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ABSTRACT 

Models describing the modulation of galactic cosmic rays in the heliosphere have been 
developed and investigated. These models are numerical solutions of the cosmic ray 
transport equation under idealized heliospheric conditions. Primarily, the models were 
used to predict the radial gradient g,. of galactic cosmic rays in the vicinity of the Earth 
during solar-minimum conditions specified by a flat neutral sheet and no propagating shock 
disturbances. It was found that g,. was not sensitive to the assumed value of the cosmic 
ray distribution at the Sun, but was very sensitive to (a) the diffusion coefficients used to 
specify the rate of diffusion of the cosmic ray distribution near the Sun, and (b) the choice 
of the integrating algorithm used to determine the distribution from the transport equation. 
The stability of each integrating algorithm used was also investigated. There have been 
many measurements of the value of g,. at Earth in the past, mainly derived from data 
collected by polar-based neutron monitors or detectors on board satellites. From all sources 
of data and over a wide range of energy (tens of MeV to —100 GeV) the general consensus 
is that g,. at Earth is less than 5% AU -1  and probably around 1-2 % AU -1 . The models 
investigated in this thesis predict a gradient in this range but only if certain diffusion 
coefficients are specified. 

The models were also used to investigate the relative importance of shocks, or propagating 
solar disturbances, to the total eleven year cycle of cosmic ray modulation for medium 
energy (1-10 GeV) particles. It was found that such disturbances were unable to produce 
the observed intensity difference seen from solar minimum to solar maximum. It was 
concluded that these, and higher energy particles, are modulated significantly by changes in 
the overall global average heliospheric magnetic field through bulk drift motion. An 
example of this bulk-drift modulation was investigated by looking at the correlation of 
neutral-sheet position with isotropic intensity wave variations seen in the cosmic ray data. 
For this analysis, a generalized model of the neutral sheet was developed.. 

An independent measurement of g,. was also calculated from data collected by the network 
of cosmic ray detectors operated by the Hobart cosmic ray group during the years 1975-78 
and 1982-85. This group consists of the Cosmic Ray Section of the Australian Antarctic 
Division and the Cosmic Ray Section of the University of Tasmania (Physics Department). 
The gradient g,. was determined by applying a north-south anisotropy analysis to the data. 
The value of g,. obtained was sensitive to the assumed energy spectrum of the north-south 
anisotropy but was not inconsistent with other experimentally determined values. The 
gradient was generally less than 5% AU -1 . It was necessary to calculate coupling 
coefficients and atmospheric correction coefficients for the Mawson muon telescopes in 
order to use the data from these detectors in the north-south anisotropy analysis. 
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Chapter 1. 
Background. 

1.1 INTRODUCTION 

Galactic cosmic rays are high energy charged particles. It is known that they originate from 
regions external to our own solar system, however their precise origin is still unknown. 
They include fully ionized atomic nuclei roughly in the same galactic abundances as their 
neutral counterparts and electrons. Most (-90%) of the positively charged cosmic rays are 
protons. Galactic cosmic rays are characterized by their extremely high kinetic energies. 
The energies of those that reach the surface of Earth range from the order of 10 8  eV to 1020  
eV (eV = electron volt) per particle. From observations of very high energy cosmic rays it 
appears that they are essentially isotropically distributed in the galaxy. See Berezinskii et 
al. 1990 for a comprehensive review of the properties of galactic cosmic rays. 

60 AU 

Figure 1.1. The heliosphere is defined as the region where the influence of the Sun's magnetic 
field dominates the background galactic magnetic field. At the boundary of the heliosphere, it 
appears that the distribution of galactic cosmic rays is essentially isotropic. A shock is formed 
where the solar wind goes from a supersonic to subsonic flow, shown here as a fuzzy region roughly 
60 AU from the Sun. The actual distance of the boundary of the heliosphere and the shock position 
from the Sun is not known but most likely varies throughout the solar-cycle. 
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As cosmic rays enter our solar system, their paths are altered and re-distributed by the solar 
wind (ilsw ) and magnetic field (a). This region, where V sw  and B influence the 
background galactic field, is termed the heliosphere and is shown in Figure 1.1. At the 
boundary of the heliosphere V sw  drops to effectively zero and B merges with the 
background galactic magnetic field. 

By observing these galactic cosmic rays using both spacecraft and terrestrial based particle 
detectors, and modelling their interaction with B and V sw , we can gain both a better 
understanding of interplanetary fields and solar processes and an appreciation of the 
properties of these particles in space. 

The path of a single cosmic ray particle as it enters the heliosphere is affected by four main 
processes. These processes are directly related to V w  and B, which can be written as 
(<B> + ) where <13> is the large-scale average magnetic field and is the average 
magnitude of the small-scale random fluctuations in B caused by solar disturbances. These 
disturbances include, for example, flares and coronal mass ejections. The cosmic ray 
particles undergo large-scale gradient and curvature drift due to <B>. They are scattered in 
pitch-angle due to the small-scale turbulence in B. The amount of scattering is characterized 
by a diffusion timescale which is related to 8B. The particles undergo energy changes by 
the process of Fermi-acceleration and they are convected by the solar wind. The combined 
effect of these processes describes the total modulation of the particles. 

Because of the large numbers of galactic cosmic rays in the heliosphere, it is impossible to 
attempt to keep track of every possible individual particle as it travels through this region. 
Instead, the galactic cosmic ray intensity at any point in the heliosphere at a given time is 
described in terms of a distribution function f. This is analogous to describing the motion 
of a large number of particles in a gas in terms of kinetic theory. The spatial and time 
dependence of this distribution function is governed by a transport equation. This 
equation relates the evolution off to the physical parameters which affect the motion of the 
galactic cosmic rays mentioned above. See Gleeson and Webb (1980), Quenby (1984) and 
Jokipii (1971) for a detailed derivation of the transport equation and discussion of transport 
theory in general. 

Modelling f is complicated by the fact that both B and V w  are not only spatially dependent 
but also time dependent. The large scale solar magnetic field is approximately dipolar near 
the surface of the Sun. The magnetic field lines are frozen into the solar wind plasma and 
drawn out into the heliosphere radially by this wind. Over an (on average) eleven year 
period, in phase with the sunspot cycle, the dipole tilt of B on the source surface increases 
until there is a complete reversal in the direction of the magnetic field at solar maximum. 
This periodic change in B affects the bulk drift velocity of the cosmic ray particles. On a 
shorter timescale, solar disturbances (discussed for example by Burlaga et al. 1985) 
increase the turbulence in B and hence cause more local scattering of the particles. Again 
analogous to kinetic theory, greater scattering of individual particles corresponds to a 
decrease in the rate of diffusion of the particle distribution. 

1.2 THESIS SUMMARY 

The theory of the transport equation and the various physical parameters that define the state 
of the heliosphere are introduced in the next section. A brief review of the currently 
developed models and inferences drawn from them is then given in Section 1.4. A brief 
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review of the, parameters inferred from measurements taken by terrestrial and spacecraft 
detectors is given in Section 1.5. 

The main thrust of this thesis is to investigate further the model predictions for the medium 
energy cosmic ray intensity distribution in the vicinity of the Earth and to compare these 
predictions with measurements from ground-based neutron monitors and muon detectors. 
The reviews in Section 1.4 and 1.5 will thus concentrate on observations and model 
predictions for the cosmic ray intensity distribution in the vicinity of Earth. Note however, 
when finding this intensity distribution using numerical methods, the intensity distribution 
must be solved at all points in the heliosphere to obtain the value at Earth. This is a 
consequence of how the boundary conditions are imposed. 

The rest of the thesis can be divided into two parts. The first part comprises Chapters 2 to 
4 and contains the modelling theory and results. Chapter 2 describes the numerical 
procedures used to solve the transport equation under pre-specified heliospheric conditions. 
Chapter 3 explores the numerical stability (and to an extent, the accuracy) of these 
procedures as they are implemented on a computer. Chapter 4 contains all the results of the 
modelling runs. In particular, the main results presented are values for the radial gradient 
of galactic cosmic rays near Earth, predicted for an axially symmetric heliosphere under 
various inner-boundary conditions. It will be shown that this gradient is sensitive 
predominantly to the functional form of the diffusion coefficients near Earth. The role of 
interplanetary shocks in the eleven-year modulation of cosmic rays is also investigated in 
this chapter. Difficulties in solving the transport equation in three space dimensions (non 
axially symmetric heliosphere) are also discussed. 

The second part of the thesis comprises Chapters 5 to 8 and consists mainly of data 
analyses. This section culminates in Chapter 8 where analyses and results are presented for 
the radial gradient of galactic cosmic rays at Earth measured by the network of detectors 
operated by the Hobart cosmic ray groups (Cosmic Ray Section, Physics Department, 
University of Tasmania, Australia, and Cosmic Ray Section, Auroral and Space Physics, 
Australian Antarctic Division, Australia) for the periods of 1975-78 and 1982-85. The 
results presented are generally consistent with predictions made by the modelling runs in 
Chapter 4 and also independent observations from other researchers. In order to use data 
from a number of muon-telescopes at Mawson for these analyses, previously undetermined 
coupling coefficients and atmospheric correction coefficients were calculated. The method 
by which the coupling coefficients are calculated is presented in Chapter 5. This chapter 
also serves as a general introduction to coupling coefficients. Such coefficients were also 
required for the work presented in Chapter 6. Chapter 7 contains the methods of analyses 
and results for the determination of the atmospheric correction coefficients for a number of 
Mawson muon detectors. Chapter 6 is, in a way, a stand-alone chapter. It consists of 
work done to correlate certain isotropic intensity wave modulation phenomena seen in the 
Mawson muon data to the position of the three-dimensional neutral sheet (see Equation 
1.19 and related text). A generalized model of the neutral sheet is developed in the first part 
of that chapter. The observed correlation shows that the neutral sheet has an effect on the 
relatively high energy cosmic rays to which muon telescopes are sensitive. The fact that the 
correlation exists supports a conclusion in Chapter 4 that interplanetary shock waves do not 
seem to be sufficient to explain the observed eleven-year solar cycle of galactic cosmic rays. 

Publications which arose from research undertaken during the course of this degree are 
listed in Appendix 11. 
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1.3 THEORY 

The cosmic ray distribution function f = f (Lp,t) is a five-dimensional scalar function of 
space = (04), momentum p (magnitude only) and time t. The space coordinates are 
most naturally described on a spherical polar coordinate system, r being the radial distance 
from the Sun, 0 being the polar angle measured from the rotation axis of the Sun, and 4) 
being the azimuth coordinate. The usual definition of f is such that there exist 
p2  f (sjp,t) d3xdp particles with momentum in the range p to p+dp in a spatial region d3,K 
about at time t. With this definition, the differential intensity of particles is 

j(x,p,t) a p2  f(x,p,t) 

and the integral intensity is 

/(x,t) a fo j(x,p,t) dp 	
(1.2) 

The differential number density of particles is given by U=47tp2f. Using arguments of 
particle continuity and energy conservation in phase-space, it was first shown by Parker 
(1965) (see also Jokipii et al. 1977, Jokipii and Kopriva 1979 and references therein) that f 
satisfies the partial differential equation: 

af .v•(Ks • Vf)— (_V D + _V sw )•Vf + —3 (V • _V sw )p—ap  
at 	= 
	 af 	

(1.3) 

This is known as the transport equation and is a parabolic type partial differential equation, 
being second-order in space coordinates and first-order in time. KS  denotes the symmetric 
part of the diffusion tensor. The diffusion tensor is a 3x3 matrix whose terms include the 
diffusion coefficients parallel and perpendicular to the magnetic field. These coefficients 
are functions of the turbulence 8B of the field.1Z D  denotes the drift velocity which 
describes the total effect of the gradient and curvature drifts of the distribution of particles 
and is a function of the average field <B>. The transport equation can also be written with 
the full-diffusion tensor where the anti-symmetric part corresponds to the drift-term (see 
below). Esw  denotes the solar wind speed. As a first approximation, the solar wind is 
radial in direction and has a magnitude around 400 km s -1 . The adiabatic energy loss of 
particles is related to the divergence of the solar-wind. 

1.3a. The Diffusion Tensor and Drift Velocity: 

In a coordinate system aligned with the local magnetic field (x-axis parallel to 1.1) the full 
diffusion tensor is 

( Kll 0 0 
K = 0 K1 KA  

\ O —K A  K (1.4) 
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where K11  is the diffusion coefficient for diffusion parallel to the magnetic field and K 1  is 
the diffusion coefficient for diffusion perpendicular to the magnetic field. KA is the anti-
symmetric coefficient and is related to the drift-velocity: 

a V .(K • v./  = 
v azi  

-  axi   1 	aX. 

= V • (KS Vf)+ V • (K A  • Vf) 

aK-A  a 
Now, V . (KA  . Vf) = 	 f  ax, ax, 

Define (VD ) . = ax, 

Then, V (KA  • Vf) = -(YD  vf) 

With KA  = PV  
3qIBI 

—VD = PV  V X( 11  ) 
3q 	B • B 

where p,v and q are respectively the particle's momentum, speed and charge. See Isenberg 
and Jokipii (1979) for a complete derivation of the form of the drift velocity given in 
equation (1.9). This paper also gives references to work which treat this drift as the anti-
symmetric part of the diffusion tensor. 

In the spherical polar coordinate system described in Section 1.1, 

K 
Krr  

KOr 
KA \, 	yr 

Kr0 
K00 

Kro  
Koo  
Ko  

/ cos lif 
0 

-sin NI 

0 
1 
0 

sin lif \(Kll 

0 
cos ivi  

0 
\ 0 

0 
Ki_ 

—K A  

0 \ 

K A  
K1 Asin 

(cos v 
0 

yr 

0 
1 
0 

-sin lif \ 
0 

cos NI j  (1.10) 

where w is the angle between B and r, given by equation (1.17). 

afcijA 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

— 
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It is generally accepted (eg: Jokipii 1971, Gleeson and Webb 1980, Potgieter 1984) that, 
for particles With energies around 1 GeV and above, the parallel and perpendicular 
diffusion coefficients are of one of the forms: 

I B  1)11  K,, = Ko  13 Pa  

or alternatively, 

K0 13 Pa  (1 + 
re  

Kll 

a E 	€ (4,1) 

E (0.01, 0.1) 

where B and re  are respectively the magnetic field and radial position at Earth; is the ratio 
of the speed of the particle to the speed of light; and P is the rigidity of the particle, a 
measure of its relativistic momentum per unit charge: 

(1.13) 

The diffusion coefficient is the least known parameter of any of those which define the state 
of the heliosphere. It will be seen (Chapter 4) that the functional form of the parallel and 
perpendicular diffusion coefficients significantly affects the solutions obtained for f near 
Earth. Palmer (1982) estimated the parallel mean-free-path of galactic cosmic rays in the 
vicinity of the Earth to be between 0.08 and 0.3 AU (astronomical units) over a wide 
energy range up to 5 GeV. This gives an estimate of the value of K0  (equation 1.11) to be 
around 1018 m2s-i. 

1.3b. The Solar Wind: 

A first approximation to the solar wind velocity is given by 

Vsw  = U(r) P 

where 

(1.14) 

1 4x10 5  m•s -1  r < rsh 
U(r)= 5 

1 x 10 
(rsh)

2  
-1 m • s r 	rsh 

(1.15) 

Here, rsh  denotes the radial position of the termination shock in the solar wind (see Jokipii 
1986). It is seen from (for example) Nagashima et al. 1988 that 1171 varies between 
around 300 and 700 km s -1  with an average value around 400 km s -1  in the ecliptic plane. 
The solar wind increases with increasing heliographic latitude, plateauing at about 500-600 
km s -1  at around ± 60° (Newkirk and Fisk 1985, Sheeley et al. 1991) It turns out that 
values of the distribution function derived by solving the transport equation are insensitive 
to lysw l in the range —350-600 km s -1  for a spherically symmetric wind. A latitude varying 
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wind was not used in any of the models in this thesis. Most of the models solve the 
transport equation in solar minimum conditions where the approximation to V by equation 
1.14 is adequate. 

1.3c. The Magnetic Field: 

Parker (1958) was the first to predict that the magnetic field forms an Archimedean spiral 
structure in the heliosphere. See also Gleeson and Webb (1980) and Jokipii and Thomas 
(1981) for a discussion on the form of the heliospheric magnetic field. The field is frozen 
into the solar wind plasma and drawn out radially with this wind as the Sun rotates. The 
so-called Parker spiral field is described by the equation: 

Bo  r_ - no) (1- 2,3(0) 	
(1.16) 

where B o  is a constant which can be obtained by noting that IBI is roughly 5 nT at Earth. 
Also, 

r sine 
= tan yr = 	 

U(r) 

Ii = 	° 
1.0 	< 0 

(1.17) 

(1.18) 

for small a. Equation (1.19) denotes the structure of the neutral sheet. a is the tilt angle. 
The neutral sheet is the locus of points in space (a smooth warped sheet structure) which 
separates regions in space where the radial component of the magnetic field points toward 
the Sun and regions where the field points away from the Sun. It is fully described in 
Chapter 6. Jokipii and Kota (1989) add a modification to the standard spiral field which 
has, predominantly, the effect of changing IBI near the poles of the heliosphere. The 
modification attempts to model randomly orientated fields which may dominate at the poles. 
This modification, the details of which are described in the above reference, has been used 
when evaluating the magnitude of the magnetic field for the numerical models which derive 
f in this thesis. 

1.3d. The Streaming Vector: 

The streaming of cosmic rays S (as opposed to the intensity) is a measure of the flow of 
cosmic rays in a particular direction. Hence it is a vector quantity. The streaming is 
generally defined such that the net flow of particles crossing a surface element fill, at 
position ,K and time t with momentum in the range p to p+dp is dA  • (x,p,t) dp. With this 
definition, Gleeson and Webb (1980) (for example) show that the streaming vector can be 
written in terms of the number density (U=4itp2f) as 
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S= CV sw  U — K •V'U 	 (1.20) 

where C is a coefficient describing the so-called Compton-Getting effect (Compton and 
Getting 1935) and is given by 

, 	a f r Nr  
C --kpu 

3U ap 
(1.21) 

a ln f 
3a In p 

and K is the full diffusion tensor. In terms of the distribution function, 

S = 	K •Vf' 
 a f 

3 a lnp) 

1.3e. The Anisotropy Vector: 

(1.22) 

The anisotropy vector is a measure of the fractional departure of the intensity of cosmic 
rays from isotropy. Again, see Gleeson and Webb (1980) for a full derivation and 
justification of the form of E. If the intensity distribution is almost isotropic, then E is 
adequately given by 

3S  
= 4Tcvp2f 	 (1.23) 

This vector will be important in deriving the correct theoretical expression for the north-
south anisotropy in Chapter 8. 

1.4 MODELS 

As no analytical solution exists for the general transport equation, numerical techniques are 
employed to solve for f under pre-specified (and generally idealized) heliospheric 
conditions. Stable numerical codes used in solving multidimensional partial differential 
equations are generally very computationally intensive. Solutions given by Kota and 
Jokipii (1991a, 1991b) are the only examples of three-space dimensional time-dependent 
solutions for f. Other authors have solved f in one or two space dimensions, or time-
independent three space dimensions (eg: Kota and Jokipii 1983, Perko and Fisk 1983, 
Potgieter and Moraal 1985, Kadokura and Nishida 1986). 

There have been many reviews written on the current progress of the ability of increasingly 
complex models to simulate observational data. For example, see McKibben (1987), 
Forman (1987), Jokipii (1989), Simpson (1989) or Fluckiger (1991). The general 
consensus is that there are two principal model types, which assign the major modulation 
features of the 11 year cycle of galactic cosmic ray intensity to different causes. The first 
model type assigns the primary cause of the 11 year modulation to a superposition of the 
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effects of propagating disturbances in the solar wind / heliospheric magnetic field and the 
second model ,assigns the primary cause of this, and other modulation effects, to variations 
in gradient and curvature drifts experienced by the cosmic rays in the heliospheric magnetic 
field. Some models are being developed which incorporate both effects in a time-dependent 
manner in order to ascertain the major cause of the various observed modulation effects. 
Ultimately, computer resources place limits on the complexity of models able to be solved. 
Proponents of the first type of model suggest that the 11 year cycle of integral galactic 
cosmic ray intensity can be accurately simulated by a one-dimensional spherically 
symmetric model of the heliosphere including enhanced regions of magnetic scattering 
either co-rotating with the Sun, as in corotating interaction regions (CIR's), or propagating 
radially from the Sun, caused by coronal mass ejections and shock waves produced by 
solar flares (eg: Perko and Fisk 1983, Perko and Burlaga 1987). These regions increase in 
frequency or spatial extent from solar minimum to solar maximum and have the effect of 
inhibiting the cosmic rays from entering the inner heliosphere. Perko and Burlaga (1992) 
suggest that the 11 year cycle is caused by strong particle diffusion inside long lived 
merged interaction regions (combined CIR's). They suggest that their one-dimensional 
model is sufficient to explain the 11 year cosmic ray cycle and that drift effects are 
secondary and most noticeable around solar minimum, when modulation is minimal. See 
also Burlaga et al. (1985). Note that the above authors are modelling the integral cosmic 
ray intensity above about 70 MeV - the energy range of particles detected by telescopes on 
board spacecraft (eg: Voyager 1 and 2, Pioneer 10 and 11). Thomas and Gall (1982) 
simulated the effects of CIR's and found that these greatly perturbed the drift pattern 
anticipated for simple fields. They concluded that the expected streaming produced from 
drift effects no longer applied in the presence of these modulating regions. Recently, 
Burlaga et al. (1991) presented observational evidence which support the idea that drifts 
may be important in areas of the heliosphere away from merged interaction regions. 

On the other hand, proponents of the second type of model suggest that the major 
modulation features are drift-dominated. For example, Kota and Jokipii (1991b) suggested 
from their highly complex three-space dimensional model that regions of stronger magnetic 
field (eg: CIR's) resulted in rapid local decreases of the cosmic ray flux, but that 
fluctuations in the diffusion tensor (caused by these regions) only weakly affected the 
global modulation - which was drift dominated. Other proponents of the drift model 
include, for example, Potgieter et al. (1987, 1989) and Smith (1990). 

Although a two-space dimensional model with drift and perpendicular diffusion is the 
minimum level of complexity required to explain such effects as latitudinal gradients and the 
asymmetry in the temporal cosmic ray intensity profile between successive solar cycles of 
opposite magnetic polarity, the question is whether they are necessary to explain the global 
modulation pattern. It is most probably the case that the various modulation processes vary 
in their relative importance at different energies. Diffusion / scattering probably dominates 
at low energies and large scale drift probably dominates at higher energies. To suggest that 
the integral intensity is governed predominantly by one process is most likely too simplistic 
an approach. Indeed, at least two processes of equal importance are required to ensure a 
steady state solution other than the two extreme solutions: f=0, or f=galactic-distribution 
everywhere in the heliosphere. What would resolve many discrepancies would be 
spacecraft observations of differential intensity throughout the heliosphere. However, the 
practical problems involved in building a detector for spacecraft use which completely 
shields particles of energies up to tens of GeV are insurmountable at present. 
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The solutions for the distribution function given in the above references are generally for 
particle energies below about 5 GeV, and the value off in the vicinity of the Earth (at 1AU 
from the Sun) has not been well-specified. Kota for example remarked that results from a 
three-space dimensional model (Kota 1990) were inaccurate at radii less than 2-3 AU and 
thus could not be directly compared with observed radial gradients at Earth. Other results, 
for example Kadokura and Nishida (1986) and Potgieter et al. (1989), also predict a radial 
gradient at the position of Earth much larger than is likely from terrestrial based 
observation. They conclude that this is due to inappropriate diffusion coefficients and inner 
boundary conditions. It will be seen in the solutions presented in Chapter 4 that the radial 
gradient of the integral cosmic ray intensity remains low throughout the heliosphere. This 
remains true even at radial distances of less than 1 AU from the Sun, as long as a floating 
(rather than fixed) inner boundary condition and certain diffusion coefficients are used. In 
contrast with comments made by Kota (1990), the accuracy of the determined distribution 
function and radial gradient at 1 AU does not suffer greatly from using a sparse grid. 

1.5 OBSERVATIONS 

Early spacecraft observations of the radial gradient of cosmic rays were restricted to regions 
between the orbits of Venus and Mars. According to O'Gallagher (1972), by 1972 there 
had been 22 spacecraft measurements of g,.. These measurements were mainly for particle 
energies much lower than can be observed by ground-based detectors, however it is 
interesting to note that results for g,. in the MeV region ranged from -350 % AU -1  to +500 
% AU-1  and most commonly a null-result with large errors was found. 

Problems which prevented a reliable result being obtained from spacecraft observations in 
the early period (1960-70's) included unreliable detector systems, inadequate methods for 
removing solar particle contamination and transient modulation and, perhaps most 
importantly, obtaining a comparable reference monitor to distinguish spatial variations from 
temporal variations. As an example of the latter, Neher and Anderson (1964) used an 
ionization chamber on board Mariner 2 and detected particles with energy above a threshold 
of —10 MeV as the spacecraft travelled from Earth to Venus. Note that this is one of very 
few spacecraft that have made direct measurements of galactic cosmic rays on the Sun-ward 
side of the Earth. They used neutron monitors at Deep River and Mt. Washington as a 
temporal baseline. From observing that the count-rate on board Mariner 2 remained 
constant for the journey while at the same time Earth-based detectors observed an increase 
in count-rate (due to solar-cycle variations), Neher and Anderson concluded that g,. must be 
12±4 % AU -1  at 1 AU in the detected energy range. As a comparison, O'Gallagher and 
Simpson (1967) obtained a value for g,. of 9.6 ± 0.9 % AU -1  from measurements taken on 
board Mariner 4 on its journey to the orbit of Mars. These measurements were taken in 
solar minimum conditions and they estimated that the mean energy observed was 6 GeV - 
comparable with neutron monitor energies. 

Several recent papers report on observations of temporal and spatial variations in the 
integral cosmic ray intensity and gradients measured using spacecraft data (eg: Lopate and 
Simpson 1991, Webber and Lockwood 1991, McDonald etal. 1992). Spacecraft are now 
distributed throughout the heliosphere to near 60 AU. At present however, there are still 
only a handful of such detectors and they are all (with the exception of Ulysses) 



11 

concentrated near the heliographic equator (see Parthasarathy and King 1991). One of the 
drawbacks of spacecraft measurements is that the observations are generally' for particles 
with energies above a small threshold. There is no way of determining differential 
information, for example, what the average value of g,. is for particles in the energy range 
1-10 GeV or 10-100 GeV etc.. In fact, ground-based particle detectors are currently the 
only method for determining the intensity distribution of galactic cosmic rays near the Earth 
for particles above —10 GeV (see McKibben, 1987). 

From spacecraft measurements, it is known that there exists a positive radial gradient of 
cosmic rays near the heliographic equator. That is, there are fewer galactic cosmic ray 
particles on the Sun-ward side of the Earth than beyond 1 AU. Fillius (1989) gives an 
excellent review of spacecraft observations of the radial gradient. IMP 8, Pioneer 10 & 11, 
Voyager 1 & 2 have all made observations of g,.. The instruments on board detect particles 
with energies above some threshold (about 70 MeV) and so data obtained are for an integral 
spectrum with mean energy around 2 GeV. The general consensus from these spacecraft 
observations is that the gradient is remarkably spatially constant out to about 30 AU and has 
a value of about 2-3 % AU -1 . Webber and Lockwood (1991) for example report that the 
radial gradient changes from 1.5 to 3% AU -1  for negative polarity states of the heliospheric 
magnetic field and is temporally constant at 3% AU -1  for positive polarity states. Note 
however that these spacecraft have not made detailed measurements of g,. for heliocentric 
radii less than 1-2 AU. 

Values of gr  measured by ground-based telescopes using a north-south anisotropy analysis 
are presented in Chapter 8. 
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Chapter 2. 
Numerical Methods. 

2.1. INTRODUCTION 

In this chapter the numerical methods employed to solve the transport equation under pre-
specified heliospheric conditions are discussed. These methods are commonly employed, 
in one form or another, by those who attempt to solve multidimensional partial differential 
equations. 

The galactic cosmic ray intensity everywhere in the heliosphere is theoretically completely 
determined via the solution to the transport equation, given two things. Firstly, that the 
state of the heliosphere is completely specified. This means that the sun's magnetic field, 
the solar wind and the diffusion coefficients are pre-determinable at every point in the 
heliosphere. Secondly, that the boundary conditions in all variables are also completely 
specified. It will be seen in Chapter 4 that an inability to accurately specify these boundary 
conditions, especially the inner-boundary condition in the radius coordinate, inevitably 
leads to an inaccurate determination of the intensity distribution. 

As is the case with most theoretical systems which aim to model phenomena in nature, 
solutions to the transport equation inevitably lack the accuracy required to completely 
explain all the phenomena detected by cosmic-ray monitors. Nature is generally too 
complicated to be completely and accurately specified. We are, in practice, also constrained 
by computer memory and speed. This means that the transport equation is solved in a 
simplified and idealistic heliosphere. Because an analytic solution to the transport equation 
has been found only under highly idealized conditions (for example, a spherically 
symmetric heliosphere), we are constrained to a numerical solution. The heliosphere is 
discretized into an n-dimensional grid - one dimension for each variable in the equation. 
The solution is found at each point on the grid. It is assumed that the solution is smooth 
and continuous between grid points. If this is the case, then interpolation routines can be 
used to determine the intensity distribution of the cosmic rays between grid points. 

If the state of the heliosphere is time-dependent, then the full transport equation must be 
integrated in time from some pre-specified initial condition to a time of interest. An 
example of this is the case where it is of interest to determine the change in the galactic 
cosmic ray intensity distribution at Earth as a shock wave, emanating from the Sun, passes. 
In this case, the initial condition may be the steady-state solution (aflat = 0) and the 
transport equation is integrated in time from, for example, when the shock-wave first leaves 
the Sun until it is well past the Earth (say 5 AU). 

If the steady-state solution is of interest, then either (a) the right-hand side of the transport 
equation (1.3) is solved, ie: aflat is set to zero, or (b) the transport equation is integrated 
from some pre-specified initial condition under a steady-state heliosphere until aflat 
becomes sufficiently small - ideally zero. The question of "how small is sufficiently small" 
is subjective and somewhat dependent on the specific details of the problem. A steady-state 
heliosphere is one where the sun's magnetic field, solar wind, and the diffusion coefficients 
are time-independent. This would be reflected in the time-independence of the coefficients 
of the derivatives of the distribution function in the transport equation. Under these 
conditions, an integration of the transport equation in time should converge - so long as the 
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integrating procedure is computationally stable. In practice, (b) above is chosen as the 
preferred path to the steady-state solution. It is computationally more straight-forward, 
except under one specific case. That is when the coefficient of aflap is never zero in the 
heliosphere. In that case, it is easier to integrate with respect to momentum p, starting from 
the initial condition that the distribution function everywhere in the heliosphere is equal to 
the galactic value at the outer-boundary for a sufficiently high rigidity. If the coefficient of 
al.* is zero then the equation to solve is elliptic and not parabolic. This would happen if 
the solar wind were spherically symmetric and had an inverse square dependence on radius 
as is the case normally associated with the conditions beyond a solar-wind termination 
shock. The solution methods given below are not applicable to this case. Difficulties with 
solutions to the elliptic equation are discussed below. 

2.2. DISCRETIZING THE PARABOLIC EQUATION 

Consider the problem of solving the full transport equation (f/at # 0). The equation is 
written as a difference equation on a finite grid. Initial and boundary conditions are 
specified for ! at time t = 0. f is then solved for all points on the grid for t = At, a finite 
time interval. The distribution function is then solved at all points for incrementing 
timesteps of At using the solution at the previous timestep as the initial condition for the 
current timestep. If B, Vsw  and K are time-independent, then this iteration continues until 
the solution becomes sufficiently steady-state. The boundary conditions used in solving the 
transport equation are as follows. Firstly, the outer boundary of the heliosphere (r = r,, ) 
is assumed to be spherically symmetric and a source of galactic cosmic rays with a pre-
assumed spectrum. For other radius values along the polar axis (0 = 0, it), smoothness 
and symmetry across this axis implies af/a0 = 0. If the azimuthal coordinate is included, 
then f(0=0) =f(0=2n) is the boundary condition. It is assumed that a2f/ap 2  at each 
momentum boundary (p=p„, in  , p=p,,,,,) is also zero. This condition is equivalent to 
requiring that the boundary value is a linear extrapolation of the values on the closest two 
grid points. If pmax  is sufficiently large, then the upper-boundary condition for f in the 
momentum coordinate could be specified by requiring that no modulation occurs anywhere 
in the heliosphere at this momentum value. The values used for the upper-boundary of 
momentum in the model-runs of Chapter 4 corresponded to a particle rigidity of 10 GV. 
This is too low a value to assume no modulation. A number of different inner-boundary 
conditions (r = rmin) were tested and each will be discussed in Chapter 4. Some boundary 
conditions used by other authors include f(r = rmin) = 0 or (af/ar) r=rmin= 0 (see Chapter 4). 

