RIGID AND GENERIC STRUCTURES

by
Garn Cooper B.Sc.(Hons)

Submitted in fulfilment of the requirements

for the degree of Master of Science

University of Tasmania

February, 1993



This thesis contains no material which has been accepted for the
award of any other degree or diploma in any tertiary institution, and to
the best of my knowledge and belief this thesis contains no material
| previouély published or written by another person, except when due

reference is made in the text of the thesis.

et oerpe



Abstract

This thesis is an examination of infinitesimal rigidity in generic
structures using linear algebra and matroid theory techniques. | The
structures examined are bar and joint structures in 1, 2 and 3 dimensions,
and hinged panel structures. The focus of this work is a conjectured
environment for higher dimensional analogues of Laman's theorem, and
‘some light is consequently shed on the quest for a combinatorial
characterisation of (generié,) rigid bar and joint structures in three

dimensions.
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Introduction.

Consider a triangular framework and a square framework in a plane, for
which the edges are inflexible rods which are joined at the vertices by universal
~ joints. The latter is flexible in the plane since it can deform into the shape of
a thombus. The triangular framework is rigid in the plane since the three rods
determine the relative positions of the three vertices. Similarly a tetrahedral
framework in space, consisting of six rods connected at the vertices by universal
joints is rigid, whereas a cube constructed the same way is flexible. A figure
consisting of two triangles with a common édge is rigid in the plane but flexible
in space, since one triangle can then rotate relative to the other along the
common edge. Given a framework how can we tell if it is rigid or flexible in a
given context?

| The rigid frameworks above are structures, while the flexible ones are
mechanisms, so the above is a first step in modelling both structures and
mechanisms. The mathematical theory of rigidity, as it stands today, is so -
closely related to the disciplines of structural engineering and mechanical
engineering that from a mathematician's viewpoint there are no distinct
margins between the three. For example, the papers of Calladine [C1],
Pellegrino [P1] [P2], and Kaveh [K7] [K8] [K9] [K10] [K11] on the mathematics
behind theory of structures are by structural engineers and those of Baker [B2]
[B3] [B4] [B5] [B6] and Hunt [H1] are some of their countérparts in mechanical

engineering. Also Crapo [C14] and Baracs [B7] with a very mathematical



approach, address unusual engineering problems and Laman [L1}, an engineer,
has produced a quintessential mathematical result.

Although in the nineteenth century the distinctions between étructura.l and
mechanical enginéering were not as strong as they are today, and indeed one.
was a branch of the other to some extent [R3], for the sake of this discussion
we regard the work done then according to contemporary perceptions. From
the theory of structures in the nineteenth century [C3] the greatest
contributions are from the practical discipline of graphical statics [C17].
Cremona [C17] acknowledges Carl Culmann, \X_/ho was appointed professor of
engineering sciences at Zirich Polytechnikum in 1855, as "the ingenious and
esteemed creator of graphical statics". However from graphical statics it is
Maxwell's geometrical theory of reciprocal diagrams [M3] [M4], subscribed to by
Rankine [R1] [R2] which has had the greatest impact on modern theory so far,
leading to the work of Crapo [C13] and Whiteley [C16] [W8]. Apart from this,
a method of L.Henneberg [T8] [C3] has been generalised by Tay and Whiteley
[T6] [T7]. The endurmg early contributions from mechanical engineering have
been more in the nature of analyses of particular mechanisms [B8] [B9] [D5]

During the above investigations it became clear that it was necessary to
take care with what was meant by rigid. A framework may fall into any one of
the following claéses: |

It is rigid, a proper structure. For example
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It is continuously movable, a proper mechanism. For example

n Plﬂ“e in Space in space
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It is infinitesimally moveable, a shaky structure or an immobile

mechanism. For example

W

in P'a“ n space

Or it is multistable, where the framework has two or more stable forms.

For exa.mple

P‘Gm&

The concepts of rigid and continuously movable frameworks are perfectly
clear, but what is this third group? It consists of things which liberal
definitions of structures, such as a mechanical engineer might use, would
represent as structures, but liberal definitions of mechanisms, such as a
structural engineer might use, would represent as mechanisms. Such things
would not be acceptable as structures to a structural engineer because they are
inherently unstable, and would not be acceptable to a mechanical engineer as

mechanisms, because they do not actually move. Multistable structures are



actually rigid mathematically hence this class is really a subclass of rigid
frameworks, but we mention them because due to deformability of all materials
they are encountered in practice.

The powerful methods of graphical statics were born of a.nAundersta.nding
of geometry, the two areas of which most influenced this practical discipline
were projective geometry and the study of polyhedra. We introduce now the
work by geometers in developing knowledge of abstract rigidity of polyhedra
and shall retﬁrn later to projective geometry.: This work was not practically
oriented and was not the work which influenced the workers in graphical
statics. In 1766 Euler conjectured, "A closed spacial figure allows no changes,
as long as it is not ripped apart" [G1] [C6] [C7], and expanded on this in a
letter to Lagrange in 1770. Despite the simplicity of this conjecture, it stood
for 200 years. |

The first advance was made in 1813 by Cauchy [C2] who essentially
proved that a convex closed polyhedral surface is rigid if its flat polygonal faces
are held rigid. In 1896 Bricard [B17] showed that the only flexible octahedra
had bad self intersections, so all embedded octahedra were rigid. Similar results
to Cauchy's were obtained by Liebmann [L2] for analytic surfaces, and by
Cohn-Vossen [C4] for the smooth case. In the 1940s Alexandrov showed that
all triangulated convex polyhedral surfaces were rigid if there were no vertices
in the interior of the flat natural faces. Then in 1974 Gluck [G1] using an idea
of Dehn [D2] and Weyl [W4] that Cauchy's theorem was also true for the
stronger infinitesimal rigidity, showed that almost all triangulated spherical
surfaces were rigid. In 1976 Connelly began to have an inkling of how to settle
the conjecture [C5], and he produced a counterexample [C7] [C8], which was
soon refined {C6] [C8], based on a Bricard flexible octahedron.

Other researchers with a strong interest in polyhedra have been Bennett

(B8], Blaschke [B10], Goldberg [G3] [G4] and Wunderlich [W21] [W22] with



analyses of specific polyhedra, and more recently Sugihara [S3] and Whiteley
[W8] [W12] [W13] [W16] and Kann [K3] [K4] [K5] [K6] in apparent isolation
from his contemporaries. In Connelly's later work [C9] [C10] he acknowledges
the advances of A.D.Aleiandrov toward his result that arbitrarily triangulated
- convex surfaces are rigid. The work of Roth [R11] and Asimow [A1] [A2] gives
~ some results of Alexandrov. |

In these later works of Connelly [C9] [C10] he obtains results about
tensegfity frameworks which have been investigated to some degree by
Calladine [C1], Roth and Whiteley [R12], to a lesser extent by Baglivo and
Graver [B1], and Whiteley [W10] [W15], and are mentioned in the survey
articles by Crapo [C13] and Goldberg [G3].

In addition to the work which led up to Connelly's results, rigidity theory
as a mathematical pastime really burgeoned in the mid to late 1970's and until
about 1970 most work on bar and joint frameworks was manifestly of an
engineering nature and the new mathematical resﬁlts focussed on peculiar
structures or mechanisms. Examples can be found in the work of Bennett [B8]
[BY], Blaschke [B10], Goldberg [G2] [G3] [G4], Crapo [C14], and Wunderlich
[W21] [W22]. Since Laman's 1970 result [L1] characterising a claSs of planar
isostatic structures there has been an increase in activity which is largely
attributable to two factors — namely the survey work by Grinbaum which
raised many interesting questions and evidently reached a wide and receptive
audience, and the formation at the University of Montreal of the structural
topology research group. It seems that Janos Baracs had been collecting
interesting and intractable idiosyncratic or nice-looking problems from
architecture and structural engineering which were to provide food for this
group. He initiated the elegant and thorough analysis of the rigidity of regular
rectangular grids undertaken by Crapo and Bolker [B11} [B12] [B13] [B14] [C12]

using combinatorial techniques, and later extended by Baglivo and Graver [B1],



Whiteley [W10] and Recski [R6] [R7]. As well as providing problems such as
the tetrahedral-octahedral truss [C14}, he introduced in 1975 [B7] a new type of
- structure whose analysis has become one of the chief activities of researchers in
this area and is one of the main topics of this thesis. Although introduced in
their best known contemporary form by Baracs [B7] and developed nicely by
Crapo and Whiteley [C16] [W8], hinged panel structures have actually been
around a long time and particular examples have been presented and analysed
by Bennett [B9], Wunderlich [W21] and Goldberg [G2] [G3] [G4]. It is
apparent from the paper of Baracs [B7] and comments of Bennett [B9] that
Crapo and Whiteley's result [C16] giving explicitly the conditions for the
rigidity of a cycle of k panels was suspected long before it was proved. More
recently Tay [T3] [T5] [T6] and White and Whiteley [W6] have generalised
these structures to higher dimensions.

Due to the concurrent development of statics and projective geometry, it
was realised, in 1863 by Rankine [R1] {R2] [R3], that static equilibria were
projectively invariant. This is the fundamental theorem of rigidity, and proofs
are given by Wunderlich [W23], Crapo and Whiteley [C16], and Wegner [W1].
The natural extension of this idea to an investigation of the effect of a polarity
on a structure has been carried out by Tarnai [T1] and Whiteley [W15]. A
belief in the power of projective methods was promulgated recently by Baracs
[B7] and Crapo [C12], and their influence in the structural topology research
group sparked a proliferation of papers with this bias, ranging from the
introduction of Crapo's methods [C15] and their development [C16] [W8],
applications and consequences [T3] [T5] [T6] [W5] [W6] [W10] [W13] [W14] to
the more geometrical, less algebraic, work of Dandurand [D1]. Independent
researchers also realised the importance of a projective approach and the most |
- salient of these is Wegner [W1] [W2].

An obvious natural description of bar and joint structures is in terms of



graphs, and consequently the tendency of the most recent work is to consider
rigidity as a graph property which may carry across to structures related to
that graph. This inclination has been associated with the explicit distinction of
generic structures and the papers [Al] [A2] [B15] [C13] [C5] [K7] [K8] [K9]
[K11] [L1] [L5] [M1] [R4] [R5] [R8] [T3] [T4] [T7] [W7] [W9] [W11] [W17]
[W18] all display a consciousness of this. Bolker and Roth [B15] and Whiteley
[W7] [W9] [W11] have investigated the rigidity of bipartite graphs.

Because of its close connection with graph theory we cannoﬁ be surprised
at the application of matroid theory in the médelling of various types of
structure, however we find the variety of these applications noteworthy. Bolker
and Crapo [B11] [B12] [B13] [B14] and their successors [B1] [R6] [R7] have used
a matroid defined on the diagonal braces of their gridworks. Baracs [B7],
Dandurand [D1], Crapo and Whiteley {C16] (W8] and Tay [T3] [T4] have used
a matroid defined on the lines (and screws [V1] [K12]) in space, based on a
projective coordinatisation of these [V1] [K12]. Recski [R4] [R5] [R7] has used
a matroid on the coordinates of the velocities of the joints of his bar and joint
structures, which is the dependence matroid on the columns of the
coordinatising matrix of his structure. By far the most common matroid
associated with a bar and joint structure is called the structure geometry of the
structure, and is determined by the bars of the structure. It is the dependence
matroid on the rows of the coordinatising matrix of the structure and is
presented in this thesis and is used in Asimow and Roth [A2], Crapo [C15],
Graver [G5], Sugihara [S2] [S3], Servatius [S1], Tay [T3] [T5], and Whiteley
[T7], and Lovész and Yemini [L5]. In fact Lovdsz and Yemini have used the
theory of polymatroids, and the usual cycle matroid on the edges of a graph to
prove results concerning this structure geometry.

As with any graph theoretic and combinatorial work, there is an attraction

in the above for those interested in an algorithmic approach which computers



can handle. Papers written from this perspective range from the early
inefficient work of Kahn [K2] to those of Kaveh [K7] [K8] [K10], Recski [R7],
Sugihara (S2] [S3], Lovdsz [L4] and Mansfield [M2] which give explicit -
algorithms, and to the work of Lovasz and Yemini [L5], Rosenberg [R9] [R10],
White and Whiteley [W5] [W6], which are simply written with such an
~ approach in mind. |

In generalising to higher dimensional structures many people have moved
away from modelling real problems, and in fact the idea of structural rigidity
has also been modified until it bears little resemblance to its forerunner [D3]
[D4]. Gromov [G6] and Kalai [K1] have also applied rigidity theory in pure
mathematics, and it has also come to be employed in scene analysis by C.rapo
and Whiteley [C16] [W8], Sugihara [S3] and Whiteley [W13], and in geodesy,
see Whiteley [W11] [W17] and Wunderlich [W19] [W20].

Recent general work on structural rigidity has been by Asimov and Roth
[A1] [A2], Crapo [C13], Recski [R7] and Graver [G5], and these would provide a
basis for an understanding of the area, especially if augmented by Goldberg
[G3], Connelly [C8] and Rooney and Wilson [RS]. _

In summary, the several outstanding general ideas in the area have been:

i) The work in graphical statics [C17] [M3] [M4] [C3] and in particular
the realisation that infinitesimal rigidity is projectively invariant [R1] [R2]
[C16] [W1] [W23].

ii) Cauchy's theorem [C2] and Gluck's theorem [G1] on polyhedra and
Connelly's counterexample [C6].

iii) Larrian's characterisation of a class of isostatic planar bar and joint
structures [L1].

iv) Consequent upon ii) and iii) (and numerous other results) the explicit
recognition of generic structures [C13] [L5] [G5].

In addition to ideas iii) and iv) above, and the subsequent quest for



satisfactory characterisations of (generic) spatial isostatic structures, a strong
influence on this thesis has been the introduction by Baracs in 1975 [B7] of
what he calls articulated spatial panel structures, accompanied by an indication
of the reliance of the analysis of these structures on projective geometry. A
slight generalisation of these structures of Baracs, alluded to by Crapo and
Whiteley [C16], is a type of structure which can't be modelled in terms of the
~ simple bar and jdint structures, and therefore from a mathematical rigidity
theorist's viewpoint entails something new and fundamental. A screw hinge is a
basic joint between two bodies in spa(;,e, just as a joint of a planar bar and joint -

structure is a basic joint between two bodies in the plane [H1].

The main tools employed in this thesis come from linear algebra, matroid
theory and graph theory, with a strong influence on our ideas coming from
projective geometry.

The first chapter was motivated by our slight discontent with every
explanation we had seen, of the fact that a rigid body in the plane has three
independeht rigid motions, and a rigid body in space has six independent rigid
motions. We know that good explanations exist in simple dynamics, however
we've not seen any among works in this area. Also, even in papers as recent as
1991 there are inaccuracies. For example the definition of a rigid structure
given by Graver [G5] on page 356 is inadequate for a collinear structure in
3-space. This chapter presents a clear exposition of these basic facts.

Chapters two and four deal with well known theory about planar
structures, including Lovasz and Yemini's proof of Laman's theorem and a
suggestion, inspired by their paper, of a possible new avenue of proof for this
result, and several results of our own. The results 2.6, 2.7, 2.13, and 4.7 are
the original results suggested by Lovasz and Yemini's paper. The results 4.1 -

4.5 are from Lovasz and Yemini [L5], and the results 4.6, 4.8, 4.9 are widely
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known. Definitions and results 4.11 — 4.15 can be motivated by ideas from
mechanical engineering [B6], and are found in Tay [T3]. Results 4.16 — 4.20 are
original results of ours with 4.19 appearing in [R8].

Chapter three is an original discﬁssion of the development of the idea of
genericity, including our definition and a result relating this to its predecessors.

Dealing with spatial structures, chapter five explains the difference
between the planar case and the spatial case for bar and joint structures, and
chapter six introdﬁces certain hinged panel structures. Chapter six also
explains the similarities between planar bar and joilit structures and these
hinged panel structures. These ideas originate with Laman [L1] and Baracs
[B7], although our work is based rather more on work of their successors,
Lovasz and Yemini [L5] and Crapo and Whiteley [C16]. Since Laman's 1970
characterisation of generic isostatic structures in the plane, and the subsequént
- appearance of counterexa.mplés to the generalisation of his theorem to spatial
bar and joint frameworks, some people have assumed that generalisations don't
exist, whilst others have wondered how such things might manifest themselves.
In 1981 Tay [T2] [T3] gave a generalisation which has nowhere been explicitly
acknowledged as such. We conjecture that a version of this theorem holds for
these hinged panel structures, presaged by those studied by Baracs [B7] and
Crapo and Whiteley [C16]. This conjecture is similar to a particular case of
this general theorem of Tay's and is amenable to being proven in the same
manner. The original work is 5.6, 5.7 and chapter six.

