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Abstract 

The myotendinous junction of fish muscle was investigated in detail using 

both scanning and transmission electron microscopy (SEM, TEM 

respectively). The properties of the main connective tissue structure, type I 

collagen, were characterised and the purified collagen was used to prepare 

antibodies to examine structural aspects by immunogold procedures. 

The SEM studies showed that a network of fibrous connective tissue 

surrounds each muscle fibre, linking it into a socket-like indentation in the 

myocomma. These connective tissue fibres were degraded in chill storage, 

leading to the detachment of muscle fibres from the myocommata and 

subsequent loss of tissue integrity. Detailed study by TEM demonstrated 

grooves and invaginations in the terminal ends of the muscle fibres that 

were filled with fine collagen fibres from the myocomma. These collagen 

fibres were linked by fine connections to the basal lamina which in turn 

was linked to the sarcolemma. 

During chill storage, the basal lamina, the fine connections and the fine 

collagen fibres progressively degraded and significant deterioration 

occurred in the myotendinous junction. This deterioration preceded any 

obvious changes within the muscle fibre structure. 

The major structural collagen of the skin and muscle and other organs in 

the fish blue grenadier is an heterotrimer of type I collagen. This collagen 

was highly soluble in dilute acid and the proportion of insoluble collagen 
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increased with the age of the fish. The collagen possessed three alpha 

chains in its molecular structure and the amino acid composition of the a-3 

chain indicated its derivation from the a-1 chain. The melting and 

shrinkage temperatures obtained for this collagen were consistent with the 

imino acid levels and the environment of the fish. 

Immunogold labelling procedures were developed which confirmed the 

presence of type I collagen fibres in the myocomma adjacent to the muscle 

fibre cell but which were inadequate to define individual collagen fibre 

types. 

These studies illustrate the complex and intricate nature of the 

myotendinous junction in commercial fish species. They show that post 

mortem degradation occurs external to the muscle fibre cell in the 

extracellular matrix and, in particular, in the fine collagen fibres that form 

the muscle cell envelope and fill the interstitial muscle space. The study has 

thus shown that the initial problems of post mortem softening and gaping 

have their origin in the myotendinous junction not within the muscle fibre 

itself. The TEM work confirms the SEM work that the breakdown occurs 

at the interface between the muscle fibres and the connective tissue of the 

myocomma. It has highlighted the need for further work on the nature and 
. 	. . properties of themterstinalcollagens and on the nature, activity, specificity 

and location of the enzymes responsible for the degradation. It has also 

pointed out the need to establish whether the marine equivalents of minor 

3 



Myotendinous junctions in fish 

components of mammalian muscle and its extracellular matrix occur in 

fish. 

( 
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Foreword 

In the post mortem state, the flesh of many species of fish softens and 

'gapes'. Gaping is the name given to the phenomena when the muscle 

bundles, the myotomes, separate from the myocomma, the sheet of 

connective tissue that separates them. Fissures may also appear along the 

myotomes between the muscle bundles. This undesirable phenomenon may 

occur within a day or two post mortem even in fish that have been 

adequately chilled (near 0 °C). The result is poorer products of inferior 

appearance, that are more difficult to handle and process. Gaping is of 

considerable economic importance. The problem is common in many 

commercially important species, but is particularly prevalent in the 

merluccid hakes of which some 15 million tonnes are caught annually 

worldwide. The blue grenadier (Macruronus novaezelandiae Hector) is an 

important trawlfish caught in Australia that is related to the hakes, and its 

flesh is prone to softening and gaping. The fishery is in a rapid 

developmental stage and the current total allowable catch is 5000 tonnes 

per annum. 

The breakdown in integrity of the muscle structure that leads to softening 

and gaping occurs in the region of the myotendinous junction but it is not 
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clear whether this change is within the structure of the junction itself, or in 

the adjacent muscle tissue, or in the connective tissue of the myocomma; 

or, in all these structures. Since the detail of the structure of the 

myotendinous junction in fish is not well elucidated it had not been possible 

to identify which components deteriorate and by what mechanisms these 

changes occur. 

Aim 

This study was initiated to establish detail of the fine structure of the 

myotendinous junction in fish, to examine which parts of this structure 

deteriorate and to explore the mechanisms involved. 

Changes in components in tissue, particularly proteins, are often detected 

using electrophoresis or similar separative techniques on extracts of the 

tissue. Changes in structure of the tissue are then inferred from these 

results. In this study elucidation of the structures in situ was considered to 

be more important initially. 

The following approach was taken - muscle was examined under the 

scanning electron microscope (SEM), which indicated that fine connective 

tissue structures of the myocomma and the muscle cell envelope were being 

degraded. This was followed by studying similar muscle samples under the 

transmission electron microscope (TEM) which showed detail of the 
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elements of the fine structure being degraded during storage. In order to 

identify the nature of the collagen involved, this structural element was 

extracted and purified by chromatography and electrophoresis and 

chemically characterised. To locate and identify the particular collagen 

fibrils in situ, antibodies to the collagen were raised and used with an 

immunogold method to explore the ultrastructure. 

8 
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1.0 Introduction 

1.1 Structure of fish flesh 

The flesh of teleost fish is constructed of adjacent muscles blocks, called 

myotomes, separated from each other by sheets of collagenous tissue called 

myocommata (Nursall, 1956). The myotomes on both sides of the axial 

skeleton each take the form of double cones which fit together along the 

long axis of the body to give the appearance at the surface of a series of 

W-shaped sections resting on their sides (Figure 1.1). Within each 

myotome the muscle fibres (myomeres or myofibrils) run approximately 

parallel to each other but at varying angles to the myocommatal sheet to 

accomodate the juxtapositional rhythmical contractions that occur during 

swimming so that all the fibres in the myomere contract to a similar extent 

when the fish bends. This results in maximum power output at a given rate 

of contraction (Alexander, 1969). The myocommata are connected 

internally to the skin and to the skeletal system and are also linked to the 

membrane dividing the fish into epaxial and hypaxial planes and to the 

median vertical septum. The overall geometry of the muscle fibres to the 

connective tissue is most complex making it extremely difficult to prepare 

samples with favoured orientation. Further detail on the overall structure 

can be found in the reviews by Nursall (1956) and Alexander (1969). 
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Amon, 

Figure 1.1 Diagramatic representation of the musculature of a 
typical teleost showing A the myocommata separating the muscle 
blocks (myomeres or myotomes) and B, C the approximate 
orientation of the muscle fibres within the myomeres and their 
tapering cone-like structures which interlock to form the muscle 
mass. (Adapted from Ellis et al. 1978). 
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The junctions between the myomeres and the myocommata in fish are 

equivalent to the myotendinous junction in mammalian muscle and this 

term will be used to describe them in this thesis. The myotendinous 

junction is reported to be formed by fine collagenous processses which 

have their origin in the myocomma; these then proceed as sheaths to 

surround each muscle fibre (Love 1970, Love et al .1969). 

There is, however, remarkably little detail known of the fine structure of 

the junction in fish muscle even though it plays a prime role in the transfer 

of muscular contractions in vivo and in maintaining flesh integrity post 

mortem. Pre-eminence has been given to understanding the structure, of 

myotendinous junction of mammalian muscle. 

1.2 General aspects of the myotendinous junction 

Early this century, general texts on anatomy described the fibres of the 

tendon bundle as ending abruptly on reaching the rounded or obliquely 

truncated extremity of a muscular fibre (Schaffer, 1912). Under the light 

microscope, the muscle fibre end was not smooth and rounded, but 

appeared scalloped where it embedded in the connective tissue. Until the 

advent of the electron microscope (EM) little progress was made in 

elucidating this fine structure. The early EM studies by Porter (1954) and 

Ruslca (1954) established that the muscle fibre terminated in finger like 
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projections which were bounded by the cell membrane; the actin filaments 

terminated inside the cell. Collagen fibres likewise did not penetrate the 

cell membrane and were never found within the muscle cell (Porter 1954; 

Ruslca 1954). Thus, the continuity theory which was held by many early 

workers (Schultze 1912; Sobotta 1924; Carr 1931; Butcher 1933; Schmidt 

1936), that muscle fibres merged into tendon fibrils, was rejected in favour 

of the view that the sarcolemma formed a boundary between muscle cells 

and the connective tissue, as reported by several early workers (Baldwin 

1913; Haggqvist 1931; Goss 1944; Long 1947). 

A major feature which is evident in all species so far investigated is the 

complicated folds and invaginations which occur at the myotendinous 

junction. This complex geometry increases the area of contact between the 

end of the muscle cell and the external matrix by a factor of about 20 to 30 

times for fast twitch muscles and 50 times for tonic cells (Tidball and 

Daniel 1986). The load on the cell membrane caused by muscular 

contraction is thus reduced by an order of magnitude (Trotter, Hsi, Samora 

and Wofsy 1985). Further, the geometry of the invaginations, relative to 

the force transmitting actin filaments attached to the sarcolemma ensures 

that the forces are transmitted in shear not tensile mode (Tidball 1983). 
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1.2.1 Three structural domains 

The myotendinous junction has three major structural domains which are in 

close proximity (i) the membranes and fine processes at the junction (ii) the 

external connective tissue stroma which eventually links to the tendon and 

(iii) the internal elements of the muscle cell and the sub- sarcolemmal 

surface. 

1.2.1.1 The basement membrane 

The basement membrane, sometimes called the basal lamina, occurs 

adjacent to the sarcolemma. It has commonly been considered part of an 

integral structure marking the boundaries of cells, even though it may not 

always follow exactly all the convolutions of the sarcolemma. The 

basement membrane serves a variety of functions - mediation of 

interactions between specific cell layers and their underlying siroma, 

molecular ultrafiltration and tissue organization. 

The basement membrane is an extracellular matrix in which two obvious 

features are discernible. The outer area, the lamina densa, is an electron 

dense zone that is comprised mainly of collagen, mostly type IV, and the 

lamina lucida (rara). The latter lies between the lamina densa and the 

sarcolemma and although it is more transparent to electrons some structural 
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details are recognised. 

In the lamina densa the collagen type IV molecules form unique end to end 

associations to construct a network of molecules which comprise the 

structural framework of the membrane (Timpl and Dziadek 1986). There 

are several other components, in particular laminin and heparin sulphate 

proteoglycan. The large molecular weight glycoprotein laminin has been 

localised to the basement membranes of skeletal muscle and is distributed 

thoughout the lamina densa and the lamina lucida (Stephens, Bendayan and 

Silver 1982; Mayne and Sanderson 1985). The proteoglycans are formed of 

a central protein core with glycosoaminoglycan side chains that are multiply 

linked by covalent bonds; these molecules affect permeability and cell 

attachment (Mayne and Sanderson 1985). 

Collagen fibres from the connective tissue were thought to attach to the 

basement membrane and the analogy of a rope untangling at its end to 

provide the fibres which were woven into the carpet of the basal lamina 

was employed to convey the concept of how force may be transmitted from 

the muscle to the tendon (Mackay et al. 1969). It was assumed that 

tropocollagen molecules provide the linkage between the sarcolemma and 

the basal lamina. 

Low (1961,1962) described a set of fibrous structures with a diameter in 

the range of 4 to 12 nm which were finer than the collagen fibrils and 

which appeared to link between the collagen fibrils. He termed them 
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'microfibrils', although this term has other connotations in collagen 

chemistry. Hanalc and Bock (1971) examined muscle-tendon transitions in 

the papillary muscle of the heart, muscle from the tip of the tongue, the 

diaphragm and the gastrocnemius of the guinea pig and reported the 

presence of 'microfibrils'. They proposed that these elements actually 

passed through the basal membrane and fused with the outer electron-dense 

layer of the sarcolemmal membrane. They interpreted this from their 

electron micrographs which showed a "ladderlike" structure formed 

between the sarcolemma and the basement membrane but which in some 

parts of the sections was at 450  angles to the sarcolemma and had the 

appearance of a solid fibre. In some instances the 'microfibrils' had the 

appearance of beaded threads rather than solid structures. Similar structures 

were demonstrated by Korneliussen (1973) in the myotendinous junctions of 

muscles of the hagfish Myxine glutinosa L. where spine-like structures 

about 6nm in diameter at 15-25 nm intervals extended from the external 

leaflet of the plasma membrane to the internal surface of the lamina 'densa. 

These structures were interpreted as being consistent with arrays of circular 

ridges between the sarcolemma and the lamina densa of the basement 

membrane but they were not as predominant or noticeable in the rat 

diaphragm muscle which was studied at the same time. Studies on tadpole 

muscle (Nakao 1974) also demonstrated the presence of a connecting 

'intermediary layer' and further work by the same author (Nakao 1975) 
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showed similar structures in the myotendinous junctions of the lamprey. 

These beaded threads were also noted by Ajiri et al. (1978) in the 

myotendon of the rectus abdominus muscle of the bullfrog in the 

extracellular space of the lamina rara in invaginations at the end of the 

muscle cell. Similar connections were seen linking the lamina densa of the 

basement membrane to the fine collagen fibrils. 

Trotter, Corbett and Avner (1981) used detergent and EGTA solvents to 

disrupt the sarcolemma and found that the small filamentous structures that 

cross the lamina lucida remained intact and that tension could still be 

transmitted across the myotendon, indicating that these filaments were 

attached to elements of the contractile structure not just to the sarcolemma 

alone. From this and other evidence they concluded there were three 

important structural facets, one that binds actin near the sarcolemma to 

transmit the contraction, another that crosses the hydrophobic portion of the 

membrane and a third that transmits tension from •the membrane to the 

lamina densa. Further work indicated that the filaments of the lamina' lucida 

are composed of two subdomains one closely associated with the 

sarcolemma and the other with the lamina densa; the connection between 

them is ionic not covalent (Trotter, Eberhard and Samora 1983a). 

Very recent work has shown that the beaded microfibrillar structures in the 

extracellular matrix of many tissues are composed of fibrillin (Keene et al. 

1991; Kielty et al. 1991). The method of preparation and the degree of 
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tension in the tissue affects whether the fibrillin structures appear in the 

TEM in the beaded form or as microfibrils, thus explaining the previous 

confusion as to their morphology (Keene et al. 1991). Fibrillin is a large 

glycoprotein (350Kd), containing approximately 14% cysteine, which has 

the appearance under TEM of an extended flexible molecule 148 nm long 

and 2.2 nm in diameter (Sakai et al. 1991). The ultrastructural and 

immunohistochemical evidence indicate parallel, head-to-tail alignment of 

fibrillin into microfibrils. 

Nakao (1975) seems to be the first to have observed that the basement 

membrane, which otherwise is continuous, is absent in the terminal ends of 

the invaginations of muscle cells in the lamprey and the tadpole (Nakao 

1976). This absence is unusual; no breaks occur in the sarcolemma. The 

ends of the invaginations often coincide with the cisterns of the 

sarcoplasmic reticulum and there are specific couplings between the 

sarcolema and these terminal cisterns. In these invaginations only the 

sarcolemma forms a barrier between the muscle cell and the connective 

tissue and the external milieu. Some fine collagen fibres proceed beyond 

the limits of the basement membrane but there is no evidence that they join 

with or penetrate the sarcolemma. 
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1.2.1.2 The extracellular matrix 

The major feature of the extracellular matrix is the fibrous collagenous 

network that surrounds each cell and which joins to form the tendons and 

ligaments that attach to the skeletal system. The structure of collagens, 

their types and properties is discussed in detail in a subsequent section. In 

the endomysium the fibres are fine and tend to form a lace network around 

the muscle fibre (Rowe 1981). Branched reticular fibres which form rows 

arranged obliquely or perpendicularly to the long axis of the muscle are 

also present in mammalian muscle (Orcutt et al. 1986). These reticular 

fibres were once considered to be another form of proteinaceous fibre, but 

have since been shown to be type III collagen. Larger diameter collagen 

fibres of the perimysium surround the muscle fibre bundles and these run 

into the major sheets of collagen of the epimysium which cover individual 

muscles to become tendons. 

Other cells and components are present in the collagen matrix along with 

the ground substance in which it embeds. Fibroblasts with their flattened 

dendritic processes are present, often at boundaries between adjacent layers 

of collagen fibres. These fibroblasts are derived from mesenchymal cells 

and they produce the collagen molecules. Adipose cells, mast cells and 

macrophages containing lysosomes are regularly noted in the looser 

connective tissues as well as eosinophilic leukocytes and plasma cells. 

18 



Myotendinous junctions in fish 

The collagen is produced by the fibroblasts which are evident adjacent to 

the muscle cell ends and from which flattened dendritic processes emerge. 

Elastin fibres, which play a role in providing some of the elastic properties, 

are also present. These fibres are comprised of two separate protein 

components, elastin itself and microfibrils of approximately 10 - 12 nm in 

diameter, which occur mostly around the periphery of the elastin and 

comprise about 10% of its weight (Gosline and Rosenbloom 1984). The 

microfibrils are glycoproteins rich in polar amino acids (Bailey and 

Etherington 1980), somewhat similar in composition to the extension 

peptides of procollagen (Scherr et al. 1973). They appear to be laid down 

before the elastin and influence elastin deposition. 

Elastin is an amorphous protein with a molecular weight near 70 IcD and an 

amino acid composition with some similarities to collagen in that glycine 

comprises one third of its residues. Some 40% of its amino acids have 

hydrophobic side chains and its molecules are cross-linked by two 

characteristic and unusual amino acids, desmosine and isodesmosine formed 

from the conjunction of four lysine molecules (Partridge et al. 1963) 

mediated by the enzyme lysyl oxidase. Structurally it is quite different to 

collagen being arranged as a kinetically free random coil network which 

helps impart the elastic properties. Elastin occurs in the blood vessels of 

fish (Sage and Gray 1979) but there are no reports of it in the extracellular 

matrix of the muscle tissue. Elastin is only degraded by the group of 
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enzymes known as elastases which can also act on a whole range of other 

proteins (Bailey and Etherington 1980). 

The ground substance of the extracellular matrix is composed mostly of 

glycoproteins and proteoglycans. The proteoglycans are complexes of a 

protein core with glycosaminoglycans chains attached covalently. These 

chains are linear polymers of about fifty repeating disaccharides, often 0- 

sulphated N- acetylhexosamine and uronic acid. They are commonly of 

high molecular weight, up to millions of daltons, and may occur in 

aggregates over 100 million dalton. As a result they are large, highly 

charged and disperse molecules which form extended structures (Heinegard 

and Paulson 1984). 

Proteoglycans in connective tissues attach to collagen fibrils at regular 

binding sites. In this way, the collagen controls its external environment. 

Furthermore there is evidence of proteoglycans present within collagen 

fibrils attached to the protofibrils that make up the fibrillar construction 

(Scott 1991). This presents a considerable advantage in tissue 

reconstruction or remodelling since the only the proteoglycans attached to 

the protofibrils need to be broken down, not the whole collagen molecule. 

In fish muscle the only reports of the presence of proteoglycans and 

sulphated proteoglycans is that of Kim and Haard (1992) who detected 

these substances in low levels in rockfish (Sebastes sp). 

Hyaluronan is the largest proteoglycan. One of its main roles is in retention 

20 



Myotendinous junctions in fish 

and regulation of water flow. The chondroitin sulphates contain only 

glucuronic acid and are a common component in cartilage and 

intervertebral discs. Dermatan sulphates are distinguished by the presence 

of L-iduronic acid and are variable in composition being common in 

tendon, skin, aorta etc but not in cartilage; they bind to type IV collagen 

(Laurie et al. 1986). Heparin and heparin sulphate are complex copolymers 

of two types of disaccharides and are interactive components of the 

extracellular matrix. Keratan sulphate is distinguished by having sialic acid 

present at nonreducing terminal segments and by possessing oligosaccharide 

branches. Tissues such as cornea and nasal cartilage are rich in keratan 

sulphate and in fish it has been reported in the skin, cornea and caudal fin 

(Ito et al. 1982), but there are no reports of it in intramuscular tissue. 

Two other glycoproteins that occur in connective tissue and basement 

membranes are the fibronectins and laminin (Hakomori et al. 1984). 

Fibronectin occurs in pericellular tissue and, among other roles, it binds to 

collagen, proteoglycans and cell surface receptors so that it is involved in 

the stability of the myotendinous junction. Its structure is made up of two 

unequal subunits joined by a disuphide bond in which the arms are free to 

link with other structures (Hynes 1986). Individual domains in each of the 

subunits impart to fibronectin the ability to bind with a wide range of 

substrates. There are no reports of fibronectin in the muscle of fish but it 

has been separated from the plasma of torpedo fish (Engvall et al. 1978), 
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carp (Uchida et al. 1990) and recently a fibronectin-like protein has been 

found in the plasma of rainbow trout (Takahashi et al. 1992). 

Laminin contains no hydroxy amino acids, but many half-cystine residues, 

and so is quite distinct from collagen. It is known to mediate adhesions of 

epithelial and endothelial structures at basement membranes. Its attachment 

to collagen type IV occurs 81 nm from the carboxy terminal end of this 

molecule (Laurie et al. 1986). 

In muscle tissue the large collagen fibres are almost invariably type I 

collagen. Smaller proportions of type III occur and type V is associated 

with the type IV of the basement membrane. The collagen fibres are 

embedded in a matrix of proteoglycans. They are often crimped and run in 

layers in different directions to provide a strong flexible structure. The 

fibres have a range of diameters according to their position and function, 

from fine endomysial fibres of about 30 nm to over 100 nm in diameter. 

Low (1961) indicated that finer connections appeared to join the collagen 

fibres. More recent studies have shown that in some epithelial 'tissues 

'anchoring fibrils' contain a recently discovered collagen, type VII (Bentz 

et al. 1983, Sakai et al. 1986), as the primary structural agent. This 

collagen forms an extended network of fibrils between anchoring plaques in 

the lamina lucida of many epithelial tissues (Keene, Sakai, Lunstrum, 

Morris and Burgesson 1987) but to date type VII has not been reported in 

muscle or other internal organs. 

22 



Myotendinous junctions in fish 

A new group of collagens that provide molecular bridges in the 

extracellular matrix has now been described comprising collagen types IX, 

XII and XIV. They are named the FACIT collagens (Fibril-Associated 

Collagens with Interrupted Triple helices) since they contain quite large 

non-triple helical regions (Shaw and Olsen 1991). Their multi-domain 

structure and their location and protrusions into the perifibrillar space 

suggests that they are important elements in providing the structural 

diversity of connective tissue collagen scaffolds. Type IX locates its long 

arm along the surface of cartilage type II collagen while its short arm, 

which terminates in a large non helical domain, protrudes and is capable of 

interactions with other matrix components such as proteoglycans. 

Type XII molecules have been demonstrated by antibody staining to 

localize in dense type I containing tissues such as tendons and ligaments but 

not in bone and skin. Another collagen type designated as type XIV which 

contains some sequences homologous to type )CII collagen occurs in skin 

and tendon. Different forms of type IX collagen are found in different 

tissues and hence their interaction properties are likely to be different. 

None of these FACIT molecules have yet been reported in fish. 

1.2.1.3 The internal structure 

Muscle fibres are comprised of bundles of fibrils (myofibrils) arranged 

23 



Myotendinous junctions in fish 

longitudinally within the muscle cell and organised within a cytoskeletal 

framework of desmin- containing intermediate filaments (Lazarides 1980). 

The basic repeat unit of the myofibril is the sarcomere (often termed 

myomere in fish) and each sarcomere is bounded at each end of its long 

axis by the electron dense structure known as a Z disc (or Z band, or Z 

line). Each sarcomere has a central protein-dense region, the A band -, and 

the isotropic I band situated between the A band and the Z disc (Figure 

1.2). The contractile apparatus is comprised of the major internal 

components of the sarcomere, the interdigitating proteins actin and myosin. 

Actin filaments extend from one Z disc to the next and, in cross section, 

are arranged in an hexagonal array parallel to and around the myosin rods 

which themselves do not attach to the Z disc, but which occur in the mid 

portion of the sarcomere. The rod-shaped protein tropomyosin occupies the 

grooves of the actin helix providing a structure for the globular protein 

troponin to attach at regular intervals. The third most abundant protein in 

muscle is titin (also called connectin) which as 'gap filaments' join the 

thick myosin filaments from their ends to the Z disc and thus stabilize the 

myosin in the centre of the sarcomere (Horowits and Podolslcy 1987). 

Another protein, nebulin is associated with titin in these 'gap filaments'. 

The protein components of the Z disc are unresolved but alpha-actinin is a 

protein with actin-bundling properties and it comprises about 50% of the Z 

disc. Actin filaments from adjacent sarcomeres overlap into this structure. 
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Other proteins that have been suggested as components are Z-protein, 

amorphin, Eu-actinin, Z-nin, filamin, zeugmatin and another 220 Kd 

protein (Yamaguchi et al. 1986). Zeugmatin is present in the early 

formation of Z disc structures grown in cell culture, before alpha-actinin is 

observed, and hence probably plays some organisational role in 

development and organisation (Maher, Cox and Singer 1985). At the edge 

of each fibre, elements of the cytoskeleton link the filaments from the 

terminal Z disc to an electron dense meshwork at the sub-sarcolemmal 

surface. The terminal Z discs near the sarcolemma have been found to 

contain much less alpha actinin than those in the body of the fibrils. 

Accordingly it is assumed that this indicates that thin filaments are not 

bundled by alpha actinin near the sarcolemma (Tidball 1987) and that Z 

discs in different locations are not homogeneous in composition. 

Talin, a 225 Kd protein has also been located at myotendinous junctions 

and is a component of the digitlike processes that extend into the tendons 

and may be involved in force transmission (Tidball, O'Halloran and 

Burridge 1986). The cytoskeletal proteins, the slcelemins, are located at the 

periphery of the M discs while vinculin is organised along the sarcolemma 

in an array of rib-like bands termed costameres (Pardo, Siciliano and Craig 

1983). Transverse sarcomeric filamentous systems organised at the Z and 

M bands levels are evident linking these structures to the sarcolemma 

(Pierobon-Bormioli 1981). Other proteins, C-protein and an X-protein, are 
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also found at the A bands. C-protein has a molecular weight near 135 Kd 

and it occurs bound to the light meromyosin region of the myosin tail 

where it appears to be able to interact with three to five actin sub-units. It 

is presumed to have a function in the interaction of actin and myosin 

(Pearson and Young 1989). The function of X-protein (152 Kd) is not 

known but it is found closely associated with C-protein, and may be bound 

to it (Pearson and Young 1989). 

Each fibril is bathed in cytoplasm and is partly enshrouded by the 

membranous sarcoplasmic reticulum (SR) containing the sarcoplasm (Figure 

1.3). The fenestrated network of the reticulum has two notable features, the 

tubular system (t-tubules) and the sarcoplasmic reticulum itself. The t-

tubules are interconnected forming a network across the fibre surrounding 

each fibril at the level of the Z disc and they open out through the 

sarcolemma to the extracellular space. The SR system is continuous 

transversely but is discontinuous longitudinally and each sarcomere has its 

own reticulum. The SR swells out to form the terminal cisternae which in 

apposition with those of the adjacent sarcomere and the intermediate 

element, the T tubule, make up the triad structure. In fish the triads are 

situated external to the Z disc, but in mammals the triad occurs in the 

midportion of the sarcomere near the junction of the A and I bands. 

Near the end of a muscle fibre the sarcomeres anastomose around the 

invaginations of the sarcolemma and actin fibres reach from the last 
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Figure 1.2. A diagrammatic representation of sarcomere structure 
identifying bands, zones and lines. (Adapted from Huxley 1965). 

Figure 1.3. Diagrammatic representation of the sarcoplasmic 
reticulum and t-tubules and their relation to the myofibrils of 
skeletal muscle. (Adapted from Bloom & Fawcett 1968). 
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complete Z disc to the internal surface of the sarcolemma, where they 

attach in an election dense sub-sarcolemmal layer. This layer is comprised 

of both globular densities and fine linear elements which run approximately 

parallel to the major actin fibres (Trotter, Eberhard and Samora 1983b). It 

is assumed that these structures are involved in anchoring the actin to the 

interior of the sarcolemma and the region has been referred to as the 

internal lamina by Trotter et al. (1983a). The proteins talin and vinculin 

are found at this location and it is considered that these may be the force 

transmitting and attaching proteins (Tidball, O'Halloran and Burridge 

1986). 

Longitudinal muscle growth occurs at the fibre ends (Williams and 

Goldspink 1971) and glycogen granules, mitochondria, polysomes and 

ribosomes occur with notable frequency near the fibril ends (Schattenberg 

1973). 

1.2.2 The myotendinous junction in fish 

Shwarzacher (1960) examined muscle fibre-tendon junctions in the seahorse 

in comparison to those from the cat, rat, mouse and frog. There were 

considerable similarities and all the junctions revealed folds and finger-like 

projections at the ends enveloped by the basement membrane. Similarly, 

Schippel and Reisig (1969) indicated that the myotendon junction of the 
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flowing muscle of the spinal cord of the pipefish was similar to the 

appearance of that in the tadpole tail. In the primitive hagfish (Myxine 

glutinosa) Korneliussen (1973) found spine-like projections and threadlike 

cones between the lamina densa and the external surface of the sarcolemma 

which he concluded had the same feature, namely ring like structures that, 

according to the angle of section, could appear either as spines or threads. 

He also showed the fibres from the I band (actin fibres) attaching to the 

sub-sarcolemmal surface in electron dense areas and he suggested these 

were analogous to Z discs. 

The sequence of events in the longitudinal growth of myofibrils of the 

skeletal muscle of Macropodus opercularis was reported by Schattenberg 

(1973) as follows. High ribosomal concentrations occur in the short 

terminal myofibril region along which actin filaments are formed. As the 

terminal portion enlarges myosin filaments are evident and A and I bands 

appear followed by the Z disc which forms in close contact with the 

sarcolemma and gradually detaches from it. Nakao (1975) showed that in 

the lamprey the sarcolemma at the terminal end of the invagination 

frequently showed specific coupling with the cisterns of the sarcoplasmic 

reticulum; the basal lamina was partially or completely deficient in this 

area. Although this allowed for the possibility of collagen fibres to be in 

direct contact with the sarcolemma no definite relationship between them 

was found. Thus the myotendinous junction in fish is similar in general 
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structure to that found in mammalian muscle. However, many details of the 

structure and composition have yet to be ascertained. Species of 

commercial importance have been neglected. 

1.3 Collagen 

The protein collagen is perhaps the most important structural tissue in the 

animal kingdom. It occurs in a diverse range of tissues, provides the 

framework for bone, is the major component of skin and it enshrouds 

muscle fibres and groups of fibres to provide the elastic components of 

tendon and cartilage. Several different genetic types exist, with the most 

ubiquitous and most studied being type I. This is taken as the model for 

discussion of collagen chemistry and biochemistry. 

Collagen type I is a fibrous protein comprised of rod like molecules each 

300nm long, with a molecular weight near 300 Kd structured in a triple «- 

helical arrangement of three chains of amino acids, two of which are 

generally identical in composition. The low molecular weight amino acid 

glycine occurs at every third location within the chains in a repeat sequence 

Gly-X-Y where X and Y can be any amino acids but, are often proline and 

hydroxyproline. This imposes steric restrictions and in order to meet the 

tight steric requirements for the alpha helix the side groups of other amino 

acids protude from the long axis of the molecule and are important in 
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determining intermolecular crosslinlcs. The three a chains are held together 

by hydrogen bonds, one to every three residues, and each chain may be 

joined to one or both of the other chains in the molecule by covalent bonds 

formed by aldol condensation of allysine groups on adjacent chains with 

subsequent dehydration. There are two separate functional parts to the 

molecule: the central triple helical region and the non-helical region at each 

end of the a chains comprising a short telopeptide ranging from 9 to 50 

amino acid residues. It is in these C-terminal and N-terminal peptides that 

cross linking occurs. Each molecule is joined to its neighbouring molecule 

at a point one quarter along its length by intermolecular reactions to 

produce a quarter staggered effect. The quarter stagger occurs every 67 

nm; is observable under the electron microscope, and is known as the D 

period of which 4.4 D occur in the length of one molecule (Figure 1.4). 

This results in a regular almost head to tail arrangement since the 

crosslinks are formed at a specific position in the molecule and a regular 

pattern occurs which is evident as a cross-striations in stained fibres (Bailey 

and Light 1989). 

1.3.1 Formation 

Collagen fibres are formed from the tropocollagen molecules assembled on 

the polyribosomes of the endoplasmic reticulum within the fibrolasts. The 
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Figure 1.4 Diagram showing (1) the primary amino acid sequence 
of collagen (2) its triple helical structure (3) the quarter stagger 
arrangement of the fibril and (4) the collagen fibre with repeating 68 
nm D-period.(Adapted from Pearson and Young 1989). 
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tropocollagen molecule is the a chain with a peptide at the N-terminal and 

the C-terminal end. These peptides are snipped off as the chains are 

aggregated into the collagen molecule proper at the time of its release from 

the Golgi complex of the cell into the ground substance. The collagen then 

polymerises into its fibrous form (Bailey and Light 1989)(Figure 1.5). 

1.3.2 Crosslinking 

Both intra and inter molecular crosslinlcs are found in collagen and are 

either derived from lysine residues or, in the case of types II and IV 

collagen, also from disulphide bridges. 

1.3.2.1 Intramolecular links derived from lysine 

The intramolecular link arising from lysine occurs from the action of the 

extracellular enzyme lysyl oxidase on the lysine residues in the telopeptides 

at the N-terminal and C-terminal ends of the molecules to produce lysine 

aldehyde (1-amino-1-carboxy-pentan-5-a1). The aldehyde groups in the 

neighbouring chains are aligned by the enzyme with a set active lysine site 

held opposite a binding site which in types I, II and III collagen contains 

the amino acid sequence Hyl-Gly-His-Arg. The intramolecular aldol group 

then is formed between two lysine aldehyde groups on adjacent chains in 
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the N-terminal telopeptides. No intramolecular aldol links have been found 

at the C-terminal ends (Bailey and Light 1989). 

1.3.2.2 Intermolecular groups derived from lysine 

There are two types of intermolecular links derived from lysine: aldimines 

and oxo-imines, formerly called keto-imines. The covalent aldimine link 

dehydro-hydroxylysinorleucine (dehydro-HLNL) is formed between the 

allysine group in the telopeptide and the hydroxylysine in the triple helical 

portion of the neighbouring molecule at the binding site of the lysyl oxidase 

enzyme (Yamauchi and Mechanic 1988). In type I collagen this occurs at 

residue 103 in the al chain. This bond is stable under physiological 

conditions but is both heat and acid labile. Its double bond can be reduced 

in vitro to yield hydroxylysinonorleucine (HLNL), which is stable to acid 

hydrolysis and thus can be isolated chromatographically (Bailey and Light 

1989; Yamauchi and Mechanic 1988). 

The oxo-imine crosslink is similarly formed from the reaction of the 

hydroxylysine aldehyde produced by the action of lysyl oxidase on 

hydroxylysine groups on the telopeptides with the hydroxylysine of the 

enzyme-binding sequence on the triple helical section of the neighbouring 

aligned molecule. This forms the Schiff's base dehydro-

dihydroxylysinorleucine which in vivo undergoes an A madori 
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rearrangement to form the acid and heat stable oxo-imine hydroxylysino-5- 

oxo-norleucine (HLONL). In vitro reduction eg with NaBH4  can reduce the 

HLONL to dihydroxylysinorleucine (DHLNL)- which can be separated 

chromatographically after acid• hydrolysis (Bracho and Haard 1990). 

Tissues such as skin type I collagen have few hydroxylated groups and tend 

to contain more aldimine than oxo-imine groups. Types II and IV which 

are more highly hydroxylated are rich in oxo-imine crosslinks. 

1.3.2.3 Disulphide crosslinks 

In type IV collagen both intra and intermolecular disulphide crosslinks are 

known to occur. The molecules occur as tetramers with extensive 

disulphide crosslinlcs between and within molecules at their N-terminal 

regions where the four molecules join in an X shape. Other disulphide 

bonds occur at the C-terminal non-collagenous end at the apex of an arm of 

the X between it and an arm of the adjoining X unit. In this way a 

"chicken wire like" structure is built up (Bailey and Light 1989). 

To date only intramolecular disulphide bonds have been found in type III 

collagen but it is assumed likely that intermolecular ones must exist. The 

intramolecular bonds are found at the C-terminal end in the last triplet 

before the non helical portion. It is thought that the bond is formed by the 

enzyme protein disulphide isomerase during assembly in the endoplasmic 
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reticulum. 

1.3.3 Crosslinks and ageing 

The intramolecular crosslinlcs are structurally important for the molecule 

but it is the intermolecular links that are responsible for the considerable 

tensile strength of collagen fibres. In most tissues there is an increase in the 

number of the heat and acid stable oxo-imine crosslinks with age. This 

yields a ready explanation for the fact that the cooked flesh of young 

animals is more tender than that from older ones since collagen fibres 

become progressively stronger and more rigid with age. Factors other than 

an increase in the number of aldimine or oxo-imine crosslinIcs are involved 

since lysyl oxidase acts on newly formed fibres; these crosslinks form only 

in the non-helical regions. Also a decrease in the number of reducible 

crosslinlcs occurs with age and this has led to speculation that some 

rearrangements have taken place to form tri or tetravalent c,rosslinIcs. 

Candidates for the actual crosslink are pyridinoline, histidino-

hydroxylysinorleucine and a third compound which has been isolated but 

not yet characterised. The situation is by no means resolved (Bailey and 

Light 1989). 

The very presence of the crosslinks means that a fibre of considerable 

tensile strength is built up. Further intermolecular bonds that increase in 
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number with age have been postulated to account for the intractability of 

mature tissue. The nature of these bonds is a subject for active 

investigation, but it has also been proposed that a network of existing cross 

links could be built up to explain the increase in cross linking and other 

age-related changes. 

1.3.4 Genetic types 

There were at least ten well described genetic types of collagen (Martin et 

al. 1985), but with the recent addition of the FACIT group (Fibril-

Associated Collagens with Interrupted Triple helices; Shaw and Olsen 

1991), fourteen are now reasonably well known. Types, I II and III are 

fibre forming in nature and are as described above for type I molecules 300 

nm in length with short non-helical peptides at the N-terminal and the C-

terminal ends. Type I is ubiquitous in connective tissues, type II is a major 

structural collagen in cartilage and type III is now known to comprise the 

silver staining reticulin fibres and to be a minor component in the 

endomysium. Collagen type IV is found in basement membranes where the 

400 nm long molecules aggregate only with their identical ends. The C-

terminal end holds two molecules together while four are joined at the N-

terminus: the result is an open basket weave or chicken-wire structure 

(Figure 1.6). Type V is widely distributed in different tissues and is also 
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found in the endomysial layer of muscle (Duance et al. 1977). Type VI 

collagen occurs as microfibrils in interstitial connective tissues but the 

collagen is only one third of the mass with globules on either end 

comprising the rest. It is made up of dimers formed from 105 nm long 

monomers, tetramers and polymers which exhibit end to end aggregation 

and are linked through disulphide bonds. Type VII is an anti- parallel 

dimer with a 60 nm overlap region stabilised by disulphide bonds and is 

comprised of three identical subunit a chains within a triple helical domain 

424 nm in length (Morris a al. 1986). It is the major protein component of 

anchoring fibrils that serve to anchor the basement membrane zone to the 

underlying connective tissue matrix in epithelial tissue (Lunstrum et al. 

1986). 

Type VIII is not well characterised and has been produced in culture by 

epithelial cells and may be composed of short helical domains interspersed 

with non-helical, protease labile segments. Type IX collagen is found as a 

minor constituent of collagens in cartilage through which it is uniformly 

distributed. The gene which codes for one of the chains is somewhat 

different to the normal pattern found for the interstitial collagen genes. 

Type X has a relatively short helix (150 nm) with a globular domain at 

one end and is found in hypertrophic and mineralizing cartilage. Types II, 

IX and X are produced and associated with chondrocytes while type IV is 

produced by epithelial cells. Types XII and XIV collagens are localised in 
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type I collagen containing tissues. They both contain amino acid sequences 

homologous to those of type IX collagen but are otherwise unique in their 

structure and expression pattern (Shaw and Olsen 1991). 

The amino acid sequences of the different a chains of collagen are under 

genetic control. The chains are designated a 1, a 2 or a 3. In types II, III, 

VIII and X the chains are identical and are written in shorthand as 

[a 1(II)] 3 , [al(III)] 3  and [a 1(VIII)] 3  respectively, whereas in types I and IV 

there are two identical chains and one different [a(I)] 2a2(I), 

[al(IV)]2a2(IV) respectively and in types V, VI and IX the three chains 

are different [al(V)][a2(V)][cx3(V)], [al(VI)][a2(VI)][a3(VI)] and 

[a 1(IX)][a2(IX)][a3(IX)] respectively. The genes coding for collagen are 

complex with the pro-a 2 gene for type I chicken collagen being the most 

highly interrupted gene yet identified. Its 5 Kb of coding is located in over 

40 Kb of genomic DNA interrupted by 50 introns. Examination of the 

amino acid sequences suggests that the three fibrous collagens diverged 

some 500 million years ago (Boedtker and Aho 1985). 

1.3.5 Separation of collagen molecules and chains 

Soluble collagens are extracted from tissue by dilute acid or neutral salt 

solutions and these treatments are sufficient for embryonic and newborn 

tissues. For most adult tissues predigestion with pepsin is necessary and 
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this releases the a chains since digestion occurs in the non-helical 

telopeptides where crosslinks occur. Hard tissues may require the acid 

removal of bone. Materials such as cartilage are often extracted with 

guanidinium chloride to remove the proteoglycan. 

Separation of the collagen types can be effected by differential precipitation 

in salt solution of differing strength and pH (Trelstad et al. 1972). Further 

purification is achieved by repeated precipitation and/or by chromatography 

on DEAE or CM cellulose using either repeated passes or varying 

conditions of ionic strength and pH to elicit separation. 

The separate collagen chains can be resolved from each other by 

chromatography on CM cellulose, or by electrophoresis, or by HPLC using 

appropriate conditions. As well as the a chains, 13  dimer and 7 trimer 

chains can be distinguished. The )3 chains arise through linkage of two a 

chains to give the respective dimer and all combinations can occur 

depending on the number of a chains present in the molecule. For example 

in type V collagen where three chains may occur an al chain with an a3 

chain gives the (31,3 dimer. Similarly (31,2 dimer, 32,2 dimer, 01,1 

dimer, 132,3 dimer and 133,3 dimer can all occur. Likewise the trimers 

can occur from combinations of the a chains. The relative proportions of 

these dimers and trimers can give an indication of the composition of the 

collagen under investigation. 

Controlled treatment with proteases to achieve reproducible cleavage 
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patterns is also used as an aid to proving the identity of collagens. A 

further refinement is the use of cyanogen bromide (CNBr), which splits the 

molecule at specific locations into characteristic peptide fragments for 

identification. This technique is convenient, sensitive and reproducible 

(Scott and Veis 1976). 

The amino acid composition of collagens is used as a further means of 

identification and ratios of the proportions of the various amino acids can 

be used as an indicator of similarity (Metzger et al. 1968). Recently, 

hierarchical cluster analysis and principal components have been used to 

provide a natural taxonomy of collagen based on amino acid composition 

(MacFie, Light and Bailey 1988). 

1.3.6 Thermal properties of collagen 

The temperatures at which collagen shrinks (T s) and at which it melts 

(denatures) in solution (T., sometimes called Td) are important Andicators 

of its stability. The values depend to an extent on the method of 

determination. However the value T, - Td is remarkably constant at 27 °C 

for a wide variety of collagens. The shrinkage temperature relates to the 

energy required to overcome the intermolecular interactions of the closely 

packed molecules in the fibres and is affected by other endogenous 

components and by external conditions. The melting temperature is a 
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measure of the energy required to disrupt intramolecular cross links and is 

more indicative of the properties of the collagen molecule itself since it is 

less affected by superimposed intermolecular interactions. Thus, Td 

represents the temperature of collapse of the triple helix whereas T s  

represents denaturation of the highly organised long rigid molecules of 

collagen to the random chains of gelatin. This collapse of structure is 

accompanied by significant shrinkage to about one quarter of the original 

length of the fibre. If the fibres are anchored, considerable tension can be 

generated during shrinkage which can be measured instrumentally. The 

melting temperature is related to the imino acid content of the collagen 

since the interchain hydrogen bonds at the overlapping pyrrole groups of 

proline and hydroxy proline are largely responsible for its stabilization. 

