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Abstract 

This thesis is an examination of infinitesimal rigidity in generic 

structures using linear algebra and matroid theory techniques. The 

structures examined are bar and joint structures in 1, 2 and 3 dimensions, 

and hinged panel structures. The focus of this work is a conjectured 

environment for higher dimensional analogues of Laman's theorem, and 

some light is consequently shed on the quest for a combinatorial 

characterisation of (generic) rigid bar and joint structures in three 

dimensions. 
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Introduction. 

Consider a triangular framework and a square framework in a plane, for 

which the edges are inflexible rods which are joined at the vertices by universal 

joints. The latter is flexible in the plane since it can deform into the shape of 

a rhombus. The triangular framework is rigid in the plane since the three rods 

determine the relative positions of the three vertices. Similarly a tetrahedral 

framework in space, consisting of six rods connected at the vertices by universal 

joints is rigid, whereas a cube constructed the same way is flexible. A figure 

consisting of two triangles with a common edge is rigid in the plane but flexible 

in space, since one triangle can then rotate relative to the other along the 

common edge. Given a framework how can we tell if it is rigid or flexible in a 

given context? 

The rigid frameworks above are structures, while the flexible ones are 

mechanisms, so the above is a first step in modelling both structures and 

mechanisms. The mathematical theory of rigidity, as it stands today, is so 

closely related to the disciplines of structural engineering and mechanical 

engineering that from a mathematician's viewpoint there are no distinct 

margins between the three. For example, the papers of Calladine [Cl], 

Pellegrino [P1] [P2], and Kaveh [K7] [K8] [K9] [K10] [K11] on the mathematics 

behind theory of structures are by structural engineers and those of Baker [B2] 

[B3] [B4] [B5] [B6] and Hunt [H1] are some of their counterparts in mechanical 

engineering. Also Crapo [C14] and Baracs [B7] with a very mathematical 
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approach, address unusual engineering problems and Laman [L1], an engineer, 

has produced a quintessential mathematical result. 

Although in the nineteenth century the distinctions between structural and 

mechanical engineering were not as strong as they are today, and indeed one 

was a branch of the other to some extent [R3], for the sake of this discussion 

we regard the work done then according to contemporary perceptions. From 

the theory of structures in the nineteenth century [C3] the greatest 

contributions are from the practical discipline of graphical statics [C17]. 

Cremona [C17] acknowledges Carl Culmann, who was appointed professor of 

engineering sciences at Zurich Polytechnikum in 1855, as "the ingenious and 

esteemed creator of graphical statics". However from graphical statics it is 

Maxwell's geometrical theory of reciprocal diagrams [M3] [M4], subscribed to by 

Rankine [R1] [R2] which has had the greatest impact on modern theory so far, 

leading to the work of Crapo [C13] and Whiteley [C16] [W8]. Apart from this, 

a method of L.Henneberg [T8] [C3] has been generalised by Tay and Whiteley 

[T6] [T7]. The enduring early contributions from mechanical engineering have 

been more in the nature of analyses of particular mechanisms [B8] [B9] [D5]. 

During the above investigations it became clear that it was necessary to 

take care with what was meant by rigid. A framework may fall into any one of 

the following classes: 

It is rigid, a proper structure. For example 
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It is continuously movable, a proper mechanism. For example 

plaxe 	 i rt  SpaGC 	 ilk space 

It is infinitesimally moveable, a shaky structure or an immobile 

mechanism. For example 

Or it is multistable, where the framework has two or more stable forms. 

For example 

The concepts of rigid and continuously movable frameworks are perfectly 

clear, but what is this third group? It consists of things which liberal 

definitions of structures, such as a mechanical engineer might use, would 

represent as structures, but liberal definitions of mechanisms, such as a 

structural engineer might use, would represent as mechanisms. Such things 

would not be acceptable as structures to a structural engineer because they are 

inherently unstable, and would not be acceptable to a mechanical engineer as 

mechanisms, because they do not actually move. Multistable structures are 
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actually rigid mathematically hence this class is really a subclass of rigid 

frameworks, but we mention them because due to deformability of all materials 

they are encountered in practice. 

The powerful methods of graphical statics were born of an understanding 

of geometry, the two areas of which most influenced this practical discipline 

were projective geometry and the study of polyhedra. We introduce now the 

work by geometers in developing knowledge of abstract rigidity of polyhedra 

and shall return later to projective geometry. This work was not practically 

oriented and was not the work which influenced the workers in graphical 

statics. In 1766 Euler conjectured, "A closed spacial figure allows no changes, 

as long as it is not ripped apart" [G1] [C6] [C7], and expanded on this in a 

letter to Lagrange in 1770. Despite the simplicity of this conjecture, it stood 

for 200 years. 

The first advance was made in 1813 by Cauchy [C2] who essentially 

proved that a convex closed polyhedral surface is rigid if its flat polygonal faces 

are held rigid. In 1896 Bricard [B17] showed that the only flexible octahedra 

had bad self intersections, so all embedded octahedra were rigid. Similar results 

to Cauchy's were obtained by Liebmann [L2] for analytic surfaces, and by 

Cohn—Vossen [C4] for the smooth case. In the 1940s Alexandrov showed that 

all triangulated convex polyhedral surfaces were rigid if there were no vertices 

in the interior of the flat natural faces. Then in 1974 Gluck [G1] using an idea 

of Dehn [D2] and Weyl [W4] that Cauchy's theorem was also true for the 

stronger infinitesimal rigidity, showed that almost all triangulated spherical 

surfaces were rigid. In 1976 Connelly began to have an inkling of how to settle 

the conjecture [C5], and he produced a counterexample [C7] [C8], which was 

soon refined [C6] [C8], based on a Bricard flexible octahedron. 

Other researchers with a strong interest in polyhedra have been Bennett 

[B8], Blaschke [B10], Goldberg [G3] [G4] and Wunderlich [W21] [W22] with 
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analyses of specific polyhedra, and more recently Sugihara [S3] and Whiteley 

[W8] [W12] [W13] [W16] and Kann [K3] [K4] [K5] [K6] in apparent isolation 

from his contemporaries. In Connelly's later work [C9] [C10] he acknowledges 

the advances of A.D.Alexandrov toward his result that arbitrarily triangulated 

convex surfaces are rigid. The work of Roth [R11] and Asimow [Al] [A2] gives 

some results of Alexandrov. 

In these later works of Connelly [C9] [C10] he obtains results about 

tensegrity frameworks which have been investigated to some degree by 

Calladine [C1], Roth and Whiteley [R12], to a lesser extent by Baglivo and 

Graver [B1], and Whiteley [W10] [W15], and are mentioned in the survey 

articles by Crapo [C13] and Goldberg [G3]. 

In addition to the work which led up to Connelly's results, rigidity theory 

as a mathematical pastime really burgeoned in the mid to late 1970's and until 

about 1970 most work on bar and joint frameworks was manifestly of an 

engineering nature and the new mathematical results focussed on peculiar 

structures or mechanisms. Examples can be found in the work of Bennett [B8] 

[B9], Blaschke [B10], Goldberg [G2] [G3] [G4], Crapo [C14], and Wunderlich 

[W21] [W22]. Since Laman's 1970 result [L1] characterising a class of planar 

isostatic structures there has been an increase in activity which is largely 

attributable to two factors — namely the survey work by Granbaum which 

raised many interesting questions and evidently reached a wide and receptive 

audience, and the formation at the University of Montreal of the structural 

topology research group. It seems that Janos Baracs had been collecting 

interesting and intractable idiosyncratic or nice—looking problems from 

architecture and structural engineering which were to provide food for this 

group. He initiated the elegant and thorough analysis of the rigidity of regular 

rectangular grids undertaken by Crapo and Bolker [B11] [B12] [B13] [B14] [C12] 

using combinatorial techniques, and later extended by Baglivo and Graver [B1], 
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Whiteley [W10] and Recski [R6] [R7]. As well as providing problems such as 

the tetrahedral-octahedral truss [C14], he introduced in 1975 [B7] a new type of 

structure whose analysis has become one of the chief activities of researchers in 

this area and is one of the main topics of this thesis. Although introduced in 

their best known contemporary form by Baracs [B7] and developed nicely by 

Crapo and Whiteley [C16] [W8], hinged panel structures have actually been 

around a long time and particular examples have been presented and analysed 

by Bennett [B9], Wunderlich [W21] and Goldberg [G2] [G3] [G4]. It is 

apparent from the paper of Baracs [B7] and comments of Bennett [B9] that 

Crapo and Whiteley's result [C161 giving explicitly the conditions for the 

rigidity of a cycle of k panels was suspected long before it was proved. More 

recently Tay [T3] [T5] [T6] and White and Whiteley [W6] have generalised 

these structures to higher dimensions. 

Due to the concurrent development of statics and projective geometry, it 

was realised, in 1863 by Rankine [R1] [R2] [R3], that static equilibria were 

projectively invariant. This is the fundamental theorem of rigidity, and proofs 

are given by Wunderlich [W23], Crapo and Whiteley [C16], and Wegner [W1]. 

The natural extension of this idea to an investigation of the effect of a polarity 

on a structure has been carried out by Tarnai [Ti] and Whiteley [W15]. A 

belief in the power of projective methods was promulgated recently by Baracs 

[B7] and Crapo [C12], and their influence in the structural topology research 

group sparked a proliferation of papers with this bias, ranging from the 

introduction of Crapo's methods [C15] and their development [C16] [W8], 

applications and consequences [T3] [T5] [T6] [W5] [W6] [W10] [W13] [W14] to 

the more geometrical, less algebraic, work of Dandurand [D11. Independent 

researchers also realised the importance of a projective approach and the most 

salient of these is Wegner [W1I [W2]. 

An obvious natural description of bar and joint structures is in terms of 
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graphs, and consequently the tendency of the most recent work is to consider 

rigidity as a graph property which may carry across to structures related to 

that graph. This inclination has been associated with the explicit distinction of 

generic structures and the papers [Al] [A2] [B15] [C13] [G5] [K7] [K8] [K9] 

[K11] [L1] [L5] [Ml] [R4] [R5] [R8] [T3] [T4] [T7] [W7] [W9] [W11] [W17] 

[W18] all display a consciousness of this. Bolker and Roth [B15] and Whiteley 

[W7] [W9] [W11] have investigated the rigidity of bipartite graphs. 

Because of its close connection with graph theory we cannot be surprised 

at the application of matroid theory in the modelling of various types of 

structure, however we find the variety of these applications noteworthy. Bolker 

and Crapo [B11] [B12] [B13] [B14] and their successors [B1] [R6] [R7] have used 

a matroid defined on the diagonal braces of their gridworks. Baracs [B7], 

Dandurand [D1], Crapo and Whiteley [C16] [W8] and Tay [T3] [T4] have used 

a matroid defined on the lines (and screws [V1] [K12]) in space, based on a 

projective coordinatisation of these [V1] [K12]. Recski [R4] [R5] [R7] has used 

a matroid on the coordinates of the velocities of the joints of his bar and joint 

structures, which is the dependence matroid on the columns of the 

coordinatising matrix of his structure. By far the most common matroid 

associated with a bar and joint structure is called the structure geometry of the 

structure, and is determined by the bars of the structure. It is the dependence 

matroid on the rows of the coordinatising matrix of the structure and is 

presented in this thesis and is used in Asimow and Roth [A2], Crapo [C15], 

Graver [G5], Sugihara [S2] [S3], Servatius [Si], Tay [T3] [T5], and Whiteley 

[T7], and Lovasz and Yemini [L5]. In fact Lovasz and Yemini have used the 

theory of polymatroids, and the usual cycle matroid on the edges of a graph to 

prove results concerning this structure geometry. 

As with any graph theoretic and combinatorial work, there is an attraction 

in the above for those interested in an algorithmic approach which computers 
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can handle. 	Papers written from this perspective range from the early 

inefficient work of Kahn [K2] to those of Kaveh [K7] [K8] [K10], Recski [R7], 

Sugihara [S2] [S3], Lovasz [L4] and Mansfield [M2] which give explicit 

algorithms, and to the work of Lovasz and Yemini [L5], Rosenberg [R9] [R10], 

White and Whiteley [W5] [W6], which are simply written with such an 

approach in mind. 

In generalising to higher dimensional structures many people have moved 

away from modelling real problems, and in fact the idea of structural rigidity 

has also been modified until it bears little resemblance to its forerunner [D3] 

[D4]. Gromov [G6] and Kalai [Kl] have also applied rigidity theory in pure 

mathematics, and it has also come to be employed in scene analysis by Crapo 

and Whiteley [C16] [W8], Sugihara [S3] and Whiteley [W13], and in geodesy, 

see Whiteley [W11] [W17] and Wunderlich [W19] [W20]. 

Recent general work on structural rigidity has been by Asimov and Roth 

[Al] [A2], Crapo [C13], Recski [R7] and Graver [G5], and these would provide a 

basis for an understanding of the area, especially if augmented by Goldberg 

[G3], Connelly [C8] and Rooney and Wilson [R8]. 

In summary, the several outstanding general ideas in the area have been: 

i) The work in graphical statics [C17] [M3] [M4] [C3] and in particular 

the realisation that infinitesimal rigidity is projectively invariant [R1] [R2] 

[C16] [W1] [W23]. 

ii) Cauchy's theorem [C2] and Gluck's theorem [Gil on polyhedra and 

Connelly's counterexample [C6]. 

iii) Laman's characterisation of a class of isostatic planar bar and joint 

structures [L1]. 

iv) Consequent upon ii) and iii) (and numerous other results) the explicit 

recognition of generic structures [C13] [L5] [G5]. 

In addition to ideas iii) and iv) above, and the subsequent quest for 
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satisfactory characterisations of (generic) spatial isostatic structures, a strong 

influence on this thesis has been the introduction by Baracs in 1975 [B7] of 

what he calls articulated spatial panel structures, accompanied by an indication 

of the reliance of the analysis of these structures on projective geometry. A 

slight generalisation of these structures of Baracs, alluded to by Crapo and 

Whiteley [C16], is a type of structure which can't be modelled in terms of the 

simple bar and joint structures, and therefore from a mathematical rigidity 

theorist's viewpoint entails something new and fundamental. A screw hinge is a 

basic joint between two bodies in space, just as a joint of a planar bar and joint 

structure is a basic joint between two bodies in the plane [H1]. 

The main tools employed in this thesis come from linear algebra, matroid 

theory and graph theory, with a strong influence on our ideas coming from 

projective geometry. 

The first chapter was motivated by our slight discontent with every 

explanation we had seen, of the fact that a rigid body in the plane has three 

independent rigid motions, and a rigid body in space has six independent rigid 

motions. We know that good explanations exist in simple dynamics, however 

we've not seen any among works in this area. Also, even in papers as recent as 

1991 there are inaccuracies. For example the definition of a rigid structure 

given by Graver [G5] on page 356 is inadequate for a collinear structure in 

3—space. This chapter presents a clear exposition of these basic facts. 

Chapters two and four deal with well known theory about planar 

structures, including Lovasz and Yernini's proof of Laman's theorem and a 

suggestion, inspired by their paper, of a possible new avenue of proof for this 

result, and several results of our own. The results 2.6, 2.7, 2.13, and 4.7 are 

the original results suggested by Lovasz and Yemini's paper. The results 4.1 — 

4.5 are from Lovasz and Yemini [L5], and the results 4.6, 4.8, 4.9 are widely 
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known. Definitions and results 4.11 — 4.15 can be motivated by ideas from 

mechanical engineering [B6], and are found in Tay [T3]. Results 4.16 — 4.20 are 

original results of ours with 4.19 appearing in [R8]. 

Chapter three is an original discussion of the development of the idea of 

genericity, including our definition and a result relating this to its predecessors. 

Dealing with spatial structures, chapter five explains the difference 

between the planar case and the spatial case for bar and joint structures, and 

chapter six introduces certain hinged panel structures. Chapter six also 

explains the similarities between planar bar and joint structures and these 

hinged panel structures. These ideas originate with Laman [Li] and Baracs 

[B7], although our work is based rather more on work of their successors, 

Lovasz and Yemini [L5] and Crapo and Whiteley [C16]. Since Laman's 1970 

characterisation of generic isostatic structures in the plane, and the subsequent 

appearance of counterexamples to the generalisation of his theorem to spatial 

bar and joint frameworks, some people have assumed that generalisations don't 

exist, whilst others have wondered how such things might manifest themselves. 

In 1981 Tay [T2] [T3] gave a generalisation which has nowhere been explicitly 

acknowledged as such. We conjecture that a version of this theorem holds for 

these hinged panel structures, presaged by those studied by Baracs [B7] and 

Crapo and Whiteley [C16]. This conjecture is similar to a particular case of 

this general theorem of Tay's and is amenable to being proven in the same 

manner. The original work is 5.6, 5.7 and chapter six. 

Chapter seven consists of speculations, including a dicussion of the 

projective viewpoint and a list of obvious and routine natural extensions of 

work presented earlier and less obvious interesting things. The reason some of 

the ideas in this chapter have not been developed more fully is that they are 

consequences of a conjecture and not an established fact, and most of the work 

represented by this thesis consisted in attempts to prove this, rather than 
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develop speculations. We hope the effect of the thoughts in chapter seven is to 

convince one of the worth of the ideas in chapter six. 
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Graph Theory and Matroid Theory Preamble. 

