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ABSTRACT 

The recent unification of wavelet and subband theories has allowed the cre-
ation of a new field of investigation for the efficient compression of digital images: 
wavelet compression. It has seen remarkable improvements in compression results 
over the previous generation of DCT-based image compression schemes. The fo-
cus of research in this field has, however, been almost exclusively in the separable 
domain, which uses one-dimensional transforms. 

The use of truly nonseparable wavelet transforms on two-dimensional image 
signals has been largely ignored. The purpose of this Thesis is to investigate more 
thoroughly this largely untouched field of wavelet-based image compression. 

In this Thesis we discuss in depth the techniques for using multidimensional 
wavelet transforms and subband coding for image compression and provide results 
for extending existing compression techniques to the quincunx domain. Various 
results covering a number of coding methodolgies are presented using the quin-
cunx wavelet transform to demonstrate its advantages and disadvantages when 
compared to the separable decomposition method. Novel techniques are devel-
oped for the representation and storage of quincunx sampled images allowing 
in-place wavelet transforms to be performed in real-time. A novel extension to 
the Shapiro zero-tree compression method is developed which predicts and ex-
ploits, during coding, visually unimportant areas without the need for transmit-
ting side-information. Results are presented which show that this process leads to 
significantly higher perceived image quality without increasing the bit-rate. 

Several advantageous psychovisual properties of the quincunx resampling lat-
tice are exploited in the creation of various extensions to simple compression meth-
ods. Results isolating the effects of utilizing these properties are presented. 

We find that in general separable wavelet transforms perform better than their 
quincunx counterparts for bit-rate versus perceived quality of reconstruction, de-
spite the quincunx resampling structure possessing inherent advantages over rect-
angular resampling. This is mainly attributed to the state of non-separable sub-
band theory and filter design which has not progressed to a state where it is pos-
sible to achieve the same quality of filter design as exists in the one dimensional 
case. 
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About the Experimental Platform 

The gathering of experimental data has been a significant part of the research 
for this Thesis. Working in the nonseparable domain was found to be a difficult 
and time consuming exercise compared to the separable domain. 

Experimentation began using MATLAB with the excellent wavelet tool-box 
provided. This sufficed for early separable results such as those described in 141. 
When the move was made to nonseparable experimentation it was found that 
MATLAB was too slow. This was due to the resampling necessary at each level 
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mental correctness. The disadvantage was that no code examples were available 
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The development platforms used were GNU/Linux systems (various flavours) 
with GNU gcc and Sun UltraSPARC systems also running GNU gcc. Many thanks 
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About a 18 months after moving away MATLAB, the "upsampled" represen-
tation (Chapter 5) was discovered which eliminates the need for the processor 
intensive resampling procedure; the reason for abandoning MATLAB in the first 
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full-time employment. The upsampled representation has since been included as 
an integral part of the C++ experimental code libraries used for the majority of 
the results presented in this work. 

Advice to the New Researcher 

The author strongly advises those researching in the nonseparable field to 
experiment with the upsampled representation before switching away from estab-
lished tools such as MATLAB due to speed issues with resampling. Much time 
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was spent reinventing existing tools for custom code which are already available 
in established packages. 

The upsampled representation is applicable to any resampling lattice (including 
separable) and so may find use in separable, quincunx, hexagonal or other sampling 
domains. 
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licensed under the conditions of the GNU General Public License (GPL) from 
the Free Software Foundation and is freely usable and redistributable under the 
conditions of that license. The copyright of the code belongs to the author, except 
for the Arithmetic Coding implementation as outlined in the Acknowledgements. 
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Abstract — It has been demonstrated that 
wavelets compete well against DCT based im-
age compression techniques [I]. However the 
advantages of nonseparable wavelet transforms 
for image and video coding have not yet been 
adequately explored. 

In this paper we discuss nonseparable wavelet 
transforms on the quincunx lattice and show that 
they have certain properties which make them 
an attractive choice for image compression. 

We compare images compressed using sep-
arable and nonseparable biorthogonal filters, 
where the two-dimensional filters are obtained 
from the one-dimensional filters [2] thus pre-
serving many of the properties from one-
dimension to two-dimensions. 

We show that the performance of separable 
and nonseparable techniques is comparable un-
der similar constraints even though the nonsep-
arable filters have support areas less than the 
separable filters. 

Introduction 
Wavelets have become a field of intense research in 
the image processing field due to their close rela-
tionship with the well understood field of subband 
coding. However the research to date has been al-
most exclusively concerned with separable wavelet 
transforms in the form of the Mallat algorithm [5]. 
There are, however, restrictions which occur when 
applying separable transforms to images. Some of 
these restrictions can be lifted by moving to truely 
two-dimensional wavelet transforms. 

1 Non-separable Wavelets 

Although separable wavelet transforms have a 
simple and well understood algorithm there are 
certain advantages to a non-separable transform. 
For example, images are two-dimensional and thus 
can be better handled by a truely two-dimensional 
transform which considers the image as areas rather 
than as rows and columns. The separable wave-
let decomposition has vertical and horizontal cut-off 
while the non-separable decomposition has a diag-
onal cut-off. This is better psychovisually since the 
perceptually least valuable component of vision is 
quantized first. Non-separable filter-banks have a 
greater flexibility than separable filters and can be 
more appropriately tailored for particular purposes. 

The application of a non-separable wavelet de-
composition is similar to the separable case. Sub-
sampling is not performed by retaining every 
second column and row, as it is in the separable 
case, but rather samples on a lattice [6] are retained. 
This paper focusses on wavelets subsampled on the 
quincunx lattice; the simplest non-separable lattice. 

Subsampling on the quincunx lattice differs from 
separable sampling in the rate of data reduction. 
In the separable case four band-pass components 
are generated and each has one quarter the num-
ber of samples of the previous signal (half as many 
samples in each dimension). In the quincunx case, 
each component has half as many samples, a factor 
of in each dimension. Figure 2 shows one level of v 2 
decomposition with the quincunx lattice. Note the 
rotation of the image which occurs due to a change 
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Figure 1: Downsampling lattices. (a) Quincunx, 
(b) vertical downsampling by 2, (c) reciprocal of 
(a), (d) reciprocal of (b). 

of basis. This effect is reversed for each level of 
decomposition. Hence at odd depths the orienta-
tion is rotated but at even depths the orientation is 
normal. 

A lattice is defined by a number of vectors do, 
. For the quincunx lattice the two defining 

1 	 1 vectors used were do = ( ) and d1 = ( 1 	 —1 ) • 
This however is usually abbreviated to a defining 
matrix 

pq 	( do 	) 	) 	(1.1) 

Figure 1 shows the quincunx lattice and the lattice 
for downsampling by two in the vertical direction. 

Downsampling can be characterized by 

Y(n) = X(D) 	(1.2) 

where Y (n) is the subsampled version of the sig-
nal X (n), and D is the matrix characterizing the 
lattice. In the quincunx case this reduces to 

Y(ni , n2) = X(ni + n2 , n 1  — n2) 	(1.3) 

There are several issues which set this form 
of down-sampling apart from separable down-
sampling. One of the most significant is the change 

Figure 2: Quincunx downsampling of an image. 

in basis which arises as shown in Figure 2. The ef-
fect is reversed at each levels  and  two applications 
is equivalent to separable down-sampling by two 
in both dimensions. If Dq  is  the  quincunx down-
sampling matrix then 

Dq .Dq  = 
	( 1 _11 ) 	1 

1 	
_ 1  ) 	(1.4) 

	

(  20  02  ) 	(1.5) 

If we consider separable downsampling 

Dhorzz = 	
)  and  Livert  = ( 0 

	

( 02 01 	
) 

and the application  of  one  followed  by the other is 

	

D  sep = Dvert•Dhorlz = 
 ( 02  02  ) 	(1.6) 

as above in (1.5). 
One of the attractive features of the quincunx 

downsampling process is  the  retained spectrum 
after downsampling. When downsampling an im-
age through separable means we must necessarily 
remove half the samples in each dimension as men-
tioned above. By halving the number of samples 
in a particular dimension we  halve  the bandwidth 
of the image in that direction.  This  is because each 
sample now effectively occupies twice as much space 
in the direction of downsampling. Now because we 
downsample on the cartesian grid (ie. horizontal 
and vertical coordinates) we halve the bandwidth 

• 	• 	• 

• • 	 
• • 

•	 
• • 
(c) 



of the image in both horizontal and vertical direc-
tions. The problem associated with this scheme is 
related to the sensitivity of the human visual sys-
tem (HVS). Our eyes are naturally more sensitive to 
vertical and horizontal edges than they are to diag-
onal edges. Separable downsampling thus removes 
perceptually valuable information. In contrast, the 
quincunx downsampling process has a diagonal cut-
off and does not remove horizontal or vertical fre-
quencies and so the resulting low-pass image will 
contain this data. 

The frequency sensitivity function of the HVS 
has been known for some decades now. It has a 
peak sensitivity in the area of 3.5 cycles/degree 
and a general model can be found in [7]. Because 
the frequency characteristic of a separable wavelet 
transform is to decompose the signal into octave 
sub-bands, when attempting to apply the frequency 
sensitivity function for coding of wavelet transform 
coefficients, we must consider the sensitivity func-
tion in terms of octaves and determine a sensitivity 
value to apply to the entire octave. This reduces 
the resolution of the function to an approximation 
with just a few terms. 

When applying quincunx downsampling the 
decimation process is more gradual in the frequency 
domain. This allows us to model the HVS frequency 
sensitivity function more closely. Now instead of 
having one term per octave we have two terms and 
thus a better approximation. 

Although the frequency characteristics of the 
quincunx lattice appear very desirable at first there 
are also some considerations worth bearing in mind. 
Chiefly to achieve the same level of decimation from 
both the separable and quincunx methods we must 
apply the quincunx scheme twice as many times as 
the separable scheme. This is because the separ-
able scheme retains only half as many samples as 
the quincunx scheme. Now, the effect of applying 
quincunx downsampling twice is equivalent to sep-
arable downsampling. This means that the retained 
spectra of both schemes are similar. However the 
filters used are different thus resulting in some pos-
sible variations in response. 

An advantage which the separable scheme has 
over the quincunx scheme is that the band-pass 
signals which result have three distinct orienta-
tions: horizontal, vertical and diagonal. This allows 
the different orientations to be coded differently to 
match the sensitivity of the HVS to different ori- 

entations. This process can also be used with the 
quincunx lattice but we do not have as fine control. 
In this case we must treat horizontal and vertical 
features together as they are retained in the same 
detail signal. Diagonal details are retained in the 
detail signal from the next (or previous) level of de-
composition. This is not a disadvantage though, 
because it has been shown that the sensitivity of 
the HVS to errors in quantization of horizontal and 
vertical details is very similar [3] [4]. 

2 Wavelets Decomposition on 
the Quincunx Lattice 

Wavelet decomposition has two basic steps: filter-
ing and downsampling. The input image is filtered 
by a low-pass and a band-pass filter and both result-
ing signals are down-sampled. The filtering process 
is accomplished by two-dimensional convolution of 
the signal with the filter coefficients. In the separ-
able case this convolution is done one dimension at 
a time. Thus the image is considered as a num-
ber of separate, unconnected signals; either rows or 
columns. Non-separable filtering convolves both di-
mensions simultaneously so the image is considered 
as areas. 

Although there is a large number of wavelet filter 
sets available we are interested primarily in the dif-
ferences brought about by the non-separable down-
sampling and convolution processes so we can make 
comparisons. We must also constrain ourselves to 
filters for which there are closely related one- and 
two-dimensional versions. 

We concentrate on two wavelet filter sets here. 
We use a linear-phase (ie. symmetrical) hi-
orthogonal set as proposed by Kovaeevie and Vet-
terli in [2] and its one-dimensional version (from 
which the two-dimensional filter is derived). 

The one dimensional filter set derived from the 
generalized filter using al = 2 and a2  = —6 is: 

ho  = 	1 2 1 	 (2.1) 
go = 	1 2 —6 2 1 	(2.2) 

The two dimensional filter set derived from the 



above one-dimensional filter set is: 
1 

ho  = 1 4 1 (2.3) 
1 

1 
2 4 2 

go  = 1 4 —28 41 (2.4) 
2 4 2 

1 

Note that the bi-orthogonal filter set must obey 
the following conditions for alias cancellation: 

(Zi, Z2) = 	- Z2) 

gi(zi, Z2) = —ho(—zi, - Z2) 

where f(—z) is the Quadrature Mirror Filter 
(QMF) pair for f(z) and 9 1  and h 1  are synthesis 
filters. 

When we downsample the signal on the quincunx 
lattice we are retaining only every second sample. 
Thus the number of samples is reduced by a factor 
of two. Figure 1 shows the arrangement of the 
quincunx lattice and (1.1) gives one possible value 
for Dq , the downsampling matrix. However there 
are other possibilities, for example: 

Dq2  ( 11 02 	_ 20 	) 

Although there are many possibilities for the 

	

1 	1 
downsampling matrix Dq  we use Dq  = ( 1 —1 ) 
since this leads to separable downsampling at every 
other step in decomposition. This allows us to more 
readily make comparisons between separable and 
nons ep arable methods. 

From (1.3) we have Y(n) = X (Dn) for the down-
sampling process. The reverse is accomplished with 
the reciprocal sampling matrix 

1 
2 

_1 
2 

Figure 1 shows the reciprocal lattice generated 
by the inverse matrix Dq  —I  . Note that the lattice 
points are now closer together than the cartesian 
grid points. The upsampling process inserts zeros 
at those lattice points which lie between pixels.  

3 Coding and Results 
Due to the difference in downsampling factor we 
apply two quincunx decomposition levels for every 
separable decomposition level. Thus the resulting 
approximations for both methods are the same size. 
Only the band-pass spaces are processed for com-
pression. Due to the different frequency and ori-
entation specific information contained within the 
various sub-bands, they are all encoded with the 
same algorithm. The hardest difference to account 
for is the different filter structures of separable and 
non-separable cases. We try to account for this 
by using two-dimensional filters obtained from one-
dimensional filters. 

We have - by the need for comparison - kept the 
coding algorithms as simple and 'naive' as possible. 
Coding is accomplished by two means, either hard 
thresholding of coefficients or uniform quantization 
of coefficients. 

In general it was found that the separable method 
performed better than the non-separable method 
by a small degree. The results from the separ-
able method were in general smoother than those 
from the non-separable method however the non-
separable method tended to retain fine details bet-
ter. 

Figure 3 shows the effects of quantization, which 
has the more destructive effect on the quincunx 
scheme. The errors arising from this quincunx 
method tend to form patches of distortion whereas 
the errors from the conventional method tend to oc-
cur as ringing and blurring along one dimension. 
Figure 4 illustrates the effects of thresholding. In 
this case the quincunx method performs much bet-
ter and is comparable, and in some cases better than 
the separable method. Figures 5 shows the situation 
when the same level of decomposition is applied to 
separable and quincunx methods. As can be seen, 
in this case the new quincunx method is far super-
ior, but this situation is not fair for comparison 
purposes because the approximation signal for the 
quincunx case has many more pixels than the sep-
arable case. 

The quincunx method showed errors in areas of 
low activity thus creating very noticeable errors in 
the image, whereas the separable method was found 
to blur or cause ringing in the image resulting in less 
noticeable errors but loss of fine detail. 

It should be noted that the area of support of the 

(2.5) 



Figure 3: Reconstruction from (left) 6 non- Figure 5: Reconstruction from (left) 3 non-
separable levels and (right) 3 separable levels, with separable levels and (right) 3 separable levels, with 
8 quantization bins. 90% of coefficients set to zero. 

Figure 4: Reconstruction from (left) 6 non-
separable levels and (right) 3 separable levels, with 
90% of coefficients set to zero. 

non-separable filters is not as large as that of the 
separable filters. For instance the 5x5 quincunx fil-
ter as shown in (2.4) has 12 coefficients which are 
zero. Thus the actual size of the filter is only 13 
coefficients (ie. less than a 4x4 filter). Similarly the 
3x3 filter only has 5 coefficient which are non-zero. 
The reduced support size adversely affects regular-
ity and thus also reduces immunity to quantization 
and thresholding noise. 
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Abstract – It has been demonstrated that wavelets 
compete well against DCT based image compression 
techniques [I]. However the advantages of nonsepar-
able wavelet transforms for image and video coding 
have not yet been adequately explored. 

In this paper we discuss nonseparable wavelet 
transforms on the quincunx lattice and compare res-
ults under simple data reduction methods using sep-
arable and nonseparable symmetrical (linear-phase) 
biorthogonal filters, where the two-dimensional fil-
ters for use on the quincunx lattice are obtained 
from the one-dimensional filters [3]. 

We attempt to use the most general coding 
schemes possible which do not disadvantage either 
separable or nonseparable techniques. For a com-
parison of separable wavelets, quantizers and coders 
the reader is directed to [2]. We attempt to use sep-
arable and quincunx wavelet filters of similar size 
and with similar properties. Even so it is difficult to 
determine the most appropriate filters for compar-
ison. 

We show that the performance of separable and 
nonseparable techniques is comparable under sim-
ilar constraints. 

Finally we investigate methods for performance 
enhancement through the use of psychovisual coding 
with the nonseparable transform. 

Introduction 

Wavelets have become a field of intense research in 
the image processing field due to their close relation-
ship with the well understood field of subband cod-
ing. However the research to date has been almost 
exclusively concerned with separable wavelet trans-
forms, the natural extension into two dimesnions of one-
dimensional wavelet transforms - which are well under-
stood and well documented. 

There are, however, restrictions which occur when 
applying separable one dimensional wavelet transforms 
to images - which are two dimensional signals. Some of 
these restrictions can be lifted by moving from separ-
able one dimensional wavelet transforms to truely two-
dimensional wavelet transforms. 

Low-pass 

H 

>0 
 Vertical 

detail 
Columns 

Horizontal 
detail 

—›- G — 
High-pass 

Figure 1: One level of decomposion by the separable 
Mallat Pyramid algorithm. Note the orientation specific 
outputs. 

1 Wavelet Transforms \ 

1.1 2D Separable Wavelets (Tensor 
Product) 

The separable wavelet decomposition is known as the 
Mallat Pyramid scheme [4]. Figure 1 shows one level 
of decomposition. Filtering and subsampling is ap-
plied separably resulting in an approximation signal 
(lowhoriz laWvert) and three detail spaces with distinct 
orientations of horizontal, vertical and diagonal. 

Subsampling is done by a factor of two in each di-
mension, thus the resulting approximation and details 
each contain one quarter the number of samples as the 
previous signal. 

1.2 2D Non -separable Wavelets 

Although separable wavelet transforms have a simple 
and well understood algorithm there are certain advant-
ages to a non-separable decomposition: 

• Images are two-dimensional and thus can be bet-
ter handled by a truely two-dimensional transform 
which considers the image as areas rather than as 
rows and columns. 
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Figure 2: The two cosets of (a) the quincunx lattice, (b) 
horizontal subsampling by two. 
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• Separable wavelet decompositions have vertical and 
horizontal cut-off while the non-separable decom-
position can have a cut-off at an angle. This is 
better psychovisually because it means that the 
perceptually least valuable component of vision is 
quantized first. 

• Non-separable filter-banks have greater flexibility 
and can be more appropriately tailored for particu-
lar purposes. In particular orthogonal linear phase 
solutions are not possible with separable filters but 
can be created with non-separable filters. 

The application of a non-separable wavelet decompos-
ition is some-what similar to the one-dimensional case. 
The low-pass component is repeatedly filtered and sub-
sampled resulting in another low-pass and another de-
tail signal. 

However in this case samples on a lattice [5] are re-
tained. This paper focusses on wavelets subsampled on 
the quincunx lattice, which is the simplest non-separable 
lattice. 

In quincunx downsampling, each subsequent low-pass 
image has half as many samples as its parent, a factor 
of in each dimension. Figure 3 shows one level of de-
composition with the quincunx lattice. The rotation of 
the image occurs due to a change of basis. This effect is 
reversed for each level of decomposition. Hence at odd 
depths (ie. after 1, 3, 5 etc decomposition levels) the 
orientation is rotated but at even depths the orientation 
is normal. 

1.2.1 The Quincunx Lattice 

A lattice is a discrete subset of the points in the original 
signal which may be used. A common lattice is that 
generated by interlacing in television pictures. In this 
case every second row of the picture is retained and 
displayed. This is called a coset of the image. In the 
next field the other coset is displayed. 

In this paper we consider the quincunx lattice struc-
ture which is the simplest non-separable subsampling 
method. Figure 2 shows the two cosets from the quinc-
unx lattice and from separable subsampling in the ho-
rizontal direction. Grey shows the pixels contained in 
one coset while white shows those contained in the other. 
Note that we can change from one coset to the other by 
shifting by one pixel. In the quincunx case this can be 

Figure 3: Subsampling on the quincunx lattice. 

horizontally or vertically however in the separable case 
this must be in the direction of subsampling (horizton-
ally in this case). 

A lattice is defined by a number of vectors do, di • • • dn 
For the quincunx lattice the two defining vectors used 
are 

( do = li 	and di = ( _ li  ) . 

The defining matrix is D = ( do (11 . . . dm  ) which 
in this case gives us 

Dq  = ( 11 _ 11  ) 

Hexagonal down-sampling is another method which 
is frequently used in image processing. That generates 
four cosets [6, 5]. 

Subsampling can be characterized by the following 
equation 

Y (n) = X(Dn) 	 (1.2) 

where Y(n) is the subsampled version of the signal 
X (n), and D is the matrix characterizing the lattice. 

In the quincunx case this reduces to 

Y(ni , n2) = X(ni +n2, — n2) 
	

(1.3) 

There are several issues which  set  this form of down-
sampling apart from separable subsampling. One of the 
most significant is the change in basis which arises. Fig-
ure 3 shows the effect of subsampling on the quincunx 
lattice. The subsampling process rotates the image by 
—
4 

and flips the image about the horizontal axis. Two 
applications is equivalent to separable down-sampling 
by 2 in both dimensions, ie. the image is returned to its 
original orientation and it is smaller by a factor of 2 in 
each dimension. 

1.3 Frequency Band Considerations 
One of the attractive features  of  the quincunx sub- 
sampling process is the retained spectrum after sub- 
sampling. When subsampling an image through sepa.r- 
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Figure 4: Frequency sensitivity of the human visual sys-
tem with octave sub-band approximations shown. 

able means we must remove half the samples in each di-
mension. By halving the number of samples in a partic-
ular dimension we are effectively halving the bandwidth 
of the image in that direction. This is because each 
pixel now occupies twice as much space in the direction 
of subsampling. So we halve the bandwidth of the image 
in both horizontal and vertical directions. The problem 
associated with this scheme is related to the sensitivity 
of the human visual system (HVS). Our eyes are natur-
ally more sensitive to vertical and horizontal edges than 
they are to diagonal edges. When subsampling separ-
ably we remove the important information of horizontal 
and vertical features. In contrast, the quincunx sub-
sampling process has a diagonal cut-off and does not 
remove horizontal or vertical features [7]. 

The frequency sensitivity function of the HVS has 
been known for some decades now. It has a peak sens-
itivity in the area of 3.5 cycles/degree and a general 
shape as shown in Figure 4 [8, 9, 12]. Because the fre-
quency characteristic of a separable wavelet transform is 
to decompose the signal into octave sub-bands, when at-
tempting to apply the frequency sensitivity function for 
coding of wavelet transform coefficients, we must con-
sider the sensitivity function in terms of octaves and de-
termine a sensitivity value to apply to the entire octave. 
This reduces the resolution of the function to just a few 
terms. 

When applying quincunx subsampling the decimation 
process is more gradual in the frequency domain. This 
allows us to model the HVS frequency sensitivity func-
tion more closely. Now instead of having one term per 
octave we have two terms, thus greater accuracy. 

Although the frequency characteristics of the quinc-
unx lattice appear very desirable there are also some 
disadvantages to observe. Chiefly to achieve the same 
level of decimation from both the separable and quinc-
unx methods we must apply the quincunx scheme twice 
as often as the separable scheme. This is because the 
quincunx scheme retains twice as many samples as the 
separable scheme. Now the effect of applying quinc-
unx subsampling twice is equivalent to separable sub-
sampling. This means that the retained spectral regions 
of both schemes are similar. However the filters used 
are different thus resulting in some possible variations 
in response. 

In the separable scheme the high-pass signals which 

result have three distinct orientations: horizontal, ver-
tical and diagonal. This allows the different orientations 
to be coded differently to match the sensitivity of the 
HVS to different orientations. This process can also be 
used with the quincunx lattice but we do not have such 
fine control. In this case we must treat horizontal and 
vertical features together because they are retained in 
the same detail signal. Diagonal details are retained in 
the detail signal from the next level of decomposition. It 
has been shown that the sensitivity of the HVS to quant-
ization of horizontal and vertical wavelet coefficients is 
about the same [9, 10] so this is not a problem. 

2 Wavelet Decomposition on the 
Quincunx Lattice 

Wavelet decomposition has two basic steps: filtering 
and subsampling. The input image is filtered by a low-
pass and a high-pass filter and both resulting signals are 
down-sampled. The filtering process is accomplished by 
two-dimensional convolution of the signal with the filter 
coefficients. In the separable case this convolution is 
done in one dimension at a time, thus the image is con-
sidered as a number of separate, unconnected signals, 
either rows or columns. Non-separable filtering con-
volves both dimensions simultaneously. For this reason 
the image is considered as areas (under the support of 
the filter) rather than as rows and columns. 

Although the number of wavelet filter sets available 
is large we are interested primarily in the differences 
brought about by the non-separable subsampling and 
convolution processes. We also constrain ourselves to 
filters for which there are well defined one- and two-
dimensional versions. 

We concentrate on two wavelet filter sets here. We 
use a linear-phase (ie. symmetrical) bi-orthogonal set 
as proposed by Kovatevie and Vetterli [3] and its one-
dimensional version (from which the two-dimesnional 
filter is derived). 

The one dimensional filter set derived from the gen-
eralized filter [3] using al = 2 and a2  = —6 is: 

The two dimensional filter set derived from the above 
one-dimensional filter set is: 
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Figure 5: Reconstruction from (left) 6 non-separable Figure 7: Reconstruction from (left) 4 non-separable 
levels and (right) 3 separable levels, with 8 quantization levels and (right) 4 separable levels, with 90% of coeffi-
bins. cients set to zero. 

Figure 6: Reconstruction from (left) 6 non-separable 
levels and (right) 3 separable levels, with 90% of coeffi-
cients set to zero. 

For alias cancellation we must have [11]: 

go (zi , z2) = hi (—zi , —z2) 
9i(zi, z2) = —ho(—zi, —z2) 

where f (— z) is the Quadrature Mirror Filter (QMF) 
counterpart for 1(z). 

3 Results 

Due to the inherent difference in the algorithms used 
to decompose images with separable and non-separable 
processes it becomes very difficult to make fair compar-
isons between results obtained from these schemes. 

Particular issues which cause difficulties in compar-
ison are the decimation factor, retained spectra and fil-
ter differences. 

Due to the difference in decimation factor we apply 
two quincunx decomposition levels for every separable 
decomposition level. This means that our resulting ap-
proximation spaces are the same size. All sub-bands 
are encoded with the same algorithm which ignores 
scale and orientation. Probably the hardest difference 
to account for is difference in filter structures for separ-
able and non-separable cases which we have accounted 
for by using two-dimensional filters obtained from one-
dimensional filters. 

We have - by the need for comparison - kept the cod-
ing algorithms as simple and 'naive' as possible. Coding 
is accomplished by two means: 

1. Hard thresholding of coefficients  

2. Uniform quantization of coefficients 

Hard thresholding is done on a percentage of coeffi-
cients basis. The absolute value of coefficients is used 
and the threshold value T is the value for which p% of 
coefficients have absolute value less than T. Thus the 
same fraction of coefficients is removed (set to zero). 

A uniform quantization scheme is used with a variable 
number of bins. Only results for 8 bins are shown here. 

It was found that the artefacts and errors introduced 
by thresholding and quantization of the wavelet coeffi-
cients were of quite different natures but of a similar 
destructive magnitude for both quincunx and separable 
schemes. 

In general it was found that the separable method per-
formed better than the non-separable method by a small 
degree. The results from the separable method were 
in genereal smoother than those from the non-sparable 
method however the non-separable method retained fine 
details better. 

The images reproduced here are 128x128 pixel ver-
sions of the standard test image "lenna". 

Figure 5 shows the effects of quantization, which 
has the more destructive effect on the non-separable 
scheme. As can be seen, the errors arising from the 
non-separable method tend to form noticeable patches 
of distortion whereas the errors from the conventional 
method tend to occur as ringing and blurring in one 
dimension. 

Figure 6 shows the effects of thresholding. As can be 
seen, in this case the non-separable method performs 
much better and is comparable, and in some cases better 
than the performance of the separable method. 

Figure 7 shows the situation when the same level of 
decomposition is applied to separable and non-separable 
methods. This situation is not for comparison purposes 
but to demonstrate the effects of having a larger approx-
imation signal. 

The non-separable method was found to corrupt areas 
of low activity thus creating very noticeable errors in the 
image, whereas the separable method was found to blur 
the image resulting in less noticeable errors but loss of 
fine detail. 

A point to note is that the support size of the non-
separable filters does not cover their full rectangular 
grid size. For instance the 5x5 filter as shown in (2.4) 



15:1 
	

30:1 

Figure 8: Reconstruction from 6 quincunx levels with 
HVS tuned quantization. 

has 12 coefficients which are zero. Similarly the 3x3 
filter only has 5 coefficient which are non-zero. This 
reduced support will adversely affect the regularity of 
the transform and could also reduce its immunity to 
quantization and thresholding noise. 

4 HVS tuning 

We present here a couple of images using a coding 
scheme based on the HVS sensitivity curve [8, 12]. A 
quantization scheme is used where the step size is ad-
justed so that levels which contain data to which the 
human eye is more sensitive are quantized with finer 
steps. 

Figure 8 shows two images compressed to 15:1 and 
30:1 respectively using the method. Bit rates are based 
on entropy of results only so run-length coding would 
almost certainly result in higher ratios. As can be seen 
the image quality is significantly better than for the pre-
vious cases in which HVS tuned quantization was not 
used. 

To further improve the coding process some form 
of activity masking should also be taken into account. 
This method uses the fact that the human eye is less 
able to distinguish small details in areas of high activ-
ity, such as within textures and near significant edges. 
It is envisioned that this type of adjustment would have 
a marked advantage for the quincunx method since its 
most noticeable artefacts are due to errors in areas of 
low activity. 
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ABSTRACT 

Work on Wavelet based coding of images [1] has relied 
almost completely on the use of the separable, ie. Ten-
sor Wavelet Transform. This method treats images as one-
dimensional rows and columns. Treating images in a truely 
multidimensional way allows for much greater flexibility in 
the manipulation of the information. The quincunx lattice 
is a natural choice for applying non-separable filtering be-
cause it is the simplest non-separable lattice. Its diagonal 
cut-off gives it advantageous psychovisual properties. This 
paper shows how to determine spatial location equivalence 
across different levels of a Wavelet decomposition on the 
quincunx lattice. This allows use of methods that use the 
continuity of features across scales such as embedded zero-
tree coding and quad-tree coding. A novel method of de-
composition is outlined which significantly reduces resam-
piing computational complexity. 

1. INTRODUCTION 

Zero-tree [2] and quad-tree [3] coding of Wavelets has pro-
vided one of the most successful image coding approaches 
in recent times[4]. However it has been confined to the sep-
arable domain because of its dependence on multiscale in-
herittance. The most important features to human vision, 
edges, are multiresolution in nature, they occupy the same 
spatial location throughout several resolution levels. The 
utilization of this continuity of features across scales leads 
to efficient coding strategies. 

This paper shows how to determine such multiresolution 
inherittance on the quincunx lattice. We also introduce a 
novel implementation for Wavelet decomposition and re-
sampling using the quincunx lattice which can be extended 
to other sampling lattices. A comprehensive introduction 
to Wavelets in 'Rnis given in [5] and comparisons between 
separable and quincunx decompositions are given in [6]. 

Figure 1: Quincunx subband decomposition block diagram 
showing two levels of decomposition. 

Figure 2: Image coordinate transform during Wavelet de-
composition using the quincunx lattice. 

2. QUINCUNX WAVELET TRANSFORM 

The Fast Wavelet Transform is performed through a process 
of filtering and downsampling. Filtering is done by a low-
pass filter H and a high-pass filter G. The downsampled 
high-pass signal contains the wavelet coefficients or details 
and the low-pass signal is further decomposed until a de-
sired depth of decomposition is achieved. 

It is the detail signals which are coded to achieve image 
compression. Wavelets are very effective for energy com-
paction and the detail signals are typically quite sparse lead-
ing to efficient compression. 

Figure 1 shows two levels of Wavelet decomposition us-
ing the quincunx lattice and figure 2 shows the coordinate 
transform which occurs during quincunx sampling. A sec-
ond transformation will return the image to its normal ori-
entation. 



(a) Quincunx Lattice 	(b) Separablel_attice 

Figure 3: Quincunx and separable sampling lattices. 

Whereas separable downsampling removes half the sam-
ples from one-dimension at a time, the quincunx lattice can-
not be separated into such a scheme. Figure 3 shows the 
quincunx and separable sampling lattice. 

3. EQUIVALENCE ACROSS SCALES 

The Fast Wavelet Transform is a multiresolution process 
which decomposes a signal into components of various 
scales, starting from the finest detail and ending at the coars-
est features. Each level of decomposition involves resam-
piing a filtered signal to a lower resolution (decimation). 
This necessarily involves a transformation of the coordi-
nates of samples, as the same sampling density must be re-
tained. In the separable case this transformation is a trivial 
division by two in each dimension, but for the quincunx lat-
tice the transform is more complicated. We describe the 
coordinate transform in terms of a matrix operation : 

= Dnxi 	 (I) 

where xi is the location of the sample at resolution level j 
( j increasing for higher resolutions) and D is the sampling 
matrix which defines the lattice. In the case of the quin- 
cunx lattice the defining matrix I  is D = 	( d i  
( 1 	i\ . 	It should be noted that D2 	( = 1 	—1 

d2 
2 
0 

) 
0 
2 

= 

) 
which gives separable sampling by 2 in two-dimensions. 

We assume that, within the current sampling lattice, a lat-
tice point is the reference for a pixel whose area is the square 
immediately above and to the right of that lattice point, ie. 
the value of the sample on the lattice point defines the value 
over the entire area of the pixel. 

To determine the child samples enclosed within a pixel 
boundary from a lower resolution level (parent pixel) we 
must first upsample the coordinates of its reference lattice 
point ie. xj+i  = Dxj. In the upsampled domain this point 
will reside on the first coset of the lattice. Within the bound-
aries of the parent pixel, two pixels are contained at the cur-
rent resolution level: the pixel referenced by the upsampled 
location of the parent lattice point (at Dxj), and its imme-
diate neighbour, as determined by the sampling coset shift  

vector s, (at Dxj + s). For D as defined above s = (1, 0). 
See also figure 3. 

When taken to the next resolution level, the problem re-
duces to separable downsampling. When covering multi-
ple resolution levels this simple method no longer holds be-
cause we add extra cosets as we upsample. We can only 
predict the locations of the first coset without modifying our 
method (this is complicated and generally not necessary so 
it is not covered here). Instead we use the inverse result to 
solve the general problem in this case. 

The inverse problem, ie. determining which pixel x0 in 
level 0, is the parent of xr, in level n, is much simpler. Be-
cause we are moving in the down-sampling direction we can 
simply use 

xi = floor (D-nxj+  

where floor(x) is the operator which returns the nearest 
integer value less than or equal to x. 

This allows us to predict the parent pixel n resolution lev-
els below the current level. It also gives an alternative for 
finding child pixels of a low resolution parent by perform-
ing a search of the high-resolution image for all pixels with 
the correct parent. 

4. UPSAMPLED REPRESENTATION 

Consider the process of downsampling a signal. Samples 
from one coset are retained while samples from the un-
wanted coset(s2 ) are discarded. We don't actually wish to 
move the pixels from their location within the image but it is 
apparent that the coordinate transform which occurs during 
downsampling (required to maintain sampling density) does 
move the pixels, thus an inverse relationship is necessary to 
determine their original position. This results in spaces left 
in the upsampled image where the discarded coset samples 
were previously located. 

Nonseparable downsampling and further decomposition 
can be performed without this complicated coordinate trans-
form. We concentrate on the quincunx example here. For 
the downsampling process we simply remove those pixels 
from the unwanted coset and leave the retained coset un-
touched. This is has the same effect as downsampling and 
then upsampling again, hence we refer to this as the down-
sampled signal in the upsampled domain. This results in 
an image of the original size and orientation but where one 
coset is missing (the discarded coset samples). In this way 
the spatial relationship between samples at different decom-
position levels is easily determined because their location is 
not altered from that of their parents and children. 

Figure 4 shows the two child pixels per parent and the 
axes of the downsampled domain. We can see that the two 

This is not the only possibility for D but this one leads to separable 	2 For quincunx there are only two cosets thus one is retained and one 
sampling at every other step and retains spatial location significance, 	rejected, however separable has four cosets and three are rejected. 
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	 Figure 6: Low-pass branch using upsampled operator. 

Figure 4: Two levels of pixel overlap with quincunx down-
sampling, in the upsampled domain. 

Figure 5: Low-pass branch in detail. 	
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children of a parent are (a) the child pixel with the same lat- 
tice point as the parent; and (b) the child pixel removed from 
the parent lattice point by the upsampled coset shift vector, 

s = (1, 1). This is consistent with our previous represen-
tation where in the downsampled domain the downsampled 
shift-vector applies. 

4.1. Cross-scale Coding 

The spatial relationships between samples at differnt scales 
should now be apparent from figure 4. Although quad-tree 
coding is specifically designed for the four-coset separa-
ble decomposition it now becomes possible to design and 
implement similar coding schemes for non-separable sam-
pling structures. In its present form zero-tree coding  is  also 
specific to separable sampling but this is an implementation 
issue and does not preclude a modified version being devel-
oped for other sampling structures using the same princi-
ples. 

4.2. In-Place Decomposition 

Wavelet decomposition is achieved by filtering then down-
sampling then filtering then downsampling, etc. Thus the 
filters remain the same (one of the key properties of the Fast 
Wavelet Transform) but at each stage of decomposition the 
image has been resampled and thus has undergone a coor-
dinate transformation. 

We can describe this situation by 

X101  (n) = D -1 .H.X(n) 

where X10,1 (n) is the low-pass version of X (n) after one 
level of decomposition (filtering by H followed by down-
sampling by D). 

Examining the low-pass branch we can see that the sec-
ond level low-pass signal is achieved by two sequential 
filter-subsample combinations as shown in figure 5. 

Figure 6 shows an equivalent method of performing the 
same operations in the upsampled domain as described 
above. Here t H is a filtering operator derived from H 

Figure 7: An arbitrary filter shown in (a) its normal state 
and (b) its first upsampled state. 

by a process of upsampling. The  t  H operator performs the 
exact same filtering operation in  the  upsampled domain as 
H does in the downsampled domain. The resulting filtered 
sample values only exist on the retained coset. 

In the downsampling operation  only  one coset is retained, 
thus the samples in the unwanted coset ceases to exist. Nor-
mally sampling density must be maintained and the image 
size shrinks and the sample  location  coordinates are trans-
formed to account for this. In the upsampled representation 
we change the sampling density  by  removing a coset but 
avoid the need for transforming  the  coordinates. Because 
we have violated the sampling density conditions we must 
now also change the sampling density (ie. coordinate trans-
formation) of the samples in the  filter  to account for this. 
This can be thought of as downsampling the signal then up-
sampling it again, and thus upsampling the filter to compen-
sate. 

During implementation we  cannot  make elements within 
a data array disappear, instead we  mark  them as non-existent 
for consideration in further  filtering  operations. Thus data 
locations of samples  on  the discarded coset are neither used 
in subsequent filtering operation  nor  are they changed in any 
way by future operations. This  allows  us to use these loca-
tions for other purposes such as  storing  detail signals. 

After filtering for the second  time  (by t H in figure 6) 
the retained coset locations now  contains  the same samples 
as after the second filtering  operation  by H in figure 5 but 
they are still in their original  positions  within the original 
(ie. upsampled) lattice. Two quincunx downsampling op-
erations are then required to  return  these samples to their 
usual downsampled. coordinates.  Using  the quincunx down-
sampling matrix D from (1) results in separable downsam-
pling at every second step. Hence two consecutive quin-
cunx downsampling operations results in separable down-
sampling. 

Figure 8 shows the resulting implementation using sepa-
rable downsampling with quincunx filters. Note that we can 
continue to further upsample the upsampled operators and 
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Figure 8: Low-pass with upsampled operator and separable 
downsampling. 

   

   

     

Figure 10: Detailed view of Lenna's eye from figure 9. 

     

      

    

   

coordinate transforms. This opens the possibility of using 
these highly effective coding methods with the advantages 
of truely two-dimensional transforms. 

The computational cost involved with non-separable 
sampling can be reduced or removed using upsampled filter-
ing operators and performing all operations in-place. From 
a research perspective the in-place calculations also aid in 
the visualization of otherwise obscured multi-scale features. 
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Figure 9: One level of quincunx decomposition performed 
in the upsampled domain. 

keep the signal samples in their original locations, leaving 
all the downsampling operations until the very end (or not 
perform them at all). This way all filtering operations are 
carried out in-place within the original grid. 

Figure 9 shows the resulting low-pass and detail spaces 
from one level of quincunx wavelet transform in the upsam-
pled domain. Note that although the filtered images occupy 
the same space as the original, each has half the number of 
samples (critical sampling is preserved). 

Figure 10 shows a detail which should clarify the exis-
tence of only one coset in the downsampled images. 

4.3. Computational Complexity 

Quincunx downsampling requires every pixel to be trans-
formed to a new coordinate position at each decomposition 
level, requiring 6 additions per pixel. Using the upsampled 
domain we can perform the process at a fraction of the com-
putational cost. With the upsampled method we only trans-
form the coordinates of the filter being used and if we store 
an upsampled version of the filter this cost can be removed 
as well. The downsampling process is reduced to the same 
computational cost as separable sampling. If all computa-
tions are carried out in place then all signal resampling cost 
can be removed, however we will still need to further up-
sample the filtering operators for each level of decomposi-
tion unless they are precomputed. 

5. CONCLUSIONS 

By using an in-place representation, cross-scale coding 
methods, which have only been used with separable down-
sampling, become available to non-separable sampling sys-
tems without complicated and computationally expensive 

6. FUTURE WORK 

Future work in this area includes the development of the 
many cross-scale coding algorithms which have been devel-
oped solely for use with the separable sampling structure. 

It is hoped that the ideas presented in this paper will en-
courage more investigation into  the  mostly neglected non-
separable image coding domain. 
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ABSTRACT 

A novel tool which exploits the phenomena of spatial con-
trast masking is presented as an enhancement to the Ze-
rotree coding method. It provides significantly decreased 
bit-rate while sustaining perceived visual quality. The en-
hancement is a logical and simple to implement modifica-
tion of the zerotree method and requires no side information 
to be coded. 

Introduction 
The phenomenon of Spatial Contrast Masking causes minor 
image details to be obscured by significant edges in a region 
of an image. This phenomenon can be exploited to increase 
the efficiency of image coding where fine details are located 
in the vicinity of a major edge. Such areas affected by spa-
tial masking are refered to as a Masking Shadow. Figure 1 
shows an approximation to the variation in the perceptual 
contrast threshold for visibility of a stimulus in the vicinity 
of a significant edge. 

Spatial dimension 

Figure 1: Visible contrast threshold of the human visual sys-
tem in the vicinity of an edge. [1] 

This paper presents a method of applying the masking 
phenomenon to zero-tree encoded wavelet transforms of im-
ages. The process predicts the presence of masking shad-
ows through early embedded information in the zero-tree 
stream. Because it is predictive no side information needs to 
be added to take advantage of the predicted masking shad-
ows, rather the method selectively removes information at 
an early stage of coding which is predicted to be obscured 
by masking shadows. The predictive nature differentiates  

this process from other methods of utilizing spatial mask-
ing, which rely on sending side information to describe the 
degree of masking or activity detected in various regions of 
an image. 

1. WAVELET CODING 

Wavelet transforms have been found to be highly effective 
decorrelation transforms for image signals, and have been 
shown to have excellent properties for image compression 
in terms of both reconstructed PSNR and perceived image 
quality for a given bit-rate. Perceptually the wavelet trans-
form is a near optimal representation of image data as it re-
lates to the early Human Visual System, as it shares a similar 
subband, multiresolution nature. 