1.3.7 Inummochemistry of collagen 

There are three classes of antigenic determinants in type I collagen (von der 

Mark 1981) (i) terminal, nonhelical antigeniic determinants (ii) helical, 

conformation dependent antigenic determinants and (iii) central antigenic 

determinants. 

The terminal nonhelical determinants are short sequences of amino acids at 

either the C-terminal or the N-terminal ends of the molecule in the 

telopeptide region and are generally best raised in rabbits. The helical, 
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conformation dependent determinants are generally in the native triple 

helical section of the molecule and may not cross react with the denatured 

collagen (Beil, Timpl and Furthmayr 1973). Antibodies raised to triple 

helical trimers of the same chain show only weak cross reactivity against a 

mixed chain molecule. They are generally raised in rats, mice, guinea pigs 

and chickens. The central determinants are only exposed after some 

denaturation treatment of the molecule and are less well characterised than 

the helical or terminal antigenic sites; antibodies are generally raised in 

chickens. Peptides from CNBr treatment of collagen are often used and 

high cross reactivity across diverse species often results (von der Mark 

1981). 

In general, collagen has low immunogenicity and high doses of antigen are 

often required, administered subcutaneously in Freunds adjuvant followed 

by booster injections intraperitoneally or subcutaneously. Since relatively 

high doses of antigen are administered, which are hard to completely 

purify, it is difficult to guard against the production of antibodies against 

contaminants. As a result it is necessary to purify collagen-specific 

antibodies by affinity chromatography on an homologous collagen type to 

remove non-specific effects. This would also remove antibodies to other 

structurally related collagens which may have similar antigenic 

determinants. The production of monoclonal antibodies can overcome some 

of the difficulties but even here the monoclonal may not be specific since it 
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may be reacting to an amino acid sequence common to more than one type. 

Use of the antibodies to collagen has tremendous potential in locating the 

various types in particular tissues using immunofluorescence and 

immunoperoxidase techniques. Reactions with ferritin or gold particles have 

made it possible to visualise fine structures by electron microscopy. There 

are, however, potential limitations and sources of error in these techniques 

(von der Mark 1981) such as (1) nonspecificity of the antibody (2) non 

specific reactions of fluorescein-labelled antibodies (3) masking or 

denaturing of the antigen and (4) autofluorescence of tissues. With 

preparations for electron microscopy, masking or denaturing of the antigen 

can represent a significant problem since fixation techniques may also 

destroy antigenicity. Even if suitable fixation is used which retains 

antigenicity, then definition of tissue structure can be insufficient to enable 

identification of the features which have been labelled. 

1.3.8 Proteases and collagenases 

Collagen is degraded by a number of enzymes acting in concert, with the 

initial attack on undenatured molecules performed by a collagenase acting 

at a specific site, followed by other enzymes acting on the fragments 

(Nimni and Harkness 1988). Historically, the mammalian collagenases are 

defined by their ability to cleave the triple helical region of the native 
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collagen molecule at a specific locus. The discovery of a broader range of 

collagens with globular domains and discontinuities in the helix has 

required that this simple definition is modified. Furthermore, serine 

proteases and an heterogeneous group of proteases can degrade some 

collagen types (Figure 1.7). Two main groups of collagenases have 

emerged - the 'classical' collagenases which degrade types I, II and III 

collagens and type-specific interstitial and basement membrane collagenases 

which attack types IV and V (Stricklin and Hibbs 1988). Collagenases are 

mostly metallo-endoproteases having a pH optimum in the range 7 to 8, 

which are activated and stabilised by calcium ions. Consequently, they are 

inhibited by metal chelators such as EDTA. They have been isolated from a 

wide variety of tissues, but not as yet from fish muscle tissue although 

collagenase from fish caeca and pancreas has been known for some years 

(Yoshinalca et al. 1978). 

The collagenases that degrade types I, II and III collagen do not affect 

types IV and V collagen. Specific collagenases which degrade type IV have 

been isolated from tumours, but it can be degraded by other 

metalloproteinases including gelatinase, proteoglycanase, serine proteases, 

neutrophil elastase and mast cell chymase. Type V is attacked by 

metalloproteinases which are also gelatinases of a molecular weight greater 

than the classical collagenases (Stricldin and Hibbs 1988, Liotta et al. 

1981). Type V collagen isolated from bovine bone is susceptible to attack 
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by trypsin at 35°C (Niyibizi and Eyre 1989), at a site which may represent 

the natural target domain for cleavage in vivo and which is at the opposite 

end of the molecule to the site at which type I is attacked by collagenase. 

This indicates that, in vivo, separate enzyme systems are necessary for 

types I and V to be copolymers in the same fibril. 

After synthesis, collagenases are secreted into the extracellular matrix and 

it is obvious there must be specific inhibitory mechanisms to prevent 

spontaneous tissue destruction. The collagenases, present in the tissue in 

latent form as zymogens, are activated by a wide variety of proteolytic 

enzymes such as trypsin, plasma kallikrein, cathepsin B, plasmin (Unemori 

and Werb 1988), but once activated they must be controlled. In human 

tissue, the main control mechanism appears to be small cationic 

glycoproteins known as Tissue Inhibitors of Metallo Proteinases, or TIMP. 

They are ubiquitous and their relatively low molecular weight, 28.5 Kd, 

allows them ready access within the extracellular matrix where they play a 

major role in collagenase inhibition (Sticklin and Hibbs 1988). Other 

control mechanisms such as the a 2-macroglobulin molecule in plasma are 

too large to penetrate the tissue. 

The basement membrane degrading enzyme, collagenase IV/V -gelatinase, 

is more easily released by kallilcrein and becomes active in the extracellular 

space before other lysosomal proteinases are released (Tschesche et al. 

1989). Tissue Icallilcrein, a serine protease (specifically an arginyl 
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esteropeptidase), also activates type I collagenase and is a likely candidate 

to perform these functions in vivo. It may also be an activating factor in 

post-mortem tissue. There are about twenty kallilcreins which seem to be 

ubiquitous. So far they have only been reported in the skeletal muscle of 

the rat. The lysosomes in fish muscle are commonly associated with the 

connective tissue (Steiner et al. 1984) so that cathepsin B, which could also 

activate this collagenase, would be released by post-mortem disruption of 

the lysosomes. The concentration of calcium ions would not be a factor 

limiting collagenase activity due to leakage from the sarcoplasmic 

reticulum. Indeed, it has been shown that the introduction of Ca into 

fibroblasts promotes a cascade of proteolytic events culminating in 

activation of collagenase (Unemori and Werb 1988). 

The question is whether these mechanisms are present in fish tissue and 

whether they are active at post-mortem pH and at chill temperatures. The 

type IV/V basement membrane collagenase isolated from human leukocytes 

has a pH optimum between 7 and 8, with about 50% of this optimum 

activity at pH 6 (Tschesche et al. 1986). No information relating to 

kallilcrein in fish has been found but it is probably present and, since it is 

active at physiological pH, it is likely to retain activity at post-mortem pH. 

However, it too is subject to the effect of inhibitors in the serum, similar to 

trypsin inhibitors. Cathepsin B may not be very active at post-rigor pH. 
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1.4 Fish collagens 

The collagens of fish are, in general, much more easily solubilised than 

those of mammals and for this reason they were the subject of many of the 

early studies that helped ascertain general collagen properties. Apart from a 

continued interest in Japan there has been very little effort over the last two 

decades in furthering the knowledge of the structure, chemistry, properties 

and uses of marine collagens. 

The major collagen present is type I (Sikorski, Scott and Buisson 1984, 

Kimura 1985), type II has been found in the cartilage and notochord of 

lampreys (Miller and Matthews 1974, Kimura and Kamimura 1982) and in 

lamprey skin (Kelly a al. 1988), type V has been reported in carp and 

spotted mackerel (Sato a al. 1988) and in lamprey along with type IX 

(Kelly a al. 1988). Evidence for the fibre forming type III common in 

mammals has not been found in any investigation to date. Type IV has not 

been reported either, probably because it has not been specifically sought, 

but fish have quite clearly defined basement membranes so it is reasonable 

to assume that type IV is present. In the intramuscular tissue only types I 

and V have been demonstrated. 

Piez (1965) was the first to demonstrate the presence of three a chains in 

the skin of cod. Bogason (1984) reported three a chains in the 

intramuscular connective tissue of rockfish and more recently Kimura 
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(1985) and Kimura and Ohno (1987) found the al, a2, a3 hetrotrimer in 

the skin of carp and Alaska pollock. The swimbladders of these species 

contained the dimer [al(I)] 2a1(I). This indicated tissue specific existence of 

the two molecular forms. Furthermore Kimura et al. (1987) examined the 

skin collagen in teleost fish from ten different orders and established that 

the occurence of the three a chains in the type I collagen is common, but 

was not consistent within an order. This widespread occurrence led the 

authors to suggest that the gene for the a3 chain may be universally present 

in teleosts, having arisen about the time of the adaptive variation of the 

bony fish. However, in some species it may be quiescent or only active at 

very low levels. In contrast the collagens of the lower vertebrate species 

such as lamprey and shark do not exhibit the a3 chain at all. Ramshaw et 

al. (1988) also reported the occurrence of the ala2a3 trimer in the skin of 

the blue grenadier. 

Studies of the type I collagen of the myocommata from fish muscle indicate 

that eel and mackerel have the a 1, a2, a3 heterotrimer. Saury contains 

only al, a2 chains and carp and chum salmon seem to possess two 

different heterotrimers, (a1) 2a1 as a major component and ala2a3 as a 

minor component (Kimura et al. 1988). 

Sato et al. (1988) recently reported the presence of type V in the white 

muscle of carp in a higher proportion than it occurs in mammalian muscle. 

Electrophoresis of the fractions after treatment in reducing conditions with 
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2-mercaptoethanol did not change the band pattern indicating the absence of 

reducible thiol bonds and hence the absence of type III collagen. Further 

studies have shown the presence of type V in lizard fish, japanese eel, 

sturgeon, spotted shark and lamprey indicating widespread occurrence of 

type V in both elasmobranchs and teleosts (Sato et al. 1989). The relative 

concentration of type V collagen to type I was higher in the endomysial 

than in the myocommatal fraction in carp and spotted mackerel. Both the 

type I and the type V were less soluble in the endomysial than in the 

myocommatal fraction. Three distinct chains of type V were identified from 

two molecular forms stated as [al(V)1 2a2(V) and al(V)a2(V)«3(V), with a 

higher proportion of the latter occurring in the endomysium in comparison 

to the myocommata. 

This recent evidence indicates that, not only can there be differences 

between major tissue groups eg muscle, skin or swimbladder, but that 

differences in the chain structure. of collagen can occur within different 

domains in the one tissue. These differences in chain composition are likely 

to result in slightly different properties and stabilities in the collagen. 

In fish muscle, type V collagen probably plays a role similar to that of type 

III in mammalian muscle in that it forms copolymers with type I and acts to 

control fibril diameter (Keene, Sakai, Bachinger and Burgeson 1987, Birk 

et al. 1990, Adachi and Hayashi 1986). Collagen fibrils of different 

diameters are to be found in the myocommata near muscle fibre ends and 
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in the invaginations of the myotendinous junction. Berresen (1976) 

developed a method for preparing the muscle cell envelope from cod 

(Gadus morhua). These envelopes were tubular structures with an outer 

three-dimensional network of fibres (30-60 nm in diameter) and an inner 

membrane about 2000 nm thick. Further work using this method showed 

that the cell membrane was composed of three layers (Almas 1982). The 

innermost layer, the sarcoplasmic membrane, was 8-16 nm thick. The 

middle layer, the basement membrane, was 50-70 nm thick and the outer 

layer, which was mostly collagen, was approximately 600-1100 nm thick. 

This collagen was shown to be type I, possessing a chain structure a 1 2a2 

containing the acid- and heat-stable cross-link hydroxy-lysino-5-keto-

norleucine. 

1.4.1 Properties of fish collagens 

The content of collagen in fish muscle varies considerably from pecies to 

species and is found in increasing proportion in the tail region. In the main 

edible portion concentrations of 0.3% to 3% are common (Sato et al. 1986, 

Sikorsld et al. 1984) but even within species there is seasonal variation as 

the body reserves are depleted during spawning and migration. Since 

muscle is not conserved there is greater reliance on the connective tissues 

to hold the fish together. 
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While it would appear obvious that the content of collagen should affect the 

textural properties of the muscle this relationship is not straightforward 

because of the seasonal turnover and other species effects. Sato et al. 

(1986) investigated the collagen content and the texture of twenty two 

species of fish and concluded that there was a broad relationship between 

collagen content, swimming motion and the raw texture of the flesh 

prepared for sashimi. A high collagen content near 2% indicated that the 

species were too tough for sashimi. Hatae et al. (1986) also reported a 

significant correlation between collagen and raw texture. In cooked fish the 

reverse is true, the collagen softens and the myofibrillar component 

toughens and is the dominant component (Dunajsld 1979). The gelatinised 

collagen, however, still contributes to the mouthfeel. Indeed a model has 

been proposed to explain textural differences between species on the basis 

of fibre diameter and the amount of coagulated sarcoplasmic material that 

sticks the fibres together and impedes them sliding across one another when 

chewed (Hatae et al. 1990). Other workers eg Feinstein and Buck (1984) 

have found no relationship between collagen and the raw texture in a 

limited number of species. Bogason (1984) reported high levels of acid 

insoluble collagen in three species of rockfish that he attributed to the 

relative longevity of the fish of commercial size and that the thickness of 

the skin collagen layer provided a crude indicator of flesh toughness. The 

thicker the skin the more robust the flesh. 
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The other major influential factor is the age of the fish. It is well 

established that in mammalian tissues collagen crosslinldng increases with 

the age of the animal and that the tissue increases in toughness. Because of 

the seasonal changes occurring in most fish species this relationship is less 

clear. It is not just the amount or proportion of collagen present but the 

degree to which it is crosslinked that affects texture. Montero and 

Borderias (1990a) measured collagen content, the proportions of a, (I and 7 

chains and the shear force in the muscle of trout (Salmo irideus Gibb) from 

four different size' (age) groups. Although there was a higher proportion of 

connective tissue in the oldest fish, it had slightly higher acid solubility and 

fewer cross-links and did not give higher shear strength values. It is 

generally regarded that there are higher levels of connective tissue near the 

tail region (Love 1970) and this was confirmed recently for trout and hake, 

with higher levels of connective tissue in the ventral than the dorsal 

portions for the trout (Montero and Borderias 1989a). Shear strength values 

were highest nearer the tail as was a higher proportion of insoluble 

collagen. The amino acid composition, chain structure and type of collagen 

from trout and hake were also characterised in samples from the skin, 

myotomes, fasciae and myocommata. The collagen from all sites in both 

species was mainly type I, type III was not detected and the extraction 

conditions used would not have allowed the separation of type V (Sato et 

al. 1991). The amino acid compositions differed from mammalian sources 
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and the fish skin collagen was less cross-linked than the collagen from the 

fish muscle. 

Bailey (1970) reported that the same crosslinks that occurred in mammalian 

muscle were also to be found in the skin, scales and swimbladder of cod. 

Recently Bracho and Haard (1990) investigated the crosslinks in the 

intramuscular collagen of rockfish after removing extraneous protein with 

alkali, stabilising the crosslinks with NaB3H4  and separating the compounds 

by HPLC after hydrolysis. They found 0.2, 0.34 and 0. 15 moles per mole 

of collagen of the links DHLNL, HLNL and LNL in brown rockfish (Refer 

section 1.3.2.2). Whereas in chilipepper rockfish the levels were 0.19 and 

0.14 and 0.49 moles respectively per mole of collagen. In contrast rat tail 

tendon contained 0.15, 0.87 and 0.22 moles per mole of collagen of 

DHLN, HLNL and LNL respectively. Although there were differences 

between the fish species they both had about half the total number of 

crosslinlcs and entirely different levels of HLNL from the rat tail tendon. 

1.5 Post mortem changes in fish flesh texture 

During post-harvest storage, textural changes occur in many fish species 

long before they are spoilt. The result is that the flesh softens and gapes, 

trimming losses occur, products have a poorer appearance and are 

downgraded. In extreme cases, mechanical processing becomes impractical 
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since the fillets fall apart in the skinning operation. Softening and gaping 

are common problems in the merluccid hakes (Burt 1978; Huss and Asenjo 

1978; Kordyl and Karnicld 1969; Schroeder et al. 1978) and in the related 

species blue grenadier (hold, Macruronus novaezelandiae) (Bremner 1980). 

Farmed species also have this problem (Lavety et al. 1988). It is clear that 

there are differences between related species and that circumstances affect 

whether gaping occurs. Whole cod stored in ice showed no gaping 

whatsoever even after 6 weeks storage when the fish were thoroughly spoilt 

(Love 1968). This lack of change was further borne out with measurement 

of the forces need to pull samples apart at the myocommata. No change' in 

cohesiveness was found for cod stored in ice for up to 26 days. Whole 

muscles loaded to failure fail at or near the myotendinous junction in the 

region between the cell membrane and the lamina densa of the basement 

membrane (Tidball and Chan 1989). 

1.5.1 Post-mortem change attributed to changes in the collagen 

Unfortunately, there are few published investigations into the nature of the 

specific changes that occur. Using goldfish (Carassius auratus) as a model 

species, changes in the structure could be observed in post-rigor fish held 

in ice for 3-4 days, in comparison to pre-rigor fish (Bello et al. 1982). 

Shrinkage and distortion of the myofibres, an increase in the extracellular 
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space, loss of configuration of the endomysium and breakdown of the 

connective tissue occurred. Further changes to these structures occurred 

with subsequent storage. Similar structural changes in the flesh of the 

major carp (Labeo calbasu) during chilled storage were also observed 

histologically (Menon and Nair 1988). Disorganisation of the structure was 

evident when the samples were examined after 7 days. By 14 days, fissures 

appeared in the cells and partial disappearance of the connective tissue 

structure was apparent. 

Texture, determined as shear force using the Kramer shear press, was 

related to an increase in heat-soluble collagen in rockfish stored in ice 

(Cepeda et al. 1990). A significant decrease in the solubility of collagen 

from trout muscle occurs during rigor, followed by an increase in solubility 

during storage post-rigor (Montero and Borderias 1990b). The proportions 

of heat- and acid-soluble collagen increased during and after rigor, while 

the levels of insoluble collagen and shear strength progressively decreased. 

Proteolytic activity increased post-rigor. Using a compression ,  test as a 

means of applying a force to muscle segments, Ando et al. (1991) 

demonstrated by light microscopy and SEM that a gradual disintegration of 

the extracellular matrix occurred during chilled storage of rainbow trout 

(Oncorhynchus mykiss). 
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1.5.2 Freezing damage 

Although a comprehensive coverage of frozen storage changes is outside 

the scope of this thesis, it is pertinent to note here some of the recent 

observations that changes in the collagen contribute to changes in texture 

which occur in frozen stored fish. 

Both trout (S. irideus) and hake (Merluccius merluccius Linnaeus) collagens 

exhibited a decrease in the proportion of a-chains and a concomitant 

increase in 7- chains during frozen storage at -18°C after only 25 days, 

with further changes occurring progressively. The amount of insoluble 

collagen in the hake samples also increased with the period of storage 

(Borderias and Montero 1985). This increase in collagen insolubility in 

hake flesh and decrease in the percentage of heat-soluble collagen with 

period of frozen storage was confirmed in further studies. It was suggested 

that aggregation of hake collagen. was due to reaction with formaldehyde 

produced by breakdown of trimethylamine oxide (Montero and <Borderias 

1989b, 1990c). This is also consistent with the other reports (Howgate 

1980, Connell 1962) suggesting that the remnants of the sarcoplasmic 

reticulum could serve as a glue to cement the fibres to produce a tougher 

product, the opposite of the situation that occurs in chilled storage. 

Walton and Gill (1989) suggest that the collagen layer of the endomysium 

may be the cementing agent responsible for cell strength. They found that 
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the level of salt soluble collagen of Atlantic cod (G. morhua) decreased 

with frozen storage and high molecular weight complexes of both 

myocommatal and endomysial collagens were formed. They also suggested 

the possibility of complexes between sarcoplasmic proteins and the 

endomysial collagen. If such complexes were not denatured during cooking 

they would increase the toughness of the flesh in a manner consistent with 

the model proposed by Hatae et al. (1990). 

1.5.3 Changes in the muscle 

It has long been known that fish flesh has greater catheptic activity than 

mammalian muscle (Siebert 1958) and that it possesses higher 

concentrations of enzymes responsible for proteolysis and amino acid 

metabolism (Siebert et al. 1965). Neutral proteases are found in many 

species (Malcinodan et al. 1983). Recent work, stimulated by the need to 

understand the softening (modori) phenomenon that occurs dliring the 

setting of fish protein gels (surimi), has uncovered a number of proteases. 

These are mostly serine proteases, bound to both the sarcoplasmic and 

myofibrillar fractions of the muscle in a variety of species (Shimizu and 

Wendakoon 1990, Yanagahira et al. 1991, Toyohara et al. 1990, Kinoshita 

1990). These enzymes are active during the heating step in forming fish 

gels and it is unclear what role they may play in the live fish; it seems 
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unlikely that they are active in the same way in chill stored fish. 

Cathepsin L from lysosomes has been implicated in the extensive muscle 

softening observed in chum salmon (Yamashita and Konagaya 1990). This 

enzyme has increased activity in the muscle of ayu (sweet fish, 

Plecoglossus altivelis) as the fish approaches maturity. Lysosomes have 

been located within fish muscle cells mostly concentrated at the periphery 

(Steiner et al. 1984, Ueno et al. 1986). These lysosomes break down post-

rigor. Other cathepsins (e.g. cathepsins A and B) require a pH lower than 

occurs in post-mortem fish muscle. Even the pepstatin-sensitive cathepsins 

(mainly cathepsin D) are not active at pH 6.5 (Jiang et al. 1990). However, 

in fish such as tuna, where the pH is often lower than this, it is likely to be 

one of the factors responsible for the honeycomb problem in the flesh that 

is sometimes encountered (Frank et al. 1984). 

White croaker (Micropogon opercularis) contains an endogenous serine 

proteinase which degrades the cytoskeletal network (Busconi, Folco, 

Martone and Sanchez 1989; Busconi, Folco, Martone, Trucco and' Sanchez 

1989). It also initiates protein turnover in vivo and can completely disrupt 

the myofibrils (at 37°C) and degrade the major proteins (Busconi et al. 

1987). When croaker were stored at 0°C for 7 days, after dipping in azide 

to prevent bacterial growth, only minimal changes were found in the major 

proteins of the myofibril. There was considerable breakdown of nebulin, a 

major cytoskeletal protein of the trabecular network (Busconi, Folco, 
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Martone and Sanchez 1989). Desmin, troponin and Z lines were shown to 

be stable under these conditions, whereas these entities are known to be 

degraded in post-mortem storage of beef muscle along with titin and alpha-

actinin (Hwan and Bandman 1989). The connectin fraction of carp muscle 

also exhibits change when extracted from fish that have been stored chilled 

for 7 days at 25°C (Selci and Watanabe 1984). 

There are two Ca'-activated neutral proteinases that are considered to be 

responsible for post-mortem softening of sheep muscle (Koohmaraie, 

Babiker, Merkel and Dutson 1988; Koohmaraie, Babiker, Schroeder, 

Merkel and Dutson 1988). Calpain I requires only 0.1 mM Ca" for 

activation while Calpain II is active at higher concentrations of calcium. In 

rat muscle calpain I is predominantly located intracellularly at the I band 

region (Yoshimura et al. 1986). Both enzymes are subject to inhibition by 
r 

calpstatin. Calpain II has been found in both carp [(Cyprinus 
L _ 	_ 

carpio)(Toyohara et a/.1985)" and tilapia (Tilapia nilotica x Tilapia aurea) 

(Jiang et a/. 1991). Calpstatin and a trypsin inhibitor are also present in 

carp (Toyohara et al. 1983). 

1.6 Concluding comments 

From a series of experiments in which they (i) examined electrophoretic 

patterns of sarcoplasmic alkali-soluble and stroma proteins of five species 
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of fish stored for 14 days at 4°C, (ii) physically measured a range of 

textural properties using a General Foods type Texturometer Hatae et al. 

(1985) concluded that post-mortem softening of the flesh was "more 

affected by the changes of the muscle structure than by the changes of the 

component proteins". Similarly, Toyohara and Shimizu (1988) stated that 

"the weakening of muscle may be explained not as a proteolytic breakdown 

of myofibrils, but as a decomposition of the muscle structure". These 

observations, in conjunction with those reviewed here, lead to the 

conclusion that muscle integrity is due to minor components which link the 

major components together. Proportionately small changes in these minor 

components can have disproportionately large effects on the structure, and 

hence the texture, of the flesh. 

There are three possible explanatory mechanisms for post mortem 

softening:- 

(a) some major component i within either the myofibrils or in 

the extracellular connective tissue degrade, or 

(b) links, bonds and connections that organise and stabilize the 

structure between the muscle components degrade, or 

(c) both of these mechanisms occur. 

Hypothesis (b) has considerable attraction as an explanation of the changes 

occurring early in the storage period before they are sufficiently gross to be 
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detected by such means as alteration in an electrophoretic pattern. 

4 
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Chapter 2 

Methods and materials 



Myotendinous junctions in fish 

2.0 Methods and materials 

The methods used in this investigation are set out in this chapter. 

2.1 Sampling 

A wide range of fish species and samples were used in this study (Tables 

2.1 & 2.2) plus other samples as described in following sections for SEM 

and TEM. All fish flesh samples comprised white muscle only taken from 

the anterior dorsal area. For TEM studies on blue grenadier, samples were 

taken from the region of the twelfth myotome, posterior to the gill slit. 

2.2 Fixation 

The fixatives used were as follows:- 4  

1. 	Phosphate buffered formaldehyde (10%) (PBF) 

Fixative 
a. 2.26% Monosodium phosphate (NaH2PO4H20) 	62.2 ml 
b. 2.52% Sodium hydroxide (NaOH) 	 12.8 ml 
c. 40% Formaldehyde 	 25.0 ml 

100.0 

Constituents 

a. 2.26g NaH2PO44H20 dissolved in 100 ml distilled water. 
b. 2.52 g NaOH dissolved in 100 ml distilled water. 
c. 40 g paraformaldehyde dissolved in 50 ml water heated to 

60°C. Dropwise addition of 0.1 M NaOH used to clear 
solution (approx 12 drops give clear solution with pH near 
7.2) then made up to 100 ml. 

I M. A. Hayat. Principles and techniques of electron microscopy: biological applications. Van Nostrand Reinholt,: 
[ New York, 1970 _ 
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2. Fixative A 

81 ml 	0.1M Phosphate buffer (Sorenson's) 
4 ml 	25% purified Glutaraldehyde 
15 ml 	Saturated aqueous Picric acid 

100 

3. Fixative B 

81 ml 	0.1M Phosphate buffer 
2.4 g 	Nacl 
15 ml 	Aqueous saturated picric acid 

4. Glut/fix (1Cryvi 1977) 

Fixative 
8.3 ml 	Solution A 

1 ml 	Glutaraldehyde 

Solution A 53.6 ml 	0.1 M Na2HPO4 
20.8 ml 	0.1 M NaH2PO4 
8.4 ml 	5% sucrose 
1.7g 	'NaCl 

5. Glut/form fixative 

83 ml 
	

Solution A 
7m1 
	40% formaldehyde 

10 ml 
	

2.5% glutaraldehyde 

GF/cac fixative 

2g 	paraformaldehyde 
50 ml 	0.2M sodium cacodylate 
lg 	NaC1 
10 ml 	25% glutaraldehyde 
made up to 100 ml, filtered through Whatman No. 4 paper. 
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2.3 Light microscopy 

Tissue samples were embedded in paraffin by standard methods using the 

Tissue Tek II apparatus. Sections were stained with haemotoxylin and 

eosin, Massons trichrome and modified Van Gieson's stain. A list of 

samples examined is given in Table 2.1. 
I -.- 	- 	- 

Ames Laboratories 

2.3.1 Preliminary histology 

A live trumpeter (Latris lineata) was killed by a blow on the head and flesh 

samples from the anterior dorsal muscle were placed immediately in 

fixative (Sample code 5.1, Table 2.1). Other samples were taken and fixed 

from the same fish five and nine days after it had been stored chilled 

[ [(0°C), Samples 5.2 and 5.3, respectively)]. The samples were processed into 

wax and sections were stained with van Gieson's stain which stains 

collagen fibres purple and myofibrils a light pinkish brown. 

2.4 Sampling and fixation for SEM 

Blue grenadier (Macruronus novaezelandiae Hector) caught in Tasmania 

were sampled immediately after catch then were iced and stored for 

subsequent sampling. Muscle samples were fixed in Glut/fix (3.2% 
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Table 2.1 
	

List of samples for light microscopy and histochemistry 

Date 
caught 

Date 
fixed 

Date 
processed 

Sample 
code 

Fixative Description 

6.12.84 11.12.84 12.12.84 

el 	
cg 

c•I
 cri 	

esi  

Glut/form 
Glut/form 
Glut/form 
PBF 
PBF 

Blue grenadier 
caught by Petuna 
endeavour stored 
in ice. Three fish 
samples. 

PBF 

6.12.84 19.12.84 19.12.84 4.1 PBF Three previously 
4.2 PBF untouched fish 
4.3 PBF (iced) sampled. 

9.1.85 9.1.85 10.1.85 5.1 PBF Pre-rigor samples 
from live 
trumpeter. 

14.1.85 15.1.85 5.2 PBF Trumpeter stored 
in ice 5 days. 

18.1.85 22.1.85 5.3 PBF Trumpeter stored 
in ice 9 days. 

14.12.84 22.1.85 6.1 Seawater 
Formalin 

Juvenile blue 
grenadier caught 
by Soela cruise 
S06/84/125 

22.10.84 7.1 Seawater 
Formalin 

Larval blue 
grenadier caught 

• by Soela cruise 
S05/84/68 

30.1.85 30.1.85 31.1.85 8.1 PBF Juvenile blue, 
9.1 PBF grenadier pre- 
10.1 PBF rigor, caught by 

Challenger 

17.8.88 29.8.88 29.8.88 11.2 PBF Myoconuna of 
blue grenadier 
frozen 17.8.88 
then fixed. 

17.8.88 29.8.88 11.2 Glut/fix Myocomma of 
blue grenadier. 

29.8.88 29.8.88 11.3 Glut/fix Myocomma of 
blue grenadier. 
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glutaraldehyde in 0.16M phosphate buffer, 2% NaC1 and 0.5% sucrose, 

Kryvi 1977) and despatched to the DSIR, Mount Albert Research Centre, 

Auckland, New Zealand. After a short wash in buffer, the samples were 

rapidly frozen in dichlorodifluoromethane at -158°C then transferred to 

liquid nitrogen at -196°C. They were freeze fractured under liquid nitrogen 

by striking them with a cooled sharp blade. The frozen samples were then 

freeze dried in a modified vacuum evaporator (Ladd Research Industries, 

Vermont, USA). Other samples of blue grenadier caught and held in ice by 

commercial boats were sampled at a fish process factory in New Zealand 

and were similarly fixed, freeze fractured and freeze-dried. 

Juvenile samples of spotted trevalla (Seriolella punctata) were caught by 

hand line in the Derwent river estuary, Tasmania, and were immediately 

killed by a blow on the head and muscle samples taken for fixation in 

glut/fix. Further samples were taken from fish stored on ice. These samples 

of spotted trevalla were also sent to New Zealand where they were freeze 

fractured as for the above samples of blue grenadier. 

Freeze fractured samples were mounted on stubs, sputter coated with gold 

and examined with a Philips 505 scanning electron microscope. 
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2.5 Structural studies using transmission electron microscopy 

2.5.1 Sampling and fixation 

A number of methods were used to prepare samples for the TEM studies. 

Some of the work was done while the author was on sabbatical at the then 

Department of Scientific and Industrial Research, Mount Albert Research 

Centre, Auckland, New Zealand and was continued in collaboration with 

Dr Ian Hallett of that laboratory. Samples of fish muscle were obtained 

from fish caught in New Zealand and from fish caught in Tasmania and 

sent fixed to Auckland. Other samples were processed and examined in 

Hobart. 

New Zealand caught fish were sampled immediately after catching, at the 

onset of rigor (24h) and after storage on ice for 8 days. Tissue was fixed 

in 30 g litre -1  glutaraldehyde in 0.2 m sodium cacodylate buffer, pH 7.2. 

Samples were post-fixed in 10 g litre -1  osmium tetroxide in 0.2 M sodium 

cacodylate buffer, dehydrated in an ethanol series and embedded in Spurr's 

low-viscosity resin. Tasmanian caught fish were sampled at catching and 

after 11 days of storage on ice. Tissue samples were fixed in a mixture of 

25 g litre -1  glutaraldehyde, 40 g litre -1  paraformaldehyde, 20 g litre -1  

tannic acid, and 0.8 g litre -1  sucrose in 0.2 m phosphate buffer, pH 7.2 

These samples were post-fixed in 10 g litre - osmium tetroxide in 0.2 m 

.(R. A. Spurr, J. Ultrastruct. Res. 26 (1969) 31.) 
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phosphate buffer, dehydrated in an ethanol series and embedded in epoxy 

resin. Ultrathin sections were cut using an LIC3 Ultrotome HI and stained 

sequentially with a saturated solution of uranyl acetate in ethanol/water 

(1:1v) and an aqueous solution of lead citrate. Sections were observed in a 

JEOL 100B transmission electron microscope. Despite differences in 

fixation procedure and timing of processing similar results were obtained. 

Other fish muscle samples processed and examined in Tasmania (Table 2.2) 

were processed from the fixation stage by rinsing in phosphate buffer, 

postfixing in 0.1% osmium tetroxide in 0.2 M phosphate buffer, 

dehydrated in an alcohol series then embedded in Epon-Araldite resin: 

Ultrathin sections were stained in saturated uranyl acetate in ethanol water 

(1:1 v/v) and aqueous lead citrate. Sections were observed in a Phillips 

transmission electron microscope. 

I • 
British United Formulators Pty Ltd./Ciba Geigy Pty 
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Table 2.2 	List of samples for immunogold procedure 

Date 
caught 

Date 
fixed 

Date 
processed 

Fixative Code Description 

26/11/87 26/11/87 24/2/88 Glut/form 88002 Blue grenadier 
prerigor, fixed 
immediately 

25/7/88 Glut/form 88025 Stored in dilute 
fixative 

8/12/87 28/3/88 Glut/form 88007 Blue grenadier, 12 
days in ice 

25/7/88 Glut/form 88026 Stored in dilute 
fixative 

18/1/89 18/1/89 18/1/89 Fix A 88007 Prerigor flathead 
fixed immediately 

26/2/89 Fix A 89020 Stored in dilute 
fixative 

18/1/89 Fix B 89008 Prerigor flathead 
fixed immediately 

19/7/89 19/7/89 19/7/89 Fix B 89026 Prerigor jack 
mackerel 

10/8/89 10/8/89 10/8/89 Fix B 89027 Rock cod prerigor 

18/10/89 19/10/89 19/10/89 Fix B 89029 Rainbow trout fixed 
after treatment with 
1 °Ab 

19/10/89 89030 Fixed after treatment 
in PBS 

7/11/89 7/11/89 7/11/89 GF/CAC 89042 Gumard muscle 
89043 fixed prerigor 
89044 PBS treated 

Antibody treated 

7/11/89 7/11/89 7/11/89 GF/CAC 89045 Gumard myocomma 
89046 fixed prerigor 
89047 PBS treated 

Antibody treated. 
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2.5.2 Methods used for immunocytological studies 

In order to preserve immunogenic structures, samples comparable to those 

used in the structural studies (above) were prepared by omitting post 

fixation in osmium tetroxide. These samples were also embedded in Epon-

Araldite. Other samples in which this post fixation step was likewise 

omitted were embedded in the hydrophilic resin LR White medium grade 

(London Resins). Fixed samples of tissue were rinsed in phosphate buffer, 

then 50% ethanol, 70% ethanol, in resin diluted with ethanol (1:1), in resin 

(100%) followed by an overnight soak in fresh resin before being finally 

set in fresh resin by heating for 24 hours at 50°C in gelatin capsules as 

recommended for immunocytochemistry by the manufacturer. The 

following procedure gave a clear resin:- 

Embedding in LR White Resin 

1. Fish muscle in buffer from appropriate fixative procedure was 
trimmed into small pieces approx 7 x 3 mm. 

2. Washed in 0.1 M phosphate buffer, 3 x 1 min then 3 x 10 min. 

3. Dehydrated through an alcohol series. 

• 3 x 3 min in 50% alcohol 
• 3 x 15 min in 70 % alcohol. 

4. 	Impregnated with resin 

• 2 parts LR white resin: 1 part 70% alcohol for 1 hour 
• 100% resin 1 hour 
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• 100% resin overnight 
• 100% resin 1 hour. 

5. Section embedded in fresh resin in gelatin capsule by placing 2-3 
drops of resin in capsule, inserting sample, then topping up with 
resin and pushing on the cap. 

6. Placed in oven set at 50°C. 24 hours. 

Other samples of unfixed tissue, or lightly fixed tissue were prepared in LR 

white resin by similar methods. 

2.6 Measurement of collagen properties 

2.6.1 Isolation of collagen. 

Blue grenadier (Macruronus novaezelandiae, Hector, 1871) were obtained 

from the CSIRO research vessel,. RV Soela. The age of specimens was 

estimated from length and weight measurements (Kenchington and 

Augustine 1987). Skin samples, cut from the dorsal region and dissected 

free of other adhering tissue, were diced and suspended in 0.1 M acetic 

acid, adjusted to pH 2.5 with HC1, for 20 h. After removal of insoluble 

material by centrifugation, 800 G for 1 h, the soluble collagen was purified 

using differential salt precipitation by adding a cold solution of 4.4M NaC1 

to the collagen solution slowly with stirring (Trelstad, Catanese and Rubin 

1976; Trelstad 1982). The precipitate was removed by centrifuging (800 G 
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for 1 h), then resuspended in 0.1M acetic acid and reprecipitated with salt 

solution with gentle stirring overnight. This procedure was repeated and the 

resulting precipitate was centrifuged then dialysed against double distilled 

water before lyophilization. 

2.6.2 SDS-polyacrylamide gel electrophoresis 

SDS-PAGE was performed according to the method of Laemmli (1970), 

using 5% (w/v) polyacrylamide running gels for intact collagen chains and 

12.5% polyacrylamide running gels for cyanogen bromide fragments, both 

with 3.5% (w/v) polyacrylamide stacking gels. After electrophoresis, gels 

were fixed and stained for 14 h in 0.1% Coomassie blue R-250 in 

methanol:acetic acid:water (5:1:5, v/v) and then destained in 

methanol:acetic acid: water (2:3:35, v/v). 

2.6.3 Purification of collagen a-chains 

Purified type I collagen was separated into its component a-chains by 

chromatography on CM-52 cellulose (Whatman CM-52) at 42°C, in 60 mM 

sodium acetate, pH 4.8, with elution by a linear gradient of 0-100 mM 

NaC1 (Piez, Eigner and Lewis 1963) followed by re-chromatography of 

separated chain fractions under the same conditions. The a-chains were 
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then separated from contaminating )3-components by chromatography on 

Superose 6 (Pharmacia) in 50 mM sodium phosphate, pH 6.8, containing 

150 mM NaC1 and 2 M urea (Bateman et al. 1986). The separated alpha 

chain fractions were retained for subsequent electrophoretic examination, 

amino acid analysis and characterisation after treatment with cyanogen 

bromide. 

2.6.4 Chemical characterization of collagen a-chains 

Purified a-chains were cleaved by 50 mg/ml CNBr in 70% formic acid for 

4 h at room temperature, followed by lyophilization (Scott and Veis 1976). 

Resulting fragments were analyzed by SDS-PAGE. For amino acid 

analysis, samples were hydrolyzed in 6 Ni HC1 containing 0.01% phenol in 

evacuated tubes for 24 h at 108°C, and analyses were performed with a 

Waters HPLC amino acid analysis system using ninhydrin detection. 

2.6.5 Collagen melting temperature determination 

The melting temperature of collagen in intact skin was determined in 0.2 NI 

NaC1, 10 mM sodium phosphate, in apparatus described by Bavinton 

(1969). Small strips of skin were attached between a central Invar rod, 

which passes through a displacement transducer, and an adjacent location 
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on the wall of an enclosing brass tube. This tube was located inside a 

buffer chamber jacketed with a heating system to raise the temperature in 

the chamber at the rate of 1°C/min. As the temperature rises the collagen 

shrinks and movement in the sample is sensed from outside the vessel by 

the transducer. A continuous line record of shrinkage versus temperature 

was obtained from the voltage output of the transducer and from a 

thermocouple positioned at the centre of the sample. A sharp inflexion in 

the record represents the shrinkage temperature. The melting temperature 

of purified collagen in the same buffer was determined by measurement of 

circular dichroism at 221 nm (Hayashi, Curran-Patel and Prockop 1979), 

with the same rate of temperature increase. 

2.6.6 Collagen solubility determination 

Neutral-salt-soluble, acetic acid-soluble, and insoluble residue collagen 

fractions were prepared from powdered skin (Jimenez and Bashey 1978). 

The skin was scraped free of adhering tissue then frozen in liquid nitrogen 

and crushed to powder. The powdered skin was homogenised in buffer 

containing 1M NaC1 in 0.02 M Tris-HC1, pH 7.45 at 4°C three times with 

20 volumes of buffer. The remaining tissue was then subjected to three 

extractions with 0.5 M acetic acid at 4°C. The insoluble residue and the 

extracts pooled from each step were then freeze-dried prior to amino acid 
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analysis. The collagen content for each fraction was calculated as a 

percentage of the total collagen recovered in all three fractions. Collagen 

quantities were based on hydroxyproline values determined by amino acid 

analysis. 

2.6.7 Antigenic characterization of collagen 

Murine polyclonal antibodies to the purified collagen were obtained 

courtesy of the (then) CSIRO Division of Protein Chemistry, Parlcville, 

Victoria produced by Dr. Jerome Werkmeister on the purified type I 

collagen isolated from blue grenadier skin. This was done in 12-week-old 

female SJL/J mice that had been immunized intraperitoneally with 200 Ag 

collagen emulsified in Freund's complete adjuvant. After three weeks they 

were further immunized intraperitoneally with 200Ag of the same antigen in 

Freund's incomplete adjuvant. Mice were bled 7 days after the last 

immunization and sera were tested for reactivity to the blue 'grenadier 

collagen by standard ELISA. Monoclonal antibodies were prepared from 

the spleens of mice from the same batch according to the methods of 

Ramshaw and Werlcmeister (1988). Mice were boosted intravenously with 

100/4g of purified fish skin type I collagen in phosphate buffered saline 3 

days before collection of cells for fusion. Immunized spleen cells were 

fused with NS-1 myeloma cells in a ratio of 4:1 using 40% (w/v) 
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polyethylene glycol. Hybrid cells were grown in selective media and, after 

14 days, supernatant from the hybridoma culture was• screened for binding 

to collagen by a standard ELISA using rabbit antimouse IgG coupled to 

alkaline phosphatase and p-nitrophenyl phosphate, 1mg/m1 in 10% (w/v) 

diethanolamine, pH 9.6, as substrate. Hybrids that secreted antibodies 

against type I collagen were cloned. 