Chapter seven consists of speculations, including a dicussion of the
projective viewpoint and a list of obvious and routine natural extensions of
work presented earlier and less obvious interesting things. The reason some of
the ideas in this chapter have not been developed more fully is that they are
consequences of a conjecture and not an established fact, and most of the work

represented by this thesis consisted in attempts to prove this, rather than
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develop speculations. We hope the effect of the thoughts in chapter seven is to

convince one of the worth of the ideas in chapter six.
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Graph Theory and Matroid Theory Preamble.

This thesis assumes some knowledge of graph theory and matroid theory.
Here is a list of items from graph theory and matroid theory which are used in
the thesis. For more background than is mentioned here refer to Bondy and

Murty [B16] for graph theory, and Oxley [O1] for matroid theory.

Definition 0.1: A graph G(V,E) is a finite non—-empty set V(G) whose elements
are called vertices, and a list E(G) of unordered pairs of elements of V(G)
called edges. An edge e and a vertex v are incident iff vee. A graph is simple
iff every edge is a pair of distinct vertices and no two edges are identical. A
graph G is complete iff every pair of vertices is an edge. We denote the |
complete graph with n vertices by Kn.
Definition 0.2: A walk of a graph G is an alternating sequence of vertices and
edges Vg€pVyrCor oV 1€
each edge is incident with the two vertices immediately preceding and following

v » beginning and ending with vertices, in which

it. It is a closed path if Vo=V A minimal closed path is called a cycle. A

graph is connected iff every two vertices are joined by a walk.
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Definition 0.3: A directed graph is a finite non-empty set V(G) of vertices, and
a list E(G) of ordered pairs of elements of V(G). The elefnents of E(G) are
called directed edges. The first element of a directed edge is called its head,
and the second its tail. Clearly ény graph may be made into a directed graph

by ordering each of its edges.

Definition 0.4: Let G be a directed graph where V(G)={v,,.. ..,vn} and
' 1 if v, is the head ofej,

E(G)={e,,.. .e_}. Set &= [—1 if v, isthe tail of e
0 otherwise.

?

The matrix (aij) is called the incidence matriz of G.

Definition 0.5: A matroid‘M(E) on a set E is an integer valued function, rank,
on 2% which obeys; |

i) 0<rk(A)S|A| V ACE, -

ii) ACBCE 3 rk(A)<rk(B),

iii) rk(A)+rk(B)<rk(AuB)+rk(ANnB)

Definition 0.6: A polymatroid on a set E is an integér valued function, rank, on
2F which obeys;

i) 1k(0)=0,

ii) ACBCE = rk(A)<rk(B),

iii) rk(A)+rk(B)<rk(AuB)+rk(ANB).

Definition 0.7: The independent sets of a matroid are the elements of the set

{Ak(A)=|A|}=
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Theorem 0.8: The independent sets satisfy;
i) PeJ-
ii) IeJand JcI 3 JeJ
iii) if LJeJand |I|=|J|+1 then 3 iel s.t. JUiesT o

. Definition 0.9: The circuits of a matroid are the elements of the set

{C:1k(C)=rk(C\e)=|C[-1 V ecC}=¢.

Theorem 0.10: The circuits satisfy;

i) If X,Ye# and X#Y then X isn't a subset of Y,

ii) If X and Y are distinct members of &, é,eXnY, and beX\Y, then there
exists Ce ¥ such that beCc(XuY)\a. 0

Definition 0.11: The closure operator of a matroid on E is the function

cl:2%-2F defined by cl(A)={a:rk(auA)=Tk(A)}.

Theorem 0.12: The closure operator satisfies, for X,YCE and x,y€E;
) Xcel(X), |
i) YCX = cl(Y)cel(X),
ili) cl(X)=cl(cl(X)),
“iv) If ygcl(X) and yecl(Xux) then xe;l(XUy). o

| Examples 0.13: i) Free matroids where rk(A)=|A] if ACE.

i) M EG) ? matroid on. the edges of a graph G, where #={A:the edges
of A form a cycle of the graph}.

iii) The debendence matroid on the columns (or on the rows) of a matrix
has for E the collection of columns, and rk(A)=dim<A>. In this case E is a

subset of a vector space, and cl(A)=<A>nNE. |



Definition 0.14: Two matroids on E1 and E2 respectively are isomorphic iff 3 a
bijection between E, and E, which preserves the rank function.

Theorem 0.15: For a graph G, M is isomorphic to the dependence matroid

E(G)
on the incidence matrix of G (however it is directed). 0

Definition 0.16: We say M, is a weak map image of M, iff rk (A)<rk,(A) V
ACE, and write M (E)<M,(E).

Definition 0.17: Let M, and M2‘be matroids on disjoint sets E, and E2. The
direct sum of Ml. and M2, written M1€9M2, is the matroid on E1UE2 with

rk,,(A)=1k (ANE,)+rk,(ANE,).
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Defining Rigidity.

In this chapter we arrive at a definition (1.18) for rigid structures by
consi.derving physical requirements from the reé.l world and how these relate to
the model we first establish. Because we can only build structures in 1, 2 or 3
dimensions, we are really only interested in the cas}es of this definition where
the dimension is 1, 2 or 3, although the abstractions of this section extend
readily to higher dimensions. Having thus completed the aim of this chapter

we include several general concepts for use in subsequent chapters.

In the following, R’ denotes the { dimensional vector space over the field of

real numbers, generated by the basis

{(1,0,.. .,0),. oy (0,e. oLy o0s0)yee oey(0,e -,0,1)}

{
with inner product (2,0 -yap):(byye. oyby) = ab. .
1 “l 1 { 11
i=1

Definition 1.1: The affine span of n points p,.. ..,p of r? is { Eaipi | Eai=1}.
Despite the apparent significance of the order in which these points are
arranged, it is easy to show that under any rearrangement of the order of these

points the same affine span results.
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Definition 1.2: A bar and joint structure in lRe, S, consists of a simple
connected graph G(V,E) where E(G)#0, and an injective mapping x: V(G) - R
We will identify V(G) with the set of the first n positive integers, and write ¥,
instead of x(i), and x, is called a joint of S. 1If (i,j) € E(G) then the unordered
pair {xi,xj} is called a bar of S. G is called the graph underlying S. The set
of all joints of S is denoted J(S) and the set of bars of S is denoted B(S), and

when necessary S(G) denotes a structure which graph G underlies.

The reason we study bar and joint structures is that they are a
mathematical abstraction of physical structures designed and built by engineers,
so we model the behaviour of real structures with our mathematical bar and

joint structures.

The following definition is imposed by the fact that the length of every
bar of a physical structure scarcely varies, and in our simple model we can.

demand that every bar of a bar and joint structure be rigid.

Definition 1.3: An admissible motion of a bar and joint structure in IRZ is the
image of a mapping p : V(G) - R which satisfies (pi—uj)-( Xi_xj)=0’
V (i,j) € E(G), where - denotes inner product and p, = p(i).

If A is viewed as an instantaneous velocity assignment, then this condition
requires that the difference in the velocities of the joints of any one bar at any
instant, must be a vector perpendicular to that bar. That is, each bar is rigid.

In accordance with the interpretation of A as a velocity we will denote

(x,y,2) if£=3 (J'(i,jfi,ii) if{=3
x; by (x,y) ifé=2, and g, by (x,y) iff=2.
(x) fe=1 | (%) ifo=1
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Although we are using notation here which in other places denotes a
derivative w.r.t. time, in this case )’(i cannot always be regarded as a derivative
of x..

1

(a4
Example 1.4:

when £=0: x,(£)=0=y, (t)=7, (t)=x, (t)=x,(t)

. . {0 if t#1
Yo(t)=1, ¥,(t)=0, x,(t)=11 if t=1

Evidently 5(2(t) isn't the derivative of x,(t), yet V t€(—wm), we have

(3¢, (6)%,(8)) ey (05, (0) (7, (D)7, ()7, (1) =0.

@‘“%:)

Since for every bar of a structure, S, we have by the last definition an
orthdgonality condition, overall we have a system of m = |B(S)| equations

which we can write as Asg =0,

(ke oy ol ) A L= 3

where u = (xi,.. "”fn’yl’“ ..,yn) ifld=2,

(X5 X)) ifl=1

n
and As is an mx/n matrix with

XX, if the utE bar is (i,j) and v = 1
2~ YiY; if the uth bar is (i,j) and v = i+n and {2 2
2z, if the 4" bar is (i,j) and v = i+2n and £ > 3
0 otherwise .
2

Example 1.5: If G is

and underlies both S . bar and joint structure in IR2, and S2, a bar and joint
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structure in [R3,

— — - 1 -
then AS = 0 T X%, Xo=x, 0 0%y, Yy Y3 ¥y O
bl g *25"4 0 " X%y 0 yoyy, 07y,
Xg Xy XXy 0 70 "y, Yyl
and AS2 =
X, X, XX, 0 0 y,~v,¥,y, O 0 z-=z z-z 0 0
xi—xg % 1x3—x1 0 yi—yg % 1y:,’—y1 0 zi—zg 5! Za~Z, 0
0 Xo~Xp Xa=X, 0 Yo V3 Y37 ¥, 0 0 Zy2q 297 0
0 Xo=X, 0 XX, 0 Yo ¥y 0 Y4 Yo 0 2o~y 0%z 4%
0 0 Xg=X, X,~Xq 0 0 Yg ¥4 Y43 0 0 2y, 2,77

Definition 1.6: The matrix As is the coordinatising matriz of S. Every column
of AS corresponds to one coordinate of a joint of S, and every row corresponds

to a bar. The null space of AS is denoted by NS'

Lemma 1.7: Ng is a vector space consisting of all admissible motions of the
structure S.

Proof: Elementary linear algebra. o

Lemma 1.8: If J(S) affinely spans [Re, then NS has a subspace of dimension

Y +1 )

2
Proof: (= 1: Ny contains (1,.. ..,,1) which is a translation of S.

(= 2 N contains (1,.. .,1,0,.. ..,0) and (0,.. ..,0,1,.. ..,1) which are
translations of the structure in directions along the coordinate axes, and
(yl,.. A ..,—xn) which is a rotation of the structure about the origin.
These three vectors are independent. |

{=3: NS contains (1,.. ..,1,0,.. ..,0,0,.. ..,0), (0,.. ..,0,1,.. ..,1,0,.. ..,0) and

(,.. .,0,0,.. ..,0,1,.. ..,1) (or u, U, and u, for convenience) which are

3
translations of the structure in the directions along the coordinate axes, and

(0,.. S SR A T ..,—yn) = U, (zl,.. S | S | Ko S ..,—xn) = U, and
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(yl,.. YKo X0, 0) = U, which are rotations of the structure about

the coordinate axes.

Let u, = (0,.. 0,0,252 .. ..,zn-zl,O,yl—y2,.. ..,yl-yn) = 1,702, +1,Y,,
u, = (0,22—21,.. 2 21,05 00,0,X, X, ..,xl—xn) = U U2 +UX,
u, = (0,yy=Y e ¥, ¥ 0x Ky X X0, 0) = By X By

considering the first coordinates of vectors in {u,,u respectively

iy ligsllyllgs U},
1,0,0,0,0, and 0, and using symmetry arguments we deduce that this set of

vectors is linearly independent if and only if {u is linearly independent.

pUglo}

Suppose J(S) is a collinear set. Since x is injective, no two joints have
the same coordinates and w.l.o.g. z, # 2z, Since J(S) is collinear z, # zi'V i=
2.. ..n. For the same reason all the directions of the lines determined by pairs

of joints will be the same, so _
Yo% _ ¥ S

a, = = and o, = = Vi=2. .n
. 1 Z2—Z1 Zi—Z1 2 Z2—Z1 Zi—Z1
So u, = ou, + au, and {gg,_qs,g7} is dependent. Conversely, suppose
{u Ug,Ug,u 7} is dependent. Then without loss of generality U, = alg + o,u.
Comparing coordma,tes, we must have
YooY Y-y X, =X X, —X.
L= 22_21 = zl_zl and @, = zl—z2 = Zl—Zl Vi=2..n.
2“1 i1 2“1 i1

Since the directions of the lines containing joint 1 and each of the other joints

are the same, J(S) is collinear. That is {u.,u o} are independent if

17-—2’ 37—7,L187g
and only if J(S) isn't collinear. ' o

Definition 1.9: Regardless of its dimension, the space generated by
U,51,,U4,1 ’—5’26} is called the space of rigid motions of S (in R ). Similarly
the space gemerated by {(1,.. ..,1,0,.. ..,0),(0,.. ..,0,1,.. ..,l),(yl,.. oY X e
..—xn)} is called the space of rigid motions of’S (in [Rz), and the space generated
by{(1,.. ..‘,1)} is called the space of rigid motions of S (in lRl). We denote this

space by RS. '
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Definition 1.10: If S is a structure in [Re, then the codimension of RS in NS is
called the degree of freedom of S, and is denoted by £(S).

If, to a bar and joint structure in lRe, we add bars, we can only increase
the rank of the system and only diminish the dimension of the spacé of
admissible motions. When we have added all possible bars to a bar and joint'
structure in IRZ (so that the underlying graph of our structure is now a complete
graph) we have a structure which has the least amount of admissible motions of
all structures with these joints. @ We know from lemma 1.8 that we cannot
keep adding bars until there are no admissible motions, so how can we define
rigidit.y? At least we know that dim(NS) for a structure which isn't "rigid" is
necessarily greater than dim(NS,) for a "rigid" structure with the same set of
joints.

In summary we have

Comment 1.11: If a structure with underlying graph complete is "rigid", there
may be other structures having the same set of joints which are '"rigid".
However if a structure with a complete graph underlying it is not "rigid", then

there is no structure with the same set of joints which is "rigid".

An examination of structures on complete graphs will lead us to a
definition for rigidity.

A question which arises is this: "Why do we consider rigidity in spaces of
different dimension, when perhaps it might suffice to embed all structures in a
space of sufficiently high dimension, thereby avoiding the complication of
considering structures in spaces of different dimensions?", and although a
complete answer to this question requires more information, we can at this

stage demonstrate simply the necessity of our approach with these examples.
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Example 1.12: A little consideration will lead to a beliéf that the structure in
example 1.5 built in the plane and with joints constrained to move in the plane
will be "rigid", whereas if the joints were allowed to move freely in space, the
structure would flex. In the former case the only admissible motions are rigid
motions, whereas in the latter case in addition to the six dimensional space of
rigid motions, the structure also has the admissible motion
(0,0,0,(,75,)(2,2)~(3,77,5) (2,2,),0,0.0,(2,2,) (x,5)2,2,) (x,%,),

0,0,0,(xl—x2)(yl—y3)—(xl—x3)(yl—y2)) = f. Thus in the former case dim(NS) =3

but in the latter case dim(NS) =T

Example 1.13: Consider the structures Sl’ obta.ined‘fro‘m S1 in example 1.5,
and S,” and S *’ bbtained from S, in example 1.5 by adding a bar (so that
now we are dealing with structures with K, as the underlying graph).
If J(Sl’)={(0,0),(1,1),(2,0),(1,2)}, J(Sl")={(0,0,0),(1,1,0),(2,0,0),(1,2,0)},
3(5,)={(0,0,0),(1,1,0),(1,-1,0),(0,1,1)}, and G is |

1100-110 0]
10 10-2020
0000 0-110
then Ag /= 01 01 0 10-1
0 0-11 0 02-2
2002000 0] dimNg,) =3,
1
"1 1 00-1 10 00000
1 010-2 0200000
s | 00000-1100000
s,/”=| 0-1 01 0 10-10000
' 0 0-11 0 02-20000
| 2002000 00000 jdim(Ng ,,) =7, and
. 1
110 0-110000 00]
101 0 10-10 00 00
A | 0000022000 00
s,’ =| 010-1 00 00 0-1 01
001-1 0022 0 0-11
000 0-10 01-1 0 01 dim(Ng,)=6.
2
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In some sense Sl’ and Sl”- appear identical but although Sl' is "rigid", Sl"

has an admissible motion:

w

u= (0,0a0a0a0’07070a0)030,1);

which S ” cannot have, and is therefore not "rigid".