This thesis assumes some knowledge of graph theory and matroid theory. 

Here is a list of items from graph theory and matroid theory which are used in 

the thesis. For more background than is mentioned here refer to Bondy and 

Murty [B16] for graph theory, and Oxley [01] for matroid theory. 

Definition 0.1: A graph G(V,E) is a finite non—empty set V(G) whose elements 

are called vertices, and a list E(G) of unordered pairs of elements of V(G) 

called edges. An edge e and a vertex v are incident if vEe. A graph is simple 

if every edge is a pair of distinct vertices and no two edges are identical. A 

graph G is complete if every pair of vertices is an edge. We denote the 

complete graph with n vertices by K. 

Definition 0.2: A walk of a graph G is an alternating sequence of vertices and 

edges v0 ,e 1 ,v 1 ,e2 ,.. ..,vn_ven ,vn , beginning and ending with vertices, in which 

each edge is incident with the two vertices immediately preceding and following 

it. It is a closed path if vo=vn . A minimal closed path is called a cycle. A 

graph is connected iff every two vertices are joined by a walk. 
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Definition 0.3: A directed graph is a finite non—empty set V(G) of vertices, and 

a list E(G) of ordered pairs of elements of V(G). The elements of E(G) are 

called directed edges. The first element of a directed edge is called its head, 

and the second its tail. Clearly any graph may be made into a directed graph 

by ordering each of its edges. 

Definition 0.4: Let G be a directed graph where V(G)={v i ,.. ..,vn} and 
1 if v. is the head of e. 1 

E(G)={e 1'  . 	Set a..= —1 if v. is the tail of e. 
37 

0 otherwise. 
The matrix (a..) is called the incidence matrix of G. 

Definition 0.5: A matroid M(E) on a set E is an integer valued function, rank, 

on 2E  which obeys; 

i) 0<rk(A)<I A I V AcE, 

ii) AcBcE 4 rk(A)<rk(B), 

iii) rk(A)+rk(B)<rk(AUB)+rk(AnB) 

Definition 0.6: A polymatroid on a set E is an integer valued function, rank, on 

2E  which obeys; 

i) rk(0)=0, 

ii) AcBcE rk(A)<sk(B), 

iii) rk(A)+rk(B)<rk(AUB)+rk(AnB). 

Definition 0.7: The independent sets of a matroid are the elements of the set 

IA:rk(A)=1AII=.7 
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Theorem 0.8: The independent sets satisfy; 

0 OE 

ii) IE fand JcI Je 

iii) if I,JEJand I II=IJI +I then 3 iEI s.t. 11E2' 

Definition 0.9: 	The circuits of a matroid are the elements of the set 

{C:rk(C)=rk(C\e)=I CI-1 V eEC1=if. 

Theorem 0.10: The circuits satisfy; 

0 If X,YEil and XOY then X isn't a subset of Y, 

ii) If X and Y are distinct members of ré ,  aEXnY, and bEX\Y, then there 

exists CE' such that bECc(XuY)\a. 	 a 

Definition 0.1: The closure operator of a matroid on E is the function 

c1:2 E-42 E  defined by cl(A)=Ia:rk(auA)=rk(A)}. 

Theorem 0.12: The closure operator satisfies, for X,YcE and x,yEE; 

i) Xccl(X), 

ii) YcX cl(Y)ccl(X), 

iii) cl(X)=c1(c1(X)), 

iv) If y¢c1(X) and yEcl(XUx) then xEcl(XUy). 

Examples 0.13: i) Free matroids where rk(A). I A I if AcE. 

ii) 0 , a matroid on the edges of a graph G, where if={A:the edges 

of A form a cycle of the graph}. 

iii) The dependence matroid on the columns (or on the rows) of a matrix 

has for E the collection of columns, and rk(A)=dim<A>. In this case E is a 

subset of a vector space, and cl(A)=<A>nE. 
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Definition 0.14: Two matroids on E 1  and E2 respectively are isomorphic iff 3 a 

bijection between E and E2  which preserves the rank function. 

Theorem 0.15: For a graph G, ME(G)  is isomorphic to the dependence matroid 

on the incidence matrix of G (however it is directed). 

Definition 0.16: We say M 1  is a weak map image of M2  if rk (A)<rk2 (A) V 

ACE, and write M I (E)<M2(E). 

Definition 0.17: Let M 1  and M2  be matroids on disjoint sets E l  and E2 . The 

direct sum of M 1  and M2' written M1(DM2' is the matroid on E1UE2 with 

rk 12(A)=rk 1 ( AnE 1)+rk2 (AflE2 ). 
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Defining Rigidity. 

In this chapter we arrive at a definition (1.18) for rigid structures by 

considering physical requirements from the real world and how these relate to 

the model we first establish. Because we can only build structures in 1, 2 or 3 

dimensions, we are really only interested in the cases of this definition where 

the dimension is 1, 2 or 3, although the abstractions of this section extend 

readily to higher dimensions. Having thus completed the aim of this chapter 

we include several general concepts for use in subsequent chapters. 

In the following, IR / denotes the € dimensional vector space over the field of 

real numbers, generated by the basis 

{(1,0,.. ..,0),.. ..,(0,.. ..,1,.. ..,0),.. ..,(0,.. ..,0,1)} ; 

with inner product 	(a1 ,.. 	 = 	aibi  . 
i=1 

Definition 1.1: The affine span of n points p 1 ... ..,p of 	is { Eaipi I  Eai=1}. 

Despite the apparent significance of the order in which these points are 

arranged, it is easy to show that under any rearrangement of the order of these 

points the same affine span results. 
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Definition 1.2: 	A bar and joint structure in 	S, consists of a simple 

connected graph G(V,E) where E(G)00, and an injective mapping x: V(G) -4 

We will identify V(G) with the set of the first n positive integers, and write xi  

instead of x(i), and xi  is called a joint of S. If (i,j) E E(G) then the unordered 

pair {xi,xi} is called a bar of S. G is called the graph underlying S. The set 

of all joints of S is denoted J(S) and the set of bars of S is denoted B(S), and 

when necessary S(G) denotes a structure which graph G underlies. 

The reason we study bar and joint structures is that they are a 

mathematical abstraction of physical structures designed and built by engineers, 

so we model the behaviour of real structures with our mathematical bar and 

joint structures. 

The following definition is imposed by the fact that the length of every 

bar of a physical structure scarcely varies, and in our simple model we can, 

demand that every bar of a bar and joint structure be rigid. 

Definition 1.3: An admissible motion of a bar and joint structure in 	is the 

image of a mapping i : V (G) 	which satisfies 	• (Xi—XJ)=0, 

V (i,j) E E(G), where • denotes inner product and pi  = A(i). 

If pi  is viewed as an instantaneous velocity assignment, then this condition 

requires that the difference in the velocities of the joints of any one bar at any 

instant, must be a vector perpendicular to that bar. That is, each bar is rigid. 

In accordance with the interpretation of pi  as a velocity we will denote 

(xi ,yi ,zi ) if € = 3 (Xc ir i ,i i ) if t = 3 
xi  by (xi ,y i) if t = 2 and pi  by (Xi ,Y i ) if t = 2 . 

(x.) if € = 1 (ki) if I = 1 
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Although we are using notation here which in other places denotes a 

derivative w.r.t. time, in this case ici  cannot always be regarded as a derivative 

of x.. 

x 1 (t)=0=y 1 (t)=5/ 1 (t)=X 1 (t)=x2(t) 
JO if t#1 

y2(t)=1, 5r 2 (t)=0, X2(t)=11 if t=1 

Evidently ic2(t) isn't the derivative of x 2 (t), yet V te(-00,c0), we have 

(x 1(t)-x2(t))(i 1 (t)-X2(t))+(y 1 (t)-y2 (t))(Sr 1 (t)-S72(t))=0. 

Since for every bar of a structure, S, we have by the last definition an 

orthogonality condition, overall we have a system of m = I B(s)I equations 

which we can write as AS- u = 0 ' 

(;(1."• 	 - '11.) if 1=  3  
where u = ( k 	•4n) 	

if i = 2 , 

(k i'" ••'3'n) 	 if 1= 1 

and As is an mxtn matrix with 

x.-x. if the ti th  bar is (i,j) and v = i 1 	j 
a= y.-y. if the pth  bar is (i,j) and v = i+n and i> 2 

1 	j 
z.-z. if the pth  bar is (i,j) and v = i+2n and € > 3 
ii 
0 	otherwise . 

Example 1.5: If G is 

Example 1.4: 

.41-sev. E=0: 

and underlies both S i , a bar and joint structure in 01 2 , and S 2 , a bar and joint 
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structure in R 3 , 

then As = 
1 

and A
s2 

= 

x 1-x2  x2-x1  0 	0 y1-y2  y2-y1  0 	0 x-x2 20  1 x 	0 y  __yz 0 y3-3,1 0  
1 0 3  x -x x3-x 1  0 	10 3  y2-y3  y3-y2  0 2 3 3 2 0 •x2-x4  0 x4-x2  0 y2-y4  0 Y4-Y2  
0 	0 x3-x4 x4-x3 0 	0 y3-y4  y4-y3  j, 

x1-x2  x2-x 1 	yry2  y9 y i  0 	0 z1-z2  z2-z 1  0 0 	0 	 0 - 
xl-x3 0 x -x 	0 y1-y3  '0 y-y1  0 z1-z3 0  z3-z1 0 

0 x -x3  x
3-x 1 0 	0 y2-y3  y-y2  0 	0 z2—z3  z3—z2  0 2 	3  0 x2-x4 	

2 0 x -x 	0 y2-y4  `'0 y4-y2  0 z2-e4  0 z4-z2  
0 	0 x -x x4-x2 

3 4 4 3 0 	0 y3-y4  y4-y3  0 	0 z3-z4  z4-z3  _ 

Definition 1.6: The matrix A is the coordinatising matrix of S. Every column 

of A corresponds to one coordinate of a joint of S, and every row corresponds 

to a bar. The null space of As  is denoted by Ns . 

Lemma 1 7- N is a vector space consisting of all admissible motions of the 

structure S. 

Proof: Elementary linear algebra. 

Lemma 1.8: If J(S) affinely spans R t, then Ns  has a subspace of dimension 
i(t+1)  

2 	• 
Proof: 	= 1: N contains (1,.. ..,1) which is a translation of S. 

= 2: Ns contains (1,.. ..,1,0,.. ..,0) and (0,.. ..,0,1,.. ..,1) which are 

translations of the structure in directions along the coordinate axes, and 

(y 1 ,.. ..,yn ,-x 1 ,.. ..,-xn) which is a rotation of the structure about the origin. 

These three vectors are independent. 

= 3: Ns  contains (1,.. ..,1,0,.. ..,0,0,.. ..,0), (0,.. ..,0,1,.. ..,1,0,.. ..,0) and 

(0,.. ..,0,0,.. ..,0,1,.. ..,1) (or u i , u2, and u3  for convenience) which are 

translations of the structure in the directions along the coordinate axes, and 

(0,.. ..,0,z 1 ,.. ..,zn,-y 1 ,.. ..,-yn) = 114 , (z i ,.. ..,zn,o,.. ..,-xn) = 115  and 
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(3r1'•• ,31n 	1 ,.• ••,—X ,0,.. ..,0) = u which are rotations of the structure about -6' 
the coordinate axes. 

Let u7  = (0,.. ..,0,0,z2-z 1 ,.. ..,zn-z1 ,0,yi-y2,.. ..,y1-yn) = 114-112z i+uly i , 

= (0,z2-z 1 ,.. ..zn'0,0,X 1-x2'..x1-xn) 	= 	u -u z +u -5 -1 1 -3x  3' 
u9  = (0,y2-y1 ,.. ..,yn-y i3 O,xi-x2,.. ..,x1-x.,0,.. ..,0) 	116-uly 1 +112xl . 	By - 
considering the first coordinates of vectors in f11 1 ,u2 ,u3 ,u7 ,118 ,u91, respectively 

1,0,0,0,0, and 0, and using symmetry arguments we deduce that this set of 

vectors is linearly independent if and only if {117 ,u8 ,119 } is linearly independent. 

Suppose J(S) is a collinear set. Since x is injective, no two joints have 

the same coordinates and w.l.o.g. z 1  # z2. Since J(S) is collinear z 1  # zi  V i = 

2.. ..n. For the same reason all the directions of the lines determined by pairs 

of joints will be the same, so 

312-y1 	y.
'
-y 1 	 x 1-x 2 	x -x. 1 	1 	a = 	 and 	a = 	 V i = 2.. ..n. 1 	z-z 	z.-z 	 2 	z 2-z 1 	z . -z 21 1 	 1 

So u = au1-8 + a2-7 	-u 	and lu9'-u8'u 	is dependent. Conversely, suppose -9 	 -7 
1119 ,118 ,117 1 is dependent. 	Then without loss of generality 119  = aius  + a2117 . 

Comparing coordinates, we must have 

Y2-Yi 	 x 1-x2  x -x. 1 a = and 	a2  = z 2-zz-z  	V i = 2.. ..n. z 2-z 1 	z.-z 	 1 	.  1 
Since the directions of the lines containing joint 1 and each of the other joints 

are the same, J(S) is collinear. That is {u i ,112 ,u3 ,117 ,us ,u9} are independent if 

and only if J(S) isn't collinear. 

Definition 1.9: 	Regardless of its dimension, the space generated by 

{1_1 1 ,112 ,113 ,u4 ,u5 ,u61 is called the space of rigid motions of S (in IR3). Similarly 

the space generated by {(1,.. ..,1,0,.. ..,0),(0,.. ..,0,1,.. ..,yn ,-x1 ,.. 

..-x. )} is called the space of rigid motions of S (in 1112), and the space generated 

by{(1,.. ..,1)} is called the space of rigid motions of S (in 01 1). We denote this 

space by Rs. 
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Definition 1.10: If S is a structure in 111 1, then the codimension of R in N is 

called the degree of freedom of S, and is denoted by f(S). 

If, to a bar and joint structure in Elt t, we add bars, we can only increase 

the rank of the system and only diminish the dimension of the space of 

admissible motions. When we have added all possible bars to a bar and joint 

structure in ER / (so that the underlying graph of our structure is now a complete 

graph) we have a structure which has the least amount of admissible motions of 

all structures with these joints. We know from lemma 1.8 that we cannot 

keep adding bars until there are no admissible motions, so how can we define 

rigidity? At least we know that dim(Ns) for a structure which isn't "rigid" is 

necessarily greater than dim(Ns,) for a "rigid" structure with the same set of 

joints. 

In summary we have 

Comment 1.11: If a structure with underlying graph complete is "rigid", there 

may be other structures having the same set of joints which are "rigid". 

However if a structure with a complete graph underlying it is not "rigid", then 

there is no structure with the same set of joints which is "rigid". 

An examination of structures on complete graphs will lead us to a 

definition for rigidity. 

A question which arises is this: "Why do we consider rigidity in spaces of 

different dimension, when perhaps it might suffice to embed all structures in a 

space of sufficiently high dimension, thereby avoiding the complication of 

considering structures in spaces of different dimensions?", and although a 

complete answer to this question requires more information, we can at this 

stage demonstrate simply the necessity of our approach with these examples. 
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Example 1.12: A little consideration will lead to a belief that the structure in 

example 1.5 built in the plane and with joints constrained to move in the plane 

will be "rigid", whereas if the joints were allowed to move freely in space, the 

structure would flex. In the former case the only admissible motions are rigid 

motions, whereas in the latter case in addition to the six dimensional space of 

rigid 	motions, 	the 	structure 	also 	has 	the 	admissible 	motion 

(0,0,0,(y 1-y2 )(z 1-z3 )-(y 1-y3 )(z 1-z2 ),0,0,0,(z 1-z2 )(x 1-x3 )-(z 1-z3)(x 1-x2 ), 

0,0,0,(x 1-x2)(y 1-y3 )-(x 1-x3)(y 1-y2)) = f. Thus in the former case dim(N s) = 3 

but in the latter case dim(Ns ) = 7. 

Example 1.13: Consider the structures S i ' obtained from S 1  in example 1.5, 

and S 2 ' and S i " obtained from S 2 in example 1.5 by adding a bar (so that 

now we are dealing with structures with K4  as the underlying graph). 

If 	J(5 1 ')={(0,0),(1,1),(2,0),(1,2)}, 	J(S 1 ")={(0,0,0),(1,1,0),(2,0,0),(1,2,0)}, 

J(S2)={(0,0,0),(1,1,0),(1,-1,0),(0,1,1)}, and G is 

dim(Ns ,) = 3, 1   

As ,, 
1 

-1 1 00-1  1 0 0 0 0 0 0 
-1 0 10-2  0 2 0 0 0 0 0 
0 0 00 0-11  0 0 0 0 0 
0-1 01 0 1 0 -1 0 0 0 0 
0 0 -1 1 0 0 2 -2 0 0 0 0 

-2 0 02 0 00 0 0 0 0 0 dim(Ns ,,) = 7, and 1   

  

 

-1 1 0 0 -1 1 00 0 0 00 - 
-101 0 1 0 -1 0 0 0 00 
000  0 0 2 -2 0 0 0 00 
0 1 0-i 00 00 0-1 0 1 
0 0 1 -1 0 0 -2 2 0 0 -1 1 
000  0 -1 0 01-1  0 01 dim(Ns2 ,) = 6. 

