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ABSTRACT 

The general aim of this study was to develop new modes of access to benz-

fused medium-ring heterocycles. The approach adopted was to utilise the 

rearrangements, with concurrent ring expansion, of heterocyclic quaternary 

ammonium N-ylides and N-oxides. Of particular interest were new applications of 

the [2,3] rearrangements of these systems. 

Base promoted [2,3] sigmatropic rearrangement of 1-viny1-2- 

ethoxycarbonylmethy1-1,2,3,4-tetrahydroisoquinolinium salts at room temperature in 

acetonitrile afforded functionalised 2,3,4,5-tetrahydro-/H-3-benzazonine 

derivatives, as mixtures of the olefinic isomers, in high yields. This is the first 

application of this rearrangement to the synthesis of benz-fused aza-heterocycles. A 

stereoselective preference for the formation of the E-benzazonines was observed. 

The E-benzazonines degraded to polar material on p.t.l.c. and acid-catalysed 

transannular interactions were proposed. The rearrangement reaction at high 

temperature also provided 1-viny1-2,3,4,5-tetrahydro-/H-benzazepines, the products 

of [1,2] Stevens rearrangement. The mechanisms and product distributions of these 

rearrangements are discussed, with reference to models of the expected concerted 

transition states. 

Application of the [2,3] sigmatropic • rearrangement to 1-vinyl-

tetrahydroisoquinolinium salts with nitrile or phenacyl ylide stabilising groups 

provided the appropriate 4-substituted-2,3,4,5-tetrahydro-/H-3-benzazonine 

derivatives in good yields. Successful [2,3] rearrangement of the phenacyl stabilised 

ylide was limited to low temperatures, with Stevens rearrangement products being 

isolated selectively at high temperature. Rearrangement of an unstabilised 

methylene ylide, generated by fluorodesilylation, gave a 4-unsubstituted 3- 

benzazonine in low yield. Base-promoted rearrangement of N-methyl-tetrahydro-

isoquinolinium salts with no ylide stabilising group afforded Hofmann elimination 



products and demonstrated a limitation on the potential synthetic uses of the [2,3] 

rearrangement. 

Rearrangement of vinyl substituted 2-ethoxycarbonylmethyl-tetrahydro-

isoquinolinium salts gave, in most cases, 6- or 7-substituted-2,3,4,5-tetrahydro-/H-

3-benzazonine derivatives via the [2,3] rearrangement. A decrease in the E-

stereoselectivity of the rearrangement was observed from C1'-substituted salts and 

probably reflected changes in the preferred concerted transition state geometry. 

Limitations to the potential uses of the [2,3] rearrangement were exemplified by the 

rearrangements of the 2',2'-dimethyl and trans-2'-dimethoxyphenyl salts at room 

temperature. The former provided a mixture of the [1,2] and [2,3] rearrangement 

products, indicative of steric interference by the cis-2'-methyl group with the 

concerted transition state, while the latter gave the Stevens rearrangement product 

selectively, indicative of promotion of the [1,2] radical pathway by the radical 

stabilising group at C2'. 

Hydrogenation of the E -2,3,4,5-tetrahydro- / H-3-benzazonines gave 

2,3,4,5,6,7-hexahydro-derivatives, while the Z-2,3,4,5-tetrahydro-/H-3- 

benzazonines were unaffected. Hydrogenation of a 6-methy1-2,3,4,5-tetrahydro-1H-

3-benzazonine derivative was accompanied by a [1,3] hydrogen shift to an 

endocyclic olefinic 3-benzazonine. Hydrogenolysis of an N-benzyl-tetrahydro-3- 

benzazonine could not be obtained preferentially without concurrent hydrogenation. 

The reaction afforded a secondary amine derivative of the 3-benzazonine system. 

The [2,3] rearrangement of a 2-(tetrahydro-2'-furanon-3'-y1)-1-vinyl-

tetrahydroisoquinolinium salt afforded the first example of the 2,3,4,5-tetrahydro-

1H-3-benzazonine-4-spiro-3'-tetrahydro-T-furanone ring system in low yield. 

An effort to extend the [2,3] rearrangement to the synthesis of unsaturated 3- 

benzazonines from a 1-ethynyl-tetrahydroisoquinolinium salt gave only the Stevens 

rearrangement product in poor yield. 

Thermolysis of 1-vinylic-tetrahydroisoquinolinium N-oxides unsubstituted at 

Cl' failed to provide [2,3] rearrangement and afforded 1-vinylic-1,3,4,5-tetrahydro- 
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2,3-benzoxazepines in good yield by the Meisenheimer rearrangement. Neat 

pyrolysis of the 1-vinyl-benzoxazepines gave an unexpected isomerisation to 

1,3,3a,4,9,9a-hexahydroisoxazolo[3,4-b]naphthalene derivatives. This isomerisation 

may involve the formation and reaction of a nitrone intermediate. 

Thermolysis of l'-substituted-l-vinylic-tetrahydroisoquinolinium N-oxides 

gave the first representatives of the 4,3-benzoxazonine system in mixtures with the 

Meisenheimer rearrangement products. The Z-olefinic 1,2,3,5-tetrahydro-4,3- 

benzoxazonines were formed selectively. A stereoselective concerted [2,3] 

rearrangement of the cis-N-oxides was indicated as thermolysis in refluxing 

dichloromethane gave the 4,3-benzoxazonines with unchanged trans-N -oxides. The 

structure of a 4,3-benzoxazonine was unequivocally established by X-ray structural 

analysis. The 4,3-benzoxazonines were thermally labile and in refluxing xylene 

gave equilibrium mixtures with, and favouring, the less-strained 1-vinylic-2,3- 

benzoxazepines. 

Meisenheimer rearrangement of a 5,6-dihydro-4H-s-triazolo[4,3-a]-1,4- 

benzodiazepine N-oxide afforded a 4,5-dihydro-7H-s-triazolo[4,3-a]-5,1,4- 

benzoxadiazocine, the first representative of this ring system, with structural 

similarities to the CNS active agent 'Alprazolam'. 

Further extension of the Meisenheimer rearrangement to tricyclic bridgehead 

N-oxides of the 10b-vinyl-pyrrolo[2,1-a]isoquinoline and 1 lb-vinyl-

benzo[a]quinolizine systems gave, in low yield, the first examples of the 3,7-epoxy-

3-benzazonine and 2H-3,8-epoxy-3-benzazecine ring systems. 

Modification of the Meisenheimer and Stevens rearrangement to give a four 

atom ring expansion by the inclusion of an a-cyclopropyl substituent was also 

investigated. Thermolysis of a 1-cyclopropyltetrahydroisoquinoline N-oxide gave 

the 2,3-benzoxazepine product of the Meisenheimer rearrangement. Thermolysis of 

a 1-(2'-phenylcyclopropyptetrahydroisoquinoline N-oxide derivative gave the 

Meisenheimer rearrangement product and, in low yield, a 2,3,5,6-tetrahydro-5- 

phenyl-/H-4,3-benzoxazecine derivative. Formation of the 4,3-benzoxazecine 
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system, the first example of this ring system, confirmed the plausibility of a 

modified rearrangement pathway. The 4,3-benzoxazecine structure was confirmed 

by X-ray crystallography. Base promoted rearrangement of the analogous 1- 

cyclopropyl or 1-(2'-phenylcyclopropy1)-N-ethoxycarbonylmethyl salts afforded 

only 3-benzazepine derivatives by the Stevens rearrangement. 

N-Alkylation of a 1-(2'-phenylcyclopropy1)-3,4-dihydroisoquinoline at 

moderate temperatures with iodometharte gave an unexpected Cloke rearrangement 

and a new route to the pyrrolo[2,1-a]isoquinoline system. The structure of the N-

methy1-2,3,5 ,6-tetrahydropyrrolo[2,1-a]isoquinolinium iodide product was 

unequivocally established by X-ray structural analysis. 

The global minima and low energy conformations of the 2,3,4,5-tetrahydro-

/H-3-benzazonine, 1,2,3,5-tetrahydro-4,3-benzoxazonine, and 2,3,5,6-tetrahydro-

1H-4,3-benzoxazecine systems were determined with the molecular mechanics-

based program PCModel and, where possible, compared with X-ray crystallographic 

results. The implications of the conformers found for the properties of these 

compounds are discussed. It is envisaged that these studies may allow the future 

assessment of the potential of these compounds as CNS active agents. 

The present study has provided the synthesis of many novel isoquinoline 

derivatives necessary for the investigations described above and has established new 

synthetic routes to five known and six new benz-fused medium ring heterocyclic 

systems. 
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1 

CHAPTER 1 

INTRODUCTION 

1.1 
	

General Introduction 

• The past thirty years have seen a tremendous drive towards the synthesis of 

novel nitrogen-containing heterocycles. This has occurred due to the large demand for 

synthetic access to natural alkaloids and the recognised commercial potential of many 

heterocyclic compounds as, typically, agricultural chemicals, dyes, or 

pharmaceuticals. In particular many nitrogen heterocycles containing aromatic 

moieties have found application as central nervous system (CNS)-active 

pharmaceutical agents. 

Although benz-fused medium-sized (8- to 11-membered) heterocycles 

containing nitrogen, or both nitrogen and oxygen, have a high potential for CNS 

activity, research in this area has been limited and sporadic. The CNS potential of the 

benz-fused medium-sized nitrogen heterocycles arises from the presence of the 

aromatic and nitrogen atom moieties. Lloyd and Andrews proposed' a primary 

pharmacophore for activity over all CNS receptor types using these two moieties. In 

particular, medium-sized rings may be used to provide constrained analogues of 

known drugs with less side-effects. Nefopam hydrochloride, a 2,5-benzoxazocine 

(Figure 1.1) is a non-narcotic analgesic with muscle relaxant, anti-cholinergic and 

anti-histaminic properties2  which acts as a cyclised, constrained, analogue of the 

parent antihistamine cliphenhydramine. 34,5  It is also possible that a medium-sized 

ring may substitute for a rigid combination of smaller rings. For example, the 

structure of the dopamine agonist apomorphine (Figure 1.1), known for its emetic 

effect,6  suggests that a 6,7- or 7,8-unsaturated 3-benzazecine derivative would have a 

high potential for CNS activity. 

Considerable scope remains for the synthesis of new benz-fused medium-sized 

nitrogen heterocycles. For example, only 18 of the 100 possible medium-sized 
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benzoxaza- skeletons are presently known. 7  In addition, alternate methods of access 

to those already known are required to enable detailed structure-pharmacological 

property relationship studies incorporating new functionalities. 
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Figure 1.1 

1.1.1 Project Aims 

The aims of this project were to examine a set of ring interconversion reactions 

involving the rearrangements of N-ylides and N-oxides, and to develop their 

application to the syntheses of benz-fused medium-sized nitrogen heterocycles. The 

reactions to be investigated are outlined schematically in Figure 1.2. 

Y.  

• • •• • 	• 
[1,2] 	• 

Ar 	1 • J • N, 
RI  y 

[2,3] Ar 	1  RI • J. 	N' S. .,,• .1.27  
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Figure 1.2 Ring Interconversions of N-Ylides and N-Oxides 
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L2 	Introduction to [1,2] Rearrangements 

The [1,2] rearrangements of N-ylides and N-oxides, termed the Stevens and 

Meisenheimer rearrangements respectively, have been extensively studied and are the 

subject of several reviews. 8,9,10,11  The rearrangement may be viewed formally as a 

nucleophilic substitution at the migrating carbon with an anionic centre replacing the 

electron deficient nitrogen. The Meisenheimer rearrangement occurs thermally from 

an N-oxide. The Stevens rearrangement proceeds via in situ generation of an N-ylide, 

typically in the presence of a base. The [1,2] rearrangement may provide a one atom 

ring expansion and 1,2-oxaza heterocycles (Figure 1.2). 

1.2.1 Mechanism 

A radical-pair mechanism is currently accepted for these rearrangements, with 

homolytic cleavage of the C-N bond prior to radical rearrangement and recombination 

in a solvent cage (Figure 1.3). The radical-pair mechanism was adopted, rather than a 

comparable ion-pair mechanism, as chemically induced dynamic nuclear polarization 

(CIDNP) spectra, indicative of free-radicals, were observed during the 

rearrangements. 12  Experiments showing retention of configuration in the migrating 

group (R 1 ), contrary to orbital symmetry principles, have precluded a concerted 

mechanism. In practice, electron delocalising migrating groups have provided the 

highest rearrangement yields. Benzylic and allylic groups are most often used. 

R3  
I2 „ R 
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R3  
I  tN,***  R2  

R3 	1 
I 	R2  

R I  

R3  
I 	122 

Y = CHR4  
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Y 

Solvent Cage 

•Y  
R 1  

Figure 1.3 
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1.2.2 Competing Reactions 

The Hofmann and Cope eliminations of quaternary ammonium salts and N-

oxides (Figure 1.4) containing a beta-hydrogen atom can interfere with other 

rearrangements. The Hofmann elimination may compete with N-ylide generation 

when the prevalent technique of ylide generation by the removal of an alpha-hydrogen 

with a strong base is used. The elimination may be prevented by selection of the 

appropriate base and incorporation of an electron-withdrawing group (R 4) to provide 

an acidic alpha-hydrogen. The Cope elimination requires a five-membered transition 

state and may not be possible from many rigid systems. 

R I  

R3CH2CH2  — 	CH2R4  
Base 

R I  

R3  N— CH2R4  

R2  
Hofmann elimination products 

 

R 

R3CH2CH2  — 1•1+- 0-  
'1;0 

Figure 1.4 

 

R 1  

R3 
/=== 

+ N— OH 

R2  
Cope elimination products 

A 

The Sornmelet-Hauser rearrangement 13  (Figure 1.5) often competes with the 

Stevens rearrangement of benzylammonium salts and under the appropriate conditions 

may provide the major product. Non-polar solvents and increased reaction 

temperatures favour the Stevens rearrangement. 9  The rearrangement provides 

migration of a group to the ortho position of the benzene ring. The mechanism may 

involve a concerted [2,3] shift followed by aromatisation. 
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CH2  

1 	n = 1, 2, 3. 2 CH3  
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N(CH3)2.  

 

N(CH3)2 

Figure 1.5 Proposed Mechanism of the Sommelet-Hauser Rearrangement 

The Sommelet-Hauser rearrangement has been exploited for the synthesis of 

medium-sized heterocycles. 14,15,16  For example, the rearrangement of the 2-aryl 

heterocycles 1 afforded the benzaza-derivatives 2. Derivatives of the 2,5- 

benzoxazocine" and 5,2-benzoxazonine 18  systems were obtained in a similar 

manner. 

1.2.3 Ring Expansion via [1,2] Rearrangements 

[1,2] Rearrangements have provided the one atom expansion of simple 4-, 5-, 

and 6-membered heterocyclic rings. The initial investigations of pyrrolidine and 

piperidine salts 9  and N-oxides 19,20,21  showed that beta-aryl substituents were 

necessary to prevent the prevalence of eliminations or non-expansive rearrangements, 

however, beta-unsubstituted azetidinium22  salts and unsaturated pyrrolidine 

derivatives23  underwent ring expansion readily. The relief of ring strain promoted the 

ring expansion in the latter cases. Recently the Meisenheimer rearrangement was used 



6 

to provide access to 1,5,2-dioxazine 24  and 1,6,2-dioxazepine25  derivatives from the 

appropriate 5- and 6-membered cyclic N-oxide precursors. 

The Meisenheimer rearrangement has afforded access to a number of benz-

fused heterocycles. The 2,3-benzoxaza medium ring heterocycles 4 were obtained in 

high yields from the 1-phenyl-2-benzaza precursors 3•26,27  Rearrangement without 

the additional 1-phenyl substituent provided a lower yield and substantial 

deoxygenation. 28  Replacement of the benzene ring of 3 (n = 1) by [2,3]indolo, 

[3,2]thieno or [2,3][1]benzothieno moieties29  provided the respective analogues of 4 

(n = 1). The Meisenheimer rearrangement was also extended to the production of the 

benzodioxaza derivatives30  5 and benzoxadiaza derivatives31,32  6. 

 

A 

Ph 
	

Ph 
3 n = 1, 2, 3. 	 4 

Me0 

CI 

Ph 
	

Ph 
5 n = 1, 2. 	 6 n = 1, 2. 

The Stevens rearrangement has provided few benz-fused medium-sized aza 

heterocycles. The N-allyl salts33  7 rearranged to the 3-benzazonine and 3-benzazecine 

derivatives 8 in good yield. Otherwise only the metacyclophane 34  9 and the 3- 

benzazecine35  10 were reported to be produced by the Stevens rearrangement. These• 

compounds were observed as minor byproducts during investigations of the 

Sommelet-Hauser rearrangement. 
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NaNH2/NH3 (1) 

 

7 n = 1, 2. 

9 
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1.3 	Introduction to [2,3] Rearrangements 

The [2,3] rearrangements of sulfur-ylides have attracted considerable interest 

and are now an established technique for the formation of C-C bonds. 10,36  The [2,3] 

rearrangements of N-ylides and N-oxides have attracted less interest, although they 

are well documented in acyclic cases. 10  The rearrangement may provide a three atom 

ring expansion from a precursor with both the vinylic and anionic groups exocyclic to 

the original ring (Figure 1.2). Two reviews examining the production of medium 

rings via [2,3] sigmatropic rearrangements are available. 10,37  The reaction has found 

particular application to the synthesis of macrocyclic sulfur heterocycles by a series of 

[2,3] shifts. 38,39  

1.3.1 Mechanism 

A concerted mechanism is currently accepted for the [2,3] rearrangement. The 

high regio-, diastereo- and enantioselectivities observed in these rearrangements, and 

the lack of evidence for other mechanisms, led to the proposition of a concerted 

symmetry-allowed40  transition state (Figure 1.6, shown for N-ylides). The 

rearrangement is thermally allowed via suprafacial-suprafacial attack of the ylide on 
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the allylic group. Six electrons participate from the olefin 7r-orbital, the carbanion, 

and the N-C a-bond of the precursor. 

   

   

   

   

 

concerted transition state 

 

Figure 1.6 

1.3.2 Ring Expansion via [2,3] Sigmatropic Rearrangements 

The [2,3] rearrangement of small-ring N-ylides has allowed access to medium-

sized heterocycles. The 2-vinylpyrrolidine 41  and piperidine42  salts 11 provided the 

azocine and azonine products 12 in high yields. Mixtures of the E and Z geometric 

isomers were obtained. The E/Z ratio was dependent on both the ring size and the 

stereochemistry of the initial salts. These factors were postulated to alter the preferred 

transition state geometry and thus the product ratio. Rearrangement of a carbanion 

generated a to an amide nitrogen, rather than an N-ylide, produced ring expansion 43  

of the highly strained 4-vinyl-2-azetidinone 13 to the seven-membered lac tam 14. 
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9 

The ethynyl group may replace the vinyl group in [2,3] sigmatropic 

rearrangements. This type of rearrangement afforded ring expansion of the 

ethynylpiperidine N-ylide derivatives 15 to the unstable allenic azonines" 16 in 

moderate yields. The allenic products may in some cases undergo rapid isomerisation 

to stable conjugated dienes prior to isolation. Thus rearrangement of the N-imides 

analogous to 15 gave conjugated trienes directly." 

Although the 1-vinylisothiochroman45  S-imide 17 and 1- 

ethynylisothiochroman46  S-ylides 19 are known to undergo [2,3] rearrangements to 

the medium-sized benz-fused derivatives 18 and 20, the similar [2,3] rearrangements 

of N-ylides to benz-fused nitrogen-containing heterocycles have not been investigated. 

Much scope remains for investigations in this field. 

140'C 

 

 

18 

 

DBU 

 

CO2Et 

   

R = Me, n-Bu, Ph 20 

 

Few attempts have been made to develop the ring expansion of allylic N-

oxides via [2,3] rearrangement. An examination of the rearrangements of 2- 
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vinylpiperidine N-oxides47,48  found that only the 1,2-oxazepine derivatives were 

formed via the Meisenheimer rearrangement. This behaviour, in contrast to that of 13 

(n=2), suggested the [2,3] shift was less favourable for N-oxides. Two successful 

cases were, however, reported from more complex ring systems containing allylic N - 

oxides. The catharanthine N-oxide 21 rearranged quantitatively49  to 22 at 40°C. The 

azetopyrido[3,4-b]indole 23, upon treatment with meta-chloroperoxybenzoic acid (m-

CPB A) at 0°C in dichloromethane, gave 50,51  the oxazepine derivative 24 in high yield 

via the preferential formation and rearrangement of the N-oxide with the oxygen and 

vinyl moieties cis to each other in the azetidine ring. 

CHC13 

 

40°C 
Et 

21 R = CO2Me, CH202CMe 

  

1.4 Introduction to a Cyclopropylcarbinyl Rearrangement 

Cyclopropylcarbinyl radicals are known to undergo rapid ring opening to give 

homoallylic radicals. It was thus proposed that the incorporation of a cyclopropyl 

group would allow the modification of the Meisenheimer or Stevens rearrangements 

and a four atom ring expansion (Figure 1.2) via a diralical mechanism (Figure 1.7). 

A concerted mechanism may also be possible. 
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Figure 1.7 

Solvent Cage 

A single report52  of an acyclic rearrangement of this type was revealed in the 

literature. The rearrangement conditions were not specified. Thermal treatment of the 

N-oxide 25 provided mainly deoxygenation with the hydroxylamine 26 isolated in 

low yield. No further investigations of this rearrangement are known. An 

examination of the Sommelet-Hauser rearrangement53  of N-ylides did, however, 

indicate that the cyclopropyl group could promote the reaction in the same way as an 

allylic double bond. No products of cyclopropyl ring opening were observed. 

 

Ph 
A 

 

25 

 

A recent report54  involved a cyclopropylcarbinyl radical rearrangement and 

highlighted the potential for the investigation of the rearrangement proposed above. 

Photolysis of the a-kern ester 27 produced the 1,4-diradical which underwent 

cyclopropylcarbinyl radical rearrangement then radical recombination to give the 7- 

membered lactone 28 in 25% yield. 
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1.5 	 Thesis Outline 

The results of studies aimed at developing the syntheses of 3-benzazonines and 

4,3-benzoxazonines via the [2,3] rearrangements of 1-vinylic isoquinoline-N-ylides 

and N-oxides are presented in Chapters 2 and 3 respectively. These investigations 

form the core of this work. 

Further applications of the [1,2] rearrangements in heterocyclic synthesis are 

examined in Chapter 4. These include the production of an 8-membered ring analogue 

of the potent benzodiazepine therapeutic Alprazolam55  and epoxy-bridged benzazonine 

and benzazecine derivatives. 

Studies on the development of a four atom ring expansion by the rearrangement 

of 1-cyclopropylisoquinoline N-ylides and N-oxides are presented in Chapter 5. 
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CHAPTER 2 

REARRANGEMENTS OF 1-VINYLIC 
TETRAHYDROISOQUINOLINE N-YLIDES 

2.1 	 Introduction 

The absence of reported work on the synthesis of benz-fused N-heterocycles 

by ring expansion technology utilising the [2,3] sigmatropic rearrangement of allylic 

N-ylides was noted in Chapter 1. In view of this deficiency it was decided to 

investigate the rearrangements of 1-vinylic-tetrahydroisoquinoline N-ylides (Figure 

2.1). It was anticipated that the results of this study would be applicable to the 

rearrangements of many benz- or other aromatic- ring-fused aza-heterocycles and the 

development of a new synthetic technique for the production of aromatic ring-fused 

medium sized aza heterocycles. 

The isoquinoline-based system was investigated due to the synthetic 

accessibility of the necessary 1-substituted tetrahydroisoquinolines and the potential 

for the development of a new route to highly functionalised 3-benzaz,onine derivatives. 

The present methods available for the synthesis of 3-benzazonines are limited and are 

summarised in Section 2.2. Functionalised 3-benzazonines are desirable as 

precursors for the synthesis of other 3-benzazonine derivatives and the full evaluation 

of the pharmaceutical potential of this heterocyclic system. In addition, it was 

anticipated that the 1-vinylic isoquinoline system would allow the investigation of the 

competition between the [2,3] and [1,2] rearrangement pathways. It was reasoned 

that this competition would provide a sensitive indicator of the reaction variables either 

beneficial or detrimental to the [2,3] rearrangement and aid in the development of this 

synthetic approach. 

In this study it was proposed to investigate, in particular, the effects of the 

reaction temperature, olefinic substituents, R1,2, and ylide stabilising groups, R 3, on 

the course of the N-ylide rearrangements (Figure 2.1). The olefinic and ylide 
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substituents shown were suggested for study. It was anticipated that this series would 

be modified according to the synthetic accessibility of the required compounds. The 

olefinic substituents were selected to allow the investigation of stereoelectronic effects 

on the [2,3] sigmatropic transition state. The ylide substituents were selected 

primarily to examine the effect of the electron delocalising, and thus radical stabilising, 

nature of these groups. 

R " 2 from H, Me, Br, I, CN, CO2Et or Ph. 
R3 from H, CO2Et, COPh or CN. 

Figure 2.1 
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2.2 	Review of 3-Benzazonines 

Derivatives of the 3-benzazonine ring system were first reported 56  upon the 

degradation of alkaloids from the seeds of Erythrina species. The vast majority of the 

limited subsequent synthetic reports 57,58,59  have used the ring destruction of reduced 

pyrrolo[2,1-a]isoquinolines to provide access to this system. A variety of techniques 

were developed that provided the necessary heterolytic cleavage of the benzylic C-N 

bond. The Emde-type reduction 60,61,62  of pyrroloisoquinolinium salts with sodium 

or lithium and liquid ammonia, as exemplified by the conversion 63  of 29 to 30, 

provided 3-benzazonines in good yields. The similar treatment of the N-oxide 31 

with an alcohol as the proton source gave 64  the secondary amine 32. 

Li, NH3 (1) 

 

29 R, R I  = Me, H 
	 30 

Ph, H 
Ph, OMe 

Me0 

Me0 

Li, NH3 (1) 

ROH 

31 
	 32 

Cleavage of the pyrroloisoquinolines 33 was achieved photolytically65  with 

concurrent solvolysis, allowing the synthesis of the 7-methoxy or 7-hydroxy 

derivatives 34. In a similar technique, cyanogen bromide in the presence of a 

hydroxylic solvent promoted the ring cleavage and solvolysis of the quatemary salts 

35 to the 3-carbonitriles 36 in good yields.66  These induced-solvolysis methods 
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were extended to the production of benzoxazonine and benzoxazecine derivatives in 

good yields (Sections 3.2 and 5.2). 

The elimination reactions of pyrroloisoquinolinium salts, such as the Hofmann 

elimination67 , have provided several examples of unsaturated 3-benzazonines. The 

chloroformate ester-induced elimination of the 10b-methyl derivative 37 gave 

selectively the exocyclic olefin 38.62  Cyanogen bromide-induced elimination of the 

10b-phenyl derivative 39 gave 40, the only reported 2,3,4,5-tetrahydro-1H-3- 

benzazonine. 68  

Ph 	 Ph 

oco2Et 

37 
	 38 
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Only three reports have appeared on accessing the 3-benzazonine system by 

non-ring destruction methods. The N-chloroacetamide 41 cyclised 69  to the lactam 42 

on photolysis in low yield. The scope of this reaction appears limited. Similarly, ring 

expansion70  of the secondary amino acid 43 gave the 1,2-dihydro-3-benzazonine 44 

in only low yield. The Stevens rearrangement afforded the successful ring expansion 

of the 2-benzazocines 45 to the 3-benzazonines 46 in good yield. 29  

COCH2C1 
I 

NH / 
(CH2)4  

hv, MeCN 
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	CO2Me 

 

2.3 	Rearrangement of 2-Ethoxycarbonylmethyl-1-vinyl- 

tetrahydroisoquinoline Derivatives 

A preliminary investigation of the rearrangement of simple 1- 

vinyltetrahydroisoquinolines N-ylides was conducted in the presence of an ester ylide 

stabilising group. The N-ylides were derived from N-methyl derivatives by 
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deprotonation with base. The ester ylide stabilising group was adopted as the 

'standard' ylide substituent throughout this work due to its synthetic availability, via 

the N-allcylation of the appropriate amines with ethyl bromoacetate, and the acidity of 

the methylene protons of the N-ethoxycarbonylmethylene group. The rearrangement 

was investigated with both N-methyl and N-benzyl derivatives. The latter system was 

investigated for the purpose of examining the subsequent hydrogenolysis of any N-

benzy1-3-benzazonines formed, a reaction which would provide access to 3- 

benzazonines with the synthetically useful secondary amino group present. 

2.3.1 Synthesis of the Precursor Quaternary Salts 

The 3,4-dihydroisoquinoline 47 was prepared by a modification of the 

standard Bischler-Napieralski cyclisation technique 71  and then converted to the 

iminium halides 48. Conducting the Grignard reaction of 48a with vinylmagnesium 

bromide by the conditions published 72  for the reaction of vinylmagnesium bromide 

with 6,7-methylenedioxy-3,4-dihydroisoquinolinium iodide, involving refluxing in 

tetrahydrofuran, gave the 1-vinylisoquinoline 49a in only 38% yield. A 1:1 mixture 

of the isomeric 6-hydroxy-7-methoxy- and 7-hydroxy-6-methoxy-2-methyl-l-vinyl-

1,2,3,4-tetrahydroisoquinoline compounds was also isolated in 31% yield. This 

mixture was identified by spectroscopic means and by conversion to 49a on reaction 

with diazomethane. Conducting the Grignard reaction at low temperature avoided the 

0-demethylation. Thus, adding 48 to a solution of four equivalents of the Grignard 

reagent in tetrahydrofuran at low temperature (-50°C) then stirring the mixture for 

10-20 hours with warming to room temperature provided, after workup, the 1- 

vinylisoquinolines 49 as crystalline solids in high yields. 

Compounds 49 were fully characterised by elemental analysis and 

spectroscopic techniques. The presence of the 1-vinyl group was clearly indicated by 

a base peak at (M-27)+ in the mass spectrum and a set of characteristic signals in the 

1 H and 13C NMR spectra (Figure 2.2). 
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b: R = Bz 

Figure 2.2 13C and 1 H (italics) NMR spectral assignments for 49a 

Allcylation of 49 with ethyl bromoacetate at room temperature provided, in 

good yields, the quaternary amine salts 50 as hygroscopic solids. The allcylation of 

49a proceeded very rapidly in neat ethyl bromoacetate, while the allcylation of 49b at 

room temperature required nineteen days for the satisfactory conversion of 49b to 

50b. Although this reaction was very slow a clean crystalline product was obtained. 

The attempted quaternization of 49b at elevated temperatures, or with ethyl 

iodoacetate in acetonitrile, provided either no reaction or degradation of the amine to 

highly coloured material. 

The quaternary salts 50 were mixtures of the possible trans and cis B-ring 

diastereomers and were identified primarily by NMR analyses. The 1 H NMR spectra 
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of the diastereomeric mixtures were complex and difficult to interpret, however, the 

13C NMR spectra afforded rapid confirmation of the proposed structures. Two-

dimensional COSY experiments and the examination of materials containing different 

levels of the trans and cis isomers enabled the assignment of the respective NMR 

signals for the isomers of 50a (Table 2.1). The proportions of the isomers were 

determined by comparing the 1 H NMR peak areas of the corresponding protons. A 

considerable preference, approximately 2.3-3:1, was observed for the formation of 

one isomer at room temperature. 

 

BrCH2CO2Et 
Me0 

49 

  

20-25°C Me0 

50 a: R = Me 70:30 clr 
b: R = Bz 75:25 dr 

Table 2.1  NMR Shifts of the Trans and Cis Diastereoisomers of 50a 

1H NMR trans cis 13C NMR trans cis 

H1 6.05-6.01 5.73-5.64 Cl 73.50 73.31 

H1' 6.05-6.01 6.10-6.01 Cl' 129.79 131.06 

H2 6.26-6.24 5.73-5.64 C2' 130.15 127.48 

H2' 5.85-5.81 5.73-5.64 NCH2C0 58.44 60.76 
NCH2C0 5.11 d 5.37 d NCH3 47.52 46.41 
NCH2C0 4.69 d 4.39 d C3 54.83 55.69 

NCH3 3.55 3.70 
113 4.49-4.41 4.83-4.75 
H8 6.53 6.44 

The quaternization of 1-substituted-1,2,3,4-tetrahydroisoquinolines was 

reported 73,74  to proceed preferentially by attack trans to the 1-substituent. The 

chemical shifts of the N-methyl groups on the resultant trans 2-alky1-2-methy1-1- 

phenyl-1,2,3,4-tetrahydroisoquinolinium salts were upfield of the cis isomers. As the 
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major isomer of 50a exhibited a chemical shift for the N-methyl protons upfield of 

that for the minor isomer (3.55 8 cf. 3.70 8), the major isomer was assigned the trans 

configuration. This assignment was supported by experiments which confirmed that 

the N-methyl group in the trans-N-oxide 128a had a chemical shift upfield of the cis-

N-oxide. Definitive assignment of the identity of the diastereomers of 50a was 

sought, however, as piperidine derivatives were reported75  to undergo N-alkylation 

preferentially by axial approach of the alkylating agent, a process which would 

provide predominantly the cis isomer of 50 by alkylation of the low energy conformer 

of 49 with the vinyl group equatorial. Nuclear Overhauser experiments were 

conducted on 50a but the complexity of the proton spectra prevented the confident 

assignment of the interactions observed. Similar experiments on the methiodide salt 

54a failed to determine conclusively the position of the N-methyl signals cis and trans 

to the vinyl group. Compound 54a was only slightly soluble in the common 

deuterated solvents and residual non-deuterated solvent peaks interfered with the N-

methyl signals. 

As the trans and cis N-ylides of many heterocyclic systems undergo contrasting 

sigmatropic rearrangements the separation of the diastereomers of 50a was attempted. 

Recrystallisation of a diastereomeric mixture of 50a was examined. It was hoped that 

the trans isomer would be enriched in the crystalline solid. Recrystallisation of 50a 

(transkis=1.70) from ethanol/tetrahydrofuran instead provided a crystalline solid 

(62%, transkis=1.33) and mother liquor (trans/cis=0.67) in which both were depleted 

in the trans isomer. Recrystallisation of the first crop provided a similar result with 

the level of the trans isomer reduced in both the crystalline solid (65%, 

trans/cis=1.12) and mother liquor (trans/cis=0.60). These results were replicated 

over several experiments and indicated a mechanism for the conversion of trans-50a 

to cis-50a existed, with the cis isomer favoured as the thermodynamic product. The 

interconversion of the isomers was rationalised by proposing a reversible N-

dealkylation promoted by the bromide ion. 
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The selectivity of the N-alkylation of 49a in neat ethyl bromoacetate was 

examined. The reaction was temperature dependent, but neither diastereomer could be 

produced selectively. At -15°C and 110°C respectively 4:1 and 1:1 mixtures of trans 

and cis-50a were obtained. It was reasoned that the elevated temperature increased 

the population of a high energy conformer of 49a, from which the cis isomer was 

formed by attack with the alkylating agent. The reaction of 49a with ethyl 

bromoacetate in acetonitrile at room temperature afforded a precipitate which was 

found to be enriched in trans-50a (trans/cis=9.0) to a degree sufficient for the 

analysis of later rearrangements. 

2.3.2 Modelling of the Concerted Transition States 

The concerted transition states possible for the N-ylides 51 and the analogous 

N-oxides 123 were modelled to predict: (i) whether the cis and trans isomeric salts 

could both attain a concerted transition state, (ii) the likely stereochemistry of any 

concerted rearrangement products, and (iii) the effect, if any, of substituents on the 

allylic group. 

Two types of conformers were identified for each diastereomer of 51 by 

consideration of the normal axial/axial, equatorial/equatorial, and axial/equatorial 

arrangements of the low-energy distorted chair conformation for the isoquinoline ring. 

An additional criterion, the rotation of the 1-vinyl group, provided four 

conformational minima for each diastereomer of 51 (Figure 2.3). Clearly, the 

axial/axial trans-systems I and II were unsuitable for the formation of a five-centre 

concerted transition state. The energy and geometry of the remaining conformers III-

VIII were modelled using PCModel (Table 2.2), a molecular mechanics based 

computer modelling system. 76  The cis-conformer V. in which the ylide component 

was axial, possessed both the lowest energy and the lowest minimum distance 

between the ylide carbanion and C2', making this the most favoured conformation for 

a concerted rearrangement. The trans-conformer III by comparison attained a less 

favourable geometry. As III was not significantly different to the structure achievable 
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in the trans-2-vinylpiperidine-N-ylides, which were reported 42  to undergo the [2,3] 

rearrangement, it was proposed that both the cis and trans diastereomers of 51 would 

undergo the [2,3] sigmatropic rearrangement. It should be noted, however, that the 

PCModel studies were for the molecules in vacuo and no solvent interactions were 

modelled. 

Table 2.2  Data from PCModel for the N-Ylide Conformers of 51a 

Structure I 	Hf a I 	Dx..c2' b 1 min.X-C2' c  

III 1.36 3.56 2.90 
IV 1.75 3.89 - 
V 0.00 3.98 2.55 
VI 1.06 3.63 2.63 
VII 1.98 3.32 - 
VIII 2.28 3.72 - 

a energy above that of V at Hf=79.58 (kcal) 
b distance from C -  to C2' at the energy minimum (A) 

the minimum distance between C -  to C2' upon rotation of Cl-C1' (A) 

The configuration of the developing olefinic bond and stereoselectivity of the 

[2,3] sigmatropic rearrangement of a-substituted-allylic-N-ylides was discussed by 

Marko. 10  The five-centred transition state was assumed to adopt a conformation 

similar to the 'folded envelope' conformation of cyclopentane. In this system the E-

isomer will be formed if the a-substituent is in a psuedo-equatorial position, and the 

Z-isomer if the a-substituent is psuedo-axial (Figure 2.4). Following this technique 

the conformers III-VIII were assigned as pro-E or pro-Z structures (Figure 2.3). 

These results clearly indicated that the major products of the N-alkylation, the 

trans-salts 50, would undergo base promoted concerted rearrangements 

stereoselectively to the E double bond derivatives via the conformers III and IV. The 

stereoselectively of the [2,3] rearrangement of the trans-salts, although possibly not 

the rearrangement type, would be independent of the substituents present on the vinyl 
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Figure 2.3 Conformational minima for 1-vinylisoquinoline N-ylides 51 (X=CHR) 
and N-oxides 123 (X=0). The 6,7-methoxy groups are omitted for clarity 

pro-E 
R transition 

state 

pro-Z 
transition 
state 

Figure 2.4 Folded cyclopentane geometry of the allylic-N-ylide (Y=NR2) transition state 
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group. The cis-salts of 50 were also expected to undergo preferentially a [2,3] 

rearrangement to the E-benzazonines, as the lower energy pro-E conformers, 

particularly V in which the equatorial nature of the vinyl group was maximised, 

would predominate over the higher energy pro-Z conformers. 

After consideration of the conformers V and VII it was proposed that a 

substituent on the olefinic group at Cl' would reverse the relative energies of these 

conformers, allowing access to significant amounts of the Z-benzazonine derivatives 

from the cis-salts. The bulky Cl' substituents in the cis-salts could be accommodated 

preferentially in the equatorial position provided by conformer VII. This proposal 

was supported by modelling several C l'-substituted-N-ylide derivatives in 

conformations analogous to V and VII (Figure 2.5). 

Me0 

Me0 

Me 	Ph 	t-Bu 

Figure 2.5 The energy difference between conformer types V and VII with Cl' substituents (R) 

2.3.3 Formation and Characterisation of 3-Benzazonine Derivatives 

The detection of all possible rearrangement products from this rearrangement, 

and others examined in this work, was ensured by an initial purification to a 

'rearranged fraction', containing the non-polar compounds which eluted rapidly 

through an alumina column with dichloromethane/20% light petroleum. This fraction 

was then analysed by t.l.c., NMR and GC-MS techniques. Where mixtures were 

present the proportions of the compounds were determined from 1H NMR peak areas. 

Residual polar salts were retained on the column while traces of the precursor bases 

49, if present, generally eluted with dichloromethane/5% light petroleum. 
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Treatment of the 1-vinylisoquinolinium compounds 50 in acetonitrile at room 

temperature with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), a non-nucleophilic 

base, gave the [2,3] sigmatropic rearrangement products, the 2,3,4,5-tetrahydro-1H-

3-benzazonines 52, in excellent yields (Table 2.3). The rearrangement was assumed 

to proceed via the allylic-N-ylides 51. The E-benzazonines were obtained almost 

stereoselectively, as predicted (Section 2.3.2). The N-benzyl derivative E-52b was a 

colourless oil which required no further purification as the Z-isomer was not detected. 

In contrast, NMR analysis of the N-methyl benzazonine fraction 52a revealed the 

presence of a minor amount of the Z-isomer (E/Z ratio = 19). The isomers of 52a 

were separated to give E-52a as a colourless waxy solid and Z-52a as a colourless 

oil. The structures were confirmed primarily by spectroscopic means. All data was 

consistent with the proposed structures. 

Over a temperature range between -40°C and 82°C the rearrangement products 

from 50a were almost unchanged (Table 2.3), with the [2,3] sigmatropic 

rearrangement occurring preferentially. The results confirmed the anticipated low 

energy requirement of the [2,3] concerted pathway when compared to the diradical 

mechanism of the [1,2] rearrangement. At the highest temperature the Stevens 

rearrangement product, the 1-vinyl-3-benzazepine 53a, was observed in low yield. 

The stereoselectivity of the [2,3] rearrangement was slightly reduced at high 

temperature (E/Z = 10.0). At -40°C the reaction was complete in six hours. The 

rearrangement of 50a to 52a proceeded satisfactorily in tetrahydrofuran, however, 

the precursor salts were only partially soluble in this solvent. Acetonitrile was used 

subsequently. 

The observed stereoselectivity of the [2,3] rearrangement was rationalised in 

Section 2.3.2. The yields of 52 apparently confirmed that both the diastereomeric 

salts of 50 could undergo the concerted rearrangement. However, in one reaction of 

50a (trans/cis=3 .0) where DBU was the limiting reagent (0.7 equivalents) the alumina 
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50 

 

CO2Et 

co2Et 

— 
a: R = Me 
b: R = Bz 

 

Table 2.3  Rearrangement Conditions and Products from 50 

Product Distributionb (%) 
Reaction Total % E-52 Z-52 53 

Reactant Temp (°C) Yielda 
50a -40 86 95 

In
 tn

 O
N

 1 

- 
0 90 95 - 

II 82 70 87 4 
50b 25 93 100 - 

a yield to a non-polar rearranged fraction 

b from 1 H NMR integrals 

column was stripped with ethanol and the residual salts examined. The cis 

diastereomer of 50a was recovered exclusively, suggesting either a substantial 

difference in the reaction rates of the diastereomeric salts or the rapid interconversion 

of trans-50a to cis-50a by reversible deprotonation at the benzylic Cl position. The 

interconversion of a-vinyl-S-allyl sulfonium salts 39,42  by DBU is known, while 

conversion of trans-50a to cis-50a occurred during the recrystallisation of 50a 
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(Section 2.3.1). Thus the [2,3] rearrangement could conceivably have occurred solely 

via cis-50a. Some support for this proposition was provided by the observation that, 

although a variety of diastereomeric mixtures of 50a (from translcis=9.0 to 

tratzslcis=1.0) were rearranged in this work, the product ratio of E to Z-52a was 

constant. The accuracy of the measurement technique, using 1 H NMR integrals with 

low levels of the Z-isomer, however, suggests caution in the interpretation of these 

results. 

The 1 H NMR (Figures 2.6 and 2.7) and 13C NMR (Figure 2.8) spectra of E 

and Z-52a were assigned unambiguously by nuclear Overhauser and two dimensional 

homo- and heteronuclear decoupling experiments. The magnitude of the H6-H7 

coupling constant gave the identification of each isomer. Compound E-52a displayed 

a doublet for H7 at 6.43 8, with a coupling constant of 16.1 Hz, while the Z-52a 

isomer displayed a doublet for H7 at 6.67 8, with a coupling constant of 10.7 Hz. 

The assignment of the isomers was confirmed by a nuclear Overhauser effect (n0e) 

between H5 and H7 for E-52a, and not Z-52a, and the upfield position of CS at 

32.63 8, compared to 36.32 8, in the Z-isomer. The 3-benzazonines displayed 

characteristic multiplets at 5.8-5.5 8 and 3.6-3.4 8, for H6 and H4, and two olefinic 

13CH peaks between 135-130 8 for C6 and C7. 

The mass spectra of 52 displayed a base peak at M-73 as the only prominent 

ion, apart from the benzyl ion at m/z 91 for 52b. The base peak was consistent with 

the loss of the ethoxycarbonyl side chain and formation of a cyclic iminium ion. 

Substantial difficulties were encountered in this work with the separation and 

purification of the E and Z 3-benzazonine isomers. Although analytical t.l.c. 

demonstrated separation of the isomers of 52a the E-benzazonine was degraded by 

p.t.l.c. or column chromatography on silica, with the formation of polar material. The 

Z-benzazonine was, however, recovered successfully. Analysis of the 1 H NMR 

spectrum of the polar material indicated several quaternary salts were formed by the 

degradation of E-52. It was proposed that the pyrrolo[2,1-a]isoquinolinium salts 54, 
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Figure 2.6 1H NMR spectrum and assignments for the E-isomer of 52a in CDC13 
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Figure 2.7 11-1 NMR spectrum and assignments for the Z-isomer of 52a in CDC13 
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Figure 2.8 13C NMR Assignments for the Isomers of 52a 

were formed by a transannular reaction of the nitrogen and olefin groups under the 

acidic conditions. Attempted purification of 52a by p.t.l.c. on alumina, or silica 

slurried with 0.5M potassium hydroxide, however, also resulted in the degradation of 

E-52a. 

H+  
E-52a 

CO2Et 

With the failure of the standard chromatographic techniques to provide purified 

E-52a, several alternative methods of purification were examined. Sublimation under 

high vacuum at 95°C proved an effective means for providing highly purified 52a, 
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but the product, a colourless waxy solid (m.p. 90-92°C), remained a mixture of the 

isomers. 

The reverse phase HPLC analysis of 52a on a C18 column with an unbuffered 

system of acetonitrile/20% H20 provided baseline resolution of-the E and Z isomers. 

The Z-isomer exhibited a more polar nature and eluted prior to the E-isomer. The 

method was scaled-up to a semi-preparative scale (50-100 mg applications l and 

successfully provided the pure E and Z isomers of 52a, with an excellent recovery of 

material. The isolated yields were in agreement with the proportions determined by 

1 H NMR analysis. Modifications of this preparative HPLC method were invaluable 

for the isolation of the isomeric, often unstable, unsaturated 3-benzazonines, or other 

medium-ring heterocycles, produced from the various rearrangements throughout this 

work. 

The present results clearly indicated the rearrangement of 2- 

ethoxycarbonylmethyl- 1-vinylisoquinoline-N-ylides 51 could provide a good route to 

2,3,4,5-tetrahydro-1H-3-benzazonine derivatives. 

2.3.4 Conformational Modelling of 2,3,4,5-Tetrahydro-1H-

3-Benzazonines 

The large difference in the stability of the E and Z-isomers of 52a reflected 

differences in the ring strain incurred by the double bond. The inclusion of a E double 

bond in a medium-ring heterocycle would be expected to become difficult as the ring 

size decreases. Derivatives of the eight-membered azacyclooct-4-ene system 41  

exhibited a similar behaviour to the tetrahydro-3-benzazonines with the E-isomers, but 

not the Z-isomers, degraded on silica gel. Derivatives of the larger nine-membered E-

azacy clonon- 4-ene system42  were stable on silica, indicating that, as expected, the 

fused aromatic ring of E-52a must also contribute to ring-strain. Hand-held models 

confirmed E-52a would experience substantial ring strain. 

The conformations available to the parent E- and Z-2,3,4,5-tetrahydro-1H-3- 

benzazonines were investigated with PCMode1. 76  It was envisaged that a knowledge 
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of these conformers would aid in the rationalisation of the chemical behaviour and the 

possible CNS activity of derivatives based on these systems. It should be noted that 

substituents on these parent derivatives, such as the N-methyl and 4- groups of 52a, 

would be expected to affect the relative energies and populations of these conformers. 

It was assumed, however, that the global minimum would still be based on one of the 

identified conformers. 

Five low energy conformations were identified for each of the E- and Z-

2,3,4,5-tetrahydro-1H-3-benzazonines (Tables 2.4 and 2.5). The structures which 

are not shown in either Figures 2.9, 2.11 or 2.12 are included in Appendix A. The 

Boltzmann distribution afforded the expected populations of the respective conformers 

at 293 K. The relative positions of the aromatic and nitrogen moieties were calculated 

to describe each conformer. 

The five conformers identified for the parent E-benzazonine were within 3 kcal 

of the global minimum (Table 2.4). Conformer 1 (Figure 2.9) would be predominant 

(85%) at room temperature, however, any of the five conformers could contribute 

significantly to the chemical and potential CNS activity. These conformers generally 

possessed structures in which the medium ring adopted a non-folded, planar, 

conformation, as expected for a medium-ring incorporating a trans-double bond. In 

conformers 1, 3, and 4 the nitrogen atom was only slightly removed (<0.8 A) from 

the plane of the aromatic ring. The E-benzazonine system therefore may be useful as 

an alternative to other ring systems, such as that in the serotonin receptor ligands (+)- 

lysergic acid diethylamide (LSD) and R-0-10-methyl-11-hydroxyaporphine (MHA) 

(Figure 2.10), which constrain the nitrogen atom near the aromatic ring plane by a 

composite of small rings. 77  In support of the proposed transannular degradation of E-

52a to 54 both conformers 1 and 2 possessed structures in which the nitrogen and C7 

olefin atoms were in close proximity. 

The 1H NMR analysis of the 3,4,5-trisubstituted-3-benzazonine E-87b (pg. 

63-64) in chloroform suggested that conformer 4 (Figure 2.9) was adopted by the E-

benzazonine system in this relatively non-polar solvent. 
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(a) 

(b) 

Figure 2.9 Three perspectives of (a) conformer 1 and (b) conformer 4 for the 

E-benzazonine system 
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Table 2.4  Low energy conformations of the E-benzazonine system 

I conformer I 	E (kcal) I 	Hf 	[ Populationa 1N-elevationb IN-Ar planate 

,',  
(

.4
  

C
rl
 N

I' 	
V

I 

34.02 47.92 85.3% 0.74 4.73 
35.48 47.69 7.3% 1.49 4.24 
35.90 49.28 3.6% 0.79 5.08 
36.22 48.50 *2.0% 0.70 4.95 
36.31 50.57 1.8% 2.09 3.72 

a from the Boltzmann distribution at 293 K 
b distance of N above the aromatic plane (A) 
C distance of N from the aromatic centre in the aromatic plane (A) 

Figure 2.10 Several CNS active agents with constrained phenylethylamine components 

Of the five lowest energy conformers identified for the parent Z-benzazonine 

system three were within 1 kcal of the global minima (Table 2.5). These conformers 

(Figures 2.11 and 2.12) may all be significantly populated at room temperature, 

however, only one conformer of Z-52a was observed on NMR analysis. It was 

assumed that solvent or substituents effects had produced a preference for one of these 

conformers. The X-ray crystallographic analysis of the 3,4,6-trisubstituted Z-

benzazonine Z-75b (Figure 2.14, pg. 53) confirmed that a structure based on 

conformer 1 was adopted in the solid state for the Z-benzazonine system. 

The low energy conformers identified for the Z-benzazonine system were 

comparatively folded structures, with the nitrogen atom displaced from the aromatic 
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plane by 1.7-2.4 A. The Z-benzazonine system therefore may be useful as an 

alternative to other ring systems, such as that of morphine 6  (Figure 2.10), which place 

the nitrogen atom out of the aromatic ring plane. 

Table 2.5 Low energy conformations of the Z-benzazonine system 

conformer I E (kcal) I 	Hf I Populationa I N-elevationb IN-Ar planarc 

,--I 	
••i
 e

n
 d-  

In
 

l'  

27.35 41.16 61.3% 1.75 4.36 

27.95 42.30 22.2% 2.24 3.54 

28.13 42.56 16.4% 2.41 3.04 

31.94 45.40 <0.1% 1.91 4.50 

32.34 46.22 <0.1% 	_ 2.42 2.58 

a from the Boltzmann distribution at 293 K 

b distance of N above the aromatic plane (A) 

c distance of N from the aromatic centre in the aromatic plane (A) 

Figure 2.11 Three perspectives of conformer 1 for the Z-benzazonine system 



(a) 

37 

(b) 

Figure 2.12 Three perspectives of (a) conformer 2 and (b) conformer 3 for the 

Z-benzazonine system 
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The isomers of 52a were examined exhaustively by NMR techniques, 

including two-dimensional nOe analysis (NOESY), in an attempt to determine the 

conformations adopted by these derivatives in solution. The 111 and H2 protons, 

however, were not resolved to a degree permitting the confident assignment of 

transannular nOe effects with the H5, H6 or H7 protons, and the conformers of E and 

Z 52a were not identified. 

2.4 	Effect of the Ylide Stabilising Group on 
the [2,3] Rearrangement 

2.4.1 Attempted Generation and Rearrangement of N-Methylene Ylides 

with Lithium Diisopropylamide 

Although electron-withdrawing, potentially ylide-stabilising, groups are 

typically incorporated to facilitate the formation of N-ylides, strong bases have 

promoted the formation and rearrangement of the unstabilised methylene N-ylides. 

The reaction of N-benzyl-N-methy1-2-vinylpiperidinium iodide with lithium 

diisopropylamide (LDA) afforded42  the [2,3] and [1,2] rearrangement products via a 

methylene N-ylide. The analogous reactions of the isoquinolinium salts 55 were 

investigated in this work. 

a: R = Me 
b:R=Bz 

• LDA 
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The N-allcylation of 49 with iodomethane afforded 55a,b. Compound 55a 

exhibited signals for the two N-methyl groups at 3.59 and 3.36 8 in the 1 H NMR 

spectrum. The signals were attributed to the N-methyl groups occupying the cis and 

trans positions with respect to the 1-vinyl substituent. Compound 55b was a 54:46 

mixture of the B-ring diastereomers. 

Treatment of 55 with LDA at -20°C in tetrahydrofuran afforded the Hofmann 

elimination products, the ring-opened diolefins 56, in good yield. No [2,3] or [1,2] 

rearrangement products were detected. The spectroscopic characteristics of the 

diolefins were consistent with the proposed structures. Two-dimensional NMR 

correlation experiments confirmed the presence of the separate vinylic and allylic 

moieties of 56. 

2.4.2 Rearrangement of an N-Methylene Ylide Generated by a 

Fluoride-Catalyzed Desilylation 

Alternatives to the generation of N-ylides by the deprotonation of ammonium 

salts are known. 10  In particular, the direct generation of N-ylides from the reaction of 

a carbene, typically from a diazonium salt, with an amine lone-pair has attracted 

widespread use. 78  A method for the specific generation of methylene N-ylides by the 

desilylation of trimethylsilylmethyl ammonium salts with cesium fluoride was 

developed79,80  and applied recently 81-83  in investigations of the Sommelet-Hauser 

rearrangement. The application of this method to the synthesis of the 4-unsubstituted 

3-benzazonine 61, via the methylene N-ylide 60, was investigated. 

Preparation of the trimethylsilylmethyl ammonium precursor 59 was attempted 

via treatment of the N-methyl amine 49a with iodomethyltrimethylsilane, but without 

success. Little reaction was observed. It was concluded that the large steric bulk of 

the alkylating agent Prevented access of the reagent to the lone-pair of the tertiary 

amine. An alternative approach to 59, via the reaction of trimethylsilylmethyl 

trifluoromethanesulfonate with the secondary amine 57 and alkylation of the resultant 

trimethylsilylmethyl amine 58 with iodomethane, was examined. 
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Compound 57 was obtained in moderate yield by the direct action of 

vinylmagnesium bromide on the imine 47. Other examples of the direct reaction of 

alkenylmagnesium halides with Schiffs bases of type C6H5CH=NR, rather than their 

iminium salts, are known84  but are rare. The reaction was conducted in a diethyl 

ether/tetrahydrofuran mixture as the basicity of tetrahydrofuran was reported 84  to 

provide reduced yields in reactions of this type, but 47 was insoluble in diethyl ether 

alone. Reaction at room temperature over 24 hours gave, surprisingly, a 1.4:1.0 

mixture of 57 and the N-methyl compound 49a. Subsequent experiments confirmed 

the formation of 49a reached significant levels only with reaction times above four 

hours. A reaction time of 3.5 hours afforded 57 in 33% yield free of 49a and 

eliminated the need for a lengthy purification of 57. 
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The reaction of trimethylsilylmethyl trifluoromethanesulfonate with 57 in 

acetonitrile at room temperature afforded 58 in good yield. 1 H NMR analysis 

revealed the NCH2Si protons at 2.39 and 1.78 8 with geminal coupling (14.7 Hz) 

while the silylmethyl protons absorbed at 0.07 8. Quatemization of 58 with 

iodomethane in acetonitrile at 60°C afforded 59, a crystalline solid, as a 51:49 mixture 

of the cis and trans B-ring diastereomers. 

The reaction of 59 with cesium fluoride was conducted in dimethylformarnide 

at room temperature. The method was adapted from that described by Sato et. a/.81  A 

single non-polar product was isolated and identified by spectral analyses as the desired 

[2,3] rearrangement product, the E-2,3,4,5-tetrahydro-/H-3-benzazonine 61 (30% 

yield). The 4-unsubstituted 3-benzazonine derivative exhibited a 13C NMR resonance 

at 61.08 8 for C4. 

A polar solid was also isolated from the reaction of 59 with cesium fluoride. 

The compound was identified as the N,N-dimethyl salt 55a (59% yield), assumed to 

be formed by the reaction of moisture with the intermediate N-ylide 60. The high 

yield of 55a was surprising as all efforts were made to exclude moisture from the 

reaction. Time constraints prevented the repetition of the experiment to obtain an 

improved yield of 61. 

2.4.3 Rearrangements of Nitrile and Benzoyl Stabilised N-Ylides 

Quatemization of the tertiary amine 49a with iodoacetonitrile or phenacyl 

bromide in butanone at room temperature afforded the isoquinolinium salts 62a,b 

possessing the electron-withdrawing nitrile and benzoyl groups. Mixtures of the 

possible B-ring diastereomers were obtained. The stereoselectivity of the reaction was 

greater to 62b (78:22 d.r.) than 62a (53:47 d.r.). In each case the major isomer 

exhibited a more upfield shift of the N-methyl signal in the 1 H NMR spectrum and 

was assigned the trans-stereochemistry. 

The DBU-promoted rearrangements of 62 were examined at a variety of 

temperatures in acetonitrile. The results are summarised in Table 2.6. 
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Table 2.6  Rearrangement Conditions and Products from 62 

Product Distributionb (%) 	, 

Reactant 
Reaction 
Temp (SC) 

Total % 
Yielda 

E-63 Z-63 64 
major 

64 
minor 

62a 

6 2 b 
II 

II 

25 
82 

-30 
0 
25 
65 

84 
62 
71 
84 
66 
54 

78 
80 
94 
91 
89 
- 

‘°
  0

0  
■0

  
ts-  

Cn  
I  

■-
i 6 

12 
- 
2 
8 

78 

- 
- 
- 
- 

'' 

22 

a yield of a non-polar rearranged fraction 

b from 1H NMR integrals 

The treatment of 62a with DBU at room temperature provided, in high yield, a 

rearranged fraction which contained three components observed by 1H NMR analysis. 

The major component was isolated by preparative reverse-phase HPLC and identified 

as the E-benzazonine 63a. Compound E-63a exhibited behaviour similar to E-52a 

and degraded upon silica gel. The two minor components were not isolated but, by 

analogy with the rearrangement of 50a, were tentatively attributed to Z-63a and the 

Stevens rearrangement product 64a. Compound Z-63a exhibited a multiplet at 5.69 

8, consistent with H6 of the proposed structure, while 64a exhibited a 1 H NMR 
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pattern indicative of the 1-vinyl substituent with H1', H2' and H2' assigned to peaks 

at 6.08, 5.11, and 4.78 8 respectively. The rearrangement of 62a with DBU in 

refluxing acetonitrile provided a slight increase in the level of the Stevens 

rearrangement product 64a, however, E-63a remained the dominant product. 

The rearrangements of 62b with DBU in acetonitrile were significantly 

different to those observed from either 50a or 62a. The rearrangement was greatly 

effected by the reaction temperature. At room temperature the reaction afforded the E-

benzazonine 63b as the major product, while at 65°C the B-ring diastereomers of the 

3-benzazepine 64b (3.5:1 d.r.) were obtained. A reaction temperature of -30°C was 

necessary for the completely selective rearrangement of 62b to the isomers of 63b. 

The selective formation of 64b from 62b at high temperature suggested this 

compound was the thermodynamic product, with the less strained 3-benzazepine 

system favoured over the unsaturated 3-benzazonine system. This was confirmed by 

the conversion of 63b to 64b as described in Section 2.9.4. 

The E and Z isomers of 63b were isolated by preparative reverse-phase HPLC 

and characterised spectroscopically. The isomers, yellow oils which darkened on 

storage, exhibited identical mass spectra in which the molecular ion was not observed. 

A base peak at M+.-105 was consistent with the loss of the benzoyl fragment from the 

molecular ion. The E-isomer of 63b exhibited two equally populated conformations 

in the 1H and 13C NMR spectra at 25°C. The conformers reflected hindered rotation 

of the C4-CO bond, rather than conformational flexibility of the medium-ring. Hand-

held models of the 4-benzoyl-E-benzazonine indicated the bulky conjugated benzoyl 

group would adopt a position with the H4-C4-C-0 dihedral angle at either 

approximately 180° or between 0-30°. The latter angle would place the benzoyl ring 

over one face of the heterocycle, at 90° to the molecular plane, and produce the 

downfield shifts of the heterocyclic protons observed in one conformer. Compound 

E-63b was degraded on silica p.t.l.c. 

The diastereomers of 64b could not be separated, however, NMR and MS 

analyses of a purified mixture were consistent with the proposed structures and 
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comparable with the other 3-benzazepines prepared in this work. Typical vinyl 

signals were observed in the NMR spectra. The major isomer of 64b exhibited H1 

and H2 at 4.10 and 4.48 8 in the 1 H NMR spectrum, while C 1 and C2 appeared at 

50.33 and 69.18 8 in the 13C NMR spectrum. 

2.4.4 Rearrangement of an N-Butyrolactone Salt 

The [2,3] or [1,2] rearrangements of allylic bis(methoxycarbonyl)methyl-N-

ylide derivatives are known, 10  however, the rearrangements of few other ylides 

possessing a tertiary carbanionic centre have been investigated. In this work the 

commercial availability of a-bromo-y-butyrolactone, and the possibility of further 

functional group manipulations, prompted an investigation of the potential for the 

synthesis of the unusual spirocyclic 3-benzazonine derivative 66 via the [2,3] 

rearrangement of the butyrolactone salt 65. The rearrangements of N-butyrolactone 

salts do not appear to have been investigated. 

49a 

DBU 

 

 

66 65 

 

The synthesis of 65 proved difficult. Treatment of 49a with a-bromo-y-

butyrolactone in butanone at 50°C for 40 hours provided a tan powder which 

displayed only broad resonances in the 1 H and 13C NMR spectra, possibly due to a 

number of diastereomers being present, and could not be identified. Treatment of this 

material with DBU afforded the precursor 49a and 66, suggesting the original 

alkylation was incomplete. Alkylation of 49a with a-iodo-y-butyrolactone afforded, 
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after column chromatographic purification, a polar fraction attributed to the iodide salt 

of 65 in low (19%) yield. 

Treatment of 65 with DBU gave the lactone derivative 66, the first example of 

this unusual spiro-annulated medium ring heterocyclic system, in low (29%) yield. 

The molecular formula of 66 was confirmed by high-resolution mass spectrometry 

while the NMR spectra were consistent with the proposed structure. The resonances 

of the C5 and NMe carbons in the 13C NMR spectrum (Figure 2.13) were shifted 

respectively 6.1 8 upfield and 5.9 8 downfield compared to those of E-52a (Figure 

2.8) by the proximity of the constrained lactone ring. In several attempts to purify 66 

by preparative reverse-phase HPLC the compound was not recovered, suggesting the 

material was degraded by aqueous solvent mixtures. 

Figure 2.13 13C NMR Assignments for 66 -  

2.4.5 Attempted Formation of a Spiro-ammonium Salt 

Numerous cases of the Stevens rearrangement of Spiro ammonium salts are 

reported in the literature. The [2,3] rearrangement of these systems, however, appear 

to be unknown. It was proposed that the [2,3] rearrangement of the ylide derived 

from the Spiro ammonium salt 68 may provide the unknown 1,4-oxazino-3- 

benzazonine derivative 69. The preparation of 68 was thus investigated. 

2-Chloroethyl bromoacetate was synthesised by the reaction of bromoacetic 

acid with 2-chloroethanol. The reaction of this ester with 57 gave the proposed 

precursor amine 67 in moderate yield. It was envisaged that an intramolecular 

quaternization of 67 to 68 would occur over potassium or sodium iodide, following 
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halide exchange. The synthesis of 68, however, was not achieved despite 

investigation of the reaction in acetone, butanone, or acetonitrile, at temperatures 

between 25°C and the boiling points of these solvents. In each case the majority of 

67 was recovered. Any polar material formed contained many components. The 

failure to achieve the synthesis of 68 prevented the proposed examination of the 

rearrangements of this spiro ammonium salt. . 

2.4.6 Discussion of the Effect of the Ylide Stabilising Group 

The ylide-stabilising group had little effect on the rearrangement pathway 

adopted at room temperature, but a substantial effect on the reaction pathway at higher 

temperatures. The results were consistent with the currently accepted concerted and 

diradical mechanisms for the [2,3] and [1,2] rearrangements respectively. In all cases 

the low-energy concerted [2,3] rearrangement occurred preferentially at low 

temperature. Clearly none of the ylide substituents investigated (hydrogen, ester, 

nitrile, benzoyl, lactone) lowered the activation energy of the high-energy [1,2] 

rearrangement sufficiently to allow substantial rearrangement via this pathway at low 

temperature. At high temperature, however, the selectivity of the rearrangement 

reflected the radical stabilisation offered by the ylide substituent. Thus the extra 

radical stabilisation offered by the benzoyl substituent in 62b enabled the selective 
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[1,2] rearrangement of this derivative. The nitrile and ester substituents did not afford 

significant [1,2] rearrangement, even at high temperatures, and should be used 

preferentially in future applications of the [2,3] rearrangement to the synthesis of 

fused medium-ring aza-heterocycles. 

The Hofmann elimination from 55 with LDA reflected the acidic nature of the 

C4 benzylic proton 3 to the amino group in this fused aromatic derivative. The results 

were not surprising given the acidic nature of H4, the strong base used, and the 

absence of a group promoting the formation of the desired N-ylide. Similar results are 

likely to be encountered with other aromatic-fused systems, particularly those 

containing an arylethylamino component. The present results indicated that an ylide-

stabilising group was necessary for the successful [2,3] rearrangement of an aromatic-

fused system when generating the N-ylide by deprotonation of a precursor salt. 

The [2,3] rearrangements of the various ylide-substituted 1-vinylisoquinoline 

derivatives demonstrated the synthetic potential of this pathway to the 3-benzazonine 

system. A variety of functionalised 4-substituted 3-benzazonines were prepared 

which could be useful for the preparation of further derivatives. In addition, the 

fluoride-catalysed desilylation of 59 demonstrated that, with the exclusion of water, 

4-unsubstituted 3-benzazonines could be obtained in high yield. Finally, the 

rearrangement of the N-butyrolactone salt 65 confirmed the potential for the formation 

of 4,4-disubstituted 3-benzazonines, including spiro derivatives, in moderate yields. 

2.5 	Effect of l'-Substituents on the 
[2,3] Rearrangement 

2.5.1 Synthesis of the l'-Substituted Precursors 

The three l'-substituted precursor amines 70a-c, possessing respectively the 

methyl, phenyl, and trimethylsilyl substituents, were prepared by the treatment of 48a 

with the appropriate Grignard reagent. No negative effect on the Grignard reaction 

was observed despite the presence of the 1 '-substituent in the alkenylmagnesium 
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bromide reagents. Compounds 70a-c were obtained in excellent yields and were 

fully characterised by their spectroscopic data and elemental analyses. 

Vinylsilane derivatives may be converted to vinylhalide derivatives by iodo- or 

bromo-desilylation.85,86  The reaction proceeds via the formation of an intermediate 

dihalide then dehydrohalogenation. The reaction of 70c with iodine or bromine in , 

dichloromethane, however, failed to provide the l'-iodovinyl derivative 70d or the 

analogous l'-bromo compound. The alternative synthesis of 70d via the 1-ethynyl 

amine 71 was then investigated. A recent report described the clean conversion of 

alkynes to internal alkenyliodides under mild conditions by the addition of hydrogen 

iodide, generated in situ from a chlorotrimethylsilane/sodium iodide/water system in 

acetonitrile.87  

The reaction of 48a with commercial ethynylmagnesium bromide gave 71 in 

good yield. The compound exhibited characteristic ethynyl NMR resonances for H2' 

at 2.42 8, for C2' at 82.31, and for Cl' at 74.57 8. A significant byproduct was also 

isolated from this reaction. The material, a crystalline solid, on 1H and 13C NMR 

spectral analysis appeared almost identical to 71 but lacked the terminal ethynyl 

signals. The detection of an MH+ ion at 437 by Lsrms-ms was consistent with the 

bis-acetylene structure 73. The formation of 73 was rationalised by assuming the 

generation of the ethynyl anion of 71 in the presence of the basic Grignard reagent, 

then the attack of this anion on 48a. 

The treatment of 71 with chlorotrimethylsilane/sodium iodide/water in 

acetonitrile at room temperature afforded only the hydroiodide salt of 71. Increasing 

the reaction temperature to 80°C gave, after four hours, the partial conversion of 71 to 

a mixture of the Markovnikov product 70d and the 1-(cis-2'-iodo)ethenyl product of 

anti-Markovnikov addition. Surprisingly, only 70d and 71 were detected after eight 

hours. Column chromatography afforded the isolation of 70d in moderate yield. 
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Compounds 70a and 70b were N-alkylated by warming the amines with ethyl 

bromoacetate in butanone. The products 72a,b were mixtures of the expected B-ring 

diastereomers. In contrast, 70c and 70d failed to react, or gave significant 

byproducts, on warming with ethyl bromoacetate. The action of ethyl bromoacetate 

on 70c is discussed in Section 2.8. The N-alkylation of 70c and 70d was achieved 

by the reaction of the amines with the more reactive triflate alkylating agent, 

ethoxycarbonylmethyltriflate,88,89  under mild conditions. Anion exchange of the 

crude trifiate salts afforded the bromide salts 72c,d. In each case only a single B-ring 

diastereomer, assumed to have the trans configuration, was obtained. 

Attempts were made to synthesize the 1-(1'-cyano)vinyl derivative 74a. The 

necessary Grignard reagent, however, was not formed by the reaction of 2- 

chloroacrylonitrile with magnesium under a variety of conditions, including the use of 

magnesium activated by 'dry-stirring' under nitrogen. 90  Similarly, the formation of 
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the 1-cyclopentenyl derivative 74b failed, as the literature preparation 91  of cyclopent-

l-enyl lithium from lithium and 1-chlorocyclopentene could not be reproduced. The 

[2,3] rearrangements of acyclic a-cyclopenteny192  and a-cyclohexeny192-94  sulfur-

ylides are known. The [2,3] rearrangement of an N-ylide based on 74b would afford 

an unusual fused cyclopentyl[5,6]-3-benzazonine derivative. 

2.5.2 Rearrangement of the l'-Substituted N-Ylides 

The DBU-promoted rearrangements of 72 were examined at a variety of 

temperatures in acetonitrile. The results are summarised in Table 2.7. 

The reaction of 72a at both high and low temperatures afforded exclusively the 

isomers of the 3-benzazonine derivative 75a in excellent yield. The l'-methyl 

substituent reduced the stereoselectivity of the [2,3] rearrangement to the E-

benzazonine isomer and substantial levels of the Z-benzazonine were formed 

(E/Z=1.9). 

The reactions of 72b gave primarily the 3-benzazonine products 75b, 

however, some promotion of the Stevens rearrangement by the l'-phenyl substituent 

was evident with the formation of significant amounts of 76b, even at low 
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temperatures. With the 1'-phenyl substituent the stereoselectivity of the [2,3] 

rearrangement was reversed to afford preferentially the Z-benzazonine isomer 

(E/Z=0.7). 