These examples suggest that the affine span of the joints of a structure
may be a suitable environment in which to consider the "rigidity" of that
structure. We return to our examination of complete graphs in order to

consolidate this suggestion.

Lemma 1.14: In'R% if K_ underlies S and the joints of S affinely span R, then
dim NS_ = 3.

Proof: =~ We use induction on the number of joints, n. If n = 3, J(S) is a
non—collinear triangle and we have three independent equations in six

unknowns, so that dim NS = 3. Now suppose that dim NS(K )= 3 whenever
: n

J(S(K,)) span R>. Any structure S(K_ +1)_ where n>3 and the joints affinely

span R? can be obtained by adding a joint, (xn +17n +1), and n bars to a

structure S(K ) whose joints affinely span R Clearly dim N = dim
. S(K +1)
NS(Kn) + {(1), since AS(Kn_H) has two more columns than AS(Kn)’ and for every

matrix A we know that the number of columns of A is equal to the sum of the
rank of A and the dimension of the null space of A. . Now since J(S(Kn +1))
Spa,n IR27 3 (x11yl)1 (x21y2) E J(S(Kn)) (a'nd J(S(Kn+1))) S.t. (x17yl)1 (X2,y2) a‘nd

(x +1Yas ) are not collinear.
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So the two equations:
() Oy X ) + 0 )0 Y gy) = 0
and
(g2 )% ) * (Vg Y )p¥yy) = 0
which are amongst the n added to the system for S(K ) to make it the system
for S(Ku +1), are independent. Clearly these equations are also independent of

the equations for S(K ) since they involve the extra variables y_ 4 and X

_ +1
so the rank of the system increases by exactly 2 when the extra bars are added,
and dim NS(K y = dim NS(K y = 3. So by induction dim NS(K )y = 3 if

Y n+1 n n
J(S(K_)) span R”. o
Also we have:
Lemma 1.15: In R%, if J(S(K ) affinely span R®, then dim Ng ) = 6
n
Proof: Exdctly analogous to the previous proof. 0

It is a well known and simple result that in R! a structure S is "rigid" if
and only if its underlying graph is connected. In fact the analysis of structures
in R! beyond this result is generally assumed- to be too simple to hold any
intrinsic interest, or to give any useful insight into higher dimensional analysis.
This is certainly true for the type of results which remain in this chapter, and
for this reason we make no more observations about [Rl, except to say that all

our general results expressed in terms of [Re are true in R%.

In the physical situations where our theory is used we know that
structures which are "rigid" in the sense we would like to define, are exactly

those structures where f(S)=0, that is where the space of admissible motions is
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identical with the space of rigid motions. We can use the last three lemmas to
express this mathematically for structures whose joints affinely span the space
. le in which they are being considered. For complete structures the space of
rigid motions and the space of admissible motions are identical iff (by lemmas
1.14 and 1.15) NS='4§L11 , and by lemma 1.11 we can extend this idea to all
structures whose joints affinely span the space IR(" in which they are being

considered.

Definition 1.16: A structure S in lRe whose joints affinely span [Rg, is rigid if and

only if dim Ng = 4511

What shall we do in the case of a structure whose joints don't span IRZ? |
Such structures are divided into two classes; those which have more joints than
¢ (1J(S)] > 0, and the others (|J(S)| < £). We deal first with the former

class:

Lemma 1.17: If for a structure S whose joints don't affinely span [RZ, 1J(S)| >
¢, then dim NS # ﬁgﬂl .

Proof: The only structures whose joints don't span R® are collinear. In R? if
J(S) are c01blinear,’ then Ng has a subspace of dimension |J(S)| + 1, since Ng
contains (1,.. ..,1,0,.. ..,0), (0,.. ..,0,1,.. ..,1) and (yl,., cerY X e ..,—xn), the
three rigid motions of lemma 1.8, and (O,O,yl—y2,.. +0,0,0,X,X, .. ..,0)=g3,.. .

(0,0,.. ¥ Y :0,0.. ..,x2—xl)=gn as shown: - £

2

which are seen to be independent.
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Similarly in R if the joints of S are coplanar, then NS has a subspace of
dimension |J(S)| + 3, and if the joints of S are collinear then Ng has a

subspace of dimension 2|J(S)| + 1.

b7

From observing .’the behaviour of structures built by engineers, we know
that collinear stvruct'ures 'in R? and lR3, with K as their underlying graph, where
n > 3, are not "rigid" in the strictest sense, as they admit "infinitesimal
motions" (in the. literature such structures are described as rigid but not
infinitesimally rigid [A2]). -~ Similarly coplanar structures in R3 with K as
underlying graph with n > 4, are manifestly not "rigid" in the sense we want to
define. |

Hence we can extend our definition to include this class of structures also.

We finally consider structures where £ > |J(S)| and J(S) doesn't span R
Due to the low number of such structures for £ = 2 and 3, this class is perhaps

best treated by considering every complete structure it contains.

&/ 7
S, S, Sq S,

We show the relevant information about these four structures in a table:
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{t+1) o

dim(N) equal engineers information - is definition
about rigidity. 1.16
RIGID?. adquat’e?
S 3 Yes Yes | Yes
AS2 5 No . | Yes | No
S, 6 Yes Yes Yes
Sy 6 Yes No No.

So in combining this information with our previous comments we realise
that for £ < 3 we want a bar and joint structure S in IRZ to be rigid if and only
if dim(NS) = ﬁ(gll’ unless in R® S is S 4 Or S2, where the latter is rigid, but

the former is not. Summing up we say

Definition 1.18: A bar and joint structure S in IRZ is rigid if and only if either
i) J(S) spans R and dim N = Y £+1},
or i) SisS, in®’

or iii) SisS, or S, in K.

Having arrived at the desired object of this section we now include a
comment concerning higher dimensions. = Most of the generalisation of this

section to £ > 4 is immediately clear, however the section between lemma 1.17
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and definition 1.18, which deals with structures S in R with ¢> |J(S)| and
J(S) not affinely spanning IRK, will necessarily require some extra work because
the explicit treatment used here is not generally possible since for a given ¢ the
nurhber of such complete structures is -«5;1) | There is also the added
consideration that engineers do not give us information about real physical
structures for £ > 4, and the lack of this intuitive aid requires that the
mathematical essence of these be inferred from the lower dimensional cases.
For example the question of whether K, built in R® with joints spanning R? is
rigid according to the abstraction of what engineers tell us about structures in
R? and R®, can be answered in the affirmative by analogy with K, built in R*
with joints spanning R® and K3 built in R® with joints sﬁanning R, Despite the
possible benefits such a general approach may confer in terms of giving greater
insight into this class of exceptions, we don't pursue this here because it is only
of peripheral interest relative to the motivation of this work, namely the
behaviour of physical structures.

An appropriate extension of our current meaning of rigidity into higher
dimensions leads naturally to conjectures such as:
(i) If J(S(K)) span IRZ, then S(K ) is rigid in any space of dimension k > £ if
and only if n—-1 = ¢ and _
(i) If S(Kn) is rigid in R v { > n-1, theﬁ the joints of S(Kn) span IRn_l;
however in the remainder of this thesis we shall restrict ourselves to working

within spaces of dimension less than four.

We finish this chapter with several concepts which hold generally in IRZ,

specific cases of which will be used in later chapters.
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Referring back to definition 1.6 we have:

Definition 1.19: A set of bars of S is independent if the corresponding rows of
AS are linearly independent. Since there is a matroid 6n the rows of AS, this
definition induces a matroid on the bars of S.  The matroid (see 0.7 0.8 0.13 iii)
thus induced on the bars of S, or equivalently on the rows of AS, is called the

structure geometry of S and is denoted DS'

Definition 1.20: A rigid bar and joint structure in lRe, whose structure geometry
is a free matroid, is called an isostatic structure. A rigid structure which is not

isostatic is hyperstatic.

Definition 1.21: If S'is a bar and joint Structﬁre in R¢ and xi,xjeJ(S) then we
say {xi,xj} is an implicit bar of S iff {Xi’xj} is not a bar of S but
(pi—pj) ‘-( xi—xj)=0 for every admissible motion u.

We use the simple notation SU{ xi,xj} for the structure obtvained from S by
adding an extra edge (i,j) to its underlying graph and retaining the same

injective mapping x into IRZ.

Lemina 1.22: If S is a bar and joint structure in,lkl and {xi,xj} is an implicit
bar of S then f(S)=f(Su{ xi,xj}). -

Proof: Immediate consequence of the definition. 8

Lemma 1.23: S is rigid iff {Xi’ xj} is either a bar of S or an implicit bar of S,

v xi#xjeJ(S) provided J(S) affinely spans lRe or the jolints‘ are affinely
independent.

Proof: Although this lemma holds more generally than in IR2, we only prove it
in the planar case. .The reason for this is that the proof for RS is exactly

analogous, but more cumbersome.
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Suppose S is rigid and { xi,xj} is not a bar of S. Every admissible motion
v is expressible as a linear combination of a basis of NS;'
y_=al(1,.. .,1,0,.. ..',.0)+a2(0,.. .,0,1,.. ..,1)+a3(—yl,.. =Y X e ..,xn), so if
(”i_'“j)'( xi—-xj)=0 for each of these basis vectors then { xi,xj} is an implicit bar.
(1,.. ..,1,0,.. ..,0): (xi—xj)(1—1)+(yi—yj)(0—0)=0 O.k.
(0yer 0, Lyee ) (x77%,)(0-0)+(y;7y)(1-1)=0 O.k.
(-yl’" -.-a"yn,xlr- "axn): (xi—xj)(yj_yi)+(yi_yj)(xi_xj)=0 O.k.

Conversely if T is the complete structure on J(S), then f(S)=f(T) by the

preceding lemma, and f(T)=0 by lemma 1.14, so f(S)=0 and S is rigid. a]

Still thinking more generally than R? we begin to think of structures as

consisting of "simpler" structures joined to form a larger structure.

Definition 1.24: Suppose S is a bar and joint structure with graph G(V,E), and
injection X:V(G)—me. A substructure of S is a structure S’, with graph
G’(V’,E’) and injection x’:V’(G’)—»IRe, s.t. G’ is a subgraph of G, and

X,=XI v’
Example 1.25: A planar example.

S S

S1 is a substructure of S. S3 is not a structure and thus not a

substructure of S. S, is not a substructure of S as xl#xi.
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Lemma 1.26: If S’ is a substructure of S, then DS’ is the restriction of DS to
the bars of S’. Conversely every restriction of DS to a connected subset B(S”)
of B(S), is the structure geometry of the substructure S’ of S.

Proof: We see this by looking at the rows of AS and AS,. o

Definition 1.27: A mazimal rigid substructure of S is a rigid substructure of S

which is a substructure of no rigid substructure of S other than itself.

Example 1.28: Another planar example.

S g

Sl, S2, S3, S R 85 are substructures of S. S 4 is mot a rigid substructure of
S, but S, S,, S,, and S, all are. S, and S,-are not maximal rigid substructures
of S, but S, and S, are. In fact S, and 85 are the only maximal rigid

substructures of S.
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Rigidity in r%.

“This technical chapter is part of an examination of bar and joint
~structures in R2. We introduce some proper’tieé of the structure geometry in IR2,
and also some lemmas designed for use in chapter 4 where our presentation of
structures in RZ is continued in a restricted' environment. Also thedrem 2.13 is

important to our investigation in chapters 5 and 6 of structures in RS.

Deﬁnition 2.1: A planar bar and joint structure is a bar and joint structure in
R%. Except when we explicitly state otherwise, throughout chapter two we shall
alway‘sA mean "bar and joint structure in R?" when we say "bar and joint
stniéture", or "structure".

We bring to the reader's attention non-ambiguous notation .abuses at
theorem 2.10, lemnzaf 2.12, theorem 2.13, and lemma 4.15, which consist - of
using gra.ph terminoiogy for structures, and of a loosenéss in the use of the U
symbol. In addition we sometimes talk of a complete structure on a certain set
of joints, by which we mean the structure with those joints which has a bar
between every pair of joints. Also on page 35 the vectors gl,g2,g3,y_s& mg have

had an unexplained rearrangement of co-ordinates.

Lemma 2.2: i) f(S)+rk(Ag)=2n-3.
i) 0<f(S)<2n-3.
i) 0<rk(Ag)<2n-3.
iv) S is rigid iff f(S)=0.
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Proof: Refer to definitions 1.18 and 1.10.
i) From linear a.lgebré, we know that, for a matrix Ag, we have
| rk(Ag) + dim(NS) = the number of columns of Ag.
 Since dim(Ng)=dim(R)-+{codimension of R in N, we have
[codimension of R in Ng]+dim(Rg)+rk(Ag)=2n
[codimension of Rg in Ng]+3+1k(Ag)=2n
f(S)+rk(Ag)=2n-3.
ii) & iii) Since rank is never negative and codimension is never negative,
these follow directly from i).
iv) From definition 1.16 or 1.18 we know S is rigid iff dim(Ng)=3. That
is, iff 3=[the codimension of Rg in NS]¥dim(RS)=f(S)+3. That is, iff £(S)=0. o

Theorem 2.3: rk(Aq)<min{|B(S)|,2|J(S)|-3}
Proof: A has [B(S)| rows and 2|J(S)| columns, and dim(NS)23. o

Lemma 2.4: If S is rigid then |B(S)|>2|J(S)|-3.
Proof: S rigid = rk(A'S)=2|J(S)'|—3 3 |B(S)|22|J(S)|-3, since |B(S)| is the

number of rows of AS" ]

- Theorem 2.5: Any two of the following conditions together imply the third:
i) Dy is free.
i) S is rigid.
iii) | B(S)|=2]J(5)|-3. |
Proof: i & ii = iii: S is rigid so rk(Ag)=2|J(S)|-3, and B(S) is independent so
tk(Ag)=]B(S)]. | |
i &iii % ii: B(S) is independent, so rk(Ag)=|B(S)|=2|J(S)[-3.- So S is

rigid.
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i & iii # it S is rigid, so rk(Ag)=2|J(S)|-3=|B(S)|. So.B(S) is

independent. )

The next two simple results were suggested by the work in [L5] and are

related to results 4.3 and 4.7.

Theorem 2.6: Let B(S)=B,U.. .UB, be a partition of the bars of S so that
Bi=B(Si) is the set of bars of a substructure S, of S. Then |

) |
(8)=21J(8)|-3-E(2|J(S)|-3K(S,)) iff D=Dg e...8D, .
i=1 ' » 1 k

1=

* Proof: §(2|J(Si)l—3—f(Si))=2|J(S)|—3—f(S) iff §rk(AS )=tk(Aq) iff
i : ' i=1 i

1=1

Corollary 2.7: Let B(S)=B,U.. .UB, be a partition of the bars of S so that

B.=B(S,) is the set of bars of a substructure S, of S. Then

k
£(S)=2|J(S)|-3-E(2|J(S)|-3) iff Dg=Dg e. .eD¢ and S, is rigid
i=1 1 k

1=

Vi=1.. .k
Proof: S, is rigid iff (S,)=0. . u!
Of course these two results are only useful for those structures for which
such partitions exist. Now we present some technical results for use in chapters

4, 5 and 6.

Now suppose we have a rigid substructure S, of some structure, with
J(S)={(xy )s-- «{x_y )}. We define a three dimensional vector space

ij_ . . . e .
Mg —{(a1+yia3,al+y 0, —X. 0.y, xja3).a1,a2,a3€ﬂ(} for fixed 1<i#j<n, with

%3 %X %300

addition (al,a2,a3,a4)+(bl-,bz,b3,b4)=(a1+b1,a2+b2,a3+b3,a4+b4) and scalar
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multiplication .7(a1,a2,a3,a,4)=(731,7:12,73.3,7&4). Consider the bijective linear
transformation to Mij from N defined by

B Jm—ozu Fal,+au, H(a +Y;0, 0, Y 0,05, 05, 0, xa3)
where 1,=(L,. y1,0,00 -0,0,.. ..,0), u,=(0,.. ..,0,1,.. ..,1,0,.. ..,0),
ga=(y1,.. oY Xyaee X0, ..,0), with the extra zeroes corresponding to

vertices of the structure of which S is a substructure. Summing up,

Lemma 2.8: The bijective linear transformation B;J.:NS—»M;j exists, for any two
joints i and j of a rigid substructure S of some larger structure.