As , = 
2 

 

then As, 

- -1 1 00-1  1 0 0 
-1 0 10-2  0 2 0 
0 0 00 0 -1 1 0 
0-1 01 0 10-1  
0 0 -1 1 0 02-2  

-2 0 02 0 00 0 
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In some sense S 1 ' and S i " appear identical but although S 1 ' is "rigid", S i" 

has an admissible motion: 

u = (0,0,0,0,0,0,0,0,0,0,0,1); 

which S 1 ' cannot have, and is therefore not "rigid". 

These examples suggest that the affine span of the joints of a structure 

may be a suitable environment in which to consider the "rigidity" of that 

structure. We return to our examination of complete graphs in order to 

consolidate this suggestion. 

Lemma 1 14: In 01 2, if K underlies S and the joints of S affinely span R 2 , then 

dim Ns = 3. 

Proof: We use induction on the number of joints, n. 	If n = 3, J(S) is a 

non—collinear triangle and we have three independent equations in six 

unknowns, so that dim Ns  = 3. Now suppose that dim Ns(K) = 3 whenever 

J(S(Kn)) span R2. Any structure S(Kn+i ) where n>3 and the joints affinely 

span R2  can be obtained by adding a joint, (xn+1 ,yn+1), and n bars to a 

structure S(K) whose joints affinely span R 2 . Clearly dim NstK  = dim 
n-Fli 

2 
NS(K ) +1, since AS(K 	has two more columns than AS(Kn)' and for every 

0 	 n+1 )  n  
matrix A we know that the number of columns of A is equal to the sum of the 

rank of A and the dimension of the null space of A. 	Now since J(S(Kn+1 )) 

span R2 , 3 (x 1 ,y 1 ), (x2 ,y2 ) E J(S(Kn )) (and J(S(Kn+i ))) s.t. (x 1 ,y 1), (x2 ,y2) and 

are 	 not 	 collinear. (xn+1'yn+1) 
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So the two equations: 

(xrxn+1)(i l—kn+1 )  (Y1—Yn+1 )(Sr l4n+1 )  = 
and 

(x —x 

	

2 .+ . 	 ) 	(y 2y 	)(ir 	) 

	

i 	;cn+1' 	( 2-- n+1' 2-- n+1- = 
which are amongst the n added to the system for S(K) to make it the system 

for S(K .+1), are independent. Clearly these equations are also independent of 

the equations for 5(K.) since they involve the extra variables in+ , and 

so the rank of the system increases by exactly 2 when the extra bars are added, 

and dim NS(K ) — dim Ns(K) = 3. So by induction dim Ns(Kio  = 3 if 
n+1 	

r 
 

J(S(K.)) span R2 . 

Also we have: 

Lemma 1 15: In R3, if J(S(K.)) affinely span R3 , then dim Ns(K) = 6. 

Proof: Exactly analogous to the previous proof. 

It is a well known and simple result that in R 1  a structure S is "rigid" if 

and only if its underlying graph is connected. In fact the analysis of structures 

in R 1  beyond this result is generally assumed to be too simple to hold any 

intrinsic interest, or to give any useful insight into higher dimensional analysis. 

This is certainly true for the type of results which remain in this chapter, and 

for this reason we make no more observations about R I , except to say that all 

our general results expressed in terms of R t are true in R . 

In the physical situations where our theory is used we know that 

structures which are "rigid" in the sense we would like to define, are exactly 

those structures where f(S)=0, that is where the space of admissible motions is 

0 

0 
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identical with the space of rigid motions. We can use the last three lemmas to 

express this mathematically for structures whose joints affinely span the space 

Rt in which they are being considered. For complete structures the space of 

rigid motions and the space of admissible motions are identical if (by lemmas 

1.14 and 1.15) Ns= t(t 
 ' 

+1)  and by lemma 1.11 we can extend this idea to all 2  
structures whose joints affinely span the space R t  in which they are being 

considered. 

. t 	. . 	i Definition 1.16: A structure S in R whose joints affinely span R , 	rigid f and 

only if dim Ns  = L(€-4-1)  . 

What shall we do in the case of a structure whose joints don't span Ri? 

Such structures are divided into two classes; those which have more joints than 

(I J(S) I > 1), and the others (I J(S)I < 1). 	We deal first with the former 

class: 

Lemma 117: If for a structure S whose joints don't affinely span R t, J(S)I > 

t, then dim Ns  # 1(1+1)  2 	. 

Proof: The only structures whose joints don't span R 2  are collinear. 	In 1R2  if 

J(S) are collinear, then Ns  has a subspace of dimension I J(S)I + 1, since N s  

contains (1,.. ..,1,0,.. ..,0), (0,.. ..,0,1,.. ..,1) and (y 1 ,.. ..,y. ,—x 1 ,.. ..,—x.), the 

three rigid motions of lemma 1.8, and (0,0,y 1—y2 ,.. ..,0,0,0,x2—x 1 ,.. ..,0)=p3 ,.. 

(0,0,.. ..,y 1—y2 ,0,0,.. ..,x2—x1 )=2.  as shown: 

which are seen to be independent. 
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Similarly in R3  if the joints of S are coplanar, then N s  has a subspace of 

dimension I J(S) I  + 3, and if the joints of S are collinear then Ns  has a 

subspace of dimension 21 J(S)I + 1.• 

a 

From observing the behaviour of structures built by engineers, we know 

that collinear structures in 1R 2  and R3, with Kn as their underlying graph, where 

n > 3, are not "rigid" in the strictest sense, as they admit "infinitesimal 

motions" (in the literature such structures are described as rigid but not 

infinitesimally rigid [A2]). Similarly coplanar structures in R3  with Kn  as 

underlying graph with n > 4, are manifestly not "rigid" in the sense we want to 

define. 

Hence we can extend our definition to include this class of structures also. 

We finally consider structures where € > I J(S) I and J(S) doesn't span R I. 

Due to the low number of such structures for = 2 and 3, this class is perhaps 

best treated by considering every complete structure it contains. 

/S+

rg-1:  

We show the relevant information about these four structures in a table: 
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dim(N) 	
M)  ? 

s ) 	equal  2 	engineers information 	is definition 
about rigidity. 	1.16 

RIGID? 	 adequate? 

S 1  3 Yes Yes Yes 

S2 5 No Yes No 

S3 Yes Yes Yes 

S4 6 Yes No No. 

So in combining this information with our previous comments we realise 

that for < 3 we want a bar and joint structure S in Ri to be rigid if and only 

if dim(N ) = i(t+1) ' unless in R3 S is S4 or S2' where the latter is rigid, but 2  
the former is not. Summing up we say 

Definition 1.18: A bar and joint structure S in R i  is rigid if and only if either 

i) J(S) spans Rt  and dim N s  = 	 

Or 	ii) S is S 1  in R2 , 

Or 	iii) S is S2  or S3  in R3 . 

Having arrived at the desired object of this section we now include a 

comment concerning higher dimensions. Most of the generalisation of this 

section to > 4 is immediately clear, however the section between lemma 1.17 
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and definition 1.18, which deals with structures S in 	with > I J(S)I and 

J(S) not affinely spanning R , will necessarily require some extra work because 

the explicit treatment used here is not generally possible since for a given the 

number of such complete structures is t(t-1)2  . There is also the added 

consideration that engineers do not give us information about real physical 

structures for t > 4, and the lack of this intuitive aid requires that the 

mathematical essence of these be inferred from the lower dimensional cases. 

For example the question of whether K5  built in R5  with joints spanning R4  is 

rigid according to the abstraction of what engineers tell us about structures in 

R2 

 

and R3 , can be answered in the affirmative by analogy with K4  built in R4  

with joints spanning R 3 and K3 built in R3 with joints spanning R2. Despite the 

possible benefits such a general approach may confer in terms of giving greater 

insight into this class of exceptions, we don't pursue this here because it is only 

of peripheral interest relative to the motivation of this work, namely the 

behaviour of physical structures. 

An appropriate extension of our current meaning of rigidity into higher 

dimensions leads naturally to conjectures such as: 

(i) If J(S(Kn )) span Rt, then S(K) is rigid in any space of dimension k > t if 

and only if n-1 = 1; and 
Rn-1 ;  (ii) If S(K) is rigid in Ri  V t > n-1, then the joints of S(K) span  

however in the remainder of this thesis we shall restrict ourselves to working 

within spaces of dimension less than four. 

We finish this chapter with several concepts which hold generally in R , 

specific cases of which will be used in later chanters. 
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Referring back to definition 1.6 we have: 

Definition 1.19: A set of bars of S is independent if the corresponding rows of 

As  are linearly independent. Since there is a matroid on the rows of A s , this 

definition induces a matroid on the bars of S. The matroid (see 0.7 0.8 0.13 iii) 

thus induced on the bars of S, or equivalently on the rows of As, is called the 

structure geometry of S and is denoted D s . 

Definition 1.20: A rigid bar and joint structure in R t, whose structure geometry 

is a free matroid, is called an isostatic structure. A rigid structure which is not 

isostatic is hyperstatic. 

Definition 1.21: If S is a bar and joint structure in RI  and x.,x.EJ(S) then we 

say {xi,xi} is an implicit bar of S if {xi,xi} is not a bar of S but 

for every admissible motion p. 

We use the simple notation Su{x i,xj} for the structure obtained from S by 

adding an extra edge (i,j) to its underlying graph and retaining the same 

injective mapping x into Rt. 

Lemma 1.22: If S is a bar and joint structure in R t  and {xi,xi} is an implicit 

bar of S then f(S)=f(SUI 

Proof: Immediate consequence of the definition. 

Lemma 1 23: S is rigid if {xiai} is either a bar of S or an implicit bar of S, 

xiOxiEJ(S) provided J(S) affinely spans Rt  or the joints are affinely 

independent. 

Proof: Although this lemma holds more generally than in R 2 , we only prove it 

in the planar case. The reason for this is that the proof for 1R3  is exactly 

analogous, but more cumbersome. 
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Suppose S is rigid and {xi,xi} is not a bar of S. Every admissible motion 

v is expressible as a linear combination of a basis of N s ; 

..,1,0,.. ..,0)+a2(0,.. ..,0,1,.. ..,1)+a3(-y 1 ,.. ..,-yn ,x 1 ,.. ..,x.), so if 

(Pi-Pi)•(Xi-Xj)=0  for each of these basis vectors then Ix i,xi l is an implicit bar. 

(1,.. ..,1,0,.. ..,0): (xi-xj)(1-1)+(yi-yi)(0-0)=0 	0.k. 

..,0,1,.. ..,1): (x i-xj)(0-0)+(yryi)(1-1)=0 	0.k. 

(-y 1 ,.. ..,-yn ,x 1 ,.. ..,x.): (xi-xj)(yi-yi)+(y i-yi)(xi-xj)=0 0.k. 

Conversely if T is the complete structure on J(S), then f(S)=f(T) by the 

preceding lemma, and f(T)=0 by lemma 1.14, so f(S)=0 and S is rigid. 

Still thinking more generally than 01 2  we begin to think of structures as 

consisting of "simpler" structures joined to form a larger structure. 

Definition 1.24: Suppose S is a bar and joint structure with graph G(V,E), and 

injection x:V(G)4e. 	A substructure of S is a structure S', with graph 

G'(V',E') and injection x':\P(G')41, s.t. G' is a subgraph of G, and 

X'=Xi v /- 

Example 1.25: A planar example. 

S 1  is a substructure of S. 	S3 is not a structure and thus not a 

substructure of S. S4  is not a substructure of S as xiOxi. 
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Lemma 1 26: If S' is a substructure of S, then D s , is the restriction of D s  to 

the bars of S'. Conversely every restriction of D s  to a connected subset B(S') 

of B(S), is the structure geometry of the substructure S' of S. 

Proof: We see this by looking at the rows of A s  and As ,. 

Definition 1.27: A maximal rigid substructure of S is a rigid substructure of S 

which is a substructure of no rigid substructure of S other than itself. 

Example 1.28: Another planar example. 

S 1' S2' S3' S4' S5 are substructures of S. S4  is not a rigid substructure of 

S, but S 1' S2' S3' and S5 all are. S 1  and S3 are not maximal rigid substructures 

of S, but S2  and S5  are. In fact S2  and S5  are the only maximal rigid 

substructures of S. 



- 32 - 

Rigidity in 1(2 . 

This technical chapter is part of an examination of bar and joint 

structures in R2 . We introduce some properties of the structure geometry in 1( 2 , 

and also some lemmas designed for use in chapter 4 where our presentation of 

structures in 1(2  is continued in a restricted environment. Also theorem 2.13 is 

important to our investigation in chapters 5 and 6 of structures in R S . 

Definition 2.1: A planar bar and joint structure is a bar and joint structure in 

R2. Except when we explicitly state otherwise, throughout chapter two we shall 

always mean "bar and joint structure in R2„  when we say "bar and joint 

structure", or "structure". 

We bring to the reader's attention non-ambiguous notation abuses at 

theorem 2.10, lemma 2.12, theorem 2.13, and lemma 4.15, which consist of 

using graph terminology for structures, and of a looseness in the use of the u 

symbol. In addition we sometimes talk of a complete structure on a certain set 

of joints, by which we mean the structure with those joints which has a bar 

between every pair of joints. Also on page 35 the vectors u 1 ,112 ,u3 ,3_rs& rns  have 

had an unexplained rearrangement of co-ordinates. 

Lemma 2.2: i) f(S)+rk(A s)=2n-3. 

ii) 0<f(S)<2n-3. 

iii) 0Srk(As)S2n-3. 

iv) S is rigid if f(S)=0. 
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Proof: Refer to definitions 1.18 and 1.10. 

i) From linear algebra we know that, for a matrix A s , we have 

rk(As) + dim(Ns) = the number of columns of As . 

Since dim(Ns)=dim(Rs)+[codimension of Rs  in Ns], we have 

[codimension of Rs  in Nsl+dim(Rs)+rk(A5)=2n 

[codimension of Rs  in N5]+3+rk(As)=2n 

f(S)+rk(A5 )=2n-3. 

ii) & iii) Since rank is never negative and codimension is never negative, 

these follow directly from i). 

iv) From definition 1.16 or 1.18 we know S is rigid if dim(N 5)=3. That 

is, if 3=[the codimension of Rs  in Ns]+dim(R5)=f(S)+3. That is, if f(S)=0. o 

Theorem 2.3: rk(As)<min{ I B(S) I ,2 I J(S) I —3} 

Proof: As  has I B(S)I rows and 2IJ(S)I columns, and dim(Ns)>3. 

Lemma 2 4- If S is rigid then I B(S) I >21J(S)I-3. 

Proof: S rigid 	rk(As)=2 I J(S) I —3 4 B(S) ?2 I J(S) I —3, since I B(S) I is the 

number of rows of AS' 

Theorem 2.5: Any two of the following conditions together imply the third: 

i) Ds  is free. 

ii) S is rigid. 

iii) I B(S)I=21J(S)1-3. 

Proof: i & ii 4 	S is rigid so rk(A 5)=2I J(S)I-3, and B(S) is independent so 

rk(As )= B(S) I . 

i & iii 4 ii: B(S) is independent, so rk(As)= I B(S)I=21J(S) I —3. So S is 

rigid. 
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ii & iii 4 i: 	S is rigid, so rk(As)=21J(S)1-3=1B(S)1. 	So. B(S) is 

independent. 

The next two simple results were suggested by the work in [L5] and are 

related to results 4.3 and 4.7. 

Theorem 2.6: Let B(S)=B i ll. ..OBk  be a partition of the bars of S so that 

B.=B(S.) is the set of bars of a substructure S. of S. Then 1 	1 	 1 

f(S)=2 I AS) I —3-E(2 I J(S i ) 	if D=Dc  9.. 
i=1 

Proof: E(21J(S i )I-3—f(S i))=21J(S)I-3—f(S) if Erk(As. ).rk(As) if 
i=1 	 i=1 

DS=DS 9" " (BID Sk .  1 

Corollary 2.7: Let B(S)=B ill. ..0Bk  be a partition of the bars of S so that 

B..---B(S.) is the set of bars of a substructure S. of S. Then 

f(S)=2 I‘J(S)I —3-E(2 P(S) 1-3) if D Q=Dc 9.. ..eDs  and S. is rigid 
i=1 

V i=1.. ..k. 

Proof: S 1  . is rigid if f(S i)=0. 

Of course these two results are only useful for those structures for which 

such partitions exist. Now we present some technical results for use in chapters 

4, 5 and 6. 