At high temperature the reaction of 72b afforded a byproduct tentatively 

identified as 77, which could not be separated from 76b. The identification of 77 

was dependant on the NMR spectra and GC-MS analysis of a mixture of these 

compounds. Compound 77 provided resonances in the NMR spectra consistent with 

an isolated vinyl group, an isolated olefinic proton, and two isolated N-methylene 

groups (singlets at 3.61 and 3.15 8 in the 1H NMR and 58.25 and 55.19 8 in the 13C 

NMR). The yields suggested the formation of 77 from Z-75b, however, this 

conversion would appear unlikely mechanistically. The amino ester 77 may arise 

from the conversion of 72b to a 5-phenyl-3-benzazocinium salt (cf. Section 2.8) at 

the high temperature, then the Hofmann elimination from this salt. 

The rearrangement of the 1 '-trimethylsily1 derivative 72c at room temperature 

afforded selectively the E-benzazonine E-75c in good yield. No other rearrangement 

products were detected. Repeating the rearrangement at high temperature failed to 

afford any of the expected products. An unidentified mixture of many components 

was obtained in low yield. 

Treatment of the l'-iodovinyl derivative 72d with DBU at room temperature 

provided a complex mixture of polar components. None of the expected [2,3] or 

[1,2] rearrangement products were formed with only traces of any non-polar material. 

Each of the E and Z-isomers of 75a,b were identified unambiguously by their 

preparative HPLC isolation then nOe difference experiments. Two-dimensional 

heteronuclear decoupling experiments afforded the positive identification of H7 for the 

nOe experiments. The NMR spectra for 75b were obtained in deuterated benzene 

which enabled the discrimination of the various aromatic and olefinic protons present. 

The Z-isomers gave nuclear Overhauser interactions between the 6-methyl and H7 
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Table 2.7  Rearrangement Conditions and Products from 72 
_ 

Product Distributionb (%) 
Reaction Total % E-75 Z-75 7 6 Other 

Reactant Temp (°C) Yielda 
72a -40 97 63 37 - - 

,, 25 93 66 34 - - 
82 93 76 24 - - 

72b -15 81 38 54 8 - 
It 25 81 37 53 8 2 (77) 
II 82 84 36 35 11 18 (77) 

72c 25 67 100 - - - 
82 <10 c - - - - 

72d 25 4 - - 100 (70d) 

a yield to a non-polar rearranged fraction 

b from 1H NMR integrals 

C unidentifiable mixture 
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protons for Z-75a, and between the ortho-6-phenyl and H7 protons for Z-75b. No 

interactions were observed for the E-isomers. The assignments of these isomers were 

consistent with their stability on silica t.l.c; the E-isomers were not observed if the 

t.l.c. plate was aged prior to elution. This simple test provided a rapid, although not 

conclusive, means of discriminating the isomers. It should be noted that the E-isomer 

of 75b eluted prior to the Z-isomer on HPLC analysis, the opposite order to all other 

examples in this work. 

The isomers of 75b were crystalline solids. Unequivocal evidence for the 

structure of Z-75b was obtained by X-ray crystallographic analysis 95  (Figure 2.14). 

Suitable crystals for an X-ray crystal structure of E-75b could not be obtained. 
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Compound E-75b exhibited conformational flexibility upon NMR spectral 

analysis at room temperature in either deuterated benzene or chloroform. Broad peaks 

lacking definition were observed. At 75°C in benzene a single set of signals was 

obtained which afforded confirmation of the proposed structure. At this temperature 

only the H5 and the ethyl ester protons exhibited poor peak shape. At -50°C in 

chloroform two sets of signals were observed, confirming the presence of two 

conformers for this strained system. The relative populations were approximately 

1.94:1. The shifts of the N-methyl protons, at 2.36 and 2.69 8, and the ester methyl 

protons, at 1.37 and 0.83 8, were substantially different between the conformers. 

The NMR analysis of E-75c at -20°C in deuterated toluene afforded two sets of 

signals indicating that, as for E - 75b, two conformers existed. The relative 

populations were 1.56:1. The shifts of the N-methyl protons, at 2.60 and 2.46 8, and 

the trimethylsilyl protons, at 0.25 and 0.04 8, were the major differences between the 

conformers. The conformers of 75b,c may reflect transannular interference between 

the bulky C6 substituents and the Cl or C2 atoms, causing the molecule to favour a 

more strained conformation of the ring, able to separate these moieties, for a 

proportion of the time. 

The NMR analysis of E-75c at 75°C in deuterated tetrachloroethane afforded a 

single set of signals and confirmation of the proposed structure. Extended analysis 

times under these conditions, however, resulted in the conversion of E-75c to a 

mixture consistent with two diastereomeric quaternary salts. The reaction had a half-

life of 20 minutes, reflecting the strained nature of the 6-trimethylsilyl-E-benzazonine. 

The products, which were not isolated, were tentatively attributed to diastereomers of 

the pyrrolo[2,1-a]isoquinoline 78, formed by a transannular reaction in the presence 

of traces of acid in the chlorinated solvent. Both the 1 H and 13C DEPT NMR data 

appeared consistent with these structures. Similar derivatives were proposed to occur 

by the degradation of the E-benzazonines on silica p.t.l.c. Compound E-75c was 

degraded by silica t.l.c. 
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2.5.3 Discussion of the Effect of the l'-Substituent 

The results indicated that a 1 1-substituent had only a marginal effect on the 

selectivity of the rearrangement of the 1-vinylic tetrahydroisoquinolines. Each of the 

methyl, phenyl, and silyl substituents were successfully accommodated in the [2,3] 

rearrangement to provide the 3-benzazonine products 75a-c in good to excellent 

yields. The l'-methyl derivative 72a afforded the highest yield of the 3-benzazonines 

and the reaction occurred selectively, even at high temperature, suggesting that the 1- 

alkyl group hindered the [1,2] rearrangement. In contrast, some Stevens 

rearrangement occurred from the l'-phenyl derivative 72b at low temperature. As the 

l'-phenyl group may not contribute to the promotion of the radical pathway by radical 

delocalisation it was proposed that the concerted transition state was less favoured in 

this case, due to steric interference. The failure of the 1'-sily1 derivative 72c to afford 

rearrangement products at high temperature may be attributed to the degradation of the 

strained E-6-trimethylsily1-3-benzazonine product, as evidenced by the high 

temperature NMR experiments on 75c. 

The l'-iodo derivative 72d failed to undergo the desired rearrangements. It 

was proposed that 72d underwent dehydrohalogenation to a 1-ethynyl derivative 

which was then degraded by the basic conditions to a variety of products. The 

promotion of the dehydrohalogenation of alkenyl halides by DBU was previously 

reported.96  

The results for 72a,b demonstrated that the stereoselectivity of the [2,3] 

rearrangement of the 1-vinylic-isoquinoline N-ylides may be controlled by the 

selection of the 1 '-substituent. Whereas the 1 '-unsubstituted derivative 50a 

underwent almost stereoselective rearrangement (E/Z=19) to the 3-benzazonines at 

room temperature the selectivity was reduced by a l'-methyl substituent (E/Z=1.9) 

and reversed by the 1 '-phenyl substituent (E/Z=0.7). This behaviour was rationalised 

and predicted in Section 2.3.2 (pg. 25). An alternative explanation proposing the 

thermodynamic control of the stereoselectivity was considered, as the bulky 6- 

substituents would increase the ring strain in the E isomers of 75a, b, but this would 
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predict a decrease in the E-benzazonines at high temperatures. The level of the E-

benzazonine was increased with the rearrangement of 72a at high temperature (Table 

2.7), consistent with an increased population of the high-energy pro-E conformers of 

72a at high temperature. 

The stereoselective formation of E-75c from 72c, in contrast to the behaviour 

of 72a and 72b, was consistent with the assignment of trans-stereochemistry to the 

single diastereomer observed for 72c. The results indicated that the Z-isomers of 

75a,b were formed predominantly, if not exclusively, from the cis-diastereomers of 

the precursor salts, in agreement with the conclusions in Section 2.3.2. The results 

suggest that the stereospecific control of the [2,3] rearrangement could be achieved by 

the appropriate selection of a l'-substituent and control of the stereochemistry of the 

precursor salt. 

The results confirmed that the [2,3] rearrangement of 1-vinylic isoquinoline N-

ylides could provide a good pathway to a variety of 6'-substituted 3-benzazonine 

derivatives. 

2.6 	Effect of 2'-Substituents on the 

[2,3] Rearrangement 

2.6.1 Synthesis of the 2'-Substituted Precursors 

The reaction of alkenyl Grignard reagents with 48a provided the 2'-(2- 

methylpropenyl) and 2'-propenyl precursor amines 81a,b. The synthesis of 81a 

gave the lowest yield (61%) for a reaction of this type; the formation of 2- 

methylpropenylmagnesium bromide occurred slowly and was clearly hindered by the 

methyl group cis to the halide. A mixture of the cis- and trans- 1-propenyl derivatives, 

81b1 and 81b2, was obtained from the commercial mixture of 1-bromo- 1-propene 

isomers. The major isomer was assigned the cis-geometry on the basis of nuclear 

Overhauser experiments and 13C chemical shift data for the terminal methyl group; in 

the cis derivative the methyl signal was at 13.9 8, approximately 4.5 S upfield of the 
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same signal in the trans-isomer. Efforts to separate the isomers 81b1 and 81b2 by 

recrystallisation, p.t.l.c., or preparative HPLC were not successful, so the isomeric 

mixture was used in subsequent reactions. 

R. 	112 	
2S. 

a: Me 	Me 	Br 
b: 75% bl H 	Me 	Br 

25%b2 Me 	H 	Br 
c: C.6H4(0Me)2 H 	I 

Synthesis of the 2'-dimethoxyphenyl derivative 81c was achieved by the 

Bischler-Napieralsld cyclisation. This approach allowed the incorporation of the 1- 

vinylic substituent prior to construction of the isoquinoline ring. The modification of 
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a published method 97  afforded the free base 79 which was then converted to the 

methiodide salt 80. The reduction of 80 with sodium borohydride gave 81c. 

The reaction of the amines 81a,b with ethyl bromoacetate at 0-25°C in 

acetonitrile afforded the quaternary salts 82a,b. Under these conditions 81c was 

unaffected. The formation of 82c was achieved by the treatment of 81c with ethyl 

iodoacetate at high temperature in a sealed tube. The quaternary salts 82a-c were 

mixtures of the B-ring diastereomers. 

BrCH2CO2Et 
81a,b 

50°C se 

[82a,b] 

CH2CO2Ert 

The reactions of 81a,b with ethylbromoacetate at 50°C in butanone, or 

acetone, afforded the ring-opened dienes 83a,b. All spectra were consistent with the 

proposed structures. Both the geometric isomers of 83b were isolated, with the cis 

isomer formed preferentially (cis/trans-4.2). The reaction of the 1-propenyl isomers 

of 81b (cisfirans=3) confirmed that the elimination occurred only from the amine 

possessing the cis 2'-methyl group, as the trans-propenyl salt 82b2 was obtained 

with 83b. A similar elimination process was observed from a 1-cyclopropyl salt 

(Section 5.7.1), which 'gave the isomers of 83b in low yield as byproducts to the 

Stevens rearrangement at high temperature. 

The mechanism for the formation of the dienes is unclear, but was assumed to 

proceed via the initial formation of 82. The salt 82b1 was converted to the diolefm 

83b by refluxing in acetone. The formation of an N-ylide from 82 by bromide ion 

induced deprotonation, then a concerted or diradical a-rearrangement may afford 83 

(Figure 2.14). However, the intermediacy of the N-ylide appears unlikely as the 
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dienes were not observed from the high temperature rearrangements of 82a,b with 

DBU. An alternative pathway may involve the tautomer (13) (Figure 2.15). 

Figure 2.15 Possible Intermediates in the Formation of the Dienes 83 

An alternative route with the potential to provide selectively the trans-1- 

propenyl isomer 81b2 was investigated. The synthesis98  of the 1-propenyl-

dihydroisoquinoline 85 by the Bischler-Napieralski cyclisation of the crotonamide 

84a, in benzene with a large excess of phosphorus oxychloride, could not be 

reproduced despite exhaustive trials. Several additional experiments in toluene or 

acetonitrile, with either phosphorus oxychloride or phosphorus pentcodde, failed to 

provide 85. In each case only complex mixtures of many components were obtained. 
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The synthesis of trans-2'-ethoxycarbonyl- and trans-2'-chloro- 1-vinyl-

isoquinoline derivatives was also investigated but without success. The reaction of 
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homoveratrylamine and fumaric acid monoethyl ester failed to provide the amide 84b, 

the potential precursor for a 2'-ethoxycarbonyl derivative via the Bischler-Napieralski 

cyclisation. Similarly, the Grignard reaction of trans-2-chlorovinylmagnesium 

chloride with 48a failed to give the desired 2'-chloro derivative 86. The incomplete 

formation of the Grignard reagent or its rapid degradation may have occurred. Some 

reaction of the magnesium with trans-1,2-dichloroethylene was evident as the 

magnesium was consumed. 

2.6.2 Rearrangement of the 2'-Substituted N-Ylides 

The DBU-promoted rearrangements of 82 were examined at a variety of 

temperatures in acetonitrile. The results are detailed in Table 2.8. 

At low temperatures the reaction of the 1-(2'-methylpropenyl) salt 82a gave 

predominantly the 3-benzazonine E-87a, however, even at -20°C the diastereomers of 

the 3-benzazepine 88a were also formed. The selectivity was 2.3:1 in favour of the 

[2,3] rearrangement at -20°C and 1.4:1 at 25°C. The reaction of compound 82a at 

high temperature gave exclusively the Stevens rearrangement products. 

Two different mixtures of the 1-propenyl salts 82b were examined in these 

rearrangements. The first contained predominantly the diastereomers of the cis-

propenyl salt 82b1 (cis:trans propeny1=70:30) and was obtained by the alkylation of 

81b at room temperature. The rearrangement of this mixture, at either 0°C or 82°C, 

afforded a complex mixture of products with diastereomers present for each of the E 

and Z 3-benzazonines 87b and the cis- 1-propenylbenzazepine 88b1. The additional 

chiral centre at C5 enabled the formation of the diastereomers of 87b. The E-

benzazonine diastereomers were the major products of the reaction but large amounts 

of the benzazepines were also formed. The selectivity of the rearrangement was 2.4:1 

in favour of the [2,3] rearrangement at 0°C and 1.3:1 at 82°C. Only traces of the Z-

benzazonines were observed. 
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Table 2.8  Rearrangement Conditions and Products from 82 

Product Distributionb (%) 
Reaction Total % E-87 Z-87 88 Other 

Reactant Temp (°C) Yielda trans, cis 

82a -20 65 70 - 27, 3 - 
„ 25 86 58 - 37,5 - 

82 71 - - 84,16 - 
82bc 0 80 42, 23 3, 3 27, 2 - 

82 72 39, 14 2, 3 37, 5 - 
82bd 0 65 40, 30 13, 11 4, 2 - 
82c -45 72 - - 83,17 - 

25 63 - - 80, 16 4 (90) 

a yield to a non-polar rearranged fraction 
b from 1H NMR integrals 
C from a 73:23 mixture of 82b1 and 82b2 
d from a 10:90 mixture of 82b1 and 82b2 

The second mixture of the 1-propenyl salts 82b was obtained fortuitously 

following the alkylation of 81b at 50°C and the removal of the dienes 83b. The 
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mixture contained predominantly the diastereomers of the trans-propenyl salt 82b2 

(cis:trans propeny1=10:90). The rearrangement of this mixture at low temperature 

gave a greatly increased preference (15.7:1) for the [2,3] rearrangement and a higher 

proportion of the Z-benzazonines. 

The base-promoted rearrangement of the 1-styrylic derivative 82c afforded the 

diastereomers of the 3-ben727P,pine 88c at both 25°C and -45°C, the only selective 

Stevens rearrangement of a 1-vinylic-isoquinoline derivative observed at room 

temperature in this work. 

The separation of the isomers of 87a and 88a was not achieved, however, 

they could be detected by the 1H NMR analysis of a mixture in deuterated benzene. 

The olefin coupling constant (16.6 Hz) for the single isomer of 87a confirmed the 

compound possessed the E stereochemistry. Compound 87a was not isolated, 

however, the skeletal structure was confirmed by the hydrogenation of the reaction 

mixture of 87a and 88a, then the separation of the hexahydro-3-benzazonine 101c 

(Section 2.9) from the unchanged 88a. 

A combination of alumina column chromatography, to obtain enriched 

fractions, and preparative HPLC chromatography afforded the isolation of four of the 

six isomers, at least one from each pair of diastereomers, from the rearrangements of 

82b. The major isomer of E-87b, the two Z-87b isomers, and the major isomer of 

88b were isolated. All spectral data was consistent with the proposed structures. 

Each type of isomer provided the doublet methyl signal at a characteristic shift in the 

1 H NMR spectrum; for the E-87b diastereomers it was 1.25-1.15 5, for the Z-87b 

diastereomers 0.95-0.75 5, and for the 88b diastereomers 1.65-1.50 B. The H1'-H2' 

coupling constant (10.9 Hz) of the major diastereomer of 88b confirmed the 

compound possessed the cis geometry of the 1-propenyl group. 

In Z-87b the magnitude of the H4-H5 coupling constant was substantially 

different between the diastereomers (11.45 Hz cf. 4.18 Hz). This allowed the 

assignment of stereochemistry to the compounds. The consideration of the X-ray 

structure for Z-75b (Figure 2.14, pg. 53) indicated the higher vicinal coupling was 
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consistent with the trans-B-ring diastereomer of Z-87b, with a dihedral angle between 

H4 and H5 of approximately 180 0 , while the smaller coupling was consistent with the 

cis-B -ring diastereomer. It was proposed that the diastereomers resulted from the 

inversion of C4 as both exhibited identical vicinal coupling between H6 and H5. 

Figure 2.16 Proposed Conformation and Stereochemistry of the Major Diastereomer 

of E-87b 

The major diastereomer of E-87b was recovered intact from p.t.l.c. on alumina 

while the minor diastereomer was degraded. This suggested that a stable E-

benzazonine may be obtained by the inclusion of substituents with the appropriate 

stereochemistry. The stereochemistry of the major diastereomer of E-87b was 

investigated by the consideration of 1 H NMR data. The stereochemistry of the C6 

centre was identified by an nOe between H5 and H7, and the coupling constant 

between H5 and H6 (9.95 Hz). Clearly the C5 to C7 portion of the molecule adopted 

the geometry shown (Figure 2.16). The H4-H5 vicinal coupling constants for the 

major (5.76 Hz) and minor (1.28 Hz) diastereomers of E-87b were consistent with 

the inversion of C4 in conformer 4 (Figure 2.9, pg. 34), previously identified by the 

molecular modelling of the E-benzazonine system (Section 2.3.4); values of 5.72 Hz 
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(42°) and 1.01 Hz (72°) were predicted for the cis and trans diastereomers. The 

results were not consistent with the other low-energy conformers identified for the E-

benzazonine system. Values of 11.8-12.2 Hz were predicted for the H4-H5 coupling 

constant in the trans diastereomers of these conformers. It was concluded that the 

major diastereomer of E-87b possessed the cis B-ring stereochemistry and that 

derivatives of the E-benzazonine system adopted structures based on conformer 4 in 

solution. 

The crystalline diastereomers of 88c were isolated by p.t.l.c. on silica with 

dichloromethandethanol. P.t.l.c. with dichloromethane/methanol afforded facile ester 

exchange to the diastereomers of 89. Compounds 88c and 89 were characterised by 

spectral and elemental analysis. As some doubt existed over the ability of spectral 

analyses to differentiate between the isomers of 87c and 88c nuclear Overhauser 

difference experiments were conducted to provided the confirmation of the molecular 

geometry. The proton assigned to H1 in 88c (or H5 in 87c) interacted with an 

aromatic proton on the fused ring, while that assigned to H2' in 88c (or H7' in 87c) 

interacted with the ortho protons of the phenyl ring. The results (Figure 2.17) were 

consistent with the benzazepine structure of 88c. 

Figure 2.17 nOe Interactions Observed for 88c, 89, and 90 

The diastereomers of 88c were identified by nuclear Overhauser difference 

experiments and the examination of hand-held models; the major isomer was assigned 

the trans B-ring stereochemistry. Both diastereomers exhibited a strong nOe between 
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H1 and H2' indicating a dihedral angle of 180 0  for Hl-H1'. The trans diastereomer 

adopted a conformation with the vinylic group axial in which there was an nOe 

between H2 and H2', no nOe between H9 and H1', and a moderate H1-H2 coupling 

constant (5.8 Hz). The cis diastereomer adopted a conformation with the vinylic 

group equatorial in which there was no nOe between H2 and H2', an nOe between H9 

and H1', and a low H1-H2 coupling constant (1 Hz) indicating a dihedral angle of 

90°. 

A byproduct from the treatment of 82c with DBU at 25°C was isolated in low 

yield and identified as the 5,6-dihydropyrrolo[2,1-c]isoquinoline 90. The resonances 

in the 1 H NMR spectrum for HI (6.45 8) and H5 (4.61 8) Were consistent with those 

observed in similar 2-phenyl- or 3-ethoxycarbony1-5,6-dihydropyrrolo[2,1- 

a]isoquinoline derivatives.99,100  Additional support for this structure was obtained by 

nuclear Overhauser experiments which located the lone olefmic proton between, and 

interacting with, an aromatic proton of the fused ring and the ortho protons of the 

pendant phenyl ring (Figure 2.17). 

The formation of 90 may involve an intermediate iminium salt. The similar 

formation of an iminium salt by the butyl lithium-induced deprotonation with N-

deoxygenation of a tetrahydroisoquinolinium-N-oxide was implicated in the synthesis 

of an oxazolidine derivative. 101  The deprotonation of the iminium salt would give a 

dipolar structure which may undergo ring closure and oxidation to 90 (Figure 2.18). 

The 1,3-dipolar cycloaddition of dipolarophiles with isoquinoline derivatives has often 

provided access to 5,6-dihydropyrrolo[2,1-cdisoquinoline derivatives, 102-104  but the 

intramolecular rearrangement apparently occurring in the formation of 90 does not 

appear to have been reported previously. This rearrangement could provide a new 

route to derivatives of the 5,6-dihydropyrrolo[2,1-a]isoquinoline system. The further 

development of this reaction was deemed outside the scope of this work. 
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Figure 2.18 Proposed Mechanism for the Conversion of 82c to 90 

2.6.3 Discussion of the Effect of the 2'-Substituent 

As only the cis- 1-propenylbenzazepine diastereomers were detected from the 

rearrangement of 82b (cisitrans=3.2) it was assumed that the trans- 1-propenyl salt 

underwent a selective [2,3] rearrangement. This assumption was consistent with the 

low levels of the benzazepines formed by the reaction of the predominantly trans-1- 

propenyl salt (cisitrans=0.11). The results indicated a relatively non-bulky alkyl 

substituent could be accommodated at C2' in the trans position without a detrimental 

effect on the [2,3] rearrangement. The decrease in the E-stereoselectivity (E/1=2.92) 

of the [2,3] rearrangement from 82b2 was attributed to the minimisation of 1,3- 

substituent effects across the pseudo-cyclopentane transition state (refer Figure 2.4, 

pg. 24). 

A substituent at C2' in the cis position clearly decreased the yields of the 3- 

benzazonines. Thus the preference for the [2,3] rearrangement over the [1,2] 

rearrangement was reduced to approximately 2:1 for both the cis-l-propenyl salt 

82b1 and the 1-(2'-methylpropenyl) salt 82a at low temperature. This behaviour 
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was assumed to reflect steric interference of the cis-2'-substituent with the concerted 

transition state. 

Both compounds 82a and 82b1 possessed a cis 2'-methyl group hindering the 

[2,3] rearrangement and exhibited similar behaviour at room temperature. At high 

temperature 82a provided the Stevens rearrangement exclusively, while 82b1 

afforded a 1.4:1 preference for the Stevens rearrangement. The additional 2'-methyl 

group in 82a was assumed to promote the [1,2] rearrangement by increasing the 

stabilisation of the allylic radical through hyperconjugation. 

The results for the trans-2'-dimethoxyphenyl salt 82c confirmed that electron 

delocalising, radical stabilising, groups at C2' promoted the [1,2] rearrangement. 

Only the Stevens rearrangement products were observed from 82c, reflecting the high 

electron delocalising nature of the dimethoxyphenyl group. This high electronic 

activation allowed the [1,2] rearrangement to occur at low temperature (-45°C). The 

complete lack of any [2,3] rearrangement products from 82c, however, suggested 

that other factors may have contributed to the deactivation of the concerted 

rearrangement. Some steric hindrance of the concerted state may occur with the bulky 

aromatic group while electronic factors could include, for instance, a reduction in the 

molecular orbital coefficient of the 7C *  acceptor orbital (LUMO) at C2' due to the 

extension of the conjugating system. These factors would decrease the efficacy of the 

orbital overlap necessary for a concerted transition state. In addition, the conjugation 

of the vinyl and aromatic groups would hinder the migration of the double bond. 

The trans stereoselectivity of the Stevens rearrangement of 82c to 88c 

(trans/cis=4.9) was rationalised by the consideration of the diradical transition states 

leading to each diastereomer (Figure 2.19); clearly steric interactions would be 

minimised in the pro-trans state. It was assumed that the trans diastereomers were the 

major products in the other Stevens rearrangements observed throughout this work. 



68 

Me0 

Me0 

pro-trans 

N— Me 

H 	CO2Et 

Figure 2.19 Diradical Transition States for the Stevens Rearrangement 

2.7 	Rearrangement of a 1-Ethynylisoquinoline 

N-ylide Derivative 

The rearrangement of a-ethynyl-N-ylides may be viewed as an extension of the 

behaviour of a- vinyl-N-ylides. The successful [2,3] rearrangements of the a-

ethynylpiperidinium salt 15 and 1-ethynylisothiochroman sulfonium salt 19 were 

noted in Section 1.3.2. The ready availability of the 1-ethynyltetrahydroisoquinoline 

71 prompted an investigation of the potential [2,3] rearrangement of an N-ylide based 

on this derivative. 

The reaction of 71 with ethyl bromoacetate gave 91 as a crystalline mixture 

(transicis=3.5) of the B-ring diastereomers. Treatment of the salt mixture suspended 

in acetonitrile at 0°C with DBU afforded the rapid dissolution of the solid but no 

significant non-polar rearrangement products. When the reaction was repeated at 

reflux more non-polar material was obtained. At least five components were present 

in this fraction. The three major components were isolated by preparative HPLC and 

characterised by spectroscopic analysis. The two largest components were each 

isolated in 7% yield and identified as the 3-benzazepine 92 and the isoquinoline 

derivative 93. Compound 93 may be formed by the deprotonation of 91 at Cl and a 

subsequent Stevens rearrangement. The third component, isolated in 3% yield, was 

assigned the isoquinoline structure 94. This compound was an intense yellow colour, 

consistent with the extensive conjugation. A resonance at 3.11 8 for the N-methyl 

group in the 1 H NMR spectrum supported the enamine structure. The alternative 2,3- 
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dihydro-3-benzazonine structure 95 was considered less likely on the basis of 

calculations of the chemical shifts expected 105  for the olefinic protons. A large 

downfield shift observed for the central olefinic proton, at 7.97 8, was reasonably 

consistent with the predicted value of 7.69 8 for H2' in 94 with the geometry shown. 

Chemical shifts of 6.73 or 6.26 5 were predicted for H6 in 95 with the E or Z C6-C7 

geometry. Compound 94 may form by the deprotonation of 91 at Cl then a [1,4] 

shift of the ethoxycarbonylmethyl group by a diradical or symmetry allowed concerted 

process. The benzazonine 95 could arise from the [2,3] rearrangement followed by a 

[1,3] hydrogen shift of the initial strained allenic system. 

91 	ii 

94 

CO 2Et 

95 

The low yield of the non-polar material from 91 suggested that deprotonation 

had occurred to provide the ethynyl anion. It was noted that in the rearrangements of 

both 15 and 19 2'-substituents were present, which would negate this problem, 

although a previous report 106  by the same authors had indicated the successful [2,3] 
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rearrangement of a simple 2-ethynyltetrahydrothiophene-S-ylide. Several attempts 

were made to synthesize the l'-propynyl amine 96 from 71, but without success. 

The selective generation of the ethynyl anion and subsequent attack with iodomethane 

was not achieved without concurrent attack at either Cl or the nitrogen lone pair. 

Thus the reaction of 71 at -78°C in tetrahydrofuran with sodamide then iodomethane 

afforded only the recovery of a substantial amount of 71 and a crude salt, tentatively 

assigned as 97 by NMR analysis. 
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The results indicated that the [2,3] rearrangement of 1-ethynyl-

tetrahydroisoquinoline-N-ylides would not provide an effective route to 2,3-dihydro-

1H-3-benzazonine derivatives. 

2.8 	Thermal [1,3] Ring Expansion of a 2'-Sily1 

Substituted Quaternary Salt 

Treatment of the 1-(2'-trimethylsilylvinyl) amine 70c in butanone with ethyl 

bromoacetate at elevated temperatures afforded an isomer of the expected salt 72c in 

moderate yield. The compound was identified as the 3-benzazocinium salt 98 by 

spectroscopic and elemental analysis. The olefinic proton, H6, appeared as a singlet 

at 7.25 8 in the 1 H NMR spectrum. The Z-geometry of the olefin bond was 
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confirmed by an nuclear Overhauser effect between H6 and the trimethylsilyl group. 

Compound 98 may have formed by a [1,3] C-N bond shift in 72c. The partial 

conversion of 72c to 98 was achieved by refluxing the former in butanone for several 

hours. 

The formation of 98 was avoided by the N-alkylation of 70c with 

ethoxycarbonylmethyltriflate at 0°C. The reaction of 70c with ethyl bromoacetate at 

25°C gave a mixture (98172c=1.5) of the isomeric salts. 

The [1,3] isomerisation of 1-ary1-1-vinyl-tetrahydroisoquinolines to 3- 

benzazocine derivatives was reported previously by Bersch et. a/. 72,107  The 

isomerisation was achieved thermally, by heating the free bases neat at temperatures of 

170-200°C, or during quaternisation of the amines with iodomethane in refluxing 

acetone. In the present work no isomerisation of 72c was observed on thermolysis of 

the compound in a sealed, evacuated tube at 170-200°C. It was also noted that the N-

alkylation of 49a to 55a in refluxing acetone with iodomethane proceeded without 

isomerisation (Section 2.4.1) while 49a was unchanged by thermolysis at 180°C. 

The conversion of 70c to 98 represents the first rearrangement of this type 

without a 1-aryl substituent and with an alkylating agent other than iodomethane. The 



1  excess 
Me! 

CO2Et 

52a 

72 

further investigation of this rearrangement could lead to the development of an 

alternative route to functionalised 3-benzazocine derivatives. 

2.9 	Behaviour of the 2,3,4,5-Tetrahydro-1H- 

3-Benzazonine Derivatives 

2.9.1 Attempted N-Alkylation with Iodomethane 

Several attempts were made to synthesize the quaternary salt 99 for X-ray 

structural analysis and confirmation of the medium ring skeleton. The reaction of 52a 

with excess iodomethane in refluxing butanone or neat at room temperature, however, 

afforded the ring opened salt 100. The molecular formula of the cation was 

confirmed by mass spectrometry (LSIMS). All other spectra were consistent with the 

proposed structure. The formation of 100 indicated that 99 was formed initially but 

then underwent nucleophilic attack by the iodide ion at the electron deficient C4 

position. Nucleophilic substitution followed by N-alkylation would provide 100 

from 99. 

CO2Et 

When 52a was reacted with 1.2-1.5 equivalents of iodomethane in butanone at 

25°C a crystalline solid was isolated in very low yield. The product was identified as 

54 and neither 99 or 100 were detected. Compound 54 showed a single N-methyl 
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resonance at a quaternary position in the 1 H NMR spectrum with triplets for the HlOb 

and H3 protons at 6.18 8 and 6.02 8. The 13C NMR spectrum showed five 

methylene carbons, none olefinic, and two downfield CH signals. The formation of 

54 could occur with the generation of trace amounts of hydroiodic acid during the 

reaction (see also Section 2.3.3), as iodomethane freshly distilled from potassium 

carbonate and dry solvents did not prevent its formation. 

The present results indicated that the N-alkylation of the 3-benzazonines was 

hindered and complicated by both the potential transannular degradation of the 

precursors and nucleophilic attack of the products at C4. It was envisaged that a 

successful N-alkylation might be achieved using an alkylating agent which provided a 

less nucleophilic anion, but this reaction was not investigated. 

2.9.2 Hydrogenation to 2,3,4,5,6,7-Hexahydro-3-Benzazonines 

As part of the structural confirmation work and to make further derivatives the 

hydrogenation of several tetrahydro-3-benzazonine derivatives was investigated. 

Hydrogenation of the tetrahydro-3-benzazonines (Table 2.9) over palladium on 

carbon, in ethanol at 1 atmosphere with heating, afforded the hexahydro-3- 

benzazonines 101a-c by the selective reaction of the E-benzazonine isomers. The Z-

isomers, and any 1-vinylic-3-benzazepine isomers present, were not effected and 

could be recovered. 

Two diastereomers of 101b were isolated. Compounds 101a, the 

diastereomers of 101b, and 101c were characterised by spectroscopic analysis. One 

of the diastereomers of 101b exhibited unusual chemical shifts in the 1 H NMR 

spectrum with the aromatic H8 proton (5.52 8) and one methoxy group (3.34 8) 

shifted substantially upfield. The results suggested the system adopted a 

conformation with the pendant phenyl ring positioned over, and shielding, the H8 and 

methoxy protons. Hand-held models confirmed this conformation was possible for 

101b. 
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Table 2.9  Hydrogenations to hexahydro-3-benzazonines 101 

Reactant I 	R 1  R2  I 	R3 	I Product 	lYieldc (%) 
E-52a a 

x
 x 

101a 66 
E-75b a 

a x 101b 81 
E-87a b 101c 58 

a mixture with the Z isomer which did not react 
b mixture with 88a which did not react 

calculated from the unrecovered E-isomer 

The relief of ring strain appeared to be the important factor influencing the 

reactivity of the E-benzazonines compared to the Z-benzazonines in the 

hydrogenation. This proposition was supported by the hydrogenation of E-75a. 

This compound gave a mixture of the reduced compound 101d and the two 

alternative products of a [1,3] hydrogen shift, compounds 102 and 103. Both 102 

and 103 exhibited the same stability as the Z-benzazonines once formed and were not 

hydrogenated. Apparently the removal of the E-olefinic bond from the medium ring 

afforded a large increase in the stability of the unsaturated derivatives. 

The spectroscopic data of 102 and 103 were consistent with the proposed 

structures. Both exhibited AX patterns in the 1 H NMR spectra for the geminal 

protons at H7, with one proton at 4.20-4.15 8 and the other at 3.3-2.7 8. The 

exocyclic 6-methylene group in 102 afforded resonances at 4.99 and 4.79 8 for the 

geminal protons and at 112.63 8 for the olefinic carbon. The related compound 38, 

with a 7-methylene group, was previously reported. 62  Compound 103 was assumed 

to be the Z-benzazonine but the geometry was not confirmed. Compound 101d was 

not isolated, but its presence was inferred from the NMR spectra of the mixture. The 

selective conversion of E-75a to either 101d or 102 was not achieved by lowering 
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the hydrogenation temperature. At -10°C no reaction occurred. At 25°C the reaction 

afforded a mixture (7.7:6.0:1.0) of 101d, 102 and 103. In an additional test the 

presence of hydrogen was found to be unnecessary and the selective isomerisation of 

E-75a to 102 was achieved in ethanol at reflux over the palladium catalyst 

CO2Et 

Pd-C 
A Et0H E-75a 101d 

Me 	 • Me 

CO2Et CO2Et 

102 
	 103 

The equipment was not available for the investigation of the hydrogenation of 

the Z-benzazonines at elevated temperatures and pressures. The compounds were not 

affected by high hydrogen pressures (5. 4 atm.) at room temperature with a palladium 

catalyst. The hydrogenation of these derivatives remains to be investigated with other 

catalysts and conditions. 

2.9.3 Hydrogenation and Hydrogenolysis of an N-Benzyl Derivative 

The hydrogenolysis of tertiary amines containing a benzyl group can provide a 

useful approach to secondary amines, 108  from which a range of other substituents 

may be introduced. Thus the hydrogenolysis of the N-benzy1-3-benzazonine E-52b 

was investigated. It was anticipated that the secondary 3-benzazonine 104b would 

serve as a useful synthetic intermediate for the future production of a variety of N-

substituted 3-benzazonines. 

The reaction of 52b with hydrogen in refluxing ethanol afforded 104b in only 

moderate yields. Monitoring the reaction by GC-MS analysis confirmed that the 
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hydrogenation of 52b to 104a occurred rapidly then was followed by the slow 

hydrogenolysis of 104a to 104b, reaching 23% after 16 hours. Only traces of the 

product of the direct hydrogenolysis of 52b, a secondary tetrahydro-3-benzazonine, 

were detected. 

An improved pathway to 104b was developed with the reaction of the 

hydrochloride salt 105 with hydrogen in methanol. The acidic system catalysed both 

the hydrogenation and hydrogenolysis reactions and enabled these steps to occur 

rapidly at low temperatures. At 0°C the hydrogenation was complete within 30 

minutes and the hydrogenolysis within 2 hours. The secondary amine was obtained 

in good yield as a colourless oil which was characterised by spectroscopic analysis. 

2.9.4 Thermolysis of Tetrahydro-3-Benzazonine Derivatives 

Mass spectral analysis failed to differentiate between the 3-benzazonine and 3- 

benzazepine isomers, which afforded identical fragmentation patterns. In addition, 

when analysed by GC-MS the isomers typically afforded identical chromatographs, 

complete with other minor isomers apparently formed on injection or on-column; the 

technique was misleading and should not be used for the analysis of these mixtures. 

It was proposed that the 3-benzazonines were thermally labile and rearranged to the 3- 

benzazepines on MS analysis. This proposition was tested with the thermolysis of 

several 4-substituted-3-benzazonines (Table 2.10) in solution. 
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Table 2.10  Thermolysis of 3-Benzazonines 

Reactant 
mixturea 

R Solventb Time 
(hrs) 

Product 
mixture 

Conversion 
of E-isomer 

E-52a:Z- CO2Et PrCN 11.5 E-52a:Z- 55% 
52a:53 52a:53 
87:9:4 40:9:51 

E-63a:64ac CN PrCN 18 E-63a:64a:106 41% 
87:13 51:30:19 
E-63b COPh MeCN 1.25 64 b 100% 

a ratios from 1H NMR integrations 
b MeCN and PrCN refluxed at 82°C and 115°C respectively 
C compound 64a was not isolated 

The results confirmed the E-benzazonines were thermally labile and rearranged 

to 3-benzazepine derivatives with prolonged heating. The Z-benzazonine Z-52a, 

however, was stable at elevated temperatures. The 4-benzoyl derivative 63b 

rearranged rapidly in refluxing acetonitrile, while the 4-ethoxycarbonyl and 4-cyano 

derivatives 52a and 63a required extended times in refluxing butyronitrile. 

Although the 1-vinyl-3-benzazepine 64a was observed as an intermediate in the 

pyrolysis of E-63a the 2,3-dihydro-3-benzazepine 106 was obtained as the sole 

product after 66 hours. Compound 106 exhibited characteristic signals in the 1 H 

NMR spectrum for the N-methyl enamine function at 2.87 8 and 6.31 8 and for the 

propionitrile substituent at 3.79 8 and 1.50 8. Compound 106 may form by the loss 

of the cyanide anion and a [1,3] hydrogen shift prior to its reuptake (Figure 2.20). 
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Figure 2.20 Mechanism for the formation of 106 

The isomerisation of the E-3-benzazonines to 3-benzazepines confirmed the 

latter was the more thermodynamically stable system, or thermodynamic product, and 

that the interconversion between the two was possible by a [1,3] allylic shift. The 

observed order of reactivity, greatest with the benzoyl substituent and least with the 

nitrile, was consistent with the expected promotion of a C4-05 homolytic cleavage by 

these substituents, and a radical pathway for this interconversion. The results suggest 

that the chemical manipulation of the 4-substituents to provide less radical-stabilising 

functions would afford E-benzazonines of greater stability. 

2.9.5 Reduction of an Ester Derivative 

The reduction of the ester function of 52a was investigated in a single 

experiment. The treatment of 52a with lithium aluminium hydride in ether afforded a 

crude solid which was examined by 1 H NMR analysis prior to purification. The 

material displayed conformational flexibility with two sets of broad peaks at 25°C in 

deuterated chloroform. At 60°C a single set of broad signals was obtained. The 

signals appeared consistent with the expected alcohol 107, but the poor peak shapes 

were insufficient for the positive identification of this compound. The purification of 

this solid by p.t.l.c. on alumina with ethyl acetate/5% hexane surprisingly afforded the 

pyrrolidine derivatives 108 which were not present prior to the p.t.l.c. treatment. 

Compound 108b was attributed to the esterification of 108a with ethyl acetate, 

catalysed by the basic alumina. The formation of 108 can be rationalised by 

proposing the conversion of 107 to a pyrrolo[2,1-a]isoquinolinium salt which 

underwent Hofmann elimination under the basic conditions. The results suggested the 
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reduction of the ester function was achieved, but afforded further evidence for the 

proposed transannular degradation of the strained E-benzazonines. 

2.10 	 Conclusion 

The present results demonstrated that the rearrangement of 1-vinylic-

tetrahydroisoquinoline N-ylides could afford a good new route to functionalised 

2,3,4,5-tetrahydro-1H-3-benzazonines. The N-ylides typically underwent the 

concerted [2,3] rearrangement preferentially at room temperature, the first application 

of this type of rearrangement to the synthesis of benz-fused aza-heterocycles, to give 

mixtures of the E and Z-benzazonine isomers in high yields. 

The [2,3] rearrangement generally afforded the E-benzazonine isomers almost 

stereoselectivity. With bulky substituents at the l'-position, however, the levels of 

the Z-benzazonine isomers were increased. The 1 1-substituent acted by favouring the 

appropriate pro-Z concerted transition state geometry in the cis B-ring diastereomer of 

the precursor salt. The development of a method for the selective synthesis of the cis-

salt may enable the stereoselective synthesis of Z-benzazonine derivatives. The 

control of the stereoselectivity of the rearrangement would be useful as the E or Z 

isomers may be expected to afford different types of pharmacological activity. The E- 
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benzazonine derivatives may be active at CNS receptors requiring the nitrogen and 

aromatic moieties in the same plane, while the Z-benzazonines may be active at 

receptors in which the nitrogen moiety is removed from the aromatic plane. 

The [2,3] rearrangement of the isoquinoline N-ylides tolerated a variety of 

functional groups on both the ylide and l'-vinyl positions. The Stevens 

rearrangement products became significant only when the rearrangements were 

conducted at high temperatures and were easily avoided. Each of the ester, nitrile, 

benzoyl and lactone ylide-stabilised derivatives, and the l'-methyl, l'-trimethylsilyl, 

and l'-phenyl substituted derivatives, afforded the [2,3] rearrangement preferentially. 

The rearrangement of a methylene N-ylide confirmed that an ylide stabilising group 

was unnecessary for the selective [2,3] rearrangement. The presence of an ylide-

stabilising group was, however, beneficial and afforded higher yields as the N-ylides 

were easily formed from the precursor salts with a mild base; a strong base promoted 

the Hofmann elimination of the salts. These results demonstrated that a wide variety 

of functional groups may be incorporated in the 3-benzazonine system, or others, by 

this rearrangement methodology. 

The presence of 2'-substituents was generally detrimental to the [2,3] 

rearrangement. A simple methyl group could be accommodated in the trans- 2' - 

position, however, radical stabilising groups in this position promoted the Stevens 

rearrangement; with the trans-2'-dimethoxyphenyl group the Stevens rearrangement 

was obtained selectively. A methyl substituent in the cis-2'-position interfered with 

the formation of the concerted transition state and reduced the selectivity of the 

rearrangement. These results suggested that only simple alkyl groups, at the trans-

position, could be tolerated at CT for the [2,3] rearrangement. The effects of these 

groups may, however, be less pronounced for systems without the activation of the 

Stevens rearrangement afforded by the fused ring of the isoquinoline system. 

The E-2,3,4,5-tetrahydro-1H-3-benzazonine derivatives prepared in this work 

experienced substantial ring-strain and appeared to degrade to pyrrolo[1,2- 

a]isoquinoline derivatives under a variety of conditions. This degradation may limit 
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the further chemical manipulation of these derivatives. The hydrogenation of these 

derivatives could be achieved and these compounds may serve as useful intermediates 

in the synthesis of stable, substituted 2,3,4,5,6,7-hexahydro-3-benzazonines. 
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CHAPTER 3 

REARRANGEMENTS OF 1-VINYLIC 
TETRAHYDROISOQUINOLINE N-OXIDES 

3.1 	 Introduction 

The absence of literature investigating the synthesis of benz-fused N-

heterocycles by the [2,3] sigmatropic rearrangement of allylic N-oxides was noted in 

Section 1.3.2. It was proposed to investigate the rearrangements of 1-vinylic 

isoquinoline N-oxides (Figure 3.1) and the synthesis of derivatives of the unknown 

4,3-benzoxazonine system. Derivatives of this type were desired for evaluation of 

their pharmaceutical properties. It was anticipated this study would afford 

information relevant to the preparation of other fused oxaza-heterocycles by the 

same ring-expansion technique. 

R 1 ' 2 from H, Me, Br, I, CN, 
COOEt or Ph. 

Figure 3.1 
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3.2 	 Review of Benzoxazonines 

Of the twenty one possible benzoxazonine skeletons only five, the 1,4-, 2,3-, 

2,5-, 2,6-, and 4,1-benzoxazonines, are known (prior to Chem. Abs. 119). 

Ring destructive strategies provided access to three of the known skeletons. 

The 1,4-benzoxazonine 110 was prepared 109  in low yield by the oxidative removal 

of the thioether group of 109, attack on the resultant carbocation by water, and 

rearrangement of the hydroxyamide intermediate. Oxidative cleavage of the 

pyrano[3,4-Mindole 111 with periodate ion gave the 4,1-benzoxazonine 110  112 in 

high yield. The photosolvolysis and cyanogen bromide-induced solvolysis 

techniques used to produce 3-benzazonines were extended to the production of 2,5- 

benzoxazonine derivatives in good yields from oxazolo[2,3-cd-

isoquino1ines. 66,111,112  

0 
104 

i-PrOH/H20 

   

0 

   

     

     

        

109 R = Me, Et, i-Pr 	 110 

Nal04 

Me0H/H20 

The 1,4- and 4,1- benzoxazonine systems were also accessed via ring 

construction strategies. Condensation of the phenolic propionaldehyde 113 with L-

alanine gave the 1,4-benzoxazonine 113  114, while an intramolecular Michael 
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addition in the a43-unsaturated ester 115 provided 114  the 4,1-benzoxazonine 116 in 

low yield. 

C l CHO 
Me 1. 

H2N COOH  
2. DCC/THF 

Cl 

 

113 

   

The 2,6-benzoxazonine system was first prepared 115  by a ring construction 

method involving the dehydration of the amino-alcohol 117 to the 2,6- 

benzoxazonine 118. Compound 118 was reported to have activity as a diuretic, 

skeletal muscle relaxant, and CNS stimulant. The 2,6-benzoxazonine 120 was also 

prepared116 - by a cyanogen bromide-induced four atom ring expansion directly from 

the isoindole 119. 

Me 

N(CH2)30H 	H+/H20 

OH 	 A xylene 

117  Ph 
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A 

 

122 
121 R, RI, R2= H, H, H 

H, Me, H 
OMe, H, Ph 

The synthetic applications of the Meisenheimer rearrangement were extended 

to the synthesis27,117  of the 2,3-benzoxazonines 122 from the 2-benzazocine N-

oxides 121 in low yields. 

3.3 	Rearrangement of Vinyl Unsubstituted and 

2'-Substituted N-Oxides 

The vinyl unsubstituted and 2'-substituted bases (Table 3.1) were converted to 

the corresponding N-oxides 123a-d by m -chloroperbenzoic acid (m-CPBA) in 

dichloromethane at room temperature. No competing epoxidation of the olefin was 

observed. Later experiments (see Section 5.3) failed to achieve epoxidation of this 

system even under forcing conditions. The N-oxides were mixtures of the cis and 

trans B -ring diastereomers and were used without further purification. The 

compounds possessed characteristic downfield NMR shifts of the atoms alpha to the 

electron-deficient quaternary nitrogen, with H1 and Cl at 4.6-5.1 8 and 74.7-84.8 8 

respectively. The cis diastereomers were formed preferentially and identified by the 

more downfield positions 26  of H1 in the 1 H NMR. 

Thermolysis of the N-oxides in refluxing acetonitrile afforded the 2,3- 

benzoxazepines 124a-d in good yield (Table 3.1). No other rearrangement products, 

such as the [2,3] rearrangement products 125a-d, were detected by NMR or HPLC 

analysis of the crude material. 
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E_ 	 R 3 

a: H 	H Me 
b: H 	H 	Bz 
c: 75% cl H 	Me Me 

	

25%c2 Me 	H Me 
d: C6H4(0Me)2 H 	Me 125 

Table 3.1  Thermolyses of 123 in Acetonitrilea. 

Precursor 
Amine 

N-Oxide 
(trans:cis) 

Product % Yield 

49a 123a (35:65) 124a 73 
49b 123b (19:81) 124b 71 
81bb 123cb (31:69) 124cb 87b 
81c 123d (32:68) _ 	124d 58c 

a conducted at reflux over 45-60 min. 
b mixtures of the 1-propenyl isomers (Z:E=3:1) 
C compound 123d (22%) was recovered 

The spectroscopic data of the 2,3-benzoxazepines was consistent with the 

proposed structures. The compounds exhibited NMR resonances characteristic of 

this system with H1 at 5.1-5.8 5 and Cl typically at 87.1-87.4 5. The Cl resonance 

was shifted upfield to 81.6 5 in the Z-propenyl derivative 124c1. 

Further NMR experiments were conducted to confirm the compounds 

assigned as 124c1 and 124d possessed the benzoxazepine rather than benzoxazonine 

structures; these isomers could provide similar spectra. An X-H correlation 

experiment on 124c1 placed the proton vicinal to the methyl group on an olefinic 

carbon, consistent with the proposed structure. The nOe interactions detected on 
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analysis of 124d (Figure 3.2) were consistent only with the proposed structure. 

Compound 125d would not exhibit the required nOe interaction between H5 and H8. 

OMe 

OMe 

Figure 3.2 nOe Interactions observed for 124d 

Table 3.2  Other Treatments of the N-Oxides 123 

N-Oxide II 	Solvent 'Temp. CC) I 	Time I 	Product/sa 	I % Yield 

123a 
II 

II 

123cb 
II 

123d 

Mesitylene 
PrCN 

CHC13 
DCM 

MeCN 
DCM 

- 
_ MeCN 

162 
115 
55 
42 
20 
42 

microwave 
photolysisd 

25 min. 
30 min. 
7 days 
6 days 

3.5 months 
5 days 
5 min. 
30 min. 

124a 
124a 
124a 

123a:124a (36:64) 
123a:124a (21:79) 

124cb 
124cb 

complex mixture 

15 
' 

' 

- 
- 

54 
70 
- 

a from 1 H NMR integrals 
b mixtures of the 1-propenyl isomers (Z:E=3:1) 

microwaved on an alumina support at medium power 
d Hg arc lamp filtered to >225 nm at 5-10°C 

A variety of other rearrangement conditions (Table 3.2) were investigated. In 

higher boiling solvents at reflux the rearrangement occurred rapidly but afforded no 

new products. Substantial degradation occurred in refluxing mesitylene. At low 

temperatures in either chloroform, dichloromethane or acetonitrile the Meisenheimer 

rearrangement occurred slowly. After several months at room temperature in 
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acetonitrile 79% conversion of 123a to 124a had occurred. No other products were 

observed. The photolysis of 123d for 30 minutes gave a complex mixture of 

products, which were not isolated. In a single experiment, the microwave-induced 

rearrangement of 123c on an alumina support was investigated. Microwave heating 

on silica or alumina supports 118-120  has previously altered the course or yields of 

various thermal reactions. The reaction afforded no change in selectivity but 

provided the 2,3-benzoxazepine rapidly and in good yield. These conditions may 

prove useful in future for specific applications of the Meisenheimer rearrangement. 

The dispersal of the compounds on alumina may minimise intermolecular reactions. 

The exclusive [1,2] rearrangement of the 1-vinyl-N-oxides 123a,b, compared 

to the [2,3] rearrangement of the analogous 1-vinyl-N-ylides 51a,b, was consistent 

with the behaviour described47,48  for the 2-vinylpiperidine derivatives (Section 

1.3.2). The results reflected the greater stability of the N-oxides. The molecular 

orbital energy levels for the N-ylide 51a and N-oxide 123a (Table 3.3) were 

calculated 121  with MNDO and confirmed a substantially higher energy difference 

between the HOMO-LUMO orbitals in the N-oxide, due primarily to the greater 

stability of the donor HOMO orbital with the anionic charge on the electronegative 

oxygen atom. The increased energy difference would reduce the efficiency of any 

orbital overlap and inhibit the formation of a concerted [2,3] transition state from the 

N-oxides at low temperature. 

Table 3.3  Calculated Orbital Energies (Hartree) for 51a and 123a 

I X-  (HOMO) I it* (LUMO) 1 

N-ylide 51a 
N-oxide 123a 

-7.305 

-8.889 

0.245 

0.625 

7.550 

9.543 
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3.4 	Pyrolysis of the 1-Vinyl-2,3-Benzoxazepines to 

Isoxazolo[3,4-b]naphthalene Derivatives 

The 1-vinylbenzoxazepines 124a,b exhibited minor isomeric peaks on GC-

MS analysis, which appeared to be artefacts of the thermal analytical technique. It 

was proposed originally that these isomers were the desired 4,3-benzoxazonines and 

the pyrolyses of the benzoxazepines were thus investigated. 

Pyrolysis of the N-methylbenzoxazepine 124a neat in an evacuated vessel at 

180°C afforded no reaction. The compound could be purified by vacuum distillation 

at this temperature. Pyrolysis at 210°C afforded isomerisation of 124a to a single 

product in moderate yield. Isomerisation of the N-benzylbenzoxazepine 124b at the 

lower temperature of 180°C afforded two products (1.89:1.0) in low yield. The 

major isomerisation products were isolated in each case and identified as the 

isoxazolo[3,4-b]naphthalene derivatives 126a,b. Only two previous examples of 

this ring system are known, 122,123  both with a 4,9-dione structure. The present 

synthesis provided the first 1,3,3a,4,9,9a-hexahydro derivatives of this rare system. 

The derivatives were proposed to form via homolysis of the carbon-oxygen bond 

then [1,5] hydrogen abstraction to afford a nitrone intermediate (Figure 3.3). The 

intramolecular 1,3-dipolar cycloaddition of the nitrone and olefin functions would 

afford the isoxazolo[3,4-b]naphthalenes. 

3 
Me0 

a: R --= Me 
b: R = Bz 	 126 

The isoxazolo[3,4-b]naphthalenes were characterised spectroscopically. The 

analysis of 126b with heteronuclear, short-range homonuclear, and long-range 



a: R =Me 
b: R = Bz 

nitrone 
cycloaddition 

124 

126 
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homonuclear NMR correlation experiments gave a conclusive identification of the 

structure and the complete assignment of the NMR spectra (Figure 3.4). 

Figure 3.3 

2.67, m 	 3.98, d 
6.59 	2.50, m 	61.58 

3.82 	 111.83 	32.83 
56.48 M 	 12934B 

14:35A 01106641 N\ 

147.81A 	
0 

56.48 Me() 	129.32B 	43.69 	71.63 
3.82 	 112.19 	31.65 	2.89, m 348, 1  

6.66 	2.67,m 	4.13,1 
2.50, m  

. Figure 3.4 13
C and H (italics) NMR spectral assignments for 126b 

The second pyrolysis product from 124b, a crystalline solid, was identified as 

the isoquinoline isomer 127. This compound exhibited chemical shifts in the NMR 

spectra at 4.35 8 for H1 and 70.76 8 for Cl, downfield of those for the precursor 49b 

and upfield of those for 124b. Compound 127 would arise by the reversion of the 

benzoxazepine to the precursor N-oxide, then a Meisenheimer rearrangement with 

the migration of the stabilised benzyl radical. 
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3.5 	Rearrangement of l'-Substituted N-Oxides 

3.5.1 Synthesis and Thermolysis 

Treatment of the l'-substituted bases 70 with m-chloroperbenzoic acid at 

room temperature and workup in the usual manner afforded the N-oxides 128. 

Substantial 25%) rearranged material was also isolated from 70a-c (Table 3.4). 

Subsequent experiments confirmed the rearranged components were the 4,3- 

benzoxazonines 129a-c. Only the Z isomers of the benzoxazonines were observed. 

The formation of the benzoxazonines was minimised by cooling the solutions during 

the workup of the N-oxides, however, the formation of 129b in particular could not 

be eliminated. The benzoxazonines were formed by the selective rearrangement of 

the cis-N-oxides at low temperature; these were present in significant levels only 

when the solutions were cooled during the workup. The stereoselectivity of the N-

oxidation was altered by the bulky 1 1-substituents, with the trans diastereomers 

favoured in their presence and cis diastereomers in their absence. 

A 

Me0 

129 

Me0 

Me0 

130 

+ 
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Table 3.4 Products from Treatment of 70a-d with m-CPBA 

N-Oxides 128 Non-polar Fraction 
Input Workupa cis:transb % Yield Componentsb % Yield 
70a normal 17:83 29 129a 25 

„ cooled 50:50 64 - - 
70b normal 0:100 53 129b:130b (44:56) 24 

„ cooled 0:100 47 129b:130b (78:22) 14 
70c cooled 34:66 61 . 70c:129c (74:26) 26 
70d normal 0:100 82 - - 

a details given in Section 6.6 
b from 1 H NMR integrals 

Table 3.5 Thermolyses of the N-Oxides 128a-d 

N-Oxide 
(cis:trans)a 

Conditions Product Mixturea (%) % Yield 
Solventb Time rans-128 129 130 70 129+130+70 

128a (50:50) 
II 	 II 

II 	 II 

(0: 100) 

128b (0:100) 
II 	 II 

128c (34:66) 
128d (0:100) 

MeCN 
CHC13 
DCM 
MeCN 
DCM 

MeCN 
DCM 
DCM* 
DCM 
MeCN 
DCM 

1 h. 
7.5 h. 
34 h. 
1 h. 

6 days 
1 h. 

24 h. 
15 days 
36 h. 
1 h. 

24 h. 

" 

- 
39 
53 
- 

85 
- 

26 
88 
- 
- 
- 

58 
53 
46 
34 
5 

23 
13 
- 

62 
11 
8 

42 
8 
1 

66 
10 
77 
61 
12 
38 
30 
- 

- 
- 

- 
- 
- 
- 
- 

59 
92 

- 
.. 

41 
- 
- 
- 

69 
- 

81 
27c 
28c 

a from 1 H NMR integrals 
b solvents at reflux, except * at 20°C 
C the majority was degraded low Rf material 

The thermal rearrangements of the isolated N-oxides were examined (Table 

3.5). The l'-methyl, 1'-phenyl and l'-trimethylsilyl-N-oxides 128a-c afforded 

mixtures of the Meisenheimer and [2,3] rearrangement products, with a high 

combined yield based on the unrecovered N-oxides. The l'-iodoethenyl-N-oxide 
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128d provided mainly dark degraded material and substantial N-deoxygenation to 

the precursor amine 70d; the rearrangement products were obtained in low yield. 

The course of the rearrangement was dependant on the stereochemistry of the 

precursor N-oxide and the thermolysis temperature. Rearrangement of the cis N-

oxide 128a occurred stereoselectively to give the 4,3-benzoxazonine 129a in 

refluxing dichloromethane. Under these mild conditions, with moderate reaction 

times, the trans-N-oxide was unaffected. The benzoxazonine was separated from 

the unreacted trans-N-oxide and isolated in high yield. The cis-N-oxides 128b and 

128c were assumed to undergo a similar stereoselective rearrangement at low 

temperatures. The formation and low temperature rearrangement of cis-128b during 

the N-oxidation would account for the observed level of 129b. This assumption 

could not be confirmed. In refluxing acetonitrile the selectivity of the rearrangement 

of the cis-N-oxide 128a was decreased (Table 3.6). 

Table 3.6  Selectivity (130/129) of the,N-Oxide Rearrangements 

N-Oxide I DCM (42°C) IMeCN (82°C) 
cis-128a 0.02 0.22 

trans-128a 2.00 1.94 
trans-128b 4.69 3.35 
trans-128c 1.36a - 
trans-128d 	__ 1.00 2.33 

a calculated assuming selective conversion of cis-128c to 129 

The trans-N-oxides rearranged preferentially to the 2,3-benzoxazepines 130a-

d at both low and high temperatures. No consistent change in selectivity with 

temperature was observed. The l'-substituent on the N-oxides 129a-d had a large 

effect on the stereoselectivity of the rearrangement (Table 3.6). The phenyl 

substituent afforded the greatest proportion of the Meisenheimer rearrangement, 

consistent with its electron delocalising nature, while the trimethylsilyl substituent 

provided the least. The temperature at which the rearrangement of the trans-N-

oxides occurred was also effected by the l'-substituent and could be placed in the 
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order phenyktrimethylsily1<methyl. The 1 1 -phenyl and 1 1-trimethylsily1 compounds 

both gave >80% conversion in refluxing dichloromethane after 36 hours, while the 

l'-methyl derivative had not rearranged significantly after 6 days. The 1 1-phenyl 

derivative underwent a slow Meisenheimer rearrangement at room temperature. 

3.5.2 Isolation and Characterisation of the 4,3 -Benzoxazonines 

Preparative reverse-phase HPLC with acetonitrile/water mixtures enabled the 

isolation of the 4,3-benzoxazonine derivatives 129b,d and the isomeric 

benzoxazepines 130b,d from the crude rearrangement mixtures. The 

benzoxazepines eluted more rapidly and baseline resolution was achieved. In 

contrast, the isomeric forms of 129a,c and 130a,c were not separated by HPLC 

analysis. Compound 129a was, however, easily isolated following the selective 

rearrangement of cis- 128a. Compound 129c recrystallised preferentially from a 

mixture with 130c in methanol. Successive recrystallisations afforded pure material. 

The benzoxazepine 130c could not be isolated independently. 

Compounds 129a,d were respectively colourless and yellow oils, while 

129b,c were colourless crystalline solids. Unequivocal evidence for the structure of 

the 4,3-benzoxazonines was obtained by the X-ray crystallographic analysis 124  of 

129b (Figure 3.5). 

Variable-temperature experiments were necessary to provide the confirmation 

of the benzoxazonine structures by NMR analysis. At 25°C in deuterated 

chloroform the 4,3-benzoxazonines exhibited two broad singlets for the ring protons; 

at 4.1-4.5 8 for H5 and at 2.8-2.9 8 for H1 with H2 (Figure 3.6). The latter peak 

typically integrated as only 2-3 protons. The olefinic H7 proton absorbed between 

7.44 8, for 129d, and 6.46 8 for 129a. The measurement of an nOe interaction 

between H7 and the 6-methyl group of 129a supported the Z-olefin geometry. 

Improved 1 H NMR integrations and 13C NMR spectra (Table 3.7) were obtained at 

50°C. At -30°C the broad NMR peaks of 129a resolved to two distinct forms of 

equal population (Figures 3.6 and 3.7). The two populations were proposed to 
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reflect the presence of two conformers related by the inversion, or "flipping", of the 

N3-04-05 segment of the structure (see Section 3.7). The displacement of the 

oxygen atom relative to the N-methyl and 6-methyl groups would explain the large 

differences in the chemical shifts observed for these groups in the conformers of 

129a. 

Figure 3.5 The X-Ray crystallographic structure of 129b 

Table 3.7  Characteristic 13C NMR Resonances for the 4,3-Benzoxazoninesa 

II 	129a I 	129b I 	129c I 	134 
C 1 33.24 32.91 33.44 33.15 

NMe 47.41 47.94 47.29 47.35 
C2 62.81 63.00 62.87 62.62 
C5 74.77 74.55 71.42 69.37 
C6 131.10 142.39 145.11 122.71 
C7 127.93 131.32 141.83 144.06 

6-Me 24.36 - - 
6-SiMe3 	_ - -1.17 - 

a ppm at 25°C in CDC13 
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Figure 3.6 1H NMR spectra for 129a in CDC13 at -30°C and 25°C 
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Figure 17 13C NMR spectrum for 129a in CDC13 at -30°C with two conformers 
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The mass spectra of the 4,3-benzoxazonines displayed significant ions at M-

59 and M-74. These fragments were consistent with the formation of a highly 

conjugated radical cation (Figure 3.8). The base peak was either at m/z 206 or 204. 

 

 

- Me' 

 

Figure 3.8 Proposed mass spectral fragmentation of the benzoxazonines 

3.5.3 Thermal Behaviour of 4,3-Benzoxazonine Derivatives 

The isomers 129b and 130b exhibited almost identical mass-spectral 

fragmentation patterns. This behaviour was rationalised by proposing either an 

initial cleavage of the 0-C bond, in each case to a common delocalised radical 

cation, or thermal equilibration of the isomers during volatilisation. The 

thermolyses of the 6-methyl and 6-phenyl benzoxazonines 129a,b were thus 

investigated. 

In refluxing acetonitrile the benzoxazonines 129a,b isomerised slowly by a 

[1,3] shift to the benzoxazepines 130a,b (Table 3.8). The isomerisation rate was 

increased in refluxing xylene, affording mixtures of the 9- and 7-membered ring 

derivatives which were unchanged by longer reaction times. • The isomerisation of 

130b to an identical mixture of 129b and 1306 confirmed an equilibrium was 

established between the benzoxazonines and benzoxazepines at high temperatures. 

The equilibrium favoured the benzoxazepines and was consistent with the expected 

thermodynamic preference for the less strained 7-membered ring. A higher level of 
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the 6-phenylbenzoxazonine derivative at equilibrium reflected the additional 

conjugation in this derivative. 

129 

   

130 

   

A 

Table 3.8  Thermal Interconversion of 129 and 130 

Precursor Solventa Time 
(h.) 

Product ratiob 
129:130 

129a MeCN 

v
-.1

  
:: 	

1■
1

 
•
C

r
 I■
1

 I
l
  

93:7 
Xylene 5:95 

129b MeCN 89:11 
II II 54:46 
II Xylene 24:76 

130b ,, 22:78 

a solvents at reflux; MeCN (82°C), Xylene (137-142°C) 
b from 1 H NMR integrals. 

Literature precedents exist for the thermal [1,3] isomerisation of 2- 

butenylhydroxylamine derivatives to 2-propenylhydroxylamine derivatives in both 

acyclic 125  and cyclic51  systems. A radical pair mechanism was proposed 125  due to 

the observed extent (20%) of racemisation. 

3.5.4 Discussion 

Modelling studies (Section 2.3.2) predicted that only the cis-N-oxides would 

undergo a concerted rearrangement to the Z-benzoxazonines. Consequently, the 

promotion of the concerted rearrangement by the l'-substituents was linked to the 

factors able to effect the rearrangement of the cis-N-oxides to the stable Z-4,3- 

benzoxazonines. The F-substituents were proposed to act by lowering the 

conformational energy of conformer VII below that of conformer V (Figure 2.3, pg. 

24). With conformer VII as the global minimum, the activation energy required to 

achieve the pro-Z concerted state (Figure 3.9) would be lowered, and the [2,3] 
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rearrangement would be promoted. This behaviour was supported by the observed 

increase in the proportion of Z-benzazonine isomers formed with the rearrangement 

of the 1 1-substituted salts 72a-c. 

pro-Z 
carerted 
state 
(cis) 

pro-E 
conceited 
state 
(trans) 

Figure 3.9 Proposed concerted transition states for 128a -d 

The failure of the 1 1-substituted N-oxides to afford any traces of the E-4,3- 

benzoxazonine isomers, while the Z-benzoxazonines were obtained, clearly 

indicated that either (i) a concerted pro-E transition state (Figure 3.9) could not be 

achieved, or (ii) the E-benzoxazonines were not thermodynamically favoured. The 

latter appeared likely given the strained nature of the similar E-benzazonine 

derivatives isolated in this work. Considerable ring strain in the E-benzoxazonine 

system would prevent the rearrangement of the comparatively stable N-oxides at low 

temperatures and explain the total lack of [2,3] rearrangement from the 1-vinyl and 

2'-substituted N-oxides 123a-d, for which the E-benzoxazonine derivatives were the 

expected major products. It should be noted that in the only previous examples of 

the [2,3] rearrangement with ring expansion, Z double bond derivatives were formed 

(Section 1.3.2, pg. 10). 

The [1,3] isomerisation of the benzoxazonines afforded the possibility that the 

benzoxazepines 130a-d (Table 3.5) were formed by a [2,3] rearrangement then [1,3] 

shift, rather than a direct Meisenheimer rearrangement. The slow rate of the [1,3] 

shift from 129a,b ruled out this mechanism for these derivatives. It was noted, 

however, that the isomerisation 125  of the 2-buteny1-1-phenylhydroxylamine (Figure 

3.10) to the more conjugated product occurred under mild conditions. Thus the 

isolation of the 5-(dimethoxyphenyl)benzoxazonine 125d (pg. 86), and any other 5- 

arylbenzoxazonines, would be unlikely from the present thermal rearrangements. 
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°■ Me 
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Figure 3.10 

Substantial quantities of the Z-benzoxazonines 129a-d were formed on 

rearrangement of the trans-N-oxides 128a-d (Table 3.6), however, it was predicted 

(Section 2.3.2) that only a pro-E concerted state could be formed from the trans-N-

oxides. Reexamination of the molecular models suggested that, with the rapid 

formation of the E-benzoxazonines blocked, a pro-Z concerted state might be 

plausible with the rotation of the olefin group in conformer IV (Figure 2.3, pg. 24) 

toward the fused ring. The distance between the 0 -  and C2' centres in this geometry, 

however, would be on the borderline for a successful concerted interaction. An 

alternative pathway to the Z-benzoxazonines from the trans-N-oxides was proposed 

by assuming the E-benzoxazonine derivatives formed briefly but reverted, by a 

radical process, to mixtures of the cis-N-oxides, trans-N-oxides and the 2,3- 

benzoxazepines. The cis-N-oxide would then undergo a rapid concerted 

rearrangement to the Z-benzoxazonine. No evidence could be obtained for this 

proposition. 

3.6 	Synthesis and Rearrangement of a 1-Aryl N-Oxide 

The availability, from another project, of the imine precursor of the 1- 

fluorophenyl imine salt 131, prompted the investigation of the synthesis and 

rearrangement of a 1-aryl-1-vinyl-N-oxide. The reaction of 131 with 

vinylmagnesium bromide afforded the tetrahydroisoquinoline base 132 in excellent 

yield despite the steric crowding at the Cl centre. 
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The N-oxidation of 132 with m-CPBA in dichloromethane at 20°C afforded 

substantial rearrangement (5_70%) directly without isolation of the N-oxide 133. The 

major component was isolated by p.t.l.c. in moderate yield and identified as the 7- 

fluoropheny1-4,3-benzoxazonine 134 by spectroscopic and elemental analysis. The 

compound, a crystalline solid, behaved similarly to the previously described 

benzoxazonines and exhibited two sets of signals on NMR analysis at -30°C. At 

25°C in the 13C (Table 3.7, pg. 95) and 1H NMR spectra, a single set of well 

resolved signals was observed with the H5 protons at 4.35 and 3.99 8, and H6 at 

6.52 8. The Z-stereochemistry of the benzoxazonine was confirmed by the detection 

of an nOe between H6 and the ortho-protons of the pendant aryl group. 

BrMgCHCH2 

 

m -CPBA 
40 h., 20°C 

The facile [2,3] rearrangement of 133 may be due to the relief of steric 

crowding at the C I position, together with the increased conjugative stabilisation in 

134. 
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3.7 	Molecular Modelling of the Z-1,2,3,5-Tetrahydro- 

4,3-benzoxazonine System 

In order to obtain a better understanding of the conformational preferences of 

the 4,3-benzoxazonine derivatives the parent Z-1,2,3,5-tetrahydro-4,3- 

benzoxazonine was investigated with PCMode1. 76  The five lowest energy 

conformations were identified (Table 3.9). These structures are included in either 

Figure 3.11 or Appendix A. Several of the conformers (2, 3, and 4) were analogous 

to those previously identified for the Z-benzazonine system (conformers 2, 5, and 4, 

Table 2.5, pg. 36). The lower energy conformers adopted a folded structure with the 

nitrogen atom displaced from the aromatic ring plane by 1.8-2.5 A. 
Conformers 1 and 2 were significantly lower in energy than the others. The 

Boltzmann distribution predicted a 2:1 mixture at 25°C. These conformers 

possessed almost the same basic structure, however, in conformer 1 the oxygen 

occupied an endocyclic position, over the fused aromatic ring, while in conformer 2 

the oxygen was exocyclic (Figure 3.11). The presence of these two closely related 

conformers would explain the observed conformational flexibility of the 4,3- 

benzoxazonines during NMR analyses (Section 3.5.2). The two conformers may 

exchange rapidly with the inversion of the N3-04-05 portion of the structure. 

