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Abstract 

Aquatic macrophytes are the flowering plants and larger algae growing submerged in or 

emerging from water. Macrophytes are an essential component of riverine ecosystems: they 

produce oxygen, filter out sediments and pollutants and provide habitat and food sources for 

invertebrates, fish and mammals. The Macquarie and South Esk Rivers in Tasmania are the 

largest rivers of the northern central plain, and are unique in Tasmania in having long stretches 

of relatively stable and abundant macrophytic vegetation along their mid- to lower reaches. 

The macrophyte communities of the mid- to lower reaches of the two rivers are described by 

classification into groups with similar species composition. Significant environmental 

variation between groups is determined. Depth, substrate type and distance upstream are the 

environmental factors most strongly associated with variation between the distribution of 

individual species/species assemblages. Distance upstream, percentage shading, river form, 

stream width, substrate type and bank height are the factors most strongly associated with 

variation between groups of sites. 

Bank vegetation type, distance upstream, percentage shading, level of stock damage and stream 

width are found to be the environmental factors most strongly associated with differences in 

richness and diversity. Percentage shading and bank vegetation type are the factors most 

strongly associated with differences in cover. The two rivers are found to differ significantly 

in percentage cover and total species richness. The associated environmental factors that vary 

significantly between the rivers are percentage shading, bank height, bank vegetation type, 

level of stock damage and stream width. 

The species rich and abundant macrophyte communities in the mid-reaches of the Macquarie 

River and in some parts of the South Esk are found to have high conservation value. A 

vulnerable marginal species, Persicaria decipiens, is also of high conservation value. Willow 

infestation and changes to flow regimes or water quality are seen as being the greatest threats 

to these communities. The importance of management of stock access to river edges and the 

potential value of buffer zones are discussed. 
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Chapter 1  

Introduction 

1.1 Introduction 

The maintenance or restoration of the health of river systems is an issue of world-wide 

relevance and concern. Healthy rivers have been defined as those in which there remains a high 

proportion of the natural biological diversity, and in which the essential ecological processes 

have been maintained (see Bunn et al. 1999). Healthy rivers provide clean water for the use of 

humans and domestic animals, water for agriculture and industry, habitat for mammals, fish, 

insects, invertebrates and aquatic plants, and filter excess nutrients, sediments and heavy metals 

before these are released into the sea. 

Many river systems around the world have been damaged by human activities. Land clearing, 

damming and other forms of flow regulation, straightening and hardening of river courses, 

aquatic plant removal, pollution from various sources and the introduction of exotic plants and 

animals have all had an impact on the overall health of river ecosystems. 

In Australia, relatively few rivers remain in an unimpacted or pristine state. Schofield and 

Davies (1996:39) wrote that "most rivers are affected by a number of instream, riparian or 

catchment modifications or practices. This often results in them being less biologically 

functional and of lower ecological value than their original states". Recent recognition of the 

unsustainable nature of present river uses, and a deeper understanding of the values and benefits 

provided by healthy river systems, has led to an increasing interest in improving the health of 

river systems and managing human uses of rivers sustainably. Since river systems are 

connected longitudinally from the headwaters to the oceans, the most effective management is 

carried out at the catchment scale. 

Once considered as nothing more than weeds that caused management problems such as flow 

retardation and obstruction of access for fishing, aquatic macrophytes (the larger, visible aquatic 
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plants) are now recognised as an integral part of the ecology of rivers. Davies and Humphries 

(1996:45) wrote that 

"Macrophytes are plants that have an obligatory association with surface water. They 

form an essential element of river habitat structure (providing complex surfaces and 

shelter to algae and macroinvertebrates). They can be a dominant source of river 

ecosystem productivity and can act as major sinks or sources of nutrients, organic 

material and sediments, especially in lowland pool-dominated rivers" 

Some of the indispensable benefits of macrophytic vegetation in rivers are: photosynthetic 

production of oxygen; substratum for algae; habitat for invertebrates and fish eggs; nutrient 

cycling to and from sediments; and stabilisation of river beds and banks (Fox 1996). 

Macrophyte communities are functionally important for river systems as they provide critical 

refuge habitats for fauna. Massive production of invertebrates occurs in macrophyte beds. As a 

result, any environmental impact that adversely affects the aquatic macrophyte communities 

inevitably has an adverse effect on the whole river ecosystem. An understanding of the ecology 

of the aquatic vegetation is an essential component in sustainable catchment management. It is 

therefore important to describe the aquatic plant communities of rivers and their environmental 

relationships. The present study describes the macrophytic aquatic vegetation and its 

environmental relationships in two rivers in Tasmania, Australia. These two rivers are 

otherwise well known biologically, hydrologically and physico-chemically. 

This chapter provides background information on aquatic macrophytes, describes the riverine 

aquatic macrophyte communities in Tasmania, then outlines the aims of this study and the 

structure of the thesis. 

1.2 Definitions of aquatic plants and macrophytes 

Cook (1974) defined 'aquatic plants' as those whose photosynthetically active parts are 

permanently or, at least, for several months each year submerged in, or floating on, fresh water. 
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This definition differentiates between truly aquatic species and those marginal species that only 

tolerate occasional inundation during flood events. 

`Macrophytes' are macroscopic aquatic plants, a category that includes the flowering plants, 

bryophytes and larger algae (Butcher 1933, Fox 1996). With the exception of charophytes, this 

study focuses only on the flowering plants and does not include bryophytes and algae. 

1.3 Macrophyte ecology 

1.3.1 Relationships between aquatic macrophytes and the physical and hydrological 

characteristics of the river  

Aquatic plant species differ in their adaptations to the lotic environment. For example, some 

species have well-developed root systems which wind around stones in rocky substrates, 

protecting the plant from being washed away by the force of the water. Others may not have a 

strong root-system, but reproduce rapidly from vegetative fragments after a flood disturbance. 

Some have developed thin, strap-like leaves which reduce their resistance to the water flow. 

These different adaptations mean that different species are suited to different flow velocities, 

substrate types, nutrient levels and other environmental variables within a river system. 

Dramatic changes in plant species/community composition can occur over a very short distance 

along a river, reflecting variability in the geomorphological, geological and hydrological 

factors. 

It has been noted that lotic communities usually do not exist in a climax state, and that 

competition between species for available resources is rarely a determining factor in the 

distribution of or abundance of individual plant species (e.g. Riis et al. 2000). Rather, the 

composition of aquatic plant communities reflects the flow velocity, substrate type and 

frequency of disturbances such as floods. "Plants in natural streams are in dynamic equilibrium 

with the usual flow of the stream, both storm flows and normal flows, and the plants usually 

recover quickly from the peak and drought flows which may happen in the river" (Haslam 

1978: 69). 
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Two of the most important factors governing the distribution of macrophytes in rivers are the 

variations in the velocity of the river current, and the frequency and severity of flood 

disturbances. As well as having a direct effect on the macrophytes themselves, these factors 

determine the nature of the river bed, which is both the rooting substratum of the macrophytes 

and the source of a large part of their nutrients (Butcher 1933, Haslam 1978). Current velocity 

varies continuously along the length of a river. The slope of the land and underlying geology 

create river forms known as runs, riffles and pools. The definitions of riffle, run and pool here 

are based on depth, visible current velocity and degree of surface disturbance, after Davies and 

Humphries (1996:24): 

A riffle is a shallow section of river, exhibiting fast current and broken water; a run is a 

relatively shallow and narrow section of river, exhibiting moderate to slow current with 

smooth surface current velocity; a pool is a relatively deep and wide section of river, with 

slow or no detectable current and smooth surface current velocity. 

The current velocity is determined by the river profile and the volume of water flow. For a 

given rate of flow, wide and deep sites will have a lower velocity than narrow and shallow sites. 

As a result, pools have the slowest current velocity, often negligible, resulting in habitat more 

like that of a lake (Butcher, 1933). Runs, which are narrower than pools but may be deep, 

mostly have a slow to moderate velocity. Riffles, both shallow and narrow, generally have a 

fast current velocity. 

The current velocity is the main determinant of the substrate type. Fast moving water scours 

fine particles from the riverbed, then carries them in suspension to slower moving or still 

stretches of the river, where they are deposited. As a result, riffles have mainly a rock or stone 

substrate, whereas runs can have a gravel, sand or mud substrate and pools generally have a 

mud substrate. Current velocity also has a direct effect on macrophyte growth, with species 

with a thick, leafy growth habit or shallow root system being unable to tolerate the drag effects 

of fast flowing water. Macrophyte growth also has an effect on both sediment deposition and 

current velocity. Dense macrophyte patches trap fine particles, causing an increase in fine 
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substrata (Butcher 1933, Haslam 1978, Sand-Jensen 1998), and also cause resistance to flow, 

resulting in deeper, slower moving water (Butcher 1933, Haslam 1978, Sand-Jensen et al 1989). 

In a study of the macrophytic vegetation of British rivers, Haslam (1978) found that 

watercourses with similar flows had similar vegetation, other factors being equal, so that plant 

distribution was clearly correlated with flow. She found a similar relationship between 

vegetation distribution and substrate type, which of course is closely related to flow velocity. 

Obviously if the conditions are outside the range of tolerance for a particular species, that 

species will not be present. However Haslam (1978) pointed out that although a species will be 

best correlated with the flow and substrate type it actually prefers, individual plant species 

showed a wide and nearly continuous range of variation along the flow velocity gradient. 

Species were often frequently found in a particular habitat type because of the frequency of that 

habitat type along the river, rather than because of the species' preference for that habitat type. 

The frequencies of high and low flows can be the determining factors of the survival of a 

species or community at a site. While emergent species can often tolerate brief dry periods in 

summer, submerged and floating plants usually die quickly if dried. Repeated dry periods have 

the effect of removing submerged and floating plants from a stream (Haslam 1978). Similarly 

some species cope better than others with flood events. Some species tend to break in the water 

under the stress of high flows, and this sort of loss is quickly replaced. Others tend to be 

uprooted and washed away. Large plants can shelter and protect smaller and less-securely 

rooted plants (Haslam 1978). Of course, the type of flood damage experienced by plant 

communities is dependent on the intensity of flood events and their duration. In the longterm 

these factors will determine the type of vegetation growing at a site. For example, Hughes 

. (1987b; 1990) found that non-equilibrial or stochastic processes were important in regulating 

assemblages of aquatic plants along two rivers in eastern Tasmania. Discharge fluctuations 

occurred sufficiently frequently to maintain an individualistic community, where the species 

were assembled through converging accidents of space, time and similar environmental needs. 
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1.3.2 The effects of water quality on aquatic macrophytes 

The ionic characterisation, pH, electrical conductivity and levels of various nutrients in the 

water column form the overall 'quality' of the water. The effects of changes to the water 

quality on aquatic macrophytes depends to a large degree on the species of macrophyte. There 

is natural variation in the tolerance of aquatic plants to various aspects of the water chemistry, 

which is one of the determining factors of variation in macrophyte species composition at a 

regional scale (see Hughes 1987b). Macrophytes vary in their mechanisms of nutrient uptake, 

in their tolerance of organic and inorganic pollution, and in their tolerance of changes in light 

levels caused by particles in the water column. For example, emergent species draw most of 

their nutrients from the substrate, while at the other end of the spectrum floating macrophytes 

obtain all of their nutrients from the water column. 

There has been a lot of research into the effects of eutrophication-meaning nutrient enrichment, 

usually referring to increases of nitrogen and phosphorus-on aquatic vegetation in various parts 

of the world. Because of the variation in tolerance of increasing nutrient levels between species, 

certain macrophyte species can be used as indicators of nutrient enrichment (Jeffries and Mills 

1990). Plants in the United Kingdom have been assigned to oligotrophic through to eutrophic 

categories, and preferred ranges of ion concentrations have been determined for some species 

(see Haslam 1978). In New South Wales, Australia, the CSIRO (1999) have undertaken recent 

experiments on the effects of nitrogen and phosphorus, both in the sediment and water, on 

different aquatic growth forms. As yet there has been no study undertaken on the preferred 

ranges of ion concentrations for aquatic species in Tasmania. However, the effects of severe 

eutrophication on aquatic vegetation are common to water bodies everywhere, and so affected 

parts of Tasmanian rivers could be identified if the aquatic vegetation characteristic to the river 

section were known. 

Haslam (1990) described three effects of human-induced pollution on river vegetation: (1) a 

reduction in species diversity, (2) an increase in pollution-favoured species and (3) a reduction 
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in biomass and cover. The effects of eutrophication on submerged aquatic macrophyte 

communities has also been described by Jacobs (2000). With the initial input of nutrients there 

is often an increase in vegetative growth. Introduced species frequently have a competitive 

advantage, and increase at a proportionally higher rate under the new conditions. The extra 

nutrients allow epiphytes to grow more vigorously on the leaves, an increase in growth which 

does not seem to be correlated with a corresponding increase in the populations of grazers. The 

increase in plant biomass slows the water so that more sediment settles out. The extra weight 

causes the macrophyte leaves to sink lower, reducing the available light energy for 

photosynthesis, and eventually the populations of submerged macrophytes crash, releasing most 

of their accumulated nutrients into the water column. This can lead to an increase in the growth 

of algae, extensive communities of floating plants or an increase in the growth of emergent 

species if the water is shallow enough. 

Pollution by heavy metals, suspended solids and biocides (pesticides and herbicides) also can 

have a dramatic impact on aquatic vegetation in rivers. These pollutants tend to decrease the 

species diversity, richness and abundance of aquatic vegetation. Again, some plant species are 

more sensitive, and so disappear faster than others. Acidification and increasing salinity also 

have a negative effect on the aquatic vegetation. The extent of the damage depends on the 

concentration of the pollutant and the length of time it is present (Haslam 1990). Jeffries and 

Mills (1990) describe how a frequent change in acid waters is for a smothering growth of algae 

to form a thick mat, often of just one species, on the substrate. These acid-tolerant algae are 

often unsuitable food and are poorly assimilated by surviving grazers. 

Interactive effects of changes in land use, physical changes to the riverine environment and 

increasing concentrations of pollutants are described by Haslam (1990). Macrophytes react to 

the impact on their total habitat, not just to pollutants. Total damage depends on: the damage 

factors present, and the intensity of each; the species present; and the interactions between 

these. For example, increased nutrient concentrations may cause rapid growth of a weed 

species, which is exacerbated by the higher light levels caused by the removal of shade trees on 

the banks. Or, the effects of heavy metal pollution may be less apparent if the metal-sensitive 

species have already disappeared, perhaps because of increased turbidity caused by road- 
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building and forestry activities upstream. Thus the whole range of impacts on the river 

environment need to be taken into account when attempting to determining the effects of 

changes in water quality on aquatic plant communities. 

1.4 Riverine macrophyte communities in Tasmania 

1.4.1 Tasmanian Rivers 

In a world-wide hydrological context, Australian streams have been shown to have a high 

variability in terms of annual flow volumes and large extreme flood events (McMahon 1982). 

Tasmania is an island state with a mountainous terrain, and its position in the path of westerly 

frontal systems creates a unique climate within the Australian continent. Hughes (1987a) used 

hydrological characteristics to classify Tasmanian rivers into four groups. The south-east region 

of the island exhibited hydrological regimes similar to those of the drier areas of mainland 

Australia, whereas the wettest areas, in the south and west, had regimes with no analogue 

elsewhere in Australia. The other two groups, which covered the northern and north-eastern 

parts of Tasmania, had more temperate regimes. 