Now suppose we have a rigid substructure S, of some structure, with 

J(S)={(x 1 ,y 1 ),.. ..,(x. ,yn )}. 	We define a three dimensional vector space 

M i j={(a +y 3'  a1  +y a3'2i3'  —x 	a2j3  —x ):al' a2' a3  Eilt} for fixed 1<ilj<n, with S 	i 	j  

addition (a 1 ,a2 ,a3 ,a4)+(b 1 ,b2 ,b3 ,b4)=(a 1 +b 1 ,a2+b2 ,a3+b3 ,a4+b4) and scalar 
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multiplication ry(a 1 ,a2 ,a3 ,a4)=(7a 1 ,7a2 ,7a3 ,7a4). Consider the bijective linear 

transformation to M ii from Ns defined by 

B ii  - s  .ffi-aill i-Fa2R.2-Fa311, 1-4  is 1 	J3 2 13 2 J3 I 
where 	u i=(1,.. ..,1,0,.. ..,0,0,.. -u2=(0,.. ..,0,1,.. ..,1,0,.. ..,0), 

113=(y 1 ,.. ..,yn ,-x1 ,.. ..,-xn ,0,.. ..,0), with the extra zeroes corresponding to 

vertices of the structure of which S is a substructure. Summing up, 

Lemma 2 8- The bijective linear transformation B:Ns-)IVI exists, for any two 

joints i and j of a rigid substructure S of some larger structure. 

Proof: Discussion above. 

Lemma 2 9- If B(S)=B(5 1 )UB(5 2) and B(T)=B(T 1 )UB(S2), S i  and T 1  are rigid 

substructures of S and T respectively, and J(S 1)nJ(S2)=J(T 1)nJ(S 2)00, then 

f(S)=f(T). 

Proof: We demonstrate the existence of a bijective linear transformation 

between N and NT' using the fact that if the velocities of two joints of a rigid 

body are known, then the velocities of all the joints of the rigid body are 

consequently known, as shown in the previous lemma. 

For every msENs  we define a unique vs=(0,.. ..,0,ar+i ,.. ..,a2n) where 

..,a2n) where the last I J(S 1 )I=2n-r entries correspond to joints of S 1 . 

Similarly for each m ENT  define a yT . 

	

Define a bijective linear transformation L":N s 	j-■NT  by 

	

1 	1 	1 	1 

if fi,j1cAS I )nJ(S 2 ). 

defined by (a1-Fyia3,a1+yia3,a2-xia3,a2-xja3) 

(aid-yia3 ,ai+yka3 ,a2-xia3 ,a2-xka3 ). 

( BTikrloikjoBsi j 

	

L'1=1
1 	1 

(B ii )-10I ijoB ii  

	

T 1 	1 S 

where Iki:M i i-,M i k  is S I T 1 

if J(S 1 )nJ(S2)={i} and jEJ(S i) and keJ(T i ). 
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Now 	define 	L':{as=ms—y.s :mseNs }-4{11,T=ii,i r—irT:%ENT } 	by 

L'(ar . ..,ar,0,.. ..,0)=(a i ,.. ..,ar ,0,.. ..,0). 

It isn't clear that L' is well defined. It may be that there is a u s  s.t. 

L'(%) doesn't exist. If this is not a problem then L' is a bijective linear 

transformation. We now show that L' is well defined. 

Consider the orthogonality conditions which originally gave rise to each of 

the matrices A and AT' First we have, common to S and T, all the equations 

derived from the bars of S 2' Call this system 1. Call the equations derived 

from the bars of T i  system 2, and the equations derived from the bars of S i  

system 3. 

We consider two cases: i) where 1J(S i )R1(S2)1>2, and ii) where 

1J(SdnJ(S2)1=1. In case 0 we know from the preceding lemma, that systems 

2 and 3 have three dimensional solution spaces, and the solutions can be 

expressed in terms of x i ,xj ,y i ,yi , where(xpy i) and (xj ,yj)EJ(S 1 )n.J(S 2) and 

J(T 1 )ngs 2). Since for both structures (S and T) the remaining equations are 

identical (system 1) and contain  we see that for every u there does j' 	 —S 
exist a corresponding h, and we are therefore assured that L' is well defined. 

Case ii) is similar: since every structure has at least two vertices, S i  and T i  

contain (x.,y.) and (xk ,yk) respectively, and using this information we apply the 
J J 

same argument as in case i) to assure ourselves that L' is well defined in this 

case also. 

In either case there exists a bijective linear transformation L:N s-VT  

defined 	by 	L(m5)=L(u5+y5)=L'(115)+L"(xs )=11,1,-FiT=mr . 	So 

dim(Ns)=dim(NT) and f(S)=f(T). 
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Theorem 2.10: 	Let S 1 ,.. ..,Sk  be rigid substructures of S s.t. 

B(S)=B(S 1 )U.. ..UB(Sk), and let T 1 ,.. ..,Tk  be rigid substructures of T s.t. 

B(T)=B(T i )U.. ..UB(Tk). Further let S' be the set of joints of S which are in 

more than one S, T be the set of joints of T which are in more than one 

Ti, and J(Ti)nT'=J(S)nS' V i=1.. ..k. Then f(S)=f(T). 

Proof: Starting with S, we invoke lemma 2.9 k times, on each occasion 

replacing one S i  by the corresponding T i  without altering the degree of freedom, 

until we are left with T, giving 	f(S) = f(S IUS2U.. ..USk_iuSk) = 

f(T 1US2U.. ..USk_IUSk ) 	..= f(T IUT2U.. ..UTk_iUSk) = f(T 1UT2U.. ..UTk_iUTk) 

= f(T). 	 ci 

We construct a structure S' from S by choosing two joints, (x1 ,y 1) and 

(x2 ,y2), of S and adding to S an extra joint (x,y) not collinear with ()c ry ].) and 

(x2 ,y2), and the two bars {(x 1 ,3/ 1),(x,y)} and {(x2 ,y2),(x,y)}. 

Lemma 2.11: Then S is rigid if S' is rigid. 

Proof: Suppose S' is rigid. Then rk(A 5 ,)=2(13(S)1+1)-3. Since As  is just 

As , with two rows and two columns removed, rk(A s)<21J(S)1-3, so S is rigid. 

Conversely suppose S is rigid. Then by theorem 2.10 5' has the same 

degree of freedom as 

Lemma 2.12: If structures S I  and S2  are rigid, and IJ(S 1 )n.J(S 2)1>1, then the 

union of 5 1  and S2' denoted by T, is rigid. 
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Proof: AT)=4SiuS(KJ(S)nJ(S2) )) by lemma 2.9, and f(SIUS(KJ(S)nJ(S2 ) ))==°  

by lemmas 1.22 and 1.23, since S 1  is rigid and all bars of S(KJ(S)nJ(S2) ) are  

implicit bars of, or bars of S I . So f(T)=0. 

Theorem 2.13: For any planar bar and joint structure, the maximal rigid 

substructures are bar disjoint, and there is a unique partition of B(S) into 

OB(S,) where the S is are exactly the maximal rigid substructures. 
i I 
Proof: Clearly every bar is in a maximal rigid substructure. 

Suppose a bar b is in two maximal rigid substructures, S and S'. Then 

igs)nAs')I>i and by lemma 2.12 SuS is rigid, contradicting the 

mwdmality of the rigidity of S and S'. Therefore every bar is in exactly one 

maximal rigid substructure. 

The properties of the structure geometry of a structure, S, are related to 

its rigidity characteristics. Since the structure geometry of an isostatic 

structure is free, its only basis consists of the set of all its bars. If S is rigid 

then the bases of D are the structure geometries of the isostatic substructures 

Si  of S for which J(S)=J(S i). As an isostatic structure S is rigid with D s .  free, 

we see that the removal of any bar decreases the rank of D s  by one, and 

therefore the resulting structure cannot be rigid since its rank, being even, 

cannot be 2n-3 for any n. A hyperstatic structure contains redundant bars. To 

understand flats of the structure geometry, consider a structure S' as a 

substructure of the "complete structure S(K)" on those joints. If S' is rigid 

then cl(Ds ,)=Ds(K.)  where J(S(Kn))=J(S') since if we add to S' all the bars 

of S(K)\S' the rank cannot increase. If S i ,.. ..,Sk  are the maximal rigid 

substructures of S', then cl(D s ,)JDetv le.. ..eD s(K  ), where J(S(Ka. ))=J(S i) 
1 	k V i=1.. ..k. 
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By looking at examples of circuits of D s  we see that some are rigid and 

some are not. 

Example 2.14: Rigid circuits 

Those circuits which are rigid are necessarily minimally hyperstatic (i.e. 

every structure obtained from such a circuit by removing one bar, is isostatic) 

since every one bar deletion has the same rank, but any two bar deletion 

doesn't, and so every one bar deletion is a basis. 
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Generi city. 

In this chapter we review the concept of generic structures by introducing 

our own definition and comparing to it the definitions offered by other people. 

Although this concept is independent of dimension and we accordingly give all 

definitions and results in this chapter a general setting, for simplicity our 

examples will be two dimensional. 

Example 3.1: Consider S' and S" from example 2.14. They have the same 

underlying graph but one is rigid and the other is not. 

This example prompts the following definition: 

Definition 3.2: Suppose we have a bar and joint structure S, in [RE, with 

underlying graph G. If G is a single edge then S is generic, otherwise S is 

generic iff 

i) rk(As)>rk(AT) V structures T in tilt  s.t. G underlies T, and 

ii) every substructure S' of S is generic. 
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Lemma 3.3: For two generic structures S i  and S2  in IR with the same 

underlying graph, the obvious bijection, I, between the bars is a matroid 

isomorphism. 

Proof: Suppose I is not a matroid isomorphism. Then without loss of 

generality there exists a substructure Si of S i  where the bars of the 

corresponding substructure, I(Si)=S; of S2 , are dependent, but B(Si) is 

independent. Therefore rk(A s , )=1B(S i)1=1B(S)1>rk(A s , ), and so S2  cannot 

be generic. 

. Lemma 3 4- For two structures, S i  and S2  in , S i  and S2  have the same 

underlying graph and S i  is generic, then Ds  >Ds  . 
1 	2 

Proof: Let S; be a substructure of S 2  S.t. B(S) is independent, and let 

Si=I(S) where I is the obvious bijection between S i  and S2  as in the previous 

lemma (it is not necessarily a matroid isomorphism in this case). Then 

rk(As ,)>rk(As2,)=1B(S)1=1B(Si)1 and so B(Si) is independent. So Ds  is a 
2 

weak map image of Ds 1 . 

This concept is introduced to eliminate the type of degeneracy in the 

positions of the joints which we encountered in the last example, where S' is 

generic and S" is not. 

In 1979 Crapo [C13] defined generic structure; "A structure in such 

geometric position that it has maximum possible rank, given its topological 

makeup.". 

We interpret this as meaning, for a structure S in 1111: "If S has underlying 

graph G and rk(A s)?rk(AT) V structures T in ER1  s.t. G underlies T, then S is 

generic." 



riGn  
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This definition neatly divides structures into two classes; one whose 

members have more motions (i.e. lower rank) than other structures with the 

same graph, owing to a special arrangement of their joints, and one consisting 

of all other structures. This does seem a sensible distinction to make, but there 

is a slight drawback in that this definition allows a generic structure to have 

non—generic substructures, and therefore precludes the existence of a matroid 

isomorphism between generic structures with the same underlying graph. 

Example 3.5: A planar example. 

Thus in a sense this definition allows too many generic structures. 

A more useful definition is used by Lovasz and Yemini [L5] in 1982: "A 

structure S is generic if the coordinates of its joints are algebraically 

independent over the rational field." 

This has the useful hereditary property of our definition, however it allows 

a generic structure and a non—generic structure with identical physical 

interpretations as real frameworks: 



ration als. 

Ccbki) 
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Example 3.6: a, b, c, d, e, and f are algebraically independent over the 

• 4 1 5eine tic, 

KO t "rKeriC 

Hence this definition defines too small a class of structures, by eliminating 

many structures which we think of as generic when realised physically. 

Graver [G5] chooses the middle ground between these last two definitions. 

We paraphrase his definition: "Consider the determinant of each minor of A s  as 

the coordinates of the joints vary over all of R. A structure is generic if all the 

nontrivial minors of AS'• • i e the minors with determinants that are not 

identically zero, have nonzero determinants." 

Theorem 3.7: Graver's definition for generic structures is equivalent to ours, 

and every structure which is generic by Lovasz and Yemini's definition is 

generic by our definition. 
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Proof: A structure S in ge is not generic in our sense 

There exists a substructure S' of S s.t. rk(A ,)<rk(A T) for some structure 

T in ER/ with the same underlying graph as Si'. 

4=> As , has a non—trivial minor with a zero determinant. 

	

( 	S is not generic in Graver's sense.) 

There exists a polynomial (namely that determinant) which has the 

coordinates of the joints as roots. 

4=> S is not generic in the sense of Lovasz and Yemini. 

Any results about the rigidity of structures which are generic in the sense 

of Lovasz and Yemini, will also hold for our generic structures, because rigidity 

is defined in terms of rank, which is left invariant by matroid isomorphisms. 

Therefore as convenience dictates, we can use our definition, or Graver's 

definition, or even Lovasz and Yemini's, in work concerning generic structures, 

and when we make general statements about generic structures we can safely 

include structures which are generic by our definition but not by Lovasz and 

Yemini's. 

If a structure is not generic, then by the definition of generic it has a 

dependent substructure, and so is itself dependent. Thus every non—generic 

structure contains a circuit. If we look back at our examples 2.14 we find that 

the circuits which were not rigid were not generic either. We have: 

Theorem 3.8: Every rigid circuit in D s  is generic. 

	

Proof: 	Suppose we have a rigid non—generic circuit B(C). 	Then 

rk(Ac)<rk(AT) for some T with the same underlying graph as C. 

But rk(Ac)=2 I J(C)1-3<rk(A T) is impossible. 
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Theorem 3.9: Every minimal non-generic structure S in [11 / is a circuit in Ds  

and every non-generic circuit in Ili  is minimal non-generic. 

Proof: Suppose we have a minimal non-generic structure C. Then since C is 

minimal non-generic, rk(A c)<rk(AT) for some T with the same underlying 

graph as C. Also since C is minimal non-generic rk(A c\b)=rk(AT\b ,) since 

rk(AT\b ,)>rk(AT)-1. Since b was chosen arbitrarily, C is a circuit. 

Conversely, every non-generic circuit is minimal non-generic since every 

substructure of a circuit is independent and therefore generic. 

The existence of the matroid isomorphism between generic structures in 

with the same underlying graph shows us that the rigidity characteristics of a 

generic structure in IR/ depend only on its underlying graph. Because of this we 

can regard the generic properties of structures in IR / as properties of graphs, and 

once we know G and / we should be able to determine the rigidity properties of 

all generic structures in ER / with G as underlying graph. Therefore we speak of 

Ait , DIG , NiG , RIG , and f1(G) (or I-degree of freedom) meaning respectively 

the coordinatising matrix, structure geometry, space of admissible motions, 

space of rigid motions, and degree of freedom of an arbitrary generic realisation 

in IR/ of G. 

Definition 3.10: We say that a graph G is 1-stiff if all the generic structures 

in ER/ with underlying graph G, are rigid. Also if S(G) is an isostatic structure 

in we call G an i-isostatic graph. 

Referring -  back to definition 1.18 this means: G is 2-stiff iff dim(N 20 )=3 

and; G is 3-stiff iff dim(N 3G )=6 or G is a single edge (which incidentally is 

1-stiff V I). 
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Examples: 

th4 
44 3- 3 141-r 

no E 

r10 4- 3- sk.# 
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Generic Rigidity in R2 . 

The focus of this chapter is Laman's theorem. We give Lovasz and 

Yemini's proof of this result and consequently some properties of the generic 

structure geometry in R2. We discuss some other proofs of Laman's theorem 

including a perspective which may give rise to another, more easily 

generalisable, proof. 

To begin we raise the question of circuits in D2G . Looking back once 

more to example 2.14 we see that all our examples of such circuits are rigid. Is 

this generally true? 

To answer this question is not simple, but consequent upon the answer we 

find that structure geometries of generic structures in R2  have some nice 

properties which structure geometries of non—generic structures lack. For the 

rest of this chapter we shall say nothing more about non—generic structures, and 

shall devote ourselves entirely to generic structures. For this reason we will 

abandon reference to structures, bars and joints, and talk only of graphs, edges 

and vertices, where it must be understood that we mean generic structures with 

such graphs underlying them. We shall use the symbols G, A2G, f2(G), N2G , 

D2G , 2—stiff and maximal 2—stiff subgraph, where before we used S, As , f(S), 

NS' DS' rigid and maximal rigid substructure. Invoking earlier results about a 

more general class of structures will not create problems since anything which is 

true for structures in general is certainly true for generic structures. 
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Now we look at some ideas and results by Lovasz and Yemini, with their 

origins in polymatroid theory. For a less detailed, and thus in some ways • 

clearer exposition, see [L3] [L5]. Also, we shall revert to their definition of 

generic structure: 

Let G be a graph of a structure, with E(G)={e i ,.. ..,ein}. If we arbitrarily 

direct G, then the incidence matrix of G [0.4] is given by 
11 if i is the head of e.. 

a.,= —1 if i is the tail of e!. 
J l 'i 	0 otherwise. 

(We shall be interested in the independence of the columns of (a..), and the ij 
way we direct the graph doesn't affect this independence since an opposite 

direction of an edge results in a column of (a ij ) which is different only by a 

factor of —1). 