Table 3.9  Low energy conformations of the Z-benzoxazonine system 

conformer I 	E (kcal) I 	inc Hf I Populationa IN-elevationb 1N-Ar planarc 

"
4

  e
l  

C
n

  
-I

 ir) 

23.56 20.34 66.3% 2.28 3.51 

23.96 19.65 33.6% 2.45 2.99 

30.34 25.77 <0.1% 1.81 4.50 

32.19 28.03 <0.1% 2.45 2.59 

33.66 30.44 <0.1% 0.82 4.41 

a from the Boltzmann distribution at 293 K 
b distance of N above the aromatic plane (A) 

distance of N from the aromatic centre in the aromatic plane (A) 



(a) 
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(b) 

Figure 3.11 Three perspectives of (a) conformer 1 and (b) conformer 2 for the 

Z-benzoxazonine system 



105 

The X-ray crystallographic analysis of the substituted 4,3-benzoxazonine 129b 

confirmed the modelling predictions and afforded a structure based on conformer 2 

of the Z-1,2,3,5-tetrahydro-4,3-benzoxazonine system (Figure 3.5, pg. 95). 

3.8 	 Conclusion 

The 1-vinylic-tetrahydroisoquinoline N-oxides generally displayed a lower 

propensity for the concerted [2,3] rearrangement than the analogous N-ylides 

examined in Chapter 2. This behaviour reflected the additional stability of the N-

oxides and an inability to form the expected E-4,3-benzoxazonine derivatives. 

Derivatives of the E-4,3-benzoxazonine system are unlikely to be achieved due to 

the strained nature of the ring and the potential facile homolytic cleavage of the 

oxygen-carbon bond, enabling isomerisation to the stable 2,3-benzoxazepine 

derivatives. 

The successful [2,3] rearrangement of the 1-vinylic-tetrahydroisoquinoline N-

oxides required the presence of a 1-aryl or P-substituent. The l'-substituent acted by 

favouring the appropriate pro-Z concerted transition state geometry in the cis-N-

oxides, while the 1-aryl group promoted the formation of a more highly conjugated 

product. With these substituents, a route was developed which afforded the first 

examples of the Z-4,3-benzoxazonine system, in moderate yield, via the [2,3] 

rearrangement. The Z-4,3-benzoxazonines isomerised to equilibrium mixtures 

favouring the 2,3-benzoxazepine isomers at high temperatures, and any future 

reactions of these compounds should be conducted at low temperatures. 

The appropriately substituted cis-N-oxides afforded exclusively the Z-4,3- 

benzoxazonines at low temperatures (<40°C). In this work, however, the trans-N-

oxides were formed preferentially during the N-oxidation. The rearrangements with 

these diastereomers present afforded, except from a 1-isopropenyl derivative, 

mixtures of the 2,3-benzoxazepines and Z-4,3-benzoxazonines. The development of 

a method able to afford selectively the cis-N-oxides would enable the present 



106 

synthesis to be optimised and afford a high-yielding, convenient route to the Z-4,3- 

benzoxazonine system. 
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Figure 4.2 
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CHAFFER 4 

FURTHER APPLICATIONS OF 
[1,2] REARRANGEMENTS 

4.1 	 Introduction 

4.1.1 General Introduction 

The Stevens and Meisenheimer rearrangements have provided the one atom ring 

expansion of a limited number of heterocyclic systems (Section 1.2.3). Many 

applications of these rearrangements to the synthesis of medium-sized aza- or oxaza-

heterocyclic systems remain to be examined. It was proposed to investigate the 

rearrangements of the 5,6-dihydro-s-triazolo[4,3-a]-1,4-benzodiazepine derivatives 

(Figure 4.1) and the tricyclic bridgehead N-ylides and N-oxides (Figure 4.2). The 

former may afford access to the unknown triazolo[4,3-a]-1,4-benzodiazocine and 

triazolo[4,3-a]-5,1,4-benzoxadiazocine systems, while the latter would give the novel 

fused methylene or oxa-bridged medium-sized heterocyclic systems. 

Figure 4.1 



Ph Ph 

136 135 a: X=NO2, R=H 
b: X=C1, R=Me 

A 

137,139 a: X=H, R=H 	 0 
b: X=H, R=Me 
c: X=C1, R=Me 
d: X=NO2, R=Me 

138,140 a: X=C1, R=Me 

/ Me 

Ph 

137 n=1 
138 n=2 

Ph 

139 n=1 
140 n=2 
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4.1.2 Introduction to 5,1,4-Benzoxadiazocines 

Many potent CNS active therapeutics have been developed based on the 1,4- 

benzodiazepine heterocyclic system, 126429  including Nitrazepam 130  135a and 

Diazepam 131  ("Valium") 135b. The addition of a fused triazolo[4,3-a] ring, as in 

Alprazolam 55  136, provided therapeutics of higher activity. As a class these 

compounds typically possessed potent anxiolytic, anticonvulsant, muscle-relaxant and 

sedative activity. Derivatives of the 1,4-benzodiazepine system, or other compounds 

active at the benzodiazepine receptor, remain the subject of intense investigation 132  as 

the multiple clinical actions, habituation, and addiction of many of the known drugs 

are undesirable. 

The ring-expanded analogues of the 1,4-benzodiazepines, the 5,1,4- 

benzoxadiazocines 31,32  139 and the 2,3,7-benzoxadiazonine 32  140, were 

synthesized via the Meisenheimer rearrangement of the N-oxides 137 and 138. 

These medium-ring heterocyclic derivatives demonstrated CNS activity in preliminary 

pharmacological tests. Compound 139d exhibited some possible antagonistic activity 
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at the 5-HT3 receptor site and may represent a new lead compound of novel structural 

type for this receptor. Consequently, the proposed synthesis of triazolo[4,3-a]-1,4- 

benzodiazocine and triazolo[4,3-a]-5,1,4-benzoxadiazocine derivatives (Figure 4.1) 

was of interest for the further development of this series. It was reasoned that, as in 

the 1,4-benzodiazepines, the addition of a fused triazolo[4,3-a] ring may provide 

5,1,4-benzoxadiazocine derivatives of increased CNS activity. 

4.1.3 Introduction to Fused Methylene or Oxa-bridged Medium-sized 

Heterocyclic Systems 

Bridged fused medium-sized heterocyclic systems have attracted considerable 

attention, with particular interest in the pharmaceutical applications of derivatives of 

this class. Some examples include the methylene bridged systems of the analgesic 

eptazocine, 133  a 1,6-methano-4-benzazonine, and the antitumour alkaloid 

vinblastine 134  (Figure 4.3), one of the most often used compounds in cancer 

chemotherapy. 135  Oxa-bridged systems, such as the antitumour antibiotic FR-900482 

(Figure 4.3) and its derivatives136-138  which possess a 1,5-epoxy-1-benzazocine core, 

are also of great interest. 

Eptazocine Vinblastine 
(V=Vindoline) 

Figure 4.3 

It was proposed that the [1,2] rearrangements of the tricyclic bridgehead N-

oxides and N-ylides (Figure 4.2) may afford the new oxa- or methylene-bridged 
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heterocyclic systems of pharmaceutical interest. In addition, the potential [2,3] 

rearrangements of these derivatives (Figure 4.4), although considered unlikely, were 

of interest. 

Me0 
[2,3] 

n =1, 2. 	Me0 
Y =0, CHCO2Et 

Figure 4.4 

  

Few investigations have been made of the potential for [1,2] rearrangements to 

provide access to oxa- and methylene-bridged heterocycles. One report of the 

synthesis of an oxa-bridged heterocycle by the Meisenheimer rearrangement has been 

published, 139  in which the tetrahydro-2H-azetopyrido[3,4-b]indole N-oxide 141a 

rearranged to the 3,6-epoxyhexahydroazocino[5,6-b]indole derivative 142a at room 

temperature, while the 1-hydroxymethyl N-oxide 141b rearranged to 142b only on 

heating in tetrahydrofuran to 55°C, and was obtained along with a substantial amount 

of the Cope elimination product. 

  

a: R=CO2Me 
b: R=CH2OH 

4.2 	Rearrangements of 5,6-Dihydro-s-triazolo[4,3-a]- 

1,4-Benzodiazepine Derivatives 

4.2.1 Synthesis of N-Methyldihydroalprazolam 

Initially it was thought that N-methyldihydroalprazolam 147, required as the 

precursor for the rearrangement studies, could be made by the N5-methylation of 
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Alprazolam to the iminium salt 143, followed by reduction. The treatment of 

Alprazolam with iodomethane at 50°C, however, provided a mixture of at least two 

isomeric methiodide salts (ratio=2.24:1). The major isomer possessed a 1-methyl 

signal at 3.19 8, downfield of that for Alprazolam (2.64 8) and consistent with the 

1,2-dimethyl iminium salt 144. The reduction of this crude allcylated material with 

sodium borohydride afforded the Icnown 140  1,2-dimethyl derivative 145 as the major 

product. Compound 145 possessed a characteristic doublet in the 1 H NMR spectrum 

for the 1-methyl signal at 1.52 8, and a quartet for H1 at 4.75 8. The results were 

consistent with previous studies which reported the preferential N-alkylation 140  or 

protonation 141  of Alprazolam at the triazolo nitrogen atom N2. 

CI 

Me! 

Cl

Cl  

Ph 	Alprazolam 

136 

Mel 

Ph 
143 

 

NaBH4 

CI 

 

 

Ph 
144 

 

Ph 
145 

The development of an alternative route to N-methyldihydroalprazolam from 

Alprazolam via dihydroalprazolam 146 was then investigated. It was reasoned that 

under acidic conditions the protonated 2-, 3- or 5-iminium salts of Alprazolam would 

exist in equilibrium. The reduction of the non-aromatic 5,6 site may then occur 

142-145 preferentially to give 146. Dihydroalprazolam had been prepared previously, 
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but only as the direct product of benzazepine ring construction and not from 

Alprazolam. 

 

NaBH3CN 
Me0H/HCI 

 

   

Cl 

 

CI 	 N, 

Dihyclroalprazolam 	Pb 
146 

 

Ph 
136 

 

1  1. H2CO, Me0H 
2. HCl/NaBH3CN 

The treatment of Alprazolam at room temperature with either sodium 

borohydride in ethanol, sodium cyanoborohydride in methanol/acetic acid, or sodium 

cyanoborohydride in glacial acetic acid, gave no reaction. The latter system at 50°C 

afforded three products from which dihydroalprazolam 146, the major component, 

was isolated in 36% yield. Compound 146 exhibited a 1H NMR resonance for H6 at 

4.95 8 as a singlet, consistent with the proposed 4H-5,6-dihydro- structure but not the 

alternative potential 1H-2,4- or 3H-3a,4-dihydro- isomers. The two minor products, 

25% and 11% respectively of the crude product mixture, were tentatively identified as 

the N-ethyl 148a and N-acetamide 148b compounds by GC-MS analysis. The 

formation of 148b reflected the condensation of 146 with acetic acid and suggested 

that the acidification of the mixture with a mineral acid, rather than an organic acid, 

would provide an increased yield of 146. The subsequent reduction of Alprazolam by 

sodium cyanoborohydride in methanol acidified with hydrochloric acid afforded 146 
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in excellent yield and provided an efficient and mild route from Alprazolam to 

dihydroalprazolam. The use of sodium cyanoborohydride, a more stable and selective 

reagent under acidic conditions than sodium borohydride, was critical to the success of 

this reaction. 

The treatment of 146 with formaldehyde and sodium borohydride afforded the 

expected reductive methylation product, together with several minor byproducts. The 

purification of 147 by p.t.l.c. on silica failed, however, with the material being 

degraded to a mixture of four components. The 1H NMR spectrum of the mixture 

indicated the formation of quaternary amine or iminium salts with the signals for the 

methyl groups between 3.3 and 3.5 8, downfield of their positions in 146. The 

impurities in the reductive methylation of 146, and thus the complications inherent in 

purifying 147, were avoided by conducting the reaction with sodium 

cyanoborohydride in acidic solution. Under these conditions 147 was formed in 

almost quantitative yield. No impurities were detected by GC-MS. The NMR (Figure 

4.5) and mass spectral data for N-methyldihydroalprazolam were consistent with the 

proposed structure. The present method appeared to be the first preparation of this 

potentially CNS active 1,4-benzodiazepine derivative. 

Figure 4.5 13C and 1 H (italics) NMR assignments for 147 

Prior to the successful preparation of 147 described above, the one-pot 

conversion of 136 to 147 was investigated. The reduction with N-alkylation of 

indole, quinoline, and isoquinoline, by a combination of sodium borohydride and the 
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appropriate carboxylic acid, was described by Gribble et. al. 147,148 The mechanism 

was proposed 148  to involve the generation of the free aldehyde from the carboxylic 

acid, via an acyloxyborohydride species, with the subsequent reductive amination of 

the saturated amine formed in situ. The formation of N-ethyldihydroalprazolam 148a 

in previous experiments suggested this methodology may be applicable to the direct 

generation of N-methyldihydroalprazolam from Alprazolam. 

The treatment of Alprazolam with sodium borohydride and formic acid at 0°C 

produced mixtures of 147 and the formamide derivative 149. Compound 149 was 

identified by MS and NMR spectral analysis. The compound exhibited two 

conformers in deuterated chloroform at room temperature, reflecting hindered rotation 

of the amide bond. The ratio of 149 to 147 was dependant on the rate of addition of 

the formic acid to the reaction mixture. The addition of the acid in one dose produced 

mainly the amide 149 (149/147=13.3), while the slow dropwise addition of the acid 

produced a significant improvement in the yield of 147 (149/147=1.0). The results 

were consistent with the reaction of 146, generated in situ, with either formic acid or 

formaldehyde. The rate of addition was assumed to control the relative concentrations 

of these species. A previous study 146  of this type noted the formation of an amide 

byproduct and demonstrated this compound was not an intermediate in the one-pot 

reaction. 
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The further development of the one-pot reaction of 136 to 147 was prevented 

by time constraints. It appeared likely that the complete optimisation of reaction 

variables, such as reactant stoichiometry, concentration, and method of addition, 

would allow the successful one-pot conversion of Alprazolam to N-

methyldihydroalprazolam. 

4.2.2 Attempted Synthesis of a Quaternary N-Ylide Precursor 

In several reactions the selective N-allcylation of 147 to the immediate ylide 

precursor, the ethoxycarbonylmethyl salt 150, was pursued, but ultimately without 

success. The treatment of 147 with ethyl bromoacetate in acetone at elevated 

temperatures failed to provide any alkylation, while the reaction of 147 with 

ethoxycarbonylmethyltriflate at room temperature afforded a mixture of several salts. 

Numerous signals were present in the 1 H NMR spectrum of the material between 2.96 

and 2.45 8, consistent with a downfield shift of the 1-methyl groups' signal by the 

formation of 2- or 3- iminium salts. These results suggested that, as for Alprazolam, 

the triazole ring nitrogens of 147 were the preferred nucleophilic sites for N-

alkylation. 

With the planned synthesis of 150 found to be unsuccessful, the intended 

synthesis of a triazolo[4,3-a]-1,4-benzodiazocine derivative (Figure 4.1) via the 

Stevens rearrangement of an N-ylide was abandoned. 
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4.2.3 Synthesis and Rearrangement of an N-Oxide to a Triazolo[4,3- 

a]-5,1,4-benzoxadiazocine Derivative 

Alprazolam is known148  to react selectively with peracids to produce the 5- 

oxide, in contrast to the reaction of Alprazolam with alkylating agents. The treatment 

of 147 with m-CPBA, however, gave a mixture of compounds. Analysis of the 

material by GC-MS indicated the major component possessed a molecular weight of 

322 mass units, consistent with the triazolobenzodiazepin-4-one structure 151. It was 

proposed that the potential for a highly stabilised radical at C4 allowed hydrogen 

abstraction and attack by a chlorobenzoate radical, with the formation of a 4- 

chlorobenzoate derivative. The hydrolysis of this and then oxidation would give 151. 

A 3-chlorobenzoate-4,1,5-benzoxadiazocine was isolated after treatment of a 1,3,4,5- 

tetrahydro-1,4-benzodiazepinone with m-CPBA. 32  The hydrolysis and tautomerism 

of 4-acetoxy-4H-triazolo[4,3-a]-1,4-benzodiazepine derivatives to 4H-triazolo-

benzodiazepin-4-ones has been reported. 148  

147 
m-CPBA 
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Ph 
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The relatively new oxidation agent, magnesium monoperoxyphthalate 149  

(MMPP), demonstrated a clear superiority over m-CPBA for the N-oxidation of 147. 
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This reagent reacted selectively with 147 at room temperature to give a mixture of the 

N-oxide 152 and the desired Meisenheimer rearrangement product, the triazolo[4,3- 

a]-5,1,4-benzoxadiazocine 153 (152/153=1.9). No other products were observed. 

The N-oxide was not isolated but signals at 80.63 8 for C6 and 5.61 8 for H6 in the 

13C and 1 H NMR spectra were consistent with the expected structure. The compound 

exhibited broad peaks in the 1 H NMR spectrum and individual signals for the 

expected cis and trans diastereomers were not observed. 

It should be noted that 147 and 153 were not distinguished by t.l.c. with 

common solvent mixtures on silica. Consequently, monitoring the N-oxidation of 

147 by t.l.c. gave misleading results, as the formation of 153 gave the appearance of 

incomplete oxidation. A long reaction time was adopted to ensure the removal of 

147. In addition, on-column reactions during GC-MS provided a mixture of 147 

and 153 from pure 153, preventing analysis by this technique. 

The Meisenheimer rearrangement of N-oxides at room temperature is typically 

associated26-32  with the formation of nine membered, or larger, heterocycles, and was 

not observed during the N-oxidation of the 1,4-benzodiazepinones 137. The low 

temperature rearrangement of 152 reflected the presence of additional ring strain in the 

triazolo[4,3-a]-1,4-benzodiazepine ring system when compared to the 1,4- 

benzodiazepinone system. 

Heating the N-oxidation mixture of 152 and 153 in acetonitrile at reflux 

promoted the facile Meisenheimer rearrangement of the remaining 152 to 153. The 

purification of this crude reaction mixture by p.t.l.c. on silica gave the triazolo[4,3-a]- 

5,1,4-benzoxadiazocine 153, the first example of this ring system, as a colourless 

powder in 50% yield from N-methyldihydroalprazolam. 

Compound 153 was characterised principally by 13C NMR (Figure 4.6), 1 H 

NMR (Figure 4.7) and MS analysis. The downfield positions of H7 and C7 in the 

NMR spectra, at 5.98 8 and 86.43 8 respectively, supported the proposed structure, 

with the deshielding caused by the adjacent electronegative oxygen exceeding that 
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present in the N-oxide. The alternative rearrangement of the N-oxide toward C4 was 

precluded by the comparatively high-field chemical shifts for H4. 

N 
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3 N 
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Figure 4.6 13C NMR assignments for 153 

The H4 methylene protons of 153 demonstrated chemical shift nonequivalence 

and geminal coupling in the 1 H NMR spectrum. This behaviour is characteristic of 

the 1,4-benzodiazepine pharmacueticals 150  and was exhibited by the 

triazolobenzodiazepine precursors, 146 and 147, and the 5,1,4-benzoxadiazocin-2- 

ones32  139. The appearance of the chemical shift nonequivalent protons confirmed 

that only one conformation of 153 was important at room temperature, with a large 

energy barrier preventing ring inversion. The shifts of the methylene protons, at 4.43 

8 and 4.22 8, were assumed to reflect the position of each proton in the shielding 

region of the anisotropic aromatic ring. In the 1,4-benzodiazepinone therapeutics a 

much larger shift difference, for example 5.50 5 and 4.09 8 for Alprazolam, was 

observed. The results indicated that 153 did not adopt a folded chair-like 

conformation in which one proton was significantly nearer the aromatic ring. The 

upfield position of the 1-methyl signal at 1.79 8, compared to those for Alprazolam 

(2.65 8) and for dihydroalprazolam (2.54 8), suggested that 153 adopted a 

conformation with the triazole ring at a greater angle to the aromatic ring, removing the 

1-methyl group from the deshielding region in the plane of the aromatic ring. 
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Figure 4.7 1 H NMR spectrum and assignments for 153 in CDC13 
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4.3 	Rearrangements of Tricyclic Bridgehead 
N-Ylides and N-Oxides 

4.3.1 Synthesis of the Pyrrolo[2,1-a]isoquinoline and 

Benzo[a]quinolizine Precursors 

The vinyl substituted pyrrolo[2,1-a] isoquinoline and benzo[a]quinolizine 

precursors 158a and 158b, required to test the proposed rearrangements (Figure 4.2, 

pg. 107), were prepared from the known iminium salts 151,152  154 and 156. The 

Grignard reaction of vinylmagnesium bromide in tetrahydrofuran with 156 did not 

proceed at room temperature. Refluxing the reaction mixture, however, provided 

158b in low yield. In contrast 154 failed to react with vinylmagnesium bromide even 

in tetrahydrofuran at reflux. The low reactivities of 154 and 156 toward 

vinylmagnesium bromide reflected the steric crowding around the electrophilic 10b-

and 1lb-carbon centres of the tricyclic iminium salts. The planar nature of the pyrrole 

ring in 154 may result in the more efficient shielding of the electrophilic carbon by the 

a-protons, and thus the lower reactivity of 154. Methylmagnesium iodide reacted 

with 154 in refluxing diethyl ether. 153  

The conversion of hindered 1-alkyl-3,4-dihydroisoquinolinium salts to 1-alkyl-

1-viny1-3,4-dihydroisoquinoline derivatives via 1-cyano adducts and their reaction 

with vinylmagnesium bromide was achieved. 105  The application of this technique to 

the present work allowed the synthesis of the previously unattainable 158a under 

surprisingly mild conditions. The reaction of the pyrrolo[2,1-a]isoquinoline cyanide 

adduct 155 with vinylmagnesium bromide gave 158a in good yield at room 

temperature. The mechanism involved is unclear. The reaction of the 

benzo[a]quinolizinium cyanide adduct 157 with vinylmagnesium bromide was not 

attempted, but would be expected to provide an improved yield from 156 to 158b. 

The cyanide adducts 155 and 157 were formed by the reaction of the iminium 

salts with cyanide ion in water/methanol. The benzo[a]quinolizinium salt reacted more 

readily with this reagent than the pyrrolo[2,1-a]isoquinolinium salt. Thus, elevated 
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temperatures were required for the conversion of 154 to 155, while 156 gave 157 at 

room temperature. Both 155, a pale yellow oil, and 157, an off-white solid, 

developed a red colour on storage and were degraded by heating. The compounds lost 

HCN on mass spectral analysis and afforded spectra identical with those of the 

resultant enamines. The molecular ions were not observed. The 1 H and 13C NMR 

spectra of 155 and 157 were consistent with the proposed structures. A quaternary 

13C NMR signal in the 118 - 127 8 region confirmed the presence of the cyano group. 

NaCN 1 A H20/Me0H BrMgCH=CH2 1 KCN 
H20/Me0H 

The 10b- and 1 lb-vinyl substituted bases 158a,b were isolated as oils. High 

resolution MS analyses confirmed the molecular formulae. The loss of the vinyl 

group provided the base peak (M-27) in the mass spectra of 158a,b. The 1 H NMR 

spectra confirmed the presence of the vinylic group, while two-dimensional 

homonuclear correlation experiments afforded the assignment of the methylene spin 
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systems. The quaternary carbons alpha to the aromatic, vinyl, and amino moieties in 

158a and 158b were shifted downfield to 67.55 and 62.22 8 respectively in the 13C 

NMR spectra. 

Several attempts were made to synthesise the 10b- and 1 lb-phenyl substituted 

tricyclic derivatives 159a,b from the iminium salts or cyanide adducts. It was 

reasoned that the phenyl substituent would provide extra resonance stabilisation of the 

radical pathway for later N-oxide or N-ylide [1,2] rearrangements. An earlier 

attempt31  to add a phenyl Grignard reagent to the chloride salt of 154 was 

unsuccessful. The conversion of 154 to the cyanide adduct 155 failed to promote 

any reaction with phenylmagnesium bromide and 159a was not obtained. Similarly, 

the reactions of phenylmagnesium bromide or phenyllithium with 157 failed to 

produce 159b. Compound 159a is known,61,63  however, time did not permit its 

synthesis via the published technique involving the formation and reduction of a 10b-

phenylpyrrolo[2,1-a]isoquinoline-3-one derivative. 

4.3.2 Synthesis and Base-Promoted Behaviour of Quaternary Salts 

The tricyclic amines 158a,b were alkylated with ethoxycarbonylmethyl triflate 

in acetonitrile to provide, after treatment with potassium bromide, the N - 

ethoxycarbonylmethyl salts 160a,b. Compound 160a was obtained as a single•

diastereomer which displayed the expected downfield shift of the 10b-carbon signal to 

83.88 8 in the 13C NMR spectrum. It is thought likely that 160a was the trans B/C 

fused diastereomer, as hexahydropyrrolo[2,1-a]isoquinolines typically adopt a low 

energy trans B/C fused conformation, and the N-alkylation of this conformation 

would be less sterically hindered than for the cis B/C fused conformers in the presence 

of the 10b-vinyl group. In contrast, 160b was a mixture (3.3:1) of two 

conformationally flexible diastereomers. The N-Alkylation to a cis B/C fused 

diastereomer of 160b may have occurred as the dihedral angle adopted in cis B/C 

fused 158b, between the nitrogen lone-pair and the vinyl-substituent, would be 

considerably larger than that in 158a, decreasing the steric hindrance of the reaction. 



161 R = CO2Et 

123 

The base promoted reactions of 160a,b were tested initially at mild 

temperatures. No reaction occurred upon treatment of 160a,b with DBU in 

acetonitrile at temperatures below the refluxing point of the solvent. In refluxing 

acetonitrile minor amounts of non-polar rearrangement products were observed after 

10 to 20 hours. Lengthier reaction times failed to increase the level of this material. 

Similarly, conducting the reactions in reflwdng butyronitrile provided no significant 

increase in the non-polar material and led to darkening of the reaction solution. 

158 

1. TfOCH2CO2Et 
2. KBr  

a: n=1 
b: n=2  

Me0 

Me0 
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CH2CO2Et 
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The small amount of non-polar material from the reaction of 160a in refluxing 

acetonitrile was purified by reverse-phase preparative HPLC to give a fraction with 

approximately 95% purity. The major component was tentatively attributed to the 

desired 3,7-methano-3-benzazonine 161a and represented at best a 1% yield. The 

small amount of 161a obtained prevented its unequivocal identification, however, the 

1 H NMR and 13C DEPT NMR (Figure 4.8) spectra were consistent with the proposed 

structure. The presence of a vinyl group and a downfield 13C NMR signal at 64.48 5, 

attributed to the bridging carbon, were indicative of 161a and eliminated the obvious 

alternative products from either the Hofmann elimination or the [2,3] sigmatropic 

rearrangemeni 
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32.35c 

Figure 4.8 13C NMR spectral assignments for 161a 

The non-polar material from the reaction of 160b in reflindng acetonitrile 

represented at best a 7% total yield of products. The GC-MS and 1 H NMR spectral 

analysis of the material revealed the presence of the precursor 158b (33% of the 

material), assumed to be present as an impurity in 160b or formed by bromide 

catalysed N-dealkylation, and three isomers (10%, 36%, and 11% of the material) 

with the correct molecular weight for 161b and almost identical mass spectra. In 

view of the low yields no attempts were made to purify the material further. 

4.3.3 Synthesis and Thermolyses of the N -Oxides to Fused Oxa-

Bridged Medium-Sized Systems 

The oxidation of 158a,b with m-CPBA in dichloromethane gave the N-oxides 

162a,b as mixtures of the cis- and trans-diastereomers which, after isolation, were 

utilised without further purification. The N-oxidation was considerably more 

diastereoselective from 158a than 158b, with a ratio of 13.3:1.0 for the 

diastereomers of 162a and 5.7:1.0 for the diastereomers of 162b. The 1 H and 13C 

NMR spectra of 162a,b confirmed the proposed structures, with the vinyl group 

intact and the ClOb and Cl lb signals shifted downfield to 82.24 8 and 77.69 8 for the 

major diastereomers of 162a and 162b respectively. 

The N-oxides 162a,b were unchanged on refluxing in acetonitrile for 48 

hours. Refluxing 162a,b in butyronitrile for 1-2 hours, however, gave a small non-

polar fraction in each case which was isolated from the largely intact N-oxide. The 

reverse phase HPLC purification of these fractions gave the Meisenheimer 
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rearrangement products, the 3,7-epoxy-3-benzazonine 163a and 2H-3,8-epoxy-3- 

benzazecine 163b derivatives, in low yields of 5-6%. The formation of these new 

oxa-bridged systems was confirmed by the downfield positions of the quaternary 

carbons, C7 at 8 82.87 for 163a and C8 at 8 87.89 for 163b, in the 13 C NMR 

spectra (Figure 4.9). Two dimensional homonuclear and heteronuclear correlation 

experiments afforded the assignment of the 1 H NMR spectra for 163a (Figure 4.10) 

and 163b (Figure 4.11). 

No evidence was obtained for the formation of the other possible Meisenheimer 

or [2,3] sigmatropic rearrangement products. The precursors 158a,b were, 

however, detected in the non-polar thermolysis fractions by 1 11 NMR, at yields about 

half those of 163a,b. Compounds 158a,b may arise either directly from 163a,b or 

by the deoxygenation of 162a,b prior to, or after reversal of, the Meisenheimer 

rearrangement. The stability of 163a was thus tested by refluxing a sample in 

butyronitrile for 1 hour. After this time traces of 158a were evident in the 1H NMR 

of the mixture, indicating that the direct deoxygenation and recyclization of the oxa-

bridged derivatives could occur, however, the majority of 163a was unchanged. This 

confirmed the precursors were formed mainly by the deoxygenation of the 

corresponding N-oxides in the thermolytic reactions. Small amounts of 

deoxygenation products were previously noted 154  to accompany the Meisenheimer 
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rearrangement, with several mechanisms proposed for the thermal 

deoxygenation. 154,155  

Figure 4.9 13C NMR spectral assignments for (a) 163a and (b) 163b 

A variety of conditions were tested in attempts to improve the yield of 163a, 

but without success. These included longer reaction times in butyronitrile, 

thermolysis in DMSO at 130°C, and thermolysis neat in an evacuated tube at 120°C. 

In each case the deoxygenated precursor 158a became the major product, with no 

significant increase in the yield of 163a. 

The reaction temperature necessary for any significant Meisenheimer 

rearrangement of the bridgehead N-oxides 162a,b was higher than that required for 

the rearrangement of the simpler 1-vinylic tetrahydroisoquinoline N-oxide derivatives 

123a-d and contrasted greatly with the reported formation 139  of 142a (pg. 110) from 

the tetrahydro -2H-azetopyrido[3,4-b]indole N-oxide 141a at room temperature in 

dichloromethane. Clearly the relief of the azetidine ring strain promotes the low 

temperature Meisenheimer rearrangement of 141a. The less facile rearrangement of 

141b also indicated a role in the activation of the [1,2] rearrangement by the 13-ester 

substituent of 141a. 
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Figure 4.10 1H NMR spectrum and assignments for 163a in CDC13 
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As the 10b-unsubstituted pyrrolo[2,1-a]isoquinoline N-oxide analogue of 162a 

did not undergo Meisenheimer rearrangement, 31  the vinylic group of 162a apparently 

promoted the rearrangement by providing additional stabilisation of the radical 

intermediate. It was reasoned that a cyano group may also provide radical stabilisation 

and, as the cyano adduct 157 was accessible in higher yields than 158b, the 

thermolysis of the 1 lb-cyanobenzo[a]quinolizine N-oxide 164 was investigated. The 

N-oxidation of 157 with m -CPBA occurred stereospecifically to give one 

diastereomer of 164, assumed to be the trans B/C fused diastereomer. The 

thermolysis of 164 in refluxing butyronitrile afforded an ether soluble fraction, in 

approximately 37% yield, but failed to provide the desired 3,8-epoxy-3-benzazecine 

derivative. The analysis of this material by GC-MS indicated the presence of two 

significant components (4.5:1.0), with molecular ions at 246 (N-oxide 164 - 0; CN) 

and 272 (N-oxide 164 - 0). Thermolysis of 164 in refluxing dimethylformamide 

produced a complex mixture with the M÷. 272 compound the only significant 

component present. No attempts were made to purify the material further in view of 

the low yields. 

4.4 	 Conclusion 

The applications of the Meisenheimer rearrangement in organic synthesis were 

extended to the synthesis of the first example of the triazolo[4,3-a]-5,1,4- 

benzoxadiazocine ring system, compound 153, with the successful [1,2] 

rearrangement of the triazolo[4,3-a]-1,4-benzodiazepine N-oxide 152. The synthesis 
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of 153 was achieved in excellent yield overall from the known 1,4-benzodiazepine 

therapeutic, Alprazolam, via the novel derivative N-methyldihydroalprazolam 147. 

The similar extension of the Stevens rearrangement to the production of a 

triazolo[4,3-a]-1,4-benzodiazocine derivative was not achieved, as the necessary 

precursor triazolo[4,3-a]-1,4-benzodiazepine salt 150 could not be obtained. The 

successful preparation of this, or a similar N-ylide precursor, and the subsequent 

Stevens rearrangement remains to be investigated. 

The first examples of the 3,7-epoxy-3-benzazonine and 2H-3,8-epoxy-3- 

benzazecine systems, derivatives 163a and 163b, were prepared by the 

Meisenheimer rearrangements of the tricyclic bridgehead N-oxides 162a,b. The 

compounds, however, were obtained in low yield and the deoxygenation of the N-

oxides was often preferred to the formation of the strained oxa-bridged heterocyclic 

systems. The results suggested that the Meisenheimer rearrangement may provide 

only limited access to oxa-bridged, fused aza-heterocycles. 

The tricyclic bridgehead quaternary salts 160a,b failed to undergo any 

significant Stevens rearrangement. The novel 3,7-methano-3-benzazonine derivative 

161a was tentatively identified but not fully characterised due to the very low (_1%) 

yield. The results indicated that the Stevens rearrangement will not be applicable to the 

synthesis of methylene-bridged, fused aza-heterocycles. 
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CHAPTER 5 

REARRANGEMENTS OF 1-CYCLOPROPYL-
ISOQUINOLINE N-OXIDES AND N-YLIDES 

5.1 	 Introduction 

It was proposed that the presence of a cyclopropyl group may modify the 

Stevens or Meisenheimer rearrangements, allowing a four atom ring expansion 

(Section 1.4). To evaluate the synthetic potential of this proposition the synthesis and 

behaviour of 1-cyclopropyl-substituted tetrahydroisoquinoline N-ylide and N-oxide 

derivatives were examined in this work. The rearrangement had the potential to 

provide direct access to derivatives of the 3-benzazecine system and the novel 4,3- 

benzoxazecine system from easily preparable tetrahydroisoquinoline precursors 

(Figure 5.1). There is a need for new approaches to these fused ten-membered ring 

systems, either to incorporate new functionality in the known rings or to synthesize 

new oxaza systems. 

Although twenty eight different benzoxazecine ring skeletons are possible only 

the 2,6- and 3,6-benzoxazecine systems have been reported (prior to Chem. Abs. 

119). Both were prepared by the extension of photosolvolysis and cyanogen 

bromide-induced solvolysis ring destruction techniques. 156,157  Thus the 
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[1,3]oxazino[2,3-a]isoquinoline and [1,4]oxazino[3,4-a]isoquinoline precursors, 165 

and 167, gave the benzoxazecines 166 and 168 in moderate yields. A 2,6- 

benzoxazecine derivative was prepared97  by the cyanogen bromide-induced four atom 

ring expansion of an isoquinoline derivative, analogous to the conversion of 119 to 

120 (pg. 84). 
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A variety of methods are known for the preparation of derivatives of the 3- 

benzazecine system. The majority involve ring destruction techniques with the same 

reagents and techniques used for the production of 3-benzazonines60,61,64  and 3- 

benzoxazecines, 156  but from the appropriate benzo[a]quinolizine precursors. Thus 

Emde reduction of 169 gave the 3-benzazecine 170 in high yield. Compound 170 

demonstrated antiinflammatory activity when injected intraperitoneally in the rat. 158  

Elimination accompanied the cyanogen bromide-induced ring opening 159  of the amino 

alcohols 171 to afford the 7,8-unsaturated products 172. The stereochemistry about 

the double bond in 172 was not determined. 

A ring construction approach, analogous to the conversion of 41 to 42 (pg. 

17), afforded 3-benzazecines in low yield, 69  while the Stevens rearrangement of 2- 

benzazonines to 3-benzazecines was noted 3335  previously (Section 1.2.3). 
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5.3 Synthesis of 1-Cyclopropyl Rearrangement Precursors 

No reports of the preparation of cyclopropylisoquinolines were found in the 

literature, however, it was envisaged that the cyclopropanation of the 1 - 

vinyltetrahydroisoquinoline 49a would afford access to the necessary 1- 

cyclopropylisoquinoline precursors (Figure 5.2) . As it was originally proposed that 

1-oxiranyl-substituted tetrahydroisoquinoline N-ylides and N-oxides may also 

rearrange to benzoxazecine and benzodioxazecine products the epoxidation of 49a was 

also investigated. 

Figure 5.2 
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Both allylamine 160  and 2-methyl-3-amino-propene 161  were reported to undergo 

Simmons-Smith cyclopropanation in high yields, however, the reaction of 49a with 

methylene iodide over a Zn/Cu couple in diethyl ether at reflux provided only an 

unidentified salt, presumed to be the methiodide salt of 49a. It is possible that the 

inductive effect of the nitrogen prevented attack of the olefin by the electrophilic 

carbene. A recent paper 162  reported the successful cyclopropanation of substituted N-

ally! compounds, without competing N-methylation, using diazomethane and 

bis(benzonitrile)palladium dichloride, but the cyclopropanation of 49a was not 

investigated further. 

The treatment of 49a with three equivalents of m-CPBA in a variety of solvents 

at reflux, including dichloromethane, chloroform, and 1,2-dichloroethane, yielded 

only the N-oxide 123a. The similar treatment of the methiodide and hydrochloride 

salt of 49a failed to produce any epoxidation; the salts or the free base were recovered 

after basification. As above, the results indicated that a decrease in the nucleophilicity 

of the olefin by the inductive effect of the nitrogen had prevented attack by the 

electrophilic peracid reagent. These problems have been noted previous1y 163,164  and 

epoxidation was achieved by converting the allyl amine derivatives to their 

trifluoroacetate salts, which were then treated with trifluoroperacetic acid. Chemical 

restrictions precluded the preparation of trifluoroperacetic acid in the normal manner 165  

in this work. However, several experiments in which the new hydrogen-bonded 

adduct, urea-hydrogen peroxide 166  (UHP), was reacted with trifluoroacetic anhydride 

and the trifluoroacetate salt of 49a were conducted. No epoxidation was observed and 

the synthesis of 1-oxiranyl-substituted tetrahydroisoquinolines was not pursued 

further. 

The commercial availability of cyclopropanecarboxylic acid, 173a, and trans-2- 

phenyl- 1 -cyclopropane carboxylic acid, 173b, prompted the investigation of the 

synthesis of 1-cyclopropyltetrahydroisoquinolines by the Bischler-Napieralski 

cyclisation 167  of the cyclopropanecarboxamides 174. 
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The treatment of homoveratrylamine with 173a,b at elevated temperatures, 

between 140 and 170°C, gave the cyclopropanecarboxamides 174a,b in good yield. 

The Bischler-Napieralski cyclisation of 174a,b proceeded smoothly with phosphorus 
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oxychloride in refluxing acetonitrile to afford the 1-cyclopropyldihydroisoquinolines 

175a,b in excellent yields, the first example of the Bischler-Napieralsld cyclisation of 

cyclopropanecarboxamide derivatives. All spectroscopic data was consistent with the 

proposed structures. The imines were converted to the crystalline iminium salts 

176a,b by N-alkylation with iodomethane in acetone and satisfactory elemental 

analyses were obtained. While the N-alkylation of 175a was conducted in refltudng 

acetone, the N-alkylation of 175b proceeded to the desired salt only at or below room 

temperature. At higher temperatures an isomer of 176b was formed. The 

identification of this isomer is discussed in Section 5.4. 

The sodium borohydride reduction of 176a,b in ethanol gave the 

tetrahydroisoquinoline derivatives 177a,b. Two diastereomers of the t-(2'- 

phenylcyclopropyl) compound 177b were obtained (SSS/RSS=0.82) with the 

formation of the chiral centre at Cl. The diastereomers of 177b were separated by 

p.t.l.c. on silica for characterisation purposes and identified by n.O.e. experiments. 

One diastereomer possessed a 7-methoxy signal considerably upfield of the other 

(3.57 8 cf. 3.83 5) consistent with shielding of the methoxy group by an appropriately 

positioned 2'-phenyl substituent. The examination of hand-held models and 

computer-aided molecular modelling (PCModel) confirmed the RSS and SSS 

diastereomers must adopt considerably different conformations to enable shielding of 

the 7-methoxy protons. In the RSS form H2' would point to the same side of the 

isoquinoline plane as HI, while in the SSS form H2' and H1 would be on opposite 

sides of the isoquinoline plane (Figure 5.3). NMR n.O.e. difference experiments 

confirmed an effect between H2' and H1, and H2' and H8, for the diastereomer with 

the shielded 7-methoxy signal, allowing this to be assigned the RSS configuration. 

The N-oxide rearrangement precursors 178a,b were generated in the usual 

manner by the reaction of 177a and 177b (SSS/RSS=0.47) with m-CPBA in 

dichloromethane at room temperature. No rearrangement products were isolated 

during the workup of the reaction mixture. The N-oxides were obtained as complex 
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Figure 5.3 The conformers of (a) RSS-177b and (b) SSS-177b able to produce deshielding of the 

7-methoxy group, and (c) the Ill NMR spectrum of RSS-177b. 
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mixtures of the possible diastereomers, observable by 1 H NMR, and were utilised as 

crude oils. 

On consideration of the proposed rearrangements of the quaternary salts 179b, 

generated from 177b, it was apparent that a diastereomeric mixture of 177b would 

provide a complex mixture of four diastereomeric benzoxazepines, two diastereomeric 

E-benzazecines and two diastereomeric Z-benzazecines. To reduce the difficulty of 

later analyses, particularly the detection of small amounts of benzazecines, a fraction of 

almost pure SSS 177b (SSS/RSS=19) was obtained by column chromatography on 

flash silica and this fraction was used in the subsequent N-alkylation. Ethyl 

bromoacetate in refluxing acetone N-alkylated 177a,b to give the quaternary salts 

179a,b, which were used as crude oils. The salts were mixtures of the B-ring 

diastereomers. 

5.4 	A Modified Cloke Rearrangement 

The N-alkylation of the imine 175b with iodomethane in refluxing acetone 

produced a precipitate in moderate yield which proved to be an isomer of the expected 

methiodide salt 176b. Compound 176b was present in the filtrate. The molecular 

weight of the isomer was confirmed by LSIMS-MS in glycerol, with an ion at m/z 322 

for the cationic component. The pyrrolo[2,1-cdisoquinoline enamine structure 180 

was proposed after examination of the 1 H and 13C NMR spectra and consideration of 

the likely reaction mechanisms. An alternative 2-phenyl-2,3-unsaturated enamine, 

however, appeared consistent with the appearance of the single olefinic proton as a 

singlet, at 7.18 S. An n.O.e. difference experiment demonstrated an effect between 

H10 and the olefinic signal and this supported structure 180. Two-dimensional 

homonuclear and heteronuclear correlation NMR experiments (COSY and X-H 

correlation) were consistent with this structure and afforded the complete assignment 

of the NMR signals (Figure 5.4). 
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Figure 5.4 13C and 1 H (italics) NMR assignments for 180 

Elemental microanalyses on crystals of 180 from either acetonitrile or methanol 

failed to provide satisfactory results, despite repeated attempts. The unusual enamine 

structure of 180 was, however, confirmed unambiguously by a single crystal X-ray 

structure determination. 168  The compound was identified as the diastereomer of 180 

with the 3-phenyl and 4-methyl substituents trans to each other across the C-ring 

(Figure 5.5). 

Further experiments demonstrated that 180 was formed via the initial 

conversion of 175b to 176b, then a subsequent cyclopropane ring opening and 

rearrangement, rather than the alternate sequence. At low temperatures the alkylation 

of 175b proceeded selectively to 176b. This material, after isolation and removal of 
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excess iodomethane, was isomerised to 180 in good yield by refluxing in acetone for 

24 hours. Attempts to dry 176b at elevated temperatures also produced the partial 

isomerisation of 176b to 180. 

Figure 5.5 X-Ray Crystallographic structure of 180 

The formation of 180 is a variation of the Cloke rearrangement 169  of 

cyclopropylimines. In this rearrangement the heteroatom may act as either a 

nucleophile or electrophile to initiate ring opening of the cyclopropane ring and 

formation of a pyrroline. The promotion of this rearrangement by iodomethane does 

not appear to have been reported. The Cloke rearrangement normally proceeds from 

an imine with acid catalysis at elevated temperatures, typically by heating the substrate 

as a melt, or in xylene, with ammonium chloride above 130°C. The treatment of 

175b under these conditions, at temperatures up to 195°C, failed to afford the 

expected enamine base 181. In each case a complex mixture of products was 

obtained. The Cloke rearrangement of 1-(1 '-methypcyclopropylisoquinoline 

hydrochloride salts was reported 170  during the course of this work, although neither 
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the immediate products of the rearrangement, analogous to 181, or the subsequent 

hexahydropyrrolo[2,1-a]isoquinoline derivatives were isolated and characterised. 

The present results suggest potential for the development of a new route to 

pyrrolo[2,1-a-isoquinoline derivatives via the Cloke rearrangement of 1- 

cyclopropylisoquinolines. 

5.5 	Rearrangements of the N-Oxides 

5.5.1 Treatment of the 1-Cyclopropyl-N-oxide 

A variety of conditions were tested to investigate the rearrangement of the 1- 

cyclopropyl N-oxide 178a, as summarised in Table 5.1. 

Surprisingly high temperatures and long reaction times were required to 

produce the rearrangement of 178a. In acetonitrile at reflux 178a was unaffected. At 

130°C in a butyronitrile/xylene mixture some rearrangement was observed, but a 

temperature of 143°C in a butyronitrile/mesitylene mixture was necessary to afford 

substantial rearrangement of 178a. Butyronitrile was used to dissolve the polar N-

oxides. It was apparent from these results that the cyclopropyl group was 

substantially less efficient in promoting the Meisenheimer rearrangement than a vinyl 

group, reflecting a poor capacity for radical stabilisation. 

The crude ether extracts from reactions 2, 3 and 4 (Table 5.1) each contained 

the same single major component. The p.t.l.c. purification of the product from 

reaction 4 provided, in good yield, a colourless oil identified as the 1-cyclopropy1-2,3- 

benzoxazepine 182a. All spectra were consistent with the proposed structure. The 

1H and 13C NMR spectra displayed peaks characteristic of the 1-cyclopropyl group 

(Table 5.3). 

Compound 178a was also pyrolysed neat in an evacuated vessel at 215°C to 

determine whether higher temperatures would promote the formation of the 4,3- 

benzoxazecine 183a. Two components resulted (1.5:1), with the major component 

being 182a. The NMR spectrum of the mixture indicated the second component was 
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not 183a. This compound lacked an olefinic peak and possessed the characteristic 

cyclopropyl signals, and was tentatively assigned as the 1-cyclopropy1-3,2- 

benzoxazepine formed by the alternate orientation of the Meisenheimer rearrangement 

towards C3. 

a: It .1-1 
b: R = Ph 	 183 

Table 5.1  Treatment of the 1-cyclopropyl N-oxide 178a 

Conditions 	1Temp.°C 	I time I 	Result a 

1. MeCN 82 3 hr no reaction 

2. MeCN, sealed tube 111 6 hr 2% 

3. PrCN/Xylene (1:5) 130 5 hr 18% 

4. PrCN/Mesitylene (1:5) 143 12 hr 78% b 

5. neat, evacuated tube 215 15 min. 42%, 2 components 

6. MeCN, hv, duran filter 25 1 hr no change 

7. MeCN, hv, vycor filter 25 50 mm. 15%, 3 components 

a yields are for crude ether extracts 

b p.t.l.c. gave 182a, 51% yield. 

The effect of UV irradiation on 178a in acetonitrile at room temperature was 

investigated as an alternative to the thermolytic activation of the reaction. Irradiation at 

wavelengths above 300 nm were ineffective. Irradiation with light filtered to a lower 
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minimum of 230 nm promoted the formation of tarry material. The diethyl ether 

extract of this material showed several components by GC-MS and 1 H NMR, one 

being 182a. No peaks indicative of 183a were observed. The major component 

detected by GC-MS had a molecular weight of 231, a loss of 32 mass units from the 

N-oxide. The mass spectrum of this component was identical to that of the imine 

175a. The conversion of 178a to 175a may have occurred by rearrangement and 

homolytic cleavage (Figure 5.6). 

- OMe 

Figure 5.6 

5.5.2 Thermolysis of the 1-(t-2'-Phenylcyclopropyl)-N-oxide to 

a 4,3-Benzoxazecine Derivative 

The thermal rearrangements of 178b (SSS/RSS=0.47) were examined under a 

variety of conditions, as summarised in Table 5.2. 

The behaviour of 178b was substantially different to that of 178a. In the 

presence of the 2'-phenyl substituent the rearrangement was more facile and occurred 

at lower temperatures. Thus 178b underwent a slow rearrangement in acetonitrile at 

reflux and a rapid rearrangement in a butyronitrile/mesitylene mixture at 143°C, 

affording the complete removal of the N-oxide after only 1.5 hours. The extra phenyl 
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group clearly enhanced the radical stabilising nature of the cyclopropyl substituent by 

additional electron delocalisation, promoting the cleavage of the Cl-N bond in 178b. 

The 1 H NMR spectra of the crude rearrangement mixtures from 178b indicated 

the presence of three components. The ratio of the components was 55:33:12 from the 

rearrangement in butyronitrile/mesitylene. The proportion of these compounds was, 

within the accuracy of this technique, unchanged in the two experiments at lower 

temperatures. The minor component exhibited a complex multiplet at 5.74 8 consistent 

with the expected position of the olefinic H7 in the benzoxazecine 183b. Preparative 

reverse phase HPLC afforded the isolation of each of the three components. The 

minor component exhibited the least polar nature and eluted with a retention time 35% 

greater than the nearest component. 

Table 5.2  Thermolysis of the 1-(t-2'-Phenylcyclopropy1)-N-oxide 178b 

Conditions I Temp.°C I 	time I 	Result a 

1. MeCN 82 60 hr 49% 
2. PrCN 115 2.5 hr 48% 
3. PrCN/Mesitylene (1:5) 143 1.5 hr 84%b 

a yields are for crude ether extracts 
b HPLC gave 182b, 23% (RSS) and 27% (SSS), and 183b, 9% yield. 

Table 5.3  Characteristic NMR Signals for the 1-Cyclopropylbenzoxaz,epines 182 

182a 182b (RSS) 182b (SSS) 

H1, Cl 4.34, 89.93 4.53, 88.78 4.77, 87.00 
Hi', Cl' 1.23, 15.74 1.55, 22.72 1.57, 21.53 
H2', C2' 0.65a, 4.11b 1.95, 27.94 2.05, 26.99 
H3', C3' 0.52a+0.42a, 3.78b 1.22, 14.69 1.13, 14.07 

a-b assignments are interchangeable 
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The two major rearrangement products from 178b, isolated in 27% and 23% 

yields respectively from the HPLC purification, were identified as the diastereomeric 

2,3-benzoxazepine derivatives 182b by spectroscopic and elemental analyses. The 

compounds were crystalline solids and exhibited characteristic cyclopropane, Cl, and 

H1 NMR signals (Table 5.3). 

The minor rearrangement product, a crystalline solid, was isolated in 9% yield 

from the HPLC purification and identified as the desired 4,3-benzoxazecine 183b, the 

first example of this ten-membered benz-fused oxaza heterocyclic system. The 

molecular formula of 183b (C21H25NO3) was confirmed by elemental microanalysis. 

All other spectral data were consistent with the proposed structure. The 13C (Figure 

5.7) and 1 H (Figure 5.8) NMR spectra confirmed the presence of the olefinic carbon 

atoms, at 132.25 and 134.45 8, and the olefinic hydrogen atoms, at 5.74 and 6.65 8. 

The magnitude of the H7-H8 coupling constant across the double bond (16 Hz) 

afforded the identification of the material as the E isomer of 183b. 

Me 45.52 

111.48D 	28.01 
56.66 Me0, 	 4 N 

0 

84.16 

Ph 

147.86A  

148.00A  

56.66 Me() 

Figure 5.7 13C NMR assignments for 183b 

The E-benzoxazecine 183b was stable on silica and could be isolated from the 

diastereomers of 182b by p.t.l.c. with dichloromethane/1% methanol. This 

behaviour, in contrast to that of the E-benzazonine derivatives (e.g. Section 2.3.3), 

reflected the greater ability of the 10-membered ring to accommodate a trans-double 

bond without incurring serious ring strain. 

The thermal isomerisations of the 2,3-benzoxazepine and 4,3-benzoxazonine 

derivatives were previously noted (Section 3.5.3) so consequently the thermal 

behaviour of the 1-cyclopropylbenzoxazepine 182b was briefly examined. It was 
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Figure 5.8 1 H NMR spectrum and assignments for 183b in CDC13 
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thought that at high temperatures some isomerisation of 182b to 183b may occur, 

although the benzoxazepines were likely to remain the thermodynamically favoured 

products. The treatment of a diastereomeric mixture of 182b at 210°C in an evacuated 

sealed tube for 30 minutes, however, produced only slight degradation. No evidence 

for the presence of 183b, or any other new rearranged isomer, was observed in the 
1H NMR spectrum of the thermolysate. 

5.6 	Modelling and X-Ray Crystal Structure 
of a 4,3-Benzoxazecine 

The low energy conformations available for the 4,3-benzoxazecine 183b were 

investigated with PCMode1.76  It was envisaged that the results would aid in any future 

development of derivatives of the 4,3-benzoxazecine system as CNS active agents. 

Four low energy conformations within a 5 kcal range were identified for 183b (Table 

5.4). The global minimum, conformer 1, was predicted to have a relatively folded 

structure (Figure 5.9) in which the nitrogen atom was removed from the aromatic plane 

by 2.35 A. The Boltzmann distribution predicted that 79% of 183b would adopt this 

conformation at 25°C. The structures of conformers 2, 3, and 4 are included in 

Appendix A. 

Table 5.4  Low energy conformations of 183b predicted by PCModel 

conformer I 	E (kcal) 1 	inc Hf 1 Populationa IN-elevationb N-Ar planarc 

.--1 	
CA 

 

47.78 . -29.71 79.3% 2.35 3.43 
48.84 -29.64 13.2% 1.83 3.92 
49.18 -28.25 7.5% 1.54 4.64 

52.33 -24.97 <0.1% 1.88 4.28 

a from the Boltzmann distribution at 293 K 
b distance of N above the aromatic plane (A) 
distance of N from the aromatic centre in the aromatic plane (A) 



148 

Figure 5.9 Three perspectives of the global minimum predicted for 183b by PCModel 

Figure 5.10 X-Ray Crystallographic structure of 183b 
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The structure of 183b was confirmed unequivocally by a single crystal X-ray 

structure determination. 168  The unsaturated benzoxazecine formed triclinic crystals 

with a less-folded conformation (Figure 5.10) than that predicted by PCModel. The 

X-ray structure corresponded to conformer 3 (Table 5.4) identified by PCModel, with 

the nitrogen atom only 1.54 A above the aromatic plane and further from the aromatic 

centre than in conformer 1. 

The discrepancy between the conformation predicted by PCModel and that 

determined by X-ray techniques may indicate a real difference between the conformers 

preferred in the solid state, or in solution, and the theoretical vacuum assumed by 

PCModel. The comparison of several bond lengths predicted by PCModel with those 

determined by the X-ray analysis (Table 5.5), however, suggested that the parameters 

used to define the PCModel forcefield were not accurate for the strained medium ring 

system. These differences may have altered the calculated conformational energies, 

and thus their order, for the confined medium ring. The results highlighted the 

limitations of molecular mechanics based modelling programs when applied to strained 

medium-ring systems and emphasised that care must be taken in interpreting studies of 

this type. Conformers 1 and 3 of 183b would be predicted to have substantially 

different CNS activity. Time did not permit further conformational assessments using 

other modelling programs and the incorporation of solvent (water) molecules. 

Table 5.5  Bond Lengths Determined for Conformer 3 of 183b (A) 

bond I 	PCModel I 	X-Ray 

C1-C2 . 	1.544 1.519 

N-0 1.483 1.458 

C7=C8 1.342 1.299 

C8a-C12a 1.406 1.390 
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5.7 	Rearrangements of the N-Ylides 

5.7.1 Behaviour of the 1-Cyclopropyl Salt 

A variety of conditions were examined to determine those necessary to provide 

the rearrangement of 179a. These are summarised in Table 5.6. 

At room temperature in acetonitrile with DBU no rearrangement of 179a 

occurred. It was necessary to conduct the reaction in refluxing butyronitrile or 

acetonitrile to obtain substantial rearranged fractions. The results reflected the poor 

radical stabilisation offered by the cyclopropane group. The 1 H NMR spectra of the 

rearranged fractions suggested the major products were the diastereomers of the 3- 

benzazepine 184a, however, additional olefinic peaks were observed. The fractions 

were purified by p.t.l.c. on silica with dichloromethane/5% ethanol to give, in each 

case, four components (Table 5.6). 

The two major components isolated by p.t.l.c. were shown by their 

characteristic NMR spectra to be the products of the Stevens rearrangement, the B-ring 

diastereomers of the 1-cyclopropy1-3-benzazepine 184a. The two remaining 

components contained olefinic protons with signals in the 1 H and 13C NMR (with 

DEPT editing) characteristic of a terminal methylene group. Further examination 

confirmed the compounds were the geometric isomers of the ring opened diene 83b 

previously isolated in this work (Section 2.6.1). The dienes were formed at 

approximately the same level relative to the benzazepines in both refluxing acetonitrile 

and butyronitrile. No trace of the desired 3-benzazecine 185a was detected from these 

reactions. 

A radical pathway involving hydrogen abstraction via the intermediate 186 

may account for the formation of the dienes, however, a concerted pathway directly 

from the N-ylide 187 cannot be excluded. The cyclopropane ring is known to 

participate in place of double bonds in sigmatropic reactions171  such as the 

homodienyl [1,5] hydrogen shift. 
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Table 5.6 Treatment of the 1-cyclopropyl salt 179a 

Conditions 	ITemp. °C I 	time I 	Result a 

1. MeCN, 1.3 equiv. DBU 25 60 hr no reaction 
2. MeCN, 1.3 equiv. BuLi 40 44 hr 26% 
3. MeCN, 4.6 equiv. DBU 40 48 hr 12% 
4. CHC13, 1.3 equiv. DBU 62 67 hr 50% 
5. MeCN, 	" 	II 	 It  82 5 hr 48%b, 4 components 
6. PrCN, 	" 	" 	" 115 8.5 hr 90%c, 4 components 

a crude fractions obtained by passage through alumina with DCM/10% L.P. 

b p.t.l.c. gave diastereomers of 184a, 32% and 9%, and 83b, 8% and 4% 

p.t.l.c. gave diastereomers of 184a, 45% and 17%, and 83b, 14% and 5% 



152 

As the proposed modified Stevens rearrangement may occur by a concerted 

mechanism the products obtained from lower temperature reactions (2, 3, and 4 in 

Table 5.6) were examined. In each case NMR analysis confirmed the benzazepines 

were the major products with traces of the dienes. No peaks attributable to 185a were 

observed. A large excess of DBU failed to afford the substantial rearrangement of 

179a at 40°C. It was reasoned that the reversible base may hinder the rate of any 

rearrangement by allowing the formation of an equilibrium between the ylide and salt 

forms of 179a. The reaction rate was increased with the use of the non-reversible 

base butyl lithium, but no change in the product distribution was observed. The 

reaction in refltudng chloroform afforded the same products. 

5.7.2 Behaviour of the 1-(t-2'-Phenylcyclopropyl) Salt 

Compound 179b was synthesized for this examination from almost pure SSS 

177b (SSS/RSS=19), thus reducing the number of potential diastereomeric products 

and minimising the complexity of the expected reaction mixture. 

The treatment of 179b with DBU in refluxing butyronitrile for 8.5 hours 

provided, after preliminary purification on an alumina column, a rearranged fraction in 

67% yield. The analysis of this material by NMR spectroscopy suggested the B-ring 

diastereomers of the 1-(t-2'-phenylcyclopropy1)-3-benzazepine 1846 were present. 

No peaks were observed in the 1H NMR spectrum between 6.5 and 4.5 8, precluding 

the presence of either the desired 3-benzazecine 185b or any undesired ring-opened 

dienes. Preparative HPLC purification afforded a mixture (1.66:1) of the 

diastereomers of 185b in moderate yield. The diastereomers could not be separated 

and were identified on the basis of the 1 H and 13C NMR spectra of the mixture. 

Although three very minor components were isolated by the preparative HPLC 

analysis each contained substantial impurities and none possessed NMR spectra 

consistent with the desired 3-benzazecine derivative. 
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5.8 	 Discussion 

The 1-cyclopropylisoquinoline N-oxides and N-ylides were found to undergo 

predominantly the normal Meisenheimer and Stevens rearrangements. The 

cyclopropane substituent provided only weak activation in these rearrangements. 

Higher temperatures were necessary than for the rearrangements of the 1- 

vinylisoquinoline analogues. Clearly, however, the cyclopropane ring was able to act 

in a similar manner to an olefm and partake in a it bonding system, as the addition of a 

2' phenyl substituent significantly increasing the rate of the rearrangement of 178b 

over 178a, consistent with increased stabilisation of the initial Cl-N homolytic 

cleavage. 

The present results supported the formation of the 4,3-benzoxazecine 183b by 

the proposed radical mechanism (Figure 1.7, pg. 11), with Cl-N homolysis followed 

by ring opening of the substituted cyclopropylcarbinyl radical prior to radical 

recombination. The 2-phenyl substituent is known to increase the rate constant 172,173  

for cyclopropylcarbinyl radical ring opening by a factor of approximately 10 3 , from 

1.2 x 108  s-1  at 37°C for the unsubstituted radical to 4 x 10 11  s-1  at 45°C, and can 

account for the formation of 183 from 178b and not 178a. At this faster rate 

significant cyclopropylcarbinyl ring opening apparently occurred before the normal 

radical recombination of the Meisenheimer rearrangement. 

pro-trans pro-cis 

Figure 5.11 Cyclopropylcarbinyl Radical Geometries. 

The observed selectivity of the four atom ring expansion to the E-4,3- 

benzoxazecine may be rationalised by considering the non-bonded interactions 174  in 

the a-substituted cyclopropylcarbinyl radical. The Walsh mode1 171  of cyclopropane 
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bonding proposed the existence of p orbitals in the plane of the cyclopropane ring able 

to participate in it bonding. Thus for ring opening the radical would adopt either of the 

conformers shown in Figure 5.11. Non-bonded interactions will be minimised in the 

geometry leading to the trans-olefin and the simple a-methylcyclopropylcarbinyl 

radical produced 172  predominantly the E-olefin (E/Z=1.88) at 37°C. The 

stereoselective rearrangement of the cyclopropylcarbinyl radicals to E-olefin products 

may limit the applications of this new ring expansion, as the formation of smaller 

medium-sized rings with an endocyclic E-olefin will be energetically unfavourable. 

The failure of the N-ylide 179b to undergo any four atom ring expansion 

suggested the Stevens rearrangement occurred with greater rapidity than the 

Meisenheimer rearrangement, possibly due to the lower stability of the carbon radical 

and a more concerted-like transition state, possessing less radical nature. The 

experiments described herein (Chapters 2 and 3) highlighted the greater preference for 

N-ylides to rearrange via a concerted pathway. The formation of the diene 83b from 

179a and not 179b contradicted expectations based on a diradical pathway, for which 

the phenyl substituent of 179b should promote 2'-hydrogen abstraction. This 

behaviour may be rationalised by proposing that the less stabilised 1-cyclopropyl 

179a adopted a low energy concerted pathway for the formation of the diene, while 

the greater resonance stabilisation of 1-(2'-phenylcyclopropyl) 179b allowed the 

diradical Stevens rearrangement to occur at a lower energy than any concerted 

pathway. 

5.9 	 Conclusion 

Although the Meisenheimer and Stevens rearrangements predominated from the 

reactions of the 1-cyclopropylisoquinoline N-ylides and N-oxides a single example of 

the proposed four atom ring expansion was observed. Thus it was demonstrated that 

the proposed reaction was mechanistically feasible and may, with the appropriate 

modification of the substrate, find synthetic applications in the production of medium 
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ring heterocycles. The rearrangement provided the first example of the 4,3- 

benzoxaz,ecine ring system, compound 183b. 

The present results suggested two strategies for the future development of the 

four atom ring expansion and its applications in organic synthesis. Firstly, the further 

acceleration of the cyclopropylcarbinyl radical ring opening by the appropriate 

placement of substituents either on the cyclopropane ring, the fused aromatic ring, or 

at Cl, should be examined. A cis-2'-substituent for example may increase the 

cyclopropylcarbinyl ring opening rate due to the relief of additional steric strain. 

Secondly, the retardation of the radical attack on the a carbon by the presence of a 

bulky a substituent, or tailoring the ring system to prevent [1,2] radical 

recombination, could be examined. It should be noted that an a-phenyl group, 

effectively present in these 1-cyclopropylisoquinoline rearrangements, reduced the 

cyclopropylcarbinyl ring opening rate constant. 175  Consequently the rearrangements 

of other non-benz fused ring systems should be investigated. 
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CHAPTER 6 

EXPERIMENTAL 

6.1 	 General Procedures 

Microanalyses were carried out by the Central Science Laboratory, University 

of Tasmania, Hobart. 

Melting points were determined on a Yanagimoto Seisakusho micromelting 

point apparatus, and are uncorrected. 

Infra-red spectra were recorded on a Digilab FTS-20E Fourier transform 

spectrometer. 

The ultra-violet spectra were recorded on a Varian DMS 100 UV-Visible 

spectrophotometer. Analyses were conducted on solutions in acetonitrile. 

The 1 H and 13 C NMR spectra were recorded on a Bruker AM-300 

spectrometer at 300 and 75 MHz respectively. The DEPT.AUR microprogram was 

used routinely to determine the degree of protonation of the carbon resonances. The 

standard two-dimensional programs, COSY.AUR and XHCORR.AUR, were used 

when necessary to afford the unambiguous assignment of the resonances. The 

NOEDIFF.AUR pulse program was used for the measurement of nuclear 

Overhauser effects by the difference technique. Chemical shifts in ppm (S) were 

measured relative to tetramethylsilane. Unless otherwise stated, the NMR spectra 

were measured in deuterated chloroform. Peaks are reported as singlet (s), broad 

singlet (bs), doublet (d), triplet (t), quartet (q) or multiplet (m). The 13C NMR 

assignments indicated by superscript letters may be interchanged as defined by those 

letters. Where samples in the 13C NMR exhibited several conformers, or isomers, 

the chemical shift for the major form is given first for each signal type; different 

forms are denoted with superscripts a,b or x,y in the 1 H NMR spectra. 

The mass spectra were recorded on either a VG MM 7070F or a Kratos 

Concept ISQ mass spectrometer operating at 70 eV. Peak intensities in parentheses 
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are expressed as a percentage of the base peak. GC-MS analyses were performed on 

a Hewlett Packard 5790 Mass Selective Detector coupled to an HP 5890 gas 

chromatograph fitted with a direct capillary interface and an HP-1 capillary column. 

Analytical thin layer chromatography (t.l.c.) and preparative thin layer 

chromatography (p.t.l.c.) were performed on either Merck silica gel 60 F254 or 

Camag DSF-5 aluminium oxide. All column chromatography was performed under 

medium-pressure ("flash chromatography") on either Merck silica gel 60, 230-400 

mesh, or on type H aluminium oxide, 100-200 mesh. Preparative HPLC utilised a 

Dynamax-60A C18 reverse-phase column with a Waters 600 multisolvent delivery 

system and Waters 486 tunable UV detector. Samples were eluted at 10mllmin and 

monitored at 254 nm. Mixtures of the chromatography solvents were made up by 

volume. 

Ultraviolet irradiation was conducted at 5-10°C under nitrogen in a water-

cooled, immersion-type photochemical reactor (quartz inner vessel) using a Hanovia 

450-Watt medium-pressure mercury arc lamp with glass filter sleeves. The solution 

was stirred magnetically during the irradiation. 

Organic solvent extracts were dried with anhydrous sodium sulfate. Where 

reaction mixture solutions or solvent extracts were concentrated this refers to 

evaporation under reduced pressure on a rotary evaporator. 

Organic solvents and reagents were purified and dried by standard 

techniques. 176  When anhydrous conditions were necessary the glassware and 

solvents were dried and the additions or transfers were made via gas-tight syringes 

or stainless steel tubing, under a positive pressure of nitrogen. Light petroleum 

refers to a fraction boiling between 60- 80°C. Vinylmagnesium bromide was 

prepared in tetrahydrofuran as described by Normant, 84  with a low temperature 

condensor (acetone/dry ice) to contain the vinyl bromide. 

Ethoxycarbonylmethyltriflate was prepared by the method of Vedejs et. aL88,89 
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Abbreviations for hours (h.), minutes (min.), days (d.), 1,8-diazabicyclo-

[5.4.0]undec-7-ene (DBU), and meta-chloroperoxybenzoic acid (m-CPBA) are 

adopted throughout the experimental. 

6.2 	 Experimental for Chapter Two 

6.7-Dimethoxy-3.4-dihydroisoquinoline 47  

Homoveratrylamine (32.22 g, 0.178 mol) and formic acid (12.81 g, 0.278 

mol) were heated at 170°C under nitrogen for 2 h. The melt was maintained at this 

temperature for a further 2 h. under a slow stream of nitrogen, to remove the majority 

of water and excess formic acid, then further dried under oil-pump vacuum at 140°C 

for 1 h. The melt was allowed to cool below 100°C and dry toluene (375 ml) was 

added before the melt solidified. The resultant solution was treated with phosphorus 

oxychloride (98.7 g, 0.644 mol) then refluxed for 2 h. under nitrogen. Upon cooling 

a dark oil separated. The toluene layer was decanted onto a mixture of ice (50 g) and 

water (50 ml) while to the residual oil was added ice (150 g). After 45 min. the 

aqueous solutions were combined and basified by the slow addition of 80% aqueous 

sodium hydroxide to pH 11, then extracted with chloroform (4 x 150 m1). The 

organic extracts were concentrated to a volume of approximately 70 ml and extracted 

with 12% aqueous hydrochloric acid (3 x 45 ml) and water (50 ml). The aqueous 

extracts were again basified to pH 11, then extracted with chloroform (4 x 75 ml). 

The organic extracts were dried and then concentrated to give the imine 7 I 47 (25.69 

g, 75%) as a yellow oil which was used without further purification. 1 H NMR 8: 

8.23 (s, H1), 6.81 (s, ArH), 6.68 (s, ArH), 3.92 (s, OCH3), 3.90 (s, OCH3), 3.73 (t, 

H3), 2.68 (t, H4); MS m/z: 191 (Mt, 100%), 176 (78), 146 (13), 91(16), 77 (25). 

6.7-Dimethoxy-2-methyl-3.4-dihydroisoquinolinium Iodide 484 

To 47 (13.05 g, 68.25 mmol) in dry toluene (50 ml) was added iodomethane 

(31.98 g, 227 mmol). After 30 min. the deposited solid was collected and dried 
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briefly under vacuum. Recrystallisation of the solid from ethanol gave the salt 71  48a 

(19.61 g, 86%) as yellow crystals with m.p. 201-202°C. 1 H NMR 8: 9.82 (s, H1), 

7.62 (s, H8), 6.87 (s, H5), 4.03 (t, H3), 4.01 (s, NCH3), 3.93 (s, OCH3), 3.94 (s, 

OCH3), 3.32 (t, H4). 