The specificity of the polyclonal antibody was further examined after 

separation of collagen chains by SDS-PAGE and transfer to nitrocellulose 

by electroblotting (Towbin, Staehelin and Gordon 1979). Nitrocellulose 

sheets were then stained for protein with 0.1% amido black in 

methanol:acetic acid:water (5:1:5, v/v) for 3 min. For staining with 

antibodies, nitrocellulose membranes were blocked for 1 h in 5% Blotto 

[(nonfat, dried  milkpowder),  (Johnson et a/.1984)] and then reacted with 

antibody diluted 1:1000 in Blotto. 	Goat anti-mouse Ig (Bio-Rad)., 

conjugated to horseradish peroxidase, was diluted 1:1000 in Blotto and 

used as the secondary antibody. Binding of antibodies was visualized using 

0.3% 4-chloro-1-naphthol in 20 ml methanol containing 0.06% H 202  added 

to 100 ml Tris-buffered saline, pH 7.4. The antibody was allotted the code 

blue grenadier anticollagen SB10(2)-F6 Polyclonal. 

r Cat. No. 172-1011 
I _ 
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2.7 Immunohistology 

2.7.1 Immunofluorescence against blue grenadier tissue 

Sections, 6 Am thick, were cut from frozen tissue using a freezing 

microtome. They were stained with the polyclonal antibody, diluted 1:100 

in 0.15 NI NaC1, 5 inM sodium phosphate, pH 7.4 (PBS), washed twice for 

10 min in PBS, and then visualized with affinity-purified, fluorescein 

isothiocyanate-conjugated, sheep anti-mouse antibody (Silenus Laboratories, 

Melbourne) diluted 1:50 in PBS. After a further two washes for 10 min in 

PBS, sections were mounted in glycerol:water (9:1, v/v) containing 1 mM 

1,4-phenylenediamine. Control slides were made either using preimmune 

serum instead of the mouse anti-collagen antibody or by omitting the mouse 

antibody. 

2.7.2 Immunofluorescence against other tissues 

Sections were cut on a freezing microtome of human skin, chicken skin, 

chicken tendon, fresh blue grenadier skin, fresh blue grenadier and trevally 

myocomma and from blue grenadier and trevally myocomma taken from 

fish stored chilled (0) for 5 days. The reactivity of the murine anticollagen 

antibody was assessed at various concentrations using the method 
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essentially the same as that given in 2.7.1 

2.7.3 Immunoperoxidase 

The technique of immunoperoxidase was used to establish that the fixed 

tissue retained antigenicity before proceeding to TEM work. In essence the 

sections were dewaxed, etched with protease, blocked for endogenous 

peroxidase, treated with antibody, covered with peroxidase conjugated 

rabbit antimouse serum, treated with DAB, then rinsed counterstained and 

mounted. The details were as follows:- 

Immunoperoxidase method 

1. 4 micron paraffin sections on glass slides coated with a dried thin 
film of polyvinyl acetate wood glue obtained by dipping in a 1% 
solution 

2. Dry slides overnight at 37°C. Melt wax in 56°C oven for 5 minutes 
prior to dewax. 

3. Dewax in xylene (2 x 5 min), hydrate in absolute alcohol (2 min) 
95% alcohol (2 min) and 70% alcohol (2 mins). Running tap water 
(2 min). 

4. Place sections in PBS. 

5. Prewarm PBS in coplin jar x 2 at 37°C. 

(Place slides in prewarmed PBS) 
(Place 30 ml PBS in coplin jar) 

Add 10 ml PBS to test tube and prewarm to 37°C. 

6. Digest slide sections in protease for 8 minutes. 
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(Protease solution: Dissolve 0.02 g protease in prewarmed 10 ml 
PBS in tube at 37°C, add to the 30 ml PBS at 37°C in coplin jar.) 

Protease digestion for formation fixed tissue 'opens' crosslinIced 
antigen binding sites. 

7. Terminate digestion in tap water and wash in running tap water for 
5 minutes. 

8. Wash in PBS 3 x 2 mins. 

9. Block endogenous peroxidase using 3% hydrogen peroxide in 
distilled water (FRESH) 30 min. 

10. Rinse with PBS 3 x 2 mm. 

11. Place slides in humidity rack. 

Wipe off excess PBS and add 1:5 dilution normal swine serum 30 
min. 

12. Drain off excess and apply primary antibody to test slides dilution 
of 1:50 ie a Blue Grenadier Coll. SB10(2) - F6 Polyclonal. 

Negative control slides add PBS instead of 1° Ab. Leave for 30 
minutes. 

13. Wash with PBS 2 X 5 min.. 

Wipe off excess PBS. 

14. Cover sections with diluted Peroxidase - conjugated rabbit 
antimouse serum ie Add 0.05 g Albumen to 1.5 ml PBS. 

Leave for 30 minutes. Add 0.05 ml of peroxidase conjugate rabbit 
antimouse. 

15. Wash 2 x 5 mm with PBS. 

16. Cover with freshly made up DAB and incubate in dark in coplin jar 
10 minutes. 
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(Make up fresh 0.04 g DAB in 1 ml PBS add to 79 ml PBS. 
Add 8 drops H202 . Use gloves). 

17. Rinse in distilled and wash in running tap water 5 minutes. 

18. Stain in Mayers Haematoxylin 4 minutes. 

19. Wash in running tap water 2 minutes. 

20. Blue in Scotts tap water (NH 3  water). 

21. Wash in tap water 2 min. 

22. Dehydrate 	70% alcohol 	30 sec. 
95% alcohol 	30 sec. 
Abs alcohol 	30 sec. 
Abs alcohol 	30 sec. 

Clear 	Xylene 	 2 mins. 
Xylene 	 2 mins. 

Mount 	DPX 

2.7.4 Reactivity between antibody and protein A gold 

The method chosen to define collagenous structures under the TEM was to 

visualize the attached antibody by reacting it with a bacterial protein 

(Protein A) to which are conjugated electron-dense gold particles (Romano 

and Romano 1977). Before proceeding to lengthy TEM procedures, it was 

necessary to establish that the protein A gold complex (PAG) would react 

with the antibody attached to the tissue. The gold particles are only 15 nm 

in diameter and are not visible under the light microscope. Silver 

enhancement was used to make the deposition visible as follows. 
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Silver enhancement method 

1. 4 micron paraffin sections on PVA woodglue coated slides 

2. Dry slides overnight at 37°C. Melt wax in 56°C oven for 5 minutes 
prior to dewax. 

3. Dewax in xylene (2 x 5 min), hydrate in abs. alcohol (2 min), 95% 
alcohol (2 min) then 70% alcohol (2 mins). Wash in running tap 
water (2 min). 

4. Place slides in PBS. 

5. Block protein binding sites with 5 mg/ml BSA in PBS for 10 
minutes at 37°C (or 30 minutes RT). 

6. Drain off excess and apply 1° Ab to test slides with dilution 1:50 ie 
a Blue Grenadier Coll. 

SB10(2) - F6 Polyclonal 30 minutes at RT 
(PBS 30 min for control slides) 

7. Wash in PBS 3 x 5 min washes on rocker. 

8. Incubate slides in either rabbit antimouse antiserum dilution 1:50 for 
30 minutes or PBS for 30 minutes as blank reference slides. 

9. Wash in PBS three times x 5 min on rocker. 

10. Rinse in PBS/PEG/BSA 

PBS + 0.05% PEG (mw 20,000) + 5 mg/ml BSA 

11. Incubate in Protein A gold diluted in PBS/PEG/BSA 

dilutions 1:10 + 1:40 for 30 minutes at room temp. 

12. Wash 3 x 5 min in PBS on rocker. 

13. Wash 2 x 5 min in H20 (Rinse slides in H20, then wash on rocker). 

14. Make up silver intensification solution and stain sections in 
darkroom for 10-15 minutes (30 minutes was used in this procedure) 
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15. Wash thoroughly in H20. 

16. Stain nuclei in Mayers Haematoxylin and Blue in Scotts tap water. 

17. Dehydrate, clear and mount in Eulcitt. 

Silver enhancement solution (made up fresh immediately before use) 

A. 15 ml - 10 g gum acacia in 20 ml of deionised water. Stirred for 1 
day and centrifuged 30 min before use. 

B. 2.5 ml - 2.55 g citric acid + 2.35 g Trisodium citrate made up to 
10 ml in distilled water. (Buffer). 

C. 3.75 ml - 0.11 g silver lactate in 15 ml distilled water. (Silver 
Ion). 

D. 3.75 ml - 0.85 g hydroquinone in 15 ml distilled water (make up 
fresh and add quickly). 

Initially, silver enhancement proved unsuccessful until it was found that 

protein A gold does not react well itself with murine antibodies (the 

primary anticollagen was raised in mice) and that it was necessary to 

conjugate the protein A gold with the primary antibody through an 

intermediate rabbit antimouse (RAM) antibody since protein A gold reacts 

well against rabbit. The results are given in Table 2.3. 
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Table 2.3 Reaction between primary antibody, RAM, PAG and silver 
reagent 

Presence of reagent Reaction 

10 Ab RAM PAG Silver 

+ - - + -ye 

+ + - + -ve 

+ + + + +ve 

+ - + + -ye 

- + + + -ve 

+ + - -ye 

A positive staining reaction is indicated thus +ve 
primary antibody blue grenadier anticollagen SB10(2)-F6 
polyclonal 
rabbit antimouse serum 
protein A gold reagent 
silver stain reagent (see above) 

No blank reagent reactions occurred and no reaction of the primary 

antibody with protein A gold was noted unless RAM was used. The RAM 

alone without the protein A gold did not yield silver enhancement.' 

2.7.5 Immunogold l'EM 

Ultrathin sections cut from blocks of tissue embedded in LR white resin 

were incubated on Nickel grids with the anticollagen antibody after 

blocking for non-specific binding with bovine serum albumin. The sections 

1 °  Ab = 

RAM = 
PAG = 
Silver = 
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were rinsed then incubated with rabbit antimouse serum, rinsed to remove 

excess RAM and incubated with protein A gold conjugate. Control sections 

consisted of substituting normal mouse serum or PBS for the primary 

antibody. Sections were then rinsed and stained in uranyl acetate and lead 

citrate. The procedure used was mainly that of Stephens, Bendayan and 

Silver (1982) and is given in detail as follows:- 

Protein A Gold procedure 

Performed in moist chamber 

1. Thick sections (100 nm) were cut from the LR white blocks and 
mounted on nickel grids. 

2. Float grids on PBS. 

3. Block protein binding sites with 5 mg/ml BSA in PBS at room 
temperature for 20 min. 

4. Remove excess BSA/PBS and place test grids on a 1:50 dilution of 
10 Ab in PBS (SB10(2) - F6 Polyclonal) 

Control slides placed on a 1:50 dilution normal mouse serum. 

5. Wash three times x 5 min with PBS on rocker 1 hour at RT. 

6. Incubate grids on drops of rabbit antimouse serum dilution 1:50 in 
PBS 30 minutes. 

7. Wash in PBS three times x 5 min on rocker. 

8. Rinse in PBS/PEG/BSA 

PBS + 0.05% PEG (mw 20,000) + 5 mg/ml BSA (0.5 ml of 1% 
PEG in 10 mls BSA/PBS) 

9. Incubate in Protein A gold dilution 1:100 with PBS/BSA/PEG. 30 
min at RT. 
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10. Wash 1 x 5 mm PBS/BSA/PEG. 

11. Wash 3 x 5 min PBS. 

12. Rinse in Milli-Q water and blot dry. 

13. Examine under EM. 

14. Stain with saturated uranyl acetate in 0.9% Kmnat  in phoshate 
buffer, aqueous lead citrate. 

15. Carbon coat grids for 3 mm at 70kV - 25 Amp 

Note BSA was used as a non-specific blocking agent instead of gelatin used 

in the original method (Stephens, Bendayan and Silver 1982) since this may 

have reacted with the antibody. 
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SEM studies on fish muscle 
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3.1 SEM studies of fish muscle 

There have been few studies of fish muscle using the SEM. Schaller and 

Powrie (1971) published SEM micrographs of trout muscle at various 

stages of post mortem storage (3°C). These demonstrated progressive 

shrinkage of the transverse elements of the SR and T system such that from 

being quite pronounced in appearance above the surface they shrank 

beneath it after 4 days storage. Collagen fibres were not evident in their 

preparations. Giddings and Hill (1976,1978) studied effects of freezing and 

of frozen storage on crab and shrimp muscle but again the emphasis was 

placed on the muscle rather than the connective tissue. 

By using enzyme treatments Borresen (1976) was able to develop a method 

for isolation of the muscle cell envelope of cod. Under the SEM it was a 

lace-like network of collagen fibres (Almas 1982). 

Lampila et al. (1985) used SEM to study the effects of different freezing 

procedures on rockfish (Sebastes sp.) by preparing samples using 

isothermal freeze fixation. Using this technique they were able to show the 

distortion and damage to the cell membrane that occurs in the freezing 

process. The effects of thermal processing on tuna• muscle were studied by 

Lampila and Brown (1986) using SEM to record the progressive disruption 

that occurs. Hatae, Yoshimatsu and Matsumoto (1990) examined sections 

of cooked muscle from five species of fish and related their results to 
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textural characteristics. In a comprehensive study, Schrubring and Sandau 

(1989) used SEM to study the effects of salting and heating on fresh and 

frozen cod and herring muscle and minces. 

Ando et al. (1991) subjected samples of rainbow trout muscle 

(Oncorhynchus mykiss) to a controlled compression test which opened the 

flesh structure to reveal the connective tissue fibres of the intermuscular 

space. They also observed disintegration of the collagen fibres in the 

pericellular connective tissue after storage of the muscle for only 24 hours 

post mortem at 5 °C (Ando et al. 1992). 

In none of these studies was the myotendinous junction examined. Until 

recently, the myotendinous junction had only been studied using light 

microscopy and a three dimensional representation of the area had been 

lacking. This situation changed with our initial studies (Bremner and Hallett 

1985, 1986). This chapter describes these investigations which formed the 

basis on which this thesis was formulated. 

3.1.1 The myotendinous junction of blue grenadier (Macruronus 

novaezelandiae Holthius) and spotted trevalla (Seriolella punctata 

Forster) 

In broad outline, samples taken from the dorsal musculature of the fish pre- 

rigor, during rigor and at intervals post rigor were fixed, freeze-fractured 
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and freeze dried and gold coated before examination under the SEM. The 

freeze fracture process exposed sites at the junction of the muscle fibres 

with the connective tissues of the myocommata. 

Similar structures were observed to occur in both blue grenadier and 

spotted trevalla. The muscle fibres were seen to join to the myocomma and 

were connected to it by a sheath of fine collagen fibrils which arose from 

the myocomma to wrap around each muscle fibre (Figure 3.1, 3.2).The 

muscle fibres fitted into socket like indentations on the myocomma (Figure 

3.3). When the muscle fibres were part dissolved from these structures 

with salt solution, the sheath of fine collagen fibrils holding the muscle 

fibre to the myocomma could clearly be seen. This network of collagen 

fibrils was evident on the surface of the muscle fibres (Figure 3.4). At a 

fractured end, the structure of the muscle fibril had the typical elongated 

myofibrils situated around the periphery of the fibre with polygonal 

myofibrils in the interior. The connective tissue network peeled back, 

revealed the plasmalemma and endomysium on the fibre surface (Figure 

3.5). 

3.1.2 Post rigor changes in the myotendinous junction 

After storage at 0 °C obvious changes occurred. Holes appeared in the 

endomysial surface (Figure 3.6) and the fine collagen fibrils were 
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Figure 3.1 Pre-rigor blue grenadier, fine collagen fibrils C connect the 
rnn,Pri"C1 F to the myocomma M. Bar 0.1mm. 

" 

Figure 3.2. Pre-rigor spotted trevalla. The interface of muscle fibres with 
the myocomma exposed by freeze-fracture. The fine collagenous fibrils C 
run from the muscle fibres to the myocomma which lies horizontally across 
the figure. The ends of the muscle fibres F are intimately connected to the 
surface layers of the myocomma M which shows signs of being pulled 
apart in the fracturing process. Bar 0.1 mm. 
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Figure 3.3. Post-rigor blue grenadier. Muscle fibres have been teased out 
of the myocomma to reveal socket-like indentations. Bar 0.1 mm. 

Figure 3.4. Pre-rigor blue grenadier. Adjacent muscle fibres, showing 
network of fine collagen fibrils and intact pericellular layer. Bar 0.01 mm. 
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Figure 3.5. Fractured muscle fibre end showing the fine pericellular 
collagen fibrils C peeling back and the intact endomysial layer E. The 
myofibrils on the perimeter are flattened in cross section. Bar 0.01 mm. 

Figure 3.6. Blue grenadier after 5 days ice-storage. The muscle fibre 
surface exhibits deterioration of the pericellular collagen fibres  C  and the 
endomysial/plasmalemmal layer E. Bar 0.01 mm. 
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disrupted. The connections between the muscle fibres and the myocomma 

degraded (Figure 3.7), the pericellular collagen fibrils appeared to be 

digested and the muscle fibre ends detached from the myocomma (Figure 

3.8, 3.9). 

3.2 Discussion 

There were similar structures observed in both these unrelated species. The 

muscle fibres were surrounded by a pericellular layer of fine collagen 

fibres which attached the muscle fibres to sockets in the myocomma. 

During post mortem storage the interface between the muscle fibres and the 

myocomma deteriorated and, in some areas, the fine collagen fibres 

appeared to• be completely degraded. This resulted in muscle fibres 

completely detached from the myocommata. Unattached fibres were never 

seen in pre-rigor preparations. The changes in the muscle fibres were only 

evident on the fibre surfaces where deterioration of the 

endomysial/plasmalemmal area could be seen. 

3.3 Conclusion 

It was concluded that deterioration of the collagen of the connective tissues 

of the extracellular matrix of fish muscle occurred in stored fish. This 

could be a significant factor in post mortem softening of fish flesh. The 
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Figure 3.7 Spotted trevalla stored 4 days in ice. The fine collagenous fibrils 
C of the pericellular area and the myocomma M have been degraded 
allowing loosening of attachment of the muscle fibres. Bar 0.1 mm. 

Figure 3.8. Blue grenadier stored 11 days in ice. A muscle fibre  F shows 
complete detachment from the myocomma and absence of fine connecting 
collagen fibrils. Bar 0.1 mm. 
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Figure 3.9. Spotted trevalla stored 8 days  in  ice. Muscle fibres F have been 
detached from the myocomma M. General degradation  in  the perimysial 
and sarcolemmal area. Bar 0.1 mm. 
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indications were that the deterioration was enzymic in nature. However, it 

was unclear which structures were being attacked and it was obviously 

necessary to examine the fine structure in more detail. These studies also 

indicated breakdown in the fine collagen fibrils. 

Collagen is normally regarded as a fairly stable tissue that is resistant to 

enzymic attack - hence this aspect called for further investigation into the 

nature and type of collagen present in the pericellular region and at the 

myotendinous junction and the susceptibility of this collagen to attack by 

enzymes. 

These initial studies provided the major focus for the work reported in this 

thesis. Research was initiated to elucidate the fine structure at the 

myotendinous junction and to characterize the collagen. 
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4.0 Transmission electron microscope studies 

4.1 Introduction 

In Chapter three evidence was presented from SEM studies that 

deterioration in the region of the myotendinous junction and in the 

pericellular region occurred during the post mortem storage of chilled fish. 

It appeared that the fine collagen fibres and other components of the 

extracellular matrix were being degraded. The myotendinous junction in 

fish has been reported to be similar in structure to that occurring in 

mammalian muscle (Schwarzacher 1960; Schippel and Reisig 1969; 

Komeliussen 1973; Schattenberg 1973 and Nakao 1975). None of these 

studies had examined post mortem changes, nor had commercial fish been 

examined. Rather the investigations were performed on unusual specimens 

such as the hagfish, seahorse or lamprey. Therefore the main thrust of the 

present study was placed on establishing in greater detail the myotendinous 

junction of a commercial species and in following the changes that occurred 

in the junction during the course of chilled storage. 

4.1.1 Preliminary histology 

In the pre-rigor samples of trumpeter the muscle fibres were packed closely 
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together but evidence of fine collagen fibres could be seen between some 

myofibres (Figure 4.1), similar to results reported by Love 1970. Some 

separation of the collagen sheets within the myocommata due to processing 

was observed (Figure 4.2), but the epimysial collagen was intimately 

attached and associated with the terminal ends of the fibres. Samples taken 

after five days showed quite distinct gaps between muscle fibres with some 

loosening of the epimysial collagen from the muscle fibre ends (Figure 

4.3). In those samples taken from fish stored 12 days, large gaps between 

muscle fibre bundles were evident and there appeared to be some loss of 

continuity within the myocomma (Figure 4.4) and some muscle fibre ends 

had separated from the collagen (Figure 4.5). 

These results are similar to those described by Menon and Nair (1988) for 

storage changes observed in major carp (Labeo calbasu) and are consistent 

with the observations presented in Chapter 3. 

4.2 Prerigor samples 

Examination of the pre-rigor blue grenadier samples in the transmission 

electron microscope revealed an obvious regular myofibrillar banding 

pattern and a well defined sarcoplasmic reticulum and tubule system, which 

in fish is found at the level of the Z-line (Figure 4.6; cf Figures 1.2 and 

1.3). The T system can be seen opening into the extracellular space in 
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Figure 4.1 Pre-rigor trumpeter muscle stained with Van Gieson's, showing 
network of purple collagen fibres of the myocomma adhering closely to the 
muscle fibre base. Muscle fibres are closely packed. Magnification X 100. Bar 10 Un 

Figure 4.2 Fine collagen fibres can be seen between closely packed muscle 
fibres of the pre-rigor trumpeter. Magnification X 100. Bar 10  um 
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Figure 4.3 The same fish as in 4.1 after 5 days chill storage in ice. Spaces 
between muscle fibres are appearing and the myocomma is starting to part 
into layers. Magnification X 100. Bar 10 um 

Figure 4.4 After 12 days storage in ice the muscle fibres are quite separate 
and the collagen has pulled away from the muscle fibre ends. Magnification 
X 40. Bar 10 um 
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Figure 4.5 Similar section to Figure 4.4 showing separation of the muscle 
fibres and loosening of the collagen from the muscle fibre base. 
Magnification X 40. Bar 10 um 

Figure 4.6 Pre-rigor blue grenadier showing a well defined sarcoplasmic 
reticulum and tubule system with tubule T opening on to the extracellular 
space. Bar ltim. 
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which there are numerous glycogen granules and an elongated 

mitochondrion. A similar system was described for cod by Howgate 

(1980). In the bulk of the muscle the myofibrils were in register (not 

shown, but see also Figure 4.11). The Z lines were well defined and finer 

features of the structure such as the N-lines in the I band were evident. 

At the fibre surface a distinct sarcolemma, the basal lamina and endomysial 

collagen layer were present (Figure 4.7). In some sections (not shown) the 

surface had a periodic undulating appearance giving the impression of 

attachment between the basal lamina and the M line (Pierobon-Bormioli 

1981). 

At the fibre end, the sarcolemma occurred in close proximity to the 

bounding membrane of the sarcoplasmic reticulum of an invagination 

(Figure 4.8). The basal lamina was absent from this region. 

Collagen fibres of two classes of diameter were associated with the tapering 

ends of individual muscle fibres (Figure 4.9). The endomysial fibres were 

of much smaller diameter (approx 18 nm) and had a much les§ defined 

banding pattern than the larger (approx 80 nm) fibres. The flattened 

dendritic processes of a fibroblast formed boundaries near this fibre end 

and one of the collagen fibres along the upper process appeared to be in the 

latter stage of formation since its banding was not well defined and it 

appeared to consist of long strands, which may have been protofibrils. 

A more general view of a muscle fibre base is shown in Figure 4.10 
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Figure 4.7 Pre-rigor blue grenadier at a muscle fibre edge distict 
sarcolemma S, basal lamina B and endomysial collagen fibres C. Bar lp.m. 

Figure 4.8 Terminal end of a groove-like invagination in close apposition 
with a vesicle of the sarcoplasmic reticulum R. The sarcolemma is well 
defined and complete, but the basal lamina is not continuous at the end of 
the groove. Bar 1 gm. 
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Figure 4.9 Collagen fibrils of two different diameters, large C and small 
arrow, can be seen at the end of a muscle fibre which is bounded by the 
flattened processes of a dendritic cell D. Bar 1 pm. 

Figure 4.10 Muscle fibre base from pre-rigor blue grenadier showing the 
intimate association between it and the collagenous myocomma C.Bar 1/Am. 
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illustrating the intimate relationship between the collagen of the myocomma 

and the fibre itself. The grooves and invaginations in the fibre end were 

filled with collagen fibres and these extended considerable distances, up to 

10 /Am, into the fibre base between the myofibrils (Figure 4.11). External 

to the muscle fibre there was a dense network of collagen fibres which ran 

in apparent layers arranged at different angles. Fibroblasts were often 

evident and the processes of the dendritic cells tended to form boundary 

layers that were apparent weaknesses in the total structure since it is often 

along these lines that sections were seen to separate. Some invaginations 

were finger-like (Figure 4.11) and others were more like grooves (Figure 

4.12), or were shallow tube-like structures (Figure 4.13). Each had a 

clearly defined sarcolemma and a basal lamina which in most cases was 

complete (Figure 4.14, cf Figure 4.8). Vesicle-like indentations of the 

sarcolemma were often present (Figure 4.14) and these may represent the 

genesis of the sarcoplasmic reticulum at these sites since they often 

coincided with the existence of rudimentary Z lines. Connecting structures 

between the basal lamina and the sarcolemma were evident (Figure 4.12, 

4.14). Similarly there was evidence of connecting structures between the 

collagen fibrils (Figure 4.12, 4.14) and between the collagen and the basal 

lamina (Figure 4.15). 
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Figure 4.11 An elongated invagination filled with collagen fibres (arrows) 
penetrating between myofibrils. Bar 1 f'm. 

Figure 4.12 Detailed view of a groove-like invagination with the , basal 
lamina B, sarcolemma S and collagen fibres C clearly defined. Bar 1 f'm. 
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Figure 4.13 A short tubular invagination arrow at the base  of  a pre-rigor 
muscle fibre filled with collagen fibres. Bar ltim. 

Figure 4.14. A groove near the end of a muscle fibre. The sarcolemma 
exhibits vesicle-like indentations (arrow). Connections between  the  basal 
lamina and the sarcolemma are evident. Bar 100 nm. 
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w 
Figure 4.15 Connecting structures (arrows) occur between the collagen 
fibres and between collagen fibres and the basal lamina. Bar 100  nm. 
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Within the muscle cell fine fibres run from the last complete Z line to 

connect at the inner surface of the sarcolemma in an electron dense area 

(Figure 4.16, 4.17). The fibres were most likely to be actin since it is 

known that they are laid down as part of the cytoskeletal network 

(Schattenberg 1973). In general this region also contained large numbers 

of glycogen granules and mitochondria consistent with the fact that growth 

in fish muscle occurs at the fibre ends. Hence a higher concentration of 

metabolic apparatus is required in this region. 

4.3 Fish in rigor 

The overall structure of the muscle of fish in rigor was similar to that seen 

in pre-rigor fish (Figure 4.18). However, there was a notable loss of 

contrast between the background matrix, in which there was a distinct 

increase in the amount of staining, and the basal lamina and the collagen 

fibres within the invaginations. 

- 4.4 Post-rigor fish 

In muscle from post-rigor fish (8 days) the interface region showed 

considerable variation in structure, even within the same fibre. Some 

invaginations (Figure 4.19) retained both collagen fibres and a discernible 
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Figure 4.16 Section of a  muscle  fibre base, fine filaments (arrow) extend 
from the last intact Z line Z to attach to the inner surface of the 
sarcolemma in an electron dense layer. Bar 1 gm. 

Figure 4.17 Greater detail of Figure 4.16 showing the fine filaments 
(arrow) in apparent bundles attaching to an amorphous electron dense area 
on the inner surface of the sarcolemma. Bar 100nm. 
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Figure 4.18. Fish in rigor. A tubular invagination I  near  a muscle fibre 
base showing the same structure as in pre-rigor fish, although definition is 
less clear due, to greater background staining.  Bar  100  nm. 

Figure 4.19. Invagination into the muscle  fibre  base  in a  post-rigor fish 
(stored 8 days). The basal lamina is discernible,  but indistinct and  blurred. 
Small vesicles (arrow) are visible in the  terminal  end  of the  invagination. 
There is considerable staining of the background matrix. Bar  100 nm. 
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basal lamina. However, this latter was usually blurred. In some 

invaginations loss of the basal lamina and of collagen fibres had occurred 

to a greater or lesser extent (Figure 4.20). This appeared to start at the 

terminal region of the invagination (Figure 4.21). In many regions the 

fibre base and collagen sheet had parted and empty invaginations were 

apparent (Figure 4.22). Regions of empty and almost intact invaginations 

could be present close on the same fibre base; breakdown of the basal 

lamina could be seen in between. Invaginations of detached fibre base 

contained neither the basal lamina nor collagen. However, the sarcolemma 

often remained intact at this stage (Figure 4.23). 

In fish stored for 11 days the majority of fibres were more or less 

completely detached. Invaginations were not apparent at the muscle fibre 

base even when this was still in contact with the myocommatal sheets 

(Figure 4.24). In many instances massive vesicular deposits appeared 

between the fibre end and the collagenous sheets, and the sarcolemma had 

disappeared (Figure 4.25). However, despite this, the overall integrity of 

the muscle fibres, including the fine filaments to the fibre base region, 

remained intact (Figure 4.24, 4.25). 

In all samples the overall background matrix of the collagen appeared much 

more densely stained than that of pre-rigor fish. Within the muscle cell the 

main structural features were still evident. Z lines were still intact although 

the banding pattern was much less distinct. The structure of the sarcoplasm 
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Figure 4.20. A tubular, but indistinct, invagination (arrows)  in  a post rigor 
fish stored  8  days. Bar 100 nm. 

Figure 4.21 Greater detail of the invagination shown  in  Figure 4.20 
indicating apparent loss of collagen and basal lamina from the terminal end 
of the invagination (arrows). Bar 100 nm. 
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Figure 4.22 Muscle fibre base F in a stored fish has disconnected from the 
myocomma M and the invaginations V are empty of content. The region of 
the myocommata closest to the fibre base shows an area of amorphous 
stained material beneath which are collagen fibres. Bar 1 um. 

Figure 4.23 Detail of invaginations in the base of a disconnected muscle 
fibre. Apart from debris and a few vesicles the invagination V is empty but 
the sarcolemma (arrow) still lines the invagination wall. Bar 1 urn. 
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Figure 4.24 The muscle fibre base region in a fish stored for 11 days. 
Invaginations are not distinct although the fibrebase appears to remain close 
to the myocommatal sheet. The fine filaments from the Z line (arrow) still 
extend to the basal region of the fibre. Bar 1 urn. 

Figure 4.25 Similar muscle fibre base region to Figure 4.24.  The  region 
between the fibre base M and the myocommata C contains large number of 
vesicles and the sarcolemma  is  no longer identifiable. Bar  1  um. 
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had deteriorated and there was generally a lack of cohesion between muscle 

•fibrils and between the filaments composing the fibres (Figure 4.26). 

Elements of the sarcoplasm were retained at the fibre margin but the 

collagenous surround in the invagination was much less distinct (Figure 

4.27). 

4.5 Discussion 

4.5.1 The myotenclinous junction 

The structure of the myotendinous junction is similar to that observed in 

other vertebrates (Gelber et al. 1960; Schwarzacher 1960; Schippel and 

Reisig 1969; Hanalc and BOck 1971; Korneliussen 1973; Schattenberg 

1973; Nalcao 1975,1976; Ajiri et al. 1978; Demell et al. 1979; Trotter et 

al. 1985). Descriptions of the structure of the interface area in the seahorse 

(Schwarzacher 1960), pipefish (Schippel and Reisig 1969),` hagfish 

(Korneliussen 1973), and lamprey (Nakao 1975) accord with the present 

observations that, in fish, the muscle fibres terminate at a myocomma with 

indentations and invaginations of the sarcolemma that are filled with fine 

collagen fibrils. These finger-like invaginations, often anastamose, and 

•project longitudinally between adjacent myofibrils for depths ranging from 

2 to 10 gm. Hanak and Bock (1971) reported invaginations 6-7 Am in 
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Figure 4.26 Within the muscle fibre of a fish stored 8 days there is 
evidence of breakdown of the sarcoplasmic layer between the myofibrils 
into unconnected vesicles and banding is much less distinct although the Z 
lines appear to be intact. Bar 1 urn. 

Figure 4.27. At the muscle fibre edge the sarcolemma S is retained but the 
endomysial collagen and the basal lamina have degenerated. Bar  1  um. 
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length in the guinea pig while for lamprey Nakao (1975) recorded lengths 

near 1-2 Am. Large numbers of groove-like invaginations are also present 

which are similar to features shown in the terminal ends of mouse plantaris 

muscle (Trotter et al. 1985) and rat sternothyroid muscle (Ishilcawa et al. 

1983). Serial sectioning indicated that the grooves and invaginations were 

real features and not artefacts of different orientations of the block face. In 

some sections the finger-like processes appear to arise from the grooves but 

much more work beyond the scope of this investigation would be required 

to fully delineate the geometry and to establish whether the different types 

of invaginations are found with greater frequency in different parts of the 

fibre base. This is a possibility since the myofibrils around the muscle fibre 

periphery are flat in cross section (Figure 3.5), whereas those in the 

interior are polygonal. 

The structures external to the muscle fibre resemble those reported for 

other organisms in that there are fine connections between the sarcolemma, 

basal lamina and the ingressing collagen fibres (Hanak and Back 1971; 

Nakao 1975, 1976; Ajiri et al. 1978 and Trotter et al. 1981). Recent work 

indicates that the connections are exceptionally intricate (Trotter et al. 1983 

a,b; Keene, Sakai, Lunstrum, Morris and Burgeson 1987). In the basement 

membrane zone of human skin and cornea an extended network of 

connecting plaques comprised of type IV collagen and anchoring fibrils of 

collagen type VII have been reported. The type VII collagen fibrils arise 
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from the epithelial layer to loop over the larger diameter type I fibrils and 

attach to a connecting plaque comprised of type IV collagen (Keene, Sakai, 

Lunstrum, Morris and Burgeson 1987). Other type VII fibrils proceed 

between plaques or to the cell surface. In this way an entangling network in 

which the type I collagen fibres are embedded is built up to form a strong 

connecting structure. In some respects there is an analogy with "Velcro" 

the fibre and loop fastening material used on clothing, footwear and display 

materials. A structure of this nature is consistent with the 'beaded threads' 

reported by Ajiri et al. 1978 and the structures shown by Nakao (1975, 

1976). However this proposed network of anchoring plaques and fibrils has 

not yet been demonstrated in muscle. In addition type VII collagen has not 

yet been reported in fish and neither has type IV. Type IV collagen is a 

major component in basement membranes and since fish muscle has well 

defined basement membranes (Figure 4.12, 4.13) it is certain to be present. 

Fibronectin (Hantai, Gautron and Labat-Robert 1983) has been shown to be 

present on the sarcolemma extending from the cell membrane to the 

intercellular collagen fibres beyond the basal lamina lucida externa in 

muscles of the rat. This was interpreted as demonstrating a role for 

fibronectin in providing contact between the cell membrane and the 

intercellular matrix, at least along the periphery of the muscle fibres. They 

also found laminin to be a constituent of the basal lamina delineating each 

muscle fibre, but the myotendinous junction was not studied. 
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In the myocomma and in the invaginations the collagen fibrils are 

embedded in, and connected by, the pro' teoglycans of the 'ground 

substance' (Figure 4.12, 4.14, 4.15). These proteoglycan structures are 

much more than just amorphous elements and have a critical role to play in 

organising and supporting the whole structure (Muir 1990, Scott 1991), 

even though the reported levels in fish (pacific rockfish Sebastes sp.) are 

quite low (Kim and Haard 1992). 

Coupling of the sarcolemma of the invaginations and vesicles, presumably 

of the sarcoplasmic reticulum, was seen in some sections consistent with 

the reports of Nakao (1975,1976). The basal lamina was observed to be 

absent from the terminal ends of the finger-like processes similar to the 

situation for lamprey and frog muscle (Nakao 1975, 1976). Presumably this 

increases the opportunity for biochemical or ion flux at this point during 

formation of new sarcomeres (Schippel and Reisig 1969), or during the 

normal operations of the cell. In contrast, the basal lamina was always 

present at the bases of the groove-like processes. 

Variability in the distance between the final Z line and the fibre base was 

observed and this was attributed, in part, to differences in the orientation of 

the sections and, in part, to actual differences in fibril growth. Fish muscle 

fibres continue to grow throughout the life of the animal (Schattenberg 

1973) so that any section of myotendinous junction is likely to contain areas 

of formation of new myofibrils. The sarcolemmal region of attachment 
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probably has elements in common with the membranous Z line (Franzini-

Armstrong and Porter 1964) and it is from this region that a new Z line 

arises as a new sarcomere forms. However, Yamaguchi et al. 1990 

reported the presence of bands in the terminal segment of the muscle of 

guppy (Lebistes reticularis) which they concluded were not Z lines even 

though they were electron dense and had a similar appearance. Inside the 

muscle cell, fine filaments proceed from the terminal Z line to the interior 

surface of the sarcolemma. On the basis of their appearance and position it 

is assumed that these are actin filaments, consistent with previous reports 

(Schattenberg 1973; Maruyama and Shimada 1978; Trotter et al. 1983b; 

Yamaguchi et al. 1990). This could be confirmed by 'decoration', a 

procedure that involves treating the tissues with heavy meromyosin which 

reacts with actin filaments to delineate the arrowhead structures which are 

then readily observable with TEM (Ishilcawa, Bischoff and Holtzer 1969; 

Maruyama and Shimada 1978). These fibres attach on the internal surface 

of the sarcolemma in an electron-dense layer. Other proteins of the 

cytoskeletal system are probably part of this layer. Alpha-actinin, an actin 

'bundling' protein (Tidball 1987) has been found in myotendinous junctions 

and these actin filaments appear in bundles (Figure 4.16, 4.17). Vinculin 

(Geiger 1979; Geiger et al. 1980), talin (Tidball, O'Halloran and Burridge 

1986), and zeugmatin (Maher et al. 1985) are also likely to be present as 

part of the attachment mechanism although none of these has ever been 
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reported in fish muscle. Fibronectin not only binds to cell surfaces but also 

interacts with actin filaments in the cell interior (Hynes 1986), mediated 

through a structure in the cell wall that spans the membrane between the 

fibronectin fibrils outside the cell and the internal actin filaments. These 

mediating elements are three cell-surface glycoproteins known as the 140K 

complex, because of their molecular weights of 140 Kd (Hynes 1986). 

Thus the electron-dense area on the internal surface of the sarcolemma 

contains a complex range of elements each contributing to the integrity of 

the structure. Furthermore this series of linkages must be maintained 

through the sarcolemma to the basal lamina through to the collagen fibres 

on to the myocommata and, in turn, to the skeletal structure in order that 

the forces of muscular contraction result in locomotion. Trotter et al. 

(1981, 1983b) have shown that even when the membranous nature of the 

sarcolemma has been disrupted by the use of lipid solvents, the connection 

and tension of the system is unaltered. This suggests that structures pass 

through, or connect through the sarcolemma and that firm linkages exist 

between the fibrils of the muscle fibre and the collagen of the 

myocommata. The invaginations of the myocommata increase the surface 

contact area by factors of between 20 to 30 for fast twitch muscles (Trotter 

et al. 1985) and 50 times for tonic cells (Tidball and Daniel 1986); the 

geometry of these junctions means that the forces are applied in shear 

rather than tensile mode (Tidball 1983). This effectively decreases the load 
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at any individual point but the degree of membrane folding found is not 

determined solely by the magnitude of the stress at the junction (Tidball 

and Daniel 1986). 

The structure of the myotendinous junction in these samples appears to be 

consistent with the evidence reported for both mammals and for vertebrate 

fish species. 

4.5.2 Post-rigor changes 

The disconnection of the muscle fibre ends from the myocommata requires 

the breakage of at least one of the critical links in the structure of the 

myotendinous junction. The fact that in the blue grenadier this structure is 

no different in its essentials from that of other fish species (or indeed from 

other higher vertebrates), plus the absence of any major structural change 

during rigor, indicates that mechanical stress is not the cause of gaping. 

Mechanical stresses will exacerbate and make evident underlying 

weakening and deterioration that has already occurred in the structure. 

There is no evidence to suggest that the cause of change is bacterial in 

origin. 

The observations here support the hypothesis that gaping and softening is 

due to the action of enzymes with proteolytic and collagenolytic activity. 

This activity seems to be localised within the invaginations and the 
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immediate vicinity of the basal lamina. In most of the samples examined 

neither the bulk of the collagen in the myocommata nor the filamentous 

connections between the Z lines and the sarcolemma showed major effects 

due to enzyme activity. The enzymic breakdown thus appears to commence 

with the basal lamina and extends to ingressing collagen from the terminal 

end of the invagination while the sarcolemma itself is only disrupted and 

lost in the later stages. The fine fibrils of collagen in the invaginations 

appear to be completely destroyed in some instances although collagen is 

normally regarded as being a fairly stable tissue somewhat resistant to 

enzymic attack. This either indicates the presence of a powerful collagenase 

active at chill temperatures, or a labile form of collagen or both these 

factors. In terms of disruption to the structure, however, dissolution of the 

basal lamina and disruption of the microfilamentous connections to the 

sarcolemma may be as important. 

To the best of the authors knowledge there is no other detailed study of 

these post rigor changes in fish muscle or in mammalian muscle but it 

would seem that similar processes occur but mostly to a lesser extent in 

other species. 
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4.6 Conclusions 

The myotendinous junction in the blue grenadier is similar to that reported 

for other marine species (Schwarzacher 1960; Schippel and Reisig 1969; 

Korneliussen 1973; and Nakao 1975). This study shows fine detail of the 

complex and intricate connections that occur between the fine collagen 

fibres that fill the grooves and invaginations in the terminal ends of the 

muscle fibre with the basal lamina and the sarcolemma. It also 

demonstrates there are at least two classes of collagen fibres of different 

diameters present. The finer fibres of approximately 18 nm diameter occur 

adjacent to the muscle fibre ends and in the endomysial layer. 

The histological evidence and the observations with TEM demonstrate, for 

the first time, the progressive deterioration that occurs in this region during 

chilled storage. The deterioration occurs near the basal lamina and in the 

invaginations at the muscle fibre ends. The basal lamina degrades and the 

fine collagen fibres appear to be digested from the invaginations. 

Deterioration is progressive and muscle fibres become completely 

disconnected from their adjacent myocommata. The process is not 

bacterial, nor is it mechanical, and it is inferred that it must be enzymic. 

This implies the presence of enzyme(s) with collagenolytic activity in the 

chill range and /or very labile collagen. 
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5.0 Introduction 

The observations made by electron microscopy described in chapters 3 and 

4 indicated that the fine collagen fibres in the myocommatal area and 

endomysium were being degraded during post mortem storage. Since much 

of the deteriorative process was observed to occur in the connective tissue, 

it was obvious that characterization of the blue grenadier collagen would be 

necessary in order to further understand the breakdown phenomenon. It 

was thus necessary to determine the properties of the collagen of blue 

grenadier and to relate these to the observed changes. Therefore collagen 

was selectively extracted from blue grenadier skin; its solubility and 

melting temperature were determined; it was purified and its amino acid 

and chain composition ascertained. Purified collagen was then used to 

produce antibodies in mice for use in im munofluorescence, 

immunoperoxidase and immunogold studies to characterize the collagen 

fibrils in the invaginations of the muscle fibre base. 