Specific notation is now introduced to describe the numerical methods employed to solve 
the transport equation. Let the discretized version of the transport equation (given by 1.3) 
be written as 

Sf 
•

= 	La  f 
a (2.1) 

where the La's are difference operators acting on f, a separate operator for each coordinate. 
The discretized version of the idealized axially-symmetric transport equation is written as 



Sf +Lp)f 
St 

where, for example, the difference operator corresponding to the radius coordinate is 

Lr  = Arr  „ + Ar -- 
Sr' 	Sr 

82 	8  

(2.3) 

A r  and Arr  are position dependent, time independent coefficients. S/Sr and 82/8r2  are the 
difference operators corresponding to first and second derivatives with respect to r. 

To explain the numerical concepts behind the integrating routines applied to the transport 
equation, it is appropriate to firstly consider the case of a simple one-dimensional partial 
differential equation. The cliscretized notation for the equation 

af 	a2f  

at — ax2 	 (2.4) 

evaluated at (t,x) would be written as 
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(2.2) 

Sf 
St t,x 

= Lxft,x 
82 

where Lx  = 2  
Sx (2.5) 

On a one dimensional grid where x = 	i=0...1, 

ft+At,i ft,i 	ft,i+1 -2ft,i ft,i-1  

(Ax)
2 	

(2.6) 

is the central-difference form of A/at time t. This difference equation is an approximation 
to the continuous differential equation and is derived by considering the Taylor series 
expansion of f about the point x. Such expansions and their accuracy are discussed in 
Chapter 3. 

As can be seen, iff is known at all points i at time t, then it is a trivial task to derive f at all 
points i for time I+ At through equation 2.6. In practice, if this is being done on a 
computer, then depending on the relative sizes of At and Ax, after not too many iterations 
(generally far fewer than is required to fully solve the equation), computer round-off errors 
can accumulate and the solution can become more and more inaccurate and eventually 
diverge to infinity. If this occurs, then the difference approximation to the partial 
differential equation is said to be unstable. The question of stability is addressed in Chapter 
3. It will be shown that instead of equation (2.5), the difference approximation 

= 	L At,x + (1— 	Lxfi,x 
(2.7) 

Sf 
St 1,x 



=-1(Lr t f+T Lr  ft ) + Left  + L p ft 2  

Lrft ) + (Loft+t + Loft ) + Lpft  

— 1-(L 2 rf 	+ 
I+ 3 Lrft) +(Loft+1.1 + Loft ) 

+ 	p ft+ At 	L pfl) 
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where XE [0.5,1], is stable for any choice of At or Ax. The first term on the right hand 
side of this equation denotes the difference operator acting on the value of f at the next 
timestep. In full, 

- 	 1+A1,1±1 - 	+  
At 	 (6,x)2 

+ (1
- 

x) 	- 	+  
(&)2 

(2.8) 

This is known as an implicit difference formula since the value off at t+At is written as a 
function of other values off at the next timestep. Equation (2.8) as it stands is a single 
equation in three unknowns, namely ft++/ , ft+At,i  and f1 _i  . The full set of equations 
given by (2.8) for each i.1.../-1 form a complete set if the boundary values 4+6,0=0  and 

are pre-specified. 

Specific difference equations and numerical solutions for the transport equation are now 
addressed. Unless otherwise stated, it may be assumed (and is proven in Chapter 3) that 
the difference approximations given here are computationally stable. The different 
algorithms are demonstrated on the axially-symmetric (f = f(r,O,p,t) ) transport equation. 
Such implicit integrating routines for parabolic partial differential equations are described, 
for example, in Chapter 4 of Lapidus and Pinder (1982). The Alternating-Direction-
Implicit (ADI) and Locally-One-Dimensional (LOD) routines are applied to equation (2.2). 
The philosophy behind these routines is that they attempt to integrate the multi-dimensional 
problem through a series of steps - each step being a one-dimensional integration in time. 
Implicit routines such as these are generally required to ensure computational stability (as 
demonstrated in Chapter 3). The fully explicit integrating algorithm and its limitations are 
discussed later in this chapter. 

2.3. IMPLICIT INTEGRATING METHODS 

Following Lapidus and Pinder (1982), the steps which take f from time t to time t+At 
using the ADI method can be written as: 

(2.9A) 

(2.9B) 

(2.9C) 
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Equation (2.9C) is the so-called combined ADI form and takes f from t to ti-At directly. 
However, theintermediate va1uesft÷6,1,3  and ft+2Au3  must be fully solved in order to use 
this equation. In practice, two other steps are used in place of (2.9B) and (2.9C) and are 
derived by subtracting (2.9A) and (2.9B) from (2.9C). They are 

fi+26,t — f_0 
3 	 — Loft ) 3  

At 	 3 

The steps which talcef from time t to time t+At using the LOD method are: 

— .ft 3 	=• Lrft+.Ai + (1— X)• Lrfi  
At 	 3 

fr+ 2At — ft+ _41.  
3 	3  =  

At 	
. Left+ 2At + (1— X) • Lefi+1 

3 

ft+At — ft+IL 
	 3  =  

At 	
X•Lpft+At  + (1— X)•Lp4+ 2At 

3 

is a parameter. To ensure stability, XE [0.5,1]. The combined LOD formula is then 

ft+At ft  
At 

+ Left+23At 	pft +AI ) 

+ (1— X,) • (Lrft  + Loft+ti + Lpft+ 24L (2.11) 

The actual method of using these algorithms is now explained. Consider the discretized 
grid for the axially symmetric heliosphere. Let 

r = i(Ar)+ rm in , 	i =0...1 

0 = j(6,0), 	j = 0...J 

p = k(Ap)+ pm in , k = 0...K 	 (2.12) 

such that f(t,r,O,p) = ft ,ij,k . Consider each ADI or LOD step in turn. For each j and each k 
the system of equations given by (2.9A) or (2.10A) for i= 0..1 is solved. This gives 
ft+/3  at every grid point (i,j,k). For each i and each k the system of equations given by 
(2.9B*) or (2.10B) for j=0..../ is solved. This gives fr+2,60 at every (ij,k). For each i 
and each j the system of equations given by (2.9C*) or (2.10C) for k=0...K is solved 
giving f1 	at every (i,j,k). The whole procedure is repeated for the next timestep using 
the new result at the current timestep as the initial condition. Note that the boundary values 

ft+At — 4+241 3 = ELpft÷61 - At 

(2.9B*) 

(2.9C*) 

(2.10A) 

(2.10B) 

(2.10C) 
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for the current timestep must be specified before each integration step. Note also that if the 
boundary values are time-dependent, then allowance for this fact must be made at the 
intermediate valuesft+A113  and fi+2,60 . The boundary values are able to be specified by 
applying the partial differential equation to the known boundary values at the current and 
next timestep. This case is discussed in Gourlay and Mitchell (1972). Fortunately, it is not 
expected (at least on timescales short compared with the solar cycle) that the boundary 
values for the transport equation are time dependent and so allowance for this possibility is 
not required. 

As an example of each step, consider equation (2.10A) for X = 1 in full detail. Assume, for 
example, that 

52 
Lr  = Ar —

5 + Arr  2  
Sr 	Sr 

corresponding to 

(2.13) 

af Ar —
af 

+ Arr  
ar 

a2f  
r 2  (2.14) 

Assuming also that the coefficients A,. and Arr  are functions of (r,O,p) but not time, then this 
LOD step, in full, is given by 

ft+%J ,j ,k ft,i,j,k (Arr)i,j,k = r 
ifi+41,i+Lj,k 	2.ft+Pi iik 3 "- ' i-1 3 ' At 3 (A02 

(Ar ) i, 	[ 
k  — f 	• ,J, 	1-1-T,1- ,J,k  (2Ar) (2.15) 

for i=0...1. Other difference formulae may be used to represent the discrete version of the 
first and second partial derivatives. The advantage of using the central-difference formulae 
in (2.15) is that this system of equations (for all i) can be written as 

ai(ft+-ti—Lj,k) 	bi(ft+11 ,i,j,k) 	 = di 	i = 1... / 1 
(2.16) 

where 

(Arr )i i,k 	(Ar )i,j,k \  
a. = (At) 	+ 	 

(AO' 	(2Ar) 

[  bi 	
2(At) • (Arr)i,j,k 

= + 	i 1 
(Ar)2  
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(At) 
(

(A

rr)i,j,k (Ar)ijA)  

(Ar)2  (2Ar) (2.17) 

= 

whereby it is seen that equation (2.16) exactly describes the tri-diagonal matrix system: 

T•f=d 

where 

(2.18) 

( b1 
a2 b2 

a3 b3 c3 

T= 

(2.19) 

( f r 1+—,1,j,k 
3 

f 
3 

(21_3 b1_3 cl_3 
a1_2 61_2 ct_..2 

a1_1 61_1 

(2.20) 

ft+Ai  o j k 
3 

d2 

d= 

d1-2 

d1-1 -  
3 	 (2.21) 

Lapidus and Pinder (1982, Chapter 4) or Press et al. (1986, Chapter 2) give routines 
which solve the tri-diagonal system easily. In essence, the solution consists of two steps: 

f 	. 
3 

f 	. 
\ 	3 
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TL, • s = d 

Tu  • f = s 	
(2.22) 

where 

T=TL .TU 	
(2.23) 

is the LU decomposition of the matrix. TL, and Tu  are lower and upper-triangular matrices 
respectively. 

2.4. EXPLICIT INTEGRATING METHOD 

Explicit finite difference algorithms run much faster per integration timestep on a computer 
than implicit schemes. The nested systems of equations required to be solved for the 
implicit schemes are replaced in the explicit scheme by a single one-line statement taking f 
from t to t+At at each grid point (i,j,k): 

f+—f  = (Lr  +Lo  + p)ft 
At (2.24) 

such that the difference operators act only on the value off at time t. This is equivalent to 
the combined LOD algorithm where 2=0 (to order At accuracy). As mentioned previously 
however, explicit algorithms are only computationally stable for a subset of values of (At) 

t„,,„ (for a given set of grid element sizes Ar, AO, Ap). For the case of the axially 
symmetric transport equation, it will be shown in Chapter 4 that even though each 
integration step is faster to compute for the explicit algorithm, constraints on (At) to ensure 
computational stability are such that it is far quicker computationally to fully-integrate the 
transport equation (to steady-state for example) using an implicit scheme. 

At this point, mention should be made as to why the elliptic equation af/at = 0 is not solved 
directly if the final result required is the steady-state solution. It is because (apart from the 
case where the coefficient of af/ap is non-zero everywhere and the equation can be 
integrated with respect to the momentum coordinate) the equation requires explicit boundary 
conditions and no initial conditions. The partial differential equation must be solved at 
every point in the heliospherefi JA, i=0...I, j=0...J, k=0...K, at the one time. Even though 
the matrix system would be sparse, it would nevertheless not be upper or lower triangular. 
Hence, given that each coordinate may have anywhere between 10 and 100+ grid points 
(depending on the the accuracy of the solution required), the system of equations would be 
too large to be computationally solvable in practice. 
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(pv rr 
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1 	a 

(2.25) 

- ;1-1(r A0)] 
	

(2.26) 

sin 0 ae 1 	) a  (sin 0 A4) ) 

(vp)e  = 

2.5. NUMERICAL EVALUATION OF 

The components of the drift velocity VD in three dimensional space are given by: 
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(pv li aAr yi 
L rae A (2.27) 

where A is expressed in terms of the sun's magnetic field as 

A= 
2 

2 	 ( — r i)).(1 — 2 S(c)) 
Bo  (1+ F 

(2.28) 

r and are given by equations (1.17) and (1.19). It is seen that the analytical evaluation of 
the components of VD therefore contain a delta-function (since A contains a step-function). 
The full analytical expression for the drift velocity, including delta-function, is shown in, 
for example, Jokipii and Thomas (1981). The delta-function arises solely from the fact that 
the magnetic field is modelled as a step function at the neutral sheet. In practice, there is a 
finite distance over which the field reverses, corresponding to the small but finite width of 
the neutral sheet. It is for this reason that VD is more appropriately evaluated through 
numerically differentiating the components of A. The step-size for the numerical derivative 
should be representative of the distance over which the field reverses in practice. For 
example, 

(vD ) (r,0,0) 	(—pv) 	  
1 4) 	3qr L 	2 de (2.29) 

where dO << AO, the grid step-size used in the numerical integration of the transport 
equation. Given that the expression for A is analytic, we are free to evaluate it anywhere - 
not just on the grid points of the discretized heliosphere. 

It will be seen that derivatives of some of the components of the diffusion tensor will be 
required in order to evaluate the coefficients of the discretized transport equation. Such 
derivatives are most easily obtained again via the numerical approach above. 
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Chapter 3. 
Stability Analysis. 

3.1. INTRODUCTION 

When implementing the algorithms described in the previous chapter for solving the 
transport equation, practical problems associated with the discrete representation of real 
numbers and partial derivatives on a computer are introduced. In this chapter, these 
practical limitations are explored and their relevance to the model solutions in Chapter 4 are 
discussed. 

The model partial differential equation (PDE) is described by a difference equation on a 
finite grid. It is hoped that the numerical solution to the difference equation converges and 
also that it converges to the "true" solution represented by the PDE. A particular solution to 
a finite difference equation that converges is said to be stable. One that converges to the 
true solution is said to be consistent. A finite difference solution to a PDE is therefore 
successful if it is consistent. Note that an unsuccessful solution may be stable but not 
consistent, or of course neither consistent nor stable. 

The approximation to a partial differential equation by a finite difference equation invariably 
has a truncation error associated with it which is generally proportional to the grid-spacing 
over which the finite differencing is taking place. The finite difference equation is 
consistent with the model PDE if all the truncation errors associated with the difference 
equation approach zero as the gridsize goes to zero. 

An integrating technique used to numerically solve the finite difference equation is stable if 
round-off errors associated with the computations (eg: round-off errors in the computer) do 
not grow as the computation proceeds. A useful method to test stability is known as 
von Neumann analysis. This method was first introduced by O'Brien et al. (1950). 
Applications of the analysis for various integrating schemes can also be found in Lapidus 
and Pinder (1982). 

The following section first addresses the question of consistency for the finite difference 
representations used for the transport equation. A summary of the theory of von Neumann 
analysis is then presented. This method is then applied in subsequent sections to the 
various finite difference representations and integrating techniques used in the solution to 
the transport equation presented in Chapter 2. 

3.2. THEORY 

Consider the one-space dimensional function U(t,x) on a uniform space-grid x = ik, 
k.(Ax), i=0,1,2, ...I, with time t=rh, h.(At), r=0,1,2, ...R. Let (I r, i denote 
U(rh,ik) = U(t,x). The Taylor-series expansion of U about x+Ax and x-Ax is:- 

k 2 	k 3  xxxi 	k4  = U + k Ux i i  + — U xx i i  + —U i t  + — 
! 

Uxxxx l i  + 
2! 	3! 	4 

(3.1) 
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Ui_l 	— k Ux  • + —k Uxx l i  — —k Uzu j i  + —
k4 

Uxxxx l i  + 

	

2! 	3! 	4! 

2 3 

(3.2) 

aU(t,x) 	 a2u(t,x)  is 	evaluated at x = ik, U where Ux l . 	 xx l i  is 	evaluated at x = ik 
■DX 	 ax 2  

and so on. The subscript r is not explicitly shown in the above equations because the 
expansion is for a fixed time t. The well-known finite-difference forms (to order k2 ) for the 
first and second derivatives of U are found, with truncation error, from the difference and 
sum of the equations 3.1 and 3.2:- 

uxi i  = U• 1 - U- 	k2  14-  

2k 	12 U141  - -127 U 143  
xxx  

(3.3) 

	

U.+1 - 2U1  +U1_1 	k2 xxxx  Uxx li = I 	2 	U 142  — — U— 
k 	 24 	 24 	I4 (3.4) 

where i , 2  are in the range (x, x+Ax) and 	, 	are in the range (x-Ax, x) (eg: see 
Arfken 1985). These difference forms are the ones used to represent the transport equation 
as a finite-difference equation. Note that in both (3.3) and (3.4) the error is proportional to 
k2 , so as the grid spacing k approaches zero the finite difference approximation approaches 
the true derivative (ie: truncation error goes to zero). Such finite-difference representations 
are therefore consistent. Note however that if the truncation error is changed by 14), where 
0:1) is an arbitrary function of x, then the approximation is still consistent. Hence there are 
infinitely many consistent finite difference approximations to a partial derivative. The 
accuracy of a particular approximation is determined by the size of the total truncation 
error. In many cases it is difficult or even impossible to quantitatively determine the 
magnitude of the truncation error. 

Consider now the von Neumann method of determining the stability of a finite-difference 
scheme. Note that all the solutions given in Chapter 2 to the transport equation are found 
by numerically integrating with respect to time. It is of interest to determine whether small 
errors introduced at some stage in the computing procedure by some round-off mechanism 
will propagate through the computation getting larger at each stage, or whether such errors 
will die out as the computation proceeds in time. 

If the PDE is linear then any initial error will propagate according to the finite difference 
scheme. In other words, consider the partial differential equation U t  = U" -  Let the 
corresponding difference equation be SU/St = 82  U/Sx2 . If there is an error E(t,x) 
associated with the solution to this finite difference equation then it can be shown (eg: 
O'Brien et al. 1950) that 8E18t =62  Elax2  

Von Neumann analysis relies on the fact that the error E(t,x) in a finite difference scheme 
can be represented by 

E(t,x) = eite-iPx 	 (3.5) 
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Here y may be complex and a function of 13, and j=4(-1). Note that the discussion here is 
still restricted to one-space dimensional functions. Generalization to n-space dimensions is 
discussed later. In general, the true error in .a finite difference scheme at (t,x) may be more 
complicated than the form given in (3.5). However complicated it may be though, it can be 
harmonically decomposed (via Fourier analysis) into terms each of the form given in (3.5). 
See Appendix 2 for further discussion. Since the PDE's of concern are linear, each term in 
the harmonic decomposition can be treated separately. The stability analysis is done on one 
representative term only. Since information on the values of 13, ie: the spectrum of the 
error, may in practice be unattainable, only those integrating techniques whose stability 
criteria is independent of the choice of 13 should be used. In such cases, if it can be shown 
that one term in the Fourier series does not grow in time through the computational 
procedure, then no term will grow and the integrating technique will be stable. Note 
however that stability may be a function of grid spacing in the space or time direction. 

Using the same grid notation as above, the error E(t,x) can be written as 

eh ejWci E(t,x) 	 (3.6) 

The initial error at time t=0 is simply ealk. The integrating technique will be stable if 

= lerhl1.0 
(3.7) 

Then for all time t, the error E will be equal to or smaller than the initial error. Note that it 
is more convenient to test 

le7h1 5_ 1.0 

It follows that if equation (3.8) holds then so does equation (3.7) because r is a positive 
integer. Following O'Brien et al. (1950) or Lapidus and Pinder (1982), is found by 
substituting E(t,x) given by equation (3.6) into the difference equation under consideration. 
If E satisfies equation (3.8) then the corresponding difference equation is stable. This 
procedure is applicable to testing whether errors introduced at any stage in the computation 
(other than t=0) will or will not grow. Because the equations under consideration are 
linear, a coordinate transformation t'=(t-a) can be made, where a corresponds to the time 
when the error is introduced. In this new t' frame, the stability analysis proceeds 
identically as above and the same criterion, namely 5_ 1.0 is required for stability. II is 
often called the amplification factor for the difference scheme. 

3.3. APPLICATION TO THE TRANSPORT EQUATION 

3.3a. Stability for the LOD scheme (interior grid points): 

Consider the LOD integrating scheme given in equation (2.11). Each step in the scheme is, 
as the name implies, one-dimensional and of the form:- 

UI  = A(x)•Uxx  + B(x) • U x 
	

(3.9) 

(3.8) 
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where x is either the radius-transformed coordinate z (see equation 4.1), the polar-angle 
coordinate 0 or the momentum coordinate p. U corresponds to the distribution function. 
Away from the boundaries of the space-grid, the corresponding fully-implicit difference 
equation used for a single LOD step was:- 

Ur+1,i — Ur,i 	r+1,i+1 — 2U r+1,i 	+ B r+1,i-1 	Ur+1,i+1 -14+1,i-1  =A1  
k 2 	 2k 

(3.10) 

where A i = A(ik) = A(x) etc... Substituting E(t,x) for U(t,x) and dividing through by 
eirh ejOik gives 

-1 = 	6-14  - 2E + CP) + pt2 ( ej13k _ e-Ak) 

where 

A  h 
131 = tii -77  and po2 = 

k  2k 

Solving for gives 

1 

1 + 4p isin2 (W-c-) - 2 jp2sin(13k) 
2 

The condition 11 1.0 for E given by this equation is satisfied when 

8pi sin2 (-13-1-1 + [4p i  sin2 ( 1 -)] + [2p2 sin(f3k)]2  ?. 0.0 
2 	 2 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Since the last two terms of equation (3.14) are always positive and h, the gridsize in the 
time coordinate, is positive then equation (3.14) is satisfied when A i  0. Note that (3.14) 
may also hold for A i  < 0 over various domains of 13, k, and h. These domains may in 
practice be impossible to completely specify. Hence to ensure the stability of the finite 
difference scheme given in equation (3.10) over all domains of [3 , k, and h, the coefficient 
A(x) of the second derivative of the function is required to be positive over the region of x 
through which the integration is performed. 

The full LOD integration scheme given by equation (2.11) consists of three integration 
steps, each one of the form given in equation (3.9). If each step is computationally stable, 
then the combined scheme (to step from t to t+6,t) will also be stable. This follows from 
the fact that the combined total amplification factor for a multi-stage integration scheme is 
the product of the amplification factors for each of the separate stages (see Lapidus and 
Pinder, 1982). One notable consequence of this fact is that if one of the stages is unstable 
then the combined three-stage integration procedure is not precluded from being stable. It 
is only required that the total amplification factor be less than or equal to one. 
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3.3b Explicit boundary points (LOD scheme): 

Consider the difference equation for the partial differential equation given in (3.9) at the 
boundary of the space grid where the boundary value is specified at the current time step. 
That is, the boundary value is explicitly, rather than implicitly, specified. For 
completeness, the stability of both cases (explicit lower and upper boundary) is examined. 

The difference scheme for an explicit lower boundary value is 

14+1,1 -14,1 	Ur+1,2 — 214+1,1 Ur,0 	14+1,2 —14,0  + 
k2 	 2k (3.15) 

Again define p i  and p2  by equation (3.12). Substituting E(t,x) for U(t,x) and dividing 
through by erh ei Pik , where in this case i=1, gives 

4  _ 1 	p i  ( .ej13k 	e- jf3k) 	P2  (4 .e if3k 	Cil3k) 	
(3.16) 

Solving for gives 

= 	[1+ (p i  - p2 ) cos Pk] - j [(p i  - p2) sin  Pk] 
[1 + 2Pi - (Pi ± p2 ) cos f3k] - [(Pi ± p2 ) sin Pk] 

and therefore 

[1+  (p i  — p2 ) cos 13d2  + [(p i  —P2)  sin Pr  

[1+ 2p i  — (p i  + p2 ) cos 13d2  + [(p i  + p2 ) sin Pk] 
II = 

(3.17) 

(3.18) 

Since all terms under the square-root sign are positive, the condition II 5. 1.0 for this 
expression is satisfied when the numerator is less than the denominator. Expanding out the 
terms, this occurs when 

P12 + P1+ P1P2 	0 . 0  

or in terms of the grid spacings and coefficient functions, when 

2hAi2  + 2k2 Ai  + hkAiBi 	0.0 for i=1. 

The difference scheme for an explicit upper boundary value is 

ur-1-1,1-1 - (4,1-1 	A1_1 	
k2  

- 2U r+1,1-1± Ur+1,I-2  
k2 	

+ B1_ 

(3.19) 

(3.20) 

Uri - Ur+1,1- 2  
2k 

(3.21) 
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The corresponding amplification factor is determined via 

[1 + (p i  + p2) cos f3k]  + j [(p i  +  p2) sin  Pk]  
[1+ 2p1  — (p i  — p2) cos 13k] + j [(p i  — p2) sin Pk] 

Again, the condition 11 5_ 1.0 is satisfied when 

P12  + P1 P1P2 	0 .0  

(3.22) 

(3.23) 

or 
2hAl 2  + 2k2  A1 — hkAiBi  ?_ 0.0 	 (3.24) 

for 1=I-1. Note that the stability criteria expressed in terms of h, k, A and B in (3.20) and 
(3.24) are slightly different. In both cases, the stability of the integrating scheme is not 
unconditionally satisfied. 

3.3c. Mixed space-derivatives: 

The case of the stability for the r-implicit step in the solution to the three-space dimensional 
(rigidity independent) transport equation is now considered (see Section 4.6). This step 
differs from the other LOD steps described above because the r-0 mixed derivative was 
evaluated at the current timestep (explicitly) rather than the next timestep (implicitly). For 
this step, the PDE has the form 

U t  = A(x,y)-U xx  + B(x,y). U x  + C(x,y) • U xY 	 (3.25) 

where x would correspond to the z-transformed radius variable and y would correspond to 
the azimuth variable 11). Define the y-spaced grid via y=mw, m=0,1,...M, w=(4). Since 
U in equation (3.25) is locally two-space dimensional, a two-space dimensional error 
function can be associated with the corresponding difference equation: 

E(t,x,y) = E(rh,ik,mw) 	eyrh 	e iP2mw 	 (3.26) 

As for the one-dimensional case, this represents only one component of a Fourier series of 
error functions of the same form and again each component is treated separately. The 
difference equation corresponding to (3.25), with the last term explicit, is given by 

	

Ur+1,i,m Ur,i,m  = A  . 	Ur+1,i+1,m -2Ur+1,i,m Ur+1,i-1,In  

k 2  

Ur+1,i+1,m Ur+1,i-1,m 	Ur,i+1,m+1 -  Ur,i-1,m+1 - Ur,i+1,1n-1±Ur,i-1,m-1  + 131,m 

	

2k 	
+ • 

4kw 

(3.27) 
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Substituting the error term in (3.26) into this difference equation gives 

4-1 = pi4(ek — 2+ e-if3 ik) 	p24(eiPik _ e-ipik) 

p3 (e i1311c eif32w _ e iRik e-iP2w _ 	dR2w 	e-iRik e- i13 2w) 

where 

Pi =4i ,m T , p2  = Bi,m  —2k  and 
P3  = Ci 'm  4kw  k 

Solving for the amplification factor in (3.28) gives 

1- 4p3  sin(13 1 k) sin(132w) 

1+ 4p i sin2(---1311 - 2 jp2  sin(f3 1 k) 
2 

and therefore 

11- 4p3 sin(I31k) sin(1320 
2 1 

[[1+4P1 sin 2(--13211 + {2p2  sin(13 1k)]2  

(3.28) 

(3.29) 

(3.30) 

(3.31) 

Unfortunately, this is one case where the stability criterion 141 1 depends on the spectrum 
(range of 13) of the error. Because in practice there is no straight-forward way of 
determining 13 1  and 132 there is no guarantee that the integrating procedure given by (3.27) 
will be stable. 

3.3d. Stability for explicit schemes: 

Implicit differencing schemes (as discussed in Chapter 2) often have unconditional stability 
criteria. It seems that explicit schemes always have conditional stability criteria. To ensure 
the stability of an explicit difference scheme for a parabolic-type PDE generally requires 
tight constraints on the grid steps in the space and time dimensions. Here the constraints on 
the grid steps for the explicit difference equation representing the two-space dimensional 
transport equation (given by equation 4.5) are examined. The equation has the form 

Ut  = A(x,y,z)Uxx  + B(x,y,z)Ux  + C(x,y,z)UYY + D(x,y,z)UY + G(x,y,z)U z  

(3.32) 

where, applied to the transport equation, x corresponds to the radius coordinate, y the 
heliographic polar-angle and z the momentum. With grid-indices defined through t=r(At), 
x=i(Ax), y=m(Ay) and z=n(Az), the explicit difference equation representing (3.32) at 
interior grid points in the space-grid is 
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Ur+1,i,m,n = Ur,i,m,n 

▪ P1(U rj+1,m,n — 21-1  r,i,m,n 	r,i-1,m,n) + P2 (U r,i+1,m,n — Ur,i-1,m,n) 

+ P3 (U rj,m+1,n — 2U r,i,m,n Ur,i,m-1,n) ± P4 (U rj,m+1,n Ur,i,m-1,n) 

4" P5 (U rj,m,n+1 —  Ur,i,m,n-1) 
(3.33) 

where 

(At)Aimn 	(At)Bimn 	(At)Cinin 	(At)Dimn 	(At)Gimn  
P1 = 	2 , P2 = 	, P3 = 	2 , P4 =- 	 , P5 = 

(&) 	2(6x) 	(Ay) 	2(4) 	2(Az) 

(3.34) 

and (for example) A jain = A(iAx,mAy,nAz) = A(x,y,z) etc... Since this integrating 
procedure has three space dimensions associated with it, the corresponding error function is 
three-space dimensional and of the form 

E(t,x,y,z)= E(rAt,idx,mAy,nAz)= 	=ern ejxi i e jX2 m ejx3 n 
(3.35) 

where = 
3(&), X2 =132(4) and X3 = [3 3 (Az) 	 (3.36) 

The 13's here define the spectrum of the error as in equation (3.6) or (3.26). Substituting 
the error term into (3.33) and solving for the amplification factor gives 

, 2 2(Xi = [1 — 4p1 sin --) — 4p3  sin 2(—A2 	+ 4[1)2 sin(Xi) + sin(X2)+ p5 sin(X3)]2  
2 	 2 

(3.37) 

The stability criterion 11 gives a complicated condition between the various p's and P's. 
If the P's in the actual error could be evaluated at any particular stage in the computation 
then this equation would give a condition relating the grid step in the time direction to the 
grid steps in the space direction and the other coefficients A,B,C,D,G. In fact, the 
inequality specifies a maximum step in the time-direction that can be taken to ensure the 
stability of the integrating procedure. Since the (3's are un-computable in practice, some 
assumptions are required to obtain an estimate of this maximum time step required to ensure 
stability. This is undertaken in Chapter 4 for the application of the transport equation. 

3.3e. Stability for ADI schemes: 

Not all alternating-direction-implicit schemes are unconditionally stable. It is often the case 
that each step in an ADI scheme has an amplification factor whose modulus is greater than 
+1. In many cases however, the modulus of the product of the amplification factors of 
each step is less than +1 ensuring unconditional stability. The ADI scheme given by 
equations 2.9A, 2.9B* and 2.9C* has been shown elsewhere to be unconditionally stable 
(eg: section 4.10 of Lapidus and Pinder 1982). 
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Chapter 4. 
Numerical Results. 

4.1. INTRODUCTION 

The results of the computer modelling, applying the theory of Chapters 1, 2 and 3, are 
presented in this chapter. Most of the results shown are for an axially symmetric 
heliosphere (two space dimensions). The work concentrates on predicting the value of the 
radial gradient g,. of galactic cosmic rays at a heliographic radius of 1 AU and co-latitude of 
900  (the average position of Earth) under various inner-boundary conditions, using the two 
different implicit algorithms discussed in Chapter 2. The possible use of explicit algorithms 
for this model is also investigated. Also presented are results for the two space dimensional 
model when radially propagating shocks are introduced to simulate the 11-year solar cycle 
of galactic cosmic ray modulation. 

