2,2:2,.

Let us now compare the basic-parameters and the

residuals generated from them, The basic-parameters are



shown in Block 1 and the residuals of the systems generated
from them are shown in Block 2 We have already found in
our treatment of the LA'«curves that P, L and T interact
strongly as far as the marginal zones are concerned, and
now we find on comparing Blocks 1 and 2 of Table 3,2 that
;( and k' are disturbed significantly as well, Thus all
the basic parameters interact strongly at large apertures,

Therefore, attempts to design on the basis of associating

each parameter with a single aberration residual, can be

expected to have little chance of success in view of this

complex relationship,

When we recall the comparison‘of ray-traée and
predicted LA® versus §#£ versus x -curves we see that designe-
ing for apertures of less than £/3,5 is fairly simple (at
most, tedious), Designing at less than £/3.,5 is easy for

two reasons; firstly, the obvious one, that 7th order

/96

predictions are reasonably accurate up to f/3.,5 and secondly,

for the less obvious reason which we have discovered, that

seemingly satisfactory low-aperture performance is generated

over a wide range of the basiceparameters, This latter

benefit results from the apparent stability that the lower

zones have with respect to chromatic-basic-parameters L

and T,
Past workers have noticed that certain quantities
assume particular values when a type 111 triplet is well

corrected, The most notable ones seem to be the length

of the system and the powef ratio of the two positive lenses
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(¢c/¢a). The length of the type 121 system that we have
developed is proportional to either one of its separations,
therefore, in order to observe changes associated with the
overall length, we negd only look at eithgr d3 or d6' We
have tabled d3._ The other quantity, the power ratio, can
be identified with R.E. Hopkins basic parameter K (=€§%Z)
which is the inverse of the power ratio-(ﬂclﬁa). It is
evident that the over-all length is a performance parameter
.which, according to our nomenclature, is a ”fundamentgl-
performance~parameter' and, in particular, it is equivalent
to our fundamentalwperformance-~parameter 63. On the other
hand, the power ratio is a ”basic-farameter” equivalent to
our X (see chapter 2.2},

It has been remarked by many workers that the
longer the system the smaller the longitudinal chromatic

aberration, This is demonstrated very ciearly in Block 3

where the separation d3 is seen to increase in going from

SS(4) to SS(24),. Thus the optimum system is associated

with the greatest overall length, However, the small

magnitude of the change in length, occurring for L.chang—
ing from 0.2 to 0.4, suggests that perhaps it is not the
most suitable parameter for controllihg the optimization
of a wide aperture triplet, This conclusion is supported
by the graphs of d3 and d6 versus (X, k!, P) shown in
Figure 2,4 from which it is evident that the variation

in length is not as suitable as the spherical coefficients

for locating the optimum region, The location of the
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simultaneous minima»of the spherical coefficients shown in
Figure 2,29 would appear to provide a more precise method
for finding the optimum system,

We also note that the basic parameter AV is
about 24 for all the systems SS(4) to SS(24), This is
like the average value 25 which is¢quoted by R.E, Hopkins
as being about the optimum for the type 111,.-

| The distribution of power between the first and
the last lenses is used as a basic—pérameter by sevefal
workers including R.E. Hopkins, It is evident from the
table that ¢C/¢a = 1/K is approximately 1,3 (Bloék 3, Table
3.2) for the optimum-chromatic-type 121 systems SS(20),
SS(21) and sSS(24), We - know that we have contrived to gener-

ate these systems with minimum zonal aberration for all

zones up to £/2,5, Therefore, zonal correction is assoce
iated with a basic parameter ¢c/¢a = 1,3 which agrees with
an observation made by H.D. Taylor, His remarks are reported

recently by Lessing as follows - "In an astrographic triplet
designed by Taylor(lo) it was found that it was impossible
to remove zonal aberration by figﬁring when the third power
was equal to the first, However, when the third power was
made one-and-a-half times the first, the zonal aberration
decreased to such an extent that figuring could remove it
entirely,"

The above evidence further supports our claim

for the general behaviour of triplets being like that shown

in our study of coefficients versus (X, k', P). Thus yet
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another facet of published work supports our view that

the picture of convergence of the coefficients and the

residuals which we have constructed for the type 121 applies

penerally to systems of triplet structure at least,
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CHAPTER 3,2 THE SIMULTANEOUS CONVERGENCE OF ALL AVAILABLE
ORDERS OF SPHERICAL ABERRATION COEFFICIENTS
WITH RESPECT TO THE BASIC PARAMETERS

X, k', P, L, T,

3.2.0 Introduction,

After a lengthy and at times involved investigat-
ion of the type 121 triplet we have developed three very
well optimized systems in Chapter 3.1, During this develop-
ment we have encountered many aspects at apertures less than
/3.5, which are similar to those observed by other workers
for other triplet-types, Consequently, we have concluded
that these aspects are facets of the more complete picture
which we observed when we mapped the coefficients with respect
to the monochromatic parametefs (X, k', P), However,
although our low aperture work is easily interpreted we find,

on the other hand, that our work on the marginal zones has

apparently taken us bevond our earlier picture of convergence

of the 3rd, 5th and 7th order aberration coefficients versus

( X, k', P) which was discovered in Section 2, Nevertheless,

in spite of this, agreement has been found with the few pub-
lished results concerning optimization of wide apertur¢
triplet systems, But, these points pf agreement only give
us, mainly, a goal for two of the construction parameters, the
power ratio ¢C/¢a and the length of the system, What we

would like to do now is to find a simple model for the
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"'wide-aperture~chromatic-system'" similar to the one we

have constructed for the monochromatic-system of aperture

less than f/3.5, in Section 2,

3.261 Review of Indirect Evidence of the Convergence of

Coefficients with Respect to all the Basic Paramet~

ers (X, kt, P, L, T),.

Let us begin the search for a new model by re=
viewing the entire optimization process of the type 121
as we have experienced it, We recall that we showed at
the beginning of Section 2 that the type 121 could be
studied interpolatively in two stages, First of all
monochromatically, by mapping all the coefficients of 3rd,
5th and 7th order with respect to all the ''basic-monochromatic
-parameters" (C(‘, k!, P), As a result of this, we were
able to isolate a unique monochromatic region in which
almost all the coefficients tended to zero, In particular,
all of the spherical coefficients approached zero and in
doing so systems with spherical coefficients having alternat-
ing signs occurred, Such systems were predicted to givé
two-zone correction,

Attempts to produce a real f/2,5 system with two-
zone correction, from a predicted one, failed because the
higher orders of spherical aberration (beyond the 7th) were
significant, These higher orders were not predicted by the
coefficient maps of 3rd, 5th and 7th order and so we dis-

carded "interpolative-coefficientemapping'" in the advanced
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stages qf design, Thus  we proceeded to adjust the marginal
zones (greater than f£/3.5) with the Aid of LAt'-curves that
were calculated directly from ray-traces. This method was
successful in achieving twb—zone correction,

In passing, we note that.since two;zone corréct-
ion has been achieved then it follows that some of the
spherical coefficients of greater order than the 7th have
been reduced to values near zero, This is easily visuval=
ized when we recall the behaviour of the sphericél aberrat-
ion of the marginal zones in Figures 2,35 and 2,36, where it
seems, that some of the spherical coefficients of prder
greater than the 7th must be minimized, because, the marginal
zones run from positive to negative as R4 increases,

Thus, from this very abstract picture of the system given
by the LAt-curves, we observe indirectly the behaviour of
higher order coefficients ( > 7thiorder) with respect to

the basic parameters, (These coefficients are of‘higher
order than those already obtained analytically and shown

in the (X, k*, P)—mapé of Section 2,)

Finally, in the chromatic stage because it seemed
that we were faced with controlling only the marginal zones
with L and T, we did not bother to map the 3rd, 5th and 7th
order coefficients but proceeded, instead, with the mapping
of the LAt-curves versus L and T, Our decision to omit
the coefficient maps was also supported by the attitude of
other workers who implied that L and T would only have trive

ial effects on our monochromatic system, at least, at less
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than £/3.5, They said little aboﬁt higher apertures,
Our first results withlL showed that it had a
critical influence on zones beyond £/3.5. ﬁowevef,’we
showed that the zones could be controlled with R, during