In this paper the quincunx sampling lattice is used in the 
wavelet transform and thus the wavelet filters are designed 
for this lattice. This is a choice based on the continuation 
of previous research into the topic, and is aimed at increas-
ing exposure of a mostly overlooked branch of wavelet cod-
ing. However, the methods and ideas outlined in this paper 
are equally applicable to any wavelet transform domain to 
which zero-tree coding of the coefficients can be applied. 
Appropriate modifications to the concepts of parent-child 
relationships in decompositions would need to be made for 
different resampling methods. 

The quincunx lattice has been shown to have two prop-
erties which make it an attractive prospect for perceptual 
image coding. Firsly the quincunx lattice creates a sam-
pling pattern with a frequency response cut-off which is 
diagonally oriented. Secondly it provides a more gradual 
decimation than separable sampling, which provides finer 
granularity for tuning spatial-frequency related phenomena. 

2. ZERO-TREE CODING 

The zero-tree coding process [3] is a process of detail refine-
ment. An image which has been decomposed by a wavelet 
transform is coded starting at the lowest resolution levels 
and the coefficients of greatest magnitude. Each refinement 
first codes the position of coefficients which are discovered 



to have a significant magnitude with respect to some thresh-
old (which changes for each refinement operation). This is 
termed a dominant or significance pass. For all coefficients 
which are found to be significant with respect to the thresh-
old, refinement information is also coded. This extra refine-
ment is termed a subordinate pass and it is performed for all 
coefficients known to be significant with respect to the cur-
rent magnitude threshold. Those found to be significant in 
a previous pass are also refined to have a greater precision 
in this pass. Thus for each reduction in the threshold, the 
number of subordinate bits required grows quickly. 

Dominant and subordinate passes continue to alternate 
until the image is coded to some desired state, eg. bit-rate or 
number of refinements. Coding can terminate at any time. 

3. PREDICTION OF MASKING SHADOWS 

Spatial masking occurs in areas of high "activity" [1], which 
is generally measured in terms of some spatial derivative 
of pixel intensity local to the area of concern. The cause 
of spatial masking is significant and abrupt changes in im-
age intensity resulting in very high contrast features, ie. 
edges. Mathematically these features are represented as re-
gions with a large intensity gradient. When this occurs the 
human visual system becomes less sensitive to minor con-
trast changes in the vicinity of the edge. So in the presence 
of high contrast features, the visibility of minor features is 
reduced. The greater the change in intensity at the edge, the 
greater must be the contrast of a nearby feature to be vis-
ible. As distance from a significant feature increases, the 
effect of the contrast masking decreases. The area within 
which the effects of spatial masking are significant is the 
Masking Shadow caused by a significant feature. 

In a subband context edges can be regarded as features 
which span multiple frequency bands while maintaining the 
same spatial location. In a wavelet decomposition this is 
marked by coefficients of similar magnitude and (typically) 
orientation in close spatial proximity at different levels of 
decomposition. Edges of high contrast produce wavelet co-
efficients of large magnitudes at many resolution levels; al-
ternatively, many superimposed frequency band components 
are required to render a large gradient. 

We can locate features which cause a large degree of 
masking by finding areas of an image's wavelet decomposi-
tion which contain significant "overlapping" wavelet coeffi-
cients at several resolution levels. 

If we consider the zero-tree coding of a wavelet decom-
position we will notice that the first dominant (significance 
map) pass detects all coefficients within the decomposition 
which are very large in magnitude. This is exactly the in-
formation that we use to determine which areas of an image 
have a high degree of masking. 

Because of the order in which a zero-tree method codes 

a decomposition this significance information becomes avail-
able very early in the coding process; well before the vast 
majority of coefficients are processed. The process pre-
sented here extracts this information as it becomes available 
and uses it to better code further refinements based on the 
likelihood of spatial masking. 

Because of the embedded nature of zero-tree coding, the 
exact same information used by the encoder to determine 
areas of masking is available to the decoder exactly when it 
is needed. For this reason, no side information needs to be 
sent. 

4. MASKING-ADAPTED ZEROTREE CODING 

This method adapts the coding process based on the mask-
ing predicted from the first dominant pass, and alters the 
zero-tree significance threshold on a coefficient by coeffi-
cient basis depending on the predicted effect of local Mask-
ing Shadows. 

Those coefficients which have already been determined 
to be significant at the adaptation stage will not be affected. 
All coefficients which have not been found to be significant 
can be encoded with an arbitrary initial threshold - provided 
it is larger than the current threshold. It should be noted 
that for the first dominant pass, only a small number of co-
efficients will be found to be significant, those which have 
the very highest magnitudes. These define the most signif-
icant image features. Importantly these significant features 
cannot be modified by the coding process, only the lower 
magnitude features which contribute to fine details will have 
their coding altered. 

Each pass through the zero-tree coding process reduces 
the significance threshold - typically a factor of is used. 
This priciple is fundamental to the behaviour of the zero-
tree coder. For the modified coder the same principle ap-
plies, but each coefficient in the decomposition now has its 
own independent threshold. Each threshold is scaled by the 
same factor at each step in the coding process. 

By raising the initial threshold of those coefficients found 
to be masked, we lower their priority in the coding process. 
This means that they are less likely to be coded at some 
particular refinement level than the coefficients with lower 
thresholds. This effectively means that these masked co-
efficients will be either (a) more coarsely coded than their 
unmasked counterparts, ie. fewer bits of precision, or (b) 
not coded at all if the threshold does not reach a sufficiently 
low level during coding. 

The nature of the zero-tree coding algorithm is such that 
it most effectively codes areas of an image where there are 
no significant coefficients over multiple resolution levels. 
Thus areas of an image in a Masking Shadow are likely 
to have whole regions across many resolution levels where 
the coefficients are insignificant to a finer refinement level. 



This decreases the bit-rate of the coded image, and gener-
ally without adversely affecting perceived image quality. 

Figure 2 shows the result of coding the Lenna image 
with a single significance pass using zero-tree coding'. Com-
paring this with the original image shows how those features 
which are represented by the first pass data correspond to 
areas where significant masking would be present. 

(a) 
	

(b) 

Figure 2: (a) Lenna image and (b) Lenna coded by a single 
pass of a zero-tree coder. 

4.1. Contribution versus Masking 

It is important to be able to differentiate between those mi-
nor coefficients which contribute to the precision (sharpness 
of contrast) of a major edge and those which are in the vicin-
ity of a major edge but which contribute to a minor feature 
in the Masking Shadow. The term "significant coefficient" 
is be used here to describe a coefficient which is significant 
with respect to the first dominant pass of the zero-tree cod-
ing process. 

The spatial proximity and resolution-level proximity of 
a coefficient to its significant neighbours is very important. 
If a minor coefficient is very close to a significant coefficient 
then it is likely to contribute to the feature, thus it should 
be considered as contributing to the masking shadow rather 
than being affected by it. If it is very far from a significant 
coefficient then the masking effects will be very small be-
cause the masking diminishes quickly with distance. Hence 
there is a narrow range of spatial distances from significant 
features in which Masking Shadows have noticeable effect. 
There are however several resolution levels for each spa-
tial location so a masking shadow of small area in a low-
resolution level can result in many masked coefficients in 
finer levels. This is particularly true in the higher resolution 
levels where most masking takes place and where the ma-
jority of the coefficients are contained but are of minimum 

1 This uses a flat weighting of all subbands. Better tuned coding would 
weight lower resolutions more significantly, thus decreasing bit-rate fur-
ther. The bit-rate of this first pass image is 0.0138 bpp (580:1 compression 
ratio).  

individual perceptual value (see Figure 4). 

4.2. Spatial Frequency Considerations 

The human visual system has a sensitivity to features which 
varies across different spatial frequencies. The sensitivity 
drops off very quickly at higher frequencies, has a peak at 
around 3 to 5 cycles/degree and drops off slightly for lower 
frequencies. Figure 4 shows the approximate shape of the 
sensitivity curve. 

This sensitivity variation provides us with another effi-
cient means of coding a wavelet decomposition. We can 
more coarsely code coefficients from higher resolution lev-
els which will contribute to features with higher spatial fre-
quencies where the tolerance for quantization error is quite 
large. This is convenient because the very high resolution 
levels contain the majority of coefficients, and are of lowest 
perceptual importance. 

When considering the interaction of spatial frequency 
sensitivity and proximity masking,  it  becomes apparent that 
the lower resolution levels of a subband decomposition are 
more important and should be coded more precisely since 
they contribute to highly visible features covering a large 
area in the image. Thus when considering coefficients for 
masking there must be a weighting which favours the mask-
ing of higher resolution coefficients over the masking of 
lower resolution ones depending  on  the sensitivity of the 
HVS to the band in question. 

5. PREDICTION ALGORITHM 

5.1. Neighbours and Parents 

The degree of masking which a coefficient is subjected to 
is determined by the significance  of  its neighbours and the 
neighbours of its parent2  coefficients. It is unlikely that co-
efficients will mask those of a  lower  resolution. 

0 
0 

0 

 

0 0 

0 0 

 

   

Figure 3: Three levels of parents and their 4-connected 
neighbours in a quincunx decomposition. Grey indicates 
pixel is not in the retained coset. 

Figure 3 shows the four connected neighbours of a coef-
ficient and two of its parent coefficients (through quincunx 
downsampling). The 4-connected neighbours are shown 

2Any coefficient location produced by  the  downsampling transform is 
a parent of the original coefficient. A coefficient may have many children, 
and many coefficients may share the same parent. 
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with circles and the arrows show the parent-child relation-
ships for a single coefficient location. These neighbours are 
in closest proximity to the coefficient in question and thus 
exert the greatest masking influence on it. For the purposes 
of the masking algorithm we will assume that features out-
side of one of these 4-connected neigbourhoods do not exert 
sufficient masking influence to be considered. 

The discussion in this paper concentrates on the case 
where the quincunx sampling lattice is used. For this rea-
son a 4-connected neighbourhood is convenient. If a sep-
arable decomposition was used then an 8-connected neigh-
bourhood would be equally applicable. 

Significance in any of the neighbour coefficients shown, 
indicates some degree of masking suffered by the (central) 
coefficient in question. While significance in any of the di-
rect parents indicates that the child is most likely part of the 
feature and should not be masked. 

5.2. Variation with Subband 

The cause of masking is abrupt and significant changes in 
image intensity creating features of significant contrast. Co-
efficients at the lower resolution levels only contribute to the 
slowly varying components of an image which do not lead 
to high contrast features (except through superposition with 
higher resolution details). Hence the very lowest resolu-
tion coefficients should be considered to have little masking 
effect. A weighting factor is needed to account for this low-
ered contribution. It seems logical that coefficients in the 
subbands lying in the peak of HVS sensitivity will generate 
features of greatest perceived contrast and hence will con-
tribute most to the masking of other coefficients. Hence a 
weighting based on the HVS spatial-frequency sensitivity to 
the masking coefficient can be used. 

Figure 4: Sensitivity function for the HVS with approximate 
spans of quincunx subbands[2]. 

Figure 4 shows an approximation to the accepted model 3  

3The units used in the sensitivity functions found in literature have arbi-
trary units because they are a relative measure against similar experiments 

[21[5] of the spatial frequency sensitivity function of the 
HVS. Shown also are the approximate spans of the quin-
cunx decomposition levels 4 . It is apparent from this dia-
gram that the greatest sensitivity is at subbands 6 through 
10, so they should not be considered for spatial masking. 
Also the peak occurs in levels 6 and 7, thus these will have 
significant impact on the masking of higher resolution levels 
(ie. levels 1 through 5). 

In subbands 1 through 5 there are 253952 coefficients 
(for a 512x512 pixel image) or 96.8% of the coefficients of 
the entire image. It can be appreciated then, that any method 
which reduces the data-rate per pixel in these higher reso-
lution subbands will significantly reduce overall data rates. 
Also because these subbands lie outside the most sensitive 
areas of the HVS, quantization errors will have smaller per-
ceived effects on image quality. 

6. RESULTS 

A 12 level quincunx decomposition of the 512x512 pixel 
Lenna image was used. Each level of the quincunx de-
composition reduces overall number of pixels by a factor 
of 2 (.1 .  in each dimension [4]), so 12 levels of decomposi-
tion results in an low-pass image equivalent to that resulting 
from 6 levels of separable wavelet decomposition. The re-
sulting low-pass is of size 8x8 pixels. 

The mean value was removed and coded separately so 
that the low-pass level could be treated as part of the zero-
tree structure. Coding proceeded with 3 complete passes of 
the zero-tree [3] encoding method (significance followed by 
refinement) . 

The control example was coded as described in [3] (mod-
ified for quincunx sampling) for three complete passes. The 
comparison example uses the Masking Shadow prediction 
method outlined above to alter the zero-tree threshold on a 
per coefficient basis throughout the decomposition after the 
first pass. A masking factor weighted by spatial frequency 
sensitivity and the significance of 4-connected neighbours 
of parent coefficients was used for each coefficient not sig-
nificant after the first pass of the zero-tree coder. The zero-
tree threshold is only ever increased for any coefficient. This 
ensures that no extra coefficients can be brought into the sig-
nificance map as a result of altering the threshold, it can only 
postpone the inclusion of coefficients if they are masked. 
After the thresholds were adjusted, the zero-tree coding was 
allowed to progress to completion. 

under similar conditions. Their results are generally not portable to any de-
gree of accuracy. They merely give a general representation of the changes 
which occur as we move through the spectrum without changing any other 
effects. 

4Standard image size of 512x5 I 2 pixels and viewing distance of 15 
times the image height. Levels are numbered starting with number 1 being 
the highest resolution detail possible from the image. 



unadjusted masking adjusted 

Figure 5: Comparison of zero-tree encoded Lenna, without and with masking shadow adjustment. 

On the decoding side, a similar process was used. The 
zero-tree encoded stream was read until the end of the first 
zero-tree pass. Thresholds were then altered based on the 
same significance information which was present on the en-
coding side, thus ensuring that the zero-tree thresholds de-
termined were identical to those determined for the encod-
ing stage. After the thresholds were adjusted up, the rest of 
the decoding process was allowed to proceed as normal. 

Figure 5 shows the Lenna image encoded as described. 
The image on the left is encoded without any Masking Shadow 
adjustment, the image on the right is adjusted. Simple com-
parison of the zero-tree data shows that the unadjusted im-
age produced a zero-tree stream with 55825 symbols (for 
three complete passes of the zero-tree coding process), while 
the adjusted image produced a stream of 39482 symbols - a 
29% reduction. The encoder used a 4 symbol alphabet for 
all stages. 

For comparison some indication of coding bit-rates is 
useful. Arithmetic coding 5  of the streams indicates an ap-
proximate bitrate of 0.15 bpp for the unadjusted image and 
0.11 bpp for the adjusted image - a probable 25% decrease 
in bit-rate. 

7. SUMMARY 

Through the examples presented is has been shown that sig- 
nificant reduction in bit-rate can be achieved through the 

5 The arithmetic coding method used was derived from a freeware im-
plementation by John M. Danskin (based on a description from Bell, 
Cleary, and Witten Text Compression).  

use of Masking Shadow prediction in zero-tree encoding of 
wavelet transforms. The perceived image quality is shown 
to be preserved after the reduction of data, although some 
additional artefacts can be perceived. 
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CHAPTER 1 

Introduction 

1.1. Need for image compression 

With the use of multimedia content becoming common there is a need for de-
veloping more efficient means of expressing that content. Uncompressed imagery, 
particularly photography, takes an enormous amount of data which makes its use 
impractical. It has been the development of efficient and fast image and video 
compression methods, particularly JPEG [33], [107i (Joint Photographic Experts 
Group) and MPEG [75] (Moving Picture Experts Group) standards, which have 
brought the world of popular multimedia into being. However as the amount of 
visual data being shared increases it puts greater strain on network and storage 
media. More efficient methods are needed. 

When we discuss digital imagery and the compression of digital images, the 
fundamental aim is to gain the optimum image quality from the smallest amount of 
digital data. The terms file size and bit-rate will often be used in an abstract sense 
within this Thesis to describe the amount of data which is required to represent 
an image in its coded form; regardless of whether the image is actually stored in 
a file or in transit across a network. It is the concept of representing the number 
of bits necessary to store the information which is important. This data must 
be stored in some fashion, indeed to transmit an image across a network it must 
first be present in some file-like structure whether in computer memory or in some 
other storage medium. 

Bit-rate is used in a similar manner but it will usually be used to provide a 
concept of the number of bits required for each pixel in the image. This is a better 
measure of the efficiency of image representation because it is independent of the 
size of the image being considered. 

Compression ratio is a term closely related to bit-rate. By definition it is the 
Here ratio R = uncompressed T T ere 'uncompressed is the amount of information required 

'compressed 

(in bits) to represent an image in it's uncompressed form, typically 8-24 bits per 
pixel; and 'compressed  is the amount of information required to represent the image 
in some coded form. The larger the compression ratio, the more image area can 
be expressed by a given file size. 

Typical compression ratios which can be obtained are in the range of 15-50 for 
today's generation of image compression tools such as JPEG; and in the range of 
30-100 for state of the art compression tools giving the same image quality. 
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1.2. Digital Image Basics 

1.2.1. Discretization into Pixels. To store images in digital media it is 
necessary to have some means of expressing an image in numerical values. In 
common digital representations, the image becomes discrete in two fundamental 
ways; 

(1) spatial location and 
(2) image intensity. 

A natural image can be magnified indefinitely (at least down to the quantum level) 
since the image is continuous. One can also measure the brightness or intensity of 
an image to an arbitrary precision limited only by the accuracy of the instruments 
used. 

In contrast a digital image is typically represented as pixels. The term "pixel" 
being a concatenation of the words Picture Element. The term "pel" is inter-
changeable with "pixel". 

The concept of a pixel is of a small rectangular area of image over which the 
image has constant intensity and colour. Hence the image is sampled as a piecewise 
constant function. If the area of a pixel is small enough then the viewer will not 
notice that it is a square area, rather the smoothing of the Human Visual System 
(HVS) will give the appearance of a natural image. However when magnified, the 
true nature becomes apparent. 

This term image intensity is used to mean the brightness of the image at a 
given point. However it is generalized to also refer to the properties of colour and 
brightness of the image. Image intensity is discretized by sampling the intensity 
and rounding it to a nearest value which is expressible. 

With these two discrete ways of representing an image, we can completely 
define an image in terms of digital data. We have a finite number of discrete 
image pixels each of which can be indexed by a discrete coordinate set and we 
have a discrete value at each pixel. 

Our image can then be represented by a discrete finite set of 3-tuples being 
(co — ordinate 1, co — ordinate 2, intensity) which is usually written as (x, y, I). 
We require one intensity value for each pixel. It is usually possible to store these 
3-tuples in a predictable manner such that the two spatial location indices can be 
inferred. Thus only the intensity values need to be stored. This is the principle of 
the Raster scan method. In this method, the width of the image must be known. 
All pixels intensities are stored sequentially starting at "top-left" 1  and scanning 
one row at a time. When the end of a row is reached scanning moves "down" a 
row and begins from "left" again on the new row. In this manner the position 
of the intensity value in the sequence completely determines its spatial position 
relative to the origin of the image. 

1 Note: this could mean any corner of the image depending on the definitions of up, down, left 
and right in effect. 
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One can see then that the amount of information required to express an image 
is equal to / = Npixels • 'pixel where Npixei s  is the number of pixels in the image and 

/pixel  is the average information required per pixel. There are a few typical values 
for /pixel in use: 

• 8 bit per pixel is used for high quality black and white (more correctly 
known as greyscale) images. 

• 15, 16 and 24 bits per pixel are in common use for full colour images. 
• 32 bits per pixel exists in some specialized formats typically used in high-

quality imaging such as digital photography. 

1.2.2. Digital Colour Images. 
1.2.2.1. Tr -stimulus Principle. Human vision has three colour receptors which 

respond to wavelengths within their respective sensitivity ranges 1120, Chapter 3]. 
When we see the colour of an object our eyes receive many different wavelengths 
simultaneously, and it is the mixture of the responses of our three colour sensors 
which we interpret as the overall colour. There is no one wavelength that we are 
receiving, rather a continuous range of wavelengths at different strengths. 

We can produce the same colour experience for the human observer by trans-
mitting to the eye only three wavelengths, which correspond roughly to each of our 
colour receptors. A spectral power distribution of such a situation may bare little 
resemblance to the actual power spectrum received when looking at an object, but 
to the human observer the two colours will be indistinguishable. 

This is referred to as the tri-stimulus principle and it is common to everyone 2 . 
Our three colour receptor cells have properties which give greatest response at 
colours we call red, green and blue. This principle is the basis of all digital colour 
representation. 

1.2.2.2. Colour Spaces. Colour images are created by mixing the three primary 
colour elements together. This can be done in two general ways, either additive 
colour or "subtractive" colour. Additive colour increases the amount of the various 
colours (or primary phosphors as they are sometimes called) to produce a perceived 
colour. The starting point is black and adding colour elements increases brightness 
and adds hue. Subtractive colour starts with a given background colour (usually 
white) and absorbs particular frequency bands to produce a perceived colour. 
This is how paint works. Subtractive colour processing is much more complicated 
than additive colour processing and relies on highly non-linear mathematics and 
proprietary "black-magic" to achieve good results, but it is an essential part of the 
print industry. 

The primary stimuli of the additive colour method are typically called called R, 
G and B (red, green and blue ). There are alternative colour space representations 

2The tri-stimulus principle is no less valid for those with colour dysfunction (colour-blindness) as 
colour blindness only removes colour sensors. The only people for whom the tri-stimulus principle 
is not valid are a very rare set of females known as Tetrachromats. This genetic anomaly results 
in humans with four different colour receptors. 
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which transform this additive representation into some other form. Y, Cr and 
Cb [331 (luminance, chrominance red and chrominance blue) is used when the 
brightness of an image is important, HSI (hue, saturation and intensity) is used 
when subtle colour blending and shading is required. 

The RGB [33], [1, chapter 55] representation uses a brightness value for each 
primary phosphor which gives an overall intensity or brightness, while the YCC 
and YIQ [44, 111-6] (as used in NTSC television) methods use a brightness or 
luminance value (Y) and two relative colour components (which may be positive 
or negative in value). The actual amounts of RGB needed to result in the correct 
colour and brightness can be calculated from these values. The YCC methods have 
the advantage that they can easily be used to convert from colour to grey-scale 
(black and white) pictures by retaining only the luminance components - hence 
the ability for black and white television to display colour signals - it only uses the 
luminance component. YCC is typically the preferred colour space used in JPEG 
compression because the separation of colour from intensity allows for a sparse 
sampling of the colour data compared to the intensity data. Separating colour 
from brightness allows increased compression since the human visual system is 
less able to detect changes in colour over small distances compared to intensity. 

A popular method of colour visualization is the colour cube. This is a repre-
sentation of a three dimensional (R, G, B) colour value within a Cartesian space 
where the value of each primary colour determines a distance along a cardinal 
dimension of the colour space. Figure 1.2.1 shows how this works. 

FIGURE 1.2.1. The RGB colour cube visualized as a three-
dimensional co-ordinate system. 

Colour cube and colour wheel representations are used by digital artists in the 
selection of colours as they allow for the representation a colour in terms of a Hue, 
Saturation and Intensity/Volume (HSV). The Hue and Saturation together deter-
mine the "colour" and are chosen from a colour wheel, where Hue is determined 
by the angle around the wheel from the origin and Saturation is determined by 
the distance from the centre of the wheel and represents the purity of the colour 
(phosphor). As Saturation approaches maximum, at least one primary phosphor 
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is driven at maximum providing a 'pure' colour output. The final value, Volume 
determines brightness. Figure 1.2.2 shows how this operates. 

Blue 
Hue Origin 	 Observer 

FIGURE 1.2.2. Colour wheel visualization of 3-D colour-space using 
the HSV model. 

Looking down on the colour wheel the observer sees all possible colour hues. 
Due to the orientation of the colour wheel within RGB-space the three primary 
colours - red, green and blue - are separated by 120 0 . Every possible relative 
combination of magnitudes of the primary colours can theoretically be represented 
on the wheel by choosing a Hue (angle from the origin) and a Saturation (distance 
from centre). In practice not all possible RGB values are representable in this way 
without some non-linear trickery. This is because the HSI method can represent 
colours outside the possible range of RGB values (called the colour gamut) of the 
display hardware. 

With the relative combination chosen the only component to determine is 
the total brightness or Volume (height above colour wheel). Increasing Volume 
proportionally increases the values of each of the primary colours and retains the 
same relative magnitudes within the perceptual colour model of the display device. 
Hence the brightness is changed without changing the perceived colour. This 
representation is popular among colour industry professionals because it provides 
an intuitive representation of colour-space and by altering only the Intensity value, 
the same colour can be faded from bright to black. With a Intensity value of 0 
the resulting colour is black regardless of the relative combination of colours. The 
entire grey-scale is also represented on the Intensity axis. With Volume (distance 
from centre of colour wheel) set to 0, the R, G and B values will be identical 
and simultaneously vary with Intensity. Intensity of 0 gives black and Intensity of 
maximum (usually called 1.0) gives the brightest colour the display can represent. 

1.3. Lossless and Lossy Data Reduction 

Methods of coding data can be grouped into two broad categories: lossless 
and lossy. For digital data both categories are available and used in different 
circumstances. 
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The term "lossless" is used to described coding methods where the original 
data can always be exactly recovered from the coded data. This can also be called 
reversible coding, since reversing the process recovers the original data. This type 
of coding is most useful in applications where all data must be preserved exactly, 
examples are in the compression of text or computer programs. Information which 
has a precise significance must be compressed in this way. 

The term "lossy" is used to describe the converse case where the reconstructed 
data after decoding might be different from the original. This usually involves 
constraining the process so that the reconstructed signal has certain key properties 
which are retained while other less important properties may be lost or changed 
in the process. This can be described by the phrase "nearly the same". 

Lossy coding can produce much higher compression ratios than lossless coding 
but it is only suitable for data which has some perceived meaning which can be 
retained at the expense of exactness. 

It is the lossy category into which the majority of image compression systems 
fall today. The key property which these systems attempt to preserve is the way 
the image is perceived by the intended viewer. Because of this it is possible to 
discard much information from a coded image and yet still retain the original 
meaning. When examined closely for differences, by a computer for instance, 
the subtle changes would become immediately apparent as numerical errors in 
brightness or colour, indeed they may be visible with the naked eye. 

1.3.1. Reconstruction Quality. When we compress a signal through a lossy 
method, the reconstructed signal will usually be different from the original. We 
need some way to determine how closely the reconstructed signal resembles the 
original signal. The degree to which the two are similar (or different) from some 
particular perspective is referred to as the quality of the reconstructed signal. 

When dealing with digital images there are two broad categories into which 
measures of reconstructed signal quality fall: statistical and perceptual. Statistical 
quality measures are used to describe, in a mathematical manner, how closely the 
sampled numerical values of the reconstructed and original signals correlate. The 
most commonly used measures of this type are the Mean Square Error and the 
Signal to Noise Ratio (SNR) and there are various modifications to these methods 
which are used to apply them to different signal contexts - Peak-SNR (PSNR) 
is common in image quality assessment. The common feature they have is that 
they compare the numerical value of a signal at each sample and create a single 
number which describes some function of the errors at all of the sampling points. 
An interesting point to notice about these types of measures is that if we shift the 
image by just one pixel and not change any values, we will get a significant error 
measure, yet the meaning of the image has not changed in any significant way from 
the point of view of the observer. This is a simple example showing the limited 
usefulness of such measures of quality in a perceptual context. It should be noted 
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that image coding methods attempt to return the image to its original location, 
however, sampling rate changes can lead to sub-pixel movement of an image which 
causes reasonable errors to be returned from these methods but does not affect 
the appearance of the image. A simple smoothing of the signal before determining 
error can be useful in overcoming this limitation, but this is only possible if the 
signal is of sufficiently high resolution that the process of smoothing does not 
noticeably (in terms of the observer) change the image. 

Perceptual quality measures are more difficult to create because they rely on 
modeling human perception mathematically in a way which allows perceived errors 
to be assigned a numerical severity. Another factor which makes this task difficult 
is that no two people have exactly the same perceptual response and so some mean 
measure must be found which adequately covers everyone. This necessarily leads 
to a certain degree of statistical modeling of human response. When dealing with a 
complex perceptual system such as human vision it is often necessary to deal with 
only those primitive response models which can be determined. In particular the 
responses of the very early parts of the human visual system can be modeled 
as simple electrical circuit components. One reasonably successful method of 
determining reconstructed image quality on a perceptual basis is presented in 
[94 

The psychological components of human visual perception are impossible to 
measure directly and so we rely on what response we can ascertain from experi-
mental subjects using primitive stimuli. The unfortunate part in this is that it is 
difficult to determine what the response of the HVS will be to a combination of 
such primitive stimuli because the HVS is extremely non-linear in its response. 

Height Distance =4 x Height 

Observer 

FIGURE 1.3.1. Common viewing requirements for human vision ex-
periments and models. Viewing distance of full screen images is 
often assumed to be at a distance of four times the screen height. 

Another problem with constructing models for human perception of digital 
images is that we have no way of knowing at what resolution the image will be 
displayed when viewed by the human viewer. The only true measure of resolution 
is in terms of solid angle; the angle covered by an object when viewed from the 
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focal point of our eye. Solid angle is a measure which defines a conical field through 
3D space (see figure 1.3.2). 

(a) Angle in 2D 	 (b) Solid—angle in 3D 

FIGURE 1.3.2. Comparison of angle and solid-angle. Angle is a 2D 
measure which defines an arc at some extent. Solid angle defines a 
spherical surface at some extent. 

Any procedure we develop for optimizing the viewed quality of an image is 
intrinsically linked to the resolution (in terms of pixels per unit solid angle) at 
which it is displayed. A common assumption used when conducting experiments 
and designing coding methods is that the image will be of a size such that it's 
distance from the viewer is four times its height (see Figure 1.3.1). Thus an image 
displayed on a large screen is expected to be viewed at a correspondingly greater 
distance. Once this condition is broken, which would happen if the viewer was too 
close or too far from the image, many of the principle factors used to optimally 
encode the signal become invalid and perceived quality drop. 

1.4. Statistics of Images 

There is a large amount of information contained in natural images . As the 
adage says "a picture tells a thousand words". In a typical digital image there 
is a significant amount of redundant information and removing such redundancy 
can significantly reduce the amount of information necessary to express a digital 
image. 

There are many ways of looking at the statistics of images and each way sheds 
light on different properties and redundancies within an image. 

Considering how the image intensity varies from one pixel to the next is a first 
logical step. If we consider this then we see that in general there is quite a high 
statistical correlation in intensities from one pixel to its neighbour. This tells us 
that a large amount of information is wasted in describing each pixel intensity 
individually and it could be much more efficiently done using, for instance, the 
difference in intensity from one pixel to its neighbour. 

This brings us to one of the key underlying concepts of digital imagery which 
is quantization. Although in nature the light intensity we might see can take any 
value and can vary over time, to represent images on computers we must make 
approximations to the actual level, in order to be able to store the intensity. In 
general 8 bits of data is sufficient to represent the intensity of an image and the 
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human viewer is unable to notice that any quantization has occurred. This is 
because, typically, the human visual system can only distinguish around 40 grey 
levels [72]. From this assessment we would conclude that 6 bits of information 
could adequately express all the intensity changes which the human visual system 
could perceive. 8 bits per pixel has been most uniformly adopted because it 
corresponds exactly to one byte of storage, which is a convenient unit to deal with 
on most computing platforms. 

1.4.1. Entropy. Getting back to statistics, we can see that to express each 
pixel as an individual unit requires 8 bits under normal conditions. However 
when we consider groups of pixels, ie. image areas together then we can reduce 
this considerably. Using the example of the difference coding method, we would 
express the intensity of a pixel as the difference between the previous pixel and 
the current one. Thus, in general a much smaller number, ie intensity difference 
would need to be coded. If the image changed little from pixel to pixel then only 
a few possible states would exist for the pixel difference. If only a few values are 
to be expressed then a much smaller number of bits is required to uniquely define 
each value. 

Entropy is a measure of the information required to uniquely represent a deci-
sion within an information framework. Typically it is expressed in bits per symbol, 
and in image coding work the symbols are most often pixels. The entropy (or self 
information) of a set of values is defined as 

H = — E P (si ). logs  (P(s)) 

where s i  is the i th  unique symbol in the list of symbols and P(Si ) is the probability 
of occurrence of s i . D is the number of possible values that each unit of information 
can take. Typically this is 2 and so the unit of information is the bit (two possible 
states). Hence this can be re-written as 

"bits = 
	P. log2  (Pi ) 

The entropy of a set such as this defines the theoretical minimum amount of 
information required to represent the set if each symbol is represented with a dif-
ferent number of bits dependent on its rate of occurrence. If a symbol occurs very 
frequently then it makes sense that it should require only a small number of bits to 
represent it. Thus the amount of information required to represent it many times 
can be greatly reduced. The cost of this is that to represent all symbols we must 
then allocate longer codes to the less frequently occurring symbols. This increases 
the amount of information required to represent one of the rare symbols but this 
is consistent with the idea that an uncommon event carries more information than 
a common event. 
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The worst case scenario for entropy coding is when all possible symbols are 
identically probable. In this case we cannot reduce the length of any code because 
no symbols are more common than any other symbols. 

1.4.2. Fourier Analysis. Since the advent of affordable personal computing 
power, image transforms have become a common method of analysis. In particular 
transforms into the frequency domain, also known as Fourier analysis, are very 
common. Studying the spatial frequency statistics of image signals sheds more 
light on image properties and redundancies. 

One of the key findings to arise out of Fourier analysis of images is that the 
majority of the information in an image is stored in the low-frequency section of 
the spectrum and only a small amount is stored in the high-frequency regions. 
The lower frequency areas correspond to coarse features within an image and thus 
have a more profound impact across an image, while high-frequency components 
correspond to finer details, which although significant to the viewer, have much less 
impact on the overall statistical construction of the image. Hence by discarding 
higher frequency components we find that we can create a good approximation to 
an image using only a fraction of the information required to store the original. Of 
course any fine details will be lost in this process, but from a statistical standpoint, 
the error will be relatively small. 

1.5. Pixel Coding 

Pixel coding refers to a family of coding methods which operate on the values 
of the pixels in an image and the inter-relationships between them. A simple 
example of this is a difference encoding method where an image is encoded using 
the difference from one pixel to the next. This method can be quite successful 
when the image properties change little from neighbour to neighbour. 

1.5.1. Predictive Coding and DPCM. One signal compression method 
which has been adapted from one-dimensional signals into the realm of images is 
Differential Pulse Coded Modulation. Although the name stems mainly from the 
medium for which it was originally developed, ie. communication of digital data 
via radio or telecommunications system, the method remains an important one. 

The basic principle is to develop a signal predictor system which can reason-
ably accurately predict the next signal sample value from the available context of 
"previous" samples. Using such a predictor, only the error between the predicted 
signal value and the actual value at the predicted sample is coded. If the predic-
tor is good then the error signal values will be small and clustered around a zero 
mean, leading to a small number of bits required to represent the data. If there is 
no limit imposed on the error values which can be encoded, then this method of 
coding is guaranteed to be lossless. 

Typically a predictor has either a linear or logarithmic rate of change and at 
times dramatic changes in the input signal lead to changes in signal value that 
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FIGURE 1.5.1. A predictive coding arrangement. The output from 
the predictor is generally close to the actual input so the difference 
is small. The error values are output to the symbol stream. 

cannot be expressed with the available range of error values, in this case it can 
take some time for the output to track the input again. One such situation where 
this effect can occur is with p-law and A-law codecs for telephony. 

1.6. Transform Coding 

Transform coding is a method which represents a signal as a series of numerical 
values called transform coefficients which represent the content of particular primi-
tive structures within the original signal. By analyzing these transform coefficients 
we can gain insight into deeper structures and patterns within the signals. Trans-
form coding is effectively a basis transformation, where the transform coefficients 
represent the value of the signal on the new coordinate framework. 

Since we are dealing with functions in general, the coordinate frameworks have 
sets of functions as the bases on which the signal is being projected. In a similar 
manner to the way a Cartesian coordinate can be projected onto another set of 
basis vectors for Rn, so too can a sampled signal be projected onto a set of basis 
functions that span the function-space of the original signal. 

The process of convolution can be used to project a signal onto a basis function. 
If the original signal is to be reconstructed then the set of basis functions which 
a signal is projected onto must completely span the function space of the original 
signal (ie. they must be able to reproduce by superposition, all the characteristics 
possible in the function space). 

Sinusoids are a common basis set used in transform coding. In this case the set 
of basis functions is the set of sinusoids with all possible frequencies and phases 
within the signal domain. For sampled signals there is a maximum frequency 
representable as limited by the sampling density. Transform coding onto a basis 
of Sinusoids is called Fourier Analysis or Fourier Transform. 

Other transform methods use basis functions which have a finite region of 
support. Among these are the Gabor and Wavelet transforms. In this case the 
set of basis functions used in the analysis needs to include shifted versions of a 
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mother function so that the function set can cover all points in the signal domain 
while using a basis with finite (compact) support. 

1.6.1. DCT (and JPEG). One of the effects of using Fourier analysis is that 
at each frequency there are two complimentary sinusoids which must be accounted 
for to describe a signal in a manner that will allow it to be exactly recalculated 
(reconstructed) from the transform coefficients. These two parts can be thought 
of as either 

(1) Amplitude of Sine and Cosine functions with the same frequency; 
(2) Amplitude and Phase of a single sinusoid; 
(3) Real and Imaginary components of a complex phaser. 

In each case, the result is that there are two parts to each coefficient. 
To simplify this analysis method when dealing with signals with purely real 

values the Cosine Transform was developed. This method uses only cosine func-
tions as its basis set and each coefficient has only a single real part to it. The side 
effect is that there are twice as many bases to account for, thus the information 
content remains constant. 

For the analysis of discretely sampled digital data the Discrete Cosine Trans-
form (DCT) [3] was developed to compliment the Continuous Cosine Transform 
for continuous signals. The DCT was found to be quite well suited to the analysis 
of image data because the majority of the energy contained within a natural image 
is contained within the low frequency components of the image. This means that 
an image can generally be well approximated by using only a small number of 
low-frequency DCT coefficients. 

One of the disadvantages which the DCT inherits from Fourier analysis is that 
its basis functions are infinite in extent so they cannot describe the location at 
which particular features occur and also they are bad at representing localized 
features because of the large number of components needed to represent a singu-
larity. 

When sinusoids are the basis functions a change at one point in a signal will 
cause changes in many if not all transform coefficients. To combat this phenome-
non the blocked DCT method was developed for image compression. This method 
breaks an image up into small blocks of pixels (typically 8x8) and performs a DCT 
on each of these areas separately. The advantage being that severe disturbances 
which occur in one block do not affect the transform coefficients in any of the 
other blocks at all thus localizing signal energy. However these blocks are located 
at predefined locations which do not necessarily completely contain a localized 
disturbance. 

The method of Blocked DCT is used in the JPEG still image compression 
standard [33]. To compress the images this method examines the transformed 
DCT coefficients and performs a quantization process on the values where the 
quantization steps are based on the known average responses of the human visual 
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system to the primitive basis functions used in the transforms. The harshness of 
the quantization can be varied but in general many coefficients, particularly those 
representing high-frequency components, are quantized to zero. This allows for 
a very effective compression of the image data through run-length coding. The 
perceptually most-significant coefficients are coded first for each block. These are 
also the most finely quantized and are least likely to be zero. The coefficients are 
coded in a specific order with the most important first. This way it is typically 
the case that there will be many coefficients at the end (the least important ones) 
that have been quantized to zero. These can be very efficiently run-length coded. 

For compression ratios of up to about 30:1 JPEG is an outstanding method 
[61]. Above that ratio, however, the loss of coefficient information leads to whole 
DCT blocks being harshly coded and badly represented which leads to highly 
visible errors where two DCT blocks of different intensities touch. These visible 
errors are known as blocking artifacts and they are a major limiting factor on 
compression achievable with the JPEG method. Since there is a fixed information 
cost associated with each block there is a lower bound to the size a JPEG stream 
can be for a given image size. Hence there is effectively an upper limit on the 
compression ratios which can be achieved. 

1.6.2. Wavelet Transform and Multiresolution Analysis. Wavelets have 
found countless applications since their discovery - the solution of differential and 
integral equations [80], parametric curve approximation [20], signal de-noising 
and signal compression. 

The Wavelet transform as used in signal compression is a multiresolution 
method which, as the name implies, analyzes signals using different levels of ap-
proximation to the original. The core idea behind multiresolution analysis (MRA) 
is that a signal is successively filtered or blurred to give an approximation to the 
original signal, and the differences between the approximated signal and the sig-
nal from which it was derived (which might also have been an approximation) are 
calculated. Only this difference information is required to reconstruct a higher 
resolution signal from its immediate approximation, so only the difference infor-
mation needs to be stored. 

In this way, when reconstructing the original signal, at each step in the process 
a better approximation to the original signal can be achieved by recombining the 
approximated signal (often call the low-pass signal) and the lost details (called the 
high-pass signal or the wavelet coefficients). In the limit the original signal can be 
represented by a single, very blurred approximation signal (requiring little data to 
represent) and a series of detail signals required to progressively reconstruct the 
signal one level at a time. 

Compression of the signal data can be achieved because typically the detail 
signals contain only a small number of scattered coefficient which can be efficiently 
represented using a much smaller amount of data than for the original image. 
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Using intelligent quantization, many of the detail signal values can be set to zero, 
thus leading to good compression. 

Intelligent coding schemes which make use of the inherent structure of a mul-
tiresolution decomposition can very effectively compress the signal. Multireso-
lution methods tend to start performing better than JPEG at higher resolution 
levels. At 30:1 compression ratio both are comparable [91] - with JPEG superior 
at lower compression ratios - however for higher compression ratios multiresolu-
tion methods are much more effective. This is because the signal quality degrades 
much more gradually than for the JPEG method so higher compression ratios can 
be achieved without significant perceivable errors. 

Compression of up to 100:1 with good picture quality is achievable with mul-
tiresolution coding methods. 

1.7. Human Vision 

For the purpose of multimedia, the ultimate target for compressed images is 
the human viewer. It is the viewer who must be satisfied with the quality of the 
reconstructed image from a compressed data stream. Thus any quality measure 
must aim at the most useful image from a human perspective. 

To do this we rely on modeling the behaviour of the human visual system so 
that we can predict the best optimization of image quality against required data 
size. As discussed above the modeling of human perception is very difficult, but 
due to many studies on the biological and psychophysical responses of the HVS it is 
now possible to model at least some basic responses. We have some understanding 
of the response to simple stimuli corresponding to different (spatial) frequency 
regions and we have some understanding of how some features can interact to 
obscure and enhance particular elements in an image. 

What we do not yet understand is the way in which the human brain trans-
forms the information presented in an image into recognizable elements which are 
remembered. With this type of information the best image compression method 
would be able to be created. 

1.8. Thesis Aims and Structure 

The chief aim of this Thesis is to enhance the body of knowledge associated 
with nonseparable wavelet-based image compression and perceptual coding in ways 
that will benefit these fields as topics of future research and practical development, 
and to present sufficient evidence of the benefits of the nonseparable paradigm that 
new research work will be inspired. 

To this aim, results are presented which compare separable and nonseparable 
processes from a psychovisual perspective. We present a coherent introduction to 
nonseparable wavelets which reduces the knowledge barrier against new researchers 
entering the field and provides a comprehensive learning tool on the subject. 
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Results of a comparative study of separable and nonseparable methods are 
presented which show the strengths of each. Deficiencies in current knowledge of 
the nonseparable paradigm are highlighted and the potential benefits of research 
in those areas is discussed. 

Several novel processes are presented for nonseparable transforms which en-
hance its appeal as a platform for future image compression research and remove 
practical barriers to its practical adoption. 

The state of research in the field is advanced by a coding process based on 
psychovisual principles and nonseparable wavelet transforms which is shown to 
provide better perceived image quality than the Shapiro Zero-tree method. 

With this Thesis the author aims to create a comprehensive learning tool 
that will reduce the barriers of entry into the nonseparable domain for interested 
researchers thus leading to accelerated development in the field. To further this 
aim, the full source code for the experimental platform used in the research is 
released by the author to the general community. 