Note that because the value of f is determined on a finite grid, the value of g,. has to be 
determined numerically using this grid. The differential gradient g,. = f af h a s 
been determined in this chapter using a central-difference approximation: 

1 	(fi+1,j,kfi-1,j,k) 
gr(i,j,k) =  f  

tj,k 	rt+i ri-1) 

The integral value of the radial gradient between two rigidity values was calculated using 
the same central difference approximation, except using integral intensity I (given by 
equations 1.1 and 1.2) instead off The values of the radial gradient quoted in this chapter 
are integral gradients for particles with rigidity between 0.5 and 10 GV, corresponding to 
the rigidity range over which the transport equation was solved. 

All the models in this section are restricted to solving the distribution function for cosmic 
rays of rest-mass equal to one proton, as the majority of galactic cosmic rays are protons. 
The magnetic state of the heliosphere in all the runs was toward in the northern hemisphere 
(A<0, see Section 6.1) as was the case for years 1958-1970 and 1980-1991. This is the 
state predicted by modulation models to have a higher radial gradient than the opposite 
(A>0) polarity state (eg: Kota and Jokipii 1983 or Potgieter et al. 1989). Independent 
observations however show no discernible difference for the radial gradient at Earth in each 
polarity state - although there may be an 11 year solar cycle variation of the gradient (see 
Bieber and Pomerantz 1986 for example). Because the theories predict a radial gradient 
higher than that inferred from observations in both magnetic states of the heliosphere, the 
discrepancy between theory and observation is less for the positive polarity state. This is 
why the simulations undertaken have concentrated on the negative polarity state. As will be 
seen, the models investigated in this chapter generally predict a gradient which is too high 
compared with observation. They are restricted to a flat neutral sheet (see Chapter 6) and 
hence model the heliosphere in solar minimum conditions. 

The modulation work presented here is by no means a definitive set of results for the 
modulation of galactic cosmic rays in the heliosphere. There are many more parameter 
investigations that can be undertaken. These include, for example, investigating (a) the 
effects of modifying the position of the heliosphere boundary and the solar-wind 
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termination shock - even making them time-dependent in phase with solar activity; (b) the 
effect of a two dimensional solar wind and the corotating interaction regions set up as a 
consequence (see Kota and Jokipii, 1991b); (c) changing the functional form of the 
diffusion tensor, including higher-order effects in the transport equation - for example the 
helicity effects investigated by Bieber and Burger (1990); and (d) solving the transport 
equation for a wider range of energy values. There is also the study of the modulation of 
the anomalous component of cosmic rays (see for example McKibben 1987) which is not 
addressed in this thesis. As each integration of the transport equation is computer 
intensive, even with modern computer facilities, one cannot investigate all of parameter-
space because of limited time and computer resources. The essence of this thesis, and 
hence the results presented in this chapter, is to show some of the things which affect 
predictions of the radial gradient of cosmic rays at 1 AU and compare the predictions with 
the observed gradient determined from the data analysis undertaken in the second half of the 
thesis. 

4.2. RESULTS FOR 2 SPACE DIMENSIONS 

The results for the case when ! = f(r,O,p,t) are examined in this section. This is the case 
when the heliosphere is considered to be axially-symmetric, ie: terms in the transport 
equation involving derivatives with respect to the azimuth coordinate are zero. Since 
aiao 0, the neutral sheet is flat (a=0 in equation 1.19). This approximates the 
conditions of the heliosphere at solar minimum. In practice it is highly unlikely that the 
neutral sheet is flat at any time. It is assumed that the behaviour of the galactic cosmic ray 
distribution under conditions where the neutral sheet is only slightly tilted (say, oc..10 °) is 
similar to the behaviour when the neutral sheet is flat. At any one time and place, the 
neutral sheet itself may have a tilt which is dependent on the radial coordinate (as depicted 
in Williams and Potgieter 1991). This is a consequence of the fact that the value of the 
neutral sheet tilt is solar-cycle dependent and it takes a finite time for conditions at the Sun 
to propagate outward at the solar wind speed to the boundary of the heliosphere. Modelling 
f becomes very complicated under these conditions. It may be asked: why look at the 
azimuthally symmetric case if it is unrepresentative of the heliosphere? The answer lies in 
the complexity of the fully 3-space dimensional transport equation. It will be seen that the 
solution to the general case f = f(r,0,0,p,t) would have taken far too long to be practically 
computable on the computing resources available at the University of Tasmania. The 
simplified transport equation is useful in its predictions for a heliosphere around solar 
minimum and it is also useful when comparing the effect on the solution for f under 
differing heliospheric states and differing boundary conditions. 

The 2-space dimensional transport equation is given by expanding equation 1.3 in the 
radius coordinate, polar angle coordinate and momentum coordinate (r,O,p). It is 
convenient (following J.R. Jokipii, private communication) to make a transformation in the 
radius coordinate to a new variable z such that 

r = e tan z 	 (4.1) 

The transport equation is then solved on a grid (z,O,p) with constant grid spacing Az. In 
this way, the grid points in the radius coordinate become more dense as r --> 0. This allows 
for higher spatial resolution near the Sun where most of the parameters are changing 
fastest. In that case, 
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2 

(cos-
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 z) Azz 	Arr  

	

cos2  z) 	(cos2 	 —sin(2z))  A  
rirr A =( c  Ar  + 

	

C L 	E 

and the 2-space dimensional transport equation is given by: 

a f = (L z LO L p) f 

where 

a 	a2 
Lz = Az— + 

az 	
Az

z az2 

a 	a2 
Lo = A0 	+ A09 ae2 

a 	a L = A 	= p A p  — 
P 	P  alrip 

are the differential operators, and the coefficients are given by 

(4.3) 

(4.4) 

(4.6a) 

(4.6b) 

(4.6c) 

Az  = Az (z,e, p) = F2Krr  aKrr (cos2z)  
+ Krr

(—sin  2z) (cos2z) 
U(r) (1/D )r i 

L r 	ur 	 L e ) 

_cos 0 	1 ax 00  1 (1 , 
AO = Agz,O,p) = [ 

r2  sin 9 40  r2  ae rU)e 

AZZ = Azz (z,e,p) = Krr (cos2 z  2 

A09 = A00(z,e,p) — Ke2e 

1 (  2U (r) aU(r)) A = A (z) = 
P 	P 	3 	r 	ar ) 

(4.7) 
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Here we assume the diffusion tensor (see Section 1.3a), the solar wind speed (see Section 
1.3b) and the heliospheric magnetic field (see Section 1.3c) are all time independent. The 
transport equation has been solved using the two different integrating algorithms discussed 
in Chapter 2, namely ADI and LOD. The boundary conditions used were as specified in 
Section 2.2. In particular, two inner boundary conditions in the radius coordinate were 
used. The first was a zero inner boundary ( f(t,r=rmin ,O,p) = 0 V t,O,p ) and the second 
was a 'floating' inner-boundary ( a2f/ar2  = 0 at r=rmin  V t,O,p ) corresponding to the inner 
boundary being a linear extrapolation of the nearest grid points. The outer boundary value 
for the distribution in the radius coordinate corresponds to the assumed galactic distribution 
of cosmic rays at the boundary of the heliosphere. It was assumed that this distrubution 
was isotropic in space, with a spectrum given by f(t,r=rmax ,O,p) oc  p -1  E -3 .6  V t,O,p where 
E is the energy of the particle (this follows Kota and Jokipii 1983). The range of 
coordinates are: r E (0.2,90) AU (LOD algorithm), r E (0.3,93) AU (ADI algorithm), 0 e 
(0,n), momentum such that in terms of rigidity (P), P E (0.5,10) GV. Cases were solved 
with and without a solar-wind termination shock set at 60 AU (see equation 1.15). The 
magnetic field constant was determined such that the magnitude of the field at Earth was 
5 nT. The diffusion coefficients used were those given by equations (1.11a) and (1.12) 
with a=0.5, ii=1.0 and 1.1= 0.05. These coefficients are consistent with those used by the 
majority of the other researchers noted in Section 1.4. The model predicts that the 
heliosphere would reach steady-state in around 2x10 7  seconds (-8 months) for this energy 
range. It was found that the accuracy of the result depended on the value of (At) used for 
the integration - the smaller the better. However, measurably greater accuracy was not 
achieved by using a value of (At) less than approximately 2x10 4  seconds. The main 
justification for solving the tranport equation in this case was to determine the value of the 
radial gradient g,. at Earth for the various cases. A table of values of g,. at 1 AU and 0=90 0  
is presented in Table 4.1. Plots of each run are shown in Appendix 10. Each figure in this 
appendix is a plot of the value off vs r for 0=900  for a range of rigidity values from 0.5 to 
10 GV. 

RUN Inner-boundary Algorithm Termination g,. at Earth 
condition shock (% AU -1 ) 

1 zero LOD no 19.3 
2 zero ADI no 16.2 
3 zero ADI yes 15.8 
4 floated LOD no 17.4 
5 floated LOD yes 17.1 
6 floated ADI yes 8.0 

Table 4.1. Values of the integral radial gradient (0.5 - 10 GV) of galactic cosmic rays at Earth 
computed from the solution to the 2-space dimensional transport equation under various 
assumptions. Plots of the results are shown in Appendix 10. 

The relative contribution to the observed modulation of the differential intensity of galactic 
cosmic rays at Earth, with rigidities above 10 GV, is substantially less than within this 
energy range. Higher energy particles are less affected by the solar wind and irregularities 
in the interplanetary magnetic field. Also, the energy spectrum of galactic cosmic rays is 
such that for an increase of energy by a factor of 10, the differential intensity decreases by 
almost a factor of 105 . Runs were attempted for much higher energies (— 100 GeV), 
however, it was found that stability and accuracy problems became more significant as 
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energy increased. These problems could not be alleviated in the time allocated for this 
project. 

It is clear from Table 4.1 that the runs produced values of g,. far higher than expected from 
observational evidence (see Section 1.5 and Chapter 8). Section 4.4 explores possible 
reasons for this. Firstly, the possibility of using explicit integrating algorithms for 
evaluating the 2-space dimensional transport equation is explored. 

4.3. EXPLICIT ALGORITHMS. 

Recall from Chapter 2 and Chapter 3 that explicit algorithms are computationally stable for 
only a subset of integrating timesteps At. Equation (3.37) is expanded on the right hand 
side. Because no direct knowledge of the Xi  values are attainable, assumptions need to be 
made in order to obtain an estimate of the maximum value of At able to be used in order for 
the explicit algorithm to be stable. These assumptions include 

so that 

is satisfied 

?- 

sin 2PX  

sin2  + 2p 1 2  sin4 H-X  

(4.8) 

(4.9) 

(4.10) 
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> 2p 1p3 sin2 (—X1  
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when 

2pip3 
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2 

Under these and similar assumptions, the condition for stability for the 2-space dimensional 
transport equation case reduces to 

PI +P3 ?- 4PIP3 + 2(P12  +P22  +P32  +P42  +P52 )+1P2P4I+IP2P51+1P4P51 

(4.11) 

This gives a condition relating At to the coefficients of the partial differential equation. The 
p values are given by equation (3.34). 

Restricting r€ (0.2, 90) AU, OE (0,7t) and P (rigidity) E (0.5, 10) GV, this condition was 
applied to every grid point in the discretized heliosphere. For B,Ksw  and K specified as in 
Section 1.3, the inequality given by equation 4.11 is equivalent to 

At 5. 13.98 seconds 	 (4.12) 

Recall that the implicit routines described in Section 4.2 required t max  of the order 2x107  
seconds for the integration to be sufficiently steady-state for this energy range. For At 14 
seconds, this requires –1.4x106  integration steps. Implementing the explicit algorithm 



34 

(given by 3.33) on a MicroVax 3500 computer (the fastest available in the Physics 
Department at the time) it was discovered that the computer could perform one integration 
step roughly every 4 CPU seconds. One integration step takes the distribution function f 
from t to t+At through equation 3.33 for every grid point in the discretized heliosphere. 
Hence the total machine time required to integrate to steady state is approximately 1400 
CPU hours. This far exceeds the time required with the implicit routines where timesteps 
of around 2x104  seconds were used. It is interesting to note that the explicit algorithm was 
implemented with At = 13.98 seconds and was still converging after approximately 1 hour 
CPU time (-900 integration steps). In contrast, a value At = 28 was used and the results 
started diverging rapidly after only -200 timesteps. It is therefore considered that At given 
by equation 4.12 is an accurate maximum timestep allowable for a stable explicit algorithm 
and the explicit integrating technique was not practical in this case. 

4.4. INNER BOUNDARY ANALYSIS 

The ADI/LOD results given in Section 4.2 predict a value of the radial gradient g,. at Earth 
too high compared with predictions inferred from observation data (see Chapter 8). 
Various methods were investigated in order to determine the cause of this discrepancy. The 
investigations centred around trying to find a better inner-boundary condition or a better 
functional form of the diffusion tensor near Earth. "Better" in this sense refers to results 
which give closer agreement between theory and observation. 

4.4a. Method 1. Power-Law inner-boundary. 

Assume that, in the energy window of interest, the energy spectrum of the galactic cosmic 
rays at the inner boundary follows a power-law spectrum. Two specific assumptions are 
made. Firstly, that the spectral index of the power spectrum is constant with energy over 
the energy window of concern. Secondly, that there exists an energy above which no 
modulation occurs and therefore the value of the differential intensity at that energy at the 
inner boundary is the same as the intensity at the outer boundary. Denote this energy by 
Ema„. The differential intensity with respect to momentum is given by equation 1.1. The 
galactic spectrum, with respect to energy E, is given by 

../G(E) = j0E-7° 
	

(4.13) 

where to  and yo  are constants. In the energy range of concern, y o=2.65 (eg: Berezinskii et 
al. 1990). Let the inner boundary spectrum be given by 

ME) = AE -71 	 (4.14) 

where j 1  and Ii  are constants. Let 

ji (E)  = x(E) 
iG(E) 

Then it can be shown (see Appendix 1) that 

(4.15) 
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x(E)— 	 
Emax  (4.16) 

The inner boundary value of the differential intensity (and hence the distribution function f) 
is thus completely specified by the choice of the pair E max ). Run 7 (Appendix 10) 
shows the result of using the LOD algorithm with a solar-wind termination shock and 
values of (yi , Emax) = (2.4, 200 GeV). The calculated radial gradient at Earth is 15.9% 
AU -1 . Other values of (y i , E..) were tried but none gave a value of g,. at Earth greatly 
different from this value. As can be seen by the plot in Appendix 10, the value off at the 
inner boundary seems not to have a discernable bearing on g,. at 1 AU. This was also the 
case with other ()'1,  E.) pairs. 

Jokipii and Thomas (1981), Kota and Jokipii (1983), Potgieter and Moraal (1985) and 
Kadokura and Nishida (1986), for example, report that they expect the relationship between 
ln(f) and ln(E) to flatten from a straight line (power law spectrum) as energy is decreased 
and eventually change sign (from negative to positive slope as energy decreases). The 
energy at which the slope goes to zero is given as around 1 GeV. The results here support 
the prediction by the authors that aln(f)/aln(E) is not constant down to about 1 GeV. If it 
was constant, it is expected that Run 7, and similar runs, should have predicted a lower 
gradient. The change in the spectrum may indeed be a consequence of, or a requirement 
for, a low gradient at the inner boundary. 

4.4b. Method 2. Improved forms for Kll, K1 . 

Kadokura and Nishida (1986) commented that the "increase in radial gradient at the 
inner boundary is primarily due to the mean free path being proportional to B -1  so that 
as the inner boundary is approached, the diffusion coefficients increased as r 2  ". 
Motivated by this comment, the two dimensional models were run using a variety of 
different radially dependent forms for the diffusion coefficient to see if such a form could 
be found which gave a significantly smaller value of g,. than the previous models. Results 
presented in Table 4.2 are for diffusion coefficients specified by 

Kll  = Ko  13 P 	-L [1+( 
re j2 ] 

= 
Ko 	n p  —e 
50 	31BI — ( SET A) 

and also for values of K,, and K 1  specified in Section 4.2 but where values for r<5 AU 
were substituted for values at r=5 AU ( SET B). Plots of each run are shown in Appendix 
10 (Runs 8-11). The forms of the coefficients described by SET A were chosen because 
they gave a much lower rate of change in the coefficients as a function of radius than those 
used in Section 4.2. They produced the lowest gradient g,. (using the ADI algorithm) of all 
the runs investigated. They are also similar to the coefficients used by Potgieter and Moraal 
(1985). The reason for the discrepancy in the results between the two different integrating 
algorithms is discussed in Section 4.4d. 
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RUN Diffusion Algorithm Termination gr  at Earth 
coefficients* shock (% AU -1 ) 

8 SETA LOD yes 23.4 
9 SETA ADI yes 2.03 
10 SET B LOD yes 27.1 
11 SET B ADI yes 3.7 

Table 4.2 Values of the integral radial gradient (0.5 - 10 GV) of galactic cosmic rays at Earth 
computed from the solution to the 2-space dimensional transport equation under various 
assumptions. Plots of the results are shown in Appendix 10. * See main text above for 
explaination. 

Note that in these runs and in the runs of Section 4.2, changing e (equation 4.1) by 
upwards of a factor of 5 had a negligible effect on the values of gr  determined. For c much 
larger than about 100, there were insufficient grid points in the outer-heliosphere to ensure 
an accurate solution for the distribution function. A number of runs were repeated to 
specifically look at the effect of the finite size of the grid near the Sun. The steady-state 
solution at 4 AU was used as a boundary condition to solve the transport equation to steady 
state within the radius range r E (0.3,4) AU only. This allowed for a much large number 
of grid points within this radius range. The value of the radial gradient at 1 AU did not 
significantly change from the values presented above, even, for example, in the case of Run 
2 where it would seem from the plot (shown in Appendix 10) that the large finite grid 
spacing around 1 AU could detrimentally affect the solution. Note also that the position of 
the inner boundary was changed between 0.2 and 0.8 AU without noticably affecting the 
solution. 

4.4c. Method 3. Zero streaming at inner-boundary. 

Motivated by the physical argument that the Sun would not be a dominant sink for galactic 
cosmic rays, it was decided that a reasonable inner-boundary condition was that the radial 
component of the streaming vector went to zero as the radius coordinate approached the 
inner-boundary: 

(S • r) 	= 0 	 (4.17) 

where the streaming function S is given by equation 1.22. This component is given by 

r
af  

r  ar 	r ae 	3 aln p 

and so the condition of equation (4.17) is equivalent to 

(4.18) 

    

v.  f a 	Kre af 
— — — 

rr r a0 arirr . n  

U(r)  af 
3 alnp r=r • intri 

=0 
(4.19) 
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in the 2-space dimensional case. Note that K ro  is related to the asymmetric part of the 
diffusion tensor via 

Kr  o = —K A  sin lif 	 (4.20) 

where KA is given by 

A Pv K = 
3qB (4.21) 

which is consistent with the value of the drift-velocity given by equation 1.9. In 
implementing this inner-boundary condition in the tri-diagonal matrix solution (see Section 
2.3) for the radius implicit step, 

d2 _)C12±a2(
X+Y ) 
Z ) 

C2 --> c2 + a2  

b2 --> b2 

a2 --> 0 

X =I Kr° 5f ) where 
r 8e )2,j,k 

r(r) of  Y —  
3 81n P)2,j,k 

Z ..(Krr dz 	1 
dr 2(Az))2, j,k  

(4.22) 

(4.23) 

Using this inner boundary condition, the LOD algorithm produced a value of gr  at Earth of 
15.8 % AU -1  and the ADI algorithm produced 8.2 % AU -1 . The results are shown in 
Appendix 10 as Run 12 and 13 respectively. A solar-wind termination shock was included 
and the diffusion coefficients used were the same as for Runs 1-6. As for Run 7, the value 
of the distribution function at the inner boundary does not seem to affect the value of g,. at 
1 AU. 

4.4d. Summary of inner-boundary analysis. 

It is apparent from Runs 1-13 that (a) the ADI method produces a lower value of the radial 
gradient of galactic cosmic rays at Earth compared with the LOD method; (b) the choice of 
inner boundary condition in the radius coordinate has a secondary effect on g,. at 1 AU for a 
given algorithm; and (c) the presence of a solar-wind termination shock at 60 AU has 
negligible effect on g,. at 1 AU. Only the results from Runs 9 and 11 predict a low enough 
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gradient to be consistent with observational data. Note that g,. seems to be relatively 
constant over ,  the energy range considered for a particular run, especially for Run 9. It is 
therefore proposed that the trends would be true for energies above 10 GeV and so be 
applicable to muon data as well as neutron monitor data. It is proposed that the diffusion 
coefficients used in Run 9 are more appropriate than others which give a value of g,. too 
high to be consistent with observational data. 

It is proposed that LOD is an inappropriate algorithm to use for the solution of the 2-space 
dimensional transport equation as is demonstrated by the high gradients predicted in all the 
runs using this algorithm. The difference between the two algorithms was investigated but 
the only conclusion that could be drawn to explain the discrepancy between their 
predictions of g,. at Earth was that LOD is intrinsically a less accurate algorithm than ADI. 
An analysis of the truncation error of each of the discretized forms of the partial differential 
equation shows that, for each integrating step, LOD has an error of order (At) + (Ax) 2  
whereas ADI has an error of order (At) 2  + (6x)2 . In each case, Ax refers to the grid step 
in the implicit space coordinate and At refers to the integration time step (see Lapidus and 
Pinder 1982, Chapter 4). The ADI algorithm contains higher order truncations error terms 
than LOD and is thus expected to be more accurate. Indeed, Gourlay and Mitchell (1972) 
find, in a paper comparing the structure of ADI and LOD difference methods, that high 
accuracy LOD schemes for more than two operators do not exist. 

4.5. SHOCKS 

As well as the four physical processes of drift, diffusion, convection and adiabatic energy 
loss, interplanetary shocks caused by coronal mass ejections and flare related events are 
also thought to impede cosmic rays from entering the inner heliosphere. As discussed in 
Section 1.4, there has been considerable debate regarding the relative importance of each of 
the modulation effects to the total modulation of galactic cosmic rays in the heliosphere. In 
particular, there is disagreement as to whether the 11/22 year cycle of observed intensity is 
predominantly due to the changing solar magnetic fields structure altering the drift 
component of the cosmic rays, or due to a succession of Forbush decrease type events 
which increase in frequency toward solar maximum. Radially propagating shocks have 
been included in the time-dependent two-space dimensional transport equation, by 
introducing transient regions of enhanced magnetic field turbulence, in an attempt to 
ascertain the importance of these shocks in the total modulation of particles reaching Earth. 
The ultimate motivation for this study was to understand the long-term modulation of 
galactic cosmic rays as seen by neutron monitors and muon telescopes. Hence the model 
simulations will be restricted to primary particles of energy 1 GeV. 

Again, the model was restricted to a flat neutral sheet. The integrating method, diffusion 
coefficients used and inner boundary condition were the same as in Run 9 of Section 4.4b 
as those conditions gave the lowest radial gradient in the steady-state solution. The initial 
condition was the steady-state solution itself. The rigidity bounds, solar wind speed, 
polarity state etc. were all equivalent to Run 9. To include the effect of transient shocks, 
the work of Perko and Fisk (1983) and Perko and Burlaga (1987) was followed. The 
shocks were considered as spherically symmetric regions of enhanced magnetic scattering 
propagating at 600 km s -1  radially outward from the Sun. The effect of the presence of 
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these regions was to cause a reduction in the magnitude of K o  (the diffusion constant) 
behind the shock up to a fixed maximum decrease. 

( a Ko _.> Ko 1 — sin 2 rc(rsh - 	r)1) for rr _ (. s  h — 	'h ) 
(4.24) 

where rsh  is the radial position of the shock, X. is the position of maximum decrease and oc 
determines the magnitude of the decrease. The frequency of shock creation at the Sun is 
given by 

# shocks (t)= n1 + (n2 — n i )sin 2(--nt ) 	
(4.25) 

where n 1  is the number of shocks per year at solar minimum (t=0 years), n 2  is the number 
per year at solar maximum (t=5.5 years) and t = 11 years. For the results presented in this 
section, values of n 1 =3, n2  =26 and A, = 1 AU were chosen. This was consistent with 
work by the authors mentioned above. 

Results presented by Sanderson et al. (1991) report that the radial diffusion coefficient can 
change by up to a factor of 77 for a 1 GeV proton during the passage of a Forbush decrease 
type event. Motivated by this, two runs were undertaken, the first with cc = 0.9 and the 
second with a = 0.99. At the end of each integrating loop, each active shock had its 
position updated according to its propagating speed (600 km s -1 ) and the time interval of 
integration. Equation 4.25 was then used to determine whether a new shock (emanating 
from rinin) was required, based on the frequency of shock production at any one time. 
Then the effect of each shock on Ko  was calculated (as a function of radius) noting that the 
effect of overlapping shocks (if that scenario arose) was to multiply together each individual 
effect, given by equation 4.24. All the coefficients, which are ultimately functions of Ko , 
were re-calculated for the next integration step. Obviously if a shock reaches the outer-
boundary of the heliosphere then it is discarded from further calculations. 

Figure 4.1 shows the effect on the observed integral intensity (proportional to fp2f dp ) of 
one of the shocks passing Earth for both cc values. Figures 4.2 and 4.3 show the steady-
state (solid line) and shock modulated intensity (dashed line) for a = 0.9 and a = 0.99 
respectively. The steady state solution represents solar minimum conditions. The shock-
modulated solution represents solar maximum, neglecting the effect of an increase in the 
waviness of the neutral sheet from solar minimum to solar maximum. Along the flat neutral 
sheet, the difference in the integral intensity between the two situations is 5 %. The 
intensity becomes depressed by up to 20% at non-equatorial heliographic latitudes. There 
was no significant change in the rigidity spectrum after shock modulation. The shocks 
used here were spherically symmetric. There is an obvious integral decrease of cosmic ray 
intensity as shown by Figure 4.1. However, it was observed that there was an increase in 
the intensity of the very highest energy particles as the shock passes. This was attributed to 
the fact that the number density of the particles in generalized space-momentum phase space 
must remain constant if there is no source or sink of particles. Since in this case spherical 
symmetry was imposed, there was nowhere for the particles to redistribute in space. Hence 
to preserve phase-space density, the number of particles with the highest energy increased. 
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Figure 4.1. The top plot shows the effect on the integral intensity of cosmic rays between 0.5 and 10 
GV rigidity of a radially propogating transient shock passing Earth. The strength of the shock is as given 
in equation 4.24 with a=0.9. The bottom plot shows the effect for a=0.99. 
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Figure 4.2. The solid line is the steady-state integral intensity of cosmic rays and the dashed line is the 
intensity after shock modulation (5.5 years). a=0.9 in this case. 
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Figure 4.3. The solid line is the steady-state integral intensity of cosmic rays and the dashed line is the 
intensity after shock modulation (5.5 years). a=0.99 in this case. 
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Waves in the integral intensity with period approximately one day are present during the 
recovery phase of the decrease, as shown in Figure 4.1. These waves are more obvious 
for the case when a = 0.99. They appear to be similar to the enhanced diurnal variations 
reported (for example) by Duldig and Humble (1990). According to J.E. Humble and 
M.L. Duldig (private communication), it is common to see such enhancements in cosmic 
ray data during the recovery phase of a Forbush decrease. An area of future research could 
be to test whether enhanced diurnal variations are some resonance effect which occurs 
when the diffusion coefficients are perturbed from their steady-state value. Alternatively, 
the waves could simply be due to some kind of damped numerical instability. 

Summing the integral intensity of particles in a 1 AU region about Earth, it was found that 
the intensity after shock-modulation was depressed by approximately 8% (a=0.9) and 
14.5 % (a=0.99). Data from high-latitude neutron monitors show intensity changes of 
around 20% during 11-year solar cycles. These instruments are sampling the galactic 
cosmic rays last modulated within a region of approximately 1 AU from Earth. The fact 
that the simulation results presented here fail to produce the observed intensity decrease 
from solar minimum to solar maximum suggests that a further modulation process is 
required in the model. This claim is only valid if the frequency, spatial extent and strength 
of the shocks used have been correctly estimated, or over-estimated. It is suggested that the 
frequency and extent of the shocks used are an over-estimate of the real situation for two 
reasons. Firstly, neutron monitor data do not show observable Forbush decreases as 
frequently as 26 per year at solar maximum. Secondly, the recovery time for these 
decreases is observed in the data to be, on average, about one week. The recovery time in 
Figure 4.1 is much greater than this, suggesting that the radial extent of the shocks in the 
models presented here is too large. Note however that the large recovery time may be, in 
part, due to the inadequacy of the two-dimensional model to allow for filling, in the 
azimuthal direction, of the intensity depression. 

From Figure 4.1, the percentage decrease of integral intensity due to the passage of the 
shock agrees well with observed Forbush decreases. This suggests that the strength of the 
shocks is well modelled. Finally, it is not expected that flares and coronal mass ejections, 
originating from generally localized regions on the Sun, would produce interplanetary 
shocks that would be spherically symmetric, even if such regions merge together and co-
rotate in the outer heliosphere. It is concluded that the observed 11-year modulation of 
cosmic rays above 1 GeV cannot be explained purely by a succession of interplanetary 
shocks which increase in frequency toward solar maximum. The 11 year cycle of these 
cosmic rays is most likely due to the combination of the above effect and also the increase 
in waviness of the neutral sheet and presence of steady-state corotating interaction regions 
(Kota and Jokipii 1991b) where each effect contributes significantly. 

4.6. 3 -SPACE DIMENSIONS 

In the 2-space dimensional model, the adiabatic energy loss term (the term involving the 
derivative with respect to momentum) becomes less significant than the others as 
momentum increases. It is certainly not the dominant coefficient for energies around 
10 GeV and higher. If this term can be effectively left out of the model without practically 
altering the solution forf at a given energy, then the loss of the momentum variable allows 
the inclusion of the extra space dimension (azimuth coordinate (1)) without the complexity of 



(4.30a) 

(4.30b) 

(4.30c) 
(4.30d) 

(4.30e) 

(4.30f) 

(4.30g) 

44 

the integrating algorithm increasing by an order of magnitude. Physically, it turns out that 
without this ,energy-loss term, there is no mechanism to prevent the heliOsphere from 
eventually "filling up" (ie: reaching the galactic particle density) at any energy. This means 
that the value for ! at any given energy becomes the same as the boundary value for all 
points within the heliosphere. A 3-space dimensional (momentum-independent) transport 
equation was integrated in order to test whether this is demonstrated by the model. The 
equation for the transport equation in this case is 

at = 'V • (ICS  • Vf — 	+ 1/D ). Vf 	 (4.26) 

where f = f(t,r,0,4)) and 

raf 	1  af 
vf 	r 	' r sin 0 a4) 

U = (U(r), 0, 0) 

(4.27) 

(4.28) 

and U(r), the magnetic field, 3-dimensional diffusion tensor and drift velocity are as given 
in Section 1.3. In particular, the drift velocity is calculated numerically via the method 
presented in Section 2.5. Altogether, 

af 	af 	a2 	pc 	a  f 	af 	a2f 	a2f  2 
Ar  — + Arr  —j— + A0 	+ A0 0 —jT  + Ao 	Aoo 4T02-  + Aro ar act at 	ar 	ar2 	ae 

(4.29) 
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Because of the mixed-derivative term a2fiarao, a standard ADI (or LOD) algorithm would 
not produce a straight-forward series of tri-diagonal matrix equations to solve. The 
required matrix equations (non-triangular) turn out to be too computationally intensive to 
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allow for a fully implicit algorithm to solve for this term. Instead, as in Kota and Jokipii 
(1983) a modified implicit algorithm is used to solve (4.29), where the a2flara0 term is 
always explicit but shared in the first two integration steps - the final step being fully 
implicit. The steps are given by: 
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(4.31c) 

The stability of this scheme was discussed in Section 3.3c. 

It was found that the program converged for timesteps of At 2 seconds (for energies up 
to 10 GeV), however, as discussed in Section 4.3, this timestep is far too small to allow 
practical computation of f(r,04). For At > 2 seconds the program diverged. The initial 
instability occurred at or near the boundary of 0 (0=0,7c) and then propagated along lines of 
constant O. The instability is most likely due to the explicit cross-derivative term. As 
discussed in Section 3.3c, von Neumann stability analysis could not determine that the 
above algorithm was unconditionally stable. 

