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Figure 1: Kerguelen Island region sea-surface temperature composite.
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0.2 Abstract

Dissipating internal waves are the main source of mixing in the stratified

ocean. Recent observational and modelling studies in the Southern Ocean

primarily associate the generation of internal waves with either wind forcing

or with rough topography. This work explores the nature of mixing and its

sources north of the Kerguelen Plateau, a large topographic feature in the

Southern Ocean. Based on novel observations, we present the distribution

and intensity of mixing, and the internal wave field properties.

This thesis includes (i) a regional description of the Kerguelen Plateau

oceanographic characteristics; (ii) estimates of mixing and its sources; and

(iii) a study of the internal wave field in the vicinity of the Plateau. The

data consist of 914 temperature, salinity, pressure and horizontal velocity

profiles from Electromagnetic Autonomous Profiling Explorer (EM-APEX)

floats deployed northeast of the Kerguelen Plateau in 2008. We are able

to estimate diapycnal mixing in the upper 1600 m of the water column. To

estimate mixing, we apply both a Thorpe-scale analysis on density inversions

and a shear-strain parameterization method and compare the estimates with

direct microstructure measurements.

The observational results provide the first clear connection between the

distribution and intensity of mixing, and the associated internal wave field

properties. In the Kerguelen Plateau area, mean mixing from the EM-APEX

data is slightly larger (diffusivity of O(10−5m2s−1)) than typical open-ocean

background levels. Mixing intensities show strong spatial and temporal vari-

ability reaching considerably large values close to the Plateau (diffusivity of

O(10−3m2s−1)). Topographic roughness at the seafloor, mean current speed

and wind speed are identified as important factors in determining local dy-

namical mixing regimes. In particular, identified fronts of the Antarctic

Circumpolar Current are associated with the most intense mixing and in-

ternal wave activity of the region. Using our mixing observations from

the Kerguelen region, we infer a water-mass transformation rate of 17 Sv

(1 Sv=106m3s−1) across the boundary of Antarctic Intermediate Water and

Upper Circumpolar Deep Water in the Antarctic Circumpolar Current for
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the entire Southern Ocean.

We identify 46 internal waves with characteristics that support the find-

ings from the mixing analysis. The properties and location of the observed

internal waves are dependent on regional dynamics. Mixing is enhanced in

areas where internal waves are identified. There is clear evidence that the

enhanced mixing and internal wave activity in the front results from dissi-

pating internal waves generated by the interaction of the frontal jet and the

rough topography of the Kerguelen Plateau.

This analysis demonstrates the value of the floats to better understand

upper ocean dynamics and processes driving the internal wave and mixing

field. The results suggest that north of the Kerguelen Plateau, internal waves

generated by the interaction of the flow and rough topography play a bigger

role in enhancing mixing than internal waves generated by wind at the ocean

surface.
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In the stratified ocean, turbulent mixing is primarily attributed to the

breaking of internal waves. Internal waves in the Southern Ocean are thought

to be mostly generated by inertial wind forcing. However, it has recently

been suggested that in certain regions of the Southern Ocean, the interac-

tion between the Antarctic Circumpolar Current (ACC) or tidal flows and

rough topography is a significant source of internal waves (Naveira Garabato

et al., 2004; Nikurashin and Ferrari, 2010). Dissipating internal waves are

the source of ocean turbulence. There is growing evidence that enhancement

of turbulent mixing over regions of rough topography affects the abyssal

stratification, circulation of the Southern Ocean and the global overturning

circulation. This thesis investigates small-scale diapycnal turbulent mixing

and its sources north of the Kerguelen Plateau, an important topographic

feature in the Southern Ocean.

1.1 Turbulent mixing

In the ocean, mixing results from density overturns driven by wave breaking

and Kelvin-Helmholtz instabilities. Turbulent mixing leads to the transfer

of kinetic energy into heat by viscous dissipation. The heat generated by

turbulence is small compared to that of other sources (Thorpe, 2005), but the

total loss in energy by turbulent motions is substantial and must be balanced

by other energy sources for the ocean to remain in quasi-steady state. As

such, turbulent mixing can control the strength of the ocean’s overturning

circulation (Bryan, 1987), dissipating energy from the winds and tides.

A key remaining challenge in physical oceanography is the understand-

ing and parameterization of small-scale mixing in the oceans (Alford et al.,

2012). In spite of much work on new instruments and techniques to measure

turbulence in the ocean, data sets of mixing are still sparse and our lim-

ited understanding of the physical processes behind turbulent mixing leads

to inaccurate representations of mixing in ocean general circulation models

(OGCMs) (Wunsch and Ferrari, 2004). High resolution modelling studies

have shown that the uptake and storage of tracers, such as heat, salt, nu-

trients and dissolved gases, are very sensitive to the temporal and spatial
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variations of mixing (Harrison and Hallberg, 2008). With turbulent mixing

playing such a key role in the ocean overturning circulation, ocean’s energy,

carbon and nutrient budgets, it is crucial to correctly represent mixing in

ocean models (Gregg et al., 2003).

The eddy diffusion coefficient of mass across isopycnal surfaces, called

diapycnal turbulent eddy diffusivity of mass and hereinafter referred to as

diffusivity (Kρ), is used to characterise turbulent mixing in the ocean. It is

defined by the flux gradient relation

Fc = −Kc∇C, (1.1)

where Fc is the flux of some property C, Kc is the diffusivity of that property

and ∇C its gradient. Assuming C is density, a positive diffusivity flux will

decrease the density gradient and conversely, a negative diffusivity flux will

increase the density gradient (i.e. increase stratification). Double diffusion

is an example of a process associated with a negative diffusivity flux.

The rate of loss of the kinetic energy of the turbulent motion per unit

mass through viscosity to heat is often referred to as the turbulent kinetic

energy dissipation rate (ε), hereinafter referred to as the dissipation rate.

The dissipation rate has typical values that range from 1× 10−10 W kg−11

in the abyssal ocean, to 1× 10−1 W kg−1 in areas such as the surf zone.

Diffusivity can be estimated from the turbulent kinetic energy dissipation

rate by applying the Osborn (1980) relation (see Chapter 4.1.2, Section 4.2.2).

1.1.1 Mixing and the Southern Ocean

The Southern Ocean is the only ocean with no meridional continental bar-

riers, allowing for the existence of the ACC, an eastward flowing current

composed of many fronts, which connects the three major ocean basins (Fig-

ure 1.1). The meridional overturning circulation is composed of the flow of

deep waters generated at high latitudes and the compensating return flow of

less dense waters. The Southern Ocean meridional circulation consists of the

11 W kg−1=1 m2 s−3



4 CHAPTER 1. INTRODUCTION

upwelling to the surface of northern-sourced Deep Waters and the production

of dense Antarctic Bottom Water and intermediate waters (Figure 1.1), and

is driven by winds and surface buoyancy forcing (Talley, 2013). The Southern

Ocean therefore regulates fluxes of heat, freshwater and carbon between the

surface and deep ocean, and thus, is an important component of the Earth’s

climate (Rintoul and Naveira Garabato, 2013).

Figure 1.1: Schematic of the overturning circulation from a Southern Ocean
perspective, revised from Talley et al. (2011), after Gordon (1986); Schmitz
(1995); Lumpkin and Speer (2007). Talley (2013).

Dense waters are formed in a few regions at high latitudes and mass

balance requires the conversion of these waters to less dense water masses.

This can be achieved through diapycnal mixing where the downward diffusion

of heat is balanced by the upward diapycnal advection of the overturning

circulation Munk (1966). Recent work also suggests that the conversion of

dense waters to less dense waters can be buoyancy- and wind-driven in the
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Southern Ocean, where abyssal isopycnals outcrop at the surface (Nikurashin

and Vallis, 2012). The quantitative contribution of either is unknown, yet

we know that diapycnal mixing that results in the upwelling of tracers across

isopycnals, at least partly closing the Southern Ocean meridional circulation

(Huang, 1999). As such, the intensity and distribution of diapycnal mixing

in the Southern Ocean plays a key role in the global overturning circulation

(Polzin et al., 1997; Wunsch and Ferrari, 2004).

The main energy source for the ACC is the wind through wind work at

the ocean surface (Wunsch, 1998) and variations in the wind forcing driving

inertial fluxes (Alford, 2001; Watanabe and Hibiya, 2002). The sink for

this energy is ocean turbulent mixing. Assuming uniform mixing, Munk

(1966) used an advective and diffusive model of heat transfer to estimate that

approximately Kρ = 10−4m2s−1 was required to close the global meridional

overturning circulation. Kρ = 10−4m2s−1 became the canonical value for

diapycnal diffusivity throughout the ocean interior.

Observations of diapycnal diffusivity in the thermocline waters, deter-

mined by tracer release (Ledwell et al., 1993, 1998) and microstructure studies

(Gregg, 1987), sparked some controversy with values of diapycnal diffusivity

of approximately 10−5 m2s−1: an order of magnitude lower than the canon-

ical value. Recently, observational estimates of diapycnal diffusivity have

shown diffusivity to be highly spatially non-uniform with values above rough

topography two orders of magnitude larger than the canonical value (Polzin

et al., 1997; Ledwell et al., 2000; St. Laurent et al., 2001; Naveira Garabato

et al., 2004; Sloyan, 2005). Over smooth topography, diffusivity estimates

are comparable to mid-latitude ocean interior values of O(10−5m2s−1). These

observations question the assumption of uniform turbulent mixing. The sig-

nificance of topography is of particular importance in the Southern Ocean

because the stratification is weak compared to the global ocean and because

the ACC is quasi-barotropic with strong currents extending to the sea floor.

The enhanced diapycnal mixing rates observed over rough topography in the

Southern Ocean have been attributed to the breaking of internal waves gen-

erated over rough topography (Ledwell et al., 2000; Nikurashin and Ferrari,

2010; Wu et al., 2011).
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We are left with the questions: (1) Are there enough turbulent mixing

hot spots (Kρ > 10−4m2s−1) in the ocean to account for the global averaged

diffusivity (Kρ ≈ 10−4m2s−1) required to close the meridional overturning cir-

culation? (2) How much of the dynamics in the Southern Ocean are driven

by eddy-mean flow interactions and how much by flow-topography interac-

tions? (3) How do regional dynamics influence the magnitude and variability

of mixing? (4) Is it the tides, large mesoscale eddies, fronts or a combination

of all that interact with the rough topography to generate internal waves?

1.1.2 Estimating mixing

Turbulence in the ocean is the result of a downscale energy cascade that

transfers energy and momentum from large scale currents towards smaller

scale internal waves, mostly as a result of nonlinear internal wave-wave in-

teractions (McComas and Muller, 1981). Diapycnal mixing can be estimated

directly as an area average using tracer release experiments (Ledwell et al.,

2011) or indirectly with microstructure profilers (measuring shear with an

air-foil shear probe) (Gregg, 1987). Diapycnal mixing can also be indirectly

estimated using finescale parameterization derived from empirical and the-

oretical relations based on finescale observations of the internal wave field

characteristic shear and strain. The intensity of turbulent mixing is corre-

lated to the energy and the shear of the local internal wave field (Polzin

et al., 1995). Many variants of the finescale parameterization exist using

observations of shear and strain, or either shear or strain only.

The uncertainties associated with these various finescale parameterization

methods are typically ±50% (Polzin et al., 2002; Thorpe, 2005; Polzin et al.,

2013). The method provides order of magnitude estimates of mixing as well

as estimates of the spatial gradients of mixing.

1.2 The internal wave field

Oceanic internal waves are gravity waves that oscillate on density surfaces

in the ocean interior as opposed to surface gravity waves that oscillate at
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the surface of the ocean. The combination of gravity forces and the strat-

ified ocean allows for internal waves to develop, propagate and disperse in

the ocean. They radiate phase and energy, perpendicular to one another,

both horizontally and vertically (St. Laurent et al., 2012b). Internal waves

are the result of restoring gravity forces on water particles that have been

displaced from equilibrium. Even very small variations in pressure gradients

will generate internal inertial waves which propagate both horizontally and

vertically, interacting with the mean flow.

Figure 1.2: Temperature cross-lake profile (“Profil en travers”) and along-
lake profile (“Profil en long”) of Lake Longemer . The along-lake temperature
profile shows oscillations in the temperature contours along the length of the
lake between 5 and 15 m depth (highlighted in red). (From Thoulet, 1894,
Figure 8.).

The formation of waves at the interface of two liquids with different den-

sities was reported by Benjamin Franklin in 1762. Stokes (1847) published

a theory for these waves and Love (1891) formulated the equations for their

propagation in a stratified fluid. Yet it was not until 1894 that Thoulet (1894)

observed internal waves but did not recognise them as such in the Longemer
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Lake, France (Figure 1.2). Nansen (1902) and Watson (1903) were the first

to observe and identify internal waves in the Loch Ness.

1.2.1 Generation of internal waves

Internal waves in the ocean are mostly generated by tides and flows inter-

acting with topography, and by the wind variability at inertial frequencies

(Figure 1.3). Some internal waves are sufficiently non-linear to break imme-

diately, enhancing diapycnal mixing locally, and some internal waves radiate

away from their generation point, contributing to the background mixing of

the ocean interior.

Figure 1.3: Internal wave generation and corresponding scales of ocean mix-
ing. (From Garrett, 2003).

Non-linear interactions between the waves, also called “wave-wave” in-

teractions, transfer the energy of the internal waves to other frequencies and

wavenumbers. Ultimately, internal wave energy must dissipate as turbulent

mixing.

One of the most important sources of kinetic energy in the ocean is the

force exerted by the wind on the ocean surface, also called wind stress (τw)



1.2. THE INTERNAL WAVE FIELD 9

(Wunsch and Ferrari, 2004). The global net transfer of kinetic energy from

the wind to the ocean is estimated at 7 to 36 TW (Lueck and Reid, 1984;

Wunsch and Ferrari, 2004), most of which is directly dissipated in the surface

mixed layer. Some of this energy, 0.3 to 1.2 TW (Alford, 2001; Watanabe

and Hibiya, 2002; Scott and Xu, 2009), is transferred into near-inertial mo-

tions that can propagate away from the ocean surface before breaking and

generating mixing at depth (Pollard and Millard, 1970).

Rapid changes in wind stress induce near-inertial internal waves through

the direct generation of internal waves at the surface, through the indirect

generation of near-inertial waves at the mixed-layer interface, and through

the indirect generation of internal waves by nonlinear interactions with sur-

face gravity waves (Wunsch and Ferrari, 2004). Observations of energy prop-

agation from near-inertial waves from the mixed-layer into the ocean interior

suggest that wind generated inertial motions are an important part of the

ocean mixing budget (Alford et al., 2012).

A second source of internal waves in the ocean is the interaction of cur-

rents with topographic features: internal waves are generated when stratified

tidal flows and geostrophic currents flow over a topographic obstacle. Glob-

ally, the flow of the barotropic tide over topographic features (such as conti-

nental slopes, shelf breaks, sills, abyssal hills and seamounts) generates more

internal waves than geostrophic currents: the estimate of the global tidal

energy input into internal tidal waves is 1 TW, while the global energy con-

version from geostrophic currents into internal waves is 0.2 TW (Nikurashin

and Ferrari, 2013). In the Southern Ocean however, where there is the deep

reaching Antarctic Circumpolar Current, the generation of internal waves by

geostrophic currents rather than by tidal motions dominates (Nikurashin and

Ferrari, 2013).

1.2.2 Garrett and Munk model

The observed local internal wave field is composed of many waves from var-

ious sources such as geostrophic flows, inertial oscillations and tides, locally

generated or from the global internal wave continuum. In 1975, following
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Figure 1.4: The Garrett-Munk spectrum of internal waves in the ocean where
the spectral energy is plotted vertically in logarithmic coordinates as a func-
tion of frequency and wavenumber.(a) The horizontal scales are frequency
(ω) and the horizontal wavenumber (α). (b) The horizontal scales are fre-
quency (ω) and the vertical wavenumber (β). The spectrum has a peak at
the inertial frequency and the spectral energy decreases as both wavenumbers
increase. (From Garrett and Munk, 1975).

their 1972 paper, Garrett and Munk were the first to describe and model

the background oceanic internal wave field in terms of a vertical wavenum-

ber and frequency spectrum using observations from Site ‘D’ in the western

North Atlantic Ocean (39°20′ N, 70° W) (Garrett and Munk, 1972; Fofonoff,

1966).

The energy spectrum Garrett and Munk produced, which models the

changes of wave energy in frequency, horizontal and vertical wavenumber

space (Figure 1.4), is a good representation of the background state of the

internal wave field for the North Atlantic, and has influenced global analysis

of the internal wave field. However, in the past 20 years, the internal wave

field has been found to vary considerably from the Garrett and Munk ref-

erence spectrum (D’Asaro and Morehead, 1991; Polzin and Lvov, 2011). At

steady state, the rate at which internal waves break and dissipate energy into

the wave field equals the rate of energy transfer from large scales to small
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scales. By estimating the rate of energy transfer, the dissipation rate (ε) can

be derived from internal wave properties.

1.2.3 Internal wave properties

Internal waves are characterised with vertical length scales from a few metres

to one kilometre, horizontal length scales from a few metres to tens of kilo-

metres, typical group velocities of 5 cm s−1, amplitudes from metres to tens

of metres, and periods from several minutes to several hours (Thorpe, 2005;

Kantha and Clayson, 2000, Chapter 6). They usually have lower frequencies

and higher amplitudes than surface gravity waves due to reduced density

differences (stratification) in the ocean interior relative to the density differ-

ence across the air-sea interface. Internal waves that are inertially forced at

the ocean surface are expected to have intrinsic frequencies close to the local

inertial frequency (f).

Figure 1.5: Photograph of sets of internal waves interacting near the shelf
break off Tobago, north of the Caribbean island of Trinidad, taken from the
International Space Station on the 18 January 2013. Also visible is a sediment
plume traveling northwest with the Equatorial Current. (From NASA Earth
Observatory.)
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Direct observations of internal waves are not easily acquired and much of

the available data come from continental shelves and other shallow regions,

where the vertical displacement of the thermocline due to internal waves mod-

ulates the roughness of the ocean surface (Figure 1.5). Thus, the signature

of internal waves can then be detected on images from synthetic aperture

radars (SAR) and properties such as wavelength, direction of propagation

and amplitude of the internal waves can be estimated (Zheng et al., 2002).

Internal waves are best observed in echograms, acoustic backscattering and

other sonar images, as well as time series of density, velocity or temperature

variance. The properties of internal waves can be derived by applying spec-

tral analysis to velocity observations of internal waves. A review of internal

waves is provided in the June 2012 special issue of the journal Oceanography

(St. Laurent et al., 2012b; Alford et al., 2012; Da Silva et al., 2012; Van Haren

and Gostiaux, 2012).

1.3 Objectives and outline

Understanding the dynamics that maintain the deep ocean stratification is

of fundamental importance to understanding the large-scale ocean circula-

tion. Turbulent mixing plays a key role in maintaining deep ocean strati-

fication. Direct measurements of mixing require specialised microstructure

instruments and therefore are rare. However, finescale parameterization of

mixing only require observations of velocity and density, making it possible to

provide global order of magnitude estimates of mixing (Whalen et al., 2012).

To develop accurate predictions of future climate under altered forcing con-

ditions, we must know how internal waves driving the turbulent mixing are

generated, propagate and interact with the ocean. This improved under-

standing will allow us to develop appropriate parameterization that can be

included in climate models.

Here we first estimate the regional distribution and intensity of both the

dissipation rate (ε) and diffusivity (Kρ) at the northern edge of the Kerguelen

Plateau in the Southern Ocean by applying two different finescale parame-

terization methods. Secondly, we analyse and describe the internal wave field
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in the vicinity of the Kerguelen Plateau and link it to the mixing field. The

Kerguelen Plateau, which is a volcanic ridge, is the largest plateau in the

Southern Ocean and acts as an obstacle to the ACC. The flow of the ACC

over this topographic feature should theoretically generate a dynamic local

internal wave field and possibly an enhanced mixing field.

The objectives of this thesis are to:

(1) Estimate the intensity and distribution of turbulent mixing in the

vicinity of the Kerguelen Plateau using EM-APEX profiling floats, an inno-

vative Lagrangian observing platform.

(2) Investigate the impact of the interaction of the ACC and topogra-

phy, the wind forcing and eddy structure on magnitude and distribution of

turbulent mixing.

(3) Analyse and describe the internal wave field north of the Kerguelen

Plateau.

The thesis is divided into seven chapters. This first chapter, introduces

the concept of mixing and the internal wave field. Chapter 2 describes the

instruments and data used in this study, and Chapter 3 describes the physical

oceanography of the region. The theory and application of Thorpe-scales

and shear-strain parameterizations of dissipation and mixing are presented

in Chapter 4. Analysis of the mixing intensity, distribution and sources

are presented in Chapter 5. The internal wave field in the vicinity of the

Kerguelen Plateau is analysed and described in Chapter 6. Finally, the main

findings, implications of this research and suggestions for future work are

provided in Chapter 7.



Chapter 2

INSTRUMENTS AND DATA

14
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2.1 EM-APEX floats

The core of the data (temperature, salinity and velocity profiles) used for

this study are in situ ocean measurements from eight Electromagnetic Au-

tonomous Profiling Explorer (EM-APEX) floats. The EM-APEX is an inno-

vative instrument that provides relatively inexpensive, autonomous, high-

resolution observations of velocity. The floats were deployed during the

RRS James Cook cruise JC029 in late 2008 as part of the Southern Ocean

FINEstructure (SOFine) project. The SOFine project is a U.K., U.S. and

Australian collaborative experiment to investigate the impact of finescale

processes on the momentum balance in the Antarctic Circumpolar Current

(Naveira Garabato, 2009).

Figure 2.1: EM-APEX float prior to deployment in the wet lab onboard
RRS James Cook. The cardboard box is used to protect the float during the
deployment procedure. Two characteristics specific to the EM-APEX float
are the black fins allowing it to rotate as it sinks in the water column and
the grey electrodes close to the top of the float.
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2.1.1 Float characteristics

The EM-APEX profiling float (Figure 2.1) is a recent addition to the array

of autonomous profiling instruments and measures vertical profiles of tem-

perature, salinity and horizontal velocity. EM-APEX floats are the result of

a collaboration between the University of Washington Applied Physics Lab-

oratory (APL-UW) and Teledyne Webb Research Corporation (WRC). The

float combines a standard Teledyne APEX float with an electromagnetic sub-

system. The main technical characteristics of the EM-APEX are described

below.

SBE-41 CTD

On the EM-APEX float, temperature (T), salinity (S) and pressure (P) are

measured by a Sea Bird Electronics SBE-41 CTD. The float rate of descent

and ascent has a range of 0.10 to 0.12 m s−1. The CTD is pumped on demand

for approximately 2.5 s, delivering 40 ml s−1 flow. The CTD sensor accuracy

provided by the manufacturer is 2 dbar for pressure, 2× 10−3 ◦C for temper-

ature, and 2× 10−3 for conductivity. The CTD data were processed in 2.2 m

vertical bins for preliminary work and then in 3 m vertical bins when deriv-

ing mixing estimates to match the electro-magnetic subsystem data vertical

resolution (see below).

EM-APEX electromagnetic subsystem

The EM-APEX electromagnetic subsystem has a compass, accelerometer and

five electrodes to estimate the magnitude of horizontal currents (Figure 2.2).

The horizontal velocity is estimated using the principle that a conductor mov-

ing through a magnetic field develops an electrical potential drop across the

conductor. In this application, the conductor is seawater and the magnetic

field is that of the Earth’s (Sanford et al., 2005). The EM-APEX electromag-

netic subsystem voltmeter measures this electric potential difference across

the body of the float with electrodes.

The float rotates with a period of 12 s due to external fins and the

motionally-induced electric field is sampled at 20 Hz and then averaged with
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Figure 2.2: Cross-section of the EM-APEX electromagnetic subsystem at the
level of the electrodes showing the arrangement and the orientation of the
electrodes (Sanford et al., 1978) p191.

a sinusoidal fit. The fit is made over 50 s long segments of data with 25 s

between successive fits, acting as a low-pass filter (Sanford et al., 2011). The

fits provide an estimate of the horizontal current and the residuals provide

an estimate of the velocity noise level. Measured voltages are transmitted

over the Iridium global phone system and the processing of the voltages into

eastward and northward velocity components is shore-based. The velocity

profiles are relative to a depth-independent offset. Given the GPS positions,

by pairing profiles, we can determine the absolute velocity profile (see Sec-

tion 2.2.2) at approximately 3 m vertical resolution. Profiles were gridded

into 3 m vertical bins for the mixing analysis.

2.1.2 Deployment strategy

Eight EM-APEX floats were deployed on the northern edge of the Kerguelen

Plateau in late 2008 to drift along the Antarctic Circumpolar Current (ACC)

(Figure 2.3).
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While drifting north of the Kerguelen Plateau, the floats were programmed

to surface twice a day, measuring four profiles of temperature, salinity, pres-

sure and horizontal velocity from the sea surface to 1600 m (Figure 2.4). The

floats spent typically 30 minutes at the surface to transmit the profile data

over the Iridium satellite network as opposed to floats transmitting over the

Argos communication system spending on average 10 hours at the surface.

Using the Iridium communication system allows for two way communication

as well as faster data transfer and therefore the option to sample at higher

resolution. The floats only sampled the top 1600 m of the water column

rather than going to their maximum 2000 m so that consecutive up profiles

are approximately half an inertial period apart (17 hours at 45° S latitude),

and the inertial frequency can be resolved in the data.

!"#$%"

!"#$%"

&'"#$%"

()))"*"

&'"#$%" &'"#$%"

(+))"*"

Figure 2.4: EM-APEX float vertical sampling strategy. The black line de-
notes the path of the float in the water column. The dotted line refers to
profiles not used in this study.