5.1 Solubility and extraction 

The fish skin collagen was readily soluble in dilute acetic acid and pepsin 

treatment was not required. The results for solubility of skin collagen from 

fish of different age groups are shown in Table 5.1. 
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Table 5.1 Solubility of Skin Collagen From Blue Grenadier of Various 
Ages 

Length 
(nun) 

Weight 
(g) 

Age 
(years) 

Neutral 
salt 

Acid 
soluble 

Insoluble 
(%) 

soluble (%) 
(%) 

Juvenile 310 106 1-1.2 8.2 87.8 4.0 

Juvenile 315 106 1-1.2 10.0 87.7 3.3 

Young adult 490 748 2 3.3 91.8 4.9 

Young adult 610 798 3 3.0 91.5 5.5 

Mature adult 960 3 750 >8 2.3 89.3 8.4 

Mature adult 1 020 4 450 >8 2.1 91.0 6.9 

Note: The collagen in each fraction is given as a percentage of the total 
collagen of all three fractions (Neutral salt soluble + Acid soluble + 
Insoluble). Collagen was taken from the same position in each fish, as 
determined from myotome number, analysed in duplicate and averaged. 
The age of fish was judged from fish length, using the data of Kenchington 
and Augustine (1988). 

The method of ageing is not very precise but it was clear that the youngest 

samples had the greatest quantity of neutral-salt soluble collagen, while the 

amount of acid-insoluble collagen increased with the age of the fish. High 

solubility in acid occured even in fish at least eight years old. This high 

acid-solubility in mature fish, has been observed in other species (Sikorsld, 

Scott and Buisson 1984) and it may reflect a slow rate of development of 

mature crosslink formations, which render collagen less acid-soluble. 

Instead, acid-labile aldimine crosslinlcs occur. This deficiency in mature 

crosslinks may, in part, result from a continuing lower availability of 

oxygen in fish skin in comparison to mammalian tissues (Rigby, Mitchell 
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and Robinson 1977, Bone and Marshall 1982) since the formation of 

crosslinlcs is an oxidative process (Rigby et al. 1977). One of the factors 

leading to the lack of post-mortem structural integrity in blue grenadier 

may result from the low amount of mature crosslinks in this species. 

The acetic acid soluble collagen was readily purified by fractional salt 

precipitation under the same conditions as those used for purification of 

mammalian type I collagen (Trelstad et al. 1976; Trelstad 1982). There 

was no evidence of significant quantities of other collagens precipitating at 

these salt concentrations and it was inferred that the skin contained only 

type I collagen as a major constituent. 

5.2 Chain composition 

Separation of the precipitated fraction of purified type I collagen by 

chromatography on CM-cellulose (Figure 5.1) gave a pattern of alpha-

chains that were distinct from those obtained for mammalian type I 

collagens (Piez, Eigner and Lewis 1963). This pattern indicated the 

presence of a third a-chain which was very difficult to separate from the 

al-chain. The presence of this third alpha-chain was confirmed after 

repeated chromatography on CM-cellulose, followed by gel-permeation 

chromatography on Superose 6 to obtain components free of the /3-chains. 
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Figure 5.1 Separation of the alpha chains of blue grenadier skin collagen 
by chromatography on CM-cellulose (Whatman CM 52), 25 X 80 mm, in 
60 mM sodium acetate, pH 4.8, with elution by a linear gradient of 0-100 
mM NaC1, in a total elution volume of 500 ml. The peaks from which 
purified a-chains were prepared by further chromatography are indicated. 
The peaks labelled (3 each contained a range of (3 and higher polymer 
components. 
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5.3 Electrophoresis 

The separated fractions from the CM-cellulose chromatography were 

subjected to SDS-PAGE and this technique demonstrated the three distinct 

a-chains in the collagen and in the purified fraction (Figure 5.2), even 

though the al and a3 chains were not well resolved. At least four distinct 

/3 components were also resolved by SDS-PAGE in fractions from the CM-

cellulose column of the broad zones which contained these 13-components 

and higher polymer forms. Repeated chromatography was not sufficiently 

effective to enable individual (3 components to be prepared with sufficient 

purity to allow for accurate analysis of their chain composition. This 

probably occurred because of the great apparent similarity between the al 

and a3-chains. 

5.4 Chain analysis 

The amino acid composition of purified a-chains indicated that each chain 

fraction had a distinct composition, with the a3- chain more closely 

resembling the al-chain than the a2-chain (Table 5.2). 

The fragments obtained by treatment with CNBr were separated by SDS- 

PAGE to display differences between all three chain fractions (Figure 5.3). 
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A BCD 
Figure 5.2 SDS-PAGE of purified blue grenadier skin collagen (lane A) 
and the purified a 1 (lane B), a 3 (lane C) and a 2 (lane D). 

ABCD 
Figure 5.3 Separation by SDS-PAGE of CNBr fragments from purified 
blue grenadier (A) a I chain, (B) a 3 chain, (C) a 2 chain, and (D) bovine 
a l(I) chain for comparison. 
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Table 5.2 Amino Acid Analysis of Purified a-Chains 

HO-Pro 

al ca a3 

69 60 60 

Asp 47 52 49 

Thr 26 26 24 

Ser 46 53 49 

Glu 82 65 88 

Pro 96 99 94 

Gly 345 347 347 

Ala 135 121 138 

Cys 0 0 0 

Val 17 23 17 

Met 15 13 10 

Ile 8 11 10 

Leu 14 23 14 

Tyr 1 5 1 

Phe 15 	- 9 15 

HO-Lys 4 4 , 

His 3 11 12 

Lys 29 22 26 

Arg 48 53 42 

Trp nd nd nd 

• Note: Values are given as residues/1000. Tryptophan was not determined 
(nd). 
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The a3-chain showed a similar separation to the al-chain but a distinct 

faster moving band was present only in the al-chain. Both the al-chain 

and the a3-chain showed patterns that were quite distinct from the a2- 

chain. Fewer CNBr fractions were observed than might be expected from 

the amino acid composition. This may indicate that several small fragments 

were formed which were not resolved by electrophoresis. 

Nevertheless it is clear that three distinct a-chains are present in the type I 

collagen of blue grenadier. 

5.5 Collagen properties 

The melting temperature of the collagen of intact skin was determined on a 

hydrothermal shrinkage apparatus (Bavinton 1969) to be 48 °C and that of 

the purified collagen was 22 °C. This is lower than observed for avian and 

mammalian collagens (36-41 °C) and is consistent with a lower imino acid 

content of fish collagen (Matthews 1975). There is a correlation between 

the approximate temperature of the environment of an animal and the 

melting point of its collagen. This relationship was originally noted for fish 

(Gustayson 1956) and was later extended to other animals (Matthews 1975; 

Rigby 1971). Blue grenadier are found mostly in waters off the continental 

shelf, 400-700 m deep, where temperatures range from 7 to 12°C. However 

at night they may rise closer to the surface to feed at depths nearer 50- 
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100m where the temperature in summer may rise to near 20°C. The 

melting temperatures of the skin and the collagen of blue grenadier are 

higher than those for cold water fish but lower than those for warm water 

fish (Matthews 1975), consistent with this behaviour pattern. 

5.6 Tissue distribution of collagen and reactivity of the antibody 

The antibody prepared in mice from purified collagen was shown to be 

active against all three a-chains using standard ELISA. Most non-

collagenous components are highly antigenic when compared to collagen 

(Steffen, Timpl and Wolff 1967; von der Mark 1981; Wick, Furthmayr and 

Timpl 1975), but electroblotting (Towbin, Staehelin and Gordon 1979) 

showed that the antibody was highly specific for the collagen antigen and 

did not exhibit non-specific binding. 

Frozen sections of tissue from various body parts dissected from a fresh 

blue grenadier were reacted with the polyclonal antibody prepared from 

purified blue grenadier collagen and stained using immunofluorescence. 

The immunofluorescence technique demonstrated a broad distribution of 

collagen in skin, myocomma, blood vessels, intestine and swim bladder all 

of which are consistent with the structural role of type I collagen and its 

distribution (Figure 5.4). Control sections showed negligible fluorescence. 

It is well known that collagen is a major structural element in many tissues 

115 



Myotendinous junctions in fish 

Figure 5.4 Immunohistology of various tissues from blue grenadier using a 
murine polyclonal antibody against the purified skin collagen and 
fluorescein isothiocyanate labelled, affinity purified, sheep anti-mouse 
antibody. Tissues examined: (A) skin, (B) myocomma, (C) blood vessel, 
(D) intestine and (E) swim bladder. Control sections, examined without the 
murine polyclonal antibody, indicated little non-specific staining, as shown 
for skin (F). Bars 50 Am. 
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particularly in muscle (Sikorski et al.. 1984). The polyclonal antibody 

prepared from purified type I collagen extracted from blue grenadier skin 

was reactive with a wide range of tissues indicating the presence of type I 

collagen in these organs identical to, or at least homologous with, the type 

I present in skin. Since no evidence of type III collagen had been found in 

the extraction and precipitation procedures and, at that time, type V 

collagen had not been reported in fish then it was inferred that type I 

collagen was the only major collagen species present. 

5.7 Discussion 

The aim of this section of the work was to establish some of the properties 

of the collagen of blue grenadier which would help understand the nature of 

the degradative changes which had been observed in the post-mortem fish. 

To do this collagen from the most accessible part of the blue grenadier, the 

skin, was extracted and characterised. In both mammalian and fisli skin and 

muscle, type I collagen is by far the major species reported (Sikorslci et al. 

1984). The collagen extracted from the blue grenadier was consistent with 

type I in its properties of extractability and salt solubility. The ready 

solubility of the collagen in acid indicated the low degree of crosslinldng 

even in mature specimens. 

The melting temperature of the intact skin and of the purified collagen was 
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consistent with that of other fish collagens from species occupying the same 

thermal range in their habitat. These factors indicate there is nothing 

unusual about the collagen from this particular fish species which would 

explain its lability post-mortem. 

The fact that the collagen possesssed a third alpha-chain was not unusual 

either. Kimura (1985) and Kimura et al. (1987) reported the presence of an 

a3-chain in the collagen of carp skin, whereas it was known to be absent in 

the swim bladder (Piez et al. 1963). This suggested that multiple forms of 

type I collagen may be present in fish and that they may have different 

tissue distributions. The a3-chain may be present as a homotrimer but the 

number of observed (3 components indicated that it forms heterotrimers 

with the al and a2-chains. Piez (1965) first reported the presence of an 

a3-chain in the skin of cod and Kimura (1985) and Kimura et al. (1987) 

have subsequently reported its occurrence and tissue distribution in a 

number of other species. These species are all members of the subdivision 

Teleostei of the bony fish (class Osteichthyes). Since chromatographic 

studies on fish skin collagens from taxonomically different groups (Piez 

1965; Kimura et al. 1987) failed to show an a3-chain this additional chain 

may be restricted to within one class of fish and hence may have some 

taxonomic or phylogenetic value. 

The polyclonal antibody prepared from the purified type I collagen of blue 

grenadier skin showed high affinity and reactivity to each of the three alpha 
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chains and was used to demonstrate the wide distribution of type I collagen 

in a variety of structures. 

5.8 Conclusion 

The collagen of the blue grenadier had a melting temperature and a 

shrinkage temperature consistent with the temperature range of its habitat 

and its imino acid composition. There was a slight but progressive increase 

in the proportion of insoluble collagen with increasing age of the fish. 

The main type of collagen in the blue grenadier is an heterotrimer of type I 

collagen. It is widely distributed throughout the skin and major structural 

organisms as indicated by immunofluorescence using a specific polyclonal 

antibody. It was inferred from these results that the specificity of the 

antibody was sufficiently high to allow further immunocytochemical work 

to proceed. This further work had the aim of establishing whether the fine 

fibres found in the myotendinous junction of the blue grenadier were type I 

collagen. 
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6.0 Introduction 

The structure of the myotendinous junction consists of invaginations in the 

muscle fibre base filled with fine collagen fibres from the myocomma. In 

post mortem storage these fine fibres are degraded and the junction loses its 

integrity. Type I collagen is the major structural collagen in fish but it is 

normally considered to be a relatively stable molecule. Therefore the aim 

of the experiments in this chapter was to ascertain whether these fine 

collagen fibres were composed of type I collagen. To do this it was 

necessary to select a technique that would allow for identification of 

individual fibres under the electron microscope. 

The technique chosen was that of immunogold labelling (Beesley 1989). In 

this technique the tissue should undergo fixation under mild conditions to 

conserve as far as possible, the antigenic sites. Hydrophilic resin should be 

used as the embedding medium' to allow penetration of the aqueous 

antibody and reagents (Newman and Jasani 1984). In principle, thin 

sections are treated with antibody which is then reacted with a bacterial 

protein (Protein A) linked to gold particles. Protein A is a cell wall 

component produced by strains of the bacterium Staphylococcus aureus that 

binds selectively to the Fc region of IgG immunoglobins from most 

mammalian species (Langone 1982). The protein A gold complex was 

developed by Romano and Romano (1977) for immunocytochemical 
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localisation of cell components. It is assumed that the negatively charged 

surface of the gold particles are electrostatically bound to the positive 

charged groups of the protein. The gold particles are electron dense and 

serve to outline the structures to which they are bound, via the protein A 

and the antibody attached to a specific antigen in the tissue under study. It 

should be noted, however, that the stoichimetry of these reactions is 

generally unknown and the whole procedure is dependent on pH. 

The immunogold method has been used widely (Bendayan 1984) for 

locating collagen in dentine and other tissues (Stephens et al. 1982, 

Magloire et al. 1988). Most investigators have employed the antibody 

protein A gold sequence to fixed tissue but it has been used pre-fixation to 

maximise reactivity of the antibody-antigen complex (Magloire et al. 1988). 

The sequence followed in this chapter outlines the preliminary steps 

necessary to ensure that the primary antibody would react with the fixed 

tissue (in the preceding chapter it Was shown that it was reactive to frozen 

unfixed tissue) and that the protein A gold reagent would react with the 

primary anticollagen antibody. It was also necessary to develop suitable 

fixation techniques for use with the primary antibody to conserve antigenic 

sites. 

Preliminary experlinents were also performed to examine the structure 

omitting the usual post-fixation step in osmium tetroxide (Roth, Bendayan 

and Carlemalm 1981; Beesley 1989) in order to conserve the antigenic 
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sites. In the investigations outlined in chapter 4 postfixation with osmium 

was an essential step to obtain definition of the finer details of structure. To 

enhance ultrastructural definition a number of other procedures were also 

tried such as etching the sections with KMn04  solution and using the 

counterstains uranyl acetate and lead citrate at elevated temperatures. 

6.1 Experiments to establish dilutions for use of the primary antibody 

Immunofluorescence was used to determine the appropriate dilution at 

which to employ the antibody. Sections of human skin, chicken skin, 

chicken tendon, fresh blue grenadier skin, fresh blue grenadier and trevally 

myocomma and from blue grenadier and trevally myocomma taken from 

fish stored chilled (0°) for 5 days were cut on a freezing microtome. The 

samples were examined under the light microscope for fluorescent staining 

of the collagen fibres. 

The results (Table 6.1) indicated that a dilution of 1 in 5b of the 

anticollagen antibody should be used for future work. It was also evident 

that this antibody against type I fish collagen could cross react with type I 

collagen from a wide range of other sources. Reaction was less strong on 

the fish skin than on the myocomma due to smearing of subcutaneous oil 

on the section surface. Background staining of the human skin occurred 

since the murine FITC reacts with human tissue. 
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Table 6.1 Reactivity of fish anti-collagen type I with various tissues 

Source Antibody 
dilution 

Reactivity Comments 

Human skin 1:50 

1:80 

control 

+ ye 

+ ye 

slight + 
ye 

some non specific 
staining 
some non specific 
staining 
some non specific 
staining 

Chicken skin 1:50 
1:80 
control 

+ ye 
+ ye 
- ye 

fine fibres evident 

no staining 

Chicken tendon 1:50 
1:80 
control 

+ ve 
+ ye 
- ye 

fine fibres evident 
fine fibres evident 
fine fibres evident 

Blue grenadier skin 
(fresh) 

1:50 
1:80 
1:100 
control 

+ ye 
+ ve 
+ ve 
- ve 

strong staining 
clear staining of fibres 

no staining 

Blue grenadier 
myocomma (fresh) 

(stored 5 days) 

1:50 
1:80 
1:100 
control 

+ ye 
+ ve 
+ ve 
- ye 

strong 
strong 
very weak, apparent 
no staining 

1:50 	• 
1:80 
control 

+ ye 
+ ve 
- ye 

weak 	, 
no staining 

Trevally myocomma 
(fresh) 

(stored 5 days) 

1:50 
1:80 
1:100 
control 

+ ye 
+ ye 
+ ve 
- ye 

strong 
clearly positive 
very weak 
no staining 

1:50 
1:80 
control 

+ ye 
+ ye 
- ye 

patchy 
patchy 
no staining 
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6.2 Immunoperoxidase reaction on frozen and on fixed tissue 

To assess whether the anticollagen antibody would react with tissue after 

fixation, sections of samples of blue grenadier myocomma and chicken 

tendon were cut into frozen sections and fixed in 10% formalin for 4h 

before processing and embedding in wax. Other sections were cut from 

blue grenadier after treatment in glutaraldehyde/formalin fixative 

(Glut/form fixative) then processing and embedding in wax. The sections 

were reacted with antibody and peroxidase reagent to stain the collagen 

according to the method described in chapter 2.7.3. 

The fixation of the frozen tissue in 10% formalin resulted in faint staining 

of the collagen in the pericellular area (Figure 6.1) in contrast to the 

control sample (Figure 6.2). A similar result was achieved for chicken 

tendon (Figure 6.3 and 6.4). However, strong positive staining was 

observed when the fresh blue grenadier was treated in glut/form fixative 

(Figure 6.5) in comparison to the control (Figure 6.6). The intensity, of the 

reaction did not decrease in samples taken from fish stored 12 days (Figure 

6.7, control Figure 6.8) indicating no loss of reactivity even though 

degeneration may have occurred during the storage period. Thus the tissue 

remained antigenic to the primary antibody after the normal fixation 

process required for TEM. 
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Figure 6.1 Blue grenadier tissue, frozen section treated in  10%  formalin, 
reacted with antibody to collagen and stained by the immunoperoxidase 
method. A weak positive peroxidase reaction can be seen as  brown  staining 
in the pericellular area. Magnification X 100. Bar 10 um 
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Figure 6.2 Control section to above not treated with  antibody  to collagen. 
Magnification X 100. Bar 10 um 
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Figure 6.3 Chicken tendon, frozen section fixed with 10% formalin, 
reacted with antibody to collagen and stained by the immunoperoxidase 
method. Faint reaction with peroxidase. Magnification X 100. Bar 10 um 
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Figure 6.4 Control section for above not treated with antibody to collagen. 
Magnification X 100. Bar 10 us 
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Figure 6.5 Fresh blue grenadier fixed in glut/form fixative reacted with 
antibody to collagen and stained by the immunoperoxidase method. Strong 
positive brown staining of the collagen in the myocomma. Magnification X 
100. Bar 10 ilm 
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Figure 6.6 Control section for above, no brown immunoperoxidase 
staining. Magnification X 100. Bar 10 Um 
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Figure 6.7 Blue grenadier stored chilled for 12 days. Samples fixed in 
glut/form fixative, treated with antibody to collagen then stained by the 
immunoperoxidase method. There is strong positive staining of the 
myocommatal collagen. Magnification X 100. Bar 10 um 

I 

Figure 6.8 Control section for above not treated with antibody to collagen. 
No staining evident. Magnification X 100. Bar 10 Um 
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6.3 Reaction with Protein A gold 

No blank reagent reactions occurred and no reaction of the primary 

antibody with protein A gold was noted unless a rabbit antimouse serum 

(RAM) was used as a conjugate. The RAM alone without the protein A 

gold did not yield silver enhancement (Chapter 2.7.4, Table 2.3). The 

conclusion from these preliminary trials was that the protein A gold reacted 

with the primary antibody provided RAM was used as a conjugate. This 

system was then employed in the TEM studies. 

6.4 Osmium post staining 

Since the post staining step with osmium may result in loss of 

immunogenicity (Roth et al. 1981), sections were prepared without this 

step in order to establish whether sufficient definition could be obtained. 

This was done initially using Epon-Araldite resin. 

The resulting micrographs showed less clarity and definition, but many of 

the fine structural features were retained (Figure 6.9). It was decided to 

proceed with the next stage and embed samples in the hydrophilic LR 

White resin (Newman and Jasani 1984) . 
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Figure 6.9 Sample 88002, blue grenadier muscle fixed immediately in 
glut/form fix but not post-fixed in osmium, embedded in Epon-Araldite. 
End of a muscle fibre shring finger-like tapering invaginations and fine 
collagen fibres. Sarcolemma and basal lamina (arrow) obvious. cf. Figure 
4.11. Bar lpm. 



Myotendinous junctions in fish 

6.5 Sections in LR white resin 

Considerable difficulties were encountered with the use of this resin. Firstly 

the blocks required refacing on the microtome, even after short intervals 

between cutting sections. Secondly the electrostatic properties of the resin 

often resulted in the wetting of the block face from the water in the 

receptacle used to float the cut sections. This was partly overcome by firing 

an antistatic gun at the block face to decrease static electricity. Thirdly, the 

resin proved to be very unstable in the uranyl acetate solution used as 

counterstain and it was necessary to use an aqueous rather than an alcoholic 

solution to minimise this effect. However, this gave poorer staining which 

was partly improved by either staining at 30°C or by etching the sections 

on the grid by immersion for 2 min in 0.9% potassium permanganate 

solution. Fourthly, the resin proved to be unstable in the electron beam. 

The use of Formvar and pioloforrn coated grids improved the stability but 

decreased the definition to an unnacceptable level. Coating with carbon 

improved the stability in the beam but it was still less than desirable. A 

fresh delivery of resin and resin borrowed from another laboratory were 

similarly unstable. Curing for longer periods, or at 60°C instead of 50°C, 

did not result in more stable sections. 

For immunocytochemistry, curing the resin with an aCcelerator is not 

recommended in the manufacturers leaflet. However, it is possible that 
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curing at low temperatures with UV light may have yielded a more stable 

resin, but this option was not available. 

6.6 Initial results on blue grenadier 

Initially, excessive background staining was observed which was decreased 

by using lower dilutions of bovine serum albumen (BSA) as the non 

specific blocking agent. Several mouse serums were tried as a control in 

place of the murine primary anticollagen. All exhibited some nonspecific 

binding to the protein A gold and PBS treated sections were used as 

comparative controls. 

There was binding of the gold particles to the collagen of the blue 

grenadier whether it had been immediately fixed (Figure 6.10) or fixed 

after 12 days in ice (Figure 6.11). The muscle structure was reasonably 

well defined and so too were the sarcolemma and basal lamina in the 

immediately fixed section (Figure 6.10). Some nonspecific attaChment of 

gold particles to the muscle occurred, but counts of particles indicated that 

they were to be found in the myocommatal area at a much higher 

frequency. Attempts were made to quantitate the difference in deposition by 

counting the number of gold particles in adjacent fields of both muscle and 

myocomma on several grids for both test and control sections. It proved 

impossible to obtain a balanced set of fields for a statistical comparison of 
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Figure 6.10 Sample 88025, blue grenadier as in Figure 7.9 but 
embedded in LR White resin and section processed through the 
immunogold procedure. Note gold particles on the collagen C, few 
in the muscle M, structural features less obvious. Bar 1/Lm. 
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Figure 6.11 Sample 88026, blue grenadier stored 12 days in ice, then fixed 
in glut/form, no post fixation in osmium, embedded in LR White. 
Deposition of gold particles on the collagen C. No distinct sarcolemma and 
basal lamina but muscle appears reasonably intact. Bar lpm. 
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counts because of uneven densities of occurrence of the collagen fibres in 

areas close to the muscle. However comparisons within individual test grids 

indicated that deposition on the collagen varied from as low as 1.5 up to 15 

times greater on the muscle. In control grids the deposition was similar on 

the muscle, the collagen and on the exposed resin. However, the definition 

of the collagen fibres was too poor to ascertain whether particular fibres 

(type I) were being labelled in preference to other fibres. Therefore steps 

were taken to assess whether the definition could be improved. 

Pretreatment with 0.9% KMn0 4  in 0.1M phosphate buffer for two min at 

37°C to etch the section before counterstaining with aqueous uranyl acetate 

(37°C) improved the density of staining but still did not provide sufficient 

definition. 

6.7 Conclusions from the above studies 

Omission of the post fixation step in osmium tetroxide resulted 'in poorer 

ultrastructural definition. This poorer definition was more pronounced in 

samples embedded in LR white resin. The LR white resin proved difficult 

to section and sections cut from it were not stable in alcoholic uranyl 

acetate counterstain, nor were they very stable in the electron beam. 

Etching the sections in 0.9% KMno4  before counterstaining in warm 

aqueous uranyl acetate improved the ultrastructural definition. Coating the 
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sections with carbon improved the stability in the beam. 

A dilution of 1 : 50 for the anticollagen antibody was demonstrated as a 

suitable working level. The anticollagen antibody was shown to react with 

tissue fixed for TEM studies. The protein A gold reagent was shown to 

react with the anticollagen antibody provided RAM was present to act as a 

conjugate. Collagen fibres in sections of stored fixed blue grenadier muscle 

were labelled with gold particles after reaction firstly with the primary 

anticollagen antibody, then with RAM followed by the protein A gold 

reagent. The ultrastructural definition was insufficiently clear to enable 

differentiation between individually labelled fibres. It was concluded that 

the procedure should be tried on fresh material that had only been lightly 

fixed to retain maximum antigenicity and hence to optimise labelling. 

6.8 Ultrastructural localisation of collagen 

6.8.1 Flathead 

Attempts to obtain pre-rigor blue grenadier were thwarted by bad weather 

and the lack of a commercial fishery at the time. Live flathead 

(Neoplatycephalus richardson0 were landed and muscle sections were fixed 

within one minute of the fish being killed by a blow to the skull. 

Similar results were obtained to those with the blue grenadier in that the 
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resin was unstable in the beam. The muscle structure was not as well 

defined and the striations on the collagen fibres were indistinct (Figure 

6.12). There was demonstrably higher deposition of gold particles on the 

myocomma than in the muscle, but it was not possible to determine the 

degree of labelling of individual collagen fibres. 

6.8.2 Jack mackerel 

A live jack mackerel (Trachurus declivis Jenyns) was killed by a blow on 

the head and muscle samples were placed immediately in fixative B for 13/4 

hours after which they were washed in buffer, dehydrated in an alcohol 

series then embedded in a new batch of LR White resin. 

Before proceeding to treat sections by the antibody protein A gold 

procedure some were examined after counterstaining with uranium and lead 

to check section orientation and for appropriate definition. The muscle fibre 

boundaries were well delineated but the collagen fibres were not well 

defined and even the detail in the muscle was inadequate. It was concluded 

that the fixation was possibly too short in duration. Nevertheless other 

sections were put through the immunogold procedure. They too exhibited 

poor definition (not shown) and although there was greater deposition of 

gold on the collagen than on the muscle it was not possible to sufficiently 

differentiate between structures. 
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Figure 6.12 Sample 89008, flathead fixed immediately in fix B 
embedded in LR White. Disruption and distortion at end of muscle 
cell, poorly defined collagen fibres C labelled with gold. Poor resin 
integrity. Bar ltim. 
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6.8.3 Rock cod 

It was decided to use a longer fixation time and to try the process of post-

fixing the sections after the immunogold treatment to endeavour to obtain 

better definition. A live rock cod (Physiculus barbatus) was spiked through 

the brain and muscle samples were fixed in Fix B for three hours after 

which they were processed through buffer, an alcohol series then into LR 

White resin. The longer fixation gave slightly better defined structures and 

these were further enhanced by employing a post-fixation step for 10 min. 

in 2% osmium tetroxide after the immunogold procedure and before 

counterstaining with uranium and lead. While this seemed to improve 

definition, the fragility of the sections through the multistep procedures and 

the instability of the resin in the beam resulted in few sections surviving for 

examination. Those that did, showed deposition of gold particles on the 

collagen (Figure 6.13), but again it was impossible to attribute labelling to 

individual collagen fibres particularly in the invaginations of die muscle 

fibre base. 

6.8.4 Rainbow trout-direct 

The investigations using LR White resin so far had all resulted in poor 

definition of structure due to the omission of osmium as a post staining 
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Figure 6.13 Sample 89027, rock cod fixed immediately in fix B, embedded 
in LR White, section post-fixed in osmium after the immunogold 
procedure. Poorly defined collagen fibres labelled with gold. Bar lpm. 
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procedure before the embedding step. Even the use of osmium after the 

immunogold procedure post-embedding did not give well defined 

structures. As an alternative approach it was decided to try direct reaction 

of the antibody with the tissue then to process through the normal steps of 

fixation, osmium postfixation and embedding in Epon-Araldite resin. This 

was similar to the procedure of Keene, Sakai, Burgeson and Bachinger 

(1987) who used a monoclonal IgM antibody to type III collagen to identify 

its location on collagen fibrils reformed in vitro and in human skin and 

foreskin sections. 

Samples of muscle were taken from a rainbow trout immediately after 

killing by spiking the brain. These samples were rinsed in PBS for 3 hours 

then incubated overnight in primary monoclonal antibody diluted 1 in 3 in 

PBS. They were rinsed in PBS the following morning then fixed for one 

hour in Karnovslcy's cacodylate (GF/Cac, Section 2.2), after which they 

were rinsed in buffer, dehydrated 'through an alcohol series and embedded 

in Epon-Araldite. 

The collagen fibres were quite well defined, but the overnight incubation in 

PBS or in primary antibody had softened the muscle fibres (Figure 6.14) 

and they had broken up showing extensive formation of vesicles. There 

were insufficient fields of collagen fibres to see if there were structures on 

them at regular intervals that could be attributed to the antibody (Figure 

6.15). 
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Figure 6.14 Sample 89030, rainbow trout treated 12 h in PBS then fixed in 
fix B, post stained with osmium then embedded in Epon-Araldite. Fairly 
well defined collagen fibres C in cross section, sarcolemma and basal 
lamina evident but degeneration evident within the muscle M. Bar lym. 
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Figure 6.15 Sample 89029, rainbow trout incubated in  IgM  monoclonal 
anticollagen antibody 12 h then fixed in fix B, post-fixed  in  osmium then 
embedded in Epon-Araldite. Collagen fibres are reasonably well defined 
but there is no evidence of direct reaction of the antibody.  Bar  1 ym. 
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Keene, Sakai, Burgeson and Bachinger (1987) had used this technique on 

tissues rich in collagen and it was decided to repeat the procedure using 

myocomma rather than muscle tissue. 

6.8.5 Myocomma of gurnard 

A live gurnard (Helicolenus sp.) was obtained and sections of muscle and 

myocomma were taken from it after spiking it through the brain. Samples 

were fixed in Karnovslcy's cacodylate, and others were incubated overnight 

in PBS and fixed the following day. A third series were rinsed in PBS then 

reacted overnight with the monoclonal anticollagen antibody at a 1 in 5 

dilution in PBS before fixation the following day. The fixed samples were 

then rinsed in PBS, dehydrated and embedded in Epon-Araldite. 

The muscle and myocomma that were immediately fixed showed features 

similar to those outlined in chapter 5 (Figure 6.16, 6.17). The muscle 

structure was well delineated and the basal lamina and sarcolemrria and the 

structures joining them were evident. Those samples that were incubated in 

buffer and in antibody showed softening and breakdown in the muscle and 

disruption of the field. There were no evident structures or changes on the 

collagen fibrils that could be attributed to direct reaction of the antibody 

with the collagen (Figure 6.18). The banding pattern on the collagen 

(Figure 6.18) was slightly less well defined than in those samples that had 
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Figure 6.16 Sample 89042, gurnard muscle fixed prerigor in Gf/Cac, post-
fixed in osmium then embedded in Epon-Araldite. Muscle fibre edge 
showing collagen C and linking structures (arrow) external to a well 
defined basal lamina. Bar 1 pm. 

" 

Figure 6.17 Sample 89042, as above (Figure 6.16) in slightly higher 
magnification. Sarcolemma S and basal lamina B evident, transverse 
section near an M-line. Bar 100 nm. 
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Figure 6.18. Sample 89047, gurnard myocomma incubated 12 h in IgM 
monoclonal anticollagen antibody then fixed in GACac post-fixed in 
osmium and embedded in Epon-Araldite. Collagen fibres  slightly  blurred 
no evidence of direct reaction with the  antibody.  Bar 
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been immediately fixed (not shown). This approach using direct reaction 

was not pursued further since, in the meantime, Dr Werlcmiester had 

ascertained that this antibody exhibited cross-reaction with other substrates. 

In hindsight it would have been prudent to have included enzyme inhibitors 

in the incubation medium to have prevented the degeneration during the 

incubation period. Indirectly, these results confirm the lability of the fish 

muscle/collagen system in chill storage. 

6.9 Discussion 

The use of the immunogold technique was not successful in further 

elucidating the fine structure at the myotendinous junction and identifying 

the collagen fibrils in the invaginations of the muscle fibre base. The aim 

of the approach had been to characterize those fine fibrils in the 

endomysium and invaginations. When this work was initiated it seemed 

likely that type I collagen would be present and, by analogy with 

mammalian muscle, that type III may also be present as a minor 

constituent. It now appears that type V collagen is the minor collagen 

present in the endomysium of fish (Sato et al. 1988,1989,1991), and that 

type III does not occur in fish muscle. Since type I is the major collagen it 

was appropriate to raise antibodies to it and to use these to develop the 

immunogold system for identifying the collagen fibres at the myotendinous 
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junction. Once the system had been proven it would then have been applied 

to detect the presence of other collagen types after raising the appropriate 

antibodies. Since different diameter gold particles can be linked with 

protein A it is feasible to label more than one structure in the same section 

(Roth 1982). 

Furthermore it was assumed that the anticollagen antibody would be 

reactive to a site or sites on the triple helical portion of the intact collagen 

molecule. Hence it could have been used to seek evidence of breakdown in 

the collagen since it should have been less reactive to degenerated collagen 

observed in stored fish (Chapter 4) which would have resulted in lower 

gold counts on the sections. However, since the body temperature of the 

mice used to produce the antibody was above the melting temperature 

found for the collagen molecule (Chapter 5), it is inferred that the antibody 

was either active against an amino acid sequence or a telopeptide common 

to all three a-chains rather than to an intact triple helix. 

Two major practical difficulties prevented the successful development of 

the immunogold approach. The LR White resin proved to be very fragile 

and sensitive to alcohol in reagents eg uranyl acetate counterstain, and to 

vapours of other solvents. It was also unstable in the electron beam, a 

problem which was only partly solved by coating the sections with carbon. 

The major difficulty was the lack of definition of the collagen fibres under 

the conditions necessary to retain antigenicity (i.e. omission of post-fixation 
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treatment with osmium). Although the immunogold procedure worked, it 

proved impossible to differentiate between those collagen fibres to which 

gold particles were attached and those to which they were not. Furthermore 

the definition of the fine collagen fibrils in the invaginations at the muscle 

base made it impossible to state with certainty that they were type I fibrils 

or not. 

Other workers have used immunogold to locate collagen types. Inspection 

of these reports also showed fairly poor definition of the fibre structure 

with similar frequencies of deposition of gold particles to those obtained in 

this work although it is not possible to quantitate this. Similar apparent 

degrees of labelling were seen by Stephens et al. (1982) and Stephens, 

Bendayan and Gisiger (1985). However, Magloire et al. (1988) and Keene, 

Sakai, Burgeson and Bachinger (1987) achieved a higher degree of 

labelling. Again the main problem was not lack of label, but lack of 

ultrastructural definition. While it 'still seems that the immunogold labelling 

may present an approach superior to immunoferritin labelling the problem 

of lack of staining of the collagen fibrils remains a challenge to be 

overcome. 

6.10 Conclusion 

Fish type I collagen can be labelled with gold particles for visualisation in 
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the TEM by treatment with an anticollagen antibody followed by reaction 

with protein A gold. However, the present methodology does not allow 

confident differentiation between individual collagen fibres due to poor 

ultrastructural definition. Significant care needs to be exercised in the 

multistep procedure and modified procedures are necessary to obtain stable 

sections with the best possible definition. 
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Chapter 7 

General discussion 
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7.0 Conclusions and discussion 

There are several major points that arise from this study concerning the 

myotendinous junction in fish and its post mortem deterioration. 

7.1 Summary of key findings 

The key findings of this study can be summarised as follows. 

SEM studies:- 

* confirm that a network of fibrous connective tissue 

surrounds each muscle fibre linking it into a socket-like 

indentation in the myocomma 

* demonstrate these connective tissue fibres are degraded in 

chill storage to the extent that muscle fibres are detached 

from the myocomma.  

TEM studies:- 

* demonstrate grooves and invaginations filled with fine 

collagen fibres from the myocomma at the muscle fibre ends 

* reveal the fine connections occuring in these invaginations 

linking the collagen fibres to the basal lamina and the basal 

lamina to the sarcolemma 

* show that during chill storage the basal lamina, the fine 
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connections and the fine collagen fibres are degraded 

* imply that significant deterioration occurs in the 

myotendinous junction which precedes any obvious changes 

within the muscle fibre structure 

Collagen characterisation studies:- 

* confirm the major structural collagen of blue grenadier 

skin and muscle and other organs is an heterotrimer of type I 

collagen 

* show the collagen is highly soluble in dilute acid and the 

proportion of insoluble collagen increases with the age of the 

fish 

* suggest the amino acid composition of the «3 chain 

indicates its derivation from the a-1 chain 

* demonstrate the melting and shrinkage temperatures for 

this collagen are consistent with the imino acid levels and the 

environment of the fish 

Immunogold studies:- 

* confirm the presence of type I collagen fibres in the 

myocomma adjacent to the muscle fibre cell 
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7.2 SEM observations 

It was concluded that deterioration of the collagen of the connective tissues 

of the extracellular matrix of fish muscle occurred in stored fish. This 

could be a significant factor in post mortem softening of fish flesh. The 

indications were that the deterioration was enzymic in nature. 

However, it was unclear which structures were being attacked and it was 

obviously necessary to examine the fine structure in more detail. These 

studies also indicated breakdown in the fine collagen fibrils of the muscle 

cell envelope (Figures 3.6,3.7 & 3.8). 

Collagen is normally regarded as a fairly stable tissue that is resistant to 

enzymic attack - hence this aspect called for further investigation into the 

nature and type of the collagen present in the pericellular region and at the 

myotendinous junction and the susceptibility of this collagen to attack by 

enzymes. 

7.3 TEM observations 

The myotendinous junction of commercial species of fish examined eg. 

blue grenadier is similar in its major structural elements to observations 

obtained on other vertebrates and in other marine species such as the 

seahorse (Schwarzacher 1960), pipefish (Schippel and Reisig 1969), hagfish 
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(Korneliussen 1973) and lamprey (Nakao 1975). The muscle fibres 

terminate in a series of folds, grooves and invaginations into which 

protrude fine collagen filaments from the myocomma. (Figure 4.10, Figure 

4.11). These fine filaments also form part of the muscle cell envelope and 

are in general of finer diameter (18-20 nm) than the collagen fibres of the 

myocomma (-80 nm). The distinct impression was gained that these finer 

collagen fibrils did not stain as densely as those of larger diameter (Figure 

4.9) nor was their banding pattern as well-defined. 

In the myotendinous junction fine connections exist between the collagen 

fibres, between the collagen and the basal lamina and between the basal 

lamina and the sarcolemma (Figure 4.12, 4.14, 4.15). These are of 

unknown identity but it is reasonable to assume proteoglycans are involved 

(Scott 1991) and that fibrillin is a possible constituent (Keene et al. 1991). 

The possibility that other collagens may be involved, such as type VII in 

connecting plaques (Keene, Sakai, Lunstrum, Morris and Burgeson 1987), 

must be also considered although these structures have not yet been 

reported in muscle. 

During post mortem storage there is notable degradation of the collagen 

fibrils in the invaginations at the muscle fibre ends. This appears to 

proceed before there are significant changes within the muscle cell. It 

suggests that either the collagen is a very labile form or that a very potent 

enzyme system is present which is active at temperatures near 0°C. 
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Alternatively, both these factors could occur. 

Post mortem degradation occurs external to the muscle fibre cell in the 

extracellular matrix in the fine collagen fibres that form the muscle cell 

envelope and fill the interstitial muscle space before changes within the 

muscle fibre are particularly evident. This study has thus shown that 

problems of post mortem softening and gaping have their origin in the 

myotendinous junction not within the muscle fibre cell itself. Breakdown 

occurs at the interface between the muscle fibres and the connective tissue 

of the myocomma. The TEM work confirms the earlier SEM work in this 

regard and has highlighted the need for further work on the mixture and 

structure of the collagen types present and on the mechanisms by which the 

fine fibres are degraded. The result of this rapid breakdown is a softening 

of texture that in some cases leads to gaping of the fish muscle. This 

focuses attention on the identity and location of the fine collagen fibres 

observed in the invaginations and in the muscle cell envelope. 

7.4 Collagen studies 

The collagen of the blue grenadier had a melting temperature and a 

shrinkage temperature consistent with the temperature range of its habitat 

and its imino acid composition. There was a slight but progressive increase 

in the proportion of insoluble collagen with increasing age of the fish. 
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The main type of collagen in the blue grenadier is an heterotrimer of type I 

collagen. It is widely distributed throughout the skin and major organs as 

indicated by immunofluorescence using a specific polyclonal antibody. It 

was inferred from these results that the specificity of the antibody was 

sufficiently high to allow further immunocytochemical work to proceed. 

This further work had the aim of establishing whether the fine fibres found 

in the myotendinous junction of the blue grenadier were type I collagen. 

7.5 Immunogold labelling studies 

Fish type I collagen can be labelled with gold particles for examination in 

the TEM but the lack of definition of the collagen fibres under the 

conditions required to retain antigenicity severely limited this approach. 

The difficulties encountered with the stability of the resin added to this 

problem. There is a need for further developmental work on methods of 

fixing collagenous tissues in suitable resins to allow for adequate depth of 

staining to delineate separate fibrils. At the time when the work was 

initiated the presence of type V collagen in fish muscle had not been 

reported. The polyclonal antibody to the fish collagen was not tested for 

crossreaction to fish type V collagen since none was available. None is 

still available. It is possible that the labelling with immunogold seen here 

may be due to reaction of the polyclonal antibody with both type V and 
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type I collagens. Although this is unlikely it would completely negate the 

approach used here which relied on the labelling, or not, of individual 

fibres. 

Another complicating factor is that if both collagen types coexist in the one 

fibril then it may be labelled even when there is no cross reaction of the 

antibodies between the collagen types. In addition it has also been recently 

reported that types I and V form copolymers in which the type V is 

'hidden' inside the type I and antibodies to the triple helical regions of the 

type V do not gain access to react with it (Birk a al. 1988; Birk et al 

1990). In this case antibodies to the peptide regions which can protrude 

from the fibril are required. If the range of antibodies were available then it 

should be possible to label the collagen fibres in the interstitial area and 

invaginations using different size gold particles for each antibody. 

Assuming fibre definition was adequate, this would provide some degree of 

estimation of fibre type and an indication if both types coexist in a single 

fibre. 

7.6 Technical constraints 

Constraints on this work were the difficulties in obtaining prerigor and 

fresh samples of blue grenadier. This commercial species is only obtainable 

by going to sea on trawlers. Juveniles sometimes can be obtained by beach 
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seining operations in shallow waters in estuaries but mainly the fish are 

caught at depths of 400m or greater. Adult fish have not yet proved capable 

of being taken live and juveniles have not survived in ponds or aquaria. 

From an experimental viewpoint this is more than inconvenient and 

considerable difficulties were encountered in obtaining suitable samples, 

which caused delays in the studies. As a result most of the immunogold 

studies had to be done on other species that could be obtained live. 