The program was re-run for a 2-space dimensional (momentum independent) heliosphere, 
f = f(t,r,8). Because of the lack of the cross-derivative, the ADI/LOD algorithms used to 
evaluate f were unconditionally stable. For these runs, the boundary of the heliosphere was 
set to 10 AU to decrease computational time. It was found that the heliosphere did indeed 
fill up so that f(r,O) = f(r=rmax) everywhere within the heliosphere after a characteristic 
length of time which was energy-dependent. As a rule of thumb, 

(RIGIDITY) X (TIME TO FILL HELIOSPHERE) 3 x 10 7  GV•sec. 

The conclusion here is that the adiabatic energy loss term is definitely required, even for 
high energies. Note however that as momentum (or rigidity) increases, the heliosphere fills 
closer to the boundary value - seen in the plots off vs r in Section 4.2 - a reflection of the 
lessening effect of this term in the balanced steady-state condition. 
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Note that if af/at = 0 (steady-state solution), the transport equation (1.3) can be re-arranged 
as: 

af 	3   
hip 	(V • Vsw 

[V • (K S  • Vf) — 	+ VD )• Vf 
(4.32) 

which can be integrated with respect to lnp instead of time, so long as the divergence in the 
solar wind remains non-zero. This procedure was undertaken by Kota and Jokipii (1983). 
This equation was integrated for the case of f = f(p,r,O) and no solar-wind termination 
shock. The initial condition was that the value of the distribution function for a sufficiently 
high momentum (>>10 GV) was equal to the value at the heliospheric outer-boundary for 
all points within the heliosphere. Equation (4.32) was then integrated from this high 
momentum value to the minimum momentum considered. It was found that the value of g,. 
at the position of Earth was equivalent to that derived by the time-dependent algorithms 
discussed in Section 4.2. 

This method was attempted for the case f = f(p,r,O4) however, for the reasons discussed 
above in this section, the algorithms turned out to be unstable for the momentum-integrating 
step sizes required. 
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Chapter 5. 
Coupling Coefficients for Neutron 
Monitors and Muon Telescopes. 

5.1. INTRODUCTION 

The paths of primary cosmic rays incident upon the Earth's magnetic field deviate within 
the field according to their incident direction and rigidity. As they enter the Earth's 
atmosphere they interact with atmospheric nuclei to produce secondary cosmic rays. The 
nucleon and muon component are of interest as they are the secondary particles detected by 
neutron monitors and muon telescopes respectively - data from these detectors are used in 
the north-south anisotropy analysis described in Chapter 8. The number and energy range 
of the secondary particles detected depends on the geographic location, size and pointing 
direction of the detector. It also depends on the amount of atmosphere and other absorbing 
material (eg: rock) between the creation site of the secondary particles and the detector. The 
relationship between the primary cosmic ray distribution and the observed secondary 
distribution can be quantified in terms of coupling coefficients (and atmospheric 
corrections - see Chapter 7). Such coefficients have been calculated for most muon 
telescopes in existence before 1976 by Fujimoto et al. (1984). For neutron monitor 
coupling coefficients, see Yasue et al. (1982). Baker (1988) has also calculated 
coefficients for some high-zenith angle telescopes at Mawson. However, coefficients for 
the Mawson surface muon telescopes SNCOMB and SSCOMB (described in Section 5.3) 
have not previously been calculated. Some of these coefficients are used in Chapter 8. 

This chapter summarises the formalism proposed by Nagashima (1971) to describe the 
functional form of the coupling coefficients for the muon component of secondary cosmic 
rays and their relationship to the distribution of primary cosmic rays in space. Results for 
SNCOMB and SSCOMB are then presented. The theory of coupling coefficients for 
neutron monitors is described in Yasue et al (1982) and is not repeated here as neutron 
monitor couping coefficients were not derived. Subsidiary procedures for interpolating 
neutron monitor coupling coefficients for periods between solar minimum and solar 
maximum are however discussed, along with the procedure adopted for interpolating the 
coefficients for 'non-standard' spectral indices (used in Chapter 8). 

5.2. FORMALISM 

Following Nagashima (1971), let J(P,x, A) be the flux per second per steradian of 
primary cosmic rays with rigidity P, moving in a direction defined by polar angle x and 
azimuth angle A relative to some coordinate system. The assumption is made that this 
distribution is almost isotropic, so that any variation of J with (x, A) is small: 

J(P,X,A) = J(P) + 8J(P,X,A) 	 (5.1) 

The assumption is also made that the anisotropy is axis-symmetric. This may not be true 
for a general anisotropy, but one can decompose such an anisotropy into a series of axis-
symmetric anisotropies and then apply the theory to each component. The coordinate 
system is defined so that the symmetry axis coincides with x = 0. The anisotropy can then 
be written as 



al(P,X,A)  — F(X) • G(P) 
.1(P, k A) 

where the assumption of separable variables is implicit. G(P) is called the differential 
rigidity spectrum of the anisotropy and F(x) is called the space distribution of the 
anisotropy. For the north-south anisotropy discussed in Chapter 8 and other anisotropies 
for which the coupling coefficients calculated by Fujimoto et al. (1984) are applied, it is 
assumed that G(P) can be written as a power-law spectrum: 

(PAY P 5_ Pu  
G(P) —{ 

0 P > Pu  
(P measured in GV) 	(5.3) 

y is the spectral index and Pu  is the upper limiting rigidity beyond which the anisotropy 
vanishes. Coupling coefficients are calculated as functions of (y, Pu) pairs. Note that this 
spectrum is idealized. We do not expect G(P) to suddenly vanish above P =Pu . In 
practice, Pu  is thought of as the average rigidity in the range where G(P) ceases to be 
significant. 

Figure 5.1. The reference axis of the anisotropy is defined by OR. The incident 
particle direction JO is given by polar angle x and azimuth angle A. 

In Nagashima's formalism, F(x) is written in terms of a series of Legendre polynomials: 

00 	fl 

F(X) = I F,A) = 	E fnm(x) 
n=0 	 n=0 m=0 

	
(5.4) 
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(5.2) 

where 
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fnm (X) = 1ln • Pnm (cos OR) • Pnm  (cos 0 j ) • cos m(aJ - aR 	(5.5) 

and 

and 

Tin 
(aRMR) 
(ab03) 

= magnitude of component n of the space distribution, 
= right-ascension and co-declination of symmetry axis OR 
= right-ascension and co-declination of incident direction JO. 

(see Figure 5.1) 

Prim  (x) = 

 

Pn , m (x) m = 0 

m 0 

 

11
2(n - m)!  
(n + m)! 

P 
 n 
 (x) 
 (5.6) 

  

are semi-nomalized spherical functions related to the ordinary Legendre functions P 
fm (X) is the Mth projected harmonic component of the rith space distribution F n(x). This 
nth space distribution produces (n+1) such associated projected components, all of which 
are independent. The projected component fn'n(x) produces a time variation in intensity 
Dm(t) as observed by a terrestrial-based detector which is stationary with respect to the 
ground and which therefore scans the sky as the Earth rotates about its axis. The total 
variation observed by this detector is the sum of all the harmonic components of the axis-
symmetric anisotropy: 

D(t) = 	D(t) 
n=0 m=0 
	

(5.7) 

The relationship between Dm(  t) and fnm (x) is expressed through coupling coefficients cm 
and snm. Let 

D(r) = Anm  cos 27cm  t + 13,T sin 2nm  t 
24 	 24 

	
(5.8) 

where t is solar time measured in hours. The coupling coefficients are defined through 

m 	m rn cn  xn  + sn  yn  

Bnm  = — Snm  Xnm  + Ctnn  yn 	 (5.9) 

where 



27on • Pnm  (cos OR ) • cos — tR  
24 

n = lln  • Pn  (cos 0 R ) • sin —
27cm tR 
24 

tR  is the local time representation of the reference axis: 

24 
R = — (a R — as + 7c) 

27c 
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(5.10) 

(5.11) 

where aR  is the right-ascension of the reference axis and a s  is the right-ascension of the 
Sun. With the above definitions, it can be shown (eg: Baker 1988) that the coupling 
coefficients for muon telescopes have the form: 

m 	1 
JP  
ro 

cn 	 Y • A • G(P) • Pnm  (cos nor ) • cos m(vor  — Nisi) • dO) dP 
I 	c 

sn  = 	le° 	Y • A G(P) • Pnm  (cos nor ) • sin m(vor  — vst ) • do) dP 
I Pc a 

(5.12) 
where 

/=f f Y•A•dcodP 
Pc (5.13) 

and 
Y = Y(P, d(0), x(0,v)) is the response function, in units of particles s -1 m -2str-1 , 

which gives the number of muons, produced by primary particles of rigidity P, arriving at 
the telescope along the direction defined by (0,v); 

0, v are the zenith angle and azimuth angle of arrival (in local coordinates) of an 
incident particle; 

d is the atmospheric depth along the incident direction (0,); 
x is the rock depth along the incident direction (0,); 
A = A(0,v) is the geometrical factor which gives the relative overlap of the two outer 

trays constituting the muon telescope in the direction (0,v), in m 2str; 
°or = °or (P 	st, 0, 	is the geographic co-latitude defining the asymptotic 

direction of approach of primary particles with rigidity P which produce muons arriving at 
the telescope with a local direction defined by (0,v); 

Vor = V or (P 	0, v) is the corresponding geographic longitude of the 
asymptotic direction; 

AV 7  vSt are the geographic latitude and longitude of the telescope site; 
S2 is the solid angle subtended by the two outer trays of the muon telescope; 
dco is the element of solid angle ( = sin(0) dO dv); 
P, is the cut-off rigidity below which Y E 0. 

Note that the coupling coefficients are a function of (y, P u ) which define the rigidity 
spectrum of the anisotropy. Fujimoto et al. (1984) and Yasue et al. (1982) tabulate cm 
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and snm for values of y = -2.0, -1.5, -1.0, -0.5, 0.0, 0.5 and P 	30, 50, 100, 200, 500 
and 1000 GV: 

5.3. RESULTS FOR SNCOMB and SSCOMB 

Vrana (1976) fully describes the configuration of the Mawson high zenith angle surface 
muon telescopes SNCOMB and SSCOMB. The telescopes consist of three vertical walls 
of Gieger tubes. However, the coupling coefficients are only a function of the two outer 
trays, depicted in Figure 5.2: 

Figure 5.2. Schematic of the arrangement of the Gieger-tubes (diameter 4cm) 
constituting the two outer walls of the muon telescopes SNCOMB and 
SSCOMB. The tubes are aligned east/west so that the telescope points 
north/south. 

Figure 5.3. Side view of the outer walls of the muon telescope depicted in 
Figure 5.2 showing the allowed directions of incidence (both north and 
south). Coincidence between the walls occurs only if the difference in height 
of the tube triggered in one wall compared to the other is as depicted. 
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The tubes are hard-wired so that a coincidence is recorded only if the path of the secondary 
particle is within the solid angle shown in Figure 5.3. No other hard-wired arrangements 
giving different incident acceptance solid angles were present. 

In order to calculate the coupling coefficients cm  and snm for this configuration using the 
method given by Baker (1988), it is necessary to treat each telescope as the sum of two 
configurations, namely, those shown in Figure 5.4a and Figure 5.4b: 

Figure 5.4a 	 Figure 5.4b 
These diagrams show the high-zenith wiring configuration (a) and low-zenith 
configuration (b) which combine to allow the coincidence solid angle for 
telescopes SNCOMB and SSCOMB shown in Figure 5.3. 

Each pair of tubes in one wall is hard-wired with a pair of tubes '3-up' in the other wall in 
the case of the arrangement shown in Figure 5.4a, or '5-up' in the case of Figure 5.4b, for 
both the north and south incident directions. SNCOMB and SSCOMB coupling 
coefficients (for the arrangement depicted in Figure 5.3) can be calculated from 

	

in f 	in f 

	

Cn,a 'a 	Cn,b b  Cn  

e rn f 	m s 	nn  _m 	,a 'a + Sn,b b  
(In  + lb) (5.14) 

where cnm a , snm a , and la  are the coupling coefficients and total-intensity for the telescope 
configuration depicted in Figure 5.4a. cnm b , snm b and b  are the coupling coefficients and 
total intensity for the telescope configuration depicted in Figure 5.4b. SNCOMB and 
SSCOMB coupling coefficients calculated using this method are tabulated in Appendix 4 
and Appendix 5 respectively. 

+ 4) 



0 	 0 
0 	cl,solar min. ±  W2 C ,solar max.  ci = 

(w1 + w2) (5.15) 
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5.4. INTERPOLATING COUPLING COEFFICIENTS 

As mentioned previously, the coupling coefficients are functions of (y,Pu), the parameters 
describing the spectral index of the anisotropy. In theory, the coefficients could be 
calculated for any value of y or P. However, for computational convenience they are 
tabulated for a discrete set of each parameter, where the range of each is within the 
expectation value for heliospheric anisotropies. In order to calculate cm  and se' for values 
of y and Pu  , other than those tabulated in Appendices 4 and 5 or found in Fujimoto et al. 
(1984) and Yasue et al. (1982) (for muon telescopes and neutron monitors respectively), a 
polynomial interpolation procedure was used. Examples of the fitted polynomials to c1 0  
(required for the north-south anisotropy analysis of Chapter 8) as a function of y for a fixed 
Pu  for the Mt.Wellington neutron monitor MTWIQS and the Mawson muon telescope 
SNCOMB are shown in Figure 5.5. The various P u  's used correspond to the values for 
which coupling coefficients had been tabulated in the above references. As can be seen, the 
functional dependence of c1 0  with y is very smooth over the range y E (-2.0, 0.5). The 
sign difference between the neutron monitor and muon telescope coefficients reflects the 
fact that the two detectors are viewing different regions of space. The cosmic rays detected 
by the neutron monitors are generally of lower energy and thus their paths are more curved 
by the Earth's magnetic field. Interpolated values for y E (0.0, 0.5) were found to be 
accurate to within 5% of those calculated directly using equation 5.12 for any of the 
telescopes. Extrapolated values (y > 0.5) are expected to be less accurate, although values 
up to y=  0.7 were thought to be acceptable. 

5.5. NEUTRON MONITOR COUPLING COEFFICIENTS for NON-SOLAR 
MINIMUM / MAXIMUM PERIODS. 

Yasue et al. (1982) list separate coefficients for neutron monitors during solar minimum 
and solar maximum conditions. The values of the coefficients change significantly from 
solar minimum to solar maximum. This is mainly due to the primary proton energy 
spectrum changing significantly in the energy range for which neutron monitors are 
sensitive. The change in the primary spectrum in the energy range for which muon 
telescopes are sensitive is much less significant, mainly due to the fact that higher energy 
particles are less modulated by solar activity. Hence muon telescope coupling coefficients 
are assumed to be constant over the solar cycle. It was decided to use an interpolating 
procedure to obtain accurate neutron monitor coefficients c1 0  (used in Chapter 8) in the 
years between solar minimum and solar maximum. That is, 

where (wi ,w2 ) = (1,0) at solar minimum and (0,1) at solar maximum. Assuming that solar 
minimum occurred around 1975-6 and solar maximum around 1982, the weights (Iv ]  ,w2 ) 
used for other years for which the north-south anisotropy analysis (Chapter 8) was 
undertaken are given in Table 5.1. 
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Figure 5.5. Examples of polynomial fits to coupling coefficient ci° for neutron monitor MTWIQS 
(Mt.Wellington, Tasmania) and muon telescope SNCOMB (Mawson, Antarctica) as a function of 
spectral index y. In the top plot, the traces are for Pu = 100, 200, 500 and 1000 GV from top to bottom 
respectively. In the bottom plot, the traces are for Pu = 100, 200, 500 and 1000 GV from bottom to top 
respectively. 
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year  
1975 
1976 
1977 
1978 

1982 
1983 
1984 
1985 

Table 5.1. Weights used in determining neutron monitor coupling coefficients for 
times other than strictly solar minimum/maximum conditions. See equation 5.15. 

The weights in Table 5.1 were chosen qualitatively by observing the relative cosmic ray 
intensity as seen by the Mt. Wellington neutron monitor over solar cycle 21 and 
surrounding years. This intensity, shown in Figure 5.6, was used as a measure of absolute 
solar activity over the cycle. 
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Figure 5.6. Count rate of the Mt.Wellington neutron monitor. 
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Chapter 6. 
Intensity Waves and the Neutral Sheet. 

6.1. INTRODUCTION TO THE NEUTRAL SHEET 

In this chapter, the concept of the neutral sheet is formally introduced. A formula 
describing a neutral sheet of arbitrary shape is then derived. This formulation is used to 
derive the actual three-dimensional shape of the neutral sheet from measurements of the 
latitudinal displacement of the sheet from Earth (as a function of time). The neutral sheet 
position is then correlated with observed "Intensity Waves" to demonstrate the presence of 
an asymmetry in the intensity of cosmic rays across the neutral sheet for certain periods in 
1982 and 1984. This analysis demonstrates that small but measurable modulation occurs 
for cosmic rays with energies well above 1 GeV and that the neutral sheet is a significant 
large scale structure which affects the modulation of high energy cosmic rays. 

The Sun has associated with it a magnetic field. This magnetic field is dragged out into the 
heliosphere by the plasma (solar wind) being ejected from the Sun. For a detailed 
description of the solar wind and a review of the hydrodynamic equations governing its 
outflow (developed by E.N. Parker), see Brandt 1970. The solar wind flow is virtually 
radial at low and mid-latitudes. At the time of solar-minimum the Sun's magnetic field at its 
surface looks dipolar (like the field of a bar-magnet). The dipole axis is aligned with the 
rotation axis of the Sun. Further out in the heliosphere, the region around the heliographic 
equator defines a discontinuity in the radial component of the field. This is illustrated in 
Figure 6.1. This discontinuity is called the neutral sheet or current sheet. Such a sheet 
segments the heliosphere into so-called sectors. For the case when the Sun's magnetic 
field corresponds to that shown in Figure 6.1, the region above the neutral sheet defines an 
away sector because the direction of the radial component of the heliospheric magnetic field 
is away from the Sun. The region below the neutral sheet is a towards sector. This 
polarity existed during (for example) 1970-1980 and is referred to as "A positive" (as 
opposed to A negative). 

Figure 6.1. The Sun's dipolar field is dragged outward into the heliosphere by the 
radially flowing solar wind. Along the heliographic equator there is a discontinuity in 
the radial component of the heliospheric magnetic field. This is called the neutral sheet. 



Figure 6.2a. A contour diagram of a 2-sector neutral sheet for a tilt-angle of 15 
degrees. The Sun is located at the centre of the diagram and the neutral sheet extends to 
a heliographic radius of 12 AU. 

Figure 6.2b. A contour diagram of a 4-sector neutral sheet for a tilt-angle of 15 
degrees. The Sun is located at the centre of the diagram and the neutral sheet extends to 
a heliographic radius of 6 AU. 
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Except for times around field-reversal (see Section 1.1), the Sun's magnetic field near its 
surface is approximated by a dipole field whose inclination a to the rotation axis of the Sun 
is zero at solar-minimum and increases steadily towards solar maximum (Behannon et al. 
1989, Smith 1990). When a is non-zero the combined effect of the radial outflow of the 
solar wind and the rotation of the Sun produce a neutral sheet which is wavy. Figure 6.2a 
shows what the neutral sheet looks like for a tilt-angle a = 15°. From this figure it is clear 
that if a is greater than the heliographic latitude of the position of the Earth, then the Earth 
will pass from a towards to an away sector and back again as the Sun rotates every 27 
days. This is the case of a so-called two sector structure. In practice, the Sun's magnetic 
field is not purely dipolar. For more complicated cases the Earth may pass through two 
towards and two away sectors every solar rotation as shown in Figure 6.2b. In this case 
the interplanetary field at Earth would be said to have a four-sector structure. In other cases 
the size of successive sectors may vary in space and time. It is important in the study of 
cosmic ray modulation to identify these sector regions because gyro-orbits and drift 
velocities have opposite directions in the differing regions. The neutral sheet therefore 
seems to be an important large-scale structure which affects the modulation of the cosmic 
rays. 

Hoeksema et al. (1982, 1983) describe a method of inferring the neutral sheet position 
through observations of the photospheric magnetic field structure made at the Stanford 
Solar Observatory. They give positions of the neutral sheet as a function of heliographic 
latitude and longitude. It can be seen from their plots that the neutral sheet roughly follows 
a two-sector or four-sector structure except perhaps around solar maximum when the field 
is reversing. 

6.2. PARAMETERIZING THE NEUTRAL SHEET 

Let f(0,0) describe the neutral sheet on the source surface. Here 0 is the heliographic 
latitude and (1) is the heliographic longitude of a point on the neutral sheet. The aim is to 
find a suitable generalized formula forf(04). The source surface is taken by Hoeksema et 
al (1982, 1983) to be 2.25 R, (R, is the radius of the Sun). Let kl denote the rotational 
frequency of the Sun. Let V be the solar wind speed and assume that this is purely radial so 
that V = V. Define a cartesian coordinate system centred at the Sun with the z-axis 
aligned with the rotation axis of the Sun and the x-axis defined by = 0 as illustrated in 
Figure 6.3. 

Figure 6.3. The orientation of the coordinate system used in developing the 
equations for the neutral sheet. The Sun is at the origin. 0 is the heliographic 
co-latitude or polar-angle and •:1) is the heliographic longitude or azimuth angle. 



lcd=c2  
z = r cos 0 
y= r sin 0 sin 4) 
x = r sin 0 cos 4) 

It is assumed in this derivation that the solar wind carries out the magnetic field radially. 
This is not strictly true, especially near the Sun (see Weber and Davis Jr. 1967), however 
any inaccuracies introduced because of this assumption are insignificant. If S2 = 0 (ie: the 
Sun is not rotating) then the neutral sheet satisfies 

f(0,4)) = 0 	 (6.2) 

for any r 2.25 R5 . However, Q # 0. In the frame of reference of the rotating Sun, the 
solar wind is carried out a distance dr in time dt where dr = Vdt. In this time the 
heliographic coordinate system has rotated through an angle (4 = Odt. Hence 

dO Q 
dr V 

or 	= 	V 
(r — 2.25/Q0 

In other words, in the time that the solar wind transports the surface magnetic field a 
distance r, the rotating frame of reference of the Sun has rotated through an angle 4) given 
by (6.4). Since r of the order around 1 AU or greater is the region of concern, R, in (6.4) 
is negligible. Therefore, in the rotating frame of reference, the neutral sheet now satisfies 
the equation 

f(0,4)+) = 0 
V 
	

(6.5) 

for r> >R5 . Consider an observer who is stationary with respect to distant stars, viewing 
the rotational period of the Sun as T, where = 27c/Q. In this frame of reference, the 
azimuth of a fixed point in the reference frame of the rotating Sun varies as Ot = 2nt/T. 
The neutral sheet then satisfies the equation 

f(0,0 + 
rO 

Qt) = 0 	
(6.6) 

6.2a Calculating f: 2 -sector structure. 

A 2-sector neutral sheet arises from a simple tilted dipole model of the Sun's magnetic field. 
For this field configuration, the neutral sheet on the source surface is just the locus of 
points lying perpendicular to, and symmetric with, the dipole. If the tilt-angle a is zero, the 
neutral sheet coincides with the plane defined by the solar equator. With the coordinate 
system defined by Figure 6.3, the locus of points defining the neutral sheet on the source 
surface, as shown in Figure 6.4, satisfies the equation 

z = (tan oc) y 	 (6.7) 
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(6.1) 

(6.3) 

(6.4) 



dipole field direction 

neutral sheet line 

source surface @ 2.25 Rsun  

Figure 6.4. The dipole magnetic field is tilted an angle a to the rotation 
axis of the Sun. The neutral sheet is circular on the source-surface. 

Substituting values for z and y described in (6.1) gives 

r cos B = (tan a) r sin 0 sin (I) 	 (6.8) 

Therefore 

0 = 	- tan -1  (tan a sin (I)) 
2 
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(6.9) 
or 

1 (I)) = 0 - 	+ tan -  (tan a sin 4:1) = 0 
2 (6.10) 

which gives the formula for the neutral sheet on the source surface. For r 2.25/?5, 

it 	-1 	 r = 	- tan (tan  a si 	
S2 

n ( 
2 	

0+ 7) 
(6.11) 

by equation (6.5) and in the fixed frame (stationary with respect to distant stars), 

-1 	 rf2 
0(t) = — - tan (tan a sin (0 + —v  — g2t)) 

2 (6.12) 

by equation (6.6). 

6.2b Generalized formula for the neutral sheet. 

For small a, tan a a. Note that (n/2-0)€ [—cc,a] , so for small a, tan(11/2-0) n/2-0. 
Hence for small a, the equation for the neutral sheet becomes 

	

0 = - . 	a sin(0+ 	— S2t) 

	

2 	 V (6.13) 
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Consider a four-sector neutral sheet. The latitude of the neutral sheet in heliographic 
coordinates = it/2-8 reaches +a twice per revolution 4) 	4)+27c. Hence a four-sector 
neutral sheet satisfies the equation 

—2  — a sin(20 + —rf2 — 251t) 
V 

for small a. Generalizing, an n-sector neutral sheet would satisfy 

IL 
= — -

2 	

cc sin(1 4)+  
2 	V 2 ) 

(6.14) 

(6.15) 

again for small a. In practice, the neutral sheet tilt angle may not be small enough to justify 
the above approximations. Also the neutral sheet may not be a pure 2 sector or 4 sector 
shape - in the sense that the average shape may be 2 or 4 sector but there may be small 
fluctuations in the shape on a local scale. Just as an arbitrary function can be represented as 
a Fourier series of sine and cosine functions, it is proposed that a neutral sheet with 
arbitrary shape can be represented as a sum of a 2 sector, 4 sector, 6 sector, etc... neutral 
sheet, each being represented by a formula given by (6.15). That is, for a general neutral 
sheet shape, 

= 	- E a21..1 sini[4) -nt]+-
A-2 

+ a21 cos i[4:• 	+ —rn  
2 	 V 	 V 

(6.16) 

The neutral sheet is specified by the values of the coefficients oc i. . From the above 
discussion, this formula should have the correct 4) dependence. The oc 1.  values are no 
longer constrained to be small, since any inaccuracies in the approximation which lead to 
the forms of the neutral sheet given by equations (6.13) to (6.15) will be accounted for by 
higher order terms in equation (6.16). 

6.3. DETERMINING THE NEUTRAL SHEET FROM DATA 

This section describes the method used to determine the actual shape of the neutral sheet in 
terms of the model given by equation (6.16). J.T. Hoeksema (private communication) has 
supplied neutral sheet data obtained from observations at the Stanford Solar observatory. 
The data give the latitudinal displacement of the neutral sheet from Earth (at the same 
heliographic radius and azimuth angle) as a function of time. Specifically, one data point 
per day was provided. Let (re , ,, 11:• e ) denote the position of Earth and (r 3 , 0 th ns ,  
denote the position of the neutral sheet in heliographic coordinates. Call the neutral sheet 
data D(r). Then 

D(t) = O ns(t)-8 e(t) 

where 	rM  = 1 , and 4)„, = 	 (6.17) 

Ons(t) is specified by the model (equation 6.16) and O e(t) is given by 

-1 Oe  (t) = —71 - tan (tan E cos Oc (t)) 
2 (6.18) 
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where 
2Tct 

(1),e  (t) =  
'C e  (6.19) 

(following the same argument for the equation of a circle offset from the rotation axis of the 
Sun given by equation 6.9). In equation (6.18)---- 7•50• In (6.19) te  = 365.25 days, the 
rotational period of Earth about the Sun and 0 0  ---- 76°. Both and O. vary very slightly 
from year to year. An accurate value of both for any particular year can be found in the 
Astronomical Almanac. The value of 0 0  was determined from the longitude of the 
ascending node of the solar equator on the ecliptic. 

The coefficients a i  in equation (6.16) were found from fitting the linear model 

— D(t) — e (t) =  
2 	 ns 

reQ 	 rec2 = E[a2i _ i  sin(i[oe  — fa]  + 	+ a2; cos(i[cpe  — Qt] + —)] a2n+1t a2n+2 V 	 V i=1 

(6.20) 

over a sufficient number of days, using the generalized least-squares routine described in 
Chapter 14 of Press et al. (1986). The last two terms on the right hand side of equation 
(6.20) allow for a linear offset of the latitude of symmetry of the neutral sheet from the 
solar equator. Figure 6.5 shows a comparison between the supplied neutral sheet data and 
the fitted model using n=6 when the neutral sheet had a roughly 2-sector structure during 
1982. Figure 6.6 shows the same fit for n=10. Figure 6.7 shows a 2-sector fit in 1984 for 
n=6 and Figure 6.8 shows the same fit for n=10. As can be seen by comparing these 
figures, there is no gain in accuracy in using n>6. Because the neutral sheet structure 
changes as a function of time, any one model fit is only accurate for a finite length of time. 
This length of time is a function of the order of the fit (ie: value of n used) and a function of 
how fast the neutral sheet itself is changing shape, for example transiting from a 2-sector to 
a 4-sector structure. As a rough guide, the fit is generally accurate for about 80 to 100 days 
using n=6. 

Hoeksema derived the neutral sheet data by using Zeeman observations of the line of sight 
component of the photospheric magnetic field (details in Hoeksema et al. 1982) and 
assuming a 4.5 day lag in the field from the source surface to Earth. Obviously the time-lag 
depends on the solar wind speed V which varies between roughly 300 and 700 km s -1 . 
Cramp (1991) noticed that the times of sector field crossing predicted by the above model 
and the actual time of crossing observed by various sources including satellite data 
(J.E. Humble, private communication) varied by up to 2 days in some instances. Cramp 
also found instances where the Earth was known to have passed from one sector to another 
and back again over the period of one day, but the model predicted that the neutral sheet, 
although coming close, did not actually cross the helio-latitude of the Earth. Such 
observations place limits on the accuracy of the above model which are estimated to be 
about ±1 day in the time coordinate and ±0.2 radians along the latitude coordinate. 
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Figure 6.5. Latitudinal displacement of the neutral sheet from Earth during days 170 to 270 
of 1982. The neutral sheet has a 2-sector structure. The solid line is the data supplied by 
Hoelcsema (private communication) and the dashed line is the model fit using n=6. 

Figure 6.6. Latitudinal displacement of the neutral sheet from Earth during days 170 to 270 
of 1982. The neutral sheet has a 2-sector structure. The solid line is the data supplied by 
Hoeksema (private communication) and the dashed line is the model fit using n=10. 
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Figure 6.7. Latitudinal displacement of the neutral sheet from Earth during days 240 to 340 
of 1984. The neutral sheet has a 2-sector structure. The solid line is the data supplied by 
Hocksema (private communication) and the dashed line is the model fit using n=6. 
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Figure 6.8 Latitudinal displacement of the neutral sheet from Earth during days 240 to 340 
of 1984. The neutral sheet has a 2-sector structure. The solid line is the data supplied by 
Hoeksema (private communication) and the dashed line is the model fit using n=10. 
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6.4. INTENSITY WAVES 

So-called isotropic intensity waves have been observed in cosmic ray data from Mawson 
and other observatories between 1982 and 1986. For a description of the telescope systems 
operating during this period, see Duldig (1990). There is evidence in the data for the 
existence of these waves for post 1986 periods, however the amplitude of the waves has 
never been as large as it was in 1982 and 1984. The rest of this chapter concentrates on the 
intensity waves detected at Mawson during those two years. The waves are characterized 
by a 13.5 or 27 day approximately sinusoidal variation in the count-rate of cosmic ray 
detectors. The term isotropic is used because such a variation, when it is present, appears 
in data collected by other detectors around the world and the phase of the variation is the 
same at each detector. Moreover, it appears that there is no energy dependence of the 
variation in the energy range of the order 10 to 150 GeV. A detailed description of the 
intensity wave phenomenon has been given by Duldig et al. 1985 and Jacklyn et al. 1987 
and a summary is reproduced below. It has been proposed (Duldig 1987) that the observed 
waves in the cosmic ray data could be interpreted as being due to sampling the cosmic ray 
particles from regimes of the heliosphere above and below the neutral sheet and that the 
neutral sheet, at times when the waves are present in the data, acts as a boundary between 
two regimes of the heliosphere with unequal cosmic ray density. This proposal is 
investigated here by calculating the relative volume of a sampling sphere, centred at Earth, 
above and below the neutral sheet during times when the intensity waves were present in 
the data. This sampling sphere represents the volume of space, around Earth, within which 
galactic cosmic ray particles are last modulated before being detected by terrestrial-based 
cosmic ray detectors. 