4

correction of the longitudinal chromatic aberration with

L, Thus we found that the chromatic aberration was adjusted
at a smaller value of R4 than that which occurred in our
monochromatic design, The opposite happened when T was

adjusted, but it had less effect on the outer zones than
L, consequently, the adjustment of the axial and off-axial
colour produced considerable improvement in the Petzval

coefficient (R4). The net result of the interaction of

L., T and R, has been to produce, not only, an optimum

4

achromatized f/2.5 system, but also, it has improved the

lower aperture system as well, The latter point is the
one we have tended to take for granted while we have been
primarily concerned with the higher aperture performance,

But clearly, the lower aperture system has the benefit of

the smaller Petzval as well,

Thus, stopping down the optimum £/2.5 chfdmatic
system to £/3,5 produces a system superior to the optimum
monochromatic f/3.5'system SS(4) of Section 2, Therefore,
it is evident that both the optimum chromatic and mono-
chromatic systems of high and low aperture coincide in

(X, k*'y P, L, T)=space, Clearly the optimum values of

L. and T apply to both the chromatic and monochromatic
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.-

svstem§ gfzboth high and low aperture,-
What we have found is that there is an bptimﬁm

set of ( X , k*, P) for the monochromatic stage and an

optimum set of (P, L, T) for the chromatic stage; there=

fore P belongs to both stages of the design process,

Moreover, we have found P to be more strongly associated

with L. and T than with X and k! and, therefore, the‘oEti—

mum monochromatic set depends on the chromatic set,
Consequently, we must revise our approach to the design

process, Clearly it is not good enough to optimiie a

monochromatic system and then adjust the chromatic system

without considering the interaction between the two stages

(especially between the parameters P, L, T.) Obviously;

this applies even when we want the system to work mono=

chromatically, although it is not what we expect ffom~the

approach adopted by designers in general,. Indeed, it

appears that a very casual attitude is adopted towards the
chromatic parameters when designing low aperture systems
(less than f/3,5), The tendency seems to be, to select
L so that the low aperture residuals are a minimum, whgrea§,
we see that we should minimize all zones on-axis and off-axis
with the correct combination.df (X, k', P, L, T).

It is well known that maximum zonal correction
is achieved if the marginal spherical is iero and the 0,707
zone is a minimum, preferably zero, -We have observed that

LA' is a minimum for all.A near the 0,707 zone when the type

121 is optimized, However, this does not guarantee that
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the system is the optimum one, We have shown in this work

that R4 or P must be as small as possible also, It is

evident from the work with LA' versus R4 versus L that we

can find systems with optimum zonal correction for all A

over a considerable range of R4 simply by minimizing the

0,707 zone with L, Of these systems the optimum one seems
to be the one with the smallest R4 and the largest permiss=
ible L,

3e2e2 Direct Evidence Confirming the Simultaneoué

Convergence of the Spherical Coefficients of all

Available Orders Versus (X, k', P, L, T)|

3e2¢260 Discussion,

We are now aware of the interaction between the
basic p;rameters (X, k*, P, L, T) at high as well as low
apertures, Consequently, we have had to modify oﬁr approach
to the design process and consider the connection between the
monochromatic and chromatic stages, During the elucidation
of this interaction several properties involving spherical
coefficients have been found, which cannot be explained by
our simple model of coefficient convergence in (% , k', P)-
space, (Chapter 2.2), Therefore, we will examine these
unexplained properties and propose a new model'which will
account for them,

The properties we must consider may be divided
into two groups, those concerning the 3rd, 5th and 7th order

coefficients, and, those involving orders greater than the
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7th order, This grouping divides the coefficients accord-
ing to the portion of fhe aperture that they seem to influence .
most, Thus the 3rd, 5th and 7th orders, which we have
partly mappéd already, affect the zones below £f/3,5 and the
orders greater than 7th affect the zones beyond f/3.5, Of
course, as yet, we have only seen the effect of the higher
orders indirectly through LA'-curves or spot diagrams,
However, we will consider the 3rd, 5th and 7th orders first,
and defer looking at the higher orders until these lower
orders are pictured clearly in ( X, kt, P, L, T)-space,

3626261 Gonvergence of 3rd, 5th and 7th Order Spherical

Coefficients Versus - (X, kt, P, L,”T) Demonstrated,

We have -found that the 3rd, 5th and 7th order
spherical coefficients of the two-zone symmetrical system
retain a characteristic-pattern while L and T are optimized,
Not only are they constant during this process but they are
also nearly simultaneouély'Zero. As well as this; an im-
portant change occurs in R4, it becomes smaller, which means,
of course, that the basiceparameter P Becomes smaller Similarly
because, it is virtually a linear function of R4 (see Chépter
2.2). |

After considering the abOQe broperties we>propose,
that even when L. and T are changed the coefficients and the
predicted margihal spherical will still converge with respect
to (;&, k', P) in the same simple way as before, except for
the difference that the rate of convergence of the spherical

parabolas with respect to P will vary with L and T, In the
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original monochromatic-survey the coefficients were mapped
with respect to ( X , k', P) with L = 0,2 and T = 0.05.‘-
Such a map is a "{X , k', P)=section' of X , k', P, L, T)=-
space at L = 0,2, T = 0,05, -Consequently, if we change L
and T we select a new "( /X , k', P)=section" in which we
have to reloéate the ”0ptimum-monochromatic—region“.

In view of the evidence which we have about L and
T we expect the optimum region to occur at a smaller value
of P when either L. is increased or T is decreased. On the
other hand we do not expectfthe X and k'-values of the
"optimum region' to change appfeciably (see Table 3.2) dur-
ing the adjustment of L aﬁd T; the "optimum-region' should.
remain near k' = =3,0 and X = -0.5; :Thus we anticipate
that Cr;, AL1,~q(1 and ééph-will approach. zero-simultaneously
at smaller values of P when either L is increased and/or T
1is decreased,
| The behaviour of the 0‘1,,Ai1,’r 1 andf}éﬁh'versﬁs
(%, k', R,, L, T) is shown:in Figures 3,16 to 3,21, Each
figure maps the spherical coefficientsvand the marginal
spherical of the 3rd order type 121 triplets with pespect to
the three basic parameters X, R4 and.L.

We have used R, instead of P because we have become

4
accustomed to it in the advanced stages of our design process,
However, we have already shown that (;& , k', P)=maps are not-
very different. from (X, k!, R4)-maps and, therefore, conclus-

ions about one will do for the other as far as the general

behaviour is concerned,
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If we assume that.R4 and P are equivalent for our |
present purpose, then Figures 3.}6 and 3,21 map the region
of ( X, kt*, P,,L, T)=space which surrounds the point (L = 0,2,
T = 0,05) of our originai'monochromatic survey in uniform
steps of L and T, Looking at this group of figures is very
like looking at a set of (X, k', P)-sections which occur at

different L and T, (We have, however, plotted (X, R L) -

4
sections in each of these figures: which will seem strange at
first, so in order to orient ourselves with respecf to our
earlier ( X , k', P)=-survey we will locate the original survey

in this (X, R,, L, T)=-grid.)

4

To assist us in visualizing the results and in locat~
ing our original monochromatic survey, we have constructed a
schematic diagram of the érrangement of the (X , R4,'L)--
sections in (;X, R,, L, T)wspace at k' = -4,0 (see Figure 3,22),
Each row of this schematic diagram represents one of the
Figures 3,16 to 3,18 which, therefore, are (X, R,, L)=sections
at k'.= =4 that occur at different T,

Each of the Figures 3,16 to 3.17 are at k' = =4 but
the T of each becomes progressively smaller in steps of AT =
0,04 starting at T = 0;09 in Figure 3,16_and decreasihg to
T = 0,01 in Figure 3,18, Therefore, these figures map the
spherical coefficients and ééph with respect to (X, P, L, T)
at k' = -4 and Figures 3.19 to 3,21 repeat this map at K! = 3,

Portion of the original (X, k*, P)-map (at.L = 0,2,

T = 0,05) is compressed into a single column of diagrams in

Figure 3,17, It is evident that the column at L = 0,2 in
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Figure 3,17 contains the equivalent of all:the P-curves at

k!t = -4, Or, incother words, it is as though we have erased
all except the k! = -4 curves in the original ( Gi, Ui, T& ééph)
versus (‘x, k', P) diagram of Figure 2,3, and then super-
-imposed the P-axes of this original survey column by column,