2-Benzy1-6.7-dimethoxy-3.4-dihydroisoquinolinium Chloride 48b  

To 47 (12.17 g, 63.64 mmol) in dry toluene (50 ml) was added benzyl 

chloride (25.24 g, 199 mmol). After stirring for 12 h. the deposited solid was 

collected. The filtrate was warmed at 60°C for 2 h. then concentrated to 

approximately 20 ml. After cooling a second batch of crystals was collected. The 

solids were combined and recrystallised from acetonitrile to give the salt 48b (17.93 

g, 89%) as a yellow solid with m.p. 181-183°C. 1 H NMR 8: 10.84 (s, H1), 7.67 (s, 

H8), 7.60 (s, 2ArH'), 7.36 (s, 3ArH), 6.86 (s, H5), 5.54 (s, NCH2Ar), 3.99 (s, OCH3), 

3.93 (t, H3), 3.90 (s, OCH3), 3.17 (t, H4); 13C NMR 8: 166.05 (Cl), 157.85 (C7), 

149.07 (C6), 132.24 (CFA), 132.05 (C8aA), 129.86-129.66 (5C'), 117.65 (C4aA), 

116.28 (C5B), 111.10 (C8B), 63.30 (NCH2Ar), 56.91 (OCH3), 56.83 (OCH3), 47.47 

(C3), 25.84 (C4). 

6,7-Dimethoxy-2-methyl-1-vinyl-1,2,3,4-tetrahydroisoquinoline 49a 

(i) Vinylmagnesium bromide in dry tetrahydrofuran (190 ml) under nitrogen was 

prepared from vinyl bromide (25.8 g, 0.241 mol). The solution was cooled in an 

acetone/liquid nitrogen slush bath to -78°C, with the deposition of some solid, and 

then the iminium salt 48a (19.60 g, 58.8 mmol) was added portionwise over 30 min. 

The mixture was allowed to warm slowly to room temperature with stirring for 12 h. 

and then ice was added carefully to decompose the excess Grignard reagent. The 

mixture was then basified by the addition of 40% aqueous potassium hydroxide and 

the tetrahydrofuran solution was decanted from the resultant inorganic salts. The 

tetrahydrofuran solution was treated with diethyl ether (100 ml) and water (50 ml) 

and the organic layer was collected. The inorganic salts and the aqueous solution 
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were extracted successively with further portions of diethyl ether (3 x 100 ml). All 

the organic solutions were then combined and washed with water (2 x 20 ml), then 

dried and concentrated. Passage of a dichloromethane solution of the crude solid 

through an alumina plug, then evaporation of the solvent and recrystallisation of the 

residue from ethanol, gave the 1-vinylisoquinoline 49a (9.46 g, 69%) as an off-white 

solid with m.p. 69-70°C. 1 H NMR 8: 6.60 (s, ArH), 6.59 (s, ArH), 5.79-5.67 (m, 

H1'), 5.35 (dd, J 1.5 Hz, 8.8 Hz, H2'), 5.30 (dd, J 1.5 Hz, 17.0 Hz, H2'), 3.83 (s, 

OCH3), 3.80 (s, OCH3), 3.66 (d, J8.8 Hz, H1), 3.06-2.95 (m, 2H), 2.71-2.66 (m, H), 

2.56-2.49 (m, H), 2.41 (s, NCH3); 13C NMR 8: 148.02 (C6A), 147.42 (C7A), 139.77 

(Cl'), 127.88 (C4aB), 126.51 (C8aB), 119.11 (C2'), 111.52 (C5C), 111.06 (C8C), 

69.74 (Cl), 56.17 (20CH3), 51.57 (C3), 44.17 (NCH3), 28.83 (C4); MS m/z: 233 

(M+, 29%; Caled. for C14H19NO2 233.1415, found 233.140), 232 (19), 207 (40), 

206 (100), 190 (43), 103 (16); Anal. Calcd for C14Hi9NO2: C, 72.07; H, 8.21; N, 

6.01%, found: C, 72.10; H, 8.27; N, 5.95%. 

(ii) Vinylmagnesium bromide in dry tetrahydrofuran (100 ml) under nitrogen was 

prepared from vinyl bromide (11.8 g, 0.111 mol). To this solution at room 

temperature was added the iminium salt 48a (9.07 g, 27.2 mmol) portionwise over 

30 mm. A mild exotherm occurred. The mixture was refluxed for 3 h. then cooled 

and worked up (as for (i)) to give, on concentration of the dichloromethane solution, 

a tan solid (5.93 g). A portion of this solid (0.772 g) was purified by p.t.l.c. on silica 

with dichloromethane/12% methanol to give 49a (0.313 g) and a mixture (46:54) of 

the phenolic compounds 6-hydroxy-7-methoxy-2-methyl-1 -vinyl-1,2,3,4- 

tetrahydroisoquinoline and 7- hydroxy-6-methoxy-2-me thyl- 1 -vinyl- I ,2 , 3 ,4-te tra-

hydroisoquinoline as a yellow oil (0.244 g) from a single band. 1 H NMR 8: 6.58 (s, 

ArH), 6.54 (s, ArH), 6.51 (s, ArH), 6.46 (s, ArH), 6.19 (bs, Ar0H), 5.82-5.67 (m, 

2H), 5.34-5.18 (m, 4H), 3.82 (s, OCH3), 3.80 (s, OCH3), 3.73-3.57 (m, 2H), 3.08- 

2.91 (m, 4H), 2.69-2.48 (m, 4H), 2.40 (s, 2NCH3); 13C NMR 8: 146.52 and 146.00 

(C6A), 145.24 and 144.54 (C7A), 139.79 and 139.41 (Cl'), 128.40 and 127.01 

(C4a13 ), 126.84 and 125.50 (C8aB), 119.34 (C2'), 115.20 and 114.68 (C5C), 111.20 
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and 110.77 (C8C), 69.95 and 69.69 (C1), 56.21 (OCH3), 51.66 (C3), 44.26 (NCH3), 

28.78 and 28.44 (C4); MS m/z: 219 (M+, 8%), 218 (6), 192 (100), 177 (20), 162 (6). 

The treatment of this phenolic mixture in the minimum of dry methanol at 0°C with 

excess diazomethane in diethyl ether provided, after stirring at 0°C for 12 h., 49a 

(0.205 g, 79%). 

2-Benzy1-6.7-dimethoxy-1-viny1-1.2.3.4-tetrahydroisoquinoline 49b  

A solution of vinylmagnesium bromide in dry tetrahydrofuran (195 ml) under 

nitrogen was prepared from vinyl bromide (22.7 g, 0.213 mol). The solution was 

cooled in an acetone/liquid nitrogen slush bath to -78°C, with the deposition of some 

solid, and then the iminium salt 48b (16.98 g, 53.43 mmol) was added portionwise 

over 30 min. The mixture was allowed to warm slowly to room temperature with 

stirring for 18 h. and then worked up (as for compound 49a) to give the 1 - 

vinylisoquinoline 49b (15.72 g, 95%) as an off-white solid from ethanol with m.p. 

106-107°C. 1 H NMR 8: 7.39-7.23 (m, 5ArH), 6.61 (s, ArH), 6.58 (s, ArH), 5.96- 

5.84 (m, H1'), 5.34-5.23 (m, H2'), 4.06 (d, J 13.6 Hz, H of CH2Ph), 4.00 (d, J 8.4 Hz, 

H1), 3.83 (s, OCH3), 3.80 (s, OCH3), 3.42 (d, J 13.6 Hz, H of CH2Ph), 3.06-2.98 (m, 

H), 2.77-2.69 (m, 2H), 2.52-2.44 (m, H); 13C NMR 8: 148.18 (C6A), 147.62 (C7A), 

140.72 (C1'), 140.06 (C1"A), 129.42 (C4aB and 2C"), 128.77 (2C"), 127.52 (C8aB), 

127.40 (C"), 118.58 (C2'), 111.78 (C5C), 111.72 (C8C), 67.16 (Cl), 59.30 (CH2Ph), 

56.44 (20CH3), 46.99 (C3), 29.07 (C4); MS m/z: 309 (M+, 8%), 282 (100), 218 (3), 

190 (5), 91(48), 65 (6); Anal. Calcd for C20H23NO2: C, 77.64; H, 7.49; N, 4.53%, 

found: C, 77.64; H, 7.53; N, 4.51%. 

2-Ethoxycarbonylmethy1-6.7-dimethoxy-2-methyl-1-vinyl-1.2.3.4-  

tetrahydroisoquinolinium Bromide 50a  

(i) The N-methyl base 49a (0.392 g, 1.68 mmol) was stirred in ethyl bromoacetate 

(2.0 ml, 18 mmol) at 20-25°C for 16 h. The mixture was applied to a short silica 

column and the column was eluted with dichloromethane/5% light petroleum, and 
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then ethanol. Concentration of the ethanolic washings gave a mixture 

(trans:cis=70:30) of the B-ring diastereomers of the N-methyl-N-

ethoxycarbonylmethyl salt 50a (0.481 g, 72%) as an off-white hygroscopic powder. 

trans diastereomer: 1 H NMR 8: 6.70 (s, ArH), 6.53 (s, ArH), 6.26-6.24 (m, H2'), 

6.05-6.01 (m, H1 and H1'), 5.85-5.81 (m, H2'), 5.11 (d, J 17.4 Hz, H of NCH2C0), 

4.69 (d, J17.3 Hz, H of NCH2C0), 4.49-4.41 (m, H), 4.24 (q, CH2 of Et), 3.97-3.88 

(m, H), 3.90 (s, OCH3), 3.87 (s, OCH3), 3.55 (s, NCH3), 3.25-3.06 (m, 2H), 1.28 (t, 

CH3 of Et); 13C NMR 8: 165.50 (CO), 150.23 (C6A), 149.37 (C7A), 130.15 (C2'), 

129.79 (Cl'), 120.98 (C4a and C8a), 111.39 (C5 and C8), 73.50 (Cl), 63.35 (CH2 of 

Et), 58.44 (NCH2C0B), 56.59 (20CH3), 54.83 (C3B), 47.52 (NCH3), 24.22 (C4), 

14.32 (CH3 of Et); IR (thin film from CH2C12): 1742, 1520, 1258, 1229, 1117, 924, 

731 cm -1 . cis diastereomer: 1 H NMR 8: 6.69 (s, ArH), 6.44 (s, ArH), 6.10-6.01 (m, 

H1'), 5.73-5.64 (m, H1 and H2'), 5.37 (d, J 17.5 Hz, H of NCH2C0), 4.83-4.75 (m, 

H), 4.39 (d, J 17.1 Hz, H of NCH2C0), 4.26 (q, CH2 of Et), 3.83 (s, OCH3), 3.80 (s, 

OCH3), 3.76-3.71 (m, H), 3.70 (s, NCH3), 3.29-3.06 (m, 2H), 1.25 (t, CH3 of Et); 

13C NMR 8: 165.33 (CO), 150.24 (C6A), 149.28 (C7A), 131.06 (Cl'), 127.48 (C2'), 

120.95 (C4aB), 120.67 (C8aB), 111.40 (C5C), 110.97 (C8C), 73.31 (C1), 63.30 (CH2 

of Et), 60.76 (NCH2COD), 56.56 (20CH3), 55.69 (C3D), 46.41 (NCH3), 23.64 (C4), 

14.38 (CH3 of Et); IR (thin film from CH2C12): 1744, 1520, 1260, 1230, 1119 cm 4 . 

(ii) Treatment of 49a (0.105 g, 0.450 mmol) as for (i), except with stirring at 110°C 

for 1 h., gave , a 50:50 mixture of the B-ring diastereomers of 50a (0.121 g, 67%). 

(iii) Treatment of 49a (0.364 g, 1.56 mmol) as for (i), except with stirring at -15°C 

for 60 h., gave an 80:20 mixture of the B-ring diastereomers of 50a (0.441 g, 71%). 

(iv) Treatment of 49a (0.759 g, 3.25 mmol) as for (i), except with stirring at 37°C 

for 11 h., gave a 63:37 mixture of the B-ring diastereomers of 50a (0.713 g, 55%). 

The recrystallisation of this material from ethanol/tetrahydrofuran gave a 57:43 

diastereomeric mixture of 50a (0.442 g) as a solid, while the concentration and 

analysis of the mother liquor showed a 40:60 diastereomeric mixture of 50a. 

Repeating the recrystallisation from the new solid provided a 53:47 diastereomeric 
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mixture of crystalline 50a (0.288 g), while the concentration and analysis of the 

mother liquor showed a 38:62 diastereomeric mixture of 50a. 

(v) Compound 49a (3.054 g, 13.10 mmol) was stirred in acetonitrile (6 ml) with 

ethyl bromoacetate (2.8 ml, 25 mmol) at 20-25°C for 20 h. with the precipitation of a 

solid. The mixture was stored for 24 h. at -5°C and then filtered while cold. The 

solid was slurried twice with hexane then dried to give a 90:10 diastereomeric 

mixture of 50a (3.367 g, 64%) as a cream hygroscopic solid. Concentration of the 

filtrate and trituration of the oily residue with hexane (4 x 20 ml) afforded, after 

drying, a second batch of 50a (1.397 g, 27%) as a tan hygroscopic powder. 

2-Benzy1-2-ethoxycarbonylmethy1-6.7-dimethoxy-1-vinyl-1.2.3.4-  

tetrahydroisoquinolinium Bromide 50b  

(i) Compound 49b (3.010 g, 9.729 mmol) was dissolved in ethyl bromoacetate (13.0 

ml, 117 mmol) by warming the mixture briefly at 50°C, then the solution was stored 

under nitrogen protected from light at 15-25°C for 19 days. The precipitate was 

collected and washed with several portions of diethyl ether to give, after drying, a 

mixture (trans:cis=3:1) of the B-ring diastereomers of the N-benzyl-N-

ethoxycarbonylmethyl salt 50 b (2.718 g, 59%) as an off-white powder. trans 

diastereomer: 1 H NMR 8: 6.67 (s, ArH), 6.60 (s, ArH), 1.14 (t, CH3 of Et); 13C 

NMR 8: 164.84 (CO), 150.09 (C6A), 149.12 (C7A), 133.63 (C2"B), 132.58 (C3"B), 

131.78 (Cl'), 131.21 (C4"B), 130.16 (C5"B), 129.45 (C6"B), 127.65 (C2'), 121.56 

(C4aC), 121.33 (C8aC), 111.49 (Cl"), 111.15 (C5 and C8), 74.79 (Cl), 66.49 

(NCH2PhD), 62.59 (CH2 of EtD), 56.53 (20CH3), 54.51 (NCH2CO0), 51.40 (C3D), 

24.15 (C4), 14.05 (CH3 of Et). cis diastereomer: 1 H NMR 8: 6.78 (s, ArH), 6.53 (s, 

ArH), 1.31 (t, CH3 of Et); 13C NMR 8: 165.18 (CO), 150.21 (C6A), 149.12 (C7A), 

133.63 (C2"B), 132.58 (C3"B), 131.40 (Cl'), 131.21 (C4"B), 130.16 (C5"B), 129.45 

(C6"B), 126.94 (C2'), 121.01 (C4aC), 120.41 (C8aC), 110.76 (Cl"), 111.15 (C5 and 

C8), 73.25 (Cl), 63.20 (NCH2PhD), 61.56 (CH2 of EtD), 57.37 (NCH2COD), 56.53 

(20CH3), 53.66 (C3D), 23.86 (C4), 14.26 (CH3 of Et). 
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(ii) The N-benzyl base 49b (0.444 g, 1.44 mmol) was dissolved in ethyl 

bromoacetate (1.5 ml, 13 mmol) by warming the mixture briefly at 50°C, then the 

solution was stirred at 25°C for 11 h. No reaction was detected by t.l.c. analysis. 

The solution was then heated at 60°C for 5 h. A dark colour developed, however, no 

significant reaction was detected by t.l.c. analysis. 

(iii) To 49b (0.427 g, 1.38 mmol) in acetonitrile (4 ml) was added ethyl 

bromoacetate (1.2 g, 7.1 mmol) and potassium iodide (1.25 g, 7.50 mmol). No 

reaction was detected after the agitation of this mixture at 25°C for 24 h. The 

mixture was then heated under nitrogen at 90°C for 3 days. A dark tar formed. 

Ethyl 9,10-Dimethoxy-3-methy1-2.3.4.5-tetrahydro-1H- 

3-benzazonine-4-carboxylate 52a 

(i) To the salt 50a (4.617 g, 11.54 mmol) in dry acetonitrile (125 ml) under nitrogen 

at 0°C was added DBU (2.14 g, 14.1 mmol) dropwise. After stirring at 0°C for 6 h. 

the solution was then concentrated and the residue was purified by column 

chromatography on alumina (100 g) with dichloromethane/20% light petroleum. 

Concentration of the early fraction (250 ml) gave a mixture (E/Z=19.0) of the 3- 

benzazonine isomers 52a (3.309 g, 90%) as a colourless, amorphous, waxy solid. A 

portion (160 mg) of this mixture was purified by preparative reverse phase HPLC 

with acetonitrile/20% water to give: 

(a) after 10.94 min., the Z-benzazonine Z-52a (8 mg) as a colourless oil. 1 H NMR 8: 

6.67 (d, J 10.7 HZ, H7), 6.58 (s, ArH), 6.54 (s, ArH), 5.90-5.81 (m, H6), 4.10 (q, 

CH2 of Et), 3.87 (s, OCH3), 3.84 (s, OCH3), 3.49-3.44 (m, H4), 3.14-3.07 (m, H2), 

2.90-2.82 (m, H2), 2.77-2.70(m, H1), 2.62-2.56 (m, H1), 2.58 (s, NCH3), 2.22-2.12 

(m, H5), 1.23 (t, CH3 of Et); 13C NMR 8: 173.60 (C00), 148.34 (C9A), 147.53 

(C10A), 134.24 (C1 laB), 132.42 (C6C), 131.60 (C7C), 129.53 (C7aB), 113.84 (C8D), 

111.89 (C1 1D), 66.94 (C4), 60.88 (CH2 of Et), 56.51 (20CH3), 53.07 (C2), 45.48 

(NCH3), 37.86 (Cl), 32.63 (C5), 15.00 (CH3 of Et); MS m/z: 319 (M+, 14%; Calcd. 

for CI8H25N04 319.1783, found 319.1778), 246 (100), 215 (2), 203 (3), 189 (6). 
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(b) after 14.23 min., the E-benzazonine E-52a (135 mg) as a colourless waxy solid. 

1 H NMR 8: 6.77 (s, H8), 6.62 (s, H11), 6.43 (d, J 16.1 Hz, H7), 5.53-5.42 (m, H6), 

4.17-4.04 (m, CH2 of Et), 3.87 (s, OCH3), 3.84 (s, OCH3), 3.54 (dd, J 1.7 Hz, 6.3 

Hz, H4), 2.84-2.76 (m, HI and H5), 2.70 (s, NCH3), 2.73-2.60 (m, H1 and H2), 2.38- 

2.28 (m, H2 and H5), 1.25 (t, CH3 of Et); 13 C NMR 8: 173.25 (C00), 147.30 

(C9A), 147.09 (C10A), 134.69 (C7), 133.87 (Cl laB), 132.09 (C7aB), 130.64 (C6), 

113.77 (C11), 110.66 (C8), 67.19 (C4), 60.58 (CH2 of Et), 56.40 (20CH3), 56.00 

(C2), 45.24 (NCH3), 38.03 (Cl), 36.32 (C5), 14.92 (CH3 of Et); MS miz: 319 (M+, 

8%; Calcd. for C18H25N04 319.178, found 319.178), 246 (100), 215 (7), 204 (7), 

189 (12); IR (thin film from CH2C12): 1717, 1508, 1462, 1265, 1221, 1197, 1101 

cm -1 .  

(ii) To 50a (0.308 g, 0.770 mmol) in dry acetonitrile (15 ml) under nitrogen at -45°C 

was added DBU (0.14 g, 9.2 mmol). The solution was stirred between -45°C and 

-40°C for 6 h. and then allowed to warm slowly to room temperature. Concentration 

and then column chromatography of the residue on alumina with 

dichloromethane/20% light petroleum gave a mixture of the isomers of 52a (0.211 g, 

86%, E/Z=19.0). 

(iii) To 50a (0.295 g, 0.737 mmol) in dry acetonitrile (15 ml) at reflux, under 

nitrogen, was added DBU (0.14 g, 9.2 mmol). The solution was refluxed for 1 h. 

then concentrated and purified as for (i) to give a mixture (0.164 g, 70%) of the 

isomers E-52a:Z-52a:53a in the ratio 19.3:1.9:1.0. 

(iv) To 50a (0.508 g, 1.27 mmol) in dry acetonitrile (20 ml) under nitrogen at room 

temperature was added DBU (0.13 g, 0.87 mmol). The solution was stirred for 4.5 

h. then concentrated. Column chromatographic purification of the residue on 

alumina with dichloromethane/20% light petroleum gave a mixture of the isomers of 

52a (0.251 g, 90%, E/Z =19.0). The column was then eluted with ethanol. 

Concentration of the ethanol solution gave a residue (0.391 g) which was partitioned 

between 1% aqueous hydrochloric acid (10 ml) and dichloromethane (10 m1). The 

aqueous layer was extracted with dichloromethane (2 x 5 ml) and then the organic 
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extracts were combined, dried, and then concentrated to give cis-50a (0.109 g). 

Sublimation of the initial mixture of 52a by heating at 95°C for 7 h. under oil-pump 

vacuum afforded 52a (0.215 g, 86% recovery) as a colourless noncrystalline solid 

with m.p. 90-92°C, and an unchanged isomer ratio. 

(v) To 50a (0.481 g, 1.20 mmol) suspended in dry tetrahydrofuran (30 ml) under 

nitrogen at room temperature was added DBU (0.18 g, 1.18 mmol). The solution 

was stirred for 1 h. and then concentrated. Passage of the residue through a silica 

plug with dichloromethane gave, upon concentration, a mixture of the isomers of 

52a (0.283 g, 74%) as a pale oil. The attempted purification of this oil by p.t.l.c. on 

a silica plate with dichloromethane/4% ethanol gave: 

(a) several unidentified impure high Rf bands of < 3 mg. 

(b) at Rf 0.6, Z-52a (7 mg) as a pale yellow oil. 

(c) at Rf<0.3, unidentified polar material. 

Ethyl 3-Benzy1-9.10-dimethoxy-2.3.4.5-tetrahydro-1H- 

3-benzazonine-4-carboxylate 52b  

To 50b (0.519 g, 1.09 mmol) in dry acetonitrile under nitrogen was added 

DBU (0.18 ml, 1.2 mmol). The mixture was stirred for 3 h. and then concentrated. 

The column chromatographic purification of the residue on alumina (17 g) with 

dichloromethane/20% light petroleum gave, on concentration, the E-3-benzy1-3- 

benzazonine 52b (0.401 g, 93%) as a colourless oil. 1 H NMR 8: 7.47-7.45 (m, 

2ArH'), 7.38-7.26 (m, 3ArH'), 6.79 (s, H8), 6.63 (s, H11), 6.57 (d, J 16.2 Hz, H7), 

5.56-5.46 (m, H6), 4.19-4.05 (m, CH2 of Et and H of CH2Ph), 3.96 (d, J 13.9 Hz, H 

of CH2Ph), 3.88 (s, OCH3), 3.85 (s, OCH3), 3.52 (dd, J 1.3 Hz, 6.2 Hz, H4), 2.98- 

2.90 (m, H2A), 2.76-2.66 (m, H1 A and H5), 2.41-2.34 (m, H1A), 2.06-2.00 (m, H5), 

1.26 (t, CH3 of Et); 13 C NMR 8: 173.79 (C00), 147.45 (C9A), 147.25 (C10A), 

140.34 (Cl '), 134.84 (C7B), 133.99 (C7aC), 132.09 (C1 laC), 131.02 (C6B), 129.66 

(2C"), 128.89 (2C"), 127.81 (C"), 113.85 (C11), 110.81 (C8), 62.25 (C4), 60.80 

(CH2 of Et and CH2Ph), 56.59 (20CH3), 55.13 (C2), 38.53 (Cl), 36.62 (C5), 15.08 
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(CH3 of Et); MS m/z: 395 (M+, 7%; Calcd. for C24H29N04 395.209, found 

395.211), 322 (84), 282 (18), 230 (14), 189 (14), 115 (11), 91 (100). 

Ethyl 7.8-Dimethoxy-3-methy1-1-vinyl-2.3.4.5-tetrahydro-/H-

3-benzazepine-4-carboxylate 53  

An 87:9:4 mixture (0.164 g) of E-52a, Z-52a, and a component attributed to 

53, was refluxed in butyronitrile (10 ml) for 11.5 h. to produce, after concentration, a 

40:9:51 mixture of the same isomers. Purification of a portion (0.103 g) of this 

material by p.t.l.c. on silica with dichloromethane/5% ethanol afforded a mixture 

(82:18) of the B-ring diastereomers of the 3-benzazepine 53 (0.042 g) as a pale 

yellow oil. trans diastereomer 1 H NMR 8: 6.62 (s, ArH), 6.61 (s, ArH), 6.21-6.18 

(m, H1'), 5.18 (d, J 10.3 Hz, H2'), 4.91 (d, J 17.2 Hz, H2'), 4.11-3.98 (q, CH2 of Et), 

3.95-3.91 (m, H1), 3.85 (s, OCH3), 3.83 (s, OCH3), 3.67 (d, J5.7 Hz, H2), 3.38-3.31 

(m, H), 3.19-3.10 (m, H), 2.77-2.59 (m, H), 2.54 (s, NCH3), 1.17 (t, CH3 of Et); 13C 

NMR 8: 171.99 (C00), 148.03 (C7A), 147.39 (C8A), 138.72 (C1'), 133.90 (C5aB), 

130.91 (C9aB), 116.77 (C2'), 114.40 (C6C), 113.86 (C9C), 69.28 (C2), 60.45 (CH2 of 

Et), 56.59 (20CH3), 52.11 (Cl), 51.22 (C2), 46.92 (NCH3), 35.40 (C5), 15.08 (CH3 

of Et); cis diastereomer 1 H NMR 8: 5.82-5.83 (m, H1'), 2.58 (s, NCH3), 1.23 (t, 

CH3 of Et); 13C NMR 8: 173.88 (C00), 66.95 (C2), 60.71 (CH2 of Et), 52.87 (C4), 

45.37 (NCH3), 38.15 (C5); MS m/z: 319 (M+, 12%; Calcd. for C18H25N04 

319.1783, found 319.1786), 246 (100), 230 (3), 204 (4), 189 (6). 

Conversion of 52a to the Proposed Pyrrolo12.1-alisoquinolinium Derivative 54  

(i) The reaction of 52a (0.294 g, 0.920 mmol) with iodomethane (0.157 g, 1.11 

mmol) in dry butanone (2 ml) at room temperature in a sealed vessel protected from 

light over 3 days gave the precipitation of colourless needles tentatively attributed to 

the 3-ethoxycarbony1-8,9-dimethoxy-4-methy1-1,2,3,5,6,10b-hexahydropyrrolo[2,1- 

a]isoquinolinium iodide 54 (0.015 g, 3%) with m.p. 206-207°C. Satisfactory 

microanalytical results could not be obtained from this material. 1 H NMR 8: 6.19 (t, 
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HlObA), 6.02 (t, H3A), 3.58 (s, NCH3); 1 H NMR (d6-DMS0) 8: 6.95 (s, ArH), 6.83 

(s, ArH), 5.04 (t, HlObA), 4.84 (t, H3A), 4.34 (q, CH2 of Et), 3.79 (s, OCH3), 3.77 (s, 

OCH3), 3.71-3.64 (m, 2H), 3.27 (s, NCH3), 3.21-3.17 (m, H), 3.04-2.98 (m, H), 2.77- 

2.69 (m, H), 2.53-2.43 (m, 2H), 2.03-1.96 (m, H), 1.34 (t, CH3 of Et); 13 C (d6- 

DMS0) NMR 8: 169.05 (C00), 152.73 (C8A), 152.05 (C9A), 125.31 (C6aB), 123.84 

(ClOaB), 115.59 (C7C), 113.89 (C10C), 78.38 (ClObD), 76.94 (C3D), 66.62 (CH2 of 

Et), 59.67 (OCH3), 59.56 (OCH3), 51.87 (C5), 50.16 (NCH3), 33.10 (C6), 26.59 

(C 1E), 26.02 (C2E), 17.75 (CH3 of Et); Anal. CaIcd for C18H26N04I: C, 48.33; H, 

5.86; N, 3.13%, found: C, 47.19; H, 5.83; N, 3.15%. 

(ii) The reaction of 52a (0.231 g, 0.724 mmol) with iodomethane (0.156 g, 1.11 

mmol) in refluxing dry butanone (2 ml) for 2 h. afforded, after aging at -5°C, a 

precipitate which was collected to give 54 (0.027 g, 8%). 

63-Dimethoxy-2.2-dimethy1-1-vinyl-1,23.4-tetrahydroisoquinolinium Iodide 55a  

The 1-vinylisoquinoline 49a (0.461 g, 1.98 mmol) was refluxed in acetone (10 

ml) with iodomethane (2.1 g, 14 mmol) for 1 h. The solution was then cooled and 

concentrated. Recrystallisation of the residue from methanol gave the 

isoquinolinium iodide 55a (0.612 g, 83%) as pale yellow prisms with m.p. 231- 

232°C. 1 H NMR 8: 6.72 (s, ArH), 6.55 (s, ArH), 6.03-5.82 (m, H1' and H2'), 5.66 (d, 

J 7 .9 Hz, H1), 4.13-4.06 (m, H3), 4.00-3.92 (m, H3), 3.89 (s, OCH3), 3.83 (s, 

OCH3), 3.59 (s, NCH3), 3.36 (s, NCH3), 3.20 (t, H4); 1 H NMR (CD3CN) 8: 6.68 (s, 

ArH), 6.43 (s, ArH), 5.89-5.76 (m, H1'), 5.64-5.59 (m, H2'), 4.88 (d, J 8.8 Hz, HI), 

3.65 (s, OCH3), 3.59 (s, OCH3), 3.55-3.41 (m, H3), 2.99-2.92 (m, H4 and NCH3), 

2.85 (s, NCH3); 13C NMR -8: 150.04 (C6A), 149.05 (C7A), 129.91 (Cl'), 129.36 

(C2'), 121.61 (C4aB), 121.44 (C8aB), 111.46 (C5C), 110.97 (C8C), 74.34 (Cl), 57.88 

(C3), 56.55 (20CH3), 51.58 (NCH3), 48.37 (NCH3), 24.31 (C4); Anal. Calcd for 

C15H22NO21: C, 48.01; H, 5.91; N, 3.73%, found: C, 48.13; H, 5.93; N, 3.83%; IR 

(KBr): 1520, 1238, 1119, 1111, 783 cm-1. 
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2-Benzy1-6.7-dimethoxy-2-methyl-1-vinyl-1.23,4-tetrahydroisoquinolinium Iodide 

The 1-vinylisoquinoline 49b (1.012 g, 3.271 mmol) was refluxed in acetone 

(10 ml) with iodomethane (4.3 g, 31 mmol) for 2 h. The solution was then cooled 

and concentrated. Recrystallisation of the residue from methanol gave a mixture 

(54:46) of the B-ring diastereomers of the isoquinolinium iodide 55b (1.146 g, 78%) 

as pale yellow prisms with m.p. 209-210°C. 1 H NMR (superscriptsa-b denote those 

attributed to each diastereomer) 8: 7.79-7.76 (m, 2ArH"b), 7.64-7.62 (m, 2ArH"a), 

7.50-7.33 (m, 3ArH"), 6.76 (s, ArHa), 6.67 (s, ArHb), 6.62 (s, ArHb), 6.56 (s, ArHa), 

6.35-6.01 (m, H1' and H2ib), 5.92-5.82 (m, H2'a), 5.71 (d, J 9.2 Hz, Hlb), 5.63 (d, J 

8.6 Hz, H la), 5.50 (d, J12.8 Hz, NCHbPh), 5.30 (d, J 12.8 Hz, NCHaPh), 4.83 (d, J 

12.8 Hz, NCHaPh), 4.52 (d, J 12.9 Hz, NCHbPh), 4.27-4.19 (m, H3a), 3.90-3.84 (m, 

20CH3 and H3b), 3.77-3.61 (m, H), 3.38-3.27 (m, H), 3.20 (s, NCH3b), 3.14 (s, 

NCH3a), 3.07-2.98 (m, H4); Anal. Calcd for C211-126NO2I: C, 55.88; H, 5.81; N, 

3.10%, found: C, 55.75; H, 5.82; N, 3.18%; IR (ICBr): 1522, 1227, 1119, 1113, 706 

NN-Dimethyl-a-vinyl-4,5-dimethoxy-2-vinylbenzylamine 56a  

To 55a (0.475 g, 1.27 mmol) suspended in dry tetrahydrofuran (20 ml) at 

-20°C under nitrogen was added dropwise a 0.98M solution of lithium 

diisopropylamide (1.5 ml, 1.5 mmol) in a tetrahydrofuran/hexane mixture. The 

mixture was stirred at -20°C for 30 min. and then allowed to warm with stirring for a 

further 30 min. before the addition of water (15 ml) and diethyl ether (25 ml). The 

aqueous layer was extracted .  with further diethyl ether (2 x 20 ml) and the ether 

extracts were then combined and washed with water (10 ml), and then saturated brine 

(10 m1). Drying and then concentration of the ether solution gave the benzylamine 

56a (0.079 mg, 25%) as a yellow oil. 1 H NMR 8: 7.19 (dd, J 10.0 Hz, 17.2 Hz, 

H 1 '"), 7.00 (s, ArH), 6.93 (s, ArH), 5.90 (m, H1'), 5.49 (dd, J 1.2 Hz, 17.2 Hz, H2"), 

5.24-5.14 (m, H2' and HT"), 5.02 (dd, J 1.3 Hz, 10.1 Hz, H2'), 3.89 (s, OCH3), 3.87 
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(s, OCH3), 3.76 (d, J 8.7 Hz, H1), 2.19 (s, 2NCH3); 13C NMR 8: 149.34 (C4"A), 

148.23 (C5"A), 141.02 (C2B), 134.13 (C1'"B), 133.50 (C1"C), 129.34 (C2"C), 115.89 

(C2'D), 114.63 (C2'"D), 110.88 (C3"E), 109.04 (C6"E), 72.16 (Cl), 56.62 (OCH3), 

56.40 (OCH3), 44.58 (NCH3); MS m/z: 247 (M+, 60%; Calcd. for C151121NO2 

247.157, found 247.159), 232 (62), 203 (100), 188 (25), 172 (47), 84 (47), 58 (55). 

The aqueous washings were concentrated and the residue was then extracted 

with hot chloroform. Concentration of these extracts afforded 55a (0.305 g, 64%). 

N-Benzyl-N-methyl-oc-vinyl-4.5-dimethoxy-2-vinylbenzylamine 56b  

To 55b (0.518 g, 1.15 mmol) suspended in dry tetrahydrofuran (20 ml) at 

-20°C under nitrogen was added dropwise a 0.98M solution of lithium 

diisopropylamide (1.4 ml, 1.4 mmol) in a tetrahydrofuran/hexane mixture. The 

mixture was stirred at -20°C for 20 min. and then allowed to warm with stirring for a 

further 40 min. before the addition of water (15 ml) and diethyl ether (25 m1). The 

aqueous layer was extracted with further diethyl ether (2 x 20 ml) and the extracts 

were then combined and washed with water (10 ml), and then saturated brine (10 

m1). Drying and then concentration of the ether solution gave a yellow oil which 

was purified by passage through an alumina plug with dichloromethane to give the 

benzylamine 56b (0.244 mg, 55%) as a pale yellow oil. 1 H NMR 8: 7.39-7.19 (m, 

5ArH and H1 1 "), 7.16 (s, ArH), 6.99 (s, ArH), 5.99 (m, H1'), 5.53 (dd, J 1.2 Hz, 17.3 

Hz, H2"), 5.27-5.20 (m, H2' and H2'"), 5.07 (dd, J 1.4 Hz, 10.0 Hz, H2'), 4.09 (d, J 

8.9 Hz, H1), 3.91 (s, OCH3), 3.89 (s, OCH3), 3.56 (d, J 13.3 Hz, NCHPh), 3.33 (d, J 

13.3 Hz, NCHPh), 2.12 (s, NCH3); 13C NMR 8: 149.72 (C4"A), 148.50 (C5"A), 

140.51 (C1 13 ), 140.38 (CI -4-C), 134.98 (CrB), 133.30 (Cl"C), 129.94 (C2"C), 

129.30 (2C+), 128.77 (2C+), 127.35 (C4+), 116.39 (C2'D), 114.57 (C2"D), 111.04 

(C3"E), 109.51 (C6"E), 70.84 (Cl), 59.92 (NCH2Ph), 56.58 (OCH3), 56.44 (00 -13), 

40.58 (NCH3); MS m/z: 323 (M+, 25%; Calod. for C211-125NO2 323.188, found 

323.188), 308 (16), 232 (37), 203 (63), 172 (29), 134 (43), 91 (100). 
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The aqueous solutions were combined and extracted with chloroform (3 x 20 

ml). Concentration of the extracts afforded a mixture (70:30) of the B-ring 

diastereomers of 55b (0.198 g, 38%). 

6.7-Dimethoxy-1-viny1-1.2.3.4-tetrahydroisoquinoline 57  

A solution of vinylmagnesium bromide in dry tetrahydrofuran (130 ml) under 

nitrogen was prepared from vinyl bromide (22.2 g, 0.208 mol). The solution was 

cooled to 0°C and dry diethyl ether (160 ml) was added prior to the addition of the 

imine 47 (13.24 g, 69.25 mmol) as a solution in dry tetrahydrofuran (100 ml) over 30 

mm. The mixture was allowed to warm to room temperature with stirring for 3.5 h. 

and then the excess Grignard reagent was hydrolysed by the addition of saturated 

aqueous ammonium chloride. The organic solvents were decanted and the residual 

solids were rinsed with diethyl ether (30 m1). The solids were dissolved in 3M 

aqueous hydrochloric acid (250 ml) and the solution was then basified with 80% 

aqueous sodium hydroxide. The solids which precipitated were collected by 

centrifuging the mixture, while the supernatant liquid was decanted and extracted 

with chloroform (4 x 50 ml); centrifugation was necessary to break the emulsions 

formed during the extractions. The solid was then dissolved in the chloroform 

extracts. The resultant solution was washed with water (20 ml) then saturated brine 

(20 ml), and then dried and concentrated to a dark solid (6.355 g) which was purified 

by column chromatography on silica with dichloromethane/0-2% methanol to give 

the secondary amine 57 (5.009, 33%) as a pale tan powder. 1 H NMR 8: 6.59 (s, 

ArH), 6.58 (s, ArH), 6.00-5.88 (m, H1'), 5.29-5.22 (m, H2'), 4.40 (d, J 7.8 Hz, H1), 

3.85 (s, OCH3), 3.82 (s, OCH3), 3.26-3.20 (m, H), 3.06-2.98 (m, H), 2.88-2.75 (m, 

H), 2.72-2.62 (m, H), 1.85 (bs, NH); 13C NMR 8: 148.27 (C6A), 147.72 (C7A), 

141.31 (Cl'), 129.25 (C4aB), 127.60 (C8aB), 117.71 (C2'), 112.39 (C5C), 110.93 

(C8C), 60.60 (Cl), 56.49 (20CH3), 42.25 (C3), 29.78 (C4); MS m/z: 219 (M+, 28%; 

Calcd. for CI3H17NO2 219.1259, found 219.1269), 218 (34), 204 (13), 192 (100), 

188 (12), 178 (13), 176 (16). 
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6 7-Dimethoxy-2-trimethylsilylmethyl-1-vinyl-1.2.3.4-tetrahydroisoquinoline 58 

The secondary amine 57 (0.926 g, 4.22 mmol) was stirred in dry acetonitrile 

(5 ml) with trimethylsilylmethyl trifluoromethanesulfonate (0.992 g, 4.20 mmol) 

under nitrogen for 6 h. at room temperature, then water (5 ml) and diethyl ether (10 

ml) were added. The aqueous layer was extracted with further diethyl ether (4 ml) 

and then the ether extracts were combined and washed with water (3 x 2 ml), and 

then saturated brine (2 x 2 m1). The ether solution was then dried and concentrated 

to a tan solid which was purified by column chromatography on alumina (30 g) with 

hexane/40% dichloromethane. The residual 57 was retained on the column and the 

2-trimethylsilylmethylisoquinoline 58 (0.801 g, 63%) was obtained as a pale yellow 

oil on concentration of the early fractions. 1 H NMR 8: 6.58 (s, ArH), 6.54 (s, ArH), 

5.77-5.66 (m, H1'), 5.27-5.17 (m, H2'), 3.79 (s, OCH3), 3.77 (s, OCH3), 3.68 (d, J 

8.4 Hz, HI), 3.02-2.97 (m, H), 2.85-2.78 (m, H), 2.69-2.62 (m, H), 2.47-2.36 (m, H 

and H of NCH2Si), 1.78 (d, J 14.7 Hz, H of NCH2Si), 0.07 (s, Si(CH3)3); 13C NMR 

8: 147.82 (C6A), 147.26 (C7A), 141.30 (Cl'), 128.77 (C4aB), 127.01 (C8aB), 117.90 

(C2'), 111.53 (C5 and C8), 71.15 (Cl), 56.09 (20CH3), 50.65 (NCH2SiC), 46.43 

(C3C), 29.00 (C4), -0.95 (Si(CH3)3). 

6.7-Dimethoxy-2-methyl-2-trimethylsilylmethy1-1-vinyl-1.2.3.4-  

tetrahydroisoquinolinium Iodide 59  

The amine 58 (0.682 g, 2.23 mmol) was stirred in dry acetonitrile (4 ml) with 

iodomethane (1.9 g, 13 mmol) at 60°C for 1 h. Concentration of the mixture and 

recrystallisation of the residue from methanoVethyl acetate gave a mixture (51:49) of 

the B-ring diastereomers of the isoquinolinium salt 59 (0.917 g, 92%) as off-white 

prisms. 1 H NMR (superscriptsa,b denote those attributed to each diastereomer) 8: 

6.74 (s, ArHa), 6.73 (s, ArHb), 6.60 (s, ArHb), 6.54 (s, ArHa), 6.09-5.76 (m, 3H and 

Hlb), 5.49 (d, J 8.6 Hz, Hla), 4.01 -3.92 (m, H), 3.88 (s, OCH3), 3.82 (s, OCH3), 

3.57 (d, J 14.9 Hz, NCHaSi), 3.50-3.10 (m, 3H), 3.45 (s, NCH3b), 3.31 (s, NCH3a), 

2.98 (d, J 14.7 Hz, NCHbSi), 0.37 (s, Si(CH3)3b), 0.35 (s, Si(CH3)3a); 13C NMR 8: 



173 

150.30 (C6A), 149.35 (C7A), 130.91 (Cl'), 129.27 (C2'), 121.83-121.06 (C4a and 

C8a), 111.75-111.38 (C5 and C8), 76.88 and 76.64 (Cl), 58.45 and 57.81 

(NCH2SiB), 56.82 (20a13), 55.84 and 54.53 (C3B), 51.32 and 50.51 (NCH3), 24.92 

and 24.73 (C4), 0.83 and 0.68 (Si(CH3)3). 

9.10-Dimethoxy-3-methy1-2.3.4.5-tetrahydro-IH-3-benzazonine 61  

All traces of moisture were excluded from this procedure. The cesium 

fluoride was dried immediately prior to use under vacuum at 170-190°C over 

phosphorus pentoxide. Dry dimethylformamide was obtained by distillation from 

barium oxide, under reduced pressure, onto 4A molecular sieves and then storage. 

The glassware was dried at 120°C prior to use. 

The salt 59 (0.408 g, 0.912 mmol) was placed in a two-necked flask to which 

a test-tube containing dry cesium fluoride (0.698 g, 4.60 mmol) was attached by 

rubber tubing and the apparatus was flushed with nitrogen. Dry dimethylformamide 

(3 ml) was added via syringe to 59, then the cesium fluoride was added and the 

mixture was stirred sealed under nitrogen, protected from light, for 44 h. The 

resultant mixture was treated with 2.5% aqueous sodium bicarbonate (25 ml) and 

then extracted with diethyl ether (4 x 10 m1). The organic extracts were washed with 

2.5% sodium bicarbonate (5 ml), then saturated brine (5 ml), and then dried and 

concentrated to give the E-3 -benzazonine 61 (0.063 g, 30%) as a colourless oil. 1 H 

NMR 8: 6.69 (s, H8), 6.55 (s, H11), 6.34 (d, J 16.2 Hz, H7), 5.26-5.15 (m, H6), 3.79 

(s, OCH3), 3.76 (s, OCH3), 2.79-2.57 (m, 4H), 2.39 (s, NCH3), 2.35-2.16 (m, 4H); 

13C NMR 8: 147.40 (C9A), 147.21 (C10A), 134.15 (C7aB), 133.56 (C7C), 132.23 

(C6C), 134.15 (CllaB), 114.13 (C11), 110.90 (C8), 61.08 (C4D), 57.96 (C2D), 56.58 

(20CH3), 45.38 (NCH3), 38.31 (C1), 35.76 (C5); MS m/z: 247 (M+, 100%; Calcd. 

for C15H2INO2 247.1572, found 247.1578), 246 (35), 232 (29), 204 (15), 189 (13), 

149 (14); IR (thin film from CH2C12): 1508, 1463, 1328, 1264, 1219, 1196, 1104 

cm-1. 
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The various aqueous washings were combined and saturated with sodium 

chloride then extracted with chloroform (4 x 10 m1). Concentration of these extracts, 

after drying, afforded 55a (0.201 g, 59%). 

2-Cyanomethy1-6.7-dimethoxy-2-methyl-1-vinyl-1.2.3.4-  

tetrahydroisoquinolinium Iodide 62a  

Iodoacetonitrile was prepared for this synthesis by stirring a mixture of 

sodium iodide (75.0 g, 0.500 mole), chloroacetonitrile (20.0 ml, 0.316 mole) and dry 

acetonitrile (150 ml) at room temperature for 24 h. The mixture was filtered and the 

filtrate was then concentrated at 50°C. The residue was taken up in dichloromethane 

and the solution was again filtered and then concentrated at 50°C. The vacuum 

distillation of the residual liquid afforded iodoacetonitrile (19.82 g, 37%) at 

approximately 110°C. 1 H NMR 8: 3.54. 

The amine 49a (1.022 g, 4.381 mmol) was stirred in dry butanone (3 ml) with 

iodoacetonitrile (1.10 g, 6.59 mmol) for 40 h. at room temperature protected from 

light. The mixture was then cooled to -10°C and a first crop of solid (0.548 g) was 

collected. The concentration of the filtrate afforded a second crop (1.276 g). The 

solids were combined and recrystallised from methanollethyl acetate to give a 

mixture (trans:cis=53:47) of the B-ring diastereomers of the N-cyanomethyl salt 62a 

(1.090 g, 62%) as an off-white powder. The characteristic NMR peaks were: trans 

diastereomer 1 H NMR 8: 3.51 (s, NCH3); 13C NMR 8: 132.33 (C2'), 128.77 (Cl'), 

111.99 (C5A), 111.01 (C8), 74.66 (Cl), 58.19 (NCH2CN), 56.95 (20CH3), 50.88 

(C3), 47.14 (NCH3), 24.43 (C4); cis diastereomer 1 H NMR 8: 3.66 (s, NCH3); 13C 

NMR 8: 130.23 (Cl'), 130.15 (C2'), 111.87 (C5A), 111.26 (C8A), 74.93 (Cl), 56.19 

(NCH2CN), 56.95 (20CH3), 51.73 (C3), 48.74 (NCH3), 24.43 (C4). 

6.7-Dimethoxy-2-methy1-2-phenacy1-1-vinyl-1.2.3.4-  

tetrahydroisoquinolinium Bromide 62b  

To the N-methyl base 49a (2.015 g, 8.641 mmol) in dry butanone (6.0 ml) was 

added phenacyl bromide (2.623 g, 13.18 mmol). The mixture was warmed briefly to 
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dissolve all the solids and was then stirred at room temperature for 12 h. with the 

formation of a solid. The mixture was aged at -10°C for 2 h. then filtered while cold. 

The addition of diethyl ether (10 ml) to the filtrate gave a small second crop of solid. 

The solids were combined and reslurried with diethyl ether (3 x 30 ml) then dried to 

give a mixture (trans:cis=78:22) of the B-ring diastereomers of the N-phenacyl salt 

62b (3.062 g, 82%) as a pale yellow powder. trans diastereomer 1 H NMR 8: 8.35- 

8.31 (m, o-ArH"), 7.66-7.61 (m, p-ArH"), 7.53-7.48 (m, m-ArH"), 6.63 (s, ArH), 

6.59 (s, ArH), 6.65-6.58 (m, H2'), 6.25-6.15 (bd, NCHCO), 6.18-6.00 (m, H1' and 

H2'), 5.84 (d, J 10.8 Hz, H1), 5.60-5.48 (bd, NCHCO), 4.79-4.75 (m, H), 3.93-3.78 

(m, H), 3.88 (s, OCH3), 3.85 (s, OCH3), 3.60 (s, NCH3), 3.15-3.11 (m, 2H); 13C 

NMR 8: 192.10 (CO), 150.05 (C6A), 149.21 (C7A), 135.40 (C1'), 134.53 (Cl"), 

129.90 (C2'), 129.54 (2C"), 129.24 (C"), 128.95 (2C"), 121.06 (C4aB), 120.69 

(C8aB), 111.27 (C5C), 110.73 (C8C), 73.72 (C1), 62.88 (NCH2C0), 56.47 (20CH3), 

54.93 (C3), 47.71 (NCH3), 24.29 (C4); cis diastereomer distinguishable peaks 1 H 

NMR 8: 8.01-7.97 (m, o-ArH"), 4.98-4.92 (m, H), 3.69 (s, NCH3); 13C NMR 8: 

72.68 (Cl), 45.92 (NCH3), 23.59 (C4). 

Recrystallisation of this material from methanol gave a mixture (95:5) of the 

B-ring diastereomers as a cream powder (1.257 g, 34%) with m.p. 198-201°C. Anal. 

Calcd for C22H26NO3Br: C, 61.12; H, 6.06; N, 3.24%, found: C, 60.80; H, 6.23; N, 

3.34%; IR (KBr): 1697, 1519, 1258, 1225, 1115, 860 cm -1 . 

9.10-Dimethoxy-3-methy1-2.3.4,5-tetrahydro-1H-3-benzazonine-4-carbonitrile 63a  

(i) To the salt 62a (0.395 g, 0.987 mmol) in dry acetonitrile (15 ml) at room 

temperature under nitrogen was added DBU (0.195 g, 1.28 mmol). After stirring for 

5 h. the solution was then concentrated and the residue was purified by column 

chromatography on alumina (25 g) with dichloromethane/20% light petroleum. 

Concentration of the early fraction (100 ml) gave a pale yellow oil (0.227 g, 84%) 

which upon 1 H NMR analysis indicated 3 components in the ratio of 11.4:2.3:1.0. 

The purification of this oil by preparative reverse phase HPLC with acetonitrile/24% 
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water afforded at 8.89 min. the major component, the E-4-cyano-benzazonine 63a 

(0.133 g, 49%), as a colourless oil. 1H NMR 8: 6.69 (s, H8), 6.58 (s, H11), 6.40 (d, J 

16.1 Hz, H7), 5.43-5.33 (m, H6), 3.78 (s, OCH3), 3.75 (s, OCH3), 3.67-3.64 (m, H4), 

2.75-2.54 (m, 6H), 2.46 (s, NCH3); 13C NMR 8: 147.66 (C9 and C10), 137.19 (C7), 

133.05 (C1 laA), 131.35 (C7aA), 128.33 (C6), 118.82 (CN), 114.01 (C11), 110.66 

(C8), 57.03 (C2), 56.65 (20CH3), 56.44 (C4), 45.34 (NCH3), 39.17 (Cl), 37.55 

(C5); MS m/z: 272 (M+, 25%; Calcd. for C16H20N202 272.1524, found 272.1540), 

257 (17), 245 (100), 230 (65), 204 (37), 189 (53), 188 (66). 

(ii) To 62a (0.631 g, 1.58 mmol) in dry acetonitrile (30 ml) at reflux under nitrogen 

was added DBU (0.337 g, 2.21 mmol). The solution was refluxed for 1 h. 

Concentration and purification as for (i) gave a pale yellow oil (0.265 g, 62%) which 

contained the same 3 components as for (i), but in the ratio of 10.0:1.0:1.5. 

4-Benzoy1-9.10-dimethoxy-3-methy1-2,3.4.5-tetrahydro-1H-3-benzazonine 63h  

(i) To the salt 62b (1.507 g, 3.486 mmol) suspended in dry acetonitrile (50 ml) 

under nitrogen at 0°C was added DBU (0.69 g, 4.53 mmol). After stirring at 0°C for 

5 .  h. the solution was then concentrated and the residue was purified by column 

chromatography on alumina with dichloromethane/20% light petroleum. 

Concentration of the early fraction gave a yellow oil (1.026 g, 84%). Analysis by 1 H 

NMR revealed a 91:7:2 mixture of E-63b:Z-63b:64b. Purification of a portion of 

this mixture by preparative reverse phase HPLC with acetonitrile/20% water gave: 

(a) the Z-benzazonine Z-63b as a yellow oil. 1 H NMR 8: 7.84 (dd, J 1.0 Hz, 7.6 Hz, 

o-ArH"), 7.55-7.50 (m, p-ArH"), 7.45-7.40 (m, m-ArH"), 6.67 (d, J 11.0 Hz, H7), 

6.65 (s, ArH), 6.54 (s, ArH), 6.04-5.95 (m, H6), 4.33 (dd, J 3.5 Hz, 10.9 Hz, H4), 

3.88 (s, OCH3), 3.83 (s, OCH3), 3.14-3.06 (m, H2), 2.76-2.67 (m, H1), 2.53 (s, 

NCH3), 2.43-2.32 (m, H5), 2.18-2.14 (m, H5); 13C NMR 8: 200.46 (CO), 148.54 

(C9A), 147.70 (C10A), 137.71 (C1 laB), 134.28 (C7aB), 133.30 (C6C), 132.37 (C7C), 

132.06 (C4"C), 130.11 (C 1"B), 129.17 (2C"), 128.77 (2C"), 113.61 (C8D), 111.83 

(C11D), 65.96 (C4), 56.56 (20CH3), 53.54 (C2), 42.90 (NCH3), 36.10 (Cl), 30.93 
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(C5); MS m/z: 349 (M-2+, 2%; Calcd. for C22H23NO3 349.1675, found 349.168), 

246 (100), 215 (7), 206 (12), 160 (12), 105, (14), 77 (16). 

(b) the E-benzazonine E-63b as a yellow oil. The compound showed 2 conformers 

(51:49) on NMR analysis at room temperature. 1 H NMR (superscriptsa ,b denote 

signals for each conformer) 8: 7.84-7.77 (m, o-ArH"), 7.54-7.51 (m,p-ArH"), 7.47- 

7.37 (m, m-ArH"), 6.84 (s, ArHa), 6.78 (s, ArHa), 6.67 (s, ArHb), 6.58 (s, ArHb), 

6.41 (d, J 16.4 Hz, H4b), 6.23 (d, J 16.1 Hz, H4a), 5.82-5.71 (m, H6b), 5.42-5.32 (m, 

H6a), 4.40-4.37 (m, Hb), 3.91-3.83 (m, 20CH3 and H), 3.71-3.56 (m, H), 3.11-3.06 

(m, Ha), 2.84-2.67 (m, 2H), 2.53 (s, NCH3b), 2.50-2.32 (m, 2H), 2.25 (s, NCH3a); 

13C NMR 8: 201.14 and 200.92 (CO), 147.75 and 147.53 (C9A), 147.28 (C10A), 

139.07 and 137.68 (C1 laB), 133.89 (C7aB), 135.68 and 133.70 (C6C), 133.31 and 

133.02 (C7C), 132.79 and 132.30 (Cl"B), 131.76 and 130.94 (C4"C), 129.07-128.61 

(4C"), 114.21 (C8D), 111.06 and 109.81 (C11D), 70.34 and 70.02 (C4), 56.52 

(20CH3), 59.62 and 55.56 (C2), 41.40 (NCH3), 35.94 and 34.88 (Cl), 33.37 and 

33.26 (C5); MS in/z: 349 (M-2+, 2%; Calcd. for C22H23NO3 349.1675, found 

349.168), 246 (100), 215 (7), 206 (12), 160 (12), 105, (14), 77 (16). IR (thin film 

from CH2C12): 2934, 1678, 1512, 1259, 1221, 1105, 735, 698 cm -1 . 

(ii) To 62b (0.125 g, 0.289 mmol) suspended in dry acetonitrile (5 ml) under 

nitrogen at -30°C was added DBU (0.053 g, 0.35 mmol). After stirring between 

-20°C and -30°C for 5 h. the solution was worked up as for (i) to give a 94:6 mixture 

of E-63b:Z-63b (0.071 g, 71%). 

(iii) To 62b (0.521 g, 1.205 mmol) suspended in dry acetonitrile (20 ml) under 

nitrogen at room temperature was added DBU (0.204 g, 1.34 mmol). After stirring 

for 3 h. the solution was worked up as for (i) to give a 89:3:8 mixture of E-63b:Z-

63b:64b (0.280 g, 66%). 
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2-Benzoy1-7.8-dimethoxy-3-methyl-1-viny1-2.3.43-tetrahydro-/H-3-benzazepine 

(i) To the salt 62b (0.122 g, 0.282 mmol) suspended in dry acetonitrile (5 ml) at 

65°C was added DBU (0.052 g, 0.35 mmol), producing the immediate removal of the 

solid. After stirring at 65°C for 1 h. the solution was then concentrated and the 

residue was purified by column chromatography on alumina with 

dichloromethane/20% light petroleum. Concentration of the early fraction gave a 

yellow oil (0.053 g, 54%). Analysis by 1H NMR revealed a mixture (3.6:1.0) of the 

B-ring diastereomers of the 3-benzazepine 64b. 	P.t.l.c. on silica with 

dichloromethane/3% methanol failed to separate the diastereomers. trans 

diastereomer 1 H NMR 8: 7.88-7.83 (m, o-ArH"), 7.57-7.52 (m, p-ArH"), 7.48-7.42 

(m, m-ArH"), 6.66 (s, ArH), 6.37 (s, ArH), 6.27-6.16 (m, H1'), 5.12 (dd, J 1.5 Hz, 

10.3 Hz, H2'), 4.91 (dd, J1.5 Hz, 17.7 Hz, H2'), 4.48 (d, J 6.8 Hz, H2), 4.12-4.08 (m, 

H1), 3.86 (s, OCH3), 3.76 (s, OCH3), 3.42-3.35 (m, H3), 3.14-3.07 (m, H3), 2.88- 

2.80 (m, H4), 2.43 (s, NCH3); 13C NMR 8: 201.97 (CO), 148.05 (C7A), 147.54 

(C8A), 138.60 (Cl'), 137.35 (C9aB), 133.30 (C4"), 133.13 (C5aB), 131.19 (Cl"B), 

129.21 (2C"), 128.53 (2C"), 117.30 (C2'), 113.65 (C6C), 111.38 (C9C), 69.18 (C2), 

56.56 (20CH3), 51.82 (C4), 50.33 (Cl), 45.71 (NCH3), 34.60 (C5); MS ni/z: 351 

(M+,100%), 335 (26), 322 (33), 247 (20), 217 (24), 161, (20); cis diastereomer 1 H 

NMR (discernible peaks) 8: 8.00-7.98 (m, o-ArH"), 6.65 (s, ArH), 6.53 (s, ArH), 

6.48-6.39 (m, H1'), 4.76 (dd, J 1.5 Hz, 17.7 Hz, H2'), 4.37 (d, J 1.3 Hz, H2), 3.88 (s, 

OCH3), 3.80 (s, OCH3), 2.41 (s, NCH3); 13C NMR 8 138.80 (Cl'), 133.74 (C4"), 

117.30 (C2'), 114.34 (C6A), 114.18 (C9A), 72.20 (C2), 51.63 (C1), 44.58 (NCH3). 

(ii) The 3-benzazonine E-63b (0.072 g) in dry acetonitrile (10 ml) was refluxed for 

75 min. Concentration and then passage of the residue through an alumina plug with 

dichloromethane/20% light petroleum afforded a mixture (4.8:1.0) of the B-ring 

diastereomers of 64b (0.043 g, 60%). 
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E-9.10-Dimethoxy-3-methy1-2.3.4.5-tetralvdro- 1H-3-benzazonine-4-spiro-3'-  

tetrahydro-2'-furanone 66 

(i) The base 49a (1.049 g, 4.502 mmol) was stirred in dry butanone (4 ml) at 50°C 

with a-bromo-y-butyrolactone (1.40 g, 8.48 mmol) for 40 h. then the solution was 

cooled and diethyl ether (10 ml) was added. The resultant gummy solid was 

triturated with diethyl ether (4 x 10 ml) then taken-up and concentrated from 

dichloromethane to give a pale tan hygroscopic powder (1.219 g) of crude 65. 

A portion of the above solid (0.870 g) in dry acetonitrile (45 ml) at 0°C was 

treated with DBU (0.415 g, 2.72 mmol). After stirring at 0°C for 5 h. the solution 

was then concentrated and the residue was purified by column chromatography on 

alumina (15 g) with dichloromethane/10% light petroleum. Concentration of the 

early fraction (100 ml) gave a yellow oil (0.377) which contained mainly 49a. This 

fraction was further purified by column chromatography on alumina (20 g) with light 

petroleum/15% ethyl acetate to give 49a (0.210 g, 28%) followed by the E-

benzazonine 66 (0.118 g, 12%) as a colourless oil. 1H NMR 8: 6.78 (s, H8), 6.66 (s, 

H11), 6.54 (d, J 15.8 Hz, H7), 5.42-5.35 (m, H6), 4.26-4.21 (m, H3'), 3.87 (s, 

OCH3), 3.85 (s, OCH3), 2.96-2.88 (m, H), 2.75-2.72 (m, H), 2.69-2.61 (m, H5), 2.57- 

2.55 (m, H), 2.49 (s, NCH3), 2.43-2.41 (m, H), 2.37-2.28 (m, H4'), 2.04-1.96 (m, 

H4'); 13C NMR 8: 178.23 (CO), 147.53 (C9A), 147.46 (C10A), 136.65 (C7), 133.47 

(C1 laB), 131.32 (C7aB), 128.98 (C6), 113.76 (C11), 110.39 (C8), 68.12 (C4), 65.70 

(C3'), 56.54 (20CH3), 55.77 (C2), 42.22 (C5C), 39.14 (NCH3), 37.18 (C1C), 29.94 

(C4'); MS m/z: 317 (Mt, 71%; Calcd. for C18H23N04 317.1626, found 317.1640), 

258 (16), 204 (53), 189 (50), 173 (26), 126 (100). 

(ii) A mixture of a-bromo-y7butyrolactone (13.29 g, 82.6 mmol) and sodium iodide 

(19.0 g, 127 mmol) in acetonitrile was stirred sealed at room temperature for 4 days 

protected from light. The solution was then filtered and the acetonitrile was removed 

by distillation at atmospheric pressure. The vacuum distillation of the dark residue 

provided the removal of residual a-bromo-y-butyrolactone at 130°C and then a-iodo-

y-butyrolactone (12.4 g, 72%) as a yellow liquid with b.p. 165-170°C (1 mmHg). 
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, The base 49a (1.007 g, 4.316 mmol) was stirred in dry butanone (3 ml) 

protected from light with a-iodole-butyrolactone (1.64 g, 7.74 mmol) for 40 h. at 

50°C. The solution was then concentrated and the residue was triturated with diethyl 

ether (2 x 20 m1). Column chromatography of the residue on silica with 

chloroform/10% acetonitrile afforded unreacted 49a. Elution of the column with 

chloroform/50% acetonitrile gave crude 65 (0.359, 19%) as a tan powder which was 

then stirred with DBU (0.171 g, 1.13 mmol) in dry acetonitrile (20 ml) at room 

temperature for 5 h. Concentration of the solution and then purification of the 

residue by column chromatography on alumina with dichloromethane/40% hexane 

afforded 66 (0.075 g, 29%) as a clear oil. 

2-(2"-Chloroethoxycarbonyl)methy1-6.7-dimethoxy-1-vinyl-1.2.3.4-  

tetrahydroisoquinoline 67  

2-Chloroethyl bromoacetate was prepared by the reaction of bromoacetic acid 

(17.2 g, 0.132 mol) with 2-chloroethanol (19.0 g,' 0.236 mol) and concentrated 

sulfuric acid (0.5 ml) in toluene (20 m1). The mixture was refluxed for 5 h. 

connected to a Dean-Stark condenser then cooled. The organic liquid was extracted 

with water (40 ml) then 1% aqueous sodium bicarbonate (2 x 20 ml) and water (30 

ml) again before drying over sodium sulfate. The residual water and toluene were 

evaporated from the crude 2-chloroethyl bromoacetate at 150°C under atmospheric 

pressure, and then the liquid was distilled under reduced pressure to give 2 - 

chloroethylbromoacetate (18.7 g, 75%) as a clear liquid with b.p. 102-104°C (80 

mm). 

To the secondary amine 57 (3.01 g, 13.7 mmol) in dichloromethane (85 ml) 

with potassium carbonate (15 g) was added 2-chloroethyl bromoacetate (4.20 g, 20.7 

mmol). The mixture was stirred for 16 h. Filtration of the mixture and washing of 

the solids with dichloromethane (2 x 10 ml) gave an organic filtrate which was 

extracted with 5% aqueous sodium bicarbonate (40 ml), then dried and concentrated. 

The residue was purified by column chromatography on silica (60 g), with a gradient 
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from dichloromethane/25% hexane to dichloromethane/2.5% ethanol, to give 2 -(2"- 

chloroethoxycarbonyl)methylisoquinoline 67 (2.52 g, 54%) as a pale tan oil. 1 11 

NMR 8: 6.59 (s, ArH), 6.56 (s, ArH), 5.83-5.71 (m, H1'), 5.35-5.29 (m, H2'), 4.39 

(H1"), 4.20 (d, H1), 3.85 (s, OCH3), 3.80 (s, OCH3), 3.70 (t, H2"), 3.64 (d, J 17.1 

Hz, H of NCH2C0), 3.50 (d, J 17.1 Hz, H of NCH2C0), 3.15-3.09 (m, H), 2.94-2.83 

(m, 2H), 2.76-2.70 (m, H); 13C NMR 8: 171.36 (CO), 148.14 (C6A), 147.59 (C7A), 

139.85 (Cl'), 128.07 (C4aB), 126.90 (C8aB), 119.52 (C2'), 111.70 (C5C), 111.34 

(C8C), 66.34 (Cl), 64.47 (CH2 of NCH2COD), 56.38 (20CH3), 56.23 (Cl"D), 48.65 

(C3), 42.15 (C2"), 29.26 (C4); MS m/z: 339 (M+, 6%; Calcd. for C17H22N04C1 

339.1233, found 339.1225), 338 (7), 314 (34), 312 (100), 250 (11), 232 (61), 218 

(42). 

Attempted cyclisation of 67 to the Spiro Salt 68 

(i) The amine 67 (0.628 g, 1.84 mmol) was stirred in dry butanone (20 ml) with 

potassium iodide (0.349 g, 2.10 mmol) under nitrogen at room temperature for 1 h. 

with no reaction. 

(ii) Compound 67 (0.622 g, 1.82 mmol) was stirred in dry acetonitrile (20 ml) with 

potassium iodide (0.352 g, 2.12 mmol) under nitrogen at room temperature for 12 h., 

with no reaction. The mixture was heated at 55°C and then concentrated. Extraction 

of the residue with dichloromethane then concentration of the extracts gave 

unchanged 67 (0.578 g, 93%). 

(iii) Compound 67 (0.550 g, 1.62 mmol) was refluxed in dry acetonitrile (15 ml) 

with potassium iodide (0.364 g, 2.19 mmol) for 12 h. Concentration and then 

treatment of the residue on a silica column gave the elution of unchanged 67 with 

dichloromethane. Elution of the column with acetonitrile afforded a dark powder 

(0.222 g) containing numerous components. 

(iv) Compound 67 (0.623 g, 1.83 mmol) was refluxed in dry acetone (15 ml) with 

sodium iodide (1.0 g, 6.6 mmol) for 48 h. protected by a drying tube. The solution 

was then concentrated and the residue was extracted with dichloromethane (3 x 20 
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m1). The extracts were filtered then concentrated to afford a tan foam (0.688 g) 

which on analysis by 1 H NMR indicated many components. 

6.7-Dimethoxy-1-isopropeny1-2-methyl-1.2.3.4-tetrahydroisoquinoline 70a 

A solution of isopropenylmagnesium bromide was prepared by the slow 

addition of 2-bromopropene (10.25 g, 84.7 mmol) to magnesium turnings (2.30 g, 

94.6 mmol) in dry tetrahydrofuran (100 ml) under nitrogen. The reaction was 

initiated by heating the solution to reflux in the presence of an iodine crystal. The 

addition rate was controlled to maintain a gentle reflux. The mixture was refluxed 

for 30 min. after the completion of the addition. 

The solution of isopropenylmagnesium bromide in tetrahydrofuran was 

cooled to <-50°C in an acetone/liquid nitrogen slush bath, with the deposition of 

some solid, and then the iminium salt 48a (9.51 g, 28.5 mmol) was added 

portionwise over 30 mm. The mixture was allowed to warm slowly to room 

temperature with stirring for 20 h. and then warmed to 40°C for 1 h. The mixture 

was then cooled and ice was added carefully to decompose the excess Grignard 

reagent. The mixture was basified by the addition of 40% aqueous potassium 

hydroxide and diethyl ether (100 ml) was added. The organic layer was decanted 

from the precipitated inorganic salts and washed with water (50 ml). The inorganic 

salts and aqueous layer were extracted with further portions of diethyl ether (3 x 50 

m1). The ether extracts were combined and then concentrated. The residue was 

taken up in dichloromethane (100 ml) and the organic solution was washed with 

water (6 x 20 ml). Drying and then concentration of the organic solution gave the 1- 

isopropenylisoquinoline 70a (6.595 g, 94%) as a pale tan oil of >99% purity by GC-

MS analysis. The oil formed a solid on storage at -5°C. 1 H NMR 8: 6.64 (s, ArH), 

6.58 (s, ArH), 5.08 (d, J 1.5 Hz, H2'), 3.84 (s, OCH3), 3.79 (s, OCH3), 3.61 (s, H1), 

3.06-3.00 (m, 2H), 2.62-2.56 (m, H), 2.49-2.40 (m, H), 2.32 (s, NCH3), 1.50 (CH3); 

13C NMR 8: 148.02 (C6A), 147.82 (C7A), 147.22 (Cl'), 128.32 (C4aB), 127.77 

(C8aB), 116.18 (C2'), 111.59 (C5C), 110.25 (C8C), 74.18 (Cl), 56.46 (OCH3), 56.35 
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(OCH3), 53.08 (C3), 44.66 (NCH3), 29.75 (C4), 17.56 (CH3); MS m/z: 247 (M+, 

2%; Calcd. for C15H211402 247.1570, found 247.156), 207 (14), 206 (100), 191 (6), 

190 (14), 162 (6); IR (thin film from CH2C12): 2945, 2833, 2781, 1516, 1259, 1219, 

1142 cm -1 . 

6.7-Dimethoxy-2-methyl-1-(a-phenyletheny1)-1.2.3.4-tetrahydroisoquinoline 70b  

A solution of a-phenylethenylmagnesium bromide was prepared by the 

dropwise addition of a-bromostyrene (15.0 g, 81.9 mmol) to magnesium turnings 

(2.22 g, 91.3 mmol) in dry tetrahydrofuran (200 ml) under nitrogen over 45 min. 

The mixture was heated briefly to initiate the reaction at the start of the addition with 

an iodine crystal present. The reaction temperature was then kept below 35°C. The 

solution was stirred for 30 min. after the addition had ceased. 