In the Southern Ocean, dynamic height can be used as a proxy for front

and water mass positions (Sokolov and Rintoul, 2009a). The EM-APEX

floats were deployed using dynamic height as a criterion so as to cover as

wide a dynamic height range as possible and to be likely to sample evenly

the full width of the ACC. This was achieved by working with near real-



20 CHAPTER 2. INSTRUMENTS AND DATA

Float Date Time Dynamic Latitude Longitude Depth CTD
UTC UTC Height Station

3670 18/11/2008 02:02 0.87 46o 16.85’S 66o 37.82’E 1766 17

3761 18/11/2008 11:50 0.99 45o 42.71’S 66o 22.71’E 2438 None

3952 20/11/2008 06:08 1.13 45o 01.66’S 65o 46.00’E 4625 22

3762 21/11/2008 07:26 1.09 44o 16.67’S 65o 31.92’E 4383 None

3950 23/11/2008 15:44 1.08 43o 53.87’S 67o 45.40’E 4287 28

3951 24/11/2008 03:38 1.32 43o 51.97’S 68o 26.65’E 4031 29

4051 24/11/2008 12:18 1.50 43o 54.80’S 68o 49.97’E 3712 None

3764 25/11/2008 11:44 1.53 43o 54.80’S 70o 35.54’E 4037 32

Table 2.1: EM-APEX float deployments details: float hull number, date,
time, dynamic height [m], latitude, longitude, depth [m] and associated sta-
tion number. Cruise JC029 (RRS James Cook) November 2008.

time sea surface height anomaly fields that allowed us to track the locations

of the ACC jets and fronts during the voyage. The cruise track with the

deployment positions of the floats is shown in Figure 2.3 and deployment

details are summarized in Table 2.1. Five of the eight EM-APEX floats were

deployed at a CTD station, allowing calibration of the float salinity sensor

with the CTD salinity observations.

The data transmitted by the floats over the Iridium phone system were

received by a data server at the University of Tasmania and converted to

relative velocity using software developed by John Dunlap at the University

of Washington in the research group of Prof. Tom Sanford. This was followed

by extensive processing by Dr. Helen Phillips to calibrate the instruments,

automate the quality control of the velocity data, and to convert relative

velocity to absolute velocity.
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2.2 Data quality control

The EM-APEX floats provide vertical profiles of temperature, salinity, pres-

sure and relative horizontal velocity for the upper 1600 m of the ocean. Unlike

ship-based observations, it is difficult to monitor the condition of the sensors

of the EM-APEX floats once they have been deployed. A thorough quality

control of the data is crucial to ensure data reliability.

2.2.1 Quality control of the CTD data

We applied the standard CMAR (CSIRO Marine and Atmospheric Research)

Argo Delayed-mode quality control (DMQC) to the eight EM-APEX floats.

The DMQC applies a rigorous and internationally standardised quality con-

trol procedure to ensure that the temperature and salinity profiles are free

of detectable errors and biases. The software had to be adapted in some

places to fit the sampling strategy and data format of the EM-APEX floats,

which are different to those of standard Argo program profiling floats. The

CMAR DMQC procedure is based on visual checks for bad data points, bi-

ases and trends as well as comparisons of the data with local CTD profiles

and with the Argo profiles data base. Below we describe each step of the

DMQC procedure and Table 2.2 summarises the quality control findings for

all eight floats. As an example, the complete DMQC procedure for float 3760

is described in Appendix B: Australian Argo Delayed Mode Quality Control

(DMQC) Processing a complete example.

Identify bad pressure points

We visually check each profile for bad pressure points in particular at the

bottom of each profile where the float sometimes overshoots its turning depth.

Bad pressure points are flagged as bad data. Data points flagged as bad for

one variable such as pressure are also flagged across other variables. For here

and below, more details and figures that illustrate the procedure that we

applied are shown in Appendix B.
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Check for density inversions

Density inversions are identified based on a density difference criterion of

0.004 kg m−3 based on Argo DMQC processing standards. Each density,

temperature and salinity profile is then plotted for visual inspection and

suspicious inversions are flagged (see Figure B.4 in Appendix). Spurious

density inversions are often the result of a bad salinity reading due to some

foreign particle affecting the sensor’s reading. Only density inversions due to

spurious temperature, salinity or pressure data are flagged as bad.

Identify bad data points

We check visually a range of diagnostic plots to identify and eliminate various

bad data points. These diagnostic plots include individual T-S plots for each

float where obvious outliers, spikes and “salt hooks” can be identified. Salt

hooks are sometimes observed at the base of the profiles, where the deepest

salinity measurements are too high with respect to above samples, looking

like a hook in the data. This happens as the float slows down at the bottom

of a profile when water with a higher salinity from a shallower depth stays

in the sensor cell and is not flushed out completely. A comparison with

nearby Argo floats in potential temperature-salinity space is also performed

to identify outliers.

Check for surface pressure drift

We check for a surface pressure drift by analysing the reported surface value

which should be constant. If a cumulative drift in the surface value is ob-

served, a correction is applied.

Apply thermal lag correction

A thermal lag correction is applied to the salinity data using parameters

(α = 0.023 and τ = 25.0s) that are estimated for this particular data set (see

Section 2.2.3). We apply the method of Johnson et al. (2007), which is valid

for a fall rate between 0.06 and 0.12 m s−1.
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Float Number Number Surface Thermal lag Salinity
number of of bad pressure correction drift

profiles data points drift applied detected
identified detected

3760 211 9 none X none
3761 88 4 none X none
3952 131 3 X X none
3762 184 6 none X none
3950 58 none none X none
3951 36 4 none X none
4051 65 none none X none
3764 141 none none X none

Table 2.2: DMQC results for the eight EM-APEX floats.

Check for salinity drift

We apply a visual check for a salinity drift using profiles from three dif-

ferent climatologies: Gouretski and Koltermann, CARS2006 (precursor to

CARS2009, based on WOD2001 that covers globally to 24°N and only to

10°N in the Atlantic) and CARS2009 (CSIRO Atlas of Regional Seas 2009:

global ocean property climatology based on historical profile data from the

World Ocean Database WOD05, July 2008 update with locally surface pres-

sure corrected and screened Argo data to May 2009) developed by Ridgway

et al. (2002). This check also uses nearby Argo float data to compare the ob-

served salinity with nearby Argo salinity fields. If a sensor drift is identified,

a salinity drift correction is applied.

Check for data points outside set ranges

This script will report if values are outside location specific and strict range

checking envelopes. We then take the decision whether or not those values

are bad data points that need to be removed or extreme values that can be

kept.
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2.2.2 Quality control of the velocity data

The quality control of the horizontal relative and absolute velocity data was

defined and implemented by Dr. Helen Phillips at University of Tasmania

(UTAS) (Phillips and Bindoff, 2014). We provide a description of the pro-

cedure that was applied. EM-APEX floats measure the electrical potential

difference across their body with reference to the local magnetic field. Each

float has two independent pairs of electrodes that provide two vector pro-

files of electrical potential difference. The actual sampling rate of the float

is 1 Hz, but the on-board processing of the raw data (least-squares fit over

a 50 points window, overlapping the neighbouring window by 25 points) re-

sults in one voltage component pair for each channel every 3 to 5 m. The

on-board processing also provides an associated root-mean-square error to

the fit for each channel. From the voltages, velocity components relative to

a depth-independant offset are calculated using Sanford (1971).

Removing outliers

The first check flags velocities with magnitude larger than 2 m s−1 and ve-

locities with RMS error larger than a depth dependent value (Table 2.3). If

more than 50 data points fail these checks or if the number of points in the

profile is less than 100, then the entire profile is flagged as bad data. The

threshold values (Table 2.3) were determined from a statistical analysis of

the magnitude of the velocity error at each depth and through visual exami-

nation of each velocity and root mean square (RMS) error profile. Note that

close to the surface, much of the RMS error is due to surface wave activity.

Correcting the compass orientation

The angle between the electrode axes and the compass orientation is deter-

mined mechanically during the construction of the float. The estimates of

the horizontal velocity are very sensitive to the value of this angle and an

error in the angle of the order of 1° can result in a velocity error of the or-

der of 1 cm s−1 (Sanford et al., 1974). By modifying the angle estimate to

minimize the offset between velocity on consecutive down and up profiles
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Pressure Threshold RMS
range PR [m] error value [m s−1

PR < 100 none
100 6 PR < 220 0.015
220 6 PR < 900 0.008
PR > 900 0.005

Table 2.3: Depth dependent RMS error thresholds.

close to the maximum pressure of the profiles, we obtain a precise value of

the angle. The minimization is done for each down-up profile pair and the

resulting time series of angles is averaged, providing one angle per channel,

per instrument. The relative velocities are then re-calculated with the new

angle.

Deriving the absolute horizontal velocity

The difference between the absolute (u, v) and the relative (urel, vrel) ve-

locities is a depth-independent offset (ub, vb), which is equal to the depth-

averaged absolute velocity from the surface to the sea floor.

u = urel + ub

v = vrel + vb (2.1)

Determining the offset requires an independent measure of the float ve-

locity, obtained from the float surfacing GPS positions (Phillips and Bindoff,

2014).

We define the surface position of the float at t1 (start of a descending

profile) as (x1, y1) and the surface position of the float at t2 (end of the next

ascending profile) as (x2, y2). The horizontal distance between the two surface

positions is the absolute displacement (4x,4y), which can be estimated

using the Global Positioning System (GPS) or satellite positioning of the

float.
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4x = x2 − x1

4y = y2 − y1 (2.2)

Next we define the relative displacement (δxrel, δyrel) as the horizontal

displacement between t1 and t2 due to the relative velocity along the subsur-

face path of the float

δxrel =

∫ t2

t1

ureldt

and

δyrel =

∫ t2

t1

vreldt. (2.3)

The absolute displacement of the float is

4x = δxrel + δxb

and

4y = δyrel + δyb, (2.4)

where (δxb, δyb) is the displacement due to the depth independent offset.

Combining (2.2) with (2.3) and (2.4), we have an estimate of the displace-

ment due to the depth independent offset

δxb = (x2 − x1)−
∫ t2

t1

ureldt

and

δyb = (y2 − y1)−
∫ t2

t1

vreldt, (2.5)

from which we can deduce the velocity offset

ub =
δxb
4t

and

vb =
δyb
4t

, (2.6)
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and so, combining (2.1) with (2.5) and (2.6), we have

u = urel +
(x2 − x1)−

∫ t2
t1
ureldt

4t
and

v = vrel +
(y2 − y1)−

∫ t2
t1
vreldt

4t
, (2.7)

where 4t = t2 − t1.

2.2.3 Thermal lag correction

Salinity is estimated using measurements of seawater conductivity, which is

mostly dependent on seawater temperature, significantly less on salt ions and

weakly dependent on pressure. Salinity can be derived from measurements

of pressure, temperature and conductivity. The accuracy of the salinity mea-

surements will depend on the matching of the temperature and conductivity

sensors response times. The signal of the conductivity sensor in a CTD

depends on three factors: the flushing of the inside of the sensor, the bound-

ary layer of the fluid against the wall of the sensor and the heat stored in

the wall of the sensor (Lueck and Picklo, 1990). The first two factors are

“short-term” while the heat stored in the sensor (sensor’s thermal inertia)

induces a “long-term” response. This long-term response, hereafter referred

to as “Thermal lag error”, is about one order of magnitude larger than both

short-term responses. Correcting for this long-term response is particularly

important for data that are going to be used to estimate ocean mixing since

estimating mixing requires highly precise density estiamtes.

Thermal lag error

The Sea Bird conductivity sensor is mostly composed of glass, which has a

high thermal inertia. The heat stored in the glass walls of the sensor takes

a few tens of seconds to diffuse through the water inside the sensor, chang-

ing the temperature of the water being sampled. This leads to an incorrect

estimate of conductivity and thus salinity, with characteristic thermal-lag
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timescale error of tens of seconds. The thermal lag error is highest in large

in-situ temperature gradients. During a downcast, for example, the sensor

travels from warmer waters to colder waters (Figure 2.5). As the instru-

ments descends, the heat stored in the conductivity sensor warms entering

water, raising the conductivity measurement and therefore the salinity read-

ing. Similarly, on an upcast, the sensor is moving from colder to warmer

water, lowering the conductivity and salinity measurements. A pumped in-

strument will minimize this error but not eliminate it.

Mixed	  
layer	  
depth	  

Figure 2.5: Theoretical example of temperature and salinity profiles for de-
scending (left) and ascending (right) profiles. The solid lines show observed
values that include the thermal lag effect; dashed lines show the theoretical
or thermal lag corrected data.

Correction method

The thermal lag correction involves deriving a “corrected” temperature of

the seawater in the conductivity sensor and then re-calculating salinity. This
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is done applying a discrete time domain, recursive filter scheme with two

parameters: α, which describes the initial amplitude of the conductivity

error and τ , which describes the time constant of the conductivity error

(Morison et al., 1994). The temperature correction (Tc) at sample index

(n) is subtracted from the measured temperature to estimate the corrected

temperature in the conductivity sensor

Tc(n) = −bTc(n− 1) + a [T (n+ 1)− T (n)] , (2.8)

where T is the measured temperature and

a = 4fnατ(1 + 4fnτ)−1 b = 1− 2aα−1.

Here we follow the method used by Johnson et al. (2007) on SBE-41 CTDs

to estimate α and τ . We expect a spike in salinity at the transition between

the bottom of the mixed-layer and the ocean interior due to the thermal lag

effect (Figure 2.5). A thermal lag signature will be more easily identified for

profiles with a well-defined surface thermal mixed-layer and a large vertical

temperature gradient. When an ascending float goes from cooler to warmer

waters, the deepest measured data point of the thermal mixed-layer typically

shows a low salinity spike when compared to the points above (Figure 2.5).

We identify all profiles with a well-defined surface thermal mixed-layer and

a large vertical temperature gradient and apply the thermal lag correction

with a range of values for α and τ .

We then search for the α and τ combination that minimizes the difference

between the mean thermal lag corrected potential density of the bottom two

points of the thermal mixed-layer and the mean uncorrected potential density

in the rest of the thermal mixed-layer. The bottom of the mixed-layer is

defined as the depth where dT/dz > 0.0005◦C m−1. The mean uncorrected

potential density is calculated in the mixed-layer from 20 data points below

the surface down to 60 data points above the mixed-layer. When the thermal

lag correction parameters are accurate, the mixed-layer profile is close to

being statically stable (Figure 2.6).

We identify 27 profiles with well-defined surface thermal mixed-layers
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Figure 2.6: Temperature, salinity and potential density profiles of (a) profile
44 from float 3761and (b) profile 20 from float 3762 where black denotes
raw data and blue denotes thermally corrected data. The corrected salinity
was derived using median thermal lag correction coefficients α = 0.023 and
τ = 25 s.
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Reference CTD α τ [s] α ∗ τ α IS τ IS

Lueck and Picklo (1990) SBE-4-01 0.028 9 0.25 N/A N/A

Morison et al. (1994) SBE-9 0.0245 9.5 0.23 N/A N/A

Pinot et al. (1997) SBE-25 0.03 14 0.42 N/A N/A

Johnson et al. (2007) SBE-41 0.023 20 0.46 0.019 24
NOAA floats
Johnson et al. (2007) SBE-41 0.028 16 0.45 0.011 32
UW floats

This study SBE-41 0.023 25 0.60 0.031 23
EM-APEX floats

Table 2.4: Weighted median values and interquartile spreads (IS) of sensor
response corrections for SBE-41 CTDs.

and large vertical temperature gradients at the bottom of the mixed-layer

by applying a careful screening on ascending profiles. The temperature and

salinity data are interpolated onto a uniform 1 Hz grid to work in temporal

gradients rather than vertical spatial gradients. For each profile we identified

the best α and τ combination that minimizes the difference between the mean

thermal lag corrected potential density of the bottom of the thermal mixed-

layer and the mean uncorrected potential density in the rest of the thermal

mixed-layer (Figure 2.7).

Thermal lag parameters

The median value of τ is 25 s with an interquartile spread of 23 s. The median

value of α is 0.023 with an interquartile spread of 0.031 and the product of

the median α and τ is 0.60 (Table 2.4). These values are very close to the val-

ues Johnson et al. (2007) derived for the National Oceanic and Atmospheric

Administration/Pacific Marine Environmental Laboratory (NOAA/PMEL)

and University of Washington (UW) floats (Table 2.4). The fact that the

original 1 Hz CTD data from the EM-APEX floats were not accessible makes
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correcting for thermal lag difficult. However, it is encouraging that the ther-

mal lag correction coefficients for the same CTD but different float types are

very similar. The thermal lag correction is described in Section 2.2.1.
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Figure 2.7: Values of thermal lag correction parameters α and τ for selected
profiles from EM-APEX floats with SBE-41 CTD (3760, 3761, 3952, 3762,
3950, 3951, and 3764). The median value (red circle) and the curve for
constant median value of α× τ (thin black line) are displayed.

2.3 Other data sets

2.3.1 Topography data

We use version 13.1 of the Smith and Sandwell topography data (Smith and

Sandwell, 1997) 1. This data set has a resolution of one minute and is derived

from shipboard depth soundings and from satellite altimetry. The observed

1http://topex.ucsd.edu/cgi-bin/get-data.cgi
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ocean depth data were obtained by screening surveys from the National Geo-

physical Data Centre, the Scripps Institution of Oceanography and Lamont-

Doherty Earth Observatory databanks, and other data. The satellite gravity

field combines all data from the European Remote Sensing satellite (ERS-1)

and GEOdetic SATellite (GEOSAT) satellites. We subsample the data set

to obtain the area between 50°E to 90°E and 55°S to 30°S.

2.3.2 Wind data

We use blended satellite derived wind data provided by European Remote

Sensing Satellite Processing and Archiving Facility (CERSAT) at the French

Research Institute for Exploitation of the Sea (IFREMER) 2. The wind ob-

servations are derived from near real-time measurements by a scatterometer

onboard the Quick Scatterometer (QuikSCAT) satellite and by three Special

Sensor Microwave Imager (SSM/I) instruments onboard Defense Meteorolog-

ical Satellite Program (DMSP) satellites F13, F14 and F153. The wind data,

which consist of wind speed [m s−1] and wind stress [N m−2], are provided

6-hourly at 0.25° × 0.25° resolution over the global ocean, excluding sea ice

areas. For each of the 914 EM-APEX profiles, we identify the closest wind

data points within 24 hours of the profile being sampled and within a radius

of 0.5° around the location of the profile. For each profile, an average value

of the wind speed and stress is then computed within those time and space

scales.

2ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/mwf-blended/data/6-hourly/
3ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/mwf-

blended/documentation/BlendedWind-Doc 27112006.pdf
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In this Chapter, data collected by the EM-APEX floats is used to explore

the characteristics of the temperature, salinity and horizontal velocity fields

in the Kerguelen Plateau region. Hydrographic fronts and water masses are

identified and vertical stratification is discussed.

The 914 profiles from the EM-APEX floats stretch over 6500 km of float

trajectories in the vicinity of the Kerguelen Plateau (41◦S−50◦S and 61◦E−
79◦E), sampling the upper water column (0 to 1600 m) between November

2008 and February 2009 (Figure 3.1). Further profiles were obtained down-

stream but will not be analysed in this study.
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Figure 3.1: Trajectories of the EM-APEX floats (black) over the sampling
period mean surface geostrophic speed from combined altimetry and ocean
climatology (see text)(colour scale) and topography contours (grey). To iden-
tify jet flows, mean surface geostrophic speeds below 0.35 m s−1 are ignored.
Topography contours range from 500 to 5000 m at 800 m intervals. The main
jet is identified as the Subantarctic Front and Subtropical Front combined.

The surface geostrophic speed is derived using a weekly geostrophic ve-

locity product (satGEM) from combined hydrographic data (GEM field) and

satellite altimetry data (AVISO) (Meijers et al., 2011). The satGEM weekly

geostrophic velocities are averaged over a density range (26.6 to 26.8 kg m−3)

and over the sampling period (18/11/2008-30/01/2009), resulting in a mean
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velocity field with a horizontal resolution of 1/3◦.

The EM-APEX overall mean potential temperature is 4.65 ◦C, the mean

salinity is 34.45, the mean potential density is 27.24 kg m−3, the mean buoy-

ancy frequency squared is 8.6× 10−6 rad2 s−2 and the mean current speed is

0.29 m s−1 (Figure 3.2).
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Figure 3.2: Mean EM-APEX vertical profiles as a function of depth of poten-
tial temperature (θ), salinity (S), potential density (ρθ), stratification (N2)
and speed.

3.1 Hydrographic fronts

Fronts can be identified using hydrographic criteria such as velocity maxima

(jet) location, water mass distribution, and locations where certain hydro-

graphic properties cross particular depths (Belkin and Gordon, 1996). In

the Kerguelen region sampled by the EM-APEX floats, we can expect the

southern branch of Subtropical Front (STF), the Subantarctic Front (SAF)

and possibly the Polar Front (PF) to have crossed the area (Sokolov and

Rintoul, 2009a,b).

Traditionally, the STF is identified by temperature and salinity ranges of

10 to 12 ◦C and salinities on the practical salinity scale pss-78 of 34.6 to 35.0

at 100 m depth respectively (Orsi et al., 1995). The SAF is located at the

rapid descent of the subsurface salinity minimum (Whitworth and Nowlin,

1987), and the PF can be defined by the northern limit of the subsurface
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(b)

Figure 3.3: Vertical distribution of (a) potential temperature and (b) salinity
along trajectories of the floats. The position of the Subantarctic Front (SAF)
is indicated by the vertical red line. Selected labeled potential density con-
tours delimit water masses north and south of the SAF/STF: subantarctic
mode water (SAMW) is defined as σθ 6 27.1 kg m−3, Antarctic Intermediate
Water (AAIW) is defined as 27.1 6 σθ 6 27.5 kg m−3 and Upper Circumpo-
lar Deep Water (UCDW) is defined as σθ > 27.5 kg m−3. The vertical dashed
lines separate floats.
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2 ◦C temperature minimum at the 200 to 300 m depth range (Park et al.,

1998). Recent studies have shown that fronts in the Antarctic Circumpolar

Current are complex and that their position and intensity are highly variable

in time (Sokolov and Rintoul, 2007, 2009a). Upstream and downstream from

topographic features, fronts often have many branches which merge, diverge

and meander with time (Langlais et al., 2011). The different branches of

the SAF are known to merge into an intense jet north of the Kerguelen

Plateau, while downstream of the plateau, the jet shows a strong variability

and the fronts split (Sallee et al., 2008). The PF location in the region of the

Kerguelen Plateau is more ambiguous than that of the SAF. The northern

branch of the PF has been observed (Belkin and Gordon, 1996) and modelled

(Langlais et al., 2011) to pass both north and south (Park et al., 1998) of the

Kerguelen Plateau with the possibility of atmospheric forcing as a control

factor (Sallee et al., 2008).

The EM-APEX profiles of potential temperature (hereinafter referred to

as temperature) and salinity enable us to identify oceanographic features near

the Kerguelen Plateau (Figure 3.3). Profiles, which are shown in their sam-

pling order are grouped by floats and the floats are organised in decreasing

mean sampling latitude. This gives the composite trajectories the appear-

ance of a meridional transect. In the EM-APEX data, temperature varies

between 1.8 and 14.3 ◦C, and salinity between 33.7 and 35.3. Combining

the information from the positions of the velocity jets using the satGEM

geostrophic velocity product (Figure 3.4), the EM-APEX temperature pro-

files (Figure 3.3a) and the EM-APEX salinity profiles (Figure 3.3b), we are

able to identify the Southern ocean fronts sampled by the EM-APEX floats.

Using the surface velocity jets determined from the satGEM product as an

indication of the position of fronts, we find an intense jet north of the Ker-

guelen Plateau (Figure 3.4) that is coherent over the sampling period. This

jet diverges and splits downstream of the Kerguelen Plateau (80◦E). We

identify this as the middle and northern branches of the SAF, likely merged

with the southern branch of the STF. Float 3762 crossed the path of this

jet at 42.5◦S − 67.5◦E, recording a jump (from south to north of the front)

in temperature from 5.21 ◦C to 11.36 ◦C and in salinity from 34.05 to 34.85
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at 200 m depth, which corresponds to both the ranges of the SAF and STF.

Note that Damerell et al. (2013) defined a similar front using the SOFine

ship-based hydrographic data from the same region and period of time.
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Figure 3.4: Monthly mean satGEM derived surface geostrophic speed (colour
scale). The mean geostrophic speed map for October 2008 to January 2009
represents the period when the EM-APEX floats were sampling in the area.
To identify jet flows, mean surface geostrophic speeds below 0.30 m s−1 are
ignored. Topography contours range from 0 to 1500 m at 500 m intervals
(grey).

South of the SAF/STF, we identify Upper Circumpolar Deep Water

(UCDW) as the water mass below σθ = 27.5 kg m−3 (Figure 3.3). This

corresponds to water cooler than 2.34 ◦C and salinity above 34.5. North of

the SAF/STF, we define Subantarctic Mode Water (SAMW) as σ 6 27.1

and the Antarctic Intermediate Water (AAIW) as 27.1 6 σ 6 27.5, which

corresponds to 2.7 6 θ 6 5.8 ◦C and 34.4 6 S 6 34.7. These definitions are

consistent with those used by Sloyan and Rintoul (2001) and Damerell et al.

(2013).

The presence of the PF is not obvious in the data. Firstly, there is no

jet signature between the SAF/STF and Kerguelen Island to indicate its
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position (Figure 3.4). More significantly, the 2 ◦C isotherm at the 100 to

300 m depth range is not found in the EM-APEX profiles. Only the 2.2 ◦C

isotherm appears at 300 m in the first 50 profiles of the southernmost float

(float 3760). In the SOFine hydrographic survey, the 2 ◦C isotherm is found

at 200 m in the South-East section not sampled by the EM-APEX floats

(Damerell et al., 2013). This suggests that the PF is likely located between

the SAF/STF and Kerguelen Island but is not sampled by the EM-APEX

floats. The horizontal speed profiles for the whole data set as well as the

dynamic height of 100 m relative to 1500 m value of each profile confirm the

water mass property and satGEM analysis (Figure 3.5). Horizontal velocity

reaches a maximum of 2.1 m s−1 and have an overall mean value of 0.3 m s−1.
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Figure 3.5: Dynamic height (D(100,1500)) (top panel) and vertical distribution
of horizontal velocity (main panel) along floats’ trajectories. The 0.55 m s−1

speed contour (red) identifies the location of jets. Potential density contours
(σθ =26.1, 26.4, 26.7, 27.0, 27.3 (bold) and 27.6 kg m−3) are shown (grey).
Profiles located in the SAF/STF and the eddy are indicated respectively by
red and brown horizontal bars. The vertical dashed lines separate floats.

Another feature observed in the data is a large amplitude meander of the

front that evolves in time and is hereinafter referred to as the eddy. The eddy

is located between 44◦S − 42◦S and 69◦E − 73◦E (Figure 3.1). Three floats
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(3764, 4051 and 3951) sampled along the rim of the eddy. Its signature in the

speed profiles is similar in magnitude and depth to that of the SAF/STF.

Note that this feature is identified using satellite SST data as a cold core

eddy with water temperature typical of south of the SAF/STF (not shown

here) but this is not seen in the floats’s data since they sampled the rim

rather than the core of the eddy. The dynamic height (D(100,1500)) range of

the eddy’s rim is different from that of the SAF/STF (see Figure 3.5 top

panel).