6.4a Intensity wave definition. 

The intensity waves are derived from the Mawson underground data (denoted by UG) by 
removing two other varying components. Isotropic phenomena, such as Forbush 
decreases, having an E- / type energy (E) spectrum are removed from the data by applying 
the relevant scaling factor to neutron monitor data (denoted by NM) from the same site. 
Similarly the North-South anisotropy component is removed using a scaling factor applied 
to the Nagoya (denoted by GG) data. These scaling factors are related to the corresponding 
coupling coefficients (see Chapter 5) of the detectors involved. The resulting residual 
variation is thus defined as 

(Al 	- 	— c2•( 6'1  
AiG 	iNm 	JGG 	 (6.21) 

The reference level 10  for each detector corresponds to an arbitrary reference day which 
must be the same for all three detectors. Normalization of the wave W about zero is thus 
achieved by selecting a suitable reference day. See Jacklyn et al. (1987) for a discussion 

• on the derivation of the appropriate scaling constants c1  and c2  appearing in equation 
(6.21). 
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6.4b Sampling sphere. 

The notion of a sampling sphere is used to estimate the relative volume of interplanetary 
space from which cosmic rays are sampled by terrestrial-based detectors. Let the sampling 
sphere be that volume of interplanetary space within a sphere radius of R„ centred at Earth. 
R„ should be of the same order of magnitude as the gyro-radius of the primary cosmic rays 
which are sampled. This is required so that the sampling sphere includes the relevant 
volume of space over which the observed modulation is occuring. 

The neutral sheet separates the northern hemisphere interplanetary magnetic field from the 
southern field. The proportion of the sampling sphere above the neutral sheet is a first 
order estimate of the proportion of observed cosmic rays arriving from above the neutral 
sheet. Figure 6.9 is a graphical representation of a sampling sphere of radius 1 AU. Let 
the index k be defined through 

( Vu k = 2 	— 
VT 	2 (6.22) 

- 
where Vu  is the volume of the sampling sphere above the neutral sheet and VT is the total 
volume of the sphere. The range of k is [-1,+1]. If k = -1 then the sampling sphere is 
totally below the neutral sheet, ie: is totally in the southern IMF. If k = +1 the sphere is 
totally in the northern IMF and if k = 0 the sampling sphere is equally divided above and 
below the neutral sheet. To evaluate k at any time it is essential to know the position of the 
neutral sheet. This was done using equation (6.20) and the method given in Section 6.3 
above. 

Figure 6.9 A sampling sphere of radius 1AU centred on Earth. The sphere is superimposed 
over a pure 4-sector neutral sheet extending to 6AU. The shaded area is the volume of the 
sphere above the neutral sheet. In this case, k>0. 
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6.5. INTENSITY WAVES vs NEUTRAL SHEET CORRELATION 

The variation of k (actually, -k) is plotted in Figures 6.10 and 6.11 along with the intensity 
wave variation W for the times in 1982 and 1984 when the waves were observed in the 
data. For both cases a solar-wind speed V 400 km s -1  in the neutral sheet model and a 
sampling sphere radius of 1AU were used. The neutral sheet model is insensitive to 
changes in the solar wind speed. Varying Vsn, from 300 to 600 km s -1  had a negligible 
effect on the phase and amplitude variation of k. Changing R„ had the effect of changing 
the amplitude variation in k. A small value of R„ results in a large maximum amplitude of 
k, up to ±1 for large tilt-angles of the neutral sheet. The larger R„ the smaller is the 
maximum amplitude of k. However, the phase variation of k is relatively unaffected by 
changes in R„. 

In Figure 6.10, the fit had a linear correlation coefficient of 0.7661. In Figure 6.11, the 
correlation coefficient was 0.5279. In both cases, over the duration of the fit, these 
coefficients give a probability of less than 0.001% that the correlation occurred by chance 
(see Section 13.7 of Press et al. 1986). 

The positive correlation between the intensity variations and -k shows that when k>0 the 
muon flux is lower. This indicates that in the presence of these intensity waves there were 
more galactic cosmic rays in the southern hemisphere, at least at the energies to which the 
telescopes were sensitive. 

Such a difference in the density of cosmic rays between the two hemispheres could arise in 
several ways. It may be that, for example, more solar modulation was present in the 
northern hemisphere as a result of differential solar activity between the hemispheres when 
the waves were present. Solar activity, as measured using sunspot number and area data, 
were compared between hemispheres but no correlation could be found between differential 
solar activity and intensity wave amplitude over the short time periods when the waves 
were observed. Other researchers have found evidence for an asymmetry in the cosmic ray 
density over longer time periods (>> 1 year). Swinson et al. (1990a, 1990b, 1991) 
considered the distribution in the number of days the Earth was in a Towards or Away 
sector and compared this with solar activity as measured by sunspot numbers. They 
inferred from their observations that an asymmetric level of activity on the Sun causes a 
displacement of the neutral sheet north or south of the heliographic equator. A latitudinally 
symmetric density distribution with respect to the neutral sheet is then observed as an 
asymmetric distribution from the ecliptic. Chen etal. (1991) on the other hand interpreted 
changes in the phase and amplitude of the diurnal anisotropy (over many years) as 
indicating a true uni-directional latitudinal gradient across the neutral sheet, caused by 
asymmetric solar activity. 

The results reported in this chapter support the hypothesis that the neutral sheet is a 
significant large-scale boundary structure, even for high energy (-100 GeV) particles. The 
switching mechanisms for the appearance of these relatively short term waves have not 
been addressed here. Indeed, such mechanisms have yet to be conclusively determined. 
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Figure 6.10. Intensity wave variation W (%) (solid line) and sampling sphere index (-k ) 
(dashed line) between days 170 and 260 in 1982. Note that the period of the variation is 
roughly 27 days which corresponds to the neutral sheet having a 2-sector structure at this time 
(see Figure 6.5). 
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Figure 6.11. Intensity wave variation W (%) (solid line) and sampling sphere index (-k) 
(dashed line) between days 240 and 360 in 1984. Note that the period of the variation is 
roughly 27 days which corresponds to the neutral sheet having a 2-sector structure at this time 
(see Figure 6.7). 
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Chapter 7. 
Atmospheric Corrections for Muon Data. 

7.1. INTRODUCTION 

Changes in atmospheric structure influence the count-rate I of a muon detector in three 
major ways. These need to be accounted for in order to use the data for analysis of the 
galactic cosmic ray anisotropy. The atmospheric effects are summarized below. The 
method for correcting the data is then given, along with the application of this method for 
the Mawson surface muon detectors SNCOMB and SSCOMB (see Chapter 5 on Coupling 
Coefficients for specifications of these detectors). The atmospheric-corrected data are used 
in the north-south anisotropy analysis described in Chapter 8. 

As primary cosmic ray particles enter the atmosphere, they interact with atmospheric nuclei 
to produce, amongst other products, pions. The pions, having a very short lifetime, 
subsequently decay to the muons that are detected by muon telescopes. An increase in sea-
level pressure P represents an increase in the absorbing material between the location where 
the muon is created and where it is detected. Therefore the muon has a higher probability 
of being absorbed. As P increases, I decreases and as P decreases, I increases. This is 
known as the pressure effect. The pion production level, expressed as a total column 
density, is roughly constant (-125 mb). The height H (in km say) of this production level 
varies seasonally. The amplitude of this seasonal variation is also latitude dependent. If the 
pions are produced higher in the atmosphere then they decay to muons higher in the 
atmosphere and hence, because the muons have further to travel before being detected, 
more will decay to positrons. Positrons have short ranges in air and will subsequently be 
absorbed before reaching the detector. As H increases, I decreases and as H decreases, I 
increases. This is known as the height (or negative temperature) effect. The density of 
air near the pion production level is inversely proportional to the temperature T there. If the 
air density is low then the pion has a lower probability of being absorbed before decaying 
to a muon. As T increases, I increases and as T decreases, I decreases. This is known as 
the (positive) temperature effect. 

The atmospheric effect on the muon intensity can be described by the 4-fold regression 
equation 

	 = f3p(P—P0 ) + [3 11 (H— H0 ) + PAT—T0 ) 
/0  (7.1a) 

where Po , H0 , T0  are reference values for the pressure, height and temperature described 
above, /0  is the value to which the intensity would be corrected if all the variations in I were 
due to these three atmospheric effects only, (Pp, 13 11  , 13T) are the atmospheric correction 
coefficients and should be a constant for a particular telescope (see Sandstrom 1965). More 
accurately, 

11 
jpo 	p(p)dp + 510 8[3 14 (h)dh + ST  8f3T (t)dt 

16, (7.1b) 
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where Sf3 i  (i.P,H,T) are differential correction coefficients which are functions of P,H 
and T. The total effect on the count rate of the muon detector is found by integrating these 
differential functions over the range of fluctuations in the atmospheric parameters from their 
reference values. In practice, there are almost always insufficient meteorological data to 
determine these functions, and the integral form given by equation (7.1a) is sufficient given 
the accuracy of the fluctuations in the data known to have been caused by atmospheric 
effects only. 

Primarily, the reason for determining the effect of variations in the atmosphere on the count 
rate of muon detectors is to remove such effects from the data in order to determine the free-
space variations in intensity. Secondarily, if the observations of atmospheric conditions are 
accurate enough, comparisons between such observations and theoretical models can be 
undertaken to test the validity of models describing the interactions in the secondary-particle 
cascade through the atmosphere. The coefficients are functions of such variables as the 
proton and pion absorption length, ionization loss rates and the equation of state of the 
atmosphere. Theoretically predicted atmospheric correction coefficients have been studied 
by a number of authors including Dorman (1974) and Maeda (1960). The coefficients for a 
particular telescope are expected to depend on the telescope's zenith angle of viewing, and 
also on the average energy of the particles being detected (see also Lyons, 1981). There is 
probably a small effect of latitude on the coefficients due to the temperature structure of the 
atmosphere changing slightly over the Earth. However, for a particular telescope with 
fixed viewing direction, the coefficients should not be a function of time. This statement is 
correct only to first-order accuracy. The coefficients may indeed have a small solar-cycle 
dependence although it appears that this dependence is smaller than the accuracy to which 
the coefficients themselves can be determined. It is therefore assumed in this chapter that 
the correction coefficients are constant in time for a given telescope. 

Having determined a set of correction coefficients for a particular telescope, the intensity of 
that telescope corrected for atmospheric effects becomes 

'corrected (t) = 
1(t) 

 

{1 + 13 p (P (t) — Po ) + (3 11 (1/(t)— Ho  + PT (7.  (t) To)] 

(7.2) 

This is a simple re-arrangement of equation (7.1a) with 'corrected replacing 1. It seems that 
the values obtained for Pp  , 13n  and 13 T are essentially insensitive to the choice of (Po , Ho , 
To) as long as these reference values are within the ranges of the respective data. 

7.2. EVALUATING THE COEFFICIENTS 

Re-arranged, equation (7.1a) becomes 

= 	+ 10 13 1 (Ami  + l0 i3 H (AH)1  + 10137-(Ani 	(7.3) 

where AP = (P -Po ), AH = (H - Ho), AT = (T - T0) and the subscript i represents the it h  
data point. Notice therefore that in order to determine the correction coefficients, 
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meteorological data for H and T (and station-level pressure P) corresponding to the 
recorded intensity are needed. For n data-points, where n > 3, equation (7.3) is written as 
a matrix: 

where 

Y = 

y 

11\ 
12 

n 

= Ax 

A= 

(1 
1 

API 
AP2 

APn  

Affi  
AH2 

ATI 
47'2 

ATn  

x= 

\ 

10 I3p 
1013 11 

'oh 

(7.4) 

(7.5) 

The coefficients (and the reference intensity) are found from the least-squares solution to 
equation (7.4). The "best" least-squares estimate of. is 

= (AT  Al AT  y 

with error 
n  2 = (ATA)-1 0. 2 

It -xi 	 Y 

where ay2  is the variance of the set of (yd. An unbiased estimate of ay  can be found using 

6 = 	 
(n— p —1) 

and R = eiej 	with ei = yi - A ijx j 

In equation (7.8), p is the number of independent variables (4 in the case of equation 7.4), 
R is called the residual sum of squares. The total correlation coefficient r is given by 

	

2 	R 
= 1 - — 

	

r 
	

where T = yiyi  
(7.10) 

T is usually called the total sum of squares. r is useful since it is a single number which 
gives a measure of the goodness of fit. r = 1 is a perfect fit, r = 0 implies there is no 
correlation between the parameters and the data and r = -1 implies perfect anti-correlation. 

Note that the error given in equation (7.7) for the correction coefficients is only the formal 
error in the sense that the measurement errors on do not necessarily follow a normal 
distribution. Only when the measurement errors follow a normal distribution does it make 
sense to say that (for example) there is a 68% confidence limit on the coefficients, correct to 
+/- 1, of the values given by equation (7.6). See Chapter 14 of Press et a/.(1986) for 
further discussion on this point. Even though errors of the muon intensity I approximately 
follow a normal distribution (the Poisson distribution for large count-rates closely 
approximates a normal distribution), other variations in the data not due to atmospheric 

(7.6) 

(7.7) 

(7.8) 

(7.9) 
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effects or counting statistics (eg: solar modulation effects) will influence the determination 
of the coefficients. Some of these effects are discussed in the subsequent sections. 

7.3. EFFECT OF CORRELATION IN METEOROLOGICAL DATA 

If two or more of the atmospheric parameters P, H,T are not completely independent and if 
they have associated with their values a random measurement error, then the atmospheric 
correction coefficients determined from the least-squares fit will be biased. Denoting the 
measurement errors by ap, a ll , ar  and assuming that there is no cross-correlation between 
them, and also that there is no correlation between these errors and either A or y, then the 
effect of this bias can be removed by replacing (ATA) - / by (ATA -nS) - I in the solution for ,/ 
given by (7.6), where 

(0 

nS = n. 
G p2 

2  (7.11) 

ie: unbiased 	
- 1 

= (A A - nS) A'
T  

y i  (7.12) 

See Trefall and Nordo (1959) for the theory behind this correction process. It can be 
shown (see Seber 1977) that if n is large and S small, the formal error for Xunbiased  is still 
given by equation (7.7). 

7.4. COEFFICIENTS FOR MAWSON SURFACE MUON DETECTORS 

7.4a. Meteorological data. 

Surface pressure P was measured by a barometer/transducer at the detector site. Height 
and temperature data were measured using radiosondes on weather-balloons flown once-
daily at Mawson by meteorologists working for the Australian Bureau of Meteorology. 
The radiosonde measurements include (among other things) the height (meters) and 
temperature (°C) of pressure levels ranging from 1000 to 50 mb. H used in the regression 
analysis was the height of the 125mb level. At Mawson, this height varies from 
approximately 13.3 km in late July to 14.5 km in late December. T used in the regression 
analysis was the mean temperature in the interval 80 to 200 mb. This temperature varies 
between roughly -80°C (late July) and approximately -40°C (late December). Due to the 
polar location of Mawson, the seasonal variation of these parameters is very large compared 
with equatorial or mid-latitude sites. The diurnal variation is also relatively small in 
comparison with both lower latitude sites and with the seasonal variation because solar 
diurnal heating of the atmosphere is not significant at high latitudes. 

Because H and T data may vary significantly over a period of one day, it is valid only to 
regress these data with the detector count-rate measured at the same time as the balloon 
flight. During the 1970's and early 1980's, detectors at Mawson only recorded hourly 
count-rates. It was assumed that the H and T data were valid for a period of one hour 
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Figure 7.1. Raw data used in the regression analysis for the muon telescope SNCOMB for 
1977. The scaled count-rate for this detector is uncorrected. The pressure has been measured 
by an auto-barograph at the detector site. Height is that of the 125mb level, temperature is 
the average between the 80 and 200mb levels. 



74 

before and one hour after the radiosonde measurement. This measurement was regressed 
with the average hourly count rate of the muon telescopes over these two hours. Figure 7.1 
shows the pressure, height and temperature data along with the count-rate for the surface 
north-pointing muon detector at Mawson for 1977. 

7.4b. Non-meteorological related variations in the muon data. 

Transient variations in detector count-rate which are not due to atmospheric effects should 
be removed to prevent possible bias in the regression analysis. It is of course impossible to 
remove all these variations without identifying them in the first place. Before finding the 
appropriate atmospheric correction coefficients, it is not clear what variations are due to 
atmospheric effects alone. Major transient variations in the data which are known (by some 
means) not to be atmospheric related are removed, and it is assumed that the remaining 
variations in the data (which are not of atmospheric origin) are not correlated with P,H and 
T so that no bias is introduced into the regression analysis. The solar diurnal variation is 
not present in the data if the average of the hourly count rate for the two hours bracketing 
the radiosonde measurement are used. This is because, at Mawson, radiosonde 
measurements are taken at the same time each day. The muon detectors are observing 
cosmic rays at the same phase of the diurnal variation each day - assuming that over the 
period of regression the change in phase of the diurnal variation is less than the statistical 
scatter of the data. Forbush decreases are removed using data from a neutron monitor at the 
same site as the muon telescope. The neutron monitor count rate is only affected by 
changes in P (when considering atmospheric effects). The pressure coefficient for a 
neutron monitor can be accurately found by looking at the change in count rate during a 
short period where there is a large pressure change. For Mawson, this could be the period 
during the passage of a blizzard. The pressure-corrected neutron monitor count rate will 
show the periods when Forbush decreases were present. The pressure-corrected Mawson 
neutron monitor count rate was scanned and days when a Forbush decrease was observed 
were flagged. These days were excluded from the regression analysis for determining the 
muon atmospheric correction coefficients. A Forbush decrease detected by a muon 
telescope will always be detected by a neutron monitor at the same site because the 
spectrum of the decrease is such that the intensity of lower-energy particles is depressed 
more than the intensity of higher energy particles. There is a risk of removing excess muon 
data in the regression analysis using this method since a muon telescope may not 
necessarily see a Forbush decrease if a neutron monitor does (i.e. if the upper cut-off 
rigidity for the event is lower than the threshold rigidity for the muon telescope but higher 
than the threshold for the neutron monitor). This problem cannot be avoided and it is better 
to remove more muon data from the regression analysis than not enough if there is a chance 
that some remaining data still contain Forbush decreases. Finally, periods in the muon data 
which had level shifts and data spikes - due to detector and/or power supply malfunction - 
were identified by visual inspection of the uncorrected data. A spike-recognition algorithm 
(see Appendix 6) was also applied to the data with limited success. These periods were 
removed from the regression analysis. 

7.4c. Detector efficiency. 

Before 1982 the muon telescopes in use at Mawson employed Geiger tubes. These tubes 
decrease in efficiency such that, in the absence of any anisotropy in the primary cosmic 
rays, the count rate of the detectors decreases exponentially. The time constant is 
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sufficiently slow that over the period of a couple of years this decrease is linear. Such an 
efficiency trend needs to be removed from the data before the regression analysis is 
undertaken. There are problems in simply comparing the average hourly count rate at the 
start of a year and at the end of the same year, and fitting a straight line in order to remove 
the efficiency trend. If the meteorological conditions are not exactly the same at the two 
times then any differences will show up as intensity variations which will affect the 
straight-line fit. It is more accurate to fit a straight line through a complete year's data - or 
in fact two or three year's combined data to best fit the "average" linear efficiency trend. 
Note that in order to accurately determine the P H  and 13T  coefficients, data for at least one 
complete year should be used in the regression analysis. H and T vary approximately 
sinusoidally with a period of one year. Also over short timespans, H and T data do not 
generally vary enough to produce an effect in the intensity of the detector which is greater 
than the statistical accuracy of the data. Unfortunately, doing the regression analysis over a 
long period such as a year introduces other problems including the fact that real solar-cycle 
variations may be significant. In an attempt to alleviate this, the regression analysis was 
done for years around solar minimum. 

It turns out for the Mawson (surface) muon telescopes around the 1975 solar minimum, 
that the magnitude of the seasonal variation in the data due to H and T variations was 
roughly of the same order as the magnitude of the average decrease in intensity due to the 
Geiger tube efficiency deterioration. This posed problems when trying to identify and 
remove the linear efficiency trend because the sinusoidal seasonal variation biased the fit to 
a straight line of the data (see Appendix 3). 

INTENSITY 	line of best fit 

— 1 year 

  

 

TIME 

Figure 7.2. For data which sinusoidally varies over a year and which has a superimposed 
(linear) efficiency decay, the line of best fit through the data (dashed line above) does NOT 
equal the declining efficiency trend. 

This problem was alleviated by fitting a sine wave of arbitrary phase PLUS a straight line to 
the data, the sine wave representing the best-fit to a seasonal variation. The efficiency trend 
was then identified by the straight line part of the fit only. This linear trend was removed 
from the data by rotating around its average. For reasons described above, the straight line 
plus sine wave fit was performed over three consecutive years of data combined (near solar 
minimum). 
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7.4d. Regression analysis - Results. 

Some authors, on reporting values obtained for atmospheric correction coefficients for a 
particular muon telescope, do not explicitly state that they calculated I, as a fit-parameter 
(eg: Fenton et al. 1961, Lyons 1981). Instead of using equation (7.4), the regression 
analysis could just as easily be done using 

x= 

(PP \  

PH 

J3T 

and A = 

(AP 

(7.13) 

for a pre-specified value of Io  (say the average intensity over the span of data). It was 
found that the coefficients obtained from such a fit are very sensitive to the value of /0  used 
- even if the choice of was restricted to the range of I in the data span. Therefore was 
one of the parameters to be determined by the regression analysis. Figure 7.3 shows an 
example of the sensitivity of the fitting procedure to the choice of I. 

Correction coefficients for the Mawson surface telescopes (both north and south pointing) 
for 1975, 76, 77 and 1984 were calculated. Results are tabulated in Table 7.1. It was 
found that, even though the pressure coefficient was consistent between telescopes and 
from year to year, the height and temperature coefficients varied significantly, the error on 
the height coefficient in particular being quite large. Note that both the north and south 
pointing telescopes should have the same coefficients (they are both looking through the 
same amount of atmosphere) and these coefficients are expected to be constant over the 
period 1975-77. The temperature coefficient determined was always negative, in 
contradiction with the theoretically expected value. 

Year Detector 13p (% mb -1 ) 13H  (% km -1 ) 
1975 sncomb -0.10 ± 0.01 -3.0 ± 0.8 
1975 sscomb -0.10 ± 0.01 -3.6 ± 0.7 

1976 sncomb -0.11 ± 0.01 -3.4 ± 0.5 
1976 sscomb -0.11 ± 0.01 -2.5 ± 0.5 

1977 sncomb -0.07 ± 0.01 -2.9 ± 0.7 
1977 sscomb -0.08 ± 0.01 -2.3 ± 0.6 

1984 sncomb -0.12 ± 0.01 -1.9 ± 0.6 
1984 sscomb -0.12 ± 0.01 -2.2 ± 0.6 

I3T (% °C-1 ) 
-0.15 ± 0.03 
-0.13 ± 0.02 

-0.13 ± 0.02 
-0.15 ± 0.02 

-0.08 ± 0.02 
-0.12 ± 0.02 

-0.13 ± 0.02 
-0.13 ± 0.02 

Table 7.1. Correction coefficients for the Mawson surface muon detectors obtained using the full 
4-fold regression analysis. Note that 13T is negative, in contradiction with theoretically expected 
values. 
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Figure 7.3. Uncorrected (solid line) and corrected (dashed line) count rate of SNCOMB. The 
top plot used /o = 1595 in the analysis (via 7.13), the bottom used /o = 1663, approximately 
the average count-rate of the span. Note that the uncorrected data had the linear-trend removed. 



Year 	Detector 	Pp (% 
	

PH (% km-1 ) 	PT (% °C-1 ) 
-0.13 ± 0.01 0.55 ± 1.4 -0.27 ± 0.05 
-0.12 ± 0.01 -1.1 ± 1.3 -0.21 ± 0.04 

-0.12 ± 0.01 -1.6 ± 0.7 -0.19 ± 0.02 
-0.13 ± 0.01 -0.1 ± 0.7 -0.23 ± 0.02 

-0.07 ± 0.01 -2.7 ± 0.8 -0.09 ± 0.02 
-0.08 ± 0.01 -1.7 ± 0.7 -0.14 ± 0.02 

-0.13 ± 0.01 -0.4 ± 0.8 -0.18 ± 0.03 
-0.13 ± 0.01 -0.7 ± 0.7 -0.18 ± 0.02 

1975 	sncomb 
1975 	sscomb 

1976 	sncomb 
1976 	sscomb 

1977 	sncomb 
1977 	sscomb 

1984 	sncomb 
1984 	sscomb 
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It should be noted that the errors given in Tables 7.1 and 7.2 are components of the error 
vector given by (7.7). The fact that the errors for OH  and to a lesser extent for 12• T  are rather 
large reflect the fact that there is a large range of values of the pair (pH  ,PT) which give an 
equally adequate fit to the model in the regression analysis. In fact, it was found that if the 
correction coefficients determined from (7.6) were changed by an amount ±60i and then 
applied to the data, the corresponding corrected data did not change by more than about 
1%. In some cases, the correction coefficients could be altered by up to 3a without 
noticeably affecting the result of correcting the data. Figure 7.4 gives an example of the 
relative insensitivity of the corrected data to the correction coefficients. Because of this 
relative insensitivity, the correction coefficients determined from one year's data generally 
adequately corrected another year's data, even though the coefficients from year to year 
may not have been consistent. 

From experience, it does seem that OH  can increase while PT decreases, and vice-versa, 
with little effect on the quality of the fit. This is due to the high degree of correlation 
between the height and temperature aerological data. As discussed earlier, it is usual to use 
the bias-matrix procedure to correct for this correlation (equation 7.12). 

The meteorological data for H and T at Mawson are partially correlated - both varying 
sinusoidally and in phase with a period of 1 year. To prevent any bias in the correction 
coefficients a bias matrix nS was included, where op = 0.2 mb, H = 50 m and a T  = 
2.2°C. These figures were based on Lyons' (1981) estimate of the data errors in 
radiosonde measurements, determined from various sources and locations (eg: Trefall and 
Nordo, 1959). The results analogous to Table 7.1 are shown in Table 7.2. 

Table 7.2. Correction coefficients for the Mawson surface muon detectors obtained using the full 4- 
fold regression analysis AND using a bias matrix where a p = 0.2 mb, a = 50 m and oy = 2.2°C. 

Notice from Table 7.2 that the values for P H and PT were even more scattered than in 
Table 7.1. Some of the values for the height coefficient were less than the error estimate. 
The values used in the bias-matrix may have been inappropriate for the Mawson aerological 
data. In an attempt to find a "best" bias matrix (equation 7.11), coefficients Pp, PH and PT 
were calculated over 1975-1977 for a range of (au  ,aT) values. 
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Figure 7.4. Uncorrected (solid line) and corrected (dashed line) count rate of SNCOMB. The 
top plot used correction coefficients a-g, the bottom plot used a+g, where A is the correction 
coefficient vector solution given by (7.6) and KE is the error vector given by (7.7). The 
uncorrected data had the linear-trend removed. 
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For each different combination of bias-matrix elements, three values were calculated, 
namely: 

A = 
	

OP,1975 RP,yearf 
year A975 

B= 
	E( 1311,1975 - 011,year 

)2 

year*1975 

C = E( 13T,1975 0T,year)2  
yearA975 	 (7.14) 

The assumption is that when A,B and C are a minimum then the coefficients are the most 
consistent from year to year and hence most likely to be the "correct" ones. all  was varied 
between 0 and 60m in steps of 5m, aT was varied from 0 to 3 °C in steps of 0.5 °C (also 
including 2.2°C). Coefficients and hence A, B and C were calculated for both surface 
muon detectors at Mawson. For SNCOMB, the value A was insensitive to changes in (a H, 
GT). B had a local minimum usually when aT = 2.2°C for a given all, the global 
minimum being at aH  = 0.0. C had a minimum usually when ay = 0 for a given aH, the 
global minimum being at all = 20m. For SSCOMB, trends for C were as above. B had a 
local minimum for 0T= 1.0°C generally, with the global minimum at (OH,aT) = (0.0, 
1.0). It is therefore apparent that there was no value (or range of values) of (a ll, aT) 
which clearly gave a more consistent set of coefficients between the three years. Using any 
of the values of (aH, aT) which gave a local minimum in A, B or C gave no "better" results 
for (13p, PH, PT) than in Table 7.1, in the sense of being more consistent or having smaller 
errors. 

It proved to be very difficult to determine consistent correction coefficients (for PH and PT) 

from year to year and between telescopes. It is believed that the reason for this was the 
high degree of correlation between the H and T aerological data, and the assumptions of no 
correlation between errors in H,T and values in A and breaking down (hence the bias-
matrix method was inappropriate). 

7.4e. Pressure-Height only correction procedure. 

Visually inspecting the intensity (/) variations and the corresponding H and T variations 
over 1 year for Mawson surface muon telescopes (eg: Figure 7.1) shows that there is an 
obvious anti-correlation between I and H (as would be expected for 1311  negative). Since 
there is a correlation between H and T, there is also anti-correlation between I and T. For a 
positive PT, a positive correlation between I and T would be expected (in the absence of H 
variations). Hence for the Mawson muon telescopes, the positive temperature effect must 
be small compared with the negative height effect. To alleviate problems of H variations 
biasing 137,  and T variations biasing PH , it was decided to correlate I variations with P and 
H only, and neglect any effect of T variations on I. The new regression equation becomes 

/ =1 + /o  13sp(AP) + /,, f3 i1 (AH) 	 (7.14) 
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Another way of looking at this is that this new f3 H  is a total height coefficient which 
describes I variations produced by H + T variations (somewhat justified when considering 
that H and T are partially correlated). 

To more accurately determine Pp, it was decided to correlate the intensity variation with 
pressure variation over a couple of hours only - at times of high pressure variability, e.g. 
the passage of a blizzard. Over this length of time, H variations (and indeed any variations 
in the data due to solar modulation and Geiger tube efficiency changes) are negligible. The 
Mawson cosmic ray observatory is equipped with a static pressure head. The pressure 
records are known to be unaffected (to first order) by high winds and blizzard conditions 
(M L Duldig, private communication). Using 

A/ 
/0 

= OP AP 

and therefore 

I = Io  Io  Pp AP 

(7.15) 

(7.16) 

13p was determined from the slope of a linear regression of data with pressure variations. 
Averaging over a number of runs, each run consisting of data from less than or equal to 
two consecutive days, the average pressure coefficient (for both SNCOMB and SSCOMB) 
was found to be 

I3p = -0.09 ± 0.01 % mb-1 
	

(7.17) 

Using this pressure coefficient, the muon data were pressure corrected over 1975, 1976 
and 1977 and the efficiency trend was removed. The residual intensity variation was 
regressed with H variations only to determine I , and PH for each of the three years and the 
results were averaged to find a "constant" f3 1/  which would adequately correct all three 
year's data for each of the surface telescopes equally well. The average height coefficient 
over these three years (for both SNCOMB and SSCOMB) was found to be 

OH = - 6.0 ± 0.8 % km-1 	 (7.18) 

See Figure 7.5 for an example of corrected data using this method over 1975-77. Figure 
7.6 shows the difference in the corrected data if instead of using the average PH  given by 
equation 7.18, the height coefficient determined for each of the three years separately was 
used. Height coefficients determined for the separate years were -6.97, -5.25 and -5.83 % 
km -1  for 1975, 1976 and 1977 respectively. As can be seen, the two methods give very 
similar results. This indicates that the "average" 131i  given by equation 7.18 is adequate. 
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Figure 7.6. The solid line is the same data as in the bottom plot of Figure 7.5. The dashed 
line is corrected intensity of the same data except that the height coefficients used were those 
determined from the analysis for each separate year ( -6.97, -5.25, -5.83 % km -1  for 1975, 
1976, 1977 respectively). 
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Figure 7.7. The solid line is the count rate of SNCOMB, corrected using coefficients 
determined from a full 4-fold regression analysis (see Table 7.1). The dashed line is the same 
data corrected using 03p, H , PIT ) = (-0.09% mb-1 , -6.0% km -1 , 0.0). 
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On using (pp, I3 H  ) determined from the "average" method to correct a span of data for 
atmospheric effects, it was found that the corrected intensity may vary by up to —2% from 
the corresponding corrected intensity determined using a full 4-fold regression analysis 
over the same span of data. See Figure 7.7 for an example. The reason for this is probably 
that the full 4-fold analysis not only correlates intensity variations caused by atmospheric 
effects with H and T but also correlates other (real) fluctuations in the data which have not 
been removed. By determining an "average" consistent Pp and 13H  over a number of years 
around solar minimum, it is believed that the application of these coefficients to any data 
span will have removed atmospheric effects alone. 

