
UNIVERSITY OF TASMANIA 

(PHYSICS DEPARTMENT) 

LIMITED INTERPOLATIVE DESIGN 

OF 

LENS SYSTEMS 

OF 

THE TRIPLET TYPE 

by 

A.L.H. Aldersey 

Thesis submitted for the 

Degree of Doctor of Philosophy 

November 1967 



7 e_.,.0 
Pitri;0.--0 



CONTENTS 

Page 

.ABSTRACT 	 1 

INTRODUCTION 	 4 

HISTORICAL REVIEW 	 7 

SECTION 1. A PRELIMINARY STUDY OF THE TYPE 121 
TRIPLET, 

1.1 THEORY OF THE BASIC TRIPLET OUTLINED. 	20 

1.1.1 The Basic-Triplet and the Basic-Parameters 

1),X, P, L, T. 
1.1.2 The Replacement of a Single Thin Component 

with a Cemented Pair of Thin Lenses. 

1.1.3 The Basic Parameter 10, 

1.1.4 Fictitious Glass. 

1.1.5 Optical Parameters and the Division of the 
Degrees of Freedom. 

1.1.6 Notes on Classification of Design Parameters. 

1.1.7 Summary. 

1.2 THE SYSTEMATIC DESIGN OF A 3RD ORDER TYPE 121 
TRIPLET. 

1.2.1 General Considerations. 

1.2.2 The Systematic Design Process of the 3rd 
Order Type 121 Triplet Outlined, 

1.2.3 Theory of the 3rd Order Type 121 Triplet. 

1.2.3.1 Stage 1. 	Finding the Initial Arrangement 
of the 121. 

1.2.3.2 Stage 2. 	Finding Initial Shapes of the 
Thin Solution. 

1.2.3.3 Stage 3. 	Developing a Thick System from 
the Thin Solution. 

32 



Page 

1.2.3.3.1 Adjusting Powers. 

1.2.3.3.2 Adjusting the Thick Lens Residuals. 

1.2.4 Summary. 

1.3 PROGRAMMING THE 3RD ORDER TRIPLET. 	53 

1.3.1 Introduction. 

1.3.2 General Considerations. 

1.3.3 The Basic Programme as a Sub-Routine. 

1.3.4 The Initial Design Programme or Basic 
Programme. 

1.3.5 Main Types of Sub-Routine or Procedure 
Defined, 

1.3.6 Description of the Basic-Procedures and 
System-Procedures used in the-Basic-Programme. 

1.3.7 Description of the Basic-Programme. 

1.4 A PRELIMINARY STUDY OF SOME 3RD ORDER SOLUTIONS 	66 
OF A TYPE 121 SYSTEM VERSUS lc' USING FAMILIAR 
TECHNIQUES. 

1.4.1 Introduction, 

1.4.2 General Discussion of Triplet Properties and 
Design Methods. 

1.4.3 Initiating the Preliminary Study of the 
Type 121, 

1.4.4 Selecting the Initial Values of the Basic 
Parameters, 

1.4.5 The Spherical Aberration of the Type 121 
versus 	and versus lc'. 

1.4.5.1 The Basic-Programme for Spherical 
Aberration. 

1.4.5.2 The Effect of 2/and 10 on the Spherical 
Aberration. 

1.4.6 Right and Left Hand Solutions versus 10. 



Page 

1.4..6.1 The R and L Programme. 

, Controlling Spherical with 10. 

1.4.6.3 Discussion of Type 121 Solutions. 

, 1.4.7 Discussion of the Design Process as a 
Result of work with the Type 121. 

1.4.8 Methods of Design - Some General 
Considerations. 

SECTION 2. MONOCHROMATIC DESIGN. 

2.1 THE DESIGN PROCESS AND INTERPOLATIVE DESIGN. 	86 

2.1.0.IAnttodUttion. 

2.1..1 The Design Process, 

2.1 ..2 Interpolative and Extrapolative Techniques 
in Optical Design. 

2,1.3 A Limited Interpolative Design Method 
Using Aberration Coefficients. 

2.1.4 Implementing a Limited Interpolative 
Study of the Type 121. 

2.1.5 Limited Interpolative Design Compared with 
Other Design Techniques. 

2.2 A LIMITED INTERPOLATIVE STUDY OF THE MONOCHROMATIC 103 
TYPE 121. 

2.2.0 Introduction. 

2.2.1 Spherical Coefficients of the Monochromatic 
System versus X, k' s  P9 

2.2.1.1 Description of Results Obtained for the 
Spherical Aberration Coefficients. 

2.2,1.2 Discussion of the Properties of the 
Spherical Aberration Coefficients. 

2.2.2 The Petzval Coefficient and the Separations 
versus ( x,, 10,P). 

2.2.2.0 Introduction. 



2.2.2.1 The Petzval Coefficient versus 
	Page 

( 	k' s  P), 

2.2.2.2. The Separations versus (9r/ s  k', P). 

2.2,3 The 5th and 7th Order Comatic and 
Astigmatic Coefficients versus 	k', P). 

2.2.3.0 Introduction, 

2.2.3.1 The Comatic Coefficients versus (X, k', P). 

2.2.3.2 The Astigmatic (S-Type) Coefficients 
versus (X, 10, P). 

2.2.3.3 Discussion and Comparison of the General 
Properties of the Aberration Coefficients 
of the Type 121 Triplet with those of 
other Types of Systems. 

2 1 3 THE POTENTIAL OF THE MONOCHROMATIC TYPE 121, 	130 

2.3.1 The Field of the Type 121 versus Z ' 10, P. 

2.3.2 The Five Types of Aberration Plotted in 
Three Principal Sections of (X, kt, P)-space. 

2.3.3 The Type 121 versus the Type 111, 

2.3.4 The Uniqueness of Type 121, 

2.3.5 Discussion of Design Principles Emerging 
from Section 2, 

•2.4 OPTIMIZING THE COEFFICIENTS OF THE MONOCHROMATIC 	139 
TYPETt214 

2.4.0 Introduction. 

2.4.1 Equivalence of P and R4 . 

2.4.2 The Programme for Computing Solutions with 
Prescribed Petzval, 

2.4.3, The Range of R4 . 

2.4.4 The Spherical Coefficients of the R and L 
Solutions versus (k t , R4 ). 

2.4.5 Zonal Spherical Aberration and the Sign 
Pattern of the Coefficients. 



2.4.6 Coincident R and L.Solutions and 
	Page 

Tangential. Solutions. 

2.4.7 Symmetrical-Tangential Solutions and the 
Symmetry Parameter R 8 . 

2.4.8 The Parameter R
8 

and the Turning Point 
Solutions versus ()V/, k', P) and (X, k' R

4
). 

2.4.9 Conclusions. 

2.5 SYMMETRICAL SOLUTIONS AND CORRECTION OF ZONAL 	153 
SPHERICAL AT TWO ZONES. 

2.5.0 Introduction. 

2.5.1 The SS Programme. 

2.5.2 The Spherical Aberration Coefficients of the 
Symmetrical Solutions versus R4 . 

2.5.3 Predicted Zonal Spherical of Symmetrical 
Solutions versus R4 . 

2.5.4 Failure of Zonal Predictions at Apertures 
-;>f/3.5. 

2.5.5 Balancing Higher Order Zonal Spherical 
mainly with R 1 . 

2.5.6 The Effect of R4  on the Marginal Zones. 

2.5.7 The Combined Effects of R i  and R4  on the 
Marginal Zones and the Intermediate Zones. 

2.5.8 Optimizing LA' with R 1  and R4 . 

The Final Adjustment of the Monochromatic 
System. 

2.5.9.1 Selecting the Optimum System (The minimum 
effective interval of R 4 ) 

2.5.9.2 Adjusting the Off-Axial Image of the 
Monochromatic System. 



Page 

2.6 THE BASIC GLASS PARAMETERS AND THE OPTIMUM 
MONOCHROMATIC REGION. 

2.6.0 Introduction. 

2.6,1 The Effect of Different Combinations of 
Basic Glasses. 

2.60.1 Technique. 

2.6.1.2 Discussion of Type 121 versus Basic 
Glasses, 

2„6,2 Proposing a Fictitious Glass for Lens 
Group c. 

2.6.3 Selecting the Fictitious Glass. 

SECTION 3, CHROMATIC DESIGN. 

3.1 DEVELOPING THE CHROMATIC TYPE 121. 

3.1.0 Introduction, 

3L1.- 1 The Chromatic Aberration of the Optimum 
Monochromatic System SS(4). 

3:1.2 The Effect of Changing L. 

3.1,3 Zonal Achromatism and Reduced Petzval. 
(The effects on the zonal aberration of 
combining R4  and L), 

3.1.4 Adjusting the Transverse Chromatic 
Aberration with T and its Effect on the 
Longitudinal Chromatic Aberration and the 
Petzval Curvature. , 

3.1.4.1 Final Adjustment of L and R4 . 

3.1.4.2 The Effects of T on the Axial and Off- 
Axial Pencils of the Type 121, 

3.1.5 Discussion of some Important Properties 
Observed during Adjustment of the Chromatic 
Aberrations, 

173 

179 



Page 

3. 2 THE'SIMULTANEOUS CONVERGENCE OF ALL AVAILABLE 
	

200 
ORDERS OF SPHERICAL ABERRATION COEFFICIENTS 
WITH RESPECT TO THE BASIC PARAMETERS 
(X, k, P, L, T); 

3.2.0 Introduction. 

3.2.1 Review of Indirect Evidence of the 
Convergence of Coefficients with respect 
to all the Basic Parameters (96, kt,P, L, T), 

•••• 

3.2.2 Direct Evidence Confirming the Simultaneous 
Convergence of the Spherical Coefficients 
of all available Orders versus (9G, k', P, 
L, T).' 

3.2.2.0 Discussion. 

3.2.2.1 Convergence of 3rd, 5th and 7th Order 
Spherical Coefficients versus (X, kt, P, 
L, T) Demonstrated. 

3.2.3 The Study of the Spherical Coefficients 
Extended to the 9th and 11th Order. 

3.2.3.0- Thtrodudtioti. ,  

3.2.3.1 Computing Techniques Using 9th and 11th 
Order Spherical Coefficients. 

3.2.3.2 Behaviour of 9th and 11th Order Buchdahl 
Coefficients in the Optimum-Monochromatic-
Region. 

3.2.3.3 Behaviour of the 9th and 11th Order 
Spherical Coefficients in the Optimum-
Chromatic-Region. 

3.2.3.4 The Convergence of the 9th and 11th Order 
Spherical Coefficients versus (X, R4 , L, T) 
Demonstrated. 

3.3 THE OPTIMUM TYPE 121 WITH THE STOP IN AIR. 	218 

3.3.0 Introduction. 

3.3.1 Computing Technique for Shifting the Stop. 

3.3.2 Optimizing the System after Shifting the 
Stop. 



Page 

3.3.3 Comparing the Hektor with the 
Pentac. 

3.3.4 Comparing the Parameters of the Type 
121 with the Pentac at Various Design 
Stages. 

3.4 THE DEVELOPMENT OF A TYPE 122 TRIPLET WITH 	228 
TWO-ZONE CORRECTION. 

3.4.0 Introduction. 

3.4.1 A Limited Interpolative Study of the Type 
122. 

3.4.2 Optimizing the Chromatic Type 122 Triplet. 

3.4.3 The Parameters of the Type 122 Compared 
with those of the Type 121 and the Pentac. 

3.5 CONCLUDING REMARKS. 	 238 

3.5.1 General. 

3.5.2 New Work. 

ACKNOWLEDGEMENTS 
	 241 

REFERENCES 
	 242 



ABSTRACT 

An extensive study of the Leitz Hektor or type 

121 triplet lens has revealed fairly simple relationships 

between the aberrations and the design parameters at large 

apertures. 	These relationships, although more complicated 

than the direct well known relationships for small apertures 

of triplet systems, nevertheless, are simple enough to 

allow the designer to systematically correct the zonal 

spherical between f/3.5 and f/2.5 in both the monochromatic 

and chromatic stages of design. 	The design principles 

developed for the type 121 triplet have been applied 

successfully to the type 122 triplet: they have been found  

by interpolative rather than extrapolative design techniques. 

Interpolative design  is a feature of this work. 

Initially the 3rd, 5th and 7th order Buchdahl 

aberration coefficients of the "3rd order type 121 triplets" 

have been mapped with respect to all the monochromatic 

design parameters. 	This "limited interpolative study" has 

revealed that most of these coefficients approach zero in 

a small region. 	In particular, in this "optimum region" 

the first three orders of spherical aberration are near  

zero or pass through zero. 	This property enables the 

"optimum region" to be located accurately and rapidly with 

a comparatively small amount of calculation. 



The spherical aberration (to 7th order) of some 

systems in the "optimum region" is predicted to be zero at 

two zones (the 0.707 and the marginal zone). 	This two-zone 

correction, however, fails to hold at apertures between 

1/3.5 and 1/2.5 due to the presence of 9th order and higher 

order spherical aberration. 	However, it has been found 

that these outer zones of the monochromatic system are  

controlled by the Petzval sum and the spherical aberration  

residual;  thus allowing two zone correction for an aperture 

of f/2.5 in the presence of higher order aberrations. 

When correcting the chromatic aberrations of the 

type 121 a similar situation has been found with the large 

apertures C . > 1/3.5). 	The longitudinal chromatic aberrat- 

ion residual, in particular, is linked to the Petzval sum's 

influence on the spherical aberration of the zones beyond 

1/3.5 and, the transverse chromatic aberration residual 

has a smaller but still significant effect also. 	Thus it  

has been found that adjustment of the chromatic aberration 

leads to a system with a smaller Petzval sum. 

On the basis of this property, it was predicted 

that the 3rd, 5th and 7th order spherical coefficients 

must converge to a minimum with a small Petzval sum when 

the chromatic aberration is optimized for all zones. 

This has been confirmed by repeating the maps of the 3rd, 

5th and 7th order spherical aberration coefficients with 



respect to the monochromatic and chromatic design parameters. 

The aberration coefficients are found to converge to an 

optimum set in a single region of the entire design space. 

This model of the system's behaviour explains many published  

properties of triplets. 

It has also been predicted from the study of the 

spherical aberration that the 9th and higher orders of 

spherical aberration must converge to a minimum in step 

with the 3rd, 5th and 7th orders. 	This has been confirmed 

by mapping the 9th and 11th order Buchdahl spherical aberrat-

ion coefficients  with respect to the design parameters. 

Thus in the "optimum region" the 3rd, 5th, 7th, 9th and 11th 

order spherical aberration coefficients are near to, or pass 

through, zero.' 

The type 121 with optimum zonal spherical aberrat-

ion for f/2.5 has been developed and compared with published 

Pentac f/2.5 designs. 

Finally the principles developed for correcting 

the zonal aberrations beyond f/3.5 have been applied to the 

systematic development of the type 122 triplet. 	This has 

resulted in the easy location of two zone correction. 
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INTRODUCTION 

The original aim of this work was to investigate 

the potential of the Hektor or the type 121 triplet with a 

view to producing a four-component-system with good zonal 

correction for an aperture of f/2.5 whilst, at the same 

time, achieving a moderate semi-field of at least le. 

It was hoped that it would be possible to develop the design 

systematically from a given set of glasses with the aid of 

the existing analysis and techniques of workers such as 

Cruickshank (2 ' 1) , R.E. Hopkins (4.3) , Kingslake (5 ' 1)  and 

others. 	However, a preliminary study of this triplet which 

is described in Section 1, showed that the effectiveness of 

existing systematic optical design techniques ceases at f/3.5. 

This is so because beyond this point designers seem to rely 

largely on experience or some automatic correction process 

that uses a merit function or the like in order to improve 

a triplet design. 	Consequently, in the course of this work 

the aim has become essentially the more general one of 

finding how to design systematically beyond an aperture af 

1/3.5. 

The work is divided into three sections: 

(1) In Section 1, the theory is discussed, the programmes 

described and a preliminary study is made of some type 121 

triplets which are generated from a given set of glasses. 



A discussion of this work leads to the development of an 

interpolative method of design for triplets. 

(2) In Section 2, a practical method of interpolative 

design is created and applied to the optimization of a 

"monochromatic type 121 triplet". 	In particular, the 

design principles are discovered for controlling the 

aberrations of monochromatic triplets with apertures 

beyond f/3.5. 

(3) In Section 3, the technique is discavered for the 

"interpolative design" of the"chromatic system" and the 

control of its aberrations at apertures beyond f/3.5. 

Then the optimum "chromatic type" 121 is developed for 

f/2.5 and compared with other f/2.5 systems. 	Finally)  

in Section 3 2  the type 122 triplet is developed using 

the design principles which were discovered for the type 

121, 

From another point of view this thesis may be 

considered to be divided into two main parts only, Sectionl 

and the sections following it, because these divisions 

deal with the design process in two essentially different 

ways:,"interpolative and extrapolative". 	Section 1 deals 

with the principle of "extrapolation" whereas Sections 2 

and 3 deal with the principle of interpolation. 

The familiar extrapolative method of design 

used in Section 1 begins a design from a promising set of 



thin-lens parameters and then the design is developed by 

• searching around this starting point, On the other hand 

the interpolative method does not start with a promising 

region but begins by making a complete map of the optical 

system's potential with respect •to its design parameters. 

Although this appears to be a formidable task 

when carried to the limit, it is shown in Section 2, that 

it can be approximated sufficiently by using the Buchdahl 

aberration coefficients, 	This approach allows a 

"limited-interpolative technique" which yields good results 

in the design of a system such as the type 121, 

6 
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HISTORICAL REVIEW 

Early Work, 

In 1893 H. Dennis Taylor
(22.1) 

patented a 

photographic objective with a flat field that was sub-

stantially free from astigmatism; besides being recti-

linear and achromatic. 	This anastigmat was achieved 

with three simple lenses (the minimum number of lenses 

possible) two outer positive lenses and an inner negative 

lens which were separated in air. 	The system in general 

has since become known as the Cooke Triplet Objective or 

the Taylor Triplet. 

Later Taylor (1904T
i22.2) 

 described the design 

and construction of the "Franklin-Adams astrographic triplet; 

a Cooke photographic lens modified for "celestial purposes". 

In particular in this paper he outlined his reasons for 

creating a triplet: showing how by varying the distribut- 

ion of power between a pair of separated positive lenses 

he could balance the spherical aberration of any "desired 

negative lens". 	Thus he was led to the triplet arrangement. 

The elegance and power of his invention is evident 

from the way he develops it to an advanced initial design by 

simple reasoning. He shows for example that the power of 

• the back lens should be stronger than the front in order to 

reduce zonal aberration. 	He sees that a high refractive 

Practical designs have the power of the back lens i4 times 
the power of the front lens. 



index for the inner lens will produce low Petzval. 

Also he finds that if the front air space is smaller than 

the hack one then coma, transverse colour and distortion 

are improved. 

The 'final papei. of Taylorts (22.3) 
concerning 

- 
triplets was published in 1923. 	This paper was invited 

so that Taylor could express his views on optical design 

in a belated attempt,to make up for his absence from a 

conference held twoyears before at Cambridge, to discuss 

"The Future of Geometrical Optics", 	Consequently his - 

remarks are closely linked to the material presented at 

Cambridge. 	Indeed, looking back on this meeting of 45 

years ago, one gains considerable insight into the develop-

ment of triplets and the optical design process since that 

time. 	Thus we digress for a moment-  to considersome 

aspects of this occasion. 

After the 1914-18 war a considerable controversy 

arose concerning the most effective method of lens design: 

whether it should be by analytical algebraic methods 

(British) or by precision ray-tracing (German). 	This had 

been induced largely by Taylorts claims that he designed 

lenses without ray-tracing using instead only analytical 

solutions and workshop models. 	Indeed his outstanding 

success with triplets had influenced men such as Professor 

Filon and Professor ClIeshire to seek the interest of 
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Cambridge mathematicians in developing higher order aberrat-

ion theory with the aim of getting accurate analytical 

solutions without using time consuming precision ray - traces. 

Their endeavours culminated in this Cambridge conference (23) 

in 1921, 

At the conference two types .of people were 

present: the optical analyst like Commander T.Y. Baker and 

practical designers like A. Warmisham and Conrad Beck, 

Baker opened the conference by putting the case 

for development of algebraic aberration theory. He sad_ 

that if a ray i incident on a system with coordinatesoZ 

and ib then its transverse aberration may be written in a 

power series of the form 

PP t = A. 04  + B-4(3+ C-q+ De + 5th degree terms 
+ 7th degree terms + 

where the coefficients are functions of the systems construct-

ion parameters. 	He said the cubic terms are what the 
* 

optician calls the "first order" aberrations. 

- He pointed out that in certain senses it may be 

Said that algebraic formulae are available, by means of 

which, first order aberrations can be written down for a 

System of lenses and to a certain extent optical designers 

make use of such formulae. 	He continued saying "But an 

* The terms first order, second order and third order are 
used indiscriminately throughout the literature to denote 
the lowest order of aberration. 



instrument cannot be wholly designed by an elimination of 

first order coefficients because the "higher order" 

coefficients cannot be neglected. 	He said that the 

expressions for higher order aberrations lead to hope-

less difficulties adding that even the second order 

expressions are far more complicated than the first. 

Thus in order to overcome the outstanding difficult-

ies of analytical design Baker proposed the pursuit of new 

approximate forms of the aberration function instead of 

finding general coefficients in the higher order terms of 

the aberration power series. The forms he hoped for were 

expected to allow the calculation of the most correct form 

of a lens. 	Also he wanted the parameters to be such that 

those of one system could be compounded with another. 

These new forms were to be simpler than the few known 5th 

order expressions and were to converge more rapidly. 

Indeed complexity of existing expressions and their slow 

convergence were the main worries of the analyst of that 

time. 

Conrad Beck in reply to Professor Cheshirets  

question, (What are the methods adopted in optical factories 

for designing optical instruments?) pointed out that success-

ful designing on paper depended on the invention that lay 

behind it 	Furthermore he said "No one can make a new 

instrument by computation. 	There are no mathematical 

formulae capable of solution that will give the data for 
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an optical system of 20 to 60 variables. 	Computing is 

no more than a clumsy .trial and error method of testing 

the design and improving it by trial.." 	In his conclud- 

ing remarks Beck says "A mathethaticaj formula may be .of 

no prattital use for direct application but may be of the 

utmost value in revealing tendencies, and pointing out  

unproductive directions of research: -  

Warmisham however outlined his "practice in 

designing photographic lenses". 	This we find to be 

essentially the optical desigh process used by designers: 

to this day especially with, regard to a triplet. 	It is 

evident that he finds analytically an,initiaJ arrangement 

of powers, and separations with prescribed primary spherical, 

Petzval sum, transverse and longitudinal chromatic aberrat-

ion and focal length.. The remaining degrees of freedom 

represented by the shapes he uses to contfol. the 

first order coma, astigmatism and distortion analytically. 

This. thin system is thickened and the, first order aberrat.- 

iOns of the thick system computed. 

At this stage the system is modified to reduce 

the "first" order-aberrations to "likely" amounts usually 

by changing the shapesi 	This is. done with finite difference 

equations connecting the aberrations with the change in  

shape. 	Thus he obtains a triplet system of known focal 

length that has known amounts of the seven primary aberrat-

ions . 
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. Finally he submits the system to trigonometrical 

computation and determines the aberrations accurately. 

Then he says: "If the likely amounts  of first order 

aberrations left in the system were well chosen,  they are 

more or less accurately balanced over the required aperture 

and field by higher order aberrations.. 	It is generally 

sound to assume that the usually small outstanding aberrat-

ions revealed by trigonometrical work can be eliminated by 

altering the first order terms an equal amount, the higher  

order aberrations remaining substantially unchanged.  

may, however, be necessary to go further back and make  

radical alterations in powers and separations if large  

higher order aberrations are revealed. 

I believe most designers of photographic lenses 

economise in trigonometrical work where possible. 	For all 

ordinary work the calculation of coma is confined to three 

skeleton rays in the meridian plane. 	If this gives a good 

result, other things being good it is time to make a model 

rather than compute a pencil of skew rays. 

(22.3) 
Taylor (1923) 	'3, outlined again the development 

of his triplet objective. 	He described how initially he 

tried to correct the curvature of field and linear astigmatism 

of a positive lens, by means of a negative lens of the same 

glass and power, using the separation to give sufficient 

positive power. However he found rectilinear images could - _ 

only be formed by splitting the positive lens and placing 



the negative component between them. 

At this point Taylor has only referred to his 

3rd order analysis in very broad terms, however, it seems 

that his initial design method is the same as that of say 

Warmisham. 	It appears that Taylor obtained an initial 

thin lens arrangement of powers and separations by solving 

five equations for an assumed set of four 3rd order 

residuals for spherical, Petzval sum, longitudinal chromatic 

and transverse chromatic aberrations and a fifth condition 

for the total power. 	He says nothing about solving for 

the shapes and thickening of the thin system but we assume 

he must have done this. 	Instead of assessing his rough  

analytical design with ray-traces Taylor constructed the  

design and measured its aberrations. 	On the basis of this 

assessment he chose new 3rd order residuals for the thin 

lens analysis and repeated the whole design process if 

necessary. 	Thus Taylor used a method inwhich he mapped 

design parameters against the actual optical performance. 

This method worked for Taylor because, he had the skill 

and experience for assessing actual aberrations of a 

finished system and correlating them with the "initial 

design". 	Thus in view of this gift of Taylorts his choice 

of title "Optical Designing as an Art" is appropriate. 

It appears in the 1920tS that the geometrical 

design process had gone as far as it could with existing 

/3 



knowledge and computing facilities. 	Indeed the designers 

of that time expected that the main hepe for improved design 

techniques lay in the development of aberration theory 

rather than computing equipment. 

Modern Work. 

After Taylor (1923) the triplet design process 

seems to have remained dormant until R.E. Stephens (1948)
(1) 

examined the design process of triplet anastigmats of the 

Taylor Type. 	He developed the thin lens analysis of triplets 

on a more systematic basis than before, taking into account 

both near and infinitely distant object planes, discrete 

values of dispersion and triplets with cemented components. 

His work enables the designer to generate a thin 

lens system from a given set of thin lens parameters which 

consists of the total power A, the Petzval sum P, the 

longitudinal chromatic aberration t,S 3 , the transverse chromatic 

aberration LM/M and the height h 3 
which is the intersection 

height at lens 3. 

He then describes how this solution is thickened 

and assessed on the basis of 3rd order aberration theory 

(Seidel sums). 	After assessment he assumes that the Seidel 

sums may be reduced to desired values by computing the 

system again with a new set of values of P, S 3 , AM/M, S-1 

S-11, S-111, S-V which differ from the original values by 

negative changes expected on the introduction of thickness. 
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In the final adjustment he says that the 3rd 

order thick system is examined trigonometrically and 

using these residuals a different set of P, 1S 3 , AM/M, 

S-1, S-11, S-111, and S-V are chosen for the calculation 

of the final system. 	Several trials may be required at 

this stage. 	However if the final system is not satisfactory 

then he says "start again with a new glass selection':  

Although Stephens suggests that his methods 

"should facilitate the production of good designs without 

extensive experience on the part of the designer", he gives 

little guidance with regard to starting a design and finish-

ing it. 	Basically his design process is that of designers 

from the time of Warmisham at least. 

2) 
Lessing (1958) 

 (3.  pointed out that no one had 

shown how to select the glass for a triplet. 	Designers 

like Stephens for example made their glass selection on the 

basis of a sequence of trials or from published designs. 

Thus he finds that although much has been written about the 

preliminary calculation of triplets in most cases the 

glasses are assumed selected. 

Lessing (1958) sets out to overcome this by 

assuming two conditions in addition to the usual five 

conditions of the preliminary design stage. 	The condit- 

ions he uses are two properties concerning the distribution 

of power in a triplet which were mentioned by Taylor: 



/6 

(1) that the power of the back lens is one and a half 

'times the first lens. 	(2) that the powers of the lenses 

are small. 	In other words Lessingts method reduces to 

finding the glass combinations that give thin lens arrange-

ments which satisfy additional power conditions that are 

supposed to ensure small zonal spherical aberration and 
(3.3) 

Petzval sum. 	In the final paper of this work Lessing(1959) 

also discusses the selection of glass that will give a thin 

lens solution with specified longitudinal chromatic aberrat-

ion and diaphragm position. 

3)2 2 2 1, . , . 
Cruickshank (1956, 58, 60) (2. 

	emphasized 

that all triplets with cemented components can be generated 

from the simple Cooke-triplet or as he called it a type 111 

triplet (see Figure 1.1.1). 	Thus in view of the fundamental 

importance of the simple triplet he has examined its propert-

ies in a systematic wayi 

He proposed that the triplet could be better 

thought of as a positive lens with a corrector system in 

front of it, especially, as the power contributed by the 

front two lenses is zero in many triplets. 	Thus he replaced 

the parameter h 3 
of Stephenst analysis by the new thin lens  

parameter 2C' , the power of the corrector. 	This gives a 

very simple set of five equations for the initial arrange- 

ment. 	With this modification the designer can generate 

ia triplet from a given set of parameters ( ,X, Ps Ls T) 
where. 



= total power, 
1 

P = Petzval sum, 

L = longitudinal chromatic aberration, 

T = transverse chromatic aberration,. 

Cruickshank(21) showed, firstly, that most 

triplets occur in the range -2<X/< 0.4 and, secondly, 

that the primary spherical aberration of a triplet is 

approximated by a quadratic function of //thus: 

T1 = a0 a 12° a2X2  

where 07 is the 3rd order Buchdahl spherical coefficient 

of the Seidel form. 	Consequently he showed that if the 

parameters P, L, T and the glasses are correctly selected 

then there are two solutions. 	Also he pointed out that 

most published triplets appeared to be developed from the 

smaller negative value of )1, whereas, the larger negative 

value had more potential. 	However, apart from examining 

the properties of the thin lens sod:ution, Cruickshank (1958) 

also applied the 5th order Buchdahl coefficients to the 

correction of the final thick system. 	Thus after 30 years  

the wishes of Commander Baker were partly satisfied by the  

publication of Buchdahlts aberration coefficients (1954) 

and their use by Cruickshank in obtaining "a good balance 

between the primary and higher order aberrations." 

2) 
Cruickshank (1960) (2. 

	discussed in detail the 

general principles of generation of triplets with cemented 

/7 
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components. 	This he illustrated with an example of a 

Pentac (212) objective which he developed from a,"typical 

set of aberration residuals" 	P, L, T) and fictitious 

glasses. 	The final adjustment of the system was made 

with 5th order aberration coefficients. 	He shows a plot 

of the 5th order coefficients of the Pentac versus I2 which 

indicates the optimum 	very clearly. 	This example 

illustrates the use of fictitious glasses in finding the  

initial solution of a triplet system with cemented components 

and also the use of the Buchdahl coefficients as a measure  

of the correction state oi the design. 	It shows clearly 

the benefit of being able to see the trend of the design  

with 5th order coefficients. 

(2.4) 
Cruickshank and Hills (1960) 	followed up 

Cruickshankls earlier application of 5th order Buchdahl 

aberration coefficients to triplets with a discussion'of 

their use in "Optical Design". 	In particular they showed 

the total aberration of the point image may be analysed 

into symmetrical and asymmetrical types which may be broken 

down into surface contributions; a property belonging to 

the Buchdahl coefficients, 	They illustrated their discuss- 

ion with the final stages of design of a telephoto system. 

3) 
R.E. Hopkins (1962) 

(4. recognised that the out- 

standing problem with triplet design is not how to develop  

a solution from a given set of parameters but how to select 



the best lens from an infinite number of 3rd order solutions. 

In view of this he made a systematic study of a region of 

triplet solutions. 	He corrected the solutions to the same 

3rd order values and then analysed them by calculating the 

5th order Buchdahl aberration coefficients. 

Thus he has obtained some very interesting maps 

of functions of 5th order coefficients versus various thin 

lens parameters. 	In particular he introduces a parameter 

AV as a measure of the glass variations and he finds that 

the 5th order coefficients tend to become smaller near 

AV = 25. 	Thus he has examined nine degrees of freedom 

whereas other workers have only examined the eight 

geometrical degreesnof freedom. 

This work of Hopkins seems to be the first serious 

attempt to map thoroughly the trends in design potential  

with Buchdahl coefficients and a computer. 



SECT ION 1 

A PRELIMINARY STUDY 

OF 

THE TYPE 121  TRIPLET. 



CHAPTER 1.1 THEORY OF THE BASIC TRIPLET OUTLINED. 

1.1.1 	The Basic-Triplet and the Basic-Parameters 	 

P L T. 

It has been shown (21) that any system of the 

triplet type has an EQUIVALENT TRIPLET or as we shall 

call it a BASIC TRIPLET (see top diagram of Figure 1.1.2). 

Thus in this work all the triplets with cemented components 

in place of simple components are treated as being generat-

ed from the basic triplet. 

It is defined to be a system of positive power 

consisting of three thin lenses in air separated by real 

spaces and whose powers are arranged in a characteristic 

pattern of (+ 	+). 	The components are of glasses (Na, Va), 

(Nb, Vb), (Nc, Vc), their powers are denoted by 0 a , Ob , Oc  

and the front air space by t a  and the back by t ip . 	The 

aperture stop coincides with the middle lens b. 

The "basic triplet" satisfies five paraxial 

conditions; two of them are power conditions the other three 

are aberration conditions. 	It is defined to have the 

following for an object plane at infinity: a total power 

a Petzval sum R4 , resi-duaT.Tongitudinal chromatic aberrat-

ion 61 
residual transverse chromatic aberration *R

7 
and its 

two leading components with an effective power 	• 	These 

conditions are represented analytically by the thin lens 

equations in which three of the "construction parameters" 

20 



(0 a : 0b/  0 ) are obtained as implicit functions of 'c 

"performance parameters
(1) I (1),X, R4 , R6 , R

7
) as follows': 

2 	0.Y 	- 1/yoa j=a 	• 
03 	- 

_ 

1/ Yoa2j=a f6 j Yoj 
=X 

Z. 	0 i /Nj  = R4  

ltut t 	
j 

0.y 2 /V. = R
6 oa i=a  j o 	j 

1/ut 	0 4 y0i .y i/V j  = R7  
oa j-a 

wherey-is the height of the principal paraxial ray 
1 

th 
'(y

a 
u
a
) at the j'cl. component and y .  isthe height.,:. of 

th 
axial paraxial ray ( y

oa 
u
oa

) at the j 	component. The 

angle U.  isis the inclination of axial paraxial ray after o 
.th 

refraction at the j 	component. 

2/ 

(2.1) 

1.1 

1.2 

1.3 

1.4 

1.5 

When considering the paths of the pair of 

paraxial rays defined above, it is convenient to introduce 

other construction parameters, the separations, into the 

analysis. 	Thus, since the diaphragm is at the middle lens 

the path of the principal paraxial ray is such that 

Yb 
= 0 2  yaly c  =  1.6 

Yob = Y0a (1 	t aib a ) 
	

1.7 

Yoc = Yob - t 2'Y0a .2 
	

1.8 



2.2 

In proceeding to explicit expressions for the 

powers and separations it is convenient to define the glass 

constants, intersection heights and the residuals R 4 , R6  

and R
7 in terms of new parameters. 

	Thus the glass constants 

are expressed as ratios giving the relative distributions of 

the refractive indices and V-numbers b
y

:
(2.1) 

V
a
/V

b 	, V
a
/V

c 
= 	 1.9 

Na/Nb  = 	, Na/Nc  = .1( 	1.10 

while for the-remainder we also write 

Yoboa nob' Yoc /Yoa =lloc 

P = R4.
Na

* 
	L = R6 •Va/yoa, 

T = R
7.
Va 
	1.12 

Using equations 1.9 to 1.12 and putting the total power 

f = 1 and also remembering that the paraxial rays are chosen 

such that(Y 	= 1 ' u 	
= °) and (y b  , 11. ;, = 0  = 1) then 

oa 	oa  

equations 1.1 to 1.8 become 

° a +101Ai 	= 1 
	

1.13 

° a +11ob' °b = 
	1.14 

P 
 

1.15 

 

O a  +01,02b 0b  +51102  c  O c  = L 
 

1.16 

(1  T)t a o  tb5110c 0 c  = T 
	

1.17 

(1 	ta0 a ) 	= 11 ‘-ob 
	1.18 

(nob - 'tb )  = tob 
	1.19 

From these we obtain the following explicit expressions for 

* This residual of the Basic Triplet is related to the 
Buchdahl coefficient of the Seidel form as follows R -2 a- 4 -  • 4 
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the powers and separations of the initial arrangement of 

the basic triplet: 

O = (An- L)/(1 -otobmob b 	ob 

oc =5(1 -) 2 /offrt0b 
oa = 	- nob. 0  

ta = (1  nob ) "a 

tb  = 1 - (1 + vit o  /5(1 

1.20 

where It =‘5+x(i _ 	T) 

andit bb  is given by 

1.25 

G3 .11, 013  + G n
2 

+ G 
2 ob 	1 	+ G

0 
 = 0  1.26 3 

where 

G
3 

= ke 2 	p) 	 1.27 

G2  4{ (P - L 	rAX) + 	(1 	) 2 (X - P)] 1.28 

=/((,c+ L) - 	(1 - /t) 2 	•t• 	+ L12 	1.29 

Go  = 	 1.30 

Therefore three initial arrangements are possible; 

one for each of the roots of the cubic equation (1.26). 

In general, there is only one root of this equation that 

yields an initial arrangement satisfying the conditions 

(ois 0, fo>0, 0 1?0, OlO ot tO, tic. 0):. 	The system generated 

from this arrangement is usually a real triplet. 	This  

root, in general, is not far away from n ob = 
0.7 . 

There are some special triplet solutions that, 

although they have initial arrangements with at least one 



separation negative; yield acceptable systems on thickening; 

these unusual solutions will not be studied here0 	In this  

work only the solutions in the region ofh 	= 0.7 are 

examined. 

1.1.2 The Replacement of a Single Thin Component with a 

Cemented Pair of Thin Lenses. 

Now consider replacing one of the components of 

the basic triplet bya cemented pair of thin lenses. 	The 

values of the residuals 	Pl , Ll , T l  of' a particular 

initial arrangement will remain unchanged by the replace-, 

ment if the powers (0 1 , 0 2 ) of the components (N1 , V 1 , 0 1 ), 

(N2' V2 
 0' ) replacing the j

th lens of the basic triplet 
' 	2 

satisfy the following_ 

° I.- 	°2 = 
	 1,31 

C6 2 /N2 = UN j 
	 1,32 

0 /1/ 1  + 0 2 /V2  = 	 1.33 

where j = a, b, c. 	Thus thin lenses may be replaced by 

pairs of thin lenses which have the same power, Petzval  

and longitudinal and transverse chromatic aberration. 

(This 'can be extended to 'replace groups by other groups
(2.1) 

which consist of greater or lesser numbers of components). 
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1.1.3 	The Basic Parameter 10. 

A convenient way of representing this replacement 

is to use a parameter 
k'(2.2) 

 that denotes the distribut- 

ion of power in the doublet. However, in this work it has  

been noticed that care must be taken in defining 10 because 

Must account for the order of the components as well as  

the magnitude of their powers in order to avoid ambiguities  

or at least awkward steps in the logic. 

Just as he has had to specify the order of the 

signs of the powers of the components a, b, c in the basic 

triplet, the designer now has to make a similar decision 

when a single component is replaced by a compound one. 

A doublet for example, may be inserted with either its 

positive or negative component leading and thus, the type 

121 triplet (a triplet with a cemented doublet in place of 

lens b, see Figure 1.1.1) * may have either the power pattern 

+(+ -)+ or +(- +)+. 	These possibilities are accounted for 

if the parameter 10 is defined as follows: 

kt  deln. 0 2 /0 1 	1.34 

where 0 2  is the power of the back component and 0 1  the 

power of the front component of the j
th 

doublet. 

It is convenient to name the two ways a doublet 

may be inserted. 	Thus when the main power of the doublet 

leads, for example, if we have a positive doublet with the 
(2.1) 

* (Figure 1.1.1 reproduced from Cruickshank's paper, 	) 
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positive power in the front, then we will call it a 

positive normal doublet replacement (denoted by PND). 

If the negative component is allowed to lead then we will 

call it a positive reversed doublet replacement (PRD). 

Similarly, the negative doublet replacement is either an 

NND (negative normal doublet) or an NRD (negative reversed 

doublet). 	So for example, a power pattern +(+ -)+ is a 

"type 121 NRD". 

Each replacement of a component of the basic 

triplet by a doublet introduces a new degree of freedom 

in the form of a parameter kt which takes two ranges of 

values. For the normal form we find -1.0<kt
D 
 <0 and N 

for the reversed form _ -•00<, kt <-1.0 	Although we are 
RD 

formally distinguishing between the k primes with the sub-

scripts ND and RD these will be omitted when the numerical 

value is quoted, because the magnitude of 10 is sufficient 

to .signify the type of replacement. 