3.2 Buoyancy frequency

The buoyancy frequency (N), also called the Brunt − V äisälä frequency,

is expressed as an angular frequency in radians per second [rad s−1], often

abbreviated as s−1

N =
√
gE '

√
− g

ρθ

dρθ
dz

, (3.1)

where g is the acceleration due to gravity, E is the stability of the water

column and ρθ is the potential density (a more detailed discussion on the

definition of the buoyancy frequency can be found in Pickard and Emery

(1990) p.54).

To derive N , we use equation (3.1) with potential density derived at local

reference levels through the water column. We apply the Fofonoff adiabatic

steric anomaly levelling method developed by Bray and Fofonoff (1981) where

the potential density gradient is estimated using a linear regression. The

temperature data are therefore effectively adiabatically referenced back to

the mid-point of the vertical pressure window, in our case a 6 dbar pressure

window, before being used to derive the potential density.

For the purpose of this study, we estimate two buoyancy frequencies that

are derived over different time and length scales. First, we derive “local”

squared buoyancy frequency profiles, N2 using the EM-APEX data (Fig-

ure 3.6). For this local N2, the density gradient is estimated using a lin-

ear regression of potential density on pressure, calculated over a vertical
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pressure window of 12 dbar in equation (3.1). N2 varies between 0 and

3.4× 10−4 (rad s−1)2 with a mean value of 8.6× 10−4 (rad s−1)2 (Figure 3.6).

We use the same method to derive mean local squared buoyancy frequency

(< N2
ref >) profiles (not shown), using a longer vertical averaging pressure

window (24 dbar) as well as a horizontal averaging window. The <> denote

horizontal averaging over 20 profiles.
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Figure 3.6: Vertical distribution of the “local” squared buoyancy frequency
N2 along trajectories of the floats. Profiles located in the SAF/STF front are
indicated by red horizontal bars. The vertical dashed lines separate floats.

3.3 Mixed-layer depth

The mixed-layer is the upper layer of the ocean where hydrographic proper-

ties such as temperature and salinity are uniform. Sources of mixing in the

mixed-layer are the breaking of wind generated surface waves, shear instabil-

ity due to wind-driven currents, convection and Langmuir circulation. In the

Southern Ocean, the mixed-layer typically reaches 50 m in the summer and

can exceed 600 m in the winter where AAIW and SAMW formation takes

place (Dong et al., 2008; Sallee et al., 2010; Holte et al., 2012).

In this study, the depth of the mixed-layer is a key parameter since the
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shear-strain parameterization and Thorpe-scale methods applied to derive

mixing estimates are only valid below the mixed-layer. We define the mixed-

layer depth (Figure 3.7) as the depth at which the potential density changes

by ∆ρθ = 0.03 kg m−3 relative to the potential density at Zref = 10 m

(de Boyer Montégut et al., 2004).
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Figure 3.7: Mixed layer depth (black contour) overlying vertical distribu-
tion of potential density along floats’ trajectories. The vertical dashed lines
separate floats.

The reference depth, as defined by de Boyer Montégut et al. (2004),

Zref = 10 m, is used to avoid the signature of the diurnal cycle. In this

study, the mixed-layer depth varies between 20 and 190 m with a mean value

of 53 m.

3.4 Relative vorticity

Vorticity is twice the angular velocity at a point in a fluid (Talley et al.,

2011). The local vertical component of the relative vorticity (ζ) has units of

inverse time [s−1]

ζ =

(
∂v

∂x
− ∂u

∂y

)
, (3.2)
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where u and v are the components of the horizontal velocity vector in the x

and y coordinate system.
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Figure 3.8: Weekly satGEM derived mean surface relative vorticity maps
(colour scale). The nine maps corresponds to the sampling period of the
EM-APEX floats between November 2008 and January 2009 with the posi-
tion of individual profiles sampled during each week indicated (black dots).
Topography contours range from 500 to 3000 m at 500 m intervals (grey).

Here we apply equation (3.2) on the horizontal scales ∂x = ∂y = 50 km

to SatGEM velocity fields, a weekly geostrophic velocity products from com-

bined hydrographic data (GEM field) and satellite altimetry data (AVISO)

(Meijers et al., 2011). The resulting weekly maps of mean relative vorticity
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show a strong variability in the relative vorticity with values ranging from

−3.1× 10−5 s−1 to 3.1× 10−5 s−1 (Figure 3.8). The eddy identified in Sec-

tion 3.1 is associated with large positive relative vorticity values throughout

the sampling period.
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4.1 Thorpe-scale method

Density inversions can be used to estimate the rate of turbulent mixing using

a Thorpe scale analysis. First, we explain the theory of Thorpe scale param-

eterization of diapycnal turbulent eddy diffusivity. Next we describe how this

method is applied to 914 EM-APEX density profiles. We then discuss the

overall patterns and levels of turbulent mixing derived.

4.1.1 Thorpe-scale theory

The Thorpe scale (LT ) has a size that is characteristic of turbulent overturns.

It is defined as the root mean square of the vertical displacement (d) of a

water parcel in a gravitationally unstable region when the density profile is

re-ordered to be continuously stable (Thorpe, 1977)

LT =
√
< d2 >, (4.1)

where the angle brackets denote an averaging process in the vertical (see

Figure 4.1).

Figure 4.1: Estimating the vertical displacement d: A stable profile of density
(b) is derived from the observed density profile (a). The vertical arrows
show the vertical displacement d needed to bring each measured value to a
statically stable order. (From Thorpe (2005) p.176.)
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Microstructure studies (Dillon, 1982; Crawford, 1986; Ferron et al., 1998;

Stansfield et al., 2001) have shown that the Thorpe scale is proportional to

the Ozmidov scale (LO), as follows

LO = aLT , (4.2)

where a is an empirical constant of proportionality determined from mi-

crostructure observations. Studies have found that a ranges between 0.65

and 0.98 (for a review see Finnigan et al., 2002). For the present work, we

use a = 0.8 (Dillon, 1982). The Ozmidov scale (Ozmidov, 1965) is arrived at

by dimensional analysis as the scale at which gravitational forces proportional

to N2 are equal to the inertial forces of turbulence, which are proportional

to the dissipation rate

LO =
( ε

N3

)1/2
, (4.3)

where ε is the dissipation rate and N is the buoyancy frequency. Combining

equations (4.3) and (4.2), we can estimate the dissipation rate (ε) for each

turbulent overturn

ε = a2LT
2< NLT >

3. (4.4)

Here, < NLT > is the average buoyancy frequency over the turbulent overturn

(typically 10 to 20 m). Using the Osborn (1980) relation, we derive the

diapycnal diffusivity (Kρ) for each turbulent overturn

Kρ = Γε < N−2100m >, (4.5)

where the mixing efficiency, Γ, is assumed to be constant Γ = 0.2 (Thorpe,

2005); ε is the mean dissipation rate for each turbulent overturn; and <

N−2100m > is the mean buoyancy frequency squared over 100 m scale. Here we

invoke a scale separation argument where the N2 variability at 100 m scale is

an approximation for a time mean. The mixing efficiency Γ has been shown

to vary (Ivey et al., 2008), but Γ = 0.2 is typically used (for further details,

see discussion in Polzin et al., 2013).
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4.1.2 Implementation of Thorpe-scale method

To estimate diapycnal turbulent eddy diffusivity from observed density pro-

files using equations (4.4) and (4.5), we first derive the Thorpe scale (LT )

and the associated buoyancy frequency squared (N2
LT

). Then, we apply a test

based on known instrument accuracy, to ensure that dubious Thorpe scales

are excluded. Finally, turbulent mixing is estimated. Note that in some

previous studies, temperature profiles, which often have lower noise levels,

have been used instead of density profiles to estimate Thorpe scales. In this

study, the presence of density compensated temperature/salinity intrusions

could lead to erroneous inversion detection if temperature profiles were used.

Deriving the Thorpe scale lengths

Theoretically, the vertical displacement (d) in equation (4.1) is the difference

in depth between the original and re-ordered positions when a measured den-

sity profile is ordered to obtain a density profile that increases monotonically

with depth. The accuracy of this displacement is dependent on the noise level

of the density data and its local mean vertical gradient (Ferron et al., 1998).

When the noise is high and the local mean vertical gradient low, ordering

the raw density profiles might lead to measuring density inversions that are

due to noise rather than real inversions.

Several tests exist to detect spurious overturns and are reviewed in Gal-

braith and Kelley (1996); MacKinnon et al. (2011). Here we first apply a

method to detect “real” density inversions in the density profiles developed

by Ferron et al. (1998). With this method, it is not the raw potential density

profile that is re-ordered to measure the vertical displacement but rather an

intermediate potential density profile. To obtain the intermediate potential

density profile, we use a “hinge” potential density value (ρθ0), which we set

at ρθ0 =1027.8320 kg m−3 (Ferron et al., 1998) and a density accuracy (δρ)

which we estimate1 to be δρ = 0.0019 kg m−3. The resulting intermedi-

ate profile is only composed of fluctuations that are integer multiples of the

1The density accuracy is based on the SBE41 CTD specifications provided by Seabird:
the temperature accuracy is 0.002 ◦C and the salinity accuracy is 0.002.
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relative accuracy (see Ferron et al. (1998) appendix for details).
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Figure 4.2: Section of a vertical profile from float 3952 of (a) potential density,
(b) intermediate potential density (black) and ordered intermediate potential
density (red) and (c) corresponding Thorpe scales.

The intermediate potential density profile is re-ordered to be gravitation-

ally stable, and the vertical displacement d = z0−zr is the difference between

the position (z0) in the intermediate profile and the ordered position (zr) in

the gravitationally stable intermediate potential density profile (Figure 4.2).

Finally, we derive the Thorpe scale as the root mean square of the vertical

displacement (< d >) of each density overturn (Figure 4.2).

The buoyancy frequency (N) is defined in Section 3.2. We calculate N2
LT

for each turbulent overturn identified by Thorpe scales with the height of the

density inversion as the vertical fitting window (dz).

Dubious Thorpe scales are discarded using the Galbraith and Kelley

(1996) minimum thickness test, which puts a limit on the resolution of the

data set. The minimum height of a density overturn and therefore Thorpe

scale that can be resolved in a given density profile is defined as

Lρmin =
g

N2
LT

2δρ

ρθref
, (4.6)

where ρθref is a reference potential density for that profile (mean value over

the water column) and δρ = 0.0019 kg m−3 is the density accuracy of the

instrument. Density overturns that are smaller than the minimum thickness
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(Lρmin) are discarded (Figure 4.3). As well as discarding spurious turbulent

overturns, this test might discard some true turbulent overturns. The largest

turbulent overturns have been shown to make the most important contribu-

tion to turbulent mixing (Stansfield et al., 2001), however discarding small

turbulent overturns could lead to underestimating overall mixing rates.
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Figure 4.3: Example of Thorpe scale vertical profile from float 3762. In black
is the post-test Thorpe scale profile and in grey are the overturns discarded
by the minimum overturn thickness test. Note that the mixed-layer data
were removed.

Estimating diapycnal eddy diffusivity

Once we have accurate LT and N2
LT

estimates, we are able to derive the

dissipation rate (ε) for each overturn by applying equation 4.4, where we

use
√
N2
LT

for < N >. The mean diapycnal turbulent eddy diffusivity (Kρ)

for each overturn can then be estimated using equation (4.5). We exclude

data in the mixed-layer where convective processes dominate mixing, and

therefore where equation (4.5) is not appropriate.
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4.2 Shear-strain parameterization of dissipa-

tion

The dissipation rate (ε) can be predicted from shear and strain measurements

of internal waves using finescale parameterizations (Gregg, 1989; Polzin et al.,

1995). Finescale parameterization is based on (1) the assumption that most

of the turbulent mixing is driven by breaking internal waves (locally and

remotely generated) in the stratified ocean (Alford and Gregg, 2001), and

(2) the notion of a downscale energy cascade. The finescale parameteriza-

tions have been widely used in the past decade (e.g. Mauritzen et al., 2002;

Naveira Garabato et al., 2004; Sloyan, 2005; Kunze et al., 2006; Alford et al.,

2007; Park et al., 2008; Fer et al., 2010; MacKinnon et al., 2011; Wu et al.,

2011; Whalen et al., 2012), mostly because the observations needed (vertical

density and velocity measurements) to derive the dissipation rate with this

method are much more easily acquired than direct dissipation microstructure

observations.

4.2.1 Ocean mixing and the energy cascade

The downscale energy cascade in the internal wave band (Figure 4.4), also

referred to as the forward cascade, transfers energy and momentum to-

wards smaller scale internal waves (from low to high vertical wavenumber),

mostly as a result of nonlinear internal wave-wave interactions (McComas

and Muller, 1981). The high vertical wavenumber internal waves at the end

of the cascade break and dissipate their energy through overturns that result

in viscous dissipation at the high wavenumber end of the inertial subrange

(Polzin, 2004). The dissipation rate (ε) is typically used as a measure of

the turbulence’s intensity. As well as the downscale energy cascade, in the

ocean there is an inverse cascade of energy associated with barotropic modes

(Ferrari and Wunsch, 2009). This inverse cascade is not part of the finescale

parameterization theory. Direct in situ estimates of the dissipation rate can

in theory only be obtained by resolving the centimetre scale at which turbu-

lent kinetic energy is being dissipated by molecular viscosity (Polzin et al.,
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2013). By measuring the dissipation rate in the inertial subrange (wave-

lengths below 1 cm Figure 4.4), microstructure instruments provide the most

accurate estimates of turbulent mixing.

λc=16 m 

Gyres	  &	  Surface	  
forcing	  

(mesoscale)	  

Eddies	  

Internal	  waves	  

Wave	  

break
ing	  

Turbulence	  
es;mated	  with	  

dissipa;on	  rate	  (ε)	  

Wavenumber	  (m)	  

λ=1 cm 

Fr
eq

ue
nc
y	  
(ω

)	  

Sh
ea
r/
st
ra
in
	  

Pa
ra
m
et
er
is
a=

on
	  

(in
te
rn
al
	  w
av
es
)	  

Th
or
pe

	  s
ca
le
	  

Pa
ra
m
et
er
is
a=

on
	  

(t
ur
bu

le
nt
	  o
ve
rt
ur
ns
)	  

M
ic
ro
st
ru
ct
ur
e	  

m
ea
su
re
m
en

ts
	  	  

(v
is
co
us
	  d
is
si
pa
;o

n)
	  

Corresponding	  wavelength	  [m]	   λ=1 mm λ=300 m 

Figure 4.4: Schematic of the downscale energy cascade in the frequency-
wavenumber domain leading to turbulent mixing; also shown are various
methods (red highlighted areas) available to estimate this turbulent mixing,
and the vertical scales to which they are applied. Equivalent approximate
wavelengths estimates are provided along the wavenumber axis.

The Thorpe-scale method (see Section 4) uses information from the ver-

tical scale of turbulent overturns, while the shear-strain finescale parame-

terization uses information from the smallest resolved scales of the internal

wave field. When inferring the dissipation rate on large spatial and time

scales, one often assumes that the rate of downscale energy transfer in the

downscale cascade is constant at all scales. Under this assumption, all of the

above methods measure the same dissipation rate. In reality, the larger the

scale used to infer the dissipation rate, the more assumptions are made and

the more uncertainty in the final mixing estimates (MacKinnon et al., 2011).
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Below we explain the theory behind shear-strain finescale parameterization.

4.2.2 Theory of shear-strain parameterization

Turbulence is strongly related to the energy and shear of the internal wave

field through wave-wave interaction theory (Polzin et al., 1995). By com-

bining observations of the internal wave field (finescale measurements) with

theoretical models of energy transfer through wave-wave interactions, the

local turbulent dissipation rate can be estimated. As mentioned, Garrett

and Munk (1975) (hereinafter GM) were the first to describe and model the

background internal wave field in terms of a vertical wavenumber and fre-

quency spectrum using velocity and temperature observations from Site ‘D’

in the western North Atlantic Ocean (39°20′ N, 70° W) (Garrett and Munk,

1972; Fofonoff, 1966). Additional work by Garrett and Munk (1975) and

Cairns and Williams (1976), denoted GM75 and GM76 respectively, further

characterised the background internal wave field.

McComas and Muller (1981) developed a theoretical spectral model based

on resonant interaction theory to obtain a stationary vertical wavenumber

spectrum space. Henyey et al. (1986) used ray tracing simulations to model

the average transport of energy to small scales. Both models led to similar

predictions of the local turbulent dissipation rate from internal wave prop-

erties (Polzin et al., 1995). Gregg (1989) was the first to apply these models

to shear and strain observations to obtain estimates of the dissipation rate.

Over the next 20 years, theoretical work (e.g. Lvov et al., 2004), observa-

tional work (e.g. Polzin et al., 1995) and numerical simulations (e.g. Winters

and D’Asaro, 1997) further tested and refined the model of energy transfer

that predicts the turbulent dissipation rate from the internal wave energy

level as derived from finescale measurements of the vertical shear (from ve-

locity profiles) and vertical strain (from density profiles). Note that finescale

parameterizations are always described relative to the GM internal wave spec-

trum. For further details, Polzin et al. (2013) provide an in-depth discussion

on finescale parameterizations for estimates of turbulent dissipation.

As suggested by the theory (Henyey et al., 1986) and some observations
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(Polzin et al., 1995), the dissipation rate scales quadratically with the shear

spectral level. Assuming the spectral energy transfer arrives at dissipation

scales (ε) where wave-breaking dissipates turbulent kinetic energy, the dissi-

pation rate (ε) is

ε = ε0

(N2

N2
0

) < V 2
z >

2

< V 2
z−GM >2

3(Rω + 1)

2
√

2Rω(Rω − 1)1/2
f cosh−1(N/f)

f0 cosh−1(N0/f0)
. (4.7)

Constants from the background internal wave field as described by the GM76

model (latitude 32.5°N) are the dissipation ε0 = 8× 10−10 W kg−1, the buoy-

ancy frequency N0 = 3 cph extrapolated to the surface in GM76 and the iner-

tial frequency f0 = 7.86× 10−5 s−1. N is the buoyancy frequency; < V 2
z > is

the integrated variance of the vertical shear normalized by N ; < V 2
z−GM > is

the GM76 model integrated vertical shear variance; Rω is the shear-to-strain

variance ratio and f is the local inertial frequency (f). Here (and through-

out), the angle brackets denote variance integrated over a specified vertical

wavenumber range. We follow the Polzin et al. (2002) and Naveira Garabato

et al. (2004) notations.

The shear-to-strain variance ratio (Rω) is defined as

Rω =
< V 2

z >

< ξ2z >
, (4.8)

where < ξ2z > is the strain variance integrated in the specified vertical

wavenumber range. We spatially Fourier transform each strain (ξz) and

shear (Vz) segment to obtain the strain spectra (Φstrain) and the shear spec-

tra (Φshear) respectively. The shear variance and the strain variance are then

determined by integrating the shear spectra (Φshear) and the strain spec-

tra (Φstrain) from a minimum vertical wavenumber (m0) to a cutoff vertical

wavenumber (mc)

< V 2
z >=

∫ mc

m0

Φsheardkand < ξ2z >=

∫ mc

m0

Φstraindm. (4.9)
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The cutoff vertical wavenumber (mc) is the threshold where there is a tran-

sition from quasi-linear wave-wave interactions to strongly non-linear wave

breaking (D’Asaro and Lien, 2000). It is defined as the point where the

integrated shear variance reaches 2πN2/10 (Polzin et al., 2013). The shear

variance from the GM model spectrum < V 2
z−GM > is derived from integra-

tion over the same wavenumber band, using the GM model parameters of

GM76 (E0 = 6.3× 10−5 is a dimensionless energy, b = 1300 m is the vertical

stratification scale and j∗ = 3 is the mode number scale). To estimate the

diapycnal turbulent eddy diffusivity (Kρ) from the estimates of ε, we use the

Osborn (1980) relation

Kρ = Γ
ε

N2
, (4.10)

where the mixing efficiency (Γ = 0.2) is assumed to be a constant. For

further details about the choice of Γ, see discussion in Polzin et al. (2013). In

regions where the water is not stably stratified or where mixing is dominated

by convective processes, the Osborn relation is not valid.

4.2.3 Implementation of shear-strain parameterization

Deriving shear and strain spectra

We derive the vertical shear (Vz) for each of the 914 velocity profiles from

the EM-APEX floats defined as

Vz =
∂u

∂z
+ i

∂v

∂z
, (4.11)

where V = u + iv is the horizontal current. Shear, which is calculated as a

centred difference over ∂z = 6 m, has a vertical resolution of 3 m.

Strain ξ is a measure of changes of the mean stratification

ξ =
N2 −N2

ref

N2
ref

, (4.12)

where N2 is the local buoyancy frequency and N2
ref is the local mean buoy-

ancy frequency. The two different buoyancy frequencies are derived using
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the same method but over different length and time scales (see Section 3.2).

Strain is estimated from density profiles with a vertical resolution of 2.2 m

and subsequently linearly interpolated to a 3 m grid. Starting from the ocean

surface, each shear and strain profile is divided into 384 m long vertical seg-

ments, overlapping by 360 m. We apply a Hanning window to each segment

before applying a Fourier transform (over 128 points) to the shear and the

strain vertical profiles, computing their vertical wavenumber power spectral

density (or spectrum).

We apply two transfer functions modified for the floats’ characteristics to

correct the shear spectrum for unresolved variance due to the instrument’s

limitations, data processing and instrument’s characteristics (adapted from

Polzin et al., 2002, 2013).

Estimating shear and strain variance

To derive the variance, the spectra is integrated over a specified vertical

wavelength band. Ideally, this window covers the entire internal waveband,

particularly if the spectra is not flat, but it is often set to a constant range

such as 50 to 300 m (Naveira Garabato et al., 2004; Whalen et al., 2012;

Waterman et al., 2013). Here, the high vertical resolution of the velocity data

from the EM-APEX floats enables us to resolve the cutoff wavenumber and

therefore to use the appropriate minimum wavelength of integration for each

profile. We use the cutoff wavenumber (mc), derived for each vertical segment

(the point where the integrated shear variance reaches 2πN2/10), as the

minimum wavelength of integration. The corresponding cutoff wavelength

(λc) has a mean value of 16 m (Figure 4.5a). The minimum limit integration

wavelength is λ0 = 1/m0 =384 m, which is a compromise between integrating

at wavelengths large enough to resolve vertical structure but not so large that

non-wave (e.g. geostrophically balanced motion) variance contaminates the

spectra.
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Shear-to-strain variance ratio

The shear-to-strain variance ratio (Rω) is derived with (4.8) for each verti-

cal segment of each profile. By definition, Rω is larger than one when the

hydrostatic approximation is invoked. It is an estimate of the internal wave

field’s mean aspect ratio from which, a measure of the wave field’s bulk fre-

quency content can be derived (Polzin et al., 2013). Rω was first introduced

by Fofonoff (1969) as a linear diagnostic to describe the frequency content

of the internal wave field. Higher Rω values imply a dominant presence of

near-inertial waves, while lower Rω values can be attributed to the presence

of more high frequency internal waves at high vertical wavenumber or the

presence of shear instabilities when m > mc (Polzin et al., 2003).

0 10 20 30

0

400

800

1200

1600

D
e
p
th

 [
m

]

λ
c
 [m]

3 5 7
R

ω
 

0.6 0.8 1 1.2 1.4

0

400

800

1200

1600

φ
CCW

/φ
CW

GM GM GM

a b c

Figure 4.5: Mean EM-APEX vertical profiles of (a) cutoff wavenumber (mc),
(b) shear-to-strain ratio (Rw) and (c) ratio of CCW to CW rotating shear
variance for the Kerguelen Plateau region. The vertical red dotted lines
indicate the GM values.

For the GM model, Rω = 3. For Rω > 3, the ocean internal wave field has

more energy in the near-inertial band than the GM model. Data from surveys

at mid-latitude (Polzin et al., 2003) and at high latitudes (Naveira Garabato

et al., 2004; Fer et al., 2010) found 3 < Rω < 14. In this study, Rω ranges

from 1 to 19 with a mean value of 5.6 (Figure 4.5b). The shear-to-strain

ratio calculation is not accurate in the mixed-layer and therefore not shown
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in that region.

Ratio of counter-clockwise to clockwise rotating shear variance

The ratio of rotary-with-depth shear variance (counterclockwise (CCW) /

clockwise (CW)), hereinafter φCCW/φCW , can be used to infer the dominant

direction of energy propagation of rotationally affected internal waves. It

represents an approximate decomposition into upward and downward propa-

gating fields and may not be indicative of the energy flux in a multi-chromatic

wave field. We define the counterclockwise shear variance (φCCW ) and the

clockwise shear variance (φCW ) as

φCCW =
Vz[u/N ] + Vz[v/N ] + 2QS

2
(4.13)

and

φCW =
Vz[u/N ] + Vz[v/N ]− 2QS

2
, (4.14)

where Vz is the vertical shear, u and v are the zonal and meridional veloc-

ity components, N is the buoyancy frequency, and QS is the quadrature

spectrum (Gonella, 1972).

This diagnostic was first used by Leaman and Sanford (1975) to describe

the phase and energy propagation of internal waves from velocity observa-

tions. A dominance of CCW polarization of the shear suggests predominantly

downward energy propagation in the Southern Hemisphere (upward phase

propagation) and a dominance of CW polarization of the shear indicates

that upward energy propagation dominates (downward phase propagation).

Figure 4.5c shows the mean vertical profile of φCCW/φCW for the EM-APEX

data.

Mixing estimates and confidence intervals

We apply (4.7) and (4.10) to observations and obtain dissipation and dif-

fusivity estimates for each float profile. The deepest mixing estimate is at

1429 m depth since we use overlapping segments centred at equally spaced

depths, with T-S profiles that reach 1621 m. The shallowest mixing estimate
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varies depending on the mixed-layer depth (see Section 3.3). The statisti-

cal distribution of dissipation rate estimates, predicted to be log-normal by

Gurvich and Yaglom (1967), has been found to be both log-normal (Gregg

et al., 1973; Osborn and Lueck, 1985; Crawford and Dewey, 1990) and not

log-normal (Lueck, 1988; Moum and Lueck, 1985).
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Figure 4.6: Q-Q plots of sample data (blue crosses) versus standard normal
(red line) for (a) the dissipation rate and (b) logarithm of the dissipation
rate at 1321 m, using all 914 profiles.