If i 1—■ (x i ,y i) gives a realisation where all the x is and yis are algebraically 

independent (i.e. the structure is generic according to Lovasz and Yemini), let 
-th x=(x 1  ,.. ..,x.), y=(y 1 ,.. „yi ), and ai=(ali,.. ..,ai,j). Here Ai  is the j 	column —  

of (a..), and therefore corresponds to the j th  edge of G. ij 
Also let A i={ (Aai ,p,a,i) : 	\ ,p E [11 } for i=1..m, and let 

H=1(z,f):(.y)—(e•x)=0} 

,Lemma 4 1- If X is the union of some A.s then 

((XnH)uA i)n((XnH)uA)c1-1 4 ((XnH)uA i)n((XnH)uA i)c(XnH) V 

Proof: 	Consider 	an arbitrary element of ((XnH)uA i). 	Then, since 

{(ai3O),(A ikpial)} is a basis of A i, we know that a=a(a.,0)+43.(A.a.,p.a.), where 

	

J 	J-J 

(Api ,ppi)E(X11H) V j. If also a€1-1, then from the definition of H, we have 

((aa.+E).y)—((E13,11,a.).x.)=0, 	Or 
-HJJJ 	j.r. JJ 

However since (A.a.,p.a.)€11 we know that 
J-J J-J 

a(a-* - L)1= 0 . 
iJJJ 	JJ 

A.(a.•y)—p.(a.•x)=0 and thus we 

have a(a..y)=0. Since by genericity, no two entries of y are the same, we 
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know that ky#0, so we must have a=0, and so A(=E 13,(Api ,pit)) is in (XnH). 

Thus we have seen that if aE((XnH)UA i) and aEH, then aE(XnH), from 

which the result follows. 

Lemma 4 2- dim(HnA.:i=1..m)=minE(2dim(i :rEN.)-1), where the minimum is -r 
1 	 i=1 

taken over all partitions N 1 ,.. ..,Nk  of {1,.. ..,m} into non empty subsets. 

Proof: Consider any partition N 1 ,.. ..,Nk of {1,.. ..,m}. Let Q=U(A.nH) and 

U (A nH)=Q i  V i=1..k. Now V i=1..k we have: 
rEN. r  

Consider any rEN i. Since by genericity no two entries of y are the 

same, we know that ar -y#0, so (a.r ,O)OH. Since (Q)CH we see that 

(,g)0(Q), but (Ar ,I1)E(U A UQ), so 
rEN. r  

l+dim(Q)<(U A UQ) 	 (*) 
rEN. r  

1 

But by modularity of rank 

dim(AirENi)+dim(Q)=dim(U ArUQ)+dim((Ara-ENi)n(Q)), so 
rEN. 

1 

dim((Ar:rENi)n(Q))<dim(AirEN i)-1. From the definition of Q.  we know 

that dim(Q i).'dim((A. , :rENi)n(Q)) so we have dim(Q i)<dim(AirEN i)-1. 

Also by submodularity we have: 

dim(HnAii=1..m)=dim(Q)<E dim(Qi) 	 (**) 
i=1 

Together these last two inequalities imply: 

dim(HnA 1:i=1..m)<E(2dim(ar, :rEN1)-1) for every partition. i.1  

Thus to complete the proof it suffices to show the existence of a partition 

for which (*) and (**) are equalities. 

Consider the relation: iaj 4=> A iC(AjUQ) 

i) a is symmetric. 
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ii) iEEj <=> (a,i3O)E((aj ,..0)UQ) (since Aj=((aj,0),AJUH)) 

4# there exists a circuit C ii  s.t. {(ai3O),(aTO.)}cCiicQU{(ApP_MaTV 

4=> (ati,9-)E((,9-A) 4=> jEL 

SO E is reflexive. 

iii) isj& jEk There exist circuits C. and C jk (=C..) s.t. 

{(apa),(airallgcipu{(0),(g.,y_Q)} and 

{(.-0),(..4j ,Q)}g.CkigQi-J{(h&),(AIMI- 

Since (ai ,MECiinCik  and (ai3O)ECii\Cik , then by strong circuit exchange 

there exists a circuit C s.t. (a.,0)ECcC..UC.jk  \(a. 0). This means there 

exists a circuit C s.t. (a1 ,0)ECCQUI(ak,0),(,0)}, so ia-k. So E is transitive. 

Thus = is an equivalence relation and defines a partition. 

For this partition dim((A r:rENi)UQ)=-dim(ArUQ) for any rENi. Also since 

dimA =2, but A is not in Q and A nQ#O, we have dim(Q)+1=dim(A UQ). 

Together these imply dim(Q)+1=dim((Ar:rENi)UQ) V i=1..k. That is we have 

equality in equation (*). 

Now consider i-z-j and suppose there exists a circuit CCQ s.t. A inHEC and 

A H.n EC. Choose any wEC. Then w=A nH for some xE{1,.. 	Let 

X=(uA )\A . Then (QUA i)=((Q\w)UA i) since wECCQ 
r=i r 	x  

=((XnH)uA i), and similarly (QuAj)=((XnH)uAi). Now 

(QUAi)n(QUAi)cH (since igj), so invoking lemma 4.1 on X, A i  and Ai, we have 

(QUApn<QUAin(XnH)=(((UA )\A )nH)• Since this is true for all wEC, this 
r=i r 	x  

shows that (QUA)n(QUA i)=0, but AinHEC and we have a contradiction. 

Therefore the initial supposition about the nature of C was wrong, and for all 

CCQ we have, AinHEC 4 A11-1¢C if igj. Therefore Q is a direct sum of Q 1 ,.. 

..,Qk  and so we have, for this partition, equality in equation (**) also, and the 

assertion is true. 
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Theorem 4.3: The 2—degree of freedom of a graph G with n vertices is 

2n-3—minE (21V(G i)1-3) where the minimum extends over all partitions 
i=1 

of the edges of G: E(G)=E(G 1)0.. ..0E(Gk). 

Proof: 	In 	general 	f2 (G) 	= 	2n-3—dim(rowspace of A 2G ) 

2n-3—dim(((a.•x)a.,(a..y)a.): i=1..m). 	Since the entries of x and y are 

algebraically independent over the rationals, we can apply the previous lemma 

to get f2 (G)=2n-3—minE(2dim(a :rEN : )-1), where the minimum is taken over 
i=1 

all partitions N 1 ,.. ..,Nk  of {1,.. ..,m} into non—empty subsets. 

Now by considering the isomorphism (see 0.14 and 0.15) between the usual 

cycle matroid (see 0.13 ii) on the edges of the graph G, and the dependence 

matroid on the incidence matrix of G, it is clear that rkE(G i)=dim(ar:rENi), 

and so 

f2 (G)=2n-3—minE(21kE(G i)-1) 	 (t) 
i=1 

where rk is the rank function of the matroid on the edges G, and the minimum 

is taken over all partitions of the edges of G. 

Now the partition minimising the right hand side of equation (t) is 

automatically such that each G. is a connected subgraph. This follows from the 

fact that if G e is not connected, then the partition with each component of G e 
regarded as a separate subgraph of the partition will yield a smaller sum than 

the partition where just G e  as a whole is considered as a subgraph. 

rkE(G i)=1V(G i)1-1 since G. is connected. 

Thus equation (t) becomes 2n-3—minE (21V(G i)1-3 
i=1 

A corollary gives us a characterisation of 2—stiff graphs: 
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Corollary 4.4: A graph G is 2-stiff if E(21V(G i)1-3)>21V(G)1-3 holds for 
1.1 

every system of subgraphs G. s.t. E(G)=E(G 1 )0.. ..0E(G k). 

Proof: G is 2-stiff iff f2(G)=0. 

We now return to our look at some generic properties of the structure 

geometry. 

Theorem 4.5: D 2G is free iff 21V(Y)1-3>1Y1 holds for every YCE(G). 

Proof: Now D2G is free iff f2(G)=2n-3-m, where m=1E(G)1. By corollary 4.4, 

this is equivalent to the condition that for every system of subgraphs G 1 ,.. ..,Gk  

S.t. E(G)=E(G 1 )U.. ..UE(Gk), we have E(21V(G i)1-3)>m 	(1) 
i.1 

We show that this is equivalent to the condition in the theorem: 

Suppose equation (1) holds. Let H be an arbitrary subgraph of G. 

Choose G I=H and G2 ,.. ..,G k  to be the subgraphs consisting of one edge of 

E(G)\E(H) each. Then equation (1) implies that 21V(G 1 )1-2+(k+1)>m. But 

since k=m-1E(H)1+1, we obtain 21V(H)1-3>IE(H)1. 

Conversely, suppose 21V(Y)1-3>1Y1 is true V YcE(G). 	Then 

E(21V(G)1-3)>E1E(G i)1>IE(G)1 follows for arbitrary subgraphs G 1 ,.. ..,Gk  s.t. 
1=1 
E(G)=E(G 1 )U.. ..UE(Gk), and equation (1) is true. 

Now we can answer our question regarding generic circuits. 

Corollary 4.6: Every circuit in D2G  is 2-stiff. 

Proof: Suppose C is a circuit which is not 2-stiff. Since C is minimally 

dependent the previous theorem implies that 21V(C)1-3< 1 CI. Also since C is 

not 2-stiff rk(C)<21V(C)1-3. 
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Combining these we have I C -1=rk(C)<2 I V(C) I -3< I C I which is not possible. 

So every circuit is 2-stiff. 	 a 

A consequence of this corollary is that D2G  is a direct sum of the D, s, 

where the G.s are the maximal 2-stiff subgraphs of G. This immediately tells 

us that 

Theorem 4.7: f2(G)=2n-3-E(2 I  V(G i) 1-3), where E(G)=E(G 1 )U.. ..6E(Gk) is 
i=1 

the partition of G into maximal 2-stiff subgraphs. 

Proof: Corollary 2.7 and the discussion above. 

Theorem 4.8: If G is a subgraph of K .  with the same vertices, then G is 2-stiff 

iff c12(G)=K. . 

Proof: If G is 2-stiff then rk(A2G)=2IV(G)I-3=rk(D 2K  ), and so c12(G)=K. . 

If G is not 2-stiff then rk(D 2G )#2I V(G)I-3=rk(D 2Kn), and so c12 (G)OK.. 	o 

Furthermore, since rigidity is defined in terms of rank, c1 2 (G) exhibits the 

same rigidity characteristics and mechanical behaviour as any basis of D2G . 

Now we present the result of Laman [L1] mentioned in the introduction, a 

characterisation of 2-isostatic graphs. This is essentially equivalent to theorems 

4.4 and 4.5. 

Laman's theorem 4.9: A graph G is 2-isostatic iff 

i) I E(G)I=2IV(G)I-3 and 

ii) I  E(H) I <2 I  V(H) 1-3 for every subgraph H of G. 
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Proof: G is 2—isostatic 	G is 2—stiff and independent. Then ii) follows by 

theorem 4.5, and then i) follows by ii) and lemma 2.4. 

Conversely, if 0 and ii) hold, then E(G) is independent by ii) and theorem 

4.5, and G is 2—stiff by i) and lemma 2.5. 

There exist two other proofs of this theorem. The first, by Laman [L1] 

(1970), is an induction proof on the number of vertices of the graph. The 

second, by Asimow and Roth [A2] (1979), is an induction proof on the number 

of edges of the graph. Both these proofs entail the construction, from a 

structure with known properties, of another larger structure whose properties 

depend on the method of construction and the properties of the original 

structure. Lovasz and Yemini [L5] (1982), whose proof is the one presented 

here, have avoided this approach, and have revealed a complicated geometrical 

structure underlying the problem, which they have used in its solution, thereby 

revealing new results (2.6 2.7 4.3 4.4 4.7), and suggesting a possible fourth 

method of proof. Noting that Laman's theorem follows directly from theorem 

4.7 we have: 

Conjecture 4.10: Theorem 4.7 may be provable using an induction proof on the 

number of maximal 2—stiff subgraphs of G. 

For reasons which will become evident in the next section, we tried 

without success produce such a proof. Here are some consequences Of this 

attempt. 

We introduce a new concept, the introduction of which, along with other 

subsequent ideas, entails adding edges to a graph G to obtain another graph 

G'. We encounter difficulties with this because if we try to add an edge 

between two vertices of G when there is already an edge between these two 
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vertices, then the resulting graph G' is not simple, and therefore is not a graph 

underlying any structure. We remedy this by only adding an edge between two 

vertices if there isn't one there already. Since we may not know , in advance 

whether or not an edge exists where we try to add one, when we say "add an 

edge" we mean "add an edge if one doesn't already exist". 

Definition 4.11: The relative 2—degree of freedom between two vertices, 1 and 2 

of a graph G is denoted and defined by f2 (1,2)=rk(AG ,)—rk(AG), where G' is 

the graph obtained from G by adding an extra edge (1,2). 

Also the relative 2—degree of freedom between a vertex 1 and an edge 

e2=(2,3), of a graph G is denoted and defined by 

f2(1,e2)=f2 (e2 ,1)=r1<(AG 1)—rk(AG), where G' is the graph obtained from G by 

adding two extra edges, (1,2) and (1,3). 

Also the relative 2—degree of freedom between two edges, e0=(1,2) and 

e 1=(3,4) of a graph G is denoted and defined by f 2 (e0 ,e1 )=rk(AG ,)—rk(AG ), 

where G' is the graph obtained from G by adding: 

i) three edges (1,3),(2,4),(2,3) if 1{1,2,3,4}1=4, or 

ii) one edge ({0,1}\i,{2,3}\j) if i=j for some iE{0,1} and jE{2,3}. 

Finally the 2—relative degree of freedom between two 2—stiff subgraphs, Go  

and G 1  where e0=(1,2)EE(G 0) and e 1 =(3,4)EE(G 1 ) of a graph G is denoted and 

defined by f2 (Go ,G 1 )=rk(AG ,)—rk(AG), where G' is the graph obtained from G 

by adding: 

i) three edges (1,3),(2,4),(2,3) if 1{1,2,3,4}1=4, or 

ii) one edge (10,11\i,{2,3}\j) if i=j for some iE{0,1} and jE{2,3}. 

Clearly the third of these definitions is a special case of the fourth 

definition. 
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It is a straightforward consequence of the unit increasing property of the 

rank function that: 	 05.f2 (1,2)51 

05.f2(e i ,2)<2 

05J2(e1 ,e2).g V e1 ,e2 ,1,2 in the graph 

s.t. these relative 2-degrees of freedom are defined. 

Lemma 4.12: 

If e0=(1,2) and e 1.-(3,4), then f2(1,3)=k * kg2(e0 ,e1 )<k+2 and kg(e0 ,3)5.k+1. 
Also 

f2(e0'e 1)=k 	<f * 
1 if k=3

1,(1,3)< 	and 	2 (e 

	

' 	- 0 if k=0 	0 if k=0 0 - ,3)<{ 
k if k#3. 

0 if k#3 	1 if k#0 	k-1 if k#0 	2 if k=3 

1 if k=2 .1 	11 if k=2 
Finally f2 (e0,3)=k* 	 and kg (e ,e )<k+1. 

0 if k#21 f2(1 '3)  1.1( if 102 

Proof: Straightforward consequence of the unit increasing property of the rank 

function. 	 o 

The reason this concept of relative 2-degree of freedom won't work nicely 

for non-generic structures is that it is an inherently mechanical concept which 

lacks relevance in some non-generic structures involving collinearity. 

Example 4.13: 

Rric)= I 
Intuitively the relative 2-degree of freedom between 1 and 2 would be 

expected to be greater than zero. 
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Also we can extend our original definition of 2—degree of freedom for 

disconnected graphs. 

Definition 4.14: If a graph G has k disconnected components G 1 ,.. ..,Gk, then 

it has 2—degree of freedom given by f2 (G)=3(k-1)-F iE 1f2(Gi). For connected 

graphs this is equivalent to our original definition. 

Lemma 4.15: Suppose eo  and el  are edges of G, and Go  is the maximal 2—stiff 

subgraph of G which contains e o. Then f2 (e0 ,e 1 )=0 if Go  contains e l . 

Proof: If el  is in Go, then any edges added between the vertices of eo  and e l  

will be in the rowspace of A2G . So f2 (e 1 ,e0 )=0. 

Conversely if e 10G0  then we have two cases to consider; 

either i) eo and e1  share a common vertex (e0=(1,2),e 1 =(1,3)) 

Or 	ii) not. 

Case i) Suppose the graph G' obtained from G by adding the edge a=(2,3) has 

the same 2—degree of freedom as G (i.e. rk(A G ,)=rk(AG)). this means that a 

is contained in a circuit, C, of G'. C is 2—stiff and C\a is 2—stiff. If G I  is the 

maximal 2—stiff subgraph containing e l , then by theorem 2.10, 

f2(E(G0)uE(G 1 )uE(C\a)) = f2 (e0Ue1Ua) = 0. Therefore G o  and G 1  are not 

maximal 2—stiff subgraphs, contradicting our supposition that rk(A G)=rk(AG ,), 

so f2 (e0 ,e1 )00. 

Case ii) This is essentially identical with case i) but with three edges playing 

the role of a in case i). Because of this, and because we later need to refer only 

to case 0, we omit the details. 