The South Esk River was classified into the groups of rivers with a temperate flow regime. 

Hughes' classification only included rivers with a natural flow, and altered rivers with available 

flow data for a substantial time period before impoundments or reservoirs were constructed. 

Thus the Macquarie River, which has had impoundments at the headwaters since the late 1800s, 

was not included in the classification. However the low rainfall in the Macquarie catchment 

would probably put the river into the dry south-east group, if it had a natural flow. 

The Macquarie and South Esk are the two major rivers in the Midlands region of Tasmania. 

The Midlands region is important for agriculture and forestry, both of which involve land 

management practices that impact upon the river systems. These practices include damming, 

channel alteration, clearing of adjacent land and the input of nutrients from stock and fertilisers 

(Askey-Doran 1993). Askey-Doran (1993:3) explained that 
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"clearance of land up to the river edge and access by stock has reduced bank stability, causing 

erosion and ultimately changes in channel morphology. The deliberate planting of species such 

as willow and gorse has resulted in the infestation of riparian zones by these species at the 

expense of native species. Willow chokes river courses, forming dams, which further 

encourages erosion". 

1.4.2 Macrophytes in Tasmanian Rivers 

Hughes (1987b) surveyed distributions of aquatic macrophytes in 31 rivers at the regional scale 

in Tasmania, with the aim of determining which environmental parameters were the most 

important in influencing the presence or absence of species. She found that water chemistry and 

substrate were the most important influences determining the distributions of macrophyte 

communities in Tasmanian rivers. The acidic west coast rivers tended to support communities 

with a low species richness, whereas rivers in the east coast region had species rich 

communities along their midreaches- 18 species were found in two samples along the 

midreaches of one east coast river. Species-rich communities were also found in the north and 

north-west of the state where there were suitable substrates and chemical environments. 

Sections of the South Esk and Macquarie rivers have extensive areas of stable, diverse and 

highly productive macrophyte beds, which are relatively rare in Tasmania. Davies and 

Humphries (1996:15) wrote that the "Macquarie and South Esk rivers are biologically highly 

significant. They represent the largest low gradient river systems of the northern coastal plain 

and as such contain several unique features. Most notable among these is the sequence of deep 

pools known locally as troadwaters' which frequently have features more akin to lakes: 

stratification, high plankton densities, relatively stable water levels and permanent fringing 

macrophyte communities with a high floristic and faunal diversity. These macrophyte 

communities, or 'riparian wetlands' have a high conservation value and are in need of some 

measure of formal protection." 
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In their Environmental Flow Study of the Rivers of the South Esk Basin, Davies and Humphries 

(1996:82) found that "most permanent 'riparian wetland' sites were floristically diverse, with 

between 13 and >22 species recorded. Plant species were recorded over a wide range of depths 

and velocities, within the constraints of being predominantly marginal to the main channel when 

in pools, and there was a lack of consistent preferences for depth or velocity for all species 

examined". 

1.5 This Study 

1.5.1 Context  

There have been several recent studies on the biota of the Macquarie River. These have focused 

on macroinvertebrate (Humphries et al. 1996) and fish communities (Humphries 1995) or 

macroinvertebrate-macrophyte associations (Humphries 1996) rather than on macrophyte 

ecology per se. Askey-Doran (1993) described the riparian vegetation of the Tasmanian 

Midlands in general, which included the macrophyte communities at several points on the mid-

to upper Macquarie. There has been no detailed study of the aquatic macrophyte communities 

along the lower section of the Macquarie or the South Esk rivers. The only major studies of 

macrophyte communities in Tasmanian rivers are those of Hughes (1987b, 1990), who studied 

the effect of disturbance on the riverine vegetation of two rivers on Tasmania's east coast, and 

also established a general classification of macrophyte communities in 31 rivers across the state. 

This separated the macrophyte communities in Tasmanian rivers into seven groups, illustrating 

the differences in water quality and substrate between different regions of the state. 

The Macquarie and South Esk rivers have particularly well developed and stable macrophyte 

communities along much of their lower reaches, which are unusual in Tasmania and have a high 

conservation value (Davies and Humphries 1996). 

This study addresses the need for a more thorough investigation of the species diversity and 

macrophyte community structures in the two rivers, with a view to providing baseline data for 
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future studies. It also provides a discussion of the conservation values and management 

requirements of the macrophytic vegetation. 

1.5.2 Aims 

The aims of this thesis are: 

1. To collect baseline data on the distribution and composition of aquatic macrophyte 

communities along the mid- to lower reaches of the South Esk and Macquarie Rivers. 

2. To compare the spatial distribution of the species richness, diversity and cover of aquatic 

macrophyte communities in the Macquarie and South Esk rivers, and relate this distribution 

to environmental characteristics of the two rivers. 

3. To determine the environmental correlates of variation in aquatic macrophyte species 

composition, both within and between sites. 

4. To identify conservation values and discuss some of the management issues relevant to the 

conservation of the aquatic macrophyte communities. 

1.5.3 Scope and Limitations 

The fieldwork for this study was carried out over the summer of 1998-1999. The intention was 

to undertake a 'snapshot' survey of the macrophyte communities along the two rivers, rather 

than to investigate any changes in communities over time. Time constraints meant that each site 

could only be visited once. As a result some of the sites were surveyed in early December 

while others were not visited until late March. Since the percentage cover and species richness 

of macrophyte communities can change over time, particularly during the summer growing 

season (Hughes 1990), there is possibly some inconsistency in the results between sites, 

especially in the abundance measurements. However this inconsistency would be ameliorated 

by the relative stability of the macrophyte communities on the two rivers, especially those found 

on the edges of pools (Davies and Humphries 1996). 
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Depth and current velocity measurements were dependent on the river flow, which varies from 

day to day depending on rainfall, abstraction of water for irrigation, and, on the Macquarie, the 

rate of release of water from impoundments. Water levels during summer are close to baseline 

flow levels, and there were no major flood events during the period of the fieldwork. 

Nonetheless there may well have been changes in water level during the period of the fieldwork, 

which would have slightly affected the between sites comparisons of depth and current velocity. 

A large volume of water was being released into the Macquarie via the Poatina power station 

and Brumby's Creek throughout the summer fieldwork season. This made the surveying of 

macrophyte communities on the lower part of the Macquarie difficult. It was possible to collect 

information to a depth of about 2 metres, below which there appeared to be very little 

vegetation, but it is possible that some plants that would be visible at times of lower flow were 

missed in this study. 

1.5.4 Report Structure 

Chapter 2 describes the climate, land use, hydrological and physical characteristics of the two 

rivers, then gives an overview of the changes in water quality along the rivers from the 

headwaters to the lower reaches. The classification of the macrophytic vegetation and the 

analysis of environmental variation between the classification groups are described in Chapter 

3. Chapter 4 analyses the relationships of environmental variation, species richness, cover and 

diversity in the two rivers. In Chapter 5 the conservation values and health of the macrophyte 

communities are discussed, including an overview of management issues. Finally, there is a 

discussion of the overall findings and their relevance in terms of current literature in Chapter 6. 
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Plate 1 

Mixed native and exotic bank vegetation on the South Esk River 

Riffle on the South Esk River, with mixed native/exotic  bank  vegetation 

Phragmites australis on the South Esk River 
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Pasture on the lower reaches of the Macquarie River 

Eleocharis sphacelata in the South Esk River, with gorse on the banks 

Plate 2 

Exotic bank vegetation on the Macquarie and South Esk Rivers 
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Figure 2.1 The South Esk Basin, with the Macquarie, South Esk and 

Meander Rivers marked. Adapted from the DPIF (1996). 

Eastings and Nonhings ( x1000 m) 

5500.: 

Chapter 2  

The Rivers 

The South Esk Basin in north-eastern Tasmania is the largest water catchment in the state, with 

a catchment area of about 8 900 km 2  (DPIF 1996). There are three major sub-catchments in the 

basin, all draining into the South Esk River, which joins the Tamar Estuary at Launceston: the 

South Esk catchment is the eastern-most catchment, after which the basin is named; the 

Macquarie catchment is in the south, draining north; and the Meander catchment in the west, 

draining east (figure 2.1). Only the South Esk and Macquarie Rivers, both the major rivers in 

their respective catchments, were studied. 

This chapter provides an overview of the hydrology, geophysical variation, climate and land 

use along the two rivers, then gives a brief comparison of the water quality in the two 

catchments. 
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2.1 The South Esk River 

2.1.1 Headwaters and Tributaries 

The South Esk River rises in north-east Tasmania at an altitude of 800 m and drains an area of 

3300 km2, above its confluence with the Macquarie River (Davies and Humphries 1996). The 

South Esk has three major tributaries upstream of the confluences with the Macquarie and 

Meander rivers: the Break O'Day, St Pauls and Nile Rivers. Many smaller streams also flow 

into the South Esk, mainly from the north east highlands around Ben Lomond, e.g. Storys 

Creek and Buffalo Brook (figure 2.2). 

Figure 2.2 The South Esk River and Tributaries. Adapted from the DPIF 1996. 

St Pilule River 

10 Ian 

2.1.2 Flow 

There is a high variability in average flow from year to year in the South Esk. The average 

annual flow at Perth ranged from 10 to 60 cumecs during the thirty-eight year period from 1957 
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to 1995 (DPIF 1996). There are no major storages in the catchment so that, apart from during 

the summer irrigation period, the flows monitored in the South Esk River catchment are 

essentially natural flows (DPIF 1996). At Perth, on the lower South Esk, the maximum daily 

extraction of water for irrigation is about one-sixth of the mediandaily discharge over the same 

months (Davies and Humphries 1996). Low flows in the upper South Esk are supplied from a 

single ground-water storage. See the DPW State of Rivers Report (1996) for a more detailed 

analysis of long-term flow patterns. 

The South Esk River, which has a high rainfall in the upper catchment, is well-known for flash-

flooding in the upper reaches, and is a major source of floods affecting low lying agricultural 

areas and towns in the lower parts of the catchment (DP1F 1996). 

2.1.3 River Form 

The South Esk has a steep upper section until it reaches Mathinna, then follows a relatively low 

gradient for the 220 km to Trevallyn Dam near Launceston, descending only 330 m in that 

distance (figure 2.3). It has many riffle and pool sequences, with a relatively high frequency of 

large broadwater pools between Avoca and Perth (Davies and Humphries 1996). 

Figure 2.3 Profile of the South Esk River. 

Adapted from Davies and Humphries (1996) 

Distance downstream from Mathinna (km) 
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2.1.4 Geology 

High in the catchment the South Esk flows through gentle slopes and rolling hills formed by 

Silurian mudstones and quartzwackes ( Mathinna bed sequence). The River then crosses 

through a narrow belt of Jurassic dolerite and Carboniferous granite, which form the steeper 

slopes leading up to Ben Lomond and the North Eastern Highlands, before reaching the broadly 

undulating valleys of the Launceston Tertiary Basin (DPIF 1996). 

2.1.5 Climate 

Rainfall in the South Esk catchment is strongly influenced by topography, with the lowland 

areas to the west being driest (average 557 mm per year at Avoca) and the North East highlands 

being wettest (1238 mm at Gray). Rainfall is mainly due to westerly frontal systems and is 

highest in winter throughout much of the catchment. The exception is the area around St Marys 

and Gray where peak monthly falls can occur in autumn, due to low pressure systems off 

Tasmania's East Coast (DPIF 1996). 

2.1.6 Landuse 

Land use in the South Esk catchment is primarily agriculture and forestry, with limited mining 

for coal and metals in the upper catchment. Forestry activity occurs mainly in the upper 

reaches. Agricultural land is extensive in the lower areas, which creates a high demand for 

irrigation in the summer months (see figure 2.4). 

Willow and gorse infestation is a problem in the lower South Esk, and the loss of native 

riparian vegetation is considered a significant cause of stream bank and gully erosion (Askey-

Doran 1993). 
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2.2 The Macquarie River 

2.2.1 Headwaters and Tributaries 

The Macquarie River rises SW of Lake Leake at an elevation of 575 m, and has a total length 

of 155 km. Together with its tributaries it drains an area of 3765 km 2  (Davies and Humphries 

1996). The Macquarie has four major tributaries: The Lake River, the Elizabeth River, Tooms 

River and the Blackman River. Brumbys Creek (with water from the Poatina power station) is 

also a major source of water during the summer months. The Macquarie River joins the South 

Esk at Longford (figure 2.5). 

Figure 2.5 The Macquarie River and tributaries. Adapted from the DPIF (1996) 
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2.2.2 Flow 

There is a high variability in average flows in the Macquarie from year to year. The Macquarie 

has a discharge range from a daily average of about 1.5 to 200 cumecs, with most Of this flow 

occurring between June and October. Flows in the Upper Macquarie, the Elizabeth and Lake 

Rivers are regulated through releases of water from impoundments in the headwaters (DPIF 

1996). This flow regulation has the greatest impact during the summer irrigation period. 

Irrigation demand is high, with the maximum daily take exceeding the median daily discharge 

over the same months (Davies and Humphries 1996). In the winter, flows in the Macquarie are 

essentially natural, and large floods are unaltered (Davies and Huniphries 1996). 

The upper Macquarie flows through one of the driest areas of Tasmania, with the township of 

Ross receiving a longterm average rainfall of only 510 mm per year (DPIF 1996). Streams in 

the area were historically ephemeral, often drying up completely during summer. The artificial 

storages of Lake Leake (in 1884) and Tooms Lake were constructed to provide irrigation water 

for the farming communities downstream. The Macquarie was further regulated by HEC 

activity over the last 40 years: Arthurs Lake (1962) was dammed at the head of the Lake River, 

then later the Lake River was dammed to form Woods Lake (1965). In 1966 Arthurs Lake was 

diverted into Great Lake, and water is no longer released into the Lake River from the Arthurs 

Lake dam unless absolutely necessary (DPIF 1996). Woods Lake provides a regulated flow in 

the Lake and lower Macquarie Rivers to provide riparian, stock and domestic requirements to 

prescriptive right holders (DPIF 1996). 

A large volume of water from Great Lake is released into the lower Macquarie during summer, 

via Brumbys Creek, through the Poatina power station. As a result the section of the river 

between Brumbys Creek and the confluence with the South Esk is distinctly different to the 

river upstream. The water is colder and clearer, with a greater flow and reversed high flow 

season, and more active active streambank erosion (see Clerk 1994). 

2.2.3 River Form 

The Macquarie River drops 350 m between its confluences with Tooms River and the South 

Esk River. The greatest loss of altitude is over the first 50 km, with a drop of 150 m, after 
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which the gradient lessens and the river becomes a low gradient, sinuous channel, with the 

faster flowing runs and riffles interspersed with large deep pools (figure 2.6). The margins of 

the runs and pools of this lower 125 km section are extensively colonised by aquatic 

macrophytes. 

Figure 2.6 Profile of the Macquarie River. 

Adapted from Davies and Humphries (1996). 

Distance downstream from Towns R. (km) 

2.2.4 Geology 

The underlying bedrock in the Upper Macquarie is Jurassic dolerite, which forms the cap of 

both the Central Plateau and the Eastern Tiers where the Macquarie rises. The lowland area, 

below about 250 m, is dominated by the weaker rocks of the Launceston Tertiary basin, mostly 

alluvial gravel, sands and till, with outcrops of older volcanic and igneous rocks. This geology 

has formed low relief hills with relict terraces and floodplains. The area is prone to streambank 

erosion and flooding (DP1F 1996). 