1.1.4 	Fictitious Glass. 

So far we have assumed that a triplet with compound 

components is generated from a basic triplet of real glasses. 

However this need not be so, because it is only required 

that the glasses of the compound arrangement be real, that 

is, (N 1 , V 1 ), (N2 , V 2 ) of equations 1.32 and 1.33 be real, 

in order to generate a real system. 	It is of no consequence 

when generating a real system whether the glass (N i , V.) of 
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the basic triplet, as given by these equationsl is real or 

not; if the glass is imaginary it is called a "fictitious 

glass". b,Ols,J
1(-14-,J■ 1(a.4.,mA 

In this way the limitations imposed Ais relieved 

to some extent. 	It is now possible to think of the  

basic triplet as a continuous function of the  "basic glasses" 

(N., V., j = a,b,c) which comprise both real and fictitious  
J 	J 

glasses. 	Using this concept it is possible to penetrate 

regions of the design not available to the simple triplet
(22) 

 

Also in thinking of the basic glasses as continuous variables, 

even if their ranges are limited, is. also equivalent to 

saying= 	, 	, Y are continuous i-n certain legions. 

The fictitious glass constants expressed as 

functions of k' are: 

NF  = (1 +. 10)1\1(1 + 	k'.1\1 1 /N2 ) 1.35 

VF  = (1 + 	k') 1 /(l + 10.V 1 /V 2 ) 1.36 

where (N 12 V 1 ) and (N2' V 2
) are given glasses. 

For each fictitious glass (NIA , VF) arising from 

a doublet, there are two possible arrangements, which are 

distinguished by having different parameters k ii\ID  and Igup  

each being the reciprocal of the other thus: 

k' 	=1/k' 
ND 	RD 

1.3.7 



1.1.5 	Optical Parameters and the Division of the Degrees 

of Freedom. 

In this work we consider that the fundamental 

degrees of freedom available in the optical sytem are 

of two types, geometrical (curvatures, thicknesses and 

separations) and physical (refractive indices and V-

numbers). 	In general, these fundamental variables are 

used in the final *. stages of design when balancing or 

optimising the various aberrations. 	On the other hand 

the parametric degrees of freedom of the "basic triplet" 

that are used in the initial stages of design, cannot be 

classified as either simple geometrical or physical 

parameters since each is a function of both types of the 

fundamental degrees of freedom. 

However, a broad distinction may be made 	The 

parameters i),X, k', P, L, T may be classified as either 

degrees of freedom depending on V or not depending on V. 

This is the distinction made in this work. 	We begin with 

a study of the monochromatic parameters - (X, k', P) and 

leave the chromatic parameters L and T until the monochromatic 

design principles are established. 	In this way the thin 

lens parameters are separated into those that are dependent 

on V and those that are not. 

* (References 	2.4, 4.2, 6.2, 8. 13.2) 
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1,1.6 	Notes on Classification of Design Parameters. 

The use of the terms Construction Parameters  (1) 

and Performance Parameters is in keeping with the 

philosphy of design that is followed in this work. 	We 

will use the term construction parameter to mean any of 

those parameters which are used to define the structure 

of the optical system at each stage of development, eg. 

kr, P, L, T, Na , Va  etc. in the thin stage or 

curvatures and separations in the thick stage. 

Also we will use the term performance parameter 

to mean parameters that are chosen to define the properties 

of the system at the various stages of the design, eg., 

aberration residuals of all kinds
(8) 	

For convenience 

the construction parameters can be subdivided further into 

"basic construction parameters and fundamental construct-

ion parameters". 	Also each of these classes may be 

divided into chromatic and monochromatic parameters. 

Thus we may speak of.chromatic-basic-construction-parameters, 

monochromatic-basic-construction-parameters, chromatic-

fundamental-construction-parameters and monochromatic-

fundamental-construction-parameters. 	these construction 

parameters are associated with either chromatic or mono- 

chromatic performance parameters, 	(See application of 

these Chapter 2.1) 
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1.1.7 	Summary.  

In this chapter the basic theory has been 

developed for finding the initial arrangement of triplets, 

with constructions involving compound components, so that 

they have certain 3rd order residuals specified. 	We 

began with the thin lens analysis of a simple triplet and 

showed how its initial arrangement can be converted into 

the initial arrangement of a more complex triplet type. 

Also we showed how this conversion, which consists of the 

replacement of a single thin lens by a group of thin lenses, 

is equivalent to a change in the glass parameters of the 

initial thin lens arrangement of the simple triplet. 

Treating the thin lens analysis of the triplets in this 

way allows the replacement of a single component by .a 

doublet to be represented by a single parameter 10 that 

defines the distribution of power within the doublet. 

Thus in this chapter a general triplet system 

has been defined "The basic triplet" and in keeping with 

our approach to design we think of it as being the set of 

powers and separations 0 a' 0b' 0 c' t a' t b 
that are 

generated from the set of parameters ■f ?2, P, L, T, Na , Nb , 

Nc , Va , Vb , V. 	We call these "basic parameters " and in 

particular we call (Na
, Va

), (N
b'  Vb  ) 
	(N

c 
V
c
) the 

' 

"basic glasses" that may be either real or fictitious. 

When the basic glasses are all real glasses we have the 

simple Taylor Triplet which we call the type 111. 	When 



the basic glasses are fictitious the basic triplet is 

generated from a set of basic parameters that now 

contain a kt for each doublet. 

In this preliminary study of triplet objectives 

the systems are restricted to an infinitely distant 

object plane and a centrally placed stop. 



CHAPTER 1.2 .  THE SYSTEMATIC DESIGN OF A 3rd ORDER TYPE 

121 TRIPLET. 

1.2.1 	General Considerations. 

A type 121 triplet (the middle lens is a 

cemented doublet, see Figure 1.1.1) has the following 

construction parameters available for controlling the 

optical characteristics of the system: four glass types, 

seven curvatures, four axial thicknesses, two separation 

distances and the location of the aperture stop. 	These 

fundamental parameters are shown in the bottom diagram of 

Figure 1.1.2 where they are as follows: 

(1) The four glasses are (N 1 , V 1 ), (N2 , V2 ), (N3 , 

(N4' 
V
4

) 

(2) The curvatures are c 1  to c 7' 

(3) The axial thicknesses are d 2 , d4 , d 5 , d 7 . 

(4) The separations are d 3 , 

(5) The stop position is not shown but it will be given 

as the distance pl from the back surface of lens 1 

whenever it is required. 

The glass parameters (index of refraction . N and 

the dispersion V) are not considered to be continuous 

variables in this primitive design. 	Indeed the choice of 

glass in the initial example that is described in Chapter 

1.4 is made on the basis of the experience of other 

designers
(2.1, 4.2) 
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The position of the aperture stop is also not 

(1 	2.1 	4.2) 
considered to be a continuous variable ' 	' 	in the 

preliminary design of the type 121, 	It is kept at the 

front principal point of the cemented lens group in the 

Thickened-Type 121 and at the thin lens b in the Thin-

Lens Type 121, 

The four axial thicknesses are not considered 

to be continuous variables; they are given fixed values 

that allow sufficient aperture for a large variation in 

the design parameters. 

The nine remaining fundamental parameters 

(C 1 , C2  ... C 7 , d 3 , d6 ) may be considered to be contin- 

uously variable over large ranges. 	Thus there are nine 

variables available for controlling nine design quantities: 

This number exceeds by one the minimum number which is 

required for the design of a fully corrected system of 

moderate aperture and field, 	These minimum requirements 

(1, 2.1, 4.2) are as follows: 

(1) Scale of the system (equivalent focal length). 

(2) Petzval sum. 

(3) Longitudinal Chromatic Aberration. 

(4) Lateral Chromatic Aberration. 

(5) Third Order Spherical Aberration Residual R1 . 

(6) Third Order Coma Residual R2. 

(7) Third Order Astigmatism Residual R3 , 

(8) Third Order Distortion Residual R5, 
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In this work the attack on the design of the 

type 121 triplet is concerned in the initial stages with 

the behaviour of a primitive stage of the design, the 3rd 

Order Triplet which is defined below. 	This initial design 

(1 
is generated systematically bY a well known process'' 2.1, 4.2)  

which is outlined in the following section. 

1.2.2 	The Systematic Design Process of the 3rd Order Type  

121 TriPlet'Outlined. 

If the designer sets out to construct a "3rd order 

type 121 triplet" from a given set of glasses he can do it 

systematically in three stages starting from the "basic 

triplet" and going via the thin lens arrangement of the 

type 121 to the "Thick Type 121" as shown schematically in 

Figure 1.1.2. 	Using this method in this chapter the design 

theory is started from a given set of glasses and "basic 

parameters" and developed to the stage where the thick 

system has-the following features determined: 

(1) The scale of the system (equivalent focal length) 

ft = R
9, 

(2) Axial thicknesses d
2' 

d
4' 

d
5' 

d
7' 

(3) The 3rd order coma residual R2 
= 0. 

(4) The 3rd order condition for a flat tangential field 

R
3 

= 0. 

(5) The 3rd order distortion residual R 5 
= 0. 



in this approach to designing a type 121 it is 

assumed to have the following continuous independent 

variables: 

n/ 

(1) The "basic parameters" (1),X, P, L,,T,A4n the first stage. 

(2) The shapes S 	S2' S4 in the second stage. 

These parameters account for the nine degrees of freedom 

available with the type 121 for controlling nine features 

of the design. However we decided above to only use five 

of them in the initial stage. 	The triplet with these 

features we will call the "3rd order type 121 triplet". 

The nine features to be controlled in the finished 

design of the type 121 will be denoted by R 1  to R9of which 

only R2 , R3 , R5  and R
9 
 have been defined for the 3rd order 

triplet; the remaining ones will be defined as they occur 

in more advanced stages which-are dealt with in later chapters. 

So from the beginning we know that the designer is free to 

choose any nine features but he has only selected five 

initially. 

I n  order to compute the 3rd order type 121 

triplet the designer supplies the following: 

(I) Four glasses (N 1 , V 1 ), (N2 , V 2 ), (N 3 , V 3 ) and (N4 , V4 ). 

(2) Basic parameters 	Pl , L l , T i , kJ. 

(3) The axial thicknesses d2' 
d
4' 

d 5' 
d
7 

and he is given 

the following: 

(4) The stop position pt which for the 3rd order triplet 

is kept at the first principal point of lens group b. 



BASIC. Cd455 BASIC 
TRIPLET A /7/7/1 ■YGE NENT 

OF TYPE' 121 

BEGIN 

DATA 

XP1 L1T1  It 
Alt kla  N3  144  

VI  V, V3  V4  

at 4 as ay  

COMPUTE 
BASIC 

GLASSES 
USL 	kJ.  

COMPUTE 

9C 9C OC 
SCI79 

COMPUTE 
Or 

I NTRODUCE 

sgApcs ro MAKE 

q. oo 

THIN-LENS TYPE 
121 TRIPLET 

4141Pm 

SOLVE 

Cl/8/C. 

COMPUTE" 

OL Oi 4 
t 6  

THICK-LENS TYRE 
12/ TRIPLET 

THIcKEN 
.5 Y5rEm 

CAILCULATE 

WRYATI/RES 
07c 

TN/A/TYPE 121 
SYSTEM 

COMPUTE 

3"4  ORDER 
ABERARTIoN 

COEFFICIENTS 
Cri Cif • 

END 
3 114  ORDER 

— - • 
	TYPE 121 

TRIPLET 

=I 

0 

0 

0 

AD,TUST 
SHAPES 

Si. St 54 

REDUCE 

el 	rs 



36 

(5) R2 = R3 
= R

5 
= 0 (R

3 is the 3rd order condition for 

a flat tangential field). 

(6) R = 1. 
9 

The main steps in the systematic design of a 3rd 

order type 121 triplet are shown schematically in the flow 

diagram* Figure 1.1.3; the ensuing description refers to 

this diagram. 

The design is started by selecting the data and 

computing the fictitious glass constants (N b' Vb ) 	This 

enables the cubic equation (1.26) of the basic triplet to 

be set up and solved iteratively, starting withYl ob = 0.7. 

Then the basic-triplet is converted into the initial arrange-

ment (powers and separations) of the type 121Ausing kt to 

convert 0
b 

to 0
2 

and 0
3• 

The Thin-Lens Type 121 is obtained by analytically **  

(2.1) finding the shapes which make the 3rd order Seidel 

coefficientsa" (T
3 

andG-
5 

zero (13.1 " 13 ' 2)
• 
	Thus the 

Thin-Lens Type 121 (stage 2, Figure 1.1.2) has unit power 

and zero 3rd order coma, astigmatism and distortion. 

In the third stage the system is thickened using 

Berek's Method which produces the Thick-Type 121 with its 

powers 0 1.' 0 2' 0 3' 04 
and total power unchanged from those 

* This flow diagram is only intended to illustrate the design 
process of a 3rd order system in a compact form that will 
.assist the reader to grasp the essential steps in this 
design process. 

** Experience has shown that this design process may be 
started from a given set of approximate shapes there being 
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o f the Thin-Type 121. 	However, the thickening process 

causes changes in the aberration coefficients .0-  and G-5 2 , 	3 

so that they differ from R 2 , R3  and R5 . 

In the iourth stage the coefficients q-2 , O. 

of the Thick-Type 121 are reduced to the prescribed 
5 

values R2' 
R
3 
and R by adjusting the shapes iteratively 

in the cycleABCDEFG (Figure 1.1.3) using Newton's 

method
(4.1)  This well known method finds difference 

quotients ( 615-k/S.) ***  for given finite shape changes dS. 

in each cycle. 	These difference quotients are used in 

place of differentials in estimating the required shape 

changes. 	The cyclic process is continued until the three 

conditions are met. 

On completion of this design process the designer 

has a thick type 121 triplet of unit focal length, zero 3rd 

order coma, distortion and a flat tangential field. 	Its 

stop is located at the front principal point of the cemented 

doublet which is usually between surfaces 3 and 4. 

The remaining sections of this chapter briefly 

describe all the theory of this systematic design process 

** (cont.) 
no need to find the 3rd order thin triplet exactly for 
this iterative process. 	Thi-s dispenses with the shape 
analysis after, the first solution or if approximate shapes 
are available from other similar designs the analysis is 
not required. 

*** k = 2, 3, 5 j = 1, 2, 3, 4 for the type 121. 



necessary for programming the 3rd order triplet. 	However 

at this point the reader at first reading may prefer to go 

directly to Chapter 4 where a preliminary study of some 3rd 

order type 121 triplets is discussed. 	This study may be 

understood without absorbing background theory from the rest 

of this chapter or the discussion of programming from 

Chapter 3. 	The reader only needs to know for this purpose 

the contents discussed so far and also that a programme 

called the basic programme (denoted sometimes by BP121)„ 

which computes the 3rd order type 121 triplet from the data 

described above, has been written. 

Moreover, any programming details that have been 

discussed as the need has arisen in later chapters, have 

been treated under separate headings so that the reader may 

by-pass them if he wishes without serious loss of continuity 

in the discussion of the systems properties. 

However, the writer believes that a better 

appreciation of the optical design process is gained from 

a discussion of the basic programme and therefore he prefers 

the logical development of the design theory and programm-

ing of it prior to becoming involved in the numerical details 

of the study of the actual systems. . This of course is not 

the way he approached the problem which was via a desk 

calculator and existing design techniques created for this 

facility. 	However, this was before a computer was available.. 



No after some experience with both phases he believes that 

an understanding of the known theory and flexible programm-

ing of it, before looking at numerical results of examples, 

is preferable, 
	

In view of existing knowledge this 'seems 

to be the most objective approach. 

1,2,3 	Theory of the 3d Order Type 121 Triplet, 

1,2,3,1 	Stage 1:- Finding the initial arrangement of the 

121. 

In this sta,ge the powers and separations are 

computed from the given initial cbnditions, 	To begin, the 

fictitious glass constants (NF' 
V
F
) are computed as follows: 

NF  = (1 + 10)n 1 /(1 + 10.n 1 /n2 ) 
	

2,1 

VF  = (1 + 10)V 1 /(.1 + 10.v 1 /v2 ) 	2,2 
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where n 1 = N2' 
n
2 

= N
3 

v = V v = V 1 	, 2/ 	2 	3 

2,3 

2,4 

and k/ = 10 1 
2.6 

Now we can proceed with finding the initial arrange-

ment of the "basic triplet" that is •constructed from the 

following "basic glasses": 

N
a 

= n 1/ 
N
b =  NE , Nc 	N4 	

2,7 

and 	V
a 

= v 1/ 
V
b 

= V
F/ 

V
c 

= V
4 	

2,;8 

Briefly, the ratioso,4, /6 , 	and e are obtained 

and these, together with the given basic parameters °2 1/ 
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P 1 2 L 1 2 T 1 2  1 kt are used in equations 1.27 to 1,30 to 

calculate the coefficientsG0' G1 2 G2' G3' 	Then equation 

1.26 is solved iteratively, starting withl
lob 

= 0.7 and 

then, the powers and separations (0 a : 0b , 0 • , t a , tb ) of 

the "basic triplet" are computed using equations 1.20 to 

1.25. 

In concluding this stage the basic triplet is 

converted into the initial arrangement of the type 121. 

Although this conversion only requires the replacement of 

0b by 0 2 and 0 3' 
it is preferable to keep all three operat-

ions formally detailed, even if they seem trivial, in order 

to establish, if possible, a general design procedure. 

So that in this case we have: 

0 1 = ° a 

0 2  = klab  

0 3 = 	0 2"b 

04 = 

d 3 
= t

a 

d
6 

= t b 

2.9 

2.10 

2.11 

2.12 

2.13 

2.14 

At this point the triplet system has a focal length ft= 1, 

a Petzval residual of R4 
= P/Na2 

a longitudinal chromatic 

residual of R6  = L.y /V , a.transverse chromatic residual oa a 

of R7 
= T. a

/V
a 

A2=%t> and kt = kt 	The value of kt = kt 
1 	 1 

also implies that we have givenc and/' the values 

= V
F
/V

a 
	2,15 
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1,2.3.2 	Stage 2:- 	Finding initial shapes of the thin 

solution. 

The three remaining degrees of freedom of the 

thin system are used to control its 3rd order coma astigmat-

ism and distortion. 	For this purpose the shapes of the 

fiSt second and fourth components ' S 1 , S 2 and S4 are used. 

The shape of the third component is given by putting S. = S 2  

in the cementing condition: 

s i+1  = Z(S j  + 1) - 1. 

where 
	

Z =  1)/(N j  - 1)/kt 	2.16 

(In this work the shape of the leading component of a doublet 

is selected to be the independent one.) 

The shapes are defined by 

S. = [(C I.  4,  C2 ) /(C 1  - C2 )3 j 	2.17 

after Coddington. 

The 3rd order correction is defined in terms of 

the 3rd order Buchdahl coefficients(13 1 13 'I  ' 	
3 ' 2. 6) 

ofthe 

Seidel form. 	These are represented by (1 1 , cra , 0-3- , T-4  and 

T"5 
being the coefficients of primary spherical, coma, 

astigmatism, Petzval curyature and distortion respectively. 

At this stage of the design we want the system to 

have shapes that make the primary residuals zero, that is we 

wantG = R2 
= 0

'  q
—  = R3 

 = 0
' 
 Cr-  = R5 

 = 0 	2.18 
2 	3 	5  

As we are looking at this design for the first time, we must 

find an initial solution for the shapes by solving the follow.. 

(2.1, 2.5, 2.6, 2.7) 
ing three thin lens equations 

 
for the 



thin lens type 121. 
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1 
= 2 (a21 S

2 
+ a22 S + a23  ) . 2 	J 

i=4  
2,19 

 

1 

	

- 	(.a 

	

3 - 	. 	31 J=1  
a
32 S + a ) . 33 j 2.20 

1 
5 = .7 (a 51 S

2 + a 5 2 S + a 55 ) .  "-  j=1 
2.21 

where 1 = number of components of system which for the type 

121 is four. 	The placing of the stop at the middle thin 

lens reduces 2.20 and 2.21 to equations of two variables :  

S 1 and S42 that are solved by a simple iterative method. 

The equation 2.16 is used to convert S 3  to S 2  in equation 

2.19. 

Thus at the end of Stage 2 we have a thin-lens 

type 121 with the following specifications 

Refractive index 	N1 N2 N3 N4 

V-numbers 	V1 V2 
V
3 
V
4 

Powers 	0 1 ° 2 0 3 ° LI 

Shapes 	S1 S2 S
3 

S
4 

= d 2  = d4  = d 5 = 

d 3 
= t 	d

6 
= tb 

=1 

P= P12 	L= L12  

d 7 = 

kt 	= 

T= 

2.22 

0 

1 

T 1 
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1.2,3.3 	Stage 3:- 	Developing a thick system from the 

thin solution. 

1.2.3.3.1 	Adjusting Powers. 

In this step the lenses are assigned axial thick-

nesses that are sufficient to provide for an adequate 

aperture. 	(Indeed in this study of the type 121 triplet 

system the values of d 2 , d4 , d 5  and d6  are chosen, if 

possible, to allow for the variation in the aperture for a 

large range of the parameters )2, kt and P.) 	After thicken- 

ing, the powers of the system are kept the same as those of 

the thin solution. 	This is achieved in two steps (2.7) • 

(1) The curvatures and intersection heights of each lens 

are recomputed, following the general method of Berek, so 

as to adjust their powers to those of the thin lens, 	A 

paraxial-ray (p-ray) with initial co-ordinates ( Y01 = 1  

vol = 0) is traced, 	
The thick curvature of the leading 

surface of each of the basic groups of components that we 

have denoted by a, b and c is given by 

* 
c 1 = c 1 /(1 + 1 	/1 	) pl 01 

where * denotes the thick quantity. 

2.23 

This requires 1
P1 
 which is not known, therefore, the process 

is started with 1 p1 
and then the remaining curvatures and 

intersection heights are determined by: 
* * 

= c i .y i 	 '2.24,1 



2.24.2 = y l  

* 	* 
The values obtained for c. and y., of course, will only 

J 

be approximations to the required values, because of 10 . 
* 	* 

However, these approximateevalues of c and y allow us 

to calculate a better estimate of 1 pl 
with which to re-

, 

calculate c 1  of the lens group. 	In general, - three 

repetitions are sufficient to adjust the curvatures and 

intersection heights. 

(2) The separations are altered so as to keep the total 

power of the thick system the same as that of the 

system. 	The object and image planes are not shifted. 

Thus' the separations after thickening are given by: 
• * 

	

= t + 1 	- pb ,a 	*pa 

	

d6  7 t
b 
+1 	l 

 

pb  pc 

1.2.3.3.2 	Ad'ustin the Thi. ck Lens Residuals. 

The stop is placed at the first principal point 

of the middle lens. group (b), so that its distance from 

the pole of the rear surface of lens group (a) is 

p t = t 	 2.26 

	

a 	pa 

and the distance of the entrance pupil from the pole of 

the front surface of the system is therefore 

	

p = (Da.pt 	Ba)/(Aa 	Ca.p 2 ) 	2.27 

where Aa, Ba, Ca and Da are paraxial coefficients (25) 

Now the 3rd orden coefficients (26) are obtained 

from the results of two paraxial ray traces. 

44- 

2.25.1 

2.25.2 

• 
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the p -ray 
	

( Yoi ' I, vo 
= 0) 	2.28 

and the q-ray  ( YI = P' v 1 = 1) 	2.29. 

As a result of thickening, the aberration 

residuals g-2'  G
-
3 
 and 6-

5 
are, in general, significantly 

different from those of the thin system and therefore 

must be reduced to the target values by making appropriate 

changes in shape. 	(This involves finding the partial 

differential coefficients of the primary aberration coeffic- 

ients with respect to the shapes. 	This is normally a 

lengthy computation. 	However, in this work, it has been 

found that a simple approximation to the partial different-

ial coefficients is sufficient for, at least, systems of 

the triplet type. 	The computation using the simple approx- 

imation is shorter and allows more efficient programming. 

It is described and discussed along with other methods in 

appendix 2.1.) 

On the basis of computational experience with 

several types of triplet it has been found that an empirical 

relationship may be assumed between the residuals R 2' 
R
3 

and R 5 
of the thick system and the independent shapes of 

its basic thin system, so that we may formally write: 

R2 - - 	= f 1  (S ' Sb' S c ) 
2 	a  

R3 = g3 = f 2 (S a' Sb' S ) 	2.30 

R
5 

=
5 
 = f

3  (S' Sb' 
 S 

c
) 

a  

where S a' Sb' S c 
signify the independent shapes of the lens 

For the groups associated with the initial arrangement. 
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type 121 then, Sa  = S l , Sb  = S 2 , S c  = S4•  

The approximate changes
(17,1, 18) 

in Sat S
b S

c 

necessary to correct the residuals of the thick system 

therefore are given by the solution of three simultaneous 

"small error"
(17,1) 

equations: 

(i) a 1 dSa + b1dSb + c 1
dS c = -dR2 

(ii) a
2
dSa + b2dSb + c 2

dS
c 

= -dR
3 

(iii) a3dSa + bo3dS + c 3
dS

c 
= -dR

5 

where for X = a, b, c we have 

(i) X =  
1 	2 	X 1 

(ii) x2  =  

(iii) X
3 
= ) 0,- di(S ) 5 	X 5 

2,31 

2,32 

(Several methods for estimating X by Newtons Method are 

discussed in the appendix 2,1), 

After the new shapes have been computed the 

calculation is restarted at the end of stage 2, 	This 

cycle is repeated until (r2  = R2 , (3c + 07) = R3  and 

= R5 , 	The"3rd order triplet" has, by definition, 

R2 
= R

3 
= R5 

= 0, 
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1.2.4 	Summary. 

We have seen that the design process consists of 

four stages: 

(1) The initial solution to get Powers and Separations. 

(2) The selection or calculation of shapes to control 

3rd order residuals, coma, astigmatism and distortion. 

(3) Thickening of the thin solution and computing of the 

3rd order residuals of the thick system. 

(4) The bending of the system to adjust R2 , R3  and R5 . 

This involves repetition of stages 2 and 3 until 

target values are reached. 	We have found that the 

adjustment of the shapes can be accomplished by a 

simple iterative process when the contributions of 

each lens are used to compute the partial different-

ial coefficients of the residuals with respect to the 

shapes. 	(See appendix 2.1) 

On completion of this design process the triplet 

has 3rd order residuals of coma = R2' 
distortion = R5 and 

a flat tangential field'. 



APPENDIX 2.1 METHODS FOR CALCULATING THE DIFFERENTIAL 

COEFFICIENTS OF THE ABERRATION RESIDUALS 

VERSUS THE SHAPES. 

A.2.1.0 	Introduction. 

A simple iterative method* which is based on the 

additive property of the surface contributions of the 

Buchdahl coefficients has been devised in this work for 

optimizing the residuals; 	It is convenient for us to 

approach the description of this method through a descript-

ion of earlier techniques used in this laboratory. 

Prior to this work, the partial differential 

coefficients were estimated in either of the following two 

ways: 

A.2.1.1 Method 1. 	Using Thin Lens DifferentialsCoefficients. 

Expressions for the thin lens partial different-

ial coefficients were obtained by differentiating equations 

2.19, 2.20, 2.21 and these were used in place of the thick 

differential coefficients. 	However, the differential 

coefficients given by these expressions need to be recomputed 

frequently if the initial residuals are relatively large 

in comparison with the target values. 

* First discovered with the type 121 later used in 111, 

112, 122, 212 and 222. 
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A.2.1.2 	Method 2. 	Using Thick Lens Differential 

coefficients. 

This method involves the direct computation of 

the partial differential coefficient using finite differ-

ences in the shapes. 	From the equation 2.32 we see that 

there are nine of these partial differential coefficients 

and that they are divided into three equal sets, one for 

each of the lens groups a, b and c. 	A separate computat- 

ion must be made for each group and this involves recomput-

ing the thick system - starting from the initial arrange-

ment each time a shape is altered. 

For example, consider finding the differential 

coefficient of the lens group (a) of the type 121 triplet. 

Let the independent shapes of the initial thick 

ssteM be S ll , S -21  and S41  where the first subscript - denotes 

the order of the lens component and, the second subscript' 

denotes the order of the triplet system; in this case the 

initial'sOteM obtained during the calculation of the diff-

erential . coefficients. 	The residuals of the initial system 

are R2' 
R3 

and R
5. 	

In order to estimate the partial 

differential coefficients of group (a) the 121 system is 

computed with the independent shape of group (a)by a small 

amount S l' 
resulting in residuals (R 2 )a , (R)a and (R

5 )a. 

This analysis for the differ iential coefficients of group 

(a) is set Out in the following table together with that 

of the differential coefficients of the other lens groups 

(b) and (c). 
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Shape Change 	Input (Shapes) 	Output Residuals 

AS
a 

AS
b 

AS
c 	

S
a 	

S
b 	

S
c 	R

2 	R3 	R5 

Initial 
Solution  00 	0 	S11 	S

21 	
S41 	(R2 ) 1  (R ) 1  (R ) 3 	5 1 

changing 
a 	AS I 	S' +6S 11 	1 	(R 2 ) a  (R 3 ) a  (R5 ) a  

changing 
b 	As 2 	+AS

2 	(R
2

)
b 

(R
3

)
b 

(R
5

)
b 

changing 
c 	LS 3 	 S41 4-6S 3 (R2 ) c (R3 ) c (R 5 ) c 

thus the differential coefficients of group (a) are 

60-2 /6-S a c=',-6R2 /AS i  = \._( 1t2 ) a  - (R2 ) 11/AS 1  

	

ç1j S 	S i  = \.(R3 ) a  - (R3 ) 1)/AS 1 	2.33 

= V.R5 ) a 	(R5 ) 1PAS 1  

and a similar set of expressions is required for lens group 

(b) and lens group (c). 

Approximate Differential Coefficients. 

Each of the 3rd order coefficients may be expressed 

as the sum of the contributions from the surfaces since 

0-  where j = 1, 2, 3, 4, 5 and n = number of 
k=1 k  

surfaces of the system. 	Therefore we may expand the 

residuals of the triplet into the contributions from each 

of the basic lens groups a, b, c, for example, 

(R2 ) 1  = (R2 )ia + (R2) lb 	(R2 ) 1c 

(R
2

) a = (R2 	
+ (R

2
)
ab 

+ (R
2

)
ac  Ad 

2.34 

2.35 



where for example (R2 ) 1  = residual of the initial system 

(R2 )a = residual due to lens group a ,  

for a change in shape of LSa  = AS i . 

If 6S i  is small then (R-) 
z ab = (R2 )  lb + 

and 	(R ) 	= (R ) 2 ac 	2 lc 

2,,36 

2.37 

whereE= infinitesimal. 

Therefore if As 1 is chosen properly it is sufficient in the 

practical design of triplets to ignore the contributions 

from lens groups other than the one in which the change in 

shape is made. 

Thus for example, 

't2 )  aa " (R2) 11/S 

where 
(R2)aa 

is the contribution of group (a) due to QSa 

and (R2)la 
is the corresponding contributions in the preced-

ing system. 	This property of the residual that its 

significant change is confined, in general, to the lens 

group in which the shape change occurs, suggests that the 

differential coefficients of all the lens groups may be 

computed simultaneously from only one calculation of the 

system instead of three. 	Thus we come to the short method 

that was developed in this work for computing the approximate 

partial differential coefficients. 
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A.2.1 1 4 Method 3. 	Using Simultaneous Shape Changes. 

If instead of a single shape change we calculate 

the system with shapes (S a ) 2  = (S a ), +.6 S a , (S13 ) 2  = (S13 ) 1  + ASb  

and (Sc ) 2  = (Sc ) 1  +LS c  and if these changes 8Sa , ASb  andA S
c 

are small given values then we may write: 

--tR/ASX 2.38 

where now j = 2, 3, 5 and X = a, b, c and m = the order of 

the system in the iterative process. 

Inpracticewefoundthat(iSTj S...) is a m 

sufficiently good estimate of the partial differential 

coefficient of the m th stage of the iteration. 	Therefore 

we have been able to develop a very simple iterative process 

for the adjustment of the 3rd order coma, astigmatism and 

distortion because the differential coefficient can be 

estimated simultaneously from the results of each stage of 

aberration adjustment without doing any auxiliary calculat-

ions. 

In order that the notation of this method is clear 

we write the expression for one of the partial differential 

coefficients. 	Thus for example, the differential coeffic- 

ientiof coma relative to a change in the shape of lens (a) 

in the first iterative stage of the type 12 .1 is 

sa3 1 „, 	07icL/Ls') 	c:A I 6s  
where the AS a  of the type 121 has the small valuebS i  

throughout the iteration. 
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CHAPTER 1.3 PROGRAMMING THE 3RD ORDER TRIPLET. 

1.3.1 	Introduction,  

rn this chapter the construction of the basic.. 

programme is described with the aid of flow diagrams. 

The basic-programme generates from a given set of thin lens 

parameters the 3rd order type 121 triplet. 	However, apart 

from this immediate objective of computing the 3rd order 

type 121 system the programming of all triplet types has 

been kept in mind also. 	Thus the design process has been 

programmed in a form that is intended to be both general 

and flexible. 

1.3.2 	General Considerations. 

Considered as a whole the computation of the 3rd 

order triplet is complicated, however, it is found that it 

can be reduced to simple units which may be treated with 

comparative ease. 	This becomes clear when one compares 

the flow diagrams of this chapter with the flow diagram 

and the analysis of Chapter 2. 	The programmes of this 

work are seen to be made up of a number of "building blocks" 

or sub-routines. 	(A similar approach has been described 

by R.E. Hopkins and G. Spencer
(4.2)

.) 

Although the immediate objective in this work has 

been the 3rd order design stage of the type 121 it has been 

found from experience that it is best in this sort of problem 



to programme the smallest step_Niiith the general applicat -

ion in mind. 	If this approach is adopted then instead 

of finishing with a programme of limited use the designer 

will have a research facility that will not only enable 

him to handle the variations in the development of his 

immediate system but also will allow him to adapt it to 

other triplet types and possibly even to other systems, 

with little alteration. 

The programme that satisfies these general concepts 

we will call the basic-programme. 	For convenience we denote 

it by the symbol BP121 that stands for the basic-programme 

of the type 121 triplet, the programme that generates the 

3rd order type 121 triplet. 

1.3.3 	The Basic Programme as a Sub-Routine. 

Programming with the general application in mind 

it soon becomes obvious to the designer that although the 

basic programme is constructed of many sub-routines it is 

also itself a sub-routine when considered in the context 

of the complete design process. 	This point must be grasped 

at the beginning if effective flexible programmes are to be 

written. 	Thus the material has been presented in Chapter 1 

and 2 with the general application in mind. 	Indeed, this 

general approach has been essential for the successful treat» 

ment of the later parts of this work which are described in 

sections 2 and 3. 



It is a straight forward matter to programme the 

type 121 directly from the equations of Chapter 2 and the 

flow diagram Figure 1.1.3. 	However, this approach yields, 

in general, a lengthy inflexible programme suitable for the 

immediate calculation but almost beyond comprehension of 

anyone except the actual programmer. 	This sort of thing 

occurs all too readily when using a modern pneumonic 

programming language such as Algol that allows the beginner 

and, for that matter, even the-eXperienced worker who 

sacrifices flexibility for expediency, to make lengthy trans-

lations of the computing schemes similar to those of Chapter 2. 

If we are to proceed effeciently with this type 

of optical design problem, we need a high speed computer and 

a flexible and reasonably effecient programme. 	From 

experience gained in this work, it is apparent that flexibil-

ity is the important property in all cases, a conclusion 

shared with other workers (4.2)  

Flexibility is achieved by programming in units 

of logic or sub-routines whenever possible. 	Indeed we find 

that Algol
(11) 

 is eminently suitable for flexible programm-

ing because it is endowed with many special features for 

constructing a great variety of sub-routines or, to use the 

Algol term, procedures. 

Effort spent in creating these sub-routines for 

general application gives the designer great power. 



1.3.4 	The initial Design Programme or Basic Programme. 

The initial design programme developed here, in 

general, possibly only differs from initial design programmes 

of other designers in the arrangement of the logic and not 

in the main concepts. 	Although, of course, there are also 

minor differences in the selection of design parameters 

because they have been defined for general application to 

the triplet family in this programme. 	However, in the 

search for generality, it has been found that the well known 

initial design process of the triplet
(2.1 4.2, 4.3) 

which 

was described in Chapter 1.2 can be constructed almost 

entirely from sub-routines thus facilitating the programming 

of the more advanced stages of design whcih are dealt with 

later in this thesis as they arise. 

Although many designers have written programmes 

employing sub-routines similar to many of those used here, 

it is believed that this is one of the few attempts
(4.2) 

to 

write each main unit of the logic of the design process in 

the form of a sub-routine. 	Thus the design process has 

been reduced to a set of basic sub-routines that may be 

assembled in almost any form required to meet the changes 

in the research problem. 	Consequently the final programme  

in each phase of the research consists of an executive-

control routine that operates on a basic set of sub-routines. 

The simplest form of this initial design programme is the 
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"basic programme" if, and only if, it is written so that 

it can be incorporated in the more advanced stages of. 

research without major changes. 

1.3.5 	Main Types of Sub-Routine or Procedure Defined. 

In this "building block"
(4.2) 

approach to programm-

ing the design process, it is evident that the procedures 

can be convenientlydivided into two_main classes, those 

depending on the structure of the optical system and those 

that are not. 	We will call those that - depend on the 

structure of the system or, in other words, those depend-

ing on the design concepts, the '!system procedures", and 

those that perform fundamental optical, arithmetical and 

algebraical operations, "basic procedures". 	So for example, 

a sub-routine which calculates the position of the front 

principal point of an arbitrary lens group or solves three 

simultaneous equations is a "basic procedure or basic sub- 

routine". 	Whereas one that carries out a design stage such 

as computing a thin system from a given set of shapes and 

powers is a system procedure or system 'xib-routine. 

1.3.6 	Description of the Basic-Procedures and System • 

Procedures used in the Basic Programme. 

In the following list the procedures are arranged. 

in the two main groups as defined above. 	The first 

contains the basic-procedures and the second the system- 
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procedures. 	In each group the-procedures are arranged 

according to the order in which they occur in the basic 

programme. 	Each one is accompanied by a brief descript- 

ion of its function. 	The group of procedures for flexible 

triplet programming is as follows: 

Basic Procedures. 

1. Procedure Sum. 

This adds n consecutive numbers between specified 

limits. 

2. Procedure S.E. 

This procedure finds the solution of three 

simultaneous equations whose coefficients and parameters 

are given. 

3. Procedure Fictitious Glass. 

This computes the fictitious refractive index. 

and V-number of a cemented doublet that is specified in 

the procedure call by its position in the triplet. 

4. Procedure Initial Solution. 

This finds the basic triplet from the given set 

of thin lens parameters 

N i , V is N: 	, 5  s  r, P, L T where j = a, b, c 

5. Procedure Ray Trace (x, y) 

.Traces a paraxial ray through from n= x to n = y. 

The initial ray coordinates y and v are specified in the 

procedure call. 
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6. Procedure Paraco (x, y). 

Computes the paraxial coefficients (4,4) 
of the 

part of an optical system between given surfaces n = x 

to n = y. 

7. Procedure lp (x, y, z). 

Computes either the front or back principal 

point distance of any system defined to be between 

given surfaces n = x and n = y. 	The interger z 

determines which principal point is calculated. 

8. Procedure Thick (x, y). 

This procedure thickens the thin lens group 

between surfaces n = x and n = y. 

9. Procedure ac(y). 

Computes the Buchdahl 3rd order aberration 

coefficients
(2 6) of the optical system of 1 to n 

surfaces. The y is used to differentiate between 

systems. 

Procedures 1 to 9 are the set of "basic-procedures" 

required for computing the 3rd order triplet. 	The point 

to be observed here is that the structure of the "basic-

procedures" is independent of structural changes in the 

triplet optical system. 	So the details of the computat- 

ion of the 3rd order triplet that depend on the systemts 

structure are reduced by this means to a few procedure calls. 

This enables the designer to write a greatly simplified 

programme. 
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In order to complete the 3rd order triplet 

programme we require the system procedures that deal with 

the structure of the triplet; they are as follows: 

System Procedures. 

1. Procedure Ac(x): 

This procedure which is shown in Figure 1.5 

assembles the necessary basic procedures to carry out 

the task of obtaining the thick triplet from a given 

set of shapes and powers. 	It also computes the 3rd 

order aberration coefficients of the thick system. 

The  parameter X differentiates between systems at success-

ive stages of iteration (see changing shapes s  Chapter 1.2). 

2, Procedure Bending. 

This procedure which is shown in Figure 1.4 

carries out the shape changes required to adjust R 2 „ 

R 3  and R5 . 	The final system of this procedure is the 

"3RD ORDER TRIPLET". 

3. Procedure Compound Parameters. 

This converts the basic triplet into the initial 

arrangement of the complex triplet which is the type -  121 

in this example (see Figure 1.3), 

4, Basic Glass. 