A proof of this lemma which didn't assume the 2—stiffness of circuits, 

would furnish us with the mentioned fourth proof of Laman's theorem. 
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Given a graph G of a structure, we are going to derive a new graph G" 

having one vertex fewer, the same number of edges, and possibly the same 

number of maximal 2-stiff subgraphs. To motivate this derivation we suggest, 

in general non-technical terms, thinking of a graph in terms its maximal 2-stiff 

subgraphs rather than its edges, as the fundamental components. If we choose 

a vertex from each of two maximal 2-stiff components, add an edge between 

these two vertices and then contract it, it seems likely that the 2-degree of 

freedom of the resulting graph will differ from that of the initial graph. We 

will want to know the exact extent of this change. 

Construction 4.16: Start with a graph G of a structure. 

i) Choose two vertices 1 and 2 EV(G) s.t. 1 is contained in only one 

maximal 2-stiff subgraph, and f2(1,2)=1. This last condition ensures that 1 

and 2 are not in the same maximal 2-stiff subgraph. 

ii) 	Choose an edge e 1=(1,3) of the maximal 2-stiff subgraph G 1  

containing the vertex 1. 

iii) Derive G' from G by adding two edges a=(1,2) and b.(2,3). If 

f2(e 1 ,2)=1, we see that rk(A G)+1=rk(AG ,) and if f2 (e 1 ,2)=2, we see that 
1 if f2 (e 1 ,2)=1 

f2 (G)42 (G/)=  rk(AG )+2=rk(AG ,). i.e. 	 (1) 
 2 if f2  (e 2)=2. 

The 2-stiff subgraph of G' with edges E(G 1 )U{a,b} we call G. 

iv) Consider the graph G" obtained from G by adding just edge (1,2) 

and contracting it. Using lemma 2.9 to compare G" with G we find that 

(2) 

(Since if E(G")=E(GdUE(G r) then E(G')=E(Gi)UE(G,), G 1  and WI  are 

2-stiff, and V(Gi)nV(Gr)=V(GOnV(Gr)) 
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1 if f2 (e 1 ,2)=1 
v) From equations (1) and (2) we have f2(G)42(G"). 

2 if f2 (e 1 ,2)=2, 

and we know that G has one more vertex than G" but has the same number 

of edges. Furthermore, if we call all the edges by the same names in G and 

G", we see that every subset of edges of G which forms a maximal 2-stiff 

subgraph of G, must form a 2-stiff subgraph of G", since we have done 

nothing to affect the internal structure of each 2-stiff subgraph. 

Lemma 4 17: For the number of maximal 2-stiff subgraphs in G" to equal the 

number of maximal 2-stiff subgraphs in G we require at least that f 2 (e 1 ei)=3 V 

e. s.t. e.=(2,4) for some 4EV(G). 

Proof: Suppose f2 (e 1 ,e2)<3 for some e2=(2,6) (and f2 (e1 ei)>1 V ei  s.t. er(2,4) 

for some 4EV(G)). Then vertex 3 is not vertex 6 since otherwise our resulting 

graph G" would have a doubled edge and hence not be the graph of any 

structure. Now we perform our construction and obtain 

Consider G obtained by adding to G' the edge c.(3,6), and G
** 
 obtained 

by adding to G" the edge c=(3,6). By theorem 2.10 f2 (G
** 

 )=f2(G*). Also by 
** 	11 if f2(ee2 )=1 

f2(G)-12 (G )= 
the definition of f2(ee2 ) we know 	 2 if f2 (e 1 ,e2)=2. Combining 

these two with equation three we have f2(G")42 (G**)=0 if 1<f2 (e 1 ,e2)<2. This 

implies that edge c is in the rowspace of AG!  ,, so that f2(e1 ,e2)=0 in G". 

Hence by the preceding lemma, e0  and e l  are in the same maximal 2-stiff 

subgraph of G". This violates the desired property of conservation of the 

number of maximal 2-stiff subgraphs, and our lemma is established. 

1 if f2(e 1 ,e2)=1 
f2(G)42(G")=12 if f

2(ee2 )=2 
(3 ) 
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Now we know that if we start our construction with eo and e 1  which 

satisfy f2 (e0 ,e 1 )=3, then f2(G)=f2(G")+2, and the number of maximal 2-stiff 

subgraphs of G may or may not equal the number of maximal 2-stiff subgraphs 

of G", but if we start our construction with e 0  and el  s.t f2 (e0 ,e 1)<3 then the 

number of maximal 2-stiff subgraphs of G will not equal the number of 

maximal 2-stiff subgraphs of G". 

Theorem 4.18 (4.7): The 2-degree of freedom of a graph G with n vertices is 

2n-3-E(21V(Gd1-3) where E(G)=E(G 1 )0.. ..0E(Gk) is the partition of the 
i=1 

edges of G into maximal 2-stiff subgraphs. 

Proof: We use induction on the number of maximal 2-stiff subgraphs, using 

construction 4.16. 

k=1: f2(G)=0=2n-3-(21V(G)1-3) o.k. 

Suppose the result is true for every graph with k maximal 2-stiff 

subgraphs. Consider a graph GT  with k=1 maximal 2-stiff subgraphs. The 

graph GT\Gk±i  obtained from GT  by deleting every edge of the maximal 

2-stiff subgraph Gk+1 , along with all the requisite vertices, has k maximal 

2-stiff subgraphs, so f2(GT\Gk Gk+1)I- +i )=21V(GT\ 	3-E (21V(G)1-3). 	Now 
 i=1 

consider the graph F consisting of the two disconnected components G T\Gk+i  

and a copy of Gk+i  called G icc+T. 

f2 (F)=f2 (GT\Gk+1 )+3, Since GMY is 2-stiff. 

=21 V(GT  Gk+i ) I 7E(21V(G i)1-3) 

=2(1V(GT  \ Gk+1 )1+1V(GMY)1)-3-E(21V(G i)1) 

Now commencing with our graph F, we use our construction process 

1V(GT \Gk+1  )nV(G c° H)1 times until F becomes GT. Every time we join two k+1 
vertices of F we lose two 2-degrees of freedom, since every time we execute our 
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construction, the number of maximal 2-stiff subgraphs doesn't change. Thus 

f2(GT)=2 I  V(GT)1-3-E(21V(G i)1-3) and by induction the result is again 
i=1 

established. 

From this theorem it is straightforward to establish corollary 4.6, theorem 

4.5, and Laman's theorem 4.9, thus if it could be independently proven that 

lemma 4.15 is true we would have an independent proof of these results. 

We finish this chapter on planar rigidity by giving two results about the 

2-degree of freedom of a graph in terms of its maximal 2-stiff subgraphs. 

Non-generic examples of this type of structure were looked at by Griinbaum 

and Shephard [G7], and generic examples were looked at by Rooney and Wilson 

[R8], who stated the following theorem. 

Theorem 4.19: If J is the number of vertices of G which are in more than one 

maximal 2-stiff subgraph, and tj  is the number of maximal 2-stiff subgraphs 

with j vertices in more than one maximal 2-stiff subgraph, then 

f2( G)=2J-3-E (2i-3)  
i=1 

Proof: f2(G)=2n-3-E( I V(G)  I-3)• Now relabel this partition into Gs 	that 
1=1 

all the G.s with j vertices in more than one maximal 2-stiff subgraph are 
1. 

••,G,t • 	 Then 	f2(G)=2n-3-E 	EJ(21V(G j1)1-3). 

	

J 	 j=1 	i=1 

	

1 . 	 t. 	 1. 
But E-1 (21V(Gii)1-3)=2A-3/ ;+2E J (IV(G ji)1-3)=(2j-3A+2E -1 (1V(G ii )I-j), 	so 

	

i=1 	 i =1 	 i =1 

f2(G)=2n-3-E (2j-3)t.-E EJ(21V(G ji)1-2j)=2[n-E EJ(IV(G„)1-j)]-3-E (2j-3)1
3
.. 

j=1 	Jj=i i=1 	 j=1 i=1 	" 	j=1  
1. 	 1 . 	 k 

But n-E 	E j ( I \(G TI) H)=11-E ((E j  IV(Gii) 1)-iii)=n-E I V(Gi) I +E ji.=J 	so 
j=1 i=1 	"- 	*1 1=1 	" i=1 	j =1 i 

f2(G)=2.1-3-E (2j-3)./. as required. 	 a 
J j=1• 
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There is a similar formula giving the 2—degree of freedom of a graph in 

terms of the vertices of G which are in j maximal 2—stiff subgraphs. 

Theorem 4.20: If G has k maximal 2—stiff subgraphs, and m i  is the number of 

vertices of G in j maximal 2—stiff subgraphs, then f2(G)=3(k-1)4(2i-2)m i . 
1=1 

Proof: The number of 2—degrees of freedom of k disconnected bodies is 3(k-1). 

Now if we use our construction process to derive G from joining these k 

disconnected subgraphs then each join must reduce the 2—degree of freedom by 

two, and since the number of such joins is E(i-1)m., the result follows. 
i=1 
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Rigidity in R3 . 

This chapter is an examination of bar and joint structures in R 3 , and the 

results presented mirror those of chapter 2 as far as possible. We highlight the 

point at which the dissimilarity between bar and joint structures in IR2  and bar 

and joint structures in R 3  occurs and give the usual counterexample to the 

obvious analogue of Laman's theorem for bar and joint structures in R 3 . 

Definition 5.1: A spatial bar and joint structure is a bar and joint structure in 

R3. Throughout this chapter we shall mean "spatial bar and joint structure" 

when we say "bar and joint structure" or "structure". 

Again we note non-ambiguous notation abuses at 5.10 6.15, and 6.16. 

These consist of using graph terminology for structures and vice versa, and 

shouldn't lead to confusion. Also on page 66 vectors u 1 ,112 ,u3 ,u4 ,115 ,116 ,vs  & ms  

have had an unexplained rearrangement of co-ordinates. 

Lemma 5.2: If S is a non-collinear structure, and T is a collinear structure, 

then 

i) f(S)+rk(As)=3n-6 	f(T)+rk(AT)=3n-5. 

ii) 0<f(S)<3n-6 	0<f(T)<3n-5. 

iii) 0<rk(As)<3n-6 	0<rk(AT)gn-5. 

iv) S is rigid iff f(S)=0 	T is rigid iff f(T)=0. 
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Proof: If T is collinear then we assert without proof that dim(R T)=5, not 6, 

since a collinear structure in space has one rotational degree of freedom less 

than a non-collinear structure in space. The remainder of this proof is exactly 

analogous to the proof of lemma 2.2. 

Theorem 5.3: Unless S is a single bar, rk(As)<minfIB(S)1,31J(S)1-6}. 

Proof: As has 1B(S)1 rows and 31J(S)1 columns, and unless S is a collinear 

triangle dim(Ns)>6. If S is a collinear triangle, then 1J(S)1=1B(S)1=3, and 

rk(A5 )=2 and the result is clear. 	 a 

Lemma 54 If a structure S is rigid then 1B(S)1>31J(S)1-6 

Proof: 	If a structure S, which is not a single bar, is rigid then 

rk(As)=31J(S)1-6 and consequently 1B(S)1>31J(S)1-6 since B(S) is the number 

of rows of As . A single bar has 1B(S)1=1>0=31J(S)1-6. 	 a 

Theorem 5.5: Unless S is a single bar, any two of the following conditions 

imply the third: 

i) B(S) is independent in Ds . 

ii) S is rigid. 

iii) 31J(S)1-6=1B(S)1. 

Proof: i & 	S is rigid so rk(As)=31J(S)1-6, and B(S) is independent, so 

rk(A )=1B(S)1. 

i & 	B(S) is independent, so rk(A5 )=1B(S)1=31J(S)1-6. So S is 

rigid. 

iii & 	S is rigid, so rk(A 5)=31J(S)1-6=1B(S)1. 	So B(S) is 

independent. 	 a 
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Theorem 5.6: Let B(S)=B ill. ..(1Bk  be a partition of the bars of S so that 

B.=B(S.) is the set of bars of a substructure S.  of  S. Then 1 	1 	 1 

f(S)=3 1 J(S) 1-6-E (31 J(S i) 1-6-f(Si)) iff DDs  e.. 

	

i.1 	 1 	k 

Proof: 	E (3 I J(S i)1-6-f(S i ))=3 1 J(S)1-6-f(S) if E rk(A s. )=rk(As) if 
1.1 	 1=1 

9 D =D 

	

S. 	S' 1.1 	1 

Corollary 5.7: Let B(S)=B 1 0.. ..0Bk  be a partition of the bars of S so that 

B..13(S.) is the set of bars of a subst ructure S. of S. Then 1 	1 	 1 

f(S)=3 1 J(S) 1-6-E (3 1 J(S i)-6) iff 
1.1 

	

both Dc=D c 	..eDs  and S. is rigid V 	..k. 1 "1 
Proof: Each S. is rigid iff f(S 1)=0. 	 a 

Now suppose we have a rigid substructure S which is not a single bar, of 

some other structure, with J(S)={(x py i ,z i ),.. ..,(xn ,y. ,zn )}. We define a six 

dimensional vector space Msijk={(ai+yia5+z i a6 , a1 +yia5+zi a6 , ai+yka5+zka6 , 

a2-zia4-xi a5, a2-zia4-xia5, a2-zk  a4-xk  a5, a3+y1  a4-xi  a6  , a3+ yia4-xja6 , 

a3+yk a4-xk a6) : ..,a6  E IR }, with addition (a 1 ,.. ..,a9 )+(b i ,.. ..,b9) = 

(ai +b i ,.. ..,a9+b9 ), and scalar multiplication 7(a 1 ... ..,a9) = (yap .. ..,7a9 ), 

where i, j & k are between 1 and n. 

We consider the transformation B i jk  to M i.* from Ns defined by 

a11+.. .+a66  1-■ (a1 +y i a5+zi a6, a1 +yi a5+zia6 , a1 +yk a5+zkae, a2-z ia4-xi a5 , 

a2-zia4-xia5, a2-zk a4-xk a5, a3+y i a4-xi a6, a3+yia4-xi a6, a3+yk a4-xk a6 ), is 

called B si ik , where u i=(1,.. ..,1,0,.. ..,0,0,.. ..,0,0,.. ..,0), 

..,1,0,....,0,0,....,0), 
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1.-14= (°1•• ••7°7—Z il•• ••7—Z n ,Yr• ••73rn 7 (3 7'• ••10 )7 

ll5= (Yr•• ••,yn iC17•• ••93Cn707•• ••70707•• ••,0)7 

..,zn ,0,.. 	..,0,-x 1 ,.. 	 ..,0) with the extra zeroes 

corresponding to vertices of the structure of which S is a substructure. 

Lemma 5 8- For any three non-collinear joints i, j and k of a rigid substructure 
i  S, which is not a single bar, of some larger structure, B jk  is 	s a bijective linear 

transformation. 

Proof: Discussion above. 

Lemma 5.9: If S and T are two structures where B(S)=B(S 1 )UB(S2 ), 

B(T)=B(T 1 )UB(S2 ), S 1  and T 1  are rigid substructures of S and T respectively, 

but are not single bars, and J(S 1 )nJ(S2)=J(T 1 )ngS2 )00, then f(S)=f(T) 

Proof: We demonstrate the existence of a bijective linear transformation 

between N and NT' using the fact that if the velocities of three non-collinear 

joints of a rigid body are known, then the velocities of all the joints of the rigid 

body are consequently known, as shown in the previous lemma. 

For every Lus ENs  we define a unique ys=(0,.. ..,0,ar+i ,.. ..,a2n) where 

..,ar,ar+1 ,.. ..,a2n ) where the last I J(S 1 )1=2n-r entries correspond to 

joints of S i . Similarly for each %ENT  we define a ET. 

Define a bijective linear transformation L":N c 	-)MT  --,NT  by 

L"= 

where 

ai+yka5-Fzka6 , 

k-Ti  ' 	' 	"S 1 
(BTi  i i)-l oIjk j toBsi jk  if As 1 )ngs2 )=0 	kEJ(S 	iEJ(Ti ). 

	

1 	1 
(B ,L;k )_i o pkik o —sijk bi 	if {i,j,k}cJ(S i )n J(S2). 

	

1. 1 	1 
Tjlcht

:— 
m  i jk_9m  i hi i

S1 	T1 	
is 	defined 	by; 	(a1 +yia5 -1-z1 a6 , 	a1 -Fyia5+zia6 , 

a2-zia4-xia5 , 	a2-zia4-x ja5 , 	a2-zka4-xka5 , 	a3+yia4-x1a6, 

opt  i h 4 -l oijkhion  i jk if J(S 1 )11J(S2 )=0 
- 1 	1 	1 	1 

}, j,kEJ(S i), h,JEJ(Ti ). 
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a3+yia4-xja6 , 	a3+yka4-xka6) 	1-0 	(a1+yia5+zia6 , 	ai+yha5+zh a6 , 

a1+yea5+zia6, a2-z.a4-xia5, a2-zha4-xha5, a2-ze4-xia5, a3+yi a4-xi a6 , 

a3+yha4-xha6, a3+y1a4-x1a6). 