Proof: Discussion above. : ' a

Lemma 2.9: If B(S)=B(S,)UB(S,) and B(T)=B(T,)UB(S,), S, and T, are rigid
substructures of S and TArespectively, and J(S,)nJ(S,)=J(T)nJ(S,)#d, then
f(S)=£(T). )

Proole We demonstrate the existence of a bijective linear transformation
between NS and N, using the fact that if the velocities of two joints of a rigid
body are known, then. the velocities of all the joints of the rigid body are
consequently known, as shown in the previous lemma. |

. For every m m.eN, we deﬁne a unique v.=(0,.. ..,0,a_, .,.. ..,a,2n) where

=S r+1’

my=(a,,.. ..,a, ) where the last |J(S,)|=2n-r entries correspond to joints of S,
Similarly for each m m €N, define a v Yo
Define a bijective linear transformation L’ ’:NS -oMéjaM,}j—»NT by

1 1 1 1

(Bp)eI%Bg! if J(S )nI(S,)={i} and jeJ(S,) and keJ(T,).
LI I=[ 1 1

(B ot By i (i, }eisnI(s,).

where I M”-»Mlk
1 1

(a,+y;0q,0, 4y, 05, 0,7X, 04,0, ).

is defined by (a1+yi 0 Y05, 05X, 0, XO‘3) -
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Now define L’ :{gs=ms—zS:mSeN S}a{g,I,:mT—\_rT:mTeNT} by

L (al,.. cs2 50, ..,0)=(a,1,.. iy 0y .-,0).

It isn't clear that L’ is well defined. It may be that there is a ug 8.t.
L’(_qs) doesn't exist. If this is not a problem then L’ is a bijective linear
transformation. We now show that L’ is well defined.

Consider the orthogonality conditions which originally gave rise to each of
the matrices AS and A,i,. First we have, common to S and T, all the equations
derived from the bars of S2. Call this system 1. Call the equations derived
from the bars of T1 system 2, and the equations derived from the bars of S1
system 3.

We consider two cases: 'i) where |J(Sl)nJ(S2).l 22, and ii) where
|J(Sl)nJ(82)|=1. In case i) we know from the preceding lemma, that systems
2 and 3 have three dimensional solution spaces, and the solutions can be
expressed in terms of X XYY where(xi,yi) and (xj,yj)EJ(Sl)ﬂJ(Sz) and
J(T)nJ(S,). Since for both structures (S and T) the remaining equations are
identical (system 1) and contain X XYY We see that for every Ug there does
exist a corresponding U and we are therefore assured that L’- is well defined.
Case ii) is similar: since every structure has at least two vertices, S, and T,
contain (xj,yj) and (xk,yk) respectively, and using this information we apply the
same argument as in case i) to assure ourselves that L’ is well defined in this
case also.

In either case there exists a bijective linear transformation L:NS—»NT
defined by L(mg)=L(ug+yg)=L’ (ug)+L" " (vg)=u ¥, =m,. So
djm(Ns)=dim(NT) and f(S)=1£(T). _ o
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Theorem 2.10: Let .Sl,.. "’Sk
B(S)=B(S,)U.. -UB(S,), and let T,,.. ..T, be rigid substructures of T s.t.

be rigid substructures of S s.t.

B(T)=B(T,)u.. .UB(T,). Further let S’ be the set of joints of S which are in
more than one Si, and T/ be the set of joinfs of T which are in more than one
T,, and J(TNT =J(5;)nS” V i=1.. .k. Then £(S)=1(T).

Proof: Starting with S, we invoke lemma 2.9 k times, on each occasion

replacing one S, by the corresponding T, without altering the degree of freedom,

until we are left with T, giving f(S) = f(S,US V.. ..USk_.IUSk) =
f(T,US,U.. .US, _US;) =.. .= (T ,UT,U.. WUT,_US,) = f(TuT,u.. .uT,_UT))
= {(T). | . o

We construct a structure S’ from S by choosing two joints, (x,y,) and
(x2,y2), of S and adding to S an extra joint (x,y) not collinear with '(xl,yl) and

(X,,¥,), and the two bars {(x},y,),(x,y)} and {(x,,¥,),(x:y)}-

Lemma 2.11: Then S is rigid .iff S’ is rigid.

Proof: Suppose S’ is rigid. Then rk(Ag/)=2(|J(S)|+1)-3. Since Ag is just

Ag/ with two rows and two columns removed, rk(AS)52]J(S) |-3, so S is rigid.
Conversely suppgse S is rigid. Then by theorem 2.10 S’ has the sé.me

degree of freedom as

, o f(S”)=0. o

Lemma 2.12: If structures S, and S, are rigid, and 13(S,)nJ(S,)|>1, then the

union of S, and S,, denoted by T, is rigid.
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Proof: f(T)=f(S US(KJ(S )nJ(Sz))) by lemma 2.9, and (S US(KJ(S )nJ(Sz))) =0

by lemmas 1.22 and 1.23, since S, is rigid and all bars of S(KJ( s)nJ(S )) are
1 2

implicit bars of, or bars of S So £(T)=0.

Theorem 2.13: For any planar bar and jdint structure, the maximal rigid
substructures are bar disjoint, and there is a unique partition of B(S) into
L}B(Si) where the S.s are exactly the maximal rigid substructures.
1 .
Proof: Clearly every bar is in a maximal rigid substructure.

Suppose a bar b is in two maximal rigid substructures, S and S’. Then
|3($)0I(S)[>1 and by lemma 212 SUS’=T is rigid, contradicting the
maximality 6f the rigidity of S and. S’. Therefore every bar is in exactly one

maximal rigid substructure. ’ o

The properties of the structure geometry of a structure, S, are related to
its rigidity cha.racteri'stics. Since the structure geometry of an isostatic
structure is free, its only basis consists of the set of all its bars. If S is rigid
then the bases of DS are the structure geometries of the isostatic substructures
S, of S for which J(S)=J(S)). As an isostatic structure S is rigid with DS' free,
we see that the rerﬁova.l of any bar decreases the ra.nk of DS by one, and
therefore the resulting structure cannot be rigid since its rank, being even,
cannot be 2n-3 for any n. A hyperstatic structure contains redundant bars. To
understand flats of the structure geometry, consider a structure S’ as a
substructure of the "complete structure S(Kn)" on those joints. If S’ is rigid

then cl(DS,)=Ds(K ) where J(S(Kn))=J(S’) since if we add to S’ all the bars
n .

of S(Kn)\S’ the rank cannot increase. If Sl,.. .,9, are the maximal rigid

k

substructures of S’, then cl(Dg,)2D QDS(KD y where J(IS(Kni))=J(Si)
k :

Yi=1. .k

S(Knl)Q.. .
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By looking at examples of circuits of DS we see that some are rigid and
some are not.

Example 2.14: Rigid circuits

'Buses of S:

Non-tigid circuits

.au apfarcv&(_kj R
rallel lines here = "
P:re qul\e\. _ > S
these six
Joinks (ie on
o cOnc.

Those circuits which are rigid are necessarily minimally hyperstatic (i.e.

every structure obtained from such a circuit by removing one bar, is isostatic) -
since every one bar deletion has the same rank, but any two bar deletion

doesn't, and so every one bar deletion is a basis.



- 40 -

Genericity.

In this chapter we review the concept of generic structures by iﬁtroducing
our own definition and comparing to it the definitions offered by other people.
Although this concept is independent of dimer-lsionv and we accordingly give all
definitions and results in this chapter a general setting, for simplicity our

- examples will be two dimensional. |

Example 3.1: Consider S’ and S’/ from example 2.14. They have the }sa.mé

underlying graph but one is rigid and the other is not.

0

This example prompts the following definition:

Definition 3.2: Suppose we have a bar and joint structure S, in Rz, with
underlying graph G. If G is a single edge then S is generic, otherwise S is

generic iff

i) rk(As)zrk(AT) Y structures T in R s.t. G underlies T, and

ii) every substructure S’ of S is generic.
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Lemma 3.3: For two generic structures S, and 52 in R with the same
underlying grdph, the obvious bijection, I, between the bars is a matroid
isomorphism.

Proof: Suppose I is not a matroid isomorphism. Then without loss of
generality there exists a substructure S of S, where the bars of the.
corresponding substrﬁcture, I(S{)=S; of S,, are dependent, but B(S]) is
independent. Therefore rk(AS{)=|B(Si)|=|B(S§)|>rk(ASé), and so S, cannot

be generic. . . | o

Lemma 3.4: For two structures, S, and S, in IRl, if 5, and S, have the same

underlying graph and S1 is generic, then DS 2DS .
1 72

Proof: Let Sé be a substructure of S2 s.t. B(Sé) is independent, and let
Si=I(Sé) where I is the obvious bijection between S, and S, as in the previous
lemma (it is not necessarily a matroid isomorphism in this caée). Then

rk(Ag,)2rk(Ag,)=[B(S7) [=[B(S])| and so B(S]) is independent. So D¢ is a
1 2 ‘ 2

weak map image of D . o
1

This concept is introduced to eliminate the type of degeneracy in the
~ positions of the joints which we encountered in the last éxample, where S’ is
generic and S’’ is not.

In 1979 Crapo [C13] defined generic structure; "A structure in such
geometric position that it has maximum possible rank, given its topological
makeup.".

We interpret this as meaning, for a structure S in [RZ: "If S has underlying
graph G and rk(AS)Zrk(AT) Y structures T in R s.t. G underlies T, then S is

generic."
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This definition neatly divides structures into two classes; one whose
members have more motions (i.e. lower rank) than other structures with the
same graph, owing to a special arrangement of their joints, and one consisting
of all other structures. This does seem a sensible distinction to make, but there
is a slight drawback in that this definition allows a generic structure to have
non-generic substructures, and therefore precludes the existence of a matroid

isomorphism between generic structures with the same underlying graph.

Example 3.5: A planar example.

not "ﬁw ric' "generic”

{

Thus in a sense this definition allows too many generic structures.

“Seneric" | not "3ev\eric"

A more useful definition is used by Lovész and Yemini [L5] in 1982: "A
structure S is gemeric if the coordinates of its joints are algebraically

independent over the rational field."

This has the useful hereditary property of our definition, however it allows
a generic structure and a non-generic structure with identical physical

interpretations as real frameworks:
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Example 3.6: a, b, ¢, d, e, and f are algebra.icaily independent over the

rationals.

25

] .y
Sev\e mMe

Hence this definition defines too small a class of structures, by eliminating

many structures which we think of as generic when realised physically.

Graver [G5] chooses the middle ground between these last two definitions.
We paraphrase his definition: "Consider the determinant of each minor of AS as
the coordinates of the joints vary over all of R. A structure is generic if all the .
nontrivial minors of As, i.e. the minors with determinants that | are not

identically zero, have nonzero determinants."

Theorem 3.7: Graver's definition for generic structures is equivalent to ours,
-and every structure which is generic by Lovasz and Yemini's definition is

generic by our definition.
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Proof: A structure S in lRe is not generic in our sense

&  There exists a substructure S’ of S s.t. rk(AS,)<rk(AT) for some structure
T in IRZ with the same underlying graph as S’.

& AS’ has a non-trivial minor with a zero determinant.
(& S is not generic in Graver's sense.)

5 There exists a polynomial (namely that determinant) which has the
coordinates of the joints as roots. -

& S is not generic in the sense of Lovasz and Yemini. a]

Any results about the rigidity of structures which are generic in the sense
of Lovasz and Yemini, will also hold for our generic structures, because rigidity
is defined in terms of rank, which is left invariant by matroid isomorphisms.
Therefore as convenience dictaﬁes, wé can use our definition, or Graver's
definition, or even Lovisz and Yemini's, in work concerning generic structures,
and when we make general statements about generic structures we can safely
include structures which are generic by our definition but not by Lovész and

Yemini's.

If a structure is not generic, then by the definition of generic it has a
dependent substructure, and so is itself dependent. Thus every non-generic
structure contains a circuit. If we look back at our ‘examples 2.14 we find that

the circuits which were not rigid were not generic either. We have: |

Theorem 3.8: Every rigid circuit in DS is generic.
Proof: Suppose we have a rigid non-generic circuit B(C). Then
rk(AC)<rk(AT) for some T with the same underlying graph as C.

But rk(AC)=2|J(C)|—3<rk(AT) is impossible. ' o
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Theorem 3.9: Every minimal non-generic structure S in !Re is a circuit in DS
and every non-generic circuit in IRK is minimal non-generic.

Proof: Suppose we have a minimal non-generic structure C. Then since C is
minimal non-generic, rk(AC)<rk(AT) for some T with the same underlying
graph as C. Also since C is minimal non-generic rk(AC\b)=rk(AT\b,) since

rk( >rk(A)-1. Since b was chosen arbitrarily, C is a circuit.

Conversely, every non-generic circuit is minimal non-generic since every

substructure of a circuit is independent and therefore generic. o

~ The existence of the matroid isomorphism between generic structures in lRl
with the same underlying graph shows us that the rigidity characteristics of a
-generic structure in [RZ depend only on its> underlying graph. Because of this we
can regard the generic properties of structures in lRe as properties of graphs, and
once we know G and ¢ we should be aLble to determine the rigidity properties of
all generic structures in |R£ with G as underlying graph. Therefore we speak of
A Dy Nyor Ry .andva(G) (or Z—degree of freedom) meaning respectively
the coordinatising matrix, structure geometry, space of admissible motions,
space of rigid motions, and degree of freedom of an arbitrary generic realisation

in & of G.

Definition 3.10: We say that a graph G is f-stiff iff all the generic structures
in ER[ with underlying graph G, are rigid. Also if S(G) is an isostatic structure
in IRe we call G an f-isostatic graph. |

Referring back to definition 1.18 this means: G is 2-stiff iff dim(N,,)=3
and; G is 3-stiff iff dim(N3G)=6 or G is a single edge (which incidentally is
EsHf Y 0). -
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" Generic Rigidity in %

The focus of this chapter is Laman's theorem. We give Lovész and
Yemini's vproof of this result and consequently some properties of the generic
structure geometry in R%.. We discuss some other prbofs of Laman's theorem
including a perépecti\)e which may give rise to another, more easily

generalisable, proof.

To begin we raise the question of circuits in D2G' Looking back once
more t0 example 2.14 we see that all our examples of such circuits are rigid. Is
this generally true?

To answer this question is not simple, but consequent upon the answer we
find that structure geometries of generic structures in R? have some nice
properties which structure geometries of non-generic structures lack. For the
rest of thisi chapter we shall say nothing more about non—generic structures, and
shall devote ourselves entirely to generic structures. For this reason we will
abandon reference to structures, bars and joints, and talk only of graphs, edges
and vertices, where it must be understood that we mean generic structures with
such graphs underlying them. We shall use f;he symbols G, A, f2(G), Nogr
D2G’ 2—stiff and maximal 2-stiff subgraph, where before we used S, AS, £(S),
N, DS’ rigid and maximal rigid substructure. Invoking earlier results about a

more general class of structures will not create problems since anything which is

true for structures in general is certainly true for generic structures.
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Now we look at some ideas and results by Lovasz and Yemini, with their .
origins in polymatroid theory. For a less detailed, and thus in some ways"
clearer exposition, see [L3] [L5]. Also, we shall revert to their definition of
generic structure: |

Let G be a graph of a structure, with E(G)={e,, .,e_}. If we arbitrarily

direct G, then the incidence matrix of G [0.4] is given by

1 if i is the head of e..
-1 if i is the tail of .
0 otherwise. J

a..=
1

(We shall be interested in the independence 6f the columns of (aij), and the
way we direct the graph doesn't affect this independence since an opposite
direction of an edge results in a column of (a,ij) which is diffe;_ent only by a
factor of -1).