This allots the basic glass constants (N a , Va
) 

(Nb , Vb ), (Nc , V
c
) of the basic triplet. 	The procedure 

is similar in form to the procedure Compound Parameters 

being Mainly the computation of the fictitious glass 
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constants of lens group b. 

At this point all .::the'procedures necessary for 

assembling the programme of the 3rd order type 121 triplet 

are available. 

This list of procedures forms the basis of the 

programming technique used here and clearly it enables the 

designer to comprehend easily the processes involved in the 

design problem. 	Thus the main advantage of this approach 

is the flexibility it affords the designer in advanced 

stages of design. 	In the first place he can confidently 

carry the main features of his problem in his mind more 

easily because he can think of the steps in the problem as 

a set of operations; he is not overwhelmed by details. 

Secondly, any change in the design process can, in general, 

be reduced to a rearrangement of the procedures or to the 

construction of a new procedure that does not disturb the 

existing basic procedures. I n  general, alterations are 

confined to the executive control routines and they are 

usually of a minor nature. 	For example a typical change 

in the design process is when the designer changes from 

finding a triplet with R2  = R3  = R5  = 0 + 0(5) to finding 

one that, in addition to these residuals, has its spherical 

residual specified to 7th order (i.e. R 1  = 0 + (9)). 

This, as we shall see (Chapter 1.4), is handled by the 

inclusion of a procedure to compute the spherical coeffic- ,  

ients of 3rd, 5th and 7th order and an additional executive 

control routine. 



1.3.7 	Description of the Basic-Programme. 

The basic-programme computes the triplet with 

R2 = R3 
= R

5 = 0 to 3rd order from a given set of basic- ,  

construction-parameters P/, kt s  P, L, T s  S l , S 2 , S4  

and glasses (N 1 , V 1 ), (N2 , V2 ), (N3 , V 3 ) and (N4 , V4 ). 

The power is automatically adjusted to unity. 

Following the programming principles discussed 

above we have found that the basic-programme reduces to 

the simple linear assembly of five sub-routines shown in 

Figure 1.2. The sub-routines are represented by blocks 

which are numbered 1.1 to 1.5 in this figure. 	The blocks 

1,1, 1.3, 1.4 and 1.5 stand for four system-procedures and 

block 1.2 for a basic-procedure
* 	The main details of all  • 

these Sub-routines, with the exception of procedure "basic 

glasses" (block 1.1), are shown in auxiliary flow diagrams 

(Figures 1.3 to 1.6). 	The procedure basic-glasses is 

trivial merely being mainly the computation of the fictit-

ious glass constants for the lens grouP b. 

Experience has shown that the set of sub-routines 

which have been constructed in this work endow the basic-  

programme with great flexibility. 	The main reason for 

this flexibility is that the system-procedures keep all 

* This is only a basic procedure with respect to triplet 
systems. 	In the general design process for all lens 
types this would be a system procedure also. 
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the systems construction-parameters in a compact and 

readily accessible form. 	In the interests of clarity 

and conciseness we have confined the flow diagrams to 

depicting the essential steps only, details of the triplet 

theory are described fully in Chapters 1.1 and 1.2. 

The computing of the Buchdahl coefficients is available 

in the literature where it has been described by several 

workers apart from the originator
(13.1, 2.4, 2.6) 

• 

The procedure Bending (Figure 1.4) is perhaps 

the most significant sub-routine because it embodies the 

design stages 2 and 3 of Chapter 1.2 in which the design 

progresses from the initial arrangement through the thin 

system to the thick system of prescribed R 2 , R3  and R5  

(the 3rd order triplet). 	This procedure employs the 

remaining control-routine of this programme, procedure 

Ac(x) (Figure 1.5) which is a complex system-procedure 

that controls several basic-procedures. 	It generates 

the thick system and its 3rd order aberration coefficients 

from a given set of shapes and thin lens parameters. 

Although bending and Ac(x) are the largest 

control-routines it is clear from the flow chart of 

Figure 1.2 that the procedures basic-glasses and compound.. 

parameters Figure 1.3 also play significant roles. 	They 

allow a smooth progression from the data through the 

initial solution to the 3rd order triplet. 	Also they 

make the business of altering the programme for the 
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generation of a triplet of a different structure a 

trivial affair. 	If, say, we want to construct a Tessar 

programme from our type 121 programmes, then only simple 

changes are required in the control-routines. 	For example, 

when constructing the control-routine compound-parameters 

(Figure 1.3) for the Tessar, 0 2  is equated to 0 b , 0 3  and 04 

become functions of the k' of the lens group c of the Tessar 

and the separation d 5  replaces d6 . 	Of course Pr d6 is retain- 

ed elsewhere as the thickness of lens 4. 

Thus in general the changes required in the basic 

programme for a change in triplet structure consist of the 

following: 

(1) change of a few subscripts. 

(2) alterations in a few procedure calls - simple numerical 

or parametrichanges. 

(3) replacement of a single command by a double command or 

the reverse, as in procedure compound-parameters of the 

Tessar programme. 

However, what is most important is that these 

alterations are confined to a small number of instructions 

in the five control-routines. 

The schematic form of the programmets flow chart 

(Figure 1.2) shows very clearly the cybernetic-nature of 

the optical design process. 	It is evident that the process 

is one in which the observable quantities are a set of 



input-parameters and a corresponding set of output- 

parameters. 	In this work with the type 121 "input.. 
- 

parameters" are the thin lens parameters 	10, P I  L, 

T, S l , S 2 , S4 , N 1  .... N4 , V 1 	V4 , and the output- 

parameters are the thick lens - "performance-parameters" 

R
1, 

R
2 
	 R

8' 9 
(R9 = focal length). 
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CHAPTER 1.4 A PRELIMINARY STUDY OF SOME 3RD ORDER 

SOLUTIONS OF A TYPE 121 SYSTEM VERSUS kt 

USING FAMILIAR TECHNIQUES. 

1.4.1 	Introduction. 

In this chapter a preliminary study of some 

3rd order type 121 triplets that are generated from a 

given set of glasses and thin lens residuals is described. 

From this work, we are able to elucidate some of •the 

properties that the parameter kt brings to the triplet 

family in the early stage of the design. 	By the early 

stage, we mean, the stage at which the system has specif-

ied 3rd order coma, astigmatism and distortion and also 

has its spherical aberration corrected to 7th order. 

1.4.2 	General Discussion of Triplet Properties and Design, 

Methods. 

The initial design methods for triplets of 

Cruickshank
(2.1, 2.2), 

 Hopkins
(4.3) 

Kingslake
(5.1) 

and 

others, are very similar. 	Cruickshankts method differs 

from other methods in two particular instances, initially 

in the choice of one of the thin lens parameters and in the 

final stages of design, possibly, in the order to which he 

adjusts the aberration residuals before resorting to ray- 

traces. 	(However, since the publication Of Cruickshank 
(2.4) 

and Hills in 1960 it is expected that the 7th order correct.. 



-ion of spherical aberration using Buchdahl coefficients 

is now commonplace.) 

The systematic design methods used by Cruickshank 

form the basis of this preliminary study. In his approach 

to the initial design of the type 111 triplets he introduces 

the thin lens parameter 12 and use it to control spherical 

aberration. Thus for a given set of glasses and thin lens 

parameters P, L and T he finds that the 3rd order spherical 

aberration is an approximately quadratic(21)  function ofX 

(for -1<2 <0) 

He also shows that the spherical aberration curve 

may be raised or lowered by changing glass values. 	Further- 

more, it is mentioned by R.E. Hopkins that changing the 

Petzval sum
(44

'
3) 

also shifts the spherical curve vertically. 

Therefore for a given set of glasses it is possible to find 

many 3rd order triplet solutions with specified marginal 

spherical by adjusting 	and P. 	Of course, generally, the 

designer intuitively aims at a small Petzval (thus restrict-

ing P), so that in the case of a simple triplet he would 

most likely look first toX,  and then to the glass constants 

in order to optimize spherical
(2.1) 

• 

As for the basic chromatic parameters L and T it 

is generally accepted that they affect only the chromatic 

residuals significantly and so after 	and P are determined 

little can be done with the design, apart from mall changes 

in residuals R2' R3 and R5' 
	The point coming out of this 



(CF 

is that, with an ordinary type 111 triplet, once the glass 

is fixed then, (2.1)  is the only significant parameter left 

for adjusting the spherical aberration. 	Consequently once 

l'/ is used to control the marginal spherical of the type 111 

triplet then the triplet is determined, there are no further 

geometrical degrees of freedom available for controlling 

its zonal spherical. 	(As a result of more recent work 

Cruickshank uses Xto control coma and R
4 

to control spherical 

of the type 111 triplet (2.8) 

Consequently if a Cooke triplet design has large 

zonal spherical nothing can be done except to start again 

with either a modified or a completely new set of glasses. 

This is the point made by Cruickshank that any improvement 

in triplets lies with glass selection and therefore the 

design is limited because the real glasses from a set of 

parameters taking discrete values. 	He suggests that this 

might be overcome by using fictitious glass values or their 

equivalent, the parameter kt. 	This brings us to the reason 

for tackling the type 121;- it is expected to offer some 

control over zonal spherical and thus give a triplet of 

wider aperture than the f/3.5 of ordinary triplets. 

Of course it is well known that cemented
(15, 16) 

surfaces provide control over higher order zonal spherical 

but it seems that little systematic knowledge has been 

acquired about them. 	The fictitious glass concept, however, 

is suitable for the systematic study of systems with cemented 



surfaces and the type 121 appears to be a suitable type 

to start with 

1.4.3 	Initiating the Preliminary Study of the Type 121. 

We have shown theoretically in Chapter 1.2 that 

for a given set of glasses the 3rd order triplet of the 

type 121 can be computed from the set of basic-parameters 

P, L, T and 10. 	This is one more parameter than 

in the set for generating the 3rd order type 111 triplet. 

(2.8) 
It has been shown 	that the 3rd, 5th and 7th 

order spherical aberration coefficients of the type 111 

triplet are quadratic functions of Xfor a given set of 

glasses, basic parameters (, P, L T) and 3rd order 

residuals (R2 , R3 , R 5 ). 	Thus we may write: 

= ao  + a l",)G + a2X 2 

= b o  + bp6 + b21 2  

I 1  = Co 
 + c;)C + 	

2 

g 

Now since the transverse spherical aberration residual to 

7th order is given by
(13.2, 2.4): 

6Sph = G- p 3  +Al e s  + Ti e + 0(9) 1, 

Then it follows because of equations 4.1, 4.2 and 4.3 that 

Sph of the type 111 triplet is also a quadkatic function 

of 2 and we may write: 

=d + d + d 21 Sph 	o  
4,5 
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S 
where d

o 
= ade+ bj+ c oe 

d 1  = a 1 e
3 
+ b 1e

5 
+ c 1 e

7 

d 2  = a2
3 
+ b 2 e

5 
+ c 2 ' 7 

(Note: ESph will be taken to mean the predicted spherical 

aberration tO 7th order unless stated otherwise.) 

Thus with the 3rd order type 111 triplet the 

predicted spherical aberration curve ofSph 
varies as in 

Figures 1.7.1, 1.7.2, 1.7.3
(2.8) These figures show how 

. 1  
the spherical aberration curve 	versuavaries with the Sph 

basic-glass parameters V a  and V o  and also, with changes in 

the Petzval aberration coefficient07 1  

The curves show that for any given set of basic-

glasses and basic-parameters there are two values of, at 

which the spherical aberration of the 3rd order triplet is 

zero. 	The solution on the left is called the left-hand 

solution
(2.1) 

or left solution 	and and the solution on the 

right is called the right-hand solution or right solution. 

The spherical curve may be moved vertically by 

changing P (2.1 ' 4.3)  (or 0— ) (2.8) , the glass in the first 
4 

element or in either one of the crown elements and the 

thickness of the elements (4.3) . 	Indeed the curve may be 

moved so far vertically that there are no solutions with 

€S  ph = R 1 
= 0 or it may be moved just far enough to make 

the solutions coincide when the curve is tangential to the 

2-axis. 
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In view of the above properties of the spherical  

curve of the type 111 triplet the preliminary study of the  

type 121 has been devised to find how kt affects this  

spherical curve. 	Thus the questions examined in this study 

are as follows: 

(1) Are the spherical aberration coefficients (0-1' it,1' T 1 ) 
,* 

and the marginal spherical 
(cSph)  reasonably approx- 

imated by quadratic functions of ,% when kt is constant? 

(2) What happens to the spherical curve when kt is changed? 

1.4.4 	Selecting the Initial Values of the Basic-Parameters. 

In order to start this preliminary study of the 

type 121 triplet we have first to make a glass selection. 

To simplify this selection the well known practice of making 

(1 	2.1, 3.2) 
simple triplets from two ' 	glasses such that 

(Na V a) = (Nc
, V

c
). 	This makes 5 = r= 1 and leaves only 

c.4.nd/3 as effective "basic-glass parameters". 

In the selection of c,4 and/3 we have been guided 

by the wish which was expressed earlier, to construct a 

large aperture system. 	This, it has been shown, requires 

a high c( and a high/8 (2 ' 2)  • 	Also we note that it has been 

found that largeo4 values give long systems and therefore 

this must be considered when excessive length is undesirable. 

It is also a general rule to make the front and back compon-

ents of a triplet of high N, high V glass and the middle lens 

of low N, low V glass. 



Thus the glasses and the initial value of kt  

chosen for the preliminary study of the 3rd order type 121 

triplets have been chosen so that the basic-glasses comply 

with the selection principles outlined above so that they 

give c= 1.6975 and /3 = 1.0429. 

These real glasses are the following Jena Types: 

Type 	N
d 	

V
d 

lens 1 Jena SK16 1.62101 60.18 

lens 2 Jena BaF10 1.67038 47.31 

lens 3 Jena F8 1.5959 39.13 

lens 4 Jena SK16 1.62101 60.18 

and the initial kt = -2.50(1which gives N
b 

= N
F = 1.5498 

V
b 

= V
F 

= 35.086. 	Finally the values used for P, L and T 

are of the same order as values obtained for well known 

triplet systems being P = 0.35, L = 0.20 and T = 0.05. 

This leaves X/as the only independent parameter since R 2 , 

R3  R5 and R9 
are implied in the definition of the 3rd order 

triplet. 

1.4.5 	The Spherical Aberration of the Type  121 versusl 

and versus kt.  

1.4.5.1 The Basic-Programme for Spherical Aberration. 

In order to study the dependence of spherical 

aberration on the independent parameter X. we have used a 

72 
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modified fomm of the basic-programme called BP/S/121. 

This programme computes the 3rd order type 121 triplets 

for either a range of Avalues betweenX i  andZ2  in steps 

of LX, or a single value of 2( for a given set of 1, P, L, 

T 2 	R2: R3: R50 This programme contains a new basic-

procedure called Sph357 that generates the 3rd, 5th and 7th 

order Buchdahl spherical aberration coefficients ( (Y- 	I ) l' 	1 

of each triplet and from these also computes the predicted 

transverse spherical aberration E h  (equation 4.4). 

The construction of this modified programme BP/S/121 

is the first example of the technique used throughout this 

work to simplify the writing of these design programmes. 

The flow diagram Figure 1.8 shows that the new programme 

consists essentially of the linear assembly of one control-

routine called T121 and a basic-routine called Sph357. 

The control-routine reduces the body of the basic-programme 

(BP121) to a single instruction (see Figure 1.8). 	Thus all 

the complexity associated with generating a 3rd order triplet 

is reduced to a single instruction or operation in this and 

in all future programmes. 

Thus for example, from the set of data which 

consists of the values selected above and also suitable values 

for the other parameters as follows: 



csmPUTE 
3wORDER 
SYSTEM 
(T121) 

CRIPUTE 
3 VMMDER 
SPHERICAL 

20EFFICIENTS 
(Sph 357) 

X:=X+AX 

BEGIN 

I BENDING I 

END 

READ 
DATA 

PRINT 
LENS 
DATA 

COMPOUND 
PARAMETERS 

COMPUTE 
BASIC 

GLASSES 

INITIAL 
SOLUTION 

BASIC PROGRAMME BP/S/121 
BEGIN 

END 

BP 

Fig. 1.8 
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N1  = 1.62101 

2  = 1.67038 

N3  = 1.5959 

N4  = 1.62101 

= 1 

P = 0.35 

iL. = 0.2 

T = 0.05 	e = 0.2 

kt = -2.5 

and ;V, = -0.5 

the programme BP/S/121 has generated a 3rd order type 121 

triplet. 	In doing so it has supplied the essential details 

of the system at the various stages which are shown in 

Figures 1.1.2 and 1.8. 	Thus after reading in the data it 

has computed the following: 

(1) The Basic Triplet. 

O= 1.7146 	N = 1.62101 V = 60.18 a  
t =0.16709 a 	

a 

Ob= -3.1038 a 	Nb 
= 1.54983 Vb  = 35.085 

tk=0.16722 
O c = 1.8818 	Nc 

= 1.62101 Vc 
= 60.18 

(2) The Initial Arrangement (Thin-Lens Type 121) 

0 1 = 1.7146 	S 1 = 0.61190 

0 2= 2.0692 t a
=0.16709 S 2 =-2.7336 

0 3=
-5.1731 	tb

=0.16722 S 3 
= 0.32753 

S4 
=-0.35334 0

4= 1
.8818 

V 1  = 60.18 d2  = 0.1 

V2  = 47.31 d4  = 0.07 

V 3  = 39.13 d 5  = 0.02 

V4  = 60.18 d 7  = 0.07 

R2  = 0 S 1  = 0.7 	Th 

R3 = 0 S2  = -2.0 approximate 
shapes 

R5 
= 0 S4  = -0.4, 



(3) Trd OrdekaTriplet (Thick-Lens Type 121). 

c l  = 

c 2  = 

c
3 

= 

c4  = 

c 5  = 

= 

c 7 = 

	

2.22522 	d i: = 

-0.585687 d 2  = 

	

-2.52857 	d
3 

= 

	

-5.58035 	d4  = 

2.862875 d 5  = 

0.998400 d6  = 

-2.087722 d
7 

= 

0 

0.1 

0.093184 

0.07 

0.02 

0.1095 

0.07 

3rd Order Residuals 
0- 	= 	0.1137 1 

= o 2 

= 	-0.055215 

. 0.165644 

7-5  = o 

75-  

Finally it has computed the spherical aberration coefficients 

and then from them computed the marginal spherical for the 

given C = 0.2 which is equivalent to an f/2.5 system since 

ft = 1. 	Thus we have 

G-  = 0.11370 1 

A4  = • 7 3268 1  

= 557.06 

and 	E t 	= 0.010384 
Sph 

1.4.5.2 	The Effect of 	and k 2  on the Spherical Aberration. 

The above example has been repeated for the range 

of 	from 2Ci  = 0 to; = -1.0 in uniform steps of2,S= 0.1 

and for k 2  = -2.22, -2.50 and -2.857. 	The values of 0-  

At
12 

71 and El Sph  obtained are shown plotted against X for 

the different values of 10 in Figures 1.9, 1.10, 1.11, and 

1.12. 	These curves are closely approximated by quadratics 

in X. 	Thus the behaviour of e t 	of the type 121 when kt 
Sph 
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is constant, is similar to that of the type 111 when, for 

example, V a  is constant (Figure 1.7.1). 	However, it is 

evident from the figure that increasing kt raises the 

spherical coefficient and spherical aberration curves and 

decreasing 10 lowers them. 	This is a very useful property 

because simply by varying 10 a range of triplet right and 

left hand solutions may be obtained with their marginal 

spherical specified to 7th order. 	(We will call them R 

solutions and L solutions.) 

Thus with the parameter k' the designer can 

accomplish what he normally has to do with real glasses or 

the Petzval sum in the design of the type 111 triplet. 
rd 	• 	.A 

(See Figures 1.7.1, 1.7.2). 	Therefore6fictitious glasses 

seem to be as effective as ^ real glasses in shifting the 

spherical curves. 

With the data of the above example R and L solut- 

ions are available from near k' = -2.66 to at least k' = -2.857. 

The next stage of this preliminary study)which is discussed 

in the following section i deals,with the selection and develop-

ment of solutions in this region. 
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1,4.6 	Right and Left Hand Solutions versus kt  

1.4.6.1 The R and L_Programme. 

For each kt chosen in the region of the triplet 

solutions there are two solutions, the well known right 

and left hand solutions of a triplet system. 	These are 

computed with a programme LR/BP/S/121 that is derived very 

simply from the programme BP/S/121; its flow chart is Figure 

1,13. 	For convenience we will call it the R and L programme, 

There are two parts to this programme. 	The first 

part is merely BP (see Figure 1.8) which is arranged so as to 

produce three separated points* on the Sph
-curve for the 

purpose of fitting it with the quadratic in 	(equation 4•5) •  

The second part computes the approximate solutions X and 

X, 	that make E e  Sph = R1 by solving the quadratic equation. 

(R -  is supplied in the data). ' The remainder of the programme 
1 

iterates the sub-routine T121 (see Figure 1.14) about the 

l 	- 	
-5 

region of either X L  or % /1.  unti1 E sph  - R1  ± 10 „ 	In the 

early stage of the design which we are studying now, R 1  is 

set to zero, but it may be given a value other than zero by 

the designer in order to balance the higher aberrations in the 

final stages!.of the design. 

1.4.6.2 Controlling Spherical with kt.  

The first solutions of the type 121 with R 1  = 0 

,t 
are at A and A2 

on the 	-curve at kt = -2.857 (Figure 
1 

1.12); the points P1  and P2  appearing near A l  and A2  are 

* For convenience we haVe used X. = G, -0.5, -1.0. 
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ITERATION 1\ 
SPHERICAL 
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SYSTEM 
(T 121) 

Sph 357 

••7" ES'  ph 

COMPUTE 
NEW 
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END 
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is 

the solutions predicted by the quadratic approximation 

whereas A11 A2 are the actual solutions arrived at by the 

iteration. 

As we are aiming initially at well corrected 

zonal spherical another pair of solutions (A 3 , A4 ), with 

smaller spherical coefficients, were chosen at k' = - 2.66. 

This new k' was selected by interpolating between 10 = -2.857 

and -2.5. 	Let us now examine the potential of both pairs 

of solutions to see if one of the four is significantly 

better than the others. 

1.4.6.3 	Discussion of Type 121 Solutions. 

'il.TABLE 5.1  

Spherical Coefficients 3rd, 	5th, 	7th Order. 

Left hand Solutions 	Right Hand Solutions 

A A 1 	A2 	3 	
A
4  

10 -2.857 -2.66 	-2.857 -2.666 

OF-1 0.1536 -0.2060 	-0.0890 -0.3365 

-4.4078 - 3.636  -7.9309 -4.710 

T'1  14.2029 220.0 	253.94 328.0 

At 	first sight 	(see Table 5.1) the 	solutions A l  

appears to have significantly better zonal correction than 

the others because of its very small set of spherical 

coefficients. 	However, this prediction is not supported 

by the LA'-curves which have been obtained from actual 

ray-traces and which are compared with the predicted LA'- 



curves*  in Figure 1. 1 5. 	These curves show that there is 

little to choose between the four solutions below f/3.5, 

while beyond 1/3.5 there is also not much difference between 

them, because, they all suffer from massive under-correction. 

Even so :  any of these solutions may be considered as being 

sufficiently well corrected on axis for a system working at 

a maximum aperture of f/3.5. 	(In passing we note that the 

prediction is better when the higher order coe1ficients/a 1 

and 71 are small. 	(See Figure 1.15 where the solution A 1 

has best agreement between the predicted and ray-trace 

LA. 2 ..curves.) 

In order to further assess the potential of these 

solutions we turn to the coefficients that describe the 

off-axial aberrations. 	It is well known
(2.8) that we need 

only look at a few coefficients that are characteristic of 

the 5th and 7th order comatic and astigmatic aberrations in 

order to select the most promising solution at this early 

stage. 	Previous workers in this laboratory have found it 

is sufficient in the early stages of design to plot the 

following coefficients in order to assess the off-axial 

correction: 

(1) for coma, the 5th order coefficients.A 2  and '-7  and for 

the 7th order T'2 and 15' 
(2) for astigmatism, the 5th order coefficients. 44-4  and 441 0  

and for the 7th order g'z1 
and 	I 11' 

* Predicted LAt = /0 
Sph 
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These coefficients have been computed for the 

systems at 10 = -.2,857 and -2.66 for the usual range of 

,G= 0 to -1.0 in steps of LX= 	The results of 

this work are plotted in four diagrams, Figures 1.16 to 

1,19, 	In Figure 1.16 we have these characteristic 

astigmatic coefficients for k' = -2.857 and in Figure 1.17 

we have plotted the comatic coefficients for the same 

system.S. 	Similarly we have plotted the same pairs of 

astigmatic and comatic coefficients of the systemsat 

k' = -2.66 in Figures 1.18 and 1.19. 	It is seen that k' 

has the same general effect on these comatic and astigmatic 

curves as it has on the spherical curves. 	An increase in 

10 raises them and vice versa, 

It is evident from the figures that solutions 

near X= -0.5 are the most promising because their 5th and 

7th order comatic coefficients are a minimum and also their 

astigmatic coefficients are not excessive at this minimum; 

Consequently if we proceed with the developmentof a solut- 

ion in the region of (X= -0.5, k' = -2.66) we are confident 

that a reasonable f/3.5 system may result. 	However, there  

is no justification at this stage for anticipating the  

existence of a type 121 system that will perform well at  

or near f/2.5. 	Indeed, in view of these results we are 

go 

inclined to believe that f/3.5 cannot be exceeded with the 

type 121,  
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1.4.7 	Discussion of the Design Process as a Result of  

Work with the Type 121. 

It is clear that when the familiar systematic  

design process outlined in Chapter 1.2 is combined with  

5th and 7th order coefficients the development of a  

system of moderate field (less than 20 0 ) and aperture  

(less than f/3.5) becomes a simple matter; especially 

with a flexible programme like the one developed in this 

work. 

So using the well known systematic design process 

we have arrived at the point beyond which systematic design 

ceases to be straight forward, largely it seems because 

there are no aberration coefficients readily available for 

orders higher than the 7th (except for the 9th and 11th 

order spherical coefficients). * 	The need for coefficients 

of higher order than the 7th is obvious if accurate pre-

dictions are to be made at apertures in excess of f/3.5. 

This is demonstrated by the divergence of the predicted 

LAt-curves from those of the ray-trace LAt-curves in 

Figure 1.14. 

* (a) 19- th and 11th order coefficients, Buchdahl
(13.4, 13.8) 

During this part of this work the Elliott 503 computer 
could only handl the simultaneous computation of a 3rd 
order solution and its spherical Goefficients of 3rd, 5th 
and 7th order. 	However, in a later part of this investig- 
ation more storage became available which enabled the 9th 
and 11th order spherical coefficients to be computed as 
well. 	This is discussed in Chapter 3.2. 
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There are only a few design principles available 

for the design of modern photographic objectives (that is, 

systems with fields 20 0 
 and apertures 1/3.5). 	Of the 

few empirical principles that have emerged from design 

experience it is generally accepted that the higher order 

aberrations are fairly stable; it appears that they are not 

significantly altered by small changes in the final design 

stage. 	So, it is said, that they can be off-set or balanced, 

to some extent, by an equivalent lower-order aberration 

residual of opposite sign. 	It is said that this makes 

geometrical optical design possible. 	This stability of 

the higher order spherical aberration is supported obviously 

by the pattern of the LAt-curves of the four solutions of 

Figure 1.15. 	Here, although the zonal spherical below 1/3.5 

varies within small limits from one solution to the other, 

that above 1/3.5 remains almost unchanged, being highly 

asymptotic. 	(The solutions are equally good below 1/3.5 

and equally bad above.) 	So this conclusion about stability 

seems to be trivial in this case. 	Moreover we shall see 

that if we take stability at face value as with LAI...curves, 
- 

then we are likely to miss subtle behaviour beyond 1/3.5 

We are now faced with the dilemma of what to do 

next. The present solutions predict. at the best an 1/3.5 

system, therefore, we are left with the old adage "change 

the glass" and start again in an. attempt to control the 
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higher orders. 

To have to start again with another glass select-

ion seems inevitable since the experiences of other designers 

leads us to believe that the higher orders cannot be reduced 

effectively by changes in the geometrical design parameters. 

They seem to assert •that the higher orders can only be off-

set by balancing them with the lower order residuals. 

However :  balancing is a compromise that only gives good 

results at a particular zone of the aperture or a particular 

point in the field. 

1.4.8 	Methods of Design - Some General Considerations, 

There are two types of optical design methods in 

use today. 	The first is in the manner of the work described 

in this preliminary study of the type 121. 	This method* 

assumes some knowledge of the whereabouts of the optimum 

region of the design parameters as well as the basic 

behaviour of the aberrations with respect to the design 

parameters. 	This method enables the designer to produce 

workable systems of moderate aperture and field with a 

minimum amount of computing effort. 	Such an optical design 

method is fashioned primarily by the need to conserve 

computing effort. 

* MethOd is used to mean something more than process. 
We have a design process but this can be used in 
several methods. 



On the other hand, the opposite of this method 

has come into being with the advent of digital computers; 

it is "automatic lens design". 	With this, the emphasis 

is on the complete removal of the designer from decisions 

in the optimizing of the design and almost no limit is 

placed on computing effort with this technique. 	Although 

this "method" of automatic design has enabled improvements 

to be made in known systems (62) the designer is never 

sure whether the programme has attained the best solution 

for the type of design being studied. 	Doubt has been 

(8 	6.2) expressed as to whether there are "other valleys" ' 

in the multi-variable space of the design. 

The method used in the rest of this thesis lies 

between the two extremes of design technique mentioned 

above. 	It is a semi-automatic method. 	In this new 

approach semi-automatic design programmes which embody 

the systematic design process of Chapter 1.2 are used to 

map the 3rd, 5th and 7th order residuals of the 3rd order 

triplets which are generated in a regular pattern through-

out a range of the thin lens parameters corresponding to 

all real systems of, say, the type 121. 	From this mapp- 

ing a set of design principles which incorporate the thin 

lens parameters emerge for controlling the thick lens 

residuals, especially at large apertures. 	(We note, of 

course, that the pendulum of fashion is moving away from 



automatic design in some schools of research. 	In 

particular R.E. Hopkins
(4.2) 

is one of the first to make 

clear statements about the relative merits of the automatic 

or semi-automatic approach to design. 	It seems that he 

has also anticipated much of what has been said and done 

in the programming of the design process in this thesis.) 
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CHAPTER 2.1 THE DESIGN PROCESS AND INTERPOLATIVE DESIGN. 

2.1.0 	Introduction. 

In Section 1 we have discussed the familiar 

analysis of optical systems of the triplet type and showed 

how they may be generated from the "basic triplet". 	From 

this we have seen that it is possible to design a "basic 

programme" that simplifies the study of the triplet systems 

of different constructions. 	Following this, a preliminary 

study of the construction of a triplet of the type 121 from 

a given set of glasses and thin lens parameters has led to 

many possible 3rd order solutions that arise from different 

values of 10. 	All these solutions are almost equally 

suitable up to 1/3.5 on axis, but they differ in their off-

axial correction. 

However, our aim with the type 121 is to design 

for an aperture of 1/2.5 and so we have to decide which of 

the solutions above (4.3) , will develop into the best wide 

aperture system on balancing the higher order aberrations 

with the aid of ray-traces. 	Thus conventional design  

methods have led us to a more general problem. 	It becomes  

not just a question, in this work, of the design of the  

type 121, but the procedure that should be adopted in order  

to design a modern photographic objective systematically at  

large apertures.  

Ee6 
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, A study of the literature shows that there is  

no method at present for designing wide-aperture systems  

systematically. 	SO, if we are to do more than just find 

a useful solution of the type 121 then our problem8is first 

to discover if possible how to control the higher order 

aberrations at large apertures in a systematic way and, 

secondly, locate the best solution for our requirements. 

If we look at the optical design process in a 

very general way we learn that all intelligent optical 

design is a cybernetic process
(4.3, 20, 21)

: being the 

achievement of a goal through the monitoring of the input 

to a controlled process by feed back from its output. 

An effective feed back control can only be constructed 

with certainty , when the relationship between the input 

and output is fully understood. 	In optical design this  

reduces to mapping or charting
(4.3) 

performance parameters 

versus initial design parameters  before attempting to 

satisfy some performance criteria. 	Thus the effectiveness 

of a design process must rest inevitably on the accuracy, 

scope and significand e  of the maps it constructs and uses. 

This leads us on occasion to ask if the designer 

has sufficient information for making predictions at various 

stages of design or if he is guessing the behaviour of out-

put versus input. 	The designer may deny guesswork, saying 



that he has adjusted parameters or chosen his solution as 

) 
a result of his experience

(21 
 or the experience of others, 

having no need to pursue anything other than the solution 

of his immediate design problem with the utmost economy of 

effort. 	However, in saying or implying this, he is 

indirectly referring to a mental picture that has been put 

together through years of design experience. 	The weakness 

here, of course, is that the controlled process may be 

constructed from insufficient and therefore possibly miS- 

leading information. 	Such design is not really systematic. 

It would appear that systematic design ceases 

when the designer has to conjecture about the behaviour of 

the performance parameters with respect to the design 

parameters. 

Throughout •the literature we are regaled with 

comments about.designerts tastes, referring no - doubt to 

their different preferences in - the selection of parameters 

at various stages or levels of the design process. 	This 

widespread variation in the selection of design parameters 

and, consequently, in design technique is to be expected 

with the computing facilities and state of the theoretical 

knowledge of the past. 	However, with the recent growth 

of computers and computer languages, coupled with the advances 

in theoretical optics of the last 20 years, it is to be 

expected that the design process is being better organized 
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by optical designers. 	In this work a serious attempt 

has been made to do so. 	Finally we note that although 

this research deals only with triplet types it can be 

argued, however, that the principles may have wider applicat-

ion. 

2.1.1 	The Design Process. 

Let us consider the essential features of the 

design methods that are possible with todayts knowledge 

and, in (:).„ciping, try to find the preferred sequence for 

the design process. 

Although the various theoretical techniques 

available to the designer may be employed in whatever 

order he desires, nevertheless it seems that they should 

occupy particular positions in the design process. 	This  

is apparent when the design process is represented by a 

flow diagram that is constructed with the design procedures 

arranged in a logical sequence as in Figure 2.1. 

The design process as it applies to the triplet 

system is depicted in Figure 2.1. 	It starts from the 

"basic parameters"XPLTN, Nb/ 
Nc' 

V 
 a  V' b' 

V
c

) 

passes through the thin lens solution to a set of "perfor. 

mance-parameters" (Ø 	O 3 	
t
b
) which are converted 

with the aid of the shape-parameters into the thin lens 

"fundamental parameters", the curvatures and separations. 
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(These sets of different parameters are numbered (1) to 

(4) in the diagram.) 	Then starting with the thin solut- 

ion "the 3rd order analysis" generates the thick system 

with prescribed 3rd order coma, astigmatism and distortion 

by adjusting the shapes. 	Having computed a 3rd order system 

the designer is at position (5) in the flow diagram at which 

he must decide how to assess the system, whether to use 

aberration coefficients that are computed from paraxial 

quantities or whether to use exact quantities that are 

computed from trig-ray-traces, for example, spot diagrams, 

0.T.F., etc.. 	In this final stage of the design process 

these quantities which we have called "performance parameters" 

are compared with a set of target values or tolerances. 

Although this discussion has so far been concerned 

with the design process of the triplet it is evident, 

however, that it can be.easily coriverted to the general 

design process. 	For example, the sub-routine thin solut- 

ion of Figure 2.1 could be replaced by the thin solution 

of, say, a telescope doublet and so on for all the parameters 

and all the other stages. 	Clearly the design process 

consists of a sequence of levels or degrees of approximat- 

ion to the final system. 	It seems to the author that the 

"preferred process" is the natural sequence of these degrees 

or levels of design. 

In order to adjust the residuals to the target 

values many designers seem to prefer to use the thick system's 
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"fundamental parameters", (the curvatures and thicknesses etc.) 

that occur in position (5) of Figure 2.1. 	So, in keeping 

(13.1) 
with this design technique, Buchdahl 	has created an 

analysis that gives the surface contributions of the 

aberration coefficients and, also, has developed different.- 

ial coefficients of his aberration coefficients with respect 

to the "fundamental parameters"(curvatures, thicknesses etc.) 

4) 
Cruickshank and Hills (1960) 

(2.
have used both 

the Buchdahl surface contributions and the Buchdahl differ-

ential coefficients to improve a long focal length telephoto 

design .of small aperture and field that was generated init-

ially from a set of thin lens parameters. 	Other designers
(8) 

in later work than theirs, have used large computers to 

automatically optimize some thick systems with respect to 

their "fundamental parameters". 	Thus all of these designers 

in the final stage of their designs start at position (5) 

and confine their cybernetic process to a loop between 

positions (5) and one of the assessment sub-routines (LA', 

spot diagram, 0.T.F., etc.). 

2.1.2 	Interpolative and Extrapolative Techniques in Optical  

Design. 

As far as the author can discover all familiar  

design methods appear to be based on "extrapolation" tech-

niques rather than "interpolation" techniques. 	Indeed, 

"extrapolation" seems inevitable when the designer bases  



hid design process on the "fundamental parameters" 

(curvatures, thicknesses etc.) 	Also, since these parameters 

do not embody the characteristics of the particular type of 

system being designed, then the designer must .  explore 

cautiously around the starting point in order to avoid' 

unrealistic systems. 	Moreover, even if he proceeds 

cautiously and achieves a useful system, he will not be sure 

that it is the best possible one of its type. 

Under a heading "Problems for the Future", which 

he says have not been solved, Feder
(8) 

sums up extrapolation 

techniques when he says: "I am unhappy about the rate of 

convergence of any of the methods with which we are familiar. 

All these methods have in common one thing, they are all 

extrapolative methods. 	They collect information about the 

behaviour of a function in the neighbourhood of a point.... 

This is similar to a blind man trying to predict the shape 

of a mountain by feeling the ground around him with a cane." 

So if a designer begins by assuming a set of thin 

lens parameters or even if he starts with a real system, 

then he is committing himself to an extrapolation technique. 

Consequently he must proceed blindly, relying either on his 

intuition or the decisions of his programme. 

On the other hand, there is the ideal design 

principle of interpolation. 	This means he removes supposit- 

ion by mapping the entire design with respect to all the 

design parameters; at first sight a formidable task. 	Feder 
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comments on this saying "It must have occurred to many 

people that it would be better to evaluate a merit function 

01 over a network of points distributed over the region of 

the independent variables and to interpolate between these 

computed systems, a solution. 	However, when one calculates 

the number of points necessary, one is overcome by hopeless- 

ness 	If we suppose that 10 points are computed for each 

variable, then it is necessary to compute for an eight. 

surface lens 10
25 times in order to make a workable network." 

Clearly Feder proposes working between the thick 

lens parameters of position (5) of Figure 2.1 and a merit 

function If that is made up of several performance parameters. 

This approach does not look promising with regard to either 

the choice of the design parameters or the starting point 

in the design process
* 	How can the designer have a real- 

istic interpolative method when he has chosen a set of 

fundamental parameters (curvatures, thicknesses etc.) as the 

independent variables? 	This means that he is going to let 

the programme enter a multi-dimensional-space of Unknown 

structure in which it is allowed to follow any path that 

shows improvement in the design. 	The generality of this 

approach would appear to be its downfall. 	For example, the 

(4. 
* R.E. Hopkins, London (1961)'  Optical Design on Large 

Computers says: "Experience with these programmes has 
convinced us that it is not feasible to blindly explore 
in a multi-dimensional space and reduce a Merit Function 
to its lowest possible value etc.." 
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eight surfaces of Federts example are indistinguishable - 

they can be varied in any order and, for that matter, so 

can the other fundamental variables, such as, thickness, 

refractive index etc.. 	Consequently this process may 

become either an aimless or an infinitely slow * 
journey 

through a multi-variable space that is fraught with 

impractical systems which appear without the designer 

knowing how. 

In addition to an urifortunate choice of independ-

ent variables (fundamental parameters), the choice of a 

(11 merit function 	as the dependent variable is unfortunate, 

because its construction is such that it must be calculated 

for all field angles and aperture-zones ' 
	

This requires 

a huge amount of computation for each assessment. 	Consequent.. 

ly,although Feder and others who pursue a purely automatic 

approach do propose interpolation they have not, it seems, 

as yet, constructed or proposed a realistic cybernetic.. 

process. 

The question now,..as far as we are concerned, is 

can we construct a workable "interpolative design process" 

using established "theoretical tools" of optical design. 

We attempt to answer this question in the next section. 

* Reference Kingslake, pp39...42, Vol.3, Applied Optics 
and Optical Engineering. 



2.1.3 	A Limited Interpolative Design Method Using 

Aberration Coefficients. 

If we are to make satisfactory progress with the 

interpolative method of design we must choose design 

parameters that can be treated in a particular order. 

This will allow us the practical advantage of dividing the 

design process systematically into manageable steps. 