It follows, also that thé columﬁ L = 0,2 in Figure 3.20
contains all the equivalent curves of the original survey at

k' = -3,

In each of the Figures 3,16 to 3,21 the curves of

the L = 0.3 column are identified by numbers 1 to 5'(thése

numbers have been omitted in the other columns for the sake

of clarity,) The bottom curve'has a Petzval coefficient of
R, = 0.16 and the ones above it increase in steps ofAR4 = 0402
running from number 1 at R4 = 0,16 to curve number 5 at R4 =
0.24,

In view of our past experience with the coeffic-
ients mapping only the two values of k! -4 and ~3 is suffic=~
ient for observing the broad behaviour,

The comprehensive maps of the sPherical coeffic=
ients (Figures 3,16 to 3,21) confirm that their general be-
haviour remains similar to that of the original monochrgmatic
sSuUrveye, It is evident that as L‘increasés and T decreases
groups of curves are compressed and raised above thg
-ax1ls, |

Moreover, inspection of the corresponding comatic

and astigmatic 5th and 7th order coefficients (not shown)
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shows that all of these still follow the trend of the
spherical coefficients when L and T are changéd. Thus
most of the coefficient~parabolas converge towards zero
at smaller Petzval as L. and T are optimized,

| Clearly the region of maximum compression and
elevation of the groups of curves is where we would like
to generate a real system, This, of course, is where we
have found the optimum type 121 SS(20) to occur (L = 0.4,
T = 0,025, R, = 0.130, X= -0.6298, k' = 3,105), see

Table 3.2, Therefore, the concept of a single optimum

region in (X , k', P, L, T)=space and the supposition that

this region is conveniently located by finding the position

of the simultaneous minima of the marginal spherical aberrat-

ion and the spherical coefficients of at least the first

three orders, at the smallest,P;Ais supported.

Be2e3 The Study of the Spherical Coefficients..Extended

to the 9th and 11th Order.

3.2.3.,0 Introduction,

We hav¢ noticed, indirectly, in several instances
in the course of developing the type 121 to work at £/2,5,
evidence which suggests that the spherical coefficients of
order greater than the 7th behave very much like the lower
orders, Indeed, our design problem has been found to be
concerned more with the higher orders than with the lower

ones. - Thus any direct evidence which shows how these
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coefficients-are controlled by the basic parametefs will
assist in confirming the design principles at apertures
greater than £/3.5, |

Buchdahl recently has developed the 9th order
(quatérnary)(l3'4)>and 11th order-(quinary)(13'8) spherical
aberration coefficients. He has also published computing
schemes which extend his earlier scheme for the 3rd, 5th
and 7th orders to provide these 9th and lith ofder spherical
coefficients, Thus we have the means for computing two of
the higher orders analytically,

3.,263,61 Computing Techniques using 9th and 11th Order

Spherical . Coefficients,

Following the programming technique established
in Section 1, we have programmed the scheme for the 3rd,
5th, 7th, 9th.and 11th spherical coefficients as a sub=
routine Sph(35%911), It is like the earlier sub-foutine
‘Sphe(357) iﬁ that if computes spherical coefficients from
a given set of.lens specifications (fundamental parameters).
This ‘sub-routine has been incorporated in a simple programme
called "Sphco"'" which computés the coefficients and predicted
zonal spherical for each order up to the 11th, Thus one-
can look at the spherical coefficients and their effect

? 4

on.ééph at various orders if desired, (GESph to 11th
order “is given by G;ph = 0163 +A&1€5 +3T1€7 + Q1€9 + Ulell).
The programmer may terminateGgéph at any order thus he can

analyse the contributions of the individual orders at various

e .



Table 3.3

d-light Spherical Coefficients Coma Petzval Basic Parameters
i T G | Y G A x k' P LT

System

sS(-1) 0074 |-6.5272| LL.753 | 3083.9 |80,473 0 <200 |-,521 -2,784 | J491}.2 | .05
ss(1) .1350 |-7.2431] -21,080 [1176.4 | 36,805 0 .215 |-.h485 | -2.882] .555|.2 | .05
ss(+1) 02616 |-8,140 | -77.202 226,.1 7,894 0 «230 |-.453 | =3.,047| .620|.2 | .05
ss(4) .1010 | -5.906 ~-7.752 1,462 |41,923 | -, 06 4215 |-oL477 | -2.859 | .556].2 | .05
Ss(6) .2452 |-7.812 | -75.158 |-3,383 | 4,284 | -.06 «215 «L95 | -3,200 | .559}.25] .025
ss(12) 3051 | -8,207 |-102.4L4 -1,006 |-8,691} -,06 «215 -.487 =3.571 | .560].30] 025
Ss(20) 1398 |-7.144 | -25.99 951.3 |32,301 | =.1 .130 }|-.629 | -3,105 | .220}.LO} .025
8s(21) «1633 | =7.251 -37.981 596.52|24,083 | -.1 .135 |-.619 | -3,147 | .241].40}.025
ss(24) .1415 |-7.034 | -29.80 760.3 127,000 | =1L 135 |-.615 | -3.13L ~L0} . 025

.2u1

-4
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The sub~routine Sph(357911) has also been used

in place of $ph(357) in the RL-programme and in the SS=
programme, The size of these 9th and 1l1th order versions
of the programmes exceeds fhe main store of the Elliott 503
computer, However, a backing store which was installed.
during this work, allows the programme to be run in segmented
form, (The compiler for operating the segmented programmes
is not yet fool-proof ahd, so far, we have only had consist=
ent results with the RL-programme, The extra complication
of the SS~programme has causéd intermittent failure, thus
preventing serious surveys with it,)

3e2e3e2 Behaviour of 9th and 11th order Buchdahl

Coefficients in the Optimum-Monochromatic=Region,

In Figure 2,35 and 2,36 we observed the variation
of LA' versus F versus R4. These figures showed that the
region beyond about e = 0.15 was minimized by R4. We now
ask, is this due to some freak balancing of all the higher
orders or, does it meandthat the higher orders pass through
zero in the same way that Crl’ ktlvand Prl do in the tegion:
of R, = 0,215, | |

The above question is examined in Tabie 3.3
(top three entries) in which the spherical coefficients of
3rd, 5th, 7th, 9th and 11th order are shown for_the three

systems SS(=1), SS(1) and SS(+1) which straddle the optimum

monochromatic-region (see Section 2,5.9.1)., It is evident

that all these orders of spherical coefficients pass through

zero in the optimum region as R4 goes from 0,20 to 0,23,




System SS(-1)

Table 3.4

Surface Contributions

Surface 0, AL, T, Qy U,
1 1.145 2.980 9.157 30,746 109,178
2 1.905 1} 12,302 | 73.537 L28,68Y4 2486,830
3 -6.238 }FLU5.173 |-325.830 | -2459,5€2 | -19402,733
L 1.728 | 24.498 | 371.403 | 5860.312 | 94366,133
5 -1.803 H17.418 |-171.125 | -1104, 364 5033.510
6 <341 4,389 48.853 321,943 | -2226,172
7 2,912 111,875 38.757 6.147 106.729
Total .0007 -6.,527 | LL.753 | 3083,907 | 80L73.u4T76
System SS(1)
1 1.135] 2.938 8.975 29.963 105,790
2 1.660| 10,457 60.L0O4L 339,711 1897.146
3 -5.691 |-39.807 |-276.457 | -1999.043 | -15056,681
L 1.475] 18.8L0| 258,129 | 3681,867 | 53592,664
5 -1,610 |-15.121 |-150,939 | -1175.087 | -3348,418
6 .285 3.594 u1.267 343,509 878.570
7 2,880 11.854]| 37.540 -44.559 | -1563,555
Total 135 -7.2u3] -21,080 | 1176.362 | 36505.518
System SS(+1)
1 1,156 3.030 9.370 31,668 113,193
2 1.398 8.708 L9.200 269,498 1461,800
3 -5.174 |-35.279 |-237.861 | -1655,097 | -12002,435
L 1,208 13,789] 168,305 | 2139,733 | 27766.099
5 -1..460|-13.520|-138.676 | -12L44.213 | -8655,876
6 .236| 2,968| 35,608 350,901 2610,609
7 2.896 | 12,162| 36.850 | -114,635| -3399.031
Total e261 | -8,140} -77.202 | -226,144 7894,359