Now 	define 	L':{nis=-ms-iis :msENs }-i{IIT=m,r-i,r:%,ENT } 	by 

It isn't clear that L' is well defined. It may be that there is a u s  s.t. 

L'(%) doesn't exist. If this is not a problem, then L' is a bijective linear 

transformation. We show now that L' is well defined. 

Consider the systems of orthogonality conditions which originally gave rise 

to the matrices As and AT' First we have, common to S and T, all the 

equations derived from the bars of S2 . Call this system 1. Let system 2 be the 

system of equations derived from the bars of T1' and system 3 be the system of 

equations derived from the bars of S i . 

We consider three cases; i) where 1 J(S 1 )nJ(S2) J  ?3, ii) where 

1J(S 1 )RJ(S 2)1=2, and iii) where 1J(S 1 )11J(S 2)1=1. In case i) we know systems 

2 and 3 have 6-dimensional solution spaces, and the solutions can be expressed 

in terms of where 

(xi,yi ,zi),(xj,yrzj),8z(xk ,yk ,zk)EJ(S 1 )nJ(S2) and J(S 1 )n,J(S2), from the lemma 5.8. 

Since the remainder of each system is identical (system 1) and contains 

xi ,xi,xk ,yi ,yryk ,zi ,zi ,zk , we see that for every u s  there does exist a corresponding 

u and we are therefore assured that L' is well defined. 

Case ii) is similar: since S and T 1  are not collinear they contain, say, 1  
(xk  ,yk  ,zk  ) and (xk  ,yk  ,zk  ) respectively, and we can apply the argument 

111 	222 
from case i). Case iii) is similar: since S i  and Ti  are not collinear, S i  contains 

(xk  ,yk  ,zk  ) and (x ;  ,y ;  ,z ;  ), and T 1  contains (xk  ,yk  ,zk  ) and (x;  ,y ;  ,z ;  ), 
1 	1 	1 	Ji J1 J1 	 2 	2 	2 	'2 J2 J2 

and we can apply the argument from case i). 
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In each case there exists a bijective linear transformation L:N s-VT  defined 

by L(ms )=L(Lis+Irs)=L'(11,)+L"(ir,r)=1,1 r+y_T=mr. So dim(Ns)=dim(NT) 

and f(T)=f(S). 

Theorem 5.10: Let S ir . ..,Sk  be rigid substructures of S, each of at least three 

vertices, s.t. B(S)=B(Si )U.. ..uB(Sk), and let T 1 ,.. ..,Tk  be rigid substructures 

of T, each of at least three vertices, s.t. B(T)=B(T i )U.. ..UB(Tk). Further let 

S' be the set of joints of S which are in more than one S i , and let T' be the 

set of joints of T which are in more than one T i, and J(Ti)nT'=J(S i)nS' 

V i=1..k. Then f(S)=f(T). 

Proof: Starting with S, we invoke lemma 5.9 k times, on each occasion 

replacing one Si  by the corresponding T i  without altering the degree of freedom, 

until we are left with T: f(S) = f(S 1 US2U.. ..USk_I USk) = f(TIUS 2U.. ..USk_I USk ) 

=.. ..= f(TIUT2U.. ..UTk_iUSk) = f(T 1 UT2U.. ..UTk_iUTk) = f(T). 

Lemma 5.11: If a structure S' is obtained from S by choosing three joints of S, 

xi=(xi,yezi), xj.(xj,yi,zi) and xk=(xk,yk ,zk) which are not collinear, and adding 

to S an extra joint (x.+1 ,yn+1 ,zn+1)=xn+1  not coplanar with the first three 

joints, and the three bass (I, (x x + ) and (xk,xn+i ), then S is rigid if 

S is rigid. 

Proof: Suppose S' is rigid. Then rk(A s ,)=3(I J(S)I +1)-6. Since As  is simply 

As , with three rows and three columns removed, we have rk(A s)>3IJ(S)I-6, so 

S is rigid. 

Conversely suppose S is rigid. Then by the theorem 5.10,. S' has the same 

degree of freedom as the (obviously rigid) structure consisting of the four joints 

X.,X.ak an+1 and the six possible bars between them, so f(S')=0. 
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Until this point there are few significant differences between the planar 

and the spatial cases. The main differences have been with the small, low 

dimensional, degenerate exceptions. To be exact, all results and definitions 

from 2.1 to 2.11 have direct analogues for spatial structures, as we have 

demonstrated. However we note at this stage that lemma 2.12 and theorem 

2.13 have no direct analogues for spatial bar and joint structures. 

Example 5.12: i) 

ii) 

iii) 

Since the concept of genericity, like the concept of implicit bar, is 

independent of the dimension of the space in which our structures lie we simply 

reiterate that references to A3G, f3 (G), N3G , D30  and 3—stiff are references to 

graphs, or generic structures only, while references to As , f(S), Ns , Ds  and rigid 

apply more generally to any structures. 

While results so far in R3  have been very similar to those in R 2 , when we 

raise the question of generic properties of spatial bar and joint structures we 
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have reached a point where significant differences between the planar and 

spatial cases become evident. We know from the last example, that for some 

structures there is no partition of their bars into maximal rigid substructures 

because maximal rigid substructures are not bar disjoint. For this reason when 

we look at theorem 4.6 we immediately realise that it can have no analogue in 

R3 . The structure of example 5.12 also provides a counterexample to analogues 

of other results in the plane, including theorems 4.4, 4.5, and 4.7: 

Theorem 5.13: Not every circuit in D 3G  is 3—stiff. 

Proof: Consider once more the structure S from the previous example. It can 

flex about the dotted hinge line, so it is not rigid. 

Therefore rk(As )<3x8-6=18=I B(S)I, and so B(S) is dependent and 

contains a circuit C. Now each substructure, S' and S", is independent so 

doesn't contain C. Therefore C must be partly in each substructure of S, and 

cannot be rigid. 

Comment 5.14: In general it is false that: D 3G  is free iff 31V(Y)1-6>IY I holds 

for every YcE(G). 

Proof: The structure S from the previous proof satisfies the condition in this 

proposition, but contains a circuit. 
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Comment 5.15: In general it is false that: G is 3-isostatic iff 

i) 1E(G)1=31V(G)1-6 and 

ii) I E(H) I 5.31V(H)I-6 for every subgraph HcG. 

Proof: Same as previous refutation. 

This has led to comments of the following nature: 

"However, the 3-dimensional analogues of [two theorems including 

Laman's] are simply not true." Recski [R7] p244; 

"...Laman's result does not extend to dimension three or higher." Graver 

[G5] p362; 

which can be construed as misleading. 

More cautious people have simply stated facts: 

"In spite of considerable effort on the part of several people, the problem 

of extending Laman's theorem to higher dimensions is still open." 	Lovisz 

Yemini [L5] p98; at about the same time that Tay [T2] extended Laman's 

theorem to higher dimensions in his PhD thesis. 

We believe that we have discovered a natural environment for other 

possible higher dimensional analogues of Laman's theorem (our ideas are very 

similar to and complementary to Tay's), along with a class of spatial bar and 

joint structures for which the underlying graph G is 3-isostatic if 

i) I E(G)I=31V(G)1-6 and 

ii) IE(H)1<31V(H)1-6 for every subgraph HcG, both hold. 

Although, due to our inability to prove our conjecture, this belief is based 

mainly on mechanical impressions, an unreliable foundation for belief, we 

present our idea in the next chapter. 
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Hinged Panel Structures. 

We introduce a new type of structure in space, called a hinged panel 

structure, and show its similarity to planar bar and joint structures and its 

dissimilarity to bar and joint structures in 111 3 . This type of structure is slightly 

different from the hinged panel structure introduced by Baracs and developed a 

little further by Crapo & Whiteley, and while a familiarity with their structures 

might be useful in understanding these, it should be remembered that they are 

not the same. Our hinged panel structures are made from rigid panels joined 

by hinges. Each rigid panel has exactly two hinges on it. Each hinge may have 

any number of panels attached to it. A hinge is best thought of as a hinge. A 

panel should be considered as the simplest rigid body which keeps the relative 

positions of its two hinges fixed. Hence the only property of a panel, apart 

from incidence with its two hinges, is that the two hinges on it cannot move 

relative to each other. In accordance with convention we will ignore the 

unpleasant physical impossibility of hinges and panels passing through each 

other. 

Definition 6.1: A hinged panel structure, R, consists of a simple graph H(V,E) 

and an injection x:V(H)-4(7(a,b,c)+(d,e,f):7ER:}a,b,c,d,e,fEall. We will identify 

V(H) with the set of the first n positive integers and write ; instead of x(i). 

If iEV(H) we call ; a hinge of R, and if (i,DEE(H) we call {xi ,xi } a panel of R. 

We call H the graph underlying R. 
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Now how can we model the fundamental property of a panel; namely that 

its two hinges cannot move relative to each other? Of the many choices at this 

point we make a simplification. As a prelude to this we detail the following 

construction of a graph G, from a graph H: 

Construction 6.2: Start with a graph H. 

i) For each vertex i of H create two vertices i l' i 2 of G and an edge 

(i 1 ,i2) of G between them s.t. I  V(G)1.21V(H) I. Now all the vertices of G are 

defined. 

ii) For each edge (i,j) of H create four edges of G as follows: If i 	(i 1 ,i2 ) 

and j 	(j 1 ,j2) during stage i) of our construction, then (i 1 ,j2), (i 1 ,4), (i 2 ,4) and 

(i2'j2 ) are edges of G and we have finished our construction of G. The 

resulting graph we call also r(H). 
iii) Clearly IV(G)1=21V(H)1 and I E(G)I=41E(H)1+1 V(H)I. 

Example 6.3: 
0 
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Now, in line with Tay [T5], we introduce a class of spatial bar and joint 

structures called simple hinged panel structures: 

Definition 6.4: A simple hinged panel structure R with underlying graph H, is a 

spatial bar and joint structure with underlying graph G=r(H). If (i,j) is an 

edge of G corresponding in the construction to a vertex of H, then the bar of R 

which it underlies is called a hinge. If p is a set of six edges of G 

corresponding in the construction to an edge H, then the six bars of R which 

they underly is called a panel. 

Example 6.5: 

The bar b1  is clearly functioning as a hinge, and we use bars in this way 

to model hinges. This has allowed us a very simple way to model the property 

of a panel that its two hinges cannot move relative to each other. By making a 

panel consist of, in addition to its two hinge bars, simply the other four bars 

between the vertices of these two. However, if in a hinged panel structure, we 

have a panel with coplanar hinges, then such a panel is not rigid (definition 

1.18), but we require all panels to be rigid. Although simple hinged panel 

structures can be easily modified to account for this inadequacy, we will more 

easily understand these structures if at first we avoid this complication. Since 

simple hinged panel structures are bar and joint structures, we shall overcome 

this problem by dealing with generic simple hinged panel structures since by 
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definition 3.26 none of these has a panel with coplanar hinges. To simplify 

things in a sensible fashion commensurate with the first chapters, we shall deal 

henceforth with generic simple hinged panel structures and use the graph 

notation. 

Definition 6.6: A graph H is HP—stiff iff G=r(H) is stiff and HP—isostatic iff 

G is 3—isostatic. A maximal HP—stiff subgraph of H is a HP—stiff subgraph of H 

which is a subgraph of no HP—stiff subgraph of H other than itself. 

H is HP—stiff since G=r(H) is K6 . Also since rk(As)=12<15=1E(G)I we 

find that the edges of G are dependent. 

In fact when a simple hinged panel structure is just a cycle of panels; i.e. 

every hinge has exactly two panels attached; then it is a structure about which 

a great deal is understood. Crapo and Whiteley [C161 showed that for generic 

structures of this type, cycles of size three, four, and five are HP—stiff and 
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dependent, a cycle of size six is HP—stiff and independent, and cycles of size 

seven or greater are independent but not HP—stiff. They gave explicitly the 

conditions for genericity. 

While some structures can be understood by viewing them as many cycles 

joined in various ways, many cannot be treated this way: 

Since H 1  consists of three "independent" cycles of six we can easily see 

that it is HP—stiff. But what of H 2 * 
? Is it HP—stiff? Is it independent? 

Now we compare the generic properties of planar bar and joint structures 

with the generic properties of simple hinged panel structures. 
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Planar bar and joint 	 Simple hinged panel 

[n points moving freely in the 	[n bars moving freely in space 

plane have 2n degrees of freedom.] 
	

have 5n degrees of freedom.] 

A bar in the plane joins at most 

two joints, and in doing so 

removes at most 1 degree of freedom. 

A panel in space joins at most 

two hinges, and in doing so 

removes at most 4 degrees of freedom. 

In the underlying graph a joint 

is represented by a vertex and a 

bar is represented by an edge. 

A triangle is the largest cycle 

which is 2-isostatic. 

In the underlying graph a hinge 

is represented by a vertex and a 

panel is represented by an edge. 

A hexagon is the largest cycle 

which is HP-isostatic. 

The dimension of the space of rigid 

motions is three. 

The dimension of the space of rigid 

motions is six. 

If a graph G, is 2-stiff then 	If a graph H, is HP-stiff then 

1E(G)1>21V(G)1-3. 	 41E(H)1>51V(H)1-6. 

We justify this last claim. 

Lemma 69- If H is HP-stiff then 41E(H)1>51V(H)1-6. 

Proof: If G=T(H) is 3-stiff then by lemma 5.4, 1E(G)1>31V(G)1-6. But by 

6.2 iii) we know 1V(G)1.21V(H)1 and 1E(G)1.41E(H)1+1V(H)1 and the 

result follows upon substitution. a 
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In the same way theorem 2.5 has an analogue. 

Theorem 6.10: Any two of the following conditions imply the third: 

H is HP—stiff. 

ii) Dr(H)  is free. 

iii) 41E(H)1=51V(H)1-6. 

Proof: 	As in the last proof, we simply substitute the equations 

1V(G)1=21V(H)1 and 1E(G)1=41E(H)1+1V(H)1 from construction 6.2 iii) into 

theorem 5.5 and this result follows. 

So far so good, but what about an analogue for theorems 2.3 and 5.3? 

rk(Ar(H)) <min{1E(G)1,31V(G)1-61, by theorem 5.3 

=min{41E(H)1+1V(H)1,61V(H)1-61, by construction 6.2 

#min{41E(H)1,51V(H)1-61, in general. 

Although this looks sad, we should not expect these complicated structures 

to be too simple. In fact this difference is very easily resolved. 

Theorem 6.11: rk(Ar(H))-1V(H)1<min{41E(H)1,51V(H)1-61. 

Proof: Discussion above. 

Suppose we have a generic simple hinged panel structure R with 

underlying graph H. It is old hat that associated with the graph G=T(H) we 

have a matroid on its edges (the structure geometry), however using the rows of 

the coordinatising matrix A R' we observe a polymatroid on the ground set 

V(H)UE(H), induced as follows. If AcV(H)UE(H), then rk p (A) is the rank of 

the rows of AR corresponding to the hinges and panels of R (see definition 6.4) 

which vertices and edges in A underly. In this polymatroid edges of H have 

rank six and vertices of H have rank one. 
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We know that the matroid called the structure geometry in space, differs 

from the matroid called the structure geometry in the plane, but is this 

polymatroid sufficiently similar to the planar structure geometry to allow the 

possibility of analogous results to theorems 4.4, 4.5, and 4.7 for simple hinged 

panel structures? Possibly, however because we do not wish to become 

embroiled in polymatroid theory, we do not present analogues of 4.7, and we 

only introduce enough polymatroid concepts to indicate that feasible parallels 

may exist between matroid properties of planar bar and joint structures and 

polymatroid properties of simple hinged panel structures. 

Definition 6.12: A set A of edges of a graph H is polyindependent iff r(A) is an 

independent set of edges of the structure geometry D 3r(H) . A set A of edges 

of a graph H is polydependent iff r(A) is a dependent set of edges of D 3r(H) . 

A polycircuit C of a graph H is a polydependent subset of E(H), all of whose 

proper subsets are polyindependent. 

Conjecture 6.13: All polycircuits are HP-stiff. 

Conjecture 6.14: H is polyindependent iff 51V(Y)1-6>41E(Y)1 V E(Y)cE(H). 

It was essentially at this point in the development of the theory of spatial 

bar and joint structures that we realised their dissimilarity to planar bar and 

joint structures. Up until this point the theory for hinged panel structures has 

been similar to that for both planar and spatial bar and joint structures. Why 

should we expect the behaviour of hinged panel structures, from this point on, 

to be more like that of planar bar and joint than spatial bar and joint 

structures? 
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The answer comes in two parts. First a mathematical indication, and 

then a physical one. It is generally impossible to partition the edges of a graph 

into maximal 3-stiff subgraphs because an edge can be in two maximal 3-stiff 

subgraphs (example 5.12), however for simple hinged panel structures there is 

an analogue for 2.12 and 2.13: 

Theorem 6.15: 	If G 1  and G 2 are 3-stiff subgraphs of G, and 

v(G 1 )nv(G2) i>2, then G=G 1 UG2  is 3-stiff. 