The "basic parameters" are eminently suitable 

because they have the necessary,properties;theT.arelboth 

distinguishable and separable. 	We saw in Chapter 1, 

Section 1, that they can be separated according to their 

dependence on V and so we can divide the design process 

into a monochromatic-stage and a chromatic-stage. 	Also, 

they are individually distinguishable and, fur3thermore, each 

one can be associated with a dependent variable of a similar 

type until a fairly advanced stage of design is reached. 

While Workers, such as Feder, seek to go from a 

real system to an exact measure of its performance in one 

step in order to assess and improve it, we, on the other 

hand, propose to study the behaviour of the system in detail 

at an earlier stage of the design process. 	Thus we will 

be content initially with a complete assessment of the system's 

potential to 7th order made with respect to its basic 

parameters. 

The Buchdahl coefficients of 3rd, 5th and 7th order 

represent indirectly the behaviour of all the rays of all 
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the pencils of the symmetrical optical system for a pre-

scrLbed colour; this fact, it seems, is often overlooked, 

In contrast with this, the exact assessment quantities like 

O.T.F. or the radius of gyration of a spot diagram only 

contain information about a particular pencil of rays and 

so an enormous amount of computation is required to gain 

the same results  as a single computation of the coefficients 

(except in the final stages of the design of systems with 

large apertures and fields when coefficients to 7th order 

are not enough.). 

It has been established that the set of 3rd, 5th 

and 7th order coefficients enable us to estimate most 

geometrical optical quantities with reasonable accuracy up 

to a maximum aperture of f/3.5 and a maximum field ofbetween 

20- 30 	Buchdahl (1958) (13 ' 5) , Cruickshank and Hills (1960J12 4)  ' 

This accuracy is sufficient for our initial purpose since it 

is not our aim to measure the design potential with the precise 

performance parameters (0.T.F., LA', etc.) at this early stage, 

All we are aiming to do now is to understand how the main 

features of the design vary with respect to its basic paramet-

ers. 	Obviously, we must discover, initially, whether there 

are several regions of equal promise or, whether is only a 

single optimum region for a particular lens type that is con- 

structed from a given set of glasses, 	For this purpose, 

merely seeing how the relative magnitude of the coefficients 

varies with respect to the design parameters should be sufficient 
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This question has not been treated comprehensively  by past 

workers because of the enormous amount of computation 

involved. 	No one knows conclusively how any system depends  

on its design parameters to 5th order, let alone 7th order. 

The only comprehensive results in the literature 

stem from extrapolative surveys of triplets. Cruickshank, 

(as we saw earlier), has done a lot of pioneering work with 

coefficients and triplets but in all cases his coefficient 

surveys are restricted to small ranges of the basic parameters; 

.1, 
broadly speaking, his work is extrapolative(2 

	2.2, 2.8)  

Hopkins also has surveyed some triplet solutions but this work 

is confined to the 5th order and it appears that his surveys 

are extrapolative also. 

From this discussion we conclude that a "limited-

interpolative-study" of a design with the aberration coeff-

icients and thin lens parameters (basic-parameters) seems to 

be the most logical and practical first stage in the design 

process. 	Not just a study of a small region of one or two 

thin lens parameters but a systematic map of the coefficients 

of 3rd, 5th and 7th order for a range of the "basic parameter-s" 

that will exhaust the design potential to 7th order. 	This 

will, of course, only map the design's potential with suff-

icient accuracy up to an aperture of about f/3.5 and up to a 

field of about 20
0(13.1, 13.5, 2.4) Beyond these values, 

Used -:.herb to mean limited to a finite range 6f 
the parameters. However, the range, although finite, is 
chosen to exhaust the potential of the design. 
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we will have to resort to other means for mapping what are, 

in effect, coefficients of order greater thanc the 7th. 

However, we will leave this till later. 	All we want to 

know now is where the best system is most likely to occur 

when our approximation does not go beyond the 7th order. 

2.1.4 	Implementing a Limited Interpolative Study of the  

Type 121. 

Although by choosing the basic parameters as design 

or construction parameters and the aberration coefficients as 

performance parameters we make a limited interpolative study 

possible, we need, however, to think about how we are going 

to break the problem down. 	In view of our earlier discuss- 

ion we will think of the system as being designed for mono-

chromatic work in d-light only and, thus, we will have no 

practical need to be concerned with the chromatic residuals 

R
6 

and R
7 
of the thick system. 	Consequently we will fix L 

and T and think of the final design as being one of the 

(11 family of triplets with construction constants , L, T, R2 , 

R3  and R 5 . 	So all we have left as independent variables  

in this the monochromatic stage are (X, k t , 1"). 

If we vary the design parameters (X, kt, P) we can 

generate a set of triplets with the same (, L, T, R 2 , R3 , R5 ) 

and these triplet systems will have different aberration 

coefficients ar residuals. 	By doing this we will be mapp- 

ing aberration coefficient-space against ((', kt, P)-space 
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for a constant set of values of ($, L, T
' R2' R3 R

5
) 

Consequently the process of systematic design will be 

initially an interpolative-monochromatic-study in (X, 10, 

P)-space, whereas the earlier work in Section 1 is only an 

extrapolative-study in (Z, 10, P)-space about the point 

P = 0.35 with L = 0.2 and T = 0.05. 	Thus by mapping all  

the independent variables of the "monochromatic system" 

versus the dependent variables as completely as possible  

to 7th Order4 we Will be workirig interpolatively in our 

. a..ti- ck on the type 121. This approach is supported by 

Buchdahlts remarks when he says: "If one proceeds up to  

and including the 7th order terms one then has the con-

venient set of "28 performance" numbers describing the  

"monochromatic" behaviour of the system as a whole."
(13.5 ) 

2.1.5 	Limited Interpolative Design Compared with Other 

Design Techniques. 

The design process we will use does not allow the 

designers' taste or intuition to select alternative paths 

or loops in the flow diagram. 	We assert that each selected 

level or stage of the cybernetic design process should be  

used in its turn to study systematically its performance  

parameters versus the basic parameters before advancing to  

the next more sophisticated stage. 	Thus in each new stage 

new performance parameters will be surveyed with respect to 
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fi 
the original design-parameters which are the Basic Paramet-

ers of this work. 

The different paths possible in the optical design 

process are shown in Figure 2.2. 	The process can be started 

at either position (A) or position .(B). 	Automatic design 

is started in general at (B) with the specifications of a 

real system and passes directly into the loop which is 

denoted by path (3). 	The process continues in path (3) 

until the performance parameters chosen by the designer 

satisfy the tolerance conditions. 

Designers in the past have mainly worked from 

position (a). 	After generating a 3rd order system from 

thin lens residuals they pass into the loop denoted either 

by path (2) or path (3). 	Mostly designers have favoured 

path (3), that is changing fundamental parameters as soon 

as their initial process has produced a crude real system. 

The techniques for adjusting the fundamental 

parameters in path (3) are of two types, being based on 

either trigonometrical ray-traces or paraxial ray-traces. 

The trig ray-trace methods usually involve direct calculat-

ion of differential coefficients from finite changes in 

fundamental-parameters. 	This seems to be a naive approach 

to optical design; it relies too much on where the designer 

starts his process. 	Also, it does not seem possible for 

the designer to get a very clear picture of "design trends" 

because of the large number of parameters involved except, 
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perhaps, when dealing with very simple. systems. 	This 

direct approach to optical design would seem •to be defeated 

by the overwhelming amount of computation required for the 

complete assessment of an optical system. 

The drawback of large amounts of computation has 

been alleviated, to some extent, with the advent of Buchdahl-

coefficients. 	Thus, workers using path (3) have been pro- 

vided with the means for computing differential coefficients 

with respect to fundamental-parameters analytically to 5th 

order at least. 	(Cruickshank and Hills pioneered this 

technique, 1960.)
(2.4) 
	We have not shown details of the 

path followed by this type of calculation, however it would 

be included in the block "change of fundamental parameters 

etc." in path (3). 

Cruickshank and R.E. Hopkins have made some use of 

path 11) when they mapped 5th order coefficients of simple 

triplets with respect to some thin lens construction-paramet-

ers. 	They have selected likely systems from these simple 

maps and used some differential method, usually path (3), to 

correct them. 	It is evident that all three paths of the 

design process have been used by designers at some time. 

Indeed, probably most combinations of these paths may have  

been used. 	However, it does not appear that any have 

proposed the thorough mapping that we have asserted is 

necessary for systematic design. 



The limited interpolative method that we have 

used starts at position (A) and continues in path (1) until 

a complete map of the coefficients of 3rd, 5th and 7th 

order versus the basic parameters is produced. 	Then the 

most interesting region is selected and mapped in detail 

so as to predict the optimum system accurately. 	This 

optimum system initiates loop (2) •in which the design 

process continues until tolerances are satisfied. 

The method we have used seems to follow the 

basic rules of research. 	We appear to have used the optical 

tools in the most suitable way. 	Initially we map the 

phenomena with our coarsest instrument, the aberration 

coefficients, in order to observe the whole potential of 

the design. 	We follow this with detailed maps of promis- 

ing regions, using more sophi.sticated optical tools that 

approximate the real system more closely than the coeffic-

ients. 

It is anticipated that by studying the type 121 

triplet system in this general way, that useful design 

principles will emerge which will help us to design other 

triplets. 



CHAPTER 2.2 A LIMITED INTERPOLATIVE STUDY OF THE 

MONOCHROMATIC TYPE 121. 

2.2.0 	Introduction.  

Ideally, given a large high speed computer, all 

that needs to be done for our interpolative syrvey is to 

include, in the final stage of the basic programme, a 

sub-routine that computes the Buchdahl coefficients and 

then arrange for this programme to generate 3rd order 

systems at regular intervals of X, 10 and P. 	However, 

the Elliott 503 computer used in this work is only large 

enough to handle the basic programme and, therefore, we 

have had to compromise and do this sort of mapping in two 

stages; the first with the basic programme or some equival-

ent programme, and the second with a programme that was 

1) 
written by P.W. Ford (1959) (12. 

	
for computing the 

Buchdahl coefficients of a given system. 

The first stage does not require much data 

preparation but the second involves punching up the 

specifications of each system individually. 	So just to 

map a monochromatic design is a large task, but the results 

seem to have justified this extensive piece of preliminary 

work. 

Instead of insisting on equal intervals for each 

of the basic parameters we gain an advantage by relaxing 

this for X/. 	This enables us to employ the left and right 

/03 
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hand solutions programme (LR/BP/121) which for each set of 

values of the parameters (10, P, L, T, R2 , R3 , R5 ) auto-

matically generates type 121 triplet systems that are corr-

ected for 3rd order coma, astigmatism and distortion at 

Aj= 0, -0.5, -1.0 and in addition it generates the 3rd 
order left and right hand solutions at 	=`X L,  and 2( = 2,71R  

and the turning point solution at 91; = Xrp• 	Also, the 

solutions are corrected for 7th order spherical. 	So now 

the problem of making a network in (X, 10, P)-space is no 

more than arranging sets of curves like those of  

	

l' 	1 
,* 

andeSph of Chapter 1.4 in a rectangular array. 	As for 10 

and P it has been found that by taking kt in steps of -1 and 

P in steps of 0.1 a sufficiently dense network is formed. 

Thus the network used here is 

= 0, -0.5, ..1.0 

by 	10 = -2, -3, -4, -5 

by P = 0.1, 0.2, .... 0.6 

at L = 0.2, T = 0.05, R 2  = R3  = R5  = 0. 

2.2.1 The Spherical Coefficients of the Monochromatic 

Type 121 System versus X, 10, P. 

2.2.1.1 

	

	Description of Results Obtained for the Spherical 

Aberration Coefficients.  

Although of necessity the spherical aberration 

coefficients of 3rd, 5th and 7th order are computed before 

the rest of the coefficients it is, for all that, the logical 



/ 0 

sequence in designing a system. 	In optimizing the - spherical 

aberration we are achieving the optimum axial image and at 

the same time improving all the off-axial images. 

In Figure 2.3 the Spherical coefficients of 3rd, 

5th and.-7th order and the predicted marginal spherical e 
Sph 

in transverse measure are plotted with respect to 9; kt and 

P. 	This figure can be interpreted as a map of the zonal 

and marginal spherical to 7th order of the type 121 triplets 

that can be constructed from a given set of glasses. 	Or, in 

other words, we are saying that in our cybernetic process, if 

we hold 111, L, T and the basic glasses (N a , V a) and (N
c
, V

c 

constant for the 3rd order 121 systems generated from.the 

four real glasses, then the spherical aberration parameters 

a- 	1, T and ESph  t 	depend on (`X, 10, P) as in Figure 24 3. 
l' 	1  

Here, then, we are observing the potential of the "axial-

monochromatic" type 121 system to 7th order in a single 

rectangular array. 

The essential quantitative features of this 

figure are: 

1. The horizontal scale of each set of rectangular axes is 

= +1 to -3 in units ofLX= 1. 

2. The quantities plotted on the vertical axes are shown 

in the left hand margin being(7-1 ,At i ,1-1  and esph • 

Their scales are shown on their corresponding vertical 

axes. 



/06 

3. The sets of rectangular axes from left to right occur 

at intervals of LSP = 0.1 from P = 0.1 to P = 0.6; the 

value of P is above each set of axes. 

4. The curves plotted on each set of axes range vertically 

from k' = -5 to 10 = 

5. All the systems have 	= 1, L = 0.2, T = 0.05, 

R = R
3 
= R

5 
= 0

' 
N = N = 1.62101 V = V = 60.18. 

2 	a 	c ' a 	c 

This diagram is an array of two dimensional LX, k'Y sect-

ions of 	10, P)-space. 

2.2.1.2 	Discussion of the Properties of the SPherical  

Aberration Coefficients. 

The behaviour of the spherical coefficients and the 

marginal spherical with respect to the basic parameters 

(X, 10, P) is very interesting. 	The graphs of this limited 

interpolative survey of Figure 2.3 present an unexpectedly 

clear and simple picture of the design potential of the 

"axial-monochromatic system". 	For each of the cwantities 

andesph  the groups of 10-curves converge to- 
G-1 ' Ak 1 '71 

wards theX-axis from above and below as P increases. 	The 

rate of convergence is greater for the curves lying beneath 

the X-axis than for those above it. 

In the region close to 10 = -3 the magnitudes of 

,t 
11l' and  tSph 

are less dependent on P than 0-1 .  Never* 

theiess.,, the turning points of the (10 = -3)-curves of all 

t 
these quantities (Cr )&l'1 ) and  ,

-Sph 
approach zero as P 

increases from P = 0.1. 	This suggests that there is a region 



.. 

Fig. 2.3 
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of (C, kt, P) that gives zero marginal spherical as well 

as nearly zero zonal spherical. 	This "optimum region" is 

close to X = -0.5, kt = -3.0, P = 0.55 and in this region 

we expect to be able to design a system with a nearly 

perfect monochromatic image on axis for all apertures up 

to about f/3.5, because,0-1,,al,"ri andeSph approach zero 

almost simultaneously. 

This result supports the idea now proposed by the  

author that this simultaneous convergence of the spherical  

aberration coefficients versus the monochromatic basic  

parameters is a characteristic property of triplets. 

(If this is so then a significant principle can be estab-

lished.) 

In varying 10 we are changing the magnitudes of 

the basic glass parameters (Nb , Mh) of the middle lens group. 

However, with the glasses chosen in this example of the type 

121, we are, in effect, only changing one basic parameter 

significantly, the parameter Vb . 	This is shown clearly in 

Table 2.1 where for N a = Nc 
= 1.6210 and Va 

= V
c 

= 60.18 

we have: 

Table 2.1  

kt N
b 

V
b 

 

-2.0 1.528 33.36 26.8 
-2.5 1.5,50 35,08 25.1 
-3.0 1.561 36.02 24.2 
-4.0 1.573 37.00 23.2 
-5.0 1,578 37.51 22.7 
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By close inspection of Figure 2.3 we estimate that.the 

optimum kt lies about midway between -2.0 and -3.0 and this 

corresponds to a basic glass with Vb  = 35.08 (at 10-2.5). 

Consequently the difference between the basic V-values of 

lens groups a and b is AV = ( Va - Vb ) = 25.1(at 10 = 

The parameter AV is used by R.E. Hopkins as a 

basic parameter in his study of a set of Cooke triplets or 

type 111 triplets with N a 
= N

c 
= 1.6200, V

a 
 = V

c 
 = 60.28, 

which are almost equal to those of the type 121. 

In this study he, in effect, varies Vb systematic... 

ally whilst keeping the other basic glass parameter N b  

nearly constant by careful glass selection. 	Thereforef-in 

this respect his study of the initial design principles of 

the type 111 is analogous to our study of the type 121 

except that, as we shall see, it is extrapolative rather than 

interpolative. 

He shows that the 5th order Buchdahl coefficient 

of spherical aberration (At 1 ) and also the comatic.coeff-

icients• of the 5th order (AA.
2' 

1,(3'  A and14
8
) "all tend to 

 7 

become :smaller for the solutions close to AV = 25 ". 	This 

is significant in the light of our more detailed study of 

4 more complex triplet type. 	However, -for the present we 

will confine our comparison between Hopkins' work and the 

type 121 to the ,spherical zoefficients,(3-1 , 4A1s  T1  and come 

back to-the other coefficlents of the oif-axial aberrations 

(4A- 2° ,143' At7 andA8
) when we look at the off-axial image. 



The property thatI4, 1  becomes smaller near 

= 25 (observed by Hopkins) is also a feature of the 

set of converging parabolas of.kt i.  versus (X, k', P) in 

Figure 2.3. However, in order to be equivalent to 

Hopkins' work it is necessary to replace (X, 	P) by 

the Hopkins' parameters (K, 6V, P). 	It can be shown that 

these sets of parameters are equivalent "basic-parameters" 

as far as the broad features of the spherical aberration, 

coefficients of 3rd, 5th and 7th order of both this work 

and that of Hopkins are concerned. 	Firstly, in both 

studies the P-parameters are measures of the Petzval blur 

and, therefore, they are equivalent. 	Also, we have already 

shown that 10 can be replaced by AV and, so, we are only 

left with Hopkins' K and our %.  K can be shown 

to be the simple function °a; it is K = ( 1)a'Yoa )  / (1  - X)  

where Yoa = 1 " 
	

Thus the main effect of replacing A; by K 

will be to produce the mirror image of the parabolas of the 

type 121. 	They will be modified only slightly in shape 

by the factor O a  because the power Oa  is shown by Cruickshank 

to be a linear function oor.  Furthermore, the comparison 

of these two studies of the type 111 and the type 121 is 

credible because the "basic glasses" are almost identical. 

Hopkins has only computed the •5th order coefficients 

of specific *olutions of type 111 triplets and, consequently, 

he has not observed that the 5th order spherical aberration 

has a parabolic form; nevertheless, this has been observed 



for the type 111 by Cruickshank (28) 
	

However, Hopkins 

notices that the 3rd order spherical parabolas are raised 

or lowered by changing either P or P. 	These facts, when  

considered in conjunction with his observation that he finds  

At1 smaller near AV = 25 with P a maximum, supports our  

E8riclusion that he is observing some of the facets of  

convergent behaviour similar to that of Figure 2.3. 

Perhaps the most interesting feature of the results 

of the "limited interpolative survey" is that the parabolas 

of the three orders of spherical aberration behave in such 

a regular way converging, it seems, to a single optimum 

solution for the monochromatic "axial-system" of the type 

121. 	Also, in the light of Hopkins' work this seems to 

occur with type 111 triplets and, we conjecture, possibly 

with more complex triplets. 	However, although we have 

found evidence indicating that the simple type 111 triplet 

has similar behaviour to the type 121, this "optimum region" 

is probably not accessible to it, because NV can only assume 

a finite number of discrete Values (the type 111 basic 

triplet is constructed from real basic-glasses). 	But we  

avoid this glass-restriction when we create a basic glass  

from a cemented pair of lenses, hence the type 121 has  

exciting potential. 

Thus it appears at this early stage that the 

"basic-triplet" and its parameters the "basic-parameters" 
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are fundamental quantities in the design-process; 	So much 

so, that as a result of this work the author feels that  

design principles based on the basic-parameters such as  

(%, P) or  (K, 61T, P) apply to triplet systems in• 

general ; 	Further evidence to support this idea will be 

produced in appropriate places as they arise in this thesis. 

2 ; 2 ; 2 	The Petzval Coefficient and the Separations versus  

();,10, P). 

2 ; 2 ; 2 ; 0 	Introduction ;  

Before looking at the other higher order coeff-

icients there are two types of quantities that we will 

consider now because their general behaviour bears on the 

later work ; 	The first is the remaining 3rd order coeff- 

icient that is not controlled during the present design 

process, namely, the Petzval coefficient 4 . 	Secondl y , 

we want to consider the behaviour of the separations of 

the lens groups of the triplet which are the quantities 

d 3 
and d

6 
of the type 121 (ref ;  Figure 1 ; 1 ; 2), 	It is also 

appropriate that we choose to discuss these quantities 

immediately after the spherical coefficients because like 

the spherical coefficients (Cr 1 „Ak 1 ,7- 1 ) the quantities 

0-4' d 3  and d 6 
are part of the output of the programme 

LR/BP/121, whereas the remaining higher order coefficients 

that are discussed after this section are obtained using 

the coefficient programme of P.W. Ford 
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We look upon these quantities 0 -4'  d 3  and d6 
as 

another set of performance parameters generated from the 
4 

basic-parameters (X, 10, P) and so we plot them in the 

same (X, kl, P)-network as before (see Figure 2.4 and 2.5). 

2.2.2.1 	The Petzval Coefficient versus (X, 10, P), 

The Petzval coefficient versus-curve (Figure 2.4) 

may be approximated by a quadratic function of X and so once 

more we find that we have groups of parabolas converging 

towards each other as P increases. 	Only this time the 

order of the curves is inverted, the bottom curve is at 

kt = -2 and the top at k 1  = -5. 	However, although the 

parabolas are converging they are, at the same time s  rising 

to higher values, and so, as is to be expected, the net 

effect of increasing P is to increase 6r 4' But balancing 

the apparent ill-effect of large G---4  we see that as P approaches 

the region of optimum spherical aberration of the monochromatic 

system, between P = 0.5 and P = 0.6, (1---  becomes almost 

•

4 

independent of changes in Xand 10. 	Indeed, it is clear 

that little is to be gained by attempting to improve the 

Petzval sum with the design parameters (j 9  k', P). 
	So, 

at this stage, we will accept the<r":1  associated with the 

optimum spherical region and make no attempt to improve 

it at the expense of the zonal correction. 
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2.2.2.2. 	The Separations versus (X, kt, P). 

In Figure 2.5 the separations d 3  and d6  are 

plotted on the same axes. On any pair of rectangular 

axes in Figure 2.6 the left hand group of curves shows 

the variation of d 3 versus and 10 and the right hand 

group is that of d
6 
 versus X and 10„ 	The outermost 

curves of the two groups are kt = -5 and the innermost 

curves are kt = -2. 

As P increases there is only a slight tendency 

for the groups of (d 3 , d 6 )-curves to converge towards 

each other *  but they do shift as a whole towards X= 0. 

Thus the sum of the separations is almost unchanged for 

all values of Xand P. 	This is equivalent to saying that 

the length of the system is independent of Xand P. 

However *  both d 3 
and d

6 
increase as 10 increases and, there-

fore, it follows that the length of the system increases 

as kt (or AV) increases. 

We note for future reference that the intersect-
, 

ion points of the corresponding pairs of (d 3, d6
)-curves 

shift towards X= 0 as P increases from P = 0,1, 	In  

particular *  the intersection point of the pair of (d 3 , d6 )- 

curves at 10 = -3 approaches 1,/,'= -0,5 as P approaches 

P = 0,6, 	So the intersection point of the k' = -3 curves 

possibly passes through the region of "optimum spherical 

aberration" which we estimate to be near the point (2C= -0,5 *  

10 = -3 2  P = 0.55). 	Thus these systems may have equal 



air spaces, d 3  = d6 .. 

Cruickshank
(2.1) 

observes for the type 111 

triplets that "an increase in P enlarges the front air 

space, particularly for large negative values of X', and 

diminishes the back air space." 	This observation is 

consistent with the behaviour of groups of curves shifting 

towards X= 0 as P increases, just as we have in Figure 2.5 

for the separations d 3  and d6  of the type 121. 

R.E. Hopkins
(4.3) 

says in his discussion of the 

type 111 triplet: "This simple triplet objective helps us 

to understand mor complicated objectives. 	For example, 

if a wide angle objective is needed in a triplet, one can 

see that it is necessary to use a small AV. 	This keeps 

— 
the lens short and Hn becomes larger for any given value 

of P." 

'41 is the estimated image height to 5th order 

relative to the Gaussian image height, at which the 

sagittal and tangential fields cross. 	This image height 

Hn 
is obtained from the Buchdahl coefficients G" tk 	and 

3' 	11 

At10 being given by the equation 

, 

n 	IL =41L11 -  

(The equation quoted in R.E. Hopkinst paper
(4.3) 

contains 

two misprints.) 

It is not possible to form good images beyond the inter-

section point of the tangential and sagittal fields. 

//4 
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However, we also have observed that the length 

of the type 121 triplet (d 3  + d6  + constant) decreases as  

kt (or 8V) decreases, and so the concept of the equivalence  

of the basic parameters kt and QV and the fundamental nature 

of these basic parameters receives further support. 

Nevertheless, for the moment, we will not discuss whether a 

short system or mall AV will improve the field until we 

study the astigmatic aberration coefficients. 

2.2.3 	The 5th and 7th Order Comatic and Astigmatic 

Coefficients versus ( .X. kt. P).  

2.2.3.0 	Introduction. 

The first part of the "limited interpolative study" 

of the type 121 has been concerned mainly with the behaviour 

of the marginal spherical aberration and the spherical 

aberration coefficients, and, consequently, is a study of 

the systemts axial potential. 	The point to be dealt with 

now in the second part of the interpolative study is con-

cerned with mapping all the remaining aberration coefficients 

of the 5th and 7th order and, therefore, is a study of the 

systemts"off-axial" potential. 

These remaining aberration coefficients of the 5th 

and 7th order of the system are shown in Figures 2.6 to 2.17 

in which they are arranged according to their aberration 

type (after Buchdahl) and therefore neither the order of the 

aberrations nor their numerical sequence is adhered to. 
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They are arranged in three principal groups: Figures 

2.6 to 2.10 are the combined 5th and 7th order comatic 

or c-type coefficients, Figures 2.11 and 2.15 are the 

combined 5th and 7th order or S-type coefficients and 

Figures 2.16 to 2.17 are the 5th and 7th order coeffic. 

ients of distortion. 

The nomenclature for the aberration types has 

been proposed by Buchdahl
(13.3) • 	He defines two 

aberration types that are based on the earlier work of 

Steward and calls them the c and S types. 	This nomen- 

clature in effect classifies the coefficients according 

to the type of deformation they produce in the point 

image, denoting whether it is either symmetrical (S-type) 

or asymmetrical (c-type). 	(Some of the practical aspects 

of this nomenclature are discussed and illustrated very 

clearly in an example by Cruickshank and Hills
(2.4) 

In particular, they show graphically how the different 

aberration types of 3rd, 5th and 7th order contribute to 

the blur patch of the point image.) 

Although the spherical aberration and Petzval 

sum may also be classified (24) as S-type aberrations, 

and the distortion as a c-type aberration, we prefer, 

however, in this work, to call them by their usual names 

and treat them as separate quantities from the c and S 

types as we have in Figures 2.3 and 2.4. 	Thus with this 
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nomenclature, the five familiar aberration types of 

spherical, coma, astigmatism, Petzval and distortion are 

retained when we study aberrations beyond the 3rd order. 

This simplifies the cybernetic process of design, because, 

each "basic parameter" can still be associated with a 

single type of aberration when we include the higher 

orders. 	Thus each coefficient is associated with one of 

the familiar defects of the point image of the aberrated 

system. 

However, not only can the comatic and astigmatic 

coefficients be divided into 3rd, 5th and 7th orders, but 

also each order can be separated into linear, cubic and 

quintic forms. 	This is illustrated in Table 2.1.1 where 

the components ("4) C t  and et of the total aberration of a 

monochromatic ray (C e, Hn ) are shown resolved into 

these "minor forms". 	Thus the comatic types are associated 

with odd powers of H and even powers of C; the reverse occurs 

with the astigmatic types. 

It is evident that the linear forms of coma are 
3 

functions of R, the cubic forms are functions of H -  and the 
_5 

quintic forms are functions of H • 	On the other hand, with 

the astigmatic types, the linear, cubic and quintic forms 

are associated with es (

3 

and C
5 
respectively. 

We have used the grouping of the coefficients of 

the Table 2.1 when plotting them in the (X, 10, P)-network. 



Thus each of the Figures 2.6 to 2.15 depicts the 

coefficients of a particular "minor form" of the astigmatic 

and comatic aberrations. 	For example, in Figure 2.6 the 

coefficients that contribute the linear 5th order coma are 

plotted in.the (X, kt, P)-network. 	Similarly , in sub- 

sequent figures, are the coefficients of cubic 5th order 

coma (Figure 2.7), the coefficients of linear 7th order 

coma (Figure 2.8) and so on. 

The remaining Figures, 2.16 and 2.17, show the 

5th order distortion coefficient (41, 12 ) and the 7th order 

distortion coefficient ( 7/20 ) versus (X, 	P). 

2.2.3.1 	The Comatic Coefficients versus X, kt, P. 

The pattern exhibited by the spherical coeffic-

ients, the spherical aberration, the Petzval coefficient 

and the separations of the type 121, persists with remain-

ing aberration coefficients. 	In all cases the curves of 

each group converge towards each other as P increases 

(see Figures 2.6 to 2.17). 	However, the most interesting 

feature is that all the comatic coefficients, Figures 2.6 

to 2.10, approach zero simultaneously near 	= -0.5, 	= 3, 

P = 0.55. 	Therefore, the'optimum
* region" is expected 

to give a system with almost equal air spaces (see section 

2.2.2.2) that has both the zonal spherical and the coma 

#early zero for all orders up to and including the 7th 

order. 	Of course, this is only so if the system i-s used 

* The contributions of a-  AA and 1-  almost zero. 1° 	1 	1 
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in monochromatic light of the wavelength in which it is 

designed in this case Ad. 

2.2.3.2 	The Astigmatic (S-type) Coefficients versus  

X , kt, P. 

The behaviour of the astigmatic coefficients is 

different from that of the comatic coefficients, because, 

although all the curves of each group of each astigmatic. 

coefficient converge towards each other, they do not 

necessarily converge to zero. 	For example, in Figure 2.11, 

the .U10 -groupslowly approaches zero as P increases so that 

near the "optimum region"  (X= -0.5, kt = -3.0, P = 0.55), 

Akio  tends to zero, but, the 44 li -curves, although converg- 

ing, approach a value between A il  = -0.4 and -0.5. 	(It 

has been shown that a value of 11 11 = 0.5 occurs with type 

111 triplets, Cruickshank
(2.8)• 	Thus in the optimum region 

we may expect a negative residual of linear 5th order  

astigmatism  which from the point of view of balancing 
_2 

aberrations, is useful in offsetting the positive (0-3  +471 ) H 

sagittal curvature of field) 

Further inspection and comparison of the other 

astigmatic coefficients shows that the optimum region of  

the spherical and the comatic coefficients is also the  

optimum region of the astigmatic coefficients. 	Clearly in 

the "optimum region" the astigmatic coefficients are mini-

mized since all except Ail  approach zero simultaneously in 
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this region; nowhere else it seems can this be improved 

on in ( 26, 10, P)-space, 

2.2.3.3 	Discussion and Comparison of the General  

Properties of the Aberration Coefficients of the 

Type 121 Triplet with those of other types of  

System. 

R.E. Hopkins (4.3) observed that the comatic 

coefficientsra 2 
/14-3' AA-7 and V-8 of the type 111 triplet s  

which has N
a 

= N
c 

and V
a 

= V
c
, "become smaller close to 

AV = 25 at large P." 	Clearly this also applies to the 

behaviour of the equivalent type 121 triplet (see Figures 

2.6, 2.7) where 10 = 	is equivalent to AV = 24.2, see 

section 2.2.1.2. 

However, it seems that he has only observed part 

of the complete picture that we see now with the type 121 

triplet. 	For it is evident from the complete set of 

comatic coefficients (Figures 2.6 to 2.10) that not only 

are the 5th order comatic coefficients 2'  A 3  4 7  4. and/&8  
' 	'  

near zero but, indeed, all the comatic coefficients of both 

5th and 7th order converge nearly to zero in the "optimum 

region". 	In view of this, and the agreement shown to 

exist between some of the spherical coefficients  

and the comatic coefficients (AA
2'

At
3'7' 

tt
8 ) of these 

systems, we can suspect, therefore, that all the higher 

order comatic coefficients of the type 111 converge in a 

/..?o 
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similar way to those of the type 121. 

The 5th order estimation of 

2 

n = [2a-3Nit( 11 - itt 10 ) .1 / 0.364 

(see section 2.2.2.2), used as a measure of the off-axial 

potential of a triplet, seems interesting when we examine 

all the astigmatic coefficients of 5th and 7th order of 

the type 121. 	We see by inspection of Figures 2.11 to 

2.15 that most of the astigmatic coefficients of the type 

121, like its comatic coefficients, tend to a minimum that 

is near zero in the "optimum region". 	The exceptions are 

A'A. 11' possibly  tt10*  and of course the 3rd order coefficient_ 

which is prescribed to be -0.-- /3 (recall that 0-  increases 4 	4 

with P). 	So in the "optimum region" the 5th order U n  

measures the only astigmatic quantities that become numeric-

ally larger as the basic parameter P is increased. 	They are 

the coefficients of linear 3rd order astigmatism (G- ) and 
3 

linear 5th order astigmatism ('lo  and AA  Therefore 11" 

5th order 11n 
would appear, in view of this, to be a valid 

quantity for estimating the potential field of a type 121 

system in the preliminary design stage. However, consider-  
(4., 13.5) 

ing the quality of predictions of 5th order coefficients 

the 5th order Nn may be expected to give reasonable accuracy 

only if the design is for moderate fields which are smaller 

* A
10 

passes through zero near P = 0.5. 	Beyond P = 0.5, 
kciobecomes increasingly negative like 1 • 



than, at most, 20 0  semifield. 

Indeed, Cruickshank (218) 
has shown that the 5th 

order prediction of Rn  limits the accurate estimation of 

the field of a type 111 triplet to a maximum semi-field 
— 

angle of about 10° . 	Actually H
n to 7th order is given 

by the quartic equation 

4 

( T18 - T19 )11 + (AA- 10 - 	11 )H - 2Q-3  = 0 

t* 
where 	= tan V-  and R = R/0.364. 

,n 

This equation is reduced to the 5th order expression of 
4 

Hn by neglecting the R term. 

Cruickshank has shown for the type 111 triplet 

that when near V . = 10 0 the neglect of T18  and 119 causes 

Rn to be overestimated by only 10% but this can increase 

to between 50 and 100% near 11 . = 20° ; at this ange the H 
2 

term equals the ri term. 	Consequently, the 5th order Tin  

must be used with care being evidently applicable only to 

systems of moderate field. 

However, if Fin  is found to be sufficient for 

predicting the maximum useful field of a triplet in the 

"optimum region" then, it seems to imply that (r ht-  and 3' 10 

are the only significant astigmatic coefficients in 11 

the "optimum region". 	Therefore, it seems reasonable to 

assume since R.E. Hopkins finds that N n  is satisfactory 

for predicting the field of his type 111 triplets (with N a  = 

Nc ,..;V a  = Vc ), that the astigmatic coefficients of these 

+:2)1/441  cf,r  

/22 
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triplets converge with respect to (K, Av, p) in the same 

way that those of the type 121 (with N a  = Nc , Va  = Vc ) 

converge with respect to (X, k', P). 

Although /A-11  increases while the other astigmatic 

coefficients decrease, it is clear that some of these other 

astigmatic coefficients have significant values in the 

"optimum region". 	Of courseAk 4'
4A-

5 
andAA

6' the coefficients 

of cubic astigmatism, and'r4'5 and76' 
the coefficients of 

quintic astigmatism,have the largest values and therefore 

seem to rival and, perhaps, even surpass the significance of, 

saytAA11' 	However, for example, with apertures near f/2.5 -  

and semi-fields of about V = 45
0 
 this is not so, because, 

the relative significance of these coefficients can only be 

judged by taking other factors into account. 	These factors 

are, in particular, the aperture, field and either the focal 

length or the overall magnification of the system, (i.e. 

scale of the system). 

For example, with the type 121, typical values 

°f/411'4k4t215 and A'
6  in the "Optimum region" are '4 11 = 0 ' 4,  

kt4  = 8,4k 5  = 4 and/46  = 5. 	For the purpose of demonstrat- 

ing thatA_ 11 
= 0,4 is the most ,gignificant quantity in this 

example it is sufficient to compare the maximum contribut-

ions thatA11 and (A5'
AA6)  make to the Z-component of the 

. 1  
aberration residual. 	Taking R = 1, (V = 45

0 ) andr= 0.2 

(f/2.5) we have the values shown in Table 2.2,1 
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TABLE 2.2.1  

f = 0.2, g = 1.0, 	fl = 1.0 

Maximum contribution 
due to p E iz 

Arit  
11 

= .- 0.4 • 
_.4  

-'611e H  = 	-0.4 x 0.2 = 	-0.8 

= 8 , it = 5 (A4
4 

+ 6.0- 
q 	2  ye - r--1 	= 	13 x 8, x 	10 -3 - t 	• 

= 0.104 

Clearly the /t11  coefficient is eight times more significant 

in this case where f = 0.2, g = 1. 	(We are not interested 

in whether a good image will actually be formed at 11 = 1 

in this example. 	From this it seems that /bt 11 is the 

quantity that limits the field of a triplet of moderate 

focal length at large field angles (45 0  semi-field). 

It is obvious that with a monochromatic type 121 

triplet design, nothing much can be done about the magnitude 

of //0-11 with the degrees of freedom available because it 

only varies slowly with either the basic parameters ("X, kt, P) 

or their equivalent the basic parameters (K, AV, P) (see 

Figure 2.11). 	We also notice that nothing much can be done 

about the magnitudes of/k
4' 

 1A
5 

and itt6  

Of course the dominance of/q11 
(assuming /

18 
and 

9 are mall) only applies to short focal length systems 
1 

of fairly large aperture and field that have great disparity 

between ( and R as we have shown with= 0,2 and H = 1.0. 
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Whereas, if we want a system with p and R nearly equal, 
say e  = 0.1 (f/5; and i--I = 0.1 (V = 5.8 ° ) thenAt il  "loses 

its significance (Table 2.2.2). 

TABLE 2.2.2  

ft =1,0 
01-4 	14  

Maximum contribution 
due to  

p = 
, 

0.1 e  = 0.2 
A 

11 
= 	-0.4 --(f 

Airrli  = 4  x 8 x 10 -6  

AA4 =  
8

'  
tt 6 = 1 • 3 x 10"  1.04 x 10

-3 

However, this change in significance is of no practical 

importance until the image is magnified either through 

auxiliary optics or by increasing the focal length of the 

system. 	So if the system has fi = r  = 0.1 and ft = 100mm 

then/a
11 
 contributes

z = 4 x 10 -4  mm and (A4 4 ' 6 ) con- 

,t 
tributeEl

z 
= 1 x 10 -2  Therefore, the significance of the 

astigmatic coefficients is reversed with monochromatic 

triplet systems of moderate aperture and field that have 

long focal lengths (100mm or more). 	In this examplejt
4' 

A‘ and 4' contribute the significant part of the astigmat- 

ism. 	Thus systems limited by/0-41 ,a 5  andA6  are fore: example 

projection lenses, telephoto lenses and telescope objectives. 

Although the dominant astigmatic coefficients of 

systems with small fields, moderate apertures and either 

long focal lengths or short focal lengths and auxiliary 

magnification areA 4 ,44 5  and/t4, 6 , nevertheless it seems that 
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the maximum possible field is predicted by Ti
n and therefore 

is always determined by(T3,4411 andA4-10. 	So we have the 

general rule:Cr 3'
AA,

11 and AA-10 predict the limit of the field 

andAt
41 4t 5 

andhl
6 determine the quality of the image at high 

magnification. 	We can look upon this as a general rule 

because this sort of situation appears to have been encountered 

by Cruickshank and Hills (1960) when they designed a 

"telephoto system of very long focal length" (1500mm) and with 

a small rand g, 

(e = 0.071 (f/7), H = 0.1314 (V = 7.5 ° )). 