The distribution of the observed dissipation rate here is tested using the

Lilliefors test, which determines the maximum deviation between the cumu-

lative distribution function for the mixing data and that of a normal distribu-

tion with the mean and standard deviation estimated from the data (Glover

et al., 2011). The mixing data from the EM-APEX floats fail the Lilliefors

normality test and are not Gaussian. The plots of standard normal quantiles

versus quantiles of input sample (Q-Q plots) show the sorted values from

our data set against the expected values of the corresponding quantiles from

the standard normal distribution. The quantiles here are points taken at

regular intervals from the cumulative distribution function of the dissipation

rate estimates. For a Gaussian data set, the points on a Q-Q plot should lie

approximately on a straight line. Looking at the Q-Q plots of the dissipation
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rate estimates, we see that it has a heavy-tail distribution (Figure 4.6 a) and

that the logarithm of dissipation gives a good fit to a straight line, even if

it has a higher probability at each end of the range than a log-normal dis-

tribution (Figure 4.6 b). Applying the Lilliefors test to the logarithm of the

dissipation estimates confirms that at least the upper 500 m of the mixing

data have a log-normal distribution (Figure 4.7). For further discussion on

the statistical distribution of dissipation rate estimates, see Yamazaki and

Lueck (1990) and Davis (1996).
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Figure 4.7: Lilliefors normality test where the null hypothesis H0 is that
the mixing data from the EM-APEX floats can not be distinguished from a
normal distribution. H0 of one implies the data are not normally distributed
at the 5% significance level.

Different statistical methods can be applied to derive confidence intervals

associated with the sampling of a data set. Here we apply both a standard

deviation approach and a bootstrap method to the mixing data from the

EM-APEX floats. In statistics, confidence intervals are often derived using

the standard deviation when the data sample is large and likely to repre-

sent the true population (i.e. normally distributed). Since the mixing data
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follows these assumptions for the upper water column, we estimate the 90%

confidence intervals for the mixing variables by deriving the 1.644 standard

deviations from the mean of the data (Figure 5.4, grey shading).

Next, we consider a bootstrap approach to derive confidence intervals for

the mixing variables. The bootstrap method introduced by Efron (1979) is a

simulation-based method as opposed to a probability distribution statistical

approach that resamples the underlying data set to provide statistical confi-

dence intervals. No assumptions are made about the underlying distribution

of the data (Pol and Jermaine, 2005) and only independence of samples is

a requirement, making this method mathematically simple and appropriate

for almost any data set. Applying the bootstrap method, we estimate the

confidence intervals for the mixing variables as the tenth largest and small-

est value formed by randomly subsampling and averaging the data 100 times

(Figure 5.4, red shading).

The standard deviation and bootstrap methods applied to the EM-APEX

mixing data provide different estimates of the confidence intervals: the boot-

strap method often used for mixing data sets (e.g. Thompson et al., 2007;

Ledwell et al., 2011; Whalen et al., 2012; St. Laurent et al., 2012a; Waterman

et al., 2013; Sheen et al., 2013) gives a confidence interval four to seven times

more narrow than the standard deviation method. The apparent simplicity

of the bootstrap method might mislead in the use of overly optimistic con-

fidence intervals while the standard deviation approach is conservative. The

true error associated with the sampling of the EM-APEX data is likely to

be somewhere between the bootstrap and the standard deviation confidence

intervals.

Limitations

At large vertical wavelengths (λ > λc) the net contributions of wave-wave in-

teractions to a downscale energy cascade become smaller in relation to wave-

mean interactions at larger vertical wavelengths (Polzin et al., 2013). The

limitations of the finescale parameterization has a succinct answer in terms

of the Froude number of the background flow: for large values of thermal



4.2. SHEAR-STRAIN PARAMETERIZATION OF DISSIPATION 63

wind shear leads, the utility of the finescale parameterization as a diagnostic

becomes limited. At smaller scales in near bottom regimes (λ < λc), internal

wave scattering and reflection might interfere (Polzin et al., 2013). Non-

local spectral transports due to wave breaking and resonant interactions will

theoretically also decrease the effectiveness of the finescale parameterization.

Certain environments such as stress-driven boundary layers, are dominated

by processes that are not accounted for in the finescale parameterization.

In such places, the parameterization is not expected to be accurate (for a

thorough discussion, see Polzin et al., 2013).

There are many factors and theoretical assumptions that might lead to

uncertainties in estimating ε from finescale parameterizations. However, the

high vertical resolution of the EM-APEX data (3 m sample spacing) makes

them much more suitable to use in finescale parameterisation techniques than

traditional ADCP data (approximately 24 m sample spacing).

The uncertainty associated with the EM-APEX floats and with the sam-

pling location using this finescale parameterization method to derive esti-

mates of the dissipation rate and diffusivity is within a factor of ±2 (Polzin

et al., 1995, and as per personal communications).
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5.1 Mixing estimates from Thorpe-scale method

5.1.1 Distribution of turbulent overturns

The Thorpe-scale method is applied to 914 EM-APEX density profiles and

detects a total of 3240 turbulent overturns. The largest mean number of

turbulent overturns in each 3 m bin depth is found in the 100 to 400 m

depth range, with as many as 25 turbulent overturns recorded at about 200 m

(Figure 5.1a).
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Figure 5.1: Vertical profiles as a function of depth of (a) the mean number
of overturns in each bin depth; (b) the vertical distribution of all Thorpe
scales; (c) the bin averaged profile of Thorpe scales (black line) and overall
mean Thorpe scale value excluding Thorpe scales larger than 30 m (red line)
for the Kerguelen Plateau.

On average for the Kerguelen region, the mean size of the Thorpe scales is

4.5 m (Figure 5.1c). The largest Thorpe scales are recorded in the deeper part

of the data (1300 to 1600 m), which also corresponds to the depth range with

a minimum of turbulent overturns detected (Figure 5.1a). The 48 m Thorpe

scales observed twice in profile 289 (float 3761) are at a depth of 1500 m,

which is the maximum depth of profiles (Figure 5.1b,c and 5.2). For that

profile, the float is in the vicinity of a very shallow ridge with water depth
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less than 1600 m. These profiles are taken in the bottom boundary layer

and thus, the extreme Thorpe scales are most likely estimates of bottom

boundary layer turbulence.

The evolution of the Thorpe scales (LT ) along the trajectory of the EM-

APEX floats is shown in Figure 5.2, where LT is plotted as a constant over

the vertical extent of each turbulent overturn.
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Figure 5.2: Estimates of Thorpe scales [m] derived from density with a noise
level of 0.002 kg m−3 (red). Each spike corresponds to a turbulent patch
where the horizontal length of the spike is equal to LT . Potential density
contours (σθ =26.1, 26.4, 26.7, 27.0, 27.3 in bold and 27.6 kg m−3) are shown
in grey. The vertical dashed lines separate floats.

Thorpe scale values range from 0.1 m to 48 m. The overall distribution is

highly spatially variable, both in the vertical and horizontal, with some areas

totally free of turbulent overturns and others with intense activity. Floats

3760 and 3950 show weak turbulent overturns while float 3952, 3762 and

float 3764 have large turbulent overturns below 700 m.

5.1.2 Mixing intensity

The overall mean diapycnal diffusivity (Kρ) for the region estimated with the

Thorpe scale method is 9× 10−5 m2 s−1. The spatial distribution of diapycnal

diffusivity is highly variable. Diapycnal diffusivity values span approximately
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four orders of magnitude ranging from 8× 10−5 to 2× 10−1 m2 s−1. Float

3761 shows evidence of enhanced mixing at depth (profile 289) with the high-

est diapycnal diffusivity values of this study, likely due to bottom boundary

layer turbulence as explained previously. With overall mid-depth ocean inte-

rior diapycnal diffusivity values typically of O(10−5) in the Southern Ocean

(Ledwell et al., 2011), the estimated mixing rates are larger than typical

open-ocean background levels. Yet the estimated mixing only occasionally

exceed enhanced values (Kρ > 10−4 m2 s−1) observed above rough topogra-

phy elsewhere in the Southern Ocean (Ferron et al., 1998; Heywood, K. J.

and Garabato, A. C. N. and Stevens, D. P., 2002; Naveira Garabato et al.,

2004; Sloyan, 2005).

5.1.3 Resolution of Thorpe scales

Applying the Thorpe-scale method to estimate mixing requires either the

presence of large density overturns or the use of precise instruments with high

vertical resolution. Our ability to detect turbulent overturns in the density

profiles is constrained by the vertical resolution of the CTD (sampling) and

the density resolution of the CTD (instrument accuracy or noise level). The

parameter R can be used to determine whether it is the density resolution or

the vertical sampling resolution that limits the resolvable density inversions

(Stansfield et al., 2001; Johnson and Garrett, 2004). R is defined as

R =
dρ

dz

4zinst
4ρinst

, (5.1)

where dρ/dz is the background density gradient, 4zinst is the vertical sam-

pling resolution and 4ρinst is the density resolution of the instrument. If

R > 1, the vertical sampling resolution is the limiting factor while if R < 1,

the instrument resolution limits the detection of density inversions. We as-

sume a background density gradient dρ
ρdz
≈ 7× 10−4 m−1, an average vertical

sampling resolution of 2.5 m and a density resolution of 0.0019 kg m−3. For

the CTD on the EM-APEX, we find R = 0.92, which is very close to 1, sug-

gesting that both the density resolution of the instrument and the vertical

sampling resolution are equally limiting the detection of density inversions.



68 CHAPTER 5. MIXING INTENSITY AND SOURCES

We investigate whether the resolution limitations of the EM-APEX lead

to significant underestimates of the presence of density inversions and there-

fore biased mixing estimates. The distribution of the Thorpe scales is rela-

tively lognormal (Figure 5.3a and 5.3b). This is expected since Thorpe scales

are theoretically the result of a multiplicative series of independent events

(Stansfield et al., 2001).
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Figure 5.3: Thorpe-scales statistics for the EM-APEX profiles: (a) histogram
of the probability density function of log Thorpe scale (log10(LT )) computed
from all 3240 turbulent overturns identified in this study. Data are binned
into 51 bins spanning −2 6 log10(LT ) 6 2 m for this calculation. The red
line is a Gaussian fit assuming a lognormal distribution. (b) cumulative
probability plot of log10(LT ) integrating from large to small scales (black
line). The dotted red line is an indication of the linearity of the cumulative
probability. Note that the two extreme 48 m Thorpe scales observed near
bottom boundary layer (Float 3761, profile 289) are not included in this
statistical analysis since they are not representative of the true population,
where true population is in stratified ocean only.

The comparison with a Gaussian fit (red curve on Figure 5.3a) suggests

that the EM-APEX floats are resolving only 50% of the Thorpe scales. The

occurrence of LT = 0 has not been plotted in the histogram, or in the cu-

mulative probability plots. The cumulative probability plot (Figure 5.3b),

which would be linear if the Thorpe scale distribution was lognormal, shows
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a linear distribution between 20% and 99% cumulative probability. The sam-

pling and bin averaging of the CTD data prevents the CTD from resolving

small Thorpe scales, which are thought to be more frequent in the normal

distribution (Stansfield et al., 2001). As a result we do not sample the peak

in the distribution, which takes place between 1 and 5m.

Conclusion

The Thorpe-scale method is applied to estimate turbulent mixing north of

the Kerguelen Plateau. In the upper 1600 m, the mean diapycnal diffusiv-

ity is estimated at 9× 10−5 m2 s−1, suggesting that mixing rates around the

Kerguelen Plateau are slightly enhanced compared to background diapyc-

nal diffusivity in the Southern Ocean. Although this method provides an

overview of the distribution of turbulent overturns north of the Kerguelen

Plateau, it is limited by the instrument’s resolution and sampling charac-

teristics. We conclude that the application of the Thorpe-scale method to

estimate ocean mixing is not appropriate for the EM-APEX data.

5.2 Mixing from shear-strain parameteriza-

tion

In this section we present diapycnal mixing estimates from the shear-strain

parameterization which combines finescale measurements of internal wave-

scale shear and strain with theoretical models of energy transfer (see Chap-

ter 4.1.2). Applying this technique to the EM-APEX float data we can

analyse along stream variations in diapycnal mixing between 200 and 1400

m (see Section 4.2.3). By combining these mixing estimates with the hy-

drography we collected and other environmental parameters, we will provide

insight into potential drivers of this mixing.
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5.2.1 Spatial distribution and intensity of mixing

The overall mean dissipation rate determined by the shear-strain parameter-

ization for the region is of 9× 10−10 W kg−1 with a 90% confidence interval

of 1× 10−11 W kg−1 and 3× 10−9 W kg−1 and the mean diapycnal diffusiv-

ity is 3× 10−5 m2 s−1 with a 90% confidence interval of 4× 10−7 m2 s−1 and

10× 10−5 m2 s−1 using the standard deviation technique (Figure 5.4 a and b).

It is generally assumed that the dissipation rate in the open ocean at mid-

and low-latitudes is O(10−10) W kg−1 (St. Laurent et al., 2012a), putting our

mean dissipation rate at background levels.
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Figure 5.4: Mean vertical profiles of the EM-APEX data as a function of
depth of (a) dissipation rate (ε) and (b) diapycnal diffusivity (Kρ) estimated
using the shear-strain parameterization. Shaded area shows the 90% confi-
dence intervals computed via standard deviation from the mean (grey) and
via bootstrap sampling (red); see Section 4.2.3 for details.

We find that vertically averaged Kρ north of the Kerguelen Plateau is

highly spatially variable in the EM-APEX data and most intense over shal-

lower bathymetry (Figure 5.5). These values are similar to other finescale

parameterization observations in the Southern Ocean (Wu et al., 2011) and

microstructure measurements in the area (Waterman et al., 2013).
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For each EM-APEX profile, the topographic roughness is computed over

a 0.1◦ longitude by 0.1◦ latitude box (Figure 5.6 bottom panel) using the

Smith and Sandwell (Smith and Sandwell, 1997) topography data set (Sec-

tion 2.3.1). Topographic roughness (var(H) m2) is defined as the variance

of bottom height (H) in a certain wavenumber range. Note that the spa-

tial resolution of the topography data set is likely only resolving part of the

scales of the internal wave generation radiative range (Nikurashin and Fer-

rari, 2011). Higher resolution topographic data would be more appropriate

to derive topographic roughness for the purpose of this study.

Figure 5.5: Horizontal distribution of the vertically averaged (200 to 1400 m)
diapycnal diffusivity (Kρ) from shear-strain parameterization. Topography
contours range from 200 to 5000 m at 400 m intervals (grey). Float numbers
are indicated as well as the first profile of each float (black dot).

Values of Kρ also show large vertical variability (Figure 5.6) and diapycnal

diffusivity can vary by as much as four orders of magnitude in one profile. A
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few regions show particularly weak diapycnal diffusivities of O(10−6 m2 s−1),

other regions show enhanced diapycnal diffusivity values of O(10−3) m2 s−1

below 600 m in the vicinity of rough topography (approximately profiles 170,

290, and 420) and the upper ocean of O(10−4) m2 s−1 (top 200 m, approxi-

mately profiles 700 to 840) (Figure 5.6).
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Figure 5.6: Vertical distribution of Kρ (top) along the trajectories of the eight
EM-APEX floats. Potential density contours (σθ =26.7, 27.0, 27.3 (bold) and
27.6 kg m−3) are shown in black. The vertical dashed lines separate floats.
Bottom panel indicates the topographic roughness (var(H)).

5.2.2 Investigation of mixing sources

In this section, we investigate topographic roughness, current speed, eddy

dynamics and wind speed as sources of mixing in the EM-APEX data north

of the Kerguelen Plateau. To do so, we subsample the data into dynamical

regions: profiles that are located in a region of geostrophic flow speed larger

than 0.35 m s−1 are considered to be inside the SAF/STF front, hereinafter

referred to as the Front. The rest of the profiles are assigned to either the

region north of the Front (Subantarctic Zone), to the region south of the Front
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(Polar Front zone) or to the eddy. About half of the profiles are labelled as

in the Polar Front Zone (468 profiles), nearly a quarter are in the Front (208

profiles), 94 are in the Subantarctic Zone and 144 in the eddy.

Mixing and topography

To investigate the impact of topography on the mixing intensity and distri-

bution, we estimate the topographic roughness for each profile (Figure 5.7

b) and the depth-integrated turbulent production, P [W m−2]

P = ρθ(1 +Rf )

∫
εdz. (5.2)

The dissipation rate (ε) is inferred from the observations using the shear-

strain parameterization, ρθ = 1027 kg m−3 is the background potential den-

sity and Rf = 0.17 is the flux Richardson number (Peltier and Caulfield,

2003). The turbulent production integrated over the total sampling depth

range (200 to 1400 m) varies strongly from profile to profile (Figure 5.7 a).
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Figure 5.7: a) Depth integrated turbulent production (P) for each profile
with b) local topographic roughness, var(H), for each profile. Profiles with
local topographic roughness larger than mean value are shaded (beige).
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The regional mean value of turbulent production in the upper 1600 m

(1.23 mW m−2) fits in the range of 1-10 mW m−2 estimated by Waterman

et al. (2013) in the same region for the upper 1500 m and larger than the

equivalent background depth-integrated GM turbulent production (0.7 mW m−2).

Peaks in turbulent production in the total depth range are clustered in certain

regions (profiles 220 to 300 and 380 to 420, for example). Regions showing

enhanced production in the total depth range also show enhanced power in

the deeper part of the profile (Figure 5.7a). Peaks in production in the deep

depth range also often coincide with regions of enhanced topographic rough-

ness (Figure 5.7b). The mean integrated turbulent production for profiles

south of 46°S, closer to the Kerguelen Plateau, reaches 2.6 mW m−2. This

suggests that a significant amount of the enhanced turbulent production in

the water column is due to intense energy dissipation at depth and that to-

pographic roughness around the Kerguelen Plateau is a dominant driver of

enhanced energy dissipation in the area. Areas of enhanced production that

are not matched with rough topography (around profile 700 for example) will

be investigated in subsequent sections.

Figure 5.8: a, Map of profiles above rough topography (red) and smooth
topography (blue). b, Mean vertical diapycnal diffusivity profile as a function
of depth above rough topography (red) and smooth topography (blue).

To quantify the impact of the local topography on the mixing intensity,
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we subsample the data set into profiles above smooth topography and profiles

above rough topography (Figure 5.8 a). Smooth topography is defined as re-

gions with values of roughness less than 1.72× 104 m2 and rough topography

as regions with values of roughness larger than 1.72× 104 m2. This critical

value that separates smooth and rough topography is the mean roughness

for the EM-APEX data. The majority of the profiles sampled above rough

topography are located south of 45◦S, closer to the Kerguelen Plateau (Fig-

ure 5.8a). The mean vertical stratification and horizontal velocity profiles

are similar whether above smooth or rough topography (not shown). The

mean vertical mixing profiles for each subsample show that diapycnal diffu-

sivity is up to three times more intense above rough topography than above

smooth topography (Figure 5.8 b). The rough profiles show enhanced diapy-

cnal diffusivity from 240 m to 1400 m, with maximum near 800 m. The water

column above rough topography in this study is on average 2900 m deep.

This suggests that the impact of the topography on mixing in this study can

reach up to 2000 m above the seafloor, as previously reported in the Brazil

Basin (Polzin et al., 1997).

We observe a significant correlation of R = 0.74 (P < 0.05 at the 95% con-

fidence interval) between the depth integrated diapycnal diffusivity over the

total profile range and topographic roughness (Figure 5.9). This correlation

is much higher than previous estimates for the Southern Ocean (R = 0.51

Wu et al., 2011). The linear fit between the diapycnal diffusivity and the

topographic roughness has a slope of 0.58.

The enhanced mixing above topographic roughness is likely due to inter-

nal wave generation and dissipation where the strong quasi-steady flow of the

ACC interacts with the topography (Bell, 1975). Recent studies have shown

that geostrophic motions dominate energy conversion into internal waves in

the Southern Ocean (Nikurashin and Ferrari, 2013), while global estimates

of M2 tidal energy dissipation from various data sources show little tidal dis-

sipation north of the Kerguelen Plateau (Egbert and Ray, 2000). With most

of our data sampled north of the Kerguelen Plateau in water deeper than

2000 m, it is likely that the geostrophic flow, rather than tidal motion, is the

source of the internal waves. Similar cases of enhanced mixing above topo-
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Figure 5.9: Depth integrated diapycnal diffusivity vs. topographic roughness
with one data point for each float. The dashed line shows the linear fit. The
correlation coefficient (R) and p-value (P) are indicated.

graphic roughness have been observed in the Southern Ocean: in the Drake

Passage (Naveira Garabato et al., 2004) and Scotia Ridge (Naveira Garabato

et al., 2004; Damerell et al., 2012; Sheen et al., 2013); but also in the South

Atlantic Ocean Brazil Basin (Polzin et al., 1997), along the path of the ACC

(Sloyan, 2005), in the Nordic seas (Naveira Garabato et al., 2004), in the

northwestern Pacific (Jing and Wu, 2010) and in the Indian Ocean (Sloyan,

2006).

Mixing and the Subantarctic Front

A front is a region of sharp transitions of ocean properties and is therefore

likely to have different mixing dynamics than surrounding regions. Previ-

ous studies in the Southern Ocean have shown frontal regions acting as a

boundary between different mixing regimes (Thompson et al., 2007) as well

as enhancing mixing along the ACC pathway (Sloyan, 2005).

Using the horizontal velocity data from the EM-APEX floats as well as

available weekly surface geostrophic speed maps (not shown), we identify

the location of each profile as either in the Subantarctic Zone, in the Front
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(SAF/STF) or in the Polar Front Zone. The profiles in the eddy first de-

scribed in Section 3.1, are not included because the eddy’s dynamics differ

from dynamics outside the eddy, as will be demonstrated in the Section 5.2.2.

Figure 5.10: a) Map of profiles located in the Subantarctic Zone (red), in the
Front (black) and in the Polar Front Zone (blue). b) Mean vertical diapycnal
diffusivity profile as a function of depth in the Subantarctic Zone (red), in
the Front (black) and in the Polar Front Zone (blue).

The mean mixing intensity and vertical distribution in the Subantarctic

Zone, in the Polar Front Zone and within the Front differs by over an order

of magnitude in most of the water column (Figure 5.10 b). Overall, mixing

is much more intense within the Front than in the Subantarctic Zone or in

the Polar Front Zone. While the weakest mixing is in the Subantarctic Zone,

in the Polar Front Zone we observe slightly less enhanced mixing from that

in the Front region. All three regions reach a maximum mixing value below

700 m, while subsurface minima are located between 250 and 450 m.

In terms of hydrography, the water in the Subantarctic Zone is warmer,

more saline and lighter; the water in the Polar Front Zone is cooler, less saline

and denser, while the water in the Front has intermediate characteristics

(Figure 5.11 a). The mean stratification profile is very similar for all three

regions. The current speed is greatly enhanced in the Front throughout the

water column compared to the Subantarctic Zone and the Polar Front Zone
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(Figure 5.11 b and c). Mean values of parameters in the Polar Front Zone,

within the front and in the Subantarctic Zone are summarised in Table 5.1.
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Figure 5.11: Mean vertical profiles as a function of depth of a) potential
density (ρθ), b) stratification (N2), c) current speed, d) shear-to-strain vari-
ance ratio (Rω) and e) log of ratio of rotary with depth shear variance
(φCCW/φCW ) in the Subantarctic Zone (red), in the front (black) and in
the Polar Front Zone (blue). The arrows represent the direction of energy
propagation.

The mean shear-to-strain variance ratio (Rω) profile is very similar in

the Front and in the Polar Front Zone, but the mean Rω values in the Sub-

antarctic Zone below 400 m are higher (Figure 5.11 d). This suggests that

near-inertial frequency waves dominate in the Subantarctic Zone (see Sec-

tion 4.2.3). Finally, the ratio of rotary-with-depth shear variance (φCCW/φCW ),

which is used to distinguish upward from downward energy propagation (see

Section 4.2.3), varies substantially from one region to another. In the Front,

the φCCW/φCW ratio is greater than one throughout the water column, im-

plying mostly downward propagating internal waves. In contrast, in the Polar

Front Zone, with φCCW/φCW ratio values less than one below 300 m, most of

the energy comes from upward propagating internal waves (Figure 5.11 e).

We identify two key parameters to explain the enhanced mixing observed

in the Front: intense current speed and rough topography. In the Polar

Front Zone, the upward propagating internal wave signature indicates that
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Parameter Polar Front Zone Within Front Subantarctic Zone

Diffusivity
(m2 s−1) 2× 10−5 6× 10−5 0.5× 10−5

Current speed
(m s−1) 0.17 0.44 0.15
Shear
(s−1) 1.5× 10−4 3.5× 10−4 1× 10−4

topographic roughness
(m2) 1.9× 104 2× 104 1.8× 104

shear-to-strain ratio
5.2 5.1 6.2

φCCW /φCW ratio
0.9 1.3 1.1

Wind stress
(N m−2) 1.33 1.54 1.97

Table 5.1: Mean parameter values in the Polar Front Zone, within the Front
and in the Subantarctic Zone. Details about the wind stress estimates are
provided in Section 2.3.2.

the source of the waves that generate mixing is mainly from the sea floor.

We suggest that the main mixing mechanism in that region is the interaction

of the current flow with topography, but lower current speeds give rise to

smaller mixing than in the Front. Finally, the combination of higher wind

stress values, downward propagating internal waves and inertial frequency

waves (Table 5.1) implies that wind forcing is the primary driver of the

mixing observed in the Subantarctic Zone. Wind as a source of mixing will

be further investigated in Section 5.2.2.

To assess the quantitative impact of the Front on the mixing intensity,

we estimate the correlation between the depth integrated diffusivity and the

mean current speed in the upper 1400 m, assuming that higher mean current

speed is a good proxy for the Front. Over the whole data set, the moderate

positive correlation (R = 0.36) confirms that as current speed increases over

rough topography, so does mixing. Since the enhanced mixing due to the

Front is likely located closer to the seafloor, we expect stronger correlation

in shallower regions of the study area where our data cover more of the

water column. We choose the mean water depth (3546 m) over 41◦S − 50◦S
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are indicated.
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and 61◦E − 79◦E as the threshold between shallower and deeper water and

correlate current speed and depth integrated diffusivity only in the shallower

water (Figure 5.12). The resulting correlation is much stronger R = 0.69

(P < 0.0002 at the 95% confidence interval), confirming the presence of

enhanced mixing at depth when the current speed is high.

Mixing in the eddy

We identify profiles located along the rim of a cyclonic (clockwise) eddy

(Section 3.1) using weekly surface geostrophic speed maps. These profiles

are in a geostrophic flow with speed larger than 0.35 m s−1 but are not along

the main axis of the Subantarctic Front (Figure 3.1). Strong mixing values

in the top 400 m that are up to 20 times larger than mixing elsewhere in the

area differentiates the eddy from the Front (Figure 5.15).