2/
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Clearly these coefficients lag one behind the other as the
order increases, with the exception of,bbl, which appears
to precede the rest slightly in approaching zero in this
(X, kt, R4)-section at L = 0,2, T = 0.05,
In Table 3.4 we have the surface contributions

of the systems SS(~1), SS(1) and SS(+1) . The columns
depict the surface éontributions of Crl’AAl’(le Ql and U,
from right to left and the rows represent the surfaces from
1 to 7, The bottom row of each system contains the sum of
of the surface contributions, that is, the éoefficients of
the system,

| The reason for reproducing the surface contribute
ions is to allow us to examine them in the light of a
comment made by Buchdahl, At the conclusion of his paper(13'4)
in which he deals with the 9th order spherical he says,
- "Qualitatively speaking in the design of a system whic¢hhiss
intendea to perform satiéfactorily at a ﬁaximum of f)z,_say,
oné will in general aim at individual contributions which
(with ft* = 1) are at most of the order of 11Q00.;"" It is

clear thatthis has been achieved with the optimum-mono?‘

chromatic type 121, Thus two=zone correction is associated

with a Ql of the order of 1000,

3e2e¢3e3 Behaviour of the 9th and 11th Order Spherical

Coefficients in the Optimum~-Chromatic=-Region,

The spherical coefficients of the systems appear=

ing at different stages. of the chromatic design of the type
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121 are shown in the iower part of Table 3,3, This sequence
of systems begins with SS(4) (the optimum-monochromatice
system) then runs through SS(6) and SS(12) to the final
systems SS(20), ss(21), SS(24) that occur close together

in the optimum-chromatic-region of (X, k', P, L, T),

The systems SS(4), SS(6) and SS(12) are three of
the four systems which were used to demonétrate the effect
of L on LA' at different wavelengths in Figure 3.6, Now
considering these systems in Table 3.3 it is evident that
the spherical coefficients of all available orders pass
successively through zero as L is increased, We also note
on comparing SS(4), SS(6) and SS(12) with SS(~1) and SS(+1)

that :
AQ,/A R, & 28Q, /A L

and AU1/13R4?0 2 AU1/£;L

This confirms the conclusion arrived at earlier during‘the

study of LA!' versus R versus A that R4 and L have similar
v

effects on the spherical coefficients which are’associated

with the marginal zones, _

Combaring the optimum systems SS(20), SS(21) and
SS(24) with SS(1) shows that colour correction haé not
caused any significant change in the magnitudé of the
spherical coefficients of the first five orders, Thus the

characteristic pattern of the spherical coefficients assocw

iated with two-zone cofrection extends to include the 11th

order at least, Of course the”optimum-chromatic-syétem”

occurs at about R, = 0,13 as compared with SS(1) or Ss(4)



Change in Spherical Coefficients of SS(4) and

change in\.

Table 3.5.1
Spherical Coefficients
o | | T 9 Uy (R )T
System | Wavelength

¢ «138]-6.31 7071 1,582 | h3,571

. a «101]-6,90] -7.75 | 1,461 | 41,923].215] .2 | .05
ss(4) e CO71) =737 ~1h.ls | 1,356 | 40,547
F «NI7}-8,36] 28,5 1,166 | 37,678
g - 077 -9.6uL-a6.6 299 | 33,993
c 027)4 "7.36 -‘:'901 -258 5'3’42

a «2U45) -7.81| -75.1 -338 L,284|.215] .25] .025
ss(6) e e221| -8,16 -79.9 -401 3,LL47
F 0170 -8091 -8909 -55,4 19709
g .102 -9089-102.9 -701“ -523
c +328| -7.86 -98 -953 | -8,04L40

d « 3051 8,200 -102 -1,004] -8,691}.,215] .30} ,025
SS(12) e .286 —8.'&7 -108 "1'0u9 -99210
F o245 9.0 112 -1,137+10,285
g «190] ~9,791 -122 | -1,251}11,669
c .160| -6.77] -19.8 1,061] 34,237

d 0139 -701L‘L -2600 951 32.302 0130 .L& 0025
85(20) e «123| -7.43] -30.8 866| 30,809
F ,0867] =8,05] -h1,2 692 27,799

Table 3,5.2

S5(20) due to

A0 Sy AT A Qy AU,
AN SS(L) |ss(20)|ss(L) [ss(20)|ss(L)|SS(20)|ss(L)]|S(20) |SS(L)]ss(20)
c -d].037 | 020 | .61 | .37 8.4 | 6.2 121 | 110 [1750 [1935
4 -c| .030 .016 U7 | .29 7.6 | L.8 95 85 1376 |1493
e -pr|.o064 | .0u6 |1.00 | .62 |14.1 [10.2 200 | 174 |[2870 | 3000
FP-gl|l.o8 ] ,050 |1.28 | .81 [18.7 {13.0 257 | 218 85 | 3700

YAy
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_at R4 = 0,215, Thus the correction of the colour has

reduced P from 0.55 to 0,24,

The question comes to mind as to how the-spherical
coefficients vary with wavelength? In answer to this we
have shown the spherical coefficients of SS(4), SS(6), SS(12)
and "SS(20) for five wavelengths in Table 3.5.1,

It is evident from the Table 3,5.1 that except: for

01 all the spherical coefficients of all orders for all
the wavelengths shown are reduced together as L is increased
from 0,2 in SS(4) to 0.3 in SS(12) while R4 is constant,
However on going té SS(ZO) R4 is reduced to 0,13 and this
causes a dramatic change in the spherical coefficients,-

The gptimum-chromatic~system“SS(20) shows less variation

o
of the coefficients with wavelength than the optimumemono-

chromatic-syste& ss(4), hbwever, the pattern of the spherical
coefficients with regard to both sign and their order of
magnitude remains unchanged from A»c to,Xg in both these
sfstems. Tﬁus the optimization with respect to R4, L énd

T has mainly produced less variation of_the spheriéal coeff=

icients with wavelength, (See Table 3.5.2 in which Ss(4)

and SS(20) are compared in this respect,) Indeed the

characteristic pattern associated with two-zone correction

holds fairly well from c to F, (See Table 3,5,1) but it

detiérates rapidly as Xg is approached and obviouslz;ql is

the spherical coefficient most sensitive to change in wave-

length,
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The above computation of the spherical coéffic-
ients to 11th order has been repeated for the other optimum-
chromatic-systems SS(21) and SS(24); they are found to be=-
have in.a similar way to SS(20), The surface contributions
of the spherical coefficients of these three systems ss(20), .
SS(21) and SS(24) have been computed also, . This has shown
that the 9th order surface contributions a?e of the ordef
of 1000 for ;11 waveiengthé for these optimum systems,

3.,2.3.4 The Convergence of the 9th and 1lth Order Spherical

Coefficients versus ( X, R,» L, T) Demonstrated.

The segmented form of the—RL—prqgramme has been
used to repeat the ”limited;interpolative-surveyﬂ of the
spherical coefficients versus all the 'basic parameters"

(X, k', P, L, T), This programme as mentioned above uses
the procedure Sph(35791;) to compute the first five orders of
spherical coefficients of the 3rd order triplet,

Some results have been obtained and are plotted in
Figures 3,23 and 3.24, They are=the (X, R,
at k' = -4 for T = 0.05 and T = 0.01 for Q;, U, and C;ph‘
takes the values 0.14 to 0,20 in steps of

L)-sections

In this work R
AR,

is actually R

4

= 0,02, The bottom curve which is denoted by'R4 =1

4 0.14 a nd the_top curve R4 = 4 1s_R4 5 0,20,

It is evident that Ql and U1 follow the trend of

OE”MI and.ﬂl, however, they lag behind them, The groups

of curves are compressed and raised-as L increases and T

decreases., So it seems that the optimum region occurs
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when at least the first five orders of spherical coefficé
ients are near zero in (;C, k', P; L, T)=-space, The
survey shown in Figure 3,23 and 3.24 is all that couid

be computed in time available, However the trend is so

. obvious that further work along these lines at say k! = =3
cannot be expected to show anything other than the elevat~

ion of all the groups for an increase in k',
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CHAPTER 3,3 THE OPTIMUM TYPE 121 WITH THE STOP IN AIR.