7.5. COEFFICIENTS FOR MAWSON UNDERGROUND DETECTORS 

Atmospheric correction coefficients for the underground muon detectors (UNCOMB, 
USCOMB) at Mawson were determined using the method given above. Due to their low 
count rates, the counting statistics were not as good for these telescopes as for the surface 
detectors. The average value for the pressure and height coefficients were determined for 
both detectors to be 

13p = - 0.06 ± 0.02 % 	 (7.19) 

DH = - 0.73 ± 0.20 % km -1 
	

(7.20) 

It is expected that these coefficients would be lower than the corresponding coefficients for 
the surface telescopes. The underground telescopes have a median energy of response 
higher than the surface detectors. Higher energy particles would have a smaller absorption 
cross-section and hence would be less affected by changes in the amount of absorbing 
material between creation and detection points (hence a lower pressure coefficient). 
Changes in H would have less of an effect on higher energy particles because of their 
shorter Lorentz contracted flight time from the production point to the detector (hence a 
lower height coefficient). 

Note that the coefficients for both surface and underground telescopes given in this chapter 
are consistent with theoretically expected and experimental values determined by other 
authors (eg: Fenton et al. 1961, Sandstrom 1965, Dorman 1987). 
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Chapter 8. 
North-South Anisotropy Analysis. 

8.1. INTRODUCTION 

We are interested in comparing the predictions of the model for the intensity distribution of 
particles at 1 AU to that observed by ground-based particle detectors (neutron monitors and 
muon telescopes ) and spacecraft borne instruments. North-south anisotropy analysis is 
one of only a handful of methods whereby direct comparisons can be made between the 
model and ground-based observations. In particular, it gives a method whereby the radial 
gradient g,. of galactic cosmic rays at 1 AU in the Sun's equatorial plane can be determined 
from neutron monitor and muon telescope data. 

The Nagoya GG telescope (eg: Yasue 1980) is the only muon telescope which has been 
used extensively to measure the north-south anisotropy. Obviously, for maximum 
sensitivity, it is advantageous to compare the count-rate of a detector viewing directly north 
and another viewing directly south. In the past, the neutron monitors at Thule (Greenland) 
and McMurdo (Antarctica) have been used. (eg: Bieber and Pomerantz 1986). In this 
chapter, values of the north-south anisotropy and the radial gradient at 1 AU determined 
from data collected by the network of neutron monitors and muon detectors operated by the 
University of Tasmania and the Australian Antarctic Division are presented. This is the first 
attempt at deriving gr  using these detectors. Firstly however, the theoretical description of 
the north-south anisotropy is given. Two methods for obtaining g,. from observations of 
this anisotropy are presented. 

REFERENCE YEARS ENERGY g (% AU -1 ) 
at Earth. 

Yasue (1980) 1969-73 5 GeV 5 
10 GeV 3 
100 GeV 0.6 

Bercovitch (1969) 1964-5 5 GeV 1.6 
10 GeV 0.8 

Bercovitch (1971) 1967-8 5 GeV 9 
10 GeV 5 

Duggal and Pomerantz (1977) 1964-75 10 GeV 2 

Bieber and Pomerantz (1986) 1961-83 —10 GeV 1 to 3* 

TABLE 8.1. Values of the radial gradient gr  at the position of Earth for the given energy. 
(* values range from 1 to 3% during a solar cycle). 

Bercovitch (1969, 1971) was the first to use a type of north-south anisotropy analysis in 
order to determine g,. from neutron monitor data. Essentially, the radial gradient of galactic 
cosmic rays in space is manifested as a latitudinal anisotropy at Earth - the north-south 
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FIGURE 8.1. Typical gyro-paths of particles in a TOWARD' field configuration are schematically 
shown. Note that the gyro-radii of galactic cosmic ray particles are much larger than the scale of the 
Earth. The azimuthal component of the Sun's magnetic field is directed into the page. The radial 
component is toward the Sun. The radial gradient of cosmic rays along the heliographic equator causes 
more particles to be observed in the northern hemisphere due to particle gyration around the azimuthal 
component of the solar field. 

FIGURE 8.2. Typical gyro-paths of particles in an 'AWAY' field configuration are schematically 
shown. Note that the gyro-radii of galactic cosmic ray particles are much larger than the scale of the 
Earth. The azimuthal component of the Sun's magnetic field is directed out of the page. The radial 
component is away from the Sun. The radial gradient of cosmic rays along the heliographic equator 
causes more particles to be observed in the southern hemisphere due to particle gyration around the 
azimuthal component of the solar field. 
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anisotropy - caused by particles gyrating around local interplanetary magnetic field lines. 
Figures 8.1 and 8.2 show the typical gyro-paths of these particles in a 'toward' and 'away' 
field configuration. The two configurations are separated in space by the neutral sheet (see 
Chapter 6) and the Earth passes from one configuration to the other as the Sun revolves 
about its axis. By observing the difference between the count-rates of two terrestrial 
detectors observing at differing asymptotic latitudes, or the difference between the count-
rate of a single detector in different field-states, the radial gradient g,. at 1 AU can be 
calculated. Table 1 summarizes some measurements of the radial gradient from 
observational data using this method. 

Bercovitch (1971) and Duggal and Pomerantz (1977) assumed a P -1  type spectrum 
(P=rigidity) for their analyses. The result of Duggal and Pomerantz is dependent on the 
value of the diffusion constant which they used in their analysis. Yasue was the only one 
of these investigators to incorporate muon telescope data. He derived a spectrum of P -0 .7  
for the radial gradient. 

Others have done similar analyses to derive the upper-limiting rigidity of the north-south 
anisotropy and its variation over 27 days and 11 years. Swinson (1969, 1971) was the 
first to use this analysis to derive the related sidereal daily variation of galactic cosmic rays. 
Because the Earth's rotation axis and the Sun's rotation axis are not aligned, a constant 
north-south anisotropy (perpendicular to the heliographic equator) is manifested as a 
temporally constant north-south asymmetry in the flux of cosmic rays along the Earth's 
rotation axis and a sidereal daily variation. See Figure 8.4. Figure 8.3 schematically 
shows the relationship between the Sun's and Earth's rotation axis, the solar equatorial 
plane or heliographic equator, the ecliptic plane and the celestial equator. 

Swinson (1971) estimated a rigidity upper bound for the north-south anisotropy of 
between 50 and 100 GV based on O'Gallagher and Simpson's (1967) proposal that g,. a 
P-1 . He also noted that this upper bound may be a reflection of the finite size of the 
magnetic sectors rather than an energy upper limit to the positive radial gradient. For 
comparison, Yasue (1980) determined the upper bound to be in the order of 200 GV. 
Errors on this result were +150 and -50 GV. 

Pomerantz et al. (1982) and Swinson & Yasue (1991a,b) have demonstrated 27 day and 
11 year waves in the north-south anisotropy and attribute this mainly to corresponding 
changes in the local interplanetary magnetic field. 

8.2. THEORY 

In terms of transport theory (see Chapter 1), the anisotropy vector is given by 

3S  4 = 47cvp2 f (8.1) 

where S is the vector which describes the streaming of cosmic rays. In heliographic 
coordinates, the north-south anisotropy is 

4NS = 410=nI2, r=1AU 	 (8.2) 
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Sidereal Daily 
Variation Vector 

North South 
Anisotropy Vector 

North South 
Asymmetry Vector 

heliographic equator 
(or solar equatorial plane) 

FIGURE 8.4. Relative orientation of the north-south anisotropy vector, north-south asymmetry 
vector and the sidereal daily variation vector. OR = 26.14° as in Figure 8.3. 

FIGURE 8.3. Schematic view of the orbit of the Earth around the Sun and the planes that define the 
heliographic coordinate system. The angle between the Earth's rotation axis and the Sun's rotation axis 
is measured to be OR = 26.14°. 
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That is, the north-south anisotropy vector is the component of the general anisotropy vector 
along the polar angle 9 at the Earth. In terms of the cosmic ray density function U, the 
streaming vector is given by (see Forman and Gleeson 1975): 

Therefore, 

.5:13 

where 

= cy_u - 

oyrK 

K 	DU 	anK 	B 

(8.3) 

(8.4) 

(8.5) 

-II 
1+ 

B — x 

(DU 
(an)2  (arji 	1+ (0), )2 	ar 	IBI 

NJ 

= cos lir 

(au 
1+ (m)2 	ar 

o.YEK U 
1+ 

Ul a 

gr  sin 
(on) 

and 	a g,.= — 

U ar 

In going from equation 8.3 to 8.4, the perpendicular component has been neglected. 
Bieber and Pomerantz (1986) suggested that this component is generally much smaller than 
the asymmetric term. With this assumption, 

4e 
3Se 	3K —(cot) gr  sin 
vU 	v 1+ (coac)2  

—X (on) 	 . 

2  gr  sin w 
1+(on) (8.6) 

where X is the scattering mean-free-path. The gyro-frequency co, the gyro-radius rg  , the 
collision time r and the scattering mean free path are related by 

X. (cot) = — 
r 

Therefore, 

(8.7) 

4 = g,- sin NJ.  

— rg  gr  sin 

1 +i rg 
 ) 	 (8.8) 
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Assuming -e- . << 1, then 

4 = - rg  gr  sin v 	 (8.9) 

This result assumes that the components (asymmetric, perpendicular and parallel) of the 
general diffusion tensor are given by 

KA  - - cot/CI  (asymmetric component) (8.10) 

= 	
K II   

1+ (oYr)2  

K =!2 II 	3 

(perpendicular component) 

(parallel component) 

(8.11) 

(8.12) 

(eg: Forman and Gleeson 1975). In terms of the cosmic ray distribution function f , 

3Se  
4 = 4nvp 2 f 

V  a f  
3  = 	, (-47rp)K Vf 	- 

47cvp' f 	 3 D lnpio  (see equation 1.22) 

3 
= 	--vf (KOr KOO KO 

af 
g,- = —

f
—ar 

and go = Lai 
f DO 

(8.13) 

(8.14) 

_ 3  ( v  Pf1 	Kee pie — it er  + 	— 
vf 	ar 	r a0

) 
 

3 	Kee  ) - - (KOr gr 	go 

where the gradient operators are defined by 

and K is the full diffusion tensor. 



92 

Now, K09 = 

K r  = KA  sin Ill 

A 	PV K = 
3qB (8.15) 

(see Chapter 1). 

t 	—3 

Hence, 

pv 
—v 3qB 

gr  sin \if + g0 
(8.16) 

From this theoretical expression it can be seen that the north-south anisotropy can be 
explained by the existence of a radial gradient (first term) and perpendicular diffusion 
driven by a latitudinal gradient (second term). Again, neglecting the second term (as for 
equation 8.4), the north-south anisotropy can be written in terms of the radial gradient as 

k Ns = 40 — rg  gr  sin w —1-20  18=7r/2, r=1 AU 	= 	gr  sin Nr = 
(8.17) 

which coincides with the expression derived at equation (8.9). It is clear from this equation 
that a direct measurement of 4/vs. using terrestrial based particle detectors gives a measure of 
g,. as a function of energy. 

8.3. 4N  s FROM OBSERVATIONAL DATA FOR AN ARBITRARY 
DETECTOR. 

The formalism given in Chapter 5 is used throughout this section. In the case of the north-
south anisotropy, F(x) can be approximated by r cos x where the symmetry axis is 
perpendicular to the heliographic equator. Consider Figure 8.5. R is a vector along the 
symmetry axis of the anisotropy with magnitude ij. As the Earth rotates, this north-south 
anisotropy will give rise to a constant increase/decrease (depending on the sign of Ti) in the 
count rate of a particle detector due to that component of R along the Earth's rotation axis 
(R,), along with a sidereal daily variation of intensity due to the components of R 
perpendicular to the rotation axis (R x + R). That is, 

Rx =11 S1n 8RcOSaR 
Ry  = 71 sin OR  sin a R  

= ri cos OR 

where 
2n 

aR = 	t (hours) 24 

The magnitude of the anisotropy is 

(8.18) 

(8.19) 
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KINS  AU gr = 	. 	% A l  (given rg  in AU) 
r sin tv 

P 
I41Ns = (TO % 

and 

P Pu  
(8.24) 

(8.25a) 

Assuming the interplanetary magnetic field strength at Earth is 5nT then (using 8.45) 

( 	  

gr 	
rpGv)ri  

35.4 x 	 • R 	 U"z  x 100 % A 	at 1 AU 
L 10 

Two methods of determining Rz  are now given. 

(8.25b) 

8.4. DETERMINING R z  : METHOD 1. 

Let I be the total intensity (daily average count rate) of particle-detector i. Let 5 be the total 
intensity of the same detector neglecting that component of the count rate due to the north- 
south anisotropy. Let D i  be the (fractional) change of daily-averaged intensity due to the 
north-south anisotropy. Then, following equation 5.2, 

Dzi  = 7  
(8.26) 

and 
= y, (1 + 

	

= yi  (1 ± 	Rz ) 
	

(8.27) 

Note from Figures 8.1 and 8.2 that the north-south anisotropy changes sign, but not 
magnitude, when moving from a 'toward' magnetic field sector to an 'away' sector. Hence 
the reason for the ± sign in the above formula. Use '+' for away sectors and '-' for 
toward sectors. Comparing two separate detectors denoted by indices i and ], define a 
normalization factor between them A ij  such that 

= A1 , yi 	(Au  =1, Ajj  = A1,11 	 (8.28) 

Averaging data over an equal number of toward and away days, 

	

<Ii > = <Si  > 	(hence A1 , = < Ii >1< If>) 	 (8.29) 

Combining equation 8.28 with 8.27 for two separate detectors, 
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— A1, I3 =9 (1 ± 	Rz ) — A1 , 91 	_ 	
(8.30) 

— A i = ± 	— c (11 ) Rz 	 (8.31) 

where, again, the ± sign depends on whether the Earth is in an away or towards sector 
field. In this form R z  is a fraction. R z  can be calculated from equation 8.31 by regressing 
the intensity data with the coupling coefficients over a number of pairs of detectors (i, j). 
The energy dependence of the anisotropy may be found simultaneously by varying the 
coupling coefficients (which are a function of the energy spectrum of the anisotropy) and 
finding the 'best-fit' regression over the parameters y and P u . 

Consider two detectors denoted by indices 1 and 2. Rearranging equation 8.31, 

_ ) 	+ (d i  - 4,2) Rz  
52 (8.32) 

11 12 
IAA y = (— — ---) , 	x = 	± (cP,1 - 4,2) 

5/ 52 

Then, 

y=Rz x (8.33) 

There is a unique data point (x, y) for each independent pair of detectors. Assume all the 
errors in this regression are due to the y variable and denote the error by Ay. This error is 
due to random measurement errors and statistical fluctuations in the count rate of the 
detectors. There is a random and somewhat indeterminable error in the x variable (due to 
the uncertainty in the coupling coefficients) but this is neglected for now. Associated with 
each data point, define a weight w via: 

w= 

(8.34) 

The reason for defining the weight term in this way is that the model under regression is 
constrained to pass through the point (x, y) = (0, 0). Points far from the origin with large 
errors influence the fit similarly to points close to the origin with small errors. On summing 
over all independent pairs of detectors (i=1 ..n), 

Rz  = 

(8.35) 

with associated 'error' 



1 
E widi  

(n-1) E wixixi 

where 

= (yi  — Re  xi ) 

Ay is obtained via a standard propagation of errors: 
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(8.36) 

(8.37) 

(Ay)2  
)2 	 )2 	 2 	 2 

ay
( ay A  , 	 ay "

A2 Lu Al 	" 
(alT1 Ain  ) + (a1T2 AIT2  alA2 

(8.38) 

where 'TI  is the intensity of detector 1 and IT2 the intensity of detector 2 in towards sectors 
for a given pairing. 'Al  and 'n2  are the corresponding intensities in away sectors. The 
errors A/ are the standard errors in the mean count-rate (due to statistical fluctuations in the 
data). 

8.5. DETERMINING R z  : METHOD 2. 

For a given detector, denote the average daily intensity recorded in a towards sector by IT 
and in an away sector by IA. Then from equation 8.27, 

IT = y (1 - 	Rz ) 	 (8.39) 

IA = y + Cy Rz ) 	 (8.40) 

-1 (IT  - 1A ) 
Rz  = 0  

(iT (8.41) 

which can be calculated for each of the available detectors independently. The error on Rz  
determined from this formula is 

(MZ)2 = -MT JraRz 	, ( aRz  
-r 

 

11A MA 

Hence, given a pair (R e , AR, ) and an associated weight 

1 w= 	 
(ARz )2  

(8.42) 



for each available detector, an average or mean value of Rz  can be found via 
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Rz  = 
Dvi (8.43) 

(8.44) 

with associated variance 

1 
62- = 

Rz  E 

8.6. 'VA SECTOR BINNING. 

From the preceding section, it is seen that interplanetary field data are required for each day 
in order to determine whether the Earth is in a towards or an away sector. The field data set 
used in this analysis was the standard set used by the Hobart cosmic-ray groups. The set 
has been compiled from various sources by D.B. Swinson (University of New Mexico) 
and J.E. Humble (University of Tasmania). The sources include data from whatever 
spacecraft measurements are available and deductions, published in Solar Geophysical 
Data, from polar magnetograms. The data, set consists of a single estimate for each day. If 
the Earth is in a toward sector the day is labelled T. If the Earth is in an away sector the 
day is labelled 'A'. If it is unclear whether the Earth is in a single sector because the field is 
mixed, the day is labelled 'X'. Days for which there are no data are labelled 'N'. Sector 
boundary crossings (ie: the Earth crossing the neutral sheet) can be identified as changes in 
the field direction from one day to the next. Note however that if a number of 'N' or 'X' 
days appear between a 'T' and 'A' day, for example, then it is impossible to locate the 
temporal position of the boundary crossing (to within one day). 

The north-south anisotropy arises from particle gyration about the local interplanetary 
magnetic field and only gives a smooth latitudinal gradient if all of the particles which are 
incident on the Earth have gyro-orbits within a single sector. If the sector boundary is too 
close, then some particles will have been incident on the Earth from an opposite sector (a 
greater proportion are affected at higher energies) and will not be gyrating in the correct 
sense to produce a monotonic gradient as shown in Figures 8.1 and 8.2. We must be sure 
therefore that the sector boundary is not so close as to significantly influence the analysis. 
Since the gyroradius is proportional to rigidity the Earth needs to be further from a sector 
boundary in order for the anisotropy to exist at higher energies. The gyroradius of a 
particle rg , its rigidity P, and the magnetic field strength B are related by 

P  (in GV)  rg  (in AU) — 45 B (in nT) 	 (8.45) 

For a 5y (or 5 nT) field (which is an average value near 1AU), a 50 GV particle has a 
gyroradius of roughly 0.2 AU. Since the Sun rotates with a period of approximately 27 
solar days, this gyroradius corresponds to approximately 1 day's rotation in the azimuth 
coordinate. Hence to be sure that a 50 GV particle has been last modulated within a single 
sector, the Earth needs to be at least 1 day from a sector boundary crossing. 
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Correspondingly, there would need to be a 0.2 radian latitudinal displacement of the Earth 
from the neutral sheet. These distances would double for a 100 GV particle. 

Because of this, a routine was written to screen the T/A data and only accept those days for 
which it is certain that the Earth is further than some fixed number of days, denoted by n, 
from a boundary crossing, where n=1 for particles with rigidity 50 GV, n=2 for particles 
with rigidity 5_ 100 GV etc. For n=1 as an example, a string of days such as 

...TTTTTXTTTAAAAAATTTTTXXTNXXTNTTTAAAAA... 
would be replaced by 

....TTT***T##AAAA##TTT**********T##AAA.... 
where * denotes a rejected day, # denotes a boundary crossing. 

Because the neutral sheet is a surface in three-dimensions, it is possible that the Earth is 
close to a boundary in heliographic latitude (maybe < 0.2 AU) but a large azimuthal 
distance from a boundary crossing. See Figure 8.6 (bottom plot around day 78) for an 
example. T/A days are denoted along the x-axis and the plot is the latitudinal displacement 
of the neutral sheet from Earth. These data are fully described in Chapter 6. It was thought 
that the parameterized neutral sheet (see Sections 6.2 and 6.3) could be used to flag days 
when the Earth is close to the neutral sheet but many days from a boundary crossing, 
however it was decided that the data were too unreliable on the time scale of a day or so, as 
shown by Figure 8.6 (top plot). The sector crossings as denoted by a change from T to A 
or A to T should coincide exactly with (Oe -O) = 0. As seen from Figure 8.6, the data can 
be a day or two displaced from such crossings. The main reason for this is that the neutral 
sheet data are derived from observations of the photospheric source surface of the Sun and 
a constant propagation speed for the solar wind of 400 km s -1  is assumed. The solar wind 
in practice varies in the range — 300 km s -1  to — 700 km s -1 . Features observed at the 
source surface therefore, may reach Earth a day either side of the predicted arrival time. 
Note that this sensitivity is in contrast to the insensitivity of the solar wind speed in the 
correlation analysis described in Section 6.5. In summary, only the rejection criteria of 
being more than n days from a boundary crossing was used to screen the magnetic field 
data. 

8.7. ALGORITHM. 

The following steps describe the algorithm adopted to calculate Rz  from neutron monitor 
and muon telescope data. 

1) Choose a year of data for the analysis. R, is calculated from a complete year's data 
in order that there be enough T and A days to obtain a statistically significant result. 
Choose the rigidity spectrum of the anisotropy by specifying (y, P t,) which uniquely 
define the coupling coefficients for each detector. 

2) Read in the data and the corresponding coupling coefficients (which are a function 
of year for neutron monitors as described in Chapter 5) -for all available detectors for that 
year. 

3) Group the days of the year into towards (T), away (A) or rejected days based on 
the criteria described in the previous section. 



TA4,  TTT ITTTITA AAtAtAtTT TT ITT T ATTTTTT44,444ATTTT 

TTTITAtITTITTTAAtAtAtAtTITITTTTTTAATTTITTAATtAtATTUTTITTAtAtXtTTTITTA  
80 	90 	100 	110 	120 	130 	140 	150 

99 

Day in 1983 

I 	• 	• 
	

I 	• 	• 

t TTptAt fTTTITITITT TXtAtAtAtAtAtAt TITITTITITT tAtAtAtAtAtAt FTITT  

- AATTXAtAtAXITTITITTUTTXtAtAtAtA AtATTTITTUTTTAtAtAtAtAtA At AtTITIT .  

  

50 	60 	70 	80 	90 
	

100 
	

110 
	

120 

Day in 1984 

FIGURE 8.6. Plots showing the latitudinal displacement of the neutral sheet from Earth for sample 
days in 1983 and 1984. The top plot demonstrates an example of discrepancy around boundary crossing 
times between the neutral sheet data and the T/A sector data used in the north-south anisotropy analysis. 
The bottom plot is an example of the neutral sheet coming close to Earth but the Earth being many days 
from a boundary crossing. 
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Telescope 
type 

Location Mnemonic Pp 
(% mb-1 ) 

PH 
(% km -1 ) 

Available 
years 

neutron 1975,76, 
monitor Mt.Wellington rntwiqs -0.985 - 77,78,82, 

83,84,85 
neutron 1975,76, 
monitor Mawson nmcomb -0.739 - 77,78,82, 

83,84,85 
neutron 1977,78, 
monitor Brisbane briiqs -0.739 - 82,83,84, 

85 
neutron 1978,82, 
monitor Darwin dariqs -0.739 - 83,84,85 
neutron hobiqs 1976,77, 
monitor Hobart (hobnn -0.739 - 78,82,83, 

before 84,85 
1978) 

surface 1975,76, 
muon Mawson sncomb -0.1 -6.0 77,78,82, 

telescope 83,84 
surface 1975,76, 
muon Mawson sscomb -0.1 -6.0 77,78,82, 

telescope 83,84 
underground 

muon Mawson uncomb -0.06 -0.73 1983,85 
telescope 

underground 
muon Mawson uscomb -0.06 -0.73 1984,85 

telescope 
underground 

muon 
telescope 

Cambridge 
(Hobart) 

cammu -0.0487 0.0 1975,76 

underground 
muon 

telescope 
Cambridge 

(Hobart) 
cam4n -0.0487 0.0 1975,76 

underground 
muon Mawson p6 -0.06 -0.73 1984 

telescope 

TABLE 8.2. List of available detectors operated by the Hobart cosmic-ray groups between 1975-78 
and 1982-85. All available detectors for each year were used in the north-south anisotropy analysis. The 
Hobart neutron monitor was an ICY detector before 1978 and an IQSY detector after 1978, hence the 
mnemonic name change. 
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4) For each detector, correct the data for atmospheric effects. For neutron monitors 
this is a standard pressure correction. For muon telescopes this is pressure and height 
correction using the algorithm described in Chapter 7. Note that the height data as 
measured by Mawson radiosondes consist of one measurement per day. For the purpose 
of correcting the data from the muon telescopes at Mawson, a linear interpolation was 
applied to the height measurements in order to obtain a value for the height data for each 
hour of the day. The height correction was performed on the count rate for each hour using 
this interpolated data. The count rate was then averaged to give a daily averaged count rate 
for each day. 

5) For each detector, flag data spikes and days where Forbush decreases are 
observed. This was done visually for each detector and for each year of the analysis. A 
spike and level-change recognition algorithm was developed for the purpose of 
automatically flagging level shifts and transient spikes in the data. Appendix 6 describes 
this algorithm. It was found that this algorithm, although the most successful of such 
algorithms for automatically detecting level-changes, was unsuitable for discriminating days 
on which there was a shallow Forbush decrease. Considerable effort would be required to 
develop an algorithm to automatically decide the point at which the count-rate has fully 
recovered after a Forbush decrease. It was decided that it would be quicker and more 
accurate to simply visually flag such data. 

6) Find mutually acceptable days for each detector pairing if using 'method l' 
(described in Section 8.4) to determine Rz  or, if using 'method 2', find days whereby the 
data are not rejected on the basis of any of (a) a mixed or undetermined field day, 
(b) Forbush decrease or data spike, (c) null data. 

7) Remove any long-term linear trend due to 11-year modulation effects or detector 
efficiency decay. This was performed by fitting a straight line through the whole year's 
data and rotating about any linear slope (see Section 7.4c). 

8) Bin the data into T or A days and take appropriate averages for each bin. Use 
'method 1' (equations 8.26 - 8.38) or 'method 2' (equations 8.39 - 8.44) to calculate Rz  as 
a function of (y, Pu). Vary the spectrum and repeat steps 1-8 to determine the 'best-fit' 
value of R. 

Table 8.2 lists the available detectors operated by the Hobart cosmic-ray groups between 
the years 1975-78 and 1982-85. All available detectors for each year were used in the 
north-south anisotropy analysis. When using method 1, the detectors were paired in such a 
way that no pair of detectors was a combination of other pairs. For example, if there were 
four detectors, labelled A, B, C and D, then they could be paired (A,B), (A,C) and (AD). A 
pairing (B,C) would not be used as it would be considered a combination of the pairs (A,B) 
and (A,C). In this sense, the detector pairs are said to be independent. The use of 
'independent' in this context does not mean that independent data were used for each pair. 
Clearly in the above example, all pairs use data from detector A. 

8.8. RESULTS. 

Figure 8.7 shows a sample fit for R z  for 1985 using method 1 with (y, P u) = 
(0.5, 200 GV). The detectors corresponding to the marked data points are shown in 
Table 8.4. The fitted slope was (1.02 ± 0.14) x 10 -3  which corresponds to a radial 
gradient (for 10 GV particles) of (3.6 ± 0.5) % AU -1 . Appendix 7 contains the full results 
of g,. for 1975-78 and 1982-85 using method 1. Results are presented as graphs of g,. vs 
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Pu  index for y ranging from 0.7 to -0.5 for a rigidity of 10 GV. Equation 8.25b can be 
used to determine g,. from these plots for other rigidity values. Values of Pu  in GV for the 
corresponding Pu  index are given in Table 8.3. Full results of g,. for various (y, Pu) pairs 
derived using method 2 are given in Appendix 8. Appendix 9 contains contour diagrams of 
x2  (goodness of fit) over (y,  P r,) of the results using method 1. Appendix 7 and 8 results 
are summarized in Figures 8.8, 8.9 (method 1) and 8.10, 8.11 (method 2). These figures 
are plots of g,. vs year for a fixed (y,Pu) pair. 

Pu  index Pu (GV) y index y 
1 30 1 0.7 
2 50 2 0.6 
3 100 3 0.5 
4 200 4 0.3 
5 500 5 0.2 
6 1000 6 0.1 

7 0.0 
8 -0.5 
9 -1.0 
10 -1.5 

Table 8.3. List of actual values of y, Pu corresponding to the indices used in figures 
in Appendices 7 to 9. 

data point detector pair 
Al /T1 
A2 /T2 
A3 /T3 
A4 /T4 
AS / T5 
A6 /T6 

mtwiqs, uscomb 
nmcomb, uscomb 
briiqs, uscomb 
dariqs, uscomb 
hobiqs, uscomb 
uncomb, uscomb 

Table 8.4. Detector pair corresponding to each data point labelled A1-A6 and T1-T6 in 
Figure 8.7 (ie: all available detectors for 1985). 
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Lc) 
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FIGURE 8.7. Fit for Rz  (slope) using method 1. Six independent pairs of detectors were used. See 
Table 8.2 for a list of those detectors available in 1985 and Table 8.4 for a list of the detector pair 
corresponding to each of the data points. Data from toward days are labelled with a T and data from away 
days with an A. Error bars are those determined from equation 8.38. 
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= 
	0.7, Pu  = 1000.0 CV 

, 	I 	, 	 , 	I 	, 	 I 	I  

1975 	 1980 	 1985 

year 

= 	0.5, P u  = 200.0 CV 

1975 
	

1980 	 .1985 

year 

FIGURE 8.8. Plots of radial gradient vs year for a fixed y, Pu using method 1. Error bars are those 
determined by equation 8.36. The gradient is for 10 GV rigidity particles. Equation 8.25b can be used to 
determine the gradient for other rigidities. 
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FIGURE 8.9. As for Figure 8.8 but for different y, Pu values. 
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I  
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7 = 	0.7, Pu  = 1000.0 CV 

year 

7 = 	0.5, Pu  = 200.0 CV 

year 

FIGURE 8.10. Plots of radial gradient vs year for a fixed y, Pu using method 2. Error bars are those 
determined by equation 8.36. The gradient is for 10 GV rigidity particles. Equation 8.25b can be used to 
determine the gradient for other rigidities. 
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FIGURE 8.11. As for Figure 8.10 but for different y, Pu values. 
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8.9. DISCUSSION OF RESULTS. 

Consider first the graphs of gr  vs (7, Pu) in Appendices 7 and 8. For positive 7 the graphs 
look very similar between y values for a fixed year. There are a couple of notable trends 
evident. As y increases, gr  decreases for a fixed Pu  index value. The errors also tend to 
become smaller. As Pu  increases (for a fixed y), g,. generally decreases above Pu  
100 GV. If g,. is indeed small (say <1% AU -1 ) in the energy window in which these 
detectors are sensitive, then either 7 and P u  are large in magnitude (eg: y, Pu  = 0.7, 
1000 GV), or Pu is small (say around 50 GV) and the statistics are not good enough to 
determine a unique 7 and indeed a significant value of g,.. 