Figure 5.13: a) Map of profiles located in the eddy (brown), in the Sub-
antarctic Zone (red) and in the Front (black). b) Mean vertical diapycnal
diffusivity profile as a function of depth in the Subantarctic Zone (red), in the
eddy (brown) and in the Front (black). Profiles with extremely high surface
integrated diapycnal diffusivity values are highlighted (white dots).

Overall, the eddy rim has the same temperature, salinity and density

characteristics as waters in the Subantarctic Zone, while its current speed is
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Figure 5.14: Mean vertical profiles as a function of depth for a) potential den-
sity (ρθ), b) stratification (N2), c) current speed, d) shear-to-strain variance
ratio (Rω) and e) log φCCW/φCW , in the eddy (brown), in the Subantarctic
Zone (red) and in the Front (black). Upper plot corresponds to mixed-layer;
lower plot from mixed-layer to 1400 m

much higher than profiles in the Subantarctic Zone. Velocity shear is lower in

the eddy than in the Front (Figure 5.14). The stratification in the top 200 m

is lower in the eddy rim than in either the Front or in the Subantarctic Zone

(Figure 5.14 b). The eddy exhibits high mean shear-to-strain variance ratio

(Rω) in the upper 1000 m (Figure 5.14 d) and high values of CW to CCW

rotating shear variance in the upper 800 m (Figure 5.14 e). This suggests that

near inertial frequency waves dominate the upper part of the water column

and that there is downward internal wave energy propagation.

The evolution in time of parameters in the Front, in the eddy and in the

Subantarctic Zone (Figure 5.15), shows that the high mean surface mixing

(200 to 400 m) observed in the eddy is due to 12 profiles with extremely high

surface integrated diapycnal diffusivity values (Figure 5.15 a). These profiles

were sampled over a two week period by three different EM-APEX floats in

different sections of the eddy (Figure 5.13). Lower stratification values are

observed in some of the eddy profiles as well as in some of the Front profiles

(Figure 5.15 b) but there is no apparent relationship between stratification

and the profiles with high dissipation. The shear-to-strain variance ratio
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(Rω) displays substantial variability amongst profiles in the Front and in

the eddy (Figure 5.15 c). Enhanced mixing in the upper water column is

often attributed to wind forcing. Under certain circumstances, wind stress

generates vertical inertial motions at the ocean surface, which can propagate

downwards before dissipating and releasing their energy as mixing. For wind

stress to efficiently force inertial motions in the surface mixed-layer, wind

variability must be at the inertial frequencies and aligned with the flow field.

In this study, strong wind forcing events could explain the change in

stratification, the deepening of the mixed-layer and the larger magnitude

of the variation of the shear-to-strain variance ratio observed prior to the

peak in diffusivity in the upper part of the water column. It would also

explain the presence of near inertial frequency waves in the upper part of the

water column and the observed downward internal wave energy propagation

(Figure 5.14).

Both observational (Elipot et al., 2010) and modelling (van Meurs, 1998;

Balmforth and Young, 1999) studies have shown that near-inertial internal

waves can decay more rapidly when exposed to strong relative vorticity gra-

dients. Theory also suggests that wind-forced near-inertial internal waves

are vertically amplified in regions of strong relative vorticity gradients, lead-

ing to a quick decay with time, wave breaking and enhanced local dissipa-

tion rate (Kunze, 1985). This “wave-trapping” can take place when internal

waves are generated in eddies that have a large relative vorticity gradient.

The fast vertical propagation is explained by the vertical group speed of the

waves that depends inversely on the horizontal wavelength, shorter due to

the strong relative vorticity gradient (Pedlosky, 2003). Jing and Wu (2013)

found enhanced mixing particularly under anticyclonic eddies in the North-

ern Hemisphere, with dissipation rates twice as large in the upper 300 to

600 m. They invoked negative relative vorticity as the reason for the en-

hanced mixing. The depth at which the near-inertial internal waves are

trapped and decay, called the critical-layer depth, depends on the intrinsic

frequency of the near-inertial waves as well as the structure of the eddies.

Brearley et al. (2013) also observed significant transfers of energy between

eddies and internal waves resulting in enhanced dissipation rates.
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Here we speculate that wind forcing events excited the generation of near-

inertial waves at the ocean surface in both the Front and the eddy. The near-

inertial internal waves generated by the wind in the eddy would be affected

by the local relative vorticity gradient (Figure 3.8), leading to faster vertical

propagation of those waves and therefore enhanced local dissipation rate. In

contrast, the near-inertial internal waves generated by the wind in the Front

would tend to be advected by the current and would therefore not result in

enhanced local dissipation rate.

Wind driven mixing

The main mechanism to transfer energy from the wind to the ocean is the

generation of near-inertial internal waves that radiate downward, break and

release their energy as mixing. In this study, since we estimate mixing below

200 m, we can only identify wind-driven mixing below the mixed-layer depth.

While the EM-APEX floats were sampling the Kerguelen Plateau region,

atmospheric low-pressure systems associated with strong wind speeds came

through the region (Figure 5.16).

To identify likely wind driven mixing areas, we first look at the ratio of

rotary-with-depth shear variance, φCCW/φCW and the shear-to-strain vari-

ance ratio, Rω. Higher values of φCCW/φCW suggest downward-propagating

internal waves and higher Rω values imply the presence of near-inertial waves

(see Section 4.2.3 and 4.2.3).

The mean vertical distribution of φCCW/φCW ratio for profiles with high

upper-layer turbulent production values shows that downward energy prop-

agation prevails in the upper 1200 m (Figure 5.17 b). The mean vertical dis-

tribution of Rω for profiles with high upper-layer turbulent production values

shows enhanced values of Rω in the top 600 m (Figure 5.17 c). This suggests

that regions with high dissipation rate in the upper water column coincide

with an increase in downward propagating energy and near-inertial waves.

Next we compute the maximum wind area (Awind) as a diagnostic for intense

surface mixing events. Awind is defined as the surface area [km2] with wind

speeds larger than 15 m s−1 within 41◦S−48◦S and 65◦E−77◦E. The 15 m s−1
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with EM-APEX float trajectories (cyan). To identify atmospheric frontal
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threshold corresponds to the 99th percentile of the wind field. Large values of

Awind should be associated with significant atmospheric frontal events passing

through the region.
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Figure 5.18: Subset time series between 18th November 2008 and 31st January
2009 of (a) maximum wind area (Awind), (b) absolute value of the depth
integrated dissipated upper water column turbulent production P (200 to
800 m) per unit area and (c) corresponding mean vertical φCCW/φCW . ‘A’
and ‘B’ identify events of intense depth integrated dissipated upper water
column turbulent production. Values above the overall mean are highlighted
(red).

Two main atmospheric frontal zones are observed, the first one taking

place around the 23nd November 2008, 9 days before a major peak in surface

turbulent production (peak A) and the second taking place around the 31st

December 2008, just 3 days before peak B in surface turbulent production

(Figure 5.18a). Peak A has already been identified and discussed in Sec-

tion 5.2.2 where we speculated that near-inertial internal waves generated

in the Front by a strong wind event are advected until they reach the eddy

where the strong relative vorticity gradient triggers their local dissipation.

The observed delay (9 days) between the first atmospheric frontal zone
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and peak A is consistent with this hypothesis. The second atmospheric

frontal zone which triggered near immediate enhanced mixing in the sur-

face layer is a cyclonic low pressure system (Figure 5.16). Note that the

derived mean direction of each wind event is westward (not shown). After

the passage of both atmospheric frontal zones, upper water column turbulent

production reaches values well above average levels (Figure 5.18 b peaks A

and B). The mean vertical φCCW/φCW ratio shows that turbulent produc-

tion peaks (A and B) are associated with enhanced downward internal wave

propagation (Figure 5.18c). The observed upper water column turbulent pro-

duction (O(1 − 10) mW m−2) is similar in magnitude to regional estimates

by Alford (2003) of wind energy into near-inertial motions.

To confirm the peaks in turbulent production are wind generated, we

would ideally use local wind observations correlating wind stress or wind

work with mixing observed in the upper ocean. Due to the lack of direct

wind observations (from the floats, ship or flux mooring), we use satellite

derived wind data (Section 2.3.2) that impose significant temporal and spatial

limitations on our analysis. When comparing turbulent production in the

surface depth range to the corresponding wind stress (τw), we find no direct

correlation. The wind events responsible for enhanced mixing in the upper

water column are not necessarily taking place in the time and space range

that we correlate. Also, the six hourly time resolution of the wind data might

not be resolving all the wind events variability.

We suggest some evidence of wind driven mixing below the mixed-layer

and in the upper 600 m, in the form of downward propagating near-inertial

internal waves. Work by Thompson et al. (2007); Sloyan et al. (2010) also

found enhanced upper-ocean mixing north of the Front. These surface mixing

events are attributed to large atmospheric frontal events, of which we identify

two over the ten weeks of observations. The resolution of wind work estimates

from satellite derived wind data is too coarse for correlations between wind

work and mixing estimates.
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5.3 Discussion

5.3.1 Method comparison

Comparison with direct observations of mixing

We compare the dissipation rate estimates from the EM-APEX floats with

measurements from a microstructure profiler. Free-falling vertical microstruc-

ture profiler (VMP) measurements were collected during the SOFine survey

in conjunction with the deployment of the EM-APEX floats. The microstruc-

ture data processing, dissipation rate and diapycnal diffusivity derived from

the microstructure data are presented in Waterman et al. (2013).

EM-APEX and VMP dissipation rate profiles are within an order of mag-

nitude and have a similar vertical structure indicating that the finescale pa-

rameterization applied to the EM-APEX data is appropriate (Figure 5.19).

Note that the floats sampled water further north than the VMP, which was

deployed along the cruise track (see Figure 2.3). Also, there are over 20

times more dissipation profiles in the finestructure mean profile than in the

microstructure mean profile. The microstructure measurements, which make

no assumption about mixing sources, and finescale parameterization esti-

mates, which infers internal wave driven mixing only, agree well. Sources

of mixing other than internal waves such as thermohaline intrusions (Rud-

dick and Richards, 2003) and double diffusion processes, might only play a

minor role around the Kerguelen Plateau. In strong flows such as the flow

we sampled, double diffusion cannot develop sufficiently to impact mixing.

Taking into account the sampling differences and the uncertainties associ-

ated with the shear-strain finescale parameterization, it is remarkable that

the dissipation rate estimates match as well as they do.

Potential limitations of the finescale parameterization method were identi-

fied by Waterman et al. (2013), where finestructure estimates from shipboard

LADCP data over-predicted dissipation rates compared to microstructure

rates within the bottom one kilometer in regions of internal wave generation.

In our study, the EM-APEX data have a much higher vertical resolution

(3 dbar) than LADCP data (20 dbar), making them more suitable for esti-
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Figure 5.19: Mean vertical profile as a function of depth of finestructure
(black) and microstructure (red) measurements of the dissipation rate (ε)
as a function of depth. The shaded area denotes the 90% confidence inter-
vals derived as the 1.644 standard deviations from the mean (grey) and by
bootstrapping (red) respectively.
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mating mixing rates. We resolve the cutoff wavenumber of the spectra used

to estimate mixing and are therefore able to integrate the variance of the

shear and strain at the correct wavelengths (Section 4.2.3). Also, the EM-

APEX profiles are on average 2000 m off the seafloor, giving confidence in

our mixing estimates.

Thorpe-scale method vs. shear-strain parameterization

As explained in Section 4.2.1, on large spatial and time scales, both the

Thorpe scale and shear-strain parameterization methods should yield similar

results. Turbulent mixing estimates from Thorpe scales and microstructure

instruments have been shown to agree in previous studies (Ferron et al.,

1998; Klymak et al., 2008). In this study however, mixing estimates from the

Thorpe-scale method are limited by the instrument and small Thorpe scales

are likely under-sampled. Even with the under-sampling of small Thorpe

scales, we still obtain a similar overall mixing estimate with both methods

(9× 10−5 m2 s−1 with Thorpe-scales and 3× 10−5 m2 s−1 with shear-strain

parameterization), which suggests that large Thorpe scales dominate the

overall mean (Stansfield et al., 2001).

Both methods show a different mean vertical profile of turbulent diapyc-

nal diffusivity (Figure 5.20a) and care needs to taken when interpreting those

differences. There are only 2187 diffusivity estimates that go into estimating

the mean diffusivity profile from Thorpe-scales while there are 500140 esti-

mates of diffusivity to estimate the mean diffusivity profile from shear-strain

parameterization. Since the Thorpe scales are not distributed randomly in

the sample field (Figure 5.2b), the mean diffusivity profile from Thorpe-scales

is biased towards regions where large Thorpe scales dominate. Throughout

much of the water column, diapycnal diffusivity values derived using the

Thorpe-scale method are larger by a factor of two than values derived us-

ing shear-strain parameterization. The difference between the two methods

is greatest between 200 and 800 m and below 1200 m (Figure 5.20b). The

Thorpe-scale method overestimate diapycnal diffusivity above 800 m with re-

spect to the finescale parameterization, while between 800 and 1200 m, the
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Figure 5.20: (a) Depth averaged profiles as a function of depth of diapycnal
diffusivity (Kρ) from the EM-APEX data using shear-strain parameterization
(black) and Thorpe-scale parameterization (red). (b) Depth average profile of
the ratio of diapycnal diffusivity derived from Thorpe-scales to those derived
from shear-strain. Note that the shear-strain parameterization method limits
the data to a range between 200 and 1400 m.

Thorpe-scale method underestimates diapycnal diffusivity. It might be that

below 1200 m, the number of density overturns detected is too low to ac-

curately represent the mean diapycnal diffusivity distribution (Figure 5.1a).

We cannot tell how much of the difference between the mean diffusivity

profiles is driven by potential limitations in the physics of the shear-strain

parameterization method or by the resolution limitations of the Thorpe-scale

method.

Even though the Thorpe-scale method has limitations in this data set due

to instrument and vertical sampling resolution, both methods estimate sim-

ilar mixing magnitude. Interpretations of the Thorpe-scale derived mixing

values must take into account that the density data collected by the floats

are biased in favour of larger turbulent overturns.
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5.3.2 Topographic roughness vs. wind forcing

Overall, we identify roughness of the seafloor as the primary control of the

mixing at depths deeper than 300 m. Wind forcing also plays a role in the

mixing distribution, with evidence of wind driven mixing observed in the

upper 600 m of the water column. In an attempt to separate the relative con-

tributions to mixing by wind forcing and topographic roughness, we identify

regions where upward and downward energy propagation dominates using

log10(φCCW/φCW ) larger than 0.30 for downward energy propagation and

log10(φCCW/φCW ) smaller than −0.25 as a threshold for significant upward

energy propagation (Figure 5.21).
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Figure 5.21: Vertical distribution of the smoothed dissipation rate (ε) along
the floats’ trajectories (colour scale) and contours of downward propagation
(white contours) and upward propagation (red contours) φCCW/φCW values.
The vertical dashed lines separate floats.

In the EM-APEX data, we find a total vertical area of 900 m2 associated

with downward energy propagation and a vertical area of 700 m2 associated

with upward energy propagation. Assuming that (1) dissipation associated

with downward energy propagation is the result of surface generated internal

wave breaking and (2) dissipation associated with upward energy propaga-

tion is the result of breaking internal wave generated over rough topography,

we find that 37% of the dissipation rate observed has its origins at the surface

while 6% originates at the seafloor. The remaining 57% of the estimated dis-
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sipation rate is not within the thresholds for significant upward or downward

energy propagation and we therefore cannot attribute it to either surface or

seafloor origins. Note that this approach ignores other sources of downward

and upward propagating internal waves as well as ignoring surface reflection

and the given percentages are only indicative.

Regions with large values of φCCW/φCW match areas of high dissipa-

tion rate while regions with low φCCW/φCW values fail to overlap areas of

enhanced dissipation rate (Figure 5.21). We suggest that low φCCW/φCW

values as a diagnostic of upward propagating energy is not adequate for this

upper-ocean (200-1400 m) data.

5.3.3 Shear-to-strain variance ratio

The value of the shear-to-strain variance ratio (Rω) is of particular relevance

when estimating turbulent mixing rates globally. Temperature and salinity

measurements providing strain estimates are more readily available with the

advent of the Argo program than velocity data which provide shear esti-

mates. As a result, many studies use strain-only finescale parameterizations

rather than shear-strain parameterizations to estimate mixing (Sloyan, 2005;

Thompson et al., 2007; Wu et al., 2011; Whalen et al., 2012). These strain-

only parameterizations are based on assumptions about the local shear-to-

strain variance ratio, where the choice of Rω is based on observed Rω from

previous studies (Table 5.2).

In this study, Rω ranges from 1 to 19 with a mean value of 5.6. Rω is

similar in the Front and in the Polar Front Zone (Rω ' 5) but is overall

higher in the Subantarctic Zone (Rω ' 6)(Figure 5.22). We estimate the

sensitivity of the strain-only parameterization to the choice of Rω by ap-

plying a strain-only finescale parameterization to the EM-APEX data and

comparing the resulting mean mixing profiles (Figure 5.23). We apply three

constant Rω values: GM Rω = 3, Kunze et al. (2006) mean Rω = 7 and our

survey mean Rω = 5. Below 600 m, the resulting mean dissipation rate differs

by a factor of three depending on the choice of Rω. This is moderate since

the finescale parameterization is only expected to reproduce microstructure
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Whalen et al. (2012) Global - 3

Reference Location Measured Assumed
Rω Rω

Garrett and Munk (1975) North Atlantic Ocean 3 (mean) -
Polzin et al. (2003) Mid-latitude 5-11 (range) -
Naveira Garabato et al. (2004) Nordic Seas 8-14 (range) -
Sloyan (2005) Southern Ocean - 3
Kunze et al. (2006) Global abyssal mean 7 -
Thompson et al. (2007) Drake Passage - 10
Fer et al. (2010) Arctic 11 (mean) -
Wu et al. (2011) Southern Ocean - 7
EM-APEX floats Plateau 5.6 (mean)

Table 5.2: Measured and assumed range and mean value for the shear-to-
strain variance ratio (Rω) used in previous studies.

measurements within a factor of two (Polzin et al., 1995). The difference

between applying the shear-strain parameterization and the strain-only pa-

rameterization on the EM-APEX data assuming Rω = 3 is substantial: over

an order of magnitude (factor of 11) for the mean dissipation rate. Overall,

the mixing estimated with the shear-strain parameterization larger than the

mixing estimated with the strain-only parameterization, even when using the

mean Rω value from the data set as the constant Rω. This is likely a product

of the variations in Rω from point to point and profile to profile. Using the

overall mean Rω as a constant in the strain-only parameterization averages

both the horizontal and vertical variability of Rω, and impacts the resulting

mixing estimates.

These results suggests that improved knowledge of the spatial distribution

of the shear-to-strain variance ratio would considerably improve strain-based

parameterizations of the dissipation rate. Also, the uncertainties associated

with the strain-based parameterization with no Rω observations might be

higher than previously estimated (Wu et al., 2011).
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Figure 5.22: Mean vertical profiles as a function of depth of the shear-to-
strain ratio (Rw) in the Front (black), the Polar Front Zone (blue) and the
Subantarctic Zone (red). The vertical red dotted line indicate the GM value.
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Figure 5.23: Mean vertical profiles as a function of depth of the (a) dissipation
rate (ε) and (b) diapycnal diffusivity (Kρ) for Rω = 5 (black), Rω = 3
(red), Rω = 7 (blue) from strain-only parameterization, and from shear-
strain parameterization (thick black line).
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5.3.4 Water masses and mixing

There is growing evidence that enhancement of turbulent mixing over regions

of rough topography is affecting the abyssal stratification and circulation in

the Southern Ocean. Transformation of deep water in the Southern Ocean

closes the global overturning circulation (Sloyan and Rintoul, 2001). Quan-

tifying the impact of internal wave breaking, and therefore turbulent mixing,

on water mass transformation is key to understanding the global overturn-

ing (Nikurashin and Ferrari, 2013). In the EM-APEX depth-range (upper

1600 m), dissipation is largest at depths corresponding to AAIW. Nearly

50% of the total dissipation rate estimated in the EM-APEX data occurs in

AAIW, while 20% is in SAMW and 31% in UCDW.
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Figure 5.24: Mean vertical profiles as a function of depth of the dissipation
rate (ε) in the Front (black), the Polar Front Zone (blue) and the Subantarctic
Zone (red) in function of potential density (ρθ). The horizontal dotted lines
indicate ranges of water mass labelled in grey as defined in Section 3.1.

We investigate the impact of the dissipation rate on local water masses by
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estimating the dissipation rate distribution in terms of potential density for

each dynamical region (Figure 5.24). Overall, the Front is the region where

most of the mixing of the water mass takes place: 70% of dissipation rate

associated with AAIW is found in the Front. The Polar Front Zone also plays

an important role for all water masses: 25% of dissipation rate associated

with AAIW, 22% for SAMW and 45% for UCDW is found in the Polar

Front Zone. The Subantarctic Zone plays a small role for AAIW and has

no associated dissipation with UCDW, due to the depth range of instrument

(200-1400 m). The Front and Polar Frontal zone are clearly dominating in

terms of water mass mixing, in particular for AAIW and UCDW.

5.3.5 Summary

Robust mixing patterns associated with varied dynamical processes are iden-

tified. Overall, the mean diapycnal diffusivity in the Kerguelen Plateau area

is moderate, but local mixing intensities reach considerably high values (10−3

m2 s−1) and show strong spatial and temporal variability. Rough topogra-

phy is associated with mixing values typically three times higher than with

smooth topography. The most intense mixing is observed in the frontal jets.

We suggest that this enhanced mixing is the result of breaking internal waves

generated at the seafloor by the interaction of the Front with the topogra-

phy on the northern edge of the Kerguelen Plateau. Most of the mixing of

water masses takes place in the frontal jets and Polar Front Zone regions.

The observation of intense bursts of mixing in an eddy highlights the role

of relative vorticity on the dynamics of internal waves. In the Subantarctic

Zone, large atmospheric frontal zones seem to generate substantial amounts

of wind driven mixing in the upper 600 m of the ocean.
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6.1 Introduction

Oceanic internal waves are ubiquitous, with typical scales of kilometres and

hours. They are the result of the restoring action of buoyancy forces on

water parcels displaced from their equilibrium position (Kantha and Clayson,

2000, Chapter 6). Internal waves propagate both horizontally and vertically

through the ocean interior. The source of the disturbance to the density field

is typically at the surface of the ocean (wind forcing) or at the bottom of the

ocean (flow and topography interaction). Along their pathway, wave-wave

interactions and other processes cascade the internal wave’s energy to smaller

scales, until they break and dissipate (see Section 4.2.1).

Importantly, internal waves provide a link between large scale forcing

and small scale dissipation. The transport of momentum and energy within

the ocean by internal waves is likely a key in the meridional overturning

circulation (Osborn and Burch, 1980). Garrett and Munk (1979) once said

that “A full understanding of internal wave dynamics may be essential for a

comprehensive understanding of the mean ocean circulation”, and it is with

this statement in mind that we analyse horizontal velocity observations from

the Kerguelen Plateau region and describe the local internal wave field.

Coherent features are identified in the EM-APEX velocity profiles and

interpreted in terms of internal wave kinematics. Doing so, we make the

assumption that observed coherent features are internal waves as previously

done by Polzin (2008); Müller et al. (1978).

6.2 Internal wave theory

6.2.1 Governing equations

Momentum equations

The momentum equations in Cartesian coordinates on the f plane (Vallis,

2006, Chapter 2, Section 3) are

∂u

∂t
+

[
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]
= −1

ρ

dp

dx
+ 2Ωvsin(φ) + Fx, (6.1)
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∂v

∂t
+

[
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

]
= −1

ρ

dp

dy
− 2Ωusin(φ) + Fy, (6.2)

∂w

∂t
+

[
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

]
= −1

ρ

dp

dz
+ [2Ωucos(φ)]− g + Fz, (6.3)

where u = (u, v, w) are respectively the position vector r = (x, y, z) compo-

nents of the velocity in Cartesian directions, z is measured vertically upward,

p and ρ are the pressure and the density of the fluid respectively, Ω is the

rate of rotation of the Earth about its axis and g is the gravity. Assuming

that the Rossby number is small and since 2Ωucos(φ) is much smaller than

g, the terms in square brackets [ ] can be ignored.

When defining the Coriolis frequency as f = 2Ωsin(φ) and removing the

friction terms (Fx, Fy, Fz), (6.1), (6.2) and (6.3) become

∂u

∂t
− fv = −1

ρ

dp

dx
, (6.4)

∂v

∂t
+ fu = −1

ρ

dp

dy
, (6.5)

∂w

∂t
= −1

ρ

dp

dz
− g. (6.6)

From the conservation of mass, a compressible fluid must satisfy the conti-

nuity equation

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0, (6.7)

which is equivalent to

1

ρ

Dρ

Dt
+
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (6.8)

In the context of an incompressible fluid where the density equation is

1

ρ

Dρ

Dt
= 0, (6.9)
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we rewrite (6.8) as

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (6.10)

Next, we consider a pressure and density perturbation from the state of rest.

The equation for fluctuating components of the density equation is

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ̄

∂z
+ w

∂ρ

∂z
= 0, (6.11)

where the overbar indicates the mean state. The nonlinear terms u(∂ρ/∂x),

v(∂ρ/∂y) and w(∂ρ/∂z) can be ignored for small amplitude motions and (6.18)

then becomes

∂ρ

∂t
+ w

∂ρ

∂z
= 0. (6.12)

To summarise, the momentum equations of a continuously stratified, incom-

pressible, homogeneous fluid on the f plane with density ρ and subject to

small perturbations about the background state of rest are

∂u

∂t
− fv = − 1

ρ0

∂p

∂x
, (6.13)

∂v

∂t
+ fu = − 1

ρ0

∂p

∂y
, (6.14)

∂w

∂t
+ g

ρ

ρ0
= − 1

ρ0

∂p

∂z
, (6.15)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (6.16)

∂ρ

∂t
+ w

∂ρ

∂z
= 0, (6.17)

where (u, v, w) are the (x, y, z) components of the velocity, p is the pressure,

f = 2ω sinφ is the Coriolis frequency, where φ is latitude and ω is the rotation

rate of the earth, and ρ is the density defined as

ρ = ρ0 + ρ(z) + ρ′(x, y, z, t) (6.18)
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where ρ0 is the reference density and the overbar indicates the mean state.