1.8.1. Structure. Chapter 2 develops the theory of wavelets and covers some 
brief history on the early pioneering methods. Once an understanding of simple 
one-dimensional wavelets is developed we move onto two-dimensional systems, 
through the use of the Tensor product to generate separable transforms. 

In Chapter 3 we cover the lattice theory which is necessary for the truly two-
dimensional transforms to be developed. Then multidimensional non-separable 
wavelets are developed. A comparison of separable and non-separable methods is 
made from a psychovisual image coding perspective which will demonstrate the 
motivation for moving from one-dimensional separable processing to nonseparable 
methods. 

A review of knowledge in the field of filter design is presented in Chapter 4. In 
this chapter we present the design of the filters which were used to produce the 
results presented in later chapters. While essentially a literature review, expanded 
explanations are presented for several areas central to nonseparable processing. 
Examples are used extensively to illustrate the concepts. 

In Chapter 5 we derive new upsampled representation and coding methods 
which provide significant speed and storage improvements for nonseparable trans-
forms. The upsampled representation was used in the implementation for much 
of the experimental platform. 

In Chapters 6 and 7 existing coding methods are reviewed which make use of 
psychovisual models of human vision. Coding results are presented which show the 
effectiveness of basic psychovisual tuning when used in conjunction with wavelet 
transforms and the quincunx lattice in particular. 

Zero-tree coding which forms an integral part of much of the research work is 
introduced in Chapter 8. Extensions are derived which allow zero-tree coding to 
be used in the nonseparable domain and results are presented showing the power 
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of the coding method in nonseparable processing. Issues associated with zero-tree 
coding on the quincunx lattice are covered in detail and results are presented from 
the use of zero-tree coding on the quincunx lattice. The use of arithmetic coding 
with zero-tree data streams is discussed and the advantages of the combination 
are outlined. 

Cross-scale coding is discussed in detail in Chapter 9 and we introduce the 
concepts of masking shadow prediction. We outline how masking shadow pre-
diction interfaces extremely well with zero-tree coding providing a framework for 
conveying activity measures without side-information. 

Chapter 10 covers in detail zero-tree coding and the novel masking shadow 
prediction methods. Results are presented for zero-tree coding with arithmetic 
encoding. Masking shadow prediction is developed and results are presented show-
ing that it is a powerful tool which can significantly increase the perceived image 
quality of zero-tree based streams with without increased bit-rate. 

Finally we summarize the contributions and results presented and provide 
pointers to further directions of research related to topics covered in this Thesis. 
Some of the ideas which could not be fully investigated are outlined and discussed 
in some depth. 

1.9. Original Content 

This section briefly outlines the original contributions made by this Thesis. 
This Thesis presents the first known work on the use of the quincunx resam-

pling scheme in a coding system with the aim of providing efficient image com-
pression 3 . It also describes the first integration of psychovisual coding methods 
with the quincunx lattice. 

The first comparison of the performance of separable and nonseparable wavelet 
transforms under various conditions is presented. In general this comparison is 
a difficult task as the properties of the filterbanks for separable and nonsepara-
ble transforms are significantly different. Here the two-dimensional nonseparable 
filters are derived from the one-dimensional separable filters. 

Cross-scale equivalence frameworks are developed for the quincunx lattice 
which allow for the use of such cross-scale coding mechanisms as quad-trees and 
zero-trees. The use of these frameworks on the quincunx lattice was not possible 
without these developments. 

The novel upsampled wavelet transform method is introduced. This method is 
crucial to any practical application of nonseparable wavelet transforms. It removes 
significant computation burden associated with upsampling and downsampling 
required during wavelet transforms. The upsampled transform method shifts the 
resampling burden from the signal to the filters, where it can be precomputed and 

3Previous work done in this area has centred on the mathematical framework and has only 
mentioned image compression as one possible application. Previous results presented have been 
for the purpose of demonstrating the mathematical theory. 
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stored for rapid use. Speed increases are significant. This method also allows for 
more accurate examination of processing phenomena by researchers and developers 
as the image can be stored in memory in its original orientation. 

A technique for compact storage of wavelet transform coefficient is presented 
which allows in-place wavelet transforms to be conducted with quincunx resam-
pling. This technique has application in embedded technologies where memory 
minimization is a priority due to size and power dissipation requirements. 

An implementation of zero-tree coding on the quincunx lattice is presented. 
This is the first published results which show the applicability of the technique to 
nonseparable wavelet decompositions. 

A new technique is presented as an extension of the zero-tree coding method 
which exploits the perceptual phenomena of spatial contrast masking and fre-
quency selectivity to produce significantly increased image quality without an 
increase in bit-rate. The theory of masking shadow prediction is introduced in 
the paradigm of quincunx resampling but is also applicable under any resampling 
mechanism. 



CHAPTER 2 

Wavelets and Subband Coding 

This chapter reviews the theory of wavelets and examines their behaviour contrast-
ing them with the Fourier Transform. We first provide a historical overview of the 
preceding research and areas of inspiration for the work presented in this thesis. 
Next we cover wavelets in one dimension and then move on to two-dimensions 
and finally we briefly examine nonseparable wavelets in two dimensions. Aspects 
of design and application are covered focusing on the Discrete Wavelet Transform 
(DWT). 

2.1. A Brief History of Wavelets 

Wavelets as we know them today are the result of an iterative process of 
discovery and generalization. Wavelets have developed in parallel in the fields of 
mathematical analysis and subband coding. They have been known for some year 
in the field of mathematical analysis [32], having found application in analyzing 
and representing general functions in a particular function-space. In this form 
wavelets have been used in the solution of integral and differential equations[80] 
in a variety of situations. 

In unrelated developments wavelets were developed in the field of signal pro-
cessing where they take the form of subband transforms and (critically sampled) 
filter banks [97], [100] which have been used successfully since the early 1980s for 
the compression and coding of speech. 

It was the work of Mallat [63] in the field of image processing and Meyer in 
operator theory [69] that drew the connection between the mathematical definition 
of wavelets and their construction at a discrete level by the application of subband 
transforms. Multiresolution analysis combines both subband transform theory and 
operator analysis to provide a fundamental building block for the creation of useful 
wavelets. Of particular note in this field is the pioneering work of Daubechies 
in creating the first compactly supported (finite length), smooth, orthonormal 
wavelet families [17], [18]. 

Until the mid 1990s wavelet construction relied on frequency-domain design 
methods where translation and dilation become algebraic processes. The notable 
exception to this being the work of Donoho [21] using interpolating functions. 
In the mid 1990s the lifting scheme [90] was developed by Sweldens which uses 
simple predict and update operators in the time domain to allow construction of 
new wavelet transforms from existing transforms. It was then shown [54] that this 
process could be generalized such that any wavelets could be constructed from the 

18 



2.2. FOURIER TRANSFORM AND FOURIER SERIES 	 19 

correct choice of predict and update operators in a ladder construction starting 
with a simple box function. 

The work on nonseparable subband transforms in multiple dimensions by 
Vetterli, Karlsson, Kovacevic, Simoncelli and Adelson [48], [56], [83], [82], [2], 
[85] have provided the theory necessary for the development of the nonseparable 
wavelet compression methods developed in this thesis. 

In the separable domain the work of Shapiro [81] has provided the inspiration 
for the majority of the principles used to create the efficient coders used to produce 
the experimental results. 

2.2. Fourier Transform and Fourier Series 

In some respects the Wavelet Transform is quite closely related to the windowed 
or short-time Fourier Transform (STFT), of which the Gabor Transform' is an 
example. Both transform the signal using finite length basis functions which are 
translated to account for position and scaled in some way to account for frequency 
bands. It is useful to briefly cover Fourier analysis and how it relates to Wavelet 
analysis. 

Fourier series analysis is a mathematical transform which decomposes a signal 
into its separate frequency components. It is a particularly powerful method for 
the analysis of periodic signals due to the periodic nature of the basis functions 
which are used, ie. sinusoids. It is of limited use for the analysis of non-periodic 
(ie. finite) signals as the signal must first be made periodic before analysis can be 
performed. 

The Fourier Transform is a related analysis tool which can be used on non-
periodic signals. We can write the Fourier transform for a function f (t) as 

t=+00 
(2.2.1) 	 F (w) = .F(f (t)) = f 	f (t).C3 w i dt 

t 
where c.,) is the frequency of the basis function of interest. The integral spans 
—oo < t < oo which can be abbreviated to the region of support for finite length 
signals. 

The inverse transform takes a function in the frequency domain and reproduces 
the signal in the time domain from it, thus making the Fourier Transform reversible 
or invertible. The inverse Transform compliment to Equation 2.2.1 is given by 

w=-1-co 
(2.2.2) 	f (t) = Tt- 1  (F (w)) = 1 _. F (o).e±3 w i cico 

transforming a signal in w back to a signal in t. 
One of the phenomena frequently experienced with the Fourier Transform re-

lates to abrupt edges. Because the maximum rate of change which can be expressed 

1Gabor Transforms use a Gaussian function as the windowing function to restrict the region of 
support of the sinusoids. 
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FIGURE 2.2.1. Sinusoidal transform kernel for the Fourier Trans-
form. This function extends indefinitely. 

by a sum of sinusoids is the sum of the rates of changes of the individual com-
ponents, it is impossible to express a discontinuity as a finite set of sinusoids. A 
discontinuity results in an infinite rate of change of signal value, which can only 
be synthesized with Fourier components of infinite frequency. 

For this reason the transmission of discontinuities in any media is impossible 
as every medium has a finite bandwidth. 

The Fourier Transform F(w) is a function in w and its (usually graphical) 
representation over a range of frequencies is often referred to as a signal power 
spectrum. It is worth nothing that F(w) is a complex function 

F (w) = R(w) + j I (w) 

= A(i)0 (1)(w )  

it has both a magnitude, A(w) = (w)1 = R2 	(w) 12 (w), and a phase angle, 

0(w) = arctan (-1-C(1 at every value of w. The magnitude, A, represents the R(w) 3  
relative size of the component of frequency w in f(t), while the phase angle 0 
indicates how each sinusoidal basis function is aligned (delayed) with respect to 
a common reference. Two time-varying signals that have the same magnitude 
function (spectrum) will look very different if the phase angles of their components 
are different. 

One often sought after quality in the Fourier Transform of a function in signal 
processing is linear-phase. This refers to the variation of 0(w) with w. If the 
phase angle of a Fourier transform varies linearly with frequency, this translates 
to a constant delay in the time domain regardless of frequency. This property is 
important from a signal processing perspective because processing a signal with 
a linear phase filter does not spread the signal energy of significant features, eg. 
rapid changes in signal value (edges). Filters are often designed to have linear 
phase over a particular operating range of frequencies for this reason. In terms 
of finite impulse response filters, it can be shown that linear phase can only be 
achieved with symmetric filters - a result which generalizes to n-dimensions. 

One of the limitations which is faced by the Fourier Transform is that its basis 
functions are infinite in extent, ie. sin(wt) does not have a finite length over which 
it is non-zero. Thus the Fourier Transform integral must always be over all time, ie. 
from t = —cc to t = +oo. This is quite a limiting factor for practical application 
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because real life signals will not have infinite extent. Only those signals which are 
periodic can be properly analyzed by the Fourier Transform. 

FIGURE 2.2.2. Arbitrary signal to be analyzed by the Fourier 
Transform. Since the signal is not periodic in nature it is not suit-
able for Fourier analysis. 

One typical solution to this problem has been to simply force all functions 
to be periodic by assumption, thus for a function f(t) of finite length T , the 
function is periodized such that f (t + T) = f (t) : Vt. This creates a guaranteed 
periodic signal of infinite extent which is then suitable for analysis by the Fourier 
Transform. Because this situation is artificial and the function is not normally 
periodic, the analysis of the signal will be somewhat corrupted by the periodizing 
process. One of the most common effects is that artificial sharp jumps in the 
signal function are created where f (T) cycles back to f (0). This happens if the 
signal does not naturally return to some steady state value at the beginning and 
end of the supported time of length T, ie. if f(t) f(T) which is the case for 
most short-time signals. 

FIGURE 2.2.3. The artifact caused by periodization of the arbitrary 
signal above, for Fourier series analysis. This figure shows one period 
of the signal being analyzed. Here the origin where t = k • T is in 
the centre of the figure. The sharp jump in signal value shown in 
due to the artificial process of making the signal periodic. 

The power spectrum of such a corrupted signal will be spread out over a wide 
range of frequencies from lowest to highest, because all the frequency components 
are required to create the sharp edge in the periodic signal. Because of the spread-
ing of the power spectrum this phenomenon is referred to as spectral leakage. 

Continuous wavelet analysis uses basis functions of (generally) finite support 
length. A signal is transformed into a superposition of basis functions which are 
each different in scale and location. Because of the finite nature of the basis 
functions they are better able to represent localized variations in a signal than 
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Fourier analysis. For the analysis of periodic signals wavelets are unsuitable since 
their finite support means that an infinite set of wavelets at different locations 
from —oo to oo would be required. 

2.3. Discrete Fourier Transform 

With the advent of sampled signals and digital data it became necessary to 
develop a Discrete version of the Fourier transform for use on discrete data. For 
a discrete signal (n) taken over a period of N samples 

N –1 
(2.3.1) 	F(m) = D FT (f,  m) = E (k) • e -327r.k.rnIN  , 0 < M, < N 

k=o 

and the frequency measure m this time is also taken with respect to the sampling 
period. Equation 2.3.1 is independent of time and thus can be translated to any 
scale. If we know the period of time T, over which the N samples are taken then 
we can re-scale F(m) into F(w) by noting that w = m.P = m • f, where T, is the 
sampling period and f, = is the sampling frequency. 

FIGURE 2.3.1. A sampled sinusoidal kernel function for the DFT. 
The maximum frequency which can be reproduced from the sampled 
data is determined by the Nyquist criterion as fmax  = 

It should be noted that a signal which is sampled of a period of N samples 
will in turn produce a DFT which is periodic over N samples and has a frequency 
resolution of cores = 27 .  fs =-27.4 rad/sec. This power spectrum produced is periodic 
and infinite in extent. Due to the Nyquist sampling criterion the highest frequency 
which can be reproduced with a DFT is half that of the sampling frequency, ie. 

— -2–r  rad/sec. Attempting to sample a signal with frequency components higher 2 — 
than the Nyquist frequency results in aliasing, due to the periodic nature of the 
power spectrum from the DFT. Signals must be passed through an analog low-
pass filter prior to sampling to remove frequency components above the Nyquist 
frequency otherwise distortions occur. 

The complimentary transform for the DFT, is the Inverse Discrete Fourier 
Transform (IDFT) and it is written 

N-1 
(2.3.2) 	 f (n) = I D FT (F (m)) = E F (m).0 .27" .7n1N  

m=o 
and as with the forward DFT a DFT with a period of N points will create an 
N point discrete signal. The periodic nature of the DFT also means that the 
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reproduced signal is also technically infinite and periodic with a period of N 
samples. In this case the last sample in the set becomes the sample before the 
first sample. Because the forward DFT is taken as a finite sum over the sampling 
period it must assume that it samples one complete period of a periodic signal. 
For this reason the spectral leakage artifacts identified above for Fourier series 
again exist in this situation. 

To keep within the scope of this thesis we will not further discuss problems of 
aliasing in this context as we will assume that the signals which we deal with have 
been successfully sampled. Indeed the topic of this thesis is digital images which 
have already been successfully acquired by some external method. 

The term aliasing reappears later in the context of multichannel signal decom-
positions and multiplexing (particularly QMF structures) and has a different but 
related meaning. 

2.3.1. Fast Fourier Transform. The process of performing a DFT on a 
signal is quite a computationally expensive exercise and because of this the pro-
cedure is seldom performed in this manner. In digital signal processing applica-
tions a much faster version of the DFT is used, called the Fast Fourier Transform 
(FFT)[13]. 2  

The FFT gains its speed advantage by recursively splitting the signal into two 
equal sections and performing the DFT on each, then combining the results. This 
therefore limits the size of sampled signals on which the FFT can work to signals 
with 22  samples, where j E Z > 0. The cost of this small inconvenience provides 
a significant speed improvement over the normal DFT. The normal DFT is per-
formed in order 0(N2 ) operations, where N is the number of samples, whereas 
the FFT is performed in 0(N log(N)) operations. This becomes a significant 
gain as N becomes large. 

Although a discussion of the method by which the FFT is performed is quite 
informative and can be useful is some situations, it is beyond the scope of this 
work to cover the topic in detail. This is left to the reader. 

2.4. Discrete Cosine Transform 

The Discrete Cosine Transform (DCT) is very similar to the DFT but it uses 
only cosine functions as transform kernels. Because of this, to preserve phase 
information, the kernel functions are multiples of half the fundamental frequency, 
thus creating both odd and even functions. 

The DCT is defined as [28, chapter 31, 11071 
N-1 

(2.4.1) 	C(U) = a(u) • E f (x) cos (
(2x ± 1)u) 

2N x=o 

2The FFT is generally credited to Cooley and Tukey [13] but traces of the algorithm extend 
back as far as 1924 [28, chapter 3, references]. A history of the FFT is set out in [12]. 
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FIGURE 2.4.1. The lowest frequency DCT kernel function is only 
half a period long, making it an odd function. The basis functions 
for the Cosine Transform are spaced at multiples of half a period of 
the sample period. 

for u = 0, 1, 2, ... , N — 1 and the inverse DCT is defined as 
N-1 

(2.4.2) 	 f (x) = 	ce(u)C (u)cos (  (2 x  2±N1)u7r ) 
u=o 

for x = 0, 1, 2, ... , N — 1. In both Equations 2.4.1 and 2.4.2 a is a power 
normalization factor and 

(2.4.3) 

The DCT has exceptional performance for image energy compaction. The 
main disadvantage of the DCT, like the Fourier transform is that it is a global 
transform. This means that every signal sample contributes to every transform 
coefficient and conversely every transform coefficient contributes to every signal 
sample. This causes problem when quantization of transform coefficients occurs 
because errors introduced are not localized within the signal rather they propagate 
throughout every pixel. 

To avoid this globalization problem the JPEG standard [33] for image compres-
sion localizes the DCT to image blocks of 8x8 pixels. In this way, the coefficients 
of each block only affect that particular block and quantization does not affect 
other areas of the image. The blocking of the image, does create other problems 
for high compression ratios where heavy quantization is performed as noticeable 
discontinuities in signal value occur at the transition from one block to its neigh-
bour. 

2.5. Two-dimensional Fourier Transforms 

So far we have only discussed the Fourier Transform of one-dimensional signals. 
To apply this method to images we need to generalize the method so that it can 
be applied to two-dimensional signals. 

To move to a multidimensional context we must expand our definition of the 
Fourier Transform kernel function. In one dimension this is given by k(w, t) = 
e-2'. If we have a two-dimensional signal in x and y then we generalize the kernel 

f or u = 0 

\A otherwise 



(2.5.1) 	F(wx, wy) 

(2.5.2) 

= 	(XI Y) Wx WY) 

f (x, y) • k (wx,wy , x, y) dx dy 
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as k(ws , wy , x, y) = e-i'lqw.'+'Y'Y )  which gives a sinusoid in x and y with different 
spatial frequencies in the x and y directions, ie. wx  and wy . 

The 2-D FT of f (x, y) is thus given by [28] 

= f
+00 

f (x, y) • e - -727r (x .wx±Y'Y )  dx dy 
-00 

and thus F(wx , wy) is a function of two spatial frequencies, one in the x direction 
and one in the y direction. The complimentary transform returns f (x, y) by taking 
the inverse transform of F(wx , wy) as given by 

(2.5.4) 	f (x, Y) = 	(F(wx, wy), Y) 
f  +00 

F ( x, wy) e+i2ir(wx .x-Ewy  dwx  dwy  

in a similar manner to the one-dimensional case. 

2.5.1. DFT in 2D. As with the one-dimensional case, we can discretize the 
Fourier Transform. In this case the DFT F(m, n) of a two-dimensional signal 
f (k, 1) is given by 

M-1 N-1 
1 

(2.5.5) 	F(m,n) =-- 	 
M • N EE f (k, I) e -3 ' 2'r("V +V) 

1c=0 1=0 

where the sampled signal and the resultant DFT is of size (MxN) samples. The 
inverse transform which is the compliment of (2.5.5) is given by 

M-1 N-1 

(2.5.6) 	 f (x, y) = E E F(m,n) • e+3 .27r(V±i9 
m=0 n=0 

which generates the signal of size (MxN) from the (MxN) DFT. 
As with the one-dimensional DFT, the 2-D DFT relies on artificially peri-

odizing the sampled signal so as to perform analysis. In two-dimensions this is 
done by tiling the signal, ie. periodizing it in both dimensions separably. Hence 
f (x +i • M, y+ j • N) = f (x, y) : Vi, j E Z. 

The periodization also occurs in the transform domain, so the DFT is periodic 
over a tile of size (MxN). For the usual case of rectangular sampling of the image 
data, the DFT periodic tiling repeats in the horizontal and vertical directions. 
Alternative sampling lattices lead to alternative periodization of the transform 
coefficients. This is covered in detail in [22] and will be revisited in Chapter 3. 

2.5.2. Separablility and Tensor Products. A property of the 2D DFT 
which has lead to it becoming popular in digital signal processing applications is 
its separable nature. Separability means that the signal can be split into compo-
nents along each dimension which can be considered as separate components of 

(2.5.3) 
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the overall signal. The concept of frequency in multiple dimensions is a vector 
describing the separable frequency components along each cardinal axis. 

This allows a signal to be processed one dimension at a time using conventional 
one-dimensional DFT algorithms and kernels. 

Consider (2.5.5). This can be re-written without loss of generality as 
m-1 , N-1 

n't• 	1 

F (m, n) = —
1 E e_32() —N  E f (x,  

x=o 	 y=0 

which puts no constraints on the order of operation. To process a signal in this 
way we first carry out the operation to produce the section in parenthesis ie. 

( 1  N-1 

Fintermedzate(X, n) = —N  E f (x, y).e-321r() 
y=0 

which is a DFT of the xth  signal along one of the dimensions. 
Note that the DFT kernel function used is a sinusoid dependent only on y and 

thus varies only along that dimension. This is equivalent to taking the xth  column 
of the image signal and producing a DFT of that column. Also note that the 
result of this operation is a columns of complex numbers, in the same way that 
the DFT of any signal results in a new sequence of coefficients of the same size. 

To complete the operation we work with the other dimension 
m-1 

F(m, n) =
( A; ) E e 	 intermediate(X , n) 

x=o 
which then uses the numerical DFT values of all the columns and calculates the 
DFT of each row of the intermediate result. So the overall procedure consists of 
calculating the DFT in one dimension then calculating the DFT in the remaining 
dimension, of the DFT results from the first dimension. 

The overall result is an MxN 'image' of DFT coefficients. An image which 
plots magnitude of the DFT as image intensity with coordinates derived from 
(m, n) forms a 2D power spectrum. The 2D analog to the Bode plot consists of 
two images, one which indicates spectral power by brightness at each frequency 
position and one which indicates phase angle by brightness at each frequency 
position. A 3D perspective plot can be more informative than an intensity plot. 

The DCT can also be generalized to 2 dimensions in a similar manner as the 
DFT. It is again a separable transform given by 

N-1 N-1 

C(U, V) = a(u)a(v) E E f (x, y) 
x=o y=o 

(  (2y + 1)v7r) Cos  (2x  + 1)u7r) 
CO s 

2N 	 2N ) 

and the inverse is 
N-1 N-1 

( (2x  1)u7r) 	((2y + 1)v7r) 
f (x, y) = E E a(u)ct(v) C (u, v) • cos 	 cos 

2N 	 2N ) v=o v=o 
for x, y = 0, 1, 2, ... , N — 1 and a as in Equation 2.4.3. 
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2.6. Inner Products, Correlations and Convolutions 

The correlation or inner product between two signals gives a numerical value 
describing how similar the two signals are. For this reason correlation can be used 
to determine how similar a signal is to some particular basis function of interest 
which allows for certain features of a signal to be easily identified and assigned a 
numerical value. 

Correlation integrals, or inner products have the general form 

(2.6.1) 	 (f (x), g (x)) (n) =f f (x).g(n + x)dx 

for two continuous signals. In this case n provides a means of describing the value 
of the correlation integral as the origins of the two signals are moved apart. This 
generates a new function < f, g > (n) which describes the degree of correlation of 
the two signals and varies with n. This function can be thought of as a projection 
operation for expressing one function as a projection onto the other. 

Closely related to inner products are convolution integrals. A convolution of 
two continuous signals f (x) and g(x) is given by 

(2.6.2) 	 [f (x) * g(x)](n) = f f (x).g(n — x)dx 

and again n gives a means of describing the effect of moving the origins of the 
signals with respect to each other. As can be seen from Equations 2.6.1 and 2.6.2 
the two equations are almost exactly the same, the only difference being that for 
the convolution integral, the signal g(x) is reversed before the inner product is 
calculated. We can thus write 

[f (x) * g(x)](.) =< f (x), g( — x) > (.) 

with rearrangements for the value of n - the origin displacement - to account for 
the reversal of direction. 

The process of convolution is used to great extent for digital signal processing, 
indeed it is the single most important process. The process of convolution allows 
for real-time signal processing to occur. When a signal is passed through a filter 
the output from the filter is the convolution of the signal with the impulse response 
of the filter. There is a very strong connection between convolution and the Fourier 
transform. It can be shown that the process of convolution in the time domain is 
equivalent to multiplication in the Fourier domain, ie. 

[f (x) * g(x)](-) < 	> F(w) • G(w) 

This applies in both the continuous and discrete domains and provides an essential 
tool for signal analysis and processing. 

To use convolution with discrete data we must first discretize the convolution 
process. This is a simple matter of replacing the integral with a finite sum. Unlike 



fx=-00 

f (x).e-i"dx 

roc> 
g(x).e-i"dx 

L-00 

-Foo 
F(w) = 

G(w) = 

2.6. INNER PRODUCTS, CORRELATIONS AND CONVOLUTIONS 	28 

the Fourier Transform which relies on the signals being infinite in extent, convolu-
tion requires no such restriction and can be applied easily to signals of any finite 
length in both the continuous and discrete forms. A simple consideration of the 
process of integration using digital signals which are piece-wise constant gives us 

[f (x) * g(x)](k) = E f (i).g(k — i) 

for discrete convolution. 
In this case the sum over i is over the range of values of i for which f (i) and 

g(k — i) are non-zero and overlap, termed the region of support. If the signals 
are infinite in length as can occur with infinite impulse response filters, then the 
resulting signal is also infinite in length. In general the result will have a maximum 
length of Iresult = f ± 1g - 1 ie. the sum of the lengths of the two signals less one 
sample. This is easily verified if we note that there must be at least one sample of 
overlap of the non-zero signal values for the convolution sum to be non-zero. For 
the continuous case the length would be if  + 1g as the minimum required overlap 
interval becomes zero size. 

2.6.1. Filtering. Convolution is used in signal processing because it can be 
used to shape the frequency characteristics of a signal. Consider two functions f (x) 
and g(x), we shall call f (x) the signal and g(x) the filter. Taking the convolution 
of the two signals gives us a function [f * g](n) as given by Equation 2.6.2. 

Consider now the Fourier Transform of f (x), written as F(w), and of g(x) 
written as G(w). These are given by 

and each gives the frequency characteristics of its signal in x. If we wish to aug-
ment or suppress certain frequencies within our signal F(w) then we create a new 
function with the desired characteristics, ie. a function in w with large value at 
frequencies which are to be augmented and a value close to zero for those frequen-
cies to suppress. We can multiply (in a vector sense) the two spectra, ie. Fourier 
Transforms, together to obtain the required frequency response. Multiplication 
here means (F G)(c.4.)) = F(w)G(w). 

Let G(w) be such a function which shapes the spectrum of F(w). The spectrum 
of the result, which we shall call Y(w) will have a value at frequency w which is 
the product of the Fourier Transform of its parent signal, F(w), at w and the filter 
Fourier Transform, G(w) at w, ie. Y(w) = F(w)G(w). 

We now have the Fourier Transform of our filtered signal and if we determine 
the corresponding actual signal from the Fourier Transform using Equation 2.2.2 



F (w)G(w) eiwx dc.o 
w=.1-00 

L=-00 
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we have 

y(x) = 
f=-00 

Y (w) • ei"dc.o 

L F (w)G(w) • e"' dw 
=-00 

which is the result given by the convolution integral of f (x) and g(x). 

y(*) = 

f f (x)g(n — x) dx 

Thus if the Fourier Transform (spectrum) of g(x) shapes the spectrum of f (x) 

in the desired manner then the process can be performed by a process of con-
volution, thus eliminating the need to use the Fourier Transform altogether and 
allowing real-time processing to occur. The function for the filter g(x) can be 
calculated in the Fourier domain so that its spectrum G(w) has the required prop-
erties for shaping F (w). 

For discrete versions of the Fourier Transform and convolution the same results 
hold. In this case both the signal f (n) and the filter g(n) must have the same 
sampling density, ie. they must be sampled at the same spacing so that the samples 
line up. 

2.6.2. Spatial Domain Filtering (mask operators). Another common 
means of manipulating the properties of an image is through the use of spatial 
masks. This process involves convolving the image with a small (usually 5x5 
samples or smaller) filter image which is designed to perform a very simple task. 
One of the most common uses of this type of method is edge detection. Masks 
can be designed to be derivative operators and thus generate large values when 
the area of the image that they are convolved with has a significant rate of change 
of intensity with spatial distance. 

The process of masking relates back to the Fourier Transform again since 
differentiation operators are high-pass filters. 

2.7. Wavelet Basics 

The term wavelets has come to be used to mean a set of functions derived 
by processes of dilation and scaling from a single mother wavelet function. Un-
like Fourier analysis, where the bases are sinusoids, wavelets are mostly of finite 
length (compact support), and as a result they can show information about both 
frequency and location of features. The mother wavelet determines the overall 
shape of all those wavelets derived from it. Because of this all wavelets derived 
from a common mother wavelet will have similar properties but at different scales 
of application. They therefore allow us to analyze signals in a way which identifies 
traits which repeat in a self-similar manner at different scale levels. This is a 
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similar concept to fractals where the underlying self similarity of nature can be 
used to express the complexity of systems or images in terms of simple rules. 

C) 

space 

(a) Fourier Analysis 

space 

(b) Fourier Analysis 

FIGURE 2.7.1. Tiling of the space-frequency domain by (a) Fourier 
analysis and (b) Wavelet analysis. Fourier analysis has a fixed res-
olution in both space and frequency - global in space and singular 
valued in frequency. Wavelets are localized in both space and fre-
quency. 

Figure 2.7.1 shows the tiling of the space-frequency domain by both Fourier 
and wavelet analysis. Fourier analysis uses basis functions which are singular in 
frequency and infinite in extent, hence they can only analyze one frequency. Often 
this is useful when exact frequency components are of concern. Wavelet bases are 
localized in space (compact support) and frequency and the two are related by an 
inverse relationship. The act of scaling a wavelet function to make it smaller in 
space increases its bandwidth and minimum frequency. 

There are many different tilings of the space-frequency plane possible, some 
others are explored in 134 [37], [35] and [11]. 

Wavelets are an efficient means of expressing signals because of their multires-
olution nature. A signal can be expressed first as a very coarse approximation 
at the lowest scale which provides an overall description and then at successively 
finer scales more details can be added to create increasingly better quality. This 
process can be stopped at any time when the quality of the signal is good enough 
for some particular purpose. 

One reason that wavelets are good at expressing general signals is that the 
majority of the information that is needed to describe a signal goes into creating 
the broad overall description, ie. the lower frequency features. Once an overall 
shape of a signal is determined the rest of the information added is fine detail. 
Depending on how good the approximation is at coarse scales, the fine details can 
contain surprisingly little information. Indeed the wavelet coefficients for finer 
scales contain mostly sparsely spaced coefficients of small value which contribute 
little to the signal. Generally a good approximation to the original signal can be 
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obtained without using the higher resolution details at all, or in the case when 
there are significant fine details, only the most significant of the wavelet coefficients 
are needed. 

To perform a single level wavelet transform, two parameters must be specified, 
one for scale and one for location. Since wavelets are finite in length, as the relative 
position between the origin of the wavelet basis changes, so too will the value of the 
wavelet transform. The scale parameter varies the shape of the wavelet transform 
kernel (basis function) so that it is conditioned for a particular feature size or 
frequency range. 

For typical digital applications of wavelets, the actual wavelet filter itself is 
unchanged but the signal is resampled to different sampling densities which has 
the effect of applying the wavelet with a different scale. The dyadic wavelet is the 
simplest and most popular; it increases the length of support of the wavelet in 
the original sampling units by a factor of 2 for each decomposition level. Other 
resampling methods are possible for example rational sampling rates are explored 
in [57], [52], [51] 

2.8. Scaling Functions and Wavelets 

The wavelet transform is based on a system of successive approximations. Each 
successive level of analysis uses the approximation of the level before and takes a 
further approximation of that, and also produces a detail signal to reconstruct the 
previous signal. 

We follow here the analysis given in [63]. 
If the signal is originally F and the approximation operator is H then the 

first approximation to F is given by A 1  = H • F. We can write Ao  = F to 
demonstrate that F is the original approximation of the signal. Indeed if the 
signal was continuous then there would be no highest resolution level at which we 
could express it. The term A o  can be interpreted as the approximation due to 
sampling of a continuous signal. 

The complimentary detail W1  is given by W1  = G • F where G is the detail 
operator which extracts a detail signal from An_ 1  which is complimentary to A n  
and allows An_ 1  to be reconstructed. 

Applying the approximation operation again, the second level approximation 
is given by 

A2 = H•A i  

= H•H•F 

and in general for the nth level approximation An  is given by 

(2.8.1)
n  

An  = (1-1 H) F 



Wn = G An—i 

= G • (11  H 
n-1 ) 

• F (2.8.2) 
i=1 
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and thus Hn  the operator to find the nth  level approximation by An  = Hn  • F is 
given by lin = (Hin—i H) = Hn . 

To find the detail which compliments A n  we apply the detail operator G to 
An_ 1  and thus 

so the operator which extracts Wn  from F is given by 
n—i 

Gn  = G • (ll H 

(a) Original Signal 

(b) Approximation 
• - _ • - - • - • - • - • - - • - • 

(c) Detail 

FIGURE 2.8.1. Example of approximation of a signal and associated 
detail from a scaling-function/wavelet pair. The scaling function 
captures the low-frequency components, including average, and the 
wavelet signal captures the high-pass components. 

Figure 2.8.1 shows an example of the first level approximation and detail signal 
of some arbitrary signal. The approximation preserves the low-pass energy but 
loses all fine detail. The fine detail is preserved in the detail which is a high-pass 
signal (ie. average = 0). 

2.9. Continuous Wavelet Transform 

A Wavelet Transform is achieved by taking the inner product (and thus the 
convolution) of some signal of interest with the appropriate wavelet basis function 
or transform kernel (with a particular scale and location) [17],[63]. For example 

(2.9.1) W (f (x)) = (0a,b(x), f (x)) 

defines a wavelet transform where Oa,b(x) is the wavelet transform kernel function 
which has the correct scale and position. 
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The Wavelet functions themselves are (in general) derived from a single mother 
function by a combination of dilation (change of scale) and translation (displace-
ment in space). 

Let the mother function for a wavelet transform be 1/)(x) then we derive the 
associated function which is scaled by factor a and translated by b, as [31], [181 

No  (2.9.2) 	 0a,b(X) 
. i ( X ; b 

 

where a, b E R, a 0. 
The factor of 	normalizes the functions to have a constant L2 norm which oi 

prevents rescaling of signal energy. 
Now using Equations 2.9.1 and 2.9.2 we get 

IN (f (x), a, b) = (00 (x), f (x)) 

= 1 
t °° 

 f (x)0 *  ( x  
Va -00 

a— b)  	 dx 

which gives us the Wavelet Transform of f (x) with the wavelet ZAz,b of scale a and 
translation b. 

For a transform to be useful for image coding it must be invertible so that the 
original signal, or one like it, can be reconstructed from the transform coefficients. 
Although Equations 2.9.1 and 2.9.2 will give results for any wavelet kernel 0, for 
the transform to be invertible the kernel must satisfy certain constraints as given 
by Equation 2.9.5. 

The inverse transform pair for Equation 2.9.2 that recreates the original signal 
from the wavelet transform can be expressed as 

1 1. 4-- f L +" 1 	 x — b) 	
da - db 

1 
(2.9.3) 	f(x) = -a- Jo 	. wivv(f(x), a, b) 0 

( 
 a ) a2 

where 

(2.9.4) 	 C = 

obviously the inverse transform exists only if 

(2.9.5) 	 0 < C < oo 

hence this is termed the admissibility criteria for the wavelet 0(x). An immedi-
ate and obvious implication of this is that the wavelet /PO must be a high-pass 
function ie. z-P(0) = 0. Here /i)(w) is the Fourier Transform of 0(x). 

Figure 2.9.1 shows the band-splitting nature of the wavelet transform. In this 
case the dyadic wavelet is used and the original signal is split into two octaves 
with the cutoff frequency at the half of the previous bandwidth. 
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	>. it 2 	 

FIGURE 2.9.1. Band-splitting property of the dyadic wavelet trans-
form. The approximation (H) retains the low-frequency components 
while the detail signal (G) contains the rest of the bandwidth of the 
original signal. Because of previous band-limiting approximations, 
the high-frequency component is actually a narrow band. 

2.10. Multiresolution Analysis 

2.10.1. Function Spaces. Some knowledge of function spaces is necessary 
to gain an understanding of the way in which multiresolution analysis and the 
discrete wavelet transform operates. 

The underlying concept behind function spaces is that in general a function 
can be expressed as the sum of a set of other basis functions. Any function which 
can be represented in such a way is said to reside in a the function space for which 
the simple functions are the basis functions. 

Subspace A 

Complete function space 	 Orthogonal complimentary spaces 

FIGURE 2.10.1. Conceptual diagram of complimentary orthogonal 
function spaces. With DC at the centre, the function space on the 
right represents an approximation sub space of the original func-
tion space. The complimentary space represents those functional 
capabilities not present in the approximation subspace. 

2.10.1.1. span of a basis function set. 

The span of a function set represents all possible functions which 
can exist in the function space. A basis for a function space is a 
set of functions which, when used in linear combinations, provide 
all the possible characteristics which can occur within the function 

34 
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space. Any function which is a member of the function space can be 
represented as a linear combination of the basis functions translated 
as necessary. 

2.10.1.2. order of continuity and smoothness : C. 
A function is said to be Cn smooth if all derivatives after the n th  
are 0. Obviously the first derivative cannot be 0 as this would mean 
the function was a constant value everywhere. Being Cn means 
that a function can be represented by a polynomial of degree n. 
Thus all functions f( . ) e Cn are in the function space spanned by 
{1, x, x2 , ..., xn}. 

2.10.2. Multiresolution Analysis. Multiresolution analysis was first de-
scribed by Mallat in [63]. A multiresolution analysis (MRA) is a series of approx-
imation subspaces 

(2.10.1) 	 • • • C Vn+2 C Vn+1 CV  C Vn-1 C • • • 

where each next subspace in the hierarchy is at a higher resolution level than 
the previous. If the difference in resolution between levels is a factor of 2 then 
f (x) e Vn  .4=4- f (2x) E Vn+1. This implies that f (x) is band-limited to Vn  to start 
with. If 1(x) is not band-limited then this decomposition breaks down because 
f(x) cannot be confined to any function-space. Obviously for sampled signals we 
have an upper limit to the signal spectrum as defined by its sampling. 

WI 	 W2 
 

FIGURE 2.10.2. Conceptual diagram of nested subspaces show a 
Multiresolution Analysis. Here the many detail subspaces W n  and 
the single low-pass subspace VN sum together to produce the origi-
nal. 

If (x) E Vn  then the projection of f (x) onto a subspace is obtained by applying 
a suitable projection operator P to (x). The projection operator reduces the 
information contained in the result P • (x) E Vn+1  when compared to (x) and 
so (x) e Vn  cannot be recovered from it. The information which is necessary to 
reconstruct f (x) from P • f (x) is contained in the orthogonal compliment of Vn+1 

which we shall call Wn+1 . Thus in terms of subspaces Vn+1 Wn+1 

The projection of (x) onto Wn+1 can be obtained from f (x) E Vn  by the use 
of another suitable projection operator Q. 

So we have that P • (x) + Q • f (x) = 1(x). 
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Original Approximation Demi] 

FIGURE 2.10.3. Power spectra showing band-splitting nature of the 
wavelet transform. The original bandwidth of a signal is split into 
two equal octaves; one low-pass, the other high-pass. 

yr, 	
Wn+2 

FIGURE 2.10.4. Power spectra in multiresolution analysis. This 
shows how the low-pass band of each level of band-splitting is split 
further. Each level of decomposition reduces the bandwidth by a 
factor of 2 (octaves). 

Multiresolution analysis is a term used to describe the analysis of a signal 
into components at different levels of scale or resolution. In terms of a digital 
signal multiresolution analysis is a process of performing a transform and then 
resampling to a lower level - repeating for each change in resolution level. The 
essential property being that each transform step results in a low-pass version of 
the signal which can then be further decomposed. The loss of information which 
occurs as a result the signal being sampled to a lower resolution is retained in other 
subbands. Thus the process is reversible: the original signal can be reconstructed 
from the end low-pass signal and the detail signals via a process of upsampling 
and an inverse transform. 

2.11. Discrete Wavelet Transform 

Whereas the continuous wavelet transform is implemented as a continuous con-
volution/correlation integral, there is no need to impose such an implementation 
on the discrete wavelet transform. We can define the discrete wavelet transform 
in a manner analogous to 2.9.1 as 

00 

( f (n)) = E 21)a ,b(k) • f (n + k) 
kE — 00 

This will provide us with the detail signal from the wavelet '0(4. This can be 
useful from a signal analysis perspective but we are not concerned with it in the 
scope of this thesis. We are interested in using the discrete wavelet transform as 
a perfect reconstruction transform with which we can efficiently code image data. 

(2.11.1) 
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From this perspective it is the multiresolution interpretation of the DWT that 
interests us. 

The wavelet transform for data compression is implemented as a multiresolu-
tion analysis. We begin with the signal at its highest resolution Ao  and decompose 
it into an approximation W1  and a detail signal V1  at the next lower resolution 
level. W1  corresponds to Al. We apply the same procedure again this time starting 
with the approximation from the previous decomposition A 1  -= W1 . The process of 
decomposition involves filtering the approximation signal An  with a low-pass and 
high-pass filter and then downsampling the results. The downsampled low-pass 
signal is 147 1  and the downsampled high-pass signal is V7,+1. 

This process continues until some desired level of decomposition is achieved - 
usually denoted by the size of approximation signal; or the signal is too small to 
convolve with the filters. 

The final result is a single low resolution approximation signal WN and a set 
of detail signals {VN7VN-13 • • ' 7  VI} which can be used to reconstruct the original 
image from the approximation. 

The most common form of the wavelet transform involves downsampling by a 
factor of 2 after filtering. This is the so called dyadic wavelet decomposition. 

2.11.1. Orthonormal compact wavelets. We briefly mention probably the 
most famous family of wavelets; the Daubechies family as described in [17]. These 
were the first smooth wavelets discovered which were orthonormal and with com-
pact support in the limit. 

The low pass of the Daubechies D4 wavelet is given by [78] 

1+0   
h 	

3+0  3-0 1—.0 
k =

0  4 -  ' 412-  ' 4-N/ ' 40-  
with a high-pass determined by the normal rules of QMF, such that 

1 — .0 (3 — 0)  3 + 0 (1+ 0 
0 	

) 
gk - 4 ' 	40-  ' 40 ' 	40 

The D4 filters provide minimum support for 2 vanishing moments. The family 
contains filters of increasing size which correspond to solutions with 3, 4, etc. 
vanishing moments. 

We use the Daubechies D4 wavelet for the purpose of comparison with non-
separable transforms later as the complexity of the D4 filters is similar to those 
developed for nonseparable sampling. 

One modification was required for the Daubechies filter for parts of the re-
search. The modification refers to the normalization factor used in the Daubechies 
filter. Examining the filters we find that E hk  = ,[2.  so the filters are not com-
pletely normalized. The reason for this is that filters used in a subband deci-
mation system must have a normalization to account for the act of upsampling. 
Downsampling removes coefficients completely and no values are altered, however 
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upsampling occurs before filtering during reconstruction. This upsampling intro-
duces coefficients of value zero and the result when convolving a sequence where 
every other value is zero is a result of half the magnitude if all coefficients were 
retained. So the normalization of on the decomposition and reconstruction 
leads to a total normalization of 2 which counters the effects of upsampling. 