The pertinent coefficients of their final design stage IV are 

examined in Table 2.3, 

TABLE 2.3  

Stage IV Coefficients of Telephoto Design. 

la 4  = .23.03 
A 5  = - 8.38 

= -15.11 

A/1 1° = -13 ' 30  

/A ll = 	3.64 e  = 0,071 fi 	0.1314 

Maximum contribution 
due to 

1 
(
::z 	

(ft 	= 1.0) 
t ez 	( ft = 1500mm) 

it( 	11 

4 
itt 	fri 	-. 	-8 11 x 10 -5  ..12 x 10 -2  

.6( 5' A6  
, 	z 

k445+4t6 )U. 171 5 x 10 -5  7.5 x 10
-3 
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Thus N = 	-h110 i2 = 
0.148 and therefore 

3 	11 
- 

the predicted maximum semi-field angle V,  = arctan R = 8.5° . 

In this final stage of the telephoto design the 

contributions ofAU 11 and of (4t
5'
A

6) 
 are balanced. 

However, the interesting point here is that the predicted 

semi-field given by the 5th order 1-1 is 8.5
0 which compares 

fairly well with the value of 7.5
0  given by the designers. 

However, when H is computed to 7th order the predicted semi-

field is 7 04O , 
	remarkable agreement. 

When we examine the coefficients of this telephoto 

of Cruickshank and Hills, in the light of our experience 

with the limited interpolative study of the type 121, we 

observe a most interesting result which has apparently 

gone unnoticed. 	We find great similarity in the broad  

behaviour of the convergence of the coefficients of the  

four final stages quoted by the designers and that of  

triplets. 	(We have re-computed the 3rd, 5th and 7th order 

coefficients of the telephoto in unit focal length for the 

four design stages, see Table 2.4. 	In the published 

results
(2.4)  the focal length varies slightly between 

stages and also only the 3rd and 5th orders are given.) 

In particular we note that in going from stage 1 

to stage 4 they have reducedA 4 ,A4 5  and-46 , but they have 

not been able to a1terA10 
and11 appreciably. Also, in 

going from stage 1 to stage 4 the coefficients of both the 

linear astigmatism (-) and the Petzval sum (0-4 ) increase, 3 

whereas, allthe other 3rd order and 5th order coefficients 

decrease. 



Stage 1. Stage 2. Stage 3 Stage it 

-0.20767 0.13030 0.26212 0. 0R6 19 1 

-0.019716 0.11597 -0.021919 0.0558 43 

0.013924 0.058489 0.080015 0.10128 

-0.040672 -0.040665 -0.055664 -0.010400 

2.1024 2.1166 1.8192 1.7101 

-33.163 -27.180 -12.4)14 -13.153 

-27.439 -21.287 -16.594 -12.889 

-18.288 -14.190 -11.081 - 8.5970 

-53.558 -46.619 -19.444 -18.894 

-19.502 -17.098 - 7.0100 - 6.8728 

-32.973 -30.208 -13.648 -12.393 

-10.020 - 6.4995 - 5.0588 - 4.5813 

- 8.0446 - 6.0664 - 4.5227 - 4.2517 

- 1.8727 - 1.0386 -43.192 - 0.55896 

-12.223 -10.821 -13.288 -12.448 

- 4.0766 - 3.8827 - 3.7467 - 3.4047 

10.261 10.398 8.4776 7.3967 

-556.76 -457.76 -55.994 -102.68 

-682.84 -576.75 -256.78 -194.27 

-512.61 -431.46 -190.41 -144.57 

-1239.9 -1097.4 -448.20 -388.69 

-454.07 -399.56 -137.38 -125.05 

-1227.1 -1121.7 -493.99 -410.60 

-979.94 -870.19 -477.24 -412.08 

-848.44 _761.59 -411.72 -3-60.50 

-362.39 -323.65 -171.05 -151.28 

-48.885 -45.245 - 23.347 - 21.394 

-596.32 -526.58 -268.54 -263.82 

-403.86 -363.60 -237.59 -236.08 

-103.59 -92.9L4 - 50.351 - 50.074 

_211.31 -192.38 -130.80 -131.94 

-126.47 -95.062 - 44.638 - 47.804 

-103.53 -85.920 - 44.533 - 47.31 1  

-12.201 -8.9326 1.2868 -  1.9156 

-119.29 -107.40 -124.36 -113.28 

-24.041 -23.352 - 21.920 - 19.371 

61.747 62.925 51.422 43.179 

Table 2.4. 



Therefore, since 0--4  increases while most of the 

other coefficients approach a minimum, the designers are, 

in effect, optimizing the system by increasing a basic 

parameter (P), which is like the basic parameter (P) of a 

triplet. 	Clearly when we look at their results from this 

point of view, the pattern of convergence of the coeffic-

ients of 3rd and 5th order, quoted by the designers of this 

telephoto system, is very like the convergence that we have 

found with the type 121 and type 111 triplets. 	Thus, if 

we consider their stages 1 and 4 to be the monochromatic 

systems occurring at two values of a "basic-parameter" P, 

then the lines joining the stages in coefficient-space, 

approximate the contours of the coefficients versus P. 

This is so because the other basic-parameters are constant, 

or nearly so in these final stages of the telephoto. 	We 

see by inspection of Table 2.4 that the contours so formed 

will have the same trend as those of the monochromatic 

type 121, that is, most of the 3rd and 5th order coeffic-

ients approach zero as P increases. 

The similarity between the convergence of the 

5th order coefficients of the telephoto and the triplets, 

is found to extend also to the telephotots 7th order 

coefficients (see Table 2.4). 	Therefore, even with this  

telephsasr...s.t.e114-,. we find that the spherical coefficients  

of the first three orders tend to a minimum in the "optimum 

region". 

126 
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Cruickshank and Hills have used an "extrapolative 

technique" that is based on the differential coefficients 

of the Buchdahl-aberration-coefficients formed with respect 

to the "fundamental-parameters" (curvatures, thicknesses, 

etc.). 	However, in spite of it being an extrapolative 

technique, and, even though we only have the results of 

four design changes, the simultaneous convergence of most 

of the aberration coefficients with respect to the "basic 

parameter" P is evident. 	Therefore, the property of con- 

vergence of the spherical aberration coefficients would  

appear to offer a very simple way of finding the optimum 

system. 

In view of the evidence presented above, the 

author believes that a design process based on finding the 

simultaneous minima of the spherical aberration coefficients, 

of 3rd, 5th and 7th orders offers the most systematic way of 

locating the optimum system. 	(It may well be the only 

way of doing this -  systematically.) 	Indeed, this would 

appear to offer a new approach from which, it seems, a 

simple design process for optimizing optical systems auto-

matically could be developed. 



CHAPTER 2.3 THE POTENTIAL OF THE MONOCHROMATIC TYPE 121. 

2.3.1 	The Field of the Type 121 versus (9C, k', P). 

We assume that 5th order 1-1n is sufficiently 

accurate for estimating the potential of small fields and 

use it now to examine the potential field of the type 121. 

In Figure 2.18.1 the 5th order 11 and the corres-

ponding semi-field angle V = e° are plotted against P, kt 

and AV at L = 0.2, T = 0.05 for 2(2= 0, -0.5 and -1.0. 

The full lines show 
-171.11 

at X= -0.5, the broken lines H at 

	

26= 0 and the dotted lines 171n 
at X= -1.0. 	This diagram 

depicts, in two dimensions, the variation of the field of 

the monochromatic type 121 triplet throughout the region 

of (X, 10, P)-space or (X , AV, P)-space that is expected 

to produce any real system worthy of consideration. 

However, Figure 2.18.1 is of interest only because it shows 

thetrendincin ;valuesofH.greater than 1 are extremely 

inaccurate. (2.8) 

As P increases the field is augmented whereas 

when either kt or AV increases the field is diminished. 

Furthermore, since promising systems, in general s  occur in 

the range X = 0 to -1.0 then it is clear from Figure 2.18.1 

that 	can have little effect on the field. 	For example, 

at (10 = -3, P = 0.5) in going from; = 0 to -1.0 the semi- 

field decreases from 30 0  to 25.7 0 , a variation of only 4.3 0 . 

This is typical of the effect of 	on the field in the 

/SO 



MONOCHROMATIC TYPE 121 
Predicted Field 

----X = 0  X = -0-5 at T 0-05 ..... X = -1.0 	.  

e°  Fin 
47 3- 

42  
- 

05 
0.4 = P 36  
0•3 28 	- 

10 

0 
-5 -1 -3 -2 	k 
2267 23.18 24•16 26 . 82 AV 

Fig. 2.18.1 



optimum region; it is, at most, Only of the order of a 

few degrees. 

The greatest value of H
n 

in Figure 2.18.1 is 

about 3.0; it occurs near 10 = -4, P = 0.5 and X= 0. 

Just beyond this point H
n has imaginary values only and 

therefore the semi-field of the type 121 cannot exceed 

470 . 	Fields of this magnitude occur at some distance 

from the optimum region and so the aberrations must 

necessarily be very large and therefore such large fields 

cannot be considered feasible. 

It is evident that the field is not critically 

dependent on any of the "monochromatic parameters" (X, k', 
may 

P) and so we A choose,systems anywhere in a small region 

centred on k" = -3, P = 0.5, 	= -0.5 without causing more 

than a few degrees variation. 	Thus there is sufficient 

freedom for optimizing the other aberrations in the optimum 

region. 

In Figure 2.18.2 then7th order Un" (see section 

2.2.3.3)is plotted versus (%, k', P)• 	This shows that 

5th order Rn over-estimates the semi-field, for example, at 

k' = -3, P = 0.5 and X.- -0.5 by 50%; the range of values 

given by 7th order 171'n 
for V is more likel:those obtained 

for practical triplet systems. 	Also,it is evident that 

in the "optimum region" the semi-field angle is still not 

critically dependent on the basic parameters (%, 10, P) 

when we include the 7th order terms. 

13/ 
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2.3.2 	The Five Types of Aberration Plotted in Three  

Principal Sections of (X, kt, P)-Space. 

Now let us compare the five types of aberrations 

and the field as X, 10 and P converge on the optimum 

region. 	In Figures 2.19, 2.20 and 2.21 several performance 

parameters of the monochromatic type 121 are plotted in the 

three principal sections of ( 1,V, kt, P)-space which inter-

sect the optimum region at the point with X= -0.5, kt = -3 

and P = 0.5, L = 0.2 and T = 0.05. 

In these diagrams the behaviour of the aberrat- 
tal,,,tert 

* — ions to 7th order, the,maximum semi-field, (H n
) to 5th 

order and the symmetry of the separations (R 8  = d 3 	d6 ) 

are compared. 	All these performance parameters have been 

reduced to the same order of magnitude, for the sake of 

clarity, by either multiplying or dividing thy powers of 

ten as necessary. 	Also, in the interest of clarity, the 

scale of some quantities is varied from one diagram to 

another, for example the scales of R8  in Figure 2.19 and 

2 4 20 differ by a power of ten. 

The limited interpolative study has shown that 

the coefficients of each type of aberration have a common 

behaviour. 	Consequently at this stage it is sufficient 

to plot one coefficient of each type in order to assess 

the potential of'r-thepe:121:itriplet. -7 Thus We'-haVe ,... 

* 7th order 1-1n 	
be 30% less than 5th order -171 . 
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The Figure 2.19 shows that the following quantit- 

ies s  

1. the spherical aberration etsph = 0 -1 C 3  „u ie5 fil e% 

(e = 0.2), 

2. the spherical coefficients 0-1 ,A-1s  ql s  

3, the comatic coefficients A 2 , ir2 , 

4. the parameter R 8  = (d 3 	d8 ) which is a measure of 

symmetry, 

passes through zero in a small range of kt 	k 

at (2G= -0.5, P = 0.5, L = 0.02, T = 0.05). 
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In this region residuals of zonal spherical and coma of 

the 3rd, 5th and 7th orders are very small and therefore 

the type 121 made in this region can be expected to be 

well corrected for the zonal spherical and coma up to an 

aperture of f/3.5 at least. 

2.3.3 	The Type 121 Versus Type 1114 

The best solution lies near 10 -2.7. 	At this 

point we will expect its semi-field to be less than about
* 

. 
200, its Petzval coefficient to be about 0.2 and its air-

spaces to be symmetrical. 	If a larger field is required 

it can only be achieved by decreasing 10 or QV (Figure 2.19), 

or by increasing P (Figure 2.20) but unfortunately both  

changes increase the Petzval sum, 	Since P has the most 

serious effect on the Petzval sum then decreasing k' appears 

to be the most attractive way of improving the field but this 

improvement can only be achieved by introducing large negat-

ive contributions from the spherical coefficients; gi is the 

worst offender. 	This means that larger fields are only 

possible at very mall apertures. 	For example, a semi- 

field of 20
o (using 7th order ri) is associated with 

1 = -0.8 (see Figure 2.19), and if we set the zonal 

tolerance LA' 	at 	0.005 	as LA' = 0-1 e 2  then the 
max 

system with a 20 0  semi-field can only be used at apertures 

* Figure 2.19 gives 5th order values V = ■9 0  24
0 

 
S0  18°. Figure 2.18.2 gives 7th order value V= 

** 0.005 for f' = 1 if fl = 100mm then tolerance is 1: 0.5mm, 
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of less than f/6. 	This aperture at semi-fields of about 

20 0  has been predicted for the type 111. 	Therefore it is 

not worthwhile to aim for a large field with the type 121 

when the equivalent performance can be achieved with the 

simpler system. 

2.3.4 	The Uniqueness of Type 121. 

The uniqueness of the type 121 is demonstrated 

by Figure 2.19. 	All the curves of this figure are con- 

tinuous functions of the basic parameters 10 or AV and 

therefore we are able to attain any point on them. 	On 

the other hand the equivalent graphs of the type 111 are 

discontinuous functions of AV and therefore consist of 

sets of points determined by the real glasses. 

Figure 2.19 shows that the minimum of the spher-

ical and the coma is very sharply defined, consequently it 

is very unlikely that this optimum region can be achieved 

with real glasses. 	It seems far more probable that the 

simple triplets of real glasses will take values of AV 

only somewhere near the "optimum region" at most. 	Thus  

the simple type 111 triplet systems may have slightly 

larger fields than the type 121 but their apertures will 

be limited by the primary spherical aberration (since G -i  

is the most sensitive to LW of U ' itA 	1-1 ). 

Clearly if we accept the results of Figures2.18 

to 2.21 then there is no region of ( 10, P)-space out-

side the "optimum region" that exhibits a real improvement 
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of the field of the type 121 over that of the type 111 

triplet without a great loss of image quality. 	Thus 

if we seek a wide field at small apertures with a triplet 

system, then we will not look beyond the simple construct-

ion of the type 111. 	On the other hand it is now clear  

that if we want a high state of correction of zonal  

spherical and coma at a large aperture in conjunction 

with a moderate field then we will seek solutions in the  

optimum region of the type 121. 

Figures 2.19, 2.20 and 2.21 confirm the unique-

ness of the optimum region that was inferred from the 

interpolative study of the coefficients. 	Moreover, Figures 

2.18.1, 2.18.2 and 2.19 also demonstrate the uniqueness of 

the type 121 in that the curves ofthese diagrams are con-

tinuous functions of the basic glass parameter Al. 

The rest of this thesis is devoted mainly to 

developing the best type 121 from the optimum region with 

the emphasis on controlling the zonal spherical aberration 

between f/3.5 and f/2.5. 

2.3.5 	Discussion of Design Principles Emerging from 

Section 2. 

The interpolative method of optical design that 

has been developed in this section'has•given - us a clearer 

and simpler model of the design process. From this has 

arisen the concept of the 3rd, 5th and - 7th.order aberraf 
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ions of the type 121, converging, with a few exceptions, 

towards zero points that are contained in a small "optimum 

region". 	This concept of simultaneous convergence also 

accounts for many results obtained by other workers for at 

least simple triplets and also it seems it may even apply 

to more complex systems such as the telephoto objective of 

Cruickshank and Hills. 	Thus we feel that the design 

principles established between the "performance parameters" 

and the basic parameters" of the type 121 triplet embody 

general design principles and, therefore, can assist us to 

understand other optical systems. 	We note that R.E. 

Hopkins (4.3) says, "this simple triplet objective actually 

helps us to understand more complicated objectives." 

As a result of the work of this section we 

postulate that this optimum region is uniquely and simply 

located by the minima of the first three orders of spherical  

aberration coefficients. 	Thus for a given type of system 

constructed from a given set of glasses it appears that  

most of the coefficients are minimized once the spherical  

coefficients are minimized. 	After this it seems that all 

that one can do is to make minor adjustments at the expense 

of the axial image. 

With the type 121 we have the simplest arrange-

ment for getting continuous variation of the monochromatic 

parameters. Moreover, with this arrangement we should be 

able to create a type 121 triplet of wider aperture than 



the less flexible type 111 triplet and its derivatives 

(triplets with a single lens for group b). 

We are holding the "basic chromatic parameters" 

constant at this stage. 	However, we feel justified in 

ignoring their effects on the monochromatic system because 

other workers have found with simple triplets that they 

do not affect the monochromatic design significantly. 

But, of course, their observations mainly apply to apert- 

ures of f/3.5 or less and therefore our assumption may have 

to be modified later. 
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CHAPTER 2.4 OPTIMIZING THE COEFFICIENTS OF THE MONO-

CHROMATIC TYPE 121 

2.4.0 	Introduction. 

In this chapter the techniques for locating the 

optimum monochromatic system precisely are developed and 

applied. 	Following this we discover how to control the 

zonal aberration of the monochromatic system at larger 

apertures,between f/3.5 and f/2.5. 

The interpolative study of the type 121 has 

established the general properties of the system with 

respect to the basic parameters (x, k' P). 	As a result 

of this work we are confident that there is one optimum 

monochromatic system of large aperture. 	So now we are 

concerned with finding a way of locating this system which 

we expect to be the system with minimum zonal spherical and 

coma for at least an aperture of f/3.5 and possibly for an 

aperture of f/2.5. 	Since the coefficients of the type 121 

converge in a very regular way we can seek the ideal system 

by studying the behaviour of particular types of solution 

(e.g. right hand, left hand etc.). 

In the preceding work we have studied the 3rd 

order triplet that has R 2  = R 3  = R 5  = 0 8  L = 0.2 and 

T = 0.05 but from now on we will apply more restrictions 

to the correction state at each stage as we progress to- 

wards the final system. 	The first of these which we intro- 

/3? 
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duce in the next sub-section will control the Petzval 

curvature of the thick system. 

2.4.1 	Equivalence of P and R4 .  

We have three monochromatic degrees of freedom, 

the basic parameters X, kt, P which can be used to control 
any three residuals of the thick system. 	Already X has 

been used to control the marginal spherical residual (R 1 ) 

to 7th order when finding the R and L solutions versus 

;6, 10, P but now let us, in addition to this, control 

the Petzval coefficient (cr) with the basic parameter P. 

Thus we will be generating type 121 systems with R 1  = R2  = 

R 3  = R5  = 0 and ar-4  = R4  which, in other words :  means we 

have monochromatic 3rd order triplets with prescribed 

Petzval sum and with their marginal spherical zero to 7th 

order. 

By specifying systems with Cr4  = R4  we are in 

effect constructing a map of the performance parameters 

versus 96, kt
/  R4 . 	The question arises, therefore, as 

to whether or not this map will differ greatly from the 

(2(, 10, P)-map, that is, will the coefficients still 

converge in the same simple way in this new grid of (x, 10 

R
4
) as they do in the 	10, P)-grid. 

This is soon answered without recourse to ex-

tensive mapping of (X, kt , R4 )-space. 	Simply by 

inspection of Figure 2.4 it is clear that the variation 



of G-
4 is very small over a large range of ')C, k 1 , P and 

consequently the map of the performance parameters versus 

X , lc', R4  will be essentially the same as the map of 

X, k', P. 	Indeed, the only significant change will be 

a small change in the form of the curves; they will be 

slightly flatter in the (X, k', R 4 )-grid. 	(This can be 

seen by inspection of the ((, k' P)-maps.) 

Thus the general behaviour of the coefficients 

with respect to R4  is inferred from the interpolative 

study of (%, 10, P). 	Nevertheless although it is fairly 

obvious, this behaviour, however, has been confirmed by 

plotting some of the coefficients versus (X, k' '  R4
) but 

it is not considered necessary .to reproduce the graphs 

here. 

To sum up: at this stage we are seeking the 

system that has°, 

1. Zero marginal spherical to 7th order 

e'  
Sph = R1  = 0 + (09) at 	= 0.2 

2. 3rd order coma zero, 0-2 = R2  = 0. 

3. 3rd order distortion zero, 	= R5  = 0. 

4. A flat-tangential-field, 30-3-  + 0-4  = 0. 

5. Minimum zonal aberration, i.e., an optimum set of 

spherical coefficients of 3rd,-5th and 7th order. 

6, Specified Petzval, Q 4  = R4 . 

We propose locating this optimum system by mapp-

ing the spherical coefficients of the right and left hand 

solutions in (10 '  R4)-space. 

/4/ 
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2.4.2 	The Programme for Computing Solutions with  

Prescribed Petzval. 

The programme for computing the R and L solut-

ions with prescribed Petzval is derived from the earlier 

programme that finds R and L solutions with prescribed P, 

the programme RL/BP/S121,(Chapter 1.41. . In this new 

version of the RL-solution-programme the sub-routine T121 

is iterated with respect to the basic parameter P until 

the target value of 	= 	is reached. 	This step is 

performed by a new sub-routine TP121 (see Figure 2.22) 

that is called in place of the sub-routine T121 in the main 

executive control routine of the programme. 	This new 

programme is denoted by the code-number RLLBP/SP121. 

2.4.3 	The Range of  R4 . 

If we plot R4  against P for the R and L solut-

ions and extrapolate the graphs we arrive at the upper 

and lower limits of the Petzval residual R 4 . 	In Figures 

2.23.ito 2.23.4 the range of the upper and lower limits 

of R
4 

is examined as 10 changes. 

From the theory of the basic triplet it is clear 

that an initial arrangement cannot be found when P.( 0. 

For example t  at kt = -5 (Figure 2.23.1) P of the R-solut-

ion is zero at R4  = 0.16 and therefore no R-solutions will 

be found by the RL-programme below this value of R 4 . 	This 

has been confirmed by the results shown in Figure 2.25.1. 
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It is clear that the lower limit of P must be 

known if we are to avoid costly programme failure when 

making a large survey of an unfamiliar system.' 	Therefore 

it is advantageous to estimate the lower limit of P by 

linear extrapolation of a simple exploratory survey, before 

proceeding with a more comprehensive one. 

2.4.4 	The Spherical Coefficients of the R and L. 

Solutions versus (kt,  R4li  

In order to exhaust the potential of the mono-

chromatic type 121 it has been found sufficient to compute 

solutions at kt = -5, -4, -3, -2.7 for R4  = 0.14 to 0.22 

in steps of dR4  = 0.01. 	The results of this work are 

shown in Figure 2.24. 

It is evident that the spherical coefficients 

-1 and er1 of the R and L solutions of the monochromatic 

type 121 approach zero in the region bounded by 3<k<..2.7 

and 0.2 < R 	0.24 at L = 0.2, T = 0.05. 	Here, however, 

AA tends to a finite negative value as R 4 
increases from 

0.2 to 0.24 and so there is no possibility of makingAti  

zero although this can be done with 0, --1  and1-1 . 	But there 

is the possibility of balancing some of the negative resid-

ual due to Ak 1 with some small positive residuals due to 

0-1  and I 1 . 	
This means, of course, that the "optimum 

region" may give systems that not only have zero marginal 

spherical but ones that also have the spherical coefficients 

/4 3 
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of the first three orders alternating in sign as well. 

A system having these properties can be shown to have two 

zones with zero spherical aberration, the marginal and the 

0.707 zone. 

2.4.5 	Zonal Spherical Aberration and the Sign Pattern 

of the Coefficients. 

The spherical aberration to 7th order of the zone 

of radius C is s 

ESph t 	=Cr1 	+ 	f 5  + T i e
7 

 1 

where 0:5 e e„ 
0-54 

Now if the marginal zone is corrected then the roots or 

turning points of the zonal spherical equation ((= Sph ) 

besides the root atew,o4. are found by solving the three 

well known equations
(17.1, 18, 19) 

Thus if we set: 

(11 e t
ph 
 = 0 , (2) d( c--

Sph
` 	)/d f = 0 (3) d2( E Spht )/dr2  = o 

S  

then these equations have the following roots 

(14. e'-- - i  , e = --"1-4.-- -rAt -4'■ Ti 
zrn 

(12) e = 0 , e = 	—)cri  
31; 

(3)e  

i I 	5 1', 
,t 

The shape of the E Sph 
curve depends on the order of the 

signs of the coefficients(ridk i ,J- 1 , consequently there 

are two possible forms whene sph  = 0 at e  = e.....,..v . 

They are: 
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(1) There is a maximum or a minimum at the 0.707 x,4, 

zone i* two successive coefficients are alike. 

(2) There is a root at the 0.707 xe*.4,4c zone if the suc-

cessive coefficients alternate in sign. 

2.4,6 	Coincident R and L Solutions and Tangential  

Solutions. 

A better understanding of the way the spherical 
oa-9/..:A.AaA 

coefficients of the type 121 converge Aby plotting 11-19 AL14, 

T
1  of both the R and L, solutions on the same scale versus 

R4 , see Figure 2.25.1 to 2.25.4. A different set of axes 

is used for each kt. 

The set of diagrams emphasizes how the magnitudes 

of G-  and nr 1  of the R and L solutions change at a much 1  

greater rate than the corresponding values of At 1° 

A 1 remains almost constant while 	changes from large 1 

positive to large negative values and while 1 - 1 changes in 

Clearly the relative magnit- 

udes of the spherical coefficients change most rapidly near 

the optimum region of (kt, P) that is around kt 

R
4 

= 0.20. 

Now consider the behaviour of the intersection 

points of each pair of R-L curves of each coefficient. 

As 10 increases from 10 = -5 both the intersection point 

of the Q- 1- -curves and the intersection point of the 
cr 1

- 

curves advance to the right while that of the A 1 -curves 

retreats to the left. 	This trend is reversed on passing 

Indeed, 

the opposite manner to 
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through 10 = -.3, Figure 2.25.3. 	Consequently there is 

the possibility that the intersection points of the three 

orders of spherical coefficients will occur at the same 

value of R
4 

at some point just beyond 10 = -3. 	When this 

happens the t
Sph-parabola is tangential to the X-axis in 

the (X,
'  R4 

 )-grid and CF Ak
1 

and 1 1 are a minimum 

for this particular value of k'. 

Initial attempts to compute R and L solutions in 

the range -3 	k 	-2.7 with the programme RL/BP/SP121 

failed as the intersection points approached each other. 

For example, at 10 = -2.7 (Figure 2.25.4), the RL-programme 

failed to converge on solutions after R 4  = 0. 1 8. 	However,  

the extrapolated curves of this graph of 10 = 	(enclosed 

by the square) intersect near R 4  = 0.20 and this solution, 

if it exists, satisfies the conditions that the coefficients 

shall be a minimum and that they shall alternate in sign. 

Since this optimum solution occurs when the t sic  versus )6  

curve is tangential to the 26—axis then it is appropriate to 

call it the "tangential solution". 

The RL-programme fails to converge on either an 

R-solution or an L-solution near the tangential solution 

,t 
because of the very small Arakiation of (

Sph 
withZ near the 

turning point of the C t  Sph
-curve. 	This causes the programme 

to go into a loop of indefinite length when it iteratest Sph 

with respect to X. 	(The unsatisfactory nature of this type 

of programme was confirmed by later work in this region. 



Although no RL-solutions were found beyond R4  = 0.18 at 

kr = -2.7 with the RL-programme, it was found later by 

other means that the tangential solution existed at R 4  = 

0.22 showing that R.H. and L.H. solutions exist beyond 

R = 0.181 *  

Thus, provided solutions are not sought in close 

proximity to the tangential solutions then the RL-type of 

programme is satisfactory* 	However, it seems that with 

the type 121 triplet, at least, that the most interesting 

region is in the vicinity of a tangential solution. 

Therefore, in order to proceed with further development of 

the type 121 a method for computing systems in the tangent-

ial region of the (5 ;ph-curve is essential. 

2.4.7 	Symmetrical - Tangential Solutions-and the  

Symmetry Parameter  118 . 

The preceding work has shown that certain of the 

tangential solutions are the ones with the best potential 

for correction of the zonal-spherical aberration to 7th 

order but these 'solutions cannot be investigated with a 

programme that controls Sph 
with 2C; In the optimum 

region ofCni ,A, and 	of-the type 121, e sph  is nearly 

independent of ,  so that -iterations based on its depend- 

ence on 	converge very slowly in this region. 	Therefore, 

a performance parameter that is more sensitive toit near 
i 

the tangential solution thanSph 6= - and one that is also . 

linked to the behaviour of E Sph  ' 	is required if we are to 
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compute the optimum solution. 	In the following the 

symmetry of the type 121 system is shown to have these 

properties. 

The (X, 10, P)-interpolative study showed that 

as thet h- -curve at 10 = -3 approached the tangential con- Sp 

dition with increasing P, the separations of the components 

(d 3' d6
) of the R and L solutions tend to become equal 

(Figure 2.25). 	Later, the symmetry-performance parameter 

X* 
(R

8
) * and the marginal spherical (tSph)max(=  R) 	were 

plotted in each of the principal sections intersecting in 

the optimum region (Figures 2.19, 2.20, 2.21). 	This work 

showed R8 passes through zero near either a minimum or a 

zero value of(Et Sph 
 in each of the principal sections. 

However, although this evidence suggests that the optimum 

tangential solution is symmetrical, it is not conclusive. 

The connection between the symmetrical solutions 

and the tangential solutions is analysed in Figures 2.26 

to 2.27. 	In Figure 2.26 the ( 2C, k', R 4 )..coord inates of 

the R and L solutions are plotted for solutions computed 

from k' = -2.9 up to k' = -2.7 with the RL-programme 

(RL/BP/SP121). 	The graph beyond this point of kl= -2.7 

has been obtained by fitting curves to these results. 

Clearly, coordinates of the turning-point of each R 4
-curve 

of Figure 2.26 are the coordinates of the tangential solut. 

ion such thatXTg 	=,(R i klg  = kL = kj , (R4 ) Tg  = (R4 ) 1  = 

(R4 ) R  (where Tg = tangential, L = Left-hand, R = Right- 

,L118, 
 
-= d 3 	d6, introduced in section 2.3.2. 

.I 	r I . 	 1-  47 I ID 
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In Figures 2.27.1 to 2.27.4 the dependence of 

the front and back air-spaces (d 3 , d6 ) of the R and L 

solutions of the type 121 on (X), kr, R4 ) is established 

as follows. 	The separations of the L-solutions against 

kr are shown in Figure 2.27.1 where the intersection points 

have been found by extrapolating the curves beyond kr = -2.7, 

giving the (kr, R
4
) coordinates of the symmetrical-L-. 

solutions. 	Similarly theX-coordinates of these L-solut- 

ions have been determined in Figure 2.27.3. 	This analysis 

is repeated for the R-solutions in Figures 2.27.2 and 2.27.4. 

So from Figures 2.27.1 to 2.27.4 we see that the R and L 

solutions converge to identical symmetrical solutions such 

that 9(SS =(-XL =2(Rt kAS = kL =k1 ,(B4 ) 55 = (B4 ) L = (B4 ) R .  

Now on comparing the coordinates of the symmetrical solutions 
04- 	2-21 A_A)-0d, 	wt-Jrci Aa-e-Lic 
Aof Figure 2.26 we find that they are equivalent. 	Thus 

r 	r • 	= (R ) 	6 t 	- 	- 

	

SS = 21  Tg; 
k  SS = k Tg 

 (R
' 	4) SS 	

4 Tg and since Sph 	R) - 1 	0 - 

at ( 2( Tg 	Te , kr (R4ig  ) then R
8  = R 1  = 0 at (,X, kSS, r 	(R4 ) SS  ). SS  

So the link between R 8 and R1  is proved. 

The other property we require in the performance 

,t 
parameter that replaces Sph 

is that its differential with 

respect to Xshall not approach too closely to zero ase:
Sph 

approaches zero. 	The superiority of R8 overSph 
in this 

respect is obvious in Figure 2.21 and also it is demonstrated 

in the following numerical example. 	(The two solutions in 

this example have merely been chosen for the sake of show- 
,t 

ing how small the variation of C.:"Sph 
can be when kr approaches 
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its optimum region near k' = -3. 	Thus the first solution 

is a right hand one and the second is a symmetrical one.) 

Specifications 
of System 	'X 	k 	R4 	R8 	

e, 
Sph 

R-solution 	-0.500 -2.70 0.19 0.012 0.0001 

S-solution 	-0.541 -2.70 0,19 0.000 0.0000 

and R2 
= R

3 
= R

5 
= 0, L = 0,02, T = 0.05, 

where AR8W. 10064ph/A1,• 

2.4.8 	The Parameter  R8 and the Turning Point Solutions  

versus ( r/1(. 10, P) and (X, 10,  R4 ). 

We have found the connection between the parameter 

for the spherical aberration residual(ft: 	= R
1  ) and the  

parameter for the symmetry (R 8 ) for the case when the 

spherical aberration parabola is tangential to the-axis. 

Now we ask "How does R8  vary with)', 10 and P or ;r, 10 and 

R4 
in general?" 

So far we have emphasized the tangential and 

symmetrical properties of the symmetrical solution and 

neglected the fact that it is primarily a turning point 

solution. This, of course, is the minimum of the spherical 

aberration parabolaSph = f(X) where k' = kl g  = kAs  = klp. 6   
(tg = tangential, SS = symmetrical solution, TP = turning 

point.) 

There is only one k' = k'Tg 
 for a given pair of the 

parameters either (R 1  = 0, P = constant) or (R 1  = 0, R4  = 
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constant), whereas k'
P  is a continuous function of 	when T 

R1  is relaxed and i—eithef - 7.P 201- z R4  is conttOtled. iTThe 

question therefore arises as to whether the property of 

symmetry is associated with all the turning-point solut-

ions in general, or whether symmetry is only associated 

with the particular turningpoint at R 1  = 0. 	(The Tangent- 

ial or Symmetrical Solution as we know it now.) 	This quest- 

ion is examined in Figuees 2.27.5 and 2.27.6. 

In Figure 2.27.5 R
8 
versus X andph  versus)( S 

are plotted on the same axes for k' = -3 2  -4, and -5 and 

P = 0.1, 0.3 and 0.6. 	This analysis is repeated in Figure 

2.27.6 for R4  instead of P where R4  = 0.16, 0.18 2  0.20, 0.24. 

These graphs show that the turning-point solutions are 

symmetrical for a large range of either "X, 10 and P or 

10 and R4. 	
Thus by changing kt we can create a range of 

symmetrical systems which vary in marginal spherical R 1 . 

Consequently we can use R 8 , R 1  and R4  in place of X, kt :  P. 

The set of monochromatic basic-parameters (X, k', P) is 

thereby transformed into the set (R8 , R 1 , R4 ) and so we have 

now linked (X, O s  P)-space with the (R8' Rls  R4 )-space. 

In Figure 2.27.7 and 2.27.8 welidiave the same R8 - 

graphs as above only now they are plotted with a typical 

coma coefficientit2 
in place of the marginal spherical 

Er = RFrom these graphs it is evident that the symmetry 
Sph 	1. 

of the air space is not sufficient to ensure a system free of 

the higher orders of coma. 	The higher orders of coma are 

only minimized in the region of the optimum value of 10, 
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(kt = -3). 	If kt deviates from this then the higher 

order coma increases rapidly provided the Petzval coeffic-

ient is small. 	But if we approach the region of optimum P 

(P = about 0.6) or R4  (R4  = about 0.24) then the influence 

of 10 and also 	on the coma is greatly reduced. 	This is 

in agreement with our earlier observation regarding the 

optimum region that the effectiveness of the "basic-paramet... 

ers" is reduced at large P. 

2.4.9 	Conclusions. 

At this stage we can predict several things about 

the wide aperture monochromatic type 121. 	We can expect 

it to have R
8 

= 0
' 
R

1 
nearly zero and R

4 
0.2 and therefore 

it will be symmetrical with small zonal spherical and fairly 

large Petzval sum. 	Its 3rd, 5th and 7th order coma contribut- 

ions will be small but its 5th order astigmatic coefficients 

A
4' 
A 5  and/A 6 

will be large enough to contribute considerable 

(13.3 	2.4) 
oblique spherical aberration 	8 	Therefore it 

appears that this higher order astigmatism will limit the 

field if the system is of reasonable focal length or if it is 

of short focal length and used with auxiliary magnification. 
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CHAPTER 2.5 SYMMETRICAL SOLUTIONS AND CORRECTION OF 

ZONAL SPHERICAL AT TWO ZONES. 

2.5.0 	Introduction. 

In the preceding work on the R and L solutions 

it was found that the RL-programme failed near the tangent- 

:t 
ial solution, because t

Sph 
is nearly independent of X in 

this region. 	However, the symmetry of the type 121, as 

measured by R8 , was found to depend significantly on X in 

the tangential region, and, in particular, a tangential 

solution of the type 121 has R8  = (d 3 	d6 ) = 0, and, 

z.t 
Sph 

= R
1 = 0 + 9th order terms etc.. 

The method devised for finding the tangential 

solution consists of two iterative processes. 	In the first 

one,X is changed until R 8 
= 0, and then in the second kt 

is changed until t Sph = R 1  = 0 + 0(9). 	The iteration is 

started at 2C =2' 1 
and kt = kt which are values known to be 1 

near the tangential solution. 	These initial values of 

and kt are estimated from the interpolative survey of the 

coefficients versus (X, k' '  R4 • ) 	In practice, it is 

necessary to repeat the compound cycle consisting of the 

adjustment of)Cfollowed by the adjustment of 10 several 

times before both R 8 
and R1 are less than 10

-5 

2.5.1 	The SS Programme. 

The programme for generating the tangential 

solutions is derived from the basic programme BP121 by 



iterating the sub-routine TP121 first with respect to X 

and then with respect to kt. 	The main features of this 

programme are shown in Figure 2.28. 	Basically it consists 

of three loops, the left hand loop, the right hand loop and 

a loop embracing both the left and right hand loops. 	The 

symmetry is adjusted to R8  in the left hand loop and the 

spherical aberration residual t sph  is adjusted to Jai  in the 

right hand loop. 	Both loops are repeated until R8  and R1  

are simultaneously zero. 	When this occurs the programme 

prints out the lens data and goes to "END" where it receives 

further instructions which may, for example, restart it 

computing another system from fresh data. 

The programme is called the symmetrical solution 

programme and it is denoted by the code number SS/BP/SPX21 

which, for convenience, we will usually call the SS programme. 

Moreover, although we are preoccupied with symmetry in this 

case, it is, in general, more useful to think of R 8  as 

measuring the asymmetry and the programme as the asymmetrical-

solution programme. 	Consequently the symmetrical solution 

is the limiting case as the asymmetry is reduced. 

In view of the equivalence of (96, 10, R4 ) and 

(R8' R1, R4
) the SS programme can be used to find any solut-

ion in a (X, k') plane of Figure 2.26, by giving R8 , R1  and 

R4 
appropriate values. 	For example, if we set R 8  equal to 

zero then we will get turning point solutions only, or on the 

other hand if in addition we make R 1 
= 0 then we will get 

tangential solutions only. 
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The SS programme is more flexible than the RL 

programme because it has direct control of and 10 through 

R1 and R
8'  By way of contrast, we recall how the R and L 

programmes explored the R and L solutions. 	In that prep- 

aratory work, kt and R4  were specified and thenX was used 

to control t
Sph 

whereas now, with the SS programme, eXand 

10 are associated directly with properties of the optical 

system. 	At this point we can see the two types of pro...- 

gramme in their proper roles: the RL-programme is ideal 

for limited interpolative study and the SS-programme is 

best suited for examining a promising region of the inter-

polative study in detail. 

2.5.2 	Spherical Aberration Coefficients of the Symmetrical  

Solutions versus versus  R4 . 

Now thatX and 10 have specific tasks we are left 

with R
4 

as the only independent parameter of the monochromatic 

system. 	Already as a result of our interpolative study of 

the coefficients we have tentatively proposed that R
4 

will 

control the spherical coefficients C l'  r A and 1
l' 
 There- 

fore, in view of this, we now proceed to locate the systems 

with the optimum set of these spherical coefficients by 

varying R4 . 

The symmetrical sollations having R 1  = R2  = R 3  = 

R
5 
= R

8 
= 0 were computed with the SS-programme over the 

range of 0.14 R4  0.22 in steps of AR4  = 0.01. In 
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Figure 2.29, the spherical coefficients of these solutions 

are plotted on the same axes against R 4 . 	Here the 3rd and 

7th order coefficients G-  and 1  pass through zero between 1  

R4  = 0.19 and 0.22 butktl , as we inferred from the earlier 

work of Section 1, remains almost unchanged, being negative 

throughout this range of R4 . 
	In the region bounded by 

R
4 

= 0.19 and R
4 

= 0.22 the successive coefficients alter-

nate in sign and, as we already know, systems with this 

property are expected to have zero spherical at two zones 

of the aperture. 	(See section 2.4.5). 