2.2.5 Climate 

The Macquarie catchment covers one of the driest areas of Tasmania, being in the rainshadow 

of both the Great Western Tiers and the Eastern Highlands. Large areas of the catchment have 
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a longterm average rainfall of less than 600 mm per year. Most of the rainfall is due to 

westerly frontal systems in the winter months (DP1F 1996). 

Figure 2.7 Mean annual rainfall of Tasmania (mm). Reproduced from the Tasmanian Year 

Book (1985). 

2.2.6 Landuse 

The major agricultural activities in the Macquarie catchment are sheep and beef cattle farming. 

A growing number of farms are now also becoming involved in irrigation, especially of high 

yield crops such as potatoes (DPIF 1996). The Cressy-Longford area in the lower reaches of 

the catchment has its own irrigation scheme using water from Poatina Power Station, which has 

enabled intensive cultivation of vegetable crops. The DPIF (1996:5) noted that this area was 
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"now showing effects of salinity, mostly due to localised areas of poor drainage". Forestry 

activities are centred in the Lake L,eake area in the upper catchment, and along the southern 

parts of the Great Western Tiers. Agricultural land is extensive in the lower parts of the 

catchment (see figure 2.4) and tree decline due to `dieback' is of major concern to the 

community (DPIF 1996). 

Willow and gorse infestation are serious problems in some areas, and the loss of native riparian 

vegetation is considered a significant cause of streambank and gully erosion (Askey-Doran 

1993). 

2.3 Water Chemistry 

The Department of Primary Industries and Fisheries (DPIF) conducted water chemistry tests on 

the Macquarie and South Esk Rivers between May 1992 and October 1995, for their South Esk 

Basin State of Rivers Report  (1996). Several sites on the Macquarie and South Esk were 

visited monthly during the study period. They also carried out longitudinal sampling along the 

length of the rivers in stable summer (March) and winter (August) flows in 1995 to give a 

snapshot view of the relative river conditions at these times, and to highlight any changes in 

water quality due to tributaries or point source inputs to the river and reveal any trends in water 

quality down the length of the river. 

The results of these tests are used in the present study to illustrate basic differences in water 

chemistry between the two rivers and different reaches of each river. See Table 2.1 for a 

summary of these differences. No independent water chemistry tests were carried out in the 

present study. 

2.3.1 Nutrients 

The DPEF (1996:133) defined 'nutrients' as "the forms of nitrogen and phosphorus most 

commonly associated with plant growth and productivity". The relevant forms of nitrogen are 

ammonia-N, nitrite-N, nitrate-N, and Total Kjeldahl-N (TKN). Discussion in the DPIF (1996) 

report was limited to nitrate-N, which made up the largest portion of dissolved nitrogen, and 

Total Nitrogen (TN) which was derived by calculation (as TKN + nitrate-N + nitrite-N). 
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Total phosphorus (TP) is a measure of all phosphorus both bound to particulate matter and 

dissolved in the water. The dissolved phosphorus, measured as dissolved reactive phosphorus 

(DRP), is largely free and available to aquatic plants and algae (DPIF 1996). Since in natural 

waters DRP generally makes up only a very small fraction of TP, the DPW (1996) discussion 

focussed on TP only, unless higher levels of DRP were detected. 

2.3.1.1 The South Esk 

The DPW (1996) study of nutrient levels in the South Esk showed a distinct decrease in nitrate-

N concentration with increasing distance from the headwaters of the river. Median nitrate-N 

concentrations were between 0.005 and 0.15 mg1 -1  (Table 2.1), with the higher levels being at 

the top of the river. There was also a seasonal change in nitrate-N concentration at all sites, 

with higher concentrations generally occurring during the higher baseflow periods in winter. 

This is consistent with the theory that the groundwater discharge in the catchment has higher 

nitrate-N concentrations than surface waters (DPIF 1996). Total N concentrations were found 

to be reasonably uniform across all sites. This was because the TKN concentration (mainly 

composed of organic nitrogen) was higher in the lower parts of the catchment where nitrate-N 

levels were low. Median TN concentrations were between 0.17 and 0.33 mg1 -1  (DPIF 

1996:136). These levels fall in the lower end of the ANZECC (1992) guideline range (0.1 to . 

0.75 mg1 -1) for the protection of aquatic ecosystems in Australia, see Table 2.1. 

Total phosphorus (TP) can be considered low for the entire catchment when compared to the 

ANZFEC (1992) guidelines, which set a range of 0.01-0.1 mg1-1  for the protection of aquatic 

ecosystems. The highest median level in the catchment measured by the DPIF (1996) was 

0.021 mg1 -1  in the Break O'Day River. In general, the DPIF (1996) found that lower 

concentrations occurred in the upper parts of the catchment. The longitudinal transects showed 

that during summer TP concentrations above the junction with Storys Creek were fairly 

uniform, with a marked dilution occurring below this point. During winter baseflows there was 

a more gradual increase in TP concentrations towards the bottom of the catchment. 

During flood events nutrient levels generally increase dramatically. The DPIF (1996:142-143) 

found that "nutrient concentrations during high flows can be an order of magnitude higher due 

to surface runoff...during flooding in rivers of the South Esk basin nutrient concentrations 

25 



increased by up to 15 times. This was especially so for parameters such as TP and TN which 

are linked to the resuspension of sediments and overland runoff". 

2.3.1.2 The Macquarie 

The DP1F (1996) found that most sites on the Macquarie had very low total phosphorus (TP) 

concentrations, i.e. below 0.02 mg1 -1 , see Table 2.1, and there was no increase in TP levels 

towards the bottom of the catchment. However there was a much higher level of TP on the 

Elizabeth River below the sewage treatment plant at Campbell Town which may have locally 

influenced TP levels at a site on the Macquarie downstream of the Elizabeth junction- the DPIF 

study showed relatively high proportions of dissolved P at this site, accompanied by a prolific 

growth of attached algae. Higher than average levels of TP were also recorded just upstream of 

the entrance of the Blackman River, and at a site immediately downstream of the Ross sewage 

treatment plant. Catchment activities are suggested as the causes of the higher levels of 

phosphorus at these sites (DPLF 1996). During higher winter flows after significant rain, there 

was an increase in TP at all sites on the Macquarie, with a maximum concentration in the two 

upper sites. 

The nitrate-N concentrations in the Macquarie were lower than in the South Esk at all sites, see 

Table 2.1, with median concentrations of below 0.04 mgl -1 . However the total N (TN) 

concentrations ranged between 0.3 and 0.6 mg1 -1 , due to high levels of organic nitrogen. This 

was higher than in the South Esk, but within the the ANZECC (1992) guidelines for the 

protection of freshwaters in Australia (0.1-0.75 mg1 -1). The longitudinal transects showed that 

Total N concentrations were moderately uniform along the entire length of the river upstream 

of Brumbys Creek, with the exception of higher levels in the upper reaches during flood events 

(DPIF 1996). The TN concentration in the Macquarie decreased due to dilution downstream of 

the Lake River and Brumbys Creek, particularly during summer, when this lower section of the 

river is almost totally dominated by water from the Central Highlands (DPrF 1996). It is worth 

noting that measured loads of DIN (dissolved inorganic nitrogen) increased downstream (DPIF 

1996:203). 

The exception to the lower levels of nitrogen in the Macquarie was during flood events, when 

nutrient concentrations in the Macquarie catchment were up to 40 times their normal 

concentrations at some sites. The most notable increase was for nitrate-N which was normally 

26 



very low in the Macquarie. It appeared that rain events were mobilising nitrate-N which could 

not normally enter rivers due to lack of groundwater flows (DPIF 1996). 

The DPIF Report (1996) suggests that given the high levels of total nitrogen, it appears that 

phosphorus is a limiting factor on algal growth in the Macquarie catchment. They did note that 

during prolonged low flows in the Macquarie during the summer of1994-95, there was 

considerable growth of filamentous algae at many sites. 

2.3.2 Point Sources of Nutrients 

2.3.2.1 The South Esk 

There are six sewage treatment plants on the South Esk and tributaries, all of which discharge 

treated wastewater directly into the rivers. During limited sampling of the treatment plants, the 

DPIF (1996) measured concentration and flow to give estimates of nutrient loads. They found 

that even the minimum concentrations of nutrients in effluent were greater than concentrations 

measured during floods in the South Esk, when ambient nutrient concentration in rivers is 

highest. The DPIF (1996:144) write that "while during higher river flows the impact of this 

concentration of effluent may be minimal due to dilution, during low flows there may be 

localized nutrient enrichment of the receiving waters, resulting in nuisance algal blooms and 

prolific growth of aquatic weeds". 

2.3.2.2 The Macquarie 

The major point source inputs of nutrients on the Macquarie are the sewage treatment plants at 

Ross and Campbelltown. Both discharge treated wastewater directly to rivers; at Ross to the 

Macquarie River and at Campbelltown to the Elizabeth River. The DPIF (1996) undertook 

limited sampling of the treatment plants, measuring concentration and flow to give estimates of 

nutrient flows. They comment (DPIF 1996:197) that "the most notable figures... are those for 

nitrogen discharge. In a system where nitrate-N is low, a large percentage of the nitrogen 

discharged by both treatment plants is in the dissolved form". That is, in the form readily 

accessible to plants, which contributes to algal growth, at least in localised areas downstream 

from the sewage outfalls. 
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2.3.3 Temperature  

2.3.3.1 The South Esk 

The DPIF (1996:120) found that "temperature at all monitoring sites in the South Esk showed a 

distinctly seasonal pattern with temperatures ranging from a low in mid-winter of about 

5°C.. .to a high in mid-summer of around 23 °C", see table 2.1. Diurnal fluctuations in winter 

were minimal, but in summer were as large as 10 °C. Apart from the uppermost site (which is 

above the stretch of river covered by the present study) being coolest, water temperature 

showed little gradation from the top of the catchment to the bottom. 

2.3.3.2 The Macquarie 

Similar temperatures ranges to the South Esk were found in the lower Macquarie River, while 

at sites higher in the river and in the main tributaries the temperature range was typically 4.5°C 

to18°C. The Lake River and Brumbys Creek, with water flowing from the highlands, were 

generally always colder than other sites in the catchment (DPrF 1996:181). 

2.3.4 Electrical Conductivity (EC) 

2.3.4.1 The South Esk 

In the DPlF study (1996), EC throughout the South Esk catchment was found to be low, with 

medians ranging from 44 uScm -i in the upper catchment at Mathinna to about 97 pScm -i at 

Perth. A distinct seasonal pattern was shown at most sites on the South Esk, with EC rising 

during prolonged periods of stable flow. Rapid dilution occurred during high flow events. 

EC in the Break O'Day and St Paul's rivers upstream of their confluences with the South Esk 

were higher than in the South Esk (mean EC of 18012Scm 4  and 128 uScm -1  respectively), but 

still well within the normal ranges for freshwaters. The DPlF suggest that evaporation made be 

the cause of the greater concentration of ions in these two tributaries, as both can have very low 

summer flows. 
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The effects of these tributaries on the EC in the South Esk was shown clearly by the 

longitudinal transects, with an abrupt increase in EC appearing downstream of the confluences 

of the tributaries with the South Esk (DPIF 1996). 

2.3.4.2 The Macquarie 

EC in the Macquarie was higher than in the South Esk, see Table 2.1. There was a distinct 

increase in EC from sites high in the headwaters to sites low in the river. Tooms Lake had a 

median EC of 74 [tScm -1  whereas Coburg (low on the Macquarie but above Brumbys Creek) 

had a median of 2161A,Scm -'. The longitudinal transect of the river in summer showed three 

marked decreases in EC due to tributary inflows. These occurred downstream of the Elizabeth 

and Lake Rivers and downstream of Brumbys Creek, where very dilute water was being 

discharged from Poatina power station. In the winter transect the power station was not 

operating, and dilution was only evident from the Lake River inflow. Higher EC values tended 

to occur at most sites during winter (DPIF 1996). 

2.3.5 Reaction (pH)  

2.3.5.1 The South Esk 

The DPIF (1996) found that the pH of the South Esk catchment water was typical of poorly 

buffered water with field pH ranging between 5 and 8.4. Median conditions at most sites was 

close to 6.5, see Table 2.1. The more acidic water of Storys Creek (due to mine effluents) 

appeared to have very little influence on pH levels in the South Esk downstream. 

2.3.5.2 The Macquarie 

The pH measurements in the Macquarie were of similar magnitudes to those in the South Esk. 

29 



2.3.6 Turbidity 

2.3.6.1 The South Esk 

The South Esk river has very low baseline turbidity, meaning that it is very clear for much of 

the time, as are most rivers in the catchment (DPIF 1996). In the 1992-1995 measuring period 

for the DP1F study, mean turbidities in NTU between Fingal and Perth ranged from 2.9 to 5.0 

NTU, see table 2.1. The median turbidity in all cases was lower than the mean. 

A twenty-year time series of data collected by the DPIF for the State of Rivers Report (1996; 

116-117) showed a strong seasonal component to the turbidity readings, with highest turbidity 

occurring during the winter-spring period. Turbidity was affected by rainfall, with lower peak 

turbidity levels in years of below average rainfall. The seasonal variability of the readings 

made it difficult to assess real changes in turbidity in the longer term. Flood events caused a 

huge increase in turbidity, with recordings of up to 340 NTU measured at sites on the South 

Esk during flooding in 1995 (DPIF 1996). 

Longitudinal transect data collected during stable winter flows clearly showed an increase in 

turbidity down the length of the South Esk. However in summer, during low baseflows, higher 

turbidity occurred further up in the catchment, where river velocities and associated erosional 

power is greater (DPIF 1996). 

2.3.6.2 The Macquarie 

The DPIF (1996) found that turbidity in the Macquarie was generally less than 5 NTU. Both 

the Elizabeth and Lake Rivers were more turbid due to very fine suspended clay particles. As a 

result the site on the Macquarie below the inflow of the Elizabeth River had high turbidity. 

The winter longitudinal transect of the Macquarie was taken after two days of rain, and showed 

the significant effect rain had on turbidity levels in the catchment, with a 5-10 fold increase in 

turbidity at sites in the lower part of the Macquarie, and a high peak of 80-100 NTU at two 

sites higher in the catchment (DPIF 1996). 
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2.3.7 Dissolved Oxygen 

2.3.7.1 The South Esk 

The DPIF (1996:129) found that "generally, dissolved oxygen throughout the South Esk 

catchment is typical of natural rivers, with levels at all stations showing a strong seasonal 

variation. The median dissolved oxygen concentration at most sites was within the range 9- 

10.5 mg1-1...which is indicative of a healthy environment", see table 2.1. 

2.3.7.2 The Macquarie 

Generally DO concentrations in the Macquarie were similar to those in the South Esk, with a 

similar broad seasonal variation. At two sites concentrations of below 6.5mg1-1 were recorded 

(Ross and Coburg), indicating that slight oxygen depletion was occurring in some areas during 

summer, but these concentrations are still above the ANZECC (1992) threshold of 6 mgl-1 for 

the protection of aquatic organisms (DPIF 1996). 

2.3.8 Heavy metals 

2.3.8.1 The South Esk 

A significant stretch of the South Esk has been adversely affected by mining activity on Storys 

Creek and Aberfoyle Creek. These two small tributary streams converge before they enter the 

South Esk between Fingal and Avoca. 