The solution of a-phenylethenylmagnesium bromide in tetrahydrofuran was 

cooled to <-50°C in an acetone/liquid nitrogen slush bath and then the iminium salt 

48a (13.52 g, 40.6 mmol) was added. The mixture was stirred at <-50°C for 90 min. 

and then allowed to warm slowly to room temperature with stirring for 16 h. before 

the careful addition of ice to decompose excess Grignard reagent. The mixture was 

basified by the addition of 40% aqueous potassium hydroxide and diethyl ether (150 

ml) was added. The organic layer was decanted from the precipitated inorganic salts 

then centrifuged to remove any residual solids, washed with water (150 ml), and then 

concentrated. The residue was dissolved in diethyl ether (240 ml) which had been 

used, in three portions, to extract the inorganic solids and then the aqueous wash. 

The ether solution was washed with water (30 ml) then saturated brine (2 x 20 ml), 

and then• dried and passed through a silica plug. Concentration of the solution 

afforded a solid which recrystallised from ethanol to give the 1 - (a-

phenylethenyl)isoquinoline 70b (11.11 g, 88%) as a pale yellow powder with m.p. 

80-82°C. 1 H NMR 8: 7.33-7.28 (m, 2ArH"), 7.22-7.17 (m, 3ArH"), 6.72 (s, ArH), 

6.59 (s, ArH), 5.60 (d, J 1.6 Hz, H2'), 5.34 (d, J 1.6 Hz, H2'), 4.09 (s, H1), 3.84 (s, 

OCH3), 3.72 (s, OCH3), 3.10-3.02 (m, 2H), 2.66-2.45 (m, 2H), 2.33 (s, NCH3); 13C 
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NMR 8: 149.93 (Cl'), 147.94 (C6A), 147.78 (C7A), 140.30 (C1"B), 128.91 (C4aB), 

128.48 (2C"), 128.18 (2C"), 127.96 (C"), 127.23 (C8aB), 119.10 (C2'), 111.63 (5C), 

110.55 (C8C), 73.69 (Cl), 56.34 (20CH3), 52.98 (C3), 44.74 (NCH3), 29.38 (C4); 

MS miz: 308 (M-H+, 0.5%; Calcd. for C2,01122NO2 308.1650, found 308.1647), 206 

(100), 190 . (8), 162 (4), 132 (2), 103 (2), 77 (4); IR (KBr disc): 2768, 1514, 1256, 

1217, 1143, 783 cm -1 ; Anal. Calcd for C20H23NO2: C, 77.64; H, 7.49; N, 4.53%, 

found : C, 77.67; H, 7.64; N, 4.42%. 

6.7-Dimethoxy-2-methyl-1-(1'-trimethylsilyletheny1)-12.3.4-tetrahydroisoquinoline  

70c 

The 1-(bromovinyl)trimethylsilane required for this procedure was 

prepared 177  from commercial (Aldrich) vinyltrimethylsilane. A solution of 1- 

trimethylsilylethenylmagnesium bromide in dry tetrahydrofuran (60 ml) under 

nitrogen was then prepared from the 1-(bromovinyptrimethylsilane (9.03 g, 50.4 

mmol) by the method of Ottolenghi et. al. 178  

The solution of 1-trimethylsilyethenylmagnesium bromide in tetrahydrofuran 

was cooled to <-50°C in an acetone/liquid nitrogen slush bath and then additional dry 

tetrahydrofuran (50 ml) was added followed by the iminium salt 48a (8.404 g, 25.22 

mmol). The mixture was allowed to warm slowly to room temperature with stirring 

for 19 h. The reaction was worked up (as for 70b) to give a solid upon concentration 

of the ether solution. Recrystallisation of the solid from ethanol afforded 1-(1 

trimethylsilylethenyl)isoquinoline 70c (6.231 g, 81%) as a colourless solid with m.p. 

89-90°C. 1 H NMR 8: 6.55 (s, 2ArH), 5.79 (d, J 3.3 Hz, H2'), 5.62 (d, J 3.1 Hz, H2'), 

3.85 (s, OCH3), 3.78 (s, OCIi3), 3.67 (s, H1), 3.03-2.95 (m, 2H), 2.62-2.54 (m, H), 

2.42-2.36 (m, H), 2.27 (s, NCH3), -0.12 (Si(CH3)3); 13C NMR 8: 156.03 (Cl'), 

147.86 (C6A), 147.42 (C7A), 129.66 (C4aB), 128.95 (C2'), 127.36 (C8aB), 111.53 

(C5 and C8), 76.56 (Cl), 56.46 (20CH3), 52.97 (C3), 45.30 (NCH3), 29.70 (C4), 

0.44 (Si(CH3)3); MS m/z: 305 (M+, 0.4%), 304 (1), 290 (2), 206 (100), 190 (8), 162 
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(3); Anal. Calcd for C 17H27NO2Si: C, 66.84; H, 8.91; N, 4.59%, found : C, 66.94; 

H, 8.78; N, 4.57%. 

6.7-Dimethoxy-1-(1'-iodoetheny1)-2-methy1-1.2.3.4-tetrahydroisoquinoline 70d  

(i) To a stirred mixture of sodium iodide (1.301 g, 8.68 mmol) in acetonitrile (6 ml) 

was added trimethylchlorosilane (0.934 g, 8.60 mmol) then a solution of water (85 

mg, 4.7 mmol) in acetonitrile (4 m1). After 10 min. the 1-ethynyl base 71 (0.503 g, 

2.17 mmol) was added. The mixture was stirred in an oil bath at 80°C for 4 h. then 

cooled and treated with 2M aqueous sodium hydroxide (5 ml). The solution was 

extracted with diethyl ether (3 x 10 ml) and the ether extracts were then combined 

and washed with water (5 ml), and then saturated brine (5 m1). Drying and then 

concentration of the extracts gave a tan powder (0.569 g) which contained 71 (41%), 

the 1-(1'-iodoethenyl) product 70d (27%), and a component tentatively identified as 

6,7-dimethoxy-1-(cis-2'-iodoetheny1)-2-methy1-1,2,3,4-tetrahydroisoquinoline (32%) 

due to the following signals: 1H NMR 8: 6.58 (d, 1 7.4 Hz, H2'), 6.18 (dd, J 7.6 Hz, 

8.8 Hz, H1'), 4.23 (d, J 8.8 Hz, H1), 2.31 (NCH3); 13C NMR 8: 142.31 (Cl'), 86.59 

(C2'), 68.96 (C1). Purification of this material by p.t.l.c. on silica with hexane/50% 

ethyl acetate provided, from Rf 0.92, the 1 -( 1 Wodoethenyl)isoquinoline 70d (0.149 g, 

19%) which recrystallised from ethanol as a pale tan powder with m.p. 89-90°C. 1 H 

NMR 8: 6.59 (s, ArH), 6.57 (s, ArH), 6.53 (d, J 0.8 Hz, H2'), 6.09 (d, J 0.8 Hz, H2'), 

3.85 (s, OCH3), 3.82 (s, OCH3), 3.18 (s, H1), 3.12-3.05 (m, 2H),2.67-2.59 (m, 2H), 

2.38 (s, NCH3); 13C NMR 8: 148.43 (C6A), 147.85 (C7A), 128.92 (C2'), 128.08 

(C4a13 ), 126.70 (C8aB), 120.92 (CUB), 111.42 (C5C), 110.24 (C8C), 75.96 (Cl), 

56.47 (OCH3), 56.23 (OCH3), 51.71 (C3), 44.26 (NCH3), 29.23 (C4); MS m/z: 359 

(Mt, 4%; Calcd. for C14H18NO21 359.0382, found 359.0382), 230 (2), 206 (100), 

190 (5), 142 (4); Anal. Calcd for C14H18NO21: C, 46.81; H, 5.05; N, 3.90%, found : 

C, 46.72; H, 5.16; N, 3.94%. 

(ii) To a stirred mixture of sodium iodide (15.54 g, 103.7 mmol) in acetonitrile (53 

ml) was added trimethylchlorosilane (11.23 g, 103.4 mmol) then a solution of water 
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(0.938 g, 52.1 mmol) in acetonitrile (35 m1). After 10 min. the 1-ethynyl base 71 

(4.046 g, 17.49 mmol) was added. The mixture was stirred in an oil bath at 80°C for 

8.5 h. then cooled and concentrated. The residue was partitioned between 2M 

aqueous sodium hydroxide (50 ml) and diethyl ether (150 ml) and the aqueous layer 

was then extracted with further diethyl ether (2 x 60 m1). The ether extracts were 

combined and washed with water (3 x 30 ml) then saturated brine (2 x 30 ml), and 

then dried and passed through a silica plug, removing much yellow colour. 

Concentration of the solution gave a yellow solid (3.123 g), which, after applying the 

material in the minimum of dichloromethane/25% hexane, was purified by column 

chromatography on silica with hexane/30% ethyl acetate to afford 70d (1.885 g, 

30%). Elution of the column with hexane/60% ethyl acetate afforded 71 (1.190 g, 

29%). 

Attempted Preparation of 70d. or a 1-(1'-Bromoetheny1)- Analogue, from 70c 

(i) The 1-(1'-trimethy1silylethenyl)isoquino1ine 70c (0.646 g, 1.939 mmol) was 

stirred in dichloromethane (35 ml) with iodine (0.40 g, 1.6 mmol) at room 

temperature for 4 h. The organic solution was washed with 5% aqueous sodium 

bicarbonate (2 x 10 ml) then dried and concentrated to give a dark solid (0.548 g). 

The material contained many components, all with signals between 3.96 8 and 3.65 8 

for the N-methyl group in the 1H NMR spectrum. 

(ii) To 70c (0.527 g, 1.725 mmol) in dichloromethane (2 ml) at -78°C was added 

dropwise a solution of bromine (0.294 g, 1.86 mmol) in dichloromethane (2 ml), with 

the rapid removal of colour and the formation of a colourless precipitate. The 

mixture was stirred for 40 min. at -78°C then warmed to room temperature. The 

solid dissolved. Concentration of the solution gave a pale yellow powder comprising 

two approximately equal components. The compounds were tentatively identified as 

6,7-dimethoxy-2-methyl-1-(1 1-trimethylsilyletheny1)-3,4-dihydroisoquinolinium 

bromide and 6,7-dimethoxy-2-methy1-1-(1 1-trimethylsilyletheny1)-1,2,3,4-tetrahydro-

isoquinolinium bromide by NMR analysis of the mixture. 
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6.7-Dimethoxy- 1 -ethyny1-2-methyl-1.2.3.4-tetrahydroisoquinoline 71  

A commercial (Aldrich) solution of 0.5M ethynylmagnesium bromide in 

tetrahydrofuran (180 ml, 90 mmol) under nitrogen was cooled in an acetone/liquid 

nitrogen slush bath to <-50°C and then the iminium salt 48a (15.00 g, 45.04 mmol) 

was added. The mixture was allowed to warm slowly to room temperature with 

stirring for 16 h. then worked up (as for 70b) to give a solid upon concentration of 

the ether solution. Recrystallisation of the solid from ethanol afforded 1 - 

ethynylisoquinoline 71 (6.88 g, 66%) as a pale yellow solid of >99% purity by GC-

MS analysis. 1 H NMR 8: 6.75 (s, ArH), 6.57 (s, ArH), 4.42 (s, I:11), 3.85 (s, OCH3), 

3.83 (s, OCH3), 2.94-2.63 (m, 4H), 2.54 (s, NCH3), 2.42 (d, J 2.3 Hz, H2'); 13C 

NMR 8: 148.75 (C6A), 147.93 (C7A), 127.15 (C4aB), 126.02 (C8aB), 111.79 (CSC), 

110.58 (C8C), 82.31 (C2'), 74.57 (C1'D), 56.47 (CID), 56.34 (OCH3), 56.28 (OCH3), 

48.79 (C3), 43.99 (NCH3), 28.89 (C4); MS m/z: 231 (M+, 84%; Calcd. for 

C14H17NO2 231.1259, found 231.1250), 230 (100), 216 (30), 200 (37), 188 (50), 145 

(53), 115 (34); ER (KBr disc): 3239, 2943, 1519, 1256, 1225, 1136, 1010, 702 cm -1 . 

2-Ethoxycarbonylmethy1-6.7-dimethoxy-1-isopropenyl-2-methyl-1.2.3.4-  

tetrahydroisoquinolinium Bromide 72a  

The base 70a (1.498 g, 6.059 mmol) was stirred in dry butanone (10 ml) 

under nitrogen with ethyl bromoacetate (2 ml, 18 mmol) for 10 h. at 55°C. 

Concentration of the solution and trituration of the residue with diethyl ether (4 x 15 

ml) gave, after drying, a pale foam (2.452 g) which upon recrystallisation from 

ethanol/tetrahydrofuran afforded a mixture (trans: cis=46:54) of the B-ring 

diastereomers of the 2 -ethoxycarbonylmethylisoquinolinium salt 72a (1.183 g, 47%) 

as an off-white powder. trans diastereomer (assignable signals) 1 H NMR 8: 6.70 (s, 

ArH), 6.49 (s, ArH), 5.91 (s, H1), 5.38 (d, J 17.4 Hz, H of NCH2C0), 4.38 (d, J 17.3 

Hz, H of NCH2C0), 4.25 (q, CH2 of Et), 3.97-3.88 (m, H), 3.89 (s, OCH3), 3.83 (s, 

OCH3), 3.60 (s, NCH3), 1.82 (s, CH3), 1.29 (t, CH3 of Et); 13C NMR 8: 137.57 

(Cl'), 130.00 (C2'), 76.13 (Cl), 63.47 (CH2 of Et), 58.28 (NCH2C OA), 56.69 
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(20CH3), 54.84 (C3A), 49.47 (NCH3), 24.20 (C4), 22.09 (CH3), 14.48 (CH3 of Et); 

cis diastereomer (assignable signals) 1 H NMR 8: 6.72 (s, ArH), 6.43 (s, ArH), 6.20 

(s, H1), 5.37 (d, J17.3 Hz, H of NCH2C0), 4.95-4.4.89 (m, H), 4.64 (d, J 17.1 Hz, H 

of NCH2C0), 4.25 (q, CH2 of Et), 3.90 (s, OCH3), 3.83 (s, OCH3), 3.78 (s, NCI-13), 

1.71 (s, CH3), 1.33 (t, CH3 of Et); 13C NMR 8: 138.49 (Cl'), 128.05 (C2'), 76.13 

(C1), 63.47 (CH2 of Et), 61.52 (NCH2C0A), 56.69 (20CH3), 56.10 (C3A), 47.35 

(NCH3), 23.58 (C4), 20.83 (CH3), 14.48 (CH3 of Et); IR of mixture (thin film from 

CDC13): 1744, 1520, 1257, 1229, 1123 cm -1 . 

2-Ethoxycarbonylmethy1-6.7-dimethoxy-2-methyl-1-(a-phenyletheny1)-1,2,3.4-  

tetrahydroisoquinolinium Bromide 72b  

The base 70b (2.224 g, 7.188 mmol) was stirred in dry butanone (7 ml) under 

nitrogen with ethyl bromoacetate (1.81 g, 10.8 mmol) for 10 h. at 50°C. 

Concentration of the solution and trituration of the residue with diethyl ether (4 x 20 

ml) afforded a gum which on concentration from a solution in dichloromethane gave 

a mixture (trans:cis=58:42) of the B-ring diastereomers of the 2- 

ethoxycarbonylmethylisoquinolinium salt 72b (1.183 g, 47%) as a tan hygroscopic 

powder. trans diastereomer (assignable signals) 13C NMR 8: 165.36 (C00), 143.44 

(C1"A), 139.60 (Cl'A), 131.41 (C2'), 74.2-73.6 (bs, Cl), 63.19 (CH2 of Et), 61.20 

(NCH2C0B), 56.52 (20CH3), 53.81 (C3B), 47.11 (NCH3), 23.76 (C4), 14.10 (CH3 

of Et); cis diastereomer (assignable signals) 13C NMR 8: 165.17 (C00), 142.49 

(C1"A), 138.60 (Cl'A), 130.65 (C2'), 74.2-73.6 (bs, Cl), 63.03 (CH2 of Et), 58.17 

(NCH2C0B), 56.52 (20CH3), 54.84 (C3B), 49.79 (NCH3), 23.05 (C4), 14.10 (CH3 

of Et). 

2-Ethoxycarbonylmethy1-6.7-dimethoxy-2-methyl-1-0 1-trimethylsilyletheny1)-  

l .2.3,4-tetrahydroisoquinolini um Bromide 72c 

To the base 70c (0.520 g, 1.70 mmol) in dry acetonitrile (4 ml) under nitrogen 

at 0°C was added a solution of ethoxycarbonylmethyltriflate (0.528 g, 2.24 mmol) in 
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acetonitrile (2 m1). Stirring at 0°C for 45 min. and 25°C for 4 h. provided a 

homogeneous solution which was then concentrated. Trituration of the residue with 

diethyl ether (4 x 15 ml) afforded a white powder which was stirred in ethanol (10 

ml) with potassium bromide (1.43 g) for 3 h. Concentration of the mixture and 

extraction of the residue with dichloromethane (4 x 10 ml) gave, after concentration 

of the organic extracts, a single B-ring diastereomer of the 2 -ethoxycarbonylmethyl 

salt 72c (0.781 g, 80%) as a white powder. 1 H NMR 8: 6.67 (s, ArH), 6.30 (s, 

ArHA), 6.24 (s, H2 1A), 6.18 (bs, H2'A), 5.64 (s, H1), 4.44 (d, J 16.9 Hz, H of 

NCH2C0), 4.37 (d, J 16.9 Hz, H of NCH2C0), 4.29-4.19 (m, CH2 of Et and H3), 

3.85 (s, OCH3), 3.76 (s, OCH3), 3.71-3.56 (m, H3), 3.27 (s, NCH3), 3.17-3.09 (m, 

H4), 1.25 (t, CH3 of Et), 0.11 (s, Si(CH3)3); 13C NMR 8: 165.55 (C00), 150.37 

(C6A), 149.67 (C7A), 146.64 (Cl'), 143.99 (C2'), 122.14 (C4aB), 120.64 (C8aB), 

111.19 (C5C), 110.93 (C8C), 74.43 (bs, Cl), 63.62 (CH2 of Et), 58.41 (NCH2COD), 

56.62 (20CH3), 54.52 (C3D), 49.66 (NCH3), 24.00 (C4), 14.32 (CH3 of Et), 0.58 

(Si(CH3)3). 

2-Ethoxycarbonylmethy1-6.7-dimethoxy-1-iodo-2-methyl-1.2.3.4-  

tetrahydroisoquinolinium Bromide 72d  

To the base 70d (0.602 g, 1.68 mmol) in dry acetonitrile (4 ml) under nitrogen 

at 0°C was added a solution of ethoxycarbonylmethyltriflate (0.524 g, 2.22 mmol) in 

acetonitrile (3 m1). Stirring at 0°C for 1 h. and 25°C for 4 h. provided a 

homogeneous solution which was then concentrated. Trituration of the residue with 

diethyl ether (3 x 20 ml) afforded a gum which was stirred in ethanol (10 ml) with 

potassium bromide (1.00 g) for 3 h. Concentration of the mixture and extraction of 

the residue with dichloromethane (4 x 7 ml) gave, after concentration of the organic 

extracts, a yellow powder from which residual 70d was then removed by column 

chromatography on silica with dichloromethane/0-20% ethanol to give a single B - 

ring diastereomer of the 2 -ethoxycarbonylmethyl salt 72d (0.781 g, 89%) as an off-

white powder. 1 H NMR 8: 7.46 (s, H2'), 6.71 (s, H2 1 A), 6.63 (s, ArHA), 6.51 (s, 
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ArHA), 5.56 (s, H1), 4.63-4.56 (m, H3), 4.33-4.20 (m, 5H), 3.90 (s, OCH3), 3.85 (s, 

OCH3), 3.52 (s, NCH3), 3.15-3.07 (m, H4), 1.28 (t, CH3 of Et); 13C NMR 8: 165.13 

(C00), 151.02 (C6A), 150.05 (C7A), 143.53 (C2'), 121.35 (4aB), 120.93 (8aB), 

111.29 (C5C), 110.94 (C8C), 100.94 (Cl'), 77.44 (Cl), 63.90 (CH2 of Et), 59.36 

(NCH2C0), 56.83 (OCH3), 56.67 (OCH3), 53.93 (C3), 50.31 (NCH3), 23.93 (C4), 

14.38 (CH3 of Et). 

1-12'46.7-dimethoxy-2-methy1-1.2.3.4-tetrahydroisoquinoline)ethyny11-6.7-  

dimethoxy-2-methyl-1.2.3.4-tetrahydroisoquinoline 73  

The crystallisation mother liquor from the formation of 71 was concentrated 

and the residue was then submitted to column chromatography on alumina (45 g) 

with a gradient from dichloromethane/5%hexane to dichloromethane/5% methanol. 

Residual 71 eluted in the early fractions. Concentration of the late fractions provided 

the title compound 73 (0.76 g, 8%) as a pale yellow powder. Recrystallisation of a 

portion from dichloromethane/hexane gave off-white needles with m.p. 178-179°C. 

Two conformers (ratio 71:29) gave the signals marked with superscriptsX ,Y in the 1 H 

NMR spectrum of this material. 1 H NMR 8: 6.78X and 6.73Y (s, ArH), 6.56 (s, 

ArH), 4.41 (s, H1), 3.83 (s, OCH3), 3.78x and 3.71" (s, OCH3), 2.98-2.90 (m, H), 

2.83-2.79 (m, 2H), 2.63-2.57 (m, H), 2.56Y and 2.52X (s, NCH3); 13C NMR 

148.56 (C6A), 147.82 (C7A), 127.94 (C4aB), 126.02 (C8aB), 111.67 (C5C), 110.78 

(C8C), 85.02 (Cl'), 57.03 (Cl), 56.40 (20CH3), 49.79 (C3), 44.42 (NCH3), 29.02 

(C4); MS (LSIMS in a glycerol matrix) m/z: 437 (MH+, 33%), 406 (3), 277 (9), 230 

(13), 219 (8), 206 (100), 204 (28); IR (103r disc): 3239, 2943, 1522, 1254, 1223, 

1132, 1009 cm -1 . 

Attempted Preparation of 1-Cyanoethenylmagnesium Chloride for Synthesis of 74a  

(i) To magnesium turnings (1.71 g, 70.2 mmol) in dry tetrahydrofuran under 

nitrogen was added an iodine crystal and 2-chloroacrylonitrile (5.12 g, 58.5 mmol) 

portionwise. The mixture was heated to reflux for 10 min. No reaction initiated. 
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The mixture was cooled and submitted to ultrasound irradiation, then a small amount 

of iodomethane was added and the mixture was returned to reflux. No reaction 

occurred. 

(ii) Magnesium turnings (3.40 g, 142 mmol) were activated90  by stirring the 

turnings vigorously under nitrogen for 2.5 days. The magnesium became very dark 

and a 'mirror' of metal formed on the glass vessel. Dry tetrahydrofuran (10 ml) was 

added and the mixture was cooled to 0°C then 2-chloroacrylonitrile (2.20 g, 25.1 

mmol) was added as a solution in dry tetrahydrofuran (25 ml) dropwise over 80 min. 

The mixture was stirred at 0°C for a further 5 h. No reaction occurred. 

Attempted Preparation of 6,7-Dimethoxy-1-(1'-cyclopenteny1)-2-methyl-1.2.3.4-  

tetrahydroisoquinoline 74b  

The method of Braude and Forbes 91  was modified to generate 1- 

cyclopentenyllithium in tetrahydrofuran rather than diethyl ether. Thus freshly 

distilled 1-chlorocyclopentene (4.056 g, 39.54 mmol) in dry tetrahydrofuran (8 ml) 

was added to a stirred suspension of finely cut lithium wire (0.61 g, 88 mmol) in dry 

tetrahydrofuran (70 ml) under argon. The mixture was heated for 6 h. in an oil bath 

at 45-50°C then 18 h. at 63-65°C. No reaction occurred at the lower temperature. 

After heating at the higher temperature the solution was a grey/green colour with a 

white precipitate. The solution was transferred via cannula to a new reaction vessel, 

leaving residual lithium (0.31 g), then cooled to -78°C under nitrogen and the 

iminium salt 48a (6.164 g, 18.50 mmol) was added. After 1 h. at -78°C the mixture 

was allowed to warm to room temperature with stirring over 18 h. Ice was added 

cautiously until the vigorous reaction ceased then water (30 ml) and diethyl ether (60 

ml) were added. The aqueous layer was made basic with 2M aqueous sodium 

hydroxide then the layers were separated and the aqueous layer was extracted with 

diethyl ether (2 x 30 ml) then chloroform (3 x 30 m1). The ether extracts were 

combined and washed with water (2 x 20 ml) then saturated brine (20 ml), and then 

dried and concentrated to a yellow oil (0.994 g) which displayed many components 
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on 1 H NMR spectral analysis. Concentration of the chloroform extracts and 

recrystallisation of the residue from ethanol afforded the recovery of 48a (3.554 g, 

58%). 

Ethyl 9.10-Dimethoxy-3.6-dimethy1-2.3.4.5-tetrahydro-1H-

3-benzazonine-4-carboxylate 75a 

(i) The salt 72a (0.302 g, 0.729 mmol) was stirred in dry acetonitrile (10 ml) under 

nitrogen at room temperature with DBU (0.14 g, 0.94 mmol) for 5 h. then the 

solution was concentrated. Purification of the residue by column chromatography on 

alumina (6 g) with dichloromethane/20% light petroleum afforded, from the early 

fraction (100 ml), a mixture (E/Z = 1.83) of the 3-benzazonine isomers 75a (0.226 g, 

93%) as a pale yellow oil. A portion (148 mg) of this mixture was purified by 

preparative reverse phase HPLC with acetonitrile/20% water to give: 

(a) after 20.8 min., the Z-benzazonine Z-75a (37 mg) as a colourless oil. 1 H NMR 8: 

6.56 (s, ArH), 6.53 (s, ArH), 6.38 (s, H7), 4.09 (q, CH2 of Et), 3.86 (s, OCH3), 3.83 

(s, OCH3), 3.59 (dd, J 4.0 Hz, 12.6 Hz, H4), 3.06-2.99 (m, H), 2.90-2.82 (m, H), 

2.71-2.57 (m, 2H), 2.60 (s, NCH3), 2.27 (dd, J 13.3 Hz, 13.3 Hz, H5), 2.03 .(dd, J 3.9 

Hz, 14.0 Hz, H5), 1.90 (s, CH3), 1.23 (t, CH3 of Et); 13C NMR 8: 174.31 (C00), 

148.07 (C9A), 147.20 (C10A), 138.59 (C7aB), 135.04 (Cl laB), 130.70 (C6B), 127.53 

(C7), 113.63 (C8C), 112.10 (C11C), 65.04 (C4), 60.65 (CH2 of Et), 56.43 (20CH3), 

52.95 (C2), 45.57 (NCH3), 38.35 (C5), 36.65 (C1), 22.31 (CH3), 15.01 (CH3 of Et); 

MS m/z: 333 (Mt, 21%; Calcd. for C19H27N04 333.1940, found 333.1951), 260 

(100), 229 (4), 203 (10), 130 (4). 

(b) after 24.5 min., the E-benzazonine E-75a (52 mg) as a colourless oil. 1 H NMR 8: 

6.71 (s, ArH), 6.67 (s, ArH), 6.28 (s, H7), 4.12 (q, CH2 of Et), 3.87 (s, OCH3), 3.85 

(s, OCH3), 3.54 (d, J 6.3 Hz, H4), 2.88-2.70 (m, 4H), 2.65 (s, NCH3), 2.59-2.53 (m, 

H5), 1.99-1.94 (m, H5), 1.45 (s, CH3), 1.26 (t, CH3 of Et); 13C NMR 5: 174.34 

(C00), 147.29 (C9A), 147.03 (C10A), 133.87 (C7aB), 132.48 (C1 laB), 131.64 

(C6B), 129.66 (C7), 113.84 (C8C), 111.89 (C11C), 65.92 (C4), 60.82 (CH2 of Et), 
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56.67 (OCH3), 56.51 (OCH3), 55.22 (C2), 45.64 (NCH3), 41.56 (C1D), 39.00 (C5D), 

18.91 (CH3), 14.99 (CH3' of Et); MS m/z: 333 (M+, 23%; Calcd. for C19H27N04 

333.1940, found 333.1922), 276 (10), 260 (100), 217 (5), 203 (10). 

(ii) The salt 72a (0.282 g, 0.682 mmol) was stirred in dry acetonitrile (15 ml) under 

nitrogen (10 ml) with DBU (0.13 g, 0.87 mmol) between -45°C and -40°C for 6 h. 

then allowed to warm slowly to room temperature before workup as for (i) to afford 

a mixture (E/Z = 1.72) of the isomers of 75a (0.221 g, 97%). 

(iii) The salt 72a (0.290 g, 0.700 mmol) was refluxed in dry acetonitrile (10 ml) with 

DBU (0.13 g, 0.87 mmol) for 1 h. before workup as for (i) to afford a mixture (E/Z = 

3.10) of the isomers of 75a (0.217 g, 93%). 

Ethyl 9.10-Dimethoxy-3-methy1-6-pheny1-2.3.4.5-tetrahydro-1H-

3-benzazonine-4-carboxylate 75b  

(i) The salt 72b (0.307 g, 0.644 mmol) was stirred in dry acetonitrile (15 ml) under 

nitrogen at room temperature with DBU (0.17 g, 0.84 mmol) for 5 h. then the 

solution was concentrated. Purification of the residue by column chromatography on 

alumina with dichloromethane/20% light petroleum afforded a pale yellow oil (0.206 

g, 81%). 1 H NMR analysis indicated a mixture of 4 components attributed to E-

7 5b:Z-7 5b:76b:77 in the ratio of 37:53:8:2. A portion (160 mg) of this mixture was 

purified by preparative reverse phase HPLC with acetonitrile/36% water to give: 

(a) after 27.0 min., a mixture (9 mg) of two components (67:33) attributed to 76b 

and 77. Compound 76b 1 H NMR 8: 7.42-7.25 (m, 5ArH"), 6.72 (s, ArH), 6.63 (s, 

ArH), 5.33 (s, H2'), 4.91 (s, H2'), 4.50 (d, J 6.5 Hz, H2), 4.03 (q, CH2 of Et), 3.86 (s, 

OCH3), 3.82 (s, OCH3), 3.66 (d, J 6.5 Hz, H1), 3.30-3.15 (m, 2H), 2.75-2.65 (m, 

2H), 2.29 (s, NCH3), 1.15 (t, CH3 of Et); 13C NivIR 8: 172.61 (C00), 116.52 (C2'), 

66.98 (C2), 60.48 (CH2 of Et), 53.29 (Cl), 50.44 (C4), 46.61 (NCH3), 35.81 (C5), 

15.11 (CH3 of Et). Compound 77 1 H NMR 8: 7.64 (dd, J 1.4 Hz, 7.6 Hz, o-ArH"), 

7.42-7.25 (m, 3ArH"), 7.06 (s, H), 6.96 (s, H), 6.89 (s, H), 6.80 (dd, J 11.0 Hz, 17.0, 

H), 5.57 (dd, J 1.0 Hz, 17.0, H), 5.17 (dd, J 1.0 Hz, 11.0, H), 4.03 (q, CH2 of Et), 
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3.94 (s, OCH3), 3.91 (s, OCH3), 3.61 (s, 2H), 3.15 (s, 2H), 2.25 (s, NCH3), 1.17 (t, 

CH3 of Et); 13C NMR 8: 171.60 (C00), 113.83 (=CH2), 60.81 (CH2 of Et), 58.25 

(NCH2), 55.19 (NCH2), 42.72 (NCH3), 14.79 (CH3 of Et). 

(b) after 32.8 min., the benzazonine isomer *  E-75b (50 mg) which recrystallised from 

ethanol as colourless needles with m.p. 101-102°C. 1H NMR (d6-benzene at 75°C) 

8: 7.56 (d, J 7.3 Hz, o-ArH"), 7.01-6.91 (m, 3ArH"), 6.74 (s, H7A), 6.60 (s, H8A), 

6.56 (s, H11A), 4.10-3.82 (bs, CH2 of Et), 3.53 (s, OCH3), 3.45 (s, OCH3), 3.36 (t, 

H4), 3.01-2.94 (m, 4H), 2.66-2.57 (bs, H), 2.48 (s, NCH3), 2.42-2.36 (bs, H), 0.94 (t, 

CH3 of Et); 13C NMR (d6-benzene) 8: 173.00 (C00), 150.04 (C9A), 149.65 (C10A), 

141.27 (Cl"B), 133.40 (C7aB), 132.62 (C1 laB or C6B), 131.47 (C7), 117.56 (C11), 

114.66 (C8), 65.95 (C4), 60.78 (CH2 of Et), 57.96 (bs, C2), 57.11 (OCH3), 56.99 

(OCH3), 41.47 (C5), 37.53 (bs, Cl), 14.93 (CH3 of Et), NCH3 not observed; 1 H 

NMR (CDC13 at -50°C): conformer] 5: 6.88 (s, H7A), 6.54 (s, H8A), 6.38 (s, H11A), 

3.98 (s, OCH3), 3.83 (s, OCH3), 2.36 (s, CH3), 1.38 (t, CH3 of Et). conformer 2 8: 

6.82 (s, H7A), 6.67 (s, H8A), 6.45 (s, H1 1A), 3.93 (s, OCH3), 3.64 (s, OCH3), 2.69 (s, 

CH3), 0.84 (t, CH3 of Et); MS m/z: 395 (M+, 27%; Calcd. for C24H29N04 

395.2096, found 395.2098), 377 (6), 322 (100), 291 (14), 265 (10); Anal. Calcd for 

C24H29N04: C, 72.88; H, 7.39; N, 3.54%, found: C, 72.69; H, 7.40; N, 3.36%. 

(c) after 38.8 min., the benzazonine isomer *  Z-75b (54 mg) which recrystallised from 

ethanol as colourless prisms with m.p. 124-125°C. 1 H NMR 8: 7.52-7.49 (m, o-

ArH"), 7.41-7.31 (m, 3ArH"), 6.78 (s, ArH), 6.61 (s, ArH and H7), 4.06 (q, CH2 of 

Et), 3.88 (s, OCH3), 3.83 (s, OCH3), 3.32 (dd, J3.3 Hz, 12.4 Hz, H4), 2.96-2.91 (m, 

2H), 2.80-2.69 (m, 3H), 2.56-2.46 (m, H), 2.41 (s, NCH3), 1.21 (t, CH3 of Et); 13C 

NMR 8: 174.30 (C00), 148.39 (C9A), 147.41 (C10A), 143.45 (Cl"B), 141.67 

(C7aB), 134.66 (C1 laB), 130.32 (C6B), 130.00 (C7C), 129.05 (2C"), 128.04 (C"C), 

127.41 (2C"), 113.89 (C8D), 112.44 (C11D), 65.21 (C4), 60.67 (CH2 of Et), 56.51 

(20CH3), 52.76 (C2), 45.11 (NCH3), 38.28 (C5), 34.83 (Cl), 15.04 (CH3 of Et); 1 H 

NMR (d6-benzene) 6:7.56 (d, J 8.4 Hz, o-ArH"), 7.30-7.17 (m, 3ArH"), 6.91 (s, H7), 

6.65 (s, H8), 6.59 (s, H11), 3.92 (q, CH2 of Et), 3.56 (dd, J 4.1 Hz, 12.0 Hz, H4), 
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3.49 (s, OCH3), 3.48 (s, OCH3), 3.35 (dd, J3.3 Hz, 15.5 Hz, H), 3.07-2.88 (m, 4H), 

2.78-2.70 (m, H), 2.47 (s, NCH3), 0.93 (t, CH3 of Et); 13C NMR (d6-benzene) 8: 

173.81 (C00), 149.56 (C9A), 148.62 (C10A), 143.45 (Cl"B), 142.04 (C7aB), 134.68 

(Cl laB or C6B), 130.48 (C7), 113.89 (C11), 112.44 (C8), 65.45 (C4), 60.20 (CH2 of 

Et), 55.94 (20CH3), 53.15 (C2), 45.15 (NCH3), 38.84 (C5), 35.09 (C1), 14.70 (CH3 

of Et); MS m/z: 395 (M+, 29%; Caled. for C24H29N04 395.2096, found 395.2099), 

377 (6), 322 (100), 291 (11), 265 (9); Anal. Calcd for C24H29N04: C, 72.88; H, 

7.39; N, 3.54%, found: C, 72.99; H, 7.58; N, 3.62%. 

* For consistency with the other olefinic benzazonines in this work the E and Z 

isomers of 75b are named according to the structures pictured for 75. IUPAC rules 

would reverse the naming of these geometric isomers of 75b. 

(ii) The salt 72b (0.297 g, 0.623 mmol) was stirred in dry acetonitrile (15 ml) under 

nitrogen (10 ml) with DBU (0.12 g, 0.81 mmol) between -15°C and -20°C for 6 h. 

Workup as for (i) afforded a mixture (0.200 g, 81%) of E-75b:Z-75b:76b in the ratio 

of 38:54:8. 

(iii) To the salt 72b (0.401 g, 0.842 mmol) in refluxing dry acetonitrile (15 ml) was 

added DBU (0.17 g, 1.1 mmol). The solution was refluxed for 1 h. Workup as for 

(i) afforded a mixture (0.281 g, 84%) of 4 components attributed to E-75b:Z-

75b:76b:77 in the ratio of 36:35:11:18. Preparative reverse phase HPLC as for (i) 

afforded, after 27.0 min., a mixture (45 mg) of two components (37:63) attributed to 

76b and 77. 

Ethyl 9.10-Dimethoxy-3-methyl-6-trimethylsily1-2.3.4.5-tetrahydro-1H-

3-benzazonine-4-carboxylate 75c 

(i) The salt 72c (0.306 g, 0.648 mmol) was stirred in dry acetonitrile (10 ml) under 

nitrogen at room temperature with DBU (0.13 g, 0.84 mmol) for 5 h. then the 

solution was concentrated. Purification of the residue by column chromatography on 

alumina with dichloromethane/25% light petroleum afforded the 3-benzazonine E-

75c (0.171 g, 67%) as a colourless oil. 1 H NMR 8: 7.2-7.1 (bs, H7), 6.78 (s, ArH), 
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6.64 (s, ArH), 4.25-4.15 (bs, CH2 of Et), 3.88 (s, OCH3), 3.86 (s, OCH3), 3.1-2.6 

(bm, 6H), 2.45-2.25 (bs, 4H), 1.30 (t, CH3 of Et), -0.10 (s, Si(CH3)3); 1 H NMR 

(C2D2C14 at 75°C*) 8: 6.89 (bs, H7), 6.73 (s, ArH), 6.59 (s, ArH), 4.13 (q, CH2 of 

Et), 3.79 (s, OCH3), 3.77 (s, OCH3), 3.15-2.91 (bs, 2H), 2.69-2.58 (m, 4H), 2.48- 

2.36 (m, H), 2.43 (s, NCH3), 1.24 (t, CH3 of Et), -0.13 (s, Si(CH3)3); 1 H NMR (d8-  

toluene at -20°C, two conformers in 61:39 ratio) 8: 7.52a and 7.22b (bs, H7), 7.06b 

and 6.95a (s, ArH), 6.58a and 6.53b (s, ArH), 4.05a and 3.90b (q, CH2 of Et), 2.60a 

and 2.46b (NCH3), 0.25a and 0.041) (s, Si(CH3)3); 13C NMR (dg-toluene at -20°C) 8: 

173.89 (C00), 148.41 (C9A), 147.83 (C10A), 147.38 (C7), 136.47 (C7aB), 133.43 

(CllaB), 130.36 (C6B), 115.01 and 114.41 (C8C), 112.44 and 111.83 (C11C), 66.23 

(C4), 61.29 and 60.89 (CH2 of Et), 55.99 (20CH3), 53.93 (C2), 44.86 (NCH3), 40.13 

(C5D), 38.78 (C1D), 15.34 (CH3 of Et), 1.86 (Si(CH3)3); MS m/z: 391 (M+, 5%; 

Calcd. for C211-133NO4Si 391.2170, found 391.2174), 389 (45), 318 (26), 246 (100), 

230 (20), 206 (15), 73 (55). 

* The rapid collection of spectral data (within 5 mm.) was necessary to prevent the 

reaction of 75c under these conditions. 

(ii) To the salt 72c (0.150 g, 0.317 mmol) in dry acetonitrile (8 ml) at reflux was 

added DBU (0.063 g, 0.41 mmol). The solution was refluxed for 1 h. then 

concentrated. Purification of the residue by column chromatography on alumina 

with dichloromethane/20% light petroleum afforded an unidentified mixture (0.012 

g). 

Attempted Base-Promoted Rearrangement of 72d to 75d  

The salt 72d (0.336 g, 0.639 mmol) was stirred in dry acetonitrile (10 ml) 

under nitrogen and protected from light for 5 h. at room temperature with DBU (0.13 

g, 0.85 mmol). The solution was then concentrated and the residue was purified by 

column chromatography on alumina. Elution with dichloromethane/25% light 

petroleum afforded only the precursor base 70d (0.008 g). Elution with 

dichloromethane/5-10% ethanol afforded a mixture (0.300 g) which was found to 
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contain protonated DBU salts (-75%) and impure material inconsistent with either 

72d, 75d or 76d upon 1 H NMR spectral analysis. 

Degradation of 75c to the Proposed Pyrrolof2.1-alisoquinolinium Salt 78  

The NMR analysis of 75c in C2D2C14 at 75°C afforded, after 115 mm., the 

total removal of 75c and the formation of signals tentatively attributed to a mixture 

(58:42) of the diastereomers of 3-ethoxycarbonyl-8,9-dimethoxy-4-methyl-l-

trimethylsilyl-1,2,3,5,6,10b-hexahydropyrrolo12,1-alisoquinolinium chloride 78. 

major diastereomer 1 H NMR* 8: 6.15 (d, J 11.6 Hz, H10b), 4.95-4.87 (m, H3), 3.42 

(s, NCH3), -0.29 (s, Si(CF13)3); 13C DEPT NMR* 8: 113.30 (C7A), 111.62 (C10A), 

74.70 (ClObB), 73.85 (C3B), 63.29 (CH2 of Et), 56.58 (20CH3), 48.03 (C5), 45.86 

(NCH3), 27.98 (C6C), 27.29 (Cl), 23.25 (C2C), 14.30 (CH3 of Et), -1.21 (Si(CH3)3); 

minor diastereomer 1 H NMR* 8: 5.56 (d, J 7.8 Hz, H10b), 5.34 (d, J 8.6 Hz, H3), 

3.28 (s, NCH3), -0.26 (s, Si(CH3)3); 13C DEPT NMR* 8: 113.30 (C7A), 112.02 

(C10A), 73.76 (ClObB), 72.99 (C3B), 63.57 (CH2 of Et), 56.58 (20CH3), 54.46 (C5), 

43.28 (NCH3), 29.79 (C6C), 29.21 (Cl), 23.45 (C2C), 14.30 (CH3 of Et), -1.21 

(Si(CH3)3). 

* in C2D2C14 at 75°C. 

6.7-Dimethoxy-142 1 -(3.4-dimethoxyphenyfletheny11-3.4-dihydroisoquinoline 79  

Homoveratrylamine (5.30 g, 29.2 mmol) and 3,4-dimethoxycinnamic acid 

(7.45 g, 35.8 mmol) were heated at 170°C under nitrogen for 3 h. The solid product 

was taken up in chloroform (100 ml) and the organic solution was washed with 2.5 

M sodium hydroxide (30 ml), 2.5 M hydrochloric acid (30 ml), water (30 ml) and 

then saturated brine (30 m1). The solution was then concentrated to give crude N-

(3,4-dimethoxyphenethyl)-3,4-dimethoxycinnamide 97  (9.39 g) as a yellow solid. 

The crude amide was refluxed in dry toluene (80 ml) with phosphorus 

oxychloride (14.8 g, 96.6 mmol) for 2 h. then the solution was allowed to cool to 

room temperature. The yellow precipitate was collected by filtration and rinsed with 
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light petroleum then dried briefly under vacuum. Recrystallisation of this solid from 

methanol gave the hydrochloride salt97  of the title compound (6.56 g). The salt was 

dissolved in chloroform (200 ml) and then 2 M sodium hydroxide (30 ml) was added 

and the mixture was stirred vigorously for 5 min. The organic layer was then 

separated and washed with water (2 x 30 m1). Drying and concentration of the 

solution afforded 1-12'-(3,4-dimetho.xyphenynethenyllisoquinoline 79 (4.56 g, 44%) 

as a pale yellow solid. 1H NMR 8: 7.36 (d, J 16.0 Hz, Hl'A), 7.15-7.10 (m, 3ArH), 

7.07 (d, J 16.0 Hz, H2'A), 6.68 (d, J 8.8 Hz, H4"), 6.76 (s, ArH), 3.91 (s, OCH3), 

3.88 (s, OCH3), 3.87 (s, OCH3), 3.86 (s, OCH3), 3.74 (t, H3), 2.67 (t, H4); 13C 

NMR 8: 163.67 (Cl), 151.45 (C6A), 150.42 (C7A), 149.72 (C3"A), 147.98 (C4"A), 

136.74 (C1' 13 ), 132.89 (Cl"C), 130.15 (C4aC), 124.45 (C213 ), 122.63 (C8aC), 121.61 

(C6"D), 111.72 (C5"D), 111.01 (C2"D), 110.33 (C5D), 110.00 (C8D), 57.03-56.59 

(40CH3), 48.01 (C3), 26.76 (C4); MS miz: 353 (M+, 38%), 352 (100), 338 (23), 

336 (16), 322 (11). 

6.7-Dimethoxy-1-[2'-(3.4-dimethoxyphenyflethenyl]-2-methy1-3.4- 

dihydroisoquinolinium Iodide 80 

The imine 79 (3.96 g, 11.2 mmol) was heated at 70°C in dry butanone (20 ml) 

with iodomethane (22.8 g, 161 mmol) for 30 min. The removal of the solvents in 

vacuo and then recrystallisation of the residue twice from methanol gave the 

isoquinolinium salt 80 (3.87 g, 70%) as yellow needles with m.p. 193-195°C. 1 H 

NMR 8: 7.62 (d, J 16.0 Hz, Hl'A), 7.48 (d, J 1.8 Hz, H2"), 7.29-7.18 (m, 2ArH), 

7.13 (s, ArH), 6.99 (s, ArH), 6.91 (d, J 8.3 Hz, H4"), 4.12 (t, H3), 4,08 (s, OCH3), 

4.06 (s, OCH3), 4.04 (s, OCH3), 3.94 (s, OCH3), 3.80 (NCH3), 3.26 (t, H4); 13C 

NMR 8: 171.03 (Cl), 156.47 (C6A), 153.58 (C7A), 151.79 (CI'B), 150.41 (C3" A), 

148.65 (C4"A), 134.43 (Cl"C), 127.24 (C4aC), 125.58 (C2'B), 119.72 (C8aC), 116.04 

(C6"D and C5"D), 111.63 (C2"D and C2"D), 110.77 (C5D), 57.97-56.75 (40CH3), 

53.24 (C3), 47.38 (NCH3), 26.76 (C4). 
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6 7-Dimethoxy-2-methyl-1-(2'-methylpropeny1)-1.2.3.4-tetrahydroisoquinoline 81a  

A solution of 2-methylpropenylmagnesium bromide was prepared by the slow 

addition of 1-bromo-2-methylpropene (9.711 g, 71.93 mmol) to magnesium turnings 

(1.90 g, 78.0 mmol) in dry tetrahydrofuran (100 ml) under nitrogen. The reaction 

was initiated by heating the solution to reflux in the presence of an iodine crystal and 

was then maintained at a gentle reflux for 90 mm., with the slow consumption of the 

magnesium. 

The solution of 2-methylpropenylmagnesium bromide in tetrahydrofuran was 

cooled to <-50°C in an acetone/liquid nitrogen slush bath and then additional dry 

tetrahydrofuran (50 ml) was added, followed by 48a (9.855 g, 29.58 mmol). The 

mixture was allowed to warm slowly to room temperature with stirring for 21 h. 

before workup (as for 70b) to give, upon concentration of the ether solution, the 1-(2- 

methylpropenyl)isoquinoline 81a (4.731 g, 61%) as a pale oil of >99% purity by GC-

MS analysis. The oil formed a solid, which melted on exposure to room 

temperatures, when stored at -5°C. 1H NMR 8: 6.48 (s, ArH), 6.41 (s, ArH), 5.06 (d, 

J 9.7 Hz, H1'), 3.84 (d, J 9.6 Hz, H1), 3.74 (s, OCH3), 3.70 (s, OCH3), 2.97-2.93 (m, 

2H), 2.59-2.53 (m, H), 2.47-2.40 (m, H), 2.29 (s, NCH3), 1.75 (CH3), 1.74 (CH3); 

13C NMR 5: 147.91 (C6A), 147.53 (C7A), 135.28 (C4aB), 130.07 (C2'B), 127.54 

(Cl'), 126.83 (C8aB), 111.59 (C5C), 111.05 (C8C), 63.55 (Cl), 56.33 (OCH3), 56.29 

(OCH3), 52.55 (C3), 44.42 (NCH3), 29.45 (C4), 26.38 (E-CH3), 18.89 (Z-CH3); MS 

m/z: 261 (M+, 18%; Calcd. for C16H23NO2 261.1728, found 261.1730), 260 (16), 

246 (5), 218 (12), 206 (100), 203 (19), 190 (7); IR (thin film from CH2C12): 1510, 

1259, 1217, 1139, 829 cm -1 . 

The methiodide salt of 81a crystallised from methanol as pale yellow needles 

with m.p. 207-209°C. 1 H NMR 8: 6.72 (s, ArH), 6.46 (s, ArH), 5.56 (d, J 10.3 Hz, 

H1), 5.21 (d, J 10.3 Hz, H1'), 4.39-4.32 (m, H3), 4.16-4.08 (m, H3), 3.88 (s, OCH3), 

3.82 (s, OCH3), 3.56 (s, NCH3), 3.21-3.15 (m, NCH3 and H4), 2.13 (CH3), 1.98 

(CH3); Anal. Calcd for C17H26NO21: C, 50.63; H, 6.50; N, 3.47%, found: C, 50.76; 

H, 6.54; N, 3.53%. 
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Mixture of 6.7-Dimethoxy-2-methyl-1-propeny1-1.2.3.4-tetrahydroisoquinoline 81b  

Isomers 

A solution of propenylmagnesium bromide was prepared by the slow addition 

of 1-bromo-1-propene (28.97 g, 239.4 mmol, a mixture of Z and E isomers) to 

magnesium turnings (6.45 g, 265 mmol) in dry tetrahydrofuran (180 ml) under 

nitrogen. The reaction was initiated by heating the solution to reflux in the presence 

of an iodine crystal. The addition rate was controlled to maintain a gentle reflux. 

The mixture was refluxed for 30 min. after the completion of the addition. 

The solution of propenylmagnesium bromide in tetrahydrofuran was cooled to <- 

50°C in an acetone/liquid nitrogen slush bath and then 48a (20.00 g, 60.03 mmol) 

was added. The mixture was allowed to warm slowly to room temperature with 

stirring for 21 h. before workup (as for 70b) to give, upon concentration of the ether 

solution, a mixture (Z:E=3:1) of the isomers of 1-propenylisoquinoline 81b (12.72 g, 

86%) as a tan oil with >99% purity upon GC-MS analysis. 1 H NMR* 8: 6.55 (s, 

ArH), 6.51 (s, ArH), 5.82-5.78 (m, H2 1X), 5.20-5.12 (m, H2'Y), 5.39-5.31 (m, H1'), 

4.02 (d, J 9.7 Hz, H1X), 3.81 (s, OCH3), 3.77 (s, OCH3), 3.63 (d, J 8.6 Hz, H1), 

3.03-2.97 (m, 2H), 2.65-2.59 (m, H), 2.51-2.47 (m, H), 2.37 (s, NCH3), 1.81 (dd, J 

1.8 Hz, 6.9 Hz, CH3X), 1.76 (dd, J 1.6 Hz, 6.4 Hz, CH3Y); 13C NMR* 8: 147.99 

(C6A), 147.62 (C7A), 133.41 (C1 13Y), 133.15 (Cl'BX), 129.70 (C2 1BY), 129.31 

(C5aC), 126.83 (C8aC), 126.91 (C2'BX), 111.65 (C5D), 110.85 (C8D), 68.89 (ClY), 

62.15 (C1X), 56.36 (20CH3), 52.71 (C3X), 51.85 (C3Y), 44.54 (NCH3), 29.54 

(C4x), 29.31 (CO), 18.23 (CH3Y), 13.91 (CH3X); MS m/z: 247 (M+, 14%; Calcd. 

for C15H21NO2 247.1572, found 247.1565), 246 (11), 246 (5), 232 (5), 206 (100), 

190 (12), 189 (15). 

* Signals attributed to the Z and E isomers are marked with superscripts X and Y 

respectively. 
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6.7-Dimethoxy-142'-(3.4-dimethoxyphenynetheny11-2-methy1-1.23.4-  

tetrahydroisoquinoline 81c 

The methiodide salt 80 (3.83 g, 7.73 mmol) was suspended in ethanol (100 

ml) at 0°C and then treated with sodium borohydride (0.84 g, 22 mmol) portionwise 

over 30 min. The mixture was stirred for 1 h. then concentrated and the residue was 

partitioned between 5% aqueous sodium bicarbonate (50 ml) and dichloromethane 

(50 m1). The organic layer was separated and washed with water (2 x 10 ml), then 

dried and concentrated. Column chromatographic purification of the residue on 

silica (35 g) with a gradient from dichloromethane/5% light petroleum to 

dichloromethane/8% methanol gave: 

(a) the desired I -12'-(3,4-dimethoxyphenynethenyllisoquinoline 81c (2.495 g, 86%) 

as a pale yellow powder from the late fractions. 1 H NMR 8: 7.01 (d, J 1.4 Hz, H2"), 

6.96 (dd, J 1.4 Hz, 8.6 Hz, H6"), 6.83 (d, J 8.6 Hz, H5"), 6.64 (s, ArH), 6.62 (s, 

ArH), 6.57 (d, J 15.7 Hz, H2'), 6.02 (dd, J 8.9 Hz, 15.7 Hz, H1'), 3.88 (s, 20CH3), 

3.86 (s, OCH3), 3.81 (d, J 8.9 Hz, H1), 3.76 (s, OCH3), 3.10-3.03 (m, 2H), 2.76-2.66 

(m, H), 2.58-2.54 (m, H), 2.48 (s, NCH3); 13C NMR 8: 149.57 (C6A), 149.33 (C7A), 

148.16 (C3"A), 147.62 (C4"A), 133.41 (C1' 13 ), 130.37 (Cl"C), 130.11 (C2'B),128.89 

(C4aC), 126.99 (C8aC), 120.26 (C2"D), 111.70 (C5"D), 111.58 (C6"D), 111.44 

(C5D), 109.04 (C8D), 69.09 (Cl), 56.45-56.34 (40CH3), 51.92 (C3), 44.73 (NCH3), 

29.42 (C4); MS m/z: 369 (M+, 47%; Calcd. for C22H27N04 369.1939, found 

369.193), 368 (20), 354 (48), 218 (22), 206 (100), 190 (16), 151 (26); IR (thin film 

from CH2C12): 2936, 2833, 2783, 1516, 1265, 1142, 1028 cm -1 . 

(b) an unidentified isomer of 81c (0.123 g, 4%) as a pale yellow oil from an early 

fraction. The material showed two sets of signals (a/b=1.21) on NMR analysis. 1 H 

NMR 8: 6.98-6.91 (m, 2ArH"), 6.85-6.81 (m, H2"), 6.67-6.65 (m, ArH), 6.62-6.57 

(m, Hl'a and H2'b), 6.55-6.52 (m, ArH), 6.10 (d, J 15.9 Hz, H2'a), 6.04 (dd, J 9.4 Hz, 

15.6 Hz, Hrb), 4.61 (d, J 9.4 Hz, Hlb), 4.34 (d, J 7.5 Hz, Hla), 3.90 -3.87 (m, 

30CH3), 3.82 (s, OCH3), 3.37 -2.85 (m, 8H), 2.72 (s, NCH3a), 2.64 (s, NCH3b); 13C 

NMR 8: 150.21-148.34 (6 peaks; C7, C8, C3", and C4"), 137.07 and 136.61 (Cl'A), 
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129.94 and 129.43 (Cl"B), 126.63 and 125.46 (C4aB), 125.84 and 123.38 (C2 1 A), 

124.53 and 123.96 (C8aB), 120.84 (C2"C), 111.77 (C5"C), 111.63 (C6"C), 111.47 

(C5C), 109.77 (C6C), 71.81 and 71.09 (Cl), 56.57 (40CH3), 55.83 and 54.69 (C3), 

50.83 and 49.85 (NCH3), 25.99 and 25.48 (C4); MS m/z: 369 (M+, 46%), 368 (17), 

354 (44), 218 (19), 206 (100), 190 (16), 151 (23); MS (LSIMS in m-nitrobenzyl 

alcohol) m/z: 370 (MH+, 71%), 206 (100); IR (thin film from CH2C12): 2936, 2835, 

1516, 1263, 1258, 1140, 1130, 1026 cm -1 . 

2-Ethoxycarbonylmethy1-6.7-dimethoxy-2-methyl-1-(2'-methylpropeny1)-1.2.3.4-  

tetrahydroisoquinolinium Bromide 82a  

To the base 81a (1.295 g, 4.955 mmol) in dry acetonitrile (3 ml) at 0°C was 

added ethyl bromoacetate (1.06 g, 6.34 mmol). The mixture was stirred at room 

temperature for 24 h. and then concentrated to afford a gum which was triturated 

with diethyl ether (3 x 10 ml), then taken-up in dichloromethane and reconcentrated. 

Further trituration of the resultant powder with diethyl ether (3 x 10 ml) and drying 

afforded a mixture (trans:cis=58:42) of the B-ring diastereomers of the 2- 

ethoxycarbonylmethylisoquinolinium salt 82a (1.869 g, 88%) as an off-white 

powder. trans diastereomer (assignable signals) 1 H NMR 8: 6.72 (s, ArH), 6.43 (s, 

ArH), 6.10 (d, J 10.2 Hz, H1'), 5.31 (d, J 10.7 Hz, H1), 3.41 (s, NCH3), 2.14 (s, 

CH3), 1.97 (s, CH3); 13C NMR 8: 165.39 (C00), 149.78 (C6A), 148.90 (C7A), 

122.34 (C4aB), 120.88 (C8aB), 116.52 (C2'), 111.47 (C5C), 110.71 (C8C), 69.21 

(C1), 62.96 (CH2 of Et), 58.53 (NCH2C0), 56.31 (20CH3), 55.39 (C3A), 46.88 

(NCH3), 26.75 (CH3), 23.86 (C4), 20.16 (CH3), 14.09 (CH3 of Et); cis diastereomer 

(assignable signals) 1 H NMR 8: 6.74 (s, ArH), 6.44 (s, ArH), 5.86 (d, J 10.5 Hz, 

H1'), 5.42 (d, J 10.5 Hz, HI), 3.70 (s, NCH3), 2.04 (s, CH3), 1.91 (s, CH3); 13C 

NMR 8: 164.89 (C00), 148.28 (C6A), 146.04 (C7A), 122.46 (C4aB), 120.68 (C8aB), 

117.30 (C2'), 111.31 (C5C), 110.30 (C8C), 69.81 (Cl), 62.85 (CH2 of Et), 58.53 

(NCH2C0), 56.31 (20CH3), 55.39 (C3A), 45.63 (NCH3), 26.75 (CH3), 23.44 (C4), 

19.91 (CH3), 14.21 (CH3 of Et). 
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2-Ethoxycarbonylmethy1-6.7-dimethoxy-2-methyl-1-propenyl-1.2.3.4-  

tetrahydroisoquinolinium Bromide 82b  

(i) To the base 81b (0.860 g, 3.48 mmol, 3:1 mixture of the Z and E olefinic 

isomers) was added ethyl bromoacetate (0.72 ml, 6.47 mmol). The mildly 

exothermic reaction was cooled and the solution was then left to sit for 16 h. at room 

temperature. Trituration of the resultant gel with diethyl ether (5 x 20 ml) afforded a 

mixture (A:B:C:D=51:18:19:12) of the four possible isomers of the 2- 

ethoxycarbonylmethylisoquinolinium salt 8 2 b (1.42 g, 98%) as a tan powder. 

Isomers A and B were attributed to the Z-olefinic diastereomers and isomers C and D 

to the E-olefinic diastereomers. Isomer A 1 H NMR 8: 3.37 (s, NCH3), 2.07 (d, J7.1 

Hz, CH3); Isomer B 1 H NMR 8: 3.69 (s, NCH3), 1.96 (d, J7.0 Hz, CH3); Isomer C 

1 H NMR 8: 3.60 (s, NCH3), 1.82 (d, J 6.3 Hz, CH3); Isomer D 1 H NMR 8: 3.45 (s, 

NCH3), 1.77 (d, J6.5 Hz, CH3). 

(ii) To 81b (1.984 g, 8.023 mmol, a 3:1 mixture of the Z and E olefinic isomers) in 

dry acetonitrile (3.5 ml) at room temperature was added ethyl bromoacetate (1.7 ml, 

15 mmol). The solution was stirred for 24 h. then concentrated and the residue was 

triturated with diethyl ether (5 x 20 ml) to afford a mixture (A:B:C:D=55:18:17:9) of 

the isomers of 82b (3.19 g, 96%). 

2-Ethoxycarbonylmethy1-6.7-dimethoxy-142'-(3.4-dimethoxyphenyllethenyl]-2-  

methy1-1.2.3.4-tetrahydroisoquinolinium Iodide 82c 

Potassium iodide (1.38 g, 8.31 mmol), dry acetonitrile (50 ml) and ethyl 

bromoacetate (0.90 ml, 8.1 mmol) were combined and stirred under nitrogen, 

protected from light, for 24 h. Filtration of the mixture afforded a solution, assumed 

to contain ethyl iodoacetate, which was added to 81c (1.00 g, 2.71 mmol). The 

mixture was heated in a sealed tube at 100-110°C for 3.5 h. then concentrated. The 

residue was dissolved in chloroform and the solution was filtered then 

reconcentrated. Trituration of the residue with diethyl ether (3 x 20 ml) and then 

recrystallisation of the gum from ethanol/tetrahydrofuran gave a mixture 
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(trans:cis=46:54) of the B-ring diastereomers of the 2-ethoxycarbonyl-

methylisoquinolinium salt 82c (0.977 g, 62%) as a pale yellow powder. trans 

diastereom.er 1 H NMR 8: 6.37 (d, J 9.4 Hz, H1), 3.59 (s, NCH3); cis diastereomer 

1 H NMR 8: 7.30 (d, J 15.4 Hz, H2'), 5.84 (d, J 9.6 Hz, H1), 3.66 (s, NCH3); 13C 

NMR of mixture 8: 165.14 (C00), 142.71 and 140.70 (C2IA), 122.60 and 122.35 

(Cl'A), 118.36 and 117.49 (C6"A), 78.19 and 74.53 (Cl), 63.60 and 63.47 (CH2 of 

Et), 60.99 and 58.29 (NCH2C0), 56.17 and 55.02 (C3A), 48.35 and 46.70 (NCH3), 

24.16 and 23.84 (C4), 14.64 and 14.54 (CH3 of Et). 

Ethyl N-12-[4'S-Dimethoxy-2'-(3"-methyl-1"E. 3" -butadienyflphenyilethyl }-  

N-methyl-aminoethanoate 83a  

To the base 81a (1.710 g, 4.955 mmol) in dry butanone (5 ml) was added 

ethyl bromoacetate (1.06 g, 6.34 mmol). The solution was stirred at 50°C for 10 h. 

then concentrated. The residue was triturated with diethyl ether (3 x 15 ml) then 

taken-up in dichloromethane. Concentration and then further trituration of the 

residue with diethyl ether (3 x 10 ml) afforded a gum which, upon purification by 

column chromatography on silica (30 g) with dichloromethane/0-4% ethanol, gave 

the title compound 83a (1.407 g, 62%) as a yellow oil. 1 H NMR 8: 7.03 (s, ArH), 

6.72 (s, Hl"A), 6.71 (s, H2"A), 6.68 (s, ArH), 5.10 (s, H4"), 5.05 (s, H4"), 4.17 (q, 

CH2 of Et), 3.89 (s, OCH3), 3.87 (s, OCH3), 3.30 (s, NCH2C0), 2.88-2.83 (m, 2H), 

2.69-2.64 (m, 2H), 2.48 (s, NCH3), 2.00 (s, CH3), 1.26 (t, CH3 of Et); 13C NMR 8: 

171.12 (C00), 149.00 (C4IA), 147.98 (C5'A), 142.60 (C3"), 131.68 (Cl"B), 130.76 

(CPC), 128.56 (C2'C), 125.91 (C2"B), 116.92 (C4"), 113.33 (C3'D), 108.75 (C6'D), 

60.73 (CH2 of Et), 58.89 (NCH2C0 and Cl), 56.20 (20CH3), 42.68 (NCH3), 31.66 

(C2), 19.05 (CH3), 14.58 (CH3 of Et). 1 H NMR (d6-benzene) 8: 7.35 (s, ArH), 7.23 

(d, J 15.9 Hz, Hl"A), 7.10 (d, J 15.9 Hz, H2"A), 6.68 (s, ArH). 
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Ethyl N-{2-I4'.5'-Dimethoxy-2'41".3"-butadienyflphenyl]ethyl }-  

N-methylamino-ethanoate 83h  

(i) To 81b (5.20 g, 21.0 mmol, a 3:1 mixture of the Z and E olefinic isomers) in dry 

acetone (3.5 ml) was added ethyl bromoacetate (5.3 ml, 48 mmol). The solution was 

refluxed for 5 h. then concentrated. The oily residue was purified by column 

chromatography on silica with dichloromethane/0-6% ethanol to give successively: 

(a) the 1E,3-butadienyl isomer of 83b (0.88 g, 13%) as a yellow oil. 1 H NMR 8: 

7.02 (s, ArH), 6.77 (d, J 14.6 Hz, H1"), 6.68 (s, ArH), 6.63-6.52 (m, H2" and H3"), 

5.31 (d, J 17.4 Hz, H4"), 5.16 (d, J 9.1 Hz, H4"), 4.20 (q, CH2 of Et), 3.90 (s, 

OCH3), 3.88 (s, OCH3), 3.37 (s, NCH2C0), 2.90-2.85 (m, 2H), 2.75-2.70 (m, 2H), 

2.52 (s, NCH3), 1.28 (t, CH3 of Et); 13C NMR 8: 170.98 (C00), 149.48 (C4'A), 

148.38 (C5 1A), 138.10 (Cl"B), 130.67 (C1C), 130.21 (C2" and C3"B), 128.64 (C2C), 

117.53 (C4"), 113.65 (C3'D), 108.87 (C6'D), 61.44 (CH2 of Et), 58.99 (NCH2C0E), 

58.79 (ClE), 56.60 (20CH3), 42.97 (NCH3), 31.72 (C2), 14.92 (CH3 of Et); MS 

m/z: 333 (M+, 12%; Calcd. for C19H27N04 333.1940, found 333.194), 260 (7), 190 

(2), 130 (100), 102 (10). 

(b) the 1Z,3-butadienyl isomer of 83h (3.88 g, 55%) as a yellow oil. 1 H NMR 5: 

6.99 (s, ArH), 6.86-6.80 (m, ArH and H1"), 6.68-6.60 (m, H2" and H3"), 5.32 (d, J 

17.4 Hz, H4"), 5.17 (d, J 9.1 Hz, H4"), 4.26 (q, CH2 of Et), 3.97 (s, NCH2C0), 3.97 

(s, 20CH3), 3.40-3.37 (m, 2H), 3.27-3.23 (m, 2H), 3.01 (s, NCH3), 1.30 (t, CH3 of 

Et); 13C NMR 8: 165.57 (C00), 149.68 (C4'A), 149.07 (C5'A), 137.98 (C 1"B), 

131.21 (C2"B), 129.27 (C3"B), 129.01 (CFC), 128.64 (C2'C), 118.20 (C4"), 113.79 

(C3'D), 108.96 (CO), 63.26 (CH2 of Et), 56.78 (NCH2C0E), 56.57 (20CH3), 54.56 

(C 1E), 41.72 (NCH3), 29.24 (C2), 14.62 (CH3 of Et); MS m/z: 333 (M+, 13%; 

Calcd. for C19H27N04 333.1940, found 333.194), 260 (7), 190 (2), 130 (100), 102 

(13). 

(c) a mixture (A:B:C:D=4:6:25:65) of the isomers of 82b (0.77 g, 9%). 
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(ii) A mixture (A:B:C:D=55:18:17:9) of the isomers of 82b (0.273 g, 0.659 mmol) 

was refluxed in dry acetone for 7 h. then worked-up as for (i) to afford a mixture 

(7/E=8.8) of the isomers of 836 (0.137 g, 62%). 

N-(3.4-dimethoxyphenylethyncrotonamide 84a  

Homoveratrylamine (10.00 g, 55.2 mmol) and crotonic acid (5.70 g, 66.2 

mmol) were heated at 170°C, under a slow flow of nitrogen to remove water, for 2 h. 

The mixture was allowed to cool to 80°C then chloroform (150 ml) was added; 

preventing the formation of a difficult to dissolve glassy solid. The organic solution 

was washed with 2.0 M sodium hydroxide (2 x 30 ml), 2.5 M hydrochloric acid (4 x 

30 ml) and water (2 x 30 ml) then dried and concentrated. The residue was purified 

by column chromatography on silica (80 g) with dichloromethane/2-4% methanol, 

leaving residual homoveratrylamine on the column. The eluant was concentrated and 

the residue was recrystallised from ethyl acetate to give the crotonamide 84a (2.59 g, 

19%) as an off-white powder. 1 H NMR 8: 6.85-6.71 (m, 3ArH and NH), 5.96-5.89 

(m, H3), 5.78 (dd, J 1.6 Hz, 15.2 Hz, H2), 3.85 (s, 20CH3), 3.57-3.50 (m, 2H), 2.78 

(t, 2H), 1.82 (dd, J 1.6 Hz, 6.9 Hz, CH3); 13C NMR 8: 166.55 (CO), 149.51 (C3"A), 

1478.14 (C4"A), 140.14 (C2B), 132.05 (Cl"), 125.70 (C3B), 121.15 (C6"B), 112.48 

(C2"C), 111.90 (C5"C), 56.41 (20CH3), 41.27 (Cl'), 35.77 (C2'), 18.19 (C4); MS 

m/z: 249 (M+, 5%; Calcd. for C14H19NO3 249.1363, found 249.137), 164 (100), 151 

(33), 149 (10), 69 (37); IR (thin film from CH2C12): 3306, 2940, 1516, 1263, 1236 

cm -1 . 

Attempted N- [2-(3 	Ethyl Ester 846  

(i) Homoveratrylamine (3.409 g, 18.81 mmol) and fumaric acid monoethyl ester 

(4.027 g, 27.94 mmol) were heated at 155°C under a slow flow of nitrogen, to 

remove water, for 4 h. Some solid was present throughout the reaction. Upon 

cooling the mixture was taken up in chloroform (50 ml) and washed with 2M sodium 

hydroxide (4 x 10 ml) then 5% hydrochloric acid (3 x 10 ml) and water (10 me. 
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Drying and then concentration of the solution gave a tan solid (2.755 g). Analysis by 

GC-MS showed fumaric acid monoethyl ester (86%) and a second component (14%) 

with MS m/z: 261 (M+, 15%), 164 (43), 151 (100), 149 (9), 107 (17). 

(ii) To fumaric acid monoethyl ester (1.515 g, 10.50 mmol) as a melt at 90°C under 

nitrogen was added homoveratrylamine (2.093 g, 11.55 mmol). The mixture was 

then heated to 185-190°C. A solid formed rapidly in the liquid melt and then 

dissolved as the temperature exceeded 170°C. After 20 min. at 185-190°C under a 

steady flow of nitrogen the evolution of water from the brown liquid mixture ceased. 

The reaction was allowed to cool slowly to room temperature under oil pump 

vacuum and the solid was taken up in chloroform (30 m1). The solution was washed 

with 1M sodium hydroxide (4 x 6 ml), 1M hydrochloric acid (3 x 6 ml), and then 

water (10 ml). Drying and then concentration of the solution gave a tan solid (2.360 

g). Analysis by GC-MS showed 3 components with molecular ions at 261(65%, as 

for (i)), 429 (17%) and 442 (18%). 