Proof: 	f3(G)=f3(G1UKv (k.i
1 )nV(G2 )) . 	 by lemma 5.9, 	and 

f3(G iuKv  (u—i)nv(G2) )=0 by lemmas 1.22 and 1.23. 	 a  

Corollary 6.16: For any graph H, the maximal HP-stiff subgraphs are bar 

disjoint, and the partition of the edges into its maximal HP-stiff subgraphs is 

unique. 

Proof: Clearly every edge is in a maximal HP-stiff subgraph. 

Suppose an edge e is in two maximal HP-stiff subgraphs, H 1  and 112 . 

Then v(r(H 1 ))nv(r(H2))1=4>2 so by lemma 6.15 il 1 tiH2  is HP-stiff, 

contradicting the maximality of the HP-stiffness of H 1  and H2 . Therefore every 

edge is in exactly one maximal HP-stiff subgraph. a 

Thus it is always possible to partition the edges of a graph into maximal 

HP-stiff subgraphs, and, as in the planar bar and joint case the partition into 

maximal 2-stiff subgraphs of a graph G yielded the minE2 I  V(G)  1-3  where the 

minimum extended over all partitions of the edges of G, so we conjecture that 

the partition into maximal HP-stiff subgraph of a graph H will yield 

minE5 IV(H i ) I -6  where the minimum is taken over all partitions of the edges of 

H. 
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Secondly we examine the nature of the joints of each of the three types of 

structure by considering the following example. 

Example 6.17: Let G be 

and let S 1  be a planar bar and joint structure, S 2  be a spatial bar and 

joint structure, and S3  be a simple hinged panel structure, each with G as its 

underlying graph. 

a) f(S 1 )=1=f2 (G) 
	

b) f(S 2)=3=f3 (G) 	 c) f(S 3)=1=f3 (r(G)) 

In mechanical engineering parlance ([H1] p5-13) the joints exhibited here 

are known as lower pairs with a) a turning or revolute pair; b) a spherical or 

globe pair; and c) a turning pair. Also engineers say the "number of freedoms" 

of a turning pair is 1 and the "number of freedoms" of a spherical pair is 3. 

Note that in structures of all three types we are not always dealing with simple 

pairs, but sometimes with many members meeting at a joint. Nevertheless 

from a mechanical viewpoint it may be more natural to expect similarities 

between planar bar and joint structures and hinged panel structures than 

between the former and spatial bar and joint structures. 
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Since 4.2 - 4.8 are equivalent in the sense that each is a simple corollary 

of each of the others, we just state here the analogue of 4.8 in the expectation 

that if one can prove it then one can prove the analogues of 4.2 - 4.7. Because 

of the simplicity of the language of graphs, we present this conjecture in the 

same form as theorem 4.8 and comment 5.15, with our usual understanding that 

in addition to being a statement about graphs it is a statement about (generic) 

simple hinged panel structures. We also believe that a corresponding result 

may be true for certain more general hinged panel structures. 

Conjecture 6.18: A graph H is HP-isostatic iff 

i) 41E(H)I=51V(H)1-6 and 

ii) 4I E(F)I =5IV(F) I-6 for every subgraph F of H. 

Because of the resemblance this conjecture bears to Laman's theorem, we 

look to the proofs of Laman's theorem for approaches to a proof of this. 

Laman's original induction proof relies on building every 2-isostatic 

structure with k vertices from 2-isostatic structures with k-1 vertices, in a 

simple way. It seems unnatural to try his technique here, and for simple 

hinged panel structures it would require a vastly more complicated method to 

build every 3-isostatic structure with k vertices from 3-isostatic structures with 

k-4 vertices. 

Asimow and Roth's proof relies on simple accessible properties of planar 

structures which don't generalise in a straightforward way to simple hinged 

panel structures. It seems unnatural to try their technique here as it is 

tailor-made for the planar case. 

Lovasz and Yemini's proof seems at first a little more promising, as it 

involves polymatroid theory and here we are dealing with a polymatroid. After 

attempting without complete success to use their ideas, it seems likely that 
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they will only be effective for simple hinged panel structures, and won't be 

easily adaptable to more general hinged panel structures. 

In the last half of the previous chapter we proposed a possible fourth 

method of proof which generalises more simply to higher dimensions than these 

three. We didn't make it work for planar bar and joint structures, but if true, 

it may be possible to apply the idea to hinged panel structures and their higher 

dimensional analogues. We give an indication of how this idea might develop. 

Definition 6.19: The relative 3-degree of freedom between two vertices 1 and 2 

of a graph H is denoted and defined by f3(1,2)=rk(A3G ,)-rk(A3G), where H' is 

a graph obtained from H by adding an edge (1,2), and c=r(H) andG'=r(H'). 

Also the relative 3-degree of freedom between a vertex 1, and an edge 

p2=(2,3) of a graph H, is denoted and defined by f3 (1,p2)=rk(A3G ,)-rk(A3G ), 

where G'=F(11 1 ), G=f(H), and H' is obtained from H by adding two edges 

(1,2) and (1,3). 

Also the relative 3-degree of freedom between two edges p0=(1,2) and 

p 1 =(3,4) of a graph H is denoted and defined by f 3 (p i ,p0)=rk(A3G ,)-rk(A3G ) 

where G'=F(H'), G=F(H) and H' is a graph obtained from H by adding: 

i) edges (1,3) and (2,4) if 10302 and 10402. 

ii) one edge ({1,2}\i,{3,4}\j) if i=j for some iE{1,2}, jE{3,4}. 

Finally the relative 3-degree of freedom between two HP-stiff sub graphs Ho  

and H 1  where (1,2)EE(H 0) and (3,4)EE(H 1 ) of a graph H is denoted and defined 

by f3 (11 1 ,H0)=rk(A 3G ,)-rk(A3G ) where G'=r(H'), G=T(H) and H' is a graph 

obtained from H by adding: 

i) edges (1,3) and (2,4) if 1#302 and 11402. 

ii) one edge ({1,2}V,{3,4}\j) if i=j for some iE{1,2}, jE{3,4}. 

The third definition of these is a special case of the fourth. 
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It can be shown, using the unit-increasing property of the rank function 

and some basic knowledge of the dependence of some simple small spatial bar 

and joint structures, that 0g3 (1,2)<4 

0<f3 (e 1 ,2)5 

0.<13 (e 1 ,e2).6 	V e 1 ,e2 ,1,2 in a graph H 

s.t. all these relative 3-degrees of freedom are defined. 

Lemma 6 20: If e0=(1,2) and e 1 =(3,4), then 

f3(1,3)=k 4 k<f3 (e0 ,3)5.1(+1 and 1(5..f3 (e0 ,e 1 )<k+2. 
0 if k<2 	k if k<4 

Also f3 (e0 ,e 1 )=k 4 	 <f,(1,3)< 

	

k-2 if k>21 -  " 	-14 if k>4, 
0 if k=01 	ik if k 16 

<f,(e,„3)< 
k-1 if k#0 " 	5 if k=6. 

k-1 if k#0 	4 if k=5 
Finally f3 (e0 ,3)=k 4 	 <f,(1 3)< 

	

0 if k=01 - 	1k if k#5, 

k<f3 (e0 ,e 1 ).<1(+1. 

Proof: Straightforward consequence of the unit-increasing property of the rank 

function. 

Conjecture 6.21: Suppose e o  and e l  are edges of H and Ho  is the maximal 

HP-stiff subgraph of H which contains eo . Then f3 (e0 ,e 1 )=0 if H o  contains el . 

Tay [T3] has proved, using a projective approach, a similar lemma 

(theorem 4.3 in his paper) which may imply this. If this conjecture is true then 

we may proceed in an analogous fashion to the way we did in the second part 

of chapter four, from lemma 4.15 onwards, and to realise analogous results 

including conjecture 6.18. In particular our construction process and consequent 

proof by induction on the number of maximal 2-stiff subgraphs, generalise in 

and 

and 
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this way. 

An analogous proposition for spatial bar and joint structures would be 

more complicated since some bars are in more than one maximal rigid 

substructure. 

If we compare conjecture 6.18 with comment 5.15, for simple hinged panel 

structures, using the equations in construction 6.2 iii) and definition 6.6, we 

easily realise that these two are identical for simple hinged panel structures, 

and we have a class of spatial bar and joint structures within which the 

conditions in comment 5.15 may be a valid characterisation of 3—isostatic 

graphs. Perhaps we can extend our class of bar and joint structures which obey 

this proposition by replacing any panel of a simple hinged panel structure with 

any 3—isostatic structure which contains those four vertices, as in lemma 5.8, 

ending up with a 3—isostatic structure which obeys the conditions in the 

proposition. 
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Conclusions. 

This chapter consists of speculations, including a discussion of the 

projective viewpoint and a list of possible extensions of work presented earlier. 

In chapter 6 we defined hinged panel structures, and in order to get a 

handle on these we also introduced simple hinged panel structures. There were 

many possible simplifications available at that point, and many ways to model 

hinged panel structures, both general and simple. The choice of model must 

depend mostly on what you want to do with it, and ours was chosen because it 

was familiar and we were trying for a simple introduction. Given that one is 

normally trying to produce new ideas, there are good arguments for choosing a 

projective model, like for instance that of Crapo and Whiteley [C16]. 

First, the result telling us that rigid structures remain rigid under 

projective transformations [R1] [R2] [C16] [Wl] [W23], allowing an appropriate 

mechanical interpretation of points at infinity in extended euclidean space, 

which is fundamental to this subject, is naturally best tackled using a projective 

approach (compare the proof of this by Wunderlich [W231 with that by Crapo 

and Whiteley [C16]). In other words structures generally have in some sense an 

inherently projective nature. 

Secondly, as is evident by our definition, we believe that it is the line 

taken by the hinge, that is crucial. That is, no matter where the hinges of a 

simple hinged panel structure were placed on the hinge lines of the associated 
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hinged panel structure, the behaviour would be the same. Although this may 

simply be a consequence of the projective invariance of statics, the projective 

description of lines in space is appealing and tractable. 

Thirdly, associated unavoidably with the projective description for the 

lines in space is a description for screws [K12] [V1] in space, and there is no 

reason not to include screw hinges [H1] in our definition of hinged panel 

structures, although simple hinged panel structures cannot be modelled this 

way. It is possible to build such things, and we conjecture that the same 

results would hold for them, since it seems that an ordinary hinge joint is a 

screw joint with zero pitch. 

Finally, and incidentally, for anyone interested in attempting to examine 

our conjecture, or something similar, for simple hinged panel structures using 

Lovasz and Yemini's techniques, there is a reason to consider projective models. 

The proof by Lovasz and Yemini of Laman's theorem relies on several 

fortuitous coincidences, one of which is the fact that the incidence matrix (0.4) 

of the graph underlying the structure (and so also the cycle matroid of the 

graph, (0.13 ii)) can be neatly used to describe the coordinatising matrix (1.6) 

of the structure. The arrangement of this coincidence for simple hinged panel 

structures was ultimately effected using a development of Crapo and Whiteley's 

[C16] projective model. 

We believe that these hinged panel structures are not contrived, but useful 

and natural objects to study, and we have presented as a major part of this 

thesis, detailed explanations of only one reason for this belief. Another reason 

is that they are similar to the articulated panel structures introduced by Baracs 

[B7], an engineer who in his paper suggests construction techniques for buildings 

designed using these ideas, so that since a practical man invented them they 

must be useful. Although our structures are not the same as these, ours are at 
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least as general in that any of his structures can be expressed in terms of ours: 

In Rooney and Wilson [R8], two possible representations (for kinematic 

systems) are given, called the "direct graph representation" and the 

"interchange graph representation". In the former the vertices of the graph 

correspond to the joints of the system and the edges of the graph correspond to 

the links of the system. This is appropriate only for systems with binary links. 

In the interchange graph representation the vertices of the graph correspond to 

the links of the system and the edges of the graph correspond to the joints of 

the system. This is appropriate only for systems with binary joints. In this 

work we have used the direct graph representation and dealt solely with those 

structures (including our hinged panel structures) for which this is appropriate. 

Crapo and Whiteley [C16] have used the interchange graph representation and 

dealt with a type of hinged panel structure for which this is appropriate. We 

allow two hinges per panel and any number of panels per hinge, whereas Crapo 

and Whiteley allow only two panels per hinge and any number of hinges per 

panel. Rooney and Wilson [R8] give an example of how a joint like one of ours 

with three panels, may be "expanded" into a succession of joints with only two 

panels if we allow panels with more than two hinges. In a similar fashion a 

more complicated link (e.g. a panel from a Crapo and Whiteley hinged panel 

structure) may be expressed in terms of binary links (e.g. panels from our 

hinged panel structures) if joints are allowed with more than two links. This 

can theoretically be done by replacing each m—ary panel by a rigid (or isostatic 

if independence is important) structure which has m hinges. In practice this is 

a contrived procedure, however no less contrived than the converse one shown 

by Rooney and Wilson. Neither of these two representations comfortably 

encompasses the most general type of structure, which would allow both links 

with more than two joints and joints with more than two links. Rooney and 

Wilson suggest a hypergraph representation which overcomes this. 
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A third reason is that these ideas constitute more information with which 

to tackle the search for a combinatorial characterisation of (generic) rigid 

spatial bar and joint structures. It seems likely that there are no isostatic 

spatial bar and joint structures which disobey the conditions in comment 5.15, 

and that the only structures which obey these conditions but are not isostatic 

(they clearly can't have hyperstatic subgraphs), are not rigid due to one or 

more hinge type arrangements like those in example 5.12. This seems 

reasonable because if we have a graph G of a spatial bar and joint structure, 

with two maximal 3—stiff subgraphs G 1  and G2 , we know that these two 

maximal 3—stiff subgraphs can be joined in one of three ways: 

E(G 1 )nE(G2)={} and I V(G 1 )nV(G2)1=1, 

ii) E(G 1 )nE(G2)={} and I V(G 1 )nV(G2 )1=2, 

iii) 1E(G 1 )nE(G2)1=1 and I V(GOnV(G 2)1=2,. It is the second case 

here which to some extent prohibits a general version of Laman's theorem for 

spatial bar and joint structures. 

Thus any non—rigid structures which obey the conditions in comment 5.15 

can be viewed as hinged panel structures which aren't rigid, and so we should 

have an exact condition on them from conjecture 6.18. If we can refine this 

condition and translate it into spatial bar and joint terms, then we have 

characterised a set of exceptions to comment 5.15, and if these are the only 

exceptions, as we suspect, then we have characterised (generic) rigid spatial bar 

and joint structures. Perhaps something along these lines will be fruitful. 

Finally, once more on the practical side, it would be very easy to design 

complex spatial bar and joint trusses for which the critical forms [T8] are easily 

predicted and avoided. Such a truss would consist of two equicardinal sets of 

joints, one set in each of two parallel planes, with enough various bars joining 

them to ensure the rigidity of the structure, see Crapo [C14]. When designing 
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our truss based on a simple hinged panel structure we commence with a graph 

H which we know to be HP-stiff. Then we construct a graph G=r(H) using 

construction 6.2. At step i) in the construction of G when we create two 

vertices for every one of H, we label one of these vertices with a t (for top) and 

the other with a b (for bottom), so that when G is constructed, half the 

vertices are labelled t and the other half are labelled b. If we realise G as a 

spatial bar and joint structure where the vertices labelled t go to a coplanar set 

of joints, and the vertices labelled b go to another coplanar set of joints, with 

these two planes parallel and distinct. 

Example: 
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We conjecture that it is only necessary to keep track of the lines taken by 

each of the edges bt to then decide on the structure's rigidity. Using this 

technique it should be easy to design isostatic and hyperstatic trusses both 

generic and non—generic. 

The remainder of this thesis is devoted to indicating where one might 

proceed from here. Some extensions of work in this thesis are immediately 

evident. 

The work of chapter one is extendable to higher dimensions. If this is 

done patterns emerge in the inconvenient little exceptions, and these may 

consequently be better understood. The results 2.9, 2.10, 2.11, 5.9, 5.10, and 

5.11 have many kindred results which can presumably be treated the same way 

as these. Similarly relative degree of freedom (4.11, 6.19) can be more 

generally defined so that we can find the relative degree of freedom of any set 

of components of a given graph, of a planar bar and joint structure, or a hinged 

panel structure. Also there exist other ways of expressing the construction 4.16 

and these may be more helpful than the one presented. 

The form of some higher dimensional analogues for Laman's theorem is 

also now clear. They require initially an understanding of the appropriate type 

of structure for which they might hold. Namely structures where the relative 

degree of freedom between any two edges/panels/bars with a common 

vertex/hinge/joint, is at most one. 

All these directions should be routine once the hinged panel structures are 

thoroughly understood. 

Finally, in addition to all the abovementioned thoughts, there is an 

appealing idea which is potentially fruitful. Suggested by the natural 

polymatriod description of hinged panel structures, is the possibility that a 

polymatroid description for bar and joint structures in the plane might be 
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useful as well as natural. For example any bar and joint structure in the plane 

has many hypergraph/polymatroid representations, where an edge of a 

hypergraph which represents a structure must be a 2—stiff subgraph. If this is 

done then every hypergraph/polymatroid representation lies between the two 

extremes of the original graph/matroid description, and the hypergraph with 

every edge a maximal 2—stiff subgraph. 
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