A report by Locher (1993) for the Department of Environment and Land Management 

investigated pollution from this area. The effects of heavy metal pollution on the riverine biota 

of the South Esk were also studied several times during the 1970s (see Tyler and Buckley 

1973; Norris et al 1980; 1981;1982). These studies found that heavy metal pollution from the 

Storys Creek and Aberfoyle mines affected biotic communities as far downstream as Evandale, 

some 80 km from the source of the metals. Norris et al (1981) found that concentrations of 

cadmium, zinc, copper and lead in the sediment and solution were all well above the natural 

background levels up to 130 km below the source of contamination. It has also been suggested 
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that Buffalo Brook may be contaminated by metals from mining, which may contribute to the 

contamination of the South Esk (see DPIF 1996: 154). 

There have been no studies into the effects of mining activity on the aquatic vegetation of the 

South Esk, however the DPIF (1996) pointed out that as well as the problems caused by heavy 

metal contamination, the instability of the substrate downstream from the confluence with 

Storys Creek (due to increased sedimentation) caused the elimination of algal and macrophytic 

growth. 

2.3.8.2 The Macquarie 

The DPEF (1996) sampled sites on the Macquarie for heavy metal analysis during March 1995. 

No significant levels were detected. This result was expected as no significant mining activity 

or chemical related processing occurs in the catchment. 

2.3.9 Health Rating Using Macroinvertebrates 

In the DP1F study (1996:156), analyses of the macroinvertebrate assemblages were used to 

assess the health of the river sites on the South Esk. All four sites that fall within the area of 

this present study were found to be degraded by human activities. The first, just upstream from 

the confluence with Storys Creek, was clearly stressed, with a great reduction in 

macroinvertebrate taxa sampled compared to sites further upstream. The DPIF (1996) suggest 

that extensive land clearing upstream, cleared land with pasture or introduced species such as 

willows or gorse growing right to the waters edge, and extensive erosion of river banks may be 

possible causes. There was a further degradation of the macroinvertebrate community at 

Avoca, downstream from Storys Creek. This was as expected, as the influence of heavy metal 

pollution from mining effluent flowing into Storys Creek has been well documented. Slightly 

higher numbers of taxa were sampled at Evandale and Perth, however both sites still had 

degraded macroinvertebrate communities. 

The Macquarie was not rated using invertebrates in the DPIF (1996) study. 
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Table 2.1 Water Quality Parameters in selected upstream and downstream sites on the 

Macquarie and South Esk Rivers- adapted from the DPIF (1996) 

Macquarie 
Median level 	Median level 
upstream' 	downstreamb  
(min-max) 	(min-max) 

South Esk 
Median level 	Median level 
upstream' 	downstreamd  
(min-max) 	(min-max) 

Standard 
Australian 
Water Quality 
Guidelines' 

Nitrate-N 0.012 0.016 0.13 0.02 
mgl-1  (0.001-0.05) (0.005-0.043) (0.022-0.25) (0.002-0.13) 

Total N 0.412 0.345 0.23 0.1-0.75 
mo-1 (0.156-0.801) (0.077-0.563) (0.057-0.465) 

Dissolved 0.003 <0.005 <0.005 <0.005 
Reactive P 
mg1-1  

(0.001-0.009) (<0.005-0.022) (<0.005-0.012) (<0.005-0.062) 

Total P 
mgr 1 

0.013 
(0.009-0.021) 

0.015 
(0.005-0.031) 

0.01 
(0.002-0.7) 

0.011 
(0.003-0.14) 

0.01-1 ,  

pH (field 6.9 6.6 6.4 6.4 6.5-9.0 
measurement) (5.6-7.9) (6.2-7.3) (5.6-7.8) (5.6-7.3) 

Dissolved Oxygen 9.5 10.05 10 > 6 
mg1-1  (6.4-11.8) (6.8-11.8) (7.34-12.2) 

Conductivity @ 130 233 66 93 <1500 
25°Cp.Scm4  (71-225) (155-280) (41-125) (50-138) 

Turbidity <5 <5 4.98m  4.45 m  
NTU (1.5-32.5) (0.84-13.30) 

Temperature 10.6 11.2 10.2 12.2 
Celsius (4.2-19.1) (6-22.5) (5.1-22.5) (4.3-24.2) 

aMt Morriston 

bCoburg 
cFisga l 

dPerth 

'Australian Water Quality Guidelines for Ecosystem Health (ANZECC 1992) 

m  Mean values rather than medians were given for turbidity. The medians were lower than the means (DPIF 1996) 

*Not given in DPIF Site Monitoring Data (DPIF 1996: Appendix 1) or ANZECC Guidelines (1992) 
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Chapter 3  

Characteristics and Environmental Relationships of the Vegetation 

3.1 Introduction 

Studies on the distribution of aquatic macrophyte communities (and the associated marginal and 

bank communities) along rivers in many parts of the world have become increasingly common 

during the last twenty years (see Holmes et al. 1998). Classification systems relating aquatic 

plants to physical variables such as substrate and water velocity were first developed in Britain 

during the 1920s (Butcher 1933). Later surveys confirmed many of these early species/habitat 

associations, and extended the range of physical and environmental factors under consideration 

(e.g. Haslam 1978; Holmes et al. 1998). Many authors have focussed on the distribution of 

species within a single river or river catchment, often describing the effects of human-induced 

changes in water quality between high and low parts of the catchment (e.g. Wiegleb 1984; 

Penuelas and Sabater 1987; Ferreira 1994). Others have described the environmental correlates 

of variation in macrophyte communities across a wider area, developing systems for assessing 

water quality and riverine health using macrophyte communities (e.g. Haslam 1987; Holmes et 

al. 1998; Small et al. 1996). The later developments have been largely due to progress in 

computer technology and statistical packages that can process large datasets, distinguishing 

groups of sites on the basis of similarity in their characteristics (Holmes et al. 1998). For 

example, TWINSPAN (Two-way Indicator Species Analysis: Hill, 1979) has been used to 

classify sites on the basis of similarity in their species characteristics in many studies of this 

type in the recent literature. 

In Australia, classification systems relating aquatic macrophytes to environmental variables are 

still in the developmental stages (see Schofield and Davies 1996; CSIRO 1999; Jacobs 2000). 

While the well-known relationships between aquatic macrophytes and physical variables such 

as current velocity and substrate type seem to be applicable in almost every case, other 

associations are more specific to a particular plant species, for example the effects of the 

addition of nutrients into the water column on plant growth (see the CSIRO 1999). A high 

degree of environmental variation across Australia means that the development of classification 

systems at a regional level would be necessary to draw meaningful conclusions on the 
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relationships between environmental variables and aquatic plant species composition in any 

given river catchment. 

In Tasmania there has been only one study (Hughes 1987b) that classifies aquatic macrophyte 

communities in rivers in relation to environmental variables. Hughes (1987b) classified the 

rivers in Tasmania on the basis of their macrophyte communities, and found that water 

chemistry (filterable residue, pH and salinity) and substrate were the most significant determing 

factors of species presence or absence at the regional (state-wide) scale. Obviously the scale of 

the classification is significant. As Westlake (1973) pointed out, on a world-wide scale 

temperature and dispersal ability are the two primary factors governing the distribution of 

riverine plant species. At a regional scale, the factors that determine the macrophyte 

community distribution (in this case water chemistry and substrate) will differ from those that 

determine the distribution of communities within a region (e.g. diffuse nutrient inputs, river 

slope and geology), a catchment (e.g. altitude, land-use, slope, hydrology and geology) or a 

reach (e.g. river form, bank slope, point source pollutants). At the finest scale, the distribution 

of individual plants within a plot will be determined by the distribution of different substrate 

types, local variations in water velocity, available light for photosynthesis, and in some cases 

the extent of competition between species for space and resources. This detailed distribution is 

often an unstable mosaic, but a regular pattern in time often develops from the interactions of 

the plants and flow (Westlake 1973). 

In the present study, the macrophyte communties and associated marginal communities in the 

mid and lower reaches of the Macquarie and South Esk Rivers are classified in four ways: 

firstly, the individual species or assemblages of species at the plot level are classified into 

'dominant species groups', and some of the environmental variables that are related to the 

distribution of these groups are determined. This provides information on the fine-level 

differences in the environmental preferences of species and species assemblages. Secondly, the 

presences or absences of both aquatic macrophyte and marginal species at each site are used to 

classify the sites into groups with similar species compositions. Again, some of the 

environmental relationships are determined at the site level. This provides information on the 

variation in aquatic and marginal communities between different sections of the rivers, in 

particular between upstream and downstream sections and between run, riffle and pool sections. 
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Finally, to avoid the potentially confusing effects of the marginal species on the aquatic 

macrophyte classification, the sites are classified into groups with similar compositions of 

aquatic species, and then into groups with similar compositions of marginal species, and 

environmental relationships are again determined for each of these classifications. Abundance 

data are used in these final two classifications. 

This chapter describes the methods of site selection and data collection, and then classifies the 

vegetation in the four alternative ways described above. Significant differences between the 

groups in environmental variables and vegetation cover, species richness and diversity are then 

determined for all classifications. The data are ordinated, and the positions of the groups of 

sites/ species assemblages in the ordination space are related to the environmental variation 

between groups of sites or species assemblages. 

Finally, all four classification groupings are integrated to describe the geographical variation in 

environmental factors and the related variation in aquatic and marginal vegetation along the two 

rivers. These results present baseline data on the distribution and composition of plant 

communities along the two rivers, and provide information on the environmental correlates of 

variation in aquatic macrophyte species composition, thus satisfying aims one and three from 

chapter 1. 

3.2 Definitions 

3.2.1 Plant Growth Form 

It is useful to classify macrophytes into groups with different growth forms, as growth form is 

often more useful than floristic composition when describing macrophyte communities in an 

ecological context (Sculthorpe 1967). A simple four- group system was adapted from that 

described by Sculthorpe (1967). Growth form 1- submerged plants were those with all of their 

vegetative tissue below the water surface; growth form 2- floating-leaved plants were those with 

leaves floating on the water surface; growth form 3- emergent plants were plants with most of 

their leaves and stem above the water surface; growth form 4, marginal plants, was added to this 
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list to describe non-woody species that were growing in the marginal zone between emergent 

aquatic species and terrestrial species. These species grew on the banks of the rivers, either 

underwater, on damp river margins or on the dry higher banks, depending on water levels at the 

time. Many marginal species were pasture species that had colonized the riverbanks from 

adjacent agricultural land. 

Any attempt to apply rigid definitions when classifying aquatic macrophytes oversimplifies__ 

their plasticity of organism and diversity of habit (Sculthorpe 1967). As there were very few 

species in this study that fitted strictly into one growth form and never occurred in another, 

species with the first three growth forms were often grouped together and referred to as the 

'aquatic vegetation', while plants with growth form 4 were referred to as the 'marginal 

vegetation'. This division of river plants into aquatic and marginal groups was similar to that 

described by Holmes et a/.(1998) and Ferreira and Moreira (1999). 

Bank vegetation was defined as terrestrial vegetation growing beyond the marginal vegetation 

on the riverbanks. The start of the bank vegetation was often marked by obviously terrestrial 

species such as Poa species. Woody species such as willows and Leptospermum species were 

included in the bank vegetation growth form rather than the emergent or marginal growth 

forms. These species grew substantially taller than the other marginal species, forming a 

separate canopy above the aquatic and marginal vegetation, and tended to overshadow the 

aquatic and marginal vegetation rather than competing with it for space. 

3.2.2 Dominant species type 

A dominant species type was defined as a distinct species assemblage that covered a total of 

more than five square metres in a site. These assemblages consisted of one or more species. 

They varied in size from 5 square metres upward. 
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3.3 Methods 

3.3.1 Site Selection 

Random sampling was used to select the site locations. Fifty-four sites were randomly selected 

on the Macquarie, and forty-eight on the South Esk. The sites were all situated between the 

confluence of the two rivers and the highest point of each river supporting substantial 

communities of macrophytes (the confluence with Tooms River on the Macquarie and the 

township of Fingal on the South Esk). 

3.3.2 Data Collection  

3.3.2.1 Vegetation cover and species richness 

At each site a representative 25 m long section of the river was chosen. The percentage cover of 

each aquatic and marginal plant species, or assemblage of species if this was consistent in 

species composition, was measured. This was done by estimating the area (in square metres) 

covered by each species or species assemblage, calculating the site area (25 m by average 

stream width), then dividing the species/species assemblage area by the site area to give a 

percentage of the site covered by that species/species assemblage. The percentage cover of each 

species in each dominant species type was also estimated visually in the field. The dominant 

species in a dominant species type was defined as the species with the highest percentage cover. 

Species/species assemblage and depth transects were conducted across the river at a point 

representative of that site. Transects started and ended one metre beyond the bank vegetation/ 

marginal vegetation boundaries. Depth was measured using water level as the zero point. 

Depths greater than 2 m did not generally support macrophyte growth and were simply recorded 

as >2 m. 

Total species richness was defined as the total number of aquatic and marginal species found at 

the site. Exotic species richness was the total number of exotic species, aquatic species richness 
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the total number of aquatic species and marginal species richness the total number of marginal 

species found at the site. 

Diversity was calculated using the Shannon-Weiner index, which combines species richness 

with relative abundance and is thus a measure of the evenness of cover (Kent and Coker 1992). 

Plants were identified to species level where possible. However, species in several genera could 

not be separated because of the absence of flowering parts at the time of the survey. For 

example, Triglochin species other than T. procerum, Hydrocotyle species and most Isolepis 

species. Myriophyllum simulans could not be distinguished from M. variifolium, and so both 

are recorded as M. simulanslvariifolium. Similarly, Isolepis fluitans could not be distinguished 

from Schoenus fluitans. Both are recorded as Isolepis fluitans, which is the more common 

(Curtis and Morris 1994). Nomenclature follows Buchanan (1999). 

3.3.2.2 Environmental data 

The dominant substrate, minimum depth and maximum depth were recorded for each dominant 

species type. Four classes were used to record dominant substrate, based on the most common 

substrate combinations found in the field. These were mud, mud/rock, gravel (or, occasionally, 

sand) and rock. The definitions of mud, sand, gravel and rock were those of Riis et al. (2000), 

where mud referred to particles less than 0.1 mm in diameter, sand 0.1-3 mm, gravel 3-30 mm 

and rock > 30 mm in diameter. Depths of up to 2 m were measured using a pole marked at 20 

cm intervals. The depths of the occasional dominant species types growing deeper than 2 m 

were estimated to the nearest metre. 'Above water' height was recorded as negative depth. 

The single depth value used as a sample variable for each site was the deepest depth class found 

along the transect line, with depth in three classes: 1 = 0-1 m; 2 = 1-2 m; 3 = >2 m. Width was 

recorded as the distance along the transect line from the bank community/marginal community 

boundary on one side of the river to the bank community/marginal community boundary on the 

other side. The dominant substrate type was recorded as the substrate type that covered the 

greatest percentage of the site. The four classes used to record dominant substrate were the 

same as those described above. Sand was the dominant substrate type at only one site, and so 

was merged with the 'gravel' class. Organic matter was common and was included in the 
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'mud' class. The most common substrate type was mud/rock, with mud or organic matter 

dominating the macrophyte-lined banks and rock in the middle of the stream. In some parts of 

the analysis, 'rockiness of substrate' was used as an ordered variable, using the four classes of 

substrate in the order given above. Percentage shading was measured as the percentage of the 

site area shaded from directly above by overhanging bank vegetation. Bank height was defined 

as the vertical distance between water level and the first (usually obvious) substantial flattening 

of the bank. Where this differed between locations within the site, the maximum value was 

taken. 