This is a proper design criterion but it has a very serious disadvantage - each 
time the approximation signal is decomposed its mean value increases by a factor 

This isn't a problem if all we want to do is decompose and reconstruct, 
however often we wish to examine the relationships between coefficient values at 
different resolution levels. To allow this to occur, the normalization of the filters is 
sometimes rearranged so that the decomposition filters are normalized to 1 but the 
reconstruction filters are normalized to 2. An alternative method is to normalize 
all filters to 1 and multiply the reconstruction result by a factor of 2. 

2.12. Filters and Subbands 

In this section we cover in more detail some of the methods used to implement 
the discrete wavelet transform in terms of critically sampled filterbanks and sub-
band coding. Each step of the multiresolution decomposition is a matrix trans-
form on a signal vector implemented as a filterbank as shown in Figure 2.12.2. 
The most common case is the two-channel case which corresponds to the dyadic 
discrete wavelet transform. The two-channel case involves two branches in the 
filterbank (low-pass and bandpass) and a resampling factor of 2. 

We cover orthogonal, biorthogonal and quadrature-mirror filters (QMFs) in 
this section focusing on the properties and restriction of each design. 

An excellent overview of the use of multiscale decomposition and subband 
coding for the analysis of images and other data can be found in [24]. 

Figure 2.12.1 dramatically shows the multiresolution concept at work. Each 
of the images is a projection of the original image onto a different low-pass space. 
They show the effect of adding the detail signals to the approximation signal 
which starts with very little definition and finishes with very good signal quality. 
This shows how progressive image transmission with multiresolution coding would 
occur. With an original image of size 512x512 pixels the first two detail levels 
image (c) could be reconstructed from only 256 coefficients - which could be in the 
vicinity of one byte per coefficient (1000:1 compression) for an integer to integer 
transform. All images are reconstructed to their original size through a complete 
inverse wavelet transform, but where the higher resolution detail signals are absent 
(zero contribution). 

2.12.1. Orthogonal Filters. Orthogonality is a term borrowed from linear 
algebra. It takes meaning in the context of subband coding because the act of 
transforming a signal through a filter bank is equivalent to a matrix multiplication 
of the signal with a transform matrix. 
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(a) no details 	(b) I detail 
	

(c) 2 details 

(d) 3 details 
	(e) 4 details 	(f) 5 details 

FIGURE 2.12.1. Lenna image reconstructed from the lowest res-
olution details of a 6-level separable wavelet decomposition using 
Daubechies D4 1171 filters. (a) Only the low-pass at  level  6, (b) 
Low-pass plus detail at level 6. (c) Low-pass plus two  details  - lev-
els 6 and 5. (d) Three details. (e) Four details. (f) Missing only the 
highest resolution detail. 

y = M - x 

Here M is a square matrix of size / x / and x and y are signal vectors of size 
/. For such a transform to be reversible, the transform matrix must be invertible, 
ie. M-1  must exist. If it does then the original signal can be reconstructed by 

•i = Aft . y 

The transform matrix M is orthogonal if [84] 

(2.12.1) 
	 m . mt mt . m I 

In terms of linear filtering each of the columns of the transform matrix rep-
resents a basis in the transform ie. a filter at a particular location with respect 
to the origin of the signal. More than one filter is included in the matrix and 
all filters occur in all possible positions to account for the action of convolution. 
Equations 2.12.5 and 2.12.6 give an example of this. If the transform matrix is 
orthogonal then the inner product of any column with any other  is  zero, and the 
inner product of a column with its self is unity. 
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A set of functions Un  HI is orthogonal if those functions represent the bases 
of an orthogonal matrix, ie. 

(2.12.2) 	 (Li (.) , .f.(.)) = 6 (m — n) 

{ 1 if x = 0 
where 6 (.) is a Dirac delta function, ie. 6 (x) = 

0 otherwise 
In this situation the function set {fn, (.)} can be all the translates of a filter 

used in convolution, so not only are the filters required to be orthogonal to each 
other but also to the integer translates of themselves. 

For example f(k) = g(k) and fm (k) = g(k — 1) are both columns in a filter-
bank matrix containing the filter g(.). For the matrix to be orthogonal we must 
have (fn, (k) , fm  (k)) = 0 ie. (g (k) , g (k — 1)) = 0, the two translates of g(k) 
are orthogonal to each other. This is one of the key restriction in the design of 
filterbanks for perfect reconstruction and hence wavelets. 

Equation 2.12.2 leads to 

(Unt (.) , g (.)) , In (S)) = 9 (.) . 6 (m — n) 

ie. any function g in the function-space F spanned by {A} can be decomposed 
and reconstructed using {In  (-)}. 

Orthogonality is an important property for a signal transform to have. Al-
though perfect reconstruction can be obtained without orthogonality, orthogonal-
ity minimizes the error introduced by quantization of coefficients. This is essen-
tially because it minimizes the interaction between transform coefficients. 

X 

H G 

Analysis 	Coding 	Synthesis 

FIGURE 2.12.2. Block diagram of a general filterbank system. 
There are n channels in each filterbank and each channel performs 
shifting, filtering and resampling as required. Analysis involves 
shifting followed by filtering then downsampling. Synthesis involves 
upsampling, followed by filtering then reverting the shift. 

If we consider the filterbank representation of a wavelet transform as in Figure 
2.12.2, the forward transform is given by [84] 

y = Ht . x (2.12.3) 



	

2.12. FILTERS AND SUBBANDS 	 41 

and the inverse transform is given by 

	

(2.12.4) 	 = G • y 

where H and G are filterbank matrices for the forward and inverse transforms. In 
the two channel one dimensional case we have for example 

ho  (0) 	h0  (k0 ) 	hi(0) 	h 1 (k1 ) 
h0 (-1) ho (ko  — 1) 	h 1 (-1) hi (k i  — 1) 
h0 (-2) ho (ko  — 2) 	h 1 (-2) hi (k i  — 2) 

	

(2.12.5) 	H= ho (ko  — 3) 	 hi  (ki — 3 ) 
ho  (ko  — 4) 	h1 (2) h i  (k i  — 4) 

h0 (2) 	 h1 (1) 
ho (1) 

and 

go(0) 	so(ko) 	gi(o) 	g1 (k1 ) 
go(1) go(ko + 1) 	gi(1) gdki + 1) 

go ( 2) g0  (k0  + 2) 	g1(2) 	(ki + 2) 

	

(2.12.6) 	G= 	go(ko + 3) 	 gi(ki + 3) 

go(ko + 4) 	g1(-2) gi(ki + 4) 

go( -2) 	 g1( -1 ) 
go( -1 ) 

where the columns are all the possible translates of all the filters in the filterbank. 
In this case only two filters, ho  and h 1  in the analysis bank and go  and gi  in the 
synthesis bank, are explicitly shown. 

Combining Equations 2.12.3 and 2.12.4 we see that for analysis followed by 
synthesis 

	

(2.12.7) 	 = G • FP • x 

and for perfect reconstruction we require "i = x which leads to 

	

(2.12.8) 	 G • IP = I 

For critically sampled systems we have that G and H are square matrices of 
the same size and we can choose G = (11 -1 ) t  . This particular solution allows us 
to reverse the order of transform, ie. let the analysis bank become the synthesis 
bank and vice verse. 

For orthogonal systems in terms of transform matrices we now have (from 
Equation 2.12.1) 

G = H 

ie. the synthesis filters are inverted version of the analysis filters and the filters 
must satisfy 

gi (n) = hi ( —n) 
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ie. the synthesis filter is the same as the analysis filter, but reversed. 
Orthogonal transforms are characterized by the fact that the same kernel func-

tion is used in both the forward and inverse transforms but with conjugation in 
the frequency domain which is equivalent to reversal in the spatial or time domain. 
The Fourier Transform is an example of an orthogonal transform kernel, and there 
are many orthogonal wavelets. Most famous among the orthogonal wavelets are 
the Daubechies series [17] of compactly supported orthonormal wavelets with n 
vanishing moments. 

2.12.2. Biorthogonal Filters. Orthogonality is a key property in transform 
coding but it is also very restrictive. By moving to biorthogonality we can allevi-
ate some of these restrictions while maintaining many of the essential advantages 
of orthogonality. One of the most important restrictions of orthogonality in terms 
of image processing is the mutual exclusivity of orthogonality and linear-phase. 
While orthogonality minimizes the interaction of coefficients and thus minimizes 
the error due to quantization, linear phase preserves the alignment of compo-
nents in disparate frequency bands after quantization. This is essential for high-
performance image compression because perceptually edges and lines are the most 
important features of an image. Although statistically orthogonal filters will re-
sult in a lower mean square error rate, the perceived quality will be less than for 
linear-phase filters. 

Biorthogonality uses two different transform kernels for the forward and inverse 
transforms. If this pair of kernels is properly constructed then it is possible to 
have perfect reconstruction, ie. f (x) = (Y.  (f (x))), with .F0 and .T-1 0 using 
different transform kernels. 

Coding 

Decomposition 	 Reconstruction 

FIGURE 2.12.3. Block diagram of the biorthogonal wavelet trans-
form. Perfect reconstruction is possible without the constraints of 
orthogonality. Here the columns of the matrix H and H are orthog-
onal to one another. 

In terms of matrix operations we have 

y = 	x 
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and 

For perfect reconstruction we require that "i = x or H • fit = I. 
For orthogonality we would require that the columns of H be orthogonal to 

each other. For biorthogonality we require that the columns of H are orthogonal 
to the columns of H. So if H is made up of { fn  and H is made up of MI then 
biorthogonality is expressed as 

	

(2.12.9) 	 fm) = 6(m — n) 

We can also write 

	

(2.12.10) 	((fin  (.) , g (.)) , 	(.)) = g (.) 	(m — n) 

In this case Li, (.) and Li () are different function sets which span the same 
function space. Equation 2.12.2 reduces to 2.12.9 when we make g (.) = 6 (.) ie. 
Equation 2.12.10 becomes 

(Um 0, 6  (*)) 	(')) = 6  (m n) 

Or 

(f.(-),:f;i0)= 6  (m n) 

Biorthogonality reduces to orthogonality if In  = fn , ie when the same matrix 
is used in analysis and synthesis. For this reason biorthogonality can be thought 
of as a generalization of orthogonality. 

Biorthogonality allows different analysis and synthesis filters to be used to 
obtain perfect reconstruction. Perfect reconstruction is obtained not with one 
filterbank but with a pair of filterbanks designed to work together. 

2.13. Wavelet Packet Transform 

The Wavelet Packet Transform (WPT) was first proposed by Wickerhauser 
[38], [115], [113]. At the heart of this transform is the same method as for the 
DWT, ie. discrete convolution of signal with subband filters. With the DWT only 
the low-pass subsampled signal is further decomposed into subsequent low and 
high-pass bands. With the WPT both low-pass and high-pass signals are further 
decomposed using the same subband filters. This results in a far larger number of 
subspaces all at one particular level of decomposition. The subspaces are no-longer 
octave subbands but all are of the same bandwidth, equally distributed over the 
original signal spectrum. Again critical sampling ensures that the total number of 
samples is retained so the information cost is the same as for the normal wavelet 
transform. 

Best-basis construction [113], [114], [77] uses the structure of the wavelet-
packet decomposition to find the best basis for a particular signal. The general 
idea being that at each decomposition step the information cost for coding a 
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input 

FIGURE 2.13.1. The Wickerhauser Wavelet-Packet Decomposition 
in one dimension. In this decomposition, both the low  and  high-
pass components are decomposed at each level, resulting in  a  set of 
components of equal bandwidth and equal spacing across the spatial 
frequency domain. Here D is used to represent generalized dyadic 
downsampling in n-dimensions. 

subband is compared to the information cost of coding the two smaller subbands 
at the next level of decomposition (and possibly combinations at deeper levels). 
The solution with the lowest rate versus distortion cost is chosen. This method 
results in a decomposition where the decomposition paths are truncated at various 
points to optimize the rate-distortion trade-off. 

In 1101 and related works, the idea is expanded to the use of Wavelets, Wavelet 
packets, Fractals and Fourier analysis to find a best possible dictionary of image 
primitive functions and decomposition methods. 

2.14. Tensor Product: Separable Wavelets in Multiple Dimensions 

In much the same way as we can determine the Fourier Transform of a mul-
tidimensional signal by separably considering one dimension at  a  time, we can 
determine the separable wavelet transform of an image. Considering each dimen-
sion separably reduces the problem to a one-dimensional subband filtering problem 
which we can solve quite easily with one-dimensional wavelets and filterbanks. 
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The separable wavelet transform is performed by considering first each column 
of the image as a separate signal. Each column is then filtered to produce a low-
pass approximation and a detail signal. So the image signal now consists of two 
signals a vertical low-pass and a vertical high-pass, both resampled to a lower 
resolution level. If we consider the rows of these result signals we can then apply 
the wavelet transform to each row of each signal. So the vertical low-pass is passed 
through a horizontal low-pass and a horizontal high-pass. Obviously the low-pass 
low-pass combination will result in an overall approximation, which the low-pass 
high-pass combination will isolate a signal with horizontal high-pass and vertical 
low-pass, ie. vertical edges. 

low 

Ho 

X 

H, 	 

high 

vertical  horizontal 

FIGURE 2.14.1. The Mallat pyramid structure for 2-D separable 
wavelet decompositions. A is the approximation of the original sig-
nal, V contains vertical edges, H contains horizontal edges and D 
contains diagonal edges. All subspaces contain samples if X con-
tains N 

Similarly the vertical high-pass signal is passed through horizontal low-pass 
and high-pass filters, resulting in two signal, one with horizontal edges (vertical 
high-pass and horizontal low-pass) and one with only diagonal edges (high-pass in 
both dimensions). 

After each filtering process the signals are decimated and following the discrete 
wavelet pattern, the sampling is critical so the number of coefficients after sampling 
is the same as before. Each subband contains one quarter the number of the 
previous image signal. This technique is the famous Mallat Pyramid 1631 for 
multiresolution analysis of images. 
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An excellent introduction to separable wavelet image coding can be found in 
[39] and a well-rounded text discussing the processing of image data in a subband 
context is [119]. A good tutorial on the subject is 1291. 

2.15. Nonseparable Wavelets: True Multidimensional Transforms 

Because images are two-dimensional signals it makes sense that we should 
consider them with a transform that lies in their native domain, ie. a truly two-
dimensional transform. To do this we need both 2-D sampling patterns and 2-D 
wavelets which are constructed to operate on the sampling pattern chosen. 

The approximation and detail results given in equations 2.8.1 and 2.8.2 are 
general and are independent of the sampling method used to decimate the signal. 

The wavelets transform as used in digital imaging consists of filtering and 
resampling. It is possible for the filtering and resampling to be done in a completely 
non-separable fashion. H and G from equations 2.8.1 and 2.8.2 are combined filter 
and re-sample operators. Thus A 1  = H • F is the result of filtering by filter F(w) 
and resampling. We dedicate Chapter 3 to covering non-separable wavelets and 
resampling on non-separable lattices in detail. 



CHAPTER 3 

The Quincunx Lattice 

To date the bulk of research into wavelet and subband coding of signals has 
been done in the one-dimensional domain. This builds on the knowledge of gener-
ations of research into analog and digital filtering and transmission. Digital image 
processing is a relatively new science and the facilitation of research has been 
largely through the ability to treat n-dimensional signals separably in the one-
dimensional domain thus using the knowledge and results already obtained. This 
path leads to the separable results which have found a multitude of application in 
data processing. The proliferation of raster scan devices increases the application 
of such results as the scan order matches closely the separable model. 

When dealing with image processing for human consumption we need to take 
into account the properties of the human visual system. One of the significant 
properties of the HVS is that the receptor cells in our retina are arranged in a 
close hexagonal packing structure similar to honeycomb and are not rectangularly 
packed. This leads to a disparity between the arrangement of pixels we typically 
see on display devices and how the data is received in our visual system. 

Hexagonal sampling of data has been the topic of some strong research in 
the field [83], [111], [110], 1621 which sheds light on the sensitivity of our HVS 
to particular visual primitives and presents interesting paths for investigation. 
Hexagonal sampling is a complicated nonseparable sampling arrangement but its 
similarity to the HVS leads to advantages in visual representation. 

A trade-off between the ease of implementation of the separable arrangement 
and the perceptual advantages of hexagonal sampling is quincunx sampling. The 
quincunx arrangement leads to perceptually efficient representations due mainly 
to its diagonal frequency cutoff, and also to elegant implementations — it reduces 
to separable resampling every second operation. 

This chapter introduces the quincunx lattice and explains the properties which 
make it attractive for image compression. First general lattices and then the quin-
cunx lattice are described, then we derive some of the properties of the quincunx 
lattice and explain the significance of these in a psychovisually driven image pro-
cessing context. Some of the mathematics concerned with the sampling process is 
examined and we make comparisons with the lattice for separable sampling (by 
two) 

We find that the quincunx lattice has a diagonal cutoff in the frequency do-
main which is an attractive feature for psychovisual coding and that its rate of 
decimation is lower than that of separable sampling. We also find that repeat 
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applications of quincunx sampling can result in separable sampling at alternating 
steps and can also lead to convergence of signals to smooth scaling functions and 
wavelets. 

3.1. Lattices and Sub- lattices 

Conceptually a lattice is a set of discrete points in a coordinate system which 
are regularly spaced'. A common example is the pixels on a digital display which 
are arranged in a Cartesian grid forming a lattice with regular spacing in the 
horizontal and vertical directions. 

If al , a2 ,•• • , a y  are linearly independent real basis vectors in RN  a lattice is 
defined as [22],[55] 

(3.1.1) 	 A = {Alai + A2a2 + • • • + ANaN1 

where Ai, A2, • • • , AN E Z are integral multipliers along the vectors {a}. 
In the case of the Cartesian pixel grid example given above, the basis vectors 

1 	 0 ) 
are the horizontal and vertical cardinal unit vectors a l  = ( 

	
and a2 = ( 

0) 
	

1 
and one unit is the distance between pixels. 

When a lattice is defined it provides a coordinate framework defined by the 
directional vectors of the lattice. Hence any point on the lattice can be speci-
fied as an integer linear combination of the basis vectors for the lattice. On the 
normal Cartesian grid this is trivial and familiar as a location (x, y) is found as 

(x • al, y • az). 
A sublattice is again a lattice which is some subset of another (original) lattice 

where the basis vectors of the new lattice are integer linear combinations of the 
basis vectors of the original lattice. The set { u = Dn,n e A} is a sub-lattice of A 

if n E A. D is a square matrix whose columns are the new directional vectors of 
the sublattice defined in terms of the basis vectors of the original lattice. In this 
case D is called a subsampling matrix and it is not unique because there will be 
other subsampling matrices that are capable of producing the same sub-lattice. 

If there are two lattices A l , A2 then A2 is a sublattice of A 1  if every point in A2 

is a point in A 1 , ie A2 C A l . This is sometimes written A2 E A 1  in the literature 

associated with lattice and number theory. 

EXAMPLE 3.1.1. Lets consider the 2D quincunx sub-lattice on the Cartesian 
lattice. Our original lattice A = V • A i  + j A2 1 and i and j are the orthogonal 
unit directional vectors on the 2D Cartesian grid. This lattice is the set of all 
points with integer coordinates in 2D space. The quincunx 2  (or red-black [94]) 
sub-lattice is formed by taking every second sample in a chess-board arrangement. 
Figure 3.5.1 (a) shows the quincunx subsampling arrangement when sampling from 
the Cartesian grid. This subsampling arrangement can be defined by two vectors 

1 Note that a regularly spaced set is not necessarily a lattice. 
2Quincunx means "an arrangement of four and one in the centre." - the dictionary (Oxford?). 
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which make up the subsampling matrix. 

Firstly the directional vectors v 1  = and v2  -- 	, as shown in Figure 

3.1.1, define quincunx subsampling since from any point on the quincunx sublat-
tice, we can move to any other point on the sublattice using only an integer linear 
combination of v 1  and v2 . Thus in this case the subsampling matrix would be 

D  = ( 1 ) 
1 0 

2 
The more usual form for the quincunx subsampling matrix used in this document 

is given by D = 
1 —1 
1 1 ) . The main reason for the use of this matrix is that 

repeated application of this sampling arrangement returns to separable sampling 
by 2 in each dimension after every second applications. That is 

(3.1.2) 	 D • D = ( 02 20 ) 

This is not the case for other matrices. It will also be shown later that this matrix 
has an important property for wavelet design as it allows for convergence results to 
be developed leading to continuous wavelets on the quincunx lattice. In particular 

(  D = 1 0 ) 
does not lead to convergence [56, 58]. 

1 2 

• 

FIGURE 3.1.1. Example quincunx lattice definition. The two basis 
vectors are v 1  and v2 . The dots indicate the sampling points of (the 
first coset of) this lattice. Any lattice point is an integer linear 
combination of v 1  and v2 , ie. x E A if x = a l  v1 + a2 • v2  where 
al, a2 E Z. 

The observant reader will at this point realize that the definition of a subsam-
pling lattice is equivalent to a basis transformation where the new basis vectors 
correspond to integer linear combinations of the original basis vectors as described 
by the subsampling matrix. 
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3.2. Cosets 

When a sublattice is defined on a lattice it will not include every point of the 
original lattice since this would result in the original lattice again. It is possible 
to define a lattice matrix which does include every point of the original lattice - 
in this case the matrix will have a determinant of magnitude 1. The points which 
are included in a sublattice are determined by the subsampling matrix and the 
point of origin of the new lattice with respect to the original lattice. A coset is 
one of the possible sets of points which can be included depending on the origin 
of the sublattice relative to the original lattice. 

(a) Coset 0 (b) Coset 1 

FIGURE 3.2.1. The two cosets of the quincunx sublattice on the 
Cartesian lattice. There are no shared points between the cosets of 
a lattice and the sum of all cosets is the original lattice. 

Figure 3.2.1 shows the two possible cosets of the quincunx lattice. Note that 
both cosets have the same directional vectors (ie. subsampling matrix) and differ 
only by the offset of the coset origin with respect to the original lattice origin. 

The number of cosets on a lattice is given by the absolute value of the deter-
minant of the of the subsampling matrices derived from D, ie. cosets = det (D)1. 
Conversely the sampling density is given by det DI and a sampling density of 1 I i   
must include all points in the original lattice. All possible subsampling matrices 
for a given sublattice will have the same number of cosets and one can convert 
from one matrix to another matrix for the same lattice by multiplication with a 
unimodular matrix, ie a matrix with determinant equal to +1 [55]. Note, however, 
that the number of cosets does not uniquely define a sublattice. 

EXAMPLE 3.2.1. For D I  = 
( 1 0 ) 
 we have det(D) = (1 • 2) — (1 • 0) = 2 as 

1 2 
expected. 

As expected we find that the determinant is equal to 2, the number of cosets 
of the sublattice which exist on the original lattice. So the sampling density of the 
resulting lattice is with respect to the original lattice. 
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1 	
) we have det(D) = (1- —1)— (1.1) = —2 

(  

We can convert between the two Matrices by D 1  = A • D2 using the unimodular 
11 
0 —1 ) 

The intersection of any of the cosets of a sampling lattice will be empty (ie. 
no point can be in more than one coset) and the union of all cosets is the original 
lattice. 

(3.2.1) 
,det(D), n  A= O  

Idet(D)I 
(3.2.2) 	 U Ai = Aorig 

i=1 

where A i  is the i th  coset of A on the original lattice Aorig- 

With different subsampling arrangements the number of cosets will vary. 

EXAMPLE 3.2.3. Consider the subsampling arrangement shown in Figure 3.2.2. 
2 	 ) . 

The two directional vectors are v i  = ( 
	

and v2 = 
( 1 	

SO D3 = 
( 2 1 

1 1 

	
— 1

) 
	 1 — 1 

It has a determinant of 3 and a subsampling factor of 3 (sampling density of ) 
ie. one in three samples of the original lattice is retained in the sublattice. 

• 

FIGURE 3.2.2. Sublattice described in example 3.2.3. There are 
three cosets and hence the subsampling matrix has a determinant 
of magnitude 3. 

123 
An alternate subsampling matrix for this example could be D3 = 

1 0 	• 
In this case the determinant of the subsampling matrix is again det(D3 ) = 3. 

matrix A = 



o o 
• 

• • 

(a) 

• coset 0 

(b) 

• coset 1 	e coset 2 
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It should be noted that the generation of the Cartesian lattice in RN  can 

be accomplished with a sampling matrix D,t  = I = o 	• 

00 

10 0 

• . 0 
1 

, the identity 

matrix in RN . Since det(I) = 1 it follows that the orthonormal Cartesian sampling 
lattice can be generated by any unimodular matrix. 

3.3. Unit Cells 

The unit cell Li, of a sampling lattice is defined as a parallelepiped on the parent 
lattice (or on RN  if the lattice is not a sublattice) containing exactly one point 
from each coset resulting from a sublattice, on the original lattice. By definition 
the unit cell of a sublattice projected onto the parent lattice spans a unit area in 
the coordinate space of the sublattice - hence the name 'unit' cell. 

FIGURE 3.3.1. Two alternative unit cells for the resampling lattice 
of figure 3.2.2. The unit cell includes exactly one point from each 
coset of the sampling lattice. It has volume =Idet(D)1 in the origi-
nal lattice and volume = 1 in the sublattice. 

For simplicity we will refer to the unit cell as the parallelepiped formed by the 
basis vectors of the sublattice sampling matrix. Figure 3.3.1 shows two possible 
unit cells for the sampling matrix defined in Example 3.2.3. 

( 1 1 ) 
EXAMPLE 3.3.1. The 2D quincunx lattice generated by D = 	has a 

1 —1 
unit cell as shown in Figure 3.3.2. It can be seen that it is bounded on all vertices 
by members of the same coset, however only one of the points is included within 
the volume of the unit cell. One point from each of the two quincunx cosets is 
included within the cell - a fact which becomes more obvious in Figure 3.3.2 (b) 
where the coset is shifted from the position in Figure 3.3.2 (a). 

The sum (union) of the unit cells with origins on each point of a lattice A e RN  
tiles all of RN  as is described in Equation 3.2.2. 
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(a) Lattice and unit cell 
	

(b) Voronoi cell of Lattice in (a) 

FIGURE 3.3.2. (a) The unit cell of the quincunx sublattice on the 
Cartesian lattice with its defining vectors. (b) The Voronoi cell of 
the same lattice. 

Going back to Figure 3.2.1 we can write 

Ai  = In • D + ki } 

where ki  E 14, are the unique members of any unit cell of the lattice. 
The Voronoi cell is a special version of the unit cell which is centred about the 

origin of the coordinate system. It has interesting properties when considering the 
Fourier transforms associated with a sublattice. 

3.4. Frequency-Space 

A sampling lattice defines a periodic sampling of the original lattice. The peri-
odic nature of the sampling therefore defines a frequency response of the sampling 
system which has a periodic structure based on the sampling lattice. In the sep-
arable (Cartesian) case the sampling lattice defines a Fourier Transform with a 
periodicity which is rectangular and has periods defined by the sampling frequency 

ws = (Wsx,COsy)• 

3.4.1. Downsampling. If f (x) is a continuous function which is transformed 
into a new coordinate system determined by D then g(x), which is f (x) in the 
new coordinate system, is given by 

g(x) = f (Dx) 

ie. the coordinate transform matrix defines x 	x or x <— Dx. Restating to 
avoid ambiguity, a coordinate x in the Cartesian coordinate system is transformed 
to a coordinate D -1  x in the new coordinate system. 
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If we discretize this we have 

(3.4.1) 	 g(n) = f(Dn) 

which we can use to define a sampling operation if D defines a sub-lattice of the 
original sampling lattice. 

This can be expressed alternatively in the z-transform and frequency domains 
as [221 

(3.4.2) 	 G() = 	E F ((Dt ) -1  • (to — 27k)) 
kEl4 

and 
G(z) = 	F (WD -1 (27rk) • zD 1 ) 

kE14 

where N = det(D) and W(-) is the modulation function (Nth  root of unity) on 
the lattice defined as 

wm(w) = 	e -3(1,rn2) , 	e-i(w,m.)) 

where m, is the i th  column vector of M. The notation z" is used as a shorthand 
notation to denote resampling onto M and expands as 

( a c 

zm  = z b d 

= 	zm l zm2  = 	
z( al) 
	(lc  ) 

tab z4) 

which 	

ZiZ2) 

which specializes for the quincunx case as 

ZD = (Z1Z2, Z1Z2-1 ) 

So the transform z —> zD is (z1 , z2) 	(z1 z2, z2-1 ). 
In a more conventional sense, in the frequency domain M•co = (awl + bw2, a + dw2) 

as expected. 
The frequency response of a function sampled onto another lattice is deter-

mined by the Voronoi cell of D -1 . The lattice points in a Voronoi cell diagram 
represent repeat spectra points in the Fourier domain. As an example consider two 
lattices - lattice A o  is the normal Cartesian lattice and lattice A 1  is the quincunx 
lattice (which is a sublattice of A 0 ). The Voronoi cell of A o  as shown in Figure 
3.4.1 spans a frequency range from —cv s /2 to w 8 /2 in each dimension which is as 
we expect from our sampling theory and the repeated cells tile the frequency do-
main. The Voronoi cell for A 1  as shown in Figure 3.3.2 (b) is for a lattice defined 

by D -1  = 	 so considering the two Voronoi cells together on the same 

scale as in Figure 3.4.2 (a) we find that the cutoff for resampling on the quincunx 
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FIGURE 3.4.1. The Voronoi cell tic  for the integer Cartesian lattice. 
This defines a periodic frequency response which spans the region 
—w3/2 to 0.42. Each of the sampling points shown represents a 
point of repeat spectra ie. divisions by c4.)3 . The Voronoi cells tile to 
cover the frequency domain. 

is diagonal with respect to the previous sampling lattice. This is an advantageous 
property from a perceptual coding standpoint because the contrast discrimination 
of the HVS is minimum for diagonal orientations. 
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(a) Quincunx and integer sampling 	 (b) Two iterations 

FIGURE 3.4.2. The Voronoi cells of integer sampling and Quincunx 
sampling shown on the same scale. The sampling points represent 
repeat spectra spacing in terms of integer sampling. The quincunx 
resampling has diagonal cutoff with respect to the previous sam-
pling. 

Figure 3.4.2 (b) shows two iterations of quincunx sampling on the same scale 
as the integer sampling. This shows how the retained portion of the spectra is 
narrowed by each operation. If a high-pass filter is first used then the repeat 
spectra are centred around points offset by 7r which tiles the missing sections in 
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the spectra. It should also be noted how the second iteration of quincunx down-
sampling has resulted in the same scenario as generated by one level of separable 
downsampling, ie. where D = 21 and D = I. 

3.4.2. Upsampling. The continuous transform process in the upsampling 
direction is quite straight forward, we simply have 

(3.4.3) 	 f (x) = g(D -  x) 

where f (x) exists in the original coordinate system and g(x) exists in the trans-
formed coordinate system. This is a related process to upsampling but with a 
critical difference; upsampling sets to zero all points that are not on the coset up-
sampled to. The process of downsampling followed by upsampling demonstrates 
that the values sampled at only one coset are retained and all others are set to 
zero. So discretizing Equation 3.4.3 we get 

f (n) = 
g (D'n) if n = Dk 

0 	otherwise 

and again we can express this in the z-transform and frequency domains as [22] 

F (A)) = X (D tw) 

and 
F(z) = X (zD ) 

3.4.3. Coset removal (up/down sampling). The overall operation of down-
sampling followed by upsampling can then be represented as 

f (n) if n = Dk 
(n) = 

0 	otherwise 

which is obvious from the necessary behaviour of removing all but one coset. We 
also have 

(3.4.4) 	P(w) = 	E X (co - 27r (V) Ic) 
kE14 

- 	1 
(3.4.5) 	 F(z) = —N  E X (WD -1 (27rk) • ,Z) 

kEl4 

If we now specialize Equations 3.4.4 and 3.4.5 for the quincunx case we have 

F(w) 
1 	1 

(w) + 	(co - 27r (D9 • ( 1  
0 

1 
(3.4.6) 	= -2- (X (w1, (.02) + X Gal + 71, w2 +71)) 

and 
1 

(3.4.7) 	 F(z) = -2- (X (zi, z2) + X (-z1, -z2)) 
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Both Equations 3.4.6 and 3.4.7 have been arrived at for separable sampling via 
alternative methods. 

3.5. Nonseparable Sampling 

It has been argued for some time (for example [56]) that image processing 
should be handled in a truly two-dimensional fashion which would allow images 
to be treated as two-dimensional structures rather than as the rows and columns 
which we are familiar with. Unfortunately it has been easier and most effective 
in the past to adapt the great body of work done in one-dimensional signal pro-
cessing to applications in image processing than to attack head-on the increased 
complexity of the multidimensional paradigm. This has lead to great success but 
it has largely left unexplored the range of possibilities which nonseparable multi-
dimensional signal processing potentially has to offer. 

With computational power increasing at an explosive rate it seems appropriate 
that the issue of multidimensional signal processing be addressed at this point in 
time. The increased mathematical complexity and associated processing delays 
have been a hindrance to this field but this should no longer be a deciding factor 
since the processing power required is within the range of the average consumer 
and easily available to researchers. 

For image processing, treating images in a nonseparable manner opens up 
many possibilities which are not possible in the separable case. The extra degrees 
of freedom introduced expand the possibilities of filter design significantly. We can 
now treat images as we perceive them - as two-dimensional regions and features - 
not necessarily as rows and columns. 

For wavelet analysis in particular the nonseparable domain opens up many 
possibilities which aren't available in the separable domain, especially in the area 
of filter design. Many of the restrictions on 1-D wavelet filters can be removed when 
dealing with 2-D filters and the number of free variables increases dramatically 
making it possible to more finely tune the filters to a particular purpose. On the 
other hand the extra free variables makes the design process more lengthy and 
involved as there are more effects to be considered because of the greater degree 
of freedom. 

3.5.1. The Quincunx Lattice. The term quincunx means an arrangement 
of four in a square with one in the centre. This exactly describes the quincunx 
lattice. 

As the shown above in Example 3.2.2 the sampling density of the quincunx 
lattice is so the quincunx lattice describes a sampling process where the number 
of samples retained is half of the total number of samples in the original image. 
Thus we have downsampling by a factor of two in total and a factor of in each 
dimension. Thus the number of cosets generated by the quincunx lattice is two. 
Half the points reside in each coset, one coset is retained at sampling and one 



3.5. NONSEPARABLE SAMPLING 	 58 

(a) 	 (b) 

FIGURE 3.5.1. The cosets of (a) the Quincunx lattice and (b) Sep-
arable sampling by two in the horizontal direction. As can be seen, 
both sampling schemes have two cosets — one shown in white and 
one grey. 

is discarded. Figure 3.5.1 shows the quincunx lattice and another lattice with a 
sampling density of - separable downsampling by two in the horizontal direction 
- also known as column interlacing. 

3.5.2. Why Quincunx? The arrangement of the points in the quincunx lat-
tice produces some desirable properties when it is used as a subsampling lattice 
in image coding. Subsampling is an integral part of wavelet decomposition as it 
changes the resolution or scale of the image being considered. This allows for 
multiresolution decomposition or analysis to occur. 

One of the desirable properties of the quincunx lattice is its diagonal cutoff 
in the frequency domain3  as shown in Section 3.4.1. When a signal is sampled 
to a lower resolution it loses some of its high-frequency components. Those fre-
quencies which are retained are those which are supported by the new sampling 
arrangement. The quincunx lattice has the desirable feature that the full range of 
vertical and horizontal frequencies are retained in the resampled image. This is in 
contrast to separable sampling which loses half the range of frequencies in either 
the horizontal or vertical dimension for each resampling application. Figure 3.5.2 
shows the spectrum of quincunx resampling. As can be seen the full range of ex-
actly vertical and horizontal frequency components is retained, with the diagonal 
components suffering the greatest loss of energy. 

Figure 3.5.3 shows in detail the diagonal cutoff in the context of repeat spectra 
highlighting the low-pass and high-pass regions of the frequency domain tiling. 
There the high-pass and low-pass components of the quincunx sampling have 
been rearranged to emphasize their relationship to the normal frequency range of 
(ordinary) integer sampling. 

As already stated the reason that this diagonal cutoff behaviour is important 
is that the most significant features to the HVS are vertical and horizontal edges; 
diagonal edges are of least importance (ie. the HVS has the least sensitivity to 
diagonal edges). Having the full range of horizontal frequencies means that sharp 

3See also [501 for an example of this phenomenon in 3 dimensions, where it finds application in 
interlaced video transmission. 
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0 	x—frequency 	max 

FIGURE 3.5.2. Diagram showing the spatial-frequency cut-off of 
Quincunx resampling. The retained spectrum is shaded grey. The 
full range of vertical and horizontal frequencies is retained, thus pre-
serving vertical and horizontal edges. The most truncated frequen-
cies are in the diagonal direction which has the lowest psychovisual 
importance to the human observer. 

, 

Highpass 

Lowpass 

FIGURE 3.5.3. Frequency domain tiling of the quincunx lattice. 
Dark grey indicates the low-pass regions and light grey is the high-
pass regions. The solid box shows the frequency range of the original 
sampling mechanism. The dashed boxes indicate the continuation 
of the high-pass region outside the original sampling region due to 
repeat spectra. 

vertical edges are represented as accurately in the subsampled image as in the 
original and similarly with vertical frequencies and horizontal edges. As the orien-
tation of the edges moves away from horizontal or vertical and towards diagonal 
the upper limit of retained frequencies drops until at 45° only half the original 
bandwidth is available, hence the quincunx lattice is said to have a diagonal cut-
off. 

Figure 3.5.4 shows an example of how sharp vertical and diagonal edges are 
handled by the subsampling scheme. It is important that this cut-off exists on 
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FIGURE 3.5.4. How vertical and diagonal edges of minimum spac-
ing (maximum frequency) are retained in the quincunx lattice. The 
vertical edges are retained with the spacing between the edges intact, 
while the diagonal edges, corresponding to the cutoff frequency are 
blurred into a single feature and the high-frequency detail is com-
pletely lost. 

the diagonal since these orientations are the least important to human vision. 
This means that the data which may be lost due to coding of the details in this 
orientation will not have as significant an effect on reconstructed image quality as 
it would if the details were in the vertical or horizontal direction. 

The quincunx subsampling process has another benefit as well: the rate of 
decimation is slower than by the separable method. The sampling density of the 
quincunx lattice is .1 or -- in each direction meaning that half the samples are 
retained and half are discarded. For separable sampling the sampling ratio is in 
each direction with an overall ratio of /. Retaining more samples after sampling 
can be an advantage when we are coding wavelet data. 

It is important when we code the details or wavelet coefficients that we apply 
a quantization method appropriate to the relative sensitivity of the HVS to the 
details. It is known that the HVS has a sensitivity which varies with frequency (see 
Section 7.1.1 for more details on this). This allows us to more coarsely code those 
frequencies to which the HVS is insensitive. The DCT based coders employed 
in the JPEG and MPEG standards make good use of this property of the HVS. 
However wavelet decompositions divide the image spectrum into frequency bands 
which makes it more difficult to accurately consider the sensitivity of the HVS to 
those frequencies contained within each broad band. This is particularly difficult 
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when using separable sampling because it divides the image spectrum into octaves 
- which is quite severe decimation. When using the quincunx sampling process 
the spectrum is split up differently. In some ways the decimation is slower, ie. 
more areas of the image spectrum are retained in the low-pass subband. In fact 
two decompositions with the quincunx lattice are required to perform the same 
level of decimation as one level of decomposition using separable sampling. Thus 
the frequency band of the wavelet data from quincunx sampling  is  more compact 
than for separable allowing for better tuning of coding for HVS sensitivity. 

3.6. Resampling on the Quincunx Lattice 

The effects of resampling using the quincunx lattice are often not intuitive. 
Resampling of a signal performs a change of basis on the signal. The result is 
contained in a different coordinate system to the original signal. In the case 
of separable sampling, the cardinal vectors for both the original signal and the 
resulting resampled signal, point in the same directions, thus the only perceived 
change is a change of the scale of the image. 

This is not the case with the quincunx lattice. In this case resampling has 
the effect of rotating the signal by -450  and flipping it around the horizontal axis. 
Figure 5.1.2 shows the effects of quincunx downsampling on the Lenna image. 

The commutativity of quincunx resampling was proven by Kovacevic and Vet-
terli [54 This proved that the quincunx lattice was a candidate  for  use in wavelet 
transforms and subband decompositions. Figure 3.6.1 is provided as an aid to vi-
sualize the effects of quincunx sampling and to show the effects  of  downsampling 
and upsampling. A case of perfect reconstruction is demonstrated with the original 
signal decomposed and then reconstructed. 

coset I 

p q r 

k 	m ft 

fig h 

a 

coset 2 

FIGURE 3.6.1. Downsample and upsample process on the quincunx 
lattice showing intermediate stages. The letters represent particu-
lar signal elements and show how their location is altered by the 
resampling process. 

Although quincunx resampling appears to drastically alter  the  appearance of 
the image this change in basis is self-correcting. Applying quincunx downsampling 
a second time will return the signal to its original orientation as detailed in Section 
3.4.1. 



CHAPTER 4 

Nonseparable Wavelet Design 

This chapter describes the processes used to design the filters used in the re-
search of this thesis. This chapter is largely background information as novel filter 
design is beyond the scope of this thesis. The design methods can be attributed to 
several different authors, chiefly Vaidyanathan, Kovat'evi6, Vetterli and Sweldens 
(for example [98], [103], [55], [90]). 

The design process used in the production of this thesis involved taking an 
existing framework and creating filters using that framework. Knowledge and 
methods for non-separable filter design are very limited and there are no known 
factorizations in two-dimensions to allow the filter design process to be modu-
larized. The production of new methods of filter design'. for the nonseparable 
paradigm is worthy of a substantial written work on its own. 

This Chapter covers in depth the design process 7  expanding and explaining 
the designs in greater detail. We cover all the nonseparable filters used in the 
course of the research of this thesis. 

4.1. Nonseparable Design Basics 

We start with the basic background for nonseparable filter design. 
There are two major directions of filter design for the nonseparable paradigm. 

(1) Polyphase transforms[98], [96], [56] 
This is a representation tliat simplifies filter design in 'some ways by con-
sidering the effect of each coset as a separate filter in a multi-inPut net-
work. 

(2) 1-D to 2-D transforms 
This is a method which is already used in one-dimensional and separable 
designs, such as the McClellan transform. It allows many properties of 
1D filters to be retained in 2D filters. 

We will deal with each in turn. 

4.1.1. Polyphase Design. Polyphase design is very useful when dealing with 
non-separable sampling lattices. It allows us to break filters down into cosets and 
consider the interactions between the different cosets and how each will affect 
overall filter behaviour. The design thus consists of designing several filters (one 
for each coset) in such a way that the overall polyphase filter produces the desired 
result. A polyphase transform takes a single-input, single-output, shift-variant 
system and turns it into a multi-input, multi-output, shift-invariant system. Since 

62 
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resampling is performed outside the filterbank in this case the filterbank its self is 
a shift invariant operator. 
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FIGURE 4.1.1. General two-channel filterbank used in wavelet 
transforms with nonseparable sampling. The sampling within the 
filter framework leads to a shift variant system. 

Figure 4.1.1 shows a general non-polyphase subband coding scheme. The 
downsample and upsample operations performed after filtering make the analysis-
synthesis operations in each branch shift variant, ie. shifting the input by one 
sample does not shift the output (of that branch) by one sample, but rather pro-
duces a different output shape altogether. 

The heart of the polyphase design method is the polyphase representation 1231, 

[98], [48]. If our sampling lattice has M cosets then we can write the z-domain 
polyphase representation of a filter operating on that lattice as 

F(z) = Fo (zD ) + ki fi(zD ) ± • • • ± km_ i Fm_1(z 1) ) 

or 

(4.1.1) 	F(z) = Fo (z) + 1s 1 (z)Fi (z) 	• • + km_ 1 (z)Fm_ 1 (z) 

where Fn (zD ) is the filter component associated with coset n and kn  is the z-
transform of the shift vector which moves from the origin of coset 0 to the origin 
of coset n. Obviously110  is omitted since it has no effect; its value is 2 = 1 by 
definition. 

The various filter components written as Fn (zD ) are represented in the upsam, - 

pled domain. The filters Fn (z) each represent a filter for a particular coset which 
can be applied to a coset after downsampling occurs on the original signal. The 
downsampling extracts one coset and performs the change of basis brought about 
by the downsample matrix. 