Ifie (xi,yi) gives a realisation where all the x;s and y;s are algebraically
independent (i.e. the structure is generic according to Lovasz and Yemini), let
;=(x1,'.. ..,xn), x=(y1,.. ..,yn), and gj=(a.1j,.. ..,anj). Here 3 is the jth column .
of (aij), and therefore corresponds to the jth edge of G.

Also let A={ (Ag.pa) : Ap € R } for i=l.m, and let
H={(z,2):(z-y)~(z’ - x)=0} |

Lemma 41: If X is the union of some Ais, then
((XnH)UAi)n((XnH)UAj)gH 3 ((XnH)UAi)M(XnH)UAj)g(XnH) VY 1<i,j<m.
Proof:  Consider a, an arbitrary element of ((XnNH)UA). Then, since
{(@i,g),(/\i@i,ui@i)} is a basis of A,, we know that é=0!(&i,9)+§3ﬂj(/\j.@j,ujéj), where
(/\j@j,#jéj)€<XﬂH) VY j. If also a€H, then from the definition of H, we have
( (a%+§ﬂjz\ ) -x)—((?ﬁjgj@j) - x)=0, or ofa,- x)+?ﬂj[/\ {2, )-n(a,-x)]=0.
i cy)-p.(a. x)= h
However since (Ajgj,ujgj)eH we know that ,\j(gj Y) uj(guJ x)=0, and thus we

have o:(gm_i -y)=0. Since by genericity, no two entries of y are the same, we
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know that a,-y#0, so we must have a=0, and so a(-Eﬂ (A, 2iha; ) is in (XNH).

Thus we have seen that if a€((XNH)UA) and _a,eH, then ae(XnH), from
which the result follows. . : o

Lemma 4.2: dlm(HnA ;i=1..m) —mmZ‘(2d1m(a ;TeN, )—1) where the minimum is

i=1

taken over all partitions N pe Ny of {1,.. ..,m} into non empty subsets.

Proof: Consider any partition N P Ny of {1,.. ..,m}. Let Q=U (A nH) and
' ' 1=1

U (A NH)=Q, V i=1.k. Now V i=1.k we have:

 IEN.
1

Consicier any reNi. Since by genericity no two entries of y are the |
sa.nie, we knoiv that a -y#0, so (gr ,0)¢H. Since (Q)CH we see that
(2,0)£(Q), but (a,0)(U A UQ), 50 |

1’ENi
1+dim(Q)<(U_ A UQ) *)
rENi

But by modularity of rank ‘

dim(Ar:reNi)+dirri(Q);dijLEJN-ArUQ)+dim((Ar:reNi)n(Q)), s

i _

dim((A :reN.)n(Q))<dim(A :reN.)—l. From the definition of Q, we know
that dim(Q,)=dim((A :eN, 2N(Q)) so we have d1m(Q )<d1m(A TN, -1

Also by submodularity we have:

dlm(HnA si=l..m)= d1m(Q)<2 dlm(Q) (**)
i=1

Together these last two inequalities imply:

dim(HNA:i=1. m)<2(2d1m(a. :r€N,)-1) for every partition.
=1

Thus to complete the proof it suffices to show the existence of a partition
for which (*) and (**) are equalities.

Consider the relation: isj & Aig(AJ.UQ)

i) = is symmetric.
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i) izj & (2,0)€((2,QUQ) (since A =((a,0),AUH))
& there exists a circuit Cij 8.t {(@i,g),(gj,g)}QCijQQU{(gi,Q),(gj,Q)}
& (2,0(&,0uQ) & i
So = is reflexive.
iii) i=j & j=k = There exist circuits Cij and Cjk (=Cij) 8.t.
{(2;0):(2;0)}<C;,cQU{(a;,0),(a;0)} and
{(2},0):(2;0)}<C, £QU{(a,,0),(2;0)}- |
Since (gj,_Q)eCianjk and (gi,Q_)eCij\Cjk, then by strong circuit exchange
there exists a circuit C s.t. (g_i,Q)ECQCijUCjk\(gj,g). This means there
exists a circuit C s.t. (@i,Q)GC(_ZQU{(g,k,Q),(gi,Q)}, so i=zk. So = is transitive.
Thus = is an equivalence relation and defines a partition.
For this partition dim((Ar:reNi)'UQ)=dim(ArUQ) for any reN. Also since
dimA =2, but A_is not in Q and ArnQ#Q), we have dim{Q)+1=dim(ArUQ).
Together these imply dim(Q)+1=dim((A :reN.YUQ) ¥ i=1.k. That is we have
equality in equation (*).
Now consider i=zj and suppose there exists a circuit CCQ s.t. AinHEC and

AjﬂHeC. Choose any weC. Then w=Aan for some x€{1,. ...,k}. Let

X=(UA)\A_. Then (QUA)=((Q\W)UA)) since weCCQ

r=1r

=((XNH)UA,), and similarly (QUA)=((XNH)UA). Now
(QUAj)n(QUAi)gH (since i#j), so invoking lemma 4.1 on X, A, and Aj, we have
S
(QUAj)n(QUAi)g(XnH):(((UAr)\Ax)nH). Since this is true for all weC, this
r=1
shows that (QUAJ.)n(QUAi)=(0, but ANHeC and we have a contradiction.
Therefore the initial supposition about the nature of C was wrong, and for all
CCQ we have, ANHeC 3 AjnH;EC if i#j. Therefore Q is a direct sum of Q,,..
o Qy and so we have, for this partition, equality in equation (**) also, and the

assertion is true. o
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Theorem 4.3: The 2-degree of freedom of a graph G with n vertices is

k :
2n-3-min¥ (2| V(G,)|-3) where the minimum extends over all partitions
i=l ,

of the edges of G: E(G)=E(G,)U.. .UE(G,).
Proof: In  general f(G) = 2n-3-dim(rowspaceof A, ) =
2n—3—dim(((%~z)§._i,(@i’x)_@i): i=1..m).  Since the entries of x and y are

algebraically independent over the rationals, we can apply the previous lemma

. k '
to get f,(G)=2n-3-min¥(2dim(a :reN.)-1), where the minimum is taken over
i=1 :

all partitions Nl,.. "’Nk of {1,.. ..,m} into non-empty subsets.

Now by considering the isomorphism (see 0.14 and 0.15) between the usual
cycle matroid (see 0.13 ii) on the edges of the graph G, and the dependence
matroid on the incidence matrix of G, it is clear that rkE(G,)=dim(a_ :feNi), |

and so

f2(G)=2n—3-rrﬁn§(2rkE(Gi)—1) )
Ci=1

where rk is the rank function of the matroid on the edges G, and the minimum
is taken over all partitions of the edges of G.

Now the partition minimising the right hand side of -equation (}) is
automatically such that each Gi is a connected subgraph. This follows from the
fact that if Ge is not connected, then the partition with each component of Ge
regarded as a separate subgraph of the partition will yield a smaller sum than
the partition where just Ge as a whole is considered as a subgraph.

kE(G,)=|V(G,)|-1 since G, is connected.

) ,
Thus equation (}) becomes 2n-3-min% (2| V(G,)|-3). 0

1=

A corollary gives us a characterisation of 2-stiff graphs:
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k
Corollary 4.4: A graph G is 2-stiff iff £(2|V(G,)|-3)22|V(G)|-3 holds for
i=1

1=

every system of subgraphs G, s.t. E(G)=E(G)U.. .UE(G)).
Proof: G is 2-stiff iff f,(G)=0. u]

We now return to our look at some generic properties of the structure

geometry.

Theorem 4.5: D, . is free iff 2| V(Y)|-3>|Y| holds for every YCE(G).
Proof: Now D, is free iff f,(G)=2n-3-m, where m=|E(G)|. By corollary 4.4,

this is equivalent to the condition that for every system of subgraphs Gl,.. ..,Gk

s.t. E(G)=E(G)U.. .UE(G, ), we have E(le(Gi)|-3)zm (1)

i=1

We.show that this is equivalent to the condition in the theorem:

Suppose equation (1) holds. Let H be an arbitrary subgraph of G.
Choosg G1=H and GQ,.. ..,Gk
E(G)\E(H) each. Then equation (1) implies that 2|V(G1)!—2+(k+1)2m. But
since k=m~-|E(H)|+1, we obtain 2| V(H)|-32|E(H)|.

Conversely, suppose 2|V(Y)|-3>|Y| is truev Y YgE(Gj. Then

to be the subgraphs consisting of one edge of

k .
Z(2|V(Gi)_|—3)ZE|E(Gi)|2]E(G)| follows for arbitrary subgraphs G,,.. ..,G, s.t.

1=1

E(G)=E(G)u.. ..UE(G,), and equation (1) is true. o
Now we can answer our question regarding generic circuits.

Corollary 4.6: Every circuit in D2G is 2-stiff.

Proof: Suppose C is a circuit which is not 2-stiff. Since C is minima.lly
dependent the previous theorem implies that 2|V(C)|-3<|C|. Also since C is
not 2-stiff rk(C)<2|V(C)|-3.
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Combining these we have |C|-1=rk(C)<2|V(C)|-3<|C| which is not possible.

So every circuit is 2-stiff. - o

A consequence of this corollary is that D2G is a direct sum of the D2G s,
i
where the Gis are the maximal 2-stiff subgraphs of G. This immediately tells

us that

k . . .
Theorem 4.7: {,(G)=2n-3-£(2|V(G,)|-3), where E(G)=E(G )u.. .UE(G,) is
i=1

the partition of G into maximal 2-stiff subgraphs.

Proof: Corollary 2.7 and the discussion above. | o

Theorem 4.8: If G is a subgraph of K with the same vertices, then G is 2-stiff
iff cl,(G)=K .
Proof:' If G is 2-stiff then rk(AzG)=2|V(G)|—3'=rk(D2Kn), and so cl(G)=K .

If G is not 2-stiff then rk(D,)#2|V(G) |-3=rk(D2Kn), and so cl,(G)#K . )

Furthermore, since rigidity is defined in terms of rank, cl,(G) exhibits the

same rigidity characteristics and mechanical behaviour as any basis of D2G'

Now we present the result of Laman [L1] mentioned in the introduction, a
characterisation of 2-isostatic graphs. This is essentially equivalent to theorems

4.4 and 4.5.

Laman's theorem 4.9: A graph G is 2-isostatic iff
i) |E(G)|=2|V(G)|-3 and
ii) |E(H)|<2|V(H)|-3 for every subgraph H of G.
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Proof: G is 2-isostatic & G is 2-stiff and independent. Then ii) follows by
theorem 4.5, and then i) follows by ii) and lemma 2.4.

Conversely, if i) and ii) hold, then E(G) is independent by ii) and theorem
4.5, and G is 2-stiff by i) and lemma 2.5. o

There exist two other proofs of this theofem. The first, by Laman [L1]
(1970), is an induction proof on the number of vertices of the graph. The
second, by Asimow and Roth [A2] (1979), is an induction proof on the number
of edges of the gfaph. Both these proofs entail the construction, from a
structufe with known properties, of another larger structure whose properties
depend on the method of construction and the pfoperties of the original
structure. Lovész and Yemini [L5] (1982), whose proof is the one presented
here, have avoided this approach, and have revealed a complicated geometrical
structure underlying the problem, which they have used in its solution, thereby
revealing new results (2.6 2.7 4.3 4.4 4.7), and suggesting a possible fourth
method of proof. Noting that Laman's theorem follows directly from theorem

4.7 we have:

Conjecture 4.10: Theorem 4.7 may be provable using an induction proof on the

number of maximal 2-stiff subgraphs of G.

For reasons which will become evident in the next section, we tried
without success produce such a proof. Here are some consequences of this
attempt.

We introduce a new concept, the introduction of which, along with other
subsequent ideas, entails adding edges to a graph G to obtain another graph
G’. We encounter difficulties with this because if we try to add an edge

between two vertices of G when there is already an edge between these two
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vertices, then the resulting graph G’ is not simple, and therefore is not a graph
underlying any structure. We remedy this by only adding an edge between two
vertices if there isn't one there already. Since we may not know in advance
whether or not an edge exists where we try to add one, when we say "add an

edge" we mean "add an edge if one doesn't already exist".

Definition 4.11: The relative 2-degree of freedom between two vertices, 1 and 2
of a graph G is denoted and defined by f2('1,2)=rk(AG,)—rk(AG), where G’ is
the graph obtained from G by adding an extra edge (1,2).

~ Also the relative 2—dégree of freedom between a vertex 1 and an edge
e,=(23), of .a graph G is  denoted and  defined by
f2(1,e2)=f2(e2,1)=rk(AG,)—rk(AG), where G’ is the graph obtained from G by
adding two extra edges, (1,2) and (1,3).

Also the relative 2-degree of freedom between two edges, e0=(1,2) and
e,=(3,4) of a graph G is denoted and defined by f2(e0,e1)=rk(AG,)—fk(AG),
where G’ is the graph obtained from G by adding:

i) three edges (1,3),(2,4),(2,3) if |{1,2,3,4}|=4, or

ii) one edge ({0,1}\i,{2,3}\j) if i=j for some i€{0,1} and j€{2,3}.

Finally the 2-relative degree of freedom between two 2-stiff subgraphs, G0
and G, where e =(1,2)€E(G) and e =(3,4)€E(G,) of a graph G is denoted and
defined by f,(G,G,)=rk(A,/)-tk(A), where G’ is the graph obtained from G
by adding:

i) three edges (1,3),(2,4),(2,3) if [{1,2,3,4}|=4, or

ii) one edge ({0,1}\i,{2,3}\j) if i=j for some i€{0,1} and je{2,3}.

Clearly the third of these definitions is a special case of the fourth

definition.
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It is a straightforward consequence of the unit increasing property of the
rank function that: : 0<f,(1,2)<1
0<t,(e,,2)<2

0<fy(e,06,)<3 V €,8,,1,2 in the graph
s.t. these relative 2—degrees of freedom are defined.

Lemma 4.12:

If ,=(1,2) and e,=(3,4), then f,(1,3)=k = k<f,(ee,)<k+2 and k<f(e,,3)<k+1.
Also

. 0ifk%3 1ifk#0 k-1 ifk#o (2 if k=3
f2(e0,e1)=k 3 <f,(1,3)< and <fo(eg3)Sq
1if k=3 0if k=0 0 if k=0] k if k#3.

1if k=2]

- Finally £ (e,,3)=k 2
20 0 if k#2

. 1 if k=2
<h(1,3)¢ and k<f (e ,e )<k+1.
kif k#2

Proof: Straightforward consequence of the unit increasing property of the rank

function. : a

The reason this concept of relative 2-degree of freedom won't work nicely
for non-generic structures is that it is an inheréntly mechanical concept which

lacks relevance in some non-generic structures involving collinearity.

Example 4.13:

/ < ? < ‘
£0>=0 {e9=1 A 0;

Intuitively the relative 2-degree of freedom between 1 and 2 would be

expected to be greater than zero.
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Also we can extend our original definition of 2-degree of freedom for

disconnected graphs.

Definition 4.14: If a graph G has k disconnected components Gl,.. "’Gk’ then

k
it has 2-degree of freedom given by f2(G)=3(k—1)+i§1f2(Gi). For connected

graphs this is equivalent to our original definition.

Lemma 4.15: Suppose € and e, are edges of G, and G0 is the maximal 2-stiff

subgraph of G which contains e,. Then f,(ej e )=0 iff G contains e

0 r

Proof: If e, is in G, then any edges added between the vertices of e and e

0
will be in the rowspace of A, .. So f,(e, e )=0.
Conversely if e1¢G0 then we have two cases to consider;

either i) e, and e, share a common vertex (e0=(1,2),e1=(1,3))

0
or i) not.

Case i) Suppose the graph G’ obtained from G by adding the edge a=(2,3) has
the same 2-degree of freedom as G (i.e. rk(AG,)=rk(AG)). this means that a
is contained in a circuit, C, of G’. C is 2-stiff and C\a is 2-stiff. If G1 is the
maximal ~ 2-stiff subgraph  containing e, then by theorem 2.10,
fz(E(GO)UE(Gl)UE(C\a)) = f2(e0Ue1Ua) = 0. Therefore G, and G, are not
maximal 2-stiff subgraphs, contradicting our supposition that rk(AG)=rk(AG,),
) f2(e0,el)#0.