Defining the buoyancy as b = −gρ/ρ0, equation ( 6.15) can be re-written as

∂w

∂t
= − 1

ρ0

∂p

∂z
+ b. (6.19)

Using the Boussinesq approximation (Cushman-Roisin and Beckers, 2006,

Section 3.7), we approximate ρ by a constant reference density ρ0 unless it

is coupled with gravity. A more detailed discussion on the derivation of the

momentum equations can be found in Vallis (2006).

Buoyancy oscillations

In the case of u = v = p = ∂w/∂z = 0, we can combine (6.17) and (6.15) to

give

∂2w

∂t2
+N2w = 0, (6.20)

where we have defined the buoyancy frequency as the frequency at which

vertical motions oscillate in the fluid

N =

√
∂b̄

∂z
=

√
− g

ρ0

∂ρ̄

∂z
. (6.21)

Dispersion relation

The direction of a plane wave’s phase propagation is the three-dimensional

wave vector p = (k, l,m), where m is the vertical plane component, also

called the vertical wavenumber and where k and l combine as the horizontal

wave vector k = (k, l). The azimuth (ϕ) of the horizontal wave vector is

ϕ = tan−1( l
k
), while its magnitude, the horizontal wavenumber kh = |k| =

(k2 + l2)1/2 (Figure 6.1).

To obtain the dispersion relation Phillips (1977), assumed that the back-

ground stratification was constant. The internal wave variables can then be

written in the form of plane wave solutions
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w = w0e
ikx+ily+imz−iωt = w0e

i[r.p−ωt], (6.22)

where ω is the observed frequency. The observed frequency ω, often referred

to as the “Eulerian” frequency, is the Doppler shifted frequency measured

by a stationary observer as opposed to the intrinsic frequency (ω0) measured

while moving with the mean flow (Ū)

ω0 = ω − k · Ū. (6.23)

Note that in the absence of a mean flow, both frequencies are equal.
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! 

Figure 6.1: Coordinate system used to describe internal waves. The wave
vector p is given by p = (k, l,m) while the horizontal wave vector (k) is
k = (k, l) in the direction of increasing (x,y,z). The horizontal azimuth (ϕ)
of the horizontal wave vector determines the orientation of the wave vector
in the horizontal plane.

In the linearised momentum equations (6.13), (6.14), (6.15), (6.16), and (6.17),

the independent variables, which are the vorticity and pressure terms, can
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be eliminated to obtain the internal wave equation in vertical velocity (see

Appendix C for details)(
∂2

∂t2
+ f 2

)
∂2w

∂z2
+∇2

hw

(
N2 +

∂2

∂t2

)
= 0, (6.24)

where ∇2
h = ∂/∂x2 + ∂/∂y2 is the horizontal Laplacian operator.

Substituting the plane wave solution (6.22) into the internal wave equa-

tion (6.24) yields the dispersion relation

ω2
0 =

f 2m2 +N2k2h
m2 + k2h

, (6.25)

which can be rewritten as

k2h
m2

=
f 2 − ω2

0

ω2
0 −N2

. (6.26)

Polarisation relations

Assuming a constant stratification and plane wave solutions where the vari-

ables are proportional to ei(p.r−ωt), the dependent variables can be expressed

in terms of wave amplitude (a) (see Polzin and Lvov (2011) for equations).

These polarisation relations lead to three diagnostics that we will be using

in Section 6.2.2.

The first diagnostic provides an estimate of the ratio of horizontal kinetic

energy (Ek) to potential energy (Ep) for a single internal wave
Ek
Ep

=
ω2
0 + f 2

ω2
0 − f 2

. (6.27)

The second diagnostic allows us to estimate the ratio of velocity variance

in the clockwise (Ecw) and counterclockwise (Eccw) rotating components (ro-

tary ratio) using the near inertial rotation of the velocity vector (u) due to

the rotation of the Earth. The velocity vector draws an elliptical helix with

depth, in which the ratio of velocity variance in the Ecw and in the Eccw

rotating component is

Ecw
Eccw

=
(ω0 + f)2

(ω0 − f)2
, (6.28)
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where the convention is that a positive intrinsic frequency implies downward

phase (and therefore upward energy) propagation of the internal wave, which

corresponds to CW dominance in the Southern Hemisphere (Polzin and Lvov,

2011).

The third diagnostic provides an estimate of the horizontal azimuth (ϕ) of

the wave vector (k). This diagnostic estimates the phase between the rotary

velocity components (CW = u− iv and CCW = u + iv) and the buoyancy

perturbation b. Note that u, v, b, CWW and CW are Fourier coefficients and

therefore are complex. In the Southern Hemisphere, the observed phase (ϕ0)

depending on which rotary velocity component (CCW or CW) dominates is

ϕ0 = CWb∗ = tan−1(
−k
−l

)and (6.29)

ϕ0 = CCWb∗ = tan−1(
k

−l
), (6.30)

where (∗) represents the complex conjugate of b. Both (6.29) and (6.30) are

coherence estimates in the spectral domain. The observed phase (ϕ0) of the

rotary velocity component can be interpreted as the horizontal azimuth (ϕ)

of the horizontal wave vector in polar coordinates as

ϕ = tan−1
− cos(ϕ0)

sin(ϕ0)
(6.31)

for waves with a velocity vector rotating CCW and

ϕ = tan−1
− cos(ϕ0)

− sin(ϕ0)
(6.32)

for waves with a velocity vector rotating CW. See Appendix C.1 for deriva-

tions.

6.2.2 Properties of internal waves

Vertical wavenumber

By re-arranging the dispersion relation equation (6.26), we obtain an equa-

tion for the vertical wavenumber (m)
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m = ±kh
[
N2 − ω2

0

ω2
0 − f 2

]1/2
. (6.33)

Equation (6.33) implies that for ω0 > f , we have m > 0. Consequently,

in the Southern Hemisphere, if the intrinsic frequency of the internal wave

(ω0) is larger than the inertial frequency (f), the horizontal velocity vector

is rotating in a counterclockwise manner.

Group velocity

The group velocity (Cg) is the gradient of the intrinsic frequency in the

vertical wavenumber space:

Cg =

[
∂ω0

∂k
,
∂ω0

∂l
,
∂ω0

∂m

]
, (6.34)

Cg =

[
k(N2 − ω2

0)2

ω0m2(N2 − f 2)
,

l(N2 − ω2
0)2

ω0m2(N2 − f 2)
,−(ω2

0 − f 2)(N2 − ω2
0)

ω0m(N2 − f 2)

]
, (6.35)

which we can reformulate (see Appendix C.2 for details) under the hydro-

static approximation (ω0 ' f and ω0 6 N) as

Cg '
[
kN2

ω0m2
,
lN2

ω0m2

]
, (6.36)

and therefore the magnitude Cg of the vector Cg is

Cg =

√(
kN2

ω0m2

)2

+

(
lN2

ω0m2

)2

. (6.37)

The parameters and diagnostics described in this section are summarized in

Table 6.1.

6.3 Internal wave analysis method

Identifying internal waves and extracting their properties from observations

is challenging. In this section, we explain how we obtained the properties of
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Local Coriolis frequency f0 = 1× 10−4 [s−1]

Intrinsic frequency ω0 = ω − k · u [s−1]

Wave vector p = (k, l,m)

Horizontal wavenumber kh = (k2 + l2)1/2 [cpm]

Dispersion relation
k2
h

m2 =
f2−ω2

0

ω2
0−N2

Energy ratio Ek

Ep
=

ω2
0+f2

ω2
0−f2

Rotary ratio Ecw

Eccw
= (ω0+f)2

(ω0−f)2

Vertical wavenumber m = ±kh
[
N2−ω2

0

ω2
0−f2

]1/2
[cpm]

Group velocity Cg =

[(
kN2

ω0m2

)2
+
(

lN2

ω0m2

)2]1/2
[ms−1]

Table 6.1: Parameters and relations based on single plane wave solutions of
the form eikx+ily+imz−iωt to the linearized equations of motion (Section 6.2.1).

46 internal waves in the region of the Kerguelen Plateau applying linear wave

theory to coherent features in vertical profiles of horizontal velocity. The ve-

locity profiles were collected over two and a half months by eight EM-APEX

profiling floats. This analysis is restricted to depths at which the theory can

be applied and where velocity observations are available (200 to 1600 m).

Diagnostics for this analysis are based on linear internal wave kinematics

summarised in Table 6.1. In this Section we demonstrate the method by pre-

senting the analysis of one of the 46 coherent feature identified as “coherent

feature number 5”. The same method was applied to all identified coherent

features.

6.3.1 Identifying coherent features

The time-depth series of the velocity profiles shows the presence of many

coherent features. We define ‘feature number 5’ as the coherent feature that

ranges from approximately profile 64 to profile 76 between 600 and 1000 m

in float 3761 velocity data (Figure 6.2). Altogether, coherent features are

found in 400 profiles out of 914 velocity profiles available.

The horizontal velocity anomaly profiles help identify the coherent feature
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location and carry information about the phase propagation of the associated

internal wave. By tracking the peaks in velocity anomalies, we can determine

the direction of rotation of the velocity vector and deduce the phase propaga-

tion (Figure 6.3). Connecting each point on the horizontal plane either gives

a CW or CCW rotation. Here, the CCW motion indicates downward energy

propagation that corresponds to upward phase propagation of the observed

coherent feature (Figure 6.3b).
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Figure 6.2: a) Time series of profiles of horizontal velocity anomaly (float
3761): eastward horizontal velocity u′ (dark blue) and northward horizontal
velocity v′ (cyan). Feature 5 is identified by the coherence in velocity anomaly
(blue shading). Missing profile numbers are the results of the float’s sampling
strategy (Figure 2.4). b) East horizontal velocity profiles u (dark blue), north
horizontal velocity v (cyan) and corresponding smoothed profiles (black).

6.3.2 Wavelength, frequency and period

Next we consider the vertical wavenumber and energy spectra for the profiles

in which coherent feature number 5 is identified. Kinetic energy, matched by

downward (CCW) motions exceeds potential and upward (CW) energy at

the internal wave frequencies (Figure 6.4). A major downward energy peak

matched by a kinetic energy peak with a vertical wavenumber m = 0.01

cpm is identified as the spectral signature of coherent feature number 5. The
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Figure 6.3: (a) As Figure 6.2a, but the vertical dotted lines indicate the mean
horizontal velocity value of u (dark blue) and v (cyan) for profile 65, while
the arrow indicates the sampling direction. (b) The equivalent location in
polar coordinates of each velocity peak are plotted and linked indicating a
CCW propagation of the horizontal wave vector.

downward energy peak on the spectra confirms the earlier finding of upward

phase propagation (Figure 6.3b).

From the vertical wavenumber (m) of the feature, we estimate the co-

herent feature vertical wavelength λ = 1/m = 206 m. We also estimate

the feature intrinsic frequency (ω0) by re-arranging the energy ratio equa-

tion ω0 = f0[(Ep + Ek)/(Ek − Ep)]1/2 = 1.09× 10−4 rad s−1 (Table 6.1, see

Appendix C for details) where we use the observed energy ratio estimates

from the spectra. Subsequently, we estimate the coherent feature’s period

(T) T = 1/ω0 = 5.7× 104 s=15.9 hours.

We apply a“WKB scaling” of the vertical coordinates (e.g. Müller et al.,

1986; Henyey et al., 1986; Alford, 2001; Polzin, 2008; Sun and Pinkel, 2012;

Klymak et al., 2013), where a mean profile of the buoyancy frequency (N)

defines the scaled coordinates

zWKB =
1

N0

∫ z

0

N(z′)dz′, d, (6.38)
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Figure 6.4: Potential (Ep) and kinetic (Ek) energy as well as CW (Eupward)
and CCW (Edownward) rotary spectra in terms of stretched vertical wavenum-
ber of horizontal velocity profiles 64 to 76 (float 3761) computed using data
between 402 to 1126 m. The vertical black dashed line indicates the cut-off
wavenumber position and its corresponding cut-off wavelength (λc) is given.
Feature number 5 is identified by the peak in both kinetic and downward
(CCW) energy at vertical wavenumber ∼ 1× 10−2 cpm (blue shading).
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where N0 = 3cph is the reference N (Garrett and Munk, 1972). The scaling

of N results in ’stretched’ variables such as depth, wavenumber, wavelength

in WKB coordinates (Figure 6.4).

The Wentzel-Kramers-Brillouin (WKB) approximation is a semi-classical

calculation in quantum mechanics. It is used to obtain an approximate so-

lution to a time-independent one-dimensional differential equation (here a

linear wave equation). It involves recasting the wave function as an expo-

nential power series to recover approximate solutions for the wave phase and

slowly varying amplitude. Slowly varying refers to the fact that within a

small area, the wave function is well approximated by a plane wave and that

the wavelength only varies over distances much larger than the wavelength.

The problem was first solved by Lord Rayleigh (1912) who solved the con-

nection of solutions on opposite sides of a turning point. Subsequently, the

solution was re-discovered almost simultaneously by Wentzel (1926), Kramers

(1926) and Brillouin (1926), who published applications of this theory to the

Schrödinger equation.

6.3.3 Horizontal wavenumber

The horizontal wavenumber (kh) of the coherent feature can be estimated

using the dispersion relation (see Table 6.1) where the hydrostatic approxi-

mation (ω2
0 � N2) has been applied such that kh = ±m/N(ω2

0 − f 2)1/2 =

5.7× 10−4 rad m−1. Here we use N = N0 = 0.00524 s−1 = 3 cph to match

the stretched coordinates (Equation 6.38). We then estimate the horizontal

wavelength of feature number 5 λh = 2π/kh = 1.5× 104 m=15 km.

6.3.4 Horizontal wave vector azimuth and group ve-

locity

From the spectral coherence we can examine the relation between the ro-

tary (either CCW or CW) and buoyancy perturbations. The analysis of the

coherence between the rotary (CCW in this case) and the buoyancy per-

turbations shows a peak in the rotary coherence that matches the peak in
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Figure 6.5: Rotary-buoyancy coherence (a) [CWb∗], (c) [CCWb∗] and phase
(b) [CWb∗], (d) [CCWb∗] estimates for feature number 5 (profiles 64 to 76,
float 3761). Feature number 5 peak in coherence and corresponding phase
points are shaded in blue.

the energy spectrum at approximately 0.01 cpm (Figure 6.5c). The peak

in the rotary coherence corresponds to a mean phase ϕ0 = 1.7 rad (Fig-

ure 6.5d). From the peak in the phase coherence, we estimate the horizontal

wave vector (k) components (k, l) where k = −Khcos(ϕ0) = 4 × 10−4 and

l = −Khsin(ϕ0) = −5 × 10−5 (when CCW rotation). For a feature with a

peak in the CW, k = Khcos(ϕ0) and l = −Khsin(ϕ0).

The horizontal azimuth (ϕ = 173◦) of the horizontal wave vector of the

coherent feature can be estimated as the angle between the vectors k and l. A

horizontal azimuth ϕ = 173◦ indicates that feature number 5 is propagating

westward.

The intrinsic group velocity of feature number 5 (Cg = 0.023 m s−1) is

estimated using equation 6.37, using the k and l vectors derived above. We

set N = N0 = 0.00524 s−1 to account for stretched coordinates.
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6.3.5 Wave-mean interactions

Some properties of the coherent features with regards to the flow field can

also be estimated: the Doppler shift associated with advection by the mean

flow as well as wave-mean interaction timescales.

Doppler shift

The Doppler shift is defined as k · u = kū + lv̄ where ū and v̄ are the

mean absolute velocity estimates for the selected profiles at the depth of

the coherent feature ((ū, v̄) = (0.2,−0.3)m s−1 see Figure 6.2b). A positive

Doppler shift works against the flow and vice-versa, a negative Doppler shift

works with the flow field. In the case of feature number 5, the Doppler

shift, k · u =9.5× 10−5 rad s−1, is similar to the local inertial frequency

f =−1.05× 10−4 s−1. Note that confidence in Doppler shift estimates de-

pends on the accuracy of the horizontal wave vector azimuth and therefore

the rotary phase estimate.

Interaction timescales

We consider a dissipation timescale (τε)

τε =
2E

εGM

(
λcGM
λc

)2

, (6.39)

where E =
∫
EP + EK = 0.0011 m2s−2 is the total energy contained in the

peak associated with the coherent feature on the energy spectrum, εGM =

8× 10−10 m2s−1 is the GM76 reference dissipation rate, λcGM = 10 m is the

GM76 reference critical wavenumber and λc = 20 m is the observed critical

wavenumber for internal wave (5). We find τε = 7.0× 105 s = 8 days for

internal wave (5).

We also consider a propagation timescale (τprop) that estimates the time

it would take for the internal wave to propagate away from the flow field

τprop =
LRo
Cg

, (6.40)
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where we approximate the local Rossby radius of deformation to LRo = 15000

m. The propagation timescale for feature number 5 is τprop =6.4× 105 s=8 days.

A coherent feature with a dissipation timescale shorter than its propaga-

tion timescale indicates local dissipation of the feature. If the propagation

timescale is shorter, then the coherent feature dissipates elsewhere.

Summary

This method is applied to 46 identified coherent features and the resulting

properties are presented in the next section. All the coherent features and

their properties are individually listed in Table 6.2 and Table ??. Note that

this analysis only applies to single linear internal waves.
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Float Profiles Peak Depth λ λh m φ Dshift Cg T τε τprop

×10−3

3 3761 38-44 Ek down 800 101 6.3 0.02 -5◦ 0.31 1.4 15.7 0 12
5 3761 64-76 Ek down 800 205 15.0 0.01 173◦ 0.09 2.3 15.9 8 7
6 3761 80-84 Ek up 350 162 4.4 0.01 42◦ -0.40 3.3 13.1 20 5
7 3761 105-114 Ek down 400 321 31.9 0.006 -92◦ 0.03 3.1 15.9 16 6
8 4051 5-10 Ek 700 188 19.8 0.009 114◦ -0.12 2.6 16.6 4 7
9 4051 29-48 Ek down 900 214 14.7 0.009 47◦ 0.08 3.2 16.2 30 5
10 4051 46-53 Ek up 300 255 32.3 0.007 134◦ -0.07 2.6 17.3 9 7
11 4051 54-64 Ek down 500 161 11.2 0.01 70◦ 0.28 3.1 16.5 5 6
12 4051 73-86 Ek down 600 182 19.2 0.009 14◦ 0.001 2.6 17.2 10 7
13 4051 64-78 Ek down 600 90.3 13.3 0.02 22◦ 0.12 0.9 17.7 5 18
15 3951 40-46 Ek down 500 97.1 12.9 0.02 -27◦ 0.04 1.1 16.9 7 16
16 3951 34-40 Ek down 300 196 30.9 0.008 -43◦ 0.09 2.0 16.9 68 9
17 3951 4-11 Ek down 400 64.8 5.2 0.025 -54◦ 0.74 1.3 16.0 9 14
18 3950 4-20 Ek down 800 198 11.9 0.011 -119◦ 0.05 2.8 16.0 80 6
19 3950 20-24 Ek down 800 258 12.4 0.008 -156◦ 0.002 4.5 15.3 14 4
20 3950 25-30 Ek up 1000 227 11.3 0.009 -152◦ 0.031 4.1 15.3 16 4
21 3950 30-37 Ek up 1000 138 7.8 0.017 -102◦ -0.02 1.8 15.9 10 10
22 3950 49-54 Ek up 1000 313 21.6 0.007 -38◦ -0.03 3.5 16.2 8 5
23 3950 66-77 Ek up 700 218 14.4 0.010 23◦ -0.06 2.8 15.8 20 6
24 3764 5-14 Ek down 400 78.3 13.5 0.023 -171◦ 0.003 0.6 17.2 1 29
25 3764 14-22 Ek Up 800 193 19.2 0.009 10◦ -0.07 2.5 17.0 11 7
26 3764 22-33 Ek down 700 192 19.3 0.009 -144◦ -0.10 2.9 17.1 10 6
27 3764 52-80 Ek down 600 123 13.1 0.014 128◦ -0.06 1.7 17.1 1 10
28 3764 65-70 Ek down 400 163 19.9 0.012 126◦ -0.03 1.6 17.2 20 11
29 3764 112-122 Ek down 600 118 9.5 0.015 138◦ -0.05 1.9 16.2 1 9
30 3764 148-154 Ek down 700 136 21.3 0.015 141◦ 0.0002 0.9 16.9 10 19
31 3952 74-81 Ek up 500 338 18.0 0.006 13◦ -0.05 6.3 15.1 3 3
32 3952 84-93 Ek up 1000 181 11.6 0.015 -57◦ -0.03 1.6 16.0 1 11
33 3952 102-110 Ek up 1000 122 7.4 0.020 40◦ -0.17 1.3 15.8 1 13
34 3952 134-138 Ek up 900 180 24.8 0.013 -54◦ -0.09 1.0 16.2 13 18
35 3952 146-150 Ek up 600 141 14.0 0.014 153◦ 0.20 1.4 15.8 18 13
36 3952 160-166 Ek down 600 359 14.7 0.006 -28◦ 0.18 7.1 14.1 53 2
37 3952 169-174 Ek down 700 200 12.3 0.011 6◦ 0.22 2.8 15.3 109 6
38 3760 87-94 Ek down 700 255 16.2 0.008 -16◦ 0.08 3.4 15.8 32 5
39 3760 95-99 Ek down 900 198 20.6 0.013 -77◦ 0.06 1.2 16.4 118 15
40 3760 116-126 Ek up 800 226 12.2 0.011 -24◦ -0.06 2.8 15.5 81 6
41 3760 186-191 Ek up 800 298 15.2 0.008 -15◦ -0.03 4.0 15.2 12 4
42 3760 204-210 Ek up 1100 173 8.4 0.017 -44◦ -0.03 1.6 15.6 87 11
43 3760 234-239 Ek up 600 135 13.9 0.015 41◦ 0.04 1.2 16.0 34 14
44 3762 4-21 Ek up 600 165 9.5 0.012 -30◦ -0.04 2.6 15.7 21 7
45 3762 85-90 Ek down 900 329 13.4 0.007 38◦ 0.12 6.0 14.8 24 3
46 3762 176-180 Ek down 900 208 14.6 0.010 -41◦ 0.18 2.8 16.2 31 6
47 3762 190-194 Ek down 600 171 11.3 0.012 -122◦ -0.28 3.0 15.5 80 6
48 3762 208-210 Ek down 600 159 - 0.012 144◦ - - - 47 -
49 3762 216-220 Ek down 500 216 14.1 0.008 -25◦ -0.21 4.3 15.6 25 4
50 3762 240-244 Ek down 300 131 20.2 0.014 58◦ 0.04 1.0 17.3 212 17

Table 6.2: Properties of internal waves (1 to 50) from the EM-APEX data
set: internal wavenumber, float number, profiles in which the coherent fea-
ture was identified, spectral peak and energy propagation, depth of feature
[m], vertical wavelength (λ) [m], horizontal wavelength (λh) [km], vertical
wavenumber (m) [cpm], horizontal azimuth (φ) [◦], Doppler Shift [rad s−1],
group velocity (Cg) [cm s−1], period (T) [hour], dissipation time-scale (τε)
[day] and propagation time-scale (τprop) [day].
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6.4 Internal wave results

6.4.1 General properties of the internal waves

In the EM-APEX float data set we observe 50 coherent internal wave fea-

tures, 4 of which have ambiguous spectral signals and are discarded. In the

remaining 46 coherent features, 20 have energy propagating upwards and 26

energy propagating downwards (Table 6.2 and ??). On average, 8 vertical

profiles of horizontal velocity are considered in the analysis of each coherent

feature. The location of the identified coherent features in the water column

is relatively evenly distributed between 200 and 1000 m with the maximum

number of coherent features observed at 600 m depth. Features are scarce

above 200 and below 1000 m (Figure 6.6a).

0 2 4 6 8 10 12

0

200

400

600

800

1000

1200

D
e
p
th

 [
m

]

Number of internal waves

  0.0005 30

210

60

240

90

270

120

300

150

330

180 0

  0.0005 30

210

60

240

90

270

120

300

150

330

180 0

a b c

Azimuth [
o
] Azimuth [

o
]

Figure 6.6: (a) Number of coherent features observed as a function of depth.
(b) and (c) Azimuth in polar coordinates of observed coherent features on the
horizontal plane for upward propagating coherent features (red) and down-
ward propagating features (blue). The length of the vector is proportional
to the group velocity of each feature. The azimuth is positive CCW from the
x-axis.

The identified coherent internal waves features in the vicinity of the Ker-

guelen Plateau have approximately a mean vertical wavelength of 200 m and

a mean horizontal wavelength of 15 km. The average period (T ) is 16 hours,

which is close to the local inertial period (17 hours at 45°S) and the mean

horizontal group velocity (Cg) is 3 cm s−1. Coherent features with smaller
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period (higher frequency) typically have higher group velocity (Figure 6.7a).

The aspect ratio of ocean surface waves is usually one. Here, we find that the

average aspect ratio (λh/λ) of the coherent features is 0.015 (Figure 6.7b).
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Figure 6.7: (a) Relation between the horizontal group velocity (Cg) and the
period (T) of each coherent feature and (b) relation between the vertical
wavelength (λ) and the horizontal wavelength (λh).

The mean dissipation timescale (τε = 30 days) for the coherent features

is larger than the mean propagation timescale (τprop = 9 days) by a factor of

three. Deeper features (where deep is defined as between 750 and 1200 m)

propagate 25% faster than shallow features (above 550 m). Overall, down-

ward propagating coherent features travel in all directions but upward prop-

agating features have a tendency to propagate southeast on the horizontal

plane (Figure 6.6 b and c). Upward propagating and downward propagating

coherent features have similar horizontal and vertical wavelengths, periods

and propagation timescales (Table 6.3).

6.4.2 Distribution of the internal waves with regard to

the flow field

The coherent features are scattered along the trajectories of the floats, with

most features located near the northern edge of the Kerguelen Plateau, in

the Front and in the eddy (Figure 6.8).