The filters Fn (zD ) are these filters upsampled so that they operate on one coset 
prior to downsampling, ie. in the pre-filtered state. The filter taps are rearranged 
so as to coincide with the location of the correct signal components. The process 
which changes the tap locations is the upsampling process using the sampling 
matrix D. 

Using zD  transforms coordinates via x -4 D x. In the z-domain the result is a 
transform of ( zo  z1 	zm —> zoD° zfi 	zmDm ) which we denote z zD. 
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X H(z) 

 

 

FIGURE 4.1.2. Two alternative ways to filter and downsample a 
signal. The upper version is the familiar filter-downsample method. 
The lower method is a polyphase version of the same process. 

Because each filter component only operates on one coset, there must be one 
filter component for each coset. 

For the quincunx case we have two cosets and the shift vector k 1  depends on 

our choice of lattice matrix D. For the situation where D = 1 
1 

1 
—1 

then 

we use k l  = (1,0) which has z- transform of k (z) = z 1-1 . Now our polyphase 
quincunx filter can be written as 

F(zD ) = Fo (zD) 	Fi (zD) 

and there are two polyphase components. This filter is shown in Figure 4.1.2. The 
filter Fo (zD ) operates on coset 0 while Fi (zD ) operates on coset 1. 

Often the polyphase components are written as a polyphase matrix of filters 
[103], [47], 11011, [99] 

Foo (z) F01 	) 
Fp  (z) = 

Fio (z) Fll (z) 

Each column is the components that operate on one coset, and each row is one 
complete filter in the filterbank. 

Figure 4.1.3 shows the polyphase representation of a quincunx filterbank using 
= 1 0 ) as the displacement vector. Because of the commutativity of up-

/down-sampling with filtering [55] we can use the upsampled representation of 
the filterbank within the upsampling/downsampling boundaries. This allows us 
to analyze the filter in terms of a filterbank without resampling. 

We will define the polyphase filterbank as [47] 
00 	00 

z, , = 	E(is + D• u i 	• z i  Z2  U2 )) 	U2  
U1=-00 U2=—co 

where i represents the filter within the filterbank, and k = k 1  k2  ) spans a unit 
cell of the sampling lattice and thus determines which coset is involved. Since k 
spans the unit cell of the sampling lattice, there are only a small number of discrete 
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FIGURE 4.1.3. Upsampled representation of a filterbank in the 
quincunx domain. This is a simple extension of the forward ver-
sion shown in Figure 4.1.2. 

values which it can take on. In particular for the quincunx lattice and sampling 
lattice D as above this displacement vector can take on the values of ( 0 0 ) or 

4.1.2. Impulse response. Consider the 1-D impulse response of the filter-
bank in Figure 4.1.3. If we start with an impulse at origin or at 2n • k then only 
one coset (coset 0) can contain the impulse after downsampling as shown in Figure 
4.1.4. Similarly if we have an impulse, offset from origin by (2n + 1) • k, then we 
have only an impulse transmitted through coset 1. 

FIGURE 4.1.4. Impulse response at various points in a polyphase 
representation. There are two cosets and the impulses inside the 
structure show the retained signal after retaining only one coset 
in each case. The lower branch contains a shift operation which 
changes the coset at the origin. 

It can be seen then that each branch of the system is periodically shift-variant, 
ie. the response varies depending on the location of features with respect to 
the coset origins. The use of the polyphase representation allows the system to 
be represented as a multi-input multi-output, shift-invariant system which allows 
investigation of linear filtering in this structure. 

Figure 4.1.5 shows the generalization of Figure 4.1.3 to n-channels of the fil-
terbank. In this case each of the shift operators shifts the origin of the sampling 
lattice to the origin of the coset of interest. 
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Analysis 	Coding 	Synthesis 

FIGURE 4.1.5. General n-channel upsampled polyphase filterbank. 
This is a generalization of the case shown in Figure 4.1.3 so that it 
has n channels. The shift operators are used to change cosets. 

Following the analysis of 156, (section III)] we can define a polyphase repre-
sentation of both the signal and the filters. 

X(z) = E Zk  • X k(Z ) ) 

VkEU 

piT  (z) • xp (zD ) 

where 
xk (z), E x(Di — k) • z' 

viEzn 
In a similar fashion, the filters for a filterbank can be defined as 

H (z) = E z-kHk(z)) 
VkEtic 

= p7; (z) • hp (zD ) 

In these equations pi (z) and p f (z) are the inverse and forward polyphase trans-
forms. They are vectors of matrices needed to shift to a particular coset for 
a particular element in the polyphase representation. For example, the quin-
cunx case has two cosets; coset 0 is located at the origin - thus Is o  = ( 0 0 ), 

and coset 1 is located at k 1  = ( 1 0 ). So the forward polyphase transform 

p f (z) = ( zT i  4" 	) = ( Z 	0 ). 
The entire filterbank system then can be described by 

Y (z) = 	(z) • G p (zD ) • Hp (zD ) • xp (zD ) 

= pTi  (z) • Tp (zD ) • xp (zD ) 

where T(z) = Gp (zD ) • Hp (zD) is referred to as the polyphase transfer matrix. 
We apply a wavelet transform to an image by the use of filter banks; we 

have an analysis bank which transforms the image into wavelet coefficients and 
a synthesis bank which transforms wavelet coefficients into an image. Each filter 
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bank consists of a low-pass filter and a series of band-pass filters (depending on 
the sampling pattern and number of cosets these may simply be high-pass filters). 
We concentrate on the case where we have two bands per decomposition, ie. a 
low-pass and a high-pass. In this case we have two filters in each filter bank (a 
total of 4 polyphase components). 

If our filters are orthogonal (paraunitary) then the synthesis filters in each 
channel are - by definition - the same as the corresponding analysis filters (sub-
ject to reversal in the spatial domain), however for non-orthogonal system eg. 
biorthogonal, the synthesis filters are - in general - different from their corre-
sponding analysis filters. 

In the case of the two-channel decomposition we can use the Quadrature Mirror 
relationship which allows us to derive one filter bank from the other and guarantee 
alias cancellation. This means we only need to design one filter bank that satisfies 
Quadrature Mirror Filter constraints in the design and we will have designed 
both analysis and synthesis filter banks simultaneously. This puts extra design 
restrictions on the filters, but in two dimensions there is generally a large scope 
in freedom of design because of the large number of coefficients which need to be 
designed - thus yielding a large number of degrees of freedom. 

4.1.2.1. Perfect Reconstruction Constraint. The most important property for 
a filter bank in data compression is perfect reconstruction. Perfect reconstruction 
means that once a signal has been analyzed into its derived coefficients by the 
analysis filter bank it can be synthesized, by the synthesis filter bank, back into 
a signal identical to the original signal (possibly delayed some samples due to 
processing, and linearly scaled). 

Once we know that the wavelet coefficients can completely reconstruct the 
signal we can begin the process of data compression by quantizing the coefficients. 
If we cannot guarantee perfect reconstruction with all of the information from 
the analysis then it is difficult to aim for good reconstruction when some of the 
information is removed by coding. 

4.1.2.2. Zero Aliasing Constraint. Aliasing is a major problem in digital signal 
processing. In the case of the polyphase representation, aliasing occurs when a 
signal component from one coset affects another coset in the result signal. Alias 
cancellation is also referred to as cross-talk cancellation, which comes from the 
transmultiplexer applications in which multirate filterbanks have been used to 
combine and separate signal components. 

If we consider the polyphase representation of a signal on a sampling lattice, 
there are effectively several signals - one per coset. A polyphase filterbank can be 
considered to be similar to a multiplexer-demultiplexer arrangement (in reverse) 
where the original signal is first broken into separate channels in the analysis pro-
cess and then recombined into a single signal in the synthesis process. This is in 
contrast to telecommunications applications where several signals are combined 



4.2. GENERAL RESULTS 	 68 

via a multiplexer into a single signal for transport via some channel, then demul-
tiplexed into the original signals at the other end. In this example, polyphase 
aliasing manifests its self as cross-talk: the signal in one channel affects the sig-
nal in another channel. In the analysis/synthesis paradigm aliasing manifests as 
distortions in the reconstructed signal as the various cosets interfere with each 
other. 

4.1.3. Multidimensional Transforms [9]. This technique revolves around 
the McClellan transform — a method for taking one-dimensional filters and pro-
ducing two-dimensional filters subject to certain constraints. This technique has 
the advantage that the filters which are derived can be made to have many of the 
properties of the original one-dimensional filter. 

These transforms were not used to produce any filters used in the research of 
this thesis. They are noted for completeness. 

4.2. General Results 

First we introduce some results on 2-channel (coset) filtering which are general 
in all cases. The results can be applied to any wavelet transform operation which 
can be expressed in the z-domain, but we will pay particular attention to the case 
where quincunx wavelet filtering is applied. 

X 

FIGURE 4.2.1. Configuration of simple decomposition and recon-
struction using normal (not-polyphase) filters. 

The process of decomposition and reconstruction by one level of wavelet de-
composition is performed by this sequence of operations 

(1) Filtering by analysis filter - result is same dimension as original 
(2) Subsampling - reduces dimension and loses unwanted cosets. Information 

is now spread across multiple channels. 
(3) Upsampling - inserts zero at positions of removed cosets, several channels 

at same dimension as original signal. 
(4) Filtering by synthesis filter - create components of result from each chan-

nel. 
(5) Recombination - result components from several channels are summed to 

regain original signal. 
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We can combine the subsample/upsample operations into a single operation with 
a z-transform given in general for N channels by [103] 

N-1 
1 

(4.2.1) 	 Y(z) = E x (wkz) 

where Wk = 	is called the Nth  root of unity. This specializes our case 
(two cosets) to the famous result of 

(4.2.2) 
1 

Y(z) = (X(z) + X( — z)) 

The effect of filtering applies F(z) to the signal. So the net effect of applying 
all the steps to the signal X(z) in Figure 4.2.1 is 

(z) = (Th (z) (11-1  (z) + H1  (-z)) + Ho (z) ( -no (z) + -no (—z))) X (z) 
2 	2 	 2 

In this case we consider the effects of sample shifting to be absorbed into the 
filter operators of H 1  (z) and H1  (z) (or which ever operators are determined to 
absorb the shift, the effect is the same regardless). 

Expanding this we get 

(4.2.3) 	
(z)  = 1 	Flo  (z) Ho  (z) X (z) + TIO (z) Ho  (—z) X (— z) 

2 +H1  (z) H1  (z) x (z) + 1-1, (z) H, (-z) x (-z) 

and we find that we can factor this as 

	

1( 	 \ Ho (z) Ho  (— z) 	( X (z) 
(4.2.4) 	(z) = 	Ho  (z) 1-11 ( z 

) ) 	(z) H1  (_z) ) 	X (—z) 

This representation is quite useful to us because it allows us to consider the 
effects of perfect reconstruction and alias cancellation on the system. This result 
can be found in [104] and [102] among others. 

Aliasing results from the aliased input X ( — z). For alias cancellation, we 
require that the all terms which involve the aliased input X ( — z) be removed - ie. 
canceled from the output expression. That is, we require 

(4.2.5) 	 frio (z) Ho (—z) + -111 (z) 111  ( — z) = 0 

as a condition for alias cancellation. 
Independent of this result we can look at perfect reconstruction. In this case 

we require that the output signal is an exact replica of the input signal, ie. k' (z) = 
X (z). From Equation 4.2.4 we require that 

\ Ho (z) Ho ( — z) (4.2.6) 	 (z) 	(z) ) 	(z) H1  (-Z) 
( 	 o) 
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This effectively gives us two conditions to satisfy 

(4.2.7) 	 H0  (z) H0  (z) + H1  (z) Ho  (—z) = 1 

(4.2.8) 	 frio (z) C (z) + H1  (z) C (—z) = 0 

Note that the results obtained so far in this section make no assumption about 
the nature of the filters used. Indeed H0 ,1-11 ,1-10  and H1  may be four totally 
unrelated filters, yet if they satisfy the conditions in Equations 4.2.5, 4.2.7 and 
4.2.8 they will produce a perfect reconstruction filterbank with alias cancellation. 

There are things we can do to make our lives easier so we don't have to design 
all four filters. We will now briefly cover some of the design methods which can 
aid in the production of the filters. 

4.2.1. Quadrature Mirror Filter (QMF) relationship. The QMF rela-
tionship is an important one for alias cancellation and wavelet filter bank design 
in general. The QMF relationship can be stated as 

(4.2.9) 	 H1  (w1, (,)2) = Ho (w1 + 71, CA)2 ± 7r) 

This makes the filter frequency responses mirror images about the cut-off fre-
quency. We can design filters in the frequency domain which have particular 
properties using this technique. One property which is often desired is smooth-
ness of the low-pass filter at the frequency origin. In the QMF paradigm this 
means that the high-pass filter will have a similar property as w r. 

Looking at Equation 4.2.9, in the z-domain we then have (with z = eiw): 

H z 1  z2 	H Owl ejw 2  

Equation 4.2.9 then becomes 

(4.2.10) 	H 	z2 	= H1  (e 1, e 2) = Ho (e3(w1+7)  , ej (w2+7r ) ) 

= Ho (-0', — e31 

= Ho  ( — z1 , — z2 ) 

Thus we see that the QMF relationship in the z-domain can be written 

(4.2.11) 	 H1  ( Z1 Z2 = H0 - z1 	Z2 ) 

When considering the spatial filter configuration this equates to 

(4.2.12) 
	

17, 1  (n i  + n2) = ( -1 )nid-n2 ho  (ni  ± n2 ) 

for the two-channel case. This closely resembles the one-dimensional version writ-
ten as 

(4.2.13) 	 h 1  (n) = (-1) n  Ito  (n) 
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If we look carefully at this relationship we see that the quadrature mirror property 
equates to reversal in n and modulation of the filter taps, regardless of the number 
of dimensions. 

4.2.2. Unitary case. Orthogonality of basis functions equates to unitary 
structure in the transfer matrix. In this situation we refer to the transfer function 
of ;le (z) T (z) • X (z). For perfect reconstruction the transfer function T (z) 
must equate to a simple scaling and shifting of the signal, ie. T (z) = k • z'. 

Strictly speaking, perfect reconstruction requires k = 1 and n = 0 but in the 
general case where signals are causal, we can relax the constraints to allow shifted 
versions of the original. In any event the original signal can be exactly reproduced 
to such a point that je (z) = k • X (z'). For image processing we require that 
n = 0, but if this property is not achieved directly through T(z) it can certainly 
be obtained with minimal post processing. 

We start with a discussion of matrix properties related to the unitary case. 
A square matrix H is paraunitary if it satisfies [104] 

(4.2.14) 	 (z) . H (z) = H (z) • 	(z) = c I 

where H (z) = HT (z -1 ) or in the complex plane 1-1 (e3 ) = (H (e3))* . Compare 
this also with Equation 2.12.1. In the first expression z becomes z -1  because the 

adjoint of advance (Ow = z) is delay (e-3u = z'). 

X*  (z) means conjugation of the coefficients of X (.) but not of z its self, ie. 

X*  (z) = x + xz + x;z2  + • • if X (z) = xo + xiz + x 2 z2  + • and xi  are complex 

number coefficients. 
(X (ejw)) *  represents the Hermitian transpose of X (e3w) in the complex plane. 
A rational filter is an all-pass filter if it satisfies 

(4.2.15) 	 (z) • H (z) = 1 

In the domain of FIR filters the only filters which satisfy 4.2.15 are pure delays, 
ie. where H (z) = z' . 

From Figure 4.2.1 the decomposition filters are H o  (z) and H1  (z) and so the 
matrix in 4.2.4 completely defines the decomposition properties of the filterbank. 

To satisfy Equation 4.2.5 we can choose 110  (z) = H1  (z) and 1:11  (z) = — Ho  (z) 

which satisfies the requirements for alias cancellation. Equation 4.2.3 becomes 

.5e (z )  = 21 ( H1 ( _z)  Ho ( z )  x (z )  _ Ho ( _z) 	(z)  x (z ))  

(4.2.16 ) 	=_2 X (z) (H1  (—z) Ho  (z) — Ho  (—z) H1  (z)) 

4.2.2.1. Polyphase Representation. If we consider the polyphase representation 
then we can express the filters in the filterbank in the downsampled domain as 

H, (z) = Hz()  (zD ) + z i7 1  • Hii  (zD) 



(4.2.17) 

(4.2.18) = 

h0 = 	1 ( 
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and the polyphase matrix associated with the decomposition filter bank is given 
by 

Hp (z) 	Hoo (z) H01  (z ) 
Hio (z) H11 (z) 

Here z i)  = 4.2  z2  ) D  = 	ziDoo z2Dio ,Doi ,Dii 	and with D =  

we get zD  = 	z1 z2  z 1 z2-1 	. 
When the polyphase matrix is paraunitary the filterbank provides perfect re-

construction with identical analysis and (reversed) synthesis filters. From Equa-
tion 4.2.14 there are some restrictions on the filterbank [101]. 

• The reconstruction filters are derived from the decomposition filters by 
reversal and modulation 

(n i , n2 ) = (-1) n1+n2  • Ho (n1, n2) 

so the polyphase matrix completely defines or is defined by the filters used 
in the entire filterbank. 

• Both polyphase components have to be of the same size; therefore perfect 
symmetry in up/down, left/right and diagonal directions simultaneously 
isn't possible. For proof of this see 1101, appendix Al. 

• The polyphase components have to satisfy the orthogonality condition 

Hoo (z) Hoo (z -1 ) + H01 (z) H01 (z -1 ) = 1 

4.2.3. Design of KV 5/3 filters. Here we first replicate the process of 
design for the Kovacevic and Vetterli 5x5/3x3 linear-phase filterbank used in [101] 
and [56]. We then note some deficiencies of this initial design and present others 
which may be of value. 

We start with the filterbank shape given by 

We begin the design with 1/0 , the analysis high-pass filter. For 1/ 0  to be a high-pass 

filter we require that if ho (z) = E ho(ki, k2) • zki  .4 2  then 

(4.2.19) 	 E ho(ki, k2 ) = 
ki,k2 
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We aim for additional circular symmetry in the filters to make them as isotropic as 
possible. Following this goal we then set a = 1 in ho  in Equation 4.2.17. Satisfying 
Equation 4.2.19 requires that a l  = 4 which completely defines Ito . 

We now turn our attention to h i  - the synthesis high-pass filter. As with h i)  
we aim for circular symmetry so we set d = al  and 	= 1 <=> d = 	We find al 	 a 
then that Equation 4.2.18 becomes 

1 
a + 

aj 
a+ ai 

(4.2.20) 	hi  = 1 	a 1 	a2 	a1 1 

	

a+ 	al  a+ al 	 al 
1 

and by noting that a = 1, a l  = 4 from the design of h i)  we arrive at a2  = —28 and 
the complete filter without normalization is 

(4.2.21) hi  = 1 4 
242 

242 

1 

—28 

1 

4 1 

This almost completes the design of the filterbank. We can now create the 
low-pass filters go  and gi  from the high-pass bank by using the QMF relationship 
for biorthogonal filters. This then gives us 

1. 	1 
2 —4 2 

g0= 1 —4 —28 —4 1 
2 —4 2 

1 

and 
—1 

—1 

It is now that we must note that E k1 ,k2g0 (k 1 , k2 ) = —32. This gives us our 
normalization factor for the 5x5 filters. Similarly E k1 , k2  gi(ki, k2) = —8 gives our 
normalization factor for the 3x3 filters. So our final filter-sets are 

  

1 
—2 4 —2 

—1 4 28 4 —1 
—2 4 —2 

 

(4.2.22) ( 

1 
1 41-  1 ) 

1 
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—1 
—2 —4 —2 

—1 —4 28 —4 —1 
—2 —4 —2 

1 
(4.2.23) -41  —1 

—1 	) 

h1 = 

   

Looking at the shape of the 5x5 filters we note that the central tap of magnitude 
28 is 7 times the magnitude of any of its neighbours — or indeed any other taps 
in the filter. This is a common occurrence in the design of filters in multiple 
dimensions. The effect of this massive central tap is that it reduces the smoothness 
of the filter response. This becomes a problem when we begin to integrate coding 
frameworks with these filterbanks. The 3x3 filters are reasonably well behaved and 
result in some energy compaction. The main problem that occurs is due to the 
5x5 filter which is the low-pass synthesis filter h 1 . When a wavelet decomposition 
is performed and the detail signals are harshly quantized, often there is little 
information left in the decomposition apart from the approximation signal. When 
this is passed back through the synthesis low-pass filter the massive central tap 
of h 1  dominates the response. The reconstruction is not smooth and without the 
balancing effect of other detail signals the reconstruction is quite distorted. The 
effects of this are demonstrated in Figure 7.3.9. In the next section we produce 
designs which reduce the size of the central tap with respect to surrounding taps 
in an attempt to smooth the synthesis high-pass response. 

4.2.4. Modified KV5/3 filterbank. The filters shown above in Equations 
4.2.22 and 4.2.23 are the only solution possible which have circular symmetry. In 
order to pursue other filter designs we have to abandon this property. 

We begin with the analysis high-pass filter 11 0  again. This time we will pay 
attention to the effects on the synthesis high-pass h 1  at the same time. Looking 
at h 1 , it is high-pass so the sum of all taps must be zero. We will allow the central 
tap a2  to be the dependent value. The value of a 2  will be the sum of all the other 
tap values in the filter so if we reduce the other taps then we reduce a 2 . This is 
of little use however since we are not concerned with the magnitude of the central 
tap but rather its magnitude when compared to the other taps, ie. the ratio of a2 
to its neighbour taps. 

The structure of the filters is such that it is difficult to obtain a good solution. 
If we consider the distance between the central tap and its immediate neighbours 
after normalization then we find that by reducing the difference in one dimension 
we increase the difference in the other. The process can result in wildly non-
isotropic filters. 
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4.2.4.1. Design I. Circular symmetry is not possible so make the analysis high-
pass 
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From this point designs can vary wildly. We sacrifice good high-pass in the 
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For the analysis low-pass (not shown) in the horizontal dimension this filter 
behaves quite well as the central tap is not much greater than its neighbours. 
However in the vertical dimension we see that the central tap is actually of opposite 
sign to its neighbours. 

Results obtained with this design showed some small improvement over the cir-
cular design under appropriate conditions. In particular the dotting effect which 
results from the large central tap of the synthesis low-pass tempered slightly. How-
ever as more detail becomes available the artifact due to the orientation specific 
nature of the filter can manifest as noticeable distortion. 

4.3. Lifting 

The lifting scheme emerged originally as a means of creating new wavelets 
from existing wavelets [88], [90] - providing a much needed design tool. It was 
then discovered that lifting was a general tool which could be applied to the entire 
process of designing biorthogonal filterbanks, not just in one-dimension but in 
arbitrary dimensions. 

For a quick introduction to the lifting scheme see [89], [96], [95]. More in 
depth discussion can be found in [54], [53], 1881, [90] and [16]. 

The lifting scheme stems from a simple observation that a wavelet transform 
as applied with a filtering operation performs two basic steps. 

• An approximation to the original signal is determined at a lower resolution 
than the original. 

• An error signal is determined which reflects those details in the original 
signal which cannot be recovered from the approximation signal. 

The lifting scheme approaches this problem from a different perspective. First the 
signal is split into its two cosets. Then one coset is used to predict the other, 
thus the first coset is the approximation. The difference between the predicted 
second coset and the actual second coset becomes the details signal. The first 
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coset is then updated from the error signal such that it preserves the mean value 
of original signal. 

The basic principle is that one signal is used to predict the other and then the 
error is used to adjust the first signal. This can be applied to any situation where 
there are two signals of this nature. The process is also always reversible as long 
as the predict and update operations can be reversed. 

The process can be applied to the operators as well as the signal which allows 
us to produce new wavelet filters from existing wavelets. This is an important 
property which could lead to important developments in the nonseparable domain 
where design by Fourier transform is difficult. Indeed the lifting scheme would be 
an excellent method by which to build upon the limit library of existing biorthog-
onal filters. 



CHAPTER 5 

Upsampled Representations and Cross-scale Equivalence 

Zero-tree [81] and quad-tree [64] coding of Wavelets has provided one of the 
most successful image coding approaches in recent times[61]. However it has been 
confined to the separable domain because of its dependence on multiscale inheri-
tance. The most important features to human vision, edges, are multiresolution in 
nature, they occupy the same spatial location throughout several resolution levels. 
The utilization of this continuity of features across scales leads to efficient coding 
strategies. 

This Chapter shows how to determine such multiresolution inheritance on the 
quincunx lattice. We introduce a novel implementation for wavelet decomposition 
and resampling using the quincunx lattice which can be extended to other sampling 
lattices and reduces and in some cases completely removes the computational 
cost of resampling signals at each step in a multiresolution decomposition. This 
removes a significant obstruction to the use of nonseparable decompositions in 
real-time processing. A comprehensive introduction to Wavelets in 'Rnis given in 
[56] and coding comparisons between separable and quincunx decompositions are 
given in [4], [5]. 

5.1. Quincunx Wavelet Transform 

The Fast Wavelet Transform is performed through a process of filtering and 
downsampling. Filtering is done by a low-pass filter H and a high-pass filter G. 
The downsampled high-pass signal contains the wavelet coefficients or details and 
the low-pass signal is further decomposed until a desired depth of decomposition 
is achieved. 

It is the detail signals which are coded to achieve image compression. Wavelets 
are very effective for energy compaction and the detail signals are typically quite 
sparse leading to efficient compression. 

Figure 5.1.1 shows two levels of Wavelet decomposition using the some general 
resampling and Figure 5.1.2 shows the coordinate transform which occurs during 
quincunx sampling. A second quincunx transformation will return the image to 
its normal orientation, but at half its original size. 

Whereas separable downsampling removes half the samples from one-dimension 
at a time, the quincunx lattice cannot be separated into such a scheme. Figure 
5.1.3 shows the quincunx and separable sampling lattice. The small arrows indi-
cate the offset vectors of the various cosets from the origin. The Quincunx lattice 
has only two cosets, but the separable lattice has four cosets. 

77 



• • 
- • 

5.1. QUINCUNX WAVELET TRANSFORM 	 78 
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FIGURE 5.1.1. Quincunx subband decomposition block diagram 
showing two levels of decomposition. The H and G operators in-
clude all resampling necessary to complete the step. 

FIGURE 5.1.2. Image coordinate transform during Wavelet decom-
position using the quincunx lattice. Unlike separable resampling, 
Quincunx resampling does more than scale the signal. The signal is 
rotated -45° and flipped about the horizontal axis. 

(a) Quincunx lat- 	(b) Separable lat- 
tice tice 

FIGURE 5.1.3. Quincunx and separable sampling lattices. d 1  and 
d2  are the directional vectors which make up the subsampling lat-
tice. In the separable case d 1  and d2 have the same direction as 
the directional vectors of the original Cartesian lattice. The small 
arrows indicate the shifts to the missing cosets, ie. the displacement 
vectors to the cosets not shown. 
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5.2. Equivalence Across Scales 

The Fast Wavelet Transform is a multiresolution process which decomposes 
a signal into components of various scales, starting from the finest detail and 
ending at the coarsest features. Each level of decomposition involves resampling 
a filtered signal to a lower resolution (decimation). This necessarily involves a 
transformation of the coordinates of the samples, as the same sampling density 
must be retained. In the separable case this transformation is a trivial division 
by two in each dimension, but for the quincunx lattice the transform is more 
complicated. We describe the coordinate transform in terms of a matrix operation 
discussed in Equation 3.4.1: 

(5.2.1) 	 x3+7, = Dn • x 3  

where x2  is the location of the sample at resolution level j ( j increasing for higher 

resolutions) and D is the sampling matrix which defines the lattice. In the case 
( 1 1 	

It 
1 —1)

.   

should be noted (from Section 3.1) that D 2  = 

sampling by 2 in two-dimensions. 
We assume that, within the current sampling lattice, a lattice point is the 

reference for a pixel whose area is the unit cell with an origin at that lattice point, 
ie. the value of the sample on the lattice point defines the value over the entire 
area of the pixel. This is similar to a piecewise continuous definition of a function 
for discretization. 

To determine the child samples enclosed within a pixel boundary from a lower 
resolution level (parent pixel) we must first upsample the coordinates of its ref-
erence lattice point ie. x3+1  = D • x3 . In the upsampled domain this point will 
reside on the first coset of the lattice. Within the boundaries of the parent pixel, 
two pixels are contained at the current resolution level: the pixel referenced by 
the upsampled location of the parent lattice point (at D • xi ), and its immediate 
neighbour, as determined by the sampling coset shift vector s, (at D • (x3  + s)). 
For D as defined above s = (1, 0). See also Figure 5.1.3. 

When taken to the next resolution level, the problem reduces to separable 
downsampling because of the chosen definition of D. When covering multiple 
resolution levels this simple method no longer holds because we add extra cosets 
as we upsample. We can only predict the locations of the first coset without 
modifying our method. This is complicated and generally not necessary so it is 
not covered here. Instead we use the inverse result to solve the general problem 
in this case. 

of the quincunx lattice the defining matrix' is D = (di  d2) = 

( 2 0 0 2  ) 
which gives separable 

1This is not the only possibility for D but this one leads to separable sampling at every other 
step and retains spatial location significance. 
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The inverse problem, ie. determining which pixel x o  in level 0, is the parent 
of x in level n, is much simpler. Because we are moving in the downsampling 
direction we can simply use 

x3  = floor (D • x3+70 

where floor(x) is the operator which returns the nearest integer value less than 
or equal to x. 

This allows us to predict the parent pixel n resolution levels below the current 
level. It also gives an alternative for finding child pixels of a low resolution parent 
by performing a search of the high-resolution image for all pixels with the correct 
parent. 

5.3. Upsampled Representation 

In this section we introduce the concept of the upsampled representation and 
show the advantages it has over traditional methods of resampling. 

Consider the process of downsampling a signal. Samples from one coset are 
retained while samples from the unwanted coset(s2 ) are discarded, then the co-
ordinates are transformed to maintain sampling density. Often we don't wish to 
move the pixels from their location within the image but it is apparent that the 
coordinate transform which occurs during downsampling (required to maintain 
sampling density) forces this to occur. An inverse relationship is then necessary 
to determine their original position in the image, ie. to upsample them back to 
their original position. 

From Figure 5.1.2 we can see that the location of pixels within the downsam-
pled image is different from those in the original. The calculation of the coordinate 
transform responsible for this change of basis is computationally expensive. How-
ever, nonseparable downsampling and further decomposition can be performed 
without any complicated coordinate transform by using the upsampled represen-
tation presented here. 

We concentrate on the quincunx example. For the downsampling process we 
can simply remove those pixels from the unwanted coset and leave the retained 
coset untouched, this is the central idea behind the process of downsampling fol-
lowed by upsampling as discussed in Section 3.4.3. The author borrows the term 
"upsampled" from the Kovacevic and Vetterli papers on polyphase filter represen-
tations. 

We refer to a signal which has had one coset removed but has not undergone 
coordinate transformation as a downsampled signal in the upsam,pled domain. 
This results in an image of the original size and orientation but where one coset 
is missing (the discarded coset samples). In this way the spatial relationship 

2For quincunx there are only two cosets thus one is retained and one rejected, however separable 
has four cosets and three are rejected. 
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between samples at different decomposition levels is easily determined because 
their location is not altered from that of their parents and children. 

Level j+2 
	

Level j+1 	 Level j 

FIGURE 5.3.1. Two levels of pixel overlap with quincunx downsam-
pling, in the upsampled domain. In this case the second resampling 
step elects to down-sample separably. 

Figure 5.3.1 shows the two child pixels per parent and the axes of the down-
sampled domain. We can see that the two children of a parent are 

(1) the child pixel with the same lattice point as the parent; and 
(2) the child pixel removed from the parent lattice point by the upsampled 

coset shift vector, which for the quincunx case is given by f s= D•s= 
(1 , 1) . 

This is consistent with our previous representation where in the downsampled 
domain the downsampled shift-vector applies. 

The spatial relationships between samples at different scales should now be 
apparent from Figure 5.3.1. Although quad-tree coding is specifically designed 
for the four-coset separable decomposition it now becomes possible to design and 
implement similar coding schemes for non-separable sampling structures. 

In its original form 1811 zero-tree coding is also specific to separable sampling 
but this is an implementation issue and does not preclude a modified version being 
developed for other sampling structures using the same principles. In Chapter 8 
we develop a version of zero-tree coding for the quincunx lattice and demonstrate 
it as a powerful coding method. 

5.3.1. In-Place Decomposition. Wavelet decomposition is achieved by fil-
tering then downsampling then filtering then downsampling, etc. Thus the filters 
remain the same (one of the key properties of the Fast Wavelet Transform) but at 
each stage of decomposition the image has been resampled and thus has undergone 
a coordinate transformation. We can describe this by 

(n) = D-1  • H • X (n) 

where X11  (n) is the low-pass version of X (n) after one level of decomposition 
(filtering by H followed by downsampling by D) . 

Examining the low-pass branch we can see that the second level low-pass signal 
is achieved by two sequential filter-subsample combinations as shown in Figure 
5.3.2. 
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FIGURE 5.3.2. Normal nonseparable wavelet transform low-pass 
branch showing two levels of decomposition. The input is filtered 
then resampled then filtered then resampled. 

       

X 

     

     

       

FIGURE 5.3.3. Low-pass branch using upsampled filter operator t 
H operator. 

Figure 5.3.3 shows an equivalent method of performing the same operations in 
the upsampled domain . Here tH=D•H is a filtering operator derived from H 
by a process of upsampling. The t H operator performs the exact same filtering 
operation in the upsampled domain as H does in the downsampled domain. The 
resulting filtered sample values only exist on the retained coset. 

The upsampled filters are described by Kovacevic and Vetterli in their work 
on polyphase transforms such as [47]• We write 

F(z) = Fo (zD ) + Isi Fi(zD ) + • • • + lim_ i Fm_ 1 (zD) 

where F(z) is the overall filter in the downsampled domain. 

A 

a 

Ii  > 

(a) Filter in normal state  

a  

(b) Upsampled filter 

FIGURE 5.3.4. An arbitrary filter with 8 taps shown in (a) its nor-
mal state and (b) its (first) upsampled state. 

In the downsampling operation only one coset is retained, thus the samples in 
the unwanted coset cease to exist. Normally sampling density must be maintained 
and the image size shrinks and the sample location coordinates are transformed to 
account for this. In the upsampled representation we change the sampling density 
by removing a coset but avoid the need for transforming the coordinates. Because 
we have violated the sampling density conditions we must now accordingly change 
the sampling density (ie. coordinate transformation) of the samples in the filter 
used in subsequent operations. This is equivalent to downsampling the signal 
then upsampling it again, and also upsampling the future filter to compensate. 
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The next convolution operation which is performed in the upsampled domain will 
result in the same values as in the downsampled case - the only difference is that 
the source and destination locations have undergone an upsampling coordinate 
transform. 

Data locations of samples on the discarded coset are neither  used  in subsequent 
filtering operation nor are they changed in any way by future operations. This 
allows us to use these locations for other purposes such as storing detail signals 
from a wavelet transform step. As a result of critical sampling  we  have exactly 
the number of locations to store the entire decomposition. 
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FIGURE 5.3.5. Organization of cosets at different resolution levels 
within the upsampled structure. The transform progress from left 
to right. The white squares represent locations which have been 
used to store details of the higher-resolution levels. 

This representation is very efficient in the amount of memory required to per-
form a wavelet transform. Under normal circumstances with non-separable re-
sampling the amount of storage required increases due to the lost areas of storage 
around an image as seen in the downsampled signals in Figure 5.1.2. The upsam-
pled representation eliminates this wastage. 

After filtering for the second time (by f H in Figure 5.3.3) the retained coset 
locations now contain the same samples as after the second filtering operation by 
H in Figure 5.3.2 but they are still in their original positions within the upsampled 
lattice. Two quincunx downsampling operations are then required to return these 
samples to their usual downsampled coordinates. Using the quincunx downsam-
pling matrix D from Equation 5.2.1 results in separable downsampling at every 
second step. Hence two consecutive quincunx downsampling operations results in 
separable downsampling. 

t 	  

FIGURE 5.3.6. Low-pass with upsampled operator and separable 
downsampling replacing two consecutive quincunx down-sample op-
erations. 
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Figure 5.3.6 shows the resulting implementation using separable downsampling 
with quincunx filters. Note that we can continue to further upsample the upsam-
pled operators and keep the signal samples in their original locations, leaving all 
the downsampling operations until the very end, or not perform them at all and 
just use upsampled storage for the entire decomposition. 
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FIGURE 5.3.7. One level of quincunx decomposition performed in 
the upsampled domain. The orientation is the same in  the  down-
sampled and original signals. Each downsampled signal contains 
half as many coefficients as the original allowing both components 
to be stored in the space occupied by the original. The  low  and 
high-pass results can be stored in the original image space. 

Figure 5.3.7 shows the resulting low-pass and detail spaces from one level of 
quincunx wavelet transform in the upsampled domain. Note  that  although the 
filtered images occupy the same space as the original, each has  half  the number 
of samples (critical sampling is preserved). Due to the sample shift operator 
incorporated into the high-pass filtering operation, the high-pass signal occupies a 
different coset than the low-pass. Thus the low-pass and detail  can  be interleaved 
within the original image storage with the low-pass occupying coset 0 and detail 
in coset 1 as outlined in Figure 5.3.5. For subsequent operations, more points 
originally occupied by the approximation are converted for use by detail signals. 

FIGURE 5.3.8. Detailed view of Lenna's eye from figure  5.3.7.  This 
clearly shows how all the approximation values exist on a single 
quincunx coset. 

Figure 5.3.8 shows a detail which should exemplify the existence of only one 
coset in the downsampled images. In this case it is the approximation signal - we 
store the detail signal in the coset which is not occupied by the approximation 
signal. 



5.3. UPSAMPLED REPRESENTATION 	 85 

An effect which occurs when a quincunx filter is upsampled is that many zero 
coefficients are inserted into the filter matrix. This is analogous to the conventional 
upsampling of a signal where zero-valued coefficients are used to fill in the missing 
coefficients prior to filtering. With quincunx upsampling the size of the filter 
matrix may grow by a factor of 2 in each direction to accommodate the position 
of the upsampled coefficients. As a result the upsampled filters become very sparse 
with the majority of coefficients being zero. Under these conditions conventional 
convolution methods are not efficient as they involve many wasted calculations 
which sum to zero simply because of the sparseness of the filters. In these situations 
it is advantageous to adopt a convolution method which addresses only those 
coefficients which are non-zero. This allows for convolution to be calculated in the 
same order of time as for the non-upsampled filters. 

5.3.2. Computational demand. Normal quincunx downsampling requires 
every pixel to be transformed to a new coordinate position at each decomposition 
level, requiring 6 additions per pixel (for a quincunx specific algorithm). Using 
the upsampled domain we can perform the process at a fraction of the compu-
tational cost. With the upsampled method we only transform the coordinates 
of the filter being used and if we store an upsampled version of the filter this 
cost can be removed as well. The downsampling process is reduced to the same 
computational cost as separable sampling. If all computations are carried out in 
place then all signal resampling cost can be removed. In this way it is possible 
to significantly reduce the computational burden of using nonseparable sampling 
schemes in wavelet transforms which removes one of the significant barriers to 
nonseparable transforms in real-time processing. 

5.3.3. Note on other lattices. Although the upsampled representation was 
presented for the quincunx lattice, the concept is equally applicable to any resam-
piing lattice, including separable. The transform is required to be critically sam-
pled however so that the total number of samples in the decomposition is constant 
regardless of the state of the decomposition. 

The upsampling process on the separable lattices is particularly easy, it is 
merely a matter of expanding the distance between filter coefficients by a factor 
of two. 



CHAPTER 6 

Coding Frameworks 

In this chapter we review the coding methods which exist for compression 
of digital data. We concentrate on those methods which have been used in the 
production of results in the course of this research, ie. for lossy image compression. 

We also review psychovisual phenomena of the HVS and explain how they 
can be exploited to achieved better perceived image quality from lossy compres-
sion. We derive some results for the quincunx decomposition relating to subband 
selectivity and explain how these values can be used in coding frameworks to in-
crease perceived image quality. Basic statistical results of quincunx and separable 
transform data is presented and analysed. 

6.1. Quantization 

Quantization is central to lossy coding methods. It has many varied forms 
but the central purpose remains the same, to reduce the digital data requirement 
for representing data by reducing the precision at which numerical values are 
expressed. Numerical values can be treated as scalar or vector depending on how 
values relate to each other. If some numerical values are closely related then it 
makes sense to consider the combination of values as a single conceptual value 
which can then be quantized in some manner which is meaningful to the object. 
This is the basis of vector quantization. 

When numerical values are discrete and largely unassociated then scalar quan-
tization is more sensible. An excellent review of quantization procedures with 
a more figorous analysis of individual methods can be found in [301. This sec-
tion provides an overview of the types of Quantization used in the production of 
this work and how they relate to the coding of wavelet transform data for image 
compression. 

6.1.1. Scalar Quantization. For a long time scalar quantization has been 
the backbone of compression techniques. Scalar quantization takes a single nu-
merical value and approximates it by using one of a set of discrete intervals, the 
reconstructed value is some value in the interval representative of all possible val-
ues contained. The number of allowed quantized values is generally small and so 
the number of bits required per value can be reduced significantly. This process 
is especially effective when used in conjunction with entropy based coding such as 
Huffman coding 1401, [74 In this situation, generally a significantly large propor-
tion of coefficients will be quantized to zero, thus giving that value a significantly 
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higher probability than the other quantized values. Hence allocation of a smaller 
(in number of bits) codeword will lead to significant data saving. 

Uniform scalar quantization is very common in signal coding. It is the easiest 
quantization mechanism to implement. Uniform quantization simply divides the 
valid range of values into equally spaced regions of equal size (except possibly the 
centre area where values are approximately zero). Every original numerical value 
is represented by the index of the region within which the value falls. Because in 
many situations it is overwhelmingly common for values to be close to zero, the 
region surrounding the zero value within which all values are quantized to zero, is 
twice the size of all the other regions. The region which quantizes values to zero 
is often referred to as the dead zone. 

Increasing the commonness of one particular value in a coding mechanism is an 
effective way of reducing the information cost of encoding the data because if any 
value is more common than any other value then this fact can be used to create 
statistically-based coding methods which will further reduce the bit-rate. The 
entropy of a quantized data set determines the minimum information required to 
code the data without a-priori knowledge. This will be discussed further in Section 
6.2. 

6.1.2. Vector Quantization. Vector quantization [261, [271, [141, [15J dif-
fers from scalar quantization in that several numerical values are considered si-
multaneously as a single vector. A vector in this case is a conceptual term for a 
set of values which should be considered together to contribute to some meaning. 
For instance when considering 3-axis colour representations such as RGB on a 
digital display device, we can effectively quantize the colour by considering how 
the red, green and blue values all contribute to a single colour vector. In this way 
we can apply information about our understanding of what information is most 
important in a colour value to better quantize the overall value (eg. [591). 

Vector quantization is the generalization of this idea. We can often more 
effectively quantize a signal by applying knowledge about how several components 
interact as a single vector. 

A common method of vector quantization which is analogous to uniform scalar 
quantization is uniform volume vector quantization. In this method the hyper-
volume which describes the valid range of vectors is divided up into equally spaced 
quanta of equal value. Each region has its own index and any vector value which 
falls within a particular region is represented by the index representative of that 
region of the valid range. The various regions of the valid range is broken up 
in some way and the relationship between the regions of quantization and the 
quantized values is called a codebook. 

Although uniform volume is a simple, easy to implement method of vector 
quantization it often does not offer any advantages over scalar quantization be-
cause it uses an ad-hoc quantization scheme. Another method of performing vector 
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quantization is by error minimization. A codebook of vectors is somehow assem-
bled and quantization proceeds by approximating the value vectors to the vectors 
in the codebook by finding the result which minimizes some error metric. 

Given a large sample population it is possible to derived a codebook which 
minimizes the overall error metric in the general situation. 

6.2. Entropy Coding 

Quantization is only part of an efficient coding scheme. Entropy coding takes 
advantage of the relative probabilities of different symbols occurring and assigns 
codewords of variable length to each symbol to minimize the total number of bits 
necessary to represent the quantized data. Obviously before entropy coding can 
take place we must have quantized data, otherwise there is an infinite number of 
possible states which a coefficient can take, and hence an infinite number of unique 
codewords would be needed. For a continuous range the information contained in 
any values is effectively infinite since it has an implicit infinite precision. 