Case ii) This is essentially identical with case i) but with three edges playing
the role of a in case i). Because of this, and because we later need to refer only

to case i), we omit the details. - o

A proof of this lemma which didn't assume the 2-stiffness of circuits,

would furnish us with the mentioned fourth proof of Laman's theorem.
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Given a graph G of a structure, we are going to derive a new graph G’’
having one vertex fewer, the same number of edges, and possibly the same
number of maximal 2-stiff subgraphs. To motivate this derivation we suggest,
in general non-technical terms, thinking of a graph in terms its maximal 2-stiff -
subgraphs rather than its edges, as the fundamental components. If we choose
a vertex from each of two maximal 2-stiff components, add an edge between
these two vertices and then contract it, it seems likely that the 2-degree of
freedom of the resulting graph will differ from that of the initial graph. We

will want to know the exact extent of this change.

Construction 4.16: Start with a graph G of a structure.

i) Choose two vertices 1 and 2 €V(G) s.t. 1 is contained in only one
maximal 2-stiff subgraph, and f(1,2)=1. This last condition ensures that 1
and 2 are not in the same maximal 2-stiff subgraph.

if) Choose an edge e,=(1,3) of the maximal 2-stiff subgraph G,
contaiﬁing the vertex 1.

iii) Derive G’ from G by adding two edges a=(1,2) and b=(2,33). If

f.(e;,2)=1, we see that rk(AG)+1=rk(AG,) and if f2(e1,2)=2,' we see that
1if f, (e ,2)=1
2 ?
: (1)

rk(AG)+2;rk(AG,). ie. f2(G)—f2(G’)=[

2 if £,(e;,2)=2.
The 2-stiff subgraph of G’ with edges E(G,)u{a,b} we call G].
iv) Consider the graph G’’ obtained from G by adding just edge (1,2)
and contracting it. Using lemma 2.9 to compare G’/ with G we find that
£,(G"")=£,(G") (2)
(Since if E(G’’)=E(G,)UE(G)) then E(G")=E(GJUE(G)), G, and G] are
2-stiff, and V(Gl)nV(Gr)=V(Gi)nV(Gr))
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| . 1if f,(e;,2)=1
v) From equations (1) and (2) we have f(G)-f,(G"’)=

2 if f2(e1,2)=2,
and we know that G has one more vertex than G’’ but has the same number
of edges. Furthermore, if we call all the edges by the same names in G and
G’’, we see that every subset of edges of G which forms a maximal 2-stiff
subgraph of G, must form a 2-stiff subgraph of G’’, since we have done

nothing to affect the internal structure of each 2-stiff subgraph. - _ u]

Lemma 4.17: For the number of maximal 2-stiff subgraphs in G’’ to equal the
number of maximal 2-stiff subgraphs in G we require at least that f2(e1,ej)=3 v
€ s.t. ej=(2,4) for some 4€V(G).
Proof: Suppose f2(e1,e2)<3 for some e2=(2,6) (and f2(el,ej)21 v ¢, s.t. ej=(2,4)
for some 4€V(G)). Then vertex 3 is not vertex 6 since otherwise our resulting
graph G’/ would have a doubled edge and hence not be the graph of any
structure. Now we perform our construction and obtain
' 1if f.(e,,e,)=1
f2(G)-f2(G/ /)=[ . 2V°172
2 if £,(e .e,)=2 |

Consider G~ obtained by adding to G’ the edge c¢=(3,6), and G obtained

by adding to G the edge c=(3,6). By theorem 2.10 £,(G )=f,(G'). Also by

(G (G**)=[1 if f,(e.e,)=1
2 2

(3)

the definition of f (e ,e,) we know 2 if f,(e,,e,)=2. Combining

2
these two with equation three we have f,(G’ ’)—f2(G**)=0 if 1< (e;,e,)<2. This

implies that edge c is in the rowspace of A so that f2(el,e2)=0 in G’’.

G/I,

Hence by the preceding lemma, e, and e, are in the same maximal 2-stiff

0
subgraph of G’/. This violates the desired property of conservation of the

number of maximal 2-stiff subgraphs, and our lemma is established. u!
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Now we know that if we start our construction with e, and e which
satisfy f2(eo,el)=3, then f2(G)=f2(G”)+2, and the number of maximal 2-stiff
subgraphs of G may or may not equal the number of maximal 2-stiff subgraphs
of G’/, but if we start our construction with € and e, s.t. f2(e0,el)<3 then the
number of maximal 2-stiff subgraphs of G will not equal the number of

maximal 2-stiff subgraphs of G*’.

Theorem 4.18 (4.7): The 2-degree of freedom of a graph G with n vertices is

k
20-3-%(2|V(G))|-3) where E(G)=E(G,)U.. .UE(G,) is the partition of the

i=1

edges of G into maximal 2-stiff subgraphs.
Proof: We use induction on the number of maximal 2-stiff subgraphs,v using
construction 4.16. |

k=I: f2(G)=0=2n-3—(2|V(G)|—3) o.k.

Suppose the result is true for every graph with k maximal 2-stiff
subgraphs. Consider a graph GT with k=1 maximal 2-stiff subgraphs. The
graph G \G, +1
2-stiff subgraph G

obtained from GT by deleting every edge of the maximal

pppr 2long with all the requisite vertices, has k maximal

2-stiff subgraphs, so (G \G )=2|V(GT\Gk+'1)

k
k+1 l-3j2§2IV(Gi)|—3). Now
1=

consider the graph F consisting of the two disconnected components GT\Gk +1
and a copy of G, called Gy 2}Y ‘

k+1 °
£,(F)=£,(G\G,_ )+3, Since GoPY is 2-stiff.

k+1) Tkl

k
=2IV(Gp\Gy,, )1 ZRIVIG)19)

=2(|V(G\G, ) [+ V(G 3T )-3-2(2| V(G)I)

k+1 k+1
Now commencing with our graph F, we use our construction process

IV(GL\G, _ ,)NV(G; $77)| times until F becomes Gp. Every time we join two

k+1 k+1
vertices of F we lose two 2-degrees of freedom, since every time we execute our
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‘construction, the number of maximal 2-stiff subgraphs doesn't change. Thus

k .
£,(Gp)=2|V(G)|-3-£(2|V(G)|-3) and by induction the result is again
i=1

I
established. : ' , _ o

From this theorem it is straightforward 'i;(') establish corollary 4.6, theorem
4.5, and Laman's theorem 4.9, thus if it could be independently proven that

lemma 4.15 is true we would have an independent proof of these results.

We finish this chapter on planar rigidity by giving two results about the
2-degree of freedom of a graph in terms of its maximal 2-stiff subgraphs.
Non-generic exarhples of this type of structuie were looked at by Griinbaum
and Shephard [Gf], and generic exafnples were looked at by Rooney and Wilson

[R8], who stated the following theorem.

Theorem 4.19: If J is the number of vertices of G which are in more than one
maximal 2-stiff subgraph, and Zj is the number of maximal 2-stiff subgraphs
with j vertices in more than one maximal 2-stiff subgraph, then
fz(G)=2J—3-2(2i-3)£.
Proof: f2(G)=2n—3-2(lV(Gi‘)|—3). Now relabel this partition into G;s so that
i=1 .
all the Gis with j vertices in more than one maximal 2-stiff subgraph are G. 0
l
wGip- Then f (G)=2n-3-% (2|V(G )|—3)
. 2 .
] =1 i=1
l. L. L.
But 2’(2|V(G )|-3)= 23[—3£+22J(|V(G )|-3)= (21-3)z+221(|V(G Jl-),  so
= =1

i=1

{. l.
f,(G)=2n-3-L (2j-3)¢-F 2’(2|V(G )|-2j)=2[n-E EJ(IV(G NE) ]—3—2 (2-3)¢;
J— ]“ 1 i=1 =1 i=1

But 1% 2’(|V(G )|=j)=n-E ((2’|V( ID-t)=nE|V(G)|+Zit=] 50
=1 i=1 : F=1i=1 » ¥ o= ¥j=11

(G)—2J—3—2 (2]—3)( as required. a
J_
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There is a similar formula giving the 2-degree of freedom of a graph in

terms of the vertices of G which are in j maximal 2-stiff subgraphs.

Theorem 4.20: If G has k maximal 2-stiff subgraphs, and m, is the number of
vertices of G in j maximal 2-stiff subgraphs, then f2(G)=3(k-l)-Z(2i—2)mi.

1=1

Proof: The number of 2-degrees of freedom of k disconnected bodies is 3(k-1).
Now if we use our construction process to derive G from joining these k
disconnected subgraphs then each join must reduce the 2-degree of freedom by

two, and since the number of such joins is E(i—l)mi, the result follows. o
i=1
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Rigidity in #°.

This chapter is an examination of bar and joiht structures in [R3, and the
results presented mirror those of chapter 2 as far as possible. We highlight the
point at which the dissimilarity between bar and joint structures in R? and bar
and joint .structures in R® occurs and give the usual counterexample to the

obvious analogue of Laman's theorem for bar and joint structures in RS.

Definition 5.1: A spatial bar and joint structure is a bar and joint structure in
R, Throughout this chapter we shall mean "spatial bar and joint structure"

when we say "bar and joint structure" or "structure".

Again we note non-ambiguous notation abuses at 5.10 6.15, and 6.16.
These consist of using graph terminology for structures and vice versa, and

shouldn't lead to confusion. Also on page 66 vectors u g, U, Vg & m

iiplyplgls e 5
have had an unexplained rearrangement of co-ordinates.

Lemma 5.2: If S is a non-collinear structure, and T is a collinear structure,

then
i) f(S)+rk(Ag)=3n-6 f(T)+rk(A)=3n-5.
ii) 0<f(S)<3n-6 0<(T)<3n-5.
iii) 0<rk(Ag)<3n-6 0<rk(A )<3n-5.

iv) Sisrigid iff £(S)=0 T is rigid iff {(T)=0.
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Proof: If T is collinear then we assert without proof that dim(R.)=5, not 6,
since a collinear structure in space has one rotational degree of freedom less
than a non—collinear structure in space. The remainder of this proof is exactly

analogous to the proof of lemma 2.2. ’ o

Theorem 5.3: Unless § is a single bar, rk(Ag)<min{|B(S)|,3|J(S)|-6}.
Proof: Ay has |B(S)| rows and 3|J(S)| columns, and unless S is a collinear
triangle dim(N)>6. If S is a collinear triangle, then |J(S)|=|B(S)|=3, and

rk(AS)=2 and the result is clear. o

Lemma 5.4: If a structure S is rigid then |B(S)|>3|J(S)|-6

Proof: . If a structure S, which is not a single bar, is rigid then
tk(A¢)=3|J(S)|-6 and consequently |B(S)|23]J(S)|-6 since B(S) is the number
of rows of Ay. A single bar has |B(S)|=120=3|J(S)|-6. o

Theorem 5.5: Unless S is a single bar, any two of the following conditions
imply the third:

i) B(S) is independent in Dg.

ii) S is rigid.

iit) 3|J(S)|-6=|B(S)]|.
Proof: i & ii = iii: § is rigid so rk(Ag)=3]J(S)|-6, and B(S) is independent, so
k(Ag)=|B(S)!.

i & iii 3 ii: B(S) is independent, so rk(AS)=|B(S)|=3|J(S)|—6. So S is
rigid.

iii & ii 3 i S is rigid, so rk(Ag)=3|J(S)|-6=|B(S)[. So B(S) is

independent. 0
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Theorem 5.6: Let B(S)=B,U.. .UB, be a partition of the bars of S so that
Bi=B(Si) is the set of bars of a substructure S, of S. Then

f(S)=3|J(S)|—6j§ (313(3)|64(S)) iff Dy=Dj e...eDy .

i=1 1 k
k k
Proof: T (3|3(5,)|-6-4(5,))=3|J(S)|6-£(S) iff T rk(Aq)=rk(Ay) iff
i=1 ' =1 i
k
® DS.=DS o
i=l "1

Corollary 5.7: Let B(S)=B1L'J.. ..L'JBk be a partition of the bars of S so that

Bi=B(Si) is the set of bars of a substructure S, of S. Then

£(5)=3J(S) |4s;§ (313(5)-6) iff

1=1

both DS=Dsle.. ..eBDSk and S, is rigid ¥ i=1.. .k.

Proof: Each Si is rigid iff f(Si)=0. : o
Now suppose we have a rigid substructure S which is not a single bar, of

some other structure, with J(S)={(x1,yl,zl),.. w(x )y ,z )} We define a six

nn’' n
; : ijk_
dimensional vector space MS = (a1+yias+zia6, a1+yjas+zjaﬁ, @+, 0 +2,
AR A U Z0 X0, 07 QX O, Oty 0 X o a3+yja4—xja6,

a3+yka4—xk(16) Do, o € R }, with addition (a,l,.. ..,ag)+(b1,.. ..,bg) =
(al+b1,.. ..,a9+b9), and scalar multiplication 7(a1,.. ..,ag) = (7a1,.. ..,7a,9),
where i, j & k are between 1 and n.

We consider the transformation BSijk to M;jk from NS defined by
QU+ tou, (al+yias+zias, al+yja5+zja6, 0+, O+, O, 070 X O,
a2—zja4-xjas, a2-zka4-xkas, a3+yia4-xia6
called BUX, where u =(1,.. .,1,0,.. ..0,0,.. ..0,0,.. ..,0),

, a3+yja4-xja6, a3+yka4-xka6), is

1

1,=(0,.. ..,0,1,.. ..,1,0,.. ..,0,0,.. ..,0),

1, =0, ,0,0,.. .,0,1,.. .,1,0,.. ..,0),
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_1_1_4:(0’_. 052 e 2 Y e oY 05 0),
U =(y e ¥ X e X 50,0 250,0,....,0),
g6=(z1,.. 2505 0% x50, .,0)  with  the extra  zeroes

corresponding to vertices of the structure of which S is a substructure.

Lemma 5.8: For any three non—collinear joints i, j and k of a rigid substructure
S, which is not a single bar, of some larger structure, B;jk is a bijective linear
transformation.

Proof: Discussion above. 0

Lemma 5.9: If S and T are two structures where B(S)=B(S )uB(S,),
B(T)=B(T )JUB(S,), S, and T, are rigid substructures of S and T respectively,
but are not single bars, and J(S,)nJ(S,)=J(T)nJ(S,)#0, then £(S)=£(T)

Proof: We demonstrate the existence of a bijective linear transformation
between N and N, using the fact that if the velocities of three non—collinear
joints of a rigid body are known, then the velocities of all thé joints of the rigid
body are consequently known, as shown in the previous lemma.

For every _rgseNS we define a unique gs=(0,.. ..,O,aH_l,.. ..,azn) where

ms=(a,l,.. R e -3, ) where the last [J(S,)|=2n-r entries correSpogd to

joints of Sl. Similarly for each mrEN’f we define a Yo

Define a bijective linear transformation L’ ’:NS Mg -M,, =N by
_ 1 71 |
(B’i‘hf)—loljkhloB;jk if J(SI)nJ(S2)={i}, j-keJ(S,), h,t’eJ(Tl).
1 1
L’={ BLG o iloBli* it 5(5 )ni(S,)=(i, i}, kel(S)), CeI(T,).

T

- jkhe yrijk agihl . ) :
where I .MSl —»MT1 is defined by; (o, +y,0.+7.ap, o+ 05420,

a1+yka5+zka6, 02,0, X0, a2—zja4—xja5, a2—zka4—xka5, a3+yiba4—xia6,

el kK DTk e e
(BLI¥) oS oBéi if {i,j,k}cJ(S,)nI(S,).



- 67 -

6
U FY A F2g0 TN, 0y2 00X O, Q20X 0, - Qg 00X 0,

as+yha4tha6,_ a3+yza4—x£afs).

gty o X ag, @, +y, @ 4—xka6) - (a1+yia5+ziaﬁ, @y a+z, o,

Now ~define L {u=mevymeN}+{u=m v :m €N} by
L’ (a5rerr2,0,000)=(8 5-.018,0,...,0).

It isn't clear ﬁhat L’ is well defined. It may be that there is a Ug 8.t
L’(_us) doesn't exist. If this is not a problem, then L’ is a bijective linear
transformation. We show now that L’ is well defined. |

Consider the systems of orthogonality conditions which originally gave rise
to the matrices AS and AT. First we have, common to S and T, all the
equations derived from the bars of S2. Call this system 1. Let system 2 be the
system of equations derived from the bars of Tl, and system 3 be the system of
equations derived from the bars of Sl.