Attempted Preparation of 6.7-Dimethoxy-1-(1'-propeny1)-3.4-dihydroisoquinoline 85  

(i) The technique of Markaryan and Airapetyan, 98  reported to provide the 

hydrochloride of 85 in 75-87% yield via 85 as a crude oil, was followed. A mixture 

of the amide 84a (11.79 g, 47.27 mmol) in dry benzene (150 ml) with phosphorus 

oxychloride (76.0 g, 496 mmol) was refluxed for 6.5 h. then cooled to room 

temperature. The mixture was then concentrated and the residue was dissolved in 

water (150 m1). The solution was cooled and 10% aqueous sodium carbonate was 

added carefully to provide a pH of 9-10. The mixture which resulted was extracted 

with benzene (3 x 100 ml) and the extracts were then combined and washed with 

water (2 x 50 m1). Drying and then concentration of the organic solution afforded a 

dark yellow powder (6.735 g). Analysis by t.l.c., GC-MS and 1 H NMR techniques 

showed many components. 

(ii) Compound 84a (0.614 g, 2.46 mmol) was refluxed in dry toluene (12 ml) with 

phosphorus oxychloride (3.29 g, 21.5 mmol) for 2.5 h. then the mixture was cooled 
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and the dark toluene layer was decanted from the resultant oil. The toluene was 

extracted with water (5 ml) while ice/water (30 g) was added to the oil. The aqueous 

layers were combined and washed with diethyl ether then cooled and basified to pH 

9-10 by the slow addition of 80% aqueous sodium hydroxide. The mixture was 

extracted with chloroform (4 x 20 ml) and the extracts were then dried and 

concentrated to a dark film (0.606 g). Analysis by GC-MS and 1 H NMR 

techniques showed many components. 

(iii) Compound 84a (0.944 g, 3.79 mmol) was refluxed in dry toluene (25 ml) with 

phosphorus pentoxide (5.12 g, 36.1 mmol) for 1.5 h. then the mixture was cooled to 

room temperature. The dark toluene layer was decanted and extracted with water (5 

ml), while the solid was dissolved in ice/water (30 g). The aqueous layers were 

combined and washed with diethyl ether (3 x 10 ml) then cooled and basified to pH 

9-10 by the slow addition of 80% aqueous sodium hydroxide. The mixture was 

extracted with diethyl ether (3 x 20 ml) and the extracts were then dried and 

concentrated to give a yellow oil. Analysis by t.l.c., GC-MS and 1 H NMR 

techniques showed many components. 

(iv) Compound 84a (0.605 g, 2.43 mmol) was refluxed in dry acetonitrile (20 ml) 

with phosphorus oxychloride (3.29 g, 21.5 mmol) for 2 h. over 4A molecular sieves. 

The molecular sieves were removed by filtration and the solution was then washed 

with light petroleum (3 x 10 ml), and then concentrated. The residue was treated 

with methanol (30 ml) and sodium cyanoborohydride portionwise until the yellow 

colour was removed, then stirred for 3 h. The mixture was then concentrated and 5% 

aqueous sodium bicarbonate was added to produce an alkaline solution which was 

extracted with dichloromethane (30 m1). The dichloromethane extracts were washed 

with 5% aqueous sodium bicarbonate (3 x 10 ml) then dried and concentrated. 

Analysis of the residual powder (0.519 g) by t.l.c. and GC-MS showed many 

components inconsistent with 6,7-dimethoxy-1-(1'-propeny1)-1,2,3,4- 

tetrahydroisoquinoline. 
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Attempted Preparation of 2-Chloroethenylmagnesium Chloride and 1-(trans-2'-

Chloroetheny1)-6.7-dimethoxy-2-methyl-1.2.3.4-tetrahydroisoquinoline 86  

A solution of trans-1,2-dichloroethene (7.59 g, 78.3 mmol) in dry 

tetrahydrofuran (10 ml) was added to magnesium turnings (1.96 g, 80.6 mmol) in dry 

tetrahydrofuran (70 ml) under nitrogen. An iodine crystal was added and the mixture 

was refluxed for 2.5 h. The magnesium was consumed and a pale tan solid formed in 

the dark solution. The mixture was cooled to -50°C and then the iminium salt 48a 

(6.01 g, 18.0 mmol) was added. The mixture was allowed to warm to room 

temperature with stirring for 16 h. then worked up (as for 70b) to provide an ether 

solution which on concentration gave a yellow oil (0.43 g). The oil contained many 

components. 

Ethyl 9.10-Dimethoxy-3.5.5-trimethy1-2.3.4.5-tetrahydro-1H-

3-benzazonine-4-carboxylate 87a  

(i) The salt 82a (0.104 g, 0.243 mmol) was stirred in dry acetonitrile (10 ml) under 

nitrogen at -20°C with DBU (0.048 g, 0.32 mmol) for 5 h. then the solution was 

concentrated. Purification of the residue by column chromatography on alumina 

with dichloromethane/20% light petroleum afforded a mixture (0.053 g, 65%) of the 

isomers E-87a:t-88a:c-88 a in the ratio 70:27:3 as a colourless oil. The E - 

benzazonine E-87a could not be isolated separately. NMR signals attributed to 87a 

were: 1 H NMR (d6-benzene) 8: 7.08 (s, ArH), 6.82 (s, ArH), 6.73 (d, J 16.6 Hz, 

H6A), 6.73 (d, J 16.6 Hz, H7A), 4.18 (q, CH2 of Et), 3.76 (s, OCH3), 3.68 (s, 00-13), 

3.22-3.13 (m, H), 3.12 (s, H4), 3.05-2.98 (m, H), 2.82-2.71 (m, H), 2.80 (s, NCH3), 

2.64-2.57 (m, H), 1.52 (s, CH3), 1.42 (s, CH3), 1.19 (t, CH3 of Et); 13C NMR 

(CDC13) 8: 170.87 (C00), 147.44 (C9A), 147.02 (C10A), 139.18 (C6B), 134.34 

(C7aC), 132.17 (C1 laC), 130.62 (C7B), 113.74 (C8D), -110.81 (C1 1D), 77.18 (C4), 

60.14 (CH2 of Et), 56.54 (OCH3), 54.97 (C2), 46.39 (NCH3), 41.71 (C5), 38.22 (Cl), 

25.57 (CH3), 24.80 (CH3), 15.18 (CH3 of Et). 
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(ii) The salt 82a (0.433 g, 1.011 mmol) was stirred in dry acetonitrile (15 ml) under 

nitrogen at room temperature with DBU (0.048 g, 0.32 mmol) for 5 h. then worked-

up as for (i) to give a mixture (0.293 g, 86%) of the isomers E-87a:t-88a:c-88a in the 

ratio 58:37:5 as a colourless oil. 

Ethyl 9.10-Dimethoxy-3.5-dimethy1-2.3.4.5-tetrahydro-1H-

3-benzazonine-4-carboxylate 87h  

(i) A mixture (A:B:C:D=55:18:17:9) of the isomers of 82b (2.450 g, 5.913 mmol), 

in dry acetonitrile (100 ml) under nitrogen at 0°C, was treated with DBU (1.08 g, 

7.09 mmol) then allowed to warm to room temperature with stirring for 12 h. 

Concentration and then purification of the residue by column chromatography on 

alumina with dichloromethane/40% light petroleum afforded a colourless oil (1.578 

g, 80%) containing a mixture of the isomers* E-87bA:E-87bB:Z-76bA:Z-

87bB:88bA:88bB in the ratio 42:23:3:3:27:2. 

A portion (1.26 g) of the above oil was purified by column chromatography 

on alumina (57 g) with light petroleum/0-50% dichloromethane to afford 

successively: 

(a) a fraction (0.712 g) enriched in E-87bA. Purification of a portion (0.150 g) of 

this material by preparative reverse phase HPLC with acetonitrile/26% water gave, 

after 20.7 min., the E-benzazonine E-87bA (0.102 g) as a colourless oil. 1 H NMR 8: 

6.81 (s, ArH), 6.61 (s, ArH), 6.41 (d, J 16.1 Hz, H7), 5.51 (dd, J 9.9 Hz, 16.1 Hz, 

H6), 4.18-4.10 (m, CH2 of Et), 3.86 (s, OCH3), 3.83 (s, OCH3), 3.32 (d, J 5.8 Hz, 

H4), 2.74-2.57 (m, 4H), 2.63 (s, NCH3), 2.41-2.32 (m, H), 1.24 (t, CH3 of Et), 1.16 

(d, J 7.0 Hz, CH3); 13C NMR 8: 171.00 (C00), 147.44 (C9A), 147.13 (C10A), 

135.75 (C7B), 133.83 (C11 aC), 132.73 (C6B), 132.01 (C7aC), 113.78 (C8D), 110.69 

(C11D), 72.08 (C4), 60.19 (CH2 of Et), 56.52 (20CH3), 54.58 (C2),45.47 (NCH3 E), 

43.93 (C5E), 38.18 (Cl), 15.83 (CH3F), 15.19 (CH3 of Et); MS m/z: 333 (M+, 4%; 

Calcd. for C19H27N04 333.1940, found 333.1939), 260 (100), 203 (12), 189 (6), 115 

(4). 
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(b) a mixture (0.130 g) of E-87bA, Z-87bB and 88bA. 

(c) a fraction which when crystallised from ethanol afforded 88bA (0.219 g). 

(d) a mixture (0.068 g) of 88bA, 88bB and Z-87bA. 

(ii) A mixture (A:B:C:D=55:18:17:9) of the isomers of 82b (0.100 g, 0.241 mmol) 

in dry acetonitrile (100 ml) at reflux was treated with DBU (0.10 ml, 0.67 mmol). 

The solution was refluxed for 50 min. A preliminary work-up as for (i) afforded a 

colourless oil (0.058 g, 72%) with E-87bA:E-87bB:Z-87bA:Z-87bB:88bA:88bB in 

the ratio 39:14:2:3:37:5. 

(iii) A mixture (A:B:C:D=4:6:25:65) of the isomers of 82b (0.198g. 0.478 mmol), 

in dry acetonitrile (100 ml) under nitrogen at 0°C, was treated with DBU (0.10 ml, 

0.67 mmol) then allowed to warm to room temperature with stirring for 12 h. A 

preliminary work-up as for (i) afforded a colourless oil (0.104 g, 65%), with E-

87bA:E-87bB:Z-87bA:Z-76bB:88bA:88bB in the ratio 40:30:13:11:4, which was 

purified by preparative reverse phase HPLC with acetonitrile/26% water to give: 

(a) after 11.4 min., the Z-benzazonine Z-87bA (0.010 g), attributed to the cis B-ring 

diastereomer, as a colourless oil. 1 H NMR 8: 6.61 (s, ArH), 6.56 (d, J 10.5 Hz, H7), 

6.54 (s, ArH), 6.41 (dd, J 10.5 Hz, 10.6 Hz, H6), 4.26 (q, CH2 of Et), 3.89 (s, 

OCH3), 3.85 (s, OCH3), 3.34-3.26 (m, H), 2.96 (d, J 4.2 Hz, H4), 2.89-2.79 (m, 2H), 

2.63-2.44 (m, 2H), 2.41 (s, NCH3), 1.32 (t, CH3 of Et), 0.90 (d, J 7.0 Hz, CH3); 13C 

NMR 8: 172.82 (C00), 148.23 (C9A), 147.53 (C10A), 137.00 (C7B), 133.42 

(C1 laC), 130.63 (C7aC), 129.77 (C6B), 113.94 (C8D), 111.87 (C11D), 75.56 (C4), 

60.94 (CH2 of Et), 56.59 (20CH3), 55.61 (C2), 46.93 (NCH3), 37.08 (Cl), 36.93 

(C5), 19.38 (CH3), 15.16 (CH3 of Et); MS m/z: 333 (M+, 5%; Calcd. for 

C19H27N04 333.1940, found 333.1951), 260 (100), 203 (11), 189 (5), 115 (3). 

(b) after 13.4 min., the Z-benzazonine, Z-87b (0.004 g), attributed to the trans B-ring 

diastereomer, as a colourless oil. 1 H NMR 8: 6.59 (d, J 10.5 Hz, H7), 6.57 (s, ArH), 

6.56 (s, ArH), 5.60 (dd, J 10.5 Hz, 10.6 Hz, H6), 4.13 (q, CH2 of Et), 3.87 (s, 

OCH3), 3.85 (s, OCH3), 3.28-3.22 (m, H), 3.06 (d, J 11.4 Hz, H4), 2.71-2.57 (m, 

3H), 2.54 (s, NCH3), 2.43-2.33 (m, H5), 1.25 (t, CH3 of Et), 0.81 (d, J 6.5 Hz, CH3); 
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13C NMR 8: 173.29 (C00), 148.33 (C9A), 147.40 (C10A), 138.71 (C7B), 134.80 

(C1 laC), 129.79 (C7aC and C6B), 113.96 (C8D), 111.97 (Clip), 73.04 (C4), 60.49 

(CH2 of Et), 56.55 (20CH3), 51.98 (C2), 45.75 (NCH3), 38.48 (Cl), 36.35 (C5), 

18.17 (CH3), 15.22 (CH3 of Et); MS m/z: 333 (M+, 9%; Calcd. for C19H27N04 

333.1940, found 333.1954), 260 (100), 203 (9), 189 (5), 115 (4). 

* suffixes A and B denote B-ring diastereomers. Compound E-87bB could not be 

isolated. 1 H NMR 5: 5.65 (dd, J 5.3 Hz, 16.8 Hz, H6), 2.68 (s, NCH3). 

Ethyl 7,8-Dimethoxy-3-methyl-1-(2'-methyl)propenyl-2,3.4.5- tetrahydro- 1H-

3-benzazepine-4-carboxylate 88a 

(i) To a solution of DBU (0.048 g, 0.32 mmol) in refluxing dry acetonitrile (10 ml) 

was added a solution of 82a (0.105 g, 0.245 mmol) in acetonitrile (1 ml). The 

solution was refluxed for 1 h. then concentrated. Purification of the residue by 

column chromatography on alumina with dichloromethane/20% light petroleum 

afforded a mixture (84:16) of the B-ring diastereomers of the 3 -benzazepine 88a 

(0.058 g, 71%) as a colourless oil. Characteristic 1 H NMR signals were: trans-88a 

1H NMR (d6-benzene) 5:7.08 (s, ArH), 6.73 (s, ArH), 6.38 (d, J 8.3 Hz, H1'), 4.61 (t, 

H2), 2.77 (s, NCH3), 1.92 (s, CH3), 1.85 (s, CH3), 1.15 (t, CH3 of Et); cis-88a 1 H 

NMR (d6-benzene) 5:7.18 (s, ArH), 6.78 (s, ArH), 6.52 (d, J 8.1 Hz, H1'), 4.68 (d, J 

7.5 Hz, H2), 2.73 (s, NCH3), 2.02 (s, CH3), 1.72 (s, CH3), 1.07 (t, CH3 of Et). 

(ii) The trans B-ring diastereomer of 88a was isolated from the synthesis of 101c. 

1 H NMR 5: 6.69 (s, ArH), 6.64 (s, ArH), 5.70 (d, J 9.1 Hz, H1'), 4.13-4.06 (m, CH2 

of Et and H1), 3.84 (s, OCH3), 3.83 (s, OCH3), 3.30 (d, J 7.4 Hz, H2), 3.26-3.23 (m, 

H), 3.03-2.92 (m, 2H), 2.69-2.59 (m, H), 2.43 (s, NCH), 1.78 (d, J -0.8 Hz, CH3), 

1.63 (d, J 1.1 Hz, CH3), 1.21 (t, CH3 of Et); 13C NMR 8: 172.74 (C00), 147.78 

(C7A), 147.42 (C8A), 134.80 (C2'B), 133.18 (C5aB), 132.98 (C9aB), 123.85 (Cl'), 

113.37 (C6C), 112.79 (C9C), 70.65 (C2), 60.44 (CH2 of Et), 56.65 (OCH3), 56.42 

(OCH3), 51.61 (C4), 46.25 (Cl), 45.38 (NCH3), 34.71 (C5), 26.63 (CH3), 18.82 
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(CH3), 15.05 (CH3 of Et); MS rniz: 347 (M+, 3%; Calcd. for C201-129N04 347.2096, 

found 347.2111), 274 (100), 258 (3), 217 (15), 203 (5). 

Ethyl 7.8-Dimethoxy-3-methyl-1-propeny1-2.3.4.5-tetrahydro-/H-

3-benzazepine-4-carboxylate 88b  

The synthesis and purification described for 87b afforded the 3-benzazepine, 

88bA (0.219 g), attributed to the diastereomer* with the Z-geometry of the double 

bond, as an off-white solid with m.p. 83-84°C. 1 H NMR 8: 6.71 (s, ArH), 6.64 (s, 

ArH), 5.98-5.92 (m, H1'), 5.70-5.66 (m, H2'), 4.23 (dd, J 7.3 Hz, 7.9 Hz, HI), 4.16- 

4.03 (m, CH2 of Et), 3.87 (s, OCH3), 3.86 (s, OCH3), 3.35 (d, J 7.7 Hz, H2), 3.28- 

3.23 (m, H), 3.00-2.92 (m, 2H), 2.72-2.63 (m, H), 2.45 (s, NCH3), 1.62 (dd, J 1.7 Hz, 

6.8 Hz, CH3), 1.22 (t, CH3 of Et); 13C NMR 8: 172.37 (C00), 147.65 (C7A), 

147.27 (C8A), 133.05 (C5aB), 132.20 (C9aB), 129.69 (C2 1C) 123.85 (C1C), 113.21 

(C6D), 112.50 (C9D), 70.10 (C2), 60.43 (CH2 of Et), 56.45 (OCH3), 56.27 (OCH3), 

51.37 (C4), 46.24 (CIE), 44.19 (NCH3E), 34.63 (C5), 14.94 (C3'), 13.71 (CH3 of Et); 

MS m/z: 333 (M+, 5%; Calcd. for C19H27N04 333.1940, found 333.1945), 260 

(100), 203 (10), 189 (4), 115 (3). 

* The isomer 88bB could not be isolated. 1 H NMR 8: 6.21-6.15 (m, H), 2.51 (s, 

NCH3), 1.58 (dd, J 1.7 Hz, 6.8 Hz, CH3), 1.10 (t, CH3 of Et). 

Ethyl 7 .8-Dimethoxy-112'43.4-dimethoxyphenyfletheny11-3-methyl-2.3 .4.5-  

tetrahydro-/H-3-benzazepine-4-carboxylate 88c  

(i) The salt 82c (0.215 g, 0.368 mmol) as a suspension in dry tetrahydrofuran (13 

ml) under nitrogen atido-m temperature was treated with DBU -(0:073-g; 0:48 -mmol) 

After 45 min. the solution was then concentrated. Purification of the residue by 

p.t.l.c. on silica with dichloromethane/3% ethanol gave: 

(a) at Rf 0.91, compound 89 (0.007 g, 4%). 

(b) at Rf 0.56, the trans B-ring diastereomer of the 3-benzazepine 88c (0.081 g, 48%) 

which crystallised from ethanol as colourless needles with m.p. 106-108°C. 1H 
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NMR 8: 6.90 (d, J 1.8 Hz, H2"), 6.89 (dd, J 1.8 Hz, 8.3 Hz, H6"), 6.79 (d, J 8.3 Hz 

H5"), 6.66 (s, H9), 6.64 (s, H6), 6.50 (dd, J 5.8 Hz, 15.9 Hz, H1'), 6.16 (dd, J 1.3 Hz, 

15.9 Hz, H2'), 4.12-3.96 (m, H1 and CH2 of Et), 3.89 (s, OCH3), 3.87 (s, 20CH3), 

3.84 (s, OCH3), 3.74 (d, J 5.8 Hz, H2), 3.39-3.33 (m, H4), 3.21-3.14 (m, H4), 2.76- 

2.62 (m, H5), 2.56 (s, NCH3), 1.16 (t, CH3 of Et); 13C NMR 8: 172.20 (C00), 

149.56 (C7A), 149.10 (C8A), 148.03 (C3"A), 147.41 (C4"A), 134.07 (Cl"B), 131.64 

(C5aB), 131.28 (CFC), 131.16 (C9aB), 128.89 (C2'C), 119.83 (C2"D), 114.50 (C5"D), 

113.96 (C6"D), 111.72 (C6D), 109.65 (C9D), 69.61 (C2), 60.48 (CH2 of Et), 56.69- 

56.51 (40CH3), 51.54 (Cl), 51.34 (C4), 46.89 (NCH3), 35.53 (C5), 15.10 (CH3 of 

Et); MS m/z: 455 (M+, 23%), 383 (38), 382 (100), 366 (4), 309 (3), 151 (6); Anal. 

Calcd for C26H33N06: C, 68.55; H, 7.30; N, 3.08%, found: C, 68.61; H, 7.32; N, 

3.04%. 

(c) at Rf 0.42, the cis B-ring diastereomer of the 3-benzazepine 88c (0.019 g, 11%) as 

a colourless solid. 1 H NMR 8: 6.96 (d, J 1.9 Hz, H2"), 6.95 (dd, J 1.9 Hz, 6.2 Hz, 

H6"), 6.86-6.79 (m, H1' and H5"), 6.70 (s, H9), 6.66 (s, H6), 6.38 (d, J 15.8 Hz, H2'), 

4.13 (d, J 8.1 Hz, H1), 4.09-4.00 (q, CH2 of Et), 3.91 (s, OCH3), 3.88 (s, OCH3), 

3.86 (s, OCH3), 3.82 (s, OCH3), 3.61 (s, H2), 3.36-3.30 (m, H), 3.13-3.08 (m, H), 

2.89-2.82 (m, H), 2.76-2.70 (m, H), 2.52 (s, NCH3), 1.21 (t, CH3 of Et); 13C NMR 

8: 172.23 (C00), 149.64 (C7A), 149.34 (C8A), 148.02 (C3"A), 147.54 (C4"A), 

133.92 (Cl"B), 133.29 (C5aB), 132.13 (CFC), 131.17 (C9aB), 128.30 (CTC), 120.00 

(C2"D), 113.56 (C5"D), 112.67 (C6"D), 111.82 (C6D), 109.76 (C9D), 70.85 (C2), 

60.61 (CH2 of Et), 56.87-56.58 (40CH3), 53.23 (C4), 50.85 (Cl), 45.89 (NCH3), 

35.28 (CS), 14.99 (CH3 of Et); MS m/z: 455 (M+, 25%), 383 (36), 382 (100), 366 

(5), 309 (4), 151 (6). 

(ii) To 82c (0.299 g, 0.513 mmol) in dry acetonitrile (15 ml) under nitrogen at -45°C 

was added DBU (0.094 g, 0.62 mmol). The solution was stirred between -45°C and 

-40°C for 6 h. then allowed to warm slowly to -10°C over 1.5 h. Concentration and 

then column chromatography of the residue on alumina with dichloromethane/20% 

light petroleum gave a mixture (trans/cis=4.8) of the isomers of 88c (0.168 g, 72%). 



215 

Methyl 7.8-Dimethoxy-1-I2'-(3.4-dimethoxyphenynethenyll-3-methyl-2.3.4.5-  

tetrahydro-/H-3-benzazepine-4-carboxylate 89  

(i) A portion of 82c was crystallised from methanol/diethyl ether to afford a pale 

yellow powder (0.080 g, 0.14 mmol) which was treated, as a suspension in dry 

tetrahydrofuran (5 ml) under nitrogen at room temperature, with DBU (0.027 g, 0.18 

mmol). After 30 mm. the solution was then concentrated. Purification of the residue 

by p.t.l.c. on silica with dichloromethane/4% methanol gave: 

(a) at Rf 0.94, the trans B-ring diastereomer of the 3-benzazepine 89 (0.039 g, 65%) 

which crystallised from methanol as colourless needles with m.p. 123-124°C. 1 H 

NMR 8: 6.90-6.87 (m, H2" and H6"), 6.79 (d, J 8.8 Hz H5"), 6.66 (s, H9), 6.64 (s, 

H6), 6.50 (dd, J 5.9 Hz, 15.9 Hz, H1'), 6.16 (dd, J 1.4 Hz, 15.9 Hz, H2'), 4.12-4.08 

(m, H1), 3.90 (s, OCH3), 3.87 (s, 20CH3), 3.85 (s, OCH3), 3.75 (d, J 5.9 Hz, H2), 

3.57 (CO2CH3), 3.36-3.29 (m, H4), 3.20-3.16 (m, H4), 2.74-2.65 (m, H5), 2.55 (s, 

NCH3); 13C NMR 8: 172.53 (C00), 149.51 (C7A), 149.08 (C8A), 148.03 (C3"A), 

147.41 (C4"A), 133.95 (Cl"B), 131.59 (C5aB), 131.28 (CPC), 131.07 (C9aB), 128.70 

(C2'C), 119.79 (C2"D), 114.25 (C5"D), 113.65 (C6"D), 111.66 (C6D), 109.57 (C9D), 

69.70 (C2), 56.72 (OCH3), 56.49 (40CH3), 51.49 (Cl), 51.45 (C4), 46.86 (NCH3), 

35.43 (C5); MS m/z: 441 (M+, 39%; Calcd. for C25H31N06 441.215, found 

441.214), 382 (100), 309 (9), 206 (13), 189 (8), 151 (23). 

(b) at Rf 0.86, the cis B-ring diastereomer of the 3-benzazepine 89 (0.010 g, 16%) as 

a pale yellow oil. 1 H NMR 8: 6.97-6.94 (m, H2" and H6"), 6.81 (d, J 8.0 Hz H5"), 

6.78 (dd, J 7.9 Hz, 15.8 Hz, H1'), 6.69 (s, H9), 6.65 (s, H6), 6.34 (d, J 15.8 Hz, H2'), 

4.12-4.06 (m, H1), 3.91 (s, OCH3), 3.88 (s, OCH3), 3.87 (s, OCH3), 3.83 (s, OCH3), 

-3.62 (d, J 6.2 Hz, H2), 3.61 (CO2CH3), 3.36-3.28 (m, H4), 3.10-302 (m, H4), 2.91- 

2.84 (m, H5), 2.76-2.70 (m, H5), 2.51 (s, NCH3); 13C NMR 8: 172.73 (C00), 

149.60 (C7A), 149.32 (C8A), 147.98 (C3"A), 147.55 (C4"A), 133.83 (C 1"B), 133.22 

(C5aB), 132.23 (CPC), 131.10 (C9aB), 128.08 (C2'C), 119.99 (C2"D), 113.50 (C5"D), 

112.73 (C6"D), 111.74 (C6D), 109.91 (C9D), 70.95 (C2), 56.91 (OCH3), 56.59 

(30CH3), 53.53 (C4), 51.94 (CO2CH3), 50.92 (Cl), 45.79 (NCH3), 34.90 (C5); MS 
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m/z: 441 (M+, 37%; Calcd. for C25H31N06 441.215, found 441.215), 382 (100), 309 

(10), 206 (18), 189 (11), 151 (36). 

3-Ethoxycarbony1-2-(34-dimethoxy)pheny1-8.9-dimethoxy-5.6-dihydropyrrolo  

12.1-alisoquinoline 90  

The preparation of 88c described above afforded the pyrrolo[2,1- 

alisoquinoline 90 (0.007 g, 4%) as a pale yellow oil. 1 H NMR 8: 7.06 (s, H10), 

7.01-6.98 (m, H2' and H6'), 6.88 (d, J 8.3 Hz, H5'), 6.75 (s, H7), 6.45 (s, HI), 4.61 (t, 

H5), 4.16 (q, CH2 of Et), 3.92 (s, 30CH3), 3.90 (s, OCH3), 3.05 (t, H6), 1.11 (t, CH3 

of Et); 13C NMR 8: 162.20 (C00), 149.47 (C8A), 148.94 (C9A), 148.62 (C3 1A and 

C4 1 A), 147.41 (C4"A), 135.57 (C2a13 ), 135.00 (C3aB), 130.35 (C 1 1 B), 125.46 

(ClObB), 122.48 (Cl), 121.38 (C6aB), 118.83 (ClOaB), 113.88 (C7C), 111.59 

(C10C), 111.04 (C2 1C), 107.49 (C5 1C), 106.57 (C6C), 60.44 (CH2 of Et), 56.71 

(40CH3), 43.54 (C5), 29.35 (C6), 14.77 (CH3 of Et); MS m/z: 437 (M+, 100%; 

Calcd. for C25H27N06 437.1837, found 437.184), 422 (15), 364 (8), 218 (8), 204 (6); 

IR (thin film from CH2C12): 1684, 1504, 1418, 1265, 1134, 1055, 1028 cm -1 . 

2-Ethoxycarbonylmethy1-6.7-dimethoxy-1-ethynyl-2-methyl-1.23.4-  

tetrahydroisoquinolinium Bromide 91  

The reaction of the base 71 (1.515 g, 6.551 mmol) with ethyl bromoacetate 

(1.81 g, 10.8 mmol) in dry butanone (5 ml) at 50°C for 3 h. afforded a solid which 

was collected, after aging at 5°C for 1 h., to give a mixture (trans:cis=78:22) of the 

B-ring diastereomers of the 2-ethoxycarbonylmethylisoquinolinium salt 91 (2.172 g, 

- 83%) as an off-white powders trans diastereomer 1 H NMR 8: 6:94 (d, J 1.7 Hz, Hi), 

6.90 (s, ArH), 6.75 (s, ArH), 5.14 (q, NCH2C0), 4.71-4.62 (m, H3), 4.40-4.34 (m, 

H3), 4.29 (q, CH2 of Et), 3.89 (s, OCH3), 3.88 (s, OCH3), 3.59 (s, NCH3), 3.40 (d, J 

2.2 Hz, H2'), 3.28-3.10 (m, H4), 1.32 (s, CH3); 13C NMR 8: 165.13 (C00), 150.69 

(C6A), 149.40 (C7A), 120.92 (C4aB), 118.58 (C8aB), 111.51 (C5C), 110.82 (C8C), 

84.42 (C1), 74.52 (Cl'), 64.55 (C2'), 63.55 (CH2 of Et), 59.31 (NCH2C0), 56.60 
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(20CH3), 55.94 (C3), 46.07 (NCH3), 24.08 (C4), 14.27 (CH3 of Et); cis 

diastereomer (assignable signals) 1 H NMR 8: 6.80 (s, ArH), 6.57 (s, H1), 3.79 (s, 

NCH3); 13C NMR 8: 84.56 (C1), 64.33 (CT), 46.75 (NCH3), 23.75 (C4). 

Ethyl 7 .8-Dimethoxy-l-ethyny1-3-methyl-2.3.4,5-tetrahydro- 

r_bc,Inr_il_&.,x12aLE 1 t 2 

(i) To the salt 91 (0.323 g, 0.811) in refluxing dry acetonitrile (10 ml) was added 

DBU (0.160 g, 1.05 mmol). The mixture was refluxed for 1 h. Concentration and 

then purification of the residue by column chromatography on alumina with 

dichloromethane/20% light petroleum afforded a yellow oil (0.090 g, 35%) which 

was further purified by preparative reverse phase HPLC with H20/44% acetonitrile 

to give: 

(a) at 15.9 min, the 3-benzazepine 92 (0.018 g, 7%) as a yellow oil. 1 H NMR 8: 6.89 

(s, ArH), 6.64 (s, ArH), 4.34 (dd, J 2.6 Hz, 7.0 Hz, H1), 4.11 (q, CH2 of Et), 3.86 (s, 

20CH3), 3.62 (d, J 6.9 Hz, H2), 3.25-3.20 (m, 2H), 2.83-2.72 (m, 2H), 2.53 (s, 

NCH3), 2.43 (d, J 2.6 Hz, CH3), 1.22 (t, CH3 of Et); 13C NMR 8: 171.26 (C00), 

148.23 (C7A), 147.62 (C8A), 133.58 (C5aB), 128.25 (C9aB), 113.48 (C6C), 113.15 

(C9C), 83.25 (C1'), 73.66 (C2D), 69.45 (CTD), 60.97 (CH2 of Et), 56.63 (OCH3), 

56.53 (OCH3), 51.45 (C4), 46.47 (NCH3E), 39.99 (ClE), 34.60 (C5), 15.03 (CH3 of 

Et); MS miz: 317 (M+, 56%; Calcd. for C18F123N04 317.1627, found 317.1633), 

302 (31), 288 (9), 244 (100), 228 (11), 201 (21), 115 (14). 

(b) at 18.2 min, compound 93 (0.018 g, 7%). 

(c) at 29.1 min, compound 94 (0.007 g, 3%). 

- - - (ii) To 91 (0;534g; 1.34 mmol) suspended in dry acetonitrile (5 -m1) -  at 0°C -was 

added DBU (0.35 g, 2.3 mmol). The mixture was stirred for 80 min. while allowed 

to warm to room temperature. Water (10 ml) and dichloromethane (15 ml) were then 

added. The layers were partitioned and the aqueous layer was extracted with further 

dichloromethane (2 x 5 m1). Drying and then concentration of the organic extracts 
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afforded a dark oil (0.099 g) in which no rearrangement products were detected by 

t.l.c. or 1 H NMR analysis. 

1-Ethoxycarbony1-6.7-dimethoxy-1-ethyny1-2-methy1-1.2.3.4-tetrahydroisoquinoline 

22 
The preparation of 92 described above afforded the 1-ethoaycarbonylmethyl-

isoquinoline 93 (0.018 g) as a yellow oil. 1 H NMR (do-benzene) 8: 7.04 (s, ArH), 

6.31 (s, ArH), 3.92-3.74 (m, CH2 of Et), 3.49 (s, OCH3), 3.39 (s, OCH3), 3.26 (d, J 

14.0 Hz, H of CH2C00), 3.13 (d, J 13.9 Hz, H of CH2C00), 2.98-2.83 (m, H3 and 

H4), 2.62 (s, NCH3), 2.60-2.55 (m, H3), 2.30-2.25 (m, H4), 2.20 (s, H2'), 0.78 (t, 

CH3 of Et); 13C NMR (do-benzene) 8: 169.01 (C00), 149.85 (C6A), 149.38 (C7A), 

130.96 (C4aB), 129.01 (C8aB), 112.77 (C5C), 112.49 (C8C), 84.38 (Cl'), 75.40 (C2'), 

61.14 (C1), 60.40 (CH2 of Et), 56.60 (OCH3), 56.15 (OCH3), 50.12 (C3), 46.78 

(CH2CO2), 40.91 (NCH3), 30.28 (C4), 14.63 (CH3 of Et); MS m/z: 317 (M+, 2%; 

Calcd. for C18/123N04 317.1627, found 317.1649), 291 (3), 244 (3), 230 (100), 214 

(8), 115 (6). 

14E-3-Ethoxycarbonyl-Z-2-propenylidene1-6.7-dimethoxy-2-methy1-1.2.3.4-  

tetrahydroisoquinoline 94 

The preparation of 92 described above afforded an intensely yellow coloured 

oil tentatively attributed to the isoquinoline 94 (0.007 g). 1 H NMR 8: 7.97 (dd, J 

12.1 Hz, 14.5 Hz, H2'), 7.15 (s, ArH), 6.68 (s, ArH), 5.57 (d, J 14.5 Hz, H3 1 A), 5.37 

(d, J 12.1 Hz, HrA), 4.13 (q, CH2 of Et), 3.92 (s, 20CH3), 3.35 (t, H3), 3.11 (s, 

CH3),_2.75_ (t,_H4),_1.24 (t, CH3 of Et); PC NMR 8: 169.60 (C00), 152.23 (CA), 

150.32 (C7A), 147.50 (C6A), 147.09 (Cl'), 131.12 (C8aB), 123.56 (C4aB), 114.78 

(C2'C), 110.86 (C8C), 108.46 (C5C), 94.51 (C3'), 59.83 (CH2 of Et), 56.86 (OCH3), 

56.67 (OCH3), 51.01 (C3), 40.72 (NCH3), 30.49 (C4), 15.27 (CH3 of Et); MS m/z: 

317 (M+, 49%; Calcd. for C18H23N04 317.1627, found 317.1624), 302 (11), 288 (6), 

272 (31), 244 (100), 230 (60), 214 (20), 199 (12). 
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Attempted Preparation of 6.7-Dimethoxy-2-methyl-1-(1'-propyny1)-1,2.3 4-  

tetrahydroisoquinoline 96  

(i) A solution of the 1-ethynyl base 71 (3.019 g, 13.05 mmol) in dry tetrahydrofuran 

(25 ml) was added dropwise to a suspension of sodium amide (0.584 g, 90% 

technical grade, 13.5 mmol) in dry tetrahydrofuran (25 ml) at -78°C under nitrogen. 

The mixture was allowed to warm to room temperature with stirring over 1 h. then 

the resultant solution was cooled to -78°C and iodomethane (1.86 g, 13.2 mmol) was 

added dropwise. The solution was maintained at -70°C for 15 min. then allowed to 

warm to room temperature and stirred for 2 h. with the deposition of a tan solid. 

Ammonium chloride (0.5 g) and water (30 ml) were added cautiously and the 

solution was extracted with diethyl ether (4 x 20 m1). The ether extracts were 

combined and washed with water (2 x 10 ml) then saturated brine (10 ml), and then 

dried and passed through a silica plug. Concentration afforded 71 (1.501 g, 50%). 

The original aqueous layer was then concentrated and extracted with chloroform (3 x 

25 m1). Concentration of the chloroform extracts afforded a dark powder (2.326 g) 

which was taken up in hot methanol. Ethyl acetate was added and the mother liquor 

was decanted from the resultant dark oil. The concentration of the mother liquor 

gave a tan powder tentatively identified as crude 6,7-Dimethoxy-1,2,2-trimethy1-1- 

(1'-propyny1)-1,2,3,4-tetrahydro-isoquinolinium iodide 97 (1.424 g). 1 H NMR 8: 

6.93 (s, ArH), 6.70 (s, ArH), 4.50-4.42 (s, H), 4.13-4.01 (m, H), 3.91 (s, OCH3), 3.89 

(s, OCH3), 3.56 (s, NCH3), 3.47 (s, NCH3), 3.32-3.21 (m, 2H), 2.06 (s, CH3), 2.05 

(s, CH3); 13C NMR 8: 149.95 (C6A), 148.87 (C7A), 125.46 (C4aB), 120.04. (C8aB), 

111.35 (C5C), 110.00 (C8C), 90.07 (C1D), 74.42 (C1' 13 ), 71.75 (C20 ), 56.51 

- (OCH3), 56.23-(OCH3),-56.06-(C3), 49.81_(NCH3), 49.01_ (NCH3),_29.01 (CH3), 

23.80 (C4), 4.50 (C3'); MS (LSIMS) rn/z: 274 (M-I+, 100%), 258 (5), 246 (5), 232 

(6), 220 (9). 

(ii) Compound 71 (0.964 g, 4.17 mmol) was added to a suspension of sodium amide 

(0.197 g, 90% technical grade, 4.54 mmol) in dry tetrahydrofuran (25 ml) at -78°C 

under nitrogen. The mixture was allowed to warm to 0°C with stirring over 1 h. then 
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stirred at this temperature for 8 h. The brown solution was cooled to -78°C and a 

solution of iodomethane (0.604 g, 4.28 mmol) in dry tetrahydrofuran (20 ml) was 

added dropwise over 1 h. The solution was then stirred at 25°C for 24 h. Work up as 

for (i) gave, from the ether solution, 71 (0.342 g, 35%). 

3-Ethoxycarbonylmethy1-8.9-dimethoxy-3-methy1-5-trimethylsily1-1.2.3.4-  

tetrahydro-3-benzazocinium Bromide 98  

(i) A solution of the base 70c (0.506 g, 1.66 mmol) and ethyl bromoacetate (0.75 g, 

4.5 mmol) in dry butanone (8 ml) under nitrogen was stirred for 24 h. at 60-70°C 

then aged at 0°C for 12 h. Collection of the precipitate and recrystallisation of this 

material from dichloromethane/butanone afforded the 3-benzazocinium salt 9 8 

(0.254 g, 32%) as a pale yellow powder with m.p. 140-142°C. 1 H NMR 8: 7.25 (s, 

H6), 6.64 (s, H10), 6.39 (s, H7), 5.08 (d, J 17.0 Hz, H of NCH2C0), 4.73 (d, J 17.0 

Hz, H of NCH2C0), 4.40-4.28 (m, H2), 4.13 (d, J 13.0 Hz, H4), 3.79 (d, J 13.3 Hz, 

H4), 4.02 (m, CH2 of Et), 3.71 (s, OCH3), 3.68-3.59 (m, H2), 3.66 (s, OCH3), 3.37 

(s, NCH3), 2.95-2.87 (m, H1), 2.78-2.69 (m, H1), 1.07 (t, CH3 of Et), 0.15 (s, 

Si(CH3)3); 13C NMR 8: 164.93 (C00), 151.74 (C6), 150.21 (C8A), 148.10 (C9A), 

132.85 (C5), 129.09 (C6aB), 127.56 (ClOaB), 112.92 (C7C), 110.89 (C10C), 64.12 

(CH2 of Et'), 63.83 (NCH2COD), 62.82 (C4D), 62.38 (C2D), 56.31 (OCH3), 56.19 

(OCH3), 48.26 (NCH3), 28.25 (Cl), 14.10 (CH3 of Et), 0.05 (Si(CH3)3); Anal. 

Calcd for C211-134NO4SiBr: C, 53.38; H, 7.25; N, 2.97%, found: C, 53.30; H, 7.30; 

N, 3.06%. 

(ii) A solution of the base 70c (0.498 g, 1.63 mmol) and ethyl bromoacetate (0.75 g, 

- 45 mmol) in dry butanone (2.5 m1) -  under nitrogen was stirred for 48 h. at room 

temperature. Concentration of the solution and trituration of the residue with diethyl 

ether (3 x 20 ml) afforded a 60:40 mixture (0.125 g, 16%) of 98 and 72c. The diethyl 

ether washings contained unchanged 70c. 

(iii) A solution of the salt 72c (0.196 g, 0.415 mmol) in dry butanone (6 ml) was 

refluxed for 24 h. Concentration and then 1 H NMR spectral analysis of the residue 
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indicated a 2:1:1 mixture of 72c, 98, and a component attributed to the previously 

unobserved B-ring diastereomer of 72c with the following characteristic NMR 

signals: 1 H NMR 8: 5.44 (s, H1), 3.30 (s, NCH3), -0.01 (s, Si(CH3)3); 13C NMR 8: 

142.62 (C2'), 46.99 (NCH3). 

N-{2-14.5-Dimethoxy-2-(4-ethoxycarbony1-4-iodo-1(E)-butenyflphenyllethyl I  -  

N.N.N-trimethylammonium iodide 100 

(i) Treatment of 52a (0.246 g, 0.771 mmol) with iodomethane (0.156 g, 3.47 mmol) 

in dry butanone (2 ml) at reflux for 3 h. gave the precipitation of a solid which, after 

cooling, was collected and recrystallised from butanone to afford the title compound 

100 (0.170 g, 37%) as a colourless powder with m.p. 167-169°C. 1 H NMR 8: 6.95 

(s, ArH), 6.73 (d, J 15.6 Hz, H1"), 6.63 (s, ArH), 6.08-5.98 (m, H2"), 4.79 (dd, J 3.9 

Hz, 10.8 Hz, H4"), 4.26 (q, CH2 of Et), 3.91 (s, OCH3), 3.88 (s, OCH3), 3.67 (s, 

3NCH3), 3.30-3.23 (m, 3H), 3.18-3.13 (m, 2H), 2.95-2.84 (m, H), 1.22 (t, CH3 of 

Et); 13 C NMR 8: 167.40 (C00), 149.76 (C4 1A), 148.81 (C5'A), 133.13 (C 1 "B), 

131.60 (Cl'C), 127.47 (C2C), 120.74 (C2"B), 113.31 (C3'D), 109.65 (C6'D), 74.51 

(C4"), 63.87 (CH2 of Et), 56.93 (OCH3), 56.60 (OCH3), 53.92 (3NCH3), 37.76 (C1), 

31.96 (C2), 14.78 (CH3 of Et), 6.41 (C3"); MS (LSIMS) m/z: 476 ([M-I], 100%), 

417 (26), 366 (11), 348 (7); IR (thin film from CHC13): 1740, 1512, 1271, 1215, 731 

cm -i .  

(ii) The reaction of 52a (0.183 g, 0.573 mmol) in iodomethane (2.0 ml, 32 mmol) at 

room temperature under nitrogen over 16 h. gave a solid which was collected and 

recrystallised three times from dichloromethane/toluene to afford 100 (0.107 g, 31%) 

as a colourless powder with -m.p. 163-164°C. Anal. Calcd for C201 -131N04I2: C, 

39.82; H, 5.18; N, 2.32%, found: C, 40.23; H, 5.22; N, 2.47%. 
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Ethyl 9.10-Dimethoxy-3-methyl-23.4.5.6.7-hexahydro-111-  

3-benzazonine-4-carboxylate 101a 

Compound 52a (0.178 g, 0.558 mmol, E/Z=19) was refluxed in ethanol (15 

ml) under hydrogen at atmospheric pressure with 5% Pd-C (0.025 g) for 3 h. 

Concentration and then purification of the residue by p.t.l.c. on silica with 

dichloromethane/3% ethanol afforded: 

(a) at Rf 0.95, the hexahydro -3 -benzazonine 101a (0.102 g, 66% from unrecovered 

52a) as a colourless oil. 1 H NMR 8: 6.63 (s, ArH), 6.54 (s, ArH), 4.08 (q, CH2 of 

Et), 3.85 (s, 20CH3), 3.55-3.45 (m, H), 3.23 (dd, J 2.8 Hz, 12.1 Hz, H4), 2.87-2.73 

(m, 3H), 2.61-2.57 (m, H), 2.57 (s, NCH3), 2.48-2.40 (m, H), 1.83-1.76 (m, 2H), 

1.54-1.47 (m, H), 1.22 (t, CH3 of Et), 1.18-1.11 (m, H); 13C NMR 8: 174.07 (C00), 

147.90 (C9A), 147.23 (C10A), 135.00 (C7aB), 133.24 (Cl laB), 114.15 (C8C), 113.19 

(C1 1C), 68.75 (C4), 60.41 (CH2 of Et), 56.50 (20CH3), 53.40 (C2), 44.05 (NCH3), 

36.78 (C7D), 32.08 (CID), 31.91 (C5D), 26.27 (C6D), 15.06 (CH3 of Et); MS m/z: 

321 (M+, 2%; Calcd. for C181127N04 321.1939, found 321.1948), 248 (100), 205 

(13), 164 (4), 124 (5). 

(b) at Rf 0.88, compound Z-52a (0.024 g). 

Ethyl 9.10-Dimethoxy-3-methy1-6-pheny1-2.3.4.5.63-hexahydro-1H-

3-benzazonine-4-carboxylate 101b  

A 38:54:8 mixture of the isomers E-75b, Z-75b, and 76h (0.200 g, 0.504 

mmol) was refluxed in ethanol (15 ml) under hydrogen at atmospheric pressure with 

5% Pd-C (0.030 g) for 3 h. and was then concentrated. The residue was passed 

through ãñi alumina plug with dichloromethane/5% light petroleum to give a 

colourless oil (0.143 g). Purification of a portion (0.067 g) of this oil by preparative 

reverse phase HPLC with acetonitrile/29% water gave: 

(a) after 30.0 min., unchanged Z-75b (0.011 g). 

(b) after 37.5 min., the hexahydro -3 -benzazonine 101b (0.029 g) as a colourless oil. 

1 H NMR 8: 7.39-7.36 (m, 4ArH'), 7.27-7.25 (m, ArH'), 6.70 (s, ArH), 6.59 (s, ArH), 
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4.15 (t, H7), 4.13 (q, CH2 of Et), 3.87 (s, OCH3), 3.86 (s, OCH3), 3.18-3.12 (m, H6), 

3.02-2.97 (m, H4 and H1), 2.81-2.78 (m, H2), 2.72 (dd, J 4.3 Hz, 12.3 Hz, H7), 2.55 

(s, NCH3), 2.54-2.50 (m, H1), 1.67-1.60 (m, H5), 1.15 (t, CH3 of Et); 13C NMR 8: 

174.23 (C00), 148.09 (C9A), 147.63 (C10A), 145.31 (Cl'B), 134.93 (C7aB), 132.98 

(C1 laB), 129.05 (2C'), 128.73 (2C'), 126.93 (C'), 114.41 (C8C), 113.49 (C11C), 

63.07 (C4), 60.47 (CH2 of Et), 56.61 (20CH3), 54.09 (C2), 46.91 (C6), 43.86 

(NCH3), 38.86 (C7D), 36.13 (C1D), 33.02 (C5), 15.09 (CH3 of Et); MS m/z: 397 

(M+, 3%; Calcd. for C24H31N04 397.2253, found 397.2281), 324 (100), 267 (9), 220 

(4), 165 (5), 91(6), 70 (6). 

(c) after 42.5 min., an unidentified isomer of 101b as a colourless oil (0.008 g). 1 H 

NMR 8: 7.37-7.26 (m, 2ArH'), 7.22-7.19 (m, ArH'), 7.07-7.05 (m, 2ArH'), 6.54 (s, 

ArH), 5.52 (s, ArH), 4.14-4.00 (m, CH2 of Et and H), 3.83 (s, OCH3), 3.40-3.34 (m, 

OCH3 and H), 3.28-3.20 (m, H), 3.04-2.99 (m, H), 2.85-2.77 (m, 3H), 2.66 (s, 

NCH3), 2.55-2.50 (m, H), 1.86-1.81 (m, H), 1.66-1.57 (m, H), 1.23 (t, CH3 of Et); 

MS m/z: 397 (M+, 7%; Calcd. for C24}131N04  397.2253, found 397.2247), 324 

(100), 267 (10), 220 (5), 165 (8), 91(12), 70 (5). 

Ethyl 9.10-Dimethoxy-3.5.5-trimethy1-2.3.4.5.6.7-hexahydro-1H-

3-benzazonine-4-carboxylate 101c 

A 58:37:5 mixture of the isomers E-87a, trans-88a, and cis-88a (0.259 g, 

0.772 mmol) was refluxed in ethanol (15 ml) under hydrogen at atmospheric 

pressure with 5% Pd-C (0.030 g) for 3 h. and was then concentrated. The residue 

was passed through an alumina plug with dichloromethane/5% light petroleum to 

give a pale yellow oil (0.236 g). -Purification-of the oil by preparative reverse phase_ 

HPLC with acetonitrile/36% water gave: 

(a) after 17.2 min., unchanged trans-88a (0.057 g). 

(b) after 34.7 min., the hexahydro-3-benzazonine 101c (0.088 g, 58% based on 

original E-87a) as a colourless oil. 1H NMR 5: 6.62 (s, ArH), 6.60 (s, ArH), 4.18 (q, 

CH2 of Et), 3.85 (s, 20CH3), 3.60 (s, H4), 3.09-3.04 (m, H1 and H2), 2.50-2.42 (m, 
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HI, H2 and H7), 2.23 (s, NCH3), 1.75-1.62 (m, H6), 1.31 (t, CH3 of Et), 1.10 (s, 

CH3), 1.00 (s, CH3); 13C NMR 8: 171.96 (C00), 147.80 (C9A), 147.32 (C10A), 

137.54 (C7aB), 130.75 (CI laB), 113.69 (C8C), 113.11 (C11C), 64.10 (C4), 59.96 

(CH2 of Et), 59.05 (C2), 56.47 (OCH3), 56.35 (OCH3), 44.14 (C6), 42.48 (NCH3), 

38.72 (C5), 32.48 (Cl), 26.58 (C7), 26.24 (CH3), 25.82 (CH3), 15.28 (CH3 of Et); 

MS m/z: 349 (M+, 27%; Calcd. for C201-131N04 349.2253, found 349.2246), 276 

(100), 220 (98), 206 (8), 177 (10), 130 (93), 110 (10). 

Ethyl 9.10-Dimethoxy-3-methyl-6-methylene-2.3.4.5.6.7-hexahydro-1H-

3-benzazonine-4-carboxylate 102  

A 66:34 mixture of E-75a and Z-75a (0.185 g, 0.555 mmol) was refluxed in 

ethanol (10 ml) under hydrogen at atmospheric pressure with 5% Pd-C (0.030 g) for 

2.5 h. Concentration and then purification of the residue by p.t.l.c. on silica with 

dichloromethane/5% methanol afforded, at Rf 0.55, compound 103 (0.007 g) and, at 

Rf 0.92, a mixture (0.131 g) which was further purified by p.t.l.c. on silica with 

dichloromethane to give: 

(a) at Rf 0.12, a mixture with predominantly Z-75a (0.044 g). 

(b) at Rf 0.23, a mixture (0.054 g) attributed to compounds 101d and 102. 

Purification by preparative reverse phase HPLC with acetonitrile/20% water gave, 

after 22.15 mm., the 6-methylene-3-benzazonine 102 (0.030 g) as a colourless oil. 

1 H NMR 8: 6.63 (s, ArH), 6.55 (s, ArH), 4.99 (s, H of =CH2), 4.79 (s, H of =CH2), 

4.20 (d, J 13.2 Hz, H7), 4.10 (q, CH2 of Et), 3.85 (s, OCH3), 3.83 (s, OCH3), 3.32- 

2.25 (H4 and H7), 2.89-2.80 (m, 3H), 2.55 (s, NCH3), 2.51-2.45 (m, H), 2.18 (dd, J 

3.2 Hz, 14.0 Hz, H5), 1.90 (dd, J 13.1 Hz, 14.0 Hz), 1.24 (t, CH3 of Et); 13C NMR 

5: 173.50 (CO), 150.65 (C6), 147.81 (C9A), 147.69 (C10A), 134.19 (C7aB), 131.60 

(C1 laB), 114.12 (C8C), 113.51 (C11C), 112.60 (=CH2), 67.92 (C4), 60.64 (CH2 of 

Et), 56.50 (20CH3), 53.63 (C2), 43.74 (NCH3), 41.91 (C7D), 36.65 (CID), 36.05 

(C5D), 15.15 (CH3 of Et); MS m/z: 333 (Mt, 12%; Calcd. for C19H27N04 

333.1940, found 333.1950), 260 (100), 217 (13), 203 (4), 168 (3), 130 (5). 
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Ethyl 9.10-Dimetboxy-3.6-dimethy1-23A..7-tetrahydro-1H-

3-benzazonine-4-carboxylate 103  

The synthesis described for the preparation of 102 afforded the 2,3,4,7- 

tetrahydro-3-benzazonine 103 (0.007 g) as a colourless oil. 1 H NMR 8: 6.70 (s, 

ArH), 6.55 (s, ArH), 5.21 (d, J 9.8 Hz, H5), 4.50 (d, J 9.9 Hz, H4), 4.23 (q, CH2 of 

Et), 4.18 (d, J 13.2 Hz, H7), 3.87 (s, OCH3), 3.84 (s, OCH3), 3.14-3.08 (m, 2H), 

2.97-2.91 (m, H), 2.75 (d, J 13.3 Hz, H7), 2.49-2.23 (m, H), 2.39 (s, NCH3), 1.82 (d, 

J 1.2 Hz, CH3), 1.32 (t, CH3 of Et); 13C NMR 8: 173.79 (CO), 148.10 (C9A), 147.64 

(C10A), 140.34 (C6), 134.00 (C7aB), 129.15 (C1 laB), 119.88 (C5), 115.54 (C8C), 

114.14 (C11C), 63.89 (C4), 61.89 (CH2 of Et), 56.80 (OCH3), 56.58 (OCH3), 54.70 

(C2), 40.63 (NCH3), 37.42 (C7D), 26.42 (C1D), 24.15 (CH3), 14.95 (CH3 of Et); MS 

m/z: 333 (M+, 28%; Calcd. for C19H27N04 333.1940, found 333.1917), 290 (30), 

260 (100), 246 (13), 217 (47), 206 (31), 202 (23). 

Ethyl 9.10-Dimethoxy-2.3.4.5.6.7-hexahydro-1H-3-benzazonine-4-carboxylate 104b  

(i) Compound 52b (0.193 g) was refluxed in ethanol (10 ml) under hydrogen at 

atmospheric pressure with 5% Pd-C (0.020 g) for 16 h. Samples analysed by GC-MS 

after 1.5 h., 3.5 h. and 16 h. showed mixtures attributed to 52b, 104a, and 104b in the 

ratios 8:88:4, 1:88:11, and 0:77:23. 

(ii) Compound 105 (0.101 g, 0.233 mmol) was stirred in methanol (5 ml) at room 

temperature with 5% Pd-C (0.015 g) under hydrogen for 3 h. The solution was 

filtered and then concentrated. Treatment of the residue with 1M aqueous sodium 

hydroxide (5 ml) and extraction of the aqueous mixture with diethyl ether (3 x 5 ml) 

afforded, after drying and then concentration of the ether extracts, the hexahydro-3- 

benzazonine 104b (0.051 g, 71%) as a colourless oil. 1 H NMR 8: 6.63 (s, ArH), 6.57 

(s, ArH), 4.13 (q, CH2 of Et), 3.85 (s, 20CH3), 3.83-3.74 (m, H), 3.45 (dd, J 4.4 Hz, 

7.9 Hz, H4), 2.98-2.63 (m, 5H), 1.97 (bs, NH), 1.81-1.69 (m, 2H), 1.62-1.48 (m, 2H), 

1.24 (t, CH3 of Et); 13C NMR 8: 175.53 (C00), 148.05 (C9A), 147.48 (C10A), 

134.43 (C7aB), 133.15 (C11 aB), 113.68 (C8C), 112.94 (C11C), 61.19 (CH2 of Et), 
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60.82 (C4), 56.45 (20CH3), 48.02 (C2), 37.83 (C7D), 31.77 (C1D), 28.66 (C5D), 

27.54 (C6D), 14.85 (CH3 of Et); MS m/z: 307 (M+, 20%; Calcd. for C17H25N04 

307.1782, found 307.1787), 234 (100), 217 (11), 165 (17), 117 (7). 

(iii) Compound 105 (0.101 g, 0.233 mmol) was stirred in methanol (5 ml) at 0°C 

with 5% Pd-C under hydrogen. Samples analysed by GC-MS after 10 min., 30 min., 

1 h. and 2 h. showed mixtures attributed to 52b, 104a, and 104b in the ratios 46:53:1, 

0:84:16, 0:7:93, and 0:0:100. 

3-Benzy1-9.10-Dimethoxy-4-ethoxycarbony1-2.3.4.5-tetrahydro-1H- 

3-benzazoninium Hydrochloride 105  

Hydrogen chloride gas from a Kipps' apparatus was passed through a solution 

of 52b (1.123 g, 2.839 mmol) in diethyl ether (20 ml) for 5 min. The precipitate was 

collected and recrystallised from methanol/diethyl ether to give the title compound 

105 (0.613 g, 50%) as fine colourless prisms with m.p. 102-103°C. 1 H NMR 8: 

11.70 (s, NH), 8.08 (s, 2ArH'), 7.49 (bs, 3ArH'), 6.71 (s, ArH), 6.34 (s, ArH), 5.51- 

5.42 (m, H6), 5.03-4.98 (m, H7), 4.45-4.29 (m, CH2 of Et and NCH2), 3.89 (s, 

OCH3), 3.75 (s, OCH3), 3.30-3.11 (m, 3H), 1.78-1.72 (m, H), 1.36 (t, CH3 of Et); 

13C NMR 8: 167.66 (C00), 148.15 (C9A), 147.61 (C10A), 137.82 (C6B), 133.26 

(C7 and C4'B), 132.80 (C7aC), 130.68 (2C'), 130.00 (C1 laC), 129.61 (2C'), 128.77 

(CFC), 113.37 (C8D), 110.22 (Clip), 69.05 (C4), 63.51 (CH2 of Et), 62.56 (NCH2), 

58.09 (C2), 56.48 (20CH3), 33.40 (ClE), 33.16 (C5E), 14.60 (CH3 of Et). 

7.8-Dimethoxy-5-isopropionitrile-3-methyl-2.3-dihydro-/H-3-benzazepine 106  

A pale yellow oil (0.265 g) containing 3 components in the ratio 10.0:1.0:1.5, 

with 63a the major component (from the rearrangement of 62a in refluxing 

acetonitrile), was refluxed in dry butyronitrile (20 ml) for 66 h. Concentration and 

then purification of the residue by passage through an alumina plug with 

dichloromethane/25% light petroleum afforded an oil (109 mg). A portion of the oil 

(0.074 mg) was purified by preparative reverse phase HPLC with acetonitrile/41% 
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water to give the 5-isopropionitrile-3-benzazepine 106 (0.037 g) as a yellow oil. 1 H 

NMR 8: 6.69 (s, ArH), 6.57 (s, ArH), 6.31 (s, H4), 3.87 (s, OCH3), 3.86 (s, OCH3), 

3.78 (q, H2'), 3.41 (t, H2), 2.88 (t, H1), 2.86 (s, NCH3), 1.50 (d, J 7.1 Hz, CH3); 13C 

NMR E. 148.03 (C7A), 146.88 (C8A), 137.19 (C4), 133.89 (C9aB), 129.74 (C5aB), 

123.95 (CNC), 113.09 (C6D), 109.23 (C9D), 102.16 (C5C), 57.54 (C2), 56.72 

(OCH3), 56.55 (OCH3), 45.64 (NCH3), 36.13 (Cl), 31.55 (C2'E), 21.23 (C3'E); MS 

m/z: 272 (M+, 75%; Calcd. for C16H20N202 272.1524, found 272.1517), 257 (100), 

243 (7), 230 (3), 218 (10), 199 (4), 175 (4). 

Attempted Preparation of E-9.10-Dimethoxy-3-methyl-2.3.4.5-tetrahydro-1H-

3-benzazonine-4-methanol 107 

A suspension of lithium aluminium hydride (0.289 g, 7.61 mmol) in dry 

diethyl ether (6 ml) was refluxed for 10 min. and then a solution of 52a (1.029 g, 

3.222 mmol, E/Z = 19) in diethyl ether (10 ml) was added dropwise to maintain 

reflux. Substantial solid formed. After refluxing for 30 min. the mixture was stirred 

for 1 h. at 25°C and then cooled and water was added cautiously until the hydrogen 

evolution ceased. Diethyl ether (10 ml) was added and the solution was filtered. The 

solid was extracted with further diethyl ether (2 x 10 ml) and then the ether solutions 

were combined and washed with water (5 ml), and then saturated brine (5 m1). 

Drying and then concentration of the extracts afforded a colourless solid tentatively 

attributed to 107 (0.864 g, 95%). 1 H NMR (CDC13 at 60°C) 8: 6.72 (s, ArH), 6.63 (s, 

ArH), 6.32 (bs, H7), 5.53 (bs, H6), 3.82 (s, OCH3), 3.81 (s, OCH3), 3.46 (bs, 3H), 

3.11 (bs, 2H), 2.70 (bs, 2H), 2.55 (dd, J 15.8 Hz, 7.8 Hz, H), 2.44 (s, NCH3), 2.32- 

2.05 (m, 2H). 

Purification of a portion (0.260 g) of the above solid by p.t.l.c. on alumina 

with ethyl acetate/5% hexane gave: 

(i) at Rf 0.92, the pyrrolidine 108b (0.113 g, 36%). 

(ii) at Rf 0.40, the pyrrolidine 108a (0.034 g, 12%). 
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5-(2-Etheny1-4.5-dimethoxypheny1)-1-methy1-2-pyrrolidinemethanol 108a  

The procedure described for the preparation of 107 afforded the title 

compound 108a (0.034 g, 12%) as a colourless oil. 1 H NMR 8: 7.08 (dd, J 17.3 Hz, 

10.9 Hz, H1"), 6.99 (s, ArH'), 6.83 (s, ArH'), 5.51 (dd, J 17.3 Hz, 1.3 Hz, H2"), 5.22 

(dd, J 10.9 Hz, 1.3 Hz, H2"), 4.36 (t, H5), 3.88 (s, OCH3), 3.86 (s, OCH3), 3.67(t, 

CH2 of CH2OH), 3.30-3.26 (m, H2), 2.23 (s, NCH3), 2.29-2.11 (m, 2H), 1.87-1.74 

(m, 2H); 13C NMR 8: 149.52 (C4 1A), 148.26 (C5 1A), 134.84 (Cl"), 133.73 (Cl'B), 

130.25 (C2'B), 114.72 (C2"), 110.20 (C3'C), 109.44 (C6'C), 65.04 (C5D), 63.35 

(C2D), 62.74 (CH2OH), 56.60 (OCH3), 56.48 (OCH3), 35.84 (NCH3), 32.98 (C4E), 

27.60 (C3E); MS m/z: 277 (M+, 12%; Calcd. for C16H23NO3 277.1677, found 

277.1669), 246 (100), 215 (13), 189 (32), 70 (30). 

5-(2-Etheny1-4.5-dimethoxypheny1)-1-methyl-2-pyrrolidinemethanol acetate 108b  

The procedure described for the preparation of 107 afforded the title 

compound 108b (0.113 g, 36%) as a colourless oil. 1 H NMR 8: 7.05 (dd, J 17.3 Hz, 

10.9 Hz, H1"), 7.00 (s, ArH'), 6.97 (s, ArH'), 5.51 (dd, J 17.3 Hz, 1.3 Hz, H2"), 5.20 

(dd, J 10.9 Hz, 1.3 Hz, H2"), 4.26 (dd, J 11.2 Hz, 4.9 Hz, H of CH20Ac), 4.15-4.06 

(m, H5 and H of CH20Ac), 3.90 (s, 20CH3), 3.59-3.53 (m, H2), 2.32 (s, NCH3), 

2.29-2.24 (m, H), 2.12 (s, CH3), 2.10-2.01 (m, H), 1.72-1.53 (m, 2H); 13C NMR 8: 

171.51 (CO), 149.71 (C4'A), 148.05 (C5'A), 134.42 (Cl"), 129.58 (Cl' and CT), 

114.34 (C2"), 109.54 (C3C), 109.16 (C6'C), 64.60 (CH2 of CH20Ac), 63.10 (C5D), 

61.68 (C2D), 56.43 (OCH3), 56.34 (OCH3), 35.43 (NCH3), 33.78 (C4E), 27.42 

(C3E), 21.60 (CH3); MS m/z: 319 (M+, 17%; Calcd. for CI8H25N04 319.1783, 

found 317.1775), 246 (100), 215 (12), 189 (26), 70 (24). 
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6.3 	 Experimental for Chapter Three 

63-Dimethoxy-2-methyl-1-viny1-1.2.34-tetrahydroisoquinoline N-oxide 123a 

To 49a (2.116 g, 9.07 mmol) in dichloromethane (40 ml) at 0°C was added a 

solution of m-CPBA (1.9 g, 11 mmol) in dichloromethane (30 m1). The solution was 

allowed to warm to room temperature and stirred for 24 h. before the addition of 5% 

aqueous sodium bicarbonate (40 ml) and removal of the organic solvent in vacuo. 

The aqueous solution was washed with diethyl ether (3 x 15 ml) then made acidic to 

litmus with 3M aqueous hydrochloric acid and washed with further diethyl ether (3 x 

15 ml). The solution was basified with saturated aqueous sodium bicarbonate then 

saturated with sodium chloride and extracted with chloroform (3 x 25 m1). Drying 

and then concentration of the organic extracts afforded a mixture (65:35) of the B-

ring diastereomers of 1-vinyltetrahydroisoquinoline N-oxide 123a (1.647 g, 73%) as 

a tan hygroscopic solid. 1 H NMR 8: 6.68 (s, H5), 6.55 (s, H8a), 6.60-6.51 (m, Hl'a), 

6.48 (s, H8b), 5.93-5.81 (m, Hlb), 5.67 (d, J 10.1 Hz, H2'a), 5.57 (d, J 17.8 Hz, 

H2'b), 5.52 (d, J 10.1 Hz, H2'b), 5.28 (d, J 16.8 Hz, H2'a), 4.75 (d, J 9.0 Hz, Hlb), 

4.67 (d, J 7.5 Hz, Hla), 3.87 (s, OCH3), 3.73 (s, OCH3), 3.74-3.38 (m, 3H), 3.28 (s, 

NCH3a), 3.22 (s, NCH3b), 2.93-2.81 (m, H); 13C NMR 8: 149.31 (C6A), 148.38 

(C7A), 134.51 and 134.03 (Cl'), 124.33 and 124.56 (CT), 123.68 (C4a and C8a), 

111.57 (C5B), 111.67 and 111.14 (C8B), 78.41 and 77.95 (Cl), 63.26 and 60.89 

(C3), 58.13 and 57.23 (NCH3), 56.51 (20CH3), 26.02 and 25.66 (C4); .MS m/z: 249 

(M+, 24%; Calcd. for C14H19NO3 249.136, found 249.135), 232 (7), 203 (12), 190 

(100), 175 (43), 159 (24). 

2-Benzy1-63-dimethoxy-1-vinyl-1.2.3.4-tetrahydroisoquinoline N-oxide 123b  

To 49b (2.109 g, 6.817 mmol) in dichloromethane (40 ml) at 0°C was added a 

solution of m-CPBA (1.42 g, 8.26 mmol) in dichloromethane (30 m1). The solution 

was allowed to warm to room temperature and stirred for 24 h. before the addition of 

5% aqueous sodium bicarbonate (40 ml) and removal of the organic solvent in 
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vacuo. The aqueous solution was washed with diethyl ether (3 x 15 ml) then made 

acidic to litmus with 3M aqueous hydrochloric acid and washed with further diethyl 

ether (3 x 15 m1). The solution was basified with saturated aqueous sodium 

bicarbonate then saturated with sodium chloride and extracted with chloroform (3 x 

25 ml). Drying and then concentration of the organic extracts afforded a mixture 

(81:19) of the B-ring diastereomers of 1 -vinyltetrahydroisoquinoline N -oxide 123b 

(1.778 g, 80%) as a tan hygroscopic solid. 1 H NMR 8: 7.57-7.26 (m, 5ArH"), 6.73- 

6.62 (m, H5 and Hla), 6.53 (s, H8a), 6.44 (s, H8b), 6.11-5.98 (m, Hlb), 5.67 (d, J 

10.4 Hz, H2'a), 5.57 (d, J 10.3 Hz, H2'b), 5.48 (d, J 10.1 Hz, H2 1b), 5.19 (d, J 17.5 

Hz, H2'a), 5.03 (d, J 9.1 Hz, H lb), 4.85 (d, J 6.5 Hz, Hl), 4.69-4.51 (m, NCH2Ph), 

3.88 (s, OCH3a), 3.86 (s, OCH3b), 3.77 (s, OCH3a), 3.71 (s, OCH3), 3.73-3.32 (m, 

3H), 2.99-2.74 (m, H); 13C NMR 8: 149.55 (C6A), 148.51 (C7A), 134.16-128.28 

(6C", Cl', C4a and C8a), 123.97 and 125.26 (C2'), 111.57 (C8B), 111.35 (C8B), 

74.69 and 79.40 (Cl), 71.46 and 70.21 (NCH2Ph), 59.21 and 57.17 (C3), 56.68 

(20CH3), 26.04 and 25.38 (C4). 

Mixture of 6 3 -Dimethoxy-2-methyl-l-propeny1-1.2.3.4-tetrahydroisoquinoline N-

oxide isomers 123c 

To a mixture (Z:E=3:1) of the 1-propenyl isomers of 81b (1.282 g, 5.18 

mmol) in dichloromethane (25 ml) at 0°C was added a solution of m-CPBA (1.079 g, 

6.27 mmol) in dichloromethane (25 m1). The solution was allowed to warm to room 

temperature and stirred for 20 h. before the addition of 5% aqueous sodium 

bicarbonate (25 ml) and removal of the organic solvent in vacua. The aqueous 

solution was washed with diethyl ether (3 x 10 ml) then made acidic to litmus with 

3M aqueous hydrochloric acid and washed with diethyl ether (3 x 10 m1). The 

solution was basified with saturated aqueous sodium bicarbonate then saturated with 

sodium chloride and extracted with chloroform (3 x 25 m1). Drying and then 

concentration of the organic extracts afforded a mixture (51:24:16:9) attributed to the 

two Z and two E B -ring diastereomers of 1-propenyltetrahydroisoquinoline N-oxide 
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123c (1.243 g, 91%) as a tan hygroscopic solid. 1 H NMR characteristic peaks 8: 

6.54c, 6.52a, 6.48d and 6.42b (s, H8), 5.14b, 5.08a, 4.70d and 4.63c (d, J 9.6 Hz, H1), 

3.27a, 3.25c, 3.21b and 3.19d (s, NCH3). 