Consider these possibilities in turn. Above a rigidity of about 200 GV, it is less clear 
whether the diffusion picture of the transport equation is still appropriate (Jokipii 1971, 
Kota 1991). If the scattering mean-free-path of the cosmic rays becomes comparable with 
the scale length of a sector, for example, the theory presented here which relates g,. to the 
intensity differences between opposing sectors may not be totally valid. It therefore seems 
inappropriate to increase Pu  in order to satisfy any pre-conceived notion that g„ is (say) 
below 1% AU -1  in this energy range. J.E. Humble (private communication) has suggested 
that a value of gr  of around 3% AU -1  at 1 AU (consistent with the result by Yasue 1980) 
seems too large on the basis that the total intensity change from solar minimum to solar 
maximum is only about 5% for surface muon telescopes and 15-20% for neutron monitors. 
It was thought in the past that at solar minimum the galactic cosmic rays were observed 
essentially unmodulated by the Sun. The reason for this was that the neutron monitor 
intensity comes back to a remarkably similar level at each successive solar minimum. 
However, there is nothing concrete to suggest that there is no modulation of particles even 
up to 200 GV at solar minimum - especially now that the present estimate of the radius of 
the outer boundary is much larger than was previously supposed. The fact that muon 
telescopes and neutron monitors achieve the same intensity level for successive solar 
minimums may only be indicative of the fact that the Sun returns to the same minimum level 
of activity each cycle. The results shown in this chapter would indicate that ifP u  is around 
200 GV, then g,. is indeed larger than would have previously been supposed. 

It is important to note that the values of (7, u)  chosen (and the corresponding value of g,.) 
should only be thought of as being appropriate to the energy window that is being observed 
by the neutron monitors and muon detectors. It is dangerous to extrapolate using this 
spectrum to outside this energy range. This applies in particular to lower energy values. At 
about 1 AU from the Sun, the galactic cosmic ray spectral index below about 1 GeV 

• decreases with energy and eventually changes sign (see Section 4.4a). Fitting the spectrum 
calculated for the north-south anisotropy by this analysis to particles with energy below 
about 1 GeV is not justified. It is entirely plausible that the values of (7,Pu) which best fit 
the north-south anisotropy are energy dependent over a wide energy range. The model 
spectrum given by equation 5.3 assumes that 7 and Pu  are energy independent. It is 
assumed that this is true over a small enough energy window. Inadequacies and 
inaccuracies of the results in this chapter may be indicative of the fact that this is not true 
over the energy range in which neutron monitors and muon detectors are sensitive. 

If Pu is around 50 GV, then the statistics of the results are not good enough to give a 
significant value of g,.. All that can be said in this circumstance is that gr  is bounded above 
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and below by reasonably large values (refer to the Figures in Appendix 7 and 8). The large 
error values on g,. for Pu  around 50 GV are indicative of the fact that the median energy of 
the neutron monitors is around 17 GeV but is anywhere between 50 and 100 GeV for the 
surface muon telescopes and 150 to 200 GeV for the underground muon telescopes used in 
this analysis. The higher the median energy of response for a particular detector, the lower 
that detector's response is to an anisotropy with a low upper cutoff rigidity. It is interesting 
to note that Ahluwalia and Riker (1987) and D.L. Hall (University of Tasmania, private 
communication) independently calculated the upper limiting rigidity of the diurnal 
anisotropy for the years between 1965 and 1980 to be between 50 and 100 GV (solar-cycle 
dependent). Considering that the diurnal variation is just another component of the full 
anisotropy vector it is not unreasonable to expect that Pu  for each effect is similar. 

Consider now the contour graphs shown in Appendix 9. The contours are generally open- 
ended for high Pu . The levels are also flat over a large range of Pu  values - especially 
considering that the Pu  index is (almost) logarithmic. These shapes are not unlike the 
contour diagrams given in Yasue (1980). Note that many of the X2  values are from fits 
where the error is greater than the value itself. In this circumstance, the contours are 
insignificant. It is for this reason, along with the fact that the contour levels are flat over the 
range of (y, u) which most likely is the true spectrum, that it was decided that a "best-fit" 
(y, Pu) could not be determined on the basis of a minimum contour value. 

Consider now Figures 8.8 to 8.11 inclusive. These graphs give gr  as a function of year 
over the 10 year period 1975 to 1985 (excluding those years around solar maximum) for a 
fixed spectrum. It is unreasonable to expect that the spectral index is constant over a solar 
cycle. At least it would be expected that Pu  would increase for the north-south anisotropy 
as the neutral sheet tilt gets larger. The reason for this would be that the size of the sectors, 
and therefore the furthest distance from the boundary within a sector, would increase with 
tilt angle. Hence the modulation of higher energy particles would be greater in a single 
sector and therefore the north-south anisotropy would be increased, relative to solar 
minimum, at the higher energies. Regardless of the actual (y,Pu) values shown in these 
graphs, the trend of g,. over these years is similar. This is true because changing the 
spectrum mainly has the effect of scaling the value of gr  through the coupling coefficient 
C1 0 . 

Consider the 1980's results. The general trend is that gr  decreases between 1982 and 1985. 
Within errors, Method 2 results are similar to Method 1 results. It is reasonable to expect 
that g,. decreases as the level of solar activity subsides. 

Consider the 1970's results, which are somewhat inconsistent between Method 1 and 
Method 2, especially for 1975 and 1978. Results from 1975 may not be good because the 
neutral sheet is expected to be only slightly tilted around solar minimum and so the 
detectors were not predominantly sampling from a single sector most of the time. In this 
case, it is expected that the observed intensity difference (IT - IA ) will be small and 
comparable to other random statistical fluctuations in the data. It was also the case that the 
errors on the detector count rates within single sectors in the 1970's were larger than in the 
1980's. This is partly due to some of the detector systems in the earlier years being smaller 
and therefore having smaller count rates. In the case of Method 2, for some years the 
errors Mr and MA were larger than the difference (IT - 1A ) except for one or two detectors 
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which dominate the weighted average given by equation 8.43. It is envisaged under these 
circumstances that Method 1 would be less reliable than Method 2. This is because Method 
1 relies on a differencing technique between two detectors. A large inaccuracy in only one 
detector will make the difference inaccurate. There will be no significant result unless there 
are good statistics from both detectors of the pair. As well, if the c 1 0  values have 
significant errors, the difference of two such coefficients will have an additive effect on the 
errors. Because such errors (which are unknown) have not been included, it is presumed 
that the error bars given for Method 1 are an underestimate of the true uncertainty of the 
results. Consider specifically the 1978 result. This result was determined from analysing a 
complete year's data. Duggal and Pomerantz (1979) in fact discovered isotropic intensity 
waves with a 27 day period and a spectrum equivalent to that of Forbush decreases in the 
data collected by the McMurdo and Thule neutron monitors during 1978. The waves 
started on September 23rd and persisted until the end of the year. They deduced that this 
phenomenon was not due to the north-south anisotropy but they could not decide on a 
definitive explanation of the event. The waves were however deduced to have a different 
energy spectrum and hence were indicative of a different modulating mechanism compared 
with the isotropic intensity waves discussed in Chapter 6. Such waves, if they are not due 
to the north-south anisotropy, yet are correlated to the sector structure, would corrupt the 
analysis and hence should be removed. The north-south anisotropy analysis was repeated 
for 1978 using only the data preceding 23rd September. Table 8.5 list some results. It is 
interesting to note that along with an increased accuracy, the new results give a larger value 
for Rz  and hence predict a larger radial gradient. 

7 Pu R, (using all days in R z  (using days 
(GV) 1978) preceding 23rd Sept.) 

0.7 1000 (3.6 ± 4.0) x 10 -4  (9.5 ± 4.2) x 10 -4  
0.5 200 (1.2 ± 1.1) x 10 -3  (3.1 ± 1.2) x 10 -3  
0.3 200 (1.8 ± 1.7) x 10 -3  (4.5 ± 1.7) x 10 -3  
0.2 100 (2.9 ± 2.6) x 10 -3  (7.2 ± 2.7) x 10 -3  

Table 8.5. Rz  calculations for 1978 for a sample range of spectra. Results are calculated 
using Method 2. 

Method 1 results, within error limits, did not change. Some results still remained negative. 
This fact alone is enough to suggest that Method 1 results are somewhat inaccurate and that 
the errors shown (for example in Figures 8.8 and 8.9) are an underestimate of the true 
errors. 

8.10. REMOVING EFFECTS OF INTENSITY WAVES. 

For part of 1982 and 1984 at least, there existed other isotropic intensity waves in the data. 
These waves were discussed in Chapter 6. The waves are thought to have a flat spectrum 
over the range of energies for which neutron monitors and muon detectors are sensitive. 
Again, these should be removed to prevent these data corrupting the north-south anisotropy 
analysis. It should be emphasised that these waves were only present for parts of these 
years and their presence did not corrupt the majority of the data. By how much their 
presence corrupted the rest of the data is now addressed. 
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Because in the 1980's (qA<O) the intensity waves and the north-south anisotropy were in 
phase in the southern hemisphere, not removing the intensity waves would make R, appear 
to be larger than it actually was. Finding a constant best-fit spectrum for NS  between 
detectors may be impossible if the intensity waves have not been removed. This is because 
the intensity waves are thought to have a spectrum given by (y, P u) (0.0, 200 GV) 
which is likely to be different from the spectrum for 

Two main problems make the removal of the intensity waves from the data difficult. The 
intensity wave analysis of Chapter 6 showed that these waves are transient and temporally 
variable in magnitude. It therefore becomes no longer viable to work out IT and IA as an 
average over a complete year. This raises problems with statistical significance of the data. 
Secondly, and perhaps more importantly, the intensity waves described in Chapter 6 were 
calculated by removing the competing north-south anisotropy derived by the Nagoya GG 
muon telescope. The situation is such that the north-south anisotropy is not being 
independently derived from the data by simply removing the intensity waves. 

It was decided to test if both the north-south anisotropy and the intensity wave amplitude 
could be simultaneously derived from the data during those times when the intensity waves 
were present. The appropriate formula relating the observed intensity variation to the 
combined isotropic waves and north-south anisotropy in free space is now derived. 

Consider first the case where the spatial variation is isotropic only (leading to only the 
intensity wave variation seen in the observed data). Using Nagashima's formalism as 
given in Chapter 5, the space variation of cosmic rays due to the isotropic intensity waves is 

(.16:7-jr = F
w  (x) • Gw  (P) 	

(8.46) 

where 

FW  (x) = no (constant) 	 (8.47) 

ie: the only non-zero term in the space distribution is the first term (zeroth-harmonic). The 
observed variation for the zeroth-harmonic is (from equation 5.8) 

D(t) = D8(t) = AS 

where AS = cg x8 

and x8 = no 

The coo coefficient is for the spectrum of the intensity waves. Hence, 

D8 (t) = 	cg 

(8.48) 

(8.49) 

(8.50) 

(8.51) 
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is the observed time variation due to the space anisotropy ri o. Combining this with the 
north-south anisotropy term (n=1, m=0 in Nagashima's formalism), the full variation 
including both effects is given by 

D(t) 	co(Y NS , puNS). Rz 	c8(yW,pu W). rio 	
(8.52) 

The superscripts "NS" and "W" reflect the fact that these two effects may have different 
spectra. Note that the space anisotropy due to the intensity waves is given by 

(

w  P 7w  7) =11o.—) P < Pu w  
(8.53) 

and that in the framework of this formalism, the "W" value as presented in Chapter 6 as a 
measure of the magnitude of the intensity waves observed by an individual detector is given 
by 

0 W = D8(t) = co ric, 	 (8.54) 

A two-parameter least-squares fit (for R, and 'n o  ) was performed on the available data 
using equation 8.52 and a spectrum of (yw, Puw) = (0.0, 200 GV) for the intensity waves 
during periods when the waves were observed. These periods were less than 3 months in 
total in any year. Unfortunately, the accuracy of the data (and the available coupling 
coefficients) were such that the errors on the values derived for both R, and Tio  were always 
larger than the results themselves. The standard least-squares method may also have been 
somewhat inappropriate because the intensity waves and north-south anisotropy were in 
phase. The biasing problem discussed in Chapter 7, which arose when trying to 
simultaneously derive the height and temperature atmospheric correction coefficient, may 
have been prevalent here. The two-parameter least-squares method was thus unsuccessful 
and therefore, due to the accuracy of the data, R, and ri 0  could not be simultaneously 
derived. 

Jacklyn et al. (1987) proposed that the intensity waves were about three times the 
amplitude of the north-south anisotropy when observed to be present in 1982. After 
consideration of the duration and amplitude of these waves, it was predicted that the values 
of Rz  , and hence g,., given in Figures 8.8 to 8.11 are about 50% too large. Values of g  for 
1983 and 1984, where the intensity waves were smaller, would be overestimates by no 
more than 50%. 

8.11. SUMMARY OF THE NORTH-SOUTH ANISOTROPY ANALYSIS 

From the discussion in Section 8.9 it seems that Method 2 results were more accurate than 
Method 1 results. Considering the effect of the isotropic intensity waves the figures in 
Section 8.9 and Appendices 7 and 8 suggest a radial gradient for 10 GV rigidity particles 
less than 5% AU -1  for a spectrum consistent with that determined by Yasue (1980). 

The 1980's results were certainly more accurate and more consistent, both from year to 
year and between methods, than the 1970's results. 1977 seems to be the odd year out of 
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the 8 years analysed. The plots in Appendices 7 and 8 for 1977 do not follow the trends of 
other years. The discrepancy for 1977 between the two methods could not be explained. 
The discrepancy for 1975, in contrast, may be due solely to the inaccuracies in determining 
g,. at times when the neutral sheet is reasonably flat. At such times, particles are incident on 
Earth from both field sectors simultaneously. 

Throughout the analysis, the accuracy of the data seemed to be a problem. Analysing the 
data over too short a timespan would not give enough data points for a statistically 
significant result. Choosing too long a timespan introduces other damaging effects to the 
analysis such as possible changes in the rigidity spectrum of the anisotropy over the solar 
cycle. Other inaccuracies were introduced through, for example, unforeseen days where 
the neutral sheet came close to Earth causing mixed-field contamination. Also, as 
mentioned in Section 8.9, the errors associated with the coupling coefficients were not 
accounted for, although given that they are estimated to be accurate to within 10% (Baker 
1988), these errors are not expected to have profound implications on the results. 

The chosen power-law spectrum for the north-south anisotropy (shown in equation 8.24) 
may be inadequate over the energy range for which both surface / underground muon 
telescopes and neutron monitors are sensitive. A different functional form for the energy 
spectrum may be appropriate (eg: an exponential function of rigidity), however, if the 
anisotropy is to be fitted to a different spectral form, then the corresponding coupling 
coefficients would have to be recalculated. Note that the coefficients tabulated in Yasue et 
al. (1982) and Fujimoto et al. (1984) assume a power-law spectrum. 

Since the contours shown in Appendix 9 and those displayed in Yasue (1980) are 
somewhat open-ended in the spectral-index (y) parameter, a possible future analysis could 
be to re-evaluate g,. for y?.1. Again, this would require new determinations of the relevant 
coupling coefficients. Note that a significant result for 'y.1 would be controversial since 
this would imply that the radial gradient of galactic cosmic rays is larger at higher energies 
at 1 AU. 

The sources of inaccuracy mentioned above are all areas where improvements to the data 
analysis can be made in the future. 

8.12. BOUNDARY CROSSING INTENSITY ANALYSIS. 

As an aside to the north-south anisotropy analysis, and a further test of the validity of 
modulation models, the hypothesis that the intensity of galactic cosmic rays around days of 
sector boundary crossings is greater than away from sector boundaries was tested. 
Consider for example the iso-intensity contours shown in Kota and Jokipii (1983). Their 
3-space dimensional model predicts that there should be a greater number of particles closer 
to the neutral sheet than further away from it - for the same heliographic radius coordinate 
and latitude. According to this picture, the Earth will pass through a minimum in cosmic 
ray intensity when furthest from a boundary crossing. Badruddin et al. (1985) used a 
superposed epoch analysis of cosmic ray neutron monitor data to determine the relative 
intensity of cosmic rays near the neutral sheet. They found, on average, a local maximum 
of cosmic rays at the neutral sheet and also evidence to support a displacement of the sheet 
from the ecliptic plane due to asymmetric solar activity (see Section 6.5). Results presented 
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by Duggal and Pomerantz (1977) also support a local maximum of cosmic rays at the 
neutral sheet. 

The average daily count rate of a detector given by 

-gay = 0.5 ( <IT> + <1 A> ) 	 (8.55) 

where <IT> is the average daily count rate on days when the Earth is in a towards sector 
(averaged over a year) and <IA > is the corresponding average count rate in away sectors, 
should be a reflection of the intensity of particles away from a boundary crossing. The 
north-south anisotropy, being of opposite sign in the two sectors, is automatically removed 
when using the above average. This value was determined over a full year for the detectors 
listed in Table 8.2 and compared with the corresponding average count rate for that year for 
days where the Earth was crossing the neutral sheet - denoted by Y. Note that the question 
of whether there is a larger streaming of cosmic rays along the neutral sheet than away 
from the sheet is not being tested here. Such an effect would produce a larger diurnal 
variation near sector-boundary crossings. This was tested by Cramp (1991) and a small 
dependence on the magnitude of the diurnal variation with proximity to the neutral sheet 
was found. Because daily-average count rates are used, no streaming information is 
directly attainable. 

Table 8.6a lists ( -x -av ) and its significance (value / error) for all available detectors from 
1975-78 and Table 8.6b lists the same data for 1982-85. Note that the actual values of 

- .7a, ) are not comparable between detectors due to incompatible detector efficiencies. 
However, the significance is directly comparable. 

The results shown in Tables 8.6a and 8.6b do not disprove the hypothesis and hence the 
model predictions that there is a greater intensity of cosmic rays near the neutral sheet. A 
large fraction of the results however gave a null result to the hypothesis, based on a 
'significant' result being that where the error (la) is less than the value obtained. Very few 
results are significant to 3a. Only four results do not support the hypothesis (labelled 
'refute'), however the significance is low in all but one case (sscomb for 1977). All other 
results (labelled 'support') support the hypothesis to various degrees. 

The results of this small test are certainly not conclusive. Reasons for this are probably that 
the statistics proved to be too poor to determine the difference in the intensity of cosmic 
rays near the neutral sheet compared with far from it. That is, this difference is too small to 
be observable in the data. It must be remembered that this is a simplistic test of the 
hypothesis. No attempt was made to incorporate into the analysis the information of the 
viewing direction of the detectors or the range of energy of the primary particles which they 
detect. Detectors sensitive to lower energy cosmic rays should be more sensitive to this test 
because the region in space where these particles have been last modulated (before being 
detected on Earth) is on average closer to the Earth. Hence the particle modulation better 
reflects the local interplanetary magnetic field conditions as described by the stream of T/A 
days. 
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year detector 
mnemonic 

iav ( Yx - Yav ) significance *  

1975 mtwiqs 3542.40 ± 2.95 -3.80 ± 5.61 0.68 
1975 nmcomb 596.60 ± 0.51 1.05 ± 0.91 1.16 (support) 
1975 sncomb 1671.36 ± 1.79 -1.92 ± 3.00 0.64 
1975 sscomb 1717.83 ± 1.61 -1.80 ± 2.69 0.67 
1975 carnmu 536.15 ± 0.11 -0.07 ± 0.18 0.38 
1975 cam4n 552.54 ± 0.10 0.09 ± 0.20 0.45 
1975 dpiiq 7014.14 ± 5.20 5.06 ± 8.77 0.58 

1976 mtwiqs 3553.86 ± 1.83 10.83 ± 3.09 3.51 	(support) 
1976 nmcomb 598.95 ± 0.55 0.77 ± 0.82 0.94 
1976 hobnn 490.48 ± 0.24 0.57 ± 0.43 1.31 	(support) 
1976 sncomb 1501.52 ± 1.07 0.20 ± 1.68 0.12 
1976 sscomb 1517.27 ± 1.16 -0.83 ± 1.85 0.45 
1976 cammu 530.00 ± 0.12 0.50 ± 0.19 2.69 (support) 
1976 cam4n 546.08 ± 0.15 0.34 ± 0.27 1.25 (support) 
1976 dpriq 7062.16 ± 3.15 10.30 ± 5.24 1.96 (support) 

1977 mtwiqs 3546.94 ± 3.31 11.40 ± 5.34 2.13 (support) 
1977 nmcomb 604.55 ± 0.52 2.18 ± 0.86 2.55 (support) 
1977 briiqs 1108.35 ± 0.66 1.86 ± 1.18 1.58 (support) 
1977 hobnn 487.09 ± 0.40 2.03 ± 0.72 2.82 (support) 
1977 sncomb 1416.73 ± 1.81 -3.28 ± 2.62 1.25 (refute) 
1977 sscomb 1434.71 ± 1.71 -6.53 ± 2.55 2.56 (refute) 
1977 dpriq 7028.48 ± 6.70 25.7 ± 11.4 2.25 (support) 

1978 mtwiqs 3450.24 ± 5.37 14.64 ± 7.99 1.83 (support) 
1978 nmcomb 595.09 ± 1.02 1.19 ± 1.46 0.82 
1978 briiqs 1096.71 ± 0.96 2.98 ± 1.36 2.19 (support) 
1978 dariqs 1648.44 ± 1.08 0.79 ± 1.82 0.43 
1978 hobiqs 1333.66 ± 2.24 6.93 ± 3.45 2.01 	(support) 
1978 sncomb 1300.07 ± 2.42 1.12 ± 4.53 0.25 
1978 sscomb 1353.61 ± 3.73 -5.52 ± 6.23 0.89 
1978 dpriq 6857.30 ± 9.36 11.3 ± 15.4 0.74 

Table 8.6a. Values of the difference between the average daily count-rate of the detectors on days where the 
Earth is crossing the neutral-sheet (9x) compared with days well within a single sector (lay) for 1975-1978. 
'dpriq' is data from the Deep River neutron monitor (source is CD ROM NGDC-05/1, National Geophysical 
Data Centre, Boulder CO, USA). Errors are 1 a. 
* Significance is the value divided by the error of 9.7c  - y„. 
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year detector 
mnemonic 

Yav ( Yx - Jay ) significance *  

1982 mtwiqs 3080.70 ± 5.40 \-5.43 ± 16.1 0.34 
1982 nmcomb 530.66 ± 0.82 -0.88 ± 2.46 0.36 
1982 briiqs 1040.46 ± 1.07 2.40 ± 3.17 0.76 
1982 dariqs 1621.49 ± 0.93 5.41 ± 3.09 1.75 (support) 
1982 hobiqs 1212.96 ± 2.00 -0.36 ± 5.78 0.06 
1982 sncomb 1186.32 ± 0.68 1.03 ± 1.43 0.72 
1982 sscomb 1165.26 ± 0.66 3.93 ± 1.55 2.54 (support) 
1982 dpriq 6176.08 ± 10.5 -1.31 ± 35.8 0.04 

1983 mtwiqs 3158.68 ± 3.19 -2.18 ± 5.50 0.40 
1983 nmcomb 542.47 ± 0.52 -0.04 ± 0.92 0.05 
1983 briiqs 1056.63 ± 0.70 -0.96 ± 1.22 0.78 
1983 dariqs 1638.72 ± 0.74 -0.13 ± 1.34 0.10 
1983 hobiqs 1237.47 ± 1.16 0.12 ± 1.97 0.06 
1983 sncomb 1091.11 ± 0.43 1.32 ± 0.74 1.77 (support) 
1983 sscomb 1085.60 ± 0.51 1.35 ± 0.86 1.57 (support) 
1983 uncomb 962.62 ± 0.17 0.12 ± 0.30 0.40 
1983 p6 713.24± 0.12 0.02 ±0.21 0.09 
1983 dpriq 6343.98 ± 5.39 -7.49 ± 9.35 0.80 

1984 mtwiqs 3215.82 ± 3.59 20.1 ± 12.8 1.57 (support) 
1984 nmcomb 550.18 ± 0.58 3.12 ± 1.90 1.64 (support) 
1984 briiqs 1061.65 ± 0.68 4.60 ± 1.98 2.32 (support) 
1984 dariqs 1635.17 ± 0.63 2.63 ± 1.49 1.76 (support) 
1984 hobiqs 1257.19 ± 1.33 7.28 ± 4.60 1.58 (support) 
1984 sncomb 1069.45 ± 0.96 -5.08 ± 2.96 1.72 (refute) 
1984 sscomb 1050.75 ± 0.86 -3.59 ± 2.69 1.33 (refute) 
1984 uscomb 1201.77 ± 0.16 0.23 ± 0.40 0.59 
1984 dpriq 6425.66 ± 7.01 49.1 ± 22.5 2.18 (support) 

1985 mtwiqs 3398.36 ± 4.40 6.11 ± 10.6 0.58 
1985 nmcomb 578.86 ± 0.39 -0.67 ± 1.16 0.58 
1985 -' briiqs 1098.12 ± 0.40 2.06 ± 0.90 2.29 (support) 
1985 dariqs 1666.85 ± 0.71 3.07 ± 1.64 1.87 (support) 
1985 hobiqs 1324.68 ± 0.70 3.44 ± 1.40 2.46 (support) 
1985 uncomb 1270.93 ± 0.20 0.20 ± 0.47 0.42 
1985 uscomb 1186.78 ± 0.16 -0.03 ± 0.35 0.10 
1985 p6 711.76 ± 0.10 0.11 ± 0.24 0.47 
1985 dpriq 6808.34 ± 3.77 9.59 ± 6.93 1.38 (support) 

Table 8.6b. Values of the difference between the average daily count-rate of the detectors on days where the 
Earth is crossing the neutral-sheet (ix) compared with days well within a single sector (Yew) for 1982-1985. 
'dpriq' is data from the Deep River neutron monitor (source is CD ROM NGDC-05/1, National Geophysical 
Data Centre, Boulder CO, USA). Errors are la. 
* Significance is the value divided by the error of 9  - jay. 
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Conclusion. 
The transport equation governing the temporal and spatial evolution of the intensity 
distribution of galactic cosmic rays in the heliosphere was numerically modelled using two 
different schemes - ADI and LOD. In particular, investigations concentrated on 
determining how the radial gradient predicted for the cosmic ray intensity at Earth depended 
on the parameterization of the modelled inner-heliosphere. Along with this, an analysis 
determining the relative importance of radially propagating shock regions to the 11-year 
cycle of intensity was undertaken. As a comparison with the models, the radial gradient at 
Earth during 1975-78 and 1982-85 was calculated, via a north-south anisotropy analysis, 
using data collected by the cosmic ray detectors operated by the Hobart Cosmic Ray 
groups. A requirement for this analysis is that data are free of atmospheric effects and that 
coupling coefficients are available for each detector used. This is to enable the observed 
intensity variations to be converted to a free-space anisotropy. Previously undetermined 
atmospheric correction coefficients and coupling coefficients were therefore calculated for 
some surface muon telescopes operating at Mawson. In the process, a method to correct 
for large seasonal intensity variations superimposed on an observed count rate decay 
produced by Gieger tube efficiency deterioration was also developed. 

The results of Section 4.4 and plots in Appendix 10 conclusively show that the LOD 
integrating scheme is less accurate than the ADI scheme at radii near the inner-boundary of 
the heliosphere. The only apparent reason for this discrepancy is that the ADI scheme is a 
higher order numerical difference representation of the transport equation than the LOD 
scheme. That is, some numerical derivatives in the ADI scheme contain more terms of the 
Taylor series expansion of the corresponding derivatives in the transport equation. 
Invariably, LOD produced a radial gradient (g,.) in the intensity of galactic cosmic rays at 
Earth much higher than is expected from observational evidence. ADI also produced a 
gradient higher than expected, except for two cases. The gradient produced by ADI was 
always lower than that produced by LOD under equivalent modelled heliospheric 
conditions. It is interesting to contemplate whether, under the same inner-boundary 
conditions and values of diffusion coefficients specified, a higher order, more accurate 
algorithm than ADI would produce a gradient much lower than those produced by the runs 
using the ADI algorithm. The problem with using a higher order scheme than ADI is that 
the matrix which describes the implicit scheme is no longer tri-diagonal. The algorithm for 
the solution of the implicit scheme, given in Section 2.3, is no longer able to be used. An 
implicit scheme, describing the solution to the transport equation in the heliosphere for a 
matrix system which is more complicated than tri-diagonal, becomes prohibitively 
computationally intensive. Explicit schemes do not suffer from this complexity increase 
when increasing the order of accuracy of the numerical approximations to the derivatives of 
the transport equation. Unfortunately, as discussed in Section 4.3, the computing power 
available did not allow solutions to the transport equation using explicit schemes. When 
better computing resources become available, it will be interesting to determine whether the 
large gradients at Earth, produced in all ADI runs except Runs 9 and 11, are only due to the 
chosen diffusion coefficients or also partially due to the accuracy of this scheme. The value 
of the radial gradient calculated at Earth was found to be primarily a function of the 
diffusion coefficients and the integrating algorithm chosen. The actual inner-boundary 
condition used, the position of the inner-boundary, the size of the grid steps in the radius 
coordinate and the inclusion of a solar-wind termination shock only had minor effects on 
the calculated value of g,. at Earth. 
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The results of Section 4.5 suggest that, at least at energies detected by neutron monitors, 
the 11-year cycle of cosmic ray intensity at Earth can not be explained purely by diffusion 
effects, caused by a succession of radially propagating shocks which increase in frequency 
toward solar maximum. It is noted that the modelling runs were for particle rigidities 
between 0.5 and 10 GV and that neutron monitors have median energies of response 
slightly higher than this. However, the modelling runs predict less modulation as energy 
increases (as observed in the plots in Appendix 10). In contrast, the neutron monitors 
display a greater difference in intensity between solar minimum and solar maximum than 
the modelling runs. Increased drift modulation caused by an increase in the warp of the 
neutral sheet is a modulation mechanism which is possibly required to fully describe the 11 
year cycle at these energies. The correlation presented in Section 6.5 strongly suggests that 
the neutral sheet is an important large-scale boundary, even for particles with energies 
greater than 100 GeV. 

The modelling runs which give a low radial gradient at Earth predict that this gradient is not 
strongly energy dependent. An energy-independent value of g,. would imply that y= 1 
for the north-south anisotropy. A slight energy dependence (such that the gradient 
decreases as energy increases) would imply a value of y slightly less than 1. For high y 
values (y > 0.5) the derived value of g,. at Earth, from data collected by the neutron 
monitors and muon telescopes operated by the Hobart Cosmic Ray groups, was 
consistently small (<5% AU -1  for a 10 GV particle) for all upper-limiting rigidity Pu  > 
50 GV using Method 2 (which was considered more accurate than Method 1). As the 
value of Pu  decreased, the errors on g,. increased - reflecting the fact that the median energy 
of response for muon telescopes becomes higher than the assumed value of Pu  . If indeed 
the radial gradient is only slightly energy dependent for energies above the threshold energy 
value for neutron monitors, then the spectral index of the north-south anisotropy may be 
higher than previous predictions. Yasue (1980), for example, predicted y = 0.3. A 
higher value is not inconsistent with the results presented in that paper. Note that the 
1970's results for g,. calculated using the north-south anisotropy analysis were less accurate 
than the 1980's results. This is mainly due to the use of smaller detectors with lower count 
rates during this period. 

Obvious immediate areas of future investigation arising from the work in this thesis include: 
(i) expanding the analysis presented in Chapter 8 to include years after 1985; 
(ii) investigating the waves, shown in Figure 4.1, to determine whether there is a 
correlation between these waves and the observed enhanced diurnal variations; and 
(iii) developing more complex time-dependent, 3-space dimensional models. 

When undertaking the analysis described in Chapter 8, IMF toward/away data were not 
available in the required format for years after 1985. As it becomes available, the analysis 
could easily be extended. 

To explore whether the waves shown in Figure 4.1 are correlated with the enhanced diurnal 
variations, a search could be undertaken to observe in the data not only enhancements, but 
reductions and phase-shifts in the diurnal variation. All these effects should be present at 
various times depending on the phase relationship between the ordinary diurnal variation 
(amplitude maximum at — 1800 hours local time) and the waves appearing in the recovery 
phase of the intensity decrease caused by a radially propagating shock region. The models 



119 

need to be further explored to determine whether this modelled wave effect is real or just a 
numerical stability / accuracy artefact. 

As available computer memory size becomes larger and processing speeds become faster, 
the level of complexity in the models will be able to be increased. An increase in available 
power (size and speed) by a factor of 100 would have made the explicit scheme described 
in Section 4.3 practical. A further increase by 100 would allow inclusion of a third space 
dimension in an explicit scheme without the instability problems of the mixed derivatives 
discussed in Section 4.6. Such computing power is becoming available on the largest 
supercomputers (eg: CRAY Y-MP C90) but the economic costs are still prohibitively 
expensive. As costs decrease and the availability of such computing power increases, more 
and more of the parameter space discussed in Section 4.1 will be able to be simultaneously 
modelled. Finally, the development of new numerical techniques may remove some of the 
difficulties inherent in presently employed schemes. 
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APPENDIX 1 

POWER LAW RELATIONSHIP for INNER-BOUNDARY CONDITION. 