The bank vegetation was recorded in six classes: (1) willow; (2) pasture, or willow and pasture; 

(3) other exotic vegetation, or a mixture of willows and other exotics; (4) a mixture of natives 

and exotics, but more exotic than native; (5) more native than exotic; and (6) native. The extent 

of stock damage at each site was recorded in three classes: (1) no damage; (2) moderate damage 

and (3) severe damage. Sites with moderate damage had visible signs of trampling by stock 

(hoof prints, stock pathways, bank erosion, soil compaction, animal faeces and/or sediment in 

the water), but less than 10 percent of the vegetation along the river edges had been completely 

removed. Sites with severe stock damage were defined as those sites in which there were 

obvious signs of stock damage, and in which more than 10 percent of the river edges had been 

denuded of vegetation. The level of erosion was also recorded in three classes: (1) no active 

erosion; (2) moderate active erosion and (3) severe active erosion. In the first category the 

banks were well supported by vegetation and there were no visible signs of erosion; in the 

second category, there was some evidence of erosion, such as undercutting of the banks, on up 

to 20 percent of the river banks; and in the third category active erosion had affected more than 

20 percent of the riverbanks. 

Each site was defined as a riffle, run or pool, depending on depth, visible current velocity and 

degree of surface disturbance, after Davies and Humphries (1996:24, see page 4). For parts of 

the analysis in which it was useful to have current velocity as an ordered variable, the form of 

river site was ordered to provide three classes of 'slowness of current velocity': riffle = fast 

velocity; run = slow to moderate velocity; and pool = no discernible velocity. No separate 

current velocity measurements were recorded. 
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3.3.3 Data Analysis 

3.3.3.1 The dominant species types 

The dominant species types were distinct species or species assemblages covering an area 

greater than 5 m 2  in any one site. They were made up of various combinations of species, but 

were identified by their dominant species. Overall there were 28 different dominant species 

across all 295 dominant species types. Thus the dominant species types were aggregated into 

28 groups by dominant species only. This grouping was independent of the sites in which the 

dominant species types were found. The intention of analysing the data on dominant species 

groups was to identify environmental correlates of variation in macrophyte species and species 

assemblages at the fine-scale 'plot' level, that is, taking into account environmental variation 

within sites as well as between sites. This detailed analysis of the environmental preferences of 

individual species/species assemblages was seen as necessary to fully satisfy aim three in 

chapter 1. 

The percentage frequency of all taxa were calculated for each group (table 3.1). These data 

were ordinated using multidimensional scaling (MDS), following the default options in 

DECODA (Minchin 1990). The pattern of stress reduction suggested a four-dimensional 

solution to be the most useful. 

Spearmans Rank Correlations and Kruskal-Wallis tests were used to determine the relationships 

between the position of dominant species types on the four axes from the multidimensional 

scaling and the environmental variables, vegetation cover and richness. Environmental, 

richness and cover vectors were fitted to the four dimensional MDS solution using the vector 

fitting option in DECODA (Minchin 1990). Correlations were tested using 1000 random 

permutations of the ordination axes (Minchin 1990). These were used to test the relationship 

between independent variables and the variation in species composition and abundance. 

Statistical tests were used to test the strength of the relationships between the dominant species 

groups and the environmental variables. The environmental variables were not normally 
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distributed. All the environmental variables were measured on either continuous or ordinal 

scales, however some of the latter had as few as three ordered classes. Despite the low number 

of classes, Kruskal-Wallis tests were used in preference to chi-squared tests as the small number 

of samples in the groups created uncertainty about the validity of chi-squared tests. 

3.3.3.2 The sites 

TWINSPAN (Two-way Indicator Species Analysis, Hill 1979) was used to identify groups of 

sites with similar species composition. The sites were firstly grouped using presence/absence 

data for species of all four growth forms. They were then grouped using aquatic species only 

(growth forms 1,2 and 3), and then using marginal species only (growth form 4). Abundance 

data were used for the latter two analyses. 

Since the cover, richness and environmental variables were either continuous (e.g. width) or 

ordered (e.g. depth), but were not normally distributed, Kruskal-Wallis tests were considered 

most appropriate to test the strength of the relationships between the 'TWINSPAN groups and 

the cover, richness and environmental variables. As mentioned above, some of the ordered data 

had as few as three ordered classes. However, despite the low number of classes, Kruskal-

Wallis tests were used in preference to chi-squared tests as the small number of samples in the 

groups created uncertainty about the validity of chi-squared tests. 

The species abundance data from the 102 sites were ordinated using multidimensional scaling 

(MDS), following the default options in DECODA (Minchin 1990). Species of all four growth 

forms were used for the initial ordination. The pattern of stress reduction suggested a three-

dimensional solution to be the most useful. Species richness and cover vectors and vectors of 

the environmental variables were fitted to the three-dimensional MDS solution. Correlations 

were tested using 1000 random permutations of the ordination axes (Minchin 1990). This 

illustrated the strength and directionality of relationships between the cover, richness and 

environmental variables and the variation in vegetation. The above analysis was repeated twice, 

firstly grouping the sites using aquatic species only (growth forms 1, 2 and 3), and then using 

marginal species only (growth form 4). 
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This analysis was intended to provide baseline information on the distribution and composition 

of aquatic macrophyte communities along the two rivers, and to determine the environmental 

correlates of variation in aquatic macrophyte species composition (in conjunction with section 

3.3.3.1) thus satisfying aims one and three from chapter 1. 
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3.4 Results 

3.4.1 Results of the analysis of the dominant species types  

3.4.1.1 Species composition and environmental characteristics of the dominant species 

groups 

There were 295 dominant species types across the 102 sites. There were 28 dominant species 

groups. Table 3.1 shows the percentage frequency of species in each dominant species group. 

Table 3.1 Percentage frequency of species in dominant species groups 

(a) Groups 1-15 

Species GI G2 G3 G4 G5 G6 G7 G8 	G9 G10 Gil G12 G13 G14 G15 
Acaena novae-zelandiae - - 	- 33.3 - - 
Agrostis aenuda - - 12.5 
Agrostis avenacea 10 
Agrostis stolonifera 5.26 40 11.11 
Alisma plantago-aquatica - 7.89 4.76 4.88 	- 
Alopecurus geniculatus - _ 40 11.11 25 
AzoIla filiculoides 
Batrachium tricophyllum 100 - 33.3 - 
Baumea arthrophylla 100 2.44 	- 11.11 - 
Baumea articulata 9.09 - 
Cal&riche stagnalis 2.63 9.52 
Carex appressa 2.63 4.76 40 12.5 
Carex fascicularis 2.63 
Carex gaudichaudiana 100 4.76 2.44 	- 33.3 5.56 50 11.11 62.5 
Charophytes 2.63 - - - - - - 
Centella cordifolia 9.09 100 4.76 16.67 - 5.56 - 
Crassula helmsa 2.63 - - - 
Cyperus gunnii 26.32 100 - 10 - 12.5 
Eleocharis acuta 9.09 39.47 100 100 66.67 12.2 40 - 44.44 62.5 
Eleocharis pusilla 4.76 100 - - - - 
Eleocharis sphacelata 45.45 7.89 - 19.05 - 100 30 - - 25 22.22 - 
Elodea canadensis 2.63 9.76 	100 11.11 - 
Festuca spp. 2.63 

- 
- 12.5 

Galium palustrium 2.63 2.44- 40 - 
Geranium spp. 4.76 
Gratiola spp. 10 
Haloragis heterophylla 2.63 
Hemarthria uncinata 2.63 9.52 
Hordeum marinum 30 
Hydrocotyle pterocarpa 2.63 
Hydrocotyle spp. 9.09 44.74 100 42.86 66.67 4.88 100 22.22 25 
Hypericum spp. 2.63 
Isolepis fluitans 2.63 4.76 4.88 	16.67 20 - 100 11.11 
Isolepis inundata - 10 33.3 - - 
Isolepis spp. - 100 25 - 
Jun cus articulatus 21.05 - 9.52 50 33.3 100 22.22 25 
Juncus astreptus 2.63 - - - - 44.44 
Juncus australis 526 
Juncus holoschoenus 11.11 
Juncus rocerus 7.89 33.33 
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Juncus spp. 36.84 	- 952 50 33.3 - 	100 100 25 
Leontodon taraxacoides 28.95 	- 100 30 25 11.11 12.5 
Leptinella reptans 13.16 	- 4.76 10 25 
Lilaeopsis brownii 5.26 	- 4.76 10 33.3 - 
Lolium perenne 2.63 	- 4.76 50 12.5 
Lotus pedunculatus 2.63 	- - - - 
Lotus spp. 13.16 	- 10 33.3 - 	25 11.11 12.5 
Lotus ten uis - 2.63 	- - - 
Lysimachia nummularia 9.09 47.37 	- 100 	23.81 	- 50 25 22.22 100 
Mentha pelugium - - ao - 
Myosotis caespitosa 9.09 5.26 - 20 333 - 25 
Myriophyllum amphibian - 2.63 66.67 	- 33.3 - 
Myriophyllurn 
salsugineum 

18.18 - 9.52 	- 	7.32 11.1 	- 

Myriophyllum sinutlansl 
variifolium 

18.18 2.63 4.76 	 17.1 16.67 10 

Neopaxia australasica 2.63 
Nymphoides spp. 2.63 
Oxalis perennans - 
Persicaria decipiens 2.63 10 
Persicaria hydropiper - 526 - 10 12.5 
Persicaria spp. 9.09 36.84 19.05 	9.76 50 33.3 - 11.11 37.5 
Phragmites australis - 10.53 100 	4.76 	 2.44 12.5 
Plantago coronopus 2.63 _ 
Poaceae spp. 5.26 100 	952 	 732 10 11.11 12.5 
Potamogeton 
australiensis 

2.63 - 11.1 	- 

Potamogeton ochreatus - 732 33.33 - 33.3 - 	- 12.5 
Potamogeton tricarinatus 9.09 - 	- 
Potentilla anglica - - - 12.5 
Pratia pedunculata 5.26 19.05 	- 	732 - 50 11.11 
Prunella vulgaris - - 333 - 
Pseudognaphalium 
luteo-album 

10 

Ranunculus 
amphitrichous 

10 

Ranunculus repens 2.63 11.11 12.5 
Ranunculus rivularis 2.63 
Rumex crispus 2.63 12.5 
Rumex spp. 526 100 30 11.11 25 
Schoenoplectus validus - - - 	 - - 
Triglochin procerum 36.36 526 9.52 	 21.9 - 12.5 
Triglochin spp. 45.45 5.26 33.33 	29.3 16.67 20 11.11 12.5 
Typha spp. - - - 5.56 	- 11.11 - 
Vallisneria americana - 4.76 	 17.1 
Villarsia reniformis 27.27 5.26 4.76 	 7.32 10 

(b) Groups 16-28 

SPECIES 016 G17 G18 G19 	G20 	G21 	G22 G23 024 G25 G26 G27 G28 
Acaena novae-zelandiae - 	 - - _ - - - 
Agrostis aemula - 
Agrostis avenacea - 
Agrostis stolonifera - 100 37.5 
Alisma plantago-aquatica - 
Alopecurus geniculatus - 12.5 
Azolla filiculoides - 25 - 
Batrachium tricophyllum - - - 
Baumea arthrophylla 6.25 6.25 
Baumea articulata - - 
Callitriche stagnalis - 
Cares appressa 100 12.5 
Carex fascicularis 
Carex gaudichaudiana 18.75 - 12.5 
charophytes - - 
Centella corthfolia 1429 625 - 6.67 
Crassula helmsii - - 
C 	erus 	nnii 100 37.5 
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Eleocharis acuta 6.25 18.75 100 6.25 25 
Eleocharis pusilla 
Eleocharis sphacelata 12.5 12.5 50 
Elodea canadensis 14.29 - - 100 50 4 
Festuca spp. - 12.5 
Galium palustrium 100 12.5 
Geranium spp. 
Gratiola spp. 
Haloragis heterophylla 
Hemarthria uncinata 
Hordeum marinum 
Hydrocotyle pterocarpa - - 
Hydrocotyle spp. 14.29 625 25 
Hypericum spp. - - 

Isolepis fluitans 57.14 12.5 37.5 12.5 25 6.67 4 
Isolepis inundata - - 
Isolepis spp. - - 
Jun cus articulatus 6.25 12.5 
Juncus astreptus - 37.5 
Juncus australis 125 
Juncus holoschoenus 
Juncus procerus - 625 
Juncus spp. 6.25 6.25 37.5 
Leontodon taraxacoides - 625 37.5 
Leptinella reptans - 12.5 
Lilaeopsis brownii 6.67 
Lolium perenne - 37.5 
Lotus pedunculatus - 
Lotus spp. 100 25 
Lotus tenuis 
Lysimachia nummularia 100 100 50 
Mentha pelugium - - 
Myosotis caespitosa 625 25 
Myriophyllum amphibian - - 
Myriophyllum salsugineum 2837 100 123 - 100 12.5 
Myriophyllum simulansl 
variifolium 

- 100 6.67 4 

Neopaxia australasica 100 12.5 6.67 
Nymphoides spp. - - 
Oxalis perennans - 12.5 
Persicaria decipiens 
Persicaria hydropiper - - 
Persicaria spp. 6.25 6.25 100 25 - 62.5 
Phragmites australis - 100 6.67 
Plantago coronopus - - 

Poaceae spp. - - 50 
Potamogeton australiensis 14.29 6.25 - 
Potamogeton ochreatus 14.29 - 123 100 - 32 
Potamogeton tricarinatus 14.29 6.67 - 
Potentilla anglica - - - 125 
Pratia pedunculata 6.25 - 
Prunella vulgaris - 
Pseudognaphalium 
luteo-album 
Ranunculus amphitrichous - 
Ranunculus repens 100 12.5 
Ranunculus rivularis - 
Rumex crisp us - 
Rumex spp. 100 - 25 
Schoenoplectus validus _ - - 100 - - 

Triglochin procerum 2837 625 123 50 60 8 100 
Triglochin spp. 57.14 6.25 50 100 50 100 8 100 
Typha spp. - 100 
Vallisneria americana 14.29 - 6.25 100 - 
Villarsia reni ormis - 6.25 6.25 100 12.5 
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The following table summarises the distinguishing features of the 28 dominant species groups. 

The group means differed significantly in substrate type, minimum and maximum depth, 

distance upstream, site cover and species richness. 

Table 3.2 Mean values for vegetation cover, species richness and environmental variables 

by dominant species group 
Substr, substrate; Sitecover, percentage of site covered by dominant species type; Mindepth, minimum depth of 
dominant species type (m); Maxdepth, maximum depth of dominant species type (m); ICmsup, distance upstream 
from junction of the two rivers (kms); Stockd, stock damage at site; Rich, total number of species in dominant 
species type; Bankvg, nativeness of bank vegetation; Probability values from Kruskal-Wallis Tests are shown: ***, 
P < 0.001; **,P < 0.01; *, P < 0.05; n.s., P > 0.05. n = number of dominant species types in group. 