The difficulties that were encountered with the LR white resin caused 

further delays to the main thrust of the immunogold studies. This resin has 

been used by other workers for similar studies but there is no mention of 

its instability to solvents or in the electron beam. The instability in the 

beam was partly overcome by minimising exposure and by coating the 

sections with carbon. 

The other major constraint on this study was in the difficulties encountered 

in obtaining sufficient ultrastructtiral definition to differentiate individual 

collagen fibres when samples were not post-stained with Osmium `tetroxide, 

a step which was omitted in order to retain optimum level of antigenicity to 

maximise staining with the immunogold procedure. Techniques were 

adopted to improve counterstaining of the collagen fibres to enhance 

deftnition in the TEM but clarity and differentiation of individual fibres 

was still insufficient to provide the desired information of whether an 

individual collagen fibre was, or was not, labelled. 
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7.7 Degradative processes 

The nature of the degradation at the myotendinous junction has been 

inferrred to be enzymic in nature with major degradation occurring in the 

collagen. Collagenases and control and activating mechanisms have been 

discussed in detail in section 1.3.8. Collagenases are metallo-endoproteases 

activated and stabilised by calcium ions operating in the range pH 6 to 8 

but none have yet been identified in fish muscle tissue. In the post rigor 

state normal control mechanisms no longer operate and calcium ions leak 

from the sarcoplasmic reticulum in amounts sufficient to activate latent 

collagenases. Introduction of Ca into fibroblasts promotes a cascade of 

proteolytic events culminating in activation of collagenase (Unemori and 

Werb 1988) and this may provide one initiating mechanism but it is likely 

that a whole series of events are set in motion post mortem. 

The type IV collagen of the ' basal lamina can be degraded by 

metalloproteinases including gelatinase, proteoglycanase, serine iiroteases, 

neutrophil elastase and mast cell chymase. If type V collagen is present in 

the endomysial layer and the invaginations, this too can be attacked by 

metalloproteinases which are also gelatinases of a molecular weight greater 

than the classical collagenases (Stricklin and Hibbs 1988, Liotta et al. 

1981). 

In vivo, separate enzyme systems are necessary for types I and V to be 
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copolymers in the same fibril (Niyibizi and Eyre 1989) and this makes it 

likely, but not obligatory, that separate systems are required for their 

degradation post rigor. 

One of the recently recognised control mechanism for collagenases are the 

TIMPs (Stricldin and Hibbs 1988), but whether they are active post-mortem 

is unknown. Basement membrane degrading enzyme, collagenase IV/V - 

gelatinase, is readily released by lcallilcrein and becomes active in the 

extracellular space before other lysosomal proteinases are released 

(Tschesche et al. 1989). Tissue lcallilcrein, a serine protease (specifically an 

arginyl esteropeptidase), also activates type I collagenase and is a likely 

candidate to perform these functions in vivo. It may also be an activating 

factor in post-mortem tissue, since it is active at the pH of postmortem fish 

muscle (Tsesche et al. 1986). Lysosomes in fish muscle are found near 

connective tissue (Steiner et al. 1984) and cathepsin B released by post-

mortem disruption of the lysosomes could activate latent collagenases. 

Thus there are several ways in which collagenases may be activated to 

effect the tissue disruption seen in this study. Neutral proteases are found 

in the flesh of many fish species (Maldnodan et al. 1983) and a number of 

proteases, mostly serine proteases, bound to both the sarcoplasmic and 

myofibrillar fractions of the muscle occur in a variety of species (Shimizu 

and Wendakoon 1990, Yanagahira et al. 1991, Toyohara et al. 1990, 

Kinoshita 1990), but it seems unlikely that they are active in chill stored 
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fish. Cathepsin L from lysosomes has been implicated in the extensive 

muscle softening observed in chum salmon and ayu (Yamashita and 

Konagaya 1990) during migration and maturation. An endogenous serine 

proteinase which degrades the cytoskeletal network (Busconi et al. 1989, 

1989), which initiates protein turnover in vivo and which can completely 

disrupt the myofibrils (at 37°C) and degrade the major proteins (Busconi et 

al. 1987) has been reported in white croaker (Micropogon opercularis). 

When croaker were stored at 0°C for 7 days, after dipping in azide to 

prevent bacterial growth, only minimal changes were found in the major 

proteins of the myofibril but there was considerable breakdown of nebulin, 

a major cytoskeletal protein of the trabecular network (Busconi et al. 1989, 

1989). In the present samples similar activity would be likely to weaken 

the integrity of the structure. Busconi, Folco, Martone,Trucco and Sanchez 

(1989) reported no changes in the proteins desmin, troponin and Z lines 

were shown to be stable under these conditions (0 °C, 7 days), whereas 

these entities are known to be degraded in post-mortem storage of beef 

muscle along with titin and alpha-actinin (Hwan and Bandman 1989). 

Calpain II is found in both carp (Cyprinus catpio)(Toyohara et al. 1985) 

and hybrid tilapia (Tilapia nilotica x Tilapia aurea) (Jiang et al. 1991). 

Calpstatin and a trypsin inhibitor is also present in carp (Toyohara et al. 

1983) but it is not clear whether the calpains would be a likely cause of the 

deterioration seen in this study. 

149 



Myotendinous junctions in fish 

Following their studies using SEM, Bremner and Hallett (1985) suggested 

that the fine collagen fibres of the endomysial layer in fish muscle which 

were being degraded may have been comprised of type III collagen that 

was susceptible to enzymic attack. No evidence for type III collagen in 

fish muscle has been found (Ramshaw et al. 1988; Sato et al. 1988, Sato et 

al. 1989), but type V is widely distributed in fish as the intramuscular 

connective tissue (Sato et al. 1988; Sato et al. 1989). It appears that type 

V in fish may perform the function of type III in mammals. Sato et al. 

(1991) have demonstrated that the type V collagen in trout muscle degraded 

in post mortem storage, as indicated by increased solubility, whereas no 

change was seen in the solubility of type I collagen. Their evidence 

pointed to cleavage of non helical regions. In a very recent publication 

Ando, Toyohara and Sakaguchi (1992) using TEM demonstrated 

breakdown of fine interstitial collagen fibres in the muscle of rainbow trout 

in less than 24 hours storage post mortem at a temperature of 5°C. This 

was accompanied by a concomitant drop in the breaking strenith of the 

muscle. The thicker collagen fibrils remained intact. 

K. Sato, Kyoto Prefectural University Japan, (personal communication) has 

also noted breakdown in intramuscular collagen of the sardine within three 

hours post mortem storage at a• temperature of 0°C. Electrophoretic 

evidence shows an increase in acid soluble type V collagen with intact 

helical fragments of type V. It appears that rapid cleavage is occurring at 
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the nonhelical peptide regions. Type V collagen has a greater proportion 

of nonhelical regions than type I and these may be more susceptible to 

attack by general tissue proteases that do not specifically possess 

collagenase activity ie they do not attack the triple helix. 

Taken as a whole, there is consistent evidence to suggest that rapid post 

mortem breakdown of type V collagen in the interstitial muscle tissue and 

at the myotendinous junction can occur in fish. This breakdown is 

responsible for some of the effects seen in the present study using TEM 

and in the initial studies using SEM. 

The evidence in the TEM indicates that the sarcolemmal cell membrane 

remains intact until later stages of degradation. This is consistent with the 

recent work of Ando et al. (1992). It is reasonable to conclude that the 

enzymes responsible are therefore extracellular in nature and are most 

likely located in close proximity to the collagen or are intimately associated 

with it. It is likely they are part of the normal mechanism of collagen 

formation and catabolism. 

Identification of the enzymes responsible first relies on purification of 

quantities of suitable substrate, eg fish type V collagen, for screening 

muscle extracts for enzyme activity. Type V is only present at a level of 

about 0.2% of the wet weight of fish muscle (Sato et al. 1989). Once the 

enzyme or enzymes responsible are prepared by extraction and purification 

by gel filtration or affinity chromatography it may be possible to prepare 

151 



Myotendinous junctions in fish 

antibodies to them (it) to locate them in the tissue. 

No type V collagen was found by the method used. It is now known that 

higher salt concentrations are needed for the precipitation of type V fish 

collagen (Sato et al. 1991), so it is possible that it occurs in blue grenadier. 

The antibody prepared from the type I fish collagen was specific for type I 

and this is the major structural collagen type in the muscle and organs of 

the blue grenadier. It was not tested for crossreaction with fish type V 

collagen since none was available. Further work is required to examine 

the blue grenadier muscle for the presence of type V. 

At the time of the investigation the conditions for purification of type V 

from fish muscle had not been published, neither had the evidence for its 

existence in specific fish tissues. Blue grenadier skin was chosen as a 

substrate for extraction of collagen since skin is commonly used for this in 

other fields. It would appear also that it is necessary to reinvestigate the 

nature of the muscle cell envelope of other important commercial species 

such as cod. The conclusions of Alma's (1982) and Borresen (t976) that 

the collagen of the muscle cell envelope is solely type I collagen may need 

revision. Their technique involved 'ageing' the muscle cells, swelling of 

the myofibrillar contents of the cell then digestion of the myofibrillar 

protein gel with trypsin. These conditions would probably have resulted in 

the loss of any type V collagen present. Since softening and gaping can be 

a serious problem in cod, and cod is a major commercial species, then 
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reinvestigation of its muscle cell envelope is warranted. 

7.8 Implications in other fields 

This investigation has provided evidence for the post mortem degradation 

of collagen at chill temperatures. In addition, the work of Sato et al. 

(1991) and Ando et al. (1992) now indicates that type V collagen is 

degraded. This may well be an important phenomenon in species other 

than fish where type V collagen has an important structural role in 

maintaining tissue integrity and function. 

In meats from beef and sheep type V collagen has only been regarded as a 

minor constituent of the epimysium and perimysium and it has not been 

considered to have a major influence on texture but its influence on 

postmortem tenderization should not be disregarded. 

More importantly in the medical field, hidden degradation of type V 

collagen may occur in tissues in the time between removal from the donor 

and transplant into the recipient. 

If a tissue or organ has type V collagen as an important part of its 

structure, albeit in low proportion in compositional terms, then its stability 

should be investigated. 

153 



Myotendinous junctions in fish 

7.9 Further directions 

This investigation has opened up many possible areas for further research 

related to both the extra, intra and intercellular components of fish muscle. 

In the extracellular matrix there is a need to 

• confirm the location of type V collagen; 

• confirm the presence and location of type IV collagen; 

• establish the location of proteoglycans in the myotendinous junction; 

establish the presence of other collagen types eg types VII, IX or 

other members of the FACIT group; 

• establish the presence and location of fibrillin, elastin, fibronectin 

and laminin. 

In the intercellular tissue there are similar needs to 

• confirm the location of type V collagen; 

• examine activity of muscle extracts for enzymic activity atainst type 

V; 

• locate proteoglycan structures. 

In the intracellular muscle there is a need to identify whether components 

that have been reported in mammalian muscle also occur in fish muscle in 

the same locations. 
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Components which could be identified are: 

fibronectin, zeugmatin, filamin, talin, skelemin, vinculin and other 

components of the Z line and trabecular structure of the fish muscle cell. 

Further investigation of the internal structure of fish muscle cells is 

warranted to elucidate the sites of attachment to the inner surface of the 

sarcolemma at M and Z lines as well as at the terminal end of the fibre. 

The current focus of the work now resides in investigating the breakdown 

of type V collagen. For further elucidation of the mechanism involved, 

preparation of type V fish collagen must be undertaken to provide amounts 

sufficient for further investigations such as the raising of specific antibodies 

for the detection of enzymic activity. 
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7.10 Final comment 

In conclusion, this work with the TEM to elucidate the structure of the 

myotendinous junction and the description of its degradation (Hallett and 

Bremner 1988; Bremner and Hallett 1989; Bremner 1992) has stimulated 

research on the collagen in the interstitial tissues of fish and the 

concomitant post mortem changes in texture associated with its degradation 

(Professor K. Sato, Kyoto Prefectural University Japan, Professor M. 

Salcaguchi, Kyoto University, Japan - personal communications). It has 

prompted others to look at post mortem textural changes and softening of 

fish muscle in a new light, not solely as biochemical changes which occur 

within the muscle cell. 

156 



Myotendinous junctions in fish 

References 



Myotendinous junctions in fish 

E. Adachi and T. Hayashi, In vitro formation of hybrid fibrils of type V 
collagen and type I collagen. Limited growth of type I collagen into thick 
fibrils by type V collagen. Conn. Tiss. Res. 14 (1986) 257. 

T. Ajiri, T. Kimura, R. Ito and S. Inokuchi, Microfibrils in the myotendon 
junction. Acta Anat. 102 (1978) 433. 

• R.McN. Alexander, The orientation of muscle fibres in the myomeres of 
fish. Mar. Biol. Assoc. U.K. 49 (1969) 263. 

K.A. Almas, Muskelcellehylstret hos torsk: ultrastruktur og biokjemi. 
Ph.D. Thesis, University of Trondheim, Norway, 1982. 

M. Ando, H. Toyohara and M. Salcaguchi, Post-mortem tenderization of 
rainbow trout muscle caused by the disintegration of collagen fibers in the 
pericellular connective tissue. Nippon Suissan Gakkaishi 58 (1992) 567. 

M. Ando, H. Toyohara, Y. Shimizu and M. Salcaguchi, Post-mortem 
tenderisation of rainbow trout (Oncorhynchus mykiss) muscle caused by 
gradual disintegration of the extracellular matrix structure. J. Sci. Food 
Agric. 55 (1991) 589. 

A.J. Bailey and D.J. Etherington, Metabolism of collagen and elastin. 
Compreh. Biochem.19B (1980) 299. 

A.J. Bailey and N.D. Light, Connective tissue in meat and meat products. 
Elsevier Applied Science, London, 1989. 

W.M. Baldwin, The relation of muscle fibrillae to the tendon fibrillae in 
voluntary striped muscle of vertebrates. Morph. Jb. 45 (1913) 249 ;  

J.F. Bateman, T. Mascara, D. Chan and W.G. Cole, Rapid fractionation of 
collagen and peptides by high-performance liquid chromatography. Anal. 
Biochem. 154 (1986) 338. 

J.H. Bavinton. A device for measuring hydrothermal shrinkage 
temperatures of leather above or below 100 °  C. J. Amer. Leather Chem. 
Assoc. 64 (1969) 100. 

J.E. Beesley, Colloidal gold: A new perspective for cytochemical marking. 
Microscopy Handbooks 17, Oxford University Press (1989). 

W. Beil, R. Timpl and H. Furthmayr,. Conformational dependence of 
antigenic determinants on the collagen molecule. Immunol. 24 (1973) 13. 

158 



Myotendinous junctions in fish 

R.A. Bello, J.H. Luft and G.M. Pigott, Ultrastructural study of skeletal 
muscle after freezing at different rates. J. Food Sci., 47 (1982) 1389. 

M. Bendayan, Protein A-gold electron microscopic immunocytochemistry: 
methods, applications, limitations. J. Electr. Micr. Technique 1 (1984) 
243. 

H. Bentz, N.P. Morris, L.W. Murray, L.Y. Sakai, D.W. Hollister and 
R.E. Burgeson, Isolation and partial characterization of a new human 
collagen with an extended triple-helical structural domain. Proc. Natl. 
Acad. Sci. USA, 80 (1983) 3168. 

D.E. Birk, J.M. Fitch, J.P. Babiarz, K.J. Doane and T.F. Linsenmayer, 
Collagen fibrillogenesis in vitro:interaction of types I and V collagen 
regulates fibril diameter. J. Cell Sci., 95 (1990) 649. 

D.E. Birk, J.M. Fitch, J.P. Babiarz and T.F. Linsenmayer, Collagen type 
I and type V are present in the same fibril in the avian cornea. J. Cell Biol. 
106 (1988) 999. 

W. Bloom and D.W. Fawcett, A textbook of histology. 10th. Ed. 1975. 

H.Boedtker and S. Aho, Collagen gene structure. In A. Bairati and R. 
Garrone (eds) Biology of Invertebrate and Lower Vertebrate Collagens, 
Plenum Press, New York 1985 p.135. 

S.G. Bogason, Characterization of the intramuscular connective tissue 
collagen of three rockfish species. Ph.D. Thesis, Oregon State University, 
USA, 1984. 

Q. Bone and M.A. Marshall, Biology of Fishes, Blacicie Glasgow, 1982 

A.J. Borderias and P. Montero, Changes in fish muscle collagen during 
frozen storage. In Storage Lives of Fresh and Frozen Fish and Fish 
Products, Proc. IIR Commission C2 and D3, Aberdeen, UK, 1985, IIR, 
Paris, p. 85. 

T. Borresen, Isolering og lcaralcterising av cellehysteret i muskelceller hos 
torsk. Ph.D. Thesis, University of Trondheim, Norway, 1976. 

G.E. Bracho and N.F. Haard, Determination of collagen crosslinks in 
rockfish skeletal muscle. J. Food Biochem., 14 (1990) 435. 

159 



Myotendinous junctions in fish 

H.A. Bremner, Processing and freezing of the flesh of the blue grenadier 
(Macruronus novaezelaruliae). Food Tech. Aust., 32 (1980) 385. 

H.A. Bremner, Fish flesh structure and the role of collagen - its post-
mortem aspects and implications for fish processing. In H.H. Huss, M. 
Jakobsen and J. Liston (eds) Quality Assurance in the Fish Industry, 
Elsevier, Amsterdam 1992 p.39. 

H.A. Bremner and I.C. Hallett, Muscle fiber-connective tissue junctions in 
the fish blue grenadier (Macruronus novaezelandiae). A scanning electron 
microscope study. J. Food Sci. 50 (1985) 975. 

H.A. Bremner and I.C. Hallett, Degradation in muscle fibre-connective 
tissue junctions in the spotted trevalla (Seriolella punctata) examined by 
electron microscopy. J. Sci. Food Agric. 37 (1986) 1011. 

H.A. Bremner and I.C. Hallett, Fish microstructure. In Trends in Food 
Science, H.A. Ghee, L.W. Sze and F.C. Woo, Singapore Institute of Food 
Science and Technology, Singapore. (1989) p.93. 

J.R. Burt, South Atlantic hakes as raw material for processing. FAO Fish 
Rep., 203. Suppl. 1, 1978, p. 50. 

L. Busconi, E.J.E. Folco, C.B. Martone, R.E. Trucco and J.J. Sanchez, 
Fish muscle cytoskeletal network: its spatial organisation and its 
degradation by an endogenous serine protease. Arch. Biochem. Biophys. 
268 (1989) 203. 

L. Busconi, E.J. Folco, C.B. Martone and J.J. Sanchez, Postmortem 
changes in cytoskeletal elements of fish muscle. J. Food Biochem., 13 
(1989) 443. 

L. Busconi, E.J.E. Folco, C.B. Martone, R.E. Trucco and J.J. Sanchez, 
Action of a serine protease from fish skeletal muscle on myofibrils. Arch. 
Biochem. Biophys., 252 (1987) 329. 

E. 0. Butcher, The development of striated muscle and tendon from the 
caudal myotomes in the albino rat and the significance of myotonic cell 
arrangement. Amer. J. Anat. 53 (1933) 177. 

R.W. Carr, Muscle tendon attachment in the striated muscle of the fetal 
pig: demonstration of the sarcolemma by electric stimulation. Amer. J. 
Anat. 49 (1931) 1. 

160 



Myotendinous junctions in fish 

R. Cepeda, E. Chou, G. Bracho and N. Haard, An immunological method 
for measuring collagen degradation in the muscle of fish. In M.N. Voight 
and J.R. Botta (eds.), Advances in Fisheries Technology and Biotechnology 
for Increased Profitability, Technomic Publishing, Lancaster, USA, 1990, 
p. 487. 

J.J. Connell, Fish muscle proteins. in J. Hawthorn and J. M. Leitch (eds.) 
Recent Advances in Food Science, Butterworths, London, 1962, P.  136. 

U. Demell, U. Schewe, P. Bock and K. Gorgas, Die feinstruktur der 
muskel-sehnen-und muskel-epithelverbindung in der zunge des 
meerschweinchens, Cytobiologie 18 (1979) 460. 

V.C. Duance, D.J. Resta11, H. Beard, F.J. Bourne and A.J. Bailey, The 
location of three collagen types in skeletal muscle. FEBS Lett. 79 (1977) 
248. 

E. Dunajsld, Texture of fish muscle. J. Texture Stud. 10 (1979) 301. 

A. E. Ellis, R.J. Roberts and P. Tytler, The anatomy and physiology of 
teleosts. Ch. 2 In R. J. Roberts (ed.) Fish Pathology, Bailliere Tindall, 
London, 1978 P. 19. 

E. Engvall, E. Ruoslahti and E. J. Miller, Affinity of fibronectin to 
collagens of different genetic types and to fibrinogen. J. Exp. Med. 147 
(1978) 1584. 

G.R. Feinstein and E.M. Buck, Relationship of texture to pH and collagen 
content of yellowtail flounder and cusk. J. Food Sci. 49 (1984) 298. 

H.A. Frank, M.E. Rosenfeld, D.H. Yoshinaga and W-K. Nip, Relationship 
between honeycombing and collagen breakdown in slcipjack tuna, 
Katsuwonus pelamis. Mar. Fish Rev., 46 (1984) 40. 

C. Franzini-Armstrong and K.R. Porter, Sarcolemmal invaginations 
constituting the t system in fish muscle fibers. J. Cell Biol. 22 (1964) 675. 

B. Geiger, A 130K protein from chicken gizzard: its localization at the 
termini of microfilament bundles in cultured chicken cells. Cell. 18 (1979) 
193. 

B. Geiger, K.T. Tolcuyasu, A.H. Dutton and S.J. Singer, Vinculin an 
intracellular protein localized at special sites where microfilament bundles 
terminate at cell membranes. Proc. Natl. Acad. Sci. USA. 77 (1980) 4127. 

161 



Myotendinous junctions in fish 

D. Gelber, D.H. Moore and H. Ruska, Observations of the myo-tendon 
junction in mammalian skeletal muscle. Zeitschrift fur Zellforschung 52 
(1960) 396. 

G.G. Giddings and L.H. Hill. A scanning electron microscope study of 
effects of processing on crustacean muscle. J. Food Sci. 41 (1976) 455. 

G.G. Giddings and L.H. Hill. Relationship of freezing preservation 
parameters to texture-related structural damage to thermally processed 
crustacean muscle. J. Food Proc. Pres. 2 (1978) 249. 

J.M. Gosline and J. Rosenbloom. Elastin.In K.A.Piez and A.H. Reddi 
(eds) Extracellular Matrix Biochemistry, Elsevier, New York, 1984, p. 
191. 

C.M. Goss, The attachment of skeletal muscle fibres. Amer. J. Anat. 74 
(1944) 259. 

K.H. Gustavsen, The chemistry and reactivity of collagens. Academic 
Press, New York 1956. 

G. Haggqvist. Gewebe und systeme der muskulatur. In Handbuch der 
milcroskopischen anatomie des menschen. W. V. Mollendorf (ed.) 
Springer, Berlin, 1931 p.233. 

S. Hakomori, M. Fulcuda, K. Seldguchi and W.G. Carter. Fibronectin, 
laminin, and other extracellular glycoproteins. In K.A.Piez and A.H. Reddi 
(ecis) Extracellular Matrix Biochemistry, Elsevier, New York, 1984 p.229. 

I.C. Hallett and H.A. Bremner, •Fine structure of the myocommata-muscle 
fibre junction in hold (Macruronus novaezelandiae). J. Sci. Food (Agric. 44 
(1988) 245. 

H. Hanak and P. Bock, Die feinstruktur der muskel-sehnenverbindung von 
Skelett- und Herzmuskel. J. Ultrastruct. Res., 36 (1971) 68. 

D. Hantai, J. Gautron and J. Labat-Robert. Immunolocalization of 
fibronectin and other macromolecules of the intercellular matrix in the 
striated muscle fiber of the adult rat. Collagen. Rel. Res. 3 (1983) 381. 

K. Hatae, S. Tamari, K. Miyanaga and J.J. Matsumoto, Species difference 
and changes in the physical properties of fish muscle as freshness 
decreases. Bull. Jap. Soc. Sci. Fish. 51 (1985) 1155. 

162 



Myotendinous junctions in fish 

K. Hatae, A. Tobimatsu, M. Takeyama and J.J. Matsumoto, Contribution 
of the connective tissues on the texture difference of various fish species. 
Bull. Jap. Soc. Sci Fish. 52 (1986) 2001. 

K. Hatae, F. Yoshimatsu and J.J. Matsumoto, Role of muscle fibers in 
contributing firmness of cooked fish. J. Food Sci. 55 (1990) 693. 

T. Hayashi, S. Curran-Patel and D. J. Prockop. Thermal stability of the 
triple helix of type I procollagen and collagen. Precautions for minimizing 
ultraviolet damage to proteins during circular dichroism studies. 
Biochemistry 18 (1979) 337. 

D. Heinegard and M. Paulsson. Structure and metabolism of 
Proteoglycans. In K.A.Piez and A.H. Reddi (eds) Extracellular Matrix 
Biochemistry, Elsevier, New York, 1984 P.  277. 

R. Horowits and R.J. Podolsky, The positional stability of thick filaments 
in activated skeletal muscle depends on sarcomere length: evidence for the 
role of titin filaments. J. Cell Biol. 105 (1987) 2217. 

P. Howgate, Microscopy of fish flesh. In J. Vaughan (ed.) Food 
Microscopy, Academic Press, London, 1980, p. 343. 

H.H. Huss and I. Asenjo, The quality of hake from South American waters 
and the significance of various fish handling procedures. FAO Fish Rep., 
203. Suppl. 1, 1978, p. 84. 

H.E. Huxley. The mechanism of muscular contraction. Scient. Amer. 1965 

S-F. Hwan and E. Bandman, Studies of desmin and a-actinin degradation 
in bovine semitendinosus muscle. J. Food Sci. 54 (1989) 1426. 

R.O. Hynes. Fibronectins. Sci. Amer. 254 (1986) 32. 

H. Ishilcawa, •R. Bischoff and H. Holtzer, Formation of arrowhead 
complexes with heavy meromyosinin a variety of cell types. J. Cell Biol. 
43 (1969) 312. 

H. Ishikawa, H. Sawada and E. Yamada, Surface and internal morphology 
of skeletal muscle. In Handbook of Physiology: A Critical Comprehensive 
Presentation of Physiological Knowledge and Concepts, Section 10, 
Skeletal Muscle 1983 p 1. 

163 



Myotendinous junctions in fish 

M. Ito, T. Morinaga, and M. Kitamilcado. Occurrence of keratan sulfate in 
connective tissues of teleost. Bull. Jap. Soc. Sci. Fish. 48 (1982) 1445. 

S.-T. Jiang, J.-H. Wang and C.-S. Chen, Purification and some properties 
of calpain II from tilapia muscle (Tilapia nilotica X Tilapia aurea). J. 
Agric. Food Chem. 39 (1991) 237. 

S.-T. Jiang, Y.-T. Wang, B.-S. Gau and C.-S. Chen, Role of pepstatin-
sensitive proteases on the postmortem changes of tilapia (Tilapia nilotica X 
Tilapia aurea) muscle myofibrils. J. Agric. Food Chem. 38 (1990) 1464. 

S.A. Jimenez and R.I. Bashey, Solubilization of bovine heart-valve 
collagen. Biochem. J. 173 (1978) 337. 

D.A. Johnson, J.W. Gautsch, J.R. Sportsman and J.H. Elder, Improved 
technique utilizing nonfat dry milk for analysis of peoteins and nucleic 
acids transferred to nitocellulose. Gene Anal. Tech. 1 (1984) 3. 

D.R. Keene, B.K. Maddox, H-J. Kuo, L.Y. Sakai and R.W. Glanville, 
Extraction of extendable beaded structures and their identification as 
fibrillin-containing extracellular matrix microfibrils. J. Biochem. 
Cytochem. 39 (1991) 441. 

D.R. Keene, L.Y. Sakai, H.P. Bachinger and R.E. Burgeson, Type III 
collagen can be present on banded collagen fibrils regardless of fibril 
diameter. J. Cell Biol. 105 (1987) 2393. 

D.R. Keene, L.Y. Sakai, R.E. Burgeson and H.P. Bachinger, Direct 
visualization of IgM antibodies bound to tissue antigens using a monoclonal 
anti-type III collagen Ig M as a model system. J. Histochem. Cytochem. 35 
(1987) 311. 

D.R. Keene, L.Y. Sakai, G.P. Lunstrum, N.P. Morris and R.E. Burgeson, 
Type VII collagen forms an extended network of anchoring fibrils. J. Cell 
Biol. 104 (1987) 611. 

J. Kelly, S. Tanaka, T. Hardt, E.F. Eikenberry and B. Brodsky, Fibril-
forming collagens in lamprey. J. Biol. Chem. 263 (1988) 980. 

T.J. Kenchington and D. Augustine, Age and growth of blue grenadier, 
Macruronus novaezelandiae Hector, in South-eastern Australian waters. 
Aust. J. Mar. Freshwater Res. 38 (1987) 625. 

164 



Myotendinous junctions in fish 

C.M. Kielty, C. Cummings, S.P. Whittaker, C.A. Shuttleworth and M.E. 
Grant, Isolation and ultrastructural analysis of microfibrillar structure from 
foetal bovine elastic tissues. Relative abundance and supramolecular 
architecture of type VI collagen assemblies and fibrillin. J. Cell Sci. 99 
(1991) 797. 

K.S. Kim and N.F. Haard, The degradation of proteoglycans in the skeletal 
muscle of pacific rockfish (Sebastes sp.) during ice storage. J. Muscle 
Foods. 3 (1992) 103. 

S. Kimura, The interstitial collagens of fish. In A. Bairati and R. Garrone 
(eds.) Biology of Invertebrate and Lower Vertebrate Collagens, Plenum 
Publishing, 1985, p. 397. 

S. Kimura, Y. Ohno, Y. Miyauchi and N. Uchida, Fish skin type I 
collagen: wide distribution of an a3 subunit in teleosts. Comp. Biochem. 
Physiol. 88B (1987) 27. 

S. Kimura and T. Kamimura, The characterization of lamprey notochord 
collagen with special reference to its skin collagen. Comp. Biochem. 
Physiol. 73B (1982) 335. 

S. Kimura and Y. Ohno, Fish type I collagen: tissue-specific existence of 
two molecular forms, (a1) 2a2 and a1a2a3, in alaslca pollack. Comp. 
Biochem. Physiol. 88B (1987) 409. 

S. Kimura, X.-P. Zhu, R. Matsui, M. Shijoh and S. Takamizawa, 
Characterization of fish muscle type I collagen. J. Food Sci. 53 (1988) 
1315. 

M. Kinoshita, H. Toyohara and Y. Shimizu, Purification and prdperties of 
a novel latent proteinase showing myosin heavy chain-degrading activity 
from threadfin-bream muscle. J. Biochem. 107 (1990) 587. 

M. Koohmaraie, A.S. Babiker, R.A. Merkel and T.R. Dutson, Role of 
Ca"-dependent proteases and lysosomal enzymes in postmortem changes 
in bovine skeletal muscle. J. Food Sci. 53 (1988) 1253. 

M. Koohmaraie, A.S. Babiker, A.L. Schroeder, R.A. Merkel and T.R. 
Dutson, Acceleration of postmortem tenderization in ovine carcasses 
through activation of Ca'-dependent proteases. J. Food Sci., 53 (1988) 
1638. 

165 



Myotendinous junctions in fish 

E. Kordyl and Z. Karnicki, Factors influencing quality of frozen fish at sea 
in sub-tropical and tropical areas. In R. Kreuzer (ed.) Freezing and 
Irradiation of Fish, Fishing News (Books), London, 1969, P.  189. 

H. Korneliussen, Ultrastructure of myotendinous junctions in myxine and 
rat. Specializations between the plasma membrane and the lamina densa. 
Z. Anat. Entwickl.-Gesch. 142 (1973) 91. 

H. Kryvi, Ultrastructure of the different fibre types in axial muscles of 
sharks Etmopterus spinax and Galeus melastomus. Cell Tiss. Res. 184 
(1977) 287. 

U.K. Laemmli, Cleavage of structural proteins during the assembly of the 
head of the bacteriophage T4. Nature (London) 227 (1970) 680. 

L.E. Lampila, V. Mohr and D.S. Reid, Scanning electron microscopic 
study of rockfish preserved at either ambient temperature or by isothermal-
freeze-fixation. Food Microstuct. 4 (1985) 16. 

L.E. Lampila and W.D. Brown, Changes in the microstructure of sldpjack 
tuna during frozen storage and heat treatment. Food microstruct. 5 (1986) 
25. 

J.L. Langone, Use of labelled protein A in quantitative immunochemical 
analysis of antigens and antibodies. J. Immunol. Meth. 51 (1982) 3. 

G.W. Laurie, J.W. Bing, H.K. Kleinman, J.R. Hassell, M. Aumailley, 
G.R. Martin and R.J. Feldman, Localization of binding sites for laminin, 
heparin sulfate proteoglycan and fibronectin on basement membrane (type 
IV) collagen. J.Mol. Biol. 189 (1986) 205. 

J. Lavety, O.A. Afolabi and R.M. Love, The connective tissues of fish. 
IX. Gaping in farmed species. Int. J. Food Sci. Tech., 23 (1988) 23. 

E. Lazarides, Intermediate filaments as mechanical integrators of cellular 
space. Nature, 283 (1980) 249. 

L.A. Liotta, K. Tryggvason, S. Garbisa, P.G. Robey and S. Abe, Partial 
purification and characterization of a neutral protease which cleaves type 
IV collagen. Biochem. 20 (1981) 100. 

M.E. Long, The development of the muscle-tendon attachment in the rat. 
Amer. J. Anat. 81 (1947) 159. 

166 



Myotendinous junctions in fish 

R.M. Love, The breakdown of connective tissue in frozen whole fish. In 
Congress on Refrigeration, Belgium, 1968, p. AlE. 

R.M. Love, The Chemical Biology of Fish, Academic Press, London, 
1970, p. 4. 

R.M. Love, The Food Fishes, Their Intrinsic Variation and Practical 
Implications, Farrand Press, London, 1988. 

R.M. Love, J.R. Lavety and P.J. Steele, The connective tissues of fish II. 
Gaping in commercial species of frozen fish in relation to rigor mortis. J. 
Food Technol. 4 (1969) 39. 

F.N. Low, The extracellular portion of the human blood-air barrier and its 
relation to tissue space. Anat. Rec. 139 (1961) 105. 

F.N. Low, Microfibrils: fine filamentous components of the tissue space. 
Anat. Rec. 142 (1962) 131. 

G.P. Lunstrum, L.Y. Sakai, D.R. Keene, N.P. Morris and R.E. Burgeson. 
Large complex globular domains of type VII procollagen contribute to the 
structure of anchoring fibrils. J. Biol. Chem. 261 (1986) 9042. 

H.J.H. Macfie, N.D. Light and A.J. Bailey. Natural taxonomy of collagen 
based on amino acid composition. J. Theor. Biol. 131 (1988) 401. 

B. MacKay, T.J. Harrop and A.R. Muir, The fine structure of the muscle 
tendon junction in the rat. Acta Anat. 73 (1969) 588. 

H. Magloire, A. Joffre and D.J. Hartmann, Localization and synthesis of 
type III collagen and fibronectin in human reparative' dentine. 
Immunoperoxidase and immunogold staining. Histochem. 88 (1988) 141. 

P.A. Maher, G.F. Cox and S.J. Singer, Zeugmatin: a new high molecular 
weight protein associated with Z lines in adult and early embryonic striated 
muscle. J. Cell Biol. 101 (1985) 1871. 

Y. Maldnodan, H. Toyohara and S. Ikeda, On the existence of acid, 
neutral, and alkaline proteinases in fish muscle. Bull. Jap. Soc. Sci. Fish. 
49 (1983) 109. 

M.B. Mathews, Connective Tissue:Macromolecular Structure and 
Evolution. Springer-Verlag, Berlin 1975. 

167 



Myotendinous junctions in fish 

G.R. Martin, R. Timpl, P.K. Mailer and K. KUM. The genetically distinct 
collagens. TIBS 10 (1985) 285. 

K. Maruyama and Y. Shimada, Fine structure of the myotendinous junction 
of lathyritic rat muscle with special reference to connectin, a muscle elastic 
protein. Tissue and Cell, 10 (1978) 741. 

R. Mayne and R.D. Sanderson, The extracellular matrix of skeletal muscle. 
Collagen Rel. Res. 5 (1985) 449. 

A.V.G. Menon and R.B. Nair, Histological changes in fresh water fish 
muscle stored in chilled condition. J. Food Sci. Technol. 25 (1988) 167. 

H. Metzger, M.B. Shapiro, J.E. Mosiman and J. E. Vinton. Assessment of 
compositional relatedness between proteins. Nature, 219 (1968) 1166. 

E.J. Miller and M.B. Matthews, Characterization of notochord collagen as 
a cartilage-type collagen. Biochem. Biophys. Res. Commun. 60 (1974) 
424. 

P. Montero and J. Borderias, Distribution and hardness of muscle 
'connective tissue in hake (Merluccius merluccius L.) and trout (Salmo 
irideus Gibb). Z. Lebensm. Unters. Forsch. 189 (1989a) 530. 

P. Montero and J. Borderias, Changes in hake muscle collagen during 
frozen storage due to seasonal effects. Int. J. Refrig. 12 (1989b) 220. 

P. Montero and J. Borderias, Influence of age on muscle connective tissue 
in trout (Salmo irideus). J. Sci. Food Agric. 51 (1990a) 261. 

P. Montero and J. Borderias, Effect of rigor mortis and ageing on'collagen 
in trout (SaImo irideus) muscle. J. Sci. Food Agric. 52 (1990b) 141. 

P. Montero and J. Borderias, Behaviour of myofibrillar proteins and 
collagen in hake (Merluccius merluccius L.) muscle during frozen storage 
and its effect on texture. Z. Lebensm. Unters. Forsch. 190 (1990c) 112. 

N.P. Morris, D.R. Keene, R.W. Glanville, H. Bentz and R.E. Burgeson, 
The tissue form of type VII collagen is an antiparallel dimer. J. Biol Chem. 
261 (1986) 5638. 

H. Muir, The coming of age of proteoglycans, Biochem. Soc. Trans. 18 
(1990) 787. 

168 



Myotendinous junctions in fish 

T. Nakao, Some observations on the fine structure of the myotendinous 
junction in the skeletal muscle of the frog tadpole. Acta Anat Nippon. 49 
(1974) 74 (abstract). 

T. Nalcao, Fine structure of the myotendinous junction and "terminal 
coupling" in the skeletal muscle of the lamprey, Lampetra japonica. Anat. 
Rec. 182 (1975) 321. 

T. Nakao, Some observations on the fine structure of the myotendinous 
junction in myotomal muscles of the tadpole tail. Cell Tiss. Res. 166 
(1976) 241. 

G.R. Newman and B. Jasani, Immunoelectronmicroscopy: immunogold and 
immunoperoxidase compared using a new post-embedding system. Med. 
Lab. Sci. 41 (1984) 238. 

M.E. Nimni and R.D. Harkness, Molecular structures and functions of 
collagen. In M.E. Nimni (ed.) Collagen, CRC Press, Florida, 1988., p. 1. 

C. Niyibizi and D.R. Eyre, Bone type V collagen: chain composition and 
location of a trypsin cleavage site. Conn. Tiss. Res. 20 (1989) 247. 

J.R. Nursall, The lateral musculature and the swimming of fish. Zoological 
Society of London (Proc.), 126 (1956) 127. 

M.W. Orcutt, T.R. Dutson, F.Y. Wu and S.B. Smith, The fine structure 
of the endomysium, perimysium and intermyofibrillar connections in 
muscle. Food Microstruct. 5 (1986) 41. 

J.V. Pardo, J. D. Siciliano and S.W. Craig, A vinculin-containing cortical 
lattice in skeletal muscle:Transverse lattice elements ("costameres") mark 
sites of attachment between myofibrils and sarcolemma. Proc. Natl. Acad. 
Sci. USA, 80 (1983) 1008. 

S.M. Partridge, D.F. Elsden and J. Thomas, Constitution of the cross-
linkages in elastin. Nature, 197 (1963) 1297. 

A.M. Pearson and R.B. Young, Muscle and Meat Biochemistry, Academic 
Press, San Diego, 1989. 

S. Pierobon-Bormioli, Transverse sarcomere filamentous systems: 'Z- and 
M-cables'. J. Muscle Res. Cell Motil. 2 (1981) 401. 

169 



Myotendinous junctions in fish 

K.A. Piez, Characterization of a collagen from codfish skin containing 
three chromatographically different a chains. Biochem. 4 (1965) 2590. 

K.A. Piez, E.A. Eigner and M.S. Lewis, The chromatographic separation 
and amino acid composition of the subunits of several collagens. 
Biochemistry 2 (1963) 58. 

K.R. Porter, The myo-tendon junction in larval forms of Amblystoma 
punctatum. Anat. Rec., 118 (1954) 342. 

J.A.M. Ramshaw and J.A. Werlcmeister, Electrophoresis and 
electroblotting of native collagens. Anal. Biochem. 168 (1988) 82. 

J.A.M. Ramshaw, J.A. Werluneister and H.A. Bremner, Characterization 
of type I collagen from the skin of blue grenadier (Macruronus 
novaezelandiae). Arch. Biochem. Biophys. 267 (1988) 497. 

B.J. Rigby, Thermal stability of collagen. Its significance in biology and 
physiology. Adv. Chem. Phys. 21 (1971) 537. 

B.J. Rigby, T.W. Mitchell and M.S. Robinson, Oxygen participation in the 
in-vivo and in-vitro ageing of collagen fibres. Biochem. Biophys. Res. 
Commun. 79 (1977) 400. 

E.L. Romano and M. Romano, Stapphylococcal protein A bound to 
colloidal gold: a useful reagent to label antigen-antibody sites in electron 
microscopy. Immunochemistry 14 (1977) 711. 

J. Roth, The preparation of protein A-gold complexes with 3 nm and 15 
nm gold particles and their use in labelling multiple antigens on ultrathin 
sections. Histochem. J. 14 (1982) 791. 

J. Roth, M. Bendayan, E. Carlemalm, W. Villiger and M. Garavito, 
Enhancement of structural preservation and immunocytochemical staining 
in low temperature embedded pancreatic tissue. J. Histochem. Cytochem. 
29 (1981) 663. 

R.W.D. Rowe, Morphology of perimysial and endomysial connective tissue 
in skeletal muscle. Tissue and Cell, 13 (1981) 681. 

H. Ruslca, Electronenmikroskopischer beitrag zur histologie des 
skelettmuskels ideiner saugetiere. Z. Naturforschg. 9b (1954) 358. 

170 



Myotendinous junctions in fish 

H. Sage and W.R. Gray. Studies on the evolution of elastin-1. Phylogenetic 
distribution. Comp. Biochem. Physiol. 64B (1979) 313. 

L.Y. Sakai, D.R. Keene R.W. Glanville and H.P. Bachinger. Purification 
and partial characterization of fibrillin, a cysteine-rich structural component 
of connective tissue microfibrils. J. Biol. Chem. 266 (1991) 14763. 

L.Y. Sakai, D.R. Keene, N.P. Morris and R.E. Burgeson, Type VII 
collagen is a major structural component of anchoring fibrils. J. Cell Biol. 
103 (1986) 1577. 

K. Sato, C. Ohashi, K. Ohtsuki and M. Kawabata. Type V collagen in 
trout (Salmo gairdnert) muscle and its solubility change during chilled 
storage of muscle. J. Agr. Food Chem. 39 (1991) 1222. 