Assume the distribution function at the inner and outer boundary is a function only of 
energy E and follows a power-law in E: 

f (r = rmm,O,E) = f E-71  at the inner - boundary (VO) 
and 

(r = rmax, 0 , E) = fo E-1° at the outer - boundary (VO) 

where fi and f0  are constants. Let 

f (r  = rum, ,O, E)  
X(E) = 	 1.0 V E 

f(r = rmax,0, E) 

be the ratio between the distribution at the inner boundary to that at the outer boundary at the 
same energy. As E --> Eco  , X(E) 1.0. That is, we define E be that energy above 
which no measurable modulation occurs in the heliomagnetic field and the distribution 
functions at the inner and outer boundary are identical. Then 

f (r = 	E) = X(E) • f (r = rmax ,0,E) 

where 

X(E) = 	EY 0-71  
f0 

but 

X(Eco ) = A.E.70 -71 	1.0 
fo 

therefore 
X(E) = E.71 -7 0 . E'Yo -71 

and 
E  j'Yo-71 

f (r = rm ia ,0, E) = f (r = rmax ,0, E) 
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APPENDIX 2 

FOURIER SERIES FOR ERROR TERMS IN von NEUMANN STABILITY 
ANALYSIS 

In chapter 3 it was stated that an initial error E(0,x) in a solution to a finite difference 
equation could be represented by the sum of terms of the form elbx for arbitrary 13. A 
general function f(x) has a harmonic decomposition, or Fourier series, of the form:- 

00 

f(x) = 	Cn  einx  
n=-00 

where Cn  is complex, n is an integer and j=4(-1) (eg: see Arflcen 1985). O'Brien et al. 
(1950) state in their original paper that we must let be any real number for the stability 
analysis to be general. It is not immediately obvious that a sum of terms of the form elbx 
for real 13 is equivalent to a sum of terms of the form einx for integer n. 

By expanding the coefficients and equating real and imaginary parts, it can be shown that a 
Fourier series of the form:- 

f (x) =Z ejf3x  
real 

is equivalent to 

f(x)= E Cn  einx  
n integer 

where the coefficients Zp = (xp + j yp) and Cn  = (a n + j bn), with a,b,x and y real, are 
related via 

xj = an  cos(rYx) + bn  sinVx) 

y0 = bn  cos(r3'x)— an  sin(fYx) 	with 13' = - n 

for a given 13 and n. 
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APPENDIX 3 

LINE OF BEST FIT THROUGH DATA WITH ANNUAL VARIATION AND 
EFFICIENCY DECAY 

In chapter 7, it was stated that for data which sinusoidally vary over a year and which have 
a superimposed linear efficiency decay, the line of best fit through the data does not equal 
the efficiency trend (see Figure 7.2). This is easily proved as follows: 

Consider points (y i , x i) which define the data set. We wish to fit a straight line 
y = mx+c. The slope m and y-intercept c are determined via the standard least-squares 
criteria: 

= E[y, - (nix' + 

Solving these equations for m and c gives the familiar 

C = y - mx 

m = 
Exi yi  - n y x 

Exi xi - n x x 

where the bars above the variables denote averages. Consider now that the data have 
superimposed on them an arbitrary sine wave, the period being equal to the length of the 
data span: 

= yi  + A sin [24-1-x  + 1)) 
Xn  

The best straight line fit to this data is then given by 

c = - mx- 

Exi - n Y x 
m= 

Now, 

p.• = 	v 	1 •t--, 	 ,t--1 

	

= — L 	1yi + — L A sin (2i-ix  + 

	

n — 	 xn  

= y + 0 (averaging over one complete cycle) 

Exi xi - n x x 
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But, 

Exi  Y = Ex; yi 	Exi  A sin 27c 	+ 	# Exi  yi 
‘xn  

Hence, the slope and intercept will in general be different between the two data sets 
(intuitively obvious from Figure 7.2). Applying this to muon data spanning a full year, it is 
therefore clear that, due to the presence of a sinusoidal annual variation in the data caused 
by atmospheric effects, any linear efficiency decay over that year cannot be removed simply 
by rotating the data around its straight-line of best fit. 



C
.A

.P
4
1
.W

0
0
4
1
. 

CD
■C

C
A

U
J

■C
D

O
 

W
W

W
N

•
-

■ 
W

W
N

--
.1

C
A

C
T 

-4
L
A

0
0
C

N
0
- ,

  

 
 

C
D

O
O

N
C

N
C

A
 

N
N

J
N

N
J

r-
■ 

-4
-4

.P
N

J
W

C
.A

 	
L
A

W
■I

D
W

U
J
O

0
 

0
0
 
0
0
 

-4
 t

..
A

 N
J 

ez
;\
 

co
 o

o 
v.

) 
oo

 U
)
 

NJ
 	

NJ
 

L
A

.4
.V

D
U

J
C

.A
•-

,  
41

. 
NJ

 
C
o
 

•-
••

-•
W

4
1
.

■I
D

0
 

0
0
 

LA
 
w

 
cr\

 
oo

 	
C

D
 C

D
 

■4
 

C
D

 N
J 

■4
 
-
4
 

LA
 C

N
 

XICINIaddV 

COUPLING COEFFICIENTS for SNCOMB (x104 ) 

	

I
 
1

 
1

 	
I
 
I
 
I
 
I
 
I
 

I  
O
O
O
O
O
O
 
P
P
P
P
P
P
 

b
b
b
b
b
b
 	

0
0
0
0
0
0
  

8
 L

A
 N

J 
I-

, 	
8
 C

A
 N

J 
1-
0 	

O
tA

t.
).
- 
	

8
tA

t.
).
-
 

0
0
0
0
L
A

w
 c

D
0
0
0
t
A

w
 o

c
D

o
c
D

u
lu

a
 c

p
c
D

c
D

o
t
A

w
 c

p
c
D

c
D

o
t
A

w
 

P
P
P
P
P
P
 
P
P
P
P
P
P
 
P
P
P
P
P
P
 
P
P
P
P
P
P
 
P
P
P
P
P
P
 

P
P
P
P
P
P
 

u
lu

lt
m

u
lv

ic
A

 

O
u
tt

.)
. 

b
b

c
c
D

u
lw

 
P
P
P
P
P
P
 

-2
 

W
W

1
-.

 
M

C
D

■
1

-4
0-

-0
 

(A
N

C
D

C
T

O
O

W
 

C
■
C
J
M
W
 

4
1
--

4
0
-,

C
D

C
A

■4
 

0-"
 I

 	
I 

N
N

o
-,

1
W

W
 	

W
C

A
-4

,
C

A
C

IN
C

T
 

N
J
W

C
4

-
4
C

N
C

A
 1

/
0
0
0
0
C

N
■4

 

ts
.)

 r
-

• 	
1 

4
1
. 
-4

 L
A

 (
A

 
1
 
0
-

,  
0
0
0
-4

N
V

D
C

 
C

A
V

D
V

D
-4

N
O

 

I 	
1 

1 	
1 	

1 
1
1
1
1
 	

I 	
I 	

1.—
'■

—
•

1 	
I 	

1 
0
0
 
4
 

N
J 

-.
4 

LA
 4

1.
 4

1.
 1

 	
01

. -
.4

 
L

O
e 

o 
r
-

■ 	
1 	

r
-

■ 	
1 

41
- 4

1.
 U

J 
0-
-,

  
C
I
\
 
0
-
, 	

0
0
 
-
.
4
 
L
0
 

LA
 .-

 	
-. 4

 
1
-

,  
C
D
 
%
C
)
 

N
) .

r1
. 	

CD
 

ts
a 

co
 	

CN
 	

Ct?
?)

 W
 	

p!=2
 t

2 
L
A

M
V

).
4
•
L
A

V
I
 O

N
W

C
D

O
■--

,  
N

O
N

M
-
4
0
N

-
4
 

LA
.P

N
 	

1 
O

N
C

A
O

N
VD

, 
4
)4

1
.

■ C
0
0
4
1
.0

 
C

D
C

A
CD

 

(.1
1

41
.

N
0-

0 	
h

J
■

4
■

C
W

 
W

W
W

N
 	

0
4
1
.0

0
W

N
J
 	

V
D

0
O

W
L
A

4
1
. 	

0
 

41
.4

1
.4

1
.W

0
-'
8
 	

N
)N

j•
- ,

0
0
t.

J
0
 	

-4
C

A
0
--

,
0
4
1
.1

 	
0
0
•-

,
W

N
J
0
1
 	

0
0
0
'0

W
W

1
 

.P
W

W
N

J
W

C
4
 	

00
■C

D
-4

L
A

J
 	

,C
U

J
L
A

C
D

0
- 	

C
A

C
D

C
h

L
A

C
C

IN
 	

0
0
0
W

0
0
C

N
0
0
 

4
  I

  
1 

, 
t...

) 
. 

1
 1

 	
c
:)
t:

).
L
. 	

8
:0

6
N

t:
.)
 	

0
.0

.0
N

)4
4
 

	

 
o-

,
1--

, 	
N

o
--

' 	
V

I 
C

A
 - 

11
,

0-
-'

W
 	

-
 W

*
 -

 
N

 	
P,

--
1
-4

4
1,  

- 
P

. 	
C

A
V

1 
4 1

.-
4

,
0
1C

A
 	

-P
C

:A
.A

.:
7
\
 0

0
0
 	

w
 0
 

U
A

L
A

L
A

0
0
4
=
.W

 	
Q

N
0
14

,
-P

C
D

V
D

 	
41
.N

o
-
-
.W

0
■10

 	
--

A
-P

.0
\

o
--

'4
=

,
-P

 	
P

--
`4

=
.1

--
L

O
O

.P
.--.

1 	
M

tA
W

--
J
V

D
W

 	
0
 

1 	
1 

. 
- 	

t 
.4

 
W

 t!.
...)

 
I 	

, 	
,..

. ,
--

 , 
	

I  
1
1
,
1
 

c
l
a
 
W
 
i
l
 
!
 

 

U)
 t
..
.)
 ,
  

,  
1
—
,
,
-
-
I
I
.
  

6
1
  

w
,
_
 

cf
10

--
s.

,L
A

 -
 	

o 
4
,
 

6
1
 

t!
ll

 
61

 . 4
 t
(.
) 
 

l.,.
.
.
)
 
o
.
 
r
=
.
,
  

4
=

..m
o

p
h

w
w

. 
0
0
.
.
.
.
.
)
"
,
"
0
,
-
  

.
7
“
-,-
.
)
8
?
.
.
;
:
8
t
!
.
.
)
  

."
.0
 4
 .
..
..
.
.
c
.
.
.
.
)
w
  

c
p
..
 
w
 

4.-
c
,
 
0
 
„
.
c
 

4
,
4
,
t
  

,  
,..

.) 
.)
 ,
A

tm
e
 	

w
w

 

 

„)
  

4
0
,
0
0
w
.
o
c
,
  

c
p
t
.
)
.
0
.
0
.
-
I
t
.
.
)
  

0
.
t
.
.
)
4
,
0
 
.
t
.
.
)
  

p
.
c
)
0
,
4
.
.
.
0
.
0
  

t
.
)
t
.
)
.
-
0
,
,
,
,
o
,
  

-
 

t.
A

.0
.t

.)
 

..
..

..
.,

 
w

t.
.)
,0

4
, 	

.
 

w
w
w
 

t
A

a
\
m

t
..

).
 

.
-
-
-
  

.
  

0
 

0
0
 

■
 

.
.
.
.
-
 	

s.
) 
..
- 

C
D

 4
 N

J
 	

-4
 C

h
 C

D
 0

0 
4 

1.
 	

4 1
. 
U
)
 

0-
0 

CA
 	

1-
0 	

C
A

 -
.4

 -
4
 0

-,  
C

A
 N

J
 	

w
 

-4
,

4
1
.-

P
W

r.
, 	

t 
 

C
A

C
IN

C
N

4
1
.C

N
N

J
 	

W
W

C
r
-

,
•-

•W
 	

o-
,

V
D

--
4
L
A

N
J
C

A
 	

0
0
L
A

4
1
.L

A
N

V
D

 	
t.

/
1
1
0
0
0
0
0
N

.P
 	

0
N

J
W

4
1
1
..W

N
) 	

h)
 

LA
.p

.t
.4

 	
‘C

O
O

C
A

C
IO

 	

▪ 	 0
 

4
)
:
0
8
5
 
8
%

0
L
4
 	

8
8
0
. 
6
,t

.)
 	

c
A

m
tA

t.
),
o
.0

 
C

A
C

0
0
0
.-

-0
C

A
‘C

 	
■ I
D

W
N

W
N

C
 	

V
:)
%

0
C

 	
4
1
.L

A
N

V
D

C
D

V
D

 

O■
C

N
6,

6,
W

. 
C

D
C

D
V

D
W

N
J
V

D
 

I 	
I 

.4
.11.

ej1
4
 r

 
.1

tjl
tr.,1 

N
O

W
C

A
-
.4

0
-+

 

U.
) 

NJ
 ts

•J
 

1-
,  
•
 	

• 
C

D
V

D
N

O
W

4
1
. 

C
A

N
C

A
W

C
A

C
A

 
t‘
J
IL

-■
1
W

o
o
 

C
N

4
1
.0

0
W

4
1
.C

N
 

N
J
W

■I
D

N
J
4
1
.-

■
1 

.-
4
■

4
0
\
4
=
0
.

N
 

NJ
0-

W
-4

0
(1

1
 

-4
L
0
0
0
N

J
0
0

■
4
 

N
J
N

J
•
-

■
0-

,  
h

J
1
--

-1
0
W

 
0-

,
0
0

V
D

‘C
0
0
 

1/4
ID

■C
L
A

N
J
0
0
0
 

C
=
J
0
-

,
v
D

C
Y

N
-4

1
- 

U
)
  

0 
w

t.
a
t.

.)
w

 
04

,s
z
,
8
5
  

0
 

■-•
 0
 ■-•
 



130 

PU soo si c) s20 S2 1 s22 s3o 53 1  S3 2 S3 3  

0.5 	30. 0 0 -225 0 116 -247 0 59 150 -138 
0.5 	50. 0 0 -1048 0 166 -1328 0 517 185 -1048 
0.5 	100. 0 0 -2924 0 46 -3966 0 1606 -97 -3597 
.0.5 	200. 0 0 -4569 0 -8 -6287 0 2606 -210 -5838 
0.5 	500. 0 0 -5652 0 25 -7788 0 3283 -149 -7240 
0.5 	1000. 0 0 -5948 0 47 -8191 0 3468 -106 -7603 

0.0 	30. 0 0 -144 0 77 -157 0 34 98 -87 
0.0 	50. 0 0 -555 0 104 -696 0 263 119 -538 
0.0 	100. 0 0 -1260 0 59 -1687 0 672 14 -1493 
0.0 	200. 0 0 -1703 0 44 -2315 0 942 -19 -2100 
0.0 	500. 0 0 -1905 0 50 -2597 0 1068 -8 -2361 
0.0 	1000. 0 0 -1941 0 53 -2646 0 1091 -3 -2406 

-0.5 	30. 0 0 -93 0 52 -100 0 19 66 -55 
-0.5 	50. 0 0 -300 0 66 -371 0 134 78 -280 
-0.5 	100. 0 0 -567 0 49 -746 0 289 38 -641 
-0.5 	200. 0 0 -688 0 45 -917 0 363 29 -807 
-0.5 	500. 0 0 -726 0 46 -971 0 387 31 -856 
-0.5 1000. 0 0 -731 0 46 -977 0 390 31 -862 

-1.0 	30. 0 0 -60 0 35 -64 0 11 44 -35 
-1.0 	50. 0 0 -165 0 43 -201 0 69 52 -148 
-1.0 	100. 0 0 -267 0 36 -345 0 128 36 -286 
-1.0 	200. 0 0 -301 0 35 -392 0 148 34 -332 
-1.0 	500. 0 0 -308 0 35 -402 0 153 34 -341 
-1.0 1000. 0 0 -308 0 35 -403 0 153 34 -342 

-1.5 	30. 0 0 -39 0 24 -42 0 6 30 -22 
-1.5 	50. 0 0 -92 0 28 -111 0 35 34 -79 
-1.5 	100. 0 0 -132 0 26 -167 0 58 28 -133 
-1.5 	200. 0 0 -141 0 25 -180 0 64 27 -145 
-1.5 	500. 0 0 -143 0 25 -182 0 64 28 -147 
-1.5 1000. 0 0 -143 0 25 -182 0 64 28 -147 

-2.0 	30. 0 0 -26 0 16 -27 0 3 21 -15 
-2.0 	50. 0 0 -53 0 19 -63 0 18 23 -43 
-2.0 	100. 0 0 -69 0 18 -84 0 27 21 -64 
-2.0 	200. 0 0 -71 0 18 -88 0 28 20 -68 
-2.0 	500. 0 0 -71 0 18 -88 0 28 20 -68 
-2.0 1000. 0 0 -71 0 18 -88 0 28 20 -68 
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APPENDIX 5 

COUPLING COEFFICIENTS for SSCOMB (x10 4) 

pu  co° 	c 1 0 c 1 1 c2 1 c22 c30 c3 1 c32 c33 

0.5 30. 337 	-203 195 27 -188 43 86 76 -37 -26 
0.5 50. 1866 	-1254 325 418 -235 -420 189 -44 627 -252 
0.5 100. 7640 	-5368 -1584 2099 2347 -1283 577 -2444 1522 252 
0.5 200. 17060-11823 -6698 4183 8563 -432 2175 -7135 -293 815 
0.5 500. 30297 -20419 -15126 6097 18117 2547 5510 -13203 -5029 572 
0.5 1000. 38504-25566 -20645 6923 24135 4824 7900 -16630 -8408 110 

0.0 30. 216 	-130 127 17 -123 31 56 50 -29 -13 
0.0 50. 975 	-651 199 209 -154 -196 109 -4 299 -130 
0.0 100. 3107 	-2171 -485 832 775 -533 247 -876 658 51 
0.0 200. 5607 	-3886 -1831 1391 2416 -320 664 -2121 194 206 
0.0 500. 7992 	-5438 -3345 1742 4134 208 1259 -3220 -649 169 
0.0 1000. 8980 	-6058 -4008 1842 4858 481 1546 -3633 -1055 114 

-0.5 30. 140 	-84 84 11 -81 23 37 33 -23 -6 
-0.5 50. 519 	-344 123 105 -101 -90 64 10 140 -66 
-0.5 100. 1314 	-910 -124 339 236 -222 114 -310 284 - 1 
-0.5 200. 1983 	-1371 -482 490 674 -169 223 -644 165 42 
-0.5 500. 2421 	-1656 -758 555 989 -73 331 -846 12 36 
-0.5 1000. 2541 	-1731 -839 568 1077 -40 366 -896 -37 29 

-1.0 30. 92 	-55 56 7 -54 17 25 23 -18 -2 
-1.0 50. 281 	-185 78 54 -67 -39 39 12 63 -33 
-1.0 100. 581 	-398 -13 142 57 -91 57 -106 122 -10 
-1.0 200. 762 	-523 -109 183 175 -78 86 -196 91 2 
-1.0 500. 843 	-576 -160 196 234 -61 106 -234 63 1 
-1.0 1000. 858 	-585 -170 197 244 -56 110 -240 57 1 

-1.5 30. 60 	-36 38 4 -37 12 16 16 -13 0 
-1.5 50. 156 	-102 50 28 -44 -15 24 11 27 -16 
-1.5 100. 270 	-183 17 61 2 -36 30 -33 51 -8 
-1.5 200. 320 	-217 -10 73 34 -33 38 -58 43 -4 
-1.5 500. 335 	-227 -19 75 45 -30 42 -65 38 -5 
-1.5 1000. 337 	-228 -21 75 46 -29 42 -66 37 -5 

-2.0 30. 40 	-24 26 3 -25 9 11 11 -10 1 
-2.0 50. 89 	-57 32 15 -29 -5 15 9 10 -8 
-2.0 100. 133 	-89 20 28 -12 -13 17 -8 20 -5 
-2.0 200. 146 	-98 13 31 -4 -12 20 -14 18 -4 
-2.0 500. 149 	-100 11 31 -2 -12 20 -16 17 -4 
-2.0 1000. 150 	-100 11 31 -1 -12 20 -16 17 -4 
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Soo Si °  Sl 1 s20 s21 S22  S3°  S3 1  S32  S3 3  

0.5 	30. 0 0 151 0 -159 140 0 90 -176 83 
0.5 	50. 0 0 1107 0 -1233 366 0 821 -371 -105 
0.5 	100. 0 0 3877 0 -4318 -720 0 2830 1448 -542 
0.5 	200. 0 0 6580 0 -7151 -2728 0 4338 4307 -116 
0.5 	500. 0 0 8451 0 -8984 -4414 0 5104 6512 585 
0.5 	1000. 0 0 8971 0 -9471 -4919 0 5273 7139 836 

0.0 	30. 0 0 93 0 -99 88 0 55 -110 53 
0.0 	50. 0 0 568 0 -632 207 0 418 -217 -37 
0.0 	100. 0 0 1603 0 -1788 -183 0 1174 442 -210 

0.0 	200. 0 0 2335 0 -2552 -720 0 1584 1209 -101 

0.0 	500. 0 0 2683 0 -2895 -1032 0 1729 1618 28 
0.0 	1000. 0 0 2748 0 -2955 -1094 0 1749 1695 58 

-0.5 	30. 0 0 58 0 -61 55 0 34 -69 34 

-0.5 	50. 0 0 295 0 -327 118 0 214 -128 -9 

-0.5 	100. 0 0 686 0 -764 -23 0 501 113 -78 
-0.5 	200. 0 G 885 0 -972 -168 0 614 321 -50 
-0.5 	500. 0 0 951 0 -1037 -227 0 642 398 -26 

-0.5 1000. 0 0 959 0 -1045 -234 0 645 408 -22 

-1.0 	30. 0 0 36 0 -38 35 0 21 -44 22 

-1.0 	50. 0 0 155 0 -171 68 0 111 -75 1 

-1.0 	100. 0 0 304 0 -338 17 0 221 14 -26 

-1.0 	200. 0 0 359 0 -396 -23 0 253 70 -19 

-1.0 	500. 0 0 372 0 -408 -34 0 258 85 -14 

-1.0 1000. 0 0 373 0 -409 -35 0 258 86 -14 

-1.5 	30. 0 0 23 0 -24 22 0 13 -27 14 

-1.5 	50. 0 0 83 0 -91 40 0 58 -45 4 

-1.5 	100. 0 0 140 0 -155 21 0 101 -12 -7 

-1.5 	200. 0 0 155 0 -171 10 0 110 4 -5 

-1.5 	500. 0 0 158 0 -174 8 0 111 7 -4 

-1.5 1000. 0 0 158 0 -174 8 0 111 7 -4 

-2.0 	30. 0 0 14 0 -15 14 0 8 -17 9 

-2.0 	50. 0 0 45 0 -49 23 0 31 -27 4 

-2.0 	100. 0 0 67 0 -74 16 0 48 -14 0 

-2.0 	200. 0 0 71 0 -78 13 0 50 -10 0 

-2.0 	500. 0 0 72 0 -79 13 0 50 -9 1 

-2.0 1000. 0 0 72 0 -79 13 0 50 -9 1 
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APPENDIX 6 

LEVEL-CHANGE / SPIKE RECOGNITION ALGORITHM. 

Data spikes and level-shifts (see Figure A6.1 below) can occur in raw cosmic-ray data. 
There are many causes of these, including changes to the E.H.T power supply, static 
discharges and gas leakage in the detectors. In order to ascertain the true temporal variation 
of cosmic rays incident on the detector due to heliospheric modulation it is necessary to 
remove such spikes from the data and correct for level-shifts. 

count 
rate 

FIGURE A6.1. Two sets of hypothetical cosmic-ray data showing a level-shift at A and a 
data spike at B. Both these scenarios are common in cosmic-ray data. Note that the noise in 
the first set of data is larger than in the second set and that the spike in the second set is larger 
than some noise in the first set. 

To find a level-shift or a spike in the data automatically, an algorithm is required to pick out 
data points which are significantly different from neighbouring points. This is not trivial 
because measuring whether a point is different from, for example, the mean of 

. neighbouring points, a numerical value of the mean is first required. However, without 
knowing a -priori the location of the data spikes, these spikes cannot be excluded from the 
'mean' calculation. Hence the mean will be biased by the data points that are required to be 
removed. 

When visually scanning data for spikes and level-shifts, we tend to look at whether the 
difference between a certain data point and neighbouring points is significantly different, 
rather than at the absolute values of data points. We can isolate points which may look 
significantly different to be labelled a data spike and then re-evaluate the shape of the trend 
in the data with these potential level changes hypothetically removed. In this way we can 
generally decide unambiguously whether these potential level changes are real or just 
statistical fluctuations. It is with this in mind that the following algorithm for automatically 
flagging level-shifts and data spikes for cosmic-ray data was developed. 
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Input to the routine are n data points xi  (1=1...n), tolerance values lc]  and k2 , and a width 
parameter w which is the maximum width (in terms of consecutive data points) of an 
accepted data spike. The routine passes back arrays which contain pointers to areas in the 
data which are suspected to contain a level-shift or data spike. The routine runs through the 
data three times. In the first pass, the mean mi  and standard deviation a of the difference 
between neighbouring points for all points, weighted by the inverse of the square root of 
the data (particle detector count-rates follow poisson statistics), are calculated. That is, the 
mean and standard deviation of the value 

- Xi  I 	
i =1 ... n-1 

(Xj+i + ) 

is found. Any difference between two points which is greater than k 1  X j  is flagged as a 
potential level-change in the data. A new mean m2  and standard deviation a2  of the above 
expression excluding those differences flagged as potential level changes is then found. In 
the second pass, all flagged potential level changes from the first pass are then tested for the 
condition that the original difference is greater than k 2 x02 . If so, the level change is 
accepted as permanent. If not, the difference is rejected as a level change. In the third pass, 
the routine runs through the data and checks if there are two level changes (of opposite 
direction) at least as close together as given by the parameter w. If so, then data points 
between and including the position of the level change are labelled as belonging to a data 
spike. 

Note that the values of lc]  and k2  need to be learned. In other words, their value would be 
chosen in order to have the best, or most desired, effect on the data. For cosmic ray data, 
k1  2 and k2  6 were used. A decrease in k1  will result in a decrease in the second 
calculated standard deviation and hence more level changes will be flagged - which may be 
undesirable for inherently noisy data. By increasing k2 , only the larger of the level-changes 
will be flagged. 
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APPENDIX 7 

NORTH/SOUTH ANISOTROPY ANALYSIS. 
RESULTS USING METHOD 1. 

This appendix contains plots of g,. vs Pu  index for various 	values, caluclated using 
"method 1" described in Chapter 8. See Table 8.3 for Pu  values in GV corresponding to 
the indices used in these plots. The radial gradient shown is applicable to 10 GV rigidity 
particles. Values for other rigidities can be found by using the relationship between g,. and 
rigidity given in equation 8.25b. The plots cover the years 1975-78 and 1982-85. Data 
have not been corrected for any (possible) isotropic intensity wave contamination. 
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APPENDIX 8 

NORTH/SOUTH ANISOTROPY ANALYSIS. 
RESULTS USING METHOD 2. 

This appendix contains plots of g,. vs Pu  index for various y values, caluclated using 
"method 2" described in Chapter 8. See Table 8.3 for Pu  values in GV corresponding to 
the indices used in these plots. The radial gradient shown is applicable to 10 GV rigidity 
particles. Values for other rigidities can be found by using the relationship between g,. and 
rigidity given in equation 8.25b. The plots cover the years 1975-78 and 1982-85. Data 
have not been corrected for any (possible) isotropic intensity wave contamination. 
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APPENDIX 9 

NORTH/SOUTH ANISOTROPY ANALYSIS. 
CONTOURS OF x2  FOR RESULTS USING METHOD 1. 

This appendix contains contours of x 2  over (y, Pu) index pairs for the results of the fit 
for g,. using "method 1" described in Chapter 8. See Table 8.3 for Pu  values in GV and 
y values corresponding to the indices used in these plots. The plots cover the years 1975- 
78 and 1982-85. Data have not been corrected for any (possible) isotropic intensity wave 
contamination. 
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APPENDIX 10 

PLOTS OF DISTRIBUTION FUNCTION FOR THE 
2-SPACE DIMENSIONAL HELIOSPHERE. 

This appendix contains the plots of the distribution function f vs radius coordinate r for a 
heliographic co-latitude of 90° for the numerical solutions of the two-dimensional transport 
equation in Chapter 4. In each case, the bottom trace is for rigidity = 0.5 GV and the top 
trace is for rigidity = 10 GV. Traces in-between correspond to intermediate rigidities at 
constant logarithmic intervals. Each trace is normalized to the value of the differential 
intensity at that rigidity at the boundary of the heliosphere. The plots are labelled Run 1 
through to Run 13. Runs 1-6 correspond to results from Section 4.2, Run 7 from Section 
4.4a, Runs 8-11 from Section 4.4b and Runs 12 and 13 from Section 4.4c. 
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RUN 1: Integrating algorithm is LOD. There is no solar wind termination shock. The inner boundary is 
fixed at zero. Other parameters are specified in Section 4.2. 
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RUN 2: Integrating algorithm is AD!. There is no solar wind termination shock. The inner boundary is 
fixed at zero. Other parameters are specified in Section 4.2. 
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RUN 3: Integrating algorithm is ADI. Solar wind termination shock is at 60 AU. The inner boundary is 
fixed at zero. Other parameters are specified in Section 4.2. 
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RUN 4: Integrating algorithm is LOD. There is no solar wind termination shock. The inner boundary is 
floated. Other parameters are specified in Section 4.2. 
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RUN 5: Integrating algorithm is LOD. Solar wind termination shock is at 60 AU. The inner boundary 
is floated. Other parameters are specified in Section 4.2. 



10 	20 	30 	40 	50 	60 	70 	80 	90 

r (AU), 0= 90.00  

0 
2 4 6 8 10 

0 
0s1 

r (AU), 0 = 90.00  

184 

RUN 6: Integrating algorithm is AD!. Solar wind termination shock is at 60 AU. The inner boundary is 
floated. Other parameters are specified in Section 4.2. 
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RUN 7: Integrating algorithm is LOD. The inner boundary is specified as a power law spectrum. 
Parameters are specified in Section 4.4a. 
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RUN 8: Integrating algorithm is LOD. Solar wind termination shock is at 60 AU. The inner boundary 
is floated. Diffusion coefficients are specified by SET A in Section 4.4b. 
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RUN 9: Integrating algorithm is ADI. Solar wind termination shock is at 60 AU. The inner boundary is 
floated. Diffusion coefficients are specified by SET A in Section 4.4b. 
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RUN 10: Integrating algorithm is LOD. Solar wind termination shock is at 60 AU. The inner boundary 
is floated. Diffusion coefficients are specified by SET B in Section 4.4b. 
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RUN 11: Integrating algorithm is AD!. Solar wind termination shock is at 60 AU. The inner boundary 
is floated. Diffusion coefficients are specified by SET B in Section 4.4b. 
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RUN 12: Integrating algorithm is LOD. Solar wind termination shock is at 60 AU. The inner boundary 
is specified by the condition of zero radial streaming. Other parameters are specified in Section 4.4c. 
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RUN 13: Integrating algorithm is ADI. Solar wind termination shock is at 60 AU. The inner boundary 
is specified by the condition of zero radial streaming. Other parameters are specified in Section 4.4c. 
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APPENDIX 11 

PUBLICATIONS. 

Publications which arose from research undertaken during the course of this degree are 
listed below. 

Work presented in Sections 6.4 and 6.5 were published in Paper (4). This paper 
incorrectly reported a correlation between the intensity waves and the index k, rather than 
an anti -correlation as presented in the above sections. The hypothesis that there was an 
excess intensity of galactic cosmic rays in the southern hemisphere, presented in this thesis, 
was incorrectly reported as an excess in the northern hemisphere in Paper (4). 

Work presented in Section 4.5 was published in Paper (5). The integral intensity of galactic 
cosmic ray particles in a 1 AU region about Earth was found to be depressed, after shock-
modulation, by —8% for the case a=0.9. This was incorrectly reported in Paper (5) as 
—11%. 
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