6,7-Dimethoxy-1-12'43,4-dimethoxyphenyfletheny11-2-methyl-1,2,3,4-  

tetrahydroisoquinoline N-oxide 123d  

To 81c (0.301 g, 0.781 mmol) in dichloromethane (10 ml) at 0°C was added a 

solution of m-CPBA (0.263 g, 1.53 mmol) in dichloromethane (15 m1). The solution 

was allowed to warm to room temperature and stirred for 21 h. then washed with 

0.5M aqueous sodium bicarbonate (3 x 5 m1). Drying and then concentration of the 

organic layer afforded a residue which was purified by p.t.l.c. on silica with 

dichloromethane/10% methanol to afford a mixture (68:32) of the B-ring 

diastereomers of tetrahydroisoquinoline N-oxide 123d (0.259 g, 82%) as a tan 

hygroscopic solid. 1 H NMR 8: 7.10-6.74 (m, 3ArH", Hl'a, and H2 1b), 6.72 (s, H5), 

6.60 (s, H8a), 6.52 (s, H8b), 6.41 (d, J 16.1 Hz, H2'a), 6.01 (dd, J 15.5 Hz, 9.3 Hz, 

Hrb), 4.98 (d, J 9.3 Hz, Hlb), 4.87 (d, J 7.5 Hz, H1a), 3.89-3.88 (m, 30CH3), 3.78 

(s, OCH3), 3.72-3.49 (m, 3H), 3.34 (s, NCH3a), 3.32 (s, NCH3b), 2.94-2.85 (m, H); 

13C NMR 8: 138.24 and 138.47 (Cl'), 122.76 (C2'A), 121.17 (C6A), 78.09 and 80.70 

(C1), 63.02 and 59.83 (C3), 57.78 and 57.41 (NCH3), 56.42-56.25 (40CH3), 25.82 

and 25.28 (C4); MS m/z: 385 (M+, 43%), 354 (43), 326 (16), 206 (100), 204 (45), 

151 (53). 

7,8-Dimethoxy-3-methy1-1-viny1-1,3.4.5-tetrahydro-2.3-benzoxazepine 124a  

(i) The N-oxide 123a (1.647 g) was refluxed in dry acetonitrile (50 ml) for 1 h. 

Concentration and then purification of the residue by column chromatography on 

alumina with dichloromethane/2% light petroleum afforded the 2,3-benzoxazepine 

124a (1.197 g, 73%) as a pale tan oil. 1 H NMR 8: 6.67 (s, ArH), 6.58 (s, ArH), 6.01- 

6.10 (m, H1'), 5.45 (d, J 6.8 Hz, HI), 5.29 (d, J 17.9 Hz, H2'), 5.24 (d, J 10.8 Hz, 

H2'), 3.86 (s, OCH3), 3.83 (bs, OCH3 and H), 3.28-3.24 (m, H), 3.10-3.02 (m, H), 
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2.92-2.85 (m, H), 2.72 (s, NCH3); 13C NMR 8: 148.03 (C7A), 147.89 (C8A), 137.17 

(Cl'), 132.81 (C5aB), 129.63 (C9aB), 117.78 (C2'), 114.39 (C6C), 111.16 (C9C), 

87.12 (C1), 60.69 (C4), 56.57 (20CH3), 47.39 (NCH3), 33.25 (C5); MS tn/z: 249 

(M+, 22%; Calcd. for C14H19NO3 249.1363, found 249.135), 232 (10), 203 (11), 

190 (100), 175 (44), 159 (22), 147 (17). 

(ii) A solution of 123a (0.219 g) in acetonitrile (15 ml) was stored sealed under 

nitrogen and protected from light at 20-25°C for 3.5 months. 1 H NMR analysis 

indicated a 79:21 mixture of 124a:123a. 

(iii) A solution of 123a (0.419 g) in dichloromethane (30 ml) was refluxed for 6 

days. 1 H NMR analysis indicated a 64:36 mixture of 124a:123a. 

(iv) A solution of 123a (0.109 g) in mesitylene (10 ml) was refluxed for 25 min. 

then concentrated. The residue was purified by passage through an alumina plug 

with dichloromethane to give 124a (0.016 g, 15%). 

3-Benzy1-7,8-dimethoxy-1-vinyl-1,3,4,5-tetrahydro-2,3-benzoxazepine 124b  

The N-oxide 123b (1.778 g) was refluxed in dry acetonitrile (50 ml) for 1 h. 

Concentration and then purification of the residue by column chromatography on 

alumina with dichloromethane/2% light petroleum afforded the 2,3-benzoxazepine 

124b (1.260 g, 71%) as a pale yellow oil. 1 H NMR 8: 7.45-7.25 (5ArH"), 6.66 (s, 

ArH), 6.49 (s, ArH), 5.97-5.85 (m, H1'), 5.12-5.00 (m, 2H2' and H1), 3.92-3.77 (m, 

20CH3 and NCH2Ph), 3.37-3.29 (m, H), 3.21-3.13 (m, H), 3.04-2.96 (m, H), 2.79- 

2.71 (m, H); 13C NMR 8: 147.86 (C7A), 147.70 (C8A), 138.25 (C1"), 136.94 (C1'), 

133.20 (C5aB), 132.54 (C9aB), 130.11 (2C"), 128.60 (2C"), 127.68 (C4"), 117.61 

(C2'), 114.33 (C6C), 111.09 (C9C), 87.40 (C1), 63.96 (C4), 58.69 (NCH2Ph), 56.55 

(20CH3), 33.42 (C5); MS m/z: 325 (M+, 14%; Calcd. for C201-123NO3 325.1677, 

found 325.1692), 308 (10), 282 (14), 203 (15), 190 (100), 175 (30), 159 (16), 147 

(11), 91(61); IR: 2934, 2832, 1516, 1258, 1109, 1030, 700 cm -1 ; UV: 286, 240, 

215 nm. 
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7 8-Dimethoxy-3-methyl-1-propeny1-1.3.4.5-tetrahydro-2,3-benzoxazepine 124c 

(i) A mixture (Z:E=3:1) of the isomers of the 1-propenyl-N-oxide 123c (0.411 g) 

was refluxed in dry acetonitrile (25 ml) for 1 h. Concentration and then purification 

of the residue by column chromatography on alumina with dichloromethane/2% light 

petroleum afforded a mixture (Z:E=3:1) of the isomers of the 2,3-benzoxazepine 

124c (0.358 g, 87%) as a colourless oil. The isomers could not be separated by 

p.t.l.c. or HPLC techniques. Z-isomer 1 H NMR 8: 6.67 (s, ArH), 6.59 (s, ArH), 5.82 

(d, J 8.6 Hz, H1), 5.75-5.68 (m, H1' and H2'), 3.86 (s, OCH3), 3.82 (s, OCH3), 3.32- 

3.22 (m, H), 3.12-3.04 (m, H), 2.90-2.86 (m, 2H), 2.71 (s, NCH3), 1.83 (dd, J6.6 Hz, 

1.4 Hz, CH3); 1 H NMR (d6 Benzene) 8: 6.00 (d, J 8.7 Hz, H1), 5.93-5.87 (m, H1), 

5.61-5.57 (m, H2'), 1.61 (dd, J 6.9 Hz, 1.6 Hz, CH3); 13C NMR (d6 benzene) 8: 

149.13 (C7A), 149.07 (C8A), 135.61 (C5aB), 131.52 (C9aB), 131.04 (Cl'), 126.92 

(CT), 116.26 (C6C), 112.56 (C9C), 81.57 (Cl), 61.13 (C4), 56.68 (20CH3), 47.82 

(NCH3), 34.93 (C5), 14.30 (CH3). Signals attributed to the E-isomer 1 H NMR 5: 

6.65 (s, ArH), 6.55 (s, ArH), 5.41 (d, J 7.0 Hz, H1), 2.70 (s, NCH3), 1.73 (d, J 5.3 

Hz, CH3); 13C NMR (d6 benzene) 5: 87.21 (C1), 62.83 (C4), 56.36 (20CH3), 47.53 

(NCH3), 34.01 (C5), 18.48 (CH3). 

(ii) A mixture (Z: E=3:1) of the isomers of 123c (0.221 g) was refluxed in 

dichloromethane (12 ml) for 5 days then worked up as for (i) to give a mixture 

(Z:E=3:1) of the isomers of 124c (0.118 g, 53%). 

(iii) A mixture (Z: E=3:1) of the isomers of 123c (0.033 g) was absorbed onto 

60HF254 basic alumina type E (0.22 g) from dichloromethane. The residual solvent 

was removed under vacuum. The solid was irradiated on medium power for 5 min. 

in a standard microwave (high power=750W) then extracted with dichloromethane to 

give a mixture (Z:E=1.9:1) of the isomers of 124c (0.023 g, 70%). 



234 

7.8-Dimethoxy-142'-(3.4-dimethoxyphenypetheny11-3-methyl-1.34.5-tetrahydro- 

23-benzoxazepine 124d  

(0 The N-oxide 123d (0.192 g) was refluxed in dry acetonitrile (10 ml) for 1 h. 

Concentration and then purification of the residue by p.t.l.c. with 

dichloromethane/5% methanol afforded: 

(a) at Rf 0.15, recovered 123d (0.042 g, 22%). 

(b) at Rf 0.40, the precursor amine 81c (0.003 g, 2%). 

(c) at Rf 0.80, the 2,3-benzoxazepine 124d (0.112 g, 58%) as a pale yellow oil. 1 H 

NMR 8: 6.97-6.92 (m, o-ArH"), 6.80 (d, J 8.2 Hz, H5"), 6.69 (s, 116), 6.61 (s, H9), 

6.57 (d, J 15.9 Hz, H2'), 6.26 (dd, J 15.8 Hz, 7.5 Hz, H1'), 5.62 (d, J 7.4 Hz, HO, 

3.88 (s, 30CH3), 3.82 (s, OCH3), 3.46-3.38 (m, H), 3.14-3.07 (m, H), 2.96-2.90 (m, 

H), 2.75 (s, NCH3), 2.73-2.67 (m, H); 13C NMR 8: 149.55 (C7 and C2"A), 148.07 

(C8 and C3"A), 133.11 (C1'), 132.94 (C5aB), 130.15 (Cl"B), 129.04 (C9aB), 126.16 

(C2'), 120.83 (C6"C), 114.32 (C6C), 111.47 (C9C), 111.27 (C5"C), 109.36 (C2"C), 

87.29 (C1), 60.66 (C4), 56.56 (40CH3), 47.28 (NCH3), 32.88 (C5); MS m/z: 385 

(M+, 9%; Calcd. for C22H27N05 385.189, found 385.188), 369 (62), 354 (50), 326 

(16), 206 (100), 204 (25), 190 (12), 151 (43); IR: 1516, 1464, 1265, 1227, 1140, 

1026, 914, 802, 731 cm -1 . 

(ii) Photolysis of 123d (0.259 g) in dry acetonitrile (200 ml) at _225 nm for 30 mm. 

afforded a mixture with numerous components. 

6.7-Dimethoxy-1-methy1-1.3.3a.4.9.9a-hexahydroisoxazolo[3.4-Nnaphthalene 126a  

The benzoxazepine 124a (1.050 g) was heated in an evacuated sealed tube at 

an internal temperature of 210°C for 30 mm. Passage of the resultant oil through an 

alumina plug with dichloromethane afforded a colourless residue (0.868 g). 

Purification of this residue by column chromatography on silica, with a gradient 

from dichloromethane/5% light petroleum to dichloromethane/1% methanol, 

afforded 124a (0.070 g, 7%) followed by the isoxazolo[3,4-b]naphthalene 126a 

(0.450 g, 43%) as a colourless oil. 1 H NMR 8: 6.68 (s, ArH), 6.67 (s, ArH), 4.09 (t, 
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H3), 3.83 (s, OCH3), 3.82 (s, OCH3), 3.40 (t, H3), 2.97-2.92 (m, H3a and H), 2.80- 

2.72 (m, H), 2.70 (s, NCH3), 2.66-2.45 (m, 3H); 13C NMR 8: 147.66 (C6A), 147.51 

(C7A), 129.10 (C4aB), 128.81 (C8aB), 111.90 (C5 and C8), 71.23 (C3), 68.18 (C9a), 

56.23 (OCH3), 56.05 (OCH3), 43.92 (C3aC), 43.44 (NCH3C), 31.70 (C9D), 30.83 

(C4D); MS m/z: 249 (M+, 100%; Calcd. for C14H i9NO3 249.1364, found 

249.1378), 232 (16), 218 (52), 204 (55), 189 (56), 164 (63); IR: 1514, 1464, 1452, 

1258, 1229, 1115. 

1-Benzy1-6.7-Dimethoxy-1.3.3a.4.9.9a-hexahydroisoxazolo[3.4-1,Thaphthalene 126b  

The benzoxazepine 124b (0.890 g) was heated in an evacuated Buchi bulb-to-

bulb apparatus at an internal temperature of 180°C for 150 min. with the distillation 

of a 67:25:8 mixture of 124b:127:126 (0.190 g, 21%). The residual dark oil was 

purified by passage through a silica plug with dichloromethane to afford a pale 

yellow oil (0.508 g) which was then further purified by preparative reverse phase 

HPLC with acetonitrile/41% H20 to give: 

(a) at 21.9 min., the isoxazolo[3,4-Nnaphthalene 126b (0.210 g, 24%) as a 

colourless oil. 1 H NMR 8: 7.39-7.25 (m, 5ArH'), 6.66 (s, ArH), 6.59 (s, ArH), 4.13 

(t, H3), 3.98 (d, J 3.9 Hz, NCH2Ph), 3.82 (s, 20CH3), 3.48 (t, H3), 3.19-3.13 (m, 

H9a), 2.93-2.85 (m, H3a), 2.72-2.62 (m, H4 and H9), 2.56-2.45 (m, H4 and H9); 

13 C NMR 8: 147.81 (C6A), 147.75 (C7A), 137.86 (Cl'), 129.74 (C4aB), 129.51 

(2C'), 129.32 (C8a13 ), 128.74 (2C'), 127.78 (C4'), 112.19 (C5C), 111.83 (C8C), 71.63 

(C3), 66.41 (C9a), 61.58 (NCH2Ph), 56.48 (20CH3), 43.69 (C3a), 32.83 (C9D), 

31.65 (C4D); MS m/z: 325 (M+, 46%; Calcd. for C14H19NO3 249.1364, found 

249.1378), 294 (20), 204 (35), 189 (60), 165 (41), 106 (22), 91 (100); IR: 1516, 

1464, 1452, 1223, 1113. 

(b) at 42.5 min., compound 124b (0.005 g, 1%) 

(c) at 45.9 min., compound 127 (0.076 g, 9%). 



236 

2-Benzyloxy-6.7-dimethoxy-1-viny1-1.2.3.4-tetrahydroisoquinoline 127  

The preparation of 126b described above gave the 2-benzyloxyisoquinoline 

127 (0.076 g, 9%) which crystallised from methanol as a colourless solid with m.p. 

67-68°C. 1 H NMR 8: 7.40-7.24 (m, 5ArH"), 6.60 (s, ArH), 6.57 (s, ArH), 5.98-5.87 

(m, H1'), 539 (dd J 9.7 Hz, H2'), 5.35 (d, J 15.7 Hz, H2'), 4.78 (d, J 10.7 Hz, H of 

OCH2Ph), 4.73 (d, J 10.7 Hz, H of OCH2Ph), 4.34 (d, J7.8 Hz, H1), 3.83 (s, OCH3), 

3.80 (s, OCH3), 3.44-3.36 (m, H), 3.04-2.93 (m, 2H), 2.85-2.77 (m, H); 13C NMR 8: 

148.47 (C6A), 147.91 (C7A), 139.44 (Cl'), 138.19 (Cl"), 129.56 (2C"), 128.88 

(2C"), 128.45 (C"), 127.70 (C4aB), 126.35 (C8aB), 119.83 (C2'), 111.43 (C5C), 

111.30 (C8C), 75.85 (OCH2Ph), 56.50 (20CH3), 52.07 (C3), 28.81 (C4); MS m/z: 

325 (Mt, 18%; Calcd. for C20H23NO2 325.1677, found 325.1670), 308 (9), 254 

(32), 234 (77), 204 (13), 189 (100), 176 (27), 91(71). 

6.7-Dimethoxy-1-isopropeny1-2-methy1-1.2.3.4-tetrahydroisoquinoline N-oxide 128a 

To 70a (1.020 g, 4.378 mmol) in dichloromethane (30 ml) at 0°C was added a 

solution of m-CPBA (0.904 g, 5.25 mmol) in dichloromethane (30 ml). The solution 

was stirred for 30 h. while allowed to warm to room temperature then 5% aqueous 

sodium bicarbonate (25 ml) was added and the organic solvent was removed in 

vacuo. The aqueous solution was washed with diethyl ether (3 x 10 ml) then made 

acidic to litmus with 3M aqueous hydrochloric acid and washed with further diethyl 

ether (3 x 15 m1). The solution was basified with saturated aqueous sodium 

bicarbonate then saturated with sodium chloride and extracted with chloroform (3 x 

25 m1). Drying and then concentration of the organic extracts afforded a mixture 

(50:50) of the B-ring diastereomers of 1-isopropenyltetrahydroisoquinoline N-oxide 

128a (0.693 g, 64%) as a tan hygroscopic solid. trans isomer* 1 H NMR 8: 6.60 (s, 

ArH), 6.36 (s, ArH), 5.25 (m, H2'), 4.84 (s, H1), 3.79 (s, OCH3), 3.72 (s, OCH3), 

3.61-3.45 (m, 2H), 3.42-3.31 (m, H), 3.16 (s, NCH3), 2.73-2.66 (m, H), 1.61 (s, 

CH3); 13C NMR 8: 148.84 (C6A), 148.46 (C7A), 141.43 (Cl"), 124.03 (C4aB), 

123.93 (C2'), 123.31 (C8aB), 111.24 (C5C), 110.83 (C8C), 84.83 (Cl), 60.62 (C3), 
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58.28 (NCH3), 56.40 (20CH3), 24.96 (C4), 20.49 (CH3); IR: 1520, 1256, 1229, 

1124, 918, 729. Peaks attributed to the cis isomer 1 H NMR 8: 6.40 (s, ArH), 5.48 (s, 

H2'), 5.09 (s, H2'), 4.76 (s, H1), 3.29 (s, NCH3), 2.03 (s, CH3); 13C NMR 8: 80.75 

(C1), 63.79 (C3), 58.49 (NCH3), 25.87 (C4), 22.26 (CH3). 

* The trans isomer was obtained separately as described in the formation of 129a. 

6.7-Dimethoxy-2-methyl-1-(a-phenyletheny1)-1.2.3.4-tetrahydroisoquinoline  

N-oxide 128b  

Whenever possible solutions were cooled in ice throughout this procedure. 

To 70b (1.486 g, 4.803 mmol) in dichloromethane (25 ml) at 0°C was added a 

solution of m-CPBA (1.021 g, 5.936 mmol) in dichloromethane (25 m1). The 

solution was stirred at 0°C for 20 h. then 5% aqueous sodium bicarbonate (30 ml) 

was added and the organic solvent was removed in vacuo. The cooled aqueous 

solution was washed with diethyl ether (3 x 10 ml) then made acidic to litmus with 

3M aqueous hydrochloric acid and washed with further diethyl ether (3 x 15 m1). 

The solution was basified with saturated aqueous sodium bicarbonate then saturated 

with sodium chloride and extracted with chloroform (3 x 25 m1). Drying and then 

concentration of the organic extracts afforded a 4:1 mixture of 128b and 129b (1.525 

g). Purification of a portion (1.161 g) of this mixture by column chromatography on 

alumina with dichloromethane/0-10% methanol gave: 

(a) a 78:22 mixture of 129b and 130b (0.156 g, 14%). 

(b) the trans-B -ring diastereomer of the tetrahydroisoquinoline N-oxide 128b (0.547 

g, 47%) as a cream hygroscopic solid. 1 H NMR 8: 7.30 (s, 3ArH"), 7.07 (bs, o-

ArH"), 6.71 (s, ArH), 6.62 (s, ArH), 5.61 (s, H1A), 5.30 (s, 2H2'A), 3.91 (s, OCH3), 

3.83 (s, OCH3), 3.73-3.60 (m, 2H), 3.18-3.11 (m, H), 3.12 (s, NCH3), 2.65-2.58 (m, 

H); 13C NMR 8: 149.28 (C6A), 148.92 (C7A), 147.83 (CFA), 140.53 (Cl"), 129.43 

(2C"), 129.03 (2C"), 127.95 (C4"), 126.14 (C2'), 124.75 (C4aB), 124.28 (C8aB), 

111.56 (C5 and C8), 82.45 (Cl), 59.76 (NCH3), 58.66 (C3), 56.67 (OCH3), 56.56 

(OCH3), 24.91 (C4). 
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6.7-Dimethoxy-2-methyl-1-(1 t-trimethylsilyletheny1)-1.2.3.4-tetrahydroisoquinoline  

N-oxide 128c 

To 70c (0.506 g, 1.66 mmol) in dichloromethane (10 ml) at 0°C was added a 

solution of m-CPBA (0.310 g, 1.80 mmol) in dichloromethane (10 m1). The solution 

was allowed to warm to room temperature and stirred for 20 h. then washed with 5% 

aqueous sodium bicarbonate (2 x 7 m1). Drying and then concentration of the 

organic solution afforded a hygroscopic foam that was purified by column 

chromatography on alumina, with a gradient from dichloromethane/5% hexane to 

dichloromethane/10% methanol, to give: 

(a) a 74:26 mixture (0.134 g) of 70c (20%) and 129c (6%). 

(b) a mixture (trans:cis=66:34) of the B-ring diastereomers of the tetrahydro-

isoquinoline N-oxide 128c (0.325 g, 61%) as a yellow oil. 1H NMR 8: 6.49 (s, H5a), 

6.47 (s, H5b), 6.26 (s, H8b), 6.15 (s, H8a), 5.83-5.78 (m, 2H2ta and H2tb), 5.62 (d, J 

2.5 Hz, HTb) 4.88 (s, Hla), 4.58 (s, Hlb), 3.69 (s, OCH3), 3.60 (s, OCH3), 3.48-3.32 

(m, 2H), 3.24-3.17 (m, H), 2.99 (s, NCH3b), 2.96 (s, NCH3a), 2.64-2.53 (m, H), -0.03 

(s, Si(CH3)3a), -0.17 (s, Si(CH3)3b); 13C NMR 8: 138.08 and 134.58 (CT), 111.49- 

110.95 (C5 and C8), 82.67 and 82.24 (CO, 59.70 and 63.42 (C3), 57.88 and 58.66 

(NCH3), 56.30 (20CH3), 25.25 and 25.39 (C4), 0.50 and 1.87 (Si(CH3)3). 

6.7-Dimethoxy-1-(1t-iodoetheny1)-2-methyl-1.2.34-tetrahydroisoquinoline N-oxide 

128d 

To 70d (0.953 g, 2.65 mmol) in dichloromethane (20 ml) at 0°C was added a 

solution of m-CPBA (0.545 g, 3.17 mmol) in dichloromethane (15 ml). The solution 

was allowed to warm to room temperature and stirred for 26 h. then 5% aqueous 

sodium bicarbonate (25 ml) was added and the organic solvent was removed in 

vacuo. The aqueous solution was washed with diethyl ether (3 x 10 m1). 

Concentration of the ether washings gave 70d (0.129 g, 14%). The aqueous solution 

was made acidic to litmus with 3M aqueous hydrochloric acid and washed with 

diethyl ether (3 x 10 ml) then basified with saturated aqueous sodium bicarbonate. 
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Saturation of the solution with sodium chloride and extraction with chloroform (3 x 

25 ml), then drying and concentration of the extracts, afforded a single B-ring 

diastereomer of J-(1 1-iodoethenyl)tetrahydroisoquinoline N-oxide 128d (0.814 g, 

82%) as a red hygroscopic solid. 1H NMR 8: 7.46 (s, H2'), 6.66 (ArHA), 6.52 (s, 

ArHA), 6.47 (s, H2 1A), 5.34 (s, H1), 4.23-4.10 (m, H), 3.91 (s, OCH3), 3.83 (s, 

OCH3), 3.70-3.62 (m, H), 3.52 (s, NCH3), 3.45-3.33 (m, H), 2.89-2.84 (m, H); 13C 

NMR 8: 141.34 (C2'), 111.18 (C8A), 110.87 (C4aA), 83.25 (Cl), 60.45 (C3), 57.36 

(NCH3B), 57.01 (OCH3B), 56.64 (OCH3B), 24.74 (C4). 

Z-9.10-Dimethoxy-3.6-dimethy1-1.2.3.5-tetrahydro-4.3-benzoxazonine 129a 

A mixture (50:50) of the diastereomers of N-oxide 128a (0.544 g) was 

refluxed in dry dichloromethane (25 ml) for 34 h. Concentration and then 

purification of the residue by passage through an alumina column with 

dichloromethane afforded the 4,3-benzoxazonine 129a (0.223 g, 41%) as a colourless 

oil. 1 H NMR 8: 6.67 (s, ArH), 6.52 (s, ArH), 6.46 (s, H7), 4.06 (bs, H5), 3.86 (s, 

OCH3), 3.82 (s, OCH3), 2.88 (bs, 2H), 2.57 (s, NCH3), 1.90 (s, CH3), 2H of 

CH2CH2 not detected; 13C NMR 8: 148.25 (C9A), 147.13 (C10A), 138.68 (C7aB), 

133.58 (CllaB), 131.10 (C6), 127.93 (bs, C7), 111.58 (C8C), 111.16 (C11C), 74.77 

(bs, C5), 62.81 (C2), 56.28 (OCH3), 56.20 (OCH3), 47.41 (bs, NCH3), 33.24 (bs, 

Cl), 24.36 (CH3); MS m/z: 263 (Mt, 12%; Calcd. for C15H21NO3 263.1521, found 

263.1532), 246 (5), 204 (100), 189 (37), 175 (11); IR: 1516, 1258, 1231, 1117, 986, 

871, 763 cm -1 ; UV: 290, 221 nm. 

NMR analyses at -30°C displayed two conformers in a 50:50 ratio. 

Assignable signals were: 1 H. NMR 8: 6.78 and 6.65 (s, ArHA), 6.56 and 6.54 (s, 

ArHA), 6.49 (s, H7), 4.25-3.95 (4 d, J 12.4 Hz, H5), 3.92 and 3.89 (s, OCH3), 3.85 

(s, OCH3), 2.67 and 2.57 (s, NCH3), 1.98 and 1.87 (s, CH3); 13C NMR 8: 147.95 

and 146.98 (C9A), 146.59 and 146.13 (C10A), 139.25 and 137.30 (C7aB), 133.65 

and 132.08 (C1 laB), 130.48 (C6), 129.37 and 126.18 (C7), 110.66 and 110.49 

(C8C), 110.11 and 109.85 (C11C), 77.25 and 72.46 (C5), 62.80 and 62.20 (C2), 
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55.99 (20CH3), 48.64 and 46.29 (NCH3), 34.44 and 31.35 (Cl), 24.64 and 24.24 

(CH3). 

Elution of the alumina column with dichloromethane/20% methanol afforded 

the recovery of the pure trans diastereomer of N-oxide 128a (0.117 g, 22%). 

Z-9.10-Dimethoxy-3-methy1-6-pheny1-1.2.3.5-tetrahydro-4.3-benzoxazonine 129b  

To 70b (2.056 g, 6.626 mmol) in dichloromethane (40 ml) at 0°C was added a 

solution of m-CPBA (1.40 g, 8.14 mmol) in dichloromethane (60 m1). The solution 

was stirred at 0°C for 40 h. then 5% aqueous sodium bicarbonate (40 ml) was added 

and the organic solvent was removed in vacuo. The aqueous solution was washed 

with diethyl ether (3 x 25 ml) then made acidic to litmus with 3M aqueous 

hydrochloric acid and washed with further diethyl ether (3 x 15 m1). The solution 

was basified with saturated aqueous sodium bicarbonate then saturated with sodium 

chloride and extracted with chloroform (3 x 25 m1). Drying and then concentration 

of the organic extracts, then column chromatography of the residue on alumina with 

dichloromethane/0-10% methanol, gave a 44:56 mixture of 129b and 130b (0.522 g, 

24%) and the trans diastereomer of N-oxide 128b (1.142 g, 53%). Preparative 

reverse phase HPLC of this mixture with acetonitrile/37% H20 gave: 

(a) at 14.3 min., the 2,3-benzoxazepine 130b. 

(b) at 17.1 min., the 4,3-benzoxazonine 129b as colourless prisms from methanol 

with m.p. 111-112°C. 1 H NMR 8: 7.55-7.52 (m, o-ArH'), 7.40-7.24 (3ArH'), 7.00 (s, 

H7), 6.75 (s, ArH), 6.63 (s, ArH), 4.51 (bs, H5), 3.89 (s, OCH3), 3.85 (s, OCH3), 

2.94 (bs, 2H), 2.65 (s, NCH3), 2H of CH2CH2 not detected; 13C NMR 8: 148.84 

(C9A), 147.49 (C10A), 142.39 (C6B), 142.05 (Cl'B), 133.56 (C7aC), 131.32 (C7), 

130.75 (C1 laC), 129.06 (2C'), 127.88 (C4'), 126.82 (2C'), 111.75 (C8D), 111.06 

(ClID), 74.55 (C5), 63.00 (C2), 56.51 (OCH3),-56.35 (OCH3), 47.94 (NCH3), 32.91 

(Cl); MS m/z: 325 (M+, 13%; Calcd. for C201123NO3 325.1677, found 325.1670), 

266 (93), 251 (18), 235 (7), 206 (100), 178 (12), 165 (17); Anal. Calcd for 
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C20H23NO3: C, 73.87; H, 7.13; N, 4.31%, found: C, 73.84; H, 7.10; N, 4.44%; UV: 

293, 235, 220 nm. 

NMR analyses at -30°C displayed two conformers in a 78:22 ratio. 

Assignable signals were: 1 H NMR 8: 7.11 and 6.92 (s, H7), 6.83 and 6.70 (s, ArH), 

6.67 and 6.63 (s, ArH), 4.87 (d, J 12.7 Hz, H5a), 4.47 (s, 2H5b), 4.32 (d, J 12.7 Hz, 

H5a), 2.73 and 2.63 (s, NCH3); 13C NMR 8: 132.44 and 131.66 (C7), 75.76 and 

71.74 (C5), 63.02 and 62.98 (C2), 48.77 and 46.53 (NCH3), 31.71 and 34.34 (Cl). 

Z-9.10-Dimethoxy-3-methy1-6-trimethylsily1-1.2.3.5-tetrahydro-4.3-benzoxazonine 

A mixture (trans:cis=66:34) of the diastereomers of N-oxide 128c (0.325 g, 

1.01 mmol) was refluxed in dichloromethane (20 ml) for 36 h. Concentration and 

then purification of the residue by passage through an alumina column with 

dichloromethane/5% hexane gave a 62:38 mixture of 129c and 130c (0.262 g, 81%). 

The components were not separated by HPLC. Recrystallisation twice from 

methanol, with the collection of the early solid, afforded the 4,3-benzoxazonine 129c 

(0.044 g, 14%) as colourless prisms with m.p. 132-133°C. 1 H NMR (50°C) 8: 6.95 

(s, H7), 6.66 (s, ArH), 6.49 (s, ArH), 4.17 (s, H5), 3.84 (s, OCH3), 3.80 (s, OCH3), 

2.82-2.73 (m, 4H), 2.51 (s, NCH3), 0.17 (s, Si(CH3)3); 13C NMR (50°C) 8: 148.75 

(C9A), 147.58 (C10A), 145.11 (C6), 141.83 (C7), 133.42 (C7aB), 132.87 (C1 laB), 

112.53 (C8C), 110.95 (C1 1C), 71.42 (C5), 62.87 (C2), 56.63 (OCH3), 56.48 (OCH3), 

47.29 (NCH3), 33.44 (Cl), -1.17 (Si(CH3)3); MS m/z: 321 (Mt, 3%; Calcd. for 

C17H27NO3Si 321.1759, found 321.1761), 290 (4), 262 (10), 247 (30), 206 (100), 

178 (16); Anal. Calcd for Ci7H27NO3Si: C, 63.51; H, 8.47; N, 4.36%, found: C, 

63.53; H, 8.44; N, 4.33%. 

NMR analyses at -30°C displayed two conformers in a 74:26 ratio. 

Assignable signals were: 13C NMR 8: 143.15 and 139.33 (C7), 110.06 and 110.68 

(C8A), 109.65 and 108.52 (C11A), 73.50 and 69.17 (C5), 62.76 and 62.04 (C2), 
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55.95 (20CH3), 48.64 and 46.15 (NCH3), 31.48 and 34.24 (Cl), -1.27 and -1.50 

(Si(CH3)3). 

Z-9.10-Dimethoxy-6-iodo-3-methy1-1.2.3.5-tetrahydro-4.3-benzoxazonine 129d  

The N-oxide 128d (0.301 g, 0.803 mmol) was refluxed in dichloromethane 

(13 ml) for 24 h. Concentration and then purification of the residue by passage 

through an alumina column with dichloromethane/25% hexane gave an oil (0.084 g). 

Analysis of the oil by HPLC at 254 nm indicated a 90:10 mixture of 70d and 129d. 

Preparative reverse phase HPLC purification of this mixture with acetonitrile/33% 

H20 gave: 

(a) at 12.9 min., the precursor amine 70d (0.055 g, 19%). 

(b) at 15.4 min., the 4,3-benzoxazonine 129d (0.005 g, 2%) as a yellow oil. 1 H NMR 

8: 7.44 (s, H7), 6.66 (s, ArH), 6.51 (s, ArH), 4.50 (s, H5), 3.87 (s, OCH3), 3.83 (s, 

OCH3), 2.92 (bs, 3H), 2.57 (bs, NCH3 and H); MS m/z: 375 (Mt, 2%; Calcd. for 

C14H18NO3I 375.0331, found 375.0353), 358 (4), 316 (15), 248 (10), 206 (100), 189 

(90). 

7.8-Dimethoxy-1-isopropeny1-3-methyl-1.3.4.5-tetrahydro-2.3-benzoxazepine 130a 

(i) The benzoxazonine 129a (0.027 g) was refluxed in dry xylene (5 ml) for 1 h. 

Concentration and then purification of the residue by passage through an alumina 

plug with dichloromethane gave a 5:95 mixture (0.023 g, 85%) of 129a and the 2,3- 

benzoxazepine 130a as a pale tan oil. 1 H NMR 8: 6.65 (s, ArH), 6.53 (s, ArH), 5.39 

(s, H1A), 4.97 (s, H2 1A), 4.94 (s, H2 1A), 3.86 (s, OCH3), 3.81 (s, OCH3), 3.47-3.42 

(m, H), 3.14-3.06 (m, H), 2.95-2.88 (m, H), 2.72 (s, NCH3), 2.62-2.55 (m, H); 13C 

NMR 8: 147.98 (C7A), 145.47 (C8 and Cl'A), 132.71 (C5aB), 129.72 (C9aB), 115.18 

(C6C), 114.12 (C9C), 111.34 (C2'), 90.49 (Cl), 60.81 (C4), 56.63 (OCH3), 56.55 

(OCH3), 47.25 (NCH3), 33.29 (C5), 19.46 (CH3); IR: 1516, 1258, 1227, 1209, 

1119, 1036, 905, 864, 781 cm -1 ; UV: 286, 240, 220 nm. 
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(ii) The trans-N-oxide 128a (0.028 g) was refluxed in dry acetonitrile (5 ml) for 50 

min. Concentration and then purification of the residue by passage through an 

alumina column with dichloromethane/5% hexane gave a 34:66 mixture of 129a and 

130a (0.023, 82%). 

(iii) A mixture (50:50) of the diastereomers of N-oxide 128a (0.076 g) was treated as 

for (ii) to give a 58:42 mixture of 129a and 130a (0.067, 88%). 

7,8-Dimethoxy-3-methy1-1-(oc-phenyletheny1)-1,34.5-tetrahydro-23-benzoxazepine 

The preparation of 129b described above afforded the 2,3-benzoxazepine 

130b as colourless prisms from methanol with m.p. 96-97°C. 1 H NMR 8: 7.48-7.45 

(m, o-ArH"), 7.33-7.25 (m, 3ArH"), 6.65 (s, ArH), 6.50 (s, ArH), 5.98 (s, H2'), 5.53 

(s, H2'), 5.15 (s, H1), 3.85 (s, OCH3), 3.69 (s, OCH3), 3.45-3.37 (m, H), 3.12-3.04 

(m, H), 2.91-2.86 (m, H), 2.72-2.67 (m, H), 2.66 (s, NCH3); 13C NMR 8: 148.14 

(C7A), 147.86 (C8A), 147.61 (CFA), 140.58 (Cl"), 132.81 (C5aB), 130.43 (C9aB), 

128.69 (2C"), 128.01 (C4"), 127.31 (2C"), 117.25 (C2'), 114.21 (C6C), 111.71 

(C9C), 87.18 (Cl), 60.64 (C4), 56.46 (OCH3), 56.30 (OCH3), 47.24 (NCH3), 33.74 

(C5); MS m/z: 325 (M+, 12%; Calcd. for C201123NO3 325.1677, found 325.1670), 

308 (3), 266 (100), 251 (16), 237 (10), 206 (47); Anal. Calcd for C20H23NO3: C, 

73.87; H, 7.13; N, 4.31%, found: C, 73.98; H, 7.29; N, 4.48%; UV: 284, 237, 220 

nm. 

7.8-Dimethoxy-1-(1'-trimethylsilyletheny1)-3-methyl-13.4.5-tetrahydro-2.3-  

benzoxazepine 130c  

The preparation of 129c described above afforded a 62:38 mixture (81%) of 

129c and 130c. Compound 130c could not be isolated separately. The signals 

attributed to 130c were: 1 H NMR 8: 6.65 (s, ArH), 6.46 (s, ArH), 5.66 (s, H1), 5.56 

(d, J 2.6 Hz, H2'), 5.50 (d, J 2.6 Hz, H2'), 3.84 (s, OCH3), 3.82 (s, OCH3), 3.38-3.12 
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(m, 2H), 2.95-2.87 (m, H), 2.70 (s, NCH3), 2.2.68-2.62 (m, H); 13C NMR 8: 128.37 

(C2'), 89.26 (Cl). 

7,8-Dimethoxy-1-(1 1-iodoetheny1)-3-methyl-1.3.4.5-tetrahydro-2.3-benzoxazepine 

130d 

The N-oxide 128d (0.210g, 0.560 mmol) was refluxed in dry acetonitrile (12 

ml) for 50 min. Concentration and then purification of the residue by passage 

through an alumina column with dichloromethane/25% hexane gave an oil (0.056 g). 

Analysis by HPLC at 254 nm indicated a 59:30:11 mixture of 70d, 130d and 129d. 

Preparative reverse phase HPLC purification of this mixture with acetonitrile/33% 

H20 gave, at 11.9 min., the 2,3-benzazazepine 130d (0.010 g, 5%) as a yellow oil. 

1 H NMR 8: 6.66 (s, ArH), 6.57 (s, ArH), 6.27 (bs, H1), 6.00 (s, H2'), 5.30 (s, H2'), 

3.88 (s, OCH3), 3.83 (s, OCH3), 3.63-3.52 (m, H), 3.12-3.03 (m, H), 2.99-2.92 (m, 

H), 2.78 (s, NCH3), 2.65-2.57 (m, H); 13C NMR 8: 148.59 (C7A), 148.06 (C8A), 

130.99 (C5aB), 130.58 (C9aB), 129.53 (C2'), 114.66 (C6C), 111.85 (C9C), 110.79 

(C1'), 91.83 (Cl), 60.65 (C4), 56.66 (20CH3), 47.60 (NCH3), 33.73 (C5); MS m/z: 

375 (M+, 2%; Calcd. for C14H18NO31 375.0331, found 375.0344), 358 (2), 316 (11), 

248 (12), 206 (19), 189 (100), 145 (23), 115 (16), 60(28). 

6,7-Dimethoxy-1-(3"-fluoropheny1)-2-methyl-1-vinyl-1,2,3,4-tetrahydroisoquinoline 

132 

6,7-Dimethoxy-1-(3'-fluoropheny1)-3,4-dihydroisoquinoline (7.70 g, 27.9 

mmol) was refluxed for 1.5 h. in dry acetone (60 ml) with iodomethane (16.0 g, 112 

mmol). The solution was then cooled and the yellow solid was collected, washed 

with cold acetone, and then dried to give 6,7-dimethoxy-1-(3'-fluoropheny1)-2- 

methy1-3,4-dihydroisoquinolinium iodide 131 (11.52, 99%). m.p. 215-217°C. 

A solution of vinylmagnesium bromide in dry tetrahydrofuran (120 ml) under 

nitrogen was prepared from vinyl bromide (5.02 g, 47.0 mmol). The solution was 

cooled to 0°C and the imine salt 131 (5.02 g, 11.7 mmol) was then added portionwise 
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over 30 min. The mixture was refluxed for 3.5 h. then stirred at room temperature 

for 12 h. before workup (as for 70b) to give, upon concentration of the ether 

solution, the 1 -(3"-fluorophenyl)isoquinoline 132 (3.73 g, 97%) as a pale yellow oil. 

1 H NMR 8: 7.28-7.22 (m, 3ArH"), 6.95-6.88 (m, H2"), 6.56 (s, ArH), 6.34 (dd, J 

10.6 Hz, J 17.2 Hz, H1'), 6.04 (s, ArH), 5.54 (dd, J 1.7 Hz, J 10.6 Hz, H2'), 4.67 (dd, 

J 1.7 Hz, J 17.2 Hz, H2'), 3.84 (s, OCH3), 3.58 (s, OCH3), 3.13-3.05 (m, H), 2.82- 

2.63 (m, 3H), 2.16 (s, NCH3); 13C NMR displayed two conformers 8: 165.13 and 

161.89 (C3"), 150.01 (C6A), 148.01 and 147.04 (C7A), 138.32 (C1'), 131.44 (C4aB), 

129.70 (C6"C), 128.07 (C8aB), 126.05 (C 1"B), 124.78 (C5"C), 121.54 (C2'), 116.36 

and 116.06 (C4"D), 114.50 and 114.21 (C2"D), 113.89 (C5E), 111.13 (C8E), 71.10 

and 69.45 (Cl), 56.38 (20CH3), 47.36 (C3), 39.77 (NCH3), 29.90 (C4); MS m/z: 

327 (M+, 12%; Calcd. for C20H22NO2F 327.1634, found 327.1615), 300 (100), 286 

(23), 284 (10), 232 (53), 218 (12). 

Z-9.10-Dimethoxy-3-methy1-7-(3'-fluoropheny1)-1.2.3.5-tetrahydro-4.3-  

benzoxazonine 134  

To the amine 132 (0.771 g, 2.35 mmol) in dichloromethane (23 ml) at 0°C 

was added a solution of m-CPBA (0.485 g, 2.82 mmol) in dichloromethane (20 ml). 

The solution was allowed to warm to room temperature and stirred for 40 h. then 5% 

aqueous sodium bicarbonate (20 ml) was added and the organic solvent was removed 

in vacuo. The aqueous solution was extracted with diethyl ether (10 ml and 3 x 5 

m1). The ether extracts were washed with saturated brine (5 ml) then dried and 

concentrated to afford a tan solid (0.567 g). Purification of a portion (0.371 g) of this 

material by p.t.l.c. on silica with dichloromethane/7% methanol afforded a band, at 

Rf 0.95, which was collected (0.220 g) and subjected to further p.t.l.c. on silica with 

two developments by dichloromethane/1% methanol. The front third of the resultant 

broad band, at Rf 0.69, gave the 4,3-benzoxazonine 134 (0.125 g, 24%) as colourless 

prisms from methanol with m.p. 131-132°C. 1 H NMR 8: 7.24-7.17 (m, H6'), 7.05 (d, 

J 7.8 Hz, H2'), 6.94-6.88 (m, 2ArH'), 6.78 (s, ArH), 6.52 (t, H6), 6.45 (s, ArH), 4.35 
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(dd, J 13.4 Hz, 5.9 Hz, H5), 3.99 (dd, J 13.7 Hz, 6.0 Hz, H5), 3.92 (s, OCH3), 3.76 

(s, OCH3), 3.01-2.94 (m, H), 2.92-2.85 (m, 2H), 2.66-2.61 (m, H), 2.57 (s, NCH3); 

13C NMR 8: 165.04 and 161.78 (C3'), 149.00 (C9A), 147.65 (C10A), 144.80 (C1'13 ), 

144.06 (C7B), 134.30 (C7aC), 131.07 (C1 laC), 130.07 (C6'D), 127.61 (C5'D), 122.71 

(C6D), 114.89 and 114.61 (C8D), 114.10 and 113.81 (C11D), 111.48 (C2' and C4 0), 

69.37 (C5), 62.62 (C2), 56.41 (OCH3), 56.19 (OCH3), 47.35 (NCH3), 33.15 (Cl); 

MS in/z: 343 (M+, 18%; Calcd. for C20H22NO3F  343.1583, found 343.1600), 326 

(14), 297 (20), 284 (100), 271 (15), 253 (12); Anal. Calcd for C201-122NO3F: C, 

69.95; H, 6.46; N, 4.08%, found: C, 69.90; H, 6.58; N, 4.12%. 

NMR analysis at -30°C displayed two conformers in a 69:31 ratio. 

Assignable signals were: 13C NMR 8: 66.26 and 73.01 (C5), 61.96 and 62.81 (C2), 

46.43 and 48.78 (NCH3), 33.93 and 30.94 (Cl). 

6.4 	 Experimental for Chapter Four 

8-Chloro-1.2-dimethy1-6-pheny1-2,4-dihydro-1H-s-triazolof4.3  

[1.4]benzodiazepine 145  

Alprazolam 136 (0.216 g, 0.701 mmol) in dry butanone (10 ml) at 50°C was 

stirred with iodomethane (0.11 g, 0.80 mmol) under nitrogen for 20 h. The solution 

was then concentrated to a pale yellow solid. 1 H NMR analysis of the material 

indicated two isomers (2.24:1) were present with characteristic peaks for: (a) 

compound 144. 140 1 H NMR 8: 5.42 (d, J 13.3 Hz, H4), 4.25 (d, J 13.4 Hz, H4), 4.11 

(s, NCH3), 3.19 (s, CH3); (b) an unknown isomer 1 H NMR 8: 5.46 (d, J 14.4 Hz, 

H4), 4.66 (d, J 14.4 Hz, H4), 4.18 (s, NCH3), 2.77 (s, CH3). 

The crude solid above in dry ethanol (10 ml) at 0°C was treated with sodium 

borohydride (0.025 g, 0.66 mmol) added portionwise over 1 h. The solution was 

then concentrated and the residue was extracted with dichloromethane (3 x 5 m1). 

Concentration of the extracts afforded a pale yellow powder which was purified by 

p.t.l.c. on silica with dichloromethane/10% methanol to give the triazolo[4,3- 
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a][1,4]benzodiazepine 140  145 (0.058 g, 26%). 1 H NMR 8: 7.53-7.39 (m, 6ArH), 

7.17 (d, J 2.5 Hz, H7), 6.86 (d, J 8.8 Hz, H10), 4.85 (d, J 12.4 Hz, H4), 4.75 (q, H1), 

3.92 (d, J 12.4 Hz, H4), 2.77 (s, NCH3), 1.52 (d, J 5.2 Hz, CH3). 

8-Chloro-1-methy1-6-phenyl-5,6-dihydro-4H-s-triazolo14,3-a111,41benzodiazepine 

146 

A solution of alprazolam 136 (1.976 g, 6.399 mmol) in methanol (40 ml) was 

acidified to a pH of 3 to 4 with a mixture of concentrated hydrochloric 

acid/methanol (1:4) and then sodium cyanoborohydride (0.46 g, 7.3 mmol) was 

added. A solid precipitated after 2 min. The solution was returned to a pH of 3 to 4 

by the further addition of the acid mixture and then stirred for 20 min. Aqueous 0.5 

M sodium bicarbonate (40 ml) was added and the mixture was then extracted with 

dichloromethane (4 x 40 ml), with poor separation. The extracts were combined and 

washed with water (4 x 15 m1). The aqueous washings were combined and back-

extracted with dichloromethane (2 x 20 ml). All the dichloromethane layers were 

then combined, dried, and concentrated to give the 5,6-dihydrotriazolo-

benzodiazepine 142-145  146 (1.872 g, 94%) as a colourless solid. 1 H NMR 8: 7.46 

(dd, J 2.4 Hz, 8.4 Hz, H9), 7.35-7.28 (m, 5ArH), 7.26 (d, J 8.4 Hz, H10), 6.95 (d, J 

2.3 Hz, H7), 4.95 (s, H6), 4.27 (d, J 15.0 Hz, H4), 3.77 (d, J 15.0 Hz, H4), 2.54 (s, 

CH3), 2.50-2.25 (bs, NH); 13C NMR 8: 153.88 (C1A), 150.65 (C3aA), 140.03 

(Cl'B), 138.35 (C6aB), 135.57 (ClOaB), 132.84 (C8B), 131.71 (C7C), 129.70 (C9C), 

129.37 (2C'), 129.03 (C'C), 128.46 (2C'), 124.97 (C10C), 60.35 (C6), 40.71 (C4), 

12.07 (CH3); MS m/z: 310 (M+•, 73%; Calcd. for C17H15N4C1 310.0984, found 

310.098), 294 (8), 282 (20), 232 (100), 205 (36), 179 (22). 

Other Attempted Reductions of 136 to 146 

(i) To 136 (0.263 g, 0.850 mmol) in dry ethanol (35 ml) was added sodium 

borohydride (0 033 g, 0.88 mmol). After 90 min. additional sodium borohydride 
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(0.037 g, 0.98 mmol) was added. After a further 30 min. t.l.c. analysis confirmed 

that 136 remained unchanged. 

(ii) To 136 (0.263 g, 0.850 mmol) in dry methanol (25 ml) with glacial acetic acid 

(1.25 ml) was added sodium cyanoborohydride (0 053 g, 0.84 mmol). After 1 h. 

t.l.c. analysis confirmed that 136 remained unchanged. 

(iii) To 136 (0.263 g, 0.850 mmol) in glacial acetic acid (12 ml) was added sodium 

cyanoborohydride (0 214 g, 3.41 mmol). After 18 h. t.l.c. analysis indicated that 136 

remained almost unchanged. The solution was then warmed to 50°C for 3 h. The 

solution was cooled and water (30 ml) and concentrated aqueous ammonia were 

added to afford a basic mixture which was then extracted with dichloromethane (4 x 

30 m1). The extracts were washed with saturated brine (15 ml) then dried and 

concentrated. Analysis of the residual yellow solid by GC-MS indicated the 

presence of 146 (64%) and components attributed to: (a) 148a (25%), MS m/z: 338 

(Mt., 71%), 323 (41), 282 (63), 261 (100), 207 (14); and (b) 148b (11%), MS m/z: 

352 (W•, 36%), 337 (100), 295 (29), 282 (45), 275 (36). Purification of this 

material by p.t.l.c. on silica with dichloromethane/4% methanol gave 146 (0.083 g, 

36%). 

8-Chloro-1.5-dimethy1-6-pheny1-5 .6-dihydro-4H-s-triazolof4.3-al  

[1.4]benzodiazepine 147  

(i) A solution of dihydroalprazolam 146 (1.872, 6.024 mmol) in methanol (80 ml) 

was treated with 37% aqueous formaldehyde (0.80 ml, 10 mmol) then stirred for 15 

min., and then acidified to a pH of 4 with a concentrated hydrochloric acid/methanol 

(1:1) mixture. After 5 min, sodium cyanoborohydride (0.475 g, 7.56 mmol) was 

added and the solution was then stirred for 4 h. The pH was then readjusted to 4 

with the acid mixture and the stirring was continued for 1 h. Aqueous 0.25 M 

potassium hydroxide (40 ml) was then added and the organic solvent was removed 

in vacuo. The extraction of the aqueous mixture with dichloromethane (70 ml, 3 x 

40 ml), then drying and concentration of the extracts gave the 1,5-dimethy1-5,6- 
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dihydro-triazolobenzodiazepine 147 (1.950 g, 100%) as a colourless solid of purity 

>99% upon GC-MS analysis. 1 H NMR 8: 7.47 (dd, J 2.3 Hz, 8.4 Hz, H9), 7.30 (bs, 

5ArH'), 7.25 (d, J 8.4 Hz, H10), 7.01 (d, J 2.3 Hz, H7), 4.18 (s, H6), 3.96 (d, J 14.1 

Hz, H4), 3.67 (d, J 14.1 Hz, H4), 2.48 (s, NCH3A), 2.42 (s, CH3A); 13C NMR 6: 

150.88 (C1A), 150.18 (C3aA), 139.90 (Cl'B), 137.66 (C6aB), 135.03 (ClOaB), 

132.86 (C8B), 132.48 (C7C), 129.69 (C9C), 129.16 (2C'), 128.61 (C'C), 128.26 (2C'), 

125.07 (C10C), 69.45 (C6), 48.75 (C4), 44.42 (NCH3), 11.94 (CH3); MS m/z: 324 

(M -1--, 41%; Calcd. for C18H17N4C1324.1142, found 324.1140), 282 (16), 247 (100), 

219 (21), 193 (15); IR (KBr): 1491, 1105, 1094, 723, 536 cm -1 . 

(ii) A solution of 146 (0.192 g, 0.619 mmol) in methanol (35 ml) and 37% aqueous 

formaldehyde (10 ml) was stirred for 1 h. and then cooled to 0°C. .Sodium 

borohydride (0.45 g, 12 mmol) was added portionwise over 1.5 h. The solution was 

then concentrated to a gummy residue which was partitioned between 

dichloromethane (25 ml) and 0.5 M aqueous sodium bicarbonate (10 ml). The 

aqueous layer was extracted with further dichloromethane (2 x 25 ml) and the 

extracts were then dried and concentrated to afford a pale yellow oil which displayed 

a single major spot on t.l.c. analysis. The purification of this oil by p.t.l.c. on silica 

with dichloromethane/10% methanol gave a single band. The recovery of this 

material from the silica with dichloromethane/10% methanol afforded a white 

powder (0.210 g) which displayed four components on t.l.c. analysis. 

Attempted One-Pot Reduction of 136 to 147 with Formic Acid and Sodium  

Borohydride 

(i) To 136 (0.299 g, 0.970 mmol) and powdered sodium borohydride (0.206 g, 5.45 

mmol) in dry tetrahydrofuran (4 ml) at 0°C under nitrogen was added freshly 

distilled formic acid (2.8 ml, 80 mmol). A vigorous reaction ensued. The mixture 

was allowed to warm slowly to room temperature with stirring for 12 h. then cooled 

to 0°C and water (7 ml) was added. The mixture was made basic with 50% aqueous 

sodium hydroxide and then extracted with dichloromethane (4 x 10 m1). The 
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extracts were washed with saturated brine (7 ml) then dried and concentrated to give 

a white powder (0.296 g). Analysis of this material by GC-MS, with peak 

integration, indicated the presence of 147 (7%) and the formamide 149 (93%). 

Compound 149 displayed the following characteristic peaks with 2 conformers at 

approximately equal levels in CDC13 at room temperature. 1 H NMR 8: 8.47 and 

8.34 (s, CHO), 7.80-6.65 (m, 8ArH), 6.62 and 5.92 (s, H6), 5.69 (d, J 15.3 Hz) and 

5.18 (d, J 14.2 Hz, H4), 4.20 (d, J 14.2 Hz) and 3.87 (d, J 15.3 Hz, H4), 2.08 and 

2.03 (s, CH3); 13C NMR 8: 162.28 and 161.68 ECHO), 63.25 and 58.46 (C6), 41.07 

and 37.49 (C4), 11.30 and 11.06 (CH3); MS m/z: 338 (M+., 71%; Calcd. for 

C18H15N40C1338.0932, found 338.095), 309 (95), 295 (100), 207 (54), 206 (63). 

(ii) To 136 (0.203 g, 0.659 mmol) and powdered sodium borohydride (0.230 g, 6.07 

mmol) in dry tetrahydrofuran (4 ml) at 0°C under nitrogen was added freshly 

distilled formic acid (1.9 ml, 54 mmol) dropwise over 3 h. The mixture was allowed 

to warm slowly to room temperature with stirring for 8 h. and then worked up as for 

(i) to afford a white powder (0.233 g). Analysis of this material by GC-MS, with 

peak integration, indicated the presence of 147 (47%), 136 (6%) and 149 (47%). 

Investigation of the Proposed N-alkylation of 147 to 150  

(i) The base 147 (99.2 mg, 0.305 mmol) was refluxed in acetone (3 ml) with 

ethylbromoacetate for 12 h. The solution was then cooled and concentrated. The 

residue was triturated with diethyl ether (4 x 2 ml) and dried to give a white powder 

(10.0 mg) which remained at the origin upon t.l.c. analysis with 

dichloromethane/10% methanol on silica. This material was unchanged when 

treated with DBU in acetonitrile. 

(ii) The base 147 (0.623 g, 1.92 mmol) in dry dimethylformamide (20 ml) at 0°C 

was treated with ethoxycarbonylmethyltriflate (0.596 g, 2.51 mmol) dropwise. The 

solution was stirred for 1 h. at 0°C and then for 5 days at room temperature sealed 

and protected from light. The removal of the solvent under oil pump vacuum and 

trituration of the residue with hexane (4 x 5 ml) gave i white waxy oil which was 
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taken up in ethanol (7 ml) and stirred with potassium bromide (1.28 g, 10.8 mmol) 

for 2 h. Filtration of this mixture and concentration of the filtrate gave an off-white 

powder (0.921 g) which on 1 H NMR analysis displayed many peaks between 2.96 

and 2.40 5. 

Attempted N-oxidation of 147 to 152 with m-Chloroperoxybenzoic Acid.  

To the base 147 (53.0 mg, 0.163 mmol) in dichloromethane (5 ml) at 0°C was 

added a solution of m -chloroperoxybenzoic acid (51.7 mg, 0.300 mmol) in 

dichloromethane (2 ml) portionwise over 1 h. The solution was allowed to warm 

slowly to room temperature with stirring for 40 h. and then washed with 0.5M 

aqueous sodium bicarbonate (3 x 3 ml). The aqueous washings were concentrated 

and the residue was extracted with dichloromethane (5 m1). The dichloromethane 

solutions were then combined, dried, and concentrated to give a pale yellow powder 

(42.5 mg). The analysis of this material by GC-MS revealed many components. 

The major components had molecular ions at 322 (attributed to 151), 325, 296, 338 

and 354 mass units. 

8-Chloro-1.5-dimethy1-6-phenyl-5.6-dihydro-4H-s-triazolo[4.3-a]-  

[1.4Thenzodiaz,epine N-Oxide 152 and 9-Chloro-1.5-dimethy1-7-pheny1-4,5-dihydro-

7H-s-triazolo[4.3-al[5.1.41benzoxadiazocine 153  

To the base 147 (0.611 g, 1.88 mmol) in ethanol (50 ml) at 0°C was added a 

solution of monomagnesiumperoxyphthalate hexahydrate (0.71 g, 80% technical 

grade, 1.15 mmol) in water (20 ml). The solution was allowed to warm slowly with 

stirring for 35 h. and then 0.5M aqueous sodium bicarbonate (30 ml) was added. 

The mixture was then concentrated and the residue was extracted with 

dichloromethane (3 x 25 m1). The extracts were dried, filtered, and then 

concentrated to afford a mixture (65:35) of N-oxide 152 and triazolo[4,3- 

a][5,1,4]benzoxadiazocine 153, as a colourless hygroscopic solid (0.525 g). 

Compound 152 displayed the following discernible characteristic peaks. 1 H NMR 
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8: 5.61 (bs, H6), 4.38-4.31 (m, H4), 3.72-3.64 (m, H4), 2.87 (bs, NCH3), 2.45 

(CH3); 13C NMR 8: 80.86 (C6), 57.27 (C4), 47.86 (NCH3), 12.26 (CH3). 

The solid above was refluxed in dry acetonitrile (50 ml) for 50 min. 

Concentration and then purification of the residue by p.t.l.c. on silica with 

dichloromethane/10% methanol gave triazolo[4,3-a][5,1,4]benzoxadiazocine 153 

(0.304 g, 50%) as a colourless solid. 1 H NMR 8: 7.46 (d, J 2.4 Hz, H8), 7.37 (dd, J 

2.3 Hz, 8.3 Hz, H10), 7.20-7.17 (m, 3ArH'), 7.02 (d, J 8.3 Hz, H11), 6.78-6.75 (m, 

2ArH'), 5.97 (s, H7), 4.43 (d, J 14.1 Hz, H4), 4.22 (d, J 14.1 Hz, H4), 2.80 (s, 

NCH3), 1.80 (s, CH3); 13C NMR 8: 152.75 (C1A), 151.99 (C3aA), 142.35 (CFB), 

138.68 (C7aB), 136.10 (C1 laB), 130.80 (C9B), 130.23 (C8C), 129.85 (C10C), 

129.14 (2C'), 128.89 (C'C), 128.69 (C11C), 125.83 (2C'), 86.43 (C7), 58.33 (C4), 

46.60 (NCH3), 11.22 (CH3); MS m/z: 340 (M±•, 15%; Calcd. for C18H17N40C1 

340.1091, found 340.1080), 323 (24), 310 (22), 295 (36), 281 (100), 253 (51), 233 

(39), 218 (78). 

10b-Cyano-8,9-dimethoxy-1,2,3,5,6,10b-hexahydropyrrolof2,1-alisoquinoline 155  

To a solution of the pyrrolo[2,1-a]isoquinolinium iodide 151  154 (15.13 g, 

42.12 mmol) in methanol (100 ml) and water (200 ml), made slightly alkaline with 

sodium bicarbonate, was added sodium cyanide (7.0 g, 143 mmol). The solution 

was heated for 2 h. with slow evaporation to a volume of 190 ml then cooled and 

extracted with diethyl ether (3 x 100 ml) and chloroform (3 x 100 ml). The ether 

and chloroform solutions were each dried and evaporated to provide the 10b-

cyanopyrrolo[2,1-a]isoquinoline derivative 155 (5.07 g and 5.01 g respectively, total 

93%) as an oil. 1 H NMR 5: 6.70 (s, ArH), 6.62 (s, ArH), 3.88 (s, OCH3), 3.85 (s, 

OCH3), 3.22-3.16 (m, 2H), 3.17-2.93 (m, 2H), 2.85-2.70 (m, 3H), 2.08-2.00 (m, 

3H); 13C NMR 8: 149.59 (C8A), 148.34 (C9A), 127.23 (C6aB), 126.96 (ClOaB), 

120.24 (CNB), 112.12 (C10C), 109.02 (C7C), 64.12 (C10b), 56.63 (OCH3), 56.43 

(OCH3), 50.96 (C5D), 45.07 (C3D), 37.69 (C6), 27.66 (Cl), 21.27 (C2); MS m/z: 

231 (M 4-•-HCN, 64%), 230 (100), 219 (28), 199 (15), 187 (11). 
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11b-Cyano-9.10-dimethoxy-1.2.3.4.5.6.7.11b-octahydrobenzo[a]quinolizine 157  

The benzo[a]quinolizinium iodide 152  156 (X=I) (2.324 g, 6.227 mmol) was 

dissolved in water (60 ml) made slightly alkaline with sodium bicarbonate by mild 

warming, and potassium cyanide (1.42 g, 21.8 mmol) was then added. The solution 

was allowed to cool while stirring for 2 h. A precipitate was observed after 5 min. 

The suspension was extracted with diethyl ether (3 x 50 m1). Drying and then 

concentration of the ether extracts gave a solid which was recrystallised from 

ethanol/H20 to give the 1 lb -cyanobenzoialquinolizine 157 (1.094 g, 64%) as an 

off-white powder. 1H NMR 8: 6.80 (s, ArH), 6.58 (s, ArH), 3.86 (s, OCH3), 3.84 (s, 

OCH3), 3.12-3.00 (m, H), 2.89-2.50 (m, 6H), 1.87-1.58 (m, 5H); 13C NMR 8: 

149.28 (C9A), 148.10 (C10A), 127.47 (C7aB), 126.90 (C1 laB), 118.86 (CNB), 

111.91 (C11C), 108.22 (C8C), 62.00 (Cllb), 56.43 (OCH3), 56.21 (OCH3), 52.93 

(C6D), 50.11 (C4D), 36.48 (C7), 28.84 (ClE), 25.09 (C3E), 22.34 (C2E); MS m/z: 

245 (M 4- --FICN, 95%), 244 (100), 230 (35), 216 (10), 123 (12). 

8.9-Dimethoxy-10b-viny1-1.2.3.5.6.10b-hexahydropyrrolof2.1-cdisoquinoline 158a  

A solution of vinylmagnesium bromide in dry tetrahydrofuran (90 ml) was 

prepared from vinyl bromide (9.9 g, 93 mmol). To this solution at 0°C under 

nitrogen was added dropwise a solution of the cyano derivative 155 (5.98 g, 23.1 

mmol) in tetrahydrofuran (50 ml). The mixture was stirred for 24 h. at room 

temperature then treated with ice and basified with 40% aqueous potassium 

hydroxide. The supernatant liquor was decanted from the deposited solids which 

were then extracted with tetrahydrofuran (3 x 75 m1). The tetrahydrofuran extracts 

were centrifuged to remove the solids then concentrated. The residue was treated 

with 0.5 M aqueous sodium hydroxide (50 ml) and extracted with diethyl ether (3 x 

100 ml). The ether extracts were washed with saturated brine (30 ml) then dried and 

concentrated. Purification of the residue by column chromatography on silica with 

dichloromethane/5% methanol gave the 10b-vinylpyrrolo12,1 -afisoquinoline 158a 

(3.54 g, 59%) as a pale yellow oil. 1 H NMR 8: 6.59 (s, ArH), 6.55 (s, ArH), 5.95 
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(dd, J 17.2 Hz, 10.3 Hz, H1'), 5.07 (dd, J 10.3 Hz, 1.5 Hz, H2'), 4.73 (dd, J 17.2 Hz, 

1.5 Hz, H2'), 3.85 (s, OCH3), 3.84 (s, OCH3), 3.15-3.08 (m, 1H), 3.05-2.86 (m, H3 

and 2H), 2.46-2.38 (m, 1H), 2.22-2.13 (m, H1), 1.92-1.81 (m, 1H2), 1.72-1.64 (m, 

1H2); 13C NMR 8: 147.79 (C8A), 147.61 (C9A), 146.15 (Cl'), 131.52 (C6aB), 

127.66 (ClOaB), 115.00 (C2'), 111.61 (C10C), 111.52 (C7C), 67.55 (C10b), 56.49 

(OCH3), 56.26 (OCH3), 50.04 (C5D), 42.84 (C3D), 39.20 (C6), 23.82 (ClE), 23.13 

(C2E); MS m/z: 259 (M+-, 7%; Calcd. for Ci6H2INO2  259.1572, found 259.1565), 

244 (4), 232 (100), 230 (18), 216 (12). 

9.10-Dimethoxy-11b-viny1-1.2.3.4.5.6.7.11b-octahydrobenzo[a]quinolizine 158b  

A solution of vinylmagnesium bromide in dry tetrahydrofuran (80 ml) was 

prepared from vinyl bromide (15.9 g, 149 mmol). To this solution at 0°C under 

nitrogen was added dry tetrahydrofuran (70 ml) and the iminium salt 156 (X=C1) 

(10.02 g, 35.6 mmol). The mixture was refluxed for 5 h. then cooled, treated with 

ice, and then basified with 40% aqueous potassium hydroxide. The supernatant 

tetrahydrofuran solution was decanted from the deposited solids then treated with 

water (30 ml) and diethyl ether (100 m1). The organic layer was separated and 

diethyl ether (3 x 100 ml) then used to further extract the solids and the aqueous 

solution. The organic extracts were combined and then concentrated. The residue 

was taken up in diethyl ether (100 ml) and washed with water (4 x 20 ml), saturated 

brine (20 ml), and then dried. Concentration and then column chromatography of 

the residue on silica with dichloromethane/5% methanol gave the 1lb-

vinylbenzo[a]quinolizine 158b (1.60 g, 16%) as a pale yellow oil. 1 H NMR 8: 6.66 

(s, ArH), 6.57 (s, ArH), 6.08 .  (dd, J 17.4 Hz, 10.7 Hz, H1'), 5.16 (dd, J 10.7 Hz, 1.5 

Hz, H2'), 4.63 (dd, J 17.4 Hz, 1.5 Hz, H2'), 3.84 (s, OCH3), 3.82 (s, OCH3), 3.28- 

3.18 (m, H), 3.04-2.93 (m, H), 2.83-2.77 (m, H4 and H), 2.70-2.60 (m, H4), 2.55- 

2.47 (m, H), 2.00-1.96 (m, 2H), 1.73-1.58 (m, H3 and H), 1.52-1.46 (m, H); 13C 

NMR 8: 148.25 (C9A), 147.46 (C10A), 144.67 (Cl'), 131.54 (C7aB), 127.88 

(Cl laB), 117.12 (C2'), 112.12 (C11C), 110.94 (C8C), 62.22 (Cub), 56.67 (OCH3), 
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56.33 (OCH3), 49.41 (C6D), 47.01 (C4D), 35.59 (C7), 26.64 (CIE), 25.87 (C3E), 

21.45 (C2E); MS ink: 273 (M+., 39%; Calcd. for C17H23NO2 273.1727, found 

273.174), 272 (38), 246 (100), 244 (40), 230 (35), 205 (18). 

Attempted Preparation of 8.9-Dimethoxy-10b-pheny1-1.2.3.5.6.10b-hexahydro-

pyrrolor2.1-alisoquinoline 159a 

To a solution of phenylmagnesium bromide [from bromobenzene (9.8 ml, 94 

mmo1)], in dry tetrahydrofuran (30 ml) and dry diethyl ether (60 ml), under nitrogen 

at 0°C, was added dropwise a solution of 155 (5.85 g, 22.6 mmol) in tetrahydrofuran 

(50 ml). The mixture was allowed to warm to room temperature with stirring 

overnight then worked-up as for 158a. Examination of the crude product by GC-MS 

indicated many components were present. None had the desired molecular weight 

for 159a. 

Attempted Preparation of 9.10-Dimethoxy-11b-pheny1-1.2.3.4.5.6.7.11b-octahydro - 

benzoralquinolizine 159b  

(i) To a solution of phenylmagnesium bromide [from bromobenzene (3.5 g, 22 

mmol)], in dry tetrahydrofuran (25 ml), under nitrogen at 0°C, was added dropwise a 

solution of 157 (1.520 g, 5.581 mmol) in tetrahydrofuran (50 m1). The mixture was 

allowed to warm to room temperature with stirring overnight then worked-up as for 

158b. The cyano compound was recovered. No other products were evident. 

(ii) The procedure of (i) was repeated, but with the reaction mixture instead refluxed 

for 4 h. The GC-MS analysis of the product residue indicated only traces of a 

compound with the desired molecular weight. 

(iii) To 157 (0.965 g, 3.54 mmol) in tetrahydrofuran (30 ml) under nitrogen was 

added a solution of phenyl lithium (4 equiv.) in diethyl ether (20 m1). The mixture 

was stirred for 2 h. then ice water (20 ml) and diethyl ether (50 ml) were added. The 

ether layer was washed with water (4 x 20 ml) and saturated brine (2 x 15 ml) then 

dried and concentrated to an oil which was triturated with hexane to remove 
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bromobenzene. The residue was purified by column chromatography on silica to 

provide a fraction containing the major product. The GC-MS analysis of this 

fraction suggested the major product was the reduced compound 9,10-dimethoxy-

1,3,4,6,7,11b-hexahydro-2H-benzo[a]quinolizine. 156  

8.9-Dimethoxy-4-ethoxycarbonylmethy1-10b-viny1-1.2.3.5.6.10b-hexahydro-

PYrrolo[2.1-alisoquinolinium Bromide 160a 

To the base 158a (0.665 g, 2.56 mmol) in dry acetonitrile (3 ml) at 0°C under 

nitrogen was added dropwise a solution of ethoxycarbonylmethyltrifiate (0.78 g, 3.3 

mmol) in dry acetonitrile (3 m1). The solution was stirred for 1 h. at 0°C then 4 h. at 

room temperature, then concentrated. The residue was triturated with hexane (4 x 5 

ml) then taken up in ethanol (6 ml) and stirred with potassium bromide (1.50 g, 12.6 

mmol) for 2 h. before the addition of activated charcoal and filtration of the solution. 