The entropy of a sequence of sample values is given by 

H = — 	pn  • logb (pn ) 
Vn 

where pn  is the probability of value n and b is the number of possible values in the 
base of units of entropy. For example if b = 2 then the units of entropy is bits per 
symbol where a bit can have 2 possible values. b = 3 means the unit of information 
is the tri-bit and b = 10 means the unit of information is the numeral (ten possible 
values). Of all the possible bases available, base 2 is the only frequently used base 
as bits per symbol is easily transferable to required storage in digital media. 

The entropy of a sequence of symbols tells us the average information cost per 
symbol of the sequence, so 

total data = N • H 
where N is the number of symbols in the sequence and H is the average information 
cost (Entropy) of the symbol set. The worst case scenario is when all symbol values 
possible are equally probable. 

6.2.1. Huffman Coding. Huffman coding[401 operates on a tree based sys-
tem for determining codewords. It requires knowledge of the complete sequence of 
coefficient values which are to be coded from which to determines relative proba-
bilities and optimized codewords. The information is then coded as 

• a header specifying the table of codewords and symbols that they match; 
• the data encoded in sequence using the optimum codewords determined. 

Huffman codes are created in such a way that regardless of the length of a codeword 
the end of one codeword and the beginning of the next can always be uniquely 
identified. 
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The overhead imposed by the codeword table can reduce the efficiency of this 
coding method significantly. Because of this the efficiency of Huffman coding is 
only seen when the data set is large so that the overhead of the codeword table 
becomes small in comparison to the size of the data compressed. Huffman coding 
is the basis of many common statistical lossless coding methods such as pack, pkzip 
(now WinZip) and gzip used for both text and binary executable compression. 

In some practical situations the Huffman codebook is agreed upon by encoder 
and decoder and is included in the implementation. This leads to quite success-
ful coding methods, but it relies upon a-priori knowledge of the statistics of the 
information being coded. As such it is not dynamically adaptible to sources with 
significantly different statistical profiles. 

6.2.2. Arithmetic Coding. Similarly to Huffman Coding, Arithmetic Cod-
ing [1181, [711 assigns codewords based on the probability of occurrence of sym-
bols. Codewords are assigned as a binary number which uniquely defines a numeric 
precision interval of the size of the probability of occurrence of each symbol. Very 
low probability means a small interval which requires more bits to uniquely define. 

Again, there is an overhead which is the required table of codewords. 

6.2.3. Adaptive arithmetic Coding. Adaptive Arithmetic Coding 1461 works 
in a similar manner to Arithmetic Coding in that codewords are assigned based on 
probability intervals of the symbols. In this case, however, the probabilities of the 
different symbols is updated after each symbol is coded and codeword sizes can be 
adaptively changed to match the recent probability distribution of the symbols. 
Any changes in symbols used must obviously be predictable so that a decoder can 
correctly reconstruct the correct symbol sequence from the bit-stream. This tech-
nique can be very effective if the symbol sequence encoded has distinct sections 
involved which each have significantly different probability distributions. As the 
distribution changes the coding algorithm can adapt to maintain a close to ideal 
codebook without the need for encoding symbol tables. 

6.2.4. Run-Length Coding. Run-length coding is one of the most popular 
techniques for lossless data reduction due to its simplicity and low computational 
cost. The concept behind run-length coding is to identify sections of a data stream 
where the same symbol is represented many times consecutively. In this case it 
becomes efficient to code the value of the symbol and the number of repetitions. 
The number of repetitions is refered to as the length of the "run", hence the name 
of the coding method. 

The disadvantage of this coding method is that it requires an overhead for 
discriminating between ordinary symbols and symbol runs. This adds to the size 
of the data stream for bad-case scenarios where runs of symbols are rare. One 
common trade-off is to only allow runs of only one particular symbol - usually 
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the zero value. This reduces the overhead in discriminating runs from symbols 
because only one more coding symbol needs to be added to the original set. 

The zero value is chosen because after quantization it is typically the most 
common symbol in the quantized data stream. The JPEG image coding scheme 
makes very effective use of run-length coding in exactly this fashion. The sym-
bol data from DCT blocks is read from the processed data in a particular order 
which maximizes the probability of long runs of zero-symbols occuring at a par-
ticular point in the stream. Run-length coding can then efficiently compress the 
consecutive zero values into just a few bits. 

6.2.5. Lempel-Ziv (Welch) Sequence Coding. The LZ coding mechanism[1211 
is very efficient in cases where sequences of symbols recur with regularity. A finite 
codebook of sequences is stored in the codec and as each previously unseen se-
quence is encountered it is stored in the codebook. When a previously encountered 
sequence is encountered, only the reference into the codebook is coded which is 
typically much smaller than the cost of the entire sequence of symbols. 

The Compuserve GIF image format [43] uses LZW coding [112], [70] as the 
basis for image data compression. It is very effective in the compression of images 
which are mostly constant in colour but with recurring structure such as adver-
tising material which is text on a constant background. It is much less effective 
with natural images as the probability of encountering repetitive structure is very 
small. In this case the overhead of discriminating sequences from non-sequences 
requires an enormous amount of information. 

6.3. Basic Coding Results 

We present here some basic results from the quantization of quincunx wavelet 
decomposition data. We begin with some statistical analysis of the transform 
data itself and describe properties we expect to see expressed by various coding 
strategies based on the statistics. The three test images used were Lenna, Goldhill 
and Barbara. They are significantly different images and produce a good range of 
results for comparison of the coding methods used. 

The decorrelating effect of the wavelet transform results in a large number 
of very small coefficients - often refered to as insignificant coefficients. These 
coefficients represent the failure of the low-pass projection operation to accurately 
predict signal values. If the wavelet shape is suitable for the signal being processed 
then the prediction will be good and the wavelet coefficients will be very small in 
magnitude. Large wavelet coefficient values are the result of sharp transitions in 
intensity value - such as at edges - which have a rate of change beyond that which 
can be represented by the projection operator. Since these cannot be predicted 
they create significant wavelet coefficients. Typically much of an image is slowly 
varying in intensity across space and only a small percentage of the image area 
contains significant activity at any given scale. For this reason the majority of the 
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image information is contained in the information of the coarser scale subbands. 
Since the majority of coefficients are contained in finer resolution levels, we expect 
that the majority of these coefficients, and thus the majority of all coefficients, 
will be small in magnitude. This lead to good results after quantization and is 
one of the key reasons for the success of wavelet encoding of images. 

We use a cumulative density function (cdf) and a probability density function 
(pdf) to represent the distribution of wavelet coefficient values. The function 
cdf (x) represent the fraction of all the coefficient values in a decomposition which 
have a (signed) value less than x. This can be expressed as 

cdf (x) = num(x)  

where N is the total number of coefficients in the decomposition and num(x) is 
the number of coefficients in the decomposition with a value < x. 

As x 	oo, num(x) 	N (all value must be less than x) and cdf (x) 	1.0 
As x 	—oo, num(x) —+ 0 and cdf (x) —4 0. 
Cumulative densities are always monotonic in nature. 
The rate of change of the cumulative density function gives the probability 

density of coefficients existing at some value of x (ie. pdf (x) ). The integral of the 
pdf (x) over some range gives the probability of any random coefficient value lying 
in the range, ie. 

x=b 
probo  = f pdf (x) • dx 

=a 
is the probability of a coefficient lying in the range (a, b). 

A good decorrelating transform will result in a very small probability of coef-
ficients with large magnitude (regardless of the sign of the coefficient value). This 
leads to a lower overall entropy of the decomposition after quantization and makes 
scalar quantization an effective means of data reduction. 

6.3.1. Quincunx statistics. We first examine the statistics of quincunx 
wavelet transforms of the test images. The wavelet transform used is 12 levels 
deep which leads to an approximation signal of size 8x8 pixels. This is the small-
est approximation size which can be used with the filters which can be up to 
5 taps wide. Most research to date has concentrated on decompositions with a 
larger approximation image; 32x32 and 64x64 seem to be popular numbers. We 
use a smaller approximation signal because it allows us to better isolate artifacts 
and visual effects produced by the quantization of wavelet coefficients which might 
be overlooked in a partial decomposition. The scope of this thesis focuses more 
on the differences between coding separable and quincunx decompositions rather 
than producing a complete image coder with the best possible quality. The choice 
of smallest approximation size fits well with the aims of the thesis. 
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The KV5/3 1  filter-set was used because it provides a reasonable quality decom-
position with complexity similar to that of the D4 filter. Kovacevic and Vetterli 
presented an orthogonal filter for the quincunx lattice which was the compliment 
of the D4 filter. This filter was used for some early work but it was found that 
its highly irregular shape lead to extremely noticeable and unattractive artifacts 
after quantization. The KV5/3 filter set however has goo dimage processing qual-
ities and is derived from a separable filter set leading to good comparisons with 
one-dimensional filter banks. 

Looking at the results we find that as expected the majority of the coefficients 
are of very small magnitude. The PDF shows us that the coefficient values are 
clustered around zero as expected from the decorrelating effect of the wavelet 
transform. 

By examining Figure 6.3.1 we find that Lenna is likely to be the easiest im-
age to successfully code with the quincunx transform. It has a compact coeffi-
cient distribution with most coefficients packed close to the zero value and almost 
none outside 20% of maximum value. This leads to effective information removal 
through quantization. 

Barbara is likely to be the most difficult to code. Although it has a higher 
PDF peak at zero than the Goldhill image it has a coefficient distribution with a 
significant proportion of coefficients of large value: 15% of coefficients above 20% 
of maximum magnitude. The source of these significant coefficients is the sharp 
stripe and check patterns which dominates the image. This type of distribution 
is not common among natural images and the Barbara image can be considered a 
bad case for subband coding. 

The Goldhill image contains a large proportion of vertical and horizontal fea-
tures which will not be well predicted in diagonally oriented subbands of the 
quincunx decomposition. The low PDF of the Goldhill image at zero is a symp-
tom of this problem. It is expected that the quincunx transform will not work well 
with this image because of this fact. Another feature of the Goldhill image is the 
disparity in image intensity of the very top and very bottom of the image. At the 
top is light sky and at the bottom is a dark street. This leads to problems with 
the circular convolution method used to process the images in that the edge of the 
image represents a large discontinuity which will require a considerable amount of 
information to code. 

6.3.2. Separable statistics. The separable transform uses a 6 level decom-
position with the Daubechies D4 orthogonal wavelet filters. This results in an 
approximation image of size 8x8; the same size as the approximation from the 
quincunx case. This allows for comparison of the two decompositions based as 
much as possible on the effects of quantizing the detail signals. These effects are 

1The abbreviation KV5/3 is used to designate the 5x5,3x3 biorthogonal filters deisgned by Ko-
vacevic and Vetterli as presented in [56]. 
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(a) CDF of quincunx transform 

(b) PDF of quincunx transform 

FIGURE 6.3.1. Plot of CDF and PDF of wavelet transform coef-
ficients for the Lenna, Goldhill and Barbara images with a 12 level 
quincunx wavelet transform based on the 5/3 Kovacevic and Vetterli 
filter set. 

less pronounced for more shallow decompositions as more result information exists 
in the approximation which doesn't have to be recovered from the detail signals. 

As with the quincunx results we find that the transform decorrelates the sig-
nal well. The PDF density is clustered tightly around the zero coefficient value 
indicating that the vast majority of coefficients are unimportant. 
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(a) CDF of separable transform 
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(b) PDF of separable transform 

FIGURE 6.3.2. CDF and PDF plots of wavelet transform coeffi-
cients for the Lenna, Goldhill and Barbara images with a 6 level 
separable wavelet decomposition based on the Daubechies D4 or-
thogonal filter bank. 

From Figure 6.3.2 we can see that as with the quincunx case, the Lenna image 
has the most compact coefficient distribution making it the most likely candi-
date for successful coding. As with Figure 6.3.1 the Barbara image has the least 
compact distribution of coefficient values. 

6.3.3. Comparison of results. Figure 6.3.3 shows the PDFs from separable 
and quincunx decompositions of the three image. The trend we find is that the 
PDFs for the separable images are more concentrated at zero. The separable 
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FIGURE 6.3.3. Comparative plots of the probability densities of 
wavelet coefficient values for separable and quincunx grouped by 
image. Scales have been adjusted to enhance exaggerate differences. 

Lenna image reaches a peak PDF of 0.135 compared to a peak of 0.120 for the 
quincunx case. Similar results occur for the other test images. This indicates that 
the separable transform is performing a better job of decorrelating the image data 
than the quincunx decomposition. We can expect that the scalar quantization of 
coefficients will have less detrimental effect on the separable decomposition than 
on the quincunx decomposition. 

6.3.4. Basic Quantization Comparisons. In this section we examine the 
results of using scalar quantization on wavelet decompositions in both separable 
and non-separable domains. We use uniform scalar quantization to code the detail 
signals from the wavelet decompositions. 

Values of the entropy of the quantized decomposition are given as a compara-
tive measure of the approximate coding cost of the image. Peak-Signal to Noise 
Ration (PSNR) values are included for comparison of the statistical errors intro-
duced by the various decompositions. 

PSNR is calculated as 
(max value2 ) PSNR= 10 • log 

MSE 
(6.3.1) 
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where 
N 1 

(6.3.2) 	 MSE = — 	(orig(n i , n2 ) — reco(ni, n2)) 2 
N z---,  

ni,n2 

is the Mean Square Error of the reconstructed image (reco) with respect to the 
original image (orig). The max value used in Equation 6.3.1 depends on the 
dynamic range of the image intensities. It is typically 2 8  —  1  = 255 for 8-bit 
images. 

As discussed in the Introduction Chapter, PSNR is not a particularly valid 
measure for perceptual quality assessment, so in general we have ignored the anal-
ysis of the PSNR values. They are included for completeness  and  as a general 
guide to the degree of distortion present in the reconstructed images. 

(a) 4 bins 	 (b)  8  bins 

(c) 16 bins 
	

(d) 32 bins 

FIGURE 6.3.4. Results for uniform quantization of separable 
wavelet decomposition of Lenna image using 6 levels of Daubechies 
D4 decomposition. Quantization to 4, 8, 16, and 32 bins is done. 
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(a) 4 bins 
	 (b) 8 bins 

(c) 16 bins 	 (d) 32 bins 

FIGURE 6.3.5. Results of uniform quantization of quincunx wavelet 
decomposition of the Lenna image. The same quantization interval 
is used for all coefficients in all scales. 

6.3.5. Uniform Scalar Quantization. Uniform scalar quantization is sim-
ple to implement and analyze. We present results here which demonstrate the 
different effects of uniform scalar quantization on the decomposition detail signals 
for separable and quincunx. 

Quantization was applied over the dynamic range of the entire decomposition. 
By this we mean that the uniform quantizer was scaled such that the extent of 
the largest magnitude quantization bins was exactly sufficient to encompass the 
largest coefficient in the decomposition. Quantization bin size is then determined 
as 

number of bins 
We use a dead-zone of one bin size either side of zero. Quantized values 

are reconstructed to the mean value of the bin into which they were quantized. 
The number of bits desired for each symbol is used to determine the number of 

range of values 
bin size = 
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(a) 4 bins 
	 (b) 8 bins 

(c) 16 bins 
	 (d) 32 bins 

FIGURE 6.3.6. Uniform scalar quantization of the Goldhill image 
with 6 levels of 134 decomposition. 

possible bins. For example if we desire two bits per pixel we have four possible 
reconstruction values and so four bins. 

We find that the entropy of the quantized image signals is considerably lower 
than the maximum possible value allowed by the number of bits per pixel desired. 
This is due to the decorrelating effect of the wavelet transform and the probability 
distribution of the wavelet transform coefficients as outlined in Section 6.3 above. 

Figures 6.3.5,6.3.7 and 6.3.9 shows the effects of uniform scalar quantization on 
quincunx wavelet decompositions. In this case a 12 level decomposition is applied 
based on the 5/3 Kovacevic and Vetterli filters. Quantization is uniform with the 
same quantization intervals used across all detail signals. The example shows 4, 
8, 16 and 32 quantization bins available. 

Figures 6.3.4, 6.3.5, 6.3.6, 6.3.7, 6.3.8, 6.3.9 compare the effects of scalar quan-
tization on both quincunx and separable wavelet transformed images. Naturally 
as the amount of information contained in the images decreases, the quality of 
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(a) 4 bins 	 (b) 8 bins 

(c) 16 bins 
	

(d) 32 bins 

FIGURE 6.3.7. Uniform quantization of the Goldhill image per-
formed using the same method as in Figure 6.3.5. 

the image decreases. The range of values was chosen to demonstrate the rapid 
deterioration of both decomposition techniques as the data-rate is reduced. No 
file sizes are quoted as there is little point considering such an end-product in 
this situation. The purpose of the results is to compare the change in perceived 
quality with size of uniform quantization bin for both separable and quincunx 
decompositions. Doing so we see that there is no clear inherent benefit to using 
either decomposition. We choose the number of quantization bins  as  the measure 
of data rate because this applies uniform scalar quantization across the dynamic 
range of transform coefficients without the bias which can be introduced by filter 
normalization factors or other scaling effects. 

If we consider those images which use 8 bins we can gain  an  insight into the 
distortion which is generated by both types of decompositions.  The  separable de-
composition results in a very "blocky" distortion, large square areas of distortion 
occur where there are few or no discernible features of the image. The quincunx 
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(a) 4 bins 
	

(b) 8 bins 

 

(c) 16 bins (d) 32 bins 

FIGURE 6.3.8. Scalar quantization of the Barbara image using 6 
levels of D4 decomposition. 

decomposition results in a similar state of distortion but the form of the distor-
tion is quite different; in this case we have areas with few features, but unlike 
the separable case, the areas are not square but have a more rounded, smoothed 
appearance. This is due to the two-dimensional region of support of the filters 
used in the quincunx transform. Each coefficient affects an almost circular region 
(see the shape of the KV5/3 filters in Section 4.2.3) and the lack of a signifi-
cant coefficient at low resolution can lead to large regions without signal data. 
For the Lenna image, the amount of discernible detail in both reconstructions is 
about the same. Each decomposition has particular features which it represents 
well. The Goldhill image with its dominant vertical and horizontal features is 
reproduced better under the separable decomposition, while the Barbara image 
appears marginally better under the quincunx decomposition with more precise 
and pleasing reconstructions of some significant image structures. 
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(a) 4 bins 	 (b) 8 bins 

(c) 16 bins 	 (d) 32 bins 

FIGURE 6.3.9. Uniform quantization of the Barbara image per-
formed using the same method as in Figure 6.3.5. 

bins Lenna Goldhill Barbara 
4 1.015 0.955 1.013 
8 1.562 1.499 1.364 
16 2.184 2.014 2.257 
32 2.774 2.564 3.173 

TABLE 6.1. Entropies of quincunx decompositions of test images us-
ing KV5/3 filters with uniform scalar quantization. Unit of entropy 
is bits/symbol; bins column represents number of possible states of 
each pixel. 

Moving on to the 16 bin images we see that the Goldhill image is markedly 
better in the separable case than in the quincunx case, however much of the dis-
tortion is due to edge effects, a topic which has been ignored in  the  scope of this 
thesis. It is expected that the severe distortion in the sky visible  in  the quincunx 
reconstruction would largely disappear if mirrored convolution were applied. Since 
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bins Lenna Goldhill Barbara 
4 18.31 17.21 19.13 
8 23.48 21.67 23.14 
16 29.09 27.65 28.46 
32 34.24 33.56 33.80 

TABLE 6.2. Table of PSNR (dB) values for reconstructed images af-
ter uniform scalar quantization of 12 level quincunx decompositions 
using KV5/3 wavelets. 

bins Lenna Goldhill Barbara 
4 17.83 19.49 16.28 
8 21.73 22.49 18.90 
16 26.62 27.06 23.52 
32 31.74 32.38 29.09 

TABLE 6.3. Table of PSNR (dB) values for reconstructed images 
after uniform scalar quantization of 6 level separable decompositions 
using D4 wavelets. 

bins Lenna Goldhill Barbara 
4 
8 1.602 1.388 1.252 
16 2.402 1.828 2.102 
32 3.179 2.565 3.061 

TABLE 6.4. Entropies of quincunx decompositions of test images 
using the quincunx KV-D4  orthogonal filters with uniform scalar 
quantization. Entropy values are in bits/symbol. 

the quincunx filters are symmetrical but the comparison filter in the separable do-
main (the D4 filter) is orthogonal, mirrored convolution would cause distortion in 
the orthogonal filter but not the quincunx one thus skewing the results further. 
The Barbara image has a significantly better reconstruction in the quincunx case 
for the 16 bin case and the Lenna image is reconstructed well from both decompo-
sitions. For this last case, the separable case represents a visually more pleasing 
reconstruction although it doesn't contain the same level of feature content as the 
quincunx case. This is due to the good reconstruction of the vertical features in 
the background structures. For skin tones, the circular symmetry of the quincunx 
filters is especially good as distortions appear more natural, whereas the blocky 
distortions in the separable reconstruction are more obvious and disturbing. 



CHAPTER 7 

Perceptually Efficient Coding and Psychovisual Models 

This chapter focuses on the ways in which certain perceptual redundancies 
within an image can be exploited to construct efficient coding methods. A brief 
explanation of the HVS model and some significant phenomena associated with 
it are first discussed, then we move onto ways in which some of these phenomena 
lead to lower bit-rate coding without sacrificing image quality. 

Results are presented for applying psychovisual tuning to coding of quincunx 
data. These results illustrate the concepts covered and provide information on the 
importance of each of the redundancies. We also cover the psychovisual effects 
associated with using different filters. Results are presented to illustrate this. 

The term psychovisual is used to refer to properties of human visual percep-
tion. The term encompasses factors resulting from the early image capture system 
through to the human perception of significant visual features. When light falls 
on our eyes we see an image but what information we perceive from that image 
is subject to many factors. The HVS is tuned to detect certain types of visual 
information and discard other superfluous information. It is tuned for detecting 
features which are characterized by abrupt changes in some image characteristic 
(such as colour and intensity) within a small spatial distance. 

Being able to ignore or remove data which is essentially invisible to the human 
observer can significantly reduce the amount of data required to represent an image 
without a noticeable change in the perceived quality of the image. 

7.1. HVS Redundancies 

The following sections briefly introduce various types of psychovisual redun-
dancies which can be exploited to aid in coding. Further elaboration of the phe-
nomena and how to exploit them in coding quincunx wavelet data is covered below 
in Section 7.2. 

7.1.1. Spatial Frequency Sensitivity. The sensitivity of the human eye 
to stimuli of different spatial frequencies is a non-constant function of frequency. 
There is little sensitivity for very high frequencies because the details are too fine 
for our retina to discern and the mucus of our eyes acts as a low-pass filter; and 
there is little sensitivity for very low frequencies which are perceived as back-
ground. The eye is tuned to a narrow band of spatial frequencies with a peak 
response centred in the vicinity of 3-5 cycles per degree of solid angle. Above and 
below this spatial frequency range the response drops off. Figure 7.1.1 shows the 

103 
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FIGURE 7.1.1. HVS spatial-frequency sensitivity curve with ap-
proximations to quincunx decomposition levels. The scale is log-
arithmic in frequency. Level 1 is the highest resolution detail and in 
this case there are 10 decomposition levels. Clearly levels 6 through 
8 occupy the most sensitive areas of the curve and should be treated 
with the most lossless coding. This is a demonstration only and does 
not accurately reflect actual data. 

approximate shape of the spatial sensitivity response function of the HVS. For 
specific measurement results and applications see [49], 1114 [25], [76], [117], 
[93], [60], [109], [74 [34 

Because each person is different the exact form of the sensitivity function will 
vary. A general form for the sensitivity function is given by Ngan et al.1741 as 

(7.1.1) 	 S(w) -= (0.32 + 0.69 • w ) e -0.29.w) 

Although not perfect it provides a mathematical form which is quite close to the 
majority of results in the field and importantly, it is mathematically simple and 
continuously integrable over the active range of human vision (from about 0.1 to 
30 cycles / degree), a feature we make use of in Section 7.2.1. 

The frequency selective behaviour of the HVS allows us to more harshly thresh-
old and quantize image features which lie outside this sensitive band. In particular 
this is useful for subband coding since the image is conveniently broken down into 
frequency bands which can be then treated differently depending on the sensitivity 
of the HVS to that band. 

The JPEG image compression standard makes efficient use of this principle by 
allocating a specific quantization level to each frequency of the DCT depending 
on its relative importance to human perception. JPEG uses a quantization ma- 
trix which determines the quantization scaling factor to be used based on spatial 
frequency and orientation of the DCT basis function which lead to the coordinate. 

7.1.2. Contrast Masking. Contrast Masking is also refered to as Spatial 
Masking. It occurs when there is a significant feature such as an edge and also 
fine details in close proximity to the edge. Because the HVS is tuned to extract 
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FIGURE 7.1.2. Plot of the spatial frequency sensitivity function of 
the HVS given in Equation 7.1.1. Note the peak in relative sensi-
tivity at around 3 c / deg (2.9845). 

the significant features from any given context, fine details tend to blend into the 
background. The closer to the edge the less sensitive the HVS is to the fine details 
because they are obscured by the lateral inhibition' from the edge. 

In areas where there is a significant feature, other details at finer scales can be 
more highly quantized without a perceivable difference in the image. Figure 7.1.3 
shows the approximate shape of the curve showing variation of contrast sensitivity 
of the HVS with distance from a significant stimulus [60], 1731, 172, chapter 41, 
[108]. 

contrast 
edge 

Spatial dimension 

FIGURE 7.1.3. Function curve showing the change in visual contrast 
sensitivity near a significant stimulus. The dashed line represents 
the position of an abrupt change in image intensity which is the 
significant stimulus. 

7.1.3. Orientation Selectivity. As discussed in Section 7.1.1, the HVS has 
a sensitivity function for various spatial frequencies. In addition to this the orien-
tation of different spatial frequencies also affects the sensitivity of the HVS to the 
signal. 

1 Lateral inhibition is a phenomena of the very early HVS. The response of the HVS to point 
stimuli has a reinforcing affect at close proximity and then an inhibitory effect as the distance 
between stimuli increases. The difference of two Gaussians or DoG(x) function is a famous 
model of this phenomenon. 
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Of greatest sensitivity to the HVS are vertical edges, that is signals with a 
horizontally directed spatial frequency vector. As the signal orientation moves 
towards diagonal, the sensitivity drops significantly, typically by 3dB [72]. This 
allows us to bias our coding towards providing finer quality for those coefficients 
which contribute to vertical or horizontal edges, and coarser quality for those 
which contribute to diagonal edges. 

7.2. Psychovisual Coding 

In this section we outline how the phenomena outlined in the previous sections 
can be exploited with respect to the quincunx wavelet decomposition method to 
create efficient image coding methods. Of most importance are spatial contrast 
masking, orientation selectivity and spatial frequency selectivity. 

7.2.1. Using Spatial Frequency Sensitivity. Wavelet transforms decom-
pose the image into hierarchical subbands. Each successively coarser band has 
a smaller bandwidth (usually a constant ratio of the previous bandwidth). The 
division of the image data into such frequency bands allows a spatial-frequency 
sensitivity function to be applied to the quantization process and coding process. 
Wavelet coefficients (as opposed to those contained in an approximation signal) 
represent details which could not be predicted from the low-pass version of the 
image. For successively coarser bands the central frequency becomes lower. The 
first detail signal spans up to the Nyquist frequency of the image. From a per-
ceptual standpoint the maximum frequency for a given sampled image is limited 
by the sampling density of the display, which is typically around 75-100 dots per 
inch (30-40 dots per cm). 

Typical viewing distance is about 0.5m which puts the upper frequency of the 
display as seen by the observer at: 

27r 	1 
cuto f f

2 

	 \ cycles/deg 
360 arctan ( 	 4000x 0.5 ) 

= 17.5 cycles/deg 

and the peak sensitivity frequency of 5 cycles/deg corresponds to features with 
period = 7 dots. If we take a typical image size of 512x512 pixels and we decom- 
pose it to a depth of 8 levels (4 dyadic levels) then our low-pass has a maximum 
frequency of 

17.5 
wtow = 	 = 

24 	
1.09 cycles/deg 

thus the detail spaces span the range from 17.5 down to 1.09 cycles/deg and so 
the peak sensitivity of the HVS lies in the middle. For this reason we can harshly 
quantize the finest and coarsest detail signals, but there will also be a detail image 
with peak sensitivity. 
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As we can see the low-pass band is well below the peak of the HVS sensitivity 
and thus it can be quantized reasonably harshly without significant perceptual 
degradation. 

If we decompose the image further so there are more detail spaces then there 
will be a greater amount of detail at lower frequencies which can be severely quan-
tized. The upper frequency zone is independent of the number of decompositions 
as it is defined by the physical viewing environment. 

Throughout this work we have based perceptual coding on a model viewing 
environment where the monitor has an upper frequency of 4000 cycles/metre (90 
dpi) and the viewer is 0.5 metres from the monitor resulting in an upper limit of 
17.5 cycles/deg of solid angle at the eye of the observer. 

It should be noted that the HVS sensitivity drops off more substantially with 
high-frequency than with low-frequency thus low-frequency components will gen-
erally be psychovisually more important than the high-frequency components of 
which only the most significant details are actually noticed by the HVS. 

Applying the HVS sensitivity curve as shown in Figure 7.1.1 to wavelet decom-
positions is not a trivial matter. The measurements of sensitivity were performed 
for visual gratings of constant frequency and varying magnitude. This is easily 
transposed to the Fourier (and hence JPEG) domain where individual frequency 
components are considered. However in the wavelet domain, each signal spans a 
range of frequencies as defined by the bandwidth of the wavelet or scaling-function 
associated with the signal. 

log(frequency) 

FIGURE 7.2.1. To find the relative sensitivity of the Human Vi-
sual System to a wavelet subband we need to find the mean of the 
sensitivity curve over the subband. 

Consider the wavelet subband as shown in Figure 7.2.1. We can determine the 
mean sensitivity value of the subband as follows 

sp )  du;  
(7.2.1) 	 Smean 	w° 

W1 — WO 

where coo  is the lowest frequency in the band and w 1  is the highest frequency in 
the band. 
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This measure assumes that the contribution of all components in the band is 
equal. A more general form might be 

f'  S(w)W(w) • clw 
Smean 	w°  col — 

where WI w) is a weighting function in w which modifies the importance of parts 
of the band. One logical value for W(w) is W(w) = xli(w), where 'Ii(w) is the mag-
nitude of the Fourier transform of the wavelet function at frequency w. Although 
this can possibly scale the values of Smean  the values have arbitrary units so it 
doesn't have any significance. 

For the purposes of our experimentation we assume that the contribution is 
constant over the support of each subband. 

Using the representation of the sensitivity factor from [74] Equation 7.1.1 we 
have 

S(w) = (0.32 + 0.69 • co) e- ("9' )  

hence 

Iwo 
S (w) • clw 

ui, 

(0.32 • e -0 • 29 ' + 0.69 • w • e -°.29•1 • dw 
wo 

(7.2.2) 

	

0.32 	e_0.29.w ± 	0.69 

	

—0.29 	(-0.29) 
2  ( 0.29 • ci.) — 1) e -'29' 

Wi 

wo 

  

(9.3079  e-0.29.w ± 2.3793 	e -0.29.1 

The calculation of the frequency range of the subband we are concerned with 
is not automatic. With separable sampling the decomposition levels results in 
an octave subband structure. In this case the highest frequency subband would 
span from lw 2 — max to Wmax•  With quincunx sampling this is not quite the case as 
there are two possible orientations. Firstly note that two quincunx decompositions 
are equivalent to one separable decomposition so the bandwidth covered by two 
iterations is again Lt) - max to Wmax. 

We can approximate both quincunx bands to the separable band under which 
they fall and this makes for a simple solution. However this removes one of the 
strengths of the quincunx decomposition which is its ability to tune coding based 
on frequency sensitivity values in a more finely grained manner than separable 
decompositions. To thoroughly solve this problem we need to consider the sen-
sitivity factor separately for two different orientations. When the subband has 
horizontal-vertical orientation then its maximum frequency is as expected. For 
diagonally oriented subbands however, the distance between immediately adja-
cent pixels has increased by a factor of hence the maximum frequency is now 
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Wmaxdzag  = \,/1 Wmaxtiv • Now the lower frequency bound of the subband is the upper 
bound of the next lower resolution subband. 

If the maximum screen resolution is bi -screen then the highest resolution sub- 
band will span the frequency range v12 -screen to Wscreen• The next lower subband 
will span from ,Wscreen to 7,2Wscreen etc. through all the subbands to the lowest 
resolution band. The 71th  highest subband (n > 1 with n = 1 being the highest 

fr., \
) 
 1-n) .  

resolution) spans the frequency range (LL) -screen • (1M -n  Wscreen • (V h 

As an example we calculate the mean sensitivity of the HVS to the 5 th  decom-
position detail signal. 

From above, Wlot, = 17.5W 	-5  = 3.09 c/deg and Whigh = 1/ • 3.09 -= 4.4 
c/deg. 

So using 7.2.2 we get an overall relative sensitivity factor of 
\ 	1.200 + 0.0782 

Smean (5) - 	  0.9756 
4.4 - 3.09 :=  

As a quick check, looking at the sensitivity curve plot in Figure 7.1.2 we see 
that the sensitivity result appears approximately correct. 

7.2.2. Coding using Sensitivity Data. For each subband in a decompo-
sition we can determine the mean sensitivity of the HVS based on the expected 
viewing distance. Table 7.1 shows the relative sensitivities for 20 levels of quin-
cunx downsampling. The normal application of this information is to adjust the 
threshold levels and step size for quantization. The lower the sensitivity value, the 
larger the threshold and step size. 

Subband 'tow W high Smean 

1 12.37 17.5 0.1468 
2 8.75 12.37 0.3617 
3 6.19 8.75 0.6293 
4 4.375 6.19 0.8550 
5 3.09 4.375 0.9772 
6 2.188 3.09 0.9925 
7 1.547 2.188 0.9332 
8 1.094 1.547 0.8377 
9 0.773 1.094 0.7344 
10 0.547 0.773 0.6398 
11 0.387 0.547 0.5605 
12 0.273 0.387 0.4976 

TABLE 7.1. Values of mean relative sensitivity of the HVS for sub-
bands in the quincunx decomposition. Values are for viewing a 90 
dpi monitor at 40cm. col. and W high are in cycles per degree of solid 
angle. 

A logical method would be to set thresh a sml  an  and step oc simi an  . For 
uniform quantization often the threshold and the step size are the same. 
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Applying this quantization scheme results in immediate gains in perceived 
quality when the bit-rate is held constant. 

By applying a scaling to all wavelet coefficients based on the sensitivity of 
the HVS to the subband in which the coefficients occur, allows us to bias the 
quantization process. If we scale all wavelet coefficients in a subband by the 
sensitivity factor for that subband then the zero-tree coding process will favour 
coding those coefficients in the more sensitive subbands. 

So we make 
valuerie,„ = value„ ig  • Smean 

We find that applying this simple scaling results in dramatic improvements in 
image quality for unchanged bit-rate. For the Lenna image, the quality change is 
not particularly great but for the Goldhill and Barbara images we see a significant 
improvement in the image quality. 

7.3. Results Using HVS Tuning 

We present here some results showing the significant difference which simple 
tuning of the quantization process can male. We make use of the perceptual 
phenomena discussed above to bias the quantization process more towards per-
ceptually important components. 

7.3.1. Frequency Selectivity Results. In this section the quantization of 
the decomposed signals is tuned to use the spatial frequency sensitivity model 
of the human visual system. We apply scalar quantization to the decomposition 
detail signals with a varying number of possible states, however the signals are 
weighted so that those which are more important to the HVS (on a frequency 
sensitivity basis) are magnified and thus more likely to be finely quantized. 

Section 7.2 outlines how HVS frequency sensitivity operates and how we can 
arrive at a weighting function for wavelet subbands. 

To perform HVS weighting in this section, coefficients for each subband were 
weighted before quantization and corrected to their original scale after quantiza-
tion. This results in a higher probability that coefficients in perceptually more 
important subbands will be coded to a higher precision than those in unimportant 
subbands. 

If S(n) is the sensitivity weighting factor for subband n then all coefficient 
values in that subband are scaled by (n) so y' = y • S (n). After scaling, the dy-
namic range of the modified decomposition is determined and scalar quantization 
is performed identically across all scales. After quantization is finished coefficient 
values are scaled back to their original dynamic range ie. = F s(1-7, ) , where is 
the quantized version of y. 

The entropy values of HVS and uniform quantized images are quite similar. In 
general for the same number of quantization bins the PSNR values are higher for 
uniform quantization as can be seen by the comparison in Table 7.5. This is to 
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(a) 8 bins (b) 32 bins 

(c) 64 bins (d) 128 bins 

FIGURE 7.3.1. HVS tuned scalar quantization of 6 level D4 sepa-
rable decomposition of image Lenna. 

be expected as it is generally known that uniform quantization leads to the lowest 
mean square error of all non-adaptive quantization schemes. However contrary 
to the PSNR results the perceived image quality goes against these these results 
when viewed under the designed conditions as outlined in section 7.2.1 (in this case 
0.5m from the monitor). This is because although uniform quantization produces 
a result with a lower statistical error, it does not weigh the relative importance of 
the errors to the human visual system. This can be demonstrated by comparison 
of the images in Figure 6.3.5 (c) and Figure 7.3.4 (c). For convenience these images 
are reproduced below in Figure 7.3.7. The Goldhill images in Figure 7.3.7 (c) and 
(d) have a difference in PSNR of 3.82dB yet there is no perceivable difference in 
quality. Statistics based thought would equate a difference of nearly 4dB with a 
significant change in image quality, but this is shown to not be the case. 

As can be seen from Figure 7.3.7 the use of HVS weighting of scalar quanti-
zation can make a marked difference in the perceived quality of an image for the 
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(a) 8 bins 	 (b) 32 bins 

(c) 64 bins 
	

(d) 128 bins 

FIGURE 7.3.2. HVS tuned scalar quantization of 6 level  D4  sepa-
rable decomposition of image Goldhill. 

same PSNR, or lower the PSNR while retaining the same perceived image quality. 
With HVS weighting of coefficients, the details reconstructed are those to which 
the human eye is most tuned and so the images have a higher perceived qual-
ity than achieved with uniform quantization and the same error. This apparent 
contradiction between PSNR value and perceived quality is a reasonably common 
occurrence, one which is encountered in other areas of this  Thesis  as well - in 
particular Section 10.3. 

7.3.2. Orientation Selectivity Results. The structure of  a  quincunx de-
composition is such that the subbands alternate between horizontal-vertical in-
formation and diagonal information. The first level of decomposition results in 
subbands where the full gamut of horizontal and vertical information is contained 
in the low-pass signal, but only part of the diagonal information  is  contained in 



(b) 32 bins 

(d) 128 bins 
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(a) 8 bins 

(c) 64 bins 

FIGURE 7.3.3. HVS tuned scalar quantization of 6 level  D4  sepa-
rable decomposition of image Barbara 

bins Lenna Goldhill Barbara 
4 0.0637 0.0956 0.161 
8 0.212 0.331 0.486 
16 0.495 0.811 0.991 
32 0.985 1.584 1.656 
64 1.782 2.522 2.499 

TABLE 7.2. Entropy values of reconstructed images from HVS 
weighted scalar quantization of 6 level separable decompositions 
with the D4 wavelet. 

the low-pass. The detail signal contains the missing predominantly diagonal in-
formation. The second decomposition step results in a detail with horizontal and 
vertical details. 

Using the fact that the HVS is less sensitive to diagonal details than to vertical 
or horizontal details, we can refine our coding. For subbands which result in a 
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bins Lenna Goldhill Barbara 
4 18.79 19.26 17.90 
8 20.45 22.71 19.53 
16 22.87 25.17 22.27 
32 28.48 29.98 27.58 
64 34.61 35.98 33.78 

TABLE 7.3. PSNR values of reconstructed images from HVS 
weighted scalar quantization of 6 level separable decompositions 
with the D4 wavelet. 

(a) 4 bins 	 (b) 8 bins 

(c) 16 bins 	 (d) 32 bins 

FIGURE 7.3.4. Lenna image coded with HVS weighted scalar quan-
tized wavelet transform data using 12 levels of quincunx decompo-
sition with KV5/3 filters. 

detail with predominantly diagonal information, we can more coarsely code the 
data. 

We can modify the mean relative sensitivity data from Table 7.1 above to 
account for the reduced sensitivity of the HVS to diagonal features. Netravali 
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(a) 4 bins (b) 8 bins 

(c) 16 bins (d) 32 bins 

FIGURE 7.3.5. Goldhill image coded with HVS weighted scalar 
quantized wavelet transform data using 12 levels of quincunx de-
composition with KV5/3 filters. 

and Haskell 1721 found that the sensitivity of the HVS to diagonal features closely 
follows that of vertical and horizontal features but with a contrast gain 3dB lower. 
There is no relationship between the arbitrary relative sensitivity values of Ngan 
et al. [74] and the quantitative values referred to by Netravali and Haskell, so we 
make an assumption here. 

We assume that a 3dB reduction in contrast gain translates to a sensitivity 
reduction by a factor of 2. The 3dB reduction in sensitivity only occurs for features 
exactly at the diagonal but the diagonally oriented subbands  of  the quincunx 
decomposition contain details from all orientations but weighted more towards 
diagonal content. To account for this we apply a correcting factor to bring the 
change in sensitivity to a factor of 1.5 which we find works well. 

To illustrate the sensitivity of our eyes to th various subbands we examine 
the distortion resulting from the selective removal of signal energy from particular 
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(a) 4 bins 	 (b) 8 bins 

(c) 16 bins 	 (d) 32 bins 

FIGURE 7.3.6. Barbara image coded with HVS weighted scalar 
quantized wavelet transform data using 12 levels of quincunx de-
composition with KV5/3 filters. 

subbands in a wavelet decomposition. It is also useful to investigate this because 
lossy coding of wavelet decompositions can result in severe removal of energy from 
many of the subbands of a decomposition. A desirable property for a wavelet 
transform to have is that the reconstruction from just the approximation data be 
of good quality without the addition of energy from higher frequency subbands. 
If the reconstruction from the approximation data if good then more of the detail 
signal energy can be removed without affecting image quality too severely. 

We find that the reconstruction from the separable and quincunx transforms 
take on different forms of distortion as significant amount of detail energy are 
removed suggesting that the choice of transform to use is dependent on the image 
being processed. 
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(a) 	Uniform 	quantization. 
PSNR=29.09dB. 

(b) 	HVS 	quantization. 
PSNR=26.79dB. 

(c) 	Uniform 	quantization. 
PSNR=27.06dB. 

(d) 	HVS 	quantization. 
PSNR=23.24dB. 

(e) 	Uniform 	quantization. 
PSNR=28.46dB. 

(f) 	HVS 	quantization. 
PSNR=26.04dB. 

FIGURE 7.3.7. Comparison of HVS weighted and uniform quan-
tized images. Both images have very similar perceived quality while 
having disparate PSNR values. 
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bins Lenna Goldhill Barbara 
4 1.021 0.972 1.035 
8 1.692 1.536 1.392 
16 2.436 2.160 2.071 
32 3.095 2.803 2.870 

TABLE 7.4. Entropies  of  quincunx decompositions of test images 
with HVS tuned quantization. Unit of entropy is bits/symbol. 

bins Lenna Goldhill Barbara 
4 16.95 (18.31) 16.14 (17.21) 17.88 (19.13) 
8 21.21 (23.48) 18.86 (21.67) 21.45 (23.14) 
16 26.79 (29.09) 23.24 (27.65) 26.04 (28.46) 
32 31.82 (34.24) 26.91 (33.56) 30.17 (33.80) 

TABLE 7.5. PSNR values of reconstructed images  from  HV 
weighted (and uniform) scalar quantization of 12 level quincunx de-
compositions with the KV5/3 wavelet. Uniform quantization results 
reproduced from Table 6.2 in parentheses. 

(a) no details 	(b) 1 detail 
	

(c) 2 details 

(d) 3 details 	(e) 4 details 	(f) 5 details 

FIGURE 7.3.8. Lenna image reconstructed from the lowest reso-
lution details of a 6-level separable wavelet decomposition using 
Daubechies D4 filters. 