Coherent features with upward energy propagation are on average 100 m
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Figure 6.8: Properties of the propagation and location of coherent features
over topography contours (grey). The arrow size is proportional to the hori-
zontal intrinsic group velocity of the feature (large arrow is high group veloc-
ity) and its colour indicates the energy propagation direction (red is upward;
blue is downward). Also indicated in pale brown is the mean location of
the Front and the eddy during the sampling period, corresponding to mean
surface geostrophic speeds of 0.38 m s−1 between the 18/11/2008 and the
30/01/2009. Topography contours range from 600 to 3200 m at 200 m inter-
vals. The black dotted lines indicate the eight EM-APEX floats’ trajectories.
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Propagation Upward Downward

Parameter Median Standard Median Standard
value deviation value deviation

Depth of wave 800 220 600 180
(m)
Latitude of wave 46◦S 2◦ 44◦S 2◦

(◦)
Vertical wavelength 200 66 190 65
(m)
Horizontal wavelength 12 6 14 7
(km)
Period 16 1 16 3
(hours)
Group velocity 2.6 1 3.0 1
(cm s−1)
Dissipation timescale 20 23 38 49
(days)
Propagation timescale 9 4 9 6
(days)

Table 6.3: Median values and standard deviations of parameters for upwards
and downwards propagating internal waves.

deeper than features with downward energy propagation and appear clus-

tered in the southern range of the sampling area (higher latitudes), closer to

the Kerguelen Plateau, while features with downwards energy propagation

are mostly located away from the Plateau (lower latitudes, see Table 6.3).

Observing deep upward-propagating coherent features closer to the Plateau

could be the signature of internal waves generated on the seafloor through

the interaction of the flow (either ACC or tidal) and rough topography.

Downward-propagating coherent features are likely to be wind generated in-

ternal waves (see Section 1.2.1) but can also be the result of background wave

field internal waves that have been reflected for example in a critical layer

situation.
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6.4.3 Distribution of the internal waves with regard to

the mixing field

It is noteworthy that the location of nearly all observed coherent features

matches areas of high dissipation rate as estimated with the shear-strain

finescale parameterization (Figure 6.9a). This is to be expected since large

amplitude features are likely associated with large vertical shears leading

to large dissipation rates under the assumptions of the finescale parameter-

ization (Chapter 4.1.2). Indeed, observing coherent internal waves in the

EM-APEX data set implies large wave amplitudes (necessary for their iden-

tification). Identifying coherent features in the areas where finescale param-

eterization predicts higher dissipation values makes both the internal wave

analysis and the shear-strain parameterization consistent with each other.
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Figure 6.9: Top panel: along float trajectory distribution of the dissipation
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tures identified and the direction of wave propagation where red is upwards
and blue is downwards. The vertical dashed lines separate floats. Bottom
panel: along float trajectory topographic roughness var(H) as defined in Sec-
tion 5.2.1.

To identify the potential dynamics behind the generation of the observed
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coherent features, we separate the features as a function of their location:

either in the Polar Front Zone, Front, eddy or Subantarctic Zone. This is

done by applying definitions used in Chapter 5. The typical properties of

coherent features for each region are described next (see Table 6.4).

In the Polar Front Zone, 71% of the coherent features are upward prop-

agating. A typical feature is observed at 800 m depth and has a vertical

wavelength λ = 226 m, a horizontal wavelength λh = 15 km and a period

T = 16 hours. A coherent feature in the Polar Front Zone will propagate

through the mean flow four times faster than it would take it to dissipate.

In the Front, nearly 38% of the coherent features are upward propagating.

A typical feature is observed at 700 m depth and has a vertical wavelength

λ = 170 m, a horizontal wavelength λh = 12 km and a period T = 16

hours. A coherent feature in the Front will propagate through the mean flow

approximately twice as fast as it would take it to dissipate.

In the eddy, 23% of the coherent features are propagating upward. A typ-

ical feature is observed at 500 m depth and has a vertical wavelength λ = 182

m, a horizontal wavelength λh = 18 km and a period T = 17 hours, consis-

tent with lower inertial frequencies at lower latitudes. A coherent feature in

the eddy will propagate through the mean flow approximately as fast as it

would take it to dissipate.

In the Subantarctic Zone, none of the coherent features are propagating

upwards. A typical feature is observed at 600 m depth and has a vertical

wavelength λ = 131 m, a horizontal wavelength λh = 17 km and a period T =

17 hours. A coherent feature in the Subantarctic Zone will dissipate twice

as fast as it would propagate through the mean flow. Since the mean water

depth in Subantarctic Zone is 3600 m and the EM-APEX sample between

200 and 1200 m, we might not sampling deep enough to observe upward

propagating features.

Mean group velocities are higher in the Polar Front Zone (Cg = 3 cm s−1)

and in the eddy (Cg = 3 cm s−1) but they are particularly low in the Sub-

antarctic Zone (Cg = 1 cm s−1).

The Doppler shift is one of many parameters that will impact the prop-

agation of internal waves. The Doppler shift is an advection parameter of
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Parameter Polar Front Front Eddy Subantarctic
Zone Zone

Number of 17 13 13 3
internal waves
Proportion of upward 71% 38% 23% 0%
propagating waves
Depth of wave 800 700 500 600
(m)
Vertical 226 170 182 131
wavelength (m)
Horizontal 15 12 18 17
wavelength (km)
Period 16 16 17 17
(hours)
Doppler shift 0.4 1.8 0.7 0.4
over f (rad)
Horizontal group 3 2 2 1
velocity (cm s−1)
Dissipation 20 18 10 10
timescale (days)
Propagation 6 7 7 17
timescale (days)
Watercolumn 3500 3500 3900 3800
depth (m)
Topographic 15000 10500 6000 8500
roughness (m2)
Wind speed 7 8 8 10
(m s−1)
Mean flow 0.2 0.4 0.4 0.2
speed (m s−1)
φCCW /φCW 1 2 2 2

Rω 6 5 7 7

Dissipation 4× 10−10 15× 10−10 6× 10−10 1× 10−10

(W kg−1)

Table 6.4: Median values of parameters for observed coherent internal waves
features as well other associated parameters separated by dynamical regions.
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the flow that affects the orientation of the wave with regard to the flow:

large Doppler shifts will lead to the filamentation of an internal wave in the

same manner as a passive tracer will be filamented when the rate of strain

exceeds the relative vorticity (Bühler and McIntyre, 2005; Polzin and Lvov,

2011). Note that both strain and vorticity refer to the spatial gradients of

the advecting field. The filamentation process tends to reduce the angle be-

tween the horizontal wave vector and the flow gradients. The Doppler shift,

local inertial frequency (f) and the orientation of the coherent features with

regard to the flow (angular displacement) are estimated.
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Figure 6.10: Angular displacement (◦) between the wave’s azimuth and the
flow azimuth in the (a) Polar Front Zone, (b) Front, (c) eddy and (d) Sub-
antarctic Zone. The magnitude of the vector is proportional to the ratio
of Doppler shift over local inertial frequency (f). Internal waves with an
angular displacement close to 90o are perpendicular to flow; internal waves
with an angular displacement close to 0o are parallel to flow and the angular
displacement is positive CCW from the x-axis.

A ratio of Doppler shift to f equal or larger than one suggests the Doppler

shift is significant for that coherent feature. We find that the Doppler shift

is especially significant in the Front, as well as in the eddy and especially low
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in the Subantarctic Zone (see Table 6.4 and Figure 6.10). We also estimate

the orientation of the coherent features with regard to the flow gradient

(angular displacement between the features’ horizontal wave vector and the

local flow’s horizontal velocity vector, Figure 6.10). Angular displacements

close to 90◦ indicate the coherent feature is perpendicular to the flow while

angular displacements close to 0◦ or 180◦ indicate the coherent feature is

parallel to the flow. We find that particularly large Doppler shift to f ratios

are associated with coherent features parallel to the flow (median angle is 30◦)

while small Doppler shift to f ratios are associated with coherent features

near perpendicular to the flow (median angle is 70◦).

The importance of the Doppler shift and interaction timescales for inter-

nal waves and mixing dynamics will be further discussed in the next section.

6.5 Internal waves and turbulent mixing

6.5.1 Shear-to-strain ratio and ratio of rotary-with-

depth shear variance

The shear-to-strain ratio and the ratio of rotary-with-depth shear variance

are diagnostics that have been used to analyse the internal wave field in the

Southern Ocean (Waterman et al., 2013; Sheen et al., 2013). The shear-to-

strain ratio (Rω) is a measure of the internal wave field’s mean aspect ratio

and hence bulk frequency content (Polzin et al., 2013). Higher Rω values

imply the presence of near-inertial waves, while lower Rω values can be at-

tributed to the presence of more high frequency internal waves at high vertical

wavenumber or the presence of shear instabilities (Polzin et al., 2003). The

ratio of rotary-with-depth shear variance (φCCW/φCW in the Southern Hemi-

sphere) is related to the dominant direction of the propagation of the internal

wave energy. We remind the reader that a dominance of CCW polarization

of the shear suggests downward energy propagation in the Southern Hemi-

sphere (upward phase propagation) and a dominance of CW polarization of

the shear indicates upward energy propagation (downward phase propaga-

tion).
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Figure 6.11: Bin-average number of coherent features as a function of (a) Rω

and φCCW/φCW and (b) as a function of wind speed and total water depth
at the location of the features. The color of the dot indicates the energy
propagation direction of the features (red is upward and blue is downward).
The number inside the circle and the size of the circle indicate the number
of features in each bin.

Here we expect internal waves with upward (downward) energy propaga-

tion to be found in regions with low (high) φCCW/φCW and low (high) Rω

estimates. For each wave we identify the associated Rω and φCCW/φCW as

the mean value in the depth range of the internal wave in the centre profile of

the internal wave. Internal waves with dominant upward energy propagation

are found in lower φCCW/φCW conditions and marginally lower Rω values

while upward propagating internal waves are associated with higher value of

both φCCW/φCW and Rω (Figure 6.11a).

To investigate the sources of the observed internal waves, we identify the

water depth and wind speed associated with each internal wave (see Sec-

tion 2.3.1). In the EM-APEX data, internal waves with upward (red) energy

propagation are found mostly in shallower waters and with lower wind speeds

than waves with downward (blue) energy propagation which are in deeper

waters and at somewhat higher wind speeds (Figure 6.11b). Being close to

the Kerguelen Plateau means that shallower waters are associated with high
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topographic roughness, while greater wind speeds will, to a certain extent,

be associated with large atmospheric frontal events. This suggests that inter-

nal waves with dominant upward propagating energy are generated by the

interaction of the flow with the rough topography of the northern edge of

Kerguelen Plateau, while the waves with dominant downward propagating

energy are potentially wind generated or potentially reflected from critical

layer. We would expect better correlation between depth and upward prop-

agating features with full depth sampling; the distribution of the coherent

features as a function of depth and wind speed is impacted by the fact that

the EM-APEX floats only sample the upper 1600 m.

6.5.2 Doppler shift impact

The EM-APEX data are consistent with the Front dynamics being dom-

inated by Doppler shifting. Internal waves associated with large Doppler

shifting tend to be aligned with the flow, while some internal wave nearly

perpendicular to the flow are associated with small Doppler shift to f ra-

tios (Figure 6.12). The latter is a characteristic of internal wave trapping

(Kunze, 1985), where the relative vorticity gradient dominates the wave dy-

namics. Some internal waves in the Polar Front Zone and Subantarctic Zone

are likely candidates for waves influenced by relative vorticity.

The local Doppler shift becomes the dominant dynamic when it is at

least twice the value of the local relative vorticity. We have estimates of

the Doppler shift for each wave but we can only resolve weekly mean rela-

tive vorticity fields (Figure 3.8). While the Doppler shift estimates for each

internal wave range from −40× 10−5 s−1 to 74× 10−5 s−1 with a mean of

11× 10−5 s−1, the weekly mean relative vorticity in the area ranges from

−3× 10−5 s−1 to 3× 10−5 s−1 with a mean of 0.6× 10−5 s−1. These esti-

mates suggest that overall, Doppler shift processes rather than relative vor-

ticity dominate the observed internal waves. Yet estimating the relative

vorticity gradient for each internal wave would allow us to confirm which

of Doppler shift or relative vorticity dominates in each wave and each dy-

namical region. Doppler shifted internal waves exchange more energy and
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Figure 6.12: Angular displacement between the wave’s azimuth and the flow
azimuth vs. Doppler shift to f ratio for each internal wave. Internal waves
with an angular displacement close to 90o (waves are perpendicular to flow)
and with Doppler shift to f ratio smaller than one are likely affected by
relative vorticity (blue shading); internal waves with an angular displacement
close to 0o (waves are parallel to flow) and with Doppler shift to f ratio
larger than one are likely dominated by the Doppler shift (red shading). The
markers denote which dynamical zone internal waves belong to.
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momentum with each other than trapped internal waves. In regions where

the dynamics are dominated by the Doppler shift, internal waves could give

rise to the divergence of momentum fluxes.

6.5.3 Interaction timescales

We find that particularly in the Front and in the Polar Front Zone, internal

waves propagate away much faster than they dissipate, while in the Sub-

antarctic Zone internal waves are likely to dissipate faster than they propa-

gate (Figure 6.13).
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Figure 6.13: Dissipation and propagation time scales associated with the
observed internal waves. The markers denote which dynamical zone internal
waves belong to. Waves under the black dashed line (1:1 ratio) are more likely
to propagate away from site while waves above are more likely to dissipate
locally.

This local versus far-field dissipation of internal waves potentially gen-

erated near the Kerguelen Plateau has implications for the Southern Ocean

stratification. Internal waves that propagate away in the Front imply that

they dissipate downstream, driving far-field mixing. The EM-APEX data set

strongly indicates that internal waves observed near the Kerguelen Plateau,
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in particular in the Front, propagate and advect energy away from the

Plateau, affecting the mixing and stratification budget downstream.

6.5.4 Regional dynamics of internal waves

Looking at the distribution of the waves in terms of location, we find that

waves in the Polar Front Zone area are associated with the highest percent-

age of upward propagating waves and the largest dissipation timescale. The

internal waves in the Front also have the highest local dissipation value and

the lowest local shear-to-strain ratio. In the eddy, internal waves are observed

at the shallowest depth, mostly downward propagating and associated with

relatively high local dissipation values. In the Subantarctic Zone, the ob-

served internal waves all propagate downwards, are relatively shallow, very

slow, associated with high Rω values, and associated with the lowest local

dissipation values (see Table 6.4). We find that internal waves in the eddy

and in the Subantarctic Zone areas are shallower and have intrinsic frequen-

cies closer to the local inertial frequency (f). Waves in the Front and in the

Polar Front Zone are deeper and have higher vertical wavelength.

This suggests that in the Front, the interaction of the topography and

the strong flow generates upward propagating internal waves associated with

very large values of energy dissipation while away from topography in the

Subantarctic Zone, wind forcing is likely the source of downward propagating

near-inertial internal waves associated with smaller values of energy dissipa-

tion. Internal waves in the eddy might be interacting with inherent properties

of the eddy flow (such as its strain, shear or potential vorticity), breaking

locally and enhancing local dissipation. The data do not provide informa-

tion on whether it is the local tidal flow or the barotropic flow of the ACC

that interacts with the topography to generate internal waves. Analysing

available local moored data to estimate the tidal flow in the sampling region

would help estimating the tidal contribution to turbulent mixing.
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6.5.5 Topographic roughness vs. wind forcing

Upward propagating waves are associated twice as often with enhanced val-

ues of turbulent mixing (ε >1× 10−9 W kgm−1) than downward propagating

waves. Making the assumptions (1) that dissipation associated with upward

propagating internal waves is the result of dissipating internal waves gen-

erated by flow over rough topography and (2), that dissipation associated

with downward propagating internal waves is the result of surface generated

internal waves, we find that 63% of the dissipation rate observed in profiles

containing internal waves is generated by topography-flow interaction, while

37% is surface driven. Note that this approach is only accounting for internal

waves identified in this data set and ignores other sources of downward and

upward propagating internal waves, critical layer reflection, internal scatter-

ing on topography and internal waves from the internal wave field continuum

(low amplitude internal waves).

The internal wave field from the EM-APEX data might be partially biased

towards internal waves in critical layer situations. We are likely to find more

lower frequency internal waves in the observations since they have longer

horizontal scales. Higher frequency internal waves (higher dissipation rates)

have smaller amplitude and are therefore harder to identify with the method

applied. Also, due to the relatively small number of internal waves being

analysed, the correlations that we observe are likely not statistically robust.

Analysing data resolving the full water column would certainly increase the

confidence of statistics, in particular for the upward propagating internal

waves in deeper waters.

6.5.6 Conclusion

The EM-APEX data set provides a unique understanding of the internal wave

field spatial distribution and variations north of the Kerguelen Plateau. In-

ternal waves observed near the Kerguelen Plateau typically have a vertical

wavelength of 200 m, a horizontal wavelength of 15 km, a period of 16 hours

(close to the local inertial period) and a horizontal group velocity of 3 cm s−1.

The internal wave properties, their location and their direction of propagation
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are dependant on regional dynamics, suggesting different generation mecha-

nisms of internal waves dominate in different geographical zones. The wave

field in the Front and the Polar Front Zone is more influenced by the local

small-scale topography, and flow strength; the eddy wave field seems to be

influenced by the large-scale flow structure, while the internal wave field in

the Subantarctic Zone appears controlled by atmospheric forcing. The Front

has an energetic wave field with the local dissipation rate associated with

the waves at least twice as high as anywhere else in the area. Waves in the

Front are Doppler shifted and propagate energy and momentum outside the

region.

Analysing the internal waves in multiple dimensions (wavenumber and

frequency domain) but also resolving much of the variability in the temporal

and vertical wavenumber domain result in an unique perspective on the inter-

nal wave field north of the Kerguelen Plateau. The results from the analysis

of 46 internal waves in the area is consistent and coherent with the previously

applied mixing analysis of the same data set (see Chapter 5). In particular,

the high sampling density of the EM-APEX floats in space and time over a

range of dynamical regions considerably enhances the information in terms

of the generation mechanisms of the observed internal waves.

Applying ray tracing theory to estimate the evolution of the wavenumber

and frequency of the internal waves would provide key evidence about the

sources of the waves identified in this data set. This topic will be explored

in future work.
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The objective of this thesis is to investigate the sources of mixing and the

properties of the internal wave field north of the Kerguelen Plateau in the

Southern Ocean. Turbulent mixing being mostly attributed to the break-

ing of internal waves, characterising the internal wave field should further

our understanding of mixing dynamics. Using novel observations from EM-

APEX floats, we find that topographic roughness, mean current speed and

wind speed are key factors in determining local dynamical mixing regimes.

The internal wave field analysis is consistent with the mixing field analysis,

with both analyses highly dependant on regional dynamics. The main con-

tributions of this thesis are presented first. We then discuss the implications

of this work for the Southern Ocean circulation as well as potential future

work.

7.1 Contributions

To derive mixing we apply two methods to the EM-APEX data: the Thorpe-

scale method and the shear-strain finescale parameterization (Chapter 4).

The Thorpe-scale method, which is based on measuring density inversions,

provides an overview of the distribution of turbulent overturns north of the

Kerguelen Plateau but is limited by the instrument’s resolution and sampling

characteristics. As a result, smaller scale density inversions are significantly

underestimated and the mixing estimates are inappropriate for detailed spa-

tial and temporal analysis. The applied shear-strain finescale parameteriza-

tion method relates the shear and the strain observed in the water column to

the internal wave field energy levels to estimate dissipation rates. The shear-

strain parameterization mixing estimates are validated with measurements

from a microstructure profiler deployed in conjunction with the EM-APEX

floats.

We show that observed mixing values have significant spatial and tem-

poral variability (Chapter 5). Overall, the diapycnal diffusivity is slightly

above typical open-ocean background levels, while enhanced diapycnal diffu-

sivity is found close to the Kerguelen Plateau. Topographic roughness near

the Kerguelen Plateau is clearly associated with higher values of mixing in
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the water column. On average, mixing values are three times higher in most

of the water column above rough topography. This enhanced mixing is likely

the result of breaking internal waves generated by the interaction of the

ACC fronts with the small-scale topographic features. We also find evidence

of wind driven mixing in the upper 800 m of the water column following the

passage of large atmospheric fronts (Figure 7.1).
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Figure 7.1: Schematic of upper water column mixing spatial distribution and
associated potential mixing processes north of the Kerguelen Plateau. The
Subantarctic-Subtropical Front separates two different dynamical regions.
In the Polar Front Zone, mixing intensities are controlled by topographic
roughness. In the Front, the flow over rough topography is clearly associ-
ated with high mixing values and upward propagating internal waves (red
arrows). In the Subantarctic Zone, stronger wind forcing generates near-
inertial downward propagating internal waves (blue arrows). Mesoscale eddy
activity associated with enhanced mixing is observed north of the Front.

A key point is the fact that mixing is substantially enhanced within the

merged SAF/STF Front. The Front separates the Subantarctic Zone (north

of the Front) from the Polar Front Zone (south of the Front). The variability

in mixing intensity north of, within and south of the Front suggests that
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different dynamical regimes influence mixing. Most of the mixing of water

masses in the upper 1600 m impacts the AAIW and UCDW and takes place

in the Front and Polar Front Zone.

In the Front, we identify the interaction of a strong current with the rough

topography of the Kerguelen Plateau as the source of upward-propagating

internal waves associated with enhanced turbulent mixing. Maps of model

estimates of energy conversion into internal waves by tides (Nycander, 2005)

and by geostrophic motions (Nikurashin and Ferrari, 2011), show that both

tidal motions and geostrophic motions contribute to the internal wave field in

the Kerguelen Plateau region. We find that the most intense values of mixing

estimates from the EM-APEX floats are in areas where energy conversion by

both tides and geostrophic motions into internal waves are important (not

shown). This supports the theory that enhanced mixing in the Front is the

result of breaking internal waves generated by the interaction of the flow and

the topography.

In the Subantarctic Zone, where the topographic roughness is weak, mix-

ing dynamics are controlled by wind generated inertial motions. In the Polar

Front Zone, where mixing is dominated by the presence of the Kerguelen

Plateau and associated rough topography, weaker currents lead to less in-

tense mixing than in the Front but more than in the Subantarctic Zone. The

observation of intense bursts of mixing in an eddy highlights the potential

role of relative vorticity on the dynamics of internal waves.

The shear-to-strain ratio Rω is estimated as part of the finescale param-

eterization applied in this study. In strain-only finescale parameterization

methods, Rω is set as a constant. With this set of observations, we establish

that the difference between applying the shear-strain parameterization with

the observed Rω and the strain-only parameterization with a constant Rω is

over an order of magnitude.

The characteristics as well as the locations of the internal waves and their

direction of propagation are dependant on regional dynamics (Chapter 6).

The Front has an energetic wave field with wave-associated local dissipation

rates at least twice as high as anywhere else in the area. Internal waves

observed near the Kerguelen Plateau typically have a vertical wavelength of
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200 m, a horizontal wavelength of 15 km, a period of 16 hours (close to the

local inertial period) and a horizontal group velocity of 3 cm s−1. Waves in

the Front are Doppler shifted and likely to propagate energy and momentum

outside the region. Based on the direction of propagation of the observed

internal waves, we suggest that most of the dissipation rate (63%) is gener-

ated by the interaction topography and flow, while a smaller fraction (37%)

is surface driven.

7.2 Implications

The findings from this work have important implications for our understand-

ing of Southern Ocean mixing dynamics and for parameterization of mixing

in climate models. First, we have established that mixing in the Southern

Ocean is highly temporally and spatially variable. This reinforces the in-

adequacy of standard approaches to model mixing in climate models, where

uniform global mixing is traditionally assumed. We find a significant correla-

tion between depth integrated diapycnal diffusivity and topographic rough-

ness (R = 0.74), a first step towards better parameterizing topography driven

mixing in numerical models.

Secondly, better constraining the spatial distribution of the shear-to-

strain variance ratio would considerably improve strain-based parameteri-

zations of the dissipation rate. We highlight that the uncertainties associ-

ated with the strain-based parameterization when Rω observations are not

available are likely underestimated.

This work also suggests that bottom generated internal waves potentially

play a bigger role in enhancing local turbulent mixing than downward prop-

agating internal waves. This finding goes against the traditional view of

mixing from surface-forced internal waves.

The ratio of rotary-with-depth shear variance (φCCW/φCW ), can be used

to infer the dominant direction of energy propagation of rotationally effected

internal waves (Leaman and Sanford, 1975). A dominance of CCW polar-

ization of the shear suggests predominantly downward energy propagation

in the Southern Hemisphere (upward phase propagation) and a dominance
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of CW polarization of the shear indicates that upward energy propagation

dominates (downward phase propagation). The distribution of φCCW/φCW

patterns has been used in previous studies to investigate possible sources of

internal internal wave energy, in particular when contrasting wind-generated

waves to bottom-generated waves (Waterman et al., 2013; Sheen et al., 2013;

Brearley et al., 2013). It appears that while regions with large values of

φCCW/φCW match well areas of high dissipation rate and the location of

downward propagating internal waves, regions with low φCCW/φCW values

fail to overlap areas of enhanced dissipation rate and often miss the location

of upward propagating internal waves (not shown). This would lead to an

under-representation of upward propagating internal waves when using the

distribution of φCCW/φCW as a diagnostic for up versus down energy sources.

Such under-representation of upward propagating internal waves is observed

in particular in the Front, where we suggest that observed intense mixing

is driven by the the interaction of the flow and the topography and where

upward-propagating internals waves are observed but where φCCW/φCW in-

dicates downward energy propagation.

This work suggests that under certain conditions, conventional tools for

identifying the relative importance between upward and downward propa-

gating internal waves, such as the φCCW/φCW ratio, might not be adequate

for upper-ocean data set with waters shallower than 2000 m. Instead, we

suggest using the analysis of individual coherent internal wave properties as

a complementary diagnostic when assessing the impact of surface or bottom

generated waves.

The observed interaction of internal waves with an eddy leads to questions

about the possibility of energy transfer between the eddy and the internal

wave field, ultimately leading to energy dissipation. With the possible in-

crease of wind stress and therefore eddy field energy in the Southern Ocean

(Meredith and Naveira Garabato, 2012) over the coming decades, will the

eddy contribution to the mixing increase as well?

In the context of the Southern Ocean overturning circulation, we infer

the diapycnal transformation rate of water-masses in the upper 1600 m in

terms of potential density using our in situ estimate of diffusivity. Following
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the water-mass transformation framework developed by Walin (1982), the

diapycnal volume flux or transformation D is defined as

D(ρ) = − 1

δρ

∫
ρ

Kρ
∂ρ

∂z
dA, (7.1)

where Kρ is the observed diffusivity at the density level (ρ), ∂ρ/∂z is the

observed gradient in density around Kρ, and A is the area of the density

surface (ρ) based on the World Ocean Atlas (Levitus and Boyer, 1994).