The values of G-1 	rri  and 2( , k , P of the 

symmetrical systems from R4  = 0.19 to 0.22 are as follows: 

TABLE 2.5 

	

R
4 	

0--- 	/vt- 	kt 	P 
1 	1 	1 

	

0.22 	.250 -5.89 -14.69 -0.466 -2.873 0.5789 

	

0.21 	.171 	-5.34 . 26.74 -0.490 -2.799 0.5356 

	

0.20 	.070 -4.88 	7326 -0.515 -2.746 0.4925 

	

0.19 	-.020 -4.47 126.3 	-0.541 -2.707 0.4493 

R4 .03 AG--; . 27,64L, 1.42AT-140.99 A2 .075 Aiel  -.166 AP .1296 

This table shows how very small the region of 

kt, P)-space is in which the zonal spherical is optimiz-

ed: it occupies only a very small region around the intersect-

ion point of the principal sections of 	kt, P)-space which 

were shown in Figures 2.19, 2.20 and 2.21 of Chapter 2.4. 

The region is contained within 2( = 0.075, kt = -0.166 
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and ZNP = 0,1296 (or 6R4  = 0.03). 	In this micro-region 

the greatest change in the spherical aberration is due to 

:the change in ar i . 

2.5.3 	Predicted Zonal Spherical of Symmetrical Solutions  

versus  R4 . 

After isolating the region of alternating signs *  

the SS-programme was modified to compute an additional 

quantity, the longitudinal spherical aberration, LA' = e sph /e, 

for 0 	0.20 in steps of 	= 0.02. 	Thus with this 

modified programme both the predicted zonal spherical and the 

spherical aberration coefficients can be surveyed simultane- 

ously with respect to R4 . 	(After this the SS-programme 

will mean the modified SS-programme.) 

With the SS-programme the predicted zonal-spherical 

aberration has been computed for a set of R 4  values (0.18, 

0.19 *  0.20, 0.21) that span the optimum region which was 

located in Figure 2.29. 	These results are plotted in 

Figure 2.30 in which the two-zone correction is seen to 

occur at R4 = 0.20. 

The region of two-zone correction is mapped in 

detail in Figure 2.31 where the predicted zonal aberration 

is plotted in steps of dR4  = 0.001. 	From this graph the 

system at R4  = 0.198 was selected for further development 

because it appeared to have the most even distribution of 

zonal aberration. 
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Theoretically, The LAI-curves of Figure 2.31 

should intersect the axis in the intermediate zone of 

e . 0.1414 but this is not - so. 	This spreading of the 

intersection points along the vertical axis is due to 

rounding4off the iterative sub-routine to six decimal 

places. 	Indeed, experience with later R4-surveys and 

spot diagrams have confirmed that dR4  = 0.005 is the 

minimum effective interval of R 

2.5.4 	Failure of Zonal Predictions at Apertures) f/3.5. 

The next thing to do is to compare the predicted 

zonal spherical aberration with the actual zonal spherical 

aberration computed from zonal ray-traces and show whether 

the two-zone correction is preserved in the presence of 

the higher order aberrations, that is, aberrations greater 

than the 7th order. 	This involves both the SS-programme 

and the Ray-Trace programme. 	The system must first be 

calculated with the SS.-programme and then its specificat- 

ions must be given to the Ray-Trace programme. 	Thus the 

SS-programme gives the "predicted-LAI" and the Ray-Trace 

programme the "actual-LA', 

The Elliott 503 computer used in this work can-

not store both the SS-programme and the Ray-Trace programme 

simultaneously, consequently the comparison of the predicted 

LA' and the actual LA' values is an unwieldy operation with 

it. 	Also, the SS-programme generates systems over a given 



range in specified steps whereas'-the ray-trace programme 

requires the specifications of each system. 	So, in view 

of these disadvantages, the search for a system with two- 
Wr 	 c oc0-1c 	1,01A.J.)-6.4.040c6+,1,-4, 

zone correction has been conducted with the emphasis l in 

order to -avoid a quite impractical amount of data preparat-

ion fon the ray-trace; hence the detailed survey made in 

Figure 2.31. 	This, of course, raises the point that it 

would be desirable to link the coefficients accurately 

with the ray-trace anyway, because, apart from overcoming 

the lack of storage of this computer it would also make 

worthwhile savings in computer time even when storage is 

no problem. 	We are, at this point, echoing our earlier 

remarks about optimizing thoroughly at each level of the 

design-process before proceeding to the next. 	We are, 

in fact s  now in this state of transition from one level 

of the design-process to another as we pass from coeffic-

ients to LAL-curves. 

The predicted zonal aberration of the symmetrical 

solution at R4 
= 0.198 is compared, in Figure 2.32, with 

the. actual zonal aberrations which-have been computed by 

tracing rays at intervals of df = 0.02. 	We see that 

there is a very large positive contribution not accounted-

for by predictions based on 3rd, 5th and 7th- order coeffic-

ients. 	FromC= 0 to ( = 0.08 the ray-trace differs from 

the predictions by less than 1 x 10, at p = 0.10 by less 
than 1 x 10 -3 , at (7• = 0.12 by less than 3 x 10

.3
, but s  

after C = 0.12, the ray-trace curve swings rapidly away 

5-9 
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from the predicted curve. 	From about p = 0.14 the ray.. 
trace LAt  -curvebecomes almost asymptotic. Therefore, 

it appears that even with the spherical coefficients of 

the first three orders it is not possible to predict the 

zonal-spherical aberration of the optimum system with a 

high degree of accuracy beyond r = 0.10 (1/4.5) and also 

it seems that the predictions are meaningless after 

C = 0.14 (1/3.5). Moreover in this example, even the 

predictions between e  = 0.10 and C= 0.14 are of doubt-

ful value. 

2.5.5 	Balancing Higher Order Zonal Spherical Mainly 

with R 

We are faced with two questions at this stage. 

Firstly does a system with two-zone correction exist in 

the vicinity of the predicted optimum system? 	Secondly, 

if one exists, we must also ask whether the familiar design 

technique of balancing higher order residuals with lower 

order residuals of the same type is sufficient for achiev-

ing two-zone correction? 

When we approached this problem for the first 

time we had the above questions in mind so that we were 

prepared not to accept it as conclusive if R 1 failed to 

give two-zone correction. 

Adhering to the familiar design technique of 

balancing aberrations, an attempt was made to balance the 

positive residuals of the marginal zones mainly with a 
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negative spherical residual R 1 . 	At the same time it 

was decided to decrease the Petzval residual by a small 

amount 611 simultaneously with the change in R 1 . 	This 
4 

change in R
4 

was proposed because we had seen from 

Figures 2.30 and 2.31 that such a change would tend to 

reduce the lower zones whereas AR 1 was expected to reduce 

only the marginal zones significantly. 	Thus we expected 

that a proper combination of R1  and R4  would bring about 

an improvement of the zonal spherical aberration of the 

whole aperture. 

Because we had gained no other experience of the 

system's response to R1  and R4  than that shown in Figures 

2.30 to 2.32, we decided to proceed cautiously and to 

reduce the marginal aberration of Figure 2.32 in several 

moderate stages, starting with R i  = -.0.005 and R4  = 0.008. 

The results of this first attempt with R i  = -0.005 and 

R4  = 0.190 are shown in Figure 2.33 where we have both 

the predicted LA'-curves at R4  = 0.190 and R4  = 0.194, 

for R 1  = -0.005, plotted with the ray-trace-LA'-curve for 

R4  = 0.190. 

It is evident from the Figure 2.33 that the 

zonal aberrations have been reduced in all zones so that 

the LA'-curve of the ray-trace is now negative from f= 0.02 

to ()= 0.18. 	However, the marginal zone (e> 0.18) still 
has a large positive residual but, it is very much less 

than that of the previous Figure 2.32. 	Nevertheless, this 

improvement in the marginal zones has been achieved at the 
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expense of the zones below r  = 0.14 which are now decidedly 

negative. 

Attempts (not shown) were made later to reduce 

the marginal zones further by making R 1  more negative than 

-0.005. 	However, it was found that this caused rapid 

deterioration of the lower zones (e< 0.18) for only a 

very small gain in the marginal zones. 

So it seems that effectiveness of R
1 

in controll-

ing the higher order zonal aberration is limited to part-

ial correction of the marginal zone. 	Therefore some addit- 

ional property is required for contralling the intermediate  

zone. 

2.5.6 	The Effect of  R
4 

on the Marginal Zones. 

Since R 1 
is the only partly successful in reduc-

ing the marginal zones, our attention is turned to the 

parameter R4 . 	In the surveys of the predicted LAt-curves 

of Figures 2.30 and 2.31, R4  controls the magnitudes of all 

zones of the predicted curve below t)  = 0.20, mainly by re-

ducing the effect of the 3rd and 7th order coefficients. 

However, we have found from the comparison made between 

the predicted LA'-curve and the ray-trace LA'-curve in 

Figure 2.32 that the coefficients beyond the 7th order, 

which we have ignored, are very large; it is the control  

of these higher orders that faces us here. 

The effect of R
4 

on the ray-trace LA'-curves for 

Ri = 0 is shown in Figure 2.34. 	These results throw an 
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entirely new light on the behaviour of the inner and 

outer zones of the aperture, 

Between r= 0.14 and C= 0.16 the LA'-curves for 
R

1 = 0.19, 0.20 and 0.22 almost intersect in a common point 

and, therefore, in this intermediate region (0.14< e< 0.16) 

the zonal aberration is nearly independent of R4 , 	Below 

this intersection zone the zonal aberration is reduced as 

R
4 

is decreased, just as it is with the predicted LP'-

curves of Figures 2.30 and 2.31, but, above the intersect-

ion point the effect is reversed and the zonal aberration 

is increased as R
4 

is reduced. 

It is clear from the figure that the rate of 

change of the outer zones ( ()) 0.16) is very much greater 

than that of the lower zones (040.14). 	Indeed, it is 

evident that the reduction of the marginal zones caused by 

R
4 

is enormous in comparison with the increase in that of 

the lower zones. 	Thus  R
4 

seems to be the main parameter  

for controlling the aberration of the outer zones of the  

monochromatic type 121 system. 

2.5.7 	The Combined Effects of  R and R4 
on the Marginal  1 

Zones and the Intermediate Zones. 

If we combine the results of the R 1 
and  R

4 
studies  

we find that not one but both parameters play a significant  

part in controlling the zonal aberration of the monochromatic 

type 121. 



One zone in particular, the intermediate zone, 

between e  = 0.14 to C = 0.16, can only be zeroed by giv-
ing R1  a small negative value because it has been shown 

to be independent of R4 . 	From Figure 2.33, it is clear 

that this change in R 1  that zeroes the independent zone, 

will reduce most of the zones a little, but it will not 

be sufficient to make a significant reduction in the 

marginal zone (C> 0.18). 

It seems that the thing to do in addition to 

decreasing R 1  is to increase R4  because this will reduce 

the marginal zone effectively, (Figure 2.34), without 

changing the intermediate zone at all, and, at the same 

time, it will cause only a slight increase in the lower 

zones. 	Also the increase in the lower zones is opposed 

somewhat by the decrease in R 1 . 	Here then, is a very 

interesting combination of properties. 

Now if we also consider how the accuracy or 

quality of the predicted LAt.curves varies with C and 

combine this result with the way LA' varies with R 1 , R
4 

and C , then the possibility of two-zone correction becomes 
a certainty. 

We see from Figure 2.33 that the predicted and 

ray-trace LA'-curves agree very well for C = 0 to e  = 0.14. 

Therefore, combining this fact with those of R 1  and R4  we 

can see that if the zone at C = 0.14 is made zero by a 

change in R 1  then we can expect the LA'-curves for R 4 >/.  0.21 
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to have positive zonal aberration below (7= 0.14 and 

negative aberration above f= 0.14. 	We expect this pattern 

to be reversed at smaller values of R
4' 

so that we will then 

have negative residuals in inner zones and positive residuals 

in the outer zones of the aperture. 	Thus, in'zbetween 

R
4 

= 0.19 and R
4 

= 0.22, we expect to obtain two-zone correct-

ion by careful choice of R 1  and R4  (because we see that  

during the transition the lower zones lag behind the outer  

zones.) 

2.5.8 	Optimizing LA' with  R, and R4 . 

Once the effects of R 1 
and R

4 
are understood it 

is apparent that a routine method is needed for finding 

the best system with correction at two zones. 	The obvious 

thing to do is to compare graphically surveys of the predict-

ed LA'-curves versus R
4 
with those of the corresponding ray- 

trace LAI...curves versus R 4 . 
	Thus from the first survey of 

this kind we have the graphical pair, Figure 2.35(a) and 

Figure 2.35(b). 	In Figure 2.35(a) we have the predicted 

LA'-curves of the symmetrical systems, with R 1  = 0, plotted 

at intervals of R4 
= 041, and, in Figure 2.35(b), the 

corresponding LA'-curves calculated from zonal ray-traces, 

The Figure 2.35(h) shows how the family of ray-

trace LA'-curves have been spread out above (2 = 0.16, runn-

ing from a large positive zonal aberration to a large negat-

ive zonal aberration. 	The aberrations of these outer zones 
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cause them to be distributed in a fan-like spread about 

the system at R4  = 0.23 which has the S-shaped curve but, 

unfortunately, it is tilted so that all zones have posit-

ive residuals. 

In Figures 2.35(c) and 2.35(d) the surveys are 

repeated for the same range of R4 , but this time with a 

negative spherical residual R 1  = -0.0025 instead of 11 1  = 0. 

This confirms that the intersection point is at about 

r = 0.16 and it also shows that the curves retain their 
shape relative to each other fairly closely while they are 

being bent as a group from left to right as 11 1  becomes more 

negative. 	The S-type core of the group of ray-trace curves 

is not far away from the optimum predicted system R4  = 0.20 

of Figure 2.30(a). 

From this point on it is only a matter of repeat-

ing the surveys with smaller values of R 1  (sexFigures 2.36 

c,d,e,f) until the intersection point coincides with the 

vertical axis. 	In the final stages the parameter R4  is 

stepped at the minimum effective interval (6R 4  = 0.005, 

see section 2.5.3) in order to locate the two-zone correct.. 

irehilwith the maximum precision possible with this technique. 

Note the Figures 2.35(a) and (b) are reproduced again as 

Figures 2.36(a) and (b) for the sake of comparison. 

The work with R
1 
and R

4 
is summarized in Figures 

2.37 a, b and c. 	In these figures the predicted S..curve 

is shown with its corresponding ray-trace curve at the three 
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principal stages of development in the application of R
1 

and R
4'  The top Figure (2.37a) shows the predicted LA'- 

curve for R = 0 and R
4 

= 0.198. 	In the second Figure 1 

(2.37b) the effect of R
1 only is seen and in the final one 

(2.37c) the ray-trace LA'-curve with the two-zone correct-

ion is seen to appear when  R i  and R4  are combined properly. 

2.5.9 	The Final Adjustment of the Monochromatic System. 

2.5.9.1. 

	

	Selecting the Optimum System.  (The minimum 

effective interval of R
4'

) 

From the surveys of groups of LA'-curves we have 

selected the symmetrical system at R 1  = -0.0015 and R4  = 

0.215 for further development. 	This system also has 

R
2 

= R
3 

= R
5 
= R

8 
= 0, L = 0.2 and T = 0.05; we will call 

this system SSW. 	However, before proceeding with the 

development of SS(1) we will compare its spot-diagrams with 

those of systems either side of it so as to test our earlier 

hypothesis concerning the minimum effective interval  R4  

(see section 2.5.3). 	For this purpose we have selected 

systems that occur at intervals of 4 R4  = 0.005 and for 

convenience called them SS(-1), SS(1) and SS(+1); thus they 

are at R
4 

= 0.210, 0.215 and 0.220 respectively. 	Their 

spot-diagrams for a maximum aperture of f/2.5 ( If? = 0.2) and 

V = 0°, 50  and 100  off-axis are shown in Figure 2.38. 

The best axial-image appears to occur at R 4  = 0.215. 

This is confirmed by the zonal spot densities of Table 2.6 

in which the percentage spots occurring inside a circle of 
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given radius are shown against the radius in the left hand 

half of the table. 	The radius of the circle is measured 

in units of f x 10
-4

. 

TABLE 2.6 

Changing RI__ 

Marginal Spherical R = -0.0015 

Changing R2  

... 

System 	SS(.1) 	SS(1) 	SS(1-1) SS(2) 	SS(4) SS(3) 

Petzval 
R4 	.210 	.215 	.220 	, .215 	.215 .215 

Coma 
R
2 	

0 	0 	0 -.02 	- .06 ....10 

Radiuset) 	Percentage Spots inside Circle of Radius (47. )at V=0 (  

1 	80 	82.5 	73 77 	78.5 67 
2 	80 	87 	92 83 	80,i5 78.5 
3 	80 	92 	92 83 	85.5 83 
4 	85 	92 	92 88 	92 85.5 
5 	87 	92 	94.5 88 	92 85.5 
6 	87 	97 	95.5 90 	92 90 
7 	92 	97 	95.5 92.5 	92 90 
8 	92 	97 	100 92.5 	92 90 
9 	92 	97 92.5 	94.5 92 

10 	92 	97 92.5 	94.5 94.5 

Spherical Coefficients 

0--1 	.092 	.135 	.178 .124 	.101 .078 

AA1 	.-6.99 	-7.24 	-7.50 -7.13 	-6.91 -6.69 

7'i. 	-0.506 	-21.08 	-40.5 -16.76 	-7.75 1.40 

We see that the process of choosing the LA'-curve with the 

minimum zonal aberrations in Figure 2.36(f) has enabled us 

to differentiate the spot densities of the axial image to 

within 3%. 	Such accuracy cannot be achieved with the 

• 
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aberration coefficients. 	This evident from inspection 

of the spherical coefficients shown at the bottom of 

Table 2.6. 	These would lead us to select SS(...1). 

2.5.9.2 	Adjusting the Off-Axial Image of the Monochromatic  

System. 

By inspection of Figure 2.38 it is clear that 

there is no significant difference in the appearance of 

the comatic flares of the off-axial images of the systems 

SS(-.1), SS(1) and SS(+1). 	Therefore, the choice of SS(1) 

as the best system because of its superior axial image 

quality remains unchallenged when the field is taken into 

account. 

The ray-coordinates 	and Gz in the spot diagrams 

are plotted according to Buchdahl's convention in which, 

for example, a negative value oft means that the ray 

intercepts the image plane above the ideal image point when 

the image is below the axis. 	Consequently, since the flare 

is directed downwards and is therefore positive then a 

negative residual of R2  is required to balance it. 

The balancing has been performed in three stages 

whose spot diagrams are shown in Figure 2.39. 	In order 

to achieve this the system SS(1) has been recomputed for 

R2  = 	R2  = f=0.10 and finally R 2  = -0.06. 	The result- 

ant systems have been called SS(2), SS(3) and SS(4). 

If we select the system with the most symmetrical 

off-axial spot-diagrams, then SS(3) is the obvious choice. 
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:TABLE 2.7 

System 	SS(2) 	SS(4) 	SS(3) 

	

Petzval R
4  

0.215 	0.215 	0.215 

Coma 	R
2  

-0.02 	-0.06 	-0.10 

Radius Cr) 	Percentage spots inside circle of 
-4 	. 

ft x 10 	units radius(r) at V = 50 . 

1 40% 32% 23% 

2 66 55 54 

3 73 69 67 

4 77 77 74 

5 78 83 81 

6 81.5 91 86 

7 84 92 91 

8 86 93 93 

9 88 94 97 

10 91 97 98 

Radius 	Cr) Percentage spots 	inside circle of 

ft 	x 10
-4 units 

1 

radius(r) 

9 

at V = 10° , 

10 7 

2 19 18 18 

3 40 35 34 

4 49 49 51 

5 54 54 54 

6 59 57 59 

7 	' 65 62 63 

8 67 65 67 

9 72 69 69 

10 72.5 72 72 
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If, on the other hand, we consider the spot density as well 

as the symmetry of the axial and off-axial point images, 

then we are inclined towards SS(4). 	We have already 

examined the spot densities of the axial pencils of SS(2), 

SS(3) and SS(4) in Table 2.6 and found SS(4) to be the most 

promising. 	Now we find nothing.to alter this:conclusion 

iy,hen -.:*e go - off-axis. 

The spot densities for 5 0  and 10
0 
 point-images 

of the systems SS(2), SS(3) and SS(4) are shown in Table 

2.7 which complements the corresponding part of Table 2.6. 

There is little to choose between the densities of SS(2) 

and SS(4) but the flare at SS(2) seems less acceptable than 

that of SS(4). 	We will disregard SS(3) because it has 

only 23% of the spots in the first ring. 	In view of these 

and the above results we have developed SS(4) as the optimum 

system. 

Before concluding the study of R 2  let us look at 

the effect the changes in R
2 
have had on the group of LAt-

curves that surround SSW. 	Has this balancing of coma- 

flare disturbed the two-zone correction significantly? 

In other words, does R2  interact with R 1  and R4  appreciably? 

This question is examined in Figure 2.40 from which it is 

evident that there is a slight increase in the marginal 

zone near R4 = 0.215. 
	However, at this stage of the design, 

it is not worthwhile to alter R4  
(We have showed since 

that the increase in R4 ofiNR4 
= 0.005 will restore the SS(4) 



LAS-curve to the equivalent of that of SS(1) as it appears 

in Figure 2.36.) 
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CHAPTER 2.6 THE BASIC GLASS PARAMETERS AND THE OPTIMUM 

MONOCHROMATIC REGION, 

2.6.0 	Introduction, 

in the preceding work we have examined the potent-

ial of the monochromatic-type 121 with respect to its basic 

parameters ir, kt„ and P or their equavalent 7 , kt and R4 

for a constant set of basic glass parameters (N a , Va) and 

(N , V 
c 
 )■ 	So in order to conclude our study of the mono-. 

c 

chromatic design we must also consider the effects that 

changes in the basic glass parameters will have on the 

optimum region of (X, kt, P)-space. 	For instance, will 

some other combination of (N
a
, V

a
) and (N

c
, V

c
) cause an 

improvement in the convergence of the aberration coeffic-

ients with respect to 21, kt and P over what we have already 

achieved with glasses that were chosen on the basis of rules 

developed by other workers
(2.1, 3.2, 4.3) for the type 111 

triplet? 

The problem as we see it will not involve the 

basic glass parameters (Nb , Vb ) which belong to the middle 

lens group b because, they have been studied implicitly 

through parameter 10. 	Through this earlier work we have 

shown Vb 
to be the more important parameter of this pair 

(N
b' 

V
b

) 	The conclusions made then agreed with similar 

observations arising from R.E. Hopkins' study of the type 

111 triplet concerning the related quantity aVb • 	(This 
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work
(4.3). 

supported our claim concerning the generality 

of the properties of the "basic parameters" of triplets.) 

Therefore we must now consider the remaining 

basic glass parameters of lens group a and lens group bc,of 

the "basic triplet" of the type 121. 	Although in the type 

121 these basic glasses of group a and group b are real 

glasses we will, for convenience, treat them as continuous 

variables. 	We lose nothing that is of value to us at 

this stage by doing this since our purpose is simply to 

determine whether or not the "optimum-monochromatic-region" 

which has been already established, is unique with respect 

to the basic glass parameters. 

2.6.1 	The Effect of Different Combinations of Basic 

Glasses. 

2.6.1.1 	Technique. 

In order to provide an answer to the above 

question concerning the uniqueness of the optimum region, 

we have studied the trends in typical coefficients of the 

optimum-monochromatic-system (SS(4)) for comprehensive 

ranges of various combinations of the basic glass paramet-

ers, 	We recall that the system (SS(4)) is symmetrical 

and also has two-zone correction of spherical aberration, 

a flat tangential field and well corrected coma. 	In this 

study (SS(4)) has been recomputed at regular intervals of 

one or both of (N , V ) and (N c
, V). 	Therefore this work 

a a 	c  

is a limited-interpolative-study of the basic glass paramet- 

/71 



/75- 

ers about the point SS(4) in our multi-variable space. 

Three combinations have been studied, they are: 

1. The system SS(4) with N a  = Nc  = 1.54 to 1.70 in steps 

of dN = 0.04 and with Va = Vc 
= 56 to 64 in steps of 

dV = 4.0. 

2. The system SS(4) with N a  = 1.54 to 1.70 in steps of 

dN = 0.04, V a  = 56 to 64 in steps of dV = 4.0 and N 

1.62101, Vc  = 60.18. 

3. The system SS(4) with N c  = 1.54 to 1.70 in steps of 

dN = 0.04, V c  = 56 to 64 in steps of dV = 4.0 and 

N
a 
= 1.62101, V

a = 60.18. 

The results are shown in Figures 2.41, 2.42 and 2.43. 

In each figure the spherical coefficients of 3rd s  

5th and 7th order ( 1' 
AA- 

1' T 1 ) and representative pairs 

of 5th order comatic coefficients (44
2' 
 44, 7 

 ) and 5th order 

astigmatic coefficients (AA-4'A 10 ) are plotted against N 

for three values of V. 

2.6.1.2 	Discussion of Type 121 versus Basic Glass.  

From a cursory inspection of Figures 2.41, 2.42 

and 2.43 it is evident that we cannot improve on our init-

ial set of glasses. 	Thus the selection of glass for the 

type 121 on the basic of Cruickshank's
(2.1) observations 

of the thin-lens parameters c and/9 of the type 121 is 

sound and, therfore, supports the fictitious-glass-theory. 

Indeed, with Na  = Nc  and Va  = Vc  (Figure 2.42) the only 

obvious improvement is made by increasing V to 64. 	This 



reduces coma and astigmatism but it increases the primary 

spherical and, therefore, the field is improved at the 

expense of the aperture. 

Figure 2.42 shows that there is a slight improve-

ment in coma and astigmatism when V a  = 64 but this is not 

enough to make us pursue such a change. 

In Figure 2.43 we see that an increase in N c  and 

V
c 
of the rear lens may produce a worthwhile improvement 

in both the coma and astigmatism. 	For example, if we make 

N, = 1.7 and V
c 

= 64 then we get considerable reduction in 

Ak and A 7° 	As for the spherical it appears that 
10$ 2 

/ Ak 1  and T 1 are not significantly different from those 1  

of SS(4) and therefore zonal correction should be good. 

Consequently, in order to improve on the field of the type 

121 alread obtained  it would seem that an increase in the 

refractive index and V-number of the rear lens group c  

offers the most promise. 

2.6.2 	Proposing a Fictitious Glass for Lens Group c. 

It is clear that none of the improvements suggested 

by the above results can be made with real glasses. 	The 

practical alternative is to construct a "fictitious basic 

glass" with the desired N and V for lens group c. 	This 

sort of thing, of course has been done with the Tessar 

which has resulted in an improvement on the field of the 

type 111 triplet. 

/7 6 



A study of successful Tessar designs shows that 

their values of N
c 

and V
c 

are of about the same magnitude 

as those predicted in the above glass study of the type 

121. 	This encourages us to proceed along these lines in 

an attempt to increase the field of the type 121 triplet 

without losing its zonal correction. 	Thus the study of 

the basic glasses (Na , Va) and (Nc 
V
c ) indicates that the 

type 122 may combine the best features of both the Hektor 

(type 121) and the Tessar (type 1,12). 

We will leave the development of the type 122 

until we have completed the design of the type 121. 

However, before returning to the type 121, let us select 

the fictitious-glass for lens group c. 

2.6.3 	Selecting the Fictitious Glass. 

In pursuance of the combination of a Tessar with 

a Hektor, we have chosen the rear component of a Tessar 

(the TA) that has been designed and constructed in this 

laboratory. 	The flint component of this cemented doublet 

is the Bausch and Lomb glass CF1(1.5282, 51.4) and the 

crown is the Chance glass DBC(1.6133, 57.5). 	The kt used 

in this Tessar is kt = -1.8181 .... and, therefore, this 

is a positive reversed doublet (PRD see section 1.1.3). 

A value of about kt = -1.8 is typical of the Tessars pub-

lished in Von Rohr
(19) 
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The fictitious glass constants N f  and V f  correspond-

ing to 10 = -1.8181 ... are NF  = 1.734 VF  = 67.5. 	NF  and 

V
F 

are shown plotted against 10 in Figure 2.44 in which the 

crossed-points are those quoted above for N F  and VF . 
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CHAPTER 3.1 DEVELOPING THE CHROMATIC TYPE 121. 

3.1.0 	Introduction. 

In the sub-section 1.1.5 we discussed the degrees 

of freedom and concluded that they can be divided into 

two classes which simplify the design process. 	Thus we 

are able to pursue, for example, the 'design of the type 

121 in two stages, a monochromatic stage and a chromatic 

stage. 

The monochromatic stage was completed in Section 

2 where the optimum monochromatic type 121 system SS(4) 

was developed from a particular set of real glasses. 

The set of glasses chosen was shown to be about the best 

that can be selected from the set of real glasses as far 

as the monochromatic system is concerned. 

In Section 2 the type 121 system was optimized 

with respect to the "monochromatic-basic-construction 
- 

parameters" X, kIPSSNNNVVand Si' 2' 4' a' b' c' a' b 

V
c 	

Thus the remaining construction parameters are the 

"chromatic-basic-construction parameters" L and T which, 

according to other workers, seem to have little effect 

on the monochromatic aberrations. 	Also, we recall that 

the initial values of L'and T have been selected on the 

basis of the design experience of other workers with a 

view to minimizing the chromatic aberrations of the 

• "monochromatic systems" of which SS(4) is the final one. 

Therefore, at this stage, we anticipate making only minor 
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changes in the L, and T of this final monochromatic system 

SS(4) in order to develop an achromatic system from it s  

there being no need it seems to alter its monochromatic 

parameters. 

We have already achieved an advanced stage of 

design in the form of a well corrected monochromatic 

system, therefore, from now on it seems futile to consider 

any quantity less than the exact chromatic aberration that 

is calculated from trigonometrical-ray-traces made in the 

final stage of the design process (see Figures 2.1, 2.2). 

Admittedly chromatic aberration coefficients have been 

developed, for example, by Buchdahl, but these only afford 

accurate predictions up to an aperture of 
 

Indeed, even from our own experience with LA' versus C of 
the monochromatic system, we can conclude that the chromatic 

predictions to 7th order are of little use beyond f/3.5. 

Consequently, in our approach to studying and optimizing 

the chromatic aberrations of the type 121, we will work 

between the first and last stage of the design,,process 

mapping, for example, LAt-curves for different wave-lengths 

against the basic parameters L and T. 

We begin our attack on the chromatic aberration 

of the type 121 by studying the chromatic aberration of 

the axial pencil of rays because, this is a logical extens-

ion of our work with LA' in Section 2. 	After we have 

adjusted LA' we will consider the chromatic aberration of 
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the field by studying the transverse chromatic aberration 

versus field angle versus wave length (X). 	Thus we are 

assuming, initially, that not only do L and T act independ-

ently of the "basic-monochromatic-parameters" but also  

that they act independently of each other, 	This appears  

to be consistent with the opinion held by most workers in 

optical design, 

3,1,1 	The Chromatic Aberration of the Optimum Mono- 

chromatic System SS(4), 

We begin our attack on the chromatic parameters 

by looking at the chromatic aberration of the optimum 

monochromatic system SS(4). 

The zonal spherical aberrationof SS(4) is plotted 

for the five standard wavelengths c, d, e, F, and g in 

Figure 3.1, 	This diagram shows implicitly the variation 

of the longitudinal chromatic aberration with respect to C 
from e = 0 to e = 0.20. 

The parameters L. and T have been selected in our 

initial design so as to make the paraxial quantities lcht 

and tcht zero for the c and F wavelengths, or nearly so, 

in the final system SS(4). However, we find for these 

initial values (L = 0,2 and T = 0.05) that SS(4) has lcht 

= 0,0006 and tcht = 0,00026. They are not zero but it is 

evident from Table 3.1,1 that they are well within toler-

ance for ft = 4,00 inches. (Note the computed values in 



Table 3,1 

Computed Values for SS(4) Theoretical Values 

Zonal Radius LA' versus Focal Range Tolerances 

LA'd LA t c LA'F LA l c-LMF LZA' Focal Range 

.02 .00005 -.00005 .00005 -.0001 .6 .1 

.04 .0001 -.00032 .00005 

.06 .00027 -.0001 -.00002 

.08 .00036 .00009 -.00024 

.10 .00033 .00023 -.00071 .00094 .01 .0016 f/5 

Focal Range .12 
fails 

•14 

.000099 

-.00031 

.00025 

.00018 

-.00156 

-.00285 

.004 

.00303 

.008 

,005 

.0013 f/4 

.0008 

,16 -.00052 .00048 -.00432 .00480 ,0047 .0008 
LZA' fails 

.18 .00116 .00295 -.00459 .00754 .0037 .0006 

.20 .01146 •01450 .00258 .012 .003 .0005 

LZA' = 6 wavelengths/N'sin2U'm 

Focal Range = 1 wavelength/N'sin2U'm 

(Conrady (17.1) P138 and P199) 
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the table are for ft = 1.0, therefore they must be multi-

plied by 4.) 

Actually, it is the zone at about C = 0.07 and 

not the paraxial zone, that has a common image plane for 

the c and F wavelengths. They are focussed at x = -0.0005 

from the ideal image plane. 	Beyond C = 0.07 both the 
spherical and longitudinal chromatic aberrations continue 

to increase but the tolerances are not exceeded until C 

lies in the range 0.12< 	0.16, 	The focal range fails 

after C = 0.12 and the zonal aberration fails after Q = 0.16. 
In Figure 3.2 we have the axial-spot-diagrams of 

the system SS(4) at an aperture of f/2.5 for the five stand-

ard colours c, d, e, F and g and also the off-axial spot 

diagrams at 5°  and 10 °  in d-light. 	(The off-axial diagrams 

are included in d-light only, in this and all later arrays 

of spot diagrams, with the exception of Figure 3.2, for the 

sole purpose of detecting any unusual variation in the 

monochromatic correction-state of the field while we are 

correcting the axial colour.) 

The Figure 3.2 shows very clearly by the size Of 

the halo around c and F spots that the blue end of the 

spectrum is well out of adjustment. 	However, it is evident 

from the Figures 3.1 and 3.2 that the system SS(4) would 

be almost satisfactory for a maximum aperture somewhere 

between e = 0.12 and C= 0.14 (f/4 to f/3/5). 	In view of  

this evidence the problem of controlling the chromatic  
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Aberrations is similar to the monochromatic design problem 

already treated in that it is once again mainly one of  

controlling the zones beyond f/3.5. 

3.1.2 	The Effect of Changing L. 

In the first attempt to improve the longitudinal 

chromatic aberration of SS(4) we decided to make lch' and 

tch' zero. 	This was achieved by iterating the 3rd order 

triplet with respect to L and T until lch' and tch' were 

within 	(10-5 ) of zero. 	Although this iterative process 

was discarded after adjusting lchl and tch' in favour of 

the more logical design process of relating L and T to 

quantities computed from trigonometrical-ray-traces, never-

theless, the changes that occurred in this instance form 

an interesting step in colour control. 

After automatically adjusting lch' and t h' to 

zero by iteration, L has become L = 0.165, T has become 

T = 0.025 and the focal plane of the c and F wavelengths 

from the axial zone has changed from LA' = -0.0005 to 

LA' = -0.00037. 	We see in Figure 3.3 that the inner zones 

have improved slightly but unfortunately at the same time 

the marginal and intermediate zones have deteriorated com?„. 

pared with those in Figure 3.1. 	The intermediate zones , 

however, have greater longitudinal chromatic aberration and 

the marginal zones have greater spherical aberration than 

system SS(4). 	In view of our initial assumptions we do 

not ascribe any of these zonal changes to T. 	Thus a small 

P3 
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change in L of L = -0.035 has had little effect on the 

zones below (7 = 0.15 but, it has on the other hand, pro-

duced significant changes in the intermediate and marginal 

zones even though they are unsatisfactory changes. 	This 

attempt to improve the chromatic aberration of the lower 

zones by iteration has caused a substantial increase in 

the chromatic aberration of the outer zones, but this is 

not serious as the increase produced in the spherical 

aberration of these marginal zones. 	Clearly, improvement  

of both the longitudinal chromatic and the marginal spherical  

aberration must lie in the direction of increasing L. 

Let us now examine the effect of L alone. 	We 

will make this new chromatic study of the type 121 at 

T = 0.025 so that the systems from now on will satisfy our 

original condition that tcht be zero. 	However,since it 

is expected that changing T from 0.05 to 0.025 has no 

significant influence on the axial image then we can assume 

that the continuity between these later systems at T = 0.025 

and SS(4) at T = 0.05 will be preserved as far as L and the 

LA'-curves are concerned. 

The first change in L is shown in Figure 3.4 

where L has been increased to L = 0.25 and, therefore, 

except for T and L this sytem is the same as SS(4) in all 

other respects. 	This increase in L has reduced the longit- 

udinal-chromatic-aberration of all zones substantially and 

also completely reversed the spherical aberration of the 
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marginal zones. 	A further increase in L to L = 0.3 is 

seen in Figure 3.5 to have produced a very even balance 

of chromatic aberration of all zones while, at the same 

time, it has caused only a slight increase in the marginal 

spherical in excess of that at L = 0.25. 

Indeed, the system shown in Figure 3.5 is well 

corrected for both zonal chromatic and spherical aberrat-

ion up to an aperture of f/3.1 ( C = 0.16). 	The set of 

curves is of similar shape to those of Pentacs (see Figure 

3.27, chapter 3.3) designed by Argentieri and Cruickshank. 

(These systems are similar in that they have over-corrected 

marginal spherical combined with well-corrected longitudinal 

chromatic aberration.) 

3.1.3 	Zonal Achromatism and Reduced Petzval.  (The effects 

on the zonal aberration of combining R 4  and L.) 

We have found by increasing L that we have achieved 

reasonable achromatism for all zones up to an aperture of 

f/3.1 but in doing so we have lost two-zone correction. 

However, in the following we see that a comparison of the  

broad behaviour of the LA'-curves of this chromatic study  

With that of the LAI-curves of the  R4 
study leads us to a 

unique solution of the type 121 triplet, and, in addition  

initiates a fresh understanding it seems of the general  

problem of convergence of triplet solutions. 
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If we consider the shape of the LA'-curve of a 

particular colour as we progress through the Figures 3.3, 

3.4 and 3.5 then we geta.:, grotpLof LbutVes that is similar 

to a group of LA'-curves versus R
4 

which were plotted in 

Figures 2.35 and 2.36. It is evident that LA' versus C 

versus L is similar to LA' versus e  versus R
4' 
 Following 

this idea further, we see that the LA'-curves of Figures 

3.4 and 3.5 are reminiscent of those with R
4 

greater than 

the optimum R4-value of the monochromatic systems. 	There- 

fore, it is evident that the spherical aberration of the 

intermediate and marginal zones (the zones above the station.- 

ary zone at f/3.5) may be changed from positive to negative 

by increasing either L or R4 . 	This property offers the 	very 

interesting possibility of correcting the colour whilst at  

the same time reducing the Petzval curvature. 	Thus by 

applying this property we propose to recover the spherical 

balance of the marginal zones without, we hope, losing the 

chromatic correction. 

The effect of L on LA' versus e  with A constant 
is shown in the top row of Figure 3.6 for c-light, d-light 

and F-light;. Directly beneath the d-light graph we have 

the effect of R4  on LA' versus C in d-light. 	Comparing 

the d-light diagrams confirms that there is a remarkable 

similarity between the effects of R4  and L on the mono-

chromatic system. 
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It is clear from the top row of graphs of 

Figure 3.6 that the effect of L on the marginal zones . 

remains'largely unaltered as the wavelength changes. 

Therefore, the possibility of controlling the marginal  

spherical of the chromatic system with  R4  is seen to be  

very probable at this stage. 

The reduction of R
4 
was first performed for the 

system with L = 0.25. 	We chose this system first, because 

R4 
was more likely to reverse a modest aberration of the 

marginal zone than the larger aberration associated with a 

larger value of L. 	(This decision was made as a result of 

our earlier experience with marginal zones and R 4 .) 

This system at L = 0.25, T = 0.025 with R 4  reduced 

by AR4  = 0.015 to R4  = 0.20 is shown in Figure 3.7. 	As 

we had anticipated, the marginal zones are reversed and also, 

as we hoped, much of the chromatic correction is retained. 

After the successful balancing with the smaller 

value of L we sought the reduction of the marginal zones 

of the system with L = 0.30. 	This was pursued in three 

steps, the results of which appear in Figure 3.8 where we 

have LA' versus the five standard wavelengths for R4 = 0.19, 

0.185 and 0.180. 	From these it is evident that the reduct- 

ion of R4 
below R4 

= 0.185 begins to introduce serious under- 

correction of the marginal zones. 	Thus R4  = 0.185 appears 

to be the optimum system at L = 0.30 and T = 0.025. 	We 

have called this system SS(15). 
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The spot diagrams -of SS(15) are shown in Figure 

3.9. 	An obvious improvement has occurred in the axial 

colour of SS(15) over that of SS(4) .(see Figure 3.2) but 

further improvement is required. 	Also, the comatic flare 

is still rather large at 5 0  off-axis: 	However , we notice 

that the off-axial spot diagrams follow the trend of the 

axial spot diagrams: 	Consequently, the effect of L on 

the off-axial spot diagrams can be inferred from the axial 

spot diagrams. 	Therefore, a plot of-the field in d-light 

seems sufficient when the axial spot diagrams .are available 

for all colours. 