Figure 7.3.8 is reproduced from Figure 2.12.1. It shows how the quality of the 
reconstructed image varies as detail energy is removed from a separable decompo-
sition. 
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(a) no details 
	(b) 2 details 
	(c) 4 details 

(d) 6 details 	(e) 8 details 	(f) 10 details 

FIGURE 7.3.9. Lenna image reconstructed from a 12 level quincunx 
decomposition using the Kova&vid and Vetterli 5/3 biorthogonal 
filter pair 11011. 1561. 

Figure 7.3.9 is a similar situation for the quincunx case. In this case there are 
12 levels of decomposition to ensure that the approximation signals of both the 
separable and quincunx decompositions are the same size. 

One of the most noticeable effects which can be seen is that the quincunx 
reconstruction from just the low-pass data is of significantly lower quality that the 
D4 version. In particular, the image is not smooth, but rather contains strong 
dots - bright areas centred on the positions of the low-pass values. The reason for 
these dots is the shape of the KV5/3 filters. The have a very large central tap 
with respect to the size of the surrounding taps. This causes the central tap to 
dominate the shape of the filter. In this case where there is no additional detail 
to counter-balance this effect, the artifacts are quite strong. 

It can be seen that both separable and quincunx methods perform with a sim-
ilar degree of reconstructed quality when at least 2 (equivalently  4  for quincunx) 
details signals are used. 

Figure 7.3.10 shows the effects of removing selected detail signals from a separa-
ble decomposition of Lenna. The orientation specificity of the separable transform 
is dramatically demonstrated by the complete lack of features of a particular orien-
tation when its wavelet coefficients are absent. This is strikingly evident in Figures 
7.3.10 (a), (c) and (e) where the strong vertical feature on the left-hand side of 
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(a) only horizontal 	(b) only vertical 	(c) only diagonal 
edges 	 edges 	 edges 

(d) diagonal and 	(e) diagonal and 	(f) horizontal and 
vertical edges 	horizontal edges 	vertical edges 

FIGURE 7.3.10. The effects of selectively removing some  of  the of 
the three orientations of detail signals in a 6 level separable de-
composition of Lenna using D4 wavelets. In each case details were 
removed from every level of the decomposition or not removed at 
all. 

the image is completely removed when vertical edge data (low-pass vertically and 
high-pass horizontally) is removed. 

Comparing the visual quality of the images in Figures 7.3.10 (d), (e) and 
(0 we find that (f) is the most pleasing, followed by (d) and lastly (e). This 
was predicted from the theory of orientation specificity because the HVS is most 
sensitive to vertical edges, and least sensitive to diagonal images. Figure 7.3.10(f) 
contains vertical and horizontal edges, the two most important, and so is the most 
pleasing. The least pleasing is Figure 7.3.10(e) which does not contain any vertical 
edges - hence only the low importance components are left. 

Comparing the top line of Figure 7.3.10, it is obvious that (b) is the best of 
the bunch. Again it corresponds well with what is predicted since it contains the 
vertical edges which are most important. The least pleasing of the top row is 
Figure 7.3.10(c) which contains only diagonal components. 

At this point it is also useful to demonstrate one final experiment for orientation 
selectivity. The reader is again directed to Figure 7.3.10 and is asked to tilt his/her 
head so that edges which were horizontal are now viewed as vertical. Doing this 
it can be seen that a dramatic improvement is observed in Figure 7.3.10(a) which 
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now has only vertical features, and a dramatic decline is noticed for (b) which now 
has horizontal features. 

7.3.3. Spectral Masking. Because of the lateral inhibition function of the 
HVS there are certain spatial frequencies or spacings of regular features at which 
the HVS displays resonant/anti-resonant tendencies. It is possible for features 
of a particular spacing to interfere with other features so as to obscure some 
features. Unfortunately this type of phenomenon isn't generally usable for image 
coding because it relies on the interaction of particular ranges of spatial frequencies 
and because we can't control the viewing distance the viewer chooses we can't 
guarantee that certain features will have a particular spatial frequency on the 
retina. 

Spectral masking was not used in the production of results for this work but 
it is included here for completeness. 

7.3.4. Spatial Masking. Spatial masking occurs when fine details (ie. mi-
nor features located in high-resolution levels) are masked by significant features 
(usually of larger scale, ie. lower resolution). If significant features at coarse detail 
levels mask details at finer detail levels then we can adaptively vary the quantiza-
tion threshold for the wavelet coefficients at different resolution levels and locations 
depending on the behaviour of parent 2  pixels and neighbours to parent pixels. 

If we code our details in order from coarsest to finest we can predict the 
quantization levels at both the encoder and the decoder since we must already 
have knowledge of the coarse details in both cases. This coding method lends 
itself well to the zero-tree coding process (as will be discussed in detail below) and 
forms the basis of one of the major contributions of this work. 

This type of masking can extend to several decomposition levels. The stronger 
the feature is the greater the number of levels it will have a masking effect over. 
The effects can also be compounded by overlapping features at different scales. 
This is a common occurrence since many image features (ie. edges) span several 
scales. 

The locality of the significant features also determines the quantization of the 
finer details. The closer - in spatial terms - the significant feature is to the detail 
the greater the masking effect and thus the greater the quantization threshold can 
be. The neighbourhood of masking is typically about 3 pixels at the same detail 
level as the feature which will expand as the levels become finer. 

Additionally the presence of significant features also obscures other weaker fea-
tures in the same detail level. This generalized case is known as Activity Masking 
or Contrast Masking and it takes into account the overall activity within an image 
region. The greater the activity the greater the amount of information which is 
obscured from the perception of the observer. 

2Parent-child relationships are covered in detail in Chapter 5. 
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Later chapters, in particular Chapter 10, of this Thesis are dedicated to further 
developing these concepts and the implementation of a coder on the quincunx 
lattice for this purpose. 

7.4. Distortion Due to Choice of Wavelets 

This section examines the effect that the choice of wavelet has on the recon-
structed image quality. A more rigorous analysis of this topic can be found in 
[105] and [64 We restrict ourselves to considering the intensity of the images 
and ignore the effects of colour. The quantization of colour has been thoroughly 
investigated and it is widely recognized that the intensity information is much 
more important. A good example of this is the colour sampling methods of JPEG 
[331 which samples colour data in a more sparse sampling grid than for intensity 
data. 

It has been shown 1861,187] that the quality of a reconstructed image in a 
wavelet subband coding system is highly dependent on the choice of wavelet. For 
the separable case it now appears to be generally accepted that the 9/7 biorthog-
onal pair of Antonini, Barlaud and Daubechies [81,1611 gives the best all round 
performance for psychovisual assessment. 

For the quincunx case no such wide-ranging assessments have been made be-
cause it is not possible to make use of the body of filter design work which has 
been carried out in the one-dimensional domain. The lack of available filters for 
use with the quincunx decomposition makes comparisons between separable and 
non-separable decompositions very difficult. However this remains one of the aims 
of this Thesis. The design of the required filters is outside the scope of this Thesis 
but sufficient work has been presented to provide some rough comparisons. 

Those filters which have been considered in the research leading to this Thesis 
have been found to have some problems which make them generally unsuitable for 
image processing. This is to be expected since they were not designed with such a 
purpose in mind. In fact all available quincunx filter families produced to date are, 
to the best knowledge of the author, for demonstration purposes only, ie. merely 
to demonstrate that a quincunx decomposition is possible. Their designs are thus 
low in complexity and lacking many of the important properties (with respect to 
image compression) of some of their well designed one-dimensional counterparts. 
Smoothness of response is a particular point of concern in some cases and attempts 
were made to correct this in a case outlined in Chapter 4. 

The para-unitary filters as proposed by Kovaeevio and Vetterli in [1011 are 
very irregular and in general not suited to images with any smooth areas as syn-
thesis of smooth areas from such jagged functions requires many coefficients. The 
irregularity in the reconstruction (synthesis) wavelets leads to very visible errors 
when even a small number of coefficients are lost in coding. The loss in SNR may 
not be great - this filter set was found to have better PSNR than others tested 
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- but the visibility of the coding errors is very high and thus from a perceptual 
point of view the reconstructed quality is not acceptable. Results showing this 
distortion and PSNR values are shown in Section 7.5. 

The zero-phase filters of Kova6evia and Vetterli in [1011 and 1561 are much 
smoother than the Daubechies D4 based para-unitary filters and their performance 
is in general much better from a perceptual stand-point. This is in part due to the 
symmetry which these filters possess. However they are still not smooth enough 
for the applications for which they are being used in the context of this work. The 
large relative magnitude of the central tap of the filters leads to very obvious errors 
when only a small number of coefficients is available. The quality degradation is 
far better than for the para-unitary case due to the more regular nature of the 
filters and their symmetry but it is still unsuitable for useful image compression. 

Symmetric filters are highly sought-after for image processing work. One of 
the key properties of symmetric filters is their linear-phase nature which leads to 
a constant delay on all frequency components. Thus the alignment of the many 
components required to synthesize an edge is not disrupted by the action of the 
filter. 

With the KV5/3 linear phase filters the distortion that is caused by the quanti-
zation (and eventual removal) of the coefficients appears in the form of patches of 
distortion which are a result of the isolated (in space) large magnitude coefficients 
which remain. The inverse transform results in primal wavelets being constructed 
around these centres as successive inverse transforms act on the signal. Thus we 
find throughout the reconstructed image, areas of error where the image contains 
patterns resembling the shape of the primal wavelet 3  derived from the filters used. 
If this wavelet is smooth and local in nature then its effects are not very noticeable. 

Another problem which is faced by truly 2-D wavelet compression is that the 
filters which are used are actually two-dimensional. This means that their area of 
support covers not just a single column or row but an area of the image at every 
resolution level. Thus a single coefficient (in a low resolution detail signal) can lead 
to reconstructed visual effects spanning a very large area of the image. Currently 
this is a disadvantage because the filters used are not well suited to the task of 
image compression; generally because their shape does not form a good match for 
common image structures/features. Thus major features are synthesized which do 
not accurately represent the image content and more coefficients are required to 
refine the representation. It is the belief of the author that as the design of suitable 
2-D filters improves, the ability of truly 2-D wavelets to efficiently represent images 
will improve dramatically. This is because of the fact that a single coefficient can 
synthesize features over such a large area of support. 

3A primal wavelet is the waveform which result from the inverse wavelet transform of a delta 
function. The single coefficient results in a waveform which is the basic shape of all wavelets 
derived from the filters. 
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The choice in determining significant coefficients becomes very difficult when 
the wavelet basis function is not well suited to the signal which is being compressed. 
Although principles of orthogonality remain, the interaction between coefficients 
in the support areas in two dimensions is significantly greater than in the one-
dimensional case. We wish to determine which coefficients contribute the most 
significant information to the human viewer and retain as much of that information 
as possible. When our basis is not well suited to our signal then we are often 
faced with the situation where several weak coefficients are needed to construct 
a significant feature (which could be expressed by a single large coefficient), and 
yet the magnitude of neither one of the coefficients alone is enough to allow it 
to be preserved through quantization. Hence all information associated with the 
feature is lost. If the same feature could be expressed by a smaller number of 
larger coefficients, compression would likely result in better reconstructed image 
quality. 

In general the wavelet decomposition represents an efficient decorrelation and 
compaction of the data present in a signal. Statistically the reconstructed quality 
is expected to be good from a particular amount of retained information energy. 
For consumption by the human viewer the best results will be obtained when 
the major details contained in the transform coefficients represent major features 
as perceived by the human viewer. In this case the basis functions will closely 
coincide with image primitives of the early HVS. The more closely we can tune 
the basis functions to those primitives the better will our representation be for a 
small number of coefficients. 

It was with this in mind that non-separable sampling was chosen as the basis 
of the majority of the work presented in this Thesis. The response of the primitive 
areas of the HVS to stimuli is two-dimensional in nature. A point stimulus elicits 
an excitation/inhibition response from the HVS which extends into an area sur-
rounding the location of the stimulus on the retina. In an image processing context 
the response is often approximated by a "Difference of two Gaussians (DoG)" func-
tion ie. DoG(x) = Gi  (x) — G2(x) where G i (x) and G2(x) are Gaussian functions 
with differing values of standard deviation. It is this inhibition behaviour which 
leads to the phenomenon of spatial activity masking where an intense feature can 
obscure the presence of finer details if they occur within close spatial proximity 
to the intense stimulus. It also leads to the varying spatial frequency sensitivity 
of the HVS. It is desirable then that a basis function for image coding reproduce 
this inhibition property. 

7.5. Results Using Various Quincunx Filters 

In this section we compile some results of using various filters developed for 
the quincunx lattice. The results presented here are presented for completeness 
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and to exemplify statements made above about the suitability or lack thereof of 
the various filters to image processing applications. 

7.5.1. The Quincuxn D4 Wavelet. As stated above, Kovaevi6 and Vetterli 
presented a quincunx compliment to the orthogonal Daubechies D4 filter[101]. We 
present here some examples of coding using this filter set. 

Figures 7.5.1 - 7.5.3 show the results of scalar quantization of images trans-
formed using the quincunx D4 filter-set. The quantization is performed using the 
same method outlined above for the separable D4 and quincunx KV5/3 filters. As 
can be seen there is significant, highly visible distortion in the image even with a 
high precision of coefficient values. 

(a) 2 bpp 
	 (b) 3 bpp 	 (c) 4  bpp 

FIGURE 7.5.1. Results of using the Kovaevie and Vetterli D4 
wavelet for quincunx with uniform scalar quantization on Lenna 
image. 

(a) 2 bpp 
	

(b) 3 bpp 
	

(c) 4 bpp 

FIGURE 7.5.2. Results of using the Kova6evi6 and Vetterli D4 
wavelet for quincunx with uniform scalar quantization on Goldhill 
image. 

The cross-hatch distortion proves to be exceptionally irritating to the eye and 
persists through all forms of coding tested. It is worth noting the PSNR values 
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(a) 2 bpp 
	 (b) 3 bpp 

	 (c) 4 bpp 

FIGURE 7.5.3. Results of using the Kova6evi6 and Vetterli D4 
wavelet for quincunx with uniform scalar quantization on Barbara 
image. 

for the quincunx orthogonal filter because they emphasise a previous statement 
about the suitability of PSNR as a perceived quality measure. 

bpp Lenna Goldhill Barbara 
2 18.44 17.56 16.13 
3 24.41 21.79 21.19 
4 30.50 27.31 27.50 
5 36.75 33.71 34.04 

TABLE 7.6. PSNR values from using orthogonal D4 filters for the 
quincunx lattice. These results show that the quincunx D4 wavelet 
produces good PSNR values. 

Table 7.6 shows these PSNR results which are generally fractionally higher 
than the equivalent results for the linear phase KV5/3 filter set. This is a result 
which could be predicted since orthogonal filters are generally found to produce 
better SNR results than linear-phase filters - in fact the accuracy of orthogonal 
filters is the key reason for their use. 

This situation is a good example of why the PSNR value was not used as a 
quality metric for this Thesis. Although in this case the orthogonal filters pro-
duce a higher PSNR and therefore a statistically more accurate reproduction of 
the original image, the result is of much lower perceptual quality because of the 
noticeability of the coding artifacts introduced by the filters. 

7.5.2. Modified Kovaevit and Vetterli Filterbanks. To have a success-
ful coding method it is important that the filters have a smoother response than 
the KV5/3 filters. One such design was attempted in Section 4.2.4 which reduces 
the central tap value of the low-pass reconstruction filter. Results of using this 
filter are shown in Figure 7.5.4. As can be seen there is some change in the quality 
of the images reconstructed from only the coarsest subbands which encourages 
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(a) 2 details 
	

(b) 6 details 
	

(c) 8 details 

(d) 2 details 
	

(e) 6 details 
	

(f) 8 details 

(g) 2 details 
	(h) 6 details 
	

(i) 8 details 

FIGURE 7.5.4. Lenna, Goldhill and Barbara decomposed and re-
constructed using a modified KV5/3 filterbank with detail signals 
removed in the same fashion as 7.3.9. The modified filterbank is 
designed to reduce the central tap magnitude with respect to the 
neighbouring taps. 

further investigation but the design of such filterbanks is well beyond the scope of 
this Thesis. 



CHAPTER 8 

Zero-tree Coding 

In this chapter we review zero-tree coding and expand upon the ideas of Shapiro 
for the purpose of coding quincunx wavelet decompositions. We show that ori-
entation specificity of the quincunx subsampling structure offers two alternative 
zero-tree structures but we find from results that there is no major advantage in 
either design. 

Many of the ideas presented here are equally applicable to the separable domain 
as to the quincunx domain. Quincunx resampling was used as the test platform 
for much of the experimentation and separable results are incomplete due to time 
restrictions. 

8.1. Introduction To Zero-tree Coding 

Zero-tree coding is a coding method which exploits the structure of a wavelet 
decomposition of an image. It is very efficient when the image has well separated 
areas of activity because the method efficiently codes regions with an absence of ac-
tivity rather than the presence of activity. This property becomes very important 
for very low bit-rate compression because as threshold levels for coding become 
larger, areas of inactivity (approximately zero value) in the transform coefficients 
become the dominant feature. Only a small number of coefficients are needed 
to express the information of the image and they are generally closely clustered 
around major image features such as thick edges and lines. 

8.1.1. The zero-tree algorithm. The zero-tree method looks at a wavelet 
transform by visual area, and in a hierarchical manner. It retains the concept of 
hierarchical parents and children in a multiresolution context. The key concept 
in zero-tree coding is the tree: this is a set of coefficients beginning at a particu-
lar spatial and resolution location and spanning all coefficients which are children 
of the tree root. We can consider coefficients as residing at particular locations 
within a 3-space defined by 2-D location and resolution depth. A child of a coef-
ficient is defined as another coefficient at finer detail level, and thus lower in the 
decomposition hierarchy, contained within the spatial region covered by its parent. 
Every coefficient has one and only one immediate parent at the immediate next 
coarse level but one parent may have may have several immediate children. The 
number of children per parent depends on the decomposition tree type (eg. sepa-
rable, quincunx, hexagonal, etc.). Separable, ie. Mallat pyramid decompositions 

128 
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FIGURE 8.1.1. A tree of separable decomposition coefficients. Co-
efficients at coarse levels occupy a greater area in the image than 
those at finer levels. Several fine coefficients can reside within the 
same spatial region spanned by one coarse level coefficient. 

FIGURE 8.1.2. A binary tree as present in the Quincunx zero-tree 
representation. This shows a 4 level tree spanning a (2-1(2) 
coefficient area at the finest level. 

result in a decomposition tree with four children per parent, whereas the quincunx 
decomposition results in a tree with only two children per parent. 

A zero-tree is a tree of coefficients in which the parent and all children, as 
far down the tree as it extends, are zero. In this case zero is used to mean that 
the coefficient is below the current threshold of significance. Zero-trees become 
common under very low bit-rate conditions when the majority of coefficients are 
below the threshold. In this case it is possible to reduce the majority of the area 
of a decomposition to just one or two symbols. 

Due to the way in which image decompositions are structured, zero-trees occur 
frequently over many coefficients particularly when the coding threshold is high 
such as at the beginning of the coding process. This means that a rough recon-
struction of the original image can be obtained with very little information by 
setting the threshold to a high level. 

Figure 8.1.4 shows a wavelet coefficient tree for separable and quincunx de-
compositions. It can be seen that the separable method - which has more cosets 
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FIGURE 8.1.3. A quad-tree as present in the separable zero-tree 
representation. A 3 level tree is shown spanning a 4x4 coefficient 
area at the finest level 

(a) A quad-tnee. Separable case. (b) A binary tree. Quincunx case. 

FIGURE 8.1.4. Comparison of binary and quad-trees covering the 
same area of coefficients at the finest resolution level. Both cover a 
4x4 coefficient area. 

- creates a flatter tree structure. This has the advantage of requiring fewer coeffi-
cients to represent the tree but it has the disadvantage that significant coefficients 
are more detrimental to the coding efficiency. 

The coding process begins with an initial coding threshold to which coefficients 
are to be compared for significance. All coefficients are coded as one of four possible 
symbols: 

(1) (+) - significant and positive in sign 
(2) (-) - significant and negative in sign 
(3) (IZR) - insignificant (but with significant children) 
(4) (ZTR) - the root of a zero-tree (insignificant and all children are insignif-

icant) 

The zero-tree root (ZTR) symbol is the most powerful because it tells the coder 
that there is a tree rooted at its location and all coefficients which are children of 
the location in question are insignificant as well. Zero-trees are powerful because 
they remove the need to code (to any precision) a large number of values in the 
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(a) 
	

(b) 

FIGURE 8.1.5. (a) Original Lenna image. (b) Reconstructed image 
from the information in one pass of a zero-tree coder, using a 12 
level quincunx decomposition and the Kovacevic and Vetterli 5/3 
filter set. Original size 262144 bytes. First-pass zero-tree 607 bytes. 
Rate 0.0023 bpp. 

decomposition structure. Their value is inferred to be below the current threshold 
of significance and so not bits of precision are coded for them. 

If the root of the zero tree is high in the decomposition hierarchy (ie. at a coarse 
resolution level) then the number of coefficients which are children can be very 
large resulting in an efficient method of expressing a large number of coefficients. 
As the coding threshold drops, the probability of a coefficient being insignificant 
becomes smaller and zero-trees become uncommon. Under these conditions the 
coding overheads of this method tend to outweigh the benefits gained from zero-
tree coding. Other more uniform coding methods are better employed in this case. 
This is discussed further in Section 8.2. 

Since the coding threshold only ever drops throughout the coding process, once 
a coefficient is known to be significant with respect to a threshold it will always be 
significant with respect to any future thresholds. This fact is important to keep 
in mind when explaining the coding process. 

There are two sections to the coding process: often called the dominant and 
subordinate passes in the literature. Both passes scan through all coefficients in all 
levels of the decomposition. The purpose of a dominant pass is to determine which 
coefficients, that were not significant in the previous significance pass, have become 
significant due to a reduction in the coding threshold. It also codes whether a 
newly significant coefficient is positive (+) or negative (-) in amplitude and if 
an insignificant coefficient is isolated (IZR), or the root of a zero-tree (ZTR). A 
dominant pass always occurs immediately after the coding threshold is lowered. 

Once the dominant pass is completed, the subordinate (or refinement) pass 
is performed. The purpose of the subordinate pass is to refine the precision of 
the magnitude of any coefficients which are currently significant, including those 
which have just been added by the dominant pass. For each coefficient in the map 
of significant values, one extra bit of precision is added to the value coded. There 
are only two possible symbols in the subordinate pass 
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bit-stream = +, 1, 0, 0 
(+)ve 	significant 

FIGURE 8.1.6. The reducing level of the coding thresholds in the 
zero-tree coding scheme. As the threshold drops the uncertainty 
about the value of a coefficient becomes less. Each halving of the 
threshold adds one bit of precision to the information known about 
the coefficient value. 

(1) (+) - Refine the value to the upper half of the uncertainty range 
(2) (-) - Refine the value to the lower half of the uncertainty range 

The order in which coefficients are scanned is important because it defines the 
parent-child relationship between pixels. The parent-child relationship defines the 
order in which trees are created. It is important that the coefficients of greater im-
portance are higher in the tree structure as this allows zero-trees  to  be constructed 
at lower levels while the important coefficients remain significant  in  magnitude. 

8.1.2. Break-even Considerations. Zero-tree coding is very efficient at 
coding wavelet decompositions when the coefficient trees are  very  sparse. This 
typically occurs at the start of coding when the zero-tree threshold is high and so 
most coefficients are insignificant with respect to the threshold. With each pass, 
the threshold is lowered and more coefficients are likely  to become  significant. As 
the complexity of the significant coefficient tree becomes greater,  the  cost of coding 
the dominant and significant passes becomes greater. 

For latter stages of the coding process we propose that it is more appropriate 
to use a more traditional bit-plane method for coding the remaining bits of the 
coefficients. The use of such methods can be justified  for  the  least  significant bits 
of the coefficients because the values of these coefficients are close  to  being random. 
This cannot be said for the most significant bits though, as  Shapiro  showed there 
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is a strong correlation between the position of low-valued coefficients in the tree, 
which all share the same first few most significant bits. 

Obviously an intelligent image coder should recognize when the coding method 
it uses is no longer optimal. It may be more efficient to use zero-tree coding for 
the first few bits of precision of the coefficients and then use another method for 
the remaining bits of precision up to the desired depth. 

Preliminary results obtained on this topic indicate that the zero-tree coding 
process is only useful up to about 3 complete passes. After this, the size of 
the significance map overhead counteracts any advantage gained by coding the 
remaining zero-trees. 

Section 8.2 covers this in detail and provides projections of data rates for hybrid 
zero-tree coders. 

8.2. Zero-tree Coding Results 

In this section we present results on the zero-tree coding of quincunx wavelet 
coded image. All results refer to a 12 level decomposition using the KV5/3 
biorthogonal wavelet filters of Kovacevic and Vetterli. 

First we begin by examining some statistics of the zero-tree coding of the im-
ages and highlight the strengths and weaknesses of the zero-tree coding method. 
We then move onto combining the zero-tree coding method with adaptive arith-
metic coding. 

We find that the zero-tree coding method is extremely effective at very low 
bit-rates where the probability of zero-trees is high. We also show that the use 
of adaptive arithmetic coding in combination with zero-tree coding makes for an 
especially powerful coding system which delivers good image quality at very-low 
bit rates. 

8.2.1. Stand-alone Zero-tree Coding. To gain an understanding of the 
strength of the zero-tree coding method we have produced results which isolate the 
number of symbols required to code particular images. Zero-tree coding proceeds 
in a two-step process which repeats. The first step is the significance pass which 
encodes the information about the location of newly significant coefficients within 
a wavelet decomposition. The second part is the subordinate pass which adds an 
extra bit of precision to the values coded for all significant coefficients in the entire 
decomposition. 

The power of the zero-tree coding method comes from the zero-tree symbol 
(ZTR) which indicates that all children of a coefficient are ignored. This can 
efficiently code information about the insignificance of a large number of coeffi-
cients. The greater the number of zero-trees in a decomposition the more efficient 
the method becomes, and with greater depth to each zero-tree the efficiency is 
increased again. 
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pass Lenna Goldhill Barbara 
1 2082 3482 6131 
2 6110 13166 21340 
3 23610 51308 64716 
4 51933 117168 82504 
5 106300 159083 102232 

TABLE 8.1. Table of significance pass symbols coded for the first 5 
passes of zero-tree coding of KV5/3 wavelet decompositions. Sub-
ordinate pass numbers are given in Table 8.2. 

pass Lenna Goldhill Barbara 
1 343 628 872 
2 1554 3066 8998 
3 7831 16046 21852 
4 23698 52669 63194 
5 55613 113062 100684 

TABLE 8.2. Table of subordinate pass symbols coded for the first 5 
passes of a zero-tree coding of KV5/3 wavelet decomposition. The 
corresponding significance values are given in Table 8.1. 

pass Lenna Goldhill Barbara 
1 16.25 16.60 51.21 
2 21.38 21.36 19.75 
3 24.53 24.68 23.65 
4 26.36 26.69 25.49 
5 27.15 27.44 26.09 

TABLE 8.3. Table of PSNR results for the zero-tree coding de-
scribed in Tables 8.1 and 8.1. 

It becomes apparent that the zero-tree coding method then is most effective 
for very harsh coding where the number of significant coefficients is very small and 
the probability of zero-trees of large depth occurring is very high. The zero-tree 
method can code an entire decomposition to one bit of precision very efficiently. 

As the precision of the coding increases, the number of significant coefficients 
in the decomposition becomes larger. This reduces the effectiveness of zero-tree 
coding in two ways, firstly it increases the overhead of the significance and sub-
ordinate maps but more importantly it reduces the probability of zero-trees of 
significant depth occurring. Without a high probability of zero-trees the coding 
method becomes inefficient. 

The data in Tables 8.1, 8.2 and 8.3 provides basic data on the behaviour of 
the zero-tree coder as the level of precision changes. 

For the first pass of the zero-tree coder the significance threshold is set to be 
half the maximum value which exists in the decomposition. From the probability 
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FIGURE 8.2.1. Plot of the total number of symbols coded with each 
zero-tree coding pass. The plot is not cumulative. 

distribution of the wavelet coefficients discussed above in Section 6.3, the proba-
bility density drops to a negligible value above about 20% of maximum. Thus in 
the first pass we expect a very small number of significant coefficients. 

Referring to Table 8.2 we see that the number of significant coefficients in the 
first pass ranges from 343 to 872. Note the subordinate numbers in this case give 
the number of significant coefficients — the significance map size gives the total 
number of all symbols (ZTR, IZR, +, -) in the significance map. 

Referring back to the probability density plots in Section 6.3 we see that Lenna 
has the most concentrated PDF and this, as expected, is reflected in a low number 
of significant coefficients at the first level. Barbara which has the least compact 
PDF generates the highest number of significant coefficients at the first level. 

As we move to the second pass of the coder, the threshold is now 25% of 
the maximum coefficient value possible. The effect on the symbol requirements 
is obvious and dramatic. The subordinate numbers indicate that between 1211 
and 8126 new significant coefficients are generated. This increase in the number 
of significant features is reflected also in the significance pass numbers where the 
size of the significance map has increased dramatically. This increase is due to the 
drop in probability of zero-trees. When a zero-tree disappears, it is necessary to 
code all of its nodes in the significance map, when previously only the zero-tree 
root node needed to be coded. 

We find that the zero-tree coding method is very effective for very-low bit-
rate coding but becomes increasingly less effective as the precision of the coding 
increases. This indicates that after some number of passes of a zero-tree coder it 
becomes more economical to switch coding methods and use another method that 
copes better with more randomly distributed data. 

We can easily translate the number of symbols coded into the data rate by 
noting that the zero-tree alphabet consists of four possible symbols (ZTR), (IZR), 
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FIGURE 8.2.4. Projection of the use of zero-tree hybrid coder where 
the naive coder replaces the zero-tree coder when the rate of data 
for the zero-tree coder exceeds that of the naive coder. 

Obviously an intelligent bit-plane coder will make better use of the probability 
distributions of the bit-planes it is coding and will have a better coding rate than 
the naive coder, but the naive coder remains as an upper limit to the data-rate 
which would be generated. So the fact remains that after some precision, the 
zero-tree coders will perform worse than the general case for coders. 

The solution to this problem would be to replace the zero-tree coder with 
another bit-plane coder when the data-rate per bit of precision of the zero-tree 
coder exceeds the rate for the other coder, thus creating some zero-tree hybrid 
coder. Diagrammatic projections of the data rates in this situation are shown in 
Figure 8.2.4. This structure would allow us to take advantage of the zero-tree 
coder's capacity to efficiently code the first few bits of each coefficient, but we 
also never exceed the cost per bit of the other coder. In practice we often can't 
afford the time required to code the data with both methods which would allow 
comparison, such a system would need to predict the change in advance. 

8.2.2. Arithmetic Coding. If we consider the way in which zero-tree coding 
progresses we find that an efficient compliment is adaptive coding of the symbols. 
When processing the early stages of the bit-stream the significance threshold will 
be large and so many zero-trees will result while significant and isolated insignif-
icant points will be considerably rarer. Thus in early stages of coding the ZTR 
symbol needs to have a very low information cost. 

The next step after the significance coding is subordinate coding. At this point 
the alphabet changes from (ZTR, IZR, +, -) to (+, -) and so the coding must be 
changed to reflect the fact. Here both (+) and (-) symbols are expected to be of 
the same probability and so they should have the same cost, and the probability 
of ZTR or IZR must be zero since these symbols cannot occur in the subordinate 
stages of coding. So we have two unrelated data sets with significantly different 
probability distributions for symbols. 
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pass Lenna Goldhill Barbara 
1 611 1032 1755 
2 2527 5090 9815 
3 10337 21928 31457 
4 29245 64388 67881 
5 69723 132424 _ 118610 

TABLE 8.4. Table of file-size (in bytes) required for zero-tree coded 
images without Arithmetic Coding. 

pass Lenna Goldhill Barbara 
1 443 692 1086 
2 1758 3212 7365 
3 7369 14570 24257 
4 20914 43765 49392 

48792 89273 83217 
TABLE 8.5. Table of file-size (in bytes) required for zero-tree coded 
images with Arithmetic Coding. 

As we progress to lower thresholds the probability of zero-tree roots becomes 
less and so our coding scheme must possess a means to reduce the information 
cost of (+) and (-) at the expense of (ZTR). Adaptive coding (eg. [46],[19], [92]) 
does this; it monitors the recent probability of symbols which have been coded 
and modifies its codebook appropriately. It does this in a predictable manner such 
that at the decoder the changes in codewords can be predicted without any side 
information. The efficiency of the adaptive coding can make significant advances 
on the coding performance of the system. 

The ability to adapt quickly and effectively to changes in alphabet and symbol 
probability are important. Adaptive arithmetic coding has been shown [46] to 
perform well with small alphabets as the coding histogram can quickly establish 
symbol probability distributions when the probability of all symbols is relatively 
large. Also the need for escape sequences the first time a symbol is encountered 
means that with fewer symbols there is greater efficiency as the escape symbols 
are only encountered a small number of times. 

All remaining zero-tree coded results generated for the production of this thesis 
make use of the Adaptive Arithmetic Coder implementation by John Danskin 
found in the Baseline Wavelet Construction Kit [19]. 

As can be seen from the results in Tables 8.4 and 8.5, the Arithmetic Coding 
produces a significant gain over the same stream without Arithmetic Coding. 
Unlike the zero-tree coding method its performance doesn't vary with data-passed 
to it. The output from the arithmetic coder is about 70% of the unprocessed data 
rate regardless of the properties of the original data. 

Further improvements can be made from this situation since the Arithmetic 
Coder has not been optimized to recognize when a change of alphabet occurs, 
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rather it is left to adapt to the changing histogram of the data. By notifying the 
coder as the alphabet changes, the coding performance can be further increased. 

8.2.3. Cross-scale Considerations and Quincunx Trees. When we look 
at the separable zero-tree coding algorithm we find that the choice of parent for 
any given point in a decomposition is easy. The decomposition occurs in a very 
regular fashion. Each decomposition level produces three oriented sub-spaces. 
Thus at any decomposition level and orientation we obviously choose the parent 
to be at the point with the same spatial position and same orientation at the next 
coarsest resolution level. This leads to three trees of zero-tree coefficients which 
all converge to a common parent at the approximation. 

With the quincunx decomposition our choice of a parent becomes more com-
plicated. Each level of decomposition produces only a single detail subspace. 
Immediately one would assume that this makes the choice of parent even easier 
than for the separable case since here there is only one choice with the same spatial 
position at the next lowest resolution. 

The problem is that the quincunx decomposition has two orientations in its 
subspaces which alternate, so the next finer or coarser detail signal is of a different 
orientation than the the previous one. Levels 2i + 1, i e Z generate diagonal 
details whiles levels 2i generate horizontal-vertical details. In the separable case 
there are three independent trees - one for each orientation - and the next finer or 
coarser level is the same orientation. 

As we can see now for the quincunx case, choosing the parent point from the 
next lowest resolution level will mean that the parent is chosen from a sub-space 
with a different orientation - which can impact on the coherence of zero-trees. If we 
want to choose the parent so it has the same orientation we must go to the subband 
two resolution levels removed, ie. from level it to level it + 2. It now becomes 
clear that the choice of a parent means making the choice of either resolution 
level similarity or orientation consistency. Figure 8.2.5 shows the parent-child 
relationship in the quincunx decomposition and the orientations of the subspaces 
involved. 

Let us consider what we are attempting to encode when we use zero-tree coding. 
We are looking for areas in consecutive subbands where the magnitudes of the 
wavelet coefficients are all negligible which allows us to encode the entire block as 
one symbol representing a tree of zeros starting at a very low resolution. 

Consider now the information contained in subsequent subbands as orienta-
tions alternate between diagonal and horizontal-vertical details. It is reasonable 
to expect then that features which generate details of negligible magnitude in 
one orientation may generate significant details in the other orientation; and then 
negligible in the following subband again. 
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child 
child 

FIGURE 8.2.5. Orientations of successive subbands in a quincunx 
decomposition. Subspaces are of a different orientation than their 
immediate parents and children. 

For example, consider a diagonal edge feature. In level j + 1 we would have 
significant diagonal details along the edge due to the diagonal cutoff of the low-
pass at this level. At level j + 2 we have only horizontal-vertical details and thus 
the edge data will not be contained in this subband but at levels j + 3 and j + 5 
etc. we again have significant details but at j + 4 and j + 6 we have nothing. 
From a zero-tree coding perspective this is inefficient since we can establish a tree 
of insignificant coefficients if we consider only similar orientations in the tree. 

On the other hand if we do have areas where there is negligible activity in 
both orientations it would be more efficient to have the parents be direct that way 
a single zero-tree would be able to account for all the coefficients which would 
need two zero-tree roots if we used parents based on orientation. We expect that 
this cost is smaller than that of requiring isolated zeros at each alternate level, 
especially since the ZTR symbol will typically have much less information cost 
than the IZR symbol since it will be a dominant symbol in the early stages of 
coding. 

Preliminary results obtained indicated that there was no advantage to using 
orientation based child-parent relationships. This was an unexpected result, but 
time limits have prevented further investigation. 

8.3. Zero-tree Coding Methods for Network Transport 

One of the important issues for consideration with image transport across dig-
ital networks is the speed of availability of information to faithfully reproduce 
images. Users become impatient waiting for an indication of the overall out-
come. For this reason progressive coding is very important and highly desirable. 
There are various types of progressive coding available for use with image coding 
for network transport which have found implementation in JPEG1331, GIF[43], 
TIFF1421, PNG[1061 and other image formats. 

Normal quantization of wavelet decompositions codes coefficients in subbands 
in order, starting with coarsest resolution and ending with finest resolution. This 
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method allows for the image to be accurately rendered as an approximation at 
each resolution level in succession - an ideal situation for progressive transmission. 

Zero-tree coding makes successively finer approximations to the image quality. 
Reconstruction starts at the coarsest resolution level but all subbands are recon-
structed at some approximation level and then the next finer level of reconstruction 
begins at the lowest resolution. 

This allows for a very low-quality approximation of the most significant features 
of the image to obtained very quickly - more quickly than with the ordinary 
subband coding order. It also allows for the fast display of the most significant 
features throughout the image at all resolution levels. It may take longer to build 
up a high quality image which displays all necessary information to recognize what 
is needed in an image. 

A disadvantage of the zero-tree coding method is that all the coefficients to 
build up a full resolution level image are coded before any refinement is made 
to the lower resolution levels. It might be more sensible to encode the lower 
resolution levels to a finer precision before moving onto the higher resolution levels. 
This could be done by processing and buffering the entire zero-tree stream, but 
transmitting the significance maps and subordinate passes of coarser resolutions 
first. This adds considerable complexity to the codec as the significance and 
subordinate streams need to be broken into segments and resynchronized. 

A similar effect could be achieved by adding perceptual weighting to lower res-
olution subbands. By biasing these coefficients they appear greater in magnitude 
and are coded to a higher precision early in the encoding process and thus decoded 
with similar speed. However, the refinement then continues to a higher precision 
than is required which consumes more data than is actually needed to represent 
the image the desire quality. 

The correct balance will depend greatly on the depth of the decomposition. 
If there are many levels of decomposition then a large amount of data must be 
processed to generate even a low resolution approximation of the image when 
using standard zero-tree coding. In this case it is sensible to break the coding 
process into segments, each constructing an approximation of increasing size for 
assessment. 

Typically a thumbnail image needs to be in the vicinity of 40 to 80 pixels in 
at least on dimension' to distinguish major features. Depending on the size of the 
final lowest level approximation, this size image may be achievable with very little 
decoding. The next step in image detail should be in the area of 300 pixels in at 
least one dimension. This gives an intermediate resolution preview of the image, 
typically fine enough to ascertain if the image contains some particular feature 
required. 

1The Exif digital photograph transfer standard [45] defines a standard embedded thumbnail size 
of 160x120 pixels. 
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Wavelet coding is also ideally suited to the encoding of extremely large images 
as has been demonstrated in recent times by MrSID codec from LizardTech[41] 
and the ECW engine from ERM[661 for Gigabyte and larger images. These codecs 
are capable of rendering sections of very large images with a particular bound on 
the most fine resolution which is considered. This can produce a zoomed section 
of the image which removes detail too fine to be displayed by the hardware raster 
sampling rate. 



CHAPTER 9 

Cross-scale Wavelet Image Coding 

This chapter focuses on cross-scale coding methods such as zero-tree coding 
[81], [6], [79] which can be applied to the quincunx sampling lattice. Compar-
isons with the separable lattice will also be made. The techniques developed in 
this chapter are not restricted to the quincunx lattice but quincunx is used as 
the primary resampling method. Comparisons with separable methods are made 
where time permitted but these comparisons are not complete. 

9.1. Introduction To Cross-Scale Coding 

The term "cross-scale" is used to describe a situation where information from 
several scales or resolution levels of a wavelet decomposition is used to code the 
image information as a whole. Most wavelet coding schemes to date have treated 
each individual detail signal as a separate entity which is to be coded in some way 
to maximize its reconstructed quality or minimize some error metric - a method 
which stems from orthogonal data processing but is not necessarily appropriate for 
perceptual coding. By considering the contribution of each detail as contributing 
towards a whole within a particular context then we can construct very efficient 
coding methods as will be demonstrated in the remainder of this work. 

Each resolution level has particular significance to the HVS because of spatial-
frequency sensitivity and orientation selectivity (see Sections 7.1.1 and 7.1.3 ) and 
so each level needs to be treated in a way which recognizes this fact. More im-
portant though is to consider the interactions between different scale levels. We 
must remember that it takes information from many scale levels to synthesize the 
features which we perceive in the reconstructed image. Using a deeper under-
standing of the way the components interact between all the scale levels leads to 
better efficiency than considering each detail signal in isolation. 

One of the key features exploited by cross-scale coding methods is that image 
features are created by details from several scales which all reside within the same 
spatial region of the image (superposition principle). Because of the fact that 
wavelet detail signals retain spatial location information, we can easily determine 
which areas of an image any particular wavelet coefficient may contribute to and 
thus which features within the image are affected. Perceptually significant features 
such as edges and lines span a range of spatial frequencies, this is because of 
the abrupt change in signal value at an edge, ie. a high rate of change in image 
intensity. Frequency analysis tells us that to produce a large rate of change requires 
high-frequency components, and to maintain that change requires a large range 
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of frequency components from low to high with significant magnitudes. Because 
each wavelet detail signal spans only a narrow range of frequencies, significant 
sharp features require wavelet coefficients in several detail spaces yet at the same 
location within each detail. 

9.1.1. Zero-tree Coding. Zero-tree coding is a very efficient method for 
encoding images at low bit rates where the majority of the information cost is 
associated with determining the positions of significant coefficients. It achieves 
success by using the common property of natural images which is that if there 
is no activity at low resolution levels in a certain region of the image then it is 
likely that there will not be any activity in higher resolution levels in the same 
area of the image. When such a situation occurs we can simply encode all levels 
of zero activity with a single symbol which is called a zero-tree root. A detailed 
examination of Zero-tree coding is presented in Chapter 8. 

Zero-tree coding becomes less efficient as the bit-rate increases due to the 
increased number of significant coefficients. This reduces the likelihood of the large 
trees of zero values in the details from which zero-tree coding gains its efficiency. 

9.1.2. Quad-tree Coding. Quad-tree [641 coding again uses an image hier-
archy to efficiently predict behaviour across scales. The image is broken down into 
blocks which are each broken down into sub-blocks, each covering approximately 
the same area of image space at different resolutions. The key feature exploited 
here is that the statistical properties of the detail signals is similar at each of 
the levels due to the similarity in the underlying structure in the image which is 
represented. Hence analysis of a small number of coefficients allows for accurate 
prediction of many more coefficients within the same image area at various scales. 

Quad-tree coding results are not presented here. The topic is discussed for 
completeness and to direct the reader to an additional related topic of research. 

9.2. Spatial Masking Shadows and Cross-Scale Coding 

Spatial contrast masking [72, chapter 41 (Section 7.1.2) is a phenomenon ob-
served in the human perception of images. It has been noted that in the vicinity 
of dramatic stimuli, the presence of less significant fine features is obscured. This 
means that in areas where there is significant activity particularly at low reso-
lution levels we can more coarsely code coefficients at higher (finer) resolution 
levels without any perceivable change in the image. We refer to an area where 
features are obscured by activity masking as a "Masking Shadow" cast by some 
large feature. 