Group n Dominant species Substra  Mindepthd  Maxdepth Sitecover Rich Bankvgb  Stockd Kmsu 
1 1 Batrachium tricophyllum 1 0.2 0.3 1.21 1 3 2 60 
2 11 Baumea arthrophylla 1 0.16 0.65 6.39 3.64 2.45 2.64 99.73 
3 38 Carex gaudichaudiana 1 -0.32 0.18 7.24 5.79 2.42 1.97 64.53 
4 8 Charophytes 2.5 0.63 1.08 4.67 1 2.75 1.88 72.45 
5 1 Cyperus gunnii 1 -0.6 0.1 13.33 8 2 3 29 
6 21 Eleocharis acuta 1.24 -0.14 0.23 7.39 3.90 2.38 2.19 65 
7 3 Eleocharis pusilla 1 -0.1 0.15 1.01 3 3 1.67 88.67 
8 41 Eleocharis sphacelata 1.10 0.29 1.17 7.59 2.78 2.41 2.17 68.45 
9 6 Elodea canadensis 1.17 0.57 1.56 20.18 2 2.33 2.17 55.48 
10 10 Hydrocotyle spp. 1.2 -0.18 0.41 17.27 9.6 2.2 2.5 63.63 
11 3 Isolepis spp. 1.67 -0.03 0.38 4.83 5.67 3 2.33 113.6" 
12 18 Isolepis fluitans 2.33 0.27 0.67 10.04 1.39 3.11 1.56 87.78 
13 4 Juncus articulatus 1 -0.16 0.2 3.76 3.75 2.5 1.25 91.75 
14 9 Juncus spp. 1 -0.01 0.2 4.23 5 2.56 2.11 90.44 
15 8 Lysimachia nummularia 1 -0.31 0.23 11.05 6.38 2.5 2.25 74.5 
16 7 Neopaxia australasica 2.14 0.3 0.74 18.66 3.71 2.57 2.14 101.1z 
17 16 Myriophyllum salsugineum 2.19 0.21 0.8 10.47 1.81 2.81 2.13 85.88 
18 16 Myriophyllum simulansl 

variifolium 
1.88 0.24 0.87 21.38 3.06 2.44 2.13 64.48 

19 1 Persicaria spp. 1 0.35 0.9 1.9 5 2 2 9.8 
20 16 Phragmites australis 1 -0.13 0.51 4.74 1.69 3.25 1.44 81.17 
21 2 Potamogeton ochreatus 1 2.5 3 5.78 1 2.5 2 73.5 
22 1 Ranunculus repens 1 -0.4 0.35 7.7 8 2 2 9.8 
23 4 Schoenoplectus validus 1 0.13 0.71 27.14 3.75 2 2 55 
24 15 Triglochin spp. 1.53 0.60 0.97 3.17 2.07 2.8 2.2 89.89 
25 25 Vallisneria americana 1.16 1.06 2.42 17.59 1.6 2.2 2.28 58.88 
26 1 Villarsia reniformis 1 0 0.1 1.94 1 2 2 61 
27 1 Typha spp. 1 0 0.5 9.23 4 2 2 108 
28 8 Poaceae spp. 1 -0.21 0.28 15.85 6.75 2.38 2.25 41.98 

P *** *** *** ** *** n.s. n.s. *** 

'Substrate, 1 = mud, 2 = mud/rock, 3 = gravel, 4 = rock 
Nativeness of bank vegetation, on a scale of 1-6 from least native to most native 
'Stock damage, 1-3 from none to severe 
dnegative depth readings indicate height above water level 

47 



3.4.1.2 Relationships between environmental variables and cover and richness of 

dominant species types. 

Table 3.3 shows the correlations between the percentage cover and species richness of the 

dominant species types and environmental variables. The environmental variables that were 

most strongly related to the richness and % site cover of the dominant species types were 

'rockiness of substrate', distance upstream, maximum and minimum depth, river form and 

'nativeness of bank vegetation'. Percentage cover was significantly related to form and species 

richness was significantly related to bank vegetation type. These variables were all inter-

related, see Chapter 4, and varied from reach to reach along the two rivers. 

A Kruskal-Wallis test (P = 0.00) showed that dominant species types found on mud were richer 

in species than those found on rocky substrates. Gravel dominant species types were particularly 

species poor. Note that the majority of dominant species types were found on mud, although 

more of the aquatic dominant species groups were found on gravel or rock than marginal 

dominant species groups. 

Table 33 Correlations between the richness and cover of the dominant species types, and 
environmental variables. Spearmans rank correlation coefficients (P < 0.05) are used for 
continuous variables and Kruskal-Wallis probabilities for ordinal variables. 
Substr, substrate; Sitecover, percentage of site covered by dominant species type; Mindepth, minimum depth of 
dominant species type; Maxdepth, maximum depth of dominant species type; 1Cmsup, distance upstream from 
junction of the two rivers; Stockd, stock damage at site; Rich, total number of species in dominant species type; 
Bankvg, nativeness of bank vegetation; Form, form of river site. Kruskal-Wallis Test Probabilities: ***,P < 0.001; 
**, P <0.01; *,P< 0.05; 	P> 0.05. 

mindepth maxdepth sitecover rich bankvgb  stockd krnsup found  
substra  
mind epth 
maxdepth 
sitecover 
richness 
bankvg 
stockd 

*** 
0.80 

0.16 

*** 
-0.47 
-0.35 
0.32 

*** 

** 

*** 

* * 

-0.21 
-0.18 
-0.15 
*** 
*** 

*** 
** 
*** 
*** 

*** 

'Substrate type, 1 = mud, 2 = mud/rock, 3 = gravel, 4 = rock 
bNativeness of bank vegetation, on a scale of 1-6 from least native to most native 
'Stock damage, 1-3 from none to severe 
d  Form of river site; run, riffle or pool. 
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3.4.1.3 Multi-dimensional scaling of dominant species groups 

The 28 dominant species groups formed distinct clusters (figure 3.1), and separated well along 

the minimum depth and maximum depth vectors (which were almost parallel). The positioning 

of the dominant species groups shows that species assemblages dominated by Elodea 

canadensis, Vallisneria americana, and Neopaxia australasica were found deepest, and those 

dominated by Juncus species, Poaceae species, Carex gaudichaudiana and Lysimachia 

nummularia were found in the shallowest water. Species assemblages dominated by Carex 

gaudichaudiana, Lysimachia nummularia and Poaceae species appeared in the top right of the 

first chart, which placed them high on the 'species richness' vector. Species assemblages 

dominated by Elodea canadensis, Baumea arthrophylla, Neopaxia australasica and Triglochin 

species appear in the bottom left corner, low on the richness vector. Neopaxia australasica and 

Triglochin dominated assemblages clustered highest on the 'rockiness of substrate' vector. 

Table 3.4 shows the correlations between the dominant species group scores on the ordination 

axes and the environmental variables, species richness and cover. The maximum correlation 

coefficients (R) from the vector fitting are shown for continuous variables. Minimum and 

maximum depth were the environmental variables that correlated most strongly with the 

ordination space. Distance upstream was also significantly correlated. Species richness showed 

a stronger correlation than vegetation cover. 
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axis 1 

• Baumea arthrophylla • Carex gaudichaudiana Charophytes X  Eleocharis acuta X  Eleocharis pusilla 
• Eleocharis sphaceiata +  Bodea canadensis -  Hydrocotyle —  isolepis lsolepis fluitans 

Juncus articulatus Juncus X  Lysimachia nummularia Neopaxia australasica • Myriophyllum salsugineum 
Myriophyllum simulansivanifolium +  Phragmites austr-aks —  Potamogeton ochreatus • Schoenoplectus validus Triglochin 
Vallisneria americana X  Poaceae spp. 
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Table 3.4 Correlations between the dominant species type scores on the ordination axes 
and environmental variables. Spearmans rank correlation coefficients (P < 0.05) were used 
for continuous variables and Kruskal-Wallis test probabilities were used for categoric variables. 
Substr, substrate; Mindepth, minimum depth of dominant species type; Maxdepth, maximum depth of dominant 
species type; Sitecover, percentage of site covered by dominant species type; Richness, total number of species in 
dominant species type; Stockd, stock damage at site; Bankvg, nativeness of bank vegetation; Kmsup, distance 
upstream from junction of the two rivers; Kruskal-Wallis Test Probabilities: ***, P< 0.001; **, P< 0.01; *, P < 
0.05; 	P> 0.05. 

Variable Axis 1 Axis 2 Axis 3 Axis 4 R" 
Substra ** *** *** 

Mindepth -0.73 -0.26 0.71 
Maxdepth -0.67 -0.18 0.71 
Sitecover 0.17 0.21 
Richness 0.28 0.25 0.13 0.18 0.46 
Stockd ** 
Bankvgb  
Kmsup -0.16 -0.12 0.20 
Fore ** ** ** 

aClass of substrate, 1 = mud, 2 = mud/rock, 3 = gravel, 4 = rock 
bNativeness of bank vegetation, on a scale of 1-6 from least native to most native 
cStock damage, 1-3 from none to severe 
dForm of river site; run, riffle or pool 
'Maximum R correlation value from vector fitting in DECODA (Minchin 1990) 

3.4.1.4 Geographical distribution of the dominant species groups 

In the following description the terms 'upper reach', 'middle reach' and 'lower reach' refer to 

the position of these reaches on the sections of river included in this study. They do not refer to 

the river as a whole. Figures 3.2 (a)-(d) illustrate the geographical distribution of dominant 

species groups. 

The most common vegetation assemblages on the upper reach of the Macquarie (between 

Tooms River and the Blackman River) were those dominated by Myriophyllum salsugineum, 

Baumea arthrophylla, Juncus species and Triglochin species. 

The middle reach of the Macquarie (between the Blackman River and Brumbys Creek) 

consisted of dominant species groups Myriophyllum salsugineum, Myriophyllum 
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simulanslvariifolium, Lysimachia nummularia, Neopaxia australasica, Elodea canadensis, 

Hydrocotyle species, Baumea arthrophylla, Carex gaudichaudiana, Eleocharis acuta, 

Eleocharis sphacelata, Triglochin species and Vallisneria americana. 

The most common dominant species groups on the lower reach of the Macquarie (from 

Brumbys Creek to the junction with the South Esk) were those dominated by Hydrocotyle 

species, Carex gaudichaudiana, Poaceae species and charophytes. 

The upper reach of the South Esk (between Fingal and Storys Creek) was dominated by 

Triglochin species, Isolepis fluitans, Carex gaudichaudiana, Eleocharis sphacelata and 

charophytes. 

The middle reach of the South Esk (between Storys Creek and Buffalo Brook) was dominated 

by Phragmites australis, Isolepis fluitans and occasionally Juncus species, Eleocharis acuta and 
Eleocharis sphacelata. 

The most common dominant species types along the lower reach of the South Esk (between 

Buffalo Brook and the junction with the South Esk) were Phragmites australis, Myriophyllum 

salsugineumlvariifolium,Isolepis fluitans, Carex gaudichaudiana, Eleocharis sphacelata, 

Eleocharis acuta, Vallisneria americana and Poaceae species. 
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3.4.2 Results of the analysis of the site vegetation using all species 

3.4.2.1 The species composition and geographical distribution of all-species groups 

Eight groups were selected from the sorted table produced by TWINSPAN. Table 3.5 shows 

the percentage frequency of species in each group, figure 3.3 illustrates the geographical 

distribution of groups along the two rivers and figure 3.4 shows the indicator species for each 

TWINSPAN division: 

1. Group 1 sites had very few species. All group 1 sites contained the submerged aquatic 

species Isolepis fluitans, more than three-quarters contained the marginal species Carex 

gaudichaudiana and two-thirds the emergent aquatic Phragmites australis. This group of 

nine sites was mostly found along a section of the upper half of the South Esk, starting just 

downstream of the confluence with Storys Creek. 

2. The thirty group 2 sites all had Juncus species present, and most also had Isolepis fluitans, 

Triglochin species, Eleocharis sphacelata, E. acuta and Carex gaudichaudiana. Many had 

other aquatic and marginal species as well. That is, group 2 sites were species rich with a 

mixture of species of different growth forms. Group 2 was found along almost the entirety 

of the South Esk, but in only three points on the Macquarie - two upstream of Ross and one 

downstream of Brumbys Creek. 

3. Group 3 sites were dominated by aquatic species, with very few marginal species. Almost 

all sites contained Triglochin species, most commonly associated with Eleocharis 

sphacelata, Myriophyllum salsugineum, Isolepis fluitans and/or Juncus species. The 

eighteen group 3 sites were found predominantly in the upper half of the Macquarie, higher 

than any major tributaries or sewage treatment plants. 

4. Group 4 sites also almost all contained Triglochin species, Eleocharis sphacelata and 

Eleocharis acuta, along with a range of other species such as Myriophyllum species and/or 

Vallisneria americana, and/or the marginal species Carex gaudichaudiana, Hydrocotyle 
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species, Lysimachia nummularia and Persicaria species. More than a third of the sites 

contained Elodea canadensis. The twenty-five group 4 sites only occurred in the mid and 

lower reaches of the Macquarie, between the sewage treatment ponds at Ross and the 

confluence with Brumbys Creek. 

5. The most common species in group 5 sites were Juncus species and Eleocharis acuta. 

These sites were conspicuously low in submerged or floating-leaved species, with only 

Triglochin species and Isolepis fluitans occurring frequently. The marginal species 

Persicaria species, Lotus species, Leontodon taraxacoides, Myosotis caespitosa and Carex 

gaudichaudiana were also frequent. The nine sites in group 5 occurred only in the very high 

reaches of the South Esk (upstream of Storys Creek) and the very low reaches of the 

Macquarie (downstream of Brumbys Creek). 

6. Group 6 sites contained a mixture of marginal and aquatic species. triglochin species, 

Eleocharis sphacelata, and Potamogeton ochreatus were found in each of these sites, as 

were the marginal species Juncus species, Hydrocotyle species, Persicaria species, 

Lysimachia nummularia, Pratia species and Carex appressa. There were only 5 sites in 

group 6, clustered together about a third of the way up the Macquarie, downstream of both 

the Ross and Campbelltown sewage outflows. 

7. The three sites in group 7 were distinct in that they had almost no submerged or floating-

leaved vegetation, apart from occasional Potamogeton ochreatus plants, but shared common 

emergent and marginal species such as Juncus species and Eleocharis acuta, Lysimachia 

nummularia, Lotus species, Agrostis species, Alopecurus geniculatus and Lolium species. 

These 3 sites all appeared just downstream of the confluence of Brumbys Creek with the 

Macquarie. 

8. The banks.  of group 8 sites were so thickly infested with willows that there was no marginal 

or aquatic vegetation. All 3 of these sites were in the lower third of the South Esk. 
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Table 3.5 Percentage frequency of marginal and aquatic species in each TVVINSPAN group. 
Group 8 was not included as these sites had no aquatic or marginal vegetation. 

n= number of sites, *signifies exotic species. 