Before continuing with the correction of colour, 

it was considered wotthwhile to readjust the coma of SS(15) 

by further increasing the negative 3rd order coma residual 

(R
2

) 
• 
	This was completed in two stages, the sequence 

commencing at SS(15) with R 2  = -0.06 and passing through 

R2  = -0.08 to R2  = -0.2. 	The spot diagrams used to assess 

this adjustment are not reproduced here because the effect 

has been seen in other systems, for example, those in 

Figure 2.39. 	However, we have reproduced the groups of 

LA'-curves versus C versus wavelength for the two stages ,  

in Figure 3..10 so as to show that R 2  has a small yet signif -

icanteffect on the zonal spherical aberration beyond f/3.5. 

It is evident that the reduction - of R2 
has induced small 

increments in both the zonal spherical and longitudinal 

chromatic aberration. 
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Conclusions. 

We can summarize the results of the study of L 

and R
4 with the following two rules: 

1. The spherical aberration of the marginal zones 	f/3.5) 

is decreased by increasing either L or R4 . 

2. As the chromatic aberration of the marginal zones is 

reduced the optimum system occurs at smaller values of 

the Petzval sum. 

Clearly an earlier assertion of the independence of L and 

R4 (or P) does not apply to the marginal zones. 

• 3.1.4 	Adjusting the Transverse Chromatic Aberration  

with T and its Effect on the Longitudinal Chromatic  

Aberration and the Petzval Curvature. 

3.1.4.1 	Final Adjustment of L and  R4 . 

After discovering how to control the zonal 

aberrations with L and R
4 

three closely related systems 

were developed. 	The first of these was generated with 

the aim of having the smallest possible Petzval associated 

with the smallest possible chromatic and monochromatic 

zonal aberrations, especially in the marginal zones. 	In 

view of the work of the preceding section, this type of 

correction-state was sought by simultaneously increasing 

L and reducing R4  as far as praetioable. 	The optimum 

system satisfying these conditions was obtained with L = 

0.4 at the surprisingly low value of R4  = 0.130 (cf. SS(4) 
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with R4  = 0.215, see section 2.5.9.2). 	The LA' versuse 

versus wavelength curves of this system which we will 

call SS(20) are plotted in the left hand position of the 

middle row of Figure 3.11i 

Beyond L = 0.4 it was found that little improve-

ment occurred in the longitudinal chromatic aberration of 

the marginal zones. 	Moreover, the ability of R 4  to control 

the marginal zones deteriorates near L = 0.5 to such an 

extent, that it cannot recover the correction-state once it 

is disturbed by these extremely large values of L. 

It is evident from Figure 3.11 that the marginal 

spherical of SS(20) is larger than we would wish (that is, 

LA' > 0.005 fore> .  0.18). 	This, however, has been reduced 

to our normal value of LA' = 0.005 in system SS(21) by 

increasing the Petzval residual by A R4  = 0.005 to R4  = 0.135, 

giving the more compact group of LA'-curves shown in the 

middle diagram of Figure 3.11. 

The spot diagrams of SS(20) and SS(21) are shown 

in Figures 3.12 and 3.13. 	It is evident that the axial 

spot diagrams of SS(20) are much more compact than those of 

SS(21), but SS(21) has less halo. 	However, we notice that 

in spite of the last adjustment of R
22 

which was made init.. 

• ially to system SS(15), that both systems SS(20) and SS(21) 

still show a considerable amount of coma-like flare at 50 

and a lesser, but still significant, amount at 10 0 . 	This 

extra coma has been Valanced in system SS(24), which is 

SS(21) with R
2 
now equal to -0.14 instead of -0.10. 	The 



•01 	.005 	0. 	-.005 
LIA 

L= 0.4 
T= 0-04S 

R4 = 0.140 

-.01 	.01 	. • 005 

-.005 	--01 •01 .01 -005 --0O5 	-.01 .005 Fig. 3.1 1  CA  

L = 0 
T = 001 

R4 = 0.130 

01 	•COS 

RHO 

SS20 

L = 
T = 0-025 

Re 0•13 
- 01 

2 



SYSTEM SS20 X=0 
V=0 	V=5 	V-10 

_d .  

- -002 

0 

•002 

- 002 

. 	 • . 
0 

-002 

- 002 

0 

.002 

-002 

• 
.002 

-.0O2 

0 - g 

.002 

Fig. 3.12 



.002 

-002 

0 

002 

- 00 2 

CO2 

- 002 

002.- 

- W2- 

0 

.002 

SYSTEM SS'21 X=0 

V=0 	V=5 V=1 0 

Fig. 3..13 



SYSTEM SS24 X= 0 

V=0 	V=5 V=10 

002- 

.002 

-•002- 

 

_d 

 

    

0 

0 

  

.002'- 

-•002- 

0 

f/32 	0 - g 

   

   

    

.002 6- 

Fig. 3.1 14 



/9/ 

LAt-curves of SS(24) are shown in the extreme right hand of 

the middle row of Figure 3.11 and its spot-diagrams are 

shown in Figure 3.14. 

When we consider the information we have obtained 

about the performance of the systems SS(20), SS(21) and 

SS(24) both on-axis and off-axis up to this stage, we find 

that we cannot separate them conclusively, 	Each system is 

superior to the others in one or more aspects of LA'-curves 

or spot diagrams. 	Consequently, in the concluding stages 

of the design (5 -f_Ahe type 121 we will study the effect of 

the remaining parameter (T) on these three systems which 

have good axial correction. 

3.1.4.2 	The Effect of T on the Axial and Off-Axial  

Pencils of the Type 121. 

The "principal-performance-parameters" used in the 

study of T are LA' and E t , both of which are calculated 
directly from trigonometrical ray-traces of the systems 

which are generated by the SS-programme; predictions are not 

used for the reasons given above (see 3.1.0). 	The parameter 

is the displacement of the principal-ray of specified 

colour relative to the image point of the same principal- 

ray of the base colour (d-light), in the paraxial image plane. 

It has been computed for the maximum aperture (C = 0.2, f/2.5) 

at field angles of V = 2.5 ° , 5° , 7.5°  and 10°  for the five 

standard colours. 

The effect of T On the axial and off-axial pencils 

of the type 121 is portrayed in Figures 3.11 and 3.15 which 
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are complementary diagrams. 	They show the effect of T in 

the region surrounding the optimum systems SS(20), SS(21) 

and SS(24) which occupy the middle row in each figure. 

In Figure 3.11 we observe the change in LA' versus PversusX 

caused by T and similarly in Figure 3.15 the change it causes 

in E versus 	versus X CH = tan v). 

We have varied T over a considerable range that 

spans T = 0.025. 	Starting from the top of Figure 3.15, T 

increases from T = 0.01 to T = 0.04 in steps of AT = 0.015 

and in the process the order of thee curves versus TI versus,% 

X is reversed. 	At the top of the page we have the colour 

sequence c, d, e, F and g which becomes g, F, e, d and c at 

tt 
the bottom. 	Clearly a minimum exists for 	versus T and 

for all practical purposes it occurs at T = 0.025 which is 

the value arrived at previously after the automatic adjust-

ment of the tchl to zero, (see section 3.1.2). 

Turning our attention back to the Figure 3.11 we 

observe, contrary to our earlier supposition, that T has a 

significant effect on the axial image. Once again, as we 

found with R
2' 

R
4 

and L s  it is the marginal zones ( 	 0.16) 

that are affected; the zones below C = 0.16 are not. 	When 

T is increased the marginal zones become more positive. 

This is seen when we go from the top row of Figure 3.11 to 

the middle row; during this process the marginal aberration 

is doubled. 

Again, 'as with .L and R
2' 

the marginal zones are 

adjusted by changing R4. 	For example, in passing from the 
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top left hand diagram of Figure 3.11 where T = 0.01 to 

SS(20) in the middle row where T = 0.025, the marginal 

zone is increased from about 0.005 to 0.01. 	This marginal 

increase is reduced to the initial value that the system 

had at T = 0.01 in going from SS(20) to SS(21). 	The reduct- 

ion, of course, is caused by the change 6% = 0.005. 

Similarly, in going from SS(20) to the bottom left hand 

system, T changes to T = 0.045 and in this case, the marginal 

correction is preserved by increasing R 4  to R4  = 0.140. 

ThusAT =/0.015 is balanced by A R4  = 0.005. 

It is evident from Figure 3.15 that although T 

changestheseparationsofthee-curves it has no signific-

ant effect on their curvature which, of course, is the 

distortion. 	This can only be modified by changing the 

residual R 5 . 	The systems depicted in Figure 3.11 and 3.15 

have R
5 
= 0 which we have not bothered to alter in view of 

the small amount of distortion present. 	We have left 

changing R 5  until the stop is shifted out of the middle 

lens into one of the air-spaces, in which case, we expect 

that we will have to balance significant additional distort-

ion caused by the disturbance of the symmetry. 

Conclusions.  

Contrary to earlier expectations T does affect 

the axial pencil. 	However, like L, it only influences 

the marginal zones significantly although in this respect 

it is not as severe as L. 
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We can summarize the effects of T in two rules: 

1. As T increases the spherical aberration of the marginal 

zones (). 0.16 or .7f/3.5) increases. 	(Thus when T is 

changed R4 must be changed in the same sense in order 

to preserve marginal correction.) 

2. The transverse aberration e has an optimum minimum with 

respect to X, kt, P, L, T. 	(If E is positive then it 

will be reduced by increasing T.) 

3.1.5 	Discussion of some Important Properties Observed  

during the Adjustment of the Chromatic Aberrations. 

In Table 3.2 we have assembled some important 

parameters of the systems with two-zone correction which 

have been computed at the main stages of the adjustment 

of L and T. 	We recall that these systems are SS(4) (the 

optimum monochromatic system), SS(15) (the first major balance 

of R4 
and L) and the three final systems SS(20), SS(21) and 

SS(24) which we cannot as yet separate satisfactorily. 

All of these systems are similar at apertures less than 

f/3.5, however, •they differ significantly beyond f13.5. 

The most important thing of immediate practical 

use coming out of this table is that the spherical coeffic-

ients of these systems are almost unchanged during the 

adjustment of L and T. 	Their sign-pattern remains +-• and 

their order of magnitudes do not vary significantly. 	Thus 

we have found that two-zone correction ,:is associated with  

characteristic set of spherical coefficients of which the  



TABLE 3.2 

1 
	BASIC PARAMETERS 

System 7( k' P L T Na Va Nb Vb NC Vc 41V = Va-Vb 

SS4 

8815 

SS20 

SS21 

SS24 

-0.4772 

-0.5501 

-0.6298 

-0.6197 

-0.6159 

-2.859 

-3.108 

-3.105 

-3.147 

-3.134 

0.5567 

0.4377 

0.2210 

0.2414 

0.2420 

0.2 

0.3 

0.4 

0.4 

0.4 

0.05 

0.025 

0.025

0.025 

0.025 

1.62101 

II 

II 

IF 

60.18 

11 

If  

11 

?I  

1.5585 

1.5628 

1.5628 

1.5634 

1.5632 

35.800 

36.164 

36.160 

36.213 

36.197 

1.62101 

”. 

II 

ft 

II 

60.18 

" 

" 

" 

" 

24.28 

24.02 

24.02 

23.97 

23.98 

BLOCK 2. 	PERFORMANCE PARAMETERS 

System 

Residuals 

R1 R2 R3 R4 R5 ' R6 R7 R8 

SS4 

5815

SS20

SS21 

SS24 

-0.0015 
II 

II 

II 

n 

-0.06 

11 

-0.10 

-0.10 

-0.14 

0 
11 

II   

II 

u 

0.215 

0.185 

0.130 

0.135 

0.135 

0 

" 

" 

" 

" 

0.0006 

0.00219 

-0.00007 

-0.00007 

-0.00006 

0.00027 

-0.000042 

0 

0 

0 

0 

" 

It 

II 

“ 

BLOCK 3. 

System 
Spherical Coefficients Power Ratio 

d3 07 At. irf Oc  / Oa 
SS4 0.1010 -6.906 -7.752 1.7997/1.5338 = 1.17 0.0832 

SS15 0.1789 -7.298 -46.57 1.908 /1.530 	= 1.25 0.1094 

SS20 0.1399 -7.144 -25.99 2.058 /1.537 	= 1.30 0.1319 

SS21 0.1634 -7.251 -37.98 2.044 /1.578 	= 1.30 0.1316 

5S24 0.11.16 -7.034 -29.80 2.041 /1.578 	= 1.30 0.1320 

Average 0.1449 -7.090 -29.57 
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average values are about  C: . 0.15, 	= -7 	T1  = -30.  

This property has been used in the later stages of this 

design to locate the system with two-zone correction when-

ever the basic parameters have been altered. 	Thus all we 

need do when, for example, we alter L, is first to generate 

systems with the new L over a range of.R4  in steps of 

AR
4 
 = 0.005 . 

	Then it is only a matter of plotting the 

spherical coefficients versus R 4  and from this graph locat-

ing the system with the characteristic set of spherical 

coefficients. 	The system selected in this way has two- 

zone correction. 	(Note this method is also used with 122 

system.) 

The existence of the stable set of characteristic 

spherical coefficients for two-zone systems has an import.- 

ant implication. 	Since we are able to find the optimum 

f/2.5 system by the pattern of the 3rd, 5th and 7th order 

coefficients, then it follows that the higher order 

spherical coefficients (greater than 7th) are very stable 

over a wide range of the basic parameters. 	This seems 

remarkable in view of our earlier work on optimizing LAt 

with respect to the basic parameters, when it was found 

that the marginal zones were extremely sensitive to R 4  and 

L, and to a lesser extent to R
2 

and T. 	Therefore, this  

stability of the higher aberrations requires further  

investigation but we will leave this until section 3.2.2.2. 

Let us now compare the basic-parameters and the 

residuals generated from them. 	The basic-parameters are 
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shown in Block 1 and the residuals of the systems generated 

from them are shown in Block 2. 	We have already found in 

our treatment of the LA'-curves that P, L and T interact 

strongly as far as the marginal zones are concerned, and 

now we find on comparing Blocks 1 and 2 of Table 3.2 that 

2( and 10 are disturbed significantly as well, 	Thus all 

the basic parameters interact strongly at large apertures. 

Therefore, attempts to design on the basis of associating 

each parameter with a single aberration residual, can be  

expected to have little chance of success in view of this  

complex relationship. 

When we recall the comparison of ray-trace and 

predicted LA 2  versus t' versus X -curves we see that design-

ing for apertures of less than f/3.5 is fairly simple (at 

most, tedious). 	Designing at less than f/3.5 is easy for 

two reasons; firstly, the obvious one, that 7th order 

predictions are reasonably accurate up to f/3.5 and secondly, 

for the less obvious reason which we have discovered, that 

seemingly 'satisfactory low-aperture performance is generated 

over a wide range of the basic.parameters. 	This latter  

benefit results from the apparent stability that the lower  

zones have with respect to chromatic-basic.-parameters L 

and T. 

Past workers have noticed that certain quantities 

assume particular v,alues when a type 111 triplet is well 

corrected. 	The most notable ones seem to be the length 

of the system and the power ratio of the two positive lenses 
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(C6 c 1C6a" 

 
The length of the type 121 system that we have 

developed is proportional to either one of its separations, 

therefore, in order to observe changes associated with the 

overall length, we need only look at either d 3  or d6 . 	We 

have tabled d 3. 	The other quantity, the power ratio, can 

be identified with R.E. Hopkins basic parameter K (= 	) 
644c, 

which is the inverse of the power ratio (0
c
/0 

a
), 	It is 

evident that the over-all length is a performance parameter 

which, according to our nomenclature, is a "fundamental.. 

performance-parameter" and, in particular, it is equivalent 

to our fundamental-performance-parameter d 3 . 	On the other 

hand, the power ratio is a "basic-parameter" equivalent to 

our2C (see chapter 2.2). 

It has been remarked by many workers that the 

longer the system the mailer the longitudinal chromatic 

aberration. 	This is demonstrated very clearly in Block 3 

where the separation d 3  is seen to increase in going from 

SS(4) to SS(24). 	Thus the optimum system is associated 

with the greatest overall length. 	However, the mall 

magnitude of the change in length, occurring for L chang.. 

ing from 0.2 to 0,4, suggests that perhaps it is not the 

most suitable parameter for controlling the optimization 

of a wide aperture triplet. 	This conclusion is supported 

by the graphs of d 3  and d6  versus (X, kt, P), shown in 

Figure 2.4 from which it is evident that the variation 

in length is not as suitable as the spherical coefficients 

for locating the optimum region. 	The location of the 
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simultaneous minima of the spherical coefficients shown in 

Figure 2.29 would appear to provide a more precise method 

for finding the optimum system. 

We also note that the basic parameter AV is 

about 24 for all the systems SS(4) to SS(24). 	This is 

like the average value 25 which is,-quoted by R.E. Hopkins 

as being about the optimum for the type 111.- 

The distribution of power between the first and 

the last lenses is used as a basic-parameter by several 

workers including R.E. Hopkins. 	It is evident from the 

table that O c /O a  = 1/K is approximately 1.3 (Block 3, Table 

3.2) for the optimum-chromatic-type 121 systems SS(20), 

SS(21) and SS(24). 	We know that we have contrived to gener- 

ate these systems with minimum zonal aberration for all 

zones up to f/2.5. 	Therefore, zonal correction is assoc- 

iated with a basic parameter 0 c
/0

a 
= 1.3 which agrees with 

an observation made by H.D. Taylor. 	His remarks are reported 

recently by Lessing as follows - "In an astrographic triplet 

it was found that it was impossible (10) designed by Taylor  

to remove zonal aberration by figuring when the third power 

was equal to the first. 	However, when the third power was 

made one-and-a-half times the first, the zonal aberration 

decreased to such an extent that figuring Could remove it 

entirely." 

The above evidence further supports our claim 

for the general behaviour of triplets being like that shown 

in our study of coefficients versus 	kt, P). 	Thus yet  
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another facet of published work supports our view that  

the picture of convergence of the coefficients and the  

residuals which we have constructed for the type 121 applies  

generally to systems of triplet structure at least. 
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CHAPTER 3.2 THE SIMULTANEOUS CONVERGENCE OF ALL AVAILABLE 

ORDERS OF SPHERICAL ABERRATION COEFFICIENTS 

WITH RESPECT TO THE BASIC PARAMETERS 

kt, P I  L, T. 

3.2.0 	Introduction.  

After a lengthy and at times involved investigat-

ion of the type 121 triplet we have developed three very 

well optimized systems in Chapter 3.1. 	During this develop- 

ment we have encountered many aspects at apertures less than 

f/3.5, which are similar to those observed by other workers 

for other triplet-types. 'Consequently, we have concluded 

that these aspects are facets of the more complete picture 

which we observed when we mapped the coefficients with respect 

to the monochromatic parameters ()( 10, P). 	However, 

although our low aperture work is easily interpreted we find, 

on the other hand, that our work on the marginal zones has  

parently taken us beyond our earlier picture of convergence  

of the 3rd. 5th and 7th order aberration coefficients versus  

( 	kr, P) which was discovered in Section 2. 	Nevertheless, 

in spite of this, agreement has been found with the few pub-

lished results concerning optimization of wide aperture 

triplet systems. 	But, these points pf agreement only give 

us, mainly, a goal for two of the construction parameters, the 

power ratio 0 c /0 a 
and the length of the system. 	What we 

would like to do now is to find a simple model for the 



"wide-aperture-chromatic.-system" similar to the one we 

have constructed for the monochromatic-system of aperture 

less than f/3.5, in Section 2. 

3.2.1 	Review of Indirect Evidence of the Convergence of  

Coefficients with Respect to all the Basic Paramet-

ers (X, kt, P, L, T). 

Let us begin the search for a new model by re-

viewing the entire optimization process of the type 121 

as we have experienced it. 	We recall that we showed at 

the beginning of Section 2 that the type 121 could be 

studied interpolatively in two stages. 	First of all 

monochromatically, by mapping all the coefficients of 3rd, 

5th and 7th order with respect to all the "basic-monochromatic 

-parameters" (X , kt, P). 	As a result of this, we were 

able to isolate a unique monochromatic region in which 

almost all the coefficients tended to zero. 	In particular, 

all of the spherical coefficients approached zero and in 

doing so systems with spherical coefficients having alternat-

ing signs occurred. 	Such systems were predicted to give 

two-zone correction. 

Attempts to produce a real f/2.5 system with two-

zone correction, from a predicted one, failed because the 

higher orders of spherical aberration (beyond the 7th) were 

significant. 	These higher orders were not predicted by the 

coefficient maps of 3rd, 5th and 7th order and so we dis-

carded "interpolative-coefficient..mapping" in the advanced 



stages of design. 	Thus we proceeded to adjust the marginal 

zones (greater than 03.5) with the aid of LAS-curves that 

were calculated directly from ray-traces. 	This method was 

successful in achieving two-zone correction. 

In passing, we note that since two-zone correct-

ion has been achieved then it follows that some of the 

spherical coefficients of greater order than the 7th have 

been reduced to values near zero. 	This is easily visual- 

ized when we recall the behaviour of the spherical aberrat-

ion of the marginal zones in Figures 2.35 and 2.36, where it 

seems, that some of the spherical coefficients of order 

greater than the 7th must be minimized, because, the marginal 

zones run from positive to negative as R 4 increases. 

Thus, from this very abstract picture of the system given 

by the LM-curves, we observe indirectly the behavidur of 

higher order coefficients ( > 7th .;order) with respect to 

the basic parameters. 	(These coefficients are of higher 

order than those already obtained analytically and shown 

in the (X, kt, P)-maps of Section 2.) 

Finally, in the chromatic stage because it seemed 

that we were faced with controlling only the marginal zones 

with L and T, we did not bother to map the 3rd, 5th and 7th 

order coefficients but proceeded, instead, with the mapping 

of the LA'-curves versus L and T. 	Our decision to omit 

the coefficient maps was also supported by the attitude of 

other workers who implied that L and T would only have triv-

ial effects on our monochromatic system, at least, at less 
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than f/3.5. 	They said little about higher apertures. 

Our first results with L showed that it had a 

critical influence on zones beyond f13.5. 	However, we 

showed that the zones could be controlled with R
4 

during 

correction of the longitudinal chromatic aberration with 

L. 	Thus we found that the chromatic aberration was adjusted 

at a smaller value of R4 than that which occurred in our 

monochromatic design. 	The opposite happened when T was 

adjusted, but it had less effect on the outer zones than 

L, consequently, the adjustment of the axial and off-axial 

colour produced considerable improvement in the Petzval 

coefficient (R
4
). 	The net result of the interaction of  

L, T and  R4 
has been to produce, not only, an optimum 

achromatized f/2.5 system, but also, it has improved the  

lower aperture system as well. 	The latter point is the 

one we have tended to take for granted while we have been 

primarily concerned with the higher aperture performance. 

But clearly, the lower aperture system has the benefit of  

the smaller Petzval as well  

Thus, stopping down the optimum f/2.5 chromatic 

system to f/3.5 produces a system superior to the optimum 

monochromatic f/3.5 system SS(4) of Section 2. 	Therefore, 

it is evident that both the optimum chromatic and mono-

chromatic systems of high and low aperture coincide in 

(2(, kl, P, L, T)..space. 	Clearly the optimum values of  

L and T apply to both the chromatic and monochromatic  
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systems of both high and low aperture. 

What we have found is that there is an optimum 

set of ( 	kt, P) for the monochromatic stage and an 

optimum set of (P, L, T) for the chromatic stage; there-

fore P belongs to both stages of the design process. 

Moreover , we have found P to be more strongly associated 

with L. and T than with 7  and kt and, therefore, the opti-

mum monochromatic set depends on the chromatic set. 

Consequently, we must revise our approach to the design 

process. 	Clearly it is not good enough to optimize a 

monochromatic system and then adjust the chromatic system 

without considering the interaction between the two stages  

(especially between the parameters P, L, T.) 	Obviously, 

this applies 'even when we want the system to work mono-

chromatically, although it is not what we expect from the  

approach adopted by designers in general. 	Indeed, it 

appears that a very casual attitude is adopted towards the 

chromatic parameters when designing low aperture systems 

(less than f/3.5). 	The tendency seems to be, to select 

L so that the low aperture residuals are a minimum, whereas, 

we see that we should minimize all zones on-axis and off-axis 

with the correct combination of (X, 	P, L, T). 

It is well known that maximum zonal correction 

is achieved if the marginal spherical is zero and the 0.707 

zone is a minimum, preferably zero. 	We have observed that 

LA' is a minimum for all 	near the 0.707 zone when the type 

121 is optimized. 	However, this does not guarantee that 
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the system is the optimum one. 	We have shown in this work 

that R
4  or P must be as small as possible also. 

	I t i s 

evident from the work with LA' versus R
4 versus L that we  

can find systems with optimum zonal correction for all A  
over a considerable range of R4  simply by minimizing the  

0.707 zone with L. 	Of these systems the optimum one seems 

to be the one with the smallest R4 and the largest permiss-

ible L. 

3.2.2 	Direct Evidence Confirming the Simultaneous  

Convergence of the Spherical Coefficients of all  

Available Orders Versus (X, k', P, L, T),t 
3.2.2.0 	Discussion. 

We are now aware of the interaction between the 

basic parameters CX, kt,  P, L, T) at high as well as low 

apertures. 	Consequently, we have had to modify our approach 

to the design process and consider the connection between the 

monochromatic and chromatic stages. 	During the elucidation 

of this interaction several properties involving spherical 

coefficients have been found, which cannot be explained by 

our simple model of coefficient convergence in (Z , kt P)- 

space, (Chapter 2.2). 	Therefore, we will examine these 

unexplained properties and propose a new model which will 

account for them. 

The properties we must consider may be divided 

into two groups, those concerning the 3rd, 5th and 7th order 

coefficients, and, those involving orders greater than the 
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7th order. 	This grouping divides the coefficients accord- 

ing to the portion of the aperture that they -seem to influence . 

most. 	Thus the 3rd, 5th and 7th orders, which we have 

partly mapped already, affect the zones below f/3.5 and the 

orders greater than 7th affect the zones beyond f/3.5. 	Of 

course, as yet, we have only seen the effect of the higher 

orders indirectly through LA'-curves or spot diagrams 

However, we will consider the 3rd, 5th and 7th orders first s  

and defer looking at the higher orders until these lower 

orders are pictured clearly in ( X , 	P, L, T)-space. 

3.2.2.1 	Convergence of 3rd, 5th and 7th Order Spherical  

Coefficients Versus-(P(, 10, P, L, , T) Demonstrated. 

We have -found that the 3rd, 5th and 7th order 

spherical coefficients of the two-zone symmetrical system 

retain a characteristic-pattern while L and T are optimized. 

Not only are they constant during this process but they are 

also nearly simultaneously zero. 	As well as this, an im- 

portant change occurs in R4' 
it becomes smaller, which means, 

of course, that the basic-parameter P becomes mailer similarly 

because :  it is virtually a linear function of R 4  (see Chapter 

2.2). 

After considering the above properties we propose 

that even when Land T are changed the coefficients and the 

predicted marginal spherical will still converge with respect 

to (2C, 10, P) in the same simple way as before, except for 

the difference that the rate of convergence of the spherical 

parabolas with respect to P will vary with L and T. 	In the 
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original monochromatic-survey the coefficients were mapped 

with respect to (2C , 10, P) with L = 0.2 and T = 0.05. 

Such a map is a "(2(,.kt, P)-section" of -(X , 10, P, L, T)- 

space at L = 0.2, T = 0.05. . Consequently, if we change L 

and T we select a new "( 2( s  kl P)-section" in which we 

have to relocate the "optimum..monochromatic-region". 

In view of the evidence which we have about L and 

T we expect the optimum region to occur at a smaller value 

of P when either I, is increased or T is decreased. 	On the 

other hand we do not expect: the X and k' - values of the 

"optimum region" to change appreciably (see Table 3.2) .dur-

ing the adjustment of L and T; the "optimum region" should 

remain near 10 = -3.0 and X = -0.5. ;Thus we anticipate 

that C , 	Sph r-  AL 1- 1 and ( t 	will approach zero simultaneously 
1  

at 'smaller values of P when either L is increased and/or T ° 

is decreased. 
,t 

The behaviour of the c-1 ,Ak l ,'T 	andt7 si3h  versus 

( 7,  10, R4 , L, T) is shown: in Figures 3.16 to 3.21. 	
Each : 

figure maps the spherical coefficients and the marginal 

spherical of the 3rd order type 121 triplets with respect to 

the three basic parameters X '  R4 
 and L. 

We have used R4 
instead of P because we have become 

accustomed to it in the advanced stages of our design process. 

However, we have already shown that (X , P) maps are not 

very different. from (;, 10, R4 )-maps and, therefore, conclus-

ions about one will do for the other as far as the general 

behaviour is concerned. 
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If we assume that R
4 

and P are equivalent for our 

present purpose, then Figures 3.16 and 3.21 map the region 

of ( X 8  kt, P 8 ,L, T)-! space which surrounds the point (L = 0.2 8  

T = 0.05) of our original monochromatic survey in uniform 

steps of L and T. 	Looking at this group of figures is very 

like looking at a set of (X, k t , P)-sections which occur at 

different L and T. 	(We have, however, plotted (X, R4 , L)- 

sections in each of these figures which will seem strange at 

first, so in order to orient ourselves with respect to our 

earlier ( )6, kt, P)-survey we will locate the original survey 

in this (2(, R4 , L, T)-grid.) 

To assist us in visualizing the results and in locat-

ing our original monochromatic survey, we have constructed a 

schematic diagram of the arrangement of the (' R4' L)- 

sections in (Y, R4 , L, T).space at kt = -4.0 (see Figure 3.22). 

Each row of this schematic diagram represents one of the 

Figures 3.16 to 3.18 which, therefore, are (2C, R4 , L) ,--sections 

at k' = -4 that occur at'different T. 

Each of the Figures 3.16 to 3.17 are at 10 = -4 but 

the T of each becomes progressively mailer in steps of A T = 

0.04 starting at T = 0.09 in Figure 3,16 and decreasing to 

T = 0.01 in Figure 3.18. 	Therefore, these figures map the 

,g 
spherical coefficients and (z sph  with respect to (X, P, L, T) 

at kt = -4 and Figures 3.19 to 3.21 repeat this map at Kt = .3. 

Portion of the original. (7C, kt, P)-map (at.L = 0.2 8  

T = 0.05) is compressed into a single column of diagrams in 

Figure 3.17. 	It is evident that the column at L = 0.2 in 
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Figure 3.17 contains the equivalent of all.the P-curves at 

kt = -4. 	Or, inc,other words, it is as though we have erased 

all except the 10 = -4 curves in the original ( 1,  T 61  ) 1 , 	Sph 

versus (7C, kt, P) diagram of Figure 2.3, and then super-

imposed the P-axes of this original survey column by column. 

It follows, also that the column L = 0.2 in Figure 3.20 

contains all the equivalent curves of the original survey at 

kt = 

In each of the Figures 3.16 to 3.21 the curves of 

the L = 0.3 column are identified by numbers 1 to 5 (these 

numbers have been omitted in the other columns for the sake 

of clarity.) 	The bottom curve has a Petzval coefficient of 

R
4 

= 0.16 and the ones above it increase in steps ofAR4 = 0.02 

running from number 1 At R4  = 0.16 to curve number 5 at R4  = 

0.24. 

In view of our past experience with the coeffic-

ients mapping only the two values of kt -4 and -3 is suffic-

ient for observing the broad behaviour. 

The comprehensive maps of the spherical coeffic-

ients (Figures 3.16 to 3.21) confirm that their general be-

haviour remains similar to that of the original monochromatic 

survey. 	It is evident that as L increases and T decreases 

groups of curves are compressed and raised above the 

-axis. 

Moreover, inspection of the corresponding comatic 

and astigmatic 5th and 7th order coefficients (not shown) 
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shows that all of these still follow the trend of the 

spherical coefficients when L and T are changed. 	Thus 

most of the coefficient-parabolas converge towards zero 

at mailer Petzval as Land T are optimized. 

Clearly the region of maximum compression and 

elevation of the groups of curves is where we would like 

to generate a real system. 	This, of course, is where we 

have found the optimum type 121 SS(20) to occur (L'= 0.4, 

T = 0.025, R4  = 0.130, X= -0.6298 k' = 3.105), zee 

Table 3.2. 	Therefore, the concept of a single optimum 

region in ( 	, k', P, L, T)-space and the supposition that  

this region is conveniently located by finding the position  

of the simultaneous minima of the marginal spherical aberrat-

ion and the spherical coefficients of at least the first  

three orders, at the smallest,P, is supported. 

23 	The Study of the Spherical Coefficients Extended 

to the 9th and 11th Order. 

3.2.3.0 	Introduction.  

We have noticed, indirectly, in several instances 

in the course of developing the type 121 to work at f/2.5, 

evidence which suggests that the spherical coefficients of 

order greater than the 7th behave very much like the lower 

orders. 	Indeed, our design problem has been found to be 

concerned more with the higher orders than with the lower 

ones. 	Thus any direct evidence which shows how these 



coefficients are controlled by the basic parameters will 

assist in confirming the design principles at apertures 

greater than f13.5. 

Buchdahl recently has developed the 9th order 

(134) 	 (13.8) 
(quaternary) 	

. 	
and 11th order (quinary) 	spherical 

aberration coefficients. 	He has also published computing 

schemes which extend his earlier scheme for the 3rd, 5th 

and 7th orders to provide these 9th and 11th order spherical 

coefficients. 	Thus we have the means for computing two of 

the higher orders analytically. 

3.2.3.1 	Computing Techniques using 9th and 11th Order  

Spherical Coefficients. 

Following the programming technique established 

in Section 1, we have programmed the scheme for the 3rd :  

5th, 7th, 9th and 11th spherical coefficients as a sub-

routine Sph(37911). 	It is like the earlier sub-routine 

-Sph(357) in that it computes spherical coefficients from 

a given set of.lens specificatiows (fundamental parameters). 

Thi.s 'sub-routine has been incorporated in a simple programme 

called "Sphco" which computes the coefficients and predicted 

zonal spherical for each order up to the 11th. 	Thus one 

can look at the spherical coefficients and their effect 

I 
on C I 	at various orders if desired. Sph 

to 11th 
Sph 

e.  
order is given by C Isph  = 	

Q1e9 	
u1

11 )  
Gie +4y 5  + fri e7  

,t 
The programmer may terminatek.-L Sph 

at any order thus he can 

analyse the contributions of the individual orders at various 

e. 



Table 3.3  

d-light Spherical Coefficients Coma Petzval Basic Parameters  

T i U1 0; IT- + x k' P L T 

System 
SS(-1) .0074 -6.5272 44.753 3083.9 80,473 o .200 -.521 -2.784 .491 .2 .05 

SS(1) .1350 -7.2431 -21.080 1176.4 36,805 0 .215 -.485 -2.882 .555 .2 .05 

SS(+1) .2616 -8.140 -77.202 226.1 7,894 o .230 -.453 -3.047 .620 .2 .05 

SS(Li) .1010 -5.906 -7.752 1,462 41,923 -.06 .215 -.477 -2.859 .556 .2 .05 

ss(6) •2452 -7.812 -75.158 -3,383 4,284 -.06 .215 •495 -3.200 .559 .25 .025 

SS(12) ,3051 -8.207 -102.4 -1,006 -8,691 -.06 .215 -.487 -3.571 .560 .30 .025 

ss(20) .1398 -7.144 -25.99 951.3 32.301 - .1 .130 -.629 -3.105 .220 .40 .025 

SS(21) .1633 -7.251 -37.981 596.52 24.083 - .1 .135 - .619 -3.147 •241 .40 .025 

ss(24) •1415 -7.034 -29.80 760.3 27.000 -.14 .135 - .615 -3.134 .241 .40 .025 



The sub-routine Sph(357911) has also been used 

in place of Sph(357) in the RL-programme and in the SS-

programme. 	The size of these 9th and 11th order versions 

of the programmes exceeds the main store of the Elliott 503 

computer. 	However, a backing store which was installed 

during this work, allows the programme to be run in segmented 

form. 	(The compiler for operating the segmented programmes 

is not yet fool-proof and, so far, we have only had consist- 

ent results with the RL-programme. 	The extra complication 

of the SS-programme has caused intermittent failure, thus 

preventing serious surveys with it.) 

3.2.3.2 	Behaviour of 9th and 11th order Buchdahl  

Coefficients in the Optimum-Monochromatic-Region. 

In Figure 2.35 and 2.36 we observed the variation 

of LA' versus f versus R4 . 	These figures showed that the 

region beyond about C = 0.15 was minimized by R 4 . 	We now 

ask, is this due to some freak balancing of all the higher 

orders or, does it mean6that the higher orders pass through 

zero in the same way that Cn i , kt i  and nr i  do in the tegion 

of R
4 

= 0.215. 

The above question is examined in Table 3.3 

(top three entries) in which the spherical coefficients of 

3rd, 5th, 7th, 9th and 11th order are shown for the three 

systems SS(-1), SS(1) and SS(+1) which straddle the optimum 

monochromatic-region (see Section 2.5.9.1). 	It is evident  

that all these orders of spherical coefficients pass through 

zero in the optimum region as R 4  goes from 0.20 to 0.23. 



Table 3.4 

21 

System SS(-1) 
	

Surface Contributions 

I 	Surface 01 ALI 11 Q1 U1 

CV
P

e
l
 -.1  

Irl  %
.0

  I
's- 

1.145 2.980 9.157 30.746 109.178 

1.905 12.302 73.537 428.684 2486.830 

-6.238 -45.173 -325.830 -2459.562 -19402.733 

1.728 24.498 371.403 5860.312 94366.133 

-1.803 -17.418 -171.125 -1104.364 5033.510 

•341 4.389 48.853 321.943 -2226.172 

2.912 11.875 38.757 6.147 106.729 

I 	Totaa .0007 -6.527 44.753 3083.907 80473.476 

System SS(1) 

c\J
 re\
 -
1
-
 in

 ■1)  
r*---  

1.135 

1.660 

-5.691 

2.938 

10.457 

-39.807 

8.975 

60.404 

-276.457 

29.963 

339.711 

-1999.043 

105.790 

1897.146 

-15056.681 

1.475 18.840 258.129 3681.867 53592.664 

-1.610 -15.121 -150.939 -1175.087 -3348.418 

.285 3.594 41.267 343.509 878.570 

2.880 11.854 37.540 -44.559 -1563.555 

I 	Total .135_ -7.243_ -21.080 1176.362 36505.518 

System SS(+1) 

.
-
 CV

 1
4-1  

--/  
trl  

q:0  
r•-• 

, 

1.156 3.030 9.370 31.668 113.193 

1.398 8.708 49.200 269.498 1461.800 

-5.174 -35.279 -237.861 -1659.097 -12002.435 

1.208 13.789 168.305 2139.733 27766.099 

-1.460 -13.520 -138.676 -1244.213 -8655.876 

.236 2.968 35.608 350.901 2610.609 

2.896 12.162 36.850 -114.635 -3399.03 1  

I Total .261 -8.140 -77.202 -226.144 7894.359 
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CEearly these coefficients lag one behind the other as the 

order increases, with the exception of /'t, which appears 

to precede the rest slightly in approaching zero in this 

(2C, 10 2  R4 )-section at L = 0.2, T = 0.05. 

In Table 3.4 we have the surface contributions 

of the systems SS(.1), SS(1) and SS(+1). 	The columns 

depict the surface contributions of 
0-1'4'12

(1-
12 

Q
1 

and U
1 

from right to left and the rows represent the surfaces from 

1 to 7. 	The bottom row of each system contains the sum of 

of the surface contributions, that is, the coefficients of 

the system. 

The reason for reproducing the surface contribut-

ions is to allow us to examine them in the light of a 

comment made by Buchdahl. 	At the conclusion of his paper
(13.4) 

in which he deals with the 9th order spherical he says, 

"Qualitatively Speaking in the design of a system whiell 

intended to perform satisfactorily at a maximum of f/2, say, 

one will in general aim at individual contributions which 

(with f = 1) are at most of the order of !„1000!'! 	It is 

clear that this has been achieved with the optimum-mono- 

chromatic type 121. 	Thus two-.zone correction is associated 

with a Q
1 
 of the order of 1000. 

3.2.3.3 	Behaviour of the 9th and 11th Order Spherical  

Coefficients in the Optimum-Chromatic-Region. 