K. Sato, R. Yoshinalca, M. Sato, Y. Itoh and Y. Shimizu, Isolation of 
types I and V collagens from carp muscle. Comp. Biochem. Physiol. 90B 
(1988) 155. 

K. Sato, R. Yoshinalca, M. Sato and Y. Shimizu, Collagen content in the 
muscle of fishes in association with their swimming movement and meat 
texture. Bull. Jap. Soc. Sci. Fish. 52 (1986) 1595. 

K. Sato, R. Yoshinalca, M. Sato and J. Tomita, Biochemical 
characterization of collagen in myocommata and endomysium fractions of 
carp and spotted mackerel muscle. J. Food Sci. 54 (1989) 1511. 

E.A. Schafer, Connective tissues. In E.A. Schafer, J. Symington, T.H. 
Bryce (Eds) Vol II, part I Microscopic Anatomy , Quain's Elements of 
Anatomy, Longmans, Green & Co., London, 1912, p.103. 

P-J. Schattenberg, Untersuchungen iiber das Langenwachstum der 
skelettmuskulatur von fischen. Z. Zellforsch., 143 (1973) 587. 

D.R. Schaller and W.D. Powrie, Scanning electron microscopy of skeletal 
muscle from rainbow trout, turkey and beef. J. Food Sci. 36 (1971) 552. 

C.J. Scherr, M.B. Taubman and B. Goldberg, Isolation of a disulfide-
stabilised, three chain polypeptide fragment unique to the precursor of 
human collagen. J. Biol. Chem. 248 (1973) 7033. 

171 



Myotendinous junctions in fish 

K. Schippel and D. Reisig, Zur feinstrulctur des ruckenflossensmuskels der 
kleinen schlangennadel (Nerophis ophidion) unter besonderer 
beriicksichtigung des muskel-sehneniiberganges. Z. Mikrosk.-Anat. Forsch. 
81 (1969) 304. 

W.J. Schmidt, Die verbindung der myo- und sehnenfibrillen, 
polarisationoptisch gepriift am riickenflossenmuskel von hippocampus. Z. 
Zellforsch. 24 (1936) 336. 

P.R. Schroeder, 0. Kelly and R.B. Weddle, Factors affecting quality of 
frozen hake and the quality requirements of European imports. FAO Fish 
Rep., 203. Suppl. 1, 1978, p. 102. 

R. Schubring and E. Sandau, Technologisch bedingte veranderungen der 
funktionellen, morphologischen und ultrastrulcturellen eigenschaften von 
skelettmuslculatur ausgewahlter fischarten. Fischerei-Forschung, Rostock 27 
(1989) 5. 

0. Schulze, Ober den direkten zusammenhang von muskelfibrillen und 
sehnenfibrillen. Arch. Mikr. Anat. 79 (1912) 307. 

H.G. Schwarzacher, Unteisuchungen iiber die skeletmuskel-
sehnenverbindung. Acta Anat. 40 (1960) 59. 

J.E. Scott. Proteoglycan:collagen interactions in connective tissue. 
Ultrastructural, biochemical, functional and evolutionary aspects. Int. J. 
Macromol. 13 (1991) 157. 

P.G. Scott and A. Veis. The cyanogen bromide peptides of bovine soluble 
and insoluble collagens. Connect. Tissue Res. 4 (1976) 107. 

N. Selci and T. Watanabe, Connectin content and its post-mortem changes 
in fish muscle. J. Biochem. 95 (1984) 1161. 

L.M. Shaw and B.R. Olsen, FACIT collagens: diverse molecular bridges 
in extracellular matrices. TIBS 16 (1991) 191. 

Y. Shimizu and C.N. Wendakoon, Effects of maturation and spawning on 
the gel-forming ability of lizardfish (Saurida elongata) muscle tissue. J. 
Sci. Food Agric. 52 (1990) 331. 

G. Siebert, Proteolytic enzyme activity in fishes. Experientia, 14 (1958) 
65. 

172 



Myotendinous junctions in fish 

G. Siebert, A. Schmitt and I. Bottke, Enzyme des aminosaure-stoffwechsels 
in der lcabeljau-muslculatur. Arch. Fischereiweiss. 15 (1965) 233. 

Z.E. Sikorski, D.N. Scott and D.H. Buisson, The role of collagen in the 
quality and processing of fish. Crit. Rev. Food Sci. Nut. 20 (1984) 301. 

J. Sobotta, Ober den zusammenhang von muskel und sehne. Z. Milcr.-anat. 
Forsch. 1 (1924) 229. 

C. Steffen, R. Timpl and I. Wolff, Immunogenitat und Spezificitat von 
kollagen IV. Untersuchungen zur kollagenspezifiitat der antiseren. Z. 
Immunforsch. 134 (1967) 205. 

P.H. Steiner, S. H. Broderson and J. Liston, Ultrastructural localization of 
lysosomes in coho salmon and steelhead trout muscle. J. Food Sci. 49 
(1984) 975. 

H. Stephens, M. Bendayan and V. Gisiger, Simultaneous labelling of basal 
lamina components and acetylcholinesterase at the neuromuscular junction. 
Histochem. J. 17 (1985) 1203. 

H. Stephens, M. Bendayan and M. Silver, Immunocytochemical 
localization of collagen types and laminin in skeletal muscle with the 
protein A-gold technique. Biol. Cell. 44 (1982) 81. 

G.P. Stricklin and M.S. Hibbs, Biochemistry and physiology of 
mammalian collagenases. In M.E. Nimni (ed.) Collagen, CRC Press, 
Florida, 1988, p. 187. 

K. Takahashi, T. Suzuki and K. Mori, Purification of a fibronectin-like 
protein in the plasma of rainbow trout. Nippon Suissan Galckaishi 58 (1992) 
343. 

J.G. Tidball, The geometry of actin filament-membrane associations can 
modify adhesive strength of the myotendinous junction. Cell Motil., 3 
(1983) 439. 

J.G. Tidball, Alpha-actinin is absent from the terminal segments of 
myofibrils and from subsarcolemmal densities in frog skeletal muscle. 
Exp. Cell Res. 170 (1987) 469. 

J.G. Tidball and M. Chan, Adhesive strength of single muscle cells to 
basement membrane at myotendinous junctions. J. Appl. Physiol. 67 (1989) 
1063. 

173 



Myotendinous junctions in fun 

Tidball and T.L. Daniel, Myotendinous junctions of tonic muscle 
cells: structure and loading. Cell Tiss. Res. 245 (1986) 315. 

J.G. Tidball, T. O'Halloran and K. Burridge, Talin at myotendinous 
junctions. J. Cell Biol. 103 (1986) 1465. 

R. Timpl and M. Dziadek, Structure, development and molecular pathology 
of basement membranes. Int. Rev. Exp. Pathol. 29 (1986) 1. 

H. Towbin, T. Staehelin and J. Gordon, Electrophoretic transfer of 
proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and 
some applications. Proc. Natl Acad. Sci. USA 76 (1979) 4350. 

H. Toyohara, Y. Maldnodan, K. Tanaka and S. Ikeda, Detection of -
calpastatin and a trypsin inhibitor in carp muscle. Agric. Biol. Chem. 47 
(1983) 1151. 

H. Toyohara, Y. Maldnodan, K. Tanaka and S. Ikeda, Purification and 
properties of carp (Cyprinus carpio) muscle calpain II (high-Ca'-requiring 
form of calpain). Comp. Biochem. Physiol. 1B (1985) 573. 

H. Toyohara, T. Salcata, K. Yamashita, M. Kinoshita and Y. Shimizu, 
Degradation of oval-filefish meat gel caused by myofibrillar proteinase(s). 
J. Food Sci. 55 (1990) 364. 

H. Toyohara and Y. Shimizu, Relation of the rigor mortis of fish body and 
the texture of the muscle. Nippon Suisan Galdcaishi, 54 (1988) 1795. 

R.L. Trelstad, Native collagen fractionation. In H. Furthmayr (ed.) 
Immunochemistry of the Extracellular Matrix, Vol 1, Methods, CRC Press, 
Boca Raton (1982) p. 31. 

R.L. Trelstad, V.M. Catanese and D.F. Rubin. Collagen fractionation: 
separation of native types I, II and III by differential precipitation. Anal. 
Biochem. 71 (1976) 114. 

J. A. Trotter, K. Corbett and B.P. Avner, Structure and function of the 
murine muscle-tendon junction. Anat. Rec. 201 (1981) 293. 

J.A. Trotter, S. Eberhard and A. Samora, Structural domains of the 
muscle-tendon junction. 1. The internal lamina and the connecting domain. 
Anat. Rec. 207 (1983a) 573. 

174 



Myotendinous junctions in fish 

J.A. Trotter, S. Eberhard and A. Samora, Structural connections of the 
muscle-tendon junction. Cell Motil. 3 (1983b) 431. 

J.A. Trotter, K. Hsi, A. Samora and C. Wofsy, A morphometric analysis 
of the muscle-tendon junction. Anat. Rec. 213 (1985) 26. 

J.A. Trotter, A. Samora and J. Baca, Three-dimensional structure of the 
murine muscle-tendon junction. Anat. Rec. 213 (1985) 16. 

H. Tschesche, J. Fedrowitz, U. Kohnert, H.W. Macartney, J. Michaelis, 
K. Kuhn and H. Weidemann, Interstitial collagenase, gelatinase and a 
specific type IV/V (basement membrane) collagen degrading proteinase 
from human leukocytes. in Proteinases in Inflammation and Tumour 
Invasion, ed. H. Tschesche, De Gruyter, Berlin, 1986, p. 225. 

H. Tschesche, J. Michaelis, U. Kohnert, J. Fedrowitz and R. Oberhoff, 
Tissue lcallilcrein effectively activates latent matrix degrading 
metalloenzymes. In K. Abe et al. (eds.), 5th International Kinin Congress, 
Plenum Press, NY, 1989, P.  545. 

N. Uchida, M. Watanabe, K. Kalduchi. H. Anzai and E. Nishide, 
Purification and characterization of fibronectin from the plasma of carp. 
Nippon Suisan Galdcaishi 56 (1990) 315. 

R. Ueno, J. Liston and Y. Horiguchi, Intracellular distribution of enzymes 
and particle properties of lysosomes in mackerel muscle tissue. Bull. Jap. 
Soc. Sci. Fish. 52 (1986) 895. 

E.N. Unemori and Z. Werb, Collagenase expression and endogenous 
activation in rabbit synovial fibroblasts stimulated by the calcium ionophore 
A23187. J. Biol. Chem. 263 (1988) 16252. 

K. Von der Mark, Localization of collagen types in Tissues. Int. Rev. 
Conn. Tiss. Res. 9 (1981) 265. 

C.G. Walton and T.A. Gill, Intramuscular collagen of fresh and frozen 
atlantic cod (Gadus morhua). Proc. 12th Ann. Conf. Trop. Sub-Trop. Fish. 
Tech. Soc. Amer., 12 (1989) 32. 

G. Wick, H. Furthmayr and R.Timpl, Purified antibodies to collagen: an 
immunofluorescence study of their reaction with tissue collagen. Int. Archs 
Allergy Appl. Immun. 48 (1975) 664. 

175 



Myotendinous junctions in fish 

P.E. Williams and G. Goldspink, Longitudinal growth of striated muscle 
fibres. J. Cell Sci. 9 (1971) 751. 

M. Yamaguchi, Y. Hirai, K. Takehana, T. Oba, S. Yamamoto, M. 
Muguruma, J.Masty and S. Yamano, Dense bands and polarity of thin 
filament at myotendinous junction in guppy muscle. Protoplasma, 158 
(1990) 121. 

M. Yamaguchi, H. Kamisoyama, S. Nada, S. Yamano, M. Izumimoto, Y. 
Hirai, R.G. Cassens, H. Nasu, M. Mugurama and T. Fulcazawa, Current 
concepts of muscle ultrastructure with emphasis on Z-line architecture. 
Food Microstruct. 5 (1986) 197. 

M. Yamashita and S. Konagaya, Participation of cathepsin L into extensive 
softening of the muscle of chum salmon caught during spawning migration. 
Nippon Suisan Gakkaishi, 56 (1990) 1271. 

M. Yamauchi and G.L. Mechanic, Cross-linking of collagen. In Collagen, 
Volume 1 Biochemistry, M.E. Nimni (ed.) CRC Press, Boca Raton, P. 
157. 

S. Yanagahira, H. Nalcoaka, K. Hara and T. Ishihara, Purification and 
characterization of serine proteinase from white croaker skeletal muscle. 
Nippon Suisan Galdcaishi, 57 (1991) 133. 

N. Yoshimura, T. Murachi, R. Heath, J. Kay, B. Jasani and G.R. 
Newman, Immunogold electron-microscopic localisation of calpain I in 
skeletal muscle of rats. Cell Tiss. Res. 244 (1986) 265. 

R. Yoshinalca, M. Sato and S. Ikeda, Distribution of collagen in body 
muscle of fishes with different swimming modes. Bull. Jap. Soc. Sci. Fish. 
44 (1978) 263. 

176 



Myotendinous junctions in fish 

Publications 



H.H. Huss et al., (eds.) Quality Assurance in the Fish Industry 
© 1992 Elsevier Science Publishers B.V. All rights reserved. 	 39 

Fish flesh structure and the role of collagen - its post-mortem 
aspects and implications for fish processing 

H. Allan Bremner 

International Food Institute of Queensland, 19 Hercules Street, Hamilton, Brisbane, 
Queensland, 4007 Australia 

Abstract 
Structural links between the muscle cells and the connective tissues of fish provide the 

necessary integrity for the flesh to withstand the effects of post-harvest handling, 
processing and storage. Therefore, a fundamental knowledge of the components of the 
delicate and complex structure of fish flesh is essential in order to understand the changes 
that occur post-harvest. This understanding can then lead to techniques and processes to 
minimise change, or, to use it to advantage. 

Minor components which form the interfaces and adhesive links are as important in this 
regard as are the major components. Within the muscle cell, elements of the cytoskeleton 
serve to link the major proteins, actin and myosin, into an ordered structure. External to 
the cell, collagen is the major connective tissue in the structure and it is dominant in 
determining the textural attributes of the raw flesh. The links between the muscle cells and 
the external connective tissue occur mainly at the myotendinous junction where the forces 
of muscular contraction are transmitted from within each cell to the connective tissue of 
the myocommata. 

Post-mortem changes occur within the muscle cell in the elements of the cytoskeleton, 
in interactions between the proteins in the cell and externally in the links between the cell 
and its envelope and in the myotendinous junction. The relative importance of these 
phenomena varies with species and circumstance, but each affects the characteristics of the 
flesh during processing. 

This review concentrates on the external structures and on changes occurring at the 
myotendinous junction and in the fine collagen fibrils of the endomysium. 

INTRODUCTION 

Sikorsld et al. 1984 [1] have reviewed collagen in fish, Howgate [2] has summarised 
work on fish muscle structure up until 1980 and the continued output of Love and his 
colleagues in a series of investigations spanning many years, most recently reviewed in 
1988 [3], provide the background for this paper and reference is mostly restricted to recent 
work. In order to discuss the nature of post-mortem change and the mechanisms and 
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possible agents causing these changes, it is necessary to first describe the flesh structure 
including the myotendinous junction and the muscle cell constituents, the basement 
membrane and the extracellular matrix. 

FISH FLESH STRUCTURE 

The flesh of teleost fish is constructed of adjacent muscle blocks, called myotomes, 
separated from each other by sheets of collagenous tissue called myocommata [4]. Within 
each myotome, the muscle fibres (myomeres, sarcomeres or myofibrils in the literature on 
mammalian muscle) run approximately parallel to each other but at varying angles to the 
myocommatal sheet to accomodate the juxtapositional rhythmical contractions that occur 
during swimming so that all the fibres in the myomere contract to a similar extent when 
the fish bends. This results in maximum power output at a given rate of contraction [5]. 
The myocommata are connected internally to the skin and to the skeletal system and are 
also linked to the membrane dividing the fish into epaxial and hypaxial planes and to the 
median vertical septum. 

The junctions between the myomeres and the myocommata in fish are equivalent to the 
myotendinous junction in mammalian muscle. In fish, this junction is formed by fme 
collagenous processses which have their origin in the myocomma and which then proceed 
as sheaths to surround each muscle fibre [6,7]. 

GENERAL ASPECTS OF THE MYOTENDINOUS JUNCTION 

Early work with the electron microscope established that the muscle fibre terminated 
in finger-like projections which were bounded by the cell membrane and that the actin 
filaments terminated inside the cell and that collagen fibres did not penetrate the cell 
membrane and were never found within the muscle cell [8,9]. A complicated series of 
folds and invaginations at the myotendinous junction increase the area of contact by a 
factor of about 20 to 30 times for fast twitch muscles [10] and 50 times for tonic cells 
[11]. This reduces the load on the cell membrane by an order of magnitude [12]. The 
geometry of attachment of the actin filaments to the sarcolemma ensures that the forces 
are transmitted in shear rather than in tensile mode [13]. 

THREE STRUCTURAL DOMAINS 

Muscle cells are bounded by a continuous cell membrane called the sarcolemma. 
External to this is the basement membrane and the endomysial layer of fine collagen 
fibres. The myotendinous junction can be considered as three major structural domains 
which are in close proximity: (i) the internal elements of the muscle cell and the sub-
sarcolemmal surface; (ii) the membranes and fine processes at the junction; and (iii) the 
external connective tissue stroma which eventually attaches to the tendon. 
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The internal structure 
Most of the detailed work on muscle components has been done on mammalian muscle 

and a recent comprehensive review of muscle structure and biochemistry is given by 
Pearson and Young [14]. The presence of many of the minor proteins of the mammalian 
cytoskeletal system has not yet been established for fish muscle. 

Muscle fibres are comprised of bundles of fibrils (myofibrils) arranged longitudinally 
within the muscle cell and organised within a cytoskeletal framework of desmin-containing 
intermediate filaments [15]. The basic repeat unit of the myofibril is the sarcomere (often 
termed myomere in fish) and each sarcomere is bounded at each end of its long axis by 
the electron-dense structure known as a Z disc (or Z band, or Z line) (see Figure 2,3 
later). Actin filaments extend from one Z disc to the next and, in cross-section, are 
arranged in an hexagonal array parallel to and around the myosin rods. The myosin rods 
themselves do not attach to the Z disc but occur in the mid-portion of the sarcomere. The 
rod-shaped protein tropomyosin occupies the grooves of the actin helix providing a 
structure for the globular protein troponin to attach to at regular intervals. Titin (originally 
named connectin, when first isolated in a slightly impure form [16]), together with 
nebulin, forms 'gap filaments' which join the thick myosin filaments from their ends to 
the Z disc and which thus stabilize the myosin in the centre of the sarcomere [17]. 

The protein components of the Z disc have not been fully resolved, but alpha-actinin, 
a protein with actin-bundling properties, comprises about 50%. Actin filaments from 
adjacent sarcomeres overlap into the structure. Other proteins that have been suggested as 
components are Z-protein, amorphin, Eu-actinin, Z-nin, filamin, zeugmatin and another 
220 Kdalton protein [18]. Zeugmatin is present in the early formation of Z disc structures 
grown in cell culture, before alpha-actinin is observed, and hence probably plays some 
organisational role in development and organisation [19]. At the edge of each fibre, 
elements of the cytoskeleton link the filaments from the terminal Z disc to an electron-
dense meshwork at the sub-sarcolemmal surface. The terminal Z discs near the 
sarcolemma have been found to contain much less alpha-actinin and it is assumed that this 
indicates that thin filaments are not bundled by alpha-actinin near the sarcolemma [20] and 
that Z discs in different locations are not homogeneous in composition. Talin, a 225 
Kdalton protein has also been located at myotendinous junctions and is a component of the 
digit-like processes that extend into the tendons there and may be involved in force 
transmission [21]. 

The cytoskeletal proteins, the skelemins, are located at the periphery of the M discs 
while vinculin is organised along the sarcolemma in an array of rib-like bands termed 
costameres [22]. Transverse sarcomeric filamentous systems organised at the Z and M 
band levels link these structures to the sarcolemma [23]. 

Each fibril is bathed in cytoplasm and is partly enshrouded by the membranous 
sarcoplasmic reticulum containing the sarcoplasm. This sarcoplasmic reticulum swells out 
to form the terminal cisternae which in apposition with those of the adjacent sarcomere and 
the intermediate element, the T tubule, make up the triad structure. In fish, the triads are 
situated external to the Z disc but in mammals the triad occurs in the midportion of the 
sarcomere near the junction of the A and I bands. 

Near the end of a muscle fibre, the sarcomeres anastomose around the invaginations of 
the sarcolemma. Actin fibres reach from the last complete Z disc to the internal surface 
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of the sarcolemma where they attach in an electron dense sub-sarcolemmal layer. This 
layer is comprised of both globular densities and fine linear elements which run 
approximately parallel to the major actin fibres [24] and is involved in anchoring the actin 
to the interior of the sarcolemma, referred to as the internal lamina [25]. The proteins 
talin and vinculin are found at this location and it is considered that these may be the 
force-transmitting and attaching proteins [21]. Longitudinal muscle growth occurs at the 
fibre ends [26] and glycogen granules, mitochondria, polysomes and ribosomes occur with 
notable frequency near the fibril ends [27]. 

The basement membrane 
The basement membrane, sometimes called the basal lamina, occurs adjacent to the 

sarcolemma as part of the integral structure marking the boundaries of cells, although it 
may not follow exactly all the convolutions of the sarcolemma. The basement membrane 
serves a variety of functions such as molecular ultrafiltration and tissue organization and 
mediation of interactions between specific cell layers and their underlying stroma. The 
outer area of the basement membrane, the lamina densa, is an electron-dense area that is 
comprised mainly of collagen, mostly type IV. The lamina lucida (rara) lies between the 
lamina densa and the sarcolemma and is more transparent to electrons. In the lamina 
densa, the type IV collagen molecules form unique end-to-end associations to construct a 
network of molecules which comprise the structural framework of the membrane [28]. 
Several other components, in particular laminin and heparin sulphate proteoglycan, form 
parts of the overall structure. The large molecular weight glycoprotein laminin has been 
localised to the basement membranes of skeletal muscle and is distributed throughout the 
lamina densa and the lamina lucida [29,30]. The proteoglycans are comprised of a central 
protein core with covalently bound glycosaminoglycan side chains which affect 
permeability and cell attachment [30]. 

It was proposed that collagen fibres from the connective tissue were attached to the 
basement membrane. The analogy of a rope untangling at its end to provide the fibres 
which were woven into the carpet of the basal lamina was employed to convey the concept 
of how force may be transmitted from the muscle to the tendon [31]. Tropocollagen 
molecules were proposed as the links between the sarcolemma and the basal lamina. 

Low [32,33] described a set of fibrous structures with a diameter in the range of 4 to 
12 nm. These structures, which were finer than the collagen fibrils, appeared to link the 
collagen fibrils. He termed them `microfibrils', although this term has other connotations 
in collagen chemistry. `Microfibrils' were also reported in muscle-tendon transitions in the 
papillary muscle of the heart, muscle from the tip of the tongue, the diaphragm and the 
gastrocnemius of the guinea pig [34] and it was proposed that these elements actually 
passed through the basal membrane and fused with the outer electron-dense layer of the 
sarcolemmal membrane. Similar structures were demonstrated [35] in the myotendinous 
junctions of muscles of the hagfish (Myxine glutinosa Linnaeus) where spine-like structures 
about 6 nm in diameter at 15-25 nm intervals extended from the external leaflet of the 
plasma membrane to the internal surface of the lamina densa. Further work [36] showed 
similar 'intermediary' structures in the myotendinous junctions of the lamprey [37]. When 
detergent and EGTA solvents were used to disrupt the sarcolemma, the small filamentous 
structures that cross the lamina lucida remained intact and tension could still be transmitted 
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across the myotendon, indicating that these filaments were attached to elements of the 
contractile structure not just to the sarcolemma alone [38]. From this and other evidence, 
three important structural facets were proposed: one that binds actin near the sarcolemma 
to transmit the contraction; another that crosses the hydrophobic portion of the membrane; 
and a third that transmits tension from the membrane to the lamina densa [38]. Further 
work indicated that the filaments of the lamina lucida are composed of two subdomains: 
one closely associated with the sarcolemma the other with the lamina densa. The 
connection between the layers is ionic, not covalent [38]. There does not appear to have 
been any further advances in ascertaining the identity and structure of these filaments. 

Nakao [36] first observed that the basement membrane, which otherwise is continuous, 
is absent in the terminal ends of the invaginations in the finger-like projections of the ends 
of the muscle cells in the lamprey and the tadpole. This absence is unusual since no breaks 
occur in the sarcolemma. 

The extracellular matrix 
The major structural feature of the extracellular matrix is the collagenous network that 

surrounds each cell and which forms the tendons and ligaments that attach to the skeletal 
system. In the endomysium, the fibres are fine and tend to form a lace network around the 
muscle fibre [39]. Branched reticular fibres, now considered to be type III collagen, form 
rows arranged obliquely or perpendicularly to the long axis of the muscle [40]. Larger 
diameter collagen fibres of the perimysium surround the muscle fibre bundles and these 
merge into the major sheets of collagen of the epimysium which cover individual muscles 
to become tendons. 

Fibroblasts, with their flattened dendritic processes, are often present at boundaries 
between adjacent layers of collagen fibres. These fibroblasts, derived from mesenchymal 
cells, produce most of the collagen adjacent to the muscle cell ends. Adipose cells, mast 
cells and macrophages containing lysosomes are regularly noted in the looser connective 
tissues. Eosinophilic leukocytes and other plasma cells occur nearby. Elastin fibres, which 
play a role in the providing some of the elastic properties of the tissue are also present. 

In muscle tissue, the large collagen fibres are almost invariably type I collagen. In 
mammalian muscle, smaller proportions of type III collagen occur, while types IV and V 
are associated with the basement membrane. The collagen fibres embed in a matrix of 
proteoglycans. They are often crimped and run in layers in different directions to provide 
a strong flexible structure. The fibres have a range of diameters according to their position 
and function (from 30 nm to over 100 nm). 

Early studies [31] indicated that finer connections appeared to join the collagen fibres. 
Some external tissues contain 'anchoring fibrils' with the recently discovered type VII 
collagen [41,42] as the primary structural agent. This collagen forms an extended network 
of these fibrils between anchoring plaques in the lamina lucida of many epithelial tissues 
[43]. Collagen type VII has not been found in muscle or other internal organs. 
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THE MYOTEND1NOUS JUNCTION IN FISH 

Schwarzacher [44] compared muscle fibre-tendon junctions in the seahorse with those from 
the cat, rat, mouse and frog. There were considerable similarities and all the junctions 
revealed folds and finger-like projections at the ends enveloped by the basement membrane 
[45]. The myotendon junction of the flowing muscle of the spinal cord of the pipefish was 
similar to the appearance of that in the tadpole tail. In the primitive hagfish (M. glutinosa 
L.), spine-like projections and thread-like cones between the lamina densa and the external 
surface of the sarcolemma were found [35]. They were considered to be the same feature, 
namely ring-like structures that, according to the angle of section, could appear either as 
spines or threads. Fibres from the I band (actin fibres) attaching to the sub-sarcolemmal 
surface in electron-dense areas were observed and were considered to be analogous to Z 
discs [35]. The sequence of events in the longitudinal growth of myofibrils of the skeletal 
muscle of Macropodus opercularis is that high ribosomal concentrations occur in the short 
terminal myofibril region along which actin filaments are formed [27]. As the terminal 
portion enlarges, myosin filaments are evident and A and I bands appear, followed by the 
Z disc which forms in close contact with the sarcolemma and gradually detaches from it. 
In the lamprey, the sarcolemma at the terminal end of the invagination frequently showed 
specific coupling with the cisterns of the sarcoplasmic reticulum. The basal lamina was 
partially or completely deficient in this area [36]. Although this allowed for the possibility 
of collagen fibres to be in direct contact with the sarcolemma, no definite relationship 
between them was found. 

Recent studies 
The three-dimensional structure of the junction and the effects of post-mortem storage 

have recently been reported [46-48]. In the blue grenadier (Macruronus novaezelandiae 
Hector), a network of fine collagen fibres emerges from the myocomma to envelope the 
muscle fibre along its length (Figure 1) [cf. 49,50]. The muscle fibres fit into socket-like 
indentations in the myocomma which are revealed when the muscle fibres are removed 
[48]. 

The microstructure at the myotendinous junction at the base of a fibre reveals folds and 
invaginations in the fibre ends filled with fine collagen fibres (Figure 2,3) which may 
protrude up to 10 pan into the fibre end. The sarcolemma forms a continuous boundary to 
the cell (Figures 2,3,4), but the basement membrane lying outside this appears to be 
discontinuous near the ends of the invaginations which often occur in close apposition to 
a vesicle of the sarcoplasmic reticulum [48]. Fine connections of an unknown nature exist 
between the collagen fibres, between these fibres and the basement membrane, and 
between the basement membrane and the sarcolemma (Figure 5,6). Within the muscle cell, 
the regular banding pattern typical of skeletal muscle is evident (Figure 2,3,4) and fine 
filaments, resembling actin, proceed from the what appears to be the last Z disc to the 
inner surface of the sarcolemma, where they appear to be attached by some electron-dense 
material (Figure 4). In all respects, these studies confirm the nature of the myotendinous 
junction as discussed above. The structure at the periphery of the fibre is also typical [48]. 

It has recently been shown in guppy muscle (Lebistes reticulates) that the structure of 
what appears to be the terminal Z disc is not a Z disc but some as yet uncharacterized 
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electron-dense band. The actin bundling protein alpha-actinin was absent and actin 
filaments were observed to pass through the band without any alteration in orientation as 
indicated by decoration with heavy meromyosin [51]. 

FISH COLLAGENS 

The collagens of fish are, in general, much more easily solubilised than those of mammals. 
The major collagen present is type I [1,52]; type II has been found in the cartilage, skin 
and notochord of lampreys [53-55]; type V has been reported in carp and spotted mackerel 
[57] and in lamprey along with type IX [56]. Evidence for the fibre-forming type III 
collagen common in mammals has not been found in any investigation to date. Type IV 
has not been reported either, probably because it has not been specifically sought. 
Nonetheless, fish have quite clearly delineated basement membranes and it is reasonable 
to assume that type IV collagen is present. In the intramuscular tissue of teleost fish only 
types I and V have been demonstrated to be present. 

Piez [57] was the first to demonstrate the presence of three different a-chains in the 
skin of cod and more recently they were also reported in rockfish [58]. Kimura [52] and 
Kimura and Ohno [59] found the a 1 a2a3 heterotrimer of type I collagen in the skin of 
carp and alaska pollock, whereas the swimbladders of these species contained the dimer 
a 1 2a2. This indicated tissue-specific localisation of the two molecular forms. The three 
different a-chains in the type I collagen of the skin of fish from ten different orders was 
reported, but the occurence was not consistent within an order. The widespread occurrence 
of three different a-chains led the authors [60] to suggest that the gene for the a3 chain 
may be universally present in teleosts, having arisen about the time of the adaptive 
variation of the bony fish, but that it may be quiescent or only poorly expressed in some 
species. In contrast, the collagens of the lower vertebrate species, such as lamprey and 
shark, do not exhibit the a3 chain at all. The occurrence of the a 1 a2a3 trimer in the type 
I collagen from the skin of the blue grenadier was also reported [61]. Within the muscles 
of fish, studies of the type I collagen of the myocommata indicate that eel and mackerel 
have the ala2a3 heterotrimer, that saury contains only al and a2 chains and that carp 
and chum salmon seem to possess two different heterotrimers, with a 1 2a2 as a major 
component and ala2a3 as a minor component [62]. 

The presence of type V collagen in the white muscle of carp in a higher proportion than 
it occurs in mammalian muscle has recently been reported [56]. Electrophoresis of the 
fractions, after treatment in reducing conditions with 2-mercaptoethanol, did not change 
the band pattern, indicating the absence of reducible thiol bonds and hence the absence of 
type III collagen. Further studies showed the presence of type V in lizard fish, japanese 
eel, sturgeon, spotted shark and lamprey, suggesting widespread occurrence of type V in 
both elasmobranchs and teleosts [63]. The relative concentration of type V collagen to type 
I was higher in the endomysial fraction than in the myocommatal fraction from carp and 
spotted mackerel. Both the type I and the type V were less soluble in the endomysial 
fraction than in the myocommatal fraction. Three distinct chains of type V were reported 
to occur in the molecular forms a 1 2a2 and a la2a3. A higher proportion of the 
heterotrimer was found in the endomysium in comparison to the myocommata. This recent 
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evidence indicates that, not only can there be differences between major tissue groups (e.g. 
muscle, skin or swimbladder), but that differences in the chain structure can occur within 
different domains in the one tissue. These differences in chain composition are likely to 
result in slightly different properties and stabilities in the collagen. 

In fish muscle, type V collagen probably plays a role similar to that of type III in 
mammalian muscle in that it forms copolymers with type I and acts to control fibril 
diameter [64-66]. Collagen fibrils of different diameters are to be found in the 
myocommata near muscle fibre ends and in the invaginations of the myotendinous junction. 
Borresen [67] developed a method for preparing the muscle cell envelope from cod (Gadus 
morhua). These envelopes were tubular structures with an outer three-dimensional network 
of fibres (30-60 nm in diameter) and an inner membrane about 2000 nm thick. Further 
work using this method showed that the cell membrane was composed of three layers [49]. 
The innermost layer, the sarcoplasmic membrane, was 8-16 nm thick. The middle layer, 
the basement membrane, was 50-70 nm thick and the outer layer, which was mostly 
collagen, was approximately 600-1100 nm thick. This collagen was shown to be type I, 
possessing a chain structure a 1 2a2 containing the acid- and heat-stable cross-link hydroxy-
lysino-5-keto-norleucine. 

Collagen content and texture 
The content of collagen in fish muscle varies considerably from species to species and 

is found in increasing proportion in the tail region. In the main edible portion, 
concentrations of 0.3% to 3% are common [1,52,68], but even within species there is 
seasonal variation as the body reserves are depleted during spawning and migration. Since 
muscle is not conserved there is greater reliance on the connective tissues to hold the fish 
together. 

Figure 1. Pre-rigor blue grenadier muscle. Fine collagen fibres (C) connect the muscle 
fibres (F) to the myocomma (M). Bar 100 Am. 

Figure 2. Muscle fibre end from a pre-rigor fish showing collagen-filled (C) grooves and 
folds bounded by the basement membrane. Bar 5 Am. 

Figure 3. Pre-rigor fish at a muscle fibre end with an elongated collagenous invagination 
penetrating into the myofibrils. Bar 5 gm. 

Figure 4. Muscle fibre base showing fine filamentous fibres (arrow) extending from the 
terminal segment to the inner surface of the sarcolemma (S). Bar 2 Am. 

Figure 5. Cross-section of a groove at the muscle fibre end showing well-defined 
sarcolemma (S) and basement membrane (arrow). Bar 500 nm. 

Figure 6. Detail of Figure 5 showing fine connections (arrow) between collagen fibres, 
in cross-section, and basement membrane. Other connections across the lamina 
lucida between the basement membrane and the sarcolemma and between 
collagen fibres are evident. Bar 100 nm. 

Figure 1 reproduced with permission from the Journal of Food Science, 50 (1985) 975. 
Figures 2, 3, 4, 5 & 6 reproduced with permission from the Journal of the Science of 
Food and Agriculture, 44 (1988) 245. 
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Figure 1. Figure 2. 

Figure 3. 	 Figure 4. 

Figure 5. 	 Figure 6. 
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Collagen content should affect the textural properties of the muscle but this relationship 
is not straightforward because of the seasonal turnover and other species effects. Sato et 
al. [68] investigated the collagen content and the texture of twenty two species of fish and 
concluded that there was a broad relationship between collagen content, swimming motion 
and the raw texture of the flesh prepared for sashimi. A high collagen content (near 2%) 
meant that the species were too tough for sashimi. Hatae et a/. [69] also reported a 
significant correlation between collagen and raw texture. In cooked fish, the reverse is true 
and the collagen softens and the myofibrillar component toughens to become the dominant 
component [70]. Indeed, a model has been proposed to explain textural differences 
between species on the basis of fibre diameter and the amount of coagulated sarcoplasmic 
material that sticks the fibres together and impedes them sliding across on another when 
chewed [71]. Other workers have found no relationship between collagen and the raw 
texture in a limited number of species [72]. 

It is well established, that in mammalian tissues, collagen cross-linking increases with 
the age of the animal and that the tissue increases in toughness. Because of the seasonal 
changes occurring in most fish species, this relationship is less clear. It is not just the 
amount or proportion of collagen present but the degree to which it is crosslinked that 
affects texture. Montero and Borderias [73] measured collagen content, the proportions of 
a, i3 and -y chains and the shear force in the muscle of trout (Salmo irideus Gibb) from 
four different size (age) groups. Although there was a higher proportion of connective 
tissue in the oldest fish, it had slightly higher acid solubility and fewer cross-links and did 
not give higher shear strength values. It is generally regarded that there are higher levels 
of connective tissue near the tail region [6] and this was confirmed recently for trout and 
hake, with higher levels of connective tissue in the ventral than the dorsal portions for the 
trout [74]. Shear strength values were highest nearer the tail as was a higher proportion 
of insoluble collagen. The amino acid composition, chain structure and type of collagen 
from trout and hake were also characterised in samples from the skin, myotomes, fasciae 
and myocommata. The collagen from all sites in both species was mainly type I and type 
III was not detected. The amino acid compositions differed from mammalian sources and 
the fish skin collagen was less cross-linked than the collagen from the fish muscle. 

POST-MORTEM CHANGES 

During post-harvest storage, textural changes occur in many fish species long before they 
are spoilt. The result is that the flesh softens and gapes, trimming losses occur, products 
have a poorer appearance and are downgraded, and, in extreme cases, mechanical 
processing becomes impractical since the fillets fall apart in the skinning operation. 
Softening and gaping is a common problem in the merluccid hakes [75-78] and in the 
related species blue grenadier (hold, M. novaezelandiae) [79]. Farmed species also have 
this problem [80]. It is clear that there are differences between related species and that 
circumstances affect whether gaping occurs. Whole cod stored in ice showed no gaping 
whatsoever, even after 6 weeks storage when the fish were thoroughly spoilt [81]. This 
lack of change was further borne out with measurement of the forces need to pull samples 
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apart at the myocommata. No change in cohesiveness was found for cod stored in ice for 
up to 26 days. Whole muscles loaded to failure fail at or near the myotendinous junction 
in the region between the cell membrane and the lamina densa of the basement membrane 
[82]. 

Post-mortem change attributed to changes in the collagen. 
Unfortunately, there are few published investigations into the nature of the specific 

changes that occur. Using goldfish (Carassius auratus) as a model species, changes in the 
structure could be observed in post-rigor fish held in ice for 3-4 days, in comparison to 
pre-rigor fish [83]. Shrinkage and distortion of the myofibres, an increase in the 
extracellular space, loss of configuration of the endomysium and breakdown of the 
connective tissue occurred. Further changes to these structures occurred with subsequent 
storage. Similar structural changes in the flesh of the major carp (Labeo calbasu) during 
chilled storage were also observed histologically [84]. Disorganisation of the structure was 
evident when the samples were examined after 7 days. By 14 days, fissures appeared in 
the cells and partial disappearance of the connective tissue structure was apparent. 

Texture, determined as shear force using the Kramer shear press, was related to an 
increase in heat-soluble collagen in rockfish stored in ice [85]. A significant decrease in 
the solubility of collagen from trout muscle occurs during rigor, followed by an increase 
in solubility during storage post-rigor [86]. The proportions of heat- and acid-soluble 
collagen increased during and after rigor while the levels of insoluble collagen and shear 
strength progressively decreased. Proteolytic activity increased post-rigor. 

Changes in the myotendinous junction observed with SEM and TEM 
The structure of the myotendinous junction of the blue grenadier did not change during 

rigor mortis, but after 8 days storage in ice the basement membrane and the collagen 
fibrils in the tubular invagination were degraded [48]. Progressive deterioration of the fine 
collagen results in detachment of the muscle fibre from the myocomma (Figure 7) and 
notable deterioration within the muscle fibre end leading to the production of vesicles 
(Figure 8). This is in accord with the results shown by SEM where the fine collagen fibres 
of the cell envelope are degraded (Figure 9) and muscle fibres are shown detached from 
the myocomma (Figure 10). 

The progressive deterioration and disruption of the structure is consistent with it being 
attacked by enzymes. Collagen is normally considered to be quite a stable protein, yet 
these micrographs indicate digestion within a few days at 0°C. This implies that either 
these collagens are very susceptible to attack, or that the enzymes present are very active. 
Even if the extent of disruption seen in Figures 7 & 8 is partly an artefact of preparation, 
the structure must have been severely weakened to allow this to occur [46-48]. 

Use of antibodies to identify collagen fibre types and to detect changes 
An immunogold method [29, Bremner unpublished] using an antibody to purified fish 

type I collagen [61] and protein A-gold complex was used to label the myocommatal 
collagen (Figures 11,12). The individual collagen fibres were not defined well enough to 
be able to state unequivocally whether, or not, they were labelled with the gold. Collagen 
in situ can be difficult to stain and, in these preparations, the normal post-fixation with 
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osmium could not be included since this would have destroyed the antigenic sites. Had the 
technique proved adequate, then antibodies to other collagen types would have been used 
to localize them in the tissue and identify the fine fibrils in the invaginations. These fibrils 
may be copolymers of more than one type with the minor component buried in the interior 
as occurs in other tissues [64-66] making them inaccessible for reaction with antibody 
unless suitably treated. 

Although rockfish soften in storage and their collagen becomes more heat-soluble, no 
collagen breakdown products were detected by an antibody to bovine type I collagen when 
extracts were run on electrophoretic gels [87]. This antibody reacted with intact collagen, 
with cyanogen bromide peptides and with peptides produced by collagenase treatment of 
purified rockfish collagen. If the collagen was degraded, either the fragments were 
degraded so rapidly once they were released from the fibrils that they were lost in the 
extraction procedure, or they were of such nature that they did not react with the antibody. 
If the detected increase in heat-soluble collagen was due to another collagen type present 
in minor proportion, such as type V, then reaction of the fragments with the antibody 
could not be expected. 

Proteases and collagenases 
Collagen is degraded by a number of enzymes acting in concert, with the initial attack 

on undenatured molecules performed by a collagenase acting at a specific site, followed 
by other enzymes acting on the fragments [88]. Historically, the mammalian collagenases 
are defined by their ability to cleave the triple helical region of the native collagen 
molecule at a specific locus. The discovery of a broader range of collagens with globular 

Figure 7. 	Muscle fibre base has separated from the myocommata, the invaginations 
are empty and amorphous material occurs near the collagen fibres in blue 
grenadier stored 8 days in ice. Bar 1 Am. 

Figure 8. 	Vesicles have formed in the ends of the myofibrils. The sarcolemma is 
mostly intact (arrows) but only degraded material remains in the 
invaginations. Bar 1 Am. 

Figure 9. 	Disruption of fine collagen fibres (C) of muscle cell envelope, allowing 
muscle fibres (F) to part from myocomma (M) in spotted trevally stored 4 
days in ice. Bar 100 Am. 

Figure 10. Muscle fibre (F) completely detached from myocomma in blue grenadier 
stored 11 days in ice. Bar 100 Am. 

Figure 11. Gold particles (15 nm diam.) label myocomma (M) of pre-rigor blue 
grenadier, with only a few random labels in the muscle fibre (F). Bar 1 
Ant 

Figure 12. Gold particles label myocommatal collagen fibres of rock cod fixed within 
30 seconds of death. Bar 1 Am. 