SPECIES Groupl 
(n=9) 

Group2 
(n=30) 

Group3 
(n=18) 

Group4 
(n=25) 

Group5 
(n=9) 

Group6 
(n=5) 

Group7 
(n=3) 

Acaena novae-zelandiae - - - - 11.11 - 
Agrostis aemula - - 5.56 - - - 
Agrostis avenacea - - - - 11.11 - - 

*Agrostis stolonifera - 3.33 - - 33.33 80.00 100.00 
*Alisma plantago-aguatica - 13.33 - 4.00 - - 
*Alopecurus geniculatus - - 5.56 4.00 - 80.00 100.00 
Azolla filiculoides - - - 4.00 - - 
Batrachium tricophyllum - 3.33 5.56 - - - - 
Baumea arthrophylla 11.11 6.67 33.33 28.00 - 40.00 
Baumea articulata - 

• 

- 11.11 - - - 
Byophytes - - - - 22.22 - 
Callitriche stagnalis - 10.00 - - - - - 
Carex appressa - - 11.11 4.00 11.11 100.00 66.67 
Carex fascicularis - - 5.56 - - - - 
Carex gaudichaudiana 77.78 70.00 38.89 68.00 55.56 40.00 
Charophytes - - - 4.00 - 
Cente1la cordifolia - 13.33 22.22 8.00 33.33 20.00 
Crassula helmsii - 3.33 - - - - - 
Cyperus gunnii - 16.67 - 44.00 33.33 
Cyperus lucidus - 3.33 5.56 - 11.11 - - 
Eleocharis acuta 22.22 63.33 33.33 88.00 77.78 60.00 100.00 
Eleocharis pusilla - 6.67 5.56 - - - - 
Eleocharis sphacelata - 63.33 50.00 80.00 44.44 100.00 

*Elodea canadensis - 10.00 5.56 40.00 11.11 60.00 
*Festuca spp. - 3.33 11.11 11.11 - 
*Galium palustrium - 10.00 - - 33.33 60.00 
Geranium spp. - - - 4.00 - - 
Gratiola spp. - - - - 11.11 
Haloragis heterophylla - - 5.56 - - 
Hemarthria uncinata - 10.00 - 

*Hordeum marinum 
ssp.gussoneanum - - - - - 60.00 
Hydrocotyle hirta - - 5.56 16.00 - 20.00 
Hydrocotyle pterocarpa - - 5.56 - 
Hydrocotyle spp. 11.11 50.00 11.11 44.00 44.44 100.00 
Hypericum spp. - - - - 11.11 
Isolepis fluitans 100.00 63.33 38.89 32.00 66.67 20.00 - 
Isolepis inundata - - 5.56 - 22.22 - - 
Isolepis spp. 100.00 65.67 40.02 34.00 70.44 - - 

*Juncus articulatus - 36.67 16.67 4.00 88.89 100.00 100.00 
Juncus astreptus - 26.67 5.56 - 33.33 20.00 100.00 
Juncus australis - 6.67 - - - - 66.67 
Juncus holoschoenus - - 5.56 4.00 11.11 - - 
Juncus procerus - 53.33 11.11 - 33.33 20.00 - 
Juncus spp. - 93.33 44.44 12.00 77.78 100.00 100.00 

*Leontodon taraxacoides 11.11 10.00 - 20.00 55.56 80.00 100.00 
Leptinella reptans - - - 28.00 11.11 20.00 - 
Lilaeopsis brownii - 3.33 11.11 12.00 11.11 - - 
*Lolium perenne - - - 12.00 22.22 80.00 100.00 
*Lotus pedunculatus - - 5.56 - - - - 
*Lt - - 5.56 8.00 66.67 - 100.00 
*Lt  - - 5.56 - - - 
*Lysimachia nummularia - 20.00 33.33 80.00 44.44 100.00 100.00 
*Mentha pelugium - - - - - 80.00 - 
Neopaxia australasica - 6.67 16.67 24.00 22.22 
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*Myosotis caespitosa 
Myriophyllum amphibian 
Myriophyllum pedunculatum 

11.11 
- 

6.67 
23.33 

5.56 
5.56 

8.00 
8.00 

55.56 
- 

ssp. pedunculatum - - 5.56 - - - 
Myriophyllum salsugineum 11.11 10.00 61.11 48.00 - 60.00 
Myriophyllum simulans/ 
variifolium - 40.00 5.56 40.00 33.33 40.00 
Nymphoides spp. - - - 4.00 - - - 
Oxalis perennans - - - - 11.11 
Persicaria decipiens - 3.33 - 4.00 11.11 - 
Persicaria hydropiper - 3.33 - - 33.33 - - 
Persicaria prostrata - - - - 11.11 - - 
Persicaria spp. - 13.33 - 60.00 77.78 100.00 - 
Phragmites australis 66.67 53.33 - 20.00 33.33 20.00 66.67 

*Plantago coronopus - - - - - 20.00 - 
Potamogeton australiensis - 20.00 16.67 4.00 - - - 
Potamogeton ochreatus - 16.67 16.67 16.00 - 100.00 100.00 
Potamogeton perfoliatus - - - 8.00 - - - 
Potamogeton tricarinatus - 3.33 16.67 - 22.22 - 

*Potentilla anglica - - - - 22.22 - 
Pratia pedunculata 11.11 6.67 - 12.00 - 100.00 

*Prunella vulgaris - - - - 11.11 - - 
Pseudognaphalium luteo-album - - - - 11.11 

amphitrichous *Ranunculus - - - - 11.11 - - 
Ranunculus repens - - - - 33.33 - 100.00 
Ranunculus rivularis - - - 11.11 - - 

*Rumex crispus - - - 4.00 11.11 _ 33.33 
*Rumex spp. - 3.33 12.00 11.11 80.00 66.67 
Schoenoplectus validus - - - 12.00 - - - 

* Trifolium spp. - - - - - 20.00 
Triglochin procerum - 33.33 77.78 76.00 - 80.00 
Triglochin spp. 44.44 60.00 88.89 96.00 66.67 100.00 
Triglochin striatum 11.11 6.67 - - 33.33 - 

* Typha spp. - - 16.67 - - 20.00 
Vallisneria americana - 33.33 5.56 52.00 - 80.00 
Villarsia reniformis - - 5.56 28.00 - 80.00 
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(n = 82) 

Agrostis stolonifera 

(n = 17) 

(n = 9) 	
Eleocharis sphacelata 
Hydrocotyle spp. 

(Juncus spp. 
Eleocaris sohacelata) 

Juncus spp. 
Phrazmites australis 

(n = 39) 

(n = 9) 

Eleocharis sphacelata 
Juncus procera 

Myriophyllum salsugineum. 
Lysimachia nummularia 

(n = 43) 

(n = 30) 

Juncus spp. 
Charonhytes 

(n = 18) 

Eleocharis acuta 
Persicaria spp. 

Triglochin procerum 

Myosotis caespitosa 
Isolepis spp. 

n = 25) 

Potamogeton ochreatus 
Alopecurus geniculatus 

(n = 8) 

(n =5) 

Ranunculus repens 
Lotus spp. 

(n =3) 

Figure 3.4 Dendrogram showing the preferential species for each TWINSPAN cluster, 
using presence/absence data for aquatic and marginal species in all sites on the 
Macquarie and South Esk Rivers. Groups with species names in brackets are defined by the 
absence rather than the presence of these species. Group numbers are given in bold. 
n = number of sites. 

3.4.2.2 Variation in site cover, species richness and diversity between the TWINSPAN 

groups 

There was a significant difference between the TWINSPAN groups in all richness, cover and 

diversity variables, see table 3.6. Group 6 had a significantly higher percentage cover of aquatic 

and marginal vegetation than groups 1, 3, 7 and 8. Group 6 also had a higher total species 
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richness than all other groups, a higher exotic species richness than groups 1, 3 and 8, and a 

higher aquatic species richness than groups 1, 7 and 8. Group 6 had a higher species diversity 

than groups 1 and 2. 

Groups 5, 6 and 7 had a significantly higher exotic species richness and proportion of exotic 

species than all other groups. Groups 5 and 7 also had a lower proportion of aquatic species 

than the other groups. Group 1 had a lower total species richness and a lower exotic species 

richness than all groups except group 8. Group 1 also had a lower diversity than groups 4, 5, 6 

and 7. 

It is important to note that as there was only one exotic aquatic species found in this study 

(Elodea canadensis), a high exotic species richness implies a large number of exotic marginal 

species, that is, pasture species. This explains the low proportion of aquatic species in sites with 

a high proportion of exotic species. 

Table 3.6 Mean values of species richness and cover for the TWINSPAN groups. 
%cover, percentage of site covered by aquatic and marginal vegetation; Totrich, total number of species; Exrich, 

number of exotic species; Exr/totr, proportion of exotic species; Aqrich, number of aquatic species; Aqr/tr, 
proportion of aquatic species; Diversity, Shannon diversity. Probability values from Kruskal-Wallis tests are 
shown: ***, P < 0.001; n = number of sites. 

Groupl 
n=9 

Group2 
n=30 

Group3 
n=18 

Group4 
n=25 

Group5 
n=9 

Group6 
n=5 

Group7 
n=3 

Group8 
n=3 

P 

%cover 12.14' 25.00 abc  14.25 ac  44.83 ab  23.06 abc 7928 b 4.74 ac  0 c *** 
Totrich 4.11 b  10.6' 8.39 e  12.16 a  16.44' 238 d 15.33  ac 0b *** 

Exrich 0.22 " 1.17 ab  0.94 13  1.96 ab  5.11 a 9a 933 a 0 b *** 
Exr/totr 003 b 0 • 11 b 011b 0.16 ab  0.32' 0.38 a  0.61 a *** 
Aqrich 2.78 a 5.7  abc 5.78  abc 7.2  ab ' 5.22 abc 88 b 2.67a 0 c *** 
Aqr/tr 0.71 k'  0.52 abc  0.71 a  0.61 ab 0.32c 0.37  bc 0.17' *** 
Diversity 037 b 0.67 ab 0.69  abc 0.75  ac 0.87 ac  1.02 c  0.94 ac *** 

abcdeJf any letter is the same then figures are not significantly different- from Dunn's Method of Pairwise 
comparisons 
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3.4.2.3 Environmental variation between TWINSPAN groups using all species 

There were significant differences between the TWINSPAN groups in many of the 

environmental variables, see table 3.7. Although the groups were found to vary significantly in 

velocity, substrate, bank height, depth and stock damage, significant pairwise differences 

between groups at P<0.05 could not be determined using Dunn's method of pairwise 

comparisons. 

Group 1 sites had the lowest mean values for 'slowness of current velocity' and depth, and the 

highest mean value for 'rockiness of substrate'. This indicates that group 1 sites were rockier, 

faster flowing and shallower, suggesting that they occurred on a higher proportion of riffles than 

the other groups. Group 1 sites were also significantly narrower than groups 2 and 6. 

Groups 1, 5 and 8 were significantly different to group 6 in the percentage of shading from the 

bank vegetation. Groups 1,5 and 8 had a high percentage of shading whereas group 6 had a low 

percentage of shading. Groups 1 and 8 had a significantly lower level of stock damage than 

group 6. 

Group 8 had much higher banks than the other groups. Groups 2 and 4 also appeared to have 

relatively high banks. The mean bank height for group 6 sites was lowest. 

Group 3 was found further upstream than groups 4, 7 and 8. 
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Table 3.7 Mean values of environmental variables by TVVINSPAN group. Vel, slowness of 
current velocity; %shade, percentage of site overshadowed by bank vegetation; Substr, dominant substrate; 
Bankht, height of bank on highest side; Width, maximum width at site; Depth, maximum depth at site; Bankvg, 
nativeness of bank vegetation; Kmsup, distance upstream from junction of the two rivers; Erosion, visible erosion 
of banks; Stockd, obvious trampling by stock; Probability values from Kruskal-Wallis tests are shown: ***, P < 
0.001; **, P < 0.01; *, P < 0.05; n.s., P > 0.05. n = number of sites. 

Group1 
n=9 

Group2 
n=30 

Group3 
n=18 

Group4 
n=25 

Group5 
n=9 

Group6 
n=5 

Group7 
n=3 

Group8 
n=3 

P 

Veil  1.67 *  2.37 2.78 2 1.89 2.6 2.33 2.67 * 
%shade 37.03a  8.25ab  8.15ab  5.00ab  19.73a  Ob  12.87ab  46.67a *** 
Substr2  3.11 * 2.27 2.17 1.72 2.67 1 1.33 1 ** 
Bankht 1.84 *  2.89 1.08 2.53 1.67 0.98 1.37 5.5 ** 
Width 15 a 37.1 b  22.17 ab  18.98 ac  27.44 ab  36.4 bc  45.67 ab  56.67 ab *** 

Depth3  1.67 *  2.37 2.06 2.2 1.89 3 3 2.33 * 
Bankvg4 3.33  a 2.9  ab 3.5 a  2.6 ab 2.67  ab 2a 2  ab 1 b * 
Kmsup 97.19 ac  76.16 ac 112.02c 65.08 ab  97.81 ac  65.6 abc 1733 b 33.33  ab *** 

Erosion5  1.56 1.63 1.72 1.88 1.89 2 1.67 2.33 n.s. 
Stockd6  1.22 *  1.67 1.78 2.16 1.89 2.6 2 1 ** 

1Slowness of current velocity, 1=fast (riffle) 2=slow (run) 3=no discernible current velocity (pool) 
2 'Rockiness' of substrate, 1=mud, 2=mud/rock, 3=gravel, 4=rock 
2Depth, 1 = < 1 m, 2= 1-2 m, 3= >2 m 
3 Nativeness of bank vegetation, on a scale of 1 to 6 from least native to most native 
4Erosion, 1-3 from none to severe 
5Stock damage, 1-3 from none to severe 
a'b'clf any letters are the same the figures are not significantly different, from Dunn's Method of Pairwise 
comparisons. 
Although a Kruskal-Wallis test found that the groups were significantly different at P<0.05, the pairwise test was 

not able to determine which pairs differed. 

3.4.2.4 Multidimensional scaling (MDS) of sites using all species 

A three-dimensional solution to the ordination was found to be most useful. 

The eight TWINSPAN groups were plotted onto two scattercharts using the MDS ordination 

axes (figure3.5). Groups 1, 3, 4, 6 and 7 clustered together separately to the other groups on at 

least one of the charts. Groups 2 and 5 were not easily distinguishable. Group 8 did not appear 

at all because group 8 sites had no aquatic or marginal vegetation. The scattercharts illustrate 

the correlations between the environmental variable vectors and the TWINSPAN groups. They 

also illustrate relationships between the environmental and vegetation cover/richness variables 

themselves, for example, on both charts percentage cover and aquatic species richness are 

almost parallel, showing the correlation between aquatic richness and percentage vegetation 
cover. 
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Table 3.8 shows that percentage cover and aquatic species richness were the variables most 

highly correlated with the positioning of sites along the first axis. Stream width, depth and 

current velocity were the (inter-related) variables most strongly correlated with the second axis, 

whereas proportion of aquatic species and marginal species richness were most strongly 

correlated with the third axis. Correlation coefficients (maximum R values) from the vector 

fitting are also shown in table 3.8. Percentage shading, stream width, distance upstream, 

percentage vegetation cover, aquatic and marginal species richness and diversity were all 

signifiCantly correlated with the ordination values from MDS. 
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Table 3.8 Correlations between the site scores on the MDS axes and the maximum R 
values from vector fitting, and environmental variables, species richness and cover. 
Spearmans rank correlation coefficients (P < 0.05) are shown for continuous variables and 
Kruskal-Wallis probabilities are shown for categoric variables. 
Velocity, slowness of current velocity; %shade, percentage of site overshadowed by bank vegetation; Substr, 
dominant substrate; Bankht, height of bank on highest side; Width, maximum width at site; Depth, maximum 
depth at site; Bankvg, nativeness of bank vegetation; Kmsup, distance upstream from junction of the two rivers; 
Erosion, visible erosion of banks; Stockd, obvious trampling by stock; %cover, percentage of site covered by 
aquatic and marginal vegetation; Diversity species diversity using ?Shannon index; Totrich, total number of 
species; Exrich, number of exotic species; Exr/totr, proportion of exotic species; Aqrich, number of aquatic 
species; Aqr/tr, proportion of aquatic species. Probability values from Kruskal-Wallis Tests are shown: ***, P < 
0.001; **, P < 0.01; *, P < 0.05; 	F> 0.05. 