The spherical coefficients of the systems appear-

ing at different stages of the chromatic design of the type 



121 are shown in the lower part of Table 3.3. 	This sequence 

of systems begins with SS(4) (the optimum-monochromatic.-

system) then runs through SS(6) and SS(12) to the final 

systems SS(20), SS(21), SS(24) that occur close together 

in the optimum-chromatic-region of (7■ 1  kt„ P, L, T). 

The systems SS(4), SS(6) and SS(12) are three of 

the four systems which were used to demonstrate the effect 

of L on LA' at different wavelengths in Figure 3.6. 	Now 

considering these systems in Table 3.3 it is evident that 

the spherical coefficients of all available orders pass 

successively through zero as L is increased. 	We also note 

on comparing SS(4), SS(6) and SS(12) with SS(-1) and SS(+1) 

that 
A Q i LA R4 	2 AQ i / k, L 

and 
	

du 1  / AR4 
2 AU1  /6 L 

This confirms the conclusion arrived at earlier during the  

study of LAE versus e. versus that R
4 

and L have similar  

effects on the spherical coefficients which are associated  

with the marginal zones. 

Comparing the optimum systems SS(20), SS(21) and 

SS(24) with SS(1) shows that colour correction has not 

caused any significant change in the magnitude of the 

spherical coefficients of the first five orders. 	Thus the 

characteristic pattern of the spherical coefficients assoc-

iated with two-zone correction extends to include the 11th  

order at least. 	Of course the"optimum-chromatic-system" 

occurs at about R4  = 0.13 as compared with SS( 1) or SS(4) 



Spherical Coefficients 

/1 Q1 U1 R4 L T 

System 0
 

H
 0
 	

0ti 0
0 	

O
V

O 	
0
 n:3 	

a
l  1

:10 	
0
 r

d
 	

114
 0

0 
0
 

03 

,138 -6.31 .707 1,582 43,67 1  
.101 -6.90 -7.75 1,461 41,923 .215 .2 •o5 

SS(4) .071 -7.37 -14.4 1,366 40,547 

.007 -8.36 28.5 1,166 37,678 

-.077 -9.64 -46. 909 33,993 

.274 -7.36 -69.1 -258 5,542 

•245 -7.81 -75.1 -338 4,284 .215 .25 .025 

SS(6) .221 -8.16 -79.9 -401 3,447 

.170 -8.91 -89.9 -534 1,709 

.102 -9.89N-102.9 -704 -523 

.328 -7.86 -98 -953 -8,040 

.305 -8.20 -102 -1,006 -8,691 .215 .30 .025 

ss(12) .286 -8.47 -105 -1,4049 -9,210 

.245 -9.04 -112 -1,137%-10,285 

•190 -9.79 -122 -1,251 -11,669 

.160 -6.77 -19.8 1,061 34,237 

.139 -7.14 -26.0 951 32,302 .130 .4 .025 

ss(20) .123 -7.43 -30.8 _ 866 30,809 

.087 -8.05 -140.0 692 27,799 

.037 -8.86 -54.0 474 24,098 

4 . 

Table 3.5.2 

Change in Spherical Coefficients of SS(4) and SS(20) due to 
change 

LAX 
L101 cvLki  ATI 4  Q1 A U l  

SS(4) SS(20) SS(4) SS(20) SS(4) SS(20) SS(4) S'.(20) SS(4) SS(20) 

T/  0
  124

 h
i)  

1 	
1 	

1 	
1  

C.)  
T1  

4)  P
cs 

.037 .020 .61 .37 8.4 - 6.2 121 110 1750 1935  ' 

.030 .016 .47 .29 7.6 4.8 95 85 1376 1493 

.064 .046 1.00 .62 14.1 10.2 200 174 2870 3000 

.084 .050 1.28 .81 18.7 13.0 257 218 85 3700 

/ 



at R
4 

= 0.215. 	Thus the correction of the colour has  

reduced P from 0.55 to 0.24. 

The question comes to mind as to how the spherical 

coefficients vary with wavelength? 	In answer to this 	we 

have shown the spherical coefficients of SS(4), SS(6), SS(12) 

and SS(20) for five wavelengths in Table 3.5.1. 

It is evident from the Table 3.5.1 that except for 

0-  all the spherical coefficients of all orders for all 1 

the wavelengths shown are reduced together as L is increased 

from 0.2 in SS(4) to 0.3 in SS(12) while R 4  is constant. 

However on going to SS(20) R4  is reduced to 0.13 and this 

causes a dramatic change in the spherical coefficients. 

The optimum.-chromatic.-system SS(20) shows less variation 

of the coefficients with wavelength than the optimum•mono- 

chromatic-system SS(4), however, the pattern of the spherical 

, coefficients with regard to both sign and their order of 

magnitude remains unchanged from A c to Xg in both these 

systems. 	Thus the optimization with respect to R 4 , L 	and 

T has mainly produced less variation of the spherical coeff-

icients with wavelength. 	(See Table 3.5.2 in which SS(4) 

and SS(20) are compared in this respect.) 	Indeed the  

characteristic pattern associated with two-zone correction 

holds fairly well from c to F, (See Table 3.5.1) but it  

detiorates rapidly as ,Xg is approached and obviously q-1  is 

the spherical coefficient most sensitive to change in wave-

length.  



The above computation of the spherical coeffic-

ients to 11th order has been repeated for the other optimum-

chromatic-systems SS(21) and SS(24); they are found to be-

have in .a similar way to SS(20). 	The surface contributions 

of the spherical coefficients of these three systems SS(20), 

SS(21) and SS(24) have been computed also. 	This has shown 

that the 9th order surface contributions are of the order 

of 1000 for all wavelengths for these optimum systems. 

3.2.3.4 	The Convergence of the 9th and 11th Order Spherical  

Coefficients versus ( )C, R
4' 

L, T) Demonstrated.  

The segmented form of the RL-programme has been 

used to repeat the "limited-interpolative-survey" of the 

spherical coefficients versus all the "basic parameters" 

(X, 10, P, L, T). 	This programme as mentioned above uses 

the procedure Sph(357911) to compute the first five orders of 

spherical coefficients of the 3rd order triplet. 

Some results have been Obtained and are plotted in 

Figures 3.23 and 3.24. 	They arethe (2C, R4 , L)-sections 

at 10 = -4 for T = 0.05 and T = 0.01 for Q 1' 
U

1 
and C 

Sph .  

In this work R
4 

takes the values 0.14 to 0.20 in steps of 

A R4 = 0.02. 
	The bottom curve which is denoted by ,R4  = 1 

is actually R4  = 0.14 a nd the top curve R 4  = 4 is R4  = 0.20. 

It is evident that Q l  and U follow the trend of  

0-1 ,A .1  and 71 , however, they lag behind them. 	The groups  

of curves are compressed and raised-as L increases and T 

decreases. 	So it seems that the optimum region occurs 



when at least the first five orders of spherical coeffic-

ients are near zero in (X, k t , P, L, T)-space. 	The 

survey shown in Figure 3.23 and 3.24 is all that could 

be computed in time available. 	However the trend is so 

obvious that further work along these lines at say k 2  = -3 

cannot be expected to show anything other than. the elevat-

ion of all the groups for an increase in k'. 

.2/7 
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CHAPTER 3.3 THE OPTIMUM TYPE 12* WITH THE STOP IN AIR. 

3.3.0 	Introduction.  

The optimum chromatic type 121 systems (SS(29, 

SS(21) and SS(24)) have been generated with the stop at 

the front principal point of the cemented doublet which 

is lens group b. 	In this chapter the effect that shift- 

ing the stop outside the middle lens group has on the 

aberration-residuals of the type 121 is examined and the 

system is re-designed so as to restore the correction state. 

3.3.1 	Computing Technique for Shifting the Stop. 

Shifting the stop alters the paths of the off.. 

axial paraxial-rays and therefore changes the aberrations 

of the off-axial images. 	Thus, shifting the stop modifies 

the system prior to iteration of 3rd order residuals with 

respect to the shapes. 	This modification has been taken 

care of in the basic-programme by introducing a sub-routine 

that computes the coordinates of the principal ray of any 

selected off-axial pencil for a given position of the 

aperture stop. 	This sub-routine occurs immediately after 

thickening in the sub-routine AC(x). 

3.3.2 	Optimizing the System after Shifting the Stop. 

In Figure 3.25 three stages in the control of 

the aberrations induced by shifting the stop are depicted. 

Once again we have the aberrations of the axial-pencil 
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shown by LAI versus e versus X and those of the off-axial 
,t 

pencil by the transverse aberrations t versus H versusX. 

At the top of Figure 3.25 we have the aberrations 

of the system SS(20) with its stop in air at the front-

surface of the lens group b. 	Indeed this is the only real 

stop-position we have considered in this work because the 

time available was insufficient for making a thorough study 

of changes in the stop-position with the existing computing 

facilities. 
,t 

Comparing the e -curves of SS(20) of the Figure 

3.25 with the corresponding curves of the original SS(20) 

in Figure 3.15 it is evident that considerable distortion 

and some transverse-chromatic-aberration have been intro-

duced by simply moving the stop into the front air-space 

just outside the lens group b. 	Re-adjustment of these 

aberrations involves modification of the parameters L, T, 

R4  and R5 . 	Using the principles established earlier they 

are reduced as follows: 

1. e t  for all H by increasing T. 

2. the distortion (curvature of 	-curves) for all, by 

changing R 5 . 

3. the increase in the marginal LAI, which has been induced 

by increasing T, by increasing R4 . 

Thus in the middle pair of graphs in Figure'3.25 
,t 

we see the bunching of the t -curves (reduction of trans- 

verse-chromatic aberration) produced by AT = +0.025 and - 
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the increased distortion caused by an incorrect change in 

R5  of A R 5  . -0.01. 	Also the marginal zones of the 

corresponding LA'-curves have been controlled by AR4 = 

0.001 which has been more than sufficient to off-set the 

effect of LT = 0.025. 	In the bottom pair of Figures we 

see mainly the effect of the correct use of R 5 . 	A positive 

3rd order residual of R5  = 0.025 has reduced the maximum 
,t 

aberration to t <0.0001 for all 

Finally in Figure 3.26 we have two systems with 

almost identical families of LA' and t -curves but they 

differ in their coma residual R 2 . 	Thus we have FS11 which 

is considered to be derived from SS(20) and FS12 which is 

considered to be derived from SS(24). 	Their spot diagrams 

are shown in Figures 3.28 and 3.29 where it is evident that 

the small difference in R 2 
between the systems produces a 

more symmetrical flare in the case of FS12. 	However this 

is at the expense of the sharpness of the point image. 

In Figures 3.30 and 3.31 the effect on the spot 

diagrams of stopping down the system FS12 to f/2.8 and 

f/3.1 is shown. 	It is evident that the flare in the 

axial image is caused by the outer zone between 0.18<e 

< 0.20. 	It seems that nothing of value is contributed 

by the outer zone and therefore it would appear that f/2.8  

is about the maximum useful aperture of the type 121. 
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3.3.3 	Comparing the Hektor with the Pentac. 

Two Pentac systems which have been described in 

the literature are now examined for the sake of comparing 

the potential of the type 121 with some aspects of the 

performance of equivalent systems which have been proved. 

These have been designed by Cruickshank and Argentieri to 

work at a maximum aperture of f/2.5 which is the same as 

the Hektor (type 121). 	(The Cruickshank triplet has been 

produced commercially and proved to be a very successful 

projection lens.) 
,J 

Considering LAS and t only, the Hektor compares 

favourably with these Pentacs (compare Figures 3.26 and 

-t 
.27). 	It has supetior correction of t and it has slightly 

smaller chromatic variation of LA' up to C = 0.16 (f/3.1). 

However the Pentacs seem to have better correction of the 

extreme marginal zone; they appear to make more use of the 

light between e = 0.18 and = 0.20. This seems to be due 
to over-correcting the marginal zones. We can do the same 

by increasing R4  and L so as to swing the LA'-curves across 

to the right. Indeed this type of correction of LA' 

versus e  versus 	was referred to in the discussion of 

Figure 3.5, see section 3.1.2. 	However the relative merits 

of these different types of correction is outside the scope 

of this work. 

The spot diagrams of the Pentacs are shown in 

Figures 3.32 to 3.35. 	The point of interest here is the 

evidence of the dramatic improvement that an image plane 



Table 3,6 

FS 12 - Type 121 ALHA HERM!' 
f/2,5 ( e = 0,2) x = 0 

At V= 0°  

I 	Radius c d e F g 
22% 17% 
59 44 
97 61 
98 66 
98 73 

100 76 
84 
89 

100 

At V = 5°  

At V = 10°  



Table 3.7 

H4 -Pentac CRUICKSHANK 

f/2.5 (0 =0.2) x= -0.004 

At V = 0°  

I Radius c dePa 
-49%-  34% 41%  365:-  35% 
65 82 65 57 59 
98 100 97 94 81 

100 100 94 85 
94 90 
98 90 

100 92 
94 
914 
9 14 

14 

At V = 5°  

At V = 10°  
/ 

- s 

1,41.■ 



Table 3.8  

F812 Stopped down to f/2.8 

(e . 0.18) x = 0 

At V= 0o 
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shift produces in a system that has significant but fairly 

constant zonal spherical aberration. 	Figures 3.32 and 

3.33 show the spot diagrams of the Pentacs in their parax-

ial image planes (at X = 0) in which it is evident that 

all the spot diagrams are extremely de-focussed. 	The 

dramatic improvement evident in Figures 3.34 and 3.35 has 

been achieved by shifts of X = -0.004 for the H4 and 

X = -0.003 for the Argentieri Pentac. 	(X measured in units 

of ft,) 	However an image plane shift is not required with 

the present correction state of the Hektor, its zonal 

shperical is so small that the paraxial image plane is its 

best focal plane. 

It is evident from the configuration of the spot 

diagrams that the Hektor possibly has better axial perfor-

mance than the Pentacs and very similar off-axial behaviour. 

However these qualitative conclusions are only partly sup-

ported by the analysis of the spot diagrams which are 

presented in Tables 3.6 and 3.7. 	(We have only reproduced 

the H4-Pentac denities,because the performance of both 

Pentacs is very similar.) 

In each table we have the distribution of light 

in the spot diagrams for the five wavelengths at 0 °  and for 

d-light only at 5°  and 10 ° . 	Each row gives the percentage 

of the light of the incident pencil that lies inside a 

circle centred on the principal-ray in an image plane dis- 

tant X from the paraxial image plane. 	Starting with a 

radius of 0.0001 of the focal length the radius of the circle 
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increases in steps of 0.0001 to 0.001. 	Thus we have 

distribution of light inside ten concentric circles in a 

selected image plane. 

If we set 0.0004 as the maximum radius of the 

circle for comparing the systems (this corresponds to an 

image patch of 0.0012 inches radius for ft = 4 inches) 

then with such a criterion the Pentac has the superior spot 

diagrams. 	However, if we use a smaller scanning-circle 

then clearly the Hektor has the better axial image. 	It 

is evident that the Pentac has better balance of colour 

towards the blue end of the spectrum which is obviously 

due to better control of the marginal zone with respect to 

the wavelength, which has been produced by over-correcting 

it with L and R
4° 

The Pentac has 91% of the incident light inside 

a circle of 0.0004 radius at 5
0  off-axis and 50% at 10 ° , 

whereas the Hektor has 67% at 5
o 

and 41% at 10
o  

Thus 

the assessment of the spot diagrams shows the Pentac to 

be the-better system at f/2.5. 	However, the performance 

of the Hektor seems creditable when we recall that it is 

only a 4-component system being compared with the Pentac 

a 5-component system. 

In Table 3.8 the densities of the spot diagrams 

of the Hektor are analysed with the aperture reduced to 

f/2.8. 	It is evident that removal of the extreme marginal 

zone creates a very much better system. 	The f/2.8 system 
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has 71% at 5 0  and 58% at 10°  inside a radius of 0.0004 

and on axis most of the light is inside a radius of 0.0002. 

3.3.4 	Comparing the Parameters of the Type 121 with the  

Pentac at Various.Design Stages. 

In Table 3.9 the construction parameters which 

occur at the three main stages of development of the type 

121 are compared with the H4-Pentac. 	The systems are 

SS(4), "the optimum-monochromatic-system" SS(24) the 

"optimum-chromatic-system" with the stop in the lens group 

b, FS12 the optimum type 121 with the stop at the front 

surface of lens group b and the H4-Pentac. 

It is evident that the basic parameters (X , k', 

L, T) are more sensitive to design changes than either 

v b  of•0 /0 and therefore would seem to be preferable. c a 

Again we note the characteristic pattern of the spherical 

coefficients associated with two-zo#e correction. 	More,.i 

over, it is evident that the critical design parameters 

during chromatic correction are P and L. 

The greatest difference between the basic paramet.- 

ers of the type 121 and the Pentac occurs for AV. 	It was 

noted earlier that the type 121 had a LIT very near that 

quoted by R.E. Hopkins for the type 111; however, the Pentac 

has the extraordinary value of AV = 61.12. 	The basic 

parameters (N 	N
b' 
 N 

c
) of the Pentac are near enough to 

a  

be considered normal values fro triplets but the basic 

parameters (V
al 

Vb' "c' are abnormal. 
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Let us consider the effect of a large AV on 

the type 121. 	This, we know, would raise all the abberat-,  

ion curves in ( 	10, P)-space well above the 2( -axis 

at moderate P, L and T. 	Consequently, in order to have 

any prospect of a solution the curves would have to be 

lowered and converged by increasing P and L and then reduc-

ing T. 	Thus it would seem that such a solution would have 

a fairly large 0"11 P and L associated with reduced astig- 

matic_coefficients /U4 ,-,015  and A4
6• 
	This prediction fits 

the Pentac fairly well, since it has GI = 0.366 compared 

with the 0.136 of the type 121. 	P = 0.566 compared with 

P = 0.28 and L = 0.58 compared with L = 0.4. Indeed, even 

T is reduced to T = 0.0024 as - compared with T =.0.07 of the 

type 121. 

Except for Ci
1 

the spherical aberration coeffic-

ients (up to the 11th order) of the Pentac are of the same 

order of magnitude as those of the type 121 but they are 

all negative. 	This gives the overcorrection of the marg- 

inal zone which seems to benefit the axial performance at 

maximum aperture. 	Thus on axis the Pentac and the type 

121 solutions differ primarily in Q-1.  and 6.--4  (= R4 ). 

In Table 3.10 all the 3rd, 5th and 7th order 

coefficients are compared. 	Clearly the Pentac has signif- 

icantly smaller coefficients in every case except for the 

primary spherical (T1), the tertiary spherical ( To and 

the Petzval coefficient (461-
4•  

) 	In particular, the Pentac, 
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as predicted above, has mall values for / 1A-4 , 2k
5 
 and 44  6 

which, therefore, means small oblique spherical aberration - 

and, consequently, ,enhances the prospect of a good field. 

This is confirmed by the values of Un  (see section 2.3.1) 

and the corresponding values of the semi-field angle V 

shown at the bottom of Table 3.10, 	These examples support 

the conclusion of section 2.3.1 that the 7th order 1-1n 
predicts 

the maximum possible semi-field far more accurately than the 

5th order Tin 
when the semi-field approaches 20

o  It-is 

also evident that the 5th order -171
n 

is good enough for semi-

fields of about 10
0 

. 

The 7th order 'n 
is 0.196 for the system FS1 :2 

and the large value of 0.402 for the Pentac. 	Therefore, 

the predicted semi-field of the final type 121 is about 11 0  

which agrees very well with our spot diagrams and their 

analysis. 	The Pentac on the other hand is predicted to 

have a semi-field of 22 ° . 	Thus the Pentac is predicted 

to have the better off-axial performance. 	This has been" 

borne out by the spot diagram analysis. 

We also, note that the value of 0 ca 
of the Pentac 

is very near 1.5 which is the ratio recommended by Taylor 

for getting small zonal spherical. 

The optimum Pentac solution as we saw above has 

a fairly large (7--
1 
 when the spherical coefficients are 

optimized. 	Thus, of necessity, the axial correction of 

the Pentac consists of reducing a 3rd-order-residual with 

a set of negative higher-order-residuals of opposite sign. 
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On the other hand the ,ype:1.121 allows the designer to 

minimize all spherical coefficients (including 6-1) up 

to the 11th order at least. 	Thus in this work we have 

adopted the technique of minimizing all spherical coeffic-

ients and then combined this with sign variation of the 

orders so as to produce a minimum total residual. 	How- 

ever, rafter, 	looking at the Pentac: it may be better for 

the marginal zone of the type 121 if all the outer zones: 

were overcorrected slightly rather than undercorrected. 



Table 3.9 

Type 121 Type 212 Type 122 

Optimum 
Monochromatic 

System 

Optimum 
Chromatic 
System 

Optimum 
Chromatic 
System 

Optimum 
Chromatic 
System 

System SS(4) 55(24) FS12 H4-Pentac  

Basic Parameters 

-.477 -.615 -.528 -.346  -.294 

k 1 --- ___ --- -.540  

k' 2 -2.859 -3.133 -3.056 ___ -3.334 

3 
-2.255 -2.200 

P .556 .241 .282 •566 •1147 
L .2 •4 •4 .58 .3 
T .05 .25 .07 .0024 .075 

Fundamental Parameters 
c 1  2.130 2.088 2.216 2.050 2.628 

C
2 

-.369 -.491 -.410 -2.026 -.827 
C3  -2.163 -2.629 -2.512 -.336 -2.370 

e4 
-4.291 -4.878 -4.821 -1.516 -4.653 

c5  2.433 2.898 2 .933 2.608 3.503 

e6 .909 .946 .979 1,144 .399 
c
7 

-2.037 -2.401 -2.290 3.373 3,177 

c8  -1.652 -2.098 

P .222 .318 .187 .273 .232 
d1  0 0 0 0 .10 

•1 d2 

 
•1 .1 .135 .10 

d
3 

.083 .131 .128 .03 .073 

d
4 

.07 .07 .07 .118 .07 

d
5 

.02 .02 .02 .03 .02 
d6 .083 .132 .128 .075 .133 

d
7 

.07 .07 .07 .03 .02 
d8  .14 .10 

Performance Parameters 

Cri .101 .141 .136 .366 .305 
Ai -6.206 -7.033 -7.102 -4.315 -12.336 

-7.751 -29.802 -24.652 -52.395 -77.853 

Q1  1461.8 760.2 935.9 -466.4 1236.1 
U1  41923 26996 30381 -3806 59259 

Wa/Va 1.62/60.18 1.62/60.18 1.62/60.18 1.66/125.5 1.62/60.18 

lib/Vb 1.55/35.8 1.56/36.2 1.56/36.09 1.50/64.4 1.56/36.43 

Ne/Vc 1.62/60.18 1.62/60.18 1.62/60.18 1.65/84.99 1.69/63.81 
6N,  24.38 23.98 24.09 61.12 23.75 

Oc/Oa  1,17 1.30 1.26 1.49 .84 

y' 



Table 3.10 

System I 	SS(4) I 	SS(24) I 	P512 	I H4-Pentac I 	SS(25. 1 ) 
Performa 
G- 

nce Paramet 
1.010 

era - Buch 

.141 

dahl Aberrat 
.136 

ion Coeffici 
.366 

ente 
.305 

2 7.060 -.14 -.14 -.037 0 

3 -.071 -.045 -.048 _.049 -.04 

4 .215 .135 .145 .232 .12 

5 0 0 .02 -.016 0 

1  -6.907 -7.033 -7.102 -4.315 -12.34 
2 -.127 -.839 1.363 .882 -4.194 

3 -.070 -.535 .932 .625 -2.775 
4 -8.247 -10.543 -40.338 -4.415 -5.093 
5 -4.012 -4.428 -4.40) -1.911 -2.839 
6 -4.379 -6.320 -6.145 -2.885 -2.560 

7 -.506 .862 4.778 .331 2.778 
8 -.179 1.01 3.480 .237 1.929 

9 -.257 -.002 1 .448 .146 .852 
10 -.144 3.760 1.719 -.295 3.734 
11 -.450 -.007 -.353 -.471 .028 
12 -.296 -.007 -.345 -.161 -.107 

TI -7.751 -29.80 ' -24.652 -52.395 -77.85 
2 62.141 76.51 69.804 9.367 -2.414 

3 45.805 5 7 .08 51.782 6.740 -2.633 

4 -67.090 -87.76 -120.14 -27.208 -24.68 

5 -50.757 -50.06 -62.064 -18.525 -31.56 
6 -17.229 -57.42 -97.391 -8.050 34.92 
7 -27.523 -1 9.92 46.656 2.051 37.44 
8 -23.774 -14.58 39.320 -.121 34.68 
9 -14.416 -1 3.2 1  19.910 1.165 15.98 

10 -1.289 -.251 2.117 -.328 2.503 
11 -15.170 22.74 7.021 -9.686 58.28 

12 -1.210 59.54 37.523 -1.659 98.62 
13 -3.367 3.07 .473 -2.365 9.55 1  
14 -3.352 32.16 1 9.964 -2.168 54.77 
15 -4.144 19.02 5.959 I .510 11.12 

16 3.385 14.77 3.350 • .723 8.397 
17 .934 4.418 .963 .495 2.024 
18 3.480 17.91 11.159 2.566 18.61 
19 .059 1.489 .4 1 2 -.091 1.5 

20 -.036 -.884 -2.496 -.353 -1.04u 

5th Order En  1.72 .4214 .592 2.05 .404 
5th Order V 32°  8.8°  12.2 °  37o 8.4°  

7th Order En .404 .147 .196 .402 .141 
7th Order V 22

o  8.4°  11.1 °  21.9°  8.0° 
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CHAPTER 3.4 THE DEVELOPMENT OF A 'TYPE 122 TRIPLET WITH 

TWO-ZONE CORRECTION. 

3.4.0 	Introduction. 

In this chapter the design principles established 

for the basic parameters during the development of the type 

121 are used to develop a type 122 with two-zone correction 

of its spherical aberration. 	The type 122 was proposed 

as the next stage in the systematic development of triplets 

after the type 121. 	We recall that it arose out of the 

study of the basic-glass-parameters at the end of section 2. 

3.4.1 	A Limited Interpolative Study of the Monochromatic  

Type 122. 

The type 122 has been derived from the type 121 

by replacing the back component with a cemented doublet 

constructed from the Bausch and Lomb flint CF1(1.5282, 51.4) 

and the Chance crown DBC(1.6133, 57.5). 	The negative 

component leads the positive component, therefore the 

k-prime of this positive doublet is less than .1 (see chapter 

1.1 and chapter 2.6). 

All the programmes which were developed for the 

type 121 have been converted in the manner described in 
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Section 1 to generate the type 122. 	The main differences 

have been caused by the introduction of the additional 

monochromatic-basic-parameter k'[3] which is the k-prime 

of the positive doublet. 	With the introduction of kiL31 

it is necessary for the k-prime of the negative doublet 

to be denoted by 10[21, 	(Note in the graphs of this 

chapter it is due to an oversight still shown as 10). 

A "limited-interpolative-study" has been made 

of the monochromatic 3rd order type 122 triplets with 

respect to the monochromatic parameters X, k t [21, R4  and 

10 [31 at L-7-0.2 and T = 0.05. 	This survey is similar to 

the (X 
	

kt„ P)-survey which initiated the study of the 

type 121 in Section 2. 	Thus this survey has been performed 

with an equivalent R and Uprogramme which has computed 

the 3rd order type 122 triplets at regular intervals 

throughout (( , k'[21, R 4 , 10[31)-space. 	(We recall that 

the 3rd order triplet has R 2  = R3  = R 5  = 0). 	The systems 

have been computed for the grid with 

1. 2C= 0, -0.5, -1 	)C L, 	and 

2. 10[2] = -3, -3.5, -4. 

3. R4  = 0.12 0  0.14, 0.16. 

4. kr[31 = -1.8, -2.0, 



In addition to computing the usual G- 11  

1'1 and  e:Sph 
to 7th order, the new version of the R and 

L programme gives all the other 3rd and 5th order coeffic-

ients as well. 	However, in view of the experience with 

the type 121, it has been necessary to consider only the 

3rd, 5th and 7th order spherical coefficients in conjunc-

tion with a few representative 5th order coefficients in 

order to locate the optimum monochromatic region. 

1- 	67- 1  Consequently,only 	AlL i , 	1 , 	sph , 
2' 	7 2 	4 

and /14- 10  have been plotted. 

The "limited interpolative study" is depicted as 

( 96 , ktc2-1, R4 )-sections at three values of IcivisA (-1.8, 

-2.0 and -2.2). 	In Figures 3.36, 3.37 and 3.38 cr -1 , At l , 

t 
T and t Sph are shown in these section. 	Similarly in 

1  

Figures 3.39, 3.40 and 3.41 the coma coefficients /frt- 2  and 

A
7 
 are shown, and in 3.42, 3.43 and 3.44 the astigmatic 

coefficients 44
4 

and ArA-1.

0 

are shown. 

230 
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Consideringe
Sph 

it is evident that the minima 

lie to the right of X= -0.5. 	Indeed, in nearly ,all 

cases both right and left hand solutions are to the right 

of jt= -0.5. 	Furthermore, it has been found that this 

means that both the left and right hand solutions have 

the same asymmetry; the back separation of the components 

is greater than the front separation. 	Consequently,in.- 

the rare instance when it. occurs,the symmetrical solution 

of the type 122 is an extreme left .hand solution at some- 

thing like k1:23 = -12, 	Therefore symmetry is no longer 

associated with a tangential or turning point solution. 

The condition that0-  AA 1 
 ,1-1 andt,

Sph 
shall l t   

pass through zero almost simultaneously is only satisfied 

near 	= -3 in Figure 3.38 where I01- 33 = -2.2. 	In 
• :4 ; 	• 

particular the optimum region  seems to be near 101723 = -3 

and R
4 

= 0.14 in this section of ktc_3], 	Thus the intro- 

duction of the positive doublet has reduced R 4  of the type 

122 to 0.14 as compared with the R4 m-- 0.20 of the equival- 

ent monochromatic type 121. 	However, this occurs with a 

very much larger cri of about 0.5 as against about 0.2 

which was predicted in the monochromatic survey of the type 

121. 

It is evident from Figures 3.41 that the type 

122 generated in the optimum region of Figure 3.38 will 

have 5th order coma not unlike the type 121. On the other 

hand it is evident from Figure 3.44 that it will have 	4 
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at least half that of the optimum type 121. 	This represents 

a substantial improvement in Ar.24  which brings the triplet 

partly into line with the Pentac. 	The effect of k tr3]on 

A
4 

is quite powerful, it reduces A to .zero in the inter-

val k t [3] = -1.8 to -2.0 for all R4  and kt[2] shown. 

In this work we decided to develop the type 122 

system in the optimum region occurring at 10[33 = -2.2. 

The decision was based on the monochromatic survey described 

above, which, with regard to 1014, is rather crude. 

However, the main purpose at this stage was considered to 

be the need to find support for the design principles which 

were established for the basic parameters P, L and T during 

the development of the type 121. 	As far as finding the 

best type 122 is concerned, it is felt •now that the optimum 

region could be better optimized with respect to kt[SA. 

Indeed it would seem to be nearer 10D1 = -2.0 rather than 

-2.2. 	A lot more work could be spent on this point alone. 

It is interesting to find that the optimum region 

has not moved significantly away from the 10C21 = -3 of the 

optimum type 121. Moreover, at or near this value of -3, 

the coeffidientspt 1 and -I- 1 are almost independent of 100 

and R
4' 

The 3rd order spherical coefficient Q - , however, 
1 

is susceptible to changes in 1013 -1although like At, and 

it is nearly independent of R4 . 	This sensitivity of Ti to 

ktO] may not allow a reasonable system to be generated near 

klE3Tj= -2.0 as proposed above. 
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For the present we assume that the, optimum 

monochromatic region at L = 0.2, T = 0.05 is near the 

following 10V1= 3 , kt[11 = -2,2, R4  = 0.14 and 	-0.25. 

Summary.  

The introduction of a new monochromatic , parameter 

10C3] has a very strong influence on A
4
, At

5 
and 44  and 6 

The main effect has been to reduce the oblique  1 .  

spherical aberration at the expense of the primary spherical  

aberration, 

3.4.2 	Optimizing the Chromatic Type 122 Triplet, 

The g A
1 -1 ande l  -curves versus Xof the 

Sph 

type 122 (see Figure 3.38) for the (X, 10[2 -1, R4 )-section 

at 10[3] = -2.2, L = 0.2 and T = 0.05 lies close to the 

X-axis near R
4 

= 0,14, 	This state of affairs is similar 

to that which occurred with the type 121 in the (it, 10, P)- 

section at L = 0.2, T = 0.05. 	Therefore the optimum mono- 

chromatic solution is expec,ted to be close to the turning 

point solution which is tangential to the 	axis. 

Experience has shown that solutions in the tangent-

ial region cannot be generated with the R and L programme, 

they can only be found with the SS-programme which iterates 

the spherical residual with respect to the symmetry parameter, 

18 , (see section 2). 	A study of the symmetry of the type 

122 has shown that its turning point solutions are obtained 

with R8  = 0.6; whereas, we recall, that the turning point 

solutions of the type 121 are symmetrical and therefore are 
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located with R

8 
= 0. 

Using the technique developed for finding the 

optimum solution of the type 121 we have mapped the 

spherical coefficients G-I s AI  and 7-1.  of the 3rd order 

type 122 triplets which have R8  = 0.6. 	This survey has 

been made for the following ranges of the parameters R
4

, 

L and T; 

R4  = 0.08 to 0.16 in steps ofAR4  = 0.02. 

L = 0.2, 0.3, 0.35, 0.4. 

T = 0.05, 0.075, 0.10. 

The coefficients obtained in this study are shown versus 

R
4 

and L in the three sections of T in Figure 3.45. 

It is evident from the figure that the position 

of the simultaneous minima of the spherical coefficients 

at given L,and T is determined by the intersection of 0.1.  

and 7, ( AA, is almost constant for all L, T and R4 ). 

Thus in this figure the path of the optimum region is 

traced through ( 	, 101. 4, R4 , L, T)-space at 10[3] = .2.2. 

Clearly the behaviour is similar to the type 121: the 

pattern of the spherical coefficients associated with the 

optimum region occurs at reduced R 4  as L. is increased and 

as T is decreased. 

The optimum monochromatic region of the initial 

R and L' survey of the type 122, which was described in the 

previous section, is located near the point A in the graph 

at the top of Figure 3.45. The systems in this region 

surrounding A have been developed and examined in the usual 
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way with ray-traces, 	From these ray-trace-surveys the 

optimum system with two-zone correction for this section 

at L = 0.2, T = 0.05 and 101_31 = -2.2 was found at R 4  = 0.14. 

Its LA' versus e versus )...curves and 	versus H versus 

curves are shown in Figures 3.46 and 3.47. 

Drawing on our experience with the type 121 we 

predicted that L_should be increased and R
4 

reduced in 

order to correct the LA'-curves of Figure 3.46. 	Similarly 

we predicted that T . should be increased so as to correct 

the transverse chromatic aberration evident in Figure 3.47. 

The correction of LA' is shown in Figures 3.48, 

3.49 and 3.50 and the correction of E is shown in the 

complementary set of Figures 3.51, 3.52 and 3.53. 	The 

first stage in the correction of the longitudinal chromatic 

aberration is shown at the top of Figure 3.48 where the 

effect of increasing L in steps of 0.1 is seen to have pro-

gressively corrected the longitudinal chromatic aberration 

of all the zones. 	However, as expected, the marginal zones 

have been considerably overcorrected. 	This overcorrection 

has been restored l by the reduction of R4 ,at L = 0.3 only; 

clearly R4  has little effect on the marginal zones in the 

region of L = 0.4. 	Moreover the corresponding sets of E 

which are seen in Figure 3.51, show little variation during 

the optimization of R4  and L. 

It is evident from Figures 3.51, 3.52 and 3.53 

that the optimum system occurs very near T = 0.075 (Figure 

3.52), as far as E t  is concerned. 	This is also seen to be 
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the case with LA', , Clearly it is evident from Figures 

3.49 and 3.52 that the optimum system with two-zone correct-. 

ion lies .near L =,0.3, T =0.075 and R4  = 0.12 (this system - 

is called SS(25.1)1.. 	(However , considering these results 

in the light of more recent experience.it.is  felt that L 

could be increased and 10[3'1 reduced.) 

3.4.3 	The Parameters of the Type 122 Compared with those 

'of the Type 121 and the Pentac. 

The construction parameters and the performance 

parameters of the final type 122 (system SS(25.1)) are 

presented in the last columns of Tables 3.9 and 3.10. 

This system is developed to a stage that lies ,somewhere 

between SS(4) and SS(24) since it still has R2 = 0 and its 

stop is at the first principal point of the lens group b. 

However, since the variation in the parameters of the type 

121 from SS(4) to FS12 is mall, then it seems that the 

main properties can be observed at an early stage of the 

design. 

The basic parameters are at the most elementary 

level of the design process. 	At this level the type 122 

is only similar to the Pentac in the order of magnitude 

of 2(/ 	The remaining basic parameters k l [21, P, L, and 

T are like those of the type 121. 
	As far as the other 

types of basic parameters are concerned we find, for example, 
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&V unchanged but 0 c/0a is very much less than that of 

either the type 121 or the Pentac. 

When we examine the spherical coefficients we 

find that the type 122 is again only similar in one case 

to the Pentac, its order of magnitude of cr 1, the others 

have remained much the same as those of the type 121. 

It is evident that the main changes in the 

coefficients have occurred with 07  and (//1_ 	A 	) as 
1 	4' 5' 6 

was predicted in the limited interpolative study of the 

type 122. 	These changes in performance parameters are 

associated with a change in the basic parameterX • 	This 

change in X has also noticeably affected the performance 

parameter R8 . 

It seems that the stage of development reached 

with the type 122 is sufficient for testing the design 

principles and for noting the main differences between it 

the type 121, and the Pentac. 	It is difficult at this 

stage, however, to say whether it is potentially better 

than the type 121 with regard to field. 	Looking at its 

spot diagrams (for d-light) shown in Figure 3.54 one feels 

that there has been some gain at 5 °  but the 10 0  image is 

comatic. 	The first thing to de here would be to adjust 

R2 
and to shift the stop before attempting further compari-

son of its potential with the type 121. 

• 
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CHAPTER 3.5 CONCLUDING REMARKS. 

3.5.1 	General  

The dilemma encountered in the design of a 

type 121 triplet when the aperture exceeds f/3.5, which 

was demonstrated in Chapter 1.4, has been overcome in 

sections 2 and 3 by the limited interpolative design 

technique. 	This has led to finding that the marginal 

spherical aberration is controlled mainly by the joint 

effects of the design parameters R
4 

(the Petzval sum) and 

L (the longitudinal chromatic aberration). 	A similar 

interaction of design parameters has been found to occur 

with the off-axial-image: it is controlled principally 

by the combination of design parameters T (the transverse 

chromatic aberration residual) and R 5 
(the 3rd order distor-

tion residual). 	However in the final stages of optimiz- 

ation the interaction of the four parameters R 4 , L, T and 

R5 must be considered. 	(R1 remains very stable during 

the advanced stages of design.) 

The above behaviour has been explained by the 

concept of all the coefficients converging simultaneously 

towards zero or some value near zero in the multi-dimensional 

design space which is defined by 4,;t, 10, P o  L, T). 

This concept has also led to a simple method for locating 

the "optimum region" rapidly and accurately: the optimum 

region occurs when the Petzval sum is as small as practicable 
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and the spherical aberration coefficients of at least the 

first three orders (cri 	1' T1 ) are near zero or have 

their lowest set of values with respect to (,X) , P,  L, T). 

Thus mapping all the coefficients is not required when  

locating the optimum region. 

As a result of this concept, the optimum mono-

chromatic system is found to coincide with the optimum 

chromatic system. 	Thus in designing for apertures smaller 

than f/3.5 the design should also be optimized with respect 

to all the basic parameters of both the monochromatic and 

chromatic types; the monochromatic parameters and basic  

parameters cannot be treated separately if the Petzval sum 

is to be minimized. 	This also applies to a monochromatic 

system of large aperture. 

The method of locating the optimum region using 

the "principle" of simultaneous convergence of the spherical 

aberration coefficients applies to the type 122 and also 

there is evidence in the literature indicating that it applies 

to the type 111 triplet as well. 	Finally since it has been 

shown in Section 2 that published results suggest that the  

"principle" applies to a telephoto system then it may well  

be a principle with wide application. 	Thus it seems that  

the "limited interpolative design technique" may lead to  

systematic automatic design. 
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3.5.2 	New Work. 

The interpolative mapping of the aberration 

coefficients of the type 111 seems to be the problem 

requiring immediate attention. 	If this interpolative 

study is carried out and it is found to support the principle 

of simultaneous convergence of the spherical coefficients, 

then the way is clear for extending the process to other 

triplet types and other systems. 	Indeed, at this stage, 

there would be justification for the construction of an 

automatic design programme based on this convergence of the 

spherical coefficients. 

Finally, the design method, which has been developed 

in this work, shoilld be extended so as to produce maps of the 

"optical transfer function" versus the "basic parameters". 
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