3.3.0 Introdiuction,

The optimum chromatic type 121 systems (SS(20),
SS(21) and SS(24)) have been generated with the stop at |
the front principal point of the cemented doublet which
is lens group b, In this chapter the effect that shift-
ing the stop outside the middle lens group has on the
aberration-residuals of the type 121 is examined and the

system is re-~designed so as to restore the correction state,

.3

3.3.1 Computing Technique for Shifﬁing the Stob.

Shifting the stop alters the paths of the offw
axial paraxial-rays and therefore changes the aberrations
of the off-axial images, Thus, shifting the stop modifies
the system prior to iteration of 3rd order residuals with
respect to the shapes, This modification has been taken
care of in the basic-programme by introducing a sub-routine
that computes the coordinates of the principal ray of any
selected off-axial pencil for a given position of the
aperture stop. This sub-routine occurs immediately after

thickening in the sub-routine AC(x).,

3.3,2 Optimizing the System after Shifting the Stope.

In Figure 3,25 three stages in the control of
the aberrations induced by shifting the stop are depicted.

Once again we have the aberrations of the axial-pencil
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shown by LA' versus { versus X and those of the off-axial
pencil by the transverse aberrations 6; versus ﬁiversus>\.

At the top of Figure 3,25 we have the aberrations
of the system SS(20) with its stop in air at the front-
surface of the lens group b, Indeed this is the only real
stop-position we have considered in this work because the
time available was insufficient for making a thorough study
of changes in the stop~position with the existing computing
facilities,

Comparing the é;—curves of SS(20) of the Figure
3.25 wifh the corresponding curves of the original SS(20)
in Figure 3,15 it is evident that considerable distortion
and some transverse-=chromatic-aberration have been intro-
duced by simply moving the stop into the front airfspace
just outside the lens group b, Re-adjustment of these
aberrations involves modification of the parameters L, T,
R4 and R5. Using the principles established earlier they
are reduced as follows:

1, € ; for all ﬁ.by increasing T,

2, the distortion (curvature of 6;_-curves) for a11>\, by
cﬁanging R5.

3, the increase in the marginal LA'; which has been induced
by increasing T, by increasing R4.

Thus in the middle pair of graphs in Figure-3,25
we see the bunching of the'é;-curves (réduction'of transe

verse~chromatic aberration) produced by AT = +0.025 and
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the increased distortion caused by an incorrect change in
R, of Z§R5 = =-0,01, Also the marginal zones of the cuzzas
corresponding LA'-curves have been controlled by zﬁR4 =
0.001 which has been more than sufficiént to off-set the
effect of AT = 0.025, In the bottom pair of Figures we
see main}y the effect of the correct use of R5. A positive
3rd order residual of R5 = Q.025 has reduced thé max imum
aberration to G; < 0,0001 for all A ;

Finally in Figure 3,26 we have two systems with
almost identical families of LA? and,€;-curves but they
differ in their coma residual RZ' Thus we have FS11 which
is considered to be derived from SS(20) and FS12 which is
considered to be derived from SS(24), Their spot diagrams
are shown in Figures 3,28 and 3,29 where it is evident that
the small difference in R2 between the systems produces a
more symmetrical flare in the case of fSlZ. However this
is at the expense of the sharpness of the point image.

In Figures 3.30 and 3.31 the effect on the spot
diagrams of stopping down the system FS12 to f/2.8 and
£/3.,1 is shown., It is evident that the flare in the
axial image is caused by the outer zone between 0,18<(

< 0,20, It seems that nothing of value is contributed

by the outer zone and therefore it would appear that £/2.8

is about the maximum useful aperture of the type 121,
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3.3.3 Comparing the Hektor with the Pentac.

Two Pentac systems which have been described in
the literature are now examined for the sake of comparing
the potential of the type 121 with some aspects of the
performance of equivalent systems which have been proved.
These have been designed by Cruickshank and Argentieri to
work at a maximum aperture of f£/2.,5 which is the same as
the Hektor (type 121), (The Cruickshank triplet has been
produced commercially and proved to be a very successful
projection lens,) |

Considering LA3 and E; only, the Hektor compares
favourably with these Pentacs (compare Figures 3.26 and
3,27) . It hasﬁgupefiér correction of 6; and it has slightly
smaller chromatic variation of LA! up to e = 0,16 (£f/3.1).,
However the Pentacs seem to have better correction of the
extreme marginal zone; they appear to make more use of the
light between(7= 0.18 and e % 0.20, This seems to be due
to over~correcting the marginal zones, We can do the same
by increasing R4 and L so as to swing the LA'-curves across
to the right, Indeed this type of correction of LA®
versus e ver;us,% was referred to in the discussion of
Figure 3.5, see section 3.1,2, However the relétive merits
of these different types of correction is outside the scope
of this work,

The spot diagrams of the Pentacs are shown in
Figures 3,32 to 3.35.  .The point of interest here is the

evidence of the dramatic improvement that an image plane



Table 3,6

FS12 - Type 121 ALHA HEKTOR
f/2.5 (e= 0.2) X =0

At Vv = 0°
Radius c d e F
1 56% 85% 58% | 224
2 90 90 92 59
3 90 92 o4 97
L 92 9y 9y 98
5 9L 9y 9L 98
6 oL oL 9L 100
7 oL oL 9
8 9L 9L 97
9 9y 9L 3
10 9y 97 98
11 6 3 2
At V = 5°
1 16
2 L3
3 58
L 66
5 72
6 77
7 81
8 83
9 87
10 92
11 8
At V = 10°

S O0OWVWOONONMEWN =
(o}
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Table 3.7

Hy-Pentae CRUICKSHANK
f/2.5 (€ =0.2) X = —0.00L&

At vV = 0°
Radius c _a e F 4
[ L9% | 3L% | Li% | 36% | 35%
2 65 82 65 57 59
3 98 100 97 9L 81
L 100 100 9l 85
5 oL 90
6 98 90
7 100 92
8 9L
9 oL
10 94
11 N
At V = 5°
1 25
2 70
3 87
L 92
5 93
6 93
7 95
8 95
9 96
10 96
11 n
At V = 10°
1 16
2 29
3 L3
L 55
5 71
6 84
7 86
8 87
9 88
10 88
11 12
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Table 3.8

FS12 Stopped down to £/2.8
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Radius
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6L%
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shift»produces in a system that has significant but fairly
constant zonal spherical aberration, Figures 3,32 and
3.33 show the spot diagrams of the Pentacs in their paraxe-
ial image planes (at X = 0) in which it is evident that
all the spot diagrams are extremely de-focussed, The
dramatic improvement evident in Figures 3,34 and 3,35 has.
been achieved by shifts of X = «0,004 for the H4 and
X = -0,003 for the Argentieri Pentac, (X measured in units
of £',) However an image plane shift is not required with
the present correction state of the Hektor, its zonal
shperical is so small that the paraxial image plane is its
best focal plane, )

It is evident from the configuration of the spot
diagrams that the Hektor possibly has better axial perfor-
mance than the Pentacs and very similar off-axial behaviour,
However these qualitative conclusions are only partly sup-
ported by the analysis of the spot'diagrams which are
presented in Tables 3.6 and 3,7,. (We have only reproduced
the H4-Pentac dehéities'because thevperformance of both
Pentacs is very similar,)

: In each table we'have the distribution of light
in the spot diagrams for the five wavelengthsAat 0° and for
d-light only at 5° and 10°, Each row gives the percentage
of the light of the incident pencil that lies inside a
circle centred on the principal-ray in an image plane dis-
tant X from the paraxial image plane, Starting with a

radius of 0,0001 of the focal length the radius of the circle
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increases in steps of 0,0001 to 0,001, Thus we have
distribution of light inside ten concentric circles in a
selected image plane,

If we set 0,0004 as the maximum radius of the
éircle for comparing the systems (this corresponds to an
image patch of 0,0012 inches radius for f! = 4 inches)
then with such a criterion the Pentac has the superior spot
diagrams, However, if we use a smaller scanning-circle
then clearly the Hektor has the better axial image, It
is evident that the Pentac has better balance of colour
towards the blue end of the spectrum which is obviously
due to better control of the marginal zone with respect to
the wavelength, which has been produced by over-correcting
it with L and R4,

- The Pentac has 91% of the incident light inside
a circle of 0.0004 radius at 5° off-axis and 50% at 100,
whereas the Hektor has 67% at 5° and 41% at 100. Thus
the assessment of the. spot diagrams shows the Pentac to
be the.-better system af f/2.5. However, the performance
of the Hektor seems creditable when we recall that it is
only a 4-component system being compared with the Pentac
a 5-component system,