As the spatial distance from the stimulus becomes greater, the masking effect 
decreases. The compound effect of many significant stimuli in one area can lead 
to large sections of high resolution coefficients having little or no perceptual value, 
thereby allowing the coding process to discard a large number of coefficients and 
the information cost of coding them. 
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The use of spatial masking is not new; it has been used before, typically in the 
form of an "activity function" 1671 ie. some measure of the degree by which activity 
in an area of an image is likely to obscure fine features. Activity functions are 
calculated from the original image (usually as some gradient of image intensity) 
and thus represent quite accurately the likelihood of masking occurring within a 
particular region of an image. 

However to make use of an activity function in coding subband data the activity 
function data for all regions must be coded as side information. It is in this 
process where much of the information about the activity function is lost as the 
side information must be minimized. To code the activity function to any degree 
of accuracy would require significant information cost, which counters the gain 
made from discarding masked coefficients. 

A novel approach is presented here and expanded in Chapter 10 for considering 
spatial masking in the wavelet domain. It requires no coding of side information 
and can be used to predict accurately the likelihood of masking occurring in the 
vicinity of a particular wavelet coefficient. 

9.2.1. Conditions for Masking. Let us consider the conditions required 
to create a significant feature in an image which would lead to spatial masking 
in its vicinity. The feature must be highly visible; high visibility is attained by 
having significant contrast edges. Such high contrast edges require a large band of 
spatial frequencies to generate the sharp transitions in signal value. The wavelet 
representation of such a feature must therefore have significant coefficients at the 
spatial location of the feature and at many scale levels from medium-low resolution 
(basic feature outline) to high resolution (fine details). 

Using this knowledge we have a simple method for determining the location 
of significant features in the reconstructed image which are likely to cause spatial 
masking and we require only the lower-frequency (larger scale) wavelet coefficients 
from the transformed image. 

To make use of the information in a way which benefits the coding of images 
we need to be able to determine which coefficients can be discarded because of 
contrast masking. We have a way of determining significant coefficients which 
would lead to masking in their vicinity, so any coefficients residing in the vicinity 
of these features could be subject to masking. Since only subtle features will be 
masked, a requirement for masking is that coefficients should not themselves be 
contributors to a highly visible feature. Using the same argument as used above, 
we can see that a coefficient is part of a significant feature if there are other 
coefficients of similar large magnitude in the same spatial vicinity and in close 
proximity to the scale of the coefficient. If two coefficients are separated by many 
scale levels in which all the coefficients at the same location are very small then 
they are not likely to be part of the same feature. 
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Obviously for the coefficients to be in a situation where their presence would 
be greatly masked, they must be of a small magnitude. Large magnitude coeffi-
cients will have a significant visual presence whether they are combined with other 
coefficients or not. 

By applying this method of masking shadow prediction we find that we can 
achieve significant increases in the perceived image quality with the same data rate. 
Chapter 10 is dedicated to expanding these concepts and results are presented in 
Section 10.3. 

9.2.2. Importance of the Image Average. When performing a wavelet 
decomposition it is often advantageous to remove the DC value beforehand. This 
reduces the magnitude of the low-pass coefficients substantially. Now, rather than 
having many large positive coefficients in the low-pass with values close to the 
image average, those coefficients will have values close to zero, but with both pos-
itive and negative amplitude. This reduces many of the coefficients to zero during 
quantization coding, which increases the likelihood of information cost reduction 
particularly with zero-tree coding. Once the image has been fully reconstructed, 
the value of the image average can be again added back in. It makes little differ-
ence if the average is removed before any wavelet decompositions or only for the 
last level, however, there is less computational effort involved in calculating the av-
erage of the small sized low-pass image, when compared to the same calculation for 
the full sized image. Since the average is preserved by low-pass processing, there 
is no requirement for it to be calculated before or after wavelet decomposition - 
the value should be identical in both cases. 

For a coding method such as zero-tree coding the removal of the image aver-
age is very significant. If the lowest resolution image has a DC component then 
many of the values will be truncated to a low precision during coding to meet 
the information cost constraints. Low precision in the low pass approximation 
leads to highly visible distortions in the reconstructed image. However if the ap-
proximation has no DC component then the same information cost can code the 
approximation to a greater precision. The reason for this is that the zero-tree 
method works on a four symbol alphabet (+, -, I, Z). If we changed the alphabet 
to have only three symbols (+, I, Z) where all coefficients are non-negative, then 
the information costs would be comparable for both cases. 

It should be noted that these arguments do not hold in the case where quanti-
zation rather than zero-tree coding is used as the first bit of information in a large 
positive coefficient is equivalent to the sign bit of a zero-based signed data value. 



CHAPTER 10 

Masking Shadows in Zero Trees 

In this chapter the concept of masking shadows, presented in Chapter 9, is 
treated in greater detail. The concept is built upon to create a complete coding 
framework based on the ideas of the zero-tree coding of Shapiro. We show through 
perceptual testing and statistical results that this coding framework provides us 
with a means to further reduce bit-rate and improve perceived image quality. 

Many of the ideas presented here are equally applicable to the separable domain 
as to the quincunx domain. Quincunx resampling was used as the test platform 
for much of the experimentation and results are based on this. 

10.1. Utilizing Masking Shadows 

In this section we show how to exploit the psychovisual phenomena discussed in 
Chapter 6 to produce a novel, efficient image coder based on zero-trees of quincunx 
wavelet coefficients. 

Spatial masking occurs in the vicinity of significant high-contrast image fea-
tures, notably sharp strong edges. The presence of these strong features causes 
areas in the image where less prominent details are easily lost, being perceived 
as noise. We refer to these areas as "masking shadows" because the presence of 
a significant feature produces an area of the image where it is difficult to discern 
fine detail - analogous to the shadow cast over small objects by larger objects. 

The zero-tree coding method provides a near ideal environment in which to 
predict and utilize these masking shadows in a coder. To understand how we 
can do this we need to start by considering - from a different perspective - what 
wavelet transforms are and how they fit together in a zero-tree hierarchy. 

See Section 9.2 for an introduction to the principles of masking shadows. We 
concentrate here on the algorithm to implement a codec. 

To construct a large magnitude, high-contrast feature requires the superpo-
sition of components from different frequency bands, from the mid to highest 
frequencies. If we consider what this means in terms of a wavelet transform, such 
a feature when decomposed would create significant coefficients in many detail 
signals of a decomposition, all overlapping in their area of support at the point 
corresponding to the location of the feature in the original image. 

From a synthesis or reconstruction perspective, this then provides us with a 
means of predicting the location of large magnitude, high-contrast features from 
a wavelet decomposition. The decomposition must first be considered as a lay-
ering of signals, where signals of many different resolution levels have coefficients 
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at common spatial locations within the image signal. Where there is an align-
ment/superposition of the detail signals over several resolution levels, there is 
likely to be a significant feature; and from what we've already seen (Section 7.1.2), 
the presence of such a significant feature induces a masking shadow causing small 
details to become imperceptible to the HVS. It is comparatively easy to determine 
if the intensity of an image is changing rapidly by simply examining the image 
itself, in particular the gradient of intensity over space, and this is indeed the 
method adopted in some previous investigations into this topic 064 1671, 1341). 
This method has a fundamental disadvantage which is the side information which 
is required. 

To effectively make use of the principles of contrast-masking in a coding context 
we can more coarsely code those areas of an image which fall in a masking shadow. 
To be able to decode the information we must also have a means of determining 
at the decoding stage, which areas were encoded with the coarser granularity. 
In previous methods this has required the coding of side-information with the 
image data which describes the level of masking within various parts of the image 
(sometimes referred to as the activity factor 1671). However there is a way, using 
zero-tree coding, to take advantage of the benefits of coarsely coding masked areas 
without the need for sending any side information. It is this method which makes 
for particularly successful coding. 

10.1.1. Implied Activity Measures. Consider the first pass of a zero-tree 
coder on an image, as in Figure 8.1.5. The information which is contained in the 
first pass through all detail levels is those few high-frequency coefficients which 
are significant with respect to the highest threshold level of the coding process. 
There are only a few coefficients (across all resolution levels) and they correspond 
to the location of the highest magnitude variations in image intensity as detected 
by the high-pass filter branch of the wavelet decomposition. 

Considering the information in terms of a decomposition layering, the super-
position of significant coefficients indicates the location of those very large, high-
contrast features which induce masking. It is possible to use the first small section 
of an embedded zero-tree code to predict those areas of an image which would 
likely be affected by contrast masking shadows. 

It is important to note that the masking shadows are predicted from informa-
tion which is available in identical form at both the decoder and the encoder. 

We are concerned with altering the coding of those parts of the image which are 
obscured by masking shadows and we do not want to interfere with the coding of 
the significant features as are contained in the first pass of the zero-tree code, only 
those features which are contained in subsequent passes will be of sufficiently small 
magnitude to be obscured by masking shadows. This gives us a natural means 
of discriminating those coefficients which can be considered as being affected by 
masking shadows. 
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FIGURE 10.1.1. Normal zero-tree coding assumes the same thresh-
old should be applied to all coefficient regardless of location or res-
olution. The masking shadow adjustment modifies the threshold 
associated with coefficients affected by contrast masking. 

10.1.2. Modifying the zero-tree algorithm. We do not wish to alter the 
coding of the significant features so anything which is significant in the first pass 
of the zero-tree coder will not be altered. One way to increase the coarseness 
of coding in the zero-tree domain is to raise the threshold which determines if a 
coefficient is considered significant. Only significant coefficients are coded with 
any precision. In normal zero-tree coding the threshold used is global across all 
coefficients in an entire decomposition. This is not a requirement for zero-tree 
coding to work, what is necessary is that it is possible to predict in the decoding 
stage what the threshold used in the encoding stage was. It is also necessary 
that the threshold doesn't fall at a rate greater than the data precision increase 
provided by a single pass of the subordinate coding stage. 

PROPOSITION. We propose that the threshold used to determine if a coefficient 
is significant or not, be unique to a particular location (including resolution level) 
in a decomposition rather than global across all coefficients in a decomposition. 

If we raise the threshold of any location then we decrease the probability that 
the coefficient at that location will be significant when compare to its individual 
threshold. Thus we can delay the inclusion of any coefficient into the significance 
map by raising the zero-tree threshold associated with it. 

It is important that a threshold never be lowered for any coefficient; this would 
cause such a coefficient to be included into the significance map at an earlier stage, 
possibly a stage that has already been completely coded, thus corrupting the cod-
ing. Similarly it is not possible to alter the threshold of any coefficient which 
has already been coded as significant since it has already been coded to 1 bit of 
precision. What can be done is to selectively raise the threshold of certain coeffi-
cients which correspond to minor features within the masking shadow generated 
by significant features. 
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FIGURE 10.1.2. Flow-diagrams for the normal zero-tree algorithm 
and the masking adjustment zero-tree algorithm. The algorithm 
is applicable to coding and decoding processes. For the masking 
shadow version, the modification of significance threshold is done 
individually for each coefficient in the decomposition. 

10.1.3. Putting It All Together. We now have all the tools we need to 
put together the coding scheme. Firstly we can predict the location of masking 
shadows by detecting the high magnitude coefficients responsible for such shad-
ows in the very first significance pass of the zero-tree coding scheme. We can then 
determine which areas of the image are affected and raise the zero-tree signifi-
cance threshold for these areas in accordance with the degree of masking which is 
predicted. The zero-tree coding process then continues to completion, and those 
coefficients which were subject to contrast masking will be coded with a higher 
granularity than those unaffected. 

Figure 10.1.2 shows how the adapted zero-tree algorithm differs from the 
Shapiro method. When decoding, we start with the first significance pass of the 
zero-tree stream which is all we have. After decoding the significance pass we 
have exactly the same information as was used in the encoding stage of the codec 
to modify the significance thresholds of masked locations. By applying the same 
algorithm used in the coder we will arrive at exactly the same individual thresh-
old values as were determined by the encoder. The zero-tree decoding can then 
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progress to completion with the modified thresholds. Those image areas subject to 
masking shadows will have been coded with less precision because of their delayed 
inclusion into the significance map. 

It should be noted that the reduction in threshold value that occurs at the 
end of each zero-tree pass must now be calculated individually for each coefficient. 
The reduction is performed by dividing all threshold values by the same constant 
value, so the ratio of one threshold to any other remains constant. 

10.2. Determining Masking Levels 

That part of the codec which has been ignored so far is the part responsible 
for determining which threshold values to change after the masking shadows are 
predicted and by how much to vary them. This is the part of the coder which 
can be tuned and is open to most variation. The general principles of the coder 
are laid down. Although these cannot be fixed, for the coder to be effective it 
must accurately predict which coefficients are going to be masked and what level 
of increase in granularity the coding process can suffer without the reduction in 
precision becoming noticeable. 

For the purposes of experimentation performed in the production of this work 
and [71 the masking level was determined from a set of parents at the same location 
as any prospective insignificant coefficient. The masking contribution of significant 
coefficients is broken up into two influencing parts, immediate neighbours and 
parents. Immediate neighbours can have an affect but it will generally be less 
than that of significant parents of neighbours. Each significant neighbour of a 
parent adds a weighting to the threshold modification based on the HVS sensitivity 
measure for the subband in which the significant value occurs. If there are many 
significant neighbours of parents then the masking weightings are cumulative to a 
degree. 

Numbers which are found to produce good results, are a bias of 25% immediate 
masking and 75% parental masking. For each parent considered, its parents and 
immediate neighbours are again weighted in the same fashion. The maximum 
increase in the threshold of a coefficient is limited to 100% which guarantees 
delaying the inclusion of the coefficient into the significance map by at least one 
pass (but no more than one pass) of the zero-tree coder. 

Results of the coding process are presented below in section 10.3. 

10.3. Masking Shadow Prediction Results 

In this section we present results which show the effectiveness of the masking 
shadow prediction algorithm with zero-tree coding. We contrast reconstructed 
image quality and file-size for coding that includes masking shadow prediction 
(referred to as masking shadow versions) with coding that uses only the zero-tree 
coding (referred to as ordinary versions). 
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(a) No masking prediction 
	(b) 4-neighbourhood mask- 

ing prediction 

FIGURE 10.3.1. Lenna image (a) reconstructed from 3 complete 
passes of a zero-tree codec with no masking prediction (10kB at 
0.30 bpp) and (b) with 4-neighbour masking prediction at the same 
bit-rate. 

All results make use of the Arithmetic Coder outlined above to produce the 
output streams, thus the numbers quoted are actual stored file sizes. 

We find that the use of masking shadow prediction leads to a decrease in the 
bit-rate of all images processed with it when processed to the same Zero-tree end-
point. Typical bit-rate reduction is in the area of 18% of total stream size with 
reductions of up to 27% observed. Subjective quality assessment of the images 
shows the two versions to be of very similar quality. 

Processing to a Zero-tree end-point is an unsuitable means of performing com-
parative assessment since there are two non-constant components in each compari-
son — bit-rate and image quality. By holding the bit-rate constant the comparisons 
are much easier to make and more reliable. We find that the image quality using 
masking shadow prediction is noticeably better when compared to the ordinary 
processing. For some images the improvements are quite striking, and for others 
very subtle. 

After presenting the result image pairs to a set of disinterested viewers the 
images processed with masking shadow prediction were found to have better image 
quality. In some cases the differences occur in areas of low importance to the image 
- notably Boat and Airplane images and in these cases the viewers noted that the 
images were very difficult to distinguish. 

Referring to Figure 10.3.1 both Lenna images are of very similar quality. Areas 
to note are the vertical frame at the left of the image. In the ordinary version (a) 
there is definite corruption of the vertical edge, but in (b) this has been severely 
diminished. There is also improvement in the area of the lips and the hair strand 
at the shoulder. 
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(a) No masking prediction 
	(b) 4-neighbourhood mask- 

ing prediction 

FIGURE 10.3.2. Goldhill image (a) reconstructed from 3 complete 
passes of the zero-tree codec with no masking prediction (19 kB at 
0.59 bpp) (b) with 4 neighbourhood masking prediction at the same 
bit-rate. 

(a) No masking prediction (b) 4-neighbourhood mask-
ing prediction 

FIGURE 10.3.3. Barbara image (a) reconstructed from 3 complete 
passes of the zero-tree codec with no masking prediction (28 kB at 
0.89 bpp) (b) with 4 neighbourhood masking prediction at the same 
bit-rate. 

Both Goldhill images in Figure 10.3.2 were of very similar quality. In this case 
some viewers indicated that they could not see a noticeable improvement from 
one to the other. There are slight improvements which can be seen in the sky and 
horizon. 

The Barbara images in Figure 10.3.3 are of similar quality but the masking 
shadow version (b) demonstrates improvements in quality in the aliasing effect on 
the pants leg near the centre of the image. In (a) there is significant strobing of 
the lines on the pants, but in (b) the lines are clearly separated. 
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(a) No masking prediction 	(b) 4-neighbourhood mask- 
ing prediction 

FIGURE 10.3.4. Airplane image (a) reconstructed from 3 complete 
passes of the zero-tree codec with no masking prediction (11.2 kB 
at 0.34 bpp) (b) with 4 neighbourhood masking prediction at the 
same bit-rate. 

(a) No masking prediction (b) 4-neighbourhood mask-
ing prediction 

FIGURE 10.3.5. Baboon image (a) reconstructed from 3 complete 
passes of the zero-tree codec with no masking prediction  (30  kB at 
0.94 bpp) (b) with 4 neighbourhood masking prediction at  the  same 
bit-rate. 

Other minor improvements were noted in the book spines  and  the nose and 
lips area of the face. 

For the Airplane images shown in Figure 10.3.4 there were areas in the mask-
ing shadow version (b) which exhibited reduced quality; the  front  of the tail in 
particular. One viewer noted the pilot was more clearly defined in (a). There are 
subtle but major (in spatial area) image features which are defined in (b) but not 
in (a). In particular the clouds in the upper left are more defined  in  (b). 

Baboon as shown in Figure 10.3.5 is one of the most striking examples of 
improvements due to the use of masking shadow prediction. There are significant 
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(a) No masking prediction 
	(b) 4-neighbourhood mask- 

ing prediction 

FIGURE 10.3.6. Boat image (a) reconstructed from 3 complete 
passes of the zero-tree codec with no masking prediction (11 kB 
at 0.35 bpp) (b) with 4 neighbourhood masking prediction at the 
same bit-rate. 

facial features visible in the masking shadow version (b) which are blurred out in 
the ordinary version. Of particular importance are the nostrils and the lines on 
the side of the nose - particularly on the right side of the image. 

The Boat image shown in Figure 10.3.6 exhibits non-obvious gains in quality 
in the masking shadow version (b) over the non-masked version. In particular 
the texture of the ground and the edges of the clouds are more clearly defined 
in (b). The low perceptual importance of these areas to the overall image was 
demonstrated by several viewers who could not immediately determine the image 
which they believed had better quality. Some viewers indicated that there were 
features which were better defined in each of the images - in particular the name 
on the back of the boat is more clearly defined in (a). 

The fruits image as shown in 10.3.7 has possibly the lowest quality reconstruc-
tion of all the images processed. This is due to the large areas of almost constant 
intensity broken only by fine lines. However all viewers noted that the version 
processed with masking shadow prediction (b) had significantly higher quality. Of 
particular note were the grapes at the back of the bunch and the edges of the 
artichoke on the right. 

The Girl image (Figure 10.3.8) demonstrated another striking improvement 
when processed with masking shadow prediction (b). The quality improvement is 
quite dramatic especially in the areas of the mouth, nose, wool clothing and face-
paint. All viewers immediately indicated (b) as the higher quality image without 
any hesitation. 

The Peppers image as shown in Figure 10.3.9 has a high level of activity and 
exhibits clear gains with masking shadow prediction processing  (b).  Of particular 
interest is the texture on the left of the front pepper which is blurred out in (a) 
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(a) No masking prediction (b) 4-neighbourhood mask-
ing prediction 

FIGURE 10.3.7. Fruits image (a) reconstructed from 3 complete 
passes of the zero-tree codec with no masking prediction (6.5 kB at 
0.20 bpp) (b) with 4 neighbourhood masking prediction at the same 
bit-rate. 

(a) No masking prediction 	(b) 4-neighbourhood mask- 
ing prediction 

FIGURE 10.3.8. Girl image (a) reconstructed from 3 complete 
passes of the zero-tree codec with no masking prediction (7.0 kB 
at 0.22 bpp) (b) with  4  neighbourhood masking prediction at the 
same bit-rate. 

but quite visible in (b). The gains in overall perceived quality are comparatively 
small for this image with some viewers requiring an extended period of comparison 
to determine which was of better quality. 

10.3.1. Perceptual Rating Results. The observers of the reconstructed 
images were asked to categorize the relative quality  of  two compressed images 
they were presented with, taking into account the original image. The images were 
shown in a randomized order to remove bias based on previous ratings. Observers 
were asked to create their own viewing conditions of ambient lighting, monitor 
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(a) No masking prediction 
	(b) 4-neighbourhood mask- 

ing prediction 

FIGURE 10.3.9. Peppers image (a) reconstructed from 3 complete 
passes of the zero-tree codec with no masking prediction  (10  kB at 
0.31 bpp) (b) with 4 neighbourhood masking prediction at  the  same 
bit-rate. 

Image Score 
Airplane -0.12 
Baboon 1.06 
Barbara 0.65 

Boat 0.41 
Fruits 1.00 
Girl 1.47 

Goldhill 1.06 
Lenna 1.00 

Peppers 0.82 

TABLE 10.1. Average scores rating relative subjective quality of 
masking shadow prediction against ordinary zero-tree coding for im-
age compression. Positive scores favour of masking shadow predic-
tion, negative scores favour ordinary zero-tree coding. 

resolution, brightness and gamma etc., the only restriction placed on this was 
that both images be observed under the same conditions. 

The observers were asked to categorise the differences between images as one 
of: 

• One image is clearly superior 
• One image is slightly superior 
• Neither image is superior to the other 

Numerical weightings were applied to these categorisations as follows 

• Clear difference scores ±2 
• Slight difference scores +1 
• No superior image, both score 0. 
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• If the superior image uses masking shadow prediction, the score is (+)ve. 
If the superior image uses ordinary coding, the score is (-)ve. 

This method is not statistically rigorous by any means but it allows for a clear 
analysis of trends observed in the subjects' judgment of image quality. Positive 
scores favour masking shadow prediction, negative scores favour ordinary coding. 
The average scores of the various images are given in Table 10.1. The number of 
observers tested was 17. 

The scores presented reflect the items of discussion mentioned above regarding 
each image. Clearly the most dramatic effect is seen in the "Girl" image which most 
observers (59%) classified as clearly superior to the ordinary zero-tree version. All 
observers classified it as somewhat better quality. The other images to score very 
highly in favour of masking shadow prediction were "Baboon" and "Goldhill". 

The average score of most of the images presented is positive in favour of the 
masking shadow prediction coding method which shows that the gains received 
from it apply to general image processing. The only image to receive a result 
against masking shadow prediction was "Airplane". "Airplane" and "Boat" were 
the images which scored the closest to the neutral zero point. The reasons for 
this are discussed above in the discussions for Figures 10.3.4 and 10.3.6. When 
examining the images for a second time the observer realises that there are features 
visible in the masking shadow versions of both "Boats" and "Airplane" which are 
not visible in the original. However these areas are of low importance as observers 
tend to focus on the high-contrast areas immediately. Indeed this is the key reason 
that masking shadow prediction works. 

Clearly the amount of perceived quality gain from masking shadow prediction 
is dependent on image content. That only one of nine images was judged in 
favour of ordinary coding, and then only by the smallest of margins, is a ringing 
endorsement of masking shadow prediction and shows its suitability for general 
image compression. 

10.3.2. PSNR Results. If we consider the PSNR values for the reconstructed 
images, as shown in Table 10.2, we see that the "masking (br)" column has the 
highest values of the three processing methods for all images. Next is the "ordi-
nary" column and last is the "masking (ep)" column. 

These results indicate that masking shadow prediction is good at decreasing 
the statistical error when compared to normal zero-tree coding. This is an unpre-
dicted result considering that the masking shadow prediction method is based on 
principles of human perception rather than statistical analysis. The results can be 
interpreted as being consistent with the higher perceived quality of the masking 
shadow processed images, however several of the PSNR results are in direct con-
tradiction to the subjective test results. The "Airplane" image is the most obvious 
example of this as the PSNR values indicate that the masking shadow version 
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Image ordinary masking (br) masking (ep) 
Airplane 24.20 25.65 23.56 
Baboon 22.43 23.77 21.55 
Barbara 24.30 25.22 23.65 

Boat 23.63 25.57 22.99 
Fruits 23.98 26.32 23.51 
Girl 23.53 25.34 23.15 

Goldhill 25.23 25.85 24.68 
Lenna 25.04 26.08 24.53 

Peppers 24.87 25.46 24.11 

TABLE 10.2. PSNR values of reconstructed images. The "ordi-
nary" column refers to processing without masking shadow predic-
tion. The "masking (br)" column refers to processing with masking 
shadow prediction resulting in a bit-rate equal to that of the "ordi-
nary" data stream. The "masking (ep)" column refers to processing 
with masking shadow prediction to the same zero-tree processing 
end-point as the "ordinary" column. 

Image ordinary masking (ep) A rate 
Airplane 11240 8438 24.9% 
Baboon 30724 24916 18.9% 
Barbara 29093 24257 16.6% 

Boat 11384 8374 26.4% 
Fruits 6673 - 	5016 24.8% 
Girl 7184 5586 22.2% 

Goldhill 19208 14570 24.1% 
Lenna 9933 7369 25.8% 

Peppers 9996 7917 20.8% 
TABLE 10.3. Bit-rate values for the images given in Table 10.2. 
The "ordinary" and "masking (br)" images were processed to have 
the same bit-rate. The "masking (ep)" images were processed to the 
same stage of zero-tree coding as the "ordinary" images. 

is significantly superior to the ordinary version, yet subjective testing yielded a 
significantly different result. 

The lowest of the PSNR values is consistently the "masking (ep)" column which 
represents the situation where masking shadow prediction is applied to coding of 
an image where the coding proceeds to the same zero-tree end-point as the ordinary 
data stream (not the same bit-rate or file-size). In this case the masking shadow 
data stream is of significantly smaller size than the ordinary stream - typically 
around 20% smaller. The lower PSNR value is a consequence of the lowered 
amount of information used to code the image. 

Table 10.3 gives a comparison of the bit-rates of the various coding methods. 
The "A rate" column gives the percentage decrease in bit-rate of the masking 
shadow processed images over their ordinary zero-tree coded counterparts. As 
can be seen, the bit-rate savings when processed to the same zero-tree end-point 
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are typically around 20% - quite a significant saving. The corresponding decrease 
in image quality is around 0.6 dB PSNR. 

10.3.3. Summary. Examining the image results shown in Figures 10.3.1 - 
10.3.9 we can see that the images that use masking shadow prediction are in 
general of significantly higher quality. Of particular note are the Girl and Baboon 
images. In the Girl image, the reconstructed image quality using masking shadow 
prediction is quite obviously better with significantly more noticeable features 
visible which are completely blurred out in the version that does not use masking 
shadow prediction. A similar situation exists in the case of Baboon, where there 
are significant facial features which are visible in the masking shadow version but 
not in the version that does not use masking shadow prediction. 

If we consider the comparison between reconstructed images processed to the 
same Zero-tree end-point, we find that the masking shadow versions are recon-
structed with a considerably lower bit-rate (18-28% lower) when compared to the 
ordinary process to the same zero-tree end-point. This reduction of information 
occurs in the areas that are specifically targeted by the masking shadow prediction 
algorithm so there is a slight reduction in the image quality when compared to or-
dinary zero-tree processing however the reduction in quality is not commensurate 
with the reduction in bit-rate compared to ordinary processing. Tables 10.2 and 
10.3 show PSNR values and associated bit-rates. 

A more useful comparison when evaluating the perceived image quality gains 
from a coding process is to keep the bit-rate constant for all processing methods. 
Because masking shadow prediction allocates less information cost to areas which 
are predicted to be perceptually unimportant it also frees up that information for 
areas that are important. When processing to the same bit-rate the coder then 
has the ability to allocate extra information to perceptually important areas which 
would normally have to compete with insignificant details. 

The result is that the most significant features are coded with a greater pre-
cision in the masking shadow version than the ordinary version, but insignificant 
features are sometimes lost completely. This is borne out in the results. 

The "Peppers" image is a good one to analyze. In this image the masking 
version shows the details of the texture of the front pepper with significantly 
better precision than the ordinary version - in fact in the ordinary version the 
texture is blurred to such a degree that it does not exist. The reason the masking 
shadow version is better is that less information has been allocated to fine details 
in preceding zero-tree passes and so there is an information budget available to 
code the wavelet coefficients for those features (front pepper texture) to a higher 
level of precision than in the ordinary case. 
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10.4. Conclusion 

In this chapter we have presented results which clearly demonstrate the useful-
ness of masking shadow prediction as a compliment to zero-tree coding. We have 
shown that for equal bit-rates, images processed using masking shadow prediction 
have a better reconstructed subjective image quality than those processed through 
the ordinary zero-tree coding process. This was demonstrated by the results of 
subjective viewing tests carried out under a wide range of normal viewing condi-
tions. All images processed but one showed noticeable improvement in perceived 
quality when processed using masking shadow prediction. 

In addition to this, the use of masking shadow prediction also resulted in higher 
PSNR values than ordinary zero-tree coding. 

The images processed cover a wide range of content and composition showing 
that the masking shadow prediction method is a powerful tool which is applicable 
to general image compression. 



CHAPTER 11 

Conclusions and Future Work 

This Thesis accomplishes all its aims as outlined in Section 1.8. It represents a 
significant contribution to the field of image coding in general and to wavelets in a 
nonseparable context in particular. Results have been presented throughout this 
Thesis which demonstrate the effectiveness of the new coding methods introduced. 
In addition the Thesis represents an effective learning tool which lowers the barrier 
of entry for new researchers into the field of nonseparable wavelet coding. 

The results presented in this Thesis constitute significant evidence that the 
quincunx lattice in particular and nonseparable lattices in general can produce vi-
able coding frameworks for high quality image compression, while the Thesis itself 
represents a distillation of the essential knowledge needed by a new researchers 
in the field. All these accomplishments have significantly furthered the body of 
knowledge and advanced the general state of research in the field. 

11.1. Summary of Contributions 

We briefly re-cap here the major contributions which this Thesis has made to 
the field which will emphasize the success of the Thesis in achieving its aims. 

We have successfully shown how wavelet transforms on nonseparable resam-
pling lattices can be used as a basis for effective image compression methods. In 
general we showed that the current state of wavelet filter design in the quincunx 
domain is not of the standard that exists in the separable domain. This is to 
be expected as all filters used were designed merely to demonstrate that wavelet 
transforms can exist on nonseparable sampling lattices. The results indicate that 
there are advantages to the separable decomposition over the quincunx decomposi-
tion - more evidence of the viability of nonseparable platforms. Results of uniform 
scalar quantization indicate that the quincunx decomposition can perform at the 
same level as the separable decomposition but this is not the general case and is 
dependent on the signal data being processed. 

11.1.1. Comparisons. First comparisons between separable and quincunx 
wavelet decompositions were presented showing those deficiencies in current non-
separable coding theory which have significant negative impact on its widespread 
adoption. This provides a valuable direction for future researchers in the field as 
contributions in these areas would have immediate practical benefits. 

Comparisons of statistical properties of transforms were presented which com-
pare the ability of the two decompositions to decorrelate image data. It was found 

162 



11.1. SUMMARY OF CONTRIBUTIONS 	 163 

that the separable decomposition with D4 wavelet decorrelates data slightly better 
than the quincunx decomposition with a KV5/3 wavelet. 

In terms of reconstruction after quantization it was shown that the performance 
of the quincunx decomposition under uniform scalar quantization was comparable 
to that of the separable decomposition. 

Coding artifacts from separable and quincunx decompositions were contrasted. 
Of particular interest was the "dotting" effect noted for the diamond shape KV5/ 3 
filters when only approximation data remains. These artifacts indicate certain 
deficiencies in the KV5/ 3 decomposition which are not a problem in the separable 
D4 decomposition, namely the large relative magnitude of the central tap in the 
quincunx filters. 

Results were presented for an orthonormal quincunx wavelet which is the com-
pliment of the Daubechies D4 wavelet. These showed that the wavelet produced 
better PSNR results than the linear-phase versions but with a lower perceptual 
quality due to the irregular shape of the filters. 

HVS weighted scalar quantization results were presented which showed that 
the quincunx wavelet transform is an effective image compression method. 

11.1.2. Upsampled Processing. The upsampled representation of signals 
resampled on a lattice is an original contribution that was shown to be an essential 
tool for practical applications using nonseparable wavelets. This method allows 
for the computationally expensive resampling process to be avoided when dealing 
with nonseparable wavelet transforms and filters. A simple extension allows for an 
entire decomposition to be stored and extracted from the memory originally oc-
cupied by image data, which has application in embedded systems where memory 
constraints are important. 

The upsampled method allows nonseparable signal processing to be used in 
real-time applications, which would not be feasible without it due to the time 
consumed by resampling. Although presented in the quincunx context upsampled 
processing can be performed using any sampling lattice compatible with wavelet 
transforms making it a valuable tool for other work in the nonseparable domain. 
It also provides a useful visualization tool for researchers and developers, allowing 
detail signal components to be visualized in the context of the original signal. 

11.1.3. Zero-tree Coding in Quincunx Domain. The first application of 
zero-tree coding using a nonseparable resampling mechanism was presented and 
shown to be a very efficient coding method, as with the separable case. This is an 
important contribution as it exposes the nonseparable field to the most successful 
family of wavelet coders, an essential ingredient for forming successful coders with 
nonseparable filtering. 

Factors affecting the choice of parent-child relationships on the quincunx lattice 
were discussed leading to two different implementations of zero-tree coding for 
the quincunx lattice. Coding results using the quincunx zero-tree method were 
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presented showing the effectiveness of the compression method especially when 
combined with Adaptive Arithmetic Coding. 

11.1.4. Masking Shadow Prediction. The masking shadow prediction cod-
ing method represents the single most important contribution made by this thesis. 
It provides a mechanism for dramatically increasing perceived image quality with-
out any corresponding increase in bit-rate. 

A theory was presented for predicting the presence of perceptually unimportant 
areas of an image from the earliest information available from zero-tree coding. 
The exploitation of these predicted masking shadows was shown through coding 
results to reduce the bit-rate of Arithmetic Coded, zero-tree coded images by a fur-
ther 20% without significantly affecting the perceived quality of the reconstructed 
image. In a constant bit-rate context, the images processed with masking shadow 
prediction showed noticeable increases in the perceived quality and PSNR values. 

As with other methods presented in this Thesis, this method was designed and 
implemented on the quincunx domain but is equally applicable to the separable 
domain (and others) where similar coding results are expected. This makes it a 
particularly powerful tool for image compression researchers. 

11.1.5. General Contributions. This Thesis represents a solid introduc-
tion to the theory and practical considerations of using nonseparable wavelet 
transforms for image compression - particularly when used in conjunction with 
psychovisual models of the Human Visual System. Much of the work presented is 
in the quincunx domain but is equally applicable to other resampling lattices such 
as hexagonal and separable. The psychovisual properties of the hexagonal lattice 
make it an attractive prospect for future research into perceptually based image 
compression techniques. The tools presented in this Thesis form a foundation on 
which to build such work. 

The distilled knowledge presented in the theory and review sections of the 
Thesis as well as the original contributions presented represent a useful and com-
prehensive learning tool for new researchers interested in the field. It is hoped 
that this will lead to an increase in the rate of uptake of nonseparable technology 
by researchers and developers. 

11.2. Further Research 

This Thesis has achieved its aims of providing a strong foundation on which 
further research into nonseparable wavelet image compression techniques can be 
built. The results obtained indicate particular areas worthy of further study which 
are beyond the scope and time constraints of this Thesis. 

Research into the effects of orientation-based child-parent relation-
ships in zero-tree coding. It was found that there was little advantage to 
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using an orientation-based child-parent relationship over direct child-parent rela-
tionships in the quincunx case. This is an unexpected result and further research 
may shed more light on the reasons for this. 

Masking shadow prediction for other lattices. The masking shadow pre-
diction method for quincunx zero-tree coding which was presented can also be 
applied to zero-tree coding of separable and other decompositions where it is ex-
pected to achieve similar coding improvements to those results presented for the 
quincunx case. 

Hybrid zero-tree coding. The zero-tree coder was found to be highly ef-
ficient for very low bit-rate compression but as the precision increased the ef-
fectiveness of the coder declines. A hybrid coder using zero-tree coding for the 
early stages and another method for latter, more random stages would most likely 
provide good results for higher bit-rate/quality settings. 

Design of non-separable filters for use on the quincunx lattice. Re-
sults presented in this Thesis indicated that significant increases in perceived re-
constructed image quality could be achieved by more appropriate design of wavelet 
filters for the quincunx lattice. During the course of the research the author noted 
that the lifting scheme of Sweldens would be an excellent method by which to 
develop filters for this purpose. 

Upsampled Processing on Other Lattices. The upsampled processing 
method presented in this Thesis is not restricted to the quincunx lattice and 
may provide a useful tool for other nonseparable and separable domains, either 
for performance enhancement of wavelet transforms or as a visualization tool for 
nonseparable wavelet detail signals. 

Near Zero-trees 

This section proposes another novel extension to the zero-tree coding mecha-
nism which would improve its efficiency. 

Image compression is inherently a process of optimization where the quality of 
the reconstructed images is sacrificed for a reduction in the amount of data. One 
way in which zero-tree coding can be improved is by the use of "near-zero-trees". 
A near-zero-tree is a subband decomposition tree in which the majority but not 
all of coefficients are insignificant. In some instances like this it is sensible to 
artificially force those significant coefficients to be insignificant so that a complete 
zero-tree structure can be formed. This leads to a reduction in the amount of 
data which is needed, but it also increases the error in the reconstructed image. 
In some cases however it has a net positive impact from a rate versus distortion 
perspective since the increase in distortion is less than would occur for the sacrifice 
of any one symbol. 
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A decision must be made as to whether it is appropriate to sacrifice the preci-
sion of certain coefficients so that the overall goal of a reduced amount of data can 
be furthered. There are certain coefficients which have greater visible significance 
than others which should not be distorted in this way. 

_A _A_ A A _A_ _A__ 
FIGURE 11.2.1. A near zero-tree. One coefficient is significant 
(grey), but it can be advantageous to force it to be zero as this 
would create a complete zero-tree represented by a single symbol in 
the data stream. In this case 9 symbols are required to code the 
tree. 

The decision of which coefficients can be distorted and at what cost is at the 
heart of image compression algorithms. Typically compression uses immutable 
rules which must be obeyed, and this results in a homogeneity throughout the 
compression process which makes for easy analysis. However at the centre of 
image compression is the Human Visual System which is highly context sensitive 
and unlikely to notice a deviation from any homogeneous methodology. 

A bad case scenario for zero-tree coding is when there is a large tree of coef-
ficients in which all are insignificant but one, and the significant coefficient is at 
a fine detail level in the tree hierarchy. Figure 11.2.1 shows an example of such a 
situation on the quincunx tree. In this case none of the parents of the significant 
coefficient can be zero-tree roots because they have a significant child. The amount 
of data required to represent this situation is nearly maximal whereas the amount 
of image information expressed is very small. Since the significant coefficient is 
deep in the resolution hierarchy it corresponds to fine-detail in the high-frequency 
region of the decomposition. Thus reducing the magnitude of the coefficient would 
have only a small localized effect on the reconstructed image, but it could lead to 
a noticeable reduction in the data required. 

If we consider the quincunx and separable zero-tree structures we find that 
the quincunx structure initially appears more conducive to having near zero trees 
which could be successfully changed to zero-trees. Figure 11.2.2 shows two hier-
archical level steps for a separable zero-tree. There are 21 coefficients in the tree 
covering an area of 4x4 coefficients at the least significant (finest resolution) level. 
In contrast Figure 11.2.1 shows the same situation for the quincunx tree structure. 
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FIGURE 11.2.2. A separable near-zero-tree with a single non-zero 
coefficient (grey). 

In this case there are 31 coefficients in the tree covering an area of 4x4 coefficients 
in the least significant level. It can be seen that with the quincunx tree more 
coefficients are required for a tree representation covering the same image area. 

FIGURE 11.2.3. Near-zero quad-tree equivalent of Figure 11.2.2. 

For both Figure 11.2.2 and Figure 11.2.1 the entire structure can be collapsed 
to a single zero-tree by forcing a single coefficient to be zero. In the case of the 
separable tree, this is a reduction of 20 coefficients, and for the quincunx case the 
reduction is 30 coefficients. 

This is the case for full trees. For zero-trees the situation is quite different. 
Figures 11.2.3 and 11.2.4 show the the zero-tree structures which result from the 
full-trees in Figures 11.2.2 and 11.2.1. As can be seen, both trees compress to 
zero-tree structures of 9 necessary nodes. Both can be compressed to a single 
coefficient by setting the greyed insignificant nodes to insignificant. This is the 
case for a tree covering 4x4 nodes at the least significant level, however for a full 
image it is likely that a tree would cover more than twice this many decomposition 
levels. 

Consider an example. For the separable case, 5 or 6 levels of decomposition 
can be expected for large images and for the equivalent quincunx decomposition 
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FIGURE 11.2.4. Binary zero-tree equivalent of Figure 11.2.1. 

this is 10 or 12 levels. A tree of this size would span an image area of 32x32 
coefficients at the least significant level. For both separable and quincunx cases, a 
near zero-tree which represents this structure would contain 21 coefficients, which 
could be compressed to a single coefficient by forcing the single significant node 
to zero. This example highlights both the compression which can be achieved 
using the zero-tree structure and the reduction in data which can occur when 
collapsing near zero-trees to single nodes. Initially we have a decomposition of 
32x32 coefficients at the least significant detail level which gives a total of 1024 
coefficients, which can be represented by a single zero-tree symbol (2 bits in a 
four-symbol alphabet dominant pass). 

Implementation Details. A suggested implementation is presented here, 
although no experimental evidence is provided due to time constraints. 

Near-zero-tree coding is difficult to put into a usable algorithm. The problem 
we face is that we must somehow transfer the knowledge to the decoder about 
nodes which do not obey the rules of zero-tree coding. 

One way to do this builds upon the method outlined in this Thesis for use in 
masking shadow prediction coding. We create a means by which near-zero-trees 
can be predicted from lower resolution components already coded. This means 
that our decision about which nodes to make insignificant can no longer be based 
on the actual value of the nodes but must be based on the value of preceding nodes 
which are known. 

We work with a dynamic thresholding system again as used in the masking 
shadow prediction coding. We increase the threshold as the number of levels of 
a zero tree increases. In this way the deeper a zero-tree gets, the more likely it 
is that a coefficient will be forced to be part of the tree - and since the depth 
increases as we move towards finer resolutions errors will be less pronounced. The 
difficult part is determining a rate of increase for the significance threshold. This 
factor needs to be determined before any useful method can be created from it. 
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When scanning for zero-trees, if we start at coarse resolutions and move down 
through the children we can adaptively set thresholds for these coefficients. Thresh-
olds are unaffected until an insignificant coefficient is found. The threshold of 
significance values applied to its children are then increased slightly and checking 
proceeds into the children. If all are insignificant then the threshold applied at the 
next finer level is increased again. Once a coefficient is found which is significant 
with respect to the modified threshold the threshold bias returns to zero for its 
children. The process then begins again. It is possible for a zero-tree to begin at 
this level so if insignificant coefficients are found then their children will be treated 
with a biased threshold. 

The key point of this method is that the exact threshold used for every coeffi-
cient can be determined at the decoding stage from those coefficients which have 
come before. In particular coefficients which have previously been part of a zero-
tree will have had their threshold artificially increased by the encoding stage and 
this increase in threshold then allows us to calculate the correct dynamic range 
for the coefficient when reconstructed. 
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(blank) 



Appendix A - Original Images 

The following are the original images used in the course of the research of 
this Thesis. They represent a standard image set which is used in image coding 
globally. All images are 512x512 pixels in size at 8 bpp greyscale continuous-tone 
derived from conventional photographs. 

The images are 

• Airplane - an F-16 fighter aircraft with a mountains and clouds 
• Baboon - close-up of the face of a baboon 
• Barbara - indoor scene with a woman sitting on the floor 
• Boat - boats on stands at a dry-dock 
• Fruits - fruit-bowl with various items of fruit 
• Girl - face of a girl with facepaint 
• Goldhill - landscape scene of village and fields to the horizon 
• Lenna - indoor scene of a woman in a feathered hat 
• Peppers - still-life composition of various pepper fruit 
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