We first apply Eq. (7.1) to the Kerguelen Plateau region (40◦S − 50◦S and

67◦E − 78◦E), estimating the diapycnal transformation for the Subantarctic

Zone, the SAF/STF front, and the Polar Front Zone (Figure 7.2a). Our ob-

served diffusivities in the Kerguelen region lead to a peak in transformation

in the SAF/STF front of 0.28 Sv at ρ =27.5 kg m−3, which is the boundary

between AAIW and UCDW. We scale the inferred diapycnal transformation

to the entire Southern Ocean (40◦S − 63◦S), using the observed diffusivities

from the Kerguelen Plateau region (Figure 7.2b). The resulting diapycnal

transformation estimates are significant for the Southern Ocean overturning

circulation budget with an overall value of 20 Sv of transformation on denser

waters along the 27.5 kg m−3 isopycnal surface, of which 17 Sv takes place in

the SAF/STF front. These results suggest that water-mass transformation

is dominant in the frontal zone, over rough topography, at the boundary be-

tween UCDW and AAIW. Enhanced transformation in the front is consistent

with recent work (Badin et al., 2013) and previous studies showing enhanced

mixing in frontal regions (e.g. Sloyan, 2005; Naveira Garabato et al., 2007;

Thompson et al., 2007; St. Laurent et al., 2012a). This supports evidence

that topographic features and the Antarctic Circumpolar Current play a sig-

nificant role in the Southern Ocean overturning circulation budget.

The analysis of the internal wave properties has far reaching implica-

tions (Chapter 6). Whether the observed internal waves are controlled by

Doppler shift dynamics or relative vorticity dynamics has consequences for

the regional divergence of momentum and therefore the Southern Ocean mo-

mentum balance. Stratification in the Southern Ocean and its overturning

circulation is affected by far-field forced internal waves that have propagated



140 CHAPTER 7. CONCLUSIONS

!"#$%"&"'()&*+"*%( ,-%+."#'(/0"*'(

!
"#

$%
&

'()$*+"&

,--&.& ,--&.&

/0--&.& /0--&.&

0-12&0312&0412&5-12& 6312& 5,12& 0/12& 3512&

718(9&:91;$&<1;"& 718(9&:91;$&<1;"&2*=(;$(9>)>&<1;"& 2*=(;$(9>)>&<1;"&2?:@2A:&B91;$& 2?:@2A:&B91;$&

1213(

1245(

1216(1217(

1214(

6(
6(

89(

82:(

12:(

CDE,4F5&CDE,4F5&

CDE,4F/&CDE,4F/&

G(H& G=H&

Figure 7.2: Schematic of the inferred diapycnal transformation rates for (a)
the Kerguelen Plateau region (40◦S− 50◦S and 67◦E− 78◦E) and (b) scaled
to the entire Southern Ocean (40◦S − 63◦S). The transformation rates are
based on estimates of diffusivity from the EM-APEX floats and the area
of density surfaces from the World Ocean Atlas (Levitus and Boyer, 1994).
The latitudinal boundaries of the Polar Front Zone, the SAF/STF front
(highlighted in grey) and the Subantarctic Zone boundaries are shown (grey
dashed line). Transformation rates as inferred in the sampling range of the
EM-APEX floats between 200 m and 1400 m. Transformation rates are in
Sverdrups (1 Sv=106m3s−1) and density surfaces (ρθ) are in kilograms per
cubic meter.

away from generation sources. Associating the Doppler shift with wave-mean

interaction timescales, highlights the fact that the role of the Front in ad-

vecting internal wave energy and momentum away from generation site is

important and needs to be quantified.

This thesis highlights the importance of high density observations and

the significance of local dynamics. Clearly, the role of local dynamics in the

generation of internal waves and therefore in the distribution and intensity

of mixing requires more attention. Our understanding of the ocean general

circulation and ultimately its representation in ocean models will depend on

our knowledge of local dynamics.



7.3. FUTURE WORK 141

7.3 Future work

There are a few limitations in this study and many questions that can be

addressed in future work.

In terms of limitations, higher resolution topographic and wind data

would likely improve our ability to quantify the impact of the mixing sources.

Beside the Smith and Sandwell topographic data set, methods exist to es-

timate regional small-scale topographic roughness (Nikurashin and Ferrari,

2011). Such estimates of roughness would likely better correlate with topog-

raphy driven mixing. Higher resolution wind data would permit to estimate

wind work and quantify the impact of wind forcing on the estimated turbu-

lent mixing.

We have seen evidence of enhanced mixing above topographic roughness

and deduced that it is the result of the strong flow of the ACC interacting with

Kerguelen Plateau. Another possibility is that tidal motions also interact

with the Plateau. Quantifying the contribution, if any, from tides could be

done by analysing mooring data collected simultaneously with the EM-APEX

data.

This thesis suggests that Doppler shift is a dominant dynamic in the

merged frontal jet. Weekly estimates of the relative vorticity are too low

in resolution to establish the relative balance between Doppler shift and

vorticity dynamics in regions surrounding the frontal jet. In the upper 400 m

of a cyclonic eddy, the observed intense mixing values could be the result of

dissipating internal waves that are trapped due to strong relative vorticity

gradients. Ascertaining the importance of the relative vorticity would confirm

this theory. The potential implications on the dynamics of the Southern

Ocean mesoscale eddy field are important and should be investigated.

Many of these findings depend on the origins of the observed internal

waves: Are they generated at the sea-floor or at the ocean surface? Are

they the result of wave-wave interactions? The estimated properties of the

internal waves provide strong clues on their origins and ray tracing of these

internal waves could further validate our conclusions. We plan to explore ray

tracing methods and apply them to this data set in the future.
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The list below contains most of the parameters and variables used in this

document with their equivalent symbol, units and value if appropriate.

a Empirical constant of proportionality = 0.8 . . . . . . . . . . . . . . . . . . . . . . . . 48

Awind Maximum wind area (km2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

b Vertical stratification scale =1300 m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Cg Group velocity (ms−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

φCCW/φCW Ratio of CCW to CW rotating shear variance . . . . . . . . . . . . . . . . . . . . . 59

d Vertical displacement (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

ε Turbulent kinetic energy dissipation rate (Wkg−1) . . . . . . . . . . . . . . . . . .3

ε0 GM76 dissipation rate = 8× 10−10 W kg−1 . . . . . . . . . . . . . . . . . . . . . . . 55

E0 Dimensionless energy = 6.3× 10−5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

EK Kinetic energy (kg m2 s−2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

EP Potential energy (kg m2 s−2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Ecw Velocity variance in clockwise component . . . . . . . . . . . . . . . . . . . . . . . . 105

Eccw Velocity variance in counterclockwise component . . . . . . . . . . . . . . . . . 105

f Coriolis or inertial frequency = 2Ωsin(Φ) s−1 . . . . . . . . . . . . . . . . . . . . . 11

f0 GM76 inertial frequency = 7.86× 10−5 s−1 . . . . . . . . . . . . . . . . . . . . . . . . 55

Γ Mixing efficiency = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

g Acceleration due to gravity ' 9.81 ms−2 . . . . . . . . . . . . . . . . . . . . . . . . . .42

j∗ Mode number scale = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Kρ Diapycnal turbulent eddy diffusivity of mass (m2s−1) . . . . . . . . . . . . . . . 3

k Horizontal wave vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

kh Horizontal wavenumber (cpm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

LRo Rossby Radius of deformation (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

LO Ozmidov scale (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

LT Thorpe scale (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

λ Wavelength (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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We present step by step an example for float 3761 of the DMQC proce-

dure applied to all float data profiles. Float 3761 is identified with its World

Meteorological Organisation (WMO) ID number “1901136”. All the neces-

sary codes and scripts needed to run this DMQC procedure are located at:

/argo/ArgoDM/src

Obtain source files

Using the routine get next batch(1901136, 0, [0 1]), we copy the data files

to our working directory. We check that the correct files were created and

profiles copied across to:

∼ /data/dmode/0dmqc/1901136/ and

∼ /data/dmode/1gilson first/1901136/.

List and separate parked profiles

With the routine pre gilson(1901136, [], 0), we can identify profiles that have

a parked period. Going through each profile, we make note of the profiles

numbers where with a parked period. We create a park profiles folder

in ∼ /data/dmode/0dmqc/1901136/ and profiles with a parked period are

added to this folder. These parked profiles are not quality controlled.

Generate raw data plots

Using the routine plot dmqc flags(1901136, [1 2 3], [0]), we plot the raw data

to familiarise ourselves with it.

Flag bad pressure

The pre gilson(1901136, [], 1) routine identifies bad pressure points, profile

by profile. We check each suspect points (red data points on Figure B.1),

and make a decision whether to flag them or not.
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Figure B.1: Pressure on the y-axis and sample points on x-axis of profile 14.
Blue denotes good data (QC1), while red denotes bad pressure points (QC4).

Generate float trajectory plot

Next we generate a plot showing the trajectory of the float using the rou-

tine where argo edit(1901136). The figure generated by the routine has two

subplots; we zoom in on the bottom subplot and save a copy of that subplot

as:

∼ /pub web/dmqc/dmqc notes/1901136/plots/argo loc 1901136 alt.jpg.

We also crop the figure to only show the lower subplot and save it as:

∼ /pub web/dmqc/dmqc notes/1901136/plots/argo loc 1901136.jpg.

Obtain float characteristics

Typing load ∼ /data/csiromat/A1901136.mat accesses the float’s character-

istics. By typing fl = floatinfo(1901136) we obtain the float launch date

and the serial number of the CTD and pressure sensors; by typing fl.sensor,

fl.sensor model and fl.sensor sn, we access the sensor’s name, type and

model.
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Generate raw data T-S diagram

The routine plot ts(float, 0) generates a figure with a T-S diagram, a plot of

the maximum temperature recorded for each profile against “year day” and

a plot of the sea surface salinity for each profile against “year day”. This

figure is saved as:

∼ /pub web/dmqc/dmqc notes/1901136/plots/TS 1901136.jpg.

We then crop the T-S diagram and zoom on the deeper waters (Figure B.2)

to save it as

∼ /pub web/dmqc/dmqc notes/1901136/plots/TS 1901136 deep.jpg.

Figure B.2: Plot of potential temperature versus salinity of all the profiles
for float 1901136. Colours denote the profile numbers where blue hues are
the first profiles and red hues are the last profiles of the float.
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Generate T-S diagram comparison with nearby argo data

To compare float 1901136 T-S data with other float’s T-S data, we use

plot ts nearby(1901136, 0, 1, 1, 500). This routine searches nearby profiles (in

space and time) from other floats, producing a figure with a map of the loca-

tion of the identified profiles as well as a T-S diagram of all the profiles. In

Figure B.3, the black points represent the profiles from float 1901136 while

other colour points are profiles from other floats listed in the legend.

Figure B.3: Float 1901163 T-S data comparison with other nearby float
data: (a) Location of float 1901136 profiles (black dots) and profiles of all
other nearby floats (colour dots); and (b) T-S diagram of the profiles of float
1901136 (black dots) as well as of the profiles of all the other nearby floats
(colour dots).

A copy of the figure is saved as:

∼ /pub web/dmqc/dmqc notes/1901136/plots/TS 1901136 nearby.jpg. We

then zoom on the T-S diagram deeper waters and save that subplot as:

∼ /pub web/dmqc/dmqc notes/1901136/plots/TS 1901136 nearby deep.jpg.

The T-S diagram on Figure B.3(b) shows that our float T-S data (black) is

well contained within the other floats T-S data (colour), making it unlikely

that entire profiles have corrupted data.
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Generate temperature, salinity and density section plots

With the routines [fgrid, junk] = gridfloat(float) and plot gridfloat(fgrid),

we generate temperature, salinity and density section plots. We save a copy

of each figure at the following location before pressing “enter” to see the next

one:

∼ /pub web/dmqc/dmqc notes/1901136/plots/pt 1901136.jpg

∼ /pub web/dmqc/dmqc notes/1901136/plots/pt 1901136 sur.jpg

∼ /pub web/dmqc/dmqc notes/1901136/plots/sal 1901136.jpg

∼ /pub web/dmqc/dmqc notes/1901136/plots/sal 1901136 sur.jpg

∼ /pub web/dmqc/dmqc notes/1901136/plots/sig 1901136.jpg

∼ /pub web/dmqc/dmqc notes/1901136/plots/sig 1901136 sur.jpg

where “pt” is for potential temperature, “sur” for surface, “sal” for salinity

and “sig” for density.

Identify salt hooks

The routine toss deepestvals apex(1901136) automatically identifies salt hooks

in the data set. The details are logged in a file by using the “diary” func-

tion before applying the salt hook routine1. If it says“processing 0 profiles”,

it means that no salt hooks were identified. Looking at the log, we check

that the “max pressure” is approximately 1600 dbar for each profile (and not

2000 dbar as with Argo floats).

Identify density inversions

We use the routine plot profiles single(1901136, 0) to look at each profile

one by one for density inversions. The routine automatically flags density

inversion based on a density inversion criteria of 0.004. Using our knowledge

of the instrument (salinity sensor resolution is 0.01-0.005 and temperature

sensor resolution is 0.002) and understanding of local water characteristics,

we decide whether or not the flagged density inversions are legitimate or

spurious. For example, profile 180 at 931 dbar has a suspicious salinity spike

1diary(′∼ /pub web/dmqc/dmqc notes/1901136/plots/1901136 strip drift.log′)
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(Figure B.4). We make note of the location of spurious density inversions

(profile number, variable and depth) to be able to flag the bad data point

later on.

Figure B.4: Vertical profiles of (a) temperature, (b) salinity and (c) density
from float 1901136, profile 180.

Flag data and apply QC

To be able to flag bad profiles or single bad data points, we run the following

script: edit netcdf first intercomp 1901136. We call up the “T-S” plot

window and the “Lat/Lon” plot window. On the Lat/Lon window, we click

“BthB” to have the bathymetry plot. We save a copy of this plot as:

∼ /pubweb/dmqc/dmqc notes/1901136/plots/lat lon 1901136.jpg.

We click “SltB” to obtain the climatological salinity plot and save this it as:

∼ /pubweb/dmqc/dmqc notes/1901136/plots/lat lon sal 1901136.jpg. We

go to index and click on “zero index”. We want to inspect all the temperature

profiles and all the salinity profiles. We are looking for profiles that stick out

of the envelope. When we identify a suspicious profile, we click on it and zoom

in on various plots to see if there is an explanation. If it is bad data, we click
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on the bad data point, then click on the “1good” menu and choose “4bad”,

then click on “Cng Qc”. This flags that data point as a bad data point. If

we want to quality control a whole profile, we click “CupQC” to select all

the above data points. There is the option of flagging both temperature and

salinity or just temperature or just salinity (“QC Fw”).

When finished, we need to change the the data state for all profiles: Click

“action” and “open”. The action window displays: “D state= Data state

=2B A = Real time data and real time adjusted data”. Click on “StateM...”

(top left) and the data state changes to “2CA”. Then we hit “save” on profile

window (click once only) and check in the background that all the profiles are

being saved. Once it is done, we click “quit”. We only update the data flags

status when we are happy that we have done all the previous steps properly

using the following script: gilson1ed(1901136). This changes the file prefix

type from “R” to “G”, indicating that the file has gone through the first step

of quality control.

Generate raw and flagged data plots

The routine plot dmqc flags(1901136, [1 2 3], [0 1]) generates plots of raw

data, flagged data and the difference between raw and flagged for temper-

ature, salinity and density. These plots are automatically saved in given

directories.

Pressure drift correction

The pressure sensor on the floats can develop an bias over time leading to a

drift in the measured pressure values. This drift is most easily identified in

the surface pressure measurements. When the float is at the surface where

the pressure should be zero, we can look at the recorded pressure to compare

it to its theoretical value (Figure B.5). We then apply the surface pressure

offset correction to the float surf pres cor(1901136, [], 1, 1, 0) and save the

output figure as:

∼ /pub web/dmqc/dmqc checks/surf press/spcor 1901136.jpg.
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Figure B.5: Raw surface pressure of each profile and other key parameters
to diagnostic the pressure drift correction for float 1901136.

Thermal lag correction

We apply a cell thermal lag correction to salinity following citetJohnson:2007:

thermal lag(1901136). We check that the correction has been applied by

running: plot dmqc flags(1901136, [1 2 3], [0 1 2 5]).

Assess salinity drift

We create plots that will allow us to determine whether or not the salinity

sensor is drifting.

First we generate a plot of salinity anomalies with 3 different climatologies

on potential temperature surfaces: plot s anom(1901136)(Figure B.6). We

save a copy of the figure after resizing at:

∼ /pubweb/dmqc/dmqc checks/anomalies/pt s anom 1901136.jpg

We zoom in on bottom subplot to check accuracy ±0.01. We also generate a

set of salinity plots that uses data from nearby Argo floats where salinities are

plotted on various potential temperature surfaces: nearby salt(1901136, 1, 1, 1000)

We resize Figure B.3 and save it as:

∼ /pub web/dmqc/dmqc checks/nearby salt/raw/1901136 loc.jpg.

We stretch the figure horizontally and click with cursor on figure and

press “return”. This will go up one potential temperature surface level.

We are looking for our float (black points) to be well within the envelop

of the other floats and climatologies. We then select the plot with the po-
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Figure B.6: The four contour plots show the temperature anomaly of each
profile from float 1901136 with three climatologies and with the mean from
float 1901136. On the contour plots, white means that no data were available.
The bottom plot shows the salinity at each profile location at the potential
temperature level of θ = 2.1925◦C, for float 1901136 (black crosses), and the
three climatologies (colour diamonds).

tential temperature surface that best describe the data and save it under:

∼ /pub web/dmqc/dmqc checks/nearby salt/raw/1901136 data.jpg

and if two data plots are necessary to illustrate, then save the second as:

∼ /pub web/dmqc/dmqc checks/nearby salt/raw/1901136 data alt.jpg

Update scientific calibration files, fields and comments

We write scientific calibration comments into a database that stores infor-

mation about the quality control and error values by running the following

routine: edit dm db(1901136). Say “n” to the first question and type [1:334]

to cover all profiles; then select “11” on the drop down list for the float type

(Apex EM APF9) and click “ok apply”. Finish by typing [0].

We copy files from original directories into new directories and standardise

fields as well as add comments: apply ow(1901136) and type “y” to run

routine.
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Final check and flagging of data

This is the final check of data before completion of the quality control and

submission of T,S profiles to the QC Argo database. There should not be

any major problem with the data at this point. We use the following routine:

edit netcdf final gilson. Enter WMO ID: “1901136” and click on “action”

and “open” and change the data mode from “2CR” to “2CD” by clicking

once the bottom left button “ModeM”. Then, we hit “save” on profile

window (click once only) and monitor that the file is saved correctly in the

background.

Update calibration comments

We update the float with records stored in the ’edit dm db’ database using

the routine: update calib comments(1901136). We can check the file by

typing:

ncload ∼ /data/dmode/4gilson final/1901136/profiles/D1901136 30.nc

SCIENTIFIC CALIB COMMENT .

Update error values and calibration date

We standardise the error values and update the calibration date in the netcdf

files: prepare final files(1901136).

Final check plots

We undertake a final overview of the files that are about to be submitted to

the Argo database using the routine: plot dmqc flags(1901136, [1 2 3], [0 1

2 5 3 4]). Copies of the figures are saved in

∼ /pub web/dmqc/dmqc checks/D files.

Check ranges of data

We run the data through a series of range checks. This uses climatologies

to determine expected properties ranges. It is conservative and we check the

flagged values using the following routine: range checks(1901136, 4, []).
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Generate the html file

The final task is to generate an html file for that float that will be upload to

the CSIRO DMQC website2. To set the right permission on figures, we type

“chmodgo+ rx ∗ .∗” in each of the following folders:

cd ∼ /pubweb/dmqc/dmqc checks/D files

cd ∼ /pubweb/dmqc/dmqc checks/nearby salt/raw

cd ∼ /pubweb/dmqc/dmqc checks/anomalies

cd ∼ /pubweb/dmqc/dmqc checks/surf press

Then we change directory and generate file:

cd ∼ /pub web/dmqc/html and Float doc master generate(1901136)

We check the generated file by opening it in web browser and textpad:

∼ /pub web/dmqc/html/DMQCnotes 1901136.html

We edit the html file to correct and add fields:

editDMQCnotes 1901137.html

- Change the profile depth from 2000 m to 1600 m;

- Add serial numbers of instruments;

- Add the launch date: dd-mm-yyyy;

- Add the number of profiles;

- Resize plots where needed.

2(http://www.cmar.csiro.au/argo/dmqc/html/Argo DM.html)

http://www.cmar.csiro.au/argo/dmqc/html/Argo_DM.html
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C.1 Deriving the internal wave equation

The momentum equations in Cartesian coordinates on the f plane are

∂u

∂t
− fv = −∂p

∂x
, (C.1)

∂v

∂t
+ fu = −∂p

∂y
, (C.2)

∂w

∂t
= −∂p

∂z
− ρ g

ρ0
. (C.3)

The density equation is
∂ρ

∂t
+ w

∂ρ

∂z
= 0, (C.4)

The continuity equation is

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (C.5)

The buoyancy equation is

− g

f

∂ρ

∂z
= N2, (C.6)

and we define

∇2 =
∂2

∂x2
+

∂2

∂y2
(C.7)

so that

∇2p =
∂2p

∂x2
+
∂2p

∂y2
. (C.8)

First, we want remove the vorticity terms

We can rewrite (C.5) as

f
∂w

∂z
= −f ∂u

∂x
− f ∂v

∂y
. (C.9)

We then take the derivative of (C.1) with respect to y and assume f constant

∂2u

∂t∂y
− f ∂v

∂y
= − ∂2p

∂y∂x
, (C.10)
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f
∂v

∂y
= − ∂2p

∂y∂x
− ∂2u

∂t∂y
, (C.11)

and take the derivative of (C.2) with respect to x

∂

∂x
(
∂v

∂t
) +

∂

∂x
(fu) = − ∂

∂x
(
∂p

∂y
), (C.12)

f
∂u

∂x
=

∂2v

∂t∂x
+

∂2p

∂x∂y
. (C.13)

Substituting (C.11) and (C.13) into (C.9), we obtain

∂

∂t
f(
∂v

∂x
− ∂u

∂y
) = f 2∂w

∂z
. (C.14)

We then take ∂
∂x

of (C.1)

f
∂v

∂x
=

∂2u

∂t∂x
+
∂2p

∂x2
(C.15)

and ∂
∂y

of (C.2)

− f ∂u
∂y

=
∂2p

∂y2
+

∂2v

∂t∂y
. (C.16)

Subtracting (C.16) from (C.15), we obtain

f
∂v

∂x
− f ∂u

∂y
=

∂2u

∂t∂x
+
∂2p

∂x2
+
∂2p

∂y2
+

∂2v

∂t∂y
, (C.17)

and using (C.8), we rewrite (C.17) as

f(
∂v

∂x
− ∂u

∂y
) =

∂

∂t
(
∂u

∂x
+
∂v

∂y
) +∇2p, (C.18)

and taking ∂
∂t

∂

∂t
f(
∂v

∂x
− ∂u

∂y
) =

∂2

∂t2
(
∂u

∂x
+
∂v

∂y
) +

∂

∂t
∇2p. (C.19)
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Substituting (C.14) and (C.5) into (C.19), we obtain

f 2∂w

∂z
+
∂2

∂t2
∂w

∂z
− ∂

∂t
∇2p. (C.20)

To remove the pressure term, we express (C.3) as

− ∂p

∂z
=
∂w

∂t
+ ρ

g

ρ0
. (C.21)

Taking ∂
∂z

of (C.20) and substituting (C.21), we obtain

f 2∂
2w

∂z2
+
∂2

∂t2
∂2w

∂z2
+
∂

∂t
∇2(

∂w

∂t
+ρ

g

ρ0
)
∂2w

∂z2
(f 2 +

∂

∂t2
)+

∂2w

∂t2
∇2 +

∂ρ

∂t

g

ρ0
∇2 = 0.

(C.22)

From (C.22) we substitute (C.4) and obtain

∂2w

∂z2
(f 2 +

∂

∂t2
) +∇2(

∂2w

∂t2
− g

ρ0

∂ρ

∂z
w) = 0. (C.23)

Substituting (C.6) into (C.23), we obtain an expression for the internal wave

equation
∂2w

∂z2
(f 2 +

∂

∂t2
) + w(

∂2

∂t
+N2)(

∂2

∂x2
+

∂2

∂y2
) = 0. (C.24)

Terms are define in Appendix A.

C.2 Polarization relations

To interpret the horizontal azimuth of the horizontal wave vector (ϕ) in terms

of the observed phase of the rotary velocity component (ϕ0), we first define

the horizontal azimuth of the wave vector

tanϕ =
l

k
(C.25)

In the case of CCW velocity component rotation

k = kh sinϕ0 (C.26)
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and

l = −kh cosϕ0, (C.27)

and so

tanϕ =
− cosϕ0

sinϕ0

(C.28)

and

ϕ = tan−1
− cosϕ0

sinϕ0

. (C.29)

In the case of CW velocity component rotation

k = kh sinϕ0 (C.30)

and

l = kh cosϕ0, (C.31)

and so

tanϕ =
− cosϕ0

− sinϕ0

(C.32)

and

ϕ = tan−1
− cosϕ0

− sinϕ0

. (C.33)

C.3 Group velocity approximations

The group velocity(Cg) is the gradient of the intrinsic frequency in the vertical

wavenumber space:

Cg =

[
k(N2 − ω2

0)2

ω0m2(N2 − f 2)
,

l(N2 − ω2
0)2

ω0m2(N2 − f 2)
,−(ω2

0 − f 2)(N2 − ω2
0)

ω0m(N2 − f 2)

]
. (C.34)

Under the hydrostatic approximation, ω0 ' f and ω0 6 N so that

Cg '
[

kN4

ω0m2(N4 − ω2
0)
,

lN2

ω0m2(N2 − ω2
0)

]
, (C.35)

and

Cg '
[

kN4

ω0m2N2
,

lN4

ω0m2N2

]
, (C.36)
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so that

Cg '
[
kN2

ω0m2
,
lN2

ω0m2

]
. (C.37)

C.4 Aspect ratio derivations

The aspect ratio definition is

Ek
EP

=
ω2 + f 2

ω2 − f 2
, (C.38)

and from the dispersion relation we have

ω2 − f 2 =
k2h(N

2 − ω2)

m2
, (C.39)

and

ω2 + f 2 =
k2h(N

2 − ω2)

m2
+ 2f 2. (C.40)

Substituting (C.39) and (C.40) into (C.38) we have

Ek
EP

= 1 +
2f 2m2

k2hN
2 − k2hω2

. (C.41)

Applying the hydrostatic approximation (k2hω
2 = 0), (C.41) becomes

Ek
EP

= 1 +
2f 2m2

N2k2h
. (C.42)
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