In Table 3,8 the densities of the spot diagrams
of the Hektor are analysed with the aperture reduced to
£/2.8, It is evident that remqval of the extreme marginal

zone creates a very much better system, The /2.8 system
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has 71% at 5° and 58% at_lOo inside a radius of 0,0004

and on axis most of the light is inside a radius of 0,0002,

3.3.4 Comparing the Parameters of the Type 121 with the

Pentac at Various Design Stages,

In Table 3.9 the construction parameters which
occur at the three ﬁain stageslof development of the type
121 are compared with the H4-Pentac, The systems are
§s(4), "the optimum-monochrométic-system”, SS(24) the
"optimum-chromatic~system'" with the stop in the lens group
b, FFS12 the optimum type 121 with the'sfop at the front
surface of lens group b and the H4-Pentac,

It is evident that the basic parameters ( X , k',
P, L, T) are more sensitive to design changes than either

A'Vb of-ﬂc/ﬂa and therefore would seem to be preferéble.
Again we néte the characteristic pattern of the spherical
coefficients associated with two-zone correction. - More=
over, it is evident that the critical dééfgg:pérémeters
during chromatic correction are P and L,

The greatest difference between the basic paramet=
ers of the type 121 and the Pentac occurs for AV} It was
noted earlier that the type 121 had a AV’veryAnear that
quoted by R.E. Hopkins for the type'lll; however, the Pentaé
has the extraordinary value of AV = 61.i2. The basic
parameters (Na’ N, Né) of the Pentac are near enough to
be considered normal values fro triplets but the basic

parameters (V_, V V_) are abnormal,

b,
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| Let us consider the effect of a large AV on

the type 121, This, we know, would raise all the abberat;
ion curves in ( }f, k!, P)-space well above the X =-axis
at moderate P, LL and T, Consequently, in order to have
any prospect of a solution the curves would have to be
lowered and converged by increasing P and L and then reduce
ing T, Thus it would seem that such a solution would have
a fairly large U&, P and L associated'with reduced astige-
matic_coefficient5/$4,‘4% and AAé’ Ihisrprediction fits
the Pentac fairly well, since it has 01 = 0,366 compared
with the 0.136 of the type 121, P = 0,566 compared with
P=10,28 and L. = 0,58 compared with L = 0:4. Indeed, even
T is reduced to T = 0,0024 as compared with T = 0,07 of the
type 121,

Except for Crl the spherical aberratioﬁ coeffigh
ients (up to the 11th order) of the Pentac are of the same
order of magnitude as those of the>type 121 but they are
all negative, This gives the overcorrection of the marg=-
inal zone which seems to benefit the axial performance at
maximum aperture, Thus on axis the Pentac and the type |
121 solutions differ primarily in <Ti and <T; (= B4i.

In Table 3.10 all the 3rd, 5th and 7th order
coefficients are compared, Clearly the Pentac has signife=
icantly smaller coefficients in every case except for the
primary spherical (G]), the tertiary spherical (Jrl) and

the Petzval coefficient (0‘4). In particular, the Pentac,



226

as predicted above, has small values for /u4,~i45 and Até
which, therefore, means small oblique spherical aberration-
and, consequently, .enhances the prospect of a good field,
This is confirmed by the values of ﬁn (see section 2,3,1)
and the corresponding values of the semi-field angle ¥

shown at the bottom of Table 3,10, These examples support
the conclusion of section 2.3.,1 that the 7th order-ﬁﬁ predicté
the maximum possible semi-field far more accurately than the
5th order ﬁn when the semi-field approachesn20°. It-is
also evident that the 5th order ﬁn is good enough for semi=-
fields of about 10°,

The 7th order ﬁn is 0,196 for the.system FSI12
and the large value of 0,402 for the Pentac, Therefore,
the predicted semi-field of the final type 121 is about 11°
which agrees very well with our spot diagrams and their
analysis, The Pentac on the other hand is predicted to
have a semi-field of 220. ' Thus the Pentac is. predicted
to have the better off-axial performance, This has been -
borne out by.the spot diagram analysis,

We also note that the value of ﬁdlﬂa of the Pentac
is very near 1,5 which is the ratio recommended by Taylor
for getting small zonal spherical,

The optimum Pentac solution as we saw ébove has
a fairly large CT; when the spherical coefficients are
optimized., Thus, of necessity, the axial correction of
the Pentac consists of reducing a 3rd-order-residual with

a set of negative higher-order-residuals of opposite sign.
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On the other hand the typell2l allows the designer to
minimize all spherical coefficients (including CTl) up

to the 11th order at least, Thus in this work we have
adopted the technique of minimizing all spherical coeffic~
ients and then combined this with sign variation of the
orders so as to produce a minimum total residual, How~

ever, after looking at the Pentac: it may be better for

the marginal zone of the type 121 if all the outer zones

were overcorrected slightly rather than undercorrected,




Table ° 9

Type 121 Type 212 Type 122
Optimum Optimum Optimum Optinmmum
Monochromatiq Chromatic Chromatic Chromatic
System System System System
System ss(L) ss(24) FS12 Hi-Pentac 865 (25.71)
Basic Parameters
- 477 -.615 -+528 -e3U6 -.29L
k; - - - -.540 -—
ké -2.859 =3.133 -3.056 -—— =3.334
ké o - - -2,255 -2.200
P .556 241 .282 . 566 L7
L o2 U ol .58 o3
T .05 25 .07 .0024 .075
Fundamental Parameters
cy 2,130 2,088 2,216 2.050 2,628
e, -.369 -. 491 - 410 . =2,026 -.827
3 -2.163 -2,629 —2.512 -.336 -2,370
cu -4.291 -4.,878 -,821 -1.516 -L4.653
Cg 2.433 2,898 24933 2.608 3.503
cg «909 . 946 979 1.144 «399
c -2,037 -2,401 —2.290 3.373 3,177
¢g -t.652 -2.098
ye) .222 .318 .187 273 «232
d1 (o] o 0 0 .10
d2 o1 | o «135 «10
d3 .083 131 .128 .03 .073
du <07 .07 .07 .118 .07
d5 .02 .02 .02 .03 .02
d6 .083 132 .128 .075 133
d7 .07 .07 .07 .03 .02
dB AL .10
Performance Parameters
0 .101 <141 .136 . 366 <305
My -6,206 -7.033 -7.102 -4.315 -12.336
T -7.751 -29.802 -24,652 -52.395 -77.853
Q1 1461.8 760.2 935.9 -L4EE. Iy 1236,1
U, 41923 26996 30381 ~3806 59259
Ne/Va 1.62/60,18 H.62/60,.18 1.62/60,18|1,66/125,5 |1.62/60.18
Fb/Vb 1.55/35.8 1.56/36.2 1.56/36.09(1.50/64.4 1.56/36.43
Re/Ve 1.62/60.18 H.62/60,18 1.62/60.181.65/84,99 1.69/63,81
av 24,38 23,98 24,09 61,12 23.75
P./%, 1.17 1.30 1.26 1.49 .84
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Table 3,10