The filtrate was concentrated and the residue then redissolved in dichloromethane 

and the filtration was repeated. Concentration of the filtrate gave the 4 - 

ethoxycarbonylmethylpyrrolo[2,1-a]isoquinolinium salt 160a (1.014 g, 93%) as a 

tan solid. 1 H NMR 8: 6.74 (s, ArH), 6.47 (s, ArH), 6.17 (dd, J 17.1 Hz, 10.6 Hz, 

H1'), 5.91 (d, J 10.6 Hz, H2'), 5.69 (d, J 17.1 Hz, H2'), 4.35 (d, J 16.5 Hz, H of 

CH2C0), 4.27 (q, CH2 of Et), 4.13-3.92 (m, 5H), 3.88 (s, OCH3), 3.81 (s, 00 43), 

3.20-3.13 (m, 2H), 2.92-2.84 (m, H), 2.58-2.50 (m, H), 2.42-2.32 (m, H), 2.30-2.22 

(m, H), 1.72-1.64 (m, 1H2), 1.31 (t, CH3 of Et); 13C NMR 8: 164.73 (CO), 149.59 

(C8A), 148.99 (C9A), 133.43 (Cl'), 126.38 (C2'), 124.45 (C6aB), 121.18 (C 10aB), 

111.27 (C10C), 110.24 (C7C), 83.88 (C10b), 63.24 (CH2 of EtD), 59.94 

(NCH2COD), 56.84 (C3D), 56.30 (OCH3), 56.24 (OCH3), 51.96 (C5D), 34.23 (C6), 

23.55 (ClE), 20.21 (C2E), 13.86 (CH3 of Et). 
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9.10-Dimethoxy-5-ethoxycarbonylmethy1-11b-viny1-1.2.3.4.5.63.11b-octahydro- 

benzo[alquinolizinium Bromide 160b  

To the base 158b (0.700 g, 2.56 mmol) in dry acetonitrile (3 ml) at 0°C under 

nitrogen was added dropwise a solution of ethoxycarbonylmethyltriflate (0.80 g, 3.4 

mmol) in dry acetonitrile (3 m1). The solution was stirred for 1 h. at 0°C then 4 h. at 

room temperature, then concentrated. The residue was triturated with hexane (4 x 5 

ml) then taken up in ethanol (6 ml) and stirred with potassium bromide (1.58 g, 13.3 

mmol) for 2 h. before the addition of activated charcoal and filtration of the solution. 

The filtrate was concentrated then the residue redissolved in dichloromethane and 

refiltered. Concentration of the filtrate gave the 5-etho.xycarbonylmethyl-

benzo[a]quinolizinium salt 160b (0.908 g, 80%) as a tan solid. Two 

conformationally flexible diastereomers (ratio 3.3:1.0) were evident in the NMR 

spectra of this material. Discernible NMR peaks were: 1 H NMR 8: 6.80 and 6.78 (s, 

ArH), 6.62 and 6.53 (s, ArH), 4.32-4.27 (m, CH2 of Et'), 3.91 and 3.90 (s, OCH3), 

3.87-3.83 (s, OCH3), 1.36-1.30 (m, CH3 of Et); 13C NMR 8: 164.91 (CO), 150.49 

and 150.17 (C9A), 149.63 and 149.20 (C10A), 135.25 and 133.54 (C1'), 128.46 and 

127.90 (C2'), 112.14 and 112.02 (C11B), 110.11 and 109.38 (C8B), 623.75 (CH2 of 

Et), 56.83 (OCH3), 56.58 (OCH3), 14.25 (CH3 of Et). 

Ethyl 9.10-Dimethoxy-7-viny1-1.2.4.5.6.7-hexahydro-33-methano-3-benzazonine-

12-carboxylate 161a 

To the salt 160a (0.961, 2.25 mmol) in dry acetonitrile (30 ml) was added 

DBU (0.54 g, 3.5 mmol). The solution was refluxed for 20 h. then cooled and 

concentrated. Purification of. the residue by column chromatography on alumina (25 

g) with dichloromethane/33% hexane gave an impure yellow oil (36 mg) from the 

first eluted fraction. Further purification of this oil by preparative reverse phase 

HPLC with acetonitrile/20% water gave a colourless oil tentatively attributed to the 

3,7-methano-3-benzazonine 161a (8 mg, 1%). 1 H NMR 8: 7.51 (s, ArH), 7.10 and 

7.01 (m, HE and ArH), 5.52 (dd, J 17.2, 1.1 Hz, H2'), 5.18 (dd, J 10.9, 1.1 Hz, H2'), 
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4.19 (q, CH2 of Et), 3.90 (s, OCH3), 3.89 (s, OCH3), 3.94-3.84 (m, 2H), 3.09-3.03 

(m, H), 2.86-2.77 (m, H), 2.38-2.30 (m, H), 2.17-1.93 (m, 5H), 1.70-1.62 (m, H), 

1.29 (t, CH3 of Et); 13C DEPT NMR 8: 136.70 (Cl'), 112.83 (C2'), 111.42 (C8A), 

110.13 (C11A), 64.48 (C12), 61.02 (CH2 of Et), 56.62 (20CH3), 48.71 (C2), 41.91 

(C4B), 40.24 (C6B), 32.35 (C1C) 28.60 (C5C), 15.02 (CH3 of Et). 

Attempted Base-Promoted Rearrangement of 160b to 161b  

(i) To the salt 160b (0.323, 0.733 mmol) in dry acetonitrile (20 ml) was added DBU 

(0.15 g, 0.99 mmol). The solution was stirred at 45°C for 18 h. then cooled and 

concentrated. The non-polar fraction of the residue was obtained by column 

chromatography on alumina (25 g) with dichloromethane/10% light petroleum and 

then purified by passage of the crude oil through an alumina plug with diethyl ether. 

Concentration of the ether solution gave an impure oil (5 mg) found to contain the 

precursor 158b as the major component (?_50%) upon GC-MS and 1H NMR spectral 

analysis. 

(ii) To the salt 160b (0.203, 0.461 mmol) in dry acetonitrile (20 ml) at reflux under 

nitrogen was added DBU (0.10 g, 0.66 mmol). The solution was refluxed for 10 h. 

then cooled and concentrated. Workup as for (i) gave an impure oil (11 mg). GC-

MS analysis of the oil revealed the presence of 158b (33%) and three isomers (10%, 

36%, and 11%) possessing almost identical mass spectra, and consistent with the 

desired 3,8-methano-benzazecine 161b. MS m/z: 359 (M+•, 24%), 316 (15), 305 

(69), 286 (100, M-0O2Et), 246 (13), 188 (40). 

(iii) To the salt 160b (0.147, 0.334 mmol) in dry butyronitrile (25 ml) at reflux 

under nitrogen was added DBU (0.080 g, 0.0.52 mmol). The solution was refluxed 

for 4 h. then cooled and concentrated to a dark residue. Workup as for (i) gave an 

impure oil (16 mg). GC-MS analysis of the oil gave a similar result to (ii). 



259 

8.9-Dimethoxy-10b-viny1-1.2.35.6.10b-hexahydropyrrolor2.1-alisoquinoline  

N-Oxide 162a  

The pyrrolo[2,1-a]isoquinoline 158a (3.54 g, 13.7 mmol) in dichloromethane 

(50 ml) at 0°C was treated with m-CPBA (3.28 g, 19.1 mmol) in dichloromethane 

(50 m1). The resultant solution was stirred for 40 h., while allowed to warm to 20°C, 

then water (100 ml) was added and the dichloromethane was removed in vacuo. The 

aqueous solution was basified with solid potassium carbonate and washed with 

diethyl ether (3 x 30 ml), then acidified with 3 M aqueous hydrochloric acid and 

again washed with diethyl ether (3 x 30 m1). The solution was rebasified and 

saturated with sodium chloride then extracted with chloroform (3 x 40 m1). The 

extracts were dried and then concentrated. Elution of the residue through an alumina 

plug with chloroform/20% methanol gave the pyrrolo[2,1 -a]isoquinoline N -oxide 

162a (2.92 g, 78%) as a mixture of the B-ring diastereomers (13.3:1) with the 

following diagnostic peaks. Major diastereomer: 1 H NMR 8: 6.68 (dd, J 17.5 Hz, 

10.6 Hz, H1'), 6.60 (s, ArH), 6.55 (s, ArH), 5.46 (d, J 10.6 Hz, H2'), 4.78 (d, J 17.5 

Hz, H2'), 3.88 (s, OCH3), 3.84 (s, OCH3), 3.66-3.46 (m, 4H), 3.12-2.93 (m, 3H), 

2.44-2.39 (m, 2H), 1.81-1.70 (m, H); 13C NMR 8: 149.08 (C8A), 148.27 (C9A), 

139.78 (Cl'), 127.28 (C6aB), 123.48 (ClOaB), 121.67 (C2'), 111.06 (C7 and C10), 

82.24 (C 10b), 63.96 (C5C), 57.29 (C3C), 56.44 (OCH3), 56.28 (OCH3), 34.80 (C6), 

26.83 (Cl), 19.87 (C2). Minor diastereomer: 1 H NMR 6: 6.02 (dd, J 17.5 Hz, 10.6 

Hz, H1'), 5.29 (d, J 10.6 Hz, H2'). 

9.10-Dimethoxy-11b-viny1-1.2.3.4.5.6.7.11b-octahydrobenzo[alquinolizine N-Oxide 

I 6_21 

The benzo[a]quinolizine 158b (0.827 g, 3.03 mmol) in dichloromethane (30 

ml) at 0°C was treated with m-CPBA (0.632 g, 3.67 mmol) in dichloromethane (15 

m1). The resultant solution was stirred for 40 h., while allowed to warm to 20°C, 

then washed with 0.5 M aqueous sodium bicarbonate (3 x 10 m1). Drying and then 

concentration gave the crude benzo[a]quinolizine N -oxide 162b (0.723 g, 83%) as a 
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mixture of the B-ring diastereomers (5.7:1) with the following diagnostic peaks. 

Major diastereomer: 1H NMR 8: 5.35 (d, J 10.7 Hz, H2'), 4.49 (d, J 15.5 Hz, H2'); 

13C NMR 8: 141.01 (Cl'), 121.88 (C2'), 111.98 (C8A), 110.70 (C11A), 77.69 

(Cl lb). Minor diastereomer: 1 H NMR 8: 5.50 (d, J 10.7 Hz, H2'), 4.87 (d, J 12.4 

Hz, H2'); 13C NMR 8: 136.52 (Cl'), 125.10 (C2'), 111.66 (C8A), 109.83 (C11A), 

76.09 (Cub). 

9.10-Dimethoxy-7-viny1-1.2.4.5.6.7-hexahydro-3.7-epoxy-3-benzazonine 163a  

A solution of the N-oxide 162a (0.365 g, 1.33 mmol) in dry butyronitrile (20 

ml) was refluxed for 1 h. then concentrated and the residue was extracted with 

diethyl ether. Concentration of the extracts and 1H NMR analysis of the residue (41 

mg) indicated a mixture (1.9:1) of the 3,7-epoxy-3-benzazonine 163a and 

pyrrolo[2,1-cdisoquinoline 158a. Preparative reverse-phase HPLC purification of 

the mixture with methano1/20%water afforded the 3,7-epoxy-3-benzazonine 163a 

(22 mg, 6%) as a pale yellow oil. 1 H NMR 8: 6.56 (s, ArH), 6.49 (s, ArH), 5.94 (dd, 

J 17.4 Hz, 10.7 Hz, H1'), 5.11 (dd, J 17.4 Hz, 1.1 Hz, H2'), 5.05 (dd, J 10.7 Hz, 1.1 

Hz, H2'), 3.87 (s, OCH3), 3.81 (s, OCH3), 3.80-3.70 (m, H2A), 3.59-3.47 (m, H4 and 

H2A), 3.20-3.12 (m, H1A), 2.86-2.79 (m, H4), 2.51-2.42 (m, H1A), 2.32-2.25 (m, 

H6), 2.12-2.01 (m, H6), 1.81-1.66 (m, H5), 1.39-1.30 (m, H5); 13C NMR 8: 147.78 

(C9A), 147.37 (C10A), 145.03 (Cl'), 135.06 (C7aB), 132.69 (C1 laB), 113.81 (C2'), 

113.58 (C8C), 112.53 (C11C), 82.87 (C7), 57.97 (C2D), 56.63 (OCH3), 56.43 

(OCH3), 53.39 (C4D), 35.83 (ClE), 31.71 (C6E), 13.04 (C5); MS m/z: 275 (Mh, 

5%; Calcd. for C16H21NO3 275.1521, found 275.1513), 258 (27), 245 (6), 232 

(100), 215 (35), 199 (14). 

Other Thermolyses of 162a and 163a  

(i) To dimethyl sulfoxide (10 ml) at 130°C was added 162a (105 mg). The solution 

was stirred for 50 min at 130°C then cooled and extracted with diethyl ether (3 x 15 

ml). The combined ether extracts were washed with water (2 x 7 ml) and saturated 
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brine (5 ml), then dried and concentrated. 1H NMR analysis of the residue (29 mg) 

indicated a mixture (7.3:1) of 158a and 163a. 

(ii) The N-oxide 162a (273 mg) was heated in an evacuated sealed tube for 1 h. at 

120°C, then cooled and the residue was extracted with diethyl ether (5 x 2 m1). 

Concentration of the extracts and 1 H NMR analysis of the residue (104 mg) 

indicated a mixture (2.9:1.4:1.0) of 158a and 162a and 163a. 

(iii) The 3,7-epoxy-3-benzazonine 163a (12 mg) was refluxed in dry butyronitrile (2 

ml) for 1 h. then the solution was cooled and concentrated. 1 H NMR analysis of the 

residue showed the majority of the material was unchanged 163a (90%) although 

some 158a (10%) was detected. 

10.11-Dimethoxy-8-vinyl-1.4.5.6.7.8-hexahydro-2H-3.8-epoxy-3-benzazecine 163b  

A solution of the N-oxide 162b (0.846 g, 2.92 mmol) in dry butyronitrile (40 

ml) was refluxed for 2 h. then cooled and concentrated. The residue was purified by 

column chromatography on silica with dichloromethane/O-2% methanol to give 2H-

3,8-epoxy-3-benzazecine 163b (46 mg, 5%) as a colourless oil. 1H NMR 8: 6.63 (s, 

ArH), 6.50 (s, ArH), 5.97 (dd, J 17.4 Hz, 10.7 Hz, H1'), 5.12 (dd, J 17.4 Hz, 1.5 Hz, 

H2'), 5.07 (dd, J 10.7 Hz, 1.5 Hz, H2'), 3.86 (s, OCH3), 3.83 (s, OCH3), 3.58-3.47 

(m, H2A), 3.11-3.05 (m, H2A and H1A), 2.86-2.82 (m, H4), 2.51-2.38 (m, H7 and 

H1A), 2.25-2.16 (m, H7), 1.80-1.60 (m, H5 and H6); 13C NMR 8: 148.22 (C10A), 

147.38 (C11A), 141.63 (C1'), 138.99 (C8aB), 128.57 (C12aB), 115.21 (C9C), 114.57 

(C2'), 111.62 (C12C), 87.89 (C8), 56.85 (C2D), 56.52 (20CH3), 56.07 (C4D), 43.16 

(ClE), 33.53 (C7E), 30.74 (C5), 22.86 (C6); MS m/z: 289 (M+., 7%; Calcd. for 

Ci7H23NO3 289.1678, found 289.1684), 272 (100), 256 (5), 246 (7), 244 (7), 230 

(6). 
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9.10-Dimethou-11b-cyano-1.2.34.5.6.7.11b-octahydrobenzo[a]quinolizine  

N-Oxide 164  

The 11b-cyanobenzo[a]quinolizine 157  (0.961 g, 3.53 mmol) in 

dichloromethane (20 ml) at 0°C was treated with a solution of m-CPBA (0.760 g, 

4.42 mmol) in dichloromethane (15 ml). The resultant solution was stirred for 24 h. 

while allowed to warm to 20°C. The organic solution was washed with 5% aqueous 

sodium bicarbonate (5 x 20 ml) then dried and concentrated to a residual solid. The 

aqueous washings were combined and saturated with sodium chloride then back-

extracted with chloroform (4 x 15 m1). Drying and then concentration of the extracts 

gave a second crop of solid. The solids were combined and then purified by column 

chromatography on alumina with dichloromethane/10% methanol to give the 

benzo[a]quinolizine N -oxide 164 (0.741 g, 73%) as a light tan powder. 1 H NMR 8: 

6.70 (s, ArH), 6.69 (s, ArH), 4.14-4.04 (m, H), 3.92-3.78 (m, 2H), 3.88 (s, OCH3), 

3.85 (s, OCH3), 3.50-3.44 (m, H), 3.39-3.34 (m, H), 2.88-2.73 (m, 3H), 2.49-2.44 

(m, H), 2.04-1.96 (m, 2H), 1.74-1.70 (m, H); 13C NMR 8: 150.49 (C9A), 149.07 

(C10A), 125.49 (C7aB), 122.56 (CNB), 119.02 (C1 laB), 112.60 (C1 1c), 109.06 

(C8C), 69.75 (Cub), 66.69 (C4D), 63.32 (C6D), 56.91 (OCH3), 56.67 (OCH3), 

29.55 (C7), 25.21 (ClE), 20.86 (C3E), 19.95 (C2E); MS m/z: 288 (M+-, 6%; Calcd. 

for C16H20N203 288.1472, found 288.149), 271 (50), 245 (56), 244 (100), 230 (20), 

164 (12); IR (thin film from CDC13): 2940, 2864, 2837, 1524, 1263, 1140, 729 cm -1 . 

Thermolyses of Compound 164 

(i) The N-oxide 164 (214 mg) was refluxed in dry acetonitrile (20 ml) for 18 h. then 

the solution was cooled and concentrated. Analysis of the residue by t.l.c. showed 

the majority of the N-oxide remained. The residue was partitioned between diethyl 

ether (30 ml) and water (10 ml) and the ether layer then washed with further water (2 

x 5 m1). Drying and then concentration gave an impure oil (2 mg). 

(ii) The N-oxide 164 (201 mg) was refluxed in dry butyronitrile (20 ml) for 10 h. 

then the solution was cooled and concentrated. Analysis of the residue by t.l.c. with 



263 

dichioromethane/10% methanol showed mainly material at the origin. The 

treatment of the residue as for (i) gave an orange oil (75 mg). Analysis of this 

material by GC-MS revealed two components (82% and 18%) with molecular ions 

at 246 and 272 mass units. 

(iii) The N-oxide 164 (187 mg) was refluxed in dry dimethylformamide (20 ml) for 

1 h. then the solution was cooled and concentrated. Treatment of the residue as for 

(i) gave a dark oil (100 mg). Analysis of this material by GC-MS revealed 

numerous minor components with a single significant component (40%) with MS: 

272 (96%), 256 (31), 232 (100), 203 (32), 82 (69). 

6.5 	 Experimental for Chapter Five 

Investigation of the Epoxidation of 1-Vinylisoquinoline 49a and Derivatives  

with m-CPB A 

(i) To 49a (117 mg, 0.501 mmol) in dichloromethane (10 ml) was added m-CPBA 

(258 mg, 1.50 mmol). The solution was stirred for 48 h. then extracted with 0.5 M 

aqueous sodium bicarbonate (2 x 5 ml). The aqueous washings were concentrated 

and the residue was extracted with dichloromethane (5 m1). The dichloromethane 

portions were combined then dried and concentrated to afford a yellow solid (97 

mg). The NMR spectra confirmed the material was the N-oxide 123a. 

(ii) To 49a (93 mg, 0.40 mmol) in chloroform (10 ml) was added m-CPBA (206 

mg, 1.20 mmol). The solution was refluxed for 12 h. before workup as for (i) to 

afford a solid residue. The NMR spectra confirmed the material was the N-oxide 

123a contaminated with some m-chlorobenzoic acid. 

(iii) To 49a (113 mg, 0.484 mmol) in chloroform (10 ml) was added m-CPBA (250 

mg, 1.45 mmol). The solution was refluxed for 1 h. before the addition of further m-

CPBA (250 mg, 1.45 mmol) and continuation of reflux for 5 h. Workup as for (i) 

gave a dark solid residue. The NMR spectra confirmed the material was the N-oxide 

123a contaminated with some m-chlorobenzoic acid. 
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(iv) To the hydrochloride salt 49a.HC1 (54 mg, 0.20 mmol) in chloroform (6 ml) 

was added m-CPBA (79 mg, 0.46 mmol). The solution was stirred for 16 h. before 

workup as for (i) to afford a solid residue. The NMR spectra confirmed the material 

was the N-oxide 123a. 

(v) To the methiodide salt 55a (147 mg, 0.392 mmol) suspended in chloroform (10 

ml) was added a solution of m-CPBA (191 mg, 0.702 mmol) in chloroform (5 ml) 

dropwise, providing dissolution of the initial salt. After stirring for 15 h. a sample 

was withdrawn and then concentrated for analysis. The NMR spectra confirmed that 

55a remained, along with m-chlorobenzoic acid. 

(vi) To the methiodide salt 55a (53 mg, 0.14 mmol) in 1,2-dichloroethane (5 ml) at 

reflux was added m-CPBA (74 mg, 0.43 mmol). After refluxing for 3 h. a sample 

was withdrawn and then concentrated for analysis. The NMR spectra confirmed that 

55a remained, along with m-chlorobenzoic acid. 

Investigation of the Epoxidation of 1-Vinylisoquinoline 49a and Derivatives with 

Urea-Hydrogen Peroxide 

(i) To the trifluoroacetic acid salt of 49a (379 mg, 1.09 mmol) with disodium 

hydrogen phosphate (1.352 g, 9.52 mmol) and urea-hydrogen peroxide (1.040 g, 

11.1 mmol) in dry dichloromethane (8 ml) under nitrogen was added trifluoroacetic 

anhydride (0.40 ml, 2.83 mmol) dropwise. The mixture, with solid present, was 

refluxed for 1 h. then saturated aqueous sodium bicarbonate was added carefully to 

give a basic mixture. The organic layer was separated and the aqueous layer was 

extracted with dichloromethane (4 x 10 m1). The organic extracts were combined 

and washed with 5% aqueous sodium bicarbonate (5 ml) then water (5 m1). Drying 

and then concentration of the organic solution afforded only the free base 49a (98 

mg, 39%). 

(ii) To 49a (345 mg, 1.48 mmol) in dry acetonitrile (5 ml) under nitrogen was added 

trifluoroacetic acid (169 mg, 1.48 mmol) then a solution of urea-hydrogen peroxide 

(561 mg, 5.96 mmol) and trifluoroacetic anhydride (0.40 ml, 2.83 mmol) in dry 
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dichloromethane (8 m1). The mixture was stirred for 5 h. then saturated aqueous 

sodium bicarbonate (10 ml) and dichloromethane (15 ml) were added. The organic 

layer was separated and the aqueous layer was extracted with dichloromethane (2 x 

5 m1). The organic extracts were combined and washed with 5% aqueous sodium 

bicarbonate (5 ml) then water (5 ml). Drying and then concentration of the organic 

solution afforded only 49a (268 mg, 78%). 

Investigation of the Simmons-Smith Cyclopropanation of 

1-Vinyltetrahydroisoquinoline 49a 

A zinc-copper couple was prepared 179  by the addition of zinc dust (3.0 g, 45.9 

mmol) to a hot rapidly stirred solution of cupric acetate monohydrate (0.173 g, 0.866 

mmol) in glacial acetic acid (5 ml), followed by stirring for 1 min. The mixture was 

briefly allowed to settle and then the acetic acid was decanted. The solid was 

washed with glacial acetic acid (2 x 5 ml) then diethyl ether (3 x 10 ml) and was 

used immediately. 

To the zinc-copper couple (0.30 g, 4.6 mmol) and 49a (0.418 mg, 1.80 mmol) 

in dry diethyl ether (5 ml) under nitrogen was added a crystal of iodine. Methylene 

iodide (0.997 g, 3.72 mmol) was then added in three portions over 50 min. while the 

solution was brought to reflux. The mixture was refluxed for 10 h. with the 

deposition of a tan precipitate. Saturated aqueous ammonium chloride (5 ml) was 

then added. The supernatant liquor was decanted from the solids, which were then 

extracted with diethyl ether (3 x 5 ml). The ether extracts were washed with 

saturated aqueous sodium bicarbonate (2 x 5 ml) then dried and concentrated to 

afford only a trace of material (0.1 mg). The ether insoluble solid was extracted 

with chloroform (4 x 5 m1). These extracts were filtered then washed with saturated 

aqueous sodium bicarbonate (2 x 5 m1). Drying and concentration of the extracts 

afforded a tan powder assumed to be the methiodide salt 55a (0.468 g, 70%). 
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N-[.2-(3.4-Dimethoxyphenyflethyl]cyclopropy1 carboxamide 174a 

Homoveratrylamine (30.03 g, 165.7 mmol) and cyclopropane carboxylic acid 

173a (20.40 g, 237.0 mmol) were combined and stirred as a melt at 160°C for 4.25 h. 

under a slow stream of nitrogen to remove water vapour, then allowed to cool to a 

solid which was taken up in chloroform (300 m1). This solution was washed with 

2M sodium hydroxide (3 x 80 ml), 3M hydrochloric acid (2 x 80 ml), 0.5M 

hydrochloric acid (3 x 60 ml), and water (60 ml) then dried and concentrated. The 

residue was recrystallised from ethyl acetate to give the cyclopropyl carboxamide 

174a (28.59 g, 69%) as a colourless powder, m.p. 94-95°C. 1 H NMR 8: 6.82 (d, J 

8.4 Hz, ArH), 6.74 (d, J 8.2 Hz, ArH), 6.73 (s, ArH), 5.84 (bs, NH), 3.87 (s, OCH3), 

3.86 (s, OCH3), 3.50 (q, H1), 2.77 (t, H2), 1.32-1.27 (m, H1'), 0.98-0.93 (m, 2H'), 

0.74-0.67 (m, 2H'); 1 3C NMR 8: 174.15 (CO), 149.63 (C3"A), 148.26 (czrA), 

132.12 (Cl"), 121.24 (C6"B), 112.55 (C2"B), 111.95 (C5" 13 ), 56.50 (20CH3), 41.55 

(Cl), 35.96 (C2), 15.31 (Cl'), 7.63 (C2', C3'); MS m/z: 249 (M+, 9%; Calcd. for 

C14H19NO3 249.1364, found 249.1357), 165 (11), 164 (100), 151 (25), 149 (10), 69 

(17); Anal. Calcd for C14H19NO3: C, 67.44; H, 7.68; N, 5.62%, found: C, 67.66; H, 

7.85; N, 5.72%; IR (thin film from CDC13): 3309 (NH), 1636 (CO), 1028 cm -1 . 

N-[2-(3.4-Dimethoxyphenypethyl]-trans-2'-phenylcyclopropyl carboxamide 174b  

Homoveratrylamine (12.2 g, 67.3 mmol) and trans-2'-phenylcyclopropane 

carboxylic acid 173b (13.14 g, 81.02 mmol) were combined and stirred as a melt 

between 140°C and 160°C for 5 h. under a slow stream of nitrogen to remove water 

vapour, then allowed to cool to a solid which was taken up in chloroform (150 ml). 

This solution was washed with 2M sodium hydroxide (3 x 35 ml), 3M hydrochloric 

acid (3 x 30 ml), water (20 ml), and saturated aqueous sodium chloride (20 ml) then 

dried and concentrated. The residue was recrystallised from ethyl acetate to give the 

t-phenylcyclopropyl carboxamide 174b (16.51 g, 75%) as a colourless powder, m.p. 

116-117°C. 1 H NMR 8: 7.27-7.17 (m, 3ArH), 7.06-7.03 (m, 2ArH), 6.80-6.70 (m, 

3ArH), 5.85 (bs, NH), 3.84 (s, OCH3), 3.82 (s, OCH3), 3.50 (q, H1), 2.76 (t, H2), 
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2.48-2.42 (m, H2'), 1.60-1.52 (m, HI' and 1H3'), 1.23-1.17 (m, 1H3'); 13C NMR 8: 

172.53 (CO), 149.58 (C3"A), 148.23 (C4"A), 141.43 (Cl"B), 131.92 (Cl"B), 129.03 

(2C"C), 126.84 (1C"C), 126.55 (2C"'C), 121.21 (C6"D), 112.43 (C2"D), 111.91 

(C5"D), 56.47 (OCH3), 56.39 (OCH3), 41.64 (C1), 35.87 (C2), 27.31 (C2'E), 25.58 

(CUE), 16.52 (C3'); MS m/z: 325 (M+, 15%; Calcd. for C201123NO3 325.1677, 

found 325.1674), 165 (12), 164 (100), 151 (16), 91(6); IR (1{Br disk): 3323 (NH), 

1638 (CO), 1028 cm -1 . 

1-Cyclopropy1-6,7-dimethoxy-3,4-dihydroisoquinoline 175a  

The carboxamide 174a (32.44 g, 130.1 mmol) was refluxed in dry acetonitrile 

(500 ml) with phosphorus oxychloride (48 ml, 510 mmol) for 3 h. Ice was then 

added to decompose the excess reagent. The resultant solution was concentrated in 

vacuo until the majority of the organic solvent was removed, then water (700 ml) 

was added and the aqueous solution was washed with diethyl ether (3 x 100 m1). The 

aqueous solution was made basic with concentrated ammonia and then extracted with 

chloroform (4 x 300 ml). The extracts were dried and then concentrated to give the 

crude 1-cyclopropylimine 175a (26.50 g, 88%) as a grey solid. Recrystallisation of a 

portion of this material from ethanol gave a colourless powder, m.p. 80-81°C. 1 H 

NMR 8: 7.31 (s, ArH), 6.70 (s, ArH), 3.94 (s, OCH3), 3.93 (s, OCH3), 3.56 (t, H3), 

2.60 (t, H4), 2.02-1.90 (m, H1'), 1.01-0.97 (m, H2'), 0.91-0.86 (m, H3'); 13C NMR 8: 

167.22 (Cl), 151.33 (C6A), 148.09 (C7A), 131.80 (C4aB), 123.59 (C8aB), 110.74 

(C5C), 109.52 (C8C), 56.83 (OCH3), 56.58 (OCH3), 47.41 (C3), 26.48 (C4), 15.24 

(Cl'), 7.66 (CT, C3'); MS m/z: 231 (M+, 88%; Calcd. for C14H17NO2 231.1259, 

found 231.1241), 230 (100),.216 (28), 214 (14), 200 (37), 184 (13); IR (thin film 

from CDC13): 3001, 2936, 2832, 1512, 1281, 1142 cm -1 . 

6,7-Dimethoxy-1-(t-2-phenylcyclopropyI)-3,4-dihydroisoquinoline 175b  

The carboxamide 174b (16.50 g, 50.70 mmol) was refluxed in dry acetonitrile 

(300 ml) with phosphorus oxychloride (20 ml) for 3 h. Ice (50 g) was then added to 
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decompose the excess reagent. The resultant solution was concentrated until the 

majority of the organic solvent was removed, then water (300 ml) was added and the 

aqueous solution was washed with diethyl ether (3 x 75 m1). The solution was made 

basic with concentrated ammonia and then extracted with chloroform (3 x 75 m1). 

The yellow extracts developed a red colour. The extracts were dried and then 

concentrated to afford the crude 1 - (2'-phenylcyclopropyl)imine 175b (15.50 g, 98%) 

as a red oil which was used without further purification. 1 H NMR 6: 7.32-7.16 (m, 

5ArH"), 7.07 (s, ArH), 6.68 (s, ArH), 3.89 (s, OCH3), 3.81-3.74 (m, 1H3), 3.64 (s, 

OCH3), 3.51-3.42 (m, 1H3), 2.68-2.58 (m, H4), 2.29-2.19 (m, 2H'), 1.86-1.80 (m, 

1H'), 1.39-1.33 (m, 1H'); 13C NMR 8: 165.90 (Cl), 151.29 (C6A), 148.05 (C7A), 

142.60 (C4aB), 131.56 (C8aB), 129.03 (2C"), 127.94 (C4"), 126.39 (2C"), 123.23 

(Cl"B), 110.69 (C5C), 109.36 (C8C), 56.52 (OCH3), 56.39 (OCH3), 47.58 (C3), 

28.32 (C1'D), 26.68 (C2'D), 26.39 (C4), 15.55 (C3'); MS ink: 307 (Mt, 50%; Calcd. 

for C201-122NO3 307.1572, found 307.1586), 306 (83), 305 (100), 304 (63), 290 (21), 

276 (12), 201 (18). 

1-Cyclopropy1-6.7-dimethoxy-2-methy1-3.4-dihydroisoquinolinium Iodide 176a  

To the crude 1-cyclopropylimine 175a (21.3 g, 92.1 mmol) in dry acetone 

(140 ml) was added iodomethane (39.0 g, 280 mmol). The solution was refluxed for 

3 h. with the formation of a yellow precipitate. A further portion of iodomethane 

(11.5 g, 81.6 mmol) was then added and the refluxing was continued for 1 h. The 

mixture was then cooled and concentrated to approximately 100 ml. The precipitate 

was collected and rinsed with cold acetone, then recrystallised from ethanol to afford 

the 1 -cyclopropylmethiodide salt 176a (32.04 g, 93%) as yellow prisms, m.p. 212- 

213°C. 1 H NMR 5: 7.58 (s, ArH), 6.89 (s, ArH), 4.09 (t, H3), 4.03 (s, NCH3), 4.00 

(s, OCH3), 3.94 (s, OCH3), 3.30 (t, H4), 2.57-2.48 (m, H1'), 1.52-1.44 (m, H2'), 

1.21-1.13 (m, H3'); 13C NMR 8: 176.21 (Cl), 156.48 (C6A), 148.47 (C7A), 133.56 

(C4aB), 120.03 (C8aB), 113.81 (C5C), 111.06 (C8C), 57.32 (OCH3), 57.05 (OCH3), 

53.07 (C3), 46.21 (NCH3), 26.31 (C4), 14.42 (C1'), 9.89 (C2', C3'); Anal. Calcd for 
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C15H20NO2I: C, 48.27; H, 5.40; N, 3.75%, found: C, 48.24; H, 5.57; N, 3.85%; IR 

(thin film from CDC13): 2941, 1602, 1560, 1521, 1394, 1007, 920, 731 cm -1 . 

6.7-Dimethoxy-2-methyl-1-(t-2-phenylcyclopropy1)-3.4-dihydroisoquinolinium  

Iodide 176b  

Heating must be avoided at all stages in this preparation. The crude 1-(2'- 

phenylcyclopropyl) imine 175b (0.664 g, 2.16 mmol) was stirred at room 

temperature in dry acetone (6 ml) with iodomethane (0.32 g, 2.3 mmol), protected 

from light, for 3 days. Concentration and then recrystallisation of the residue from 

acetone/ethyl acetate gave the 1-(2'-phenylcyclopropyl) methiodide salt 176b (0.498 

g, 51%) as yellow needles, m.p. 159-160°C. 1 H NMR 8: 7.35-7.22 (m, 5ArH", 

ArH), 6.85 (s, ArH), 4.11 (t, H3), 3.99 (s, NCH3), 3.98 (s, OCH3), 3.60 (s, OCH3), 

3.51-3.39 (m, 1H 1), 3.37-3.25 (m, 1H'), 2.67 (t, H4), 2.02-1.96 (m, 1H'), 1.86-1.78 

(m, 1H'); 13C NMR 8: 174.84 (Cl), 156.74 (C6A), 148.76 (C7A), 139.16 (C4aB), 

133.67 (C8aB), 129.54 (2C"), 127.81 (1C"), 126.51 (2C"), 120.44 (Cl"B), 113.67 

(C5C), 111.23 (C8C), 57.45 (OCH3), 56.68 (OCH3), 53.38 (C3), 47.00 (NCH3), 

27.67 (C1'D), 26.48 (C4), 24.78 (C2'D), 20.23 (C3'); Anal. Calcd for C211-124NO2I: 

C, 56.13; H, 5.38; N, 3.12%, found: C, 56.41; H, 5.40; N, 3.02%; IR (KBr disc): 

2932, 1603, 1563, 1521, 1292, 1265, 1219, 1010 cm -1 . 

1-Cyclopropy1-6.7-dimethoxy-2-methy1-1.2.3.4-tetrahydroisoquinoline 177a  

To the 1-cyclopropyl imine salt 176a (30.45 g, 81.59 mmol) suspended in 

ethanol (600 ml) at 0°C was added sodium borohydride (8.74 g, 230 mmol) 

portionwise over 35 min. The solution was allowed to warm to room temperature 

with stirring over 2 h. then concentrated. The residue was partitioned between water 

(100 ml) and chloroform (400 m1). The chloroform layer was separated and washed 

with water (3 x 50 ml), then dried and concentrated to give the 1- 

cyclopropyltetrahydroisoquinoline 177a (19.24 g, 95%) as a colourless solid. 

Recrystallisation of a portion of this solid from 2-methyl- 1-propanol gave a 
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colourless powder, m.p. 70-71°C. 1H NMR 8: 6.92 (s, ArH), 6.58 (s, ArH), 3.85 (s, 

20CH3), 3.22-3.17 (m, H1), 2.83-2.72 (m, H3, H4), 2.55 (s, NCH3), 1.02-0.96 (m, 

H1'), 0.71-0.66 (m, H2'), 0.48-0.44 (m, H3'); 13C NMR 8: 148.10 (C6A), 147.37 

(C7A), 130.63 (C4aB), 126.85 (C8aB), 111.78 (C5C), 111.12 (C8C), 67.86 (Cl), 

56.47 (OCH3), 56.34 (OCH3), 49.66 (C3), 43.23 (NCH3), 26.80 (C4), 15.76 (C1'), 

5.21 (C2'), 4.47 (C3'); MS m/z: 247 (M+, 1%; Calcd. for C15H21NO2 247.1572, 

found 247.1579), 207 (13), 206 (100), 190 (8), 162 (3), 145 (2); Anal. Calcd for 

C15H21NO2: C, 72.84; H, 8.56; N, 5.66%, found: C, 72.59; H, 8.51; N, 5.69%; IR: 

2932, 1516, 1256, 1016 cm -1 . The methiodide salt of 177a recrystallised from 

methanol with m.p. 212-213°C. Anal. Calcd for C16H24NO2I: C, 49.37; H, 6.21; N, 

3.60%, found: C, 49.36; H, 6.34; N, 3.70%. 

6,7-Dimethoxy-2-methyl-1-(t-2-phenylcyclopropy1)-1,2,3,4-tetrahydroisoquinoline 

177b 

The 1-(2'-phenylcyclopropyl) imine 175b (1.140 g, 3.709 mmol) was stirred 

at room temperature in dry acetone (10 ml) with iodomethane (0.576 g, 4.06 mmol) 

protected from light for 3 days. Concentration of the solution gave a dark residue 

which was suspended in dry ethanol (20 ml) at 0°C and treated with sodium 

borohydride (0.42 g, 11 mmol) portionwise over 30 mm. The solution was allowed 

to warm with stirring over 2 h. then concentrated. The residue was partitioned 

between water (7 ml) and chloroform (30 ml). The chloroform layer was separated 

and washed with water (3 x 6 ml), then dried and concentrated to give a tan oil 

(1.121 g). Purification of this oil by column chromatography on silica with 

chloroform/0-2% methanol gave a mixture (55:45) of the SSS and RSS diastereomers 

of 177b (0.628 g, 52%). Further purification of a portion (268 mg) of this mixture 

by p.t.l.c. on silica with dichloromethane/10% methanol gave: 

(a) SSS-1-(2'-phenylcyclopropyl)tetrahydroisoquinoline 177b (87 mg) as colourless 

needles from hexane, with m.p. 109-110°C. 1 H NMR 8: 7.27-7.22 (m, 2ArH"), 

7.17-7.14 (m, ArH"), 7.07-7.03 (m, 2ArH"), 6.90 (s, ArH), 6.59 (s, ArH), 3.85 (s, 
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OCH3), 3.84 (s, OCH3), 3.10-3.06 (m, 1H, H1), 2.79 (t, 2H), 2.81-2.77 (m, 1H), 2.53 

(s, NCH3), 1.97-1.92 (m, H2'), 1.47-1.40 (m, H1'), 1.17-1.11 (m, H3'); 13C NMR 8: 

148.25 (C6A), 147.42 (C7A), 143.09 (C8aB), 130.43 (C4aB), 128.86 (2C"), 126.99 

(Cl"B), 126.14 (3C"), 111.86 (C5C), 110.98 (C8C), 67.15 (Cl), 56.53 (OCH3), 56.32 

(OCH3), 49.79 (C3), 43.81 (NCH3), 27.81 (C4), 27.44 (C1'D), 23.75 (C2'D), 15.34 

(C3'); MS m/z: 323 (M+, 2%; Calcd. for C211125NO2 323.1885, found 323.1879), 

305 (8), 219 (14), 206 (100), 190 (8); Anal. Calcd for C211-125NO2: C, 77.98; H, 

7.79; N, 4.33 %, found: C, 78.33; H, 7.7.78; N, 4.26. 

(b) RSS-I-(2'-phenylcyclopropyl)tetrahydroisoquinoline 177b (69 mg) as colourless 

needles from hexane, with m.p. 100-101°C. 1H NMR 8: 7.26-7.20 (m, 2ArH"), 

7.15-7.13 (m, ArH"), 7.10-7.06 (m, 2ArH"), 6.88 (s, ArH), 6.55 (s, ArH), 3.82 (s, 

OCH3), 3.57 (s, OCH3), 3.19-3.14 (m, 1H), 3.03 (d, J 8.6 Hz, H1), 2.83-2.74 (m, 

3H), 2.58 (s, NCH3), 2.01-1.97 (m, H2'), 1.37-1.33 (m, H1'), 1.21-1.10 (m, H3'); 

13C NMR 8: 148.14 (C6A), 147.53 (C7A), 143.01 (C8aB), 129.90 (C4aB), 128.97 

(2C"), 126.78 (Cl"B), 126.42 (3C"), 111.79 (C5C), 110.82 (C8C), 67.74 (Cl), 56.36 

(OCH3), 56.24 (OCH3), 50.72 (C3), 42.98 (NCH3), 27.85 (C1'D), 26.83 (C4), 23.51 

(C2'D), 16.24 (C3'); MS m/z: 323 (M+, 1%; Calcd. for C211 -125NO2 323.1885, found 

323.1875), 305 (3), 219 (8), 206 (100), 190 (9); Anal. Calcd for C21H25NO2: C, 

77.98; H, 7.79; N, 4.33 %, found: C, 78.24; H, 7.82; N, 4.34. 

1-Cyclopropy1-6.7-dimethoxy-2-methy1-1.2.3.4-tetrahydroisoquinoline 

N-oxide 178a  

To the 1-cyclopropyltetrahydroisoquinoline 177a (1.46 g, 5.90 mmol) in 

dichloromethane (25 ml) at 0°C was added a solution of m-CPBA (1.40 g, 8.14 

mmol) in dichloromethane (15 ml) dropwise. The solution was allowed to warm and 

stirred for 21 h. before the addition of 5% aqueous sodium bicarbonate (45 ml) and 

removal of the organic solvent in vacuo. The aqueous solution was washed with 

diethyl ether (3 x 20 ml) then concentrated to 10 ml and extracted with chloroform 

(3 x 30 m1). Drying and then concentration of the ether extracts provided a yellow 
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solid (32.6 mg). Drying and then concentration of the chloroform extracts gave a 

mixture (53:47) of the B-ring diastereomers of 1 -cyclopropyltetrahydroisoquinoline 

N-oxide 178a (1.38 g, 89%) as a pale yellow hygroscopic solid. 1 H NMR 8: 3.42 

and 3.24 (s, NCH3); 13C NMR 8: 149.71 and 149.19 (C6A), 148.14 and 147.94 

(C7A), 125.68 (C4aB), 123.35 and 123.08 (C8aB), 111.62 (C5C), 111.49 (C8C), 

81.43 and 78.12 (Cl), 60.79 and 60.30 (C3), 56.87 (NCH3), 56.61 (OCH3), 56.48 

(OCH3), 26.95 and 25.78 (C4), 15.58 and 11.45 (C1'), 7.42 and 4.84 (C2'), 2.88 and 

2.74 (C3'). 

6.7-Dimethoxy-2-methy1-1-(t-2-phenylcyclopropy1)-12,3.4-tetrahydroisoquinoline 

N-oxide 178b  

To a mixture (SSSIRSS=0.47) of the 1-(2'-phenylcyclopropyl)tetrahydro-

isoquinoline diastereomers of 177b (0.947 g, 2.93 mmol) in dichloromethane (30 ml) 

at 0°C was added a solution of m-CPBA (0.70 g, 4.1 mmol) in dichloromethane (25 

ml) dropwise. The solution was allowed to warm and stirred for 40 h. before the 

addition of water (20 ml) and the removal of the organic solvent in vacuo. The 

residual aqueous mixture was basified with potassium carbonate then washed with 

diethyl ether (4 x 10 m1). Drying and then concentration of the ether washes 

provided a yellow solid (0.041 g) containing mainly 177b. The aqueous layer was 

made just acidic to litmus with 3M aqueous hydrochloric acid and washed with 

diethyl ether (4 x 10 ml), then rebasified with potassium carbonate, saturated with 

sodium chloride, and extracted with chloroform (4 x 10 ml). The extracts were 

dried and then concentrated to give a crude mixture of the four possible 

diastereomers of the 1 -(2'-phenylcyclopropyl) N-oxide 178b (0.834 g, 84%) as a pale 

yellow hygroscopic solid. 13C NMR 8: four peaks between 81-76 ppm (Cl), four 

peaks between 65-60 ppm (C3), four peaks between 17-12 ppm (C2'). 
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1-Cyclopropy1-6.7-dimethoxy-2-ethoxycarbonylmethy1-2-methy1-1.23.4-  

tetrahydroisoquinolinium Bromide 179a  

To the 1-cyclopropyltetrahydroisoquinoline 177a (2.027 g, 8.195 mmol) in 

dry acetone (15 ml) was added ethyl bromoacetate (4.2 g, 25 mmol). The solution 

was refluxed for 8 h. then concentrated. The gummy residue was triturated with 

diethyl ether (3 x 10 ml) then dissolved in ethanol (20 ml), concentrated, and 

triturated with further diethyl ether (2 x 10 ml). The residue was dried at 80°C under 

oil pump vacuum to afford a mixture (55:45) of the B-ring diastereomers of the 

isoquinolinium salt 179a (2.95 g, 87%), as an off-white powder. 1 H NMR 8: 3.82 

and 3.59 (s, NCH3); 13C NMR 6: 165.75 and 165.46 (CO), 150.05 (C6A), 148.72 

and 148.51 (C7A), 122.53 and 121.98 (C4aB), 121.06 and 120.84 (C8aB), 111.35 

(C5 and C8), 75.16 and 74.65 (Cl), 63.18 (CH2 of CH2CH3), 60.36 and 56.79 

(CH2C of CH2C0), 56.45 (20CH3), 55.13 and 54.28 (C3C), 49.03 and 47.19 

(NCH3), 24.12 and 23.60 (C4), 14.28 (CH3 of CH2CH3), 13.87 and 13.43 (Cl'), 8.67 

and 7.81 (C2'), 4.66 and 4.47 (C3'). 

6.7-Dim ethoxy-2-ethoxycarbonylmethy1-2-methy1-1-(t-2-phenylcyclopropy1)-  

1.2.3.4-tetrahydroisoquinolinium Bromide 179b  

To the predominantly SSS diastereomer of 177b (172 mg, 0.532 mmol, 

SSS/RSS=19) in dry acetone (2 ml) was added ethyl bromoacetate (0.75 g, 4.5 

mmol). The solution was refluxed for 6 h. then concentrated. The gummy residue 

was triturated with diethyl ether (3 x 3 ml) then dissolved in water (5 m1). The 

aqueous solution was washed with diethyl ether (2 x 3 ml), removing some yellow 

colour. The aqueous solution was then saturated with sodium chloride and extracted 

with chloroform (3 x 3 ml). Drying and then concentration of the extracts gave the 

crude isoquinolinium salt 178b (225 mg, 90%), as a tan powder. 1 H and 13C NMR 

analyses generally supported the presence of two B-ring diastereomers, however, the 

peaks were broad and often overlapping, preventing their assignment. 
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8.9-Dimethoxy-4-methyl-3-phenyl-2,3,5,6-tetrahydropyrrolol -2,1-alisoquinolinium  

Iodide 180 

(i) To the crude 1-(2'-phenylcyclopropyl) imine 175b (8.11 g, 26.4 mmol) in dry 

acetone (70 ml) was added iodomethane (11.2 g, 79.4 mmol). The mixture was 

refluxed for 4 h. The resultant yellow precipitate was collected and washed with 

cold acetone, then dried to give the tetrahydropyrrolo[2,1-a]isoquinolinium salt 180 

(3.82 g, 32%). Concentration of the filtrate afforded crude 176b (7.37 g, 62%). The 

recrystallisation of 180 gave colourless needles from methanol, m.p. 168-170°C, or 

pale yellow prisms from acetonitrile, m.p. 175-178°C. Satisfactory elemental 

microanalysis results could not be obtained from either crystal type. 1 H NMR 8 (d6- 

DMS0): 7.58-7.49 (m, 5ArH'), 7.44 (s, H10), 7.18 (s, H1), 6.90 (s, H7), 5.52 (d, J 

7.2 Hz, H3), 3.87 (s, OCH3), 3.80 (s, OCH3), 3.87-3.76 (m, H2), 3.50-3.43 (m, H5), 

3.43 (s, NCH3), 3.32-3.22 (m, H6), 3.15 (dd, J 3.8 Hz, 18.4 Hz, H2), 3.00 (dd, J 4.1 

Hz, 18.3 Hz, H6), 2.55-2.46 (m, H5); 13 C NMR 5 (d6-DMS0): 156.39 (C8A), 

154.40 (C9A), 146.19 (C1093), 138.90 (ClOaB), 136.50 (C'), 135.08 (4C'), 129.04 

(C1B), 123.72 (C10), 121.14 (C6aB), 116.95 (Cl), 114.08 (C7), 85.01 (C3), 61.85 

(OCH3), 61.52 (OCH3), 60.58 (C5), 54.83 (NCH3), 39.76 (C2), 29.51 (C6); MS 

m/z: 322 (Mt-I, 5%), 321 (25), 307 (M+-CH3I, 88; Calcd. for C20H2INO2 307.1572, 

found 307.1565), 306 (100), 290 (13), 230 (27), 142 (33); IR (KBr disc): 1609, 

1512, 1265, 1018 cm-1 . 

(ii) The 1-(t-2-phenylcyclopropyl)isoquinoline salt 176b (110 mg) was refluxed in 

dry acetone (5 ml) for 24 h. then the solution was cooled. Collection of the 

precipitate afforded 180 (74 mg, 64%). 

Investigation of the Cloke Rearrangement of the 1-(2'-Phenylcyclopropyl) Imine  

175b to 181  

(i) To crude 175b (0.890 g, 2.89 mmol) in dry xylene (50 ml) was added ammonium 

chloride (2.0 g, 38 mmol). The mixture was refluxed for 2.6 h. then cooled and 

water (10 ml) and solid potassium carbonate were added to afford a basic aqueous 



275 

layer. The xylene layer was separated and washed with water (2 x 5 ml) then 

saturated aqueous sodium chloride (5 m1). Concentration of the xylene solution 

afforded a tan film (0.582 g) which, when analysed by t.l.c. and GC-MS, showed the 

presence of numerous compounds. 

(ii) A mixture of crude 175b (0.355 g, 1.15 mmol) and ammonium chloride (0.090 

g, 1.7 mmol) was heated at 160-170°C for 3 h. under a slow flow of nitrogen. The 

residue was then extracted with dichloromethane. The extracts were filtered and 

then concentrated to afford a film which, when analysed by t.l.c. and GC-MS, 

showed the presence of numerous unidentified compounds. 

(iii) A mixture of crude 175b (0.371 g, 1.21 mmol) and ammonium chloride (0.090 

g, 1.7 mmol) was heated at 195-200°C for 40 min. in a sealed tube under nitrogen. 

Work-up of the reaction as for (ii) afforded an unidentified mixture of numerous 

compounds. 

1-Cyclopropy1-7.8-dimethoxy-3-methy1-1.3.4.5-tetrahydro-2.3-benzoxazepine 182a  

A solution of N-oxide 178a (188 mg, 0.714 mmol) in butyronitrile/mesitylene 

(1:5 mixture, 25 ml) was refluxed at 143°C for 12 h. then concentrated. Passage of 

the residue through an alumina plug as a diethyl ether solution afforded, after 

concentration, a yellow oil (147 mg) which was purified by p.t.l.c. on silica with 

dichloromethane/5% ethanol to give the 1 -cyclopropy1 -2,3 -benzoxazepine 182a (96 

mg, 51%) as a colourless oil. 1 H NMR 8: 6.77 (s, ArH), 6.67 (s, ArH), 4.35 (d, J 

8.5 Hz, H1), 3.87 (s, OCH3), 3.85 (s, OCH3), 3.30-3.27 (m, 1H), 3.09-3.01 (m, 1H), 

2.89-2.74 (m, 2H), 2.70 (s, NCH3), 1.26-1.19 (m, H1'), 0.69-0.60 (m, 2H'), 0.56-0.50 

(m, 1H'), 0.45-0.41 (m, 1H'); 13C NMR 8: 148.00 (C7A), 147.71 (C8A), 134.35 

(C9aB), 129.81 (C5aB), 114.38 (C6C), 110.99 (C9C), 89.93 (Cl), 60.54 (C4), 56.66 

(OCH3), 56.60 (OCH3), 47.25 (NCH3), 33.72 (C5), 15.74 (Cl'), 4.11 (C2'D), 3.78 

(C3'D); MS m/z: 263 (M+, 57%; Calcd. for C15H2oNO3 263.1521, found 263.1516), 

246 (18), 217 (14), 204 (100), 189 (75), 173 (57). 
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Investigation of the Conditions Necessary for the Rearrangement of N-Oxide 178a  

(i) A solution of 178a (310 mg) in dry acetonitrile (25 ml) was refluxed under 

nitrogen for 3 h. then concentrated. Examination of the residue by t.l.c. and 1 H 

NMR techniques showed the material was unchanged 178a. 

(ii) A solution of 178a (310 mg) in dry acetonitrile (25 ml) was heated in a sealed 

tube at 111°C for 6 h. then concentrated. The residue was extracted with diethyl 

ether (3 x 10 m1). The ether extracts were washed with water (2 x 5 ml) then dried 

and concentrated to afford 182a (7 mg, 2%). 

(iii) Compound 178a (303 mg) was heated in a butyronitrile (4 ml) and xylene (20 

ml) mixture at 130°C for 5 h. Workup as for (ii) gave 182a (54 mg, 18%). 

(iv) Compound 178a (110 mg) was heated at 215°C in an evacuated sealed tube for 

15 min. The resultant dark oil was taken up in diethyl ether and eluted through an 

alumina plug. Concentration of the eluant afforded an oil (0.047 g, 42%) which 

contained 182a and an unidentified isomer (ratio 60:40) with the following 

distinctive spectral peaks. 1 H NMR 8: 6.87 (s, ArH), 6.55 (s, ArH), 4.93 (d, J 4.7 

Hz, 1H), 2.52 (s, NCH3); 13C NMR 8: 15.20 (Cl'), 5.01 (C2 1A), 4.51 (C3A); MS 

m/z: 263 (M+, 1%), 248 (3), 206 (100), 190 (16), 162 (4), 103 (2). 

(v) A solution of 178a (159 mg) in acetonitrile (200 ml) was irradiated with UV 

light passed through a duran glass sleeve (?.300 nm) for 1 h. Concentration and then 

examination of the residue by t.l.c. and 1 H NMR analysis showed the original 

material was unchanged. 

(vi) A solution of 178a (159 mg) in acetonitrile (220 ml) was irradiated with UV 

light passed through a vycor glass sleeve W,30 nm) for 50 min. then concentrated. 

The resultant dark solid was taken up in diethyl ether and eluted through an alumina 

plug. Concentration afforded a solid (24 mg, 15%) which contained 182a (18%) and 

two other components detected by GC-MS analysis. The major component (65%) 

had a MS pattern identical to that of 175a. 
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7.8-Dimethoxy-3-methy1-1-(t-2-phenylcyclopropy1)-1.34.5-tetrahydro-23-  

benzoxazepine 182b  

A solution of N-oxide 178b (303 mg, 0.894 mmol) in butyronitrile (5 ml) and 

mesitylene (25 ml) was refluxed at 143°C for 90 min. then concentrated and the dark 

residue taken up in diethyl ether (30 ml). The organic solution was washed with 

water (3 x 7 ml) then saturated aqueous sodium chloride (7 m1). Drying and then 

concentration of the ether solution afforded a mixture (55:33:12) of three 

components (0.256 g). Purification of this mixture by preparative reverse phase 

HPLC with acetonitrile/25% water gave: 

(a) at 17.04 mm., the SSS 1-(2'-phenylcyclopropy1)-2,3-benzoxazepine 182b (71 mg, 

23%) as a colourless solid which crystallised from methanol, m.p. 102-103°C. 1 H 

NMR 5: 7.28-7.23 (m, 2ArH"), 7.17-7.11 (m, 3ArH"), 6.78 (s, ArH), 6.68 (s, ArH), 

4.78 (d, J 6.7 Hz, H1), 3.86 (s, OCH3), 3.71 (s, OCH3), 3.20-3.10 (m, 1H), 3.08- 

2.98 (m, 1H), 2.96-2.86 (m, 1H), 2.85-2.78 (m, 1H), 2.67 (s, NCH3), 2.08-2.01 (m, 

H2'), 1.62-1.54 (m, H1'), 1.17-1.06 (m, 2H3'); 13C NMR 5: 148.05 (C7A), 147.66 

(C8A), 143.37 (Cl"), 134.34 (C5aB), 130.89 (C9aB), 128.95 (2C"), 126.53 (2C"), 

126.21 (1C"), 114.46 (C6C), 110.90 (C9C), 86.97 (Cl), 60.67 (C4), 56.64 (OCH3), 

56.42 (OCH3), 47.43 (NCH3), 34.47 (C5), 26.99 (C2'D), 21.54 (C1' 1 ), 14.07 (C3'); 

MS m/z: 339 (M+, 3%), 305 (4), 280 (98), 249 (15), 206 (44), 189 (100); Anal. 

Calcd for C21H25NO3: C, 74.31; H, 7.42; N, 4.13%, found: C, 74.21; H, 7.35; N, 

4.37%. 

(b) at 19.34 min., the RSS 1-(2'-phenylcyclopropy1)-2,3-benzazazepine 182b (83 mg, 

27%) as a colourless solid which crystallised from methanol, m.p. 90-91°C. 1 H 

NMR 5: 7.25-7.20 (m, 2ArH"), 7.15-7.05 (m, 3ArH"), 6.76 (s, ArH), 6.66 (s, ArH), 

4.53 (d, J 8.6 Hz, H1), 3.84 (s, OCH3), 3.55 (s, OCH3), 3.12-2.89 (m, 3H), 2.88- 

2.79 (m, 1H), 2.74 (s, NCH3), 1.97-1.94 (m, H2'), 1.60-1.50 (m, H1'), 1.27-1.16 (m, 

2H3'); 13C NMR 8: 147.91 (C7A), 147.58 (C8A), 142.62 (Cl"), 134.35 (C5aB), 

130.56 (C9aB), 128.98 (2C"), 126.38 (3C"), 114.40 (C6C), 110.66 (C9C), 88.78 

(Cl), 60.59 (C4), 56.58 (OCH3), 56.10 (OCH3), 47.61 (NCH3), 34.61 (C5), 27.95 
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(C2'D), 22.72 (CUD), 14.89 (C3'); Anal. Calcd for C21I-125NO3: C, 74.31; H, 7.42; 

N, 4.13%, found: C, 74.30; H, 7.33; N, 4.37.%. 

(c) at 26.98 min., the 4,3-benzoxazecine 183b (27 mg, 9%) described below. 

10.11-Dimethoxy-3-methy1-5-phenyl-/H-2.3.5.6-tetrahydro-43-benzoxazecine 183b  

The preparation of 182b described above gave the 4,3-benzoxazecine 183b 

(27 mg, 9%) as a colourless solid which crystallised from methanol, m.p. 146-148°C. 

1 H NMR 8: 7.42-7.26 (m, 5ArH'), 6.78 (s, ArH), 6.69 (s, ArH), 6.65 (d, J 16.0 Hz, 

H8), 5.80-5.65 (m, H7), 4.52 (dd, J 3.2 Hz, 11.1 Hz, H5), 3.88 (s, OCH3), 3.86 (s, 

OCH3), 3.45-3.35 (m, 1H), 3.12-3.04 (m, 2H), 2.62 (s, NCH3), 2.59-2.39 (m, 1H and 

2H6); 13C NMR 8: 148.00 (C10A), 147.86 (C11A), 143.90 (Cl'), 134.45 (C8B), 

132.69 (C8aC), 132.48 (C12aC), 132.25 (C7B), 128.97 (2C'), 127.83 (1C'), 126.59 

(2C'), 113.84 (C9D), 111.48 (C12D), 84.16 (C5), 59.34 (C2), 56.66 (20CH3), 45.52 

(NCH3), 41.80 (C6), 28.01 (Cl); MS m/z: 339 (M+, 6%; Calcd. for C21I -125NO3 

339.1834 found 339.1815), 322 (2), 280 (54), 232 (10), 206 (100), 189 (73); Anal. 

Calcd for C21H25NO3: C, 74.31; H, 7.42; N, 4.13%, found: C, 74.27; H, 7.41; N, 

4.33%; IR (thin film from CDC13): 1508, 1109, 700 cm 4 . 

Other Thermolyses of the N-Oxide 178b  

(i) A solution of 178b (288 mg) in dry acetonitrile (25 ml) was refluxed under 

nitrogen for 60 h. then concentrated. The residue was taken up in diethyl ether (30 

ml) and the solution was washed with water (3 x 7 ml) and saturated aqueous sodium 

chloride (7 ml) then dried and concentrated to afford a yellow oil (141 mg, 49%). 

1 H NMR analysis confirmed the oil contained RSS-182b, SSS-182b and 183b 

(56:33:11). 

(ii) A solution of 178b (267 mg) in dry butyronitrile (25 ml) was refluxed under 

nitrogen for 2.5 h. Workup as for (i) afforded a yellow oil (129 mg, 48%) which 

contained RSS-182b, SSS-182b and 183b (52:35:13). 
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Thermolysis of the 1-(2'-Phenylcyclopropy1)-2.3-benzoxazepine 182b  

A diastereomeric mixture (SRR/SSS=1.5) of 182b (0.168 g, 0.495 mmol) was 

heated in an evacuated sealed tube at 210°C for 30 mm. 1H NMR analysis of the 

resultant oil confirmed the original material was unchanged. 

Ethyl 1-Cyclopropy1-7.8-dimethoxy-3-methy1-1.2.4.5-tetrahydro-3H-

3-benzazepine-2-carboxylate 184a  

To the 1-cyclopropyl salt 179a (243 mg, 0.586 mmol) in butyronitrile (25 ml) 

at reflux was added DBU (0.13 ml, 0.87 mmol). The solution was refluxed for 8.5 h. 

then concentrated. Application of the residue to an alumina column and elution with 

dichloromethane/10% light petroleum (100 ml) gave, upon concentration, a dark oil 

(176 mg). Purification of this oil by p.t.l.c. on silica with dichloromethane/5% 

ethanol gave: 

(a) the trans-butadiene isomer of 83b (9 mg, 5%). 

(b) the major B-ring diastereomer of the 1-cyclopropy1-3-benzazepine 184a (88 mg, 

45%) as a white waxy solid. 1 H NMR 5: 6.75 (s, ArH), 6.64 (s, ArH), 4.08 (q, CH2 

of CH2CH3), 3.85 (s, 20CH3), 3.51 (d, J 6.9 Hz, H2), 3.24-3.18 (m, 1H), 3.03-2.94 

(m, 1H), 2.86-2.78 (m, 1H), 2.74-2.66 (m, 1H), 2.49 (s, NCH3), 2.36-2.28 (m, 1H), 

1.43-1.38 (m, H1'), 1.22 (t, CH3 of CH2CH3), 0.68-0.64 (m, H2'), 0.59-0.52 (m, 

H2'), 0.30-0.50 (m, H3'), 0.17-0.10 (m, H3'); 13C NMR 5: 173.01 (CO), 147.89 

(C7A), 147.50 (C8A), 133.17 (C9aB), 132.89 (C5aB), 113.43 (C6C), 113.18 (C9C), 

70.06 (C2), 60.51 (CH2 of CH2CH3), 56.74 (OCH3), 56.51 (OCH3), 53.00 (Cl), 

51.05 (C4), 46.47 (NCH3), 34.76 (C5), 15.18 (CH3 of CH2CH3), 13.84 (Cl'), 6.76 

(C2 13), 5.44 (C3'D); MS rn/z; 333 (M+, 5%; Calcd. for C19H27N04 333.1940, found 

333.1929), 260 (100), 204 (5), 189 (4), 130 (8). 

(c) the cis-butadiene isomer of 83b (28 mg, 14%). 

(d) the minor B-ring diastereomer of the 1-cyclopropy1-3-benzazepine 184a (34 mg, 

17%) as a white waxy solid. 1 1-1 NMR 8: 7.00 (s, ArH), 6.63 (s, ArH), 3.89 (q, CH2 

of CH2CH3), 3.86 (bs, 20CH3 and 1H), 3.31 (t, 1H), 3.06 (t, 1H), 2.79-2.72 (m, 1H), 
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2.65-2.56 (m, 1H), 2.54(s, NCH3), 2.41 (d, I 10.3 Hz, 1H), 1.71-1.64(m, H1'), 1.07 

(t, CH3 of CH2CH3), 0.77-0.72 (m, H2'), 0.47-0.43 (m, H3'), 0.18-0.13 (m, H3'); 

13C NMR 8: 171.99 (CO), 147.74 (C7A), 147.46 (C8A), 134.03 (C9aB), 133.13 

(C5aB), 113.00 (C6C), 111.62 (C9C), 70.04 (C2), 60.28 (CH2 of CH2CH3), 56.83 

(OCH3), 56.55 (OCH3), 52.33 (C1), 51.19 (C4), 45.76 (NCH3), 35.92 (C5), 15.06 

(CH3 of CH2CH3), 14.58 (C1'), 7.06 (C2'1 ), 6.60 (C3'D); MS miz: 333 (M+, 4%; 

Calcd. for C19H27N04 333.1940, found 333.1929), 260 (100), 204 (5), 189 (5), 130 

(10). 

Other Treatments of the 1-Cyclopropy1-2-ethoxycarbonylmethyl Salt 179a by Base  

(i) To 179a (347 mg, 0.837 mmol) in dry acetonitrile (25 ml) under nitrogen was 

added DBU (0.15 ml, 1.0 mmol). The solution was stirred for 60 h. then 

concentrated. Analysis of the residue by t.l.c. and GC-MS techniques confirmed no 

reaction had occurred. 

(ii) To 179a (360 mg, 0.869 mmol) in dry acetonitrile (25 ml) under nitrogen at 

40°C was added dropwise a solution of 1.6M butyl lithium in hexane (0.70 ml, 1.1 

mmol). A small amount of solid formed. The mixture was stirred for 44 h. at 40°C 

then concentrated and the residue was extracted with diethyl ether (4 x 10 m1). 

Concentration of the extracts gave a dark oil (72 mg, 26%). Analysis of the oil by 

1 H NMR and GC-MS techniques confirmed that only the diastereomers of 184a and 

83b were present. 

(iii) To 179a (303 mg, 0.731 mmol) in dry acetonitrile (25 ml) at 40°C was added 

DBU (0.52 ml, 3.4 mmol). The solution was stirred for 48 h. at 40°C before workup 

as for (ii) to give a dark oil (30 mg, 12%). Analysis of the oil by 1 H NMR and GC-

MS techniques confirmed that only the diastereomers of 184a and 83b were present. 

(iv) To 179a (265 mg, 0.639 mmol) in chloroform (25 ml) at reflux under nitrogen 

was added DBU (0.12 ml, 0.83 mmol). The solution was refluxed for 67 h. before 

workup as for (ii) to give a dark oil (107 mg, 50%). Analysis of the oil by 1 H NMR 



281 

and GC-MS techniques confirmed that only the diastereomers of 184a and 83b were 

present. 

(v) To 178a (317 mg, 0.765 mmol) in dry acetonitrile (25 ml) at reflux under 

nitrogen was added DBU (0.15 ml, 0.99 mmol). The solution was refluxed for 5 h. 

then concentrated. Application of the residue to an alumina column and elution with 

dichloromethane/10% light petroleum (100 ml) gave, after concentration, a 

colourless oil (123 mg). Purification of this oil by p.t.l.c. on silica with 

dichloromethane/5% ethanol gave the diastereomers of 184a (82 mg, 32%; 23 mg, 

9%) and 83b (21 mg, 8%; 10 mg, 4%). 

Ethyl 7 .8-Dimethoxy-3-methy1-1-(t-2-phenylcyclopropy1)-1.2.4.5-tetrahydro-3H-

3-benzazepine-2-carboxylate 184b  

To the 1-(2'-phenylcyclopropyl) salt 179b (225 mg, 0.459 mmol) in dry 

butyronitrile (25 ml) at reflux was added DBU (0.10 g, 0.66 mmol). The solution 

was refluxed for 8.5 h. then concentrated. Application of the residue to an alumina 

column and elution with dichloromethane/10% light petroleum (130 ml) gave, upon 

concentration, a dark oil (132 mg, 67%). Purification of this oil by preparative 

reverse phase HPLC with acetonitrile/25% water gave: 

(a) at 14.12 min., a colourless film (2 mg, 1%) approximately 90% pure. The 

material was not identified. The 1 H NMR spectrum was inconsistent with that 

expected for 185b. 

(b) at 19.20 min., a mixture (1.66:1) of the B-ring diastereomers of 1 -(2'- 

phenylcyclopropy1)-3-benzazepine 184b (60 mg, 31%) as a colourless oil with the 

following distinguishable NMR peaks. 1 H NMR 8: 7.27-7.11 (m, 4ArH"), 7.02-7.01 

(m, ArH"), 6.82 and 6.66 (s, ArH), 6.64 (s, ArH), 3.88 and 3.86 (s, OCH3), 3.84 (s, 

OCH3), 2.43 and 2.42 (s, NCH3), 1.32 and 1.08 (t, CH3 of CH2CH3); 13C NMR 8: 

173.15 and 172.89 (CO), 147.77 (C7A), 147.60 (C8A), 133.02 and 132.75 (C9aB), 

143.38 (Cl"), 132.49 and 132.33 (C5aB), 128.92 (2C"), 126.87 (C"), 126.19 (2C"), 

113.41 and 113.00 (C6C), 112.84 and 112.01 (C9C), 70.55 and 69.86 (C2), 60.79 
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and 60.64 (CH2 of CH2CH3), 56.78 and 55.96 (OCH3), 56.48 (OCH3), 52.06 (Cl), 

51.21 and 50.80 (C4), 46.29 and 45.92 (NCH3), 34.59 and 33.94 (C5), 26.98 and 

25.59 (C2"D), 25.08 and 23.59 (Cl"D), 17.85 and 16.15 (C3"), 15.22 and 14.92 

(CH3 of CH2CH3). 

(c) at 29.94 min., a colourless film (4 mg, 2%) approximately 90% pure. The 

material was not identified. The 1 H NMR spectrum was inconsistent with that 

expected for 185b. 

(d) at 37.70 min., a colourless film (9 mg, 4%) approximately 90% pure. The 

material was not identified. The 1 H NMR spectrum was inconsistent with that 

expected for 185b. 
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APPENDIX 

1. Conformational Modelling of the E-2,3,4,5-Tetrahydro-1H-

3-Benzazonines 

The molecular modelling of the parent E-2,3,4,5-tetrahydro-1H-3-benzazonine 

derivative (Section 2.3.4) afforded five low energy conformations, described in Table 

2.4. The structures determined for conformers 2, 3, and 5 are shown below, with 

three perspectives of each conformation. 

conformer 2 



conformer 3 
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conformer 5 
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2. Conformational Modelling of the Z-2,3,4,5-Tetrahydro-1H-

3-Benzazonines 

The molecular modelling of the parent Z-2,3,4,5-tetrahydro-1H-3-benzazonine 

derivative (Section 2.3.4) afforded five low energy conformations, described in Table 

2.5. The structures determined for conformers 4 and 5 are shown below, with three 

perspectives of each conformation. 
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3. Molecular Modelling of the Z-1,2,3,5-Tetrahydro- 

4,3-Benzoxazonine System 

The molecular modelling of the parent Z-1,2,3,5-tetrahydro-4,3-benzoxazonine 

derivative (Section 3.7) afforded five low energy conformations, described in Table 

3.9. The structures determined for conformers 3, 4, and 5 are shown below, with 

three perspectives of each conformation. 

conformer 3 



297 



298 

4. Conformational Modelling of the E-2,3,5,6-Tetrahydro-1H-

4,3-Benzoxazecine 183b 

The molecular modelling of the substituted E-2,3,5,6-1H-4,3-benzoxazecine 

derivative 183b (Section 5.6) afforded four low energy conformations, described in 

Table 5.4. The structures determined for conformers 2, 3 and 4 are shown below, 

with three perspectives of each conformation. 

t 	

conformer 2 
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conformer 3 