We consider three cases; i) where |J(S5,)nJ(S,)[23, 1ii) where
'|J(Sl)r_1J(S2)i=2, and iii) where |J(S,)nJ(S,)[=1. In case i) we know systems
2 and 3 have 6-dimensional solution spaces, and the solutions can be expressed
in terms of XX XY Y Y2280 where
(xi,yi,zi),(xj,yj,zj)&(xk,yk,zk)GJ(Sl)ﬂJ(S2) and J(S,)nJ(S,), from the lemma 5.8.
Since the remainder of each system is identical (system 1) and contains
XXX Y ;i,yk,zi,zj,zk, we see that for every U there does exist a corresponding
Ur, and we are therefore assured that L’ is well defined.

‘Case ii) is similar: since S1 and T1 are not collinear they contain, say,
(xkl,ykl,zkl) and (xkz’yk2’zk2) respectively, and we can apply the argument
from case i). Case iii) is similar: since S, and T, are not collinear, S, contains

.,y¥.,2. ), and T, contai and (x.,y. ,z.
(Xkl’ykl’zkl) and (x"l,y‘ll’z"l), d 1 © ntains (Xk2yyk2azk2) ( J2’y‘l2, J2)’

and we can apply the argument from case i).
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In each case there exists a bijective linear transformation L:N S"NT defined
by L(mg)=L(ug+vg)=L’(up)+L""(vp)=up+y=m;. So dim(Ng)=dim(Nj)
and f(T)=1(S). ' o

Theorem 5.10: Let Sl,.. ..,Sk be rigid substructures of S, each of at least three
vertices, s.t. B(S)=B(S,)u.. .UB(S,), and let T,,.. .., T, be rigid substructures
of T, each of at least three vertices, s.t. B(T)=B(T1)U.. ..UB(’I‘k). ‘Further let
S’ be the set of joints of S which are in more than one S,, and let T’ be the
set of joints of T which are in more than'one T,, and J(Ti)nT’=J(Si)nS’
V i=1..k. Then £(S)=f(T).

Proof: Sté,rting with S, we invoke lemma 5.9 k times, on each occasion
replacing one 'Si by the corresponding T, without altering the degree of freedom,

until we are left with T: f(S) = f(S US,U.. .US,_,US) = (T US,U.. .US, US,)

=.. .= f(TUTU.. .UT,_US,) = f(T,UT,U.. .UT,_UT,) = f(T). 0

Lemma 5.11: If a structure S’ is obtained from S by choosing three joints of S,

X =(x.y,,2,), xJ.:(xj,yj,zj) and x,=(x,,y,,z,) which are not collinear, and adding

1Y n41%n +1)=Xn 41 Dot coplanar with the first three

joints, and the three bars (Xi’Xn+l)’ (Xj’xn+1) and (xk,xn+1), then S is rigid iff

to S an extra joint (x

S’ is rigid.
Proof: Suppose S’ is rigid. Then rk(AS,)=3(|J(S)|+1)—6. Since Ag is simply
Ag, with three rows and three columns removed, we have rk(AS)23|J(S)|—6, SO
S is rigid.

Conversely suppose S is rigid. Then by the theorem 5.10, S’ has the same
degree of freedom as the (obviously rigid) structure consisting of the four joints

XpX;pXoXy, 2nd the six possible bars between them, s0 f(S")=0. O
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Until this point there are few significant differences betweén the planar
and the spatial cases. The main differences have been with the small, low
dimensional, degenerate exceptions. To be exact, all results and definitions
from 2.1 to 2.11 have direct ana.logués for spatial structures, as we have
demonstrated. However we note at this stage that lemma 2.12 and theorem

2.13 have no direct analogues for spatial bar and joint structures.

Example 5.12: i)

Since the concept of genericity, like the concept of implicit bar, is
independent of the dimension of the space in which our structures lie we simply
reiterate that references to A3G’ f3(G), Nog D, and 3-stiff are references to
graphs, or generic structures only, while references to As, £(S), NS’ DS and rigid

apply more generally to any structures.
While results so far in R? have been very similar to those in IR2, when we

raise the question of generic properties of spatial bar and joint structures we
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have reached a point where significant differences between the planar and
spatial cases become evident. We know from the last example, that for some
structures there is no partition of their bars into maximal rigid substructures
because maximal rigid substructures are not bar disjoint. For this reason when
we look at theorem 4.6 we immediateiy realise that it can have no analogue in
RS, ‘The structure of example 5.12 also provides a counterexample to analogues

of other results in the plane, including theorems 4.4, 4.5, and 4.7:

Theorem 5.13: Not every circuit in D3G is 3-stiff.

Proof: Consider once more the structure S from the previous example. It can

flex about the dotted hinge line, so it is not rigid.

Therefore rk(AS)<3x8—6=18=lB(S)I, and so B(S) is dependent and
contains a circuit C. Now each substructure, S’ and S’’, is independent so
doesn't contain C. Therefore C must be partly in each substructure of S, and

cannot be rigid. ]

Comment 5.14: In general it is false that: D, is free iff 3| V(Y)|-62|Y| holds .
for every YCE(G).

Proof: The structure S from the previous proof satisfies the condition in this

proposition, but contains a circuit. 0
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Comment 5.15: In general it is false that: G is 3-isostatic iff
i) |E(G)|=3|V(G)|-6 and _
ii) |E(H)|<3|V(H)|-6 for every subgraph HCG.

Proof: Same as previous refutation. . ' o

This has led to comments of the following nature:

"However, the 3-dimensional analogues of [two theorems including
Laman's| are simply not true." Recski [R7] p244;

"...Laman's result does not extend to dimension three or higher." Graver
 [Gs] p362; |
which can be construed as misleading.

More cautious people have simply stated facts:

"In spite of considerable effort on the part of several people, the problem
of extending Laman's theorem to higher dimensions is still open." Lovasz &
Yemini [L5] p98; at about the same time that Tay [T2] extended Laman's

theorem to higher dimensions in his PhD thesis..

We believe that we have discovered a natural environment for other
possible higher dimensional analogues of Laman's theorem (our ideas a.r.e very
similar to #nd complementary to Tay's), along with a class of spatial bar and
joint structures for which the underlying graph G is 3-isostatic iff |

i) |E(G)|=3]V(G)|-6 and

ii) |E(H)|<3]V(H)|-6 for every subgraph HCG, both hold.
Although, due to our inability to prove our conjecture, this belief is based
mainly on mechanical impressions, an unreliable foundation for belief, we

present our idea in the next chapter.
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Hinged Panel Structures.

We introduce a new type of structure in space, called a hinged panel
structure, and show its similarity to planar bar and joint structures and its
dissimilarity to bar and joint structures in RS. This type of structure is slightly
different from the hinged panel structure introduced by Baracs and developed a
little further by Crapo & Whiteley, and while a familiarity with their structures
might be useful in understanding these, it should be remembered that they are
not the same. Our hinged panel structures are made from rigid panels joined
by hinges. Each rigid panel has exactly two hinges on it. Each hinge may have
any number of panels attached to it. A hinge is best thought of 'as a hinge. A
panel should be considered as the simplest rigid body which keeps the relative
positions of its two hinges fixed. Hence the only property of a banel, apart
from incidence with its two hinges, is that the two hinges on it cannot move
relative to each other. In accordance with conQention we will ignore the
unpleasant physical impossibility of hinges and panels passing through each

other.

Definition 6.1: A hinged panel structure, R, consists of a simple graph H(V,E)
and an injection x:V(H)~{{7(a,b,c)+(d,e,f):7€R:}a,b,c,d,e,feR}. We will identify
V(H) with the set of the first n positive integers and write y; instead of x(i).
If ieV(H) we call x; a hinge of R, and if (i,j)eE(H) we call {Xi’xj} a panel of R.

We call H the graph underlying R.
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Now how can we model the fundamental property of a panel; namely that
its two hinges cannot move relative to each other? Of the many choices at this
‘point we make a simplification. As a prelude to this we detail the following

~ construction of a graph G, from a graph H:

Construction 6.2: Start with a graph H.

i) For each vertex i of H create two vertices i, i, of G and an edge

1
(ii,) of G between them s.t. |V(G)|=2|V(H)|. Now all the vertices of G are
defined.

ii) For each edge (i,j) of H create four edges of G as follows: If i— (il’iz)
and j— (j,,J,) during stagé i) of our construction, then (o) (ipd))s (ig:j;) and
(ip.,) are edges of G and we have finished our construction of G. The
“resulting graph we call also I'(H). _

iii) Clearly |V(G)|=2|V(H)| and |E(G)|=4|E(H)|+|V(H)|.

o
E?
)

Example 6.3:

o

e
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Now, in line with Tay [T5], we introduce a class of spatial bar and joint

structures called simple hinged panel structures:

Definition 6.4: A simple hinged panel structure R with ‘underlying graj)h H,is a
spatial bar and joint structure with underlying graph G=I'(H). If (i,j) is an
edge of G corresponding in the construction to a vertex of H, then the bar of R
which it underlies is called a hinge. If p is a set of six edges of G
corresponding in the constrﬁction to an edge H, then the six bars of R which

they underly is called a panel.

Example 6.5:

The bar b, is clearly functioning as a hinge, and we use bars in this way
to model hinges. This has allowed us a very simple way to model the property
of a panel tha.t its two hinges cannot move relétive to each other: By making a
panel consist of, in addition to its two hinge bars, simply the other four bars
between the vertices of these two. However, if in a hinged panel structure, we
have a panel with coplanar hinges, then such a panel is not rigid (definition
1.18), but we require all panels to be rigid. Although simple hinged panel
structures can be easily modiﬁed to account for this inadequacy, we will more
easily understand these structures if at first we avoid this complication. Since
simple hinged panel structures are bar and joint structures, we shall overcome

this problem by dealing with generic simple hinged panel structures since by
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definition 3.26 none of these has a panel with coplanar hinges. To simplify
things in a sensible fashion comnmensurate with the first chapters, we shall deal
henceforth with generic simple hinged panel structures and use the graph

notation.
Definition 6.6: A graph H is HP-stiff iff G=T'(H) is stiff and HP-isostatic iff

G is 3-isostatic. A mazimal HP-stiff subgraph of H is a HP-stiff subgraph of H
which is a subgraph of no HP-stiff subgraph of H other than itself.

Example 6.7:

g0

H is HP-stiff since G=T'(H) is K. Also since rk(AS)=12<15=|E(G)| we
find that the edges of G are dependent.

In fact when a simple hinged panel structure is just a cycle of panels; i.e.
every hinge has exactly two panels attached; then it is a structure about which
a great deal is understood. Crapo and Whiteley [C16] showed that for generic

structures of this type, cycles of size three, four, and five are HP-stiff and
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dependent, a cycle of size six is HP-stiff and independent, and cycles of size
seven or greater are independent but not HP-stiff. They gave explicitly the
conditions for genericity.

While some structures can be understood by viewing them as many cycles

joined in various ways, many cannot be treated this way:

Example 6.8:

Since Hl consists of three "independent" cycles of six we can easily see

that it is HP-stiff. But what of 'H2? Is it HP-stiff? Is it independent?

Now we compare the generic properties of planar bar and joint structures

with the generic properties of simple hinged panel structures.
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Planar bar and joint ~ Simple hinged panel
[n points moving freely in the [n bars moving freely in space
plane have 2n degrees of freedom. ] have 5n degrees of freedom.]
A bar in the plane joins at most A panel in space joins at most
two joints, and in doing so two hinges, and in doing so

removes at most 1 degree of freedom. removes at most 4 degrees of freedom.

In the underlying graph a joint In the underlying graph a hinge
is represented by a vertex and a is represented by a vertex and a
bar is represented by an edge. - panel is represented by an edge.
A triangle is the largest cycle A hexagon is the largest cycle
which is 2-isostatic. which is HP-isostatic.

The dimension of the space of rigid The dimension of the space of rigid

motions is three. ' motions is six.
If a graph G, is 2-stiff then If a graph H, is HP-stiff then
|E(G)[22|V(G)|-3. 4|E(H)|25|V(H)|-6.

We justify this last claim.

Lemma 6.9: If H is HP-stiff then 4|E(H)|>5|V(H)|-6. _
Proof: If G=T(H) is 3-stiff then by lemma 5.4, |E(G)|>3|V(G)|-6. But by
6.2 iii) we know |V(G)|=2|V(H)| and |E(G)|=4|E(H)|+|V(H)| and the

result follows upon substitution. o
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In the same way theorem 2.5 has an analogue.
Theorem 6.10: Any two of the following conditions imply the third:

i) H is HP-stiff.

ii) DI‘(H) is free.

i) 4|E(H)|=5|V(H)|-6.
Proof: As in the last proof, we simply substitute the equations
|V(G)|=2|V(H)| and |E(G)|=4|E(H)|+|V(H)| from construction 6.2 iii) into

theorem 5.5 and this result follows. o

So far so good, but what about an analogue for theorems 2.3 and 5.3?
tk(Ap ) $min{|E(G)],3|V(G)|-6}, by theorem 5.3 |
=min{4|E(H)|+|V(H)|,6| V(H)|-6}, by construction 6.2
#min{4|E(H)|,5|V(H)|-6}, in general.
Although this looks sad, we should not expect these complicated structures

to be too simple. In fact this difference is very easily resolved.

Theorem 6.11: rk(AF(H))—W(H)ISmin{4|E(H)|,5|V(H)|—6}.

Proof: Discussion above. o

' Suppdse we have a generic simple hinged panel structure R with
underlying graph H. It is old hat that associated with the graph G=T(H) we
have a matroid on its edges (the structure geometry), however using the.rows of
the coordinatising matrix AR, we observe a polymatroid on the ground set
V(H)UE(H), induced as follows. If ACV(H)UE(H), then rkp(A) is the rank of
the rows of AR corresponding to the hinges and panels of R (see definition 6.4)
which vertices and edges in A underly. In this polymatroid edges of H have

rank six and vertices of H have rank one.
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We know that the matroid called the structure geometry in space, differs
from the matroid called the structure geometry in thé plane, but is this
polymatroid sufficiently similar to the planar structure geometry to allow the
~ possibility of analogous results to theorems 4.4, 4.5, and 4.7 for simple hinged
panel structures? Possibly, however because we do not wish to become
embroiled in polymatroid theory, we dd not present analogues of 4.7, and we
only introduce enough polymatioid concepts to indicate that feasible parallels
may exist between matroid properties of pla.par bar and joint structures and

- polymatroid properties of simple hinged panel structures.

Definition 6.12: A set A of edges of a graph H is polyindependent iff T(A) is an
independent set of edges of the structure geometry D3I‘(H)' A set A of edges
of a graph H is polydependent iff T(A) is a dependent set of edges of D3F(H)'
A polycircuit C of a graph H is a polydependent subset of E(H), all of whose

proper subsets are polyindependent.
Conjecture 6.13: All polycircuits are HP-stiff.
Conjecture 6.14: H is polyindependent iff 5| V(Y)|-624|E(Y)| V E(Y)CE(H).

It was essentially at this point in the development of the theory of spatial
bar and joint structures that we realised their dissimilarity to planar bar and
jbint structures. Up until this point the theory for hinged panel structures has
been similar to that for both planar and spatial bar and joint structures. Why
should we expect the behaviour of hinged panel structures, from this point on,
to be more like that of planar bar and joint than spatial bar and joint

structures?
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~ The answer comes in two parts. First a mathematical indication, and
then a physical one. It is generally impossible to partition the edges of a graph
into maximal 3-stiff subgraphs because an edge can be in two maximal 3-stiff
subgraphs (exampie 5.12), however for simple hinged panel structures there is

an analogue for 2.12 and 2.13:

Theorem 6.15: If G1 and G2 are 3-stiff subgraphs of G, and
|V(G)NV(Gy) | >2, then G=G UG, is 3-stiff.
Proof: f3(G)=f3(G1UKV(Gl)ﬂV(Gz)) by lemma 5.9, and

f3(GlUKV(G1)nV(G2))=O by lemmas 1.22 and 1.23. . u!

Corollary 6.16: For any graph H, the maximal HP-stiff subgraphs are bar
disjoint, and the partition of the edges into its maximal HP-stiff subgraphs is
unique. |
Proof:" Clearly every edge is in a maximal HP-stiff subgraph.