System [ ss(u) | ss(2u)‘] FS12 J Hi-Pentac | S5(25.1)
Performance Parameters - Buchdahl Aberration Coefficients
0 1 1,010 IR .136 .366 «305
2 -.060 -4 -.14 -.037 0
3 -.071 -.045 -.0u8 -.049 -.04
L .215 .135 .145 .232 .12
5 0 0 .02 -.016 0
A -6.907 | -7.033 -7.102 | -4.315 -12,34
2 -.127 -.839 1.363 .882 4,194
3 -.070 -+535 «932 625 =2,775
L -8.247 | -10.543 -10,338 =L4.415 -5.093
5 -4,012 -4, 128 -4, 102 -1.911 -2.839
6 -4.379 -6.320 -6,145 -2.885 -2,560
7 -.506 .862 L,778 331 2.778
8 -.179 1.01 3.480 «237 1.929
9 -e257 -.002 1.448 «1Ub 852
10 -1l 3.760 1.719 -.295 3.734
11 -.450 -.007 -.352 -7 .028
12 -.296 -.007 -.345 -.161 -.107
T 1 -7.751 | -29.80 | -2u.652 |-52.395 -77.85
2 62,141 76.51 69,804 9.367 2,414
3 L45.805 57.08 51,782 6.740 2,633
L -67.090 | -87.76 -120,14 27,208 -24,68
5 -50.757 | -50.06 -62,06L4 |-18.525 -31,56
6 -17.229 -57.42 -97.391 -8,050 3L.92
7 -27.,523 | -19.92 LE,656 2,051 37.44
8 -23.774 | -14.58 39.320 -.121 34.68
9 ~14.416 | -13.21 19.910 1.165 15.98
10 -1.289 -.251 2,117 -.328 2.503
1 -15.170 22.74 7.021 -9.686 58,28
12 -1,210 59.54 37.523 -1.659 98,62
13 -3.367 3.07 W73 -2,365 9.551
14 -3.352 | 32.16 19.964 | -2.168 54,77
15 =L 144 19.02 5.959 1.510 11,12
16 3.385 14.77 3.350 o723 8.397
17 «934 L,418 «963 495 2,02y
18 3.480 17.91 11,159 2.566 18.61
19 .059 1.489 412 -.091 1.5
20 -.036 -.884 -2.496 -.353 -1.0Lis
5th Order A 1.72 21y ¢592 2,05 Loy
5th Order V 32° 8.8° 12,2° 37° 8.4°
7th order Hn Loy 147 .196 402 <11
7th Order V 22° 8.4° 11,1° 21,9° 8.0°
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CHAPTER. 3.4 THE DEVELOPMENT OF A TYPE 122 TRIPLET WITH

TWO-ZONE CORRECTION,

3,4,.0 Introduction,

In this chapter the design principies established
for the basic parameters during the development of'the type
121 are used to devélop a type 122 with two-zone correction
of its spherical aberration, The type 122 was proposed
as the next stage in the systematic development of triplets
after the type 121, We recail that it arose out of the

study of the basic-glass-parameters at the end of section 2,

3.4.1 A Limited Interpolative Study of the Monochromatic

Type 122, |

The type 122 has been derived from the type 121

by replacing the back component with a cemented doublet
constructed from the Bausch and Lqmb flint CF1(1,5282, 51,4)
and the Chaﬁce crown DBC(1,6133, 57.5). The negative
component leads the positive component, therefore the
k-prime of this positive doublet is less tﬁan -1 (see chapter

1,1 and chapter 2.6).

All the programmes which were developed for the

type 121 have been converted in the manner describtbed in
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Section 1 to generate the type 122, The main differences
have been caused by the introduction of the additional
:ﬁonochromatic-basic-paramete; k'[j] which ismthe k~prime
of the positive doublet, With the introduction of k'[3]
it is necessary for the k-prime of the negative doublet

to be denoted by k’{Z]. (Note in the graphs of this

chapter it is due to an oversight still shown as k'),

A ”iimited-interpolative-study” has been made
of the monochromatic 3rd order type 122 triplets with
respect to the monochromatic parameters X , k'[i}, R4 and
k* [3) at L.=30,2 and T = 0,05, This survey is similar to
the (X , k*, P) «survey which initiated the study of the
type 121 in ééction 2, Thus this survey has Been performed
witﬁ an equivalent R and L: programme which has computed
the 3rd order type 122 triplets at regular intervals
throughout (X , k'{2}, R,, k'[3})—space. (We recall that
the 3rd order triplet has R, = Ry = Ry = 0) e The systems

have been computed for the grid with

and XTP'

1, ¥= 0, =0,5, =1 , X X

L? R

2, k'[2] = =3, =3.5, -4,

3, R, = 0,12, 0,14, 0,16,

4, kx'[3) = 1.8, -2.0, =2.2,
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In addition to computing the usual G, /Ll,'T

T} and Eféph’to 7th order, the new version of the R and
L programme gives all the other 3rd and 5th order coefficw
ients as well, However, in view of the experience.with
the type 121, it has been necessary to consider only the
3rd, 5th and 7th order spherical coefficients in conjunc-
tion with a few representativé 5th order coefficients in
order to locate the optimum monochromatic region,
Consequently only V], /@Li{ Tbl, ézéph’ -412, 447’ 444

and M have been plotted,
1

0

The '"limited interpolative study" is depictéd as
( X, ktf21, R4)-sections at three values of k!'{3} (~1,8,
-2.0 and -2,2). In Figures 3.36, 3,37 and 3,38 <, M,

. 1 ;
7/1 and G-Sph are shown in these section, Similarly in

Figures 3.39, 3,40 and 3.41 the coma coefficients /VLZ and

/”l7 are shown, and in 3,42, 3.43 and 3.44 the astigmatic

coefficients A44 and '4410 are shown,
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Consideringéféph it is evident that the minima
lie to the right of X = «0.5, = Indeed, in nearly ,all
cases both fight and left hand solutions are to the right
of ;&:: ~0.5. Furthermore, it has been found that %his
means that both the left and right hand solutions have
the same asymmetry; the back separation of the components
is greater than the front separation, Consequently)in~m
the rare instapce when it occurs,the symmetrical solution
of the type 122 is an extreme left _hand solution.at some-
thing like k'[2] = 12, Therefore syﬁmetry is no longer
associated with a tangential or turning point solution,

' t

The condition that 0'1 R ,L(l ’Tl and eSph shall

pass th{ough zero almost simultaneously is only satiéfied

near k'{2] = =3 in Figure 3.38 where k![ 3] = -2,2. In
| g

W :

particular the-optimum region seeﬁs to be near k'[Z] = =3

and R, = 0.14 in this section of k'{3], Thus the intro-
duction of the-positive doublet has reduced R4 of the type

122 to 0,14 as_éompared with the R, = 0,20 of the equival=-

4

ent monochromatic type 121, However; this occurs with a

very much larger C‘i of about 0,5 as against about 0.2

which wés predicted in the monochromatic survey of the type

121, |
It is evident from Figures 3,41 that the type

122 generated in the optimum region of Figure 3,38 will

have 5th order coma not unlike the type 121, On the other

hand it is evident from Figure 3,44 that it will have 4
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at least half that of the optimum type 121, This represents

a substantial improvement in /MA which brings the triplet

partly into line with the Pentac, The effect of k'[3]on

}AL4 is quite powerful, it reduces /“2 to zero in the inter-

val k*f3] = -1.8 to -2.0 for all R,

In this work we decided to develop the type 122

and kt![2] shown,

system in the optimum region occurring at k'[B] = =2,2,
The decision was based on the monochromatic survey described
above, which, with regard to k'[j}, is rather crude,
However, the main purpose at this stage was considered to
be the need to find support for the design principles which
were established for the basic parameters P, L'and T during
the development of the type 121, As far as finding the
best type 122 ‘is concerned, it is felt now that the optimum
region could be better optimized with respect to k'{3].
Indeed it would seem to be nearer k'[gl = =w2,0 rather than
2424 A lot more work could be spent on this point alone,
It is interesting to find that the optimum region
has not moved significantly away from.the k'[Z] = =3 of the
optimum type 121, Moreover, at or near this value of =3,
the coeffidientslwtl and ’rl are almost independent of k'[i}
and4R4. The 3rd order spherical coefficient qi, however,
is susceptible to changes in k'[3]although like 4, and T,
it is nearly independent of R4. This sensitivity of G} to
k}{3] may not allow a reasonable system to be generated near

k!'f3]= -2.0 as proposed above,
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For the present we assume that the optimum

monochromatic region at L 0.2, T = 0,05 is near the

following k#{2)= =3, k*(3) = -2,2, R, = 0.14 and X = -0.25,

4

Summary,
bosec

The introduction of a new monochromatic parameter

4 /“5 and Mé and

G;. The main effect has been to reduce the oblique

k't3] has a very strong influence on 4

spherical aberration at the expense of the primary spherical

aberration,

3.4,.2 Optimizing the Chromatic Type 122 Triplet,

r— t
The g&‘ /Kl (1 and‘gsph-curves versus J,of the
type 122 (see Figure 3.38) for the (X, kt (2, R4)-section
at k'[3] = «2,2, L = 0.2 and T = 0.05 lies close to the

Xeaxis near R, = 0,14, This state of affairs is similar

4
to that which occurred with the type 121 in the (X, k', P)-
section at L =>0.2, T = 0.05, Therefore the optimum mono-
chromatic solution is expected to be close to the turning
point solution which is taﬁgential to the kX ~axis,

Experience has shown that solutioﬁs in the tangent=
ial region cannot be generated with the R and L programme,

they can only be found with the SSeprogramme which iterates

the spherical residual with respect to the symmetry parameter,

Rg, (see section 2), A study of the symmetry of the type
122 has shown that its turning point solutions are obtained
with Rg = 0.6; whereas, we recall, that the turning point

solutions of the type 121 are symmetrical and therefore are
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located with R8 = 0.