Figures 7,8,9 & 10 reproduced with permission of the SCI from the Journal of the Science 
of Food and Agriculture 30(1986) 1101. 
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Figure 7. Figure 8. 
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Figure 11. Figure 12. 
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domains and discontinuities in the helix has required that this simple definition be 
modified. Furthermore, serine proteases and a heterogeneous group of proteases can 
degrade some collagen types. Two main groups of collagenases have emerged - the 
'classical' collagenases which degrade types I, II and III collagens and type-specific 
interstitial and basement membrane collagenases which attack types IV and V [89]. 
Collagenases are mostly metallo-endoproteases having a pH optimum in the range 7 to 8 
which are activated and stabilised by calcium ions. Consequently, they are inhibited by 
metal chelators such as EDTA. They have been isolated from a wide variety of tissues, 
but not as yet from fish muscle tissue although collagenase from fish caeca and pancreas 
has been known for some years [90]. 

The collagenases that degrade types I, II and III collagen do not affect types IV and V 
collagen. Specific collagenases which degrade type IV have been isolated from tumours, 
but it can be degraded by other metalloproteinases including gelatinase, proteoglycanase, 
serine proteases, neutrophil elastase and mast cell chymase. Type V is attacked by 
metalloproteinases which are also gelatinases of a molecular weight greater than the 
classical collagenases [89,91]. 

Type V collagen isolated from bovine bone is susceptible to attack by trypsin at 35°C 
[92] at a site which may represent the natural target domain for cleavage in vivo and which 
is at the opposite end of the molecule to the site at which type I is attacked by collagenase. 
This indicates that, in vivo, separate enzyme systems are necessary for types I and V to 
be copolymers in the same fibril. 

After synthesis, collagenases are secreted into the extracellular matrix and it is obvious 
there must be specific inhibitory mechanisms to prevent spontaneous tissue destruction. 
The collagenases, present in the tissue in latent form as zymogens, are activated by a wide 
variety of proteolytic enzymes such as trypsin, plasma kallikrein, cathepsin B, plasrnin 
[93], but once activated they must be controlled. In human tissue, the main control 
mechanism seems to be through small cationic glycoproteins known as Tissue Inhibitors 
of Metallo Proteinases, or TIMP. They are ubiquitous and their relatively low molecular 
weight, 28.5 Kdalton, allows them ready access within the extracellular matrix where they 
play a major role in collagenase inhibition [89]. Other control mechanisms such as the a2- 

macroglobulin molecule in plasma are too large to penetrate the tissue. 
The basement membrane degrading enzyme, collagenase IV/V -gelatinase, is more 

easily released by kallilcrein and becomes active in the extracellular space before other 
lysosomal proteinases are released [94]. Tissue kallikrein, a serine protease (specifically 
an arginyl esteropeptidase), also activates type I collagenase and is a likely candidate to 
perform these functions in vivo. It may also be an activating factor in post-mortem tissue. 
There are about twenty kallikreins which seem to be ubiquitous. So far they have only 
been reported in the skeletal muscle of the rat. The lysosomes in fish muscle are 
commonly associated with the connective tissue [94] so that cathepsin B, which could also 
activate this collagenase, would be released by post-mortem disruption of the lysosomes. 
The concentration of calcium ions would not be a factor limiting collagenase activity due 
to leakage from the sarcoplasmic reticulum. Indeed, it has been shown that the introduction 
of Ca + + into fibroblasts promotes a cascade of proteolytic events culminating in activation 
of collagenase [93]. 

The question is whether these mechanisms are present in fish tissue and whether they 
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are active at post-mortem pH and at chill temperatures. The type IV/V basement 
membrane collagenase isolated from human leukocytes has a pH optimum between 7 and 
8, with about 50% of this optimum activity at pH 6 [96]. No information relating to 
kallikrein in fish has been found but it is likely to be present and, since it is active at 
physiological pH, it is likely to retain activity at post-mortem pH. However, it too is 
subject to the effect of inhibitors in the serum, similar to trypsin inhibitors. Cathepsin B 
may not be very active at post-rigor pH. 

Freezing damage 
Although a comprehensive coverage of frozen storage changes is outside the scope of 

this paper, it is pertinent to note here some of the recent observations that changes in the 
collagen contribute to changes in texture which occur in frozen stored fish. 

Both trout (S. irideus) and hake (Merluccius merluccius Linnaeus) collagens exhibited 
a decrease in the proportion of a-chains and a concomitant increase in 7- chains during 
frozen storage at -18°C after only 25 days, with further changes occurring progressively. 
The amount of insoluble collagen in the hake samples also increased with the period of 
storage [97]. This increase in collagen insolubility in hake flesh and decrease in the 
percentage of heat-soluble collagen with period of frozen storage was confirmed in further 
studies and it was suggested that aggregation of hake collagen was due to reaction with 
formaldehyde produced by breakdown of trimethylamine oxide [74,98]. This is also 
consistent with the other. reports [2,100] that suggested that the remnants of the 
sarcoplasmic reticulum could serve as a glue to cement the fibres to produce a tougher 
product, the opposite of the situation that occurs in chilled storage. 

Walton and Gill [50] suggest that the collagen layer of the endomysium may be the 
cementing agent responsible for cell strength. They found that the level of salt soluble 
collagen of Atlantic cod (G. morhua) decreased with frozen storage and high molecular 
weight complexes of both myocommatal and endomysial collagens were formed. They also 
suggested the possibility of complexes between sarcoplasmic proteins and the endomysial 
collagen, if such complexes were not denatured during cooking they would increase the 
toughness of the flesh in a manner consistent with the model proposed by Hatae et al. 
[71]. 

Changes in the muscle 
It has long been known that fish flesh has greater catheptic activity than mammalian 

muscle [101] and that it possesses higher concentrations of enzymes responsible for 
proteolysis and amino acid metabolism [102]. Neutral proteases are found in many species 
[103]. Recent work, stimulated by the need to understand the modori phenomenon during 
the setting of surimi gels, has uncovered a number of proteases, mostly serine proteases, 
bound to both the sarcoplasmic and myofibrillar fractions of the muscle in a variety of 
species [104-107]. These enzymes are active during the heating step in forming fish gels 
and it is not clear what role they may play in the live fish, but it seems unlikely that they 
are active in the same way in chill stored fish. Cathepsin L from lysosomes has been 
implicated in the extensive muscle softening observed in chum salmon [108] and has been 
shown to increase in activity in the muscle of ayu (sweet fish, Plecoglossus altivelis) as 
the fish approaches maturity. Lysosomes have been located within fish muscle cells mostly 
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concentrated at the periphery [95]. These lysosomes break down post-rigor. Other 
cathepsins (such as cathepsins A and B) require a pH lower than occurs in post-mortem 
fish muscle. Even the pepstatin-sensitive cathepsins (mainly cathepsin D) are not active at 
pH 6.5 [109]. However, in fish such as tuna, where the pH is often lower than this, it is 
likely to be one of the factors responsible for the honeycomb problem in the flesh that is 
sometimes encountered [110]. White croaker (Micropogon opercularis) contains an 
endogenous serine proteinase which degrades the cytoskeletal network [111,112], which 
initiates protein turnover in vivo and which can completely disrupt the myofibrils (at 37°C) 
and degrade the major proteins [113]. When croaker were stored at 0°C for 7 days, after 
dipping in azide to prevent bacterial growth, only minimal changes were found in the 
major proteins of the myofibril. There was considerable breakdown of nebulin, a major 
cytoskeletal protein of the trabecular network [111]. Desmin, troponin and Z lines were 
shown to be stable under these conditions, whereas these entities are known to be degraded 
in post-mortem storage of beef muscle along with titin and alpha-actinin [114]. The 
connectin fraction of carp muscle also exhibits change when extracted from fish that have 
been stored chilled for 7 days at 25°C [115]. 

There are two Ca+ + -activated neutral proteinases that are considered to be responsible 
for post-mortem softening of sheep muscle [116,117]. Calpain I requires only 0.1 mM 
Ca + + for activation while Calpain II is active at higher concentrations of calcium. Both 
enzymes are subject to inhibition by calpstatin. Calpain II has been found in both carp 
(Cyprinus catpio [118] and tilapia (Tilapia nilotica x Tilapia aurea) [119]. Calpstatin and 
a trypsin inhibitor is also present in carp [120]. 

OVERALL MECHANISMS 

Hatae et al. [121] examined electrophoretic patterns of sarcoplasmic alkali-soluble and 
stroma proteins of five species of fish stored for 14 days at 4 °C as well as physically 
measuring a range of textural properties using a General Foods type Texturometer. They 
concluded that post-mortem softening of the flesh was "more affected by the changes of 
the muscle structure than by the changes of the component proteins". Similarly, Toyohara 
and Shimizu [122] stated that "the weakening of muscle may be explained not as a 
proteolytic breakdown of myofibrils, but as a decomposition of the muscle structure". 
These observations, in conjunction with those presented here, lead to the conclusion that 
integrity is due to minor components which link the major components together and that 
proportionately small changes in these minor components can have disproportionately large 
effects on the structure, and hence the texture, of the flesh. 

There are three possible explanatory mechanisms for post mortem softening:- 

(a) some major components within either the myofibrils or in the extracellular 
connective tissue degrade, or 
(b) links, bonds and connections that organise and stabilize the structure between the 
muscle components degrade, or 
(c) both of these mechanisms occur. 
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Hypothesis (b) has considerable attraction as an explanation of the changes occurring early 
in the storage period before they are sufficiently gross to be detected by such means as 
alteration in an electrophoretic pattern. 

CONCLUSION 

The structure of fish flesh is complicated and intricate and the interrelationships between 
all the components is, as yet, obscure. Topics for further research include:- 

• Establishing the type and location of minor collagens in fish muscle 
• Establishing the nature of the fine connections in the myotendinous junction 
• Determining the presence, location and activity of lcallilcrein 
• Extracting and characterizing collagenases and proteases that act on the 

extracellular matrix 
• Further identification of enzymes that degrade the cytoskeleton and their 

occurrence in commercial species 
• Examining the use of suitable inhibitors to both extra and intracellular 

enzymes 
• Exploring further uses of these enzymes in food processing. 

The initial softening in texture that occurs in many species is due to changes in the 
cytoskeleton and in the collagen produced by enzymes acting on structural links and bonds. 
Internally, serine proteases and cathepsin L are the most likely agents, while the 
extracellular matrix collagenases active against collagen types I, IV and V are implicated 
as initiators of breakdown. 

There is a need for considerably more work to elucidate the components of fish muscle 
and the processes of deterioration. Only then can specific methods to minimise these 
effects be placed on a rational basis. 
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Muscle Fiber—Connective Tissue Junctions in the 
Fish Blue Grenadier (Macruronus novaezelandiae). 

A Scanning Electron Microscope Study 

H. ALLAN BREMNER and IAN C. HALLETT 

	 ABSTRACT 	  
The junctions between the muscle fibers and the connective tissue 
of blue grenadier (Macruronus novaezelandiae Hector) were studied 
using scanning electron microscopy. In fish before, during, and just 
after rigor mortis, the muscle fibers are attached to the myocom-
metal connective tissue sheets by fine collagenous fibrils. After 
chilled storage these fibrils deteriorate and the muscle fibers gradual-
ly detach from the myocommata. It appears that the fibrils are 
destroyed by endogenous collagenases and/or other proteinases. 

INTRODUCTION 

THE FLESH of teleost fish is constructed of adjacent mus-
cle blocks called myotomes separated from each other by 
collagenous sheets called myocommata (Nursall, 1956). 
The myotomes on both sides of the axial skeleton each take 
the form of double cones which fit together along the long 
axis of the fish body to give the appearance at the surface 
of a series of W-shaped sections resting on their sides (Fig. 
1). Within each myotome the muscle fibers (myomeres) 
run approximately parallel to each other but at varying 
angles to the myocommatal sheets to give the necessary 
moment for swimming during contraction. The myocom-
mata are connected internally to the skin and the skeletal 
system and are also linked to the membrane dividing the 
fish into epaxial and hypaxial planes and to the median 
vertical septum. Further details of the structure and func-
tion of the system as a whole can be found in Nursall 
(1956) and Alexander (1969). 

The junctions between the myomeres and the myocom-
mata are reported to be formed by fine collagenous proc-
esses which have their origin in the myocomma and which 
then form the sheaths surrounding each muscle fiber (Love, 
1970, Love et al., 1969). The microscopy of fish flesh has 
been reviewed by Howgate (1979). Most electron micros-
copy on fish muscle has been done on the fibers themselves 
using the transmission mode (TEM) (Jarenliack and Lilje-
mark, 1975; Liljemark, 1969). Relatively few reports have 
included scanning electron microscope (SEM) data. Alma 
(1982) published SEM studies on isolated cod muscle cell 
envelopes and Schaller and Powrie (1971) published SEM 
micrographs of trout muscle fibers at various stages post-
mortem. Despite the importance of the myomere/myo-
commata interface both in vivo and postmortem, its study 
has been neglected. One reason for this could be the diffi-
culty in preparing suitable samples. 

Although there are differences in the gross organization 
between fish muscle and that of terrestrial animals, in 
which the muscles terminate in tendons which attach to 
the skeletal framework, the ultrastructures have been found 
to be similar. For this reason, and because no text describ-
ing fish muscle specifically could be found, the terminol-
ogy applied to muscle by Gould (1973) is used in this 
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paper. Thus the term plasmalemma (sarcolemma) applies 
to the cell membrane of the muscle fiber. External to this 
is the basal lamina (basement membrane) to which are 
attached the collagenous (reticular) fibrils of the endomy-
sium that run into the surrounding perimysium which in 
fish is continguous to the myocomma. 

Blue grenadier, known in New Zealand as hoki, is an 
increasingly important trawlfish (Patchell, 1982) related to 
the merluccid hakes (Bremner, 1980; Nelson, 1976). Freez-
ing of fish in rigor is well known as a cause of gaping, the 
name given to the phenomenon when the connective tissues 
fail to hold the muscle blocks (and fibers) together (Love 
et al., 1969). In some species such as blue grenadier the 
incidence of gaping occurs progressively postrigor even 
during chilled storage. Fillets taken from these fish pre-
rigor, or soon after rigor has resolved, generally do not 
gape whereas fillets from fish stored longer than about 4 
to 5 days on ice, gape readily either when first cut or dur-
ing handling. Blue grenadier is thus a suitable subject for 
the study of postmortem changes in the myomere/myo-
commata junction. This paper reports the development of 
techniques used to expose the myomere/myocommata 
interface for SEM and shows the results obtained with 
blue grenadier (Macruronus novaezelandiae Hector) muscle 
prerigor, during rigor, postrigor and after chilled storage. 

MATERIALS & METHODS 
BLUE GRENADIER from a number of sources were used in this 
study. Muscle samples were taken from the anterior dorsal area at 
approximately the 13th, 14th and 15th myotome, counting from 
the head. 

Fish L were sampled immediately after catch on board the 
Tasmanian Fisheries Development Authority vessel FV 'Challen-
ger', and were iced and used to study changes occurring during rigor 
mortis and subsequent storage in ice (Table 1). Samples from these 
fish were fixed in 3.2% glutaraldehyde in 0.16M phosphate buffer 
containing 2% NaC1 and 0.5% sucrose to increase osmolarity (Kryvi, 
1977). They were sent in fixative to the DSIR Mt. Albert Research 
Centre, Auckland, N.Z. After a short wash in buffer, samples were 
frozen, in dichlorodifluoromethane (CCl2F2) at —158° C and trans-
ferred to liquid nitrogen (LN2) at —I96 ° C. Frozen samples were 
fractured under liquid nitrogen by striking a cooled sharp blade 
strategically positioned over the sample. The frozen samples were 
then freeze dried in a modified vacuum evaporator with a copper 
block system cooled by LN2 (Ladd Research Industries, Vermont, 
USA.) 

Table 1—Sampling times for blue grenadier caught by F. V 'Challen-
ger', April 1983 

Sample 

Time 
sampled 

(hr) 
Time 
elapsed Comments 

L1 1909 Fresh prerigor fish straight 
out of the net. 

L2 2045 66 min Fish starting to go firm, 
packed in ice. 

L3 2248 3 hr 	40 min Fish firm, in rigor. 
L4 1100 4 day 16 hr Post rigor 
L5 1000 8 day 13 hr Post rigor 
L6 1000 10 day 13 hr Fish starting to deteriorate 
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Fish M and Fish N, obtained from Sanfords Ltd .. Auckland, .z. 
and from Sealords, Nelson, N.Z. respectively were held in ice. Sam­
ples from these fish were fLxed, freeze-fractured then either freeze­
dried or dehydrated in an ethanol series and then dried at the cri· 
tical point from C02 (Samdri 780, Tousimis Research Corp., Mary· 
land, USA.). 

Fish 0 were frozen pre-rigor on board the N.Z. Ministry of 
Agriculture and Fish research vessel FV 'James Cook', and samples 
were held frozen at -30°C at the Mt. Albert Research Center. Sam­
ples were taken by allowing the fish to rise in temperature to the 
point where they could be cut, refreezing the sample in L 2 or 
CCI2F2 before fracturing and subsequent freeze drying. 

Solvent treatments 

Samples from Fish 0 were placed in stainless steel mesh boats 
in glass vials and using gentle agitation on a rotating wheel (6 rpm) 
at 2o•c were treated with various solvent solutions for either I. 4 
or 6 hr. These treatments were chosen to preferentially solubilize 
or di perse different flesh components in order to expose inner 
surfaces. The solutions used were: lM calcium chloride to extract 
soluble components of the connective tissue (Robert and Corn te , 
1968); 6M urea to disrupt hydrogen and nonpolar bonds (Tsuchiya 
et al., 1980); 1% sodium dodecyl sulphate (S DS) as a secondary 
bond breaker to disrupt hydrogen and hydrophobic bonds (Connell, 
1965); buffered O.SM KCI to break ionic bonds (Anderson and 
Ravesi, 1968); or 1 mg/mL trypsin solution pH 7 in 0.14M NaCI 
to effect proteolysis. Treatment with distilled water was included 
as a comparison. 

After fixation (Kryvi, 1977) these treated samples were dehy· 

drated in an ethanol series then critical-point dried. None of these 
treated specimens was freeze fractured. After drying, all the pre· 
pared samples were mounted on stubs, sputter-coated with gold 
and examined with a Phillips 505 scanning electron microscope at 
the Mt. Albert Research Center. 

RESULTS 

CRITICAL-POI T DRIED SAMPLES were often too dis­
torated to give good resul ts ; excessive folding of the sam· 
pies could be seen by the naked eye. Attempts to restrain 
the critical point dried samples reduced visible folding but 
did not significantly reduce the distortion of muscle fibers 
and myocommata when viewed in the SEM. Freeze-dried 
samples remained similar in gross visual morphology to 
unprocessed samples and when viewed in the SEM showed 
little sign of folding or displacement of fibers or myocom­
mata . 

General description 

The myomeres butt on to the myocomma (Fig. 2) 
to which they are attached by a fine network of collagen­
ous processes that proceed from the myocomma to form 
the outer sheath on each myomere as noted by Love e t al. , 
(1969) . The myomeres appear to fit into sockets on the 
myocomma and where the myomeres have been completely 
removed these sockets are evident ( Fig. 3). The ends of 

Fig. 1-Schematic d iagram of the layout of 
fish muscle~ showing the interlocking W· 
shaped myotomes separated by myocom­
mata and a single myotome showing the 
complex double cone shape and rhe ap· 
proximate orientation of the myomeres at 
rhe surface. Adapted from El/is et al. (1978). 

F ig. 2-Fine collagen fibrils C connect the 
myomeres F to the myocomma M. Fish 
L 1 prerigor. Bar O. Tmm. Magnification : 
269X. 

Fig. 3-Sockets on the myocomma. Fish 
M. Bar 0. 1 mm. Magnifica ti on : 263X. 

Fig. 4-/nterior view of a socket on the 
myocomma. Spherical blobs may be rem­
nants of former connections to the myo­
mere. F ish M. Bar 0. 1 mm. Magnification: 
B!iOX. 

Fig. 5-The base of a fiber detached from 
the myocomma. No te raised points of 
former attachment. F ish N. Bar 0.01 mm. 
Magnificarion : 2880X. 
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detached fibers (Fig. 5) and the inside of the sockets 
(Fig. 4) show either raised surfaces or small blobs of ma-
terial that may previously have formed points of attach-
ment. 

Changes during rigor mortis 
The structure of the pre-rigor muscle fiber with the 

typical elongated myofibrils near the periphery of the 
fiber and the more polygonal myofibrils in the interior is 
visible in Fig. 6. The connective tissue network of the peri-
mysium has 'peeled' back from the fractured surface to 
reveal the plasmalemma and endomysium on the fiber 
surfaces. Viewed from different angles (not shown here) 
regular elevations running transversely across the fiber 
stood out in relief beneath the plasmalemma as observed 
in trout muscle by Schaller and Powrie (1971). A general 
view of typical fiber surface is shown (Fig. 7). 

As the fish entered rigor the processes attaching the 
myomeres are still evident but in samples taken from fish in 
rigor, interfaces between the muscle fibers and myocom-
mata are indistinct with the ends of fibers from adjacent 
myotomes jammed hard together (Fig. 8) and the trans- 

verse elevations are still evident (not shown here). 
After 5 days storage in ice, when the fish are in the post-

rigor state the connections between fibers and connective 
tissue are less evident (Fig. 9) and at the fiber surface both 
the endomysium and plasmalemma layer beneath show signs 
of degradation (Fig. 10). 

In samples taken after further storage in ice, muscle 
fibers free of connection to the myocommata occur (Fig. 
11, 12) and the general area is often degraded and covered 
in debris (Fig. 12, 13, 14). The T system is still evident on 
the fibrils (not shown here) but the perimysium has gener-
ally deteriorated (Fig. 14, 15) although under the debris 
a fine reticular network is still evident. 

Effects of solvent treatments 

The nature and extent of dissolution or disruption by 
the solvents is fast and uncontrollable and some prepara-
tions are either badly disintegrated or amorphous or unin-
formative after treatment for only 1 hr. 

The powerful action of urea causes nonspecific degrada-
tion noticeable in the myocommatal sheets from which 
'tufts' of fibers readily break away (Fig. 16). Treatment for 

Fig. 7—Detail of muscle fiber surface of 
prerigor fish showing intact perimysium. 
Fish L1. Bar 0.01 mm. Magnification: 
2550X. 

Fig. 8—Fish muscle in rigor. Interfacing 
myocomma M between adjacent myotomes 
runs from top to bottom. Fish L3. Bar 1 
mm. Magnification: 41X. 

— -- 
Fig. 9—Myo fiber connective tissue inter-
face in post rigor fish 5 days in ice after 
catch, no fibrous onnections between mya-
fibers F which slant upwards from bottom 
right to myocomma M which runs across. 
The crumpled layers of myocommatal 
sheets are obvious. Fish L4. Bar 0.1 mm. 
Magnification: 348X. 

Fig. 10—Detail of muscle fiber surface of 
postrigor fish 5 days in ice after catch. 
Both perimysium P and endomysium/ 
plasmalemma EP deteriorating. Fish L5. 
Bar 0.07 mm. Magnification: 2540X. 

Fig. 11 — General view of myofiber/myo-
comma junction 11 days in ice after catch. 
No connections between fibers F and myo-
comma M, which is situated vertically in 
centre. Fish L6. Bar 1 mm. Magnification: 
79X. 

Fig. 12—Detail from Fig. 11. Muscle fiber 
F detached from myocomma M, no fine 
connections. Bar 0.1 mm. Magnification: 
517X. 
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1 hr in a I% SDS solution strips the outer layers of the 
myocommatal sheets leaving the larger, stronger fibers and 
the whole endomysium and plasmalemma, too, is attacked, 
apparently across the I band. Longer treatment with SDS 
(4 hr) accentuates this dissolution which runs transversely 
across the myofibers rather than between the fibrils (Fig. 
17). It was also noted that after SDS treatment the samples 
did not turn yellow in the glutaraldehyde fixative. Yellow-
ing normally occurs due to reaction of the glutaraldehyde 
with free amino groups. 

Trypsin also causes general deterioration of the collagen 
fibrils and etches the collagen surfaces (Fig. 18). The overall 
degradation caused by 1N1 CaCl 2  gives no useful informa-
tion. Muscle fibers dissolve readily in KCI but Fig. 19 shows 
the remnant of a fiber where it joins the myocomma. The 
fiber itself is swollen and hydrated and the perimysium is 
peeled back. With other preparations the endomysium and 
the plasmalemma disintegrates and apparent dissolution of 
the I band across the fibrils can be seen. 

Exposure to water seemed also to result in disruption of 
the transverse system which collapsed below the surface of 
the myofibrils (Fig. 20). Sarcoplasmic proteins are water 
soluble and it is likely that they were extracted. Prolonged 
exposure to water for 6 hr caused more general disintegra-
tion in some fibers both across and between the myofibrils 
(Fig. 21). 

DISCUSSION 
FREEZE FRACTURING followed by freeze drying was the 
best of the methods tested for preparing samples to expose 
fiberimyocommata junctions. The use of solvents to pre-
ferentially remove some muscle components to expose 
underlying structures was hard  to  control. 

The muscle fibers of blue grenadier bed into the myo-
commata and are attached to it by continuations of the 
collagenous fibrils (Fig. 2, 19) as reported for cod by Love 
et al. (1969). In terrestrial animals studies on the myo-
tendonous junctions of the rectus abdominis muscle of the 
bull frog (Ajiri et al., 1978), the tongue of the guinea pig 
(Demmel et al., 1979), the mitral complex of the canine 
(Fenoglio et al. 1972), the papillary, tongue, diaphragm 
and gastrocnemius muscles of the guinea pig (Hanak and 
Bock, 1971) and the extensor carpi radialis longis and 
brevis muscles of the mouse (Trotter et al., 1981) have all 
shown the presence of small filaments, named microfib-
rils (Hanak and Bock, 1971), linking the muscle fibers to 
the connective tissue. Trotter et al., (1981) indicated that 
these microfibrils act as mechanical links at this junction. 
It seems clear from the present work that there are no con-
nections along the course of the fiber and, in agreement 
with the observations reviewed by Gould (1973), the plas- 

Fig. 13—A different area to that shown in 
Fig. 11, several fibers still show some at-
tachment to the myocomma Mend the area 
has degenerated. Fish L6, 11 days in ice 
after catch. Bar 0.1 mm. Magnification: 
188X. 

Fig. 14—General view of muscle fiber F 

ends at a fractured surface. Fish L6 stored 
11 days in ice after catch. Note breakup of 
perimysium P cf. Fig. 6. Bar 0.1 mm. Mag-
nification: 515X. 

Fig. 15—Detail of perimysial P surface of a 

muscle fiber shown in Fig. 14 cf. Fig. 7. 
Bar 0.01 mm. Magnification: 2875X. 

Fig. 16—Sample treated in 6M urea (1 hr). 
Tuft of fibres F loosened free of the myo-

comma. Fish 0. Bar 0.1 mm. Magnification: 
231X. 

Fig. 17—Muscle fibers F treated 4 hr in 1% 
SOS. Note transverse fissures TA Fish 0. 

Bar 0.1 m. Magnification: 359X. 

Fig. 18—Spherical blobs on the surface of 
myocomma from a sample treated with 
trypsin  1 mg/ml  (1 hr). Fish 0. Bar 0.01 
mm. Magnification: 2620X. 
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malemma is independent of the perimysial (or reticulo-
endothelial) fibers (Fig. 6). 

During chill storage the attachments between myomeres 
and the myocomma progressively deteriorate (Fig. 11, 12, 
13) and indeed the whole sarcolemma deteriorates (Fig. 
13, 14, 15). There are similarities to the degradative effects 
of cathepsins and collagenases on beef muscle reported by 
Eino and Stanley (1973). 

The deterioration on the fibers (Fig. 5, 13) and the sock-
ets (Fig. 4) is similar to that obtained with trypsin treat-
ment (Fig. 18) and at times with KC1 solutions (not shown). 
It is inferred from this that the progressive breakdown 
during storage is due to enzymic activity and that the 
enzyme(s) responsible must have powerful collagenolytic 
properties against the type of collagen of the perimysial 
fibrils. There are at least five genetically different types of 
collagen in connective tissues (Asghar and Henrickson, 
1982; Eyre, 1980; Miller, 1982; Sims and Bailey, 1981) 
differentiated by the composition of the three helical 
chains which make up the molecule. Often more than one 
type of collagen is present in a tissue (von der Mark, 1981). 
Morphologically the collagen fibrils shown here resemble 
the perimysial felt work reported for rat, rabbit, cattle and 
sheep by Rowe (1981). 

Almas (1982) isolated 'muscle cell envelopes' from cod 
muscle and concluded from the results of electrophoresis, 
chromatography and amino acid analysis that the colla-
gen present was type I. This is in contrast to the results 
obtained on cow muscle by Bailey et al. (1979) who found 
that the perimysium was composed of a mixture of types I 
and III. The type III collagen appeared as a fine network. It 
seems obviously necessary to apply immunofluorescence or 
enzyme-linked immunoperoxidase techniques to fish mus-
cle to ascertain the precise location and nature of the vari-
ous collagen types present. 

Different types of collagen have different susceptibilities 
to enzymic attack, for example types I and III are less 
resistant than type II (Harper, 1980). It is generally re-
garded that the initial attack on intact collagen is by spe-
cific collagenases and that once the initial cleavage of the 
helical polypeptide chains has been achieved other non-
specific proteinases can pursue the attack (Harper, 1980). 
Collagenases are ubiquitous and are closely associated with 
all types of collagen in a wide variety of tissues (Montfort 
and Perez-Tamayo, 1975) where they are probably bound 
to the collagen in the living animal (Pardo and Perez-Tama-
yo, 1975). Because of this association and their activity it 
is assumed that these collagenases function in the metab- 

olism of the connective tissues. They are Zn 2+  containing 
metalloenzymes that for full activity generally require 
Ca 2+  (Cawston and Murphy, 1981); the collapse of the sar-
coplasmic system would release the necessary calcium 
to stimulate the enzyme. Other collagenases and cathepsins 
with proteolytic activity are present in lysosomes in adja-
cent locations within the muscle fibers (Canonico and Bird, 
1970; Reddi et al. 1972; Steiner et al., 1984). Fish muscle 
is known to have much greater catheptic activity than 
mammalian muscle (Siebert, 1958; Siebert et al., 1965). 

Catheptic enzymes probably play a secondary role to 
the collagenases which are present as zymogens or proen-
zymes in the living tissue (Harper, 1980). Their activity 
is controlled by factors other than their levels alone (Mont-
fort and Perez-Tamayo, 1975) and a number of inhibitory 
mechanisms have been found involving sarcoplasmic pro-
teins (Hjelmeland and Raa, 1980), blood serum proteins 
and the plasma glycoprotein a 2 -Macroglobulin (Starkey and 
Barrett 1977). Serum also contains inhibitors for cathep-
sins other than proteins; ATP also acts as an inactivator 
(Reddi et al., 1972). After death these control mechanisms 
would gradually cease to be effective. 

The appearance of the myofibrils of blue grenadier is 
similar to that reported for trout (Schaller and Powrie, 
1971) and cod (Almas, 1982). After 1 hr treatment with 
water (Fig. 20) they bear a striking resemblance to the 
dorsal muscle of rainbow trout stored 4 days postmortem 
at 3 ° C (Schaller and Powrie, 1971) where the transverse 
elements have collapsed below the surface of the fibrils. 
It is evident that water removes sarcoplasmic components 
(Fig. 20, 21) and thus some of the effects of the solvent 
systems used here may be due in part to the solvent effect 
of water alone. Water may have other effects such as 
removal of inhibitors and it is known that hypotonic solu-
tions can rupture lysosomes (Dean and Barrett, 1976). 
This may have implications for the thawing in water of 
frozen fish and fillets of some species. 

The T system and the  I  band seemed particularly sus-
ceptible to the action of SDS and breaks across the fibres 
rather than along their long axis occurred (Fig. 17). Similar 
transverse fissures have been noted in other preparations 
(not shown). These transverse fissures may be unique to 
the peripheral fibrils, with their elongated cross section, or 
they may indicate the presence of the connecting structures 
between myofibrils at the Z line level that are believed 
to be part of the organization of the overall muscle struc-
ture (Lazarides, 1980). It is not clear what to make of these 
observations but further research is warranted. 

Fig. 19—Sample of muscle treated in 0.5M 

KCI (1 hr) showing remnants of a muscle 

fiber F attached to the myocomma M by a 
'skirt' of perimysium P. Fish M. Bar 0.1 
mm. Magnification: 289X. 

Fig. 20—Muscle fibrils from Fish 0 treated 
in water (1 hr). Note apparent collapse of 

T system below fibril surface. Bar 0.01 mm. 

Magnification: 5780X. 

Fig. 21—Muscle fiber from Fish 0 treated 

in water (6 hr). Transverse and longitudinal 

disruption. Bar 0.01 mm. Magnification: 
3890X. 
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SEM STUDY OF FISH MUSCLE JUNCTIONS . 

Further work is also warranted on the detailed architec-
ture of the myocomma and the myomere/myocommata 
junction using TEM and, on the types of collagen in fish 
tissue and on the collagenase(s) responsible for post mor-
tem degradation. 
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Degradation in Muscle Fibre—connective Tissue 
Junctions in the Spotted Trevalla (Seriolella punctata) 
Examined by Scanning Electron Microscopy 
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The junctions between the muscle fibres and the connective tissues of the 
myocommata in the spotted trevalla (Seriolella punctata Forster) were investigated 
by scanning electron microscopy. In prerigor muscle, the fine collagen fibrils which 
arise from the myocommata to form the muscle cell envelope were evident. After 
the fish were stored several days in ice, progressive deterioration was observed in 
these fibrils. The structure and the degradation was similar in nature to that 
reported previously in blue grenadier. 

Keywords: Collagen; collagenase; trevalla; myotendonous junction; fish muscle; 
muscle fibre; scanning electron microscopy. 

1. Introduction 

The structure of the junctions between the muscle fibres and the connective tissues of fish is of 
considerable interest to fish biologists and technologists. These junctions transmit the contractile 
forces of the muscles, and after death they are in part responsible for maintaining the integrity of 
the flesh. 

Using light microscopy Love et al. 1  and Love 2  described fine collagenous processes arising 
from the myocommatal connective tissue planes which form sheaths surrounding each muscle 
fibre. Using scanning electron microscopy (s.e.m.) Bremner and Hallett 3  demonstrated the fine 
collagenous processes in the flesh of the blue grenadier (Macruronus novaezelandiae Hector) 
which confirmed these observations and illustrated the apparent socket-like nature of the 
invaginations on the myocomma into which the muscle fibres fit. Evidence was also presented 
indicating that in chill stored fish there was a progressive post-mortem breakdown of the fine' 
collagenous fibrils that anchor the muscle fibres to the myocomma. This progressive breakdown 
was-  interpreted as being responsible for loss of structural integrity and resultant gaping of the 
flesh. 

This present study extends these observations to a species with no close taxonomic relationship 
to the blue grenadier, spotted trevalla (Seriolella punctata Forster), also known as mackerel 
trevalla or silver warehou. This fish is a member of the family Centrolophidae and is of minor 
commercial importance. It is however closely related to the deepsea trevalla (Hyperoglyphe 
antarctica Carmichael) and warehou (Seriolella brama Gunther),4  fishes of commercial import-
ance in Australia and New Zealand. It is difficult to obtain prerigor samples from commercial 
fish such as these, which are caught by droplining and trawling respectively. Spotted trevalla was 
used in this study as live fish could conveniently be caught close to the laboratory. 
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2. Experimental 

2.1. Fish 
Juvenile samples of the fish (150g, 23 cm long) were caught by line in the Derwent River estuary, 
Hobart, Tasmania, in June 1983 (Fish A) and in the nearby Huon River estuary in June 1984 
(Fish B). They were given a sharp blow on the head and samples of flesh from the anterior dorsal 
muscle were taken and fixed in 3.2% glutaraldehyde in 0.16 Ni phosphate buffer containing 2% 
sodium chloride (wt : vol) and 0.5% sucrose at about 5°C. 3 ' 5  The time elapsed between the fish 
striking the hook and the sample being placed in fixative did not exceed 2 min. After the prerigor 
sampling, the fish were stored  in  ice. Further samples were taken and put in fixative when the 
fish were in rigor mortis (1 day  after  catching) and during postrigor storage on ice up to 14 days 
after catching. Two samples from each of three fish were taken at each time. The fixed samples 
were sent for microscopic examination to the DSIR Mt. Albert Research Centre, Auckland, NZ. 
Thus, samples were in fixative from between 7 to 20 days. 

2.2. Preparation for s.e.m. 
The samples were briefly washed  in  phosphate buffer, and frozen in dichlorodifluoromethane 
(-158°C) before transfer to liquid nitrogen (-196°C). They were then fractured under liquid 
nitrogen and freeze dried. 3  

After drying, the specimens were mounted on stubs and sputter coated with gold before 
examination with a Philips 505 scanning electron microscope. 

3. Results 
3.1. Prerigor samples 
The detail at a fractured surface  of  a section of prerigor muscle (Figure 1) shows that the 

Figure  1.  Fractured muscle fibre/myocommatal interface. Fine collagenous fibrils run from the muscle fibres to the 
myocomma which lies almost horizontally across the figure. The ends of the muscle fibre (F) are intimately connected to the 
surface layers (arrow) of the myocomma  (M)  which itself shows signs of being pulled apart. Prerigor (B1) fish caught June 
1984. Magnification 1100. 
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myocomma and the muscle fibres have been forced slightly apart by the fracturing process. The 
muscle fibre ends are still in intimate contact with the outer surfaces of the myocomma. Between 
the muscle fibres the fine collagen fibres of the muscle cell envelope are evident. Similarly in 
Figure 2 the network of collagen fibrils that connects the muscle fibre to the myocomma is 
exposed. 

The network of connective tissue fibrils of the muscle cell envelope can be seen in Figure 3 
particularly on the muscle fibre in the centre of the field. Where the fibrils have been partly 
stripped off the adjacent (lower) fibre the striations are visible. At 10-times the magnification in 
a similar sample the series of holes of transverse tubules which open on to the extracellular space 
are evident (Figure 4). This figure bears a close resemblance to that published by Voyle 6  for 
meat (presumably beef muscle). 

The longitudinal spacing of the holes is approximately 1.6pm, a value intermediate between 
the 1-2,um reported by Bertaud et al. 7  for the black mollie and in agreement with the range of 
values reported by Howgate8  for the sarcomere lengths of cod. 

3.2. Samples in rigor 
Passive shortening was evident in samples taken from fish in rigor mortis (Figure 5). 

3.3. Postrigor samples 
In postrigor samples taken from fish held in ice for 4 days after catch there was evidence of 
breakdown and degradation of the fine connective tissue fibrils (Figure 6) at the myocommatal 
interface with some fibre ends only partially attached to the myocomma. With fish stored for 8 
days in ice the muscle cell envelope degraded further and some muscle fibres were no longer 
connected to the myocomma (Figure 7). Breakdown is also evident along the muscle fibre 

Figure 2. Freeze fracturing has exposed a thick network of collagenous fibrils (C) connecting the muscle fibres (F) (bottom 
of picture, centre) to the myocomma (M). Fish (B1). Magnification 1100. 
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Figure 3. Muscle fi bre surfaces nea r fractured face. Note ne twork of collagen fi brils (C) and striations (S) on exposed 
muscle fibre . Fish (Bl) . Magnification 580. 

Figure 4. Exposed surface of a muscle fibre . Note openings of the transverse elements (arrows) . Prerigor fish (B2) . 
Magrufication 5800. 
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Figure 5. Muscle in rigor moths. Note passively shortened crimped fibres (F) and myocomma (M). Fish (Al) June 1983. 
Magnification 205. 

Figure 6. The fine collagenous fibrils of the perimysiwn (P) and myocomma (M) have been degraded allowing loosening of 
attachment of the muscle fibres (F). Fish (B2) stored 4 days in ice. Magnification 280. 
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Figure 7. Muscle fibre ends (F) not attached  to  myocomma. General degradation of perimysium (P) and sarcolemma (Sa). 
Fish  (B2) stored 8 days in ice. Magnification  570. 

Figure  8.  Degradation of the perimysium  (P)  and sarcolemma (Sa) on the surface of the muscle fibre. Fish (Al). 
Magnification 2270. 



Fish muscle junctions 
	 1017 

Figure 9. Surface view of myocomma showing evidence of sockets (arrow) formerly occupied by muscle fibre ends. Fish 
(Al) stored 4 days in ice. Magnification 220. 

surface (Figure 8, compare with Figure 3). Where fibres are completely detached there was 
evidence of the remnants of the sockets into which they fitted (Figure 9). 

4. Discussion 

Unattached fibres (for example, Figure 6) were not observed in prerigor samples. The change 
from the clean appearance of the collagenous fibrillar networks seen in Figures 1, 2 and 3 to that 
in Figures 6, 7 and 8 where the collagen fibres were less well defined is considered to be due to 
enzymic degradation. There are similarities in the results of this work on spotted trevalla to that 
reported previously for blue grenadier. 3  The structure of the muscle fibre connective tissue 
junction and the appearance of the fine collagenous fibrils on the fibre surfaces and at the 
junctions was similar. The progressive breakdown of these fibrils appears to proceed by similar 
mechanisms that are consistent with enzymic attack by collagenases and/or other proteases. 3  It is 
the collagenous fibrils rather than the myofibrillar proteins that are attacked. 

There were differences between blue grenadier and spotted trevalla. Examination of the two 
sets of prerigor samples (Fish A, June 1983 and Fish B June 1984) gave the subjective impression 
that the myocommata of spotted trevalla are thicker than those of blue grenadier. In the fixed 
tissue they were also more brittle and were more readily split along the axis of the myocommatal 
plane giving, at times, the appearance of a layered structure. 

The spotted trevalla is less prone to gaping and the muscle fibres are not so readily detached 
from the myocommatal surface as in the blue grenadier. Nevertheless, during chilled storage, 
processes that degrade the fine collagenous fibrils of the myocomma and the perimysium are 
similarly at work. The inference is that this degradation is probably a widespread phenomenon 
that results in less cohesive flesh in chill stored fish. As such it acts independently but in concert 
with other degradative influences, such as increasing pH and the effects of spoilage bacteria, 
which lead to soft flesh. 
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ABSTRACT 

Transmission electron microscopic observations have been made of the 
interface between muscle fibres and myocommata of the fish, Oki 
(Macruronus novaezelandiae Hector). The fine structure of the interface is 
similar to that recorded for other vertebrate muscle. Collagen fibres from the 
myocommata penetrate sarcolemma-lined invaginations into the base of the 
muscle fibre. A distinct basal lamina separates the sarcolemma from the 
collagen fibres. Microfilaments connect sarcolemma, basal lamina and 
collagen fibres. The myofibrils of the muscle fibre are connected to the inner 
sarcolemma surface by fine filaments from the final Z disc. During rigor 
mortis the structure of the interface remains unchanged. During post-rigor 
storage on ice there is progressive breakdown at the interface, particularly of 
the invaginating collagen fibres and the basal lamina, resulting in detachment 
of muscle fibres from the myocomma. 

Key words: Collagen, hoki, myotendinous junctions, fish muscle, muscle 
fibre, transmission electron microscopy, gaping. 
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myotomes posterior to the gill slit, dorsal of the main fat line. New Zealand caught 
fish were sampled immediately after catching, at the onset of rigor (24 h) and after 
storage on ice for 8 days. Tissue was fixed in 30g litre -1  glutaraldehyde in 0-2 rvi 
sodium cacodylate buffer, pH 7-2. Samples were post-fixed in 10 g litre' osmium 
tetroxide in 0.2 im sodium cacodylate buffer, dehydrated in an ethanol series and 
embedded in Spurr's low-viscosity resin. Tasmanian caught fish were sampled at 
catching and after 11 days of storage on ice. Tissue samples were fixed in a mixture 
of 25 g litre -1  glutaraldehyde, 40 g litre -1  paraformaldehyde, 20 g litre -1  tannic 
acid, and 0-8 g litre -1  sucrose in 0.2 nt phosphate buffer, pH 7-2. These samples were 
post-fixed in 10 g litre -1  osmium tetroxide in 0.2 Ni phosphate buffer, dehydrated in 
an ethanol series and embedded in epoxy resin. Ultrathin sections were cut using an 
LKB Ultrotome III and stained sequentially with a saturated solution of uranyl 
acetate in ethanol/water (1:1 v) and an aqueous solution of lead citrate. Sections 
were observed in a JEOL 100B transmission electron microscope. 