Suppose an edge e is in two ma.ximalj HP-stiff subgraphs, H1 and H2.
Then |V(F(H1))nV(I‘(H2))|=4>2 'so by lemma 6.15 H,UH, is HP-stiff,
contradicting the maximality of the HP-stiffness of H; and H,,. Therefore every

edge is in exactly one maximal HP-stiff subgraph. o

Thus it is always possible to partition the edges of a graph into maximal
HP-stiff subgraphs, and, as in the planar bar and joint case the partition into
maximal 2-stiff subgraphs of a graph G yielded the min¥2|V(G;)|-3 where the
minimum extended over all partitions of the edges of G, s0 we conjecture that
the partition into maximal HP-stiff subgraph of a graph H will yield
min5 | V(H,)|-6 where the minimum is taken over all partitions of the edges of
H.
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Secondly we examine the nature of the joints of each of the three types of

structure by considering the following example.

Example 6.17: Let G be

a.nd let S1 be a planar bar and joint structure, 82 be a spatial bar and
joint structure, and S3 be a simple hinged panel structure, each with G as its

underlying graph.

&

2) (8)=1=6,(G)  b) £(5,)=3=£,(C) ) £(5,)=1=1,(T(G))

In mechanical engineering parlance ([H1] p5-13) the joints exhibited here
are known as lower pairs with a) a turning or revolute pair; b) a spherical or
globe pair; and c¢) a turning pair. Also engineers say the "number of freedoms"
of a turning pair is 1 and the "number of freedoms" of a spherical pair is 3.
Note that in structures of all three types we are not always dealing with simple
pairs, but sometimes with many members meeting at a joint. Nevertheless
from a mechanical viewpoint it may be more natural to expect similarities
between planar bar and joint structures and hinged panel structures than

between the former and spatial bar and joint structures.
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Since 4.2 - 4.8 are equivé,lent in the sense that each is a simple corollary
of each of the others, we just state here the analogue of 4.8 in the expectation
that if one can prove it then one can prove the analogues of 4.2 - 4.7. Because
of the simplicity of the language of graphs, we present ﬁhjs conjecture in the
sa.ine form as theorem 4.8 and comment 5.15, with our usual understanding that
in addition to being a statement about graphs it is a statement about (generic)
simple hinged panel structures. We also believe that a corresponding result

may be true for certain more general hinged panel structures.

Conjecture 6.18: ‘A graph H is HP-isostatic iff
i) 4|E(H)|=5|V(H)|-6 and
ii) 4|E(F)|=5|V(F)|-6.for every subgraph F of H.

Because of the resemblance this conjecture bears to Laman's theorem, we
look to the proofs of Laman's theorem for approaches to a probf of this.

Lé,ma.n's original induction proof relies on building every 2-isostatic
structure with k vertices from 2-isostatic structures with k—1 vertices, in a
simple way. It seems unnatural to try his technique here, and for simple
hinged panel structures it would require a vastly more complicated method to
build every' 3-isostatic structure with k vertices from 3-isostatic structures with
k—4 vertices.

Asimow and Roth's proof relies on simple accessible properties of planar
structures which don't generalise in a straightforward way to simple hinged
panel structures. It seems unnatural to try their technique here as it is
tailor-made for the planar case. |

Lovasz and Yemini's proof seems at first a little more promising, as it
involves polymatroid theory and here we are dealing with a polymatroid. After

_attempting without complete success to use their ideas, it seems likely that
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they will only be effective for simple hinged panel structures, and won't be
easily adaptable to more general hinged panel structures.

In the last half of the previous chapter we proposed a possible fourth
method of proof which generalises more simply to higher dimensions than these
three.. We didn't make it work for planar bar and joint structures, but if true,
it may be possible to apply the idea to hinged panel structures and their higher

dimensional analogues. We give an indication of how this idea might develop.

Definition 6.19:v The relative (?—-degree. of freedom between two vertices 1 and 2
of a graph H is denoted and defined by f3(1,2)=rk(A3G,)—rk(A3G), where H’ is
a graph obtained from H by adding an edge (1,2), and G=F(H) 'and'G'=I‘(H’).

Also the relative 3-degree of freedom between a vertexr 1, and an edge
p,=(2,3) of a graph H, is denoted and defined by f3(1,p2)=rk(A3G,)—rk(A3G),
where G’=I'(H’), G=I'(H), and H’ is obtained from H by adding two edges
(1,2) and (1,3).

Also the relative 3-degree. of freedom between two edges p0=(1,2) and
p1=(3,4) of a graph H is denoted and defined by f3(p1,p0)=rk(A3G,)—rk(A3G)
where G’=TI'(H’), G=I'(H) and H’ is a graph obtained from H by adding: |

i) edges (1,3) and (2,4) if 1#3#2 and 1#4#2.

ii) one edge ({1,2)\i,{3,4}\j) if i=j for some i€{1,2}, je{3,4}.

Finally the relative 3-degree of freedom between two HP-stiff subgraphs H0
and H, where (1,2)6E(H0) and (3,4)EE(H1) of a graph H is denoted and deﬁned

by f,(H ,H)=rk(A,/)-tk(A,;) where G’=I'(H’), G=T'(H) and H' is a graph

3G’) 3G)

obtained from H by adding:
i) edges (1,3) and (2,4) if 1#3#2 and 14442,
i) one edge ({1,2}\1,{3,4}\j) if i=j for some i€{1,2}, je{3,4}.

The third definition of these is a special case of the fourth.
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It can be shown, using the unit-increasing property of the rank function
and some basic knowledge of the dependence of some simple small spatial bar
and joint structures, that » 05f3(1,2)54

05f3(e1,2)$5 |
| 0$f3(e1,e2)56 Ve e,,1,2 in a graph H
s.t. all these relative 3—degrees of freedom are defined.

Lemma 6.20: If e0=(1,2) and e1=(3,4), then
f,(1,3)=k = k<f (e ,3)<k+1 and k<fy(e e )<k+2.

0 if k<2 k if k<4
Also f (e e )=k 3 <f,(1,3)< and

| k-2 if k>2 4 if k>4,
0 if k=0 - [k if k#6
i Sf3(30,3 S '
k-1 if k#0 5 if k=6.

dly Lo ) k=1 if k#0 Lo 4 if k=5
Finally f (e .,3)=k = <f.(1,3)< and
370 0if k=0| 3 k if k#5,

k<f,(e.e,)<k+1. |
Proof: Straightforward consequence of the unit-increasing property of the rank
function. o o

Conjecture 6.21: Suppose e, and e, are edges of H and H0 is the maximal

0

HP-stiff subgraph of H which contains e,. Then f (e e )=0iff Hj contains e

o I

Tay [T3] has proved, using a projective approach, a similar lemma
(theorem 4.3 in his paper) which may imply this. If this conjecture is true then
we may proceed in an analogous fashion to the way we did in the second part
of chapter four, from lemma 4.15 onwards, and to realise analogous -results

including conjecture 6.18. In particular our construction process and consequent

proof by induction on the number of maximal 2-stiff subgraphs, generalise in
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this way. ’
An analogous proposition for spatial bar and joint structures would be
more complicated since some bars are in more than one maximal rigid

substructure.

'If we compare conjecture 6.18 with comment 5.15, for simple hinged panel
structures, using the equations in construction 6.2 iii) and definition 6.6, we
easily realise that these two are identical for simple hinged panel structures,
and we have a class of spatial bar and joint structures within which the
conditions in comment 5.15 may be a valid characterisation of 3-isostatic
graphs. Perhaps we can extend our class of bar and joint structures which obey
this proposition by replacing any panel of a simple hinged panel structure with
any 3-isostatic structure which contains those four vertices, as in lemma 5.8,
ending up with a 3-isostatic structure which obeys the conditions in the

proposition.
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Conclusions.

This chapter consists of speculations, including a discussion of the

projective viewpoint and a list of possible extensions of work presented earlier.

In chapter 6 we defined hinged panel structures, and in order to get a
handle on these wé also introduced simple hinged panel structures. There were
many possible simplifications available at that point, and many ways to modél
hinged panel structures, both general and simple. The choice of model must
depend mostly on what you want to do with it, and ours was chosen because it
was familiar and we were trying for a simple introduction. Given that one is
normally trying to produce new ideas, there are good arguments for choosing a
projective model, like for instance that of Crapo and Whiteley [C16].

First, the result telling us that rigid structures remain rigid under
projective transformations [R1] [R2] [C16] [W1] [W23], allowing an appropriate
mechanical interpretation of points at infinity in extended euclidean space,
which is fundamental to this subject, is naturally best tackled using a projective
approach (compare the proof of this by Wunderlich {W23] with that by Crapo
and Whiteley [C16]). In other words structures generally have in some sense an
inherently projective nature.

Secondly, as is evident by our definition, we believe that it is the line
taken by the hinge, that is crucial. That is, no matter where the hinges of a

simple hinged panel structure were placed on the hinge lines of the associated
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hinged panel structure, the behaviour would be the same. Although this may
simply be a consequence of the projective invariance of statics, the projéctive
description of lines in space is appealing and tractable.

Thirdly, associated unavoidably with the projective descfiptioﬁ for the
lines in space is a description for screws [K12] [V1] in space, and there is no
reason not to include screw hinges [H1] in our definition of hinged panel
structures, although simple hinged panel structures cannot be modelled this
way. It is possible to build such things, and we conjecture that the same
results would hold for them, since it seems fhat an ordinary hinge joint is a
screw joint with zero pitch. |

Finally, and incidentally, for anyone interested in attempting to examine
our conjecture, or something similar, for simple hinged panel structures using
Lovasz and Yemini's techniques, there is a reason to consider projective models.
The proof by Lovéisz and Yemjni of i,aman's theorem relies on several
fortuitous coincidences, one of which is the fact that the incidence matriz (0.4)
of the' graph underlying the structure (and so also the cycle matroid of the
graph, (0.13 ii)) can be neatly used to describe the coordinatz’sz’ég matriz (1.6)
of the structure. The arrangement of this coincidence for simple hinged panel
structures was ultimately effected using a development of Crapo and Whiteley's

[C16] projective model.

We believe that these hinged panel structures are not contrived, but useful
and natural objects to study, and we have presented as a major part of this
‘thesis, detailed explanations of only one reason for this belief. Another reason
is that they are similar to the articuldted panel structures introduced by Baracs
[B7], an engineer who in his paper suggests construction techniques for buildings
designed using these ideas, so that since a practical man invented them they

must be useful. Although our structures are not the same as these, ours are at
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least as general in that any of his structures can be expressed in terms of ours:
In Rooney and Wilson [R8], two possible representations (for kinematic
systems) are given, called .the "direct graph representation" and the
"interchange graph representation”. In the former the vertices of the graph
correspond to the joints of the system and the edges of the graph correspond to
 the links of the system. This is appropriate only for systems with binary links.
In the interchange graph representation the vertices of the graph correspond to
the links of the system and the edges of the graph correspond to the joints of
the system. This is appropriate only for systems with binary joints. In this
work we have used the direct graph representation and dealt solely with those
structures (including our hinged panel structures) for which this is appropriate.
Crapo and Whiteley [C16] have used the interchange graph representation and
dealt with a type of hinged panel structure for which this is appropriate. We
allow two hinges per panel and any number of panels per hinge, whereas Crapo
and Whiteley allow only two panels pér hinge and any number of hinges per
panel. Rooney and Wilson [R8] give an example of how a joint like one of ours
with three‘panels, may be "expanded" into a succession of joints with only two
panels if we allow panels with more than two hinges. In a similar fashion a
more complicated link (e.g. a panel from a Crapo and Whiteley hinged panel
structure) may be expressed in terms of ‘bina.ry links (e.g. panels from our
hinged panel structures) if joints are allowed with more than two links. This
can theoretically be done by replacing each m-ary panel by a rigid (Qr isostatic
if independence is important) structure which has m hinges. In practice this is
a contrived procedure, however ho less contrived than the converse one shown
by Rooney and Wilson. Neither of these two representations comfortably
encompasses the most general type of structure, which would allow both links
with more than two joints and joints with more than two links. Rooney and

Wilson suggest a hypergraph representation which overcomes this.
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A third reason is that these ideas constitute more information with which
to tackle the search for a combinatorial characterisation of (generic) rigid
spatial bar and joint structures. it seems likely that there are no isostatic
spatial bar and joint structures which disobey the conditions in comment 5.15,
and that the only structures which obey these conditions but are not isostatic
(they clearly can't have hyperstatic subgraphs), are not rigid due to one or
more hinge type arrangements like those in example 5.12. This seems
reasonable because if we have a graph G of a spatial bar and joint structure,
with two maximal 3-stiff subgraphs G, and G,, we know that these two
maximal 3-stiff subgraphs can be joined in one of three ways:

i) E(GNE(Gy)={} and |V(G))WV(Gy)|=1,

ii) E(Gl)nE(G2)={} and |V(G1)nV(G2)|=2,

iii) |E(G)NE(Gy)|=1 and |[V(G})NV(G,)[=2,. It is the second case
here which to some extent prohibits a general version of Laman's theorem for
spatial bar and joint structures.

'fhus aﬁy non-rtigid structures which obey the conditions in comment 5.15
can be viewed as hinged panel structures which aren't rigid, and so we should |
have an exact condition on them from conjecture 6.18. If we can refine this
condition and translate it into spatial bar and joint terms, then we have
characterised a set of exceptions to comment 5.15, and if these are the only
exceptions, as we suspect, then we have characterised (generic) rigid spatial bar
and joint structures. Perhaps sbmething along these lines will be fruitful.

Finally, once more on the practical side, it would be very easy to design
complex spatial bar and joint trusses for which the critical forms [T8] are easily
predicted and avoided. Such é. truss would consist of two equicardinal sets of
joints, one set in each of two parallel planes, with enough various bars joining

them to ensure the rigidity of the structure, see Crapo [C14]. When designing
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our truss based on a simple hinged pariel structure we commence with a graph
H which we know to be HP-stiff. Then we construct a graph G=I'(H) using
construction 6.2. At step i) in the construction of G when we create two
vertices for every one of H, we label one of these vertices with a t (for top) and
the other with a b (for bottom), so that when G is constructed, half ‘the
vertices are labelled t and the other half are labelled b. If we realise G as a
spatial bar and joint structure where the vertices labelled t go to a coplanar set
of jointé, and the vertices labelled b go to another coplanar set of joints, with
these two planes parallel and distinct.

Example:
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We conjecture that it is only necessary to keep track of the lines taken by
each of the edges bt to then decide on the structure's rigidity. Using this
technique it should be easy to design isostatic and hyperstatic trusses both

generic and non-generic.

The remainder of this thesis is devoted to indicating where one might
proceed from here. Some extensions of work in this thesis are immediately
evident.

The work of chapter one is extendable .to higher dimensions. If this is
done patterns emerge in the inconvenient little exceptions, and these may
consequently be better understood. The reéults 2.9, 2.10, 2.11, 5.9,‘ 5.10, and
5.11 have many kindred results which can presumably be treated the same way
as these. Similarly relative degree of freedom (4.11, 6.19) can be more
generally defined so that we can find the relative degree of freedom of any set
of components of a given graph, of a planar bar and joint structure, or a hinged
panel étructure. Also there exist other ways of expressing the construction 4.16
and these may be more helpful than the one presented.

The form of some higher dimensional analogues .for Laman's theorem is
also now clear. They reqﬁire initially an understanding of the appropriate type
of structure for which they might hold. Namely structures where the relative
degree of freedom 'between any two edges/panels/bars with a common
vertex/hinge/joint, is at most one.

All these directions should be routine once the hinged panel structures are
thoroughly understood. |

Finally, in addition to all the abovementioned thoughts, there is an
appealing idea which is potentially fruitful.  Suggested by the natural
polymatriod description of hinged panel structures, is the possibility that a

polymatroid description for bar and joint structures in the plane might be

1
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useful as well as natural. For example any bar and joint stfucture in the plane
has many hypergraph/polymatroid representations, where an edge of a
hypergraph which represents a structure must be a 2-stiff subgraph. If this is
done then every hypergraph/polymatroid representation lies between the two
extremes of the original graph/matroid description, and the hypergraph with

every edge a maximal 2-stiff subgraph.
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