Using the technique developed for finding the
optimum solution of the type 121 we have mapped the
spherical coefficients G&, Aﬁ and 7& of the 3rd order
type 122 triplets which have Ry = 0.6, This survey has
been madg for the following ranges of the parameters R4,
L and T:
R, = 0,08 to 0.16 in steps ofﬂR4 = 0,02,
L =20,2, 0,3, 0,35, 0.4,

T 0,05, 0.075, 0.10,

The coefficients obtained in this study are shown versus

R4 and L in the three sections of T in Figure 3,45,

It is evident from the figure that the position
of the simultaneous minima of the spherical coefficients

at  given L:and T is determined by the intersection of GE

~—

y 1

Thus in this figure the path of the optimum region is

(ML, is almost constant for all L, T and R4).

and
traced thr‘ough (%, kt[2], R,, L, T)-spaée at k'[3] = “2.2.
Clearly the behaviour is similar to the type 121:. the
pattern of the spherical coefficients associated with the
optimum region occurs at reduced R4 as L. is increased and
as T is decreased,

The”optimum monochromatic region“of the initial
R and Lr survey of the type 122, which was described in the
previous section, is located near the point A inlthe graph
at the top of Figure 3,45, The systems in this region

surrounding A have been developed and examined in the usual

._——;’/
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way with rayetraces, From these ray=-trace-surveys the
optimum system with two-zone correction for this section

at L = 0,2, T = 0.05 and k* [3] = -2,2 was found at R 0.14,

4 =
.Its LA® versus { versus >\'-curves and 6; versus H versus)\ -
curves are shown in Figures 3,46 and 3.47,
Drawing on éur experience with the type 121 we
predicted that L should be increased and R4 reduced in
order to correct the LA'=~curves of Figure 3,46, Similarly
we predicted that T 'should be increased so as to correct
the transverse chromatic aberration evident in Figure 3,47,
The correction of LA! is shown in Figures 3.48,
3,49 and 3,50 and the correction of 6; is shown in the
complementary set of Figures 3,51, 3,52 and 3,53, The
first stage in the correction of the longitudinal chromatic
aberration is shown at the top of Figure 3,48 where the
effect of increasing L in steps of 0,1 is seen to have pro-
gressively corrected the longitudinal chromatic aberration
of all the zones, However, as expected, the marginal zones
have been considerably overcorrected, This overcorrection
has been-restored’by the reduction of R4)at L = 0.3 only;

clearly R, has little effect on the marginal zones in the

4
region of L = 0,4, Moreover the corresponding sets oféi;
which are seen in Figure 3,51, show little variation during
the optimization of R4 and L,

It is evident from Figures 3,51, 3,52 and 3.53'

that the optimum system occurs very near T = 0,075 (Figure

.t
3.,52), as far as ey is concerned, This is also seen to be
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the case with LA'y - Clearly it is evident from Figures
3.49 and 3,52 that the optimum system with two~zone correcte
ion lies near L = .0,3, T ='0,075 and R4

is called SS(25,1)%, (However,xconsidefing these results

= 0,12 (this system

in the light of more recent experience it is felt that L

could be increased and k'[3] reduced.)

3.4,3 The Parameters of the Type 122 Compared with those

of the Type 121 and the Pentac,

The constrﬁction parameters and the performance
pa?ameters of the final.typéjlzz (system SS(25,1)) are
presented in the last column; of Tablés'3.9 and 3.10,

This system is developed to a stage that lies .somewhere
between SS(4) and SS(24) since it still has Ré = 0 and its
stop is at the first principal point of the lens group b.
However, since the variation in the parameters of the type
121 from SS(4) to FS12 is small, then it seems that the
main properties can be observed at an early stage of the
design,

The basic parameters are at the most elementary
level of the design process, At tﬁis level_the type 122
is only similar -to the Pentac in the order of magnitude
of X, The remaining basic parameters k'[{l, P, L, and
Tlareilike those of the type 121, As far as the other’

types of basic parameters are concerned we find, for example,
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AV unchanged but ¢C/¢a is very much less thaﬁ that of
eifher the type 121 or the Pentac,

When we examine the spherical coefficients we
find that the type 122 is again only similar in one case
to the Pentac, its order of magn?tude of G‘l, the others
have remained much the same as those of the type 121,

It is evident that the main changes in the:
coefficients have occurred with GI and (/44,,ﬂ5,446) as
was predicted in the limited interpolative study of the
type 122, These changes in performance parameters are
associated with a change in fhe basi; parameter:E o This
chahge in ﬂfhas also noticeably affected the performance
parameter Rg.

It seems that the stage of deyelopment reached
with the type 122 is sufficient for testing the design
principles and for noting the main differences between it,
the type 121, and the Pentac, It is difficult at this
stage, however, to éay whether it is potentially better
than the type 121 with regard to field, Looking at its
spot diagrams (for d-light) shown in Figure 3,54 one feels
that there has been some.gain at 5° but the 10° image is
comatic, The first thing to dg here would be to adjust

2
son of its potential with the type 121,

R, and to shift the stop before attempting further compari=-
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. CHAPTER 3.5 CONCLUDING REMARKS,

3.5.1 General

The dilemma encountered in.the design of a
type 121 triplet when the aperture exceeds £f/3.,5, which
was demonstrated in Chapter 1,4, has been overcome in
sections 2 and 3 by the limited interpolative design
.technique, This has led to finding that the marginal
spherical aberration is controlled mainly by the joint
effects of the design parameters R4 (the Petzval sum) and
L (the longitudinal chromatic aberration). A similar
interaction of design parameters has been found to occur
with the off-axial-image: it is controlled principally
by the combination of design parameters T (the transverse
chromatic aberration residual) and R5 (the 3rd order distor-
tion residual), However in the final stages of optimize-
ation the interaction of the four parameters R4, L, T and
R5 must be considered. (R1 remains very stable during
the advanced stages of design,)

TheAabove behaviour has been explained by the
concept of all the coefficients converging simultaneously
towards zero‘or some value near zero in the multi~-dimensional
design space which is defined by (@,’X, kt, P, L, T),
This concept has also led to a simple method for locating
the ”obtimum region'" rapidly and accurétely: the optimum

region occurs when the Petzval sum is as small as practicable
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and the spherical aberration coefficients of at least the
first three orders (CTI,/A 12 (rl) are near zero or have

'
their lowest set of values with respect to (@,Xﬁ@ P, L, T),

Thus mapping all the coefficients is not required when

locating the optimum region,

As a result of this‘qoncept, the optimum mono=-
chromatic system is found to coincide with the optimuﬁ
chromatic system, Thus in designing for apertures smaller
‘than £/3.5 the design should also be optimized with respect
to all the basic parameters of both the monochromatic and

chromatic types; the monochromatic parameters and basic

parameters cannot be treated separately if the Petzval sum

is to be minimized. This also applies to a monochromatic

system of large aperture,

The method of locating the optimum region using
the '"principle'" of simultaneous convergence of the spherical
aberration coefficients applies to the type 122 and also
there is evidence in the literature indicating that it applies
to the type 111 triplet as well, Finally since it has been
shown in Section 2 that published results suggest that the

"principle' applies to a teiephoto system then it may well

be a principle with wide application. Thus it seems that

the "limited interpolative design technigue” may lead to

systematic automatic design.,
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3.5.,2 New Work,

The interpolative mapping of the aberration
coefficients of the type 111 seems to be the problem
requiring immediate attention, If this interpolative
study is carried out and it is found to support the principle
of siﬁultaneous convergence of the spherical coefficients,
then the way is clear for extending the process to other
triplet types and other systems, Indeed, at this stage,
there would be justification for the construction of an
automatic design programme based on this convergence of the
spherical coeffiicients,

Finally, the design method, which has begp developed

in this work, should be extended so as to produce mapslof the

"optical transfer function'" versus the ''basic parameters'',
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