3 RESULTS 

3.1 Interface region in pre-rigor fish 

Fish caught in New Zealand and Tasmanian waters gave comparable results. 
Invaginations into the muscle fibre base occurred at the interface of the fibre and the 
collagenous myocommatal sheet (Figs 1 and 2). These invaginations, which 

Fig 1. Muscle fibre base from a pre-rigor fish with groove-like, collagen-filled invaginations viewed in 
cross section. Thin filaments connecting the myofibrils to the sarcolemma are arrowed. M = muscle fibre, 

C = collagenous myocommata. Bar= 1 pm. 
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Fig 2. An elongate collagenous invagination from pre-rigor fish (arrowed) lying between myofibrils. 
Bar = 1 pm. 

contained collagen fibres, extended for 1 to 10 pm into the fibre base. Shallow 
invaginations into the fibre base were common (Fig 1) and, frequently, groove-like 
(Fig 3). Short tubular invaginations were also present (Fig 4b). Deeper 
invaginations, though sometimes groove-like, were more often tubular or finger-
like, sometimes twisting  as  they penetrated longitudinally up to 10 pm between 
muscle fibrils (Fig 2). 

The invaginations of the fibre base were delimited by the sarcolemma, separated 
by an electron-lucent gap of 20-40 nm from the darkly staining amorphous basal 
lamina of width 30-40 nm (Fig 4). One or more collagen fibres (diameters ranging 
between 30 and 70 nm) were contained in the invaginations. The sarcolemma 
bounding the invaginations frequently showed further secondary invaginations into 
the sarcoplasm, not usually bounded by the basal lamina (Fig 6a). At the terminal 
end of an invagination the sarcolemma was often in close proximity to the bounding 
membrane of the sarcoplasmic reticulum (Fig 5). Often the basal lamina was absent 
from this region. Filamentous or spine-like bodies occurred between the 

Fig 3. Diagrammatic reconstruction of the grooves in a fibre base as viewed end on to the fibre (compiled 
from a series of serial sections of which Fig I was a part). Dark represents muscle fibre base material and 
light the invaginations. The deepest groove was 2 pm. Invaginations of less than 0.3 pm are not recorded. 

Bar = 1 pm. 

Fig 4. More detailed view of (a) a groove-like invagination, and (b) a short tubular invagination into the 
base of a pre-rigor muscle fibre. The sarcolemma (S), basal lamina (B), and collagen fibres (C) are clearly 
visible. Fibrillar processes (arrowed in (a)) connect the sarcolemma to the basal lamina. Bar = 1 pm. 
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Fig 5. Terminal end of a groove-like invagination showing it in close apposition with a vesicle of the 
sarcoplasmic reticulum (R). Bar= 100 nm. 

sarcolemma and the basal lamina, and between the lamina and the collagen fibres 
within the invagination (Figs 4a and 6). There was no sign of fusion between the 
collagen fibres of the invagination and either the basal lamina or the sarcolemma. 

On the sarcoplasmic side of the muscle fibre base invididual muscle fibrils were 
connected to the sarcolemma by thin filaments similar in thickness to actin 
filaments (Figs 1, 4 and 7). These ran from the final Z disc. At the sarcolemma end of 
the thin filaments was a region of darker staining, amorphous material. 

A diagrammatic representation of the invagination region is shown in Fig 8. 

3.2 Interface region in rigor and post-rigor fish 

In muscle from fish in rigor the overall structure of the interface region and the 
invaginations were similar to that found in pre-rigor muscle. However, there was a 
distinct increase in the amount of staining of the background matrix, resulting in a 
loss of contrast between this and the basal lamina and collagen fibres within the 
invaginations (Fig 9). 

Fig 6. Details of an invagination showing fibres connecting through the basal lamina to the collagen 
fibres (solid arrows); (b) is a detail of (a). Secondary invaginations are indicated by open arrows. 

Bar= 100 nm. 

Fig 7. Section of muscle fibre base, fine filaments (solid arrow) extend from the final Z disc (open arrow) of 
the myofibrils to the sarcolemma of the fibre base. Insert shows a detail of the base with a dark, 
amorphous region (arrowed) along the sarcolemma into which the filaments run. Bars (a)= 1 kim, 

(b)= 100 nm. 
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Fig 8. Diagrammatic view of the muscle fibre base region in pre-rigor fish. The invagination is lined by the 
sarcolemma and a basal lamina. Microfilaments connect the sarcolemma, basal lamina and collagen 
fibres (detailed in insert ). Both basal lamina (B) and collagen fibres (C) terminate near the end of the 
invagination, which is closely appressed to the sarcoplasmic reticulum (R). Myofibrils (M) are connected 
to the sarcolemma of the muscle fibre base by fine filaments, which run into a darkly stained, amorphous 

region close to the sarcolemma (S). 

Fig 9. Tubular (a) and groove-like Ninvaginations into the muscle fibre base in fish muscle during rigor. 
The background matrix of the invagination stains more intensely than in pre-rigor fish. Although the 
definition of the collagen fibres and the basal lamina is thus less clear, the overall structure is the same as 

in pre-rigor fish. Bar = 100 nm. 
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Fig 10. Invagination into the muscle fibre base in a post-rigor fish (stored 8 days). The basal lamina, 
although discernible, is indistinct and blurred. Small vesicles (arrowed) are visible in the terminal end of 

the invagination. There is considerable staining of the background matrix. Bar =100 nm. 

In muscle from post-rigor fish (8 days) the interface region showed considerable 
variation in structure, even within the same fibre. Some invaginations retained both 
collagen fibres and a discernible basal lamina (Fig 10). However, this latter was 
usually blurred. In some invaginations loss of the basal lamina and of collagen fibres 
had occurred to a greater or lesser extent. This appeared to start at the terminal 
region of the invagination (Fig 11). In many regions the fibre base and collagen sheet 
had parted and empty invaginations were apparent (Fig 12). Regions of empty and 
almost intact invaginations could be present close on the same fibre base; 
breakdown of the basal lamina could be seen in between. Invaginations of detached 
fibre bases contained neither the basal lamina nor collagen. However, the 
sarcolemma often remained intact at this stage (Fig 13). 

In fish stored for 11 days the majority of fibres were more or less completely 
detached. Invaginations were not apparent at the muscle fibre base even when this 
was still in contact with the myocommatal sheets (Fig 14). In many instances 
massive vesicular deposits appeared between the fibre end and the collagenous 
sheets, and the sarcolemma had disappeared (Fig 15). However, despite this, the 
overall integrity of the muscle fibres, including the fine filaments to the fibre base 
region, remained intact (Figs 14 and 15). 

In all samples the overall background matrix of the collagen appeared much more 
densely stained than that of pre-rigor fish. 
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Fig 11. A tubular, but indistinct, invagination in a post-rigor fish (stored 8 days) is arrowed in (a). A detail 
of this (b) shows an apparent loss  of  collagen and the basal lamina from the terminal end. Bars (a) = 1 pm; 

(b)= 100 nm. 

3.3 Pre- and post-rigor  muscle  fibre structure 

Pre-rigor muscle fibres showed a compact fibril structure with obvious banding and 
a well developed sarcoplasmic reticulum (Fig 16a). At the fibre margin, successive 
layers of sarcolemma, basal lamina and collagen fibres made up the endomysium 
(Fig 16b). In post-rigor muscle there was a lack of cohesion between muscle fibrils 
and between the filaments composing the fibres, although the Z disc was still intact. 
Banding was indistinct (Fig 17a). The fibre margin retained the sarcolemma but lost 
its collagenous surround (Fig 17b). 

4 DISCUSSION 

The overall structure of the myocommata—muscle fibre interface is similar to that 
recorded in other vertebrates (Gelber et al 1960; Schwarzacher 1960; Muir 1961; 
Schippel and Reissig  1969;  Hanak and Bock 1971; Korneliussen 1973; 

Fig 12. Disconnected muscle fibre base/myocommata. Invaginations are empty of content. The region of 
the myocommata closest to the  fibre  base shows an area of amorphous stained material beneath which 

are collagen fibres.  The  basal lamina is no longer visible. Bar =1 pm. 

Fig 13. Detail of invaginations  in the base  of a disconnected muscle fibre. Apart from a few vesicles the 
invagination is empty. Only  the  sarcolemma (arroN% ed) lines the invagination wall. Bar= 1 
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Fig 14. Fibre base region in an 11-day-stored post-rigor fish. Invaginations were not distinct, although 
the fibre base (M) appears to remain close to the myocommatal sheet (C). The fine filaments from the Z 

disc (arrowed) still extend to the basal region of the fibre. Bar= 1 um. 

Schattenberg 1973; Nakao 1975, 1976; Ajir et al 1978; DemmeII eta! 1979; Trotter 
et al 1985). Descriptions of the structure of the interface area in the seahorse 
(Schwarzacher 1960), pipefish (Schippel and Reissig 1969), hagfish (Korneliussen 
1973) and lamprey (Nakao 1975) agree with our observations: ie invaginations of 
the sarcolemma containing collagen fibres from the myocommata. 
Characteristically the invaginations are finger-like, sometimes branched, and 
penetrate longitudinally between the muscle fibres. Depths of penetration reported 
are from 1-2 pm for lamprey (Nakao 1975) to 6-7 pm for guinea pig (Hanak and 
Bock 1971). Hoko exhibits invaginations covering the whole  of  this range. 
Additionally, large numbers  of  groove-like invaginations are present. These features 
are similar to those shown in the terminal ends of mouse plantaris muscle (Trotter et 
al  1985) and rat  sternothyroid  muscle (Ishikawa et al 1983). Serial sectioning 
indicates that most of this variation is real and not an artefact of different block face 
orientations. More detailed serial sectioning is required to discover whether the 
finger-like processes derive from the groove-like ones, as occasionally appears to be 
the case, and to determine  whether  different types of invagination are localised in 
any particular region of  the fibre  base. 

The structure of the  fibre base  region at higher magnifications again resembles 
that reported for other  organisms.  The structures on the external side of the 
sarcolemma are the same as those observed by Hanak and Bock (1971), Nakao 
(1975, 1976), Ajiri et al  (1978)  and Trotter et al (1981), who showed that the 
sarcolemma, basal lamina  and  ingressing collagen fibres are apparently connected 
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Fig 15. Similar fibre base region to Fig 14. The region between the fibre base (M) and the myocommata 
(C) contains large numbers of vesicles. There is no visible sarcolemma. Bar= 1 um. 

by microfilaments, which serve to attach the muscle to the connective tissue. Recent 
work indicates that the connections between the sarcolemma, the basal lamina and 
the collagen fibrils are exceptionally intricate (Trotter eta! 1983; Keene eta! 1987). 
An extended network of connecting plaques comprised of Type IV collagen and 
anchoring fibrils of collagen Type VII are normal features of the basement 
membrane zone of human skin and cornea (Keene et al 1987). Similar structures 
may exist in fish muscle but, to date, only collagen Types I, II and III have been 
isolated from fish (Kimura 1985), although collagen Type IV is a usual component 
of basal laminae. 

Coupling of the sarcolemma of the invaginations and vesicles, presumably of the 
sarcoplasmic reticulum, was occasionally observed. This is consistent with the 
reports of Nakao (1975, 1976). Similarly the absence of the basal lamina from the 
terminal end of the finger-like processes is in accord with observations of lamprey 
and frog muscle (Nakao 1975, 1976). However, the basal lamina was not absent 
from the bases of the groove-like processes. 

On the sarcoplasmic side of the fibre base the filaments that connect the final Z 
disc of the muscle fibril to the sarcolemma of the fibre base are presumably actin 
filaments (Schattenberg 1973; Maruyama and Shimada 1978; Trotter et al 1983). 
Other proteins of the cytoskeletal system such as vinculin (Geiger et al 1980), talin 
(Tidball et al 1986), zeugmatin (Maher et al 1985), and alpha-actinin (Goll et al 
1969) have been found in myotendinous junctions and may also be present in fish as 
part of the electron-dense layer internal to the sarcolemma. Variability in the 
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Fig 16. Muscle fibre of a pre-rigor fish: (a) myofibrils show distinct banding and well preserved 
sarcoplasmic reticulum; (b) margin has distinct sarcolemma (S), basal lamina (B), and endomysial 

collagen (E). Bar= 1 pm. 

distance between the final Z  disc  and the fibre base is due in part to differences in 
section orientation and in  part  to actual differences in the fibril growth. (Fish 
muscle, unlike that of  higher  vertebrates, continues to grow throughout the life of 
the animal: Schattenberg 1973.) The sarcolemma region of attachment probably 
acts in a similar way to the membranous Z disc (Franzini-Armstrong and Porter 
1964). It is from this region  that  a new  Z  disc must arise as the fibre extends. Thus, as 
in other vertebrates, the muscle fibrillar elements are firmly attached to the 
sarcolemma. In turn microfilaments connect the sarcolemma with the basal lamina 
and the collagen fibres  derived  from the myocommata. Trotter et al (1981, 1983) 
have shown that, even when  the  membranous nature of the sarcolemma is disrupted 
by lipid solvents, the connection and tension of these microfibrils remain unaltered. 
This suggests that they pass through the sarcolemma. Thus a firm linkage exists 
between the fibrils of the muscle fibre and the collagen fibres  of  the myocommata. 
Invaginations increase the surface area available for these connections and hence 
strengthen the interface.  However,  the magnitude of the stress at the junction is not 
the sole determinant of  the  degree of membrane folding (Tidball and Daniel 1986). 

The disconnection of  the  muscle fibre end and the myocommata that results in 
gaping requires the breakage of at least one of the links between the muscle fibrils 
and the collagen fibres.  The  absence of any major structural difference between the 
fibre base region of hoki  and that  of other fish less prone to gaping (or indeed that of 
higher vertebrates), plus  the  absence  of  any major structural changes during rigor, 
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Fig 17. Muscle fibre of an 8-day-stored post-rigor fish: (a) myofibrils show little cohesion and banding is 
indistinct except at the Z disc (arrowed), and the sarcoplasmic reticulum (S) has degenerated into 
unconnected vesicles and membranous material, (b) margin has retained the sarcolemma but endomysial 

collagen and basal lamina are absent. Bar= I pm. 

indicate that mechanical stress is unlikely to be the cause of post-rigor gaping. This, 
and observations on fish chill-stored for 8 and 11 days, support the hypothesis of 
Bremner and Hallett (1985) that gaping is caused by the high post-rigor activity of 
collagenases and other proteolytic enzymes at specific sites. This activity seems to be 
localised in the immediate vicinity of the basal membrane and within the 
invaginations. In most of the samples examined neither the bulk of the collagen of 
the myocommatal sheets nor the filamentous connections between the Z disc and 
sarcolemma showed major effects of enzyme activity. The present authors suggest 
that enzymic breakdown starts with the basal lamina and extends to ingressing 
collagen from the terminal end of the invagination, ie the sarcolemma itself is only 
disrupted and lost in the later stages. Although collagen within the invaginations is 
attacked, the dissolution of the basal lamina, and probably the microfilamentous 
connections to the sarcolemma, may be more significant in weakening the junction 
of the muscle fibre and the myocommata. 

More work is required to identify the particular enzymes involved, their post-
mortem activation and their precise site of activity. Why the changes in hoki should 
be so rapid remains a mystery. Similar enzymic processes almost certainly occur in 
other fish at different rates (Bremner and Hallett 1986). However, it is the rapidity of 
the process in hoki that causes a problem in the commercial fishery. 

The results presented here suggest that, for this particular fish, changes in 
handling technique will not significantly improve the physical storage 
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characteristics of chill-stored fish, and that pre-rigor freezing will remain the most 
effective way of preserving the structure of the fish flesh. 
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Fish Microstructure 
H. ALLAN BREMNER' and IAN C. HALLETT 2  

The flesh of fish is comprised of interlocking 
blocks of muscle fibres joined at either end to 
collagenous sheets of connective tissue — the 
myocommata (Fig. 1). In the live fish, the forces 
of muscular contraction are transmitted through 
this junction, and in post monem fish it is 
responsible for maintaining the integrity of the 
flesh during handling, storing and processing. In 
some species, progressive softening of the flesh 
and weakening of this myotendinous junction 
occurs and the muscle blocks (myotomes) sepa-
rate and split. This effect is similar to the 
'gaping' that can occur due to rigor contractions 
(Love, Lavety and Steel, 1969). 

Fig. 1 — Schematic diagram of the layout of fish 
muscle, showing the interlocking W-shaped myotomes 
separated by myocommata and a single myotome. 
Adapted from Ellis et al. (1978). 

The texture of raw fish depends on its 
structural integrity and this is of prime import-
ance for the high-priced sashimi trade, as well as 
for normal sales and for processing. Soft and 
gaping fish are difficult to process; trimming and 
fillet losses occur and poorer products result. 
The study of the structure and changes to it are 
thus of considerable commercial and scientific 
interest. 

Using light microscopy, Love (1970) and Love 
et al. (1969) showed that fine collagenous fibres 
from the myocomma appeared to surround each 
muscle fibre to form a sheath which extended the 
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length of the fibre between neighbouring 
myocommata. This collagenous component of 
the muscle cell envelope was separated from 
isolated cod muscle cells using enzymatic treat-
ments and shown to consist of a network of fine 
collagen fibres (Almas, 1982). 

The detailed structure of the myotendinous 
junction has been studied in some unusual 
species of interest to science, such as the seahorse 
(Scwarzacher, 1960), pipefish (Schippel and Res-
sig, 1969), hagfish (Korneliussen, 1973), and 
lamprey (Nakao, 1975) using transmission elec-
tron microscopy (TEM). These workers all 
reported invaginations of the sarcolemma con-
taining collagen fibres from the myocomma. 

This paper reports on our recent investiga-
tions on commercially important species in which 
TEM and scanning electron microscopy (SEM) 
have been used to examine the architecture of the 
myotendinous junction in fish and its post 
mortem degradation in chilled storage (Bremner 
and Hallett, 1985, 1986; Hallett and Bremner, 
1988). 

SEM Studies 
The three-dimensional view (Bremner and 

Hallett, 1985) of how the muscle fibres of blue 
grenadier (known in New Zealand as hold; 
Macruronus novaezelandiae Hector) connect to 
the myocomma is seen in Fig. 2. When these 
muscle fibres are removed, the sockets on the 
myocomma into which they previously fitted can 
be seen (Fig. 3). Fine collagen fibres emerge 
from the myocomma to form part of the muscle 
cell envelope that runs the length of the fibre 
(Fig. 4), as noted by Love et al. (1969). 

After chilled storage of the fish in ice for 
5 days degradation of the cell envelope was 
evident (Fig. 5) with holes appearing in the cell 
membrane and obvious disruption of the fibrous 
collagen network. Progressive deterioration was 
seen and after 11 days in ice many of the muscle 
fibres were no longer attached to the myocomma, 
and degradation of the collagen was evident 
(Fig. 6, 7). 

A strikingly similar result was seen in the 
unrelated species — the spotted trevalla (Seriolel-
la punctata) (Bremner and Hallett, 1986). In the 
pre-rigor samples the muscle fibres are firmly 
attached to the myocomma (Fig. 8), whereas 
after only 4 days storage, deterioration of the 
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Fig. 2— Pre-rigor blue grenadier. Fine collagen fibres C 
connect the muscle fibres F to the myocomma M. 
Bar 0.1 mm. 

Fig. 3— View of a socket on the myocomma into which 
a muscle fibre fitted. Bar 0.1 mm. 

Fig. 4 — Pre-rigor fish. Detail of muscle fibre surface 
showing intact cell envelope and collagen fibres. 
Bar 0.01 mm. 

Fig. 5 — Post-rigor fish 5 days in ice after catch. 
Deterioration of sarcolemma and collagen. 
Bar 0.07 mm. 

Fig. 6 — Fish stored in ice 11 days. General view of 
myotendinous junction. No connections remain be-
tween the muscle fibes F on the right and the myocom-
ma M. Bar 1 mm. 

Fig. 7 — Detail of fibre end from near centre of Fig. 6. 
The muscle fibre F completely detached from the 
myocomma M. Bar 0.1 mm. 

Figures 1 to 7 reprinted with permission from Journal of Food Science 50: 975-980 (1985). 
Copyright © by Institute of Food Technologists. 
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Fig. 8 — Pre-rigor spotted trevalla muscle at a freeze 
fractured face. Fine collagen fib fils attach the muscle 
fibres F to the surface layer of the myocomma M which 
lies almost horizontally across the picture. 
Bar 0.01 mm. 

Fig. 9 — Trevalla stored 4 days in ice. Collagen of 
myocomma M and cell envelope has deteriorated 
allowing loosening of attachment of muscle fibres 
F. Bar 0.7 mm. 

Fig. 10 — Muscle fibre base from pre-rigor blue 
grenadier with groove-like collagen-filled invaginations 
viewed in cross section. Thin filaments connecting the 
myofibrils to the sarcolemma are arrowed, myo fib-
res M, collagenous myocommata C. Bar 1 p.m. 

Fig. 11 — Pre-rigor fish, a muscle fibre end featuring an 
elongate collagenous invagination (arrows) as it pene-
trates between the myofibres. Bar 1 p.m. 

Fig. 12 — More detailed view of a) a groove-like 
invagination and b) a short elongate invagination into 
the base of a pre-rigor muscle fibre. The sar-
colemma S. basal lamina B, and collagen fibres C are 
clearly visible. Fibrillar processes (arrows) connect the 
sarcolemma to the basal lamina. Bar 1 p.m. 

Fig. 13 — Detail of invagination showing fibres con-
necting through the basal lamina to the collagen fibres 
(arrows). Bar 100 nm. 

Figures 8 and 9 reprinted - with permission from Journal of the Science of Food and Agriculture 37: 1011-1018 (1F, 
Copyright © by Society of Chemical Industry. 
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Fig. 14 — Section of muscle fibre base, fine filaments 
(presumably actin; arrow) extend from the final Z-disc 
of the myofibrils to the sarcolemma of the fibre base. 
Insert shows detail of the base with electron dense 
region (arrow) into which the actin fibres run. Bar 
1 pm, insert bar 100 nm. 

Fig. 16 — Detail of fibre base of a disconnected fibre. 
The invagination is empty and the basal lamina has 
disappeared but the sarcolemma is still present 
(arrow). Bar 1 pm. 

Fig. 15 — Section from fish stored 8 days in ice 
showing a muscle fibre base disconnected from the 
myocomma. Invaginations are empty and there is an 
amorphous area near the fibre base under which 
collagen fibres are present. Bar 1 gm. 

Fig. 17 — Deteriorated fibre base from a fish stored 
11 days in ice. There is extensive vesicle formation and 
disruption of the fibre base M, but the major strands of 
the collagen C of the myocomma are still obvious. 
Bar 1 pm. 

Figures 10 to 17 reprinted with permission from Journal of the Science of Food and Agriculture 44: 245-261 (1988 
Copyright C) by Society of Chemical Industry. 

collagen and detachment of the muscle fibres is 
obvious (Fig. 9). 

Both these sets of observations indicated that 
deterioration of the fine collagen fibres of the 
myocomma and muscle cell envelope was mostly 
responsible for the loss of integrity in the flesh of 
the stored chilled fish and that gaping was not 
due to rigor contractions as can occur in frozen 
fish (Love et al. 1969). The nature of the 
deterioration points to enzymatic activity. Col-
lagen, though, is normally regarded as being a 
fairly stable tissue so either there are some quite 
potent enzymes present with activity at 0°C, or 
the fish collagen is very susceptible to attack, or 
both situations occur. The similarity of the  

results obtained in two dissimilar species also 
indicates that the phenomenon is likely to be 
widespread, occurring to varying extents in most 
species. 

TEM Studies 
The fine structure of the myotendinous junc-

tion in pre-rigor blue grenadier muscle is com-
plex and intricate (Hallett and Bremner, 1988). 
The muscle fibre ends are grooved (Fig. 10) and 
fine collagen fibres from the myocomma prot-
rude into these grooves and invaginations for 
distances ranging from I to 10 ihm (Fig. 11). 
The basal lamina external to the sarcolemma is 
well-defined (Figs. 10, 12, 13) and, in high 
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magnification, other fine connections can be seen 
linking the sarcolemma through the basal lamina 
to the collagen fibres in the invaginations 
(Fig. 13). Inside the muscle cell the well-defined 
banded myofibrillar structure is apparent 
(Figs. 10, 14) and fine fibres (presumed to be 
actin) stream from the last intact Z-line and are 
attached by an electron dense layer to the 
sarcolemma (Fig. 14). 

During storage of the fish in ice, progressive 
degradation was seen to occur to the basal 
lamina, the fine connections and to the collagen 
fibres in the invaginations (Fig. 15). In some 
areas muscle fibres are seen to be free of the 
myocornma, the collagen in the invaginations has 
disappeared, only the sarcolemma remains in 
some places and in the fibre end itself vesicles 
have formed (Fig. 16). In other regions massive 
vesicular deposits between the muscle fibre and 
the myocomma are evident (Fig. 17). 

Discussion 
This more detailed evidence obtained by TEM 

corroborates the SEM work and the conclusions 
drawn from it. It is evident that there is 
considerable internal -digestion of the collagen 
fibres and many of the fine structural features 
which anchor the muscle cell to the myocomma. 
The deterioration bears all the hallmarks of being 
due to enzymes but the location and exact nature 
of these enzymes is not known as yet. It is likely 
that they are intimately associated with the 
collagen itself (Pardo and Perez-Tamayo, 1975) 
as part of the mechanism that effects seasonal 
changes in the tissue during spawning. 

The fine structure seen under the TEM is 
similar to that reported for myotendinous junc-
tions of other vertebrate muscle (Hallett and 
Bremner, 1988), but there have been no similar 
reports of the lability of this structure. This may 
be because the conditions of chill storage of fish 
caught in cold and temperate waters are only 
about 10°C lower than their usual environment 
whereas for mammals this difference is over 
30°C. This is too large a temperature difference 
for the enzymes to show significant activity. The 
collagen of fish flesh is well known to be more 
acid soluble than that of mammalian muscle due 
to a lower frequency of cross-links (Sikorski, 
Scott and Buisson, 1984). Kimura (1985, 1987) 
have reported the presence of a third alpha chain 
in the collagen molecule of the type I collagen of 
the skin of some fish. This has recently been 
confirmed for the collagen of the skin of the blue 
grenadier (Ramshaw, Werkrneister and Brem-
ner, 1988). The collagen of the cell envelope and 
of the invaginations has not yet been studied but 
it is likely to have the same three chain structure 
in the molecule, although the degree of crosslink- 

ing may be less. It does seem to be more labile 
than the larger strands of collagen which com-
prise the main bulk of the myocomma. 

These studies confirm the early suggestion of 
Banks (1962) that there is probably breakdown in 
the connective tissue in stored fish brought about 
by enzyme action. The breakdown occurs first in 
the very important fine connections and this 
leads to a loss of structural integrity of the flesh. 
These fine connections constitute only a minor 
proportion of the total structure but they anchor 
the major components and provide coherence to 
the flesh as a whole. Recently, Hatae, Tamari, 
Miyanaga and Matsumoto (1985) have concluded 
that softening of flesh during storage is more 
affected by changes in the overall structures than 
by changes in the major component proteins. 

Conclusions 
Softening in fish flesh is due to changes in the 

fine connections that anchor the three dimen-
sional structure of the tissue. It is due to enzymes 
working with high activity at chill temperatures 
in the region of the basal lamina in the myotencli-
nous junction. There is an obvious need to 
ascertain the nature of these enzymes and their 
location in the tissue before practical suggestions 
to overcome the problem can be attempted on 
anything other than an ad hoc basis. The enzymes 
may well have uses in food processing if they 
have suitably broad activity and can be obtained 
readily in sufficient quantity. 

Further work on the nature of the fine 
connections between the basal lamina and the 
collagen and the sarcolemma is of prime import-
ance in understanding the nature of this impor-
tant and basic structure. 
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The skin collagen of a fish, blue grenadier (Macruronus novaezelandiae), has been puri-
fied and characterized. The fish skin was readily soluble in dilute acetic acid, with no 
pepsin treatment needed. The collagen was purified by salt precipitation. Skin samples 
from fish of various ages showed that even in the oldest sample, more than 8 years of 
age, the collagen was still readily acid soluble. The purified collagen had a melting tem-
perature of 22°C; the shrinkage temperature for the skin was 48°C. Its tissue distribu-
tion, examined by immunohistology, and its chemical properties indicated a close homol-
ogy to mammalian type I collagen. However, sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) showed that three distinct a-chains were present. These 
were purified by ion-exchange chromatography on CM-cellulose and by gel permeation 
chromatography on Superose 6. The three purified a-chain fractions were examined by 
amino acid analysis and by SDS-PAGE of their cyanogen bromide fragments. These 
data indicated that the additional chain was genetically distinct, and most closely re-
lated to the al-chain, from which it was poorly resolved on SDS-PAGE. O l988AcademicPress,Inc. 

The collagen of fish tissues resembles 
the well-characterized mammalian and 
avian type I collagens, although in certain 
species it may have a distinct structure 
arising from the presence of an additional 
a-chain (1-3). When fish is used as a food 
source, the extent to which the collagen 
maintains the structural integrity of the 
tissue postmortem is important for prod-
uct quality (4). In some species, for exam-
ple, blue grenadier, the collagen noticeably 
deteriorates postmortem in the region of 
the myotendinous junction (5, 6), causing 
quality problems and economic loss. Char-
acterization of the collagens in fish may as-
sist in understanding the basis of this dete-
rioration in quality. 

MATERIALS AND METHODS 

Isolation of collagen. Blue grenadier (Macruranus 
nov(zezelandiae. Hector, 1871) were obtained from the 

To whom correspondence should be addressed. 

CSIRO research vessel. RV Soela. The age of speci-
mens was estimated from length and weight mea-
surements (7). Skin samples, cut from the dorsal re-
gion and dissected free of other adhering tissue, were 
diced and suspended in 0.1 NI acetic acid, adjusted to 
pH 2.5 with HCI, for 20 h. After removal of insoluble 
material by centrifugation. 8000g for 1 h, the soluble 
collagen was purified by differential salt precipitation 
(8, 9). 

SDS 2-polyacrylainide gel electrcrphoresis. SDS- 
PAGE was performed according to the method of 
Laemmli (10), using 5% (w/v) polyacrylamide run-
ning gels for intact collagen chains and 12.5% poly-
acrylamide running gels for cyanogen bromide frag-
ments, both with 3.5% (w/v) polyacrylamide stacking 
gels. After electrophoresis, gels were fixed and 
stained for 14 h in 0.1% Coomassie blue R-250 in 
methanol:acetic acid:water (5:1:5, v/v) and then de-
stained in methanol:acetic acid:water (2:3:35, v/v). 

2  Abbreviations used: SDS. sodium dodecyl sulfate: 
PAGE, polyacrylamide gel electrophoresis: CNBr. cy-
anogen bromide; ELISA. enzyme-linked immunosor-
bent assay; PBS, phosphate-buffered saline. 
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Purification of collagen a-chains. Purified type I col-
lagen was separated into its component a-chains by 
chromatography on CM-52 cellulose (Whatman CM-
52) at 42°C, in 60 mm sodium acetate, pH 4.8, with 
elution by a linear gradient of 0-100 mm NaC1 (11), 
followed by rechromatography of separated chain 
fractions under the same conditions. The a-chains 
were then separated from contaminating ft-compo-
nents by chromatography on Superose 6 (Pharmacia) 
in 50 mm sodium phosphate, pH 6.8. containing 150 
mm NaC1 and 2 m urea (12). 

Chemical characterization of collagen a-chains. Pu- 
rified a-chains were cleaved by 50 mg/ml CNBr in 
70% formic acid for 4 h at room temperature, fol-
lowed by lyophilization (13). Resulting fragments 
were analyzed by SDS-PAGE. For amino acid analy-
sis, samples were hydrolyzed in 6 M HCI containing 
0.01% phenol in evacuated tubes for 24 h at 108°C, 
and analyses were performed with a Waters HPLC 
amino acid analysis system using ninhydrin detec-
tion. 

Collagen melting temperature determination. The 
melting temperature of collagen in intact skin was 
determined in 0.2 m NaCI, 10 ram sodium phosphate, 
pH 7.4. using a hydrothermal shrinkage apparatus as 
described by Bavinton (14), with a temperature in-
crease of 1°C/min. The melting temperature of puri-
fied collagen in the same buffer was determined by 
measurement of circular dichroism at 221 nm (15), 
with the same rate of temperature increase. 

Collagen solubility determination. Neutral-salt-sol-
uble. acetic acid-soluble, and insoluble residue colla-
gen fractions were prepared from powdered skin (16). 
The collagen content for each fraction was calculated 
as a percentage of the total collagen recovered in all 
three fractions. Collagen quantities were based on 
hydroxyproline values determined by amino acid 
analysis. 

Antigenic characterization of collagen. Murine poly-
clonal antibodies to the purified collagen were pro-
duced in 12-week-old female. SJL/J mice that had 
been immunized intraperitoneally with 200 Ag colla-
gen emulsified in Freund's complete adjuvant. After 
3 weeks they were further immunized intraperitone-
ally with 200 kig of the same antigen in Freund's in-
complete adjuvant. Mice were bled 7 days after the 
last immunization and sera were tested for reactivity 
to the blue grenadier collagen by standard ELISA. 
Antibody specificity was further examined after sep-
aration of collagen chains by SDS-PAGE and trans-
fer to nitrocellulose by electroblotting (17). Nitrocel-
lulose sheets were then stained for protein with 0.1% 
amido black in methanol:acetic acid:water (5:1:5, v/v) 
for 3 min. For staining with antibodies. nitrocellulose 
membranes were blocked for 1 h in 5% Blotto (nonfat, 
dried milk powder) (18) and then reacted with anti-
body diluted 1:1000 in Blotto. Goat anti-mouse Ig 
Bio-Rad). conjugated to horseradish peroxidase, was 

diluted 1:1000 in Blotto and used as the secondary an- 

tibody. Binding of antibodies was visualized using 
0.3% 4-chloro-1-naphthol in 20 ml methanol contain-
ing 0.06% H202  added to 100 ml Tris-buffered saline, 
pH 7.4. 

Immunohistology. Sections, 6 Am thick, were cut 
from frozen tissue using a freezing microtome. They 
were stained with the polyclonal antibody, diluted 1: 
100 in 0.15 m NaC1, 5 mm sodium phosphate, pH 7.4 
(PBS), washed twice for 10 min in PBS, and then visu-
alized with affinity-purified, fluorescein isothiocya-
nate-conjugated, sheep anti-mouse antibody (Silenus 
Laboratories, Melbourne) diluted 1:50 in PBS. After 
a further two washes for 10 min in PBS, sections were 
mounted in glycerol:water (9:1. v/v) containing 1 mm 
1,4-phenylenediamine. Control slides were made ei-
ther using preimmune serum instead of the mouse 
anti-collagen antibody or by omitting the mouse anti-
body. 

RESULTS AND DISCUSSION 

The fish skin collagen was readily solu-
ble in dilute acetic acid, so pepsin treat-
ment was not required. Examination of 
collagen solubilities indicated that the 
youngest samples had the greatest quan-
tity of neutral-salt-soluble collagen, (Ta-
ble I), while the amount of acid-insoluble 
collagen increased with age. The high solu-
bility in acetic acid was present even in fish 
at least 8 years old (Table I), where most 
of the collagen, about 90%, was still acid-
soluble. 

High acid-solubility, which has been ob-
served in skin collagen from other fish spe-
cies (4), may reflect a slow rate of mature 
crosslink formation, with an accumulation 
of acid-labile, aldimine. crosslinks (19). If 
oxygen availability plays an important 
part in crosslink maturation (20), then the 
deficiency of mature crosslinks may result 
from a lower availability of oxygen in fish 
skin than in mammalian tissues (21), al-
though other factors may also be involved. 
The tendency of blue grenadier to show 
food quality problems, due to lack of post-
mortem structural integrity (5, 6), may re-
sult from the very low amount of mature 
crosslinks present in this species. 

Acetic acid-soluble collagen was readily 
purified by fractional salt precipitation, 
and was precipitated at the same salt con-
centrations as those used for mammalian 
type I collagen purification (8, 9). There 
was no evidence of significant quantities of 
other collagens that precipitated at the 
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TABLE I 

SOLUBILITY OF SKIN COLLAGEN FROM BLUE GRENADIER OF VARIOUS AGES 

Length 
(mm) 

Weight 
(g) 

Age 
(years) 

Neutral salt 
soluble (%) 

Acid soluble 
(% 

Insoluble 
(%) 

Juvenile 310 106 1-1.2 8.2 87.8 4.0 
Juvenile 315 106 1-1.2 10.0 87.7 3.3 
Young adult 490 748 2 3.3 91.8 4.9 
Young adult 610 798 3 3.0 91.5 5.5 
Mature adult 960 3750 2.3 89.3 8.4 
Mature adult 1020 4450 2.1 91.0 6.9 

Note. The collagen in each fraction is given as a percentage of the total collagen of all three fractions. 
Collagen was taken from the same position in each fish, as determined from myotome number, analyzed in 
duplicate, and averaged. The age of fish was judged from fish length, using the data of Kenchington and Augus-
tine (7). 

salt concentrations used for fractionation 
of mammalian types III and V collagens. 

The constituent a-chains of the collagen 
were separated by chromatography on 
CM-cellulose (Fig. 1); this gave a separa-
tion that was distinct from that obtained 
for mammalian type I collagens (11), and 
indicated the presence of an additional a-
chain. This additional chain, designated 
the a3-chain, was hard to resolve from the 
first peak eluted, the al-chain. Purification 
was achieved by repeated chromatography 
on CM-cellulose, followed by gel-permea-
tion chromatography on Superose 6 to ob-
tain samples free of 0-components. 

FIG. 1. Separation of the a-chains of blue grenadier 
skin collagen by chromatography on CM-cellulose 
(Whatman CM 52), 25 x 80 mm. in 60 mm sodium ace-
tate. pH 4.8, with elution by a linear gradient of 0-100 
mm NaC1. in a total elution volume of 500 ml. The 
peaks from which purified a-chains were prepared by 
further chromatography are indicated. The peaks la-
beled 3 each contained a range of ,3 and higher poly-
mer components. 

SDS-PAGE demonstrated the three dis-
tinct a-chains in the collagen and in the 
purified fractions (Fig. 2), although the al-
and a3-chains were not well resolved. 
SDS-PAGE of fractions from the CM-cel-
lulose column also indicated the presence 
of at least four distinct 0-components 
(data not shown) in the three broad zones 
which contained the 0-components and 
higher polymer forms (Fig. 1). Repeated 
chromatography was not sufficient to en-
able individual 0-components to be pre-
pared with sufficient purity to allow for ac-
curate analysis of their chain composi-
tions; this was probably due to the great 
similarity between the al - and a3-chains. 

The purified a-chains were examined by 
both amino acid analysis and CNBr diges- 

A BCD 
FIG. 2. SOS-PAGE of purified blue grenadier skin 

collagen (lane A) and the purified al- (lane B), a3- 
(lane C) and a2-chains (lane D). 
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TABLE II 

AMINO ACID ANALYSIS OF PURIFIED a-CHAINS 

al a2 a3 

HO-Pro 69 60 60 
Asp 47 52 49 
Thr 26 26 24 
Ser 46 53 49 
Glu 82 65 88 
Pro 96 99 94 
Gly 345 347 347 
Ala 135 121 138 
Cys 0 0 0 
Val 17 93 17 
Met 15 13 10 
Ile 8 11 10 
Leu 14 93 14 
Tyr 1 5 1 
Phe 15 9 15 
HO-Lys 4 7 4 
His 3 11 12 
Lys 29 22 26 
Arg 48 53 42 
Trp nd nd nd 

Note. Values are given as residues/1000. Trypto-
phan was not determined (nd). 

tion. The amino acid analyses indicated 
(Table II) that each chain fraction had a 
distinct composition, with the a3-chain 
more closely resembling the al- than the 
a2-chain. The CNBr fragment separations 
by SDS-PAGE also showed differences 
among all three chain fractions (Fig. 3). 
The a3-chain showed a very similar sepa-
ration to the al-chain, but a distinct, 
faster moving, band was present only in 
the al-chain; both the al- and the a3- 
chains showed patterns that were quite 
distinct from the a2-chain. Fewer CNBr 
fragments than might be expected from 
the amino acid composition were observed. 
This possibly indicates that several small 
fragments were formed which were not re-
solved by electrophoresis. 

The melting temperature of intact skin 
was 48°C, and that of the purified collagen 
was 22°C, lower than observed for purified 
land mammal or avian collagens (36- 
41 °C), and was consistent with the reduced 
imino acid content of the fish collagen (22). 
A correlation between melting tempera-
ture and approximate environmental tern- 

perature of an animal has been noted, orig-
inally with reference to fish collagens (23), 
but later found in other species as well (22, 
24). Blue grenadier are found mostly in 
continental shelf waters, 400-700 m deep, 
where temperatures range from 7 to 12°C. 
However, at night they rise to feed to 
within 50-100 m of the surface, where tem-
peratures in the summer may be near 20°C 
(J. S. Gunn, personal communication). The 
melting temperatures for the collagen and 
the skin of blue grenadier, which were 
higher than those for cold water fish, but 
lower than those for warm water fish (22), 
were consistent with this behavior pat-
tern. 

The tissue distribution of the collagen 
was examined by immunohistology using a 
murine polyclonal antibody. Since noncol-
lagenous components of connective tissue 
can be highly antigenic when compared 
with collagens (25, 26), the antibody was 
shown to be highly specific for the collagen 
antigen by electroblotting. ELISA indi-
cated that the antibody reacted with each 
of the purified a-chains. The immunohis-
tology demonstrated a very broad distri-
bution for the collagen, in skin, myo-
comma, vessels, intestine, and swim blad-
der (Fig. 4), consistent with the expected 
broad distribution of a type I collagen. 

Previously, chromatography has shown 
that an a3-chain was present in carp skin 
(3, 27), but was absent in carp swim blad-
der (11). This suggested that multiple 

ABCD 
FIG. 3. Separation by SDS-PAGE of CNBr frag-

ments from purified blue grenadier (A) al-chain. (B) 
ad-chain. and (C) a2-chain, and (Dl bovine al(E)-
chain. 
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FIG. 4. Immunohistology of various tissues from blue grenadier using a murine polyclonal antibody 
against the purified skin collagen and fluorescein isothiocyanate-labeled, affinity-purified, sheep 
anti-mouse antibody. Tissues examined: (A) skin, (B) myocomma, (C) blood vessel,  (D)  intestine, and 
(E) swim bladder. Control sections, examined without the murine polyclonal antibody, indicated 
little nonspecific fluorescence, as shown for skin (F). Bars = 50 Am. 

forms of type I collagen may be present in 
fish and have different tissue distributions. 
The a3-chain may be present as a separate 
homotrimer, although the number of ob-
served a-components tends to suggest that 
it forms heterotrimers with the al- and 
a2-chains. 

The presence of an a3-chain in fish skin 
collagen was first reported for cod (1), and 
subsequently for other species (2, 3); these 
species, along with blue grenadier. are 
members of the subdivision Teleostei of 
the bony fish (class Osteich thyes ). Since  

chromatographic studies on fish skin colla-
gens from taxonomically different groups 
(11, 28) failed to show an a3-chain, this ad-
ditional chain may be restricted to within 
one class of fish, and may be of taxonomic 
or phylogenetic value. 
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