Axis 1 Axis 2 Axis 3 Max le 
Velocity' *** 
%shade 0.38 0.22 0.42 
Substrb *** - 
Bankht 
Width -0.49 0.31 0.51 
Depth' *** 
Bankvgd  
Kmsup 0.33 -0.29 0.37 
Erosione  
Stockdf *** 
%cover -0.86 0.37 0.86 
Diversity -0.23 0.35 
Totrich -0.45 0.52 
Exrich -0.21 0.27 0.30 
Exr/totr 0.24 - 
Aqrich -0.63 0.65 
Mrich -0.25 0.36 0.40 
Aqr/tr -0.42 

aSlowness of current velocity, 1=fast 2=slow 3=no discernable current velocity 
'Rockiness' of substrate, 1=mud, 2=mud/rock, 3=gravel, 4=rock 

'Depth, 1 = < 1 m, 2= 1-2 m, 3= >2 m 
dNativeness of bank vegetation, on a scale of 1-6 from least native to most native 
'Erosion, 1-3 from none to severe 
'Stock damage, 1-3 from none to severe 
1 Maximum R-value from Vector Fitting in DECODA (Minchin 1990) 
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3.4.3 Results of the analysis of the site vegetation using aquatic species only 

3.4.3.1 The species composition and environmental characteristics of the Aquatic 

Groups 

Nine groups were apparent from the TWINSPAN sorted table. Table 3.9 shows the percentage 

frequency of species in each aquatic group, figure 3.6 illustrates the geographical distribution of 

aquatic groups, and figure 3.7 shows the indicator species for each TWINSPAN division: 

1. Aquatic group 1 consisted of four sites containing Eleocharis acuta and very little else. 

Three of the sites contained Potamogeton ochreatus and two Phragmites australis. Three 

of these sites were grouped together on the Macquarie just below the junction with Brumbys 

Creek, and one was on the South Esk just upstream of Avoca. 

2. The fifteen aquatic group 2 sites all contained Eleocharis sphacelata, most also contained 

Eleocharis acuta, and more than half contained Vallisneria americana, Phragmites australis 

and/or Triglochin species. Potamogeton ochreatus, Myriophyllum simulans and Isolepis 

Atkins were also common. These sites were fairly evenly spaced along the South Esk, with 

only one occurring on the Macquarie. 

3. The eighteen aquatic group 3 sites all contained Triglochin species (mostly Triglochin 

procerum), Eleocharis sphacelata, and Vallisneria americana (in all but one). Several other 

species were common, including Eleocharis acuta (in all but 3) Potamogeton ochreatus, 

Myriophyllum simulans, Myriophyllum salsugineum, Villarsia reniformis and Elodea 

canadensis. Most of this group were found on the Macquarie between Ross and the 

confluences with the Lake River and Brumbys Creek. Two were on the South Esk between 

Buffalo Brook and the confluence with the Nile River. 

4. Aquatic group 4 sites all contained Triglochin procerum. Myriophyllum salsugineum, 
Eleocharis sphacelata and Baumea arthrophylla each occurred in about half of the 14 sites, 
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Eleocharis acuta in a third and several other species only in one or two sites. Ten of these 

sites were found in the top section of the Macquarie, above any towns or major tributaries. 

Three were found lower in the Macquarie, below the confluence with the Elizabeth River, 

and one was in the South Esk at Fingal. 

5. Aquatic group 5 sites almost all contained Isolepis fluitans, Triglochin species and 

Myriophyllum salsugineum or Myriophyllum simulans. Eleocharis sphacelata and 

Eleocharis acuta were also very common, and Neopaxia australis and Elodea canadensis 

each occurred in about a third of the 24 sites in this group. These sites were found scattered 

along much of the Macquarie upstream of Brumbys Creek, with a particularly dense cluster 

around Ross. They were also found in the lower half of the South Esk. 

6. The twelve aquatic group 6 sites were characterised by the presence of Triglochin species, 

Isolepis fluitans, charophytes and/or Eleocharis acuta. Each of these species was found in 

at least seven of the twelve sites. Other species were not common in this group. The lowest 

three sites on the Macquarie and the bottom South Esk site were in aquatic group 6. The 

other sites in this group were mostly found in the upper half of the South Esk. 

7. The eight aquatic group 7 sites were species poor. All contained Phragmites australis and 

Isolepis fluitans. Four also contained Eleocharis acuta and three contained Triglochin 

species. These sites were all on the South Esk. Six were found between Storys Creek and 

Buffalo Brook, with only one found upstream of Storys Creek and one in the lower third of 

the river. 

8. The four aquatic group 8 sites all contained Isolepis fluitans and almost nothing else. They 

all were found on the South Esk, three in the river section just downstream of Avoca (and so 

downstream of Storys Creek), and one upstream of Storys Creek. 

9. The bank vegetation at the three aquatic group 9 sites was so willow choked that there was 

no aquatic vegetation. These sites were all on the lower section of the South Esk, two on 

pools at Perth and one on a run upstream of the confluence with the Nile River. 

73 



Table 3.9 Percentage frequency of species in Aquatic Groups 

SPECIES 

Alisma plantago-aguatica 
Azolla filiculoides 
Batrachium tricophyllum 
Baumea arthrophylla 
Baumea articulata 
Callitriche stagnalis 
Charophytes 
Eleocharis acuta 
Eleocharis pusilla 
Eleocharis sphacelata 
Elodea canadensis 
Isolepis/Shoenus fluitans 
Isolepis inundata 
Isolepis spp. 
Lilaeopsis brownii 
Neopaxia australasica 
Byriophyllum amphibian 
Myriopkyllum pedunculatum 
ssp. pedunculatum 
Myriophyllum salsugineum 
Myriophyllum simulans/ 
variifolium 
Phragmites australis 
Potamogeton australiensis 
Potamogeton ochreatus 
Potamogeton perfoliatus 
Potamogeton tricarinatus 
Triglochin procerum 
Triglochin spp. 
Triglochin striatum 
Typha spp. 
Vallisneria americana 
Villarsia reniformis 

GRP1 GRP2 GRP3 GRP4 GRP5 GRP6 GRP7 GRP8 
(n=4) (n=15) (n=18) (n=14) (n=24) (n=12) (n=8) (n=4) 

- 13.33 5.56 - 8.33 - 
- - - - 4.17 - 
- 6.67 - - 4.17 - - - 
- - 33.33 57.14 8.33 8.33 12.50 
- - - 14.29 - - - 
- - 5.56 - 8.33 - - 
- 6.67 11.11 14.29 8.33 58.33 - 

100.00 86.67 83.33 35.71 58.33 58.33 50.00 
- 13.33 - 7.14 - - - 
- 100.00 100.00 42.86 58.33 16.67 25.00 
- 13.33 38.89 - 29.17 16.67 - - 
- 33.33 16.67 14.29 83.33 66.67 100.00 100.00 
- - - - - 16.67 - 25.00 
- 40.33 16.67 14.29 83.33 72.00 100.00 100.00 
- 20.00 - - 12.50 8.33 - - 
- 6.67 - - 37.50 25.00 
- 33.33 5.56 - 12.50 8.33 

- - - 7.14 - - 
- 6.67 44.44 50.00 54.17 8.33 

- 46.67 50.00 - 41.67 16.67 - - 
50.00 53.33 27.78 14.29 25.00 16.67 100.00 

- 6.67 - 21.43 20.83 8.33 - 
75.00 40.00 50.00 7.14 - 8.33 

- - 11.11 - - - 
- - - 14.29 4.17 25.00 
- 33.33 77.78 100.00 54.17 8.33 - - 

53.33 100.00 100.00 79.17 83.33 37.50 25.00 
- 6.67 - - 25.00 12.50 25.00 
- - 5.56 14.29 4.17 - - 
- 66.67 94.44 - 4.17 - 
- 38.89 14.29 12.50 - 
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Vallisneria americana 
Eleocharis acuta 
Eleocharis sphacelata 

Myriophyllum amphibian 
Phragmites australis 

(n=19) 

(n=41 

Vallisneria americana 
Eleocharis sphacelata 

Vallisneria americana 
Eleocharis sphacelata 
Potamogeton ochreatus 

(n=37) 
(n=15) 

Triglochin spp. 
Vallisneria americana 

n= 18) 

Triglochin procerum 
Baumea arthrophylla 

(n= 14) 

(n=51) 

Myriophyllum salsugineum 
Triglochin procerum 
Neonaxia australasica 

Isolepis fluitans 
Myriophyllum salsugineum 

(n=24) 

Charophytes 
Trielochin striata (n= 36) 
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Neopaxia australasica 

(n=12) 

Phragmites australis 
Eleocharis acuta 

(n=48) 

Phragmites australis 

(n=12) 

(n=8) 

lsolepis inundata. 

Figure 3.7 Dendrogram showing the preferential species for each TWINSPAN cluster, 
using abundance data for aquatic species in all sites on the Macquarie and South Esk 
Rivers. Groups with species in brackets are defined by the absence of these speciess rather 
than the presence. Group numbers are given in bold type. n = number of sites. 

(Vallisneria americana 
Eleocharis sphacelata) 

(n=4) 
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3.4.3.2 Variation in percentage cover and species richness between the TWINSPAN Aquatic 

Groups 

Table 3.10 shows the variation in percentage cover and species richness between the 

TWINSPAN Aquatic Groups. Aquatic group 3 was significantly richer in species than 

aquatic groups 7, 8 and 9. Aquatic group 3 also had the greatest percentage site cover, 

significantly more than aquatic groups 1,4, 6, 8 and 9. Aquatic group 5 had a significantly 

higher site cover than aquatic groups 1 and 9. 

Table 3.10 Mean values for cover and richness by aquatic group 
Aqrich, number of aquatic species; Aqcover, percentage site cover of aquatic species. Probability values from 
Kruskal-Wallis tests are shown: ***,P < 0.001; **, P < 0.01; *, P < 0.05; n.s.,P > 0.05. n=number of 
sites. 

Groupl Group2 
n =4 	n =15 

Aqrich 	2.25' 	6.6' 
Aqcover 0.33' 	16.44' 

Group3 
n =18 
8 "  
43.02' 

Group4 Group5 
n =14 	n =24 
5.43' 	6.42' 
7.35 	37.00" 

Group6 
n =12 
5.08 th  
6.52' 

Group7 
n =8 
3.38 a  
10.49 

Group8 
n =4 
2.25 a  
2.92' 

Group9 
n =3  
0 a 
0' 

* ** 
* * * 

a'b'c  If any letter is the same then the figures are not significantly different 

3.4.3.3 Differences in environmental variables between aquatic groups 

Table 3.11 shows the environmental variation between aquatic groups. Aquatic group 3 had a 

significantly higher level of stock damage than aquatic groups 7 and 9. Aquatic group 3 

occupied sites with significantly less shade than aquatic groups 7, 8 and 9. 

Aquatic group 2 was found in sites with a significantly faster current velocity than aquatic 

groups 5 and 6. Although the groups were found to vary significantly in substrate, depth and 

bank vegetation, significant pairwise differences between groups at P < 0.05 could not be 

determined using Dunn's method of pairwise comparisons. 

The largest difference in mean values of substrate 'rockiness' between the aquatic groups was 

between group 8 and groups 3 and 9. Group 8 was higher on this scale than groups 3 and 9. 

Aquatic groups 1 and 3 had the highest 'mean depth' values, substantially higher than group 

8. Aquatic group 4 had the highest mean score on the 'nativeness of bank vegetation' scale, 

substantially higher than groups 3 and 9. 
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Table 3.11 Mean Values for Environmental Variables by Aquatic Group 
Vel, slowness of current velocity; %shade, percentage of site overshadowed by bank vegetation; Substr, 
dominant substrate; Bankht, height of bank on highest side; Width, maximum width at site; Depth, maximum 
depth at site; Bankvg, nativeness of bank vegetation; Kmsup, distance upstream from junction of the two rivers; 
Erosion, visible erosion of banks; Stockd, obvious trampling by stock; Probability values from Kruskal-Wallis 
tests are shown: *", P < 0.001; **, P < 0.01; *,P < 0.05; n.s.,P > 0.05. n=number of sites. 

Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8 Group9 P 
n=4 n=15 n=18 n=14 n=24 n=12 n=8 n=4 n=3 

Vei l  2.25 ab 267 b 2.44 al" 2.5 ab 1 .71a 1 .83a 1.88 '  2 ab  2.67 ab *** 

%shade 10.21 ab 7 .44 ab 1.93  b 3.57'1' 12•02 th  9.9 ab  27.93 ' 50.21 a 4667 a * 
Substr2 1.75 *  2.2 1.67 2.21 2.17 2.67 2.88 3 1 ** 
Bankht 1.53 3.93 2.01 2.12 1.37 2.04 1.64 2.13 5.5 n.s. 
Width 41.75 46 abc  34.61b  24 ac 13.60& 27.08' 19.25 abc  16.5 ac  56.67c ** 
Depth3  2.75 *  2.67 2.72 2.29 1.79 1.92 1.75 1.75 2.33 ** 
Bankvg4  2.25 *  2.6 2.11 4 2.88 2.83 3.63 2.75 1 ** 
Kmsup 395 a 7009 th 64.32 a 11707 b 78.30 ab  79.12'1' 101.65's' 103.88 ab 

3333 a ** 

Erosion5  1.5 1.67 2 1.5 1.71 2.08 1.38 2 2.33 n.s. 
Stockd6  2 ab  1.67 ab 256 b 157th 1.88 ab  1.83 ab  1.13 a  1.5 ab la *** 

abIf any letter is the same, the figures are not significantly different. 
Although a Kruskal-Wallis test found that the groups were significantly different at P<0.05, the pairwise test 

was not able to determine which pairs differed. 
l 'Slowness' of current velocity, 1=fast 2=slow 3=no discernable current velocity 
2,Rockiness' of substrate, 1=mud, 2=mud/rock, 3=gravel, 4=rock 

3.4.3.4 Multidimensional Scaling (MDS) of sites using Aquatic Species only 

A three-dimensional solution to the ordination was found to be most useful. When the nine 

aquatic groups were plotted on two 2-dimensional scattercharts using the MDS axes (figure 

3.8), each aquatic group did form a distinct cluster on both graphs, although there was a high 

degree of overlap in some cases. Group 9 did not appear at all because group 9 sites had no 

aquatic vegetation. 

The 'distance upstream' and 'nativeness of bank vegetation' vectors were almost parallel on 

both charts (implying closely related variables) and 'rockiness of substrate' was parallel to but 

in the opposite direction to the 'level of stock damage' vector, implying an inverse 

relationship between these two variables. 

3Depth, 1 = < 1 m, 2= 1-2 m, 3= >2 m 
trosion, 1-3 from none to severe 
5Stock damage, 1-3 from none to severe 
6Nativeness of bank vegetation, on a scale of 1-6 from least native to most native 
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Aquatic vegetation cover, aquatic species richness, rockiness of substrate and percentage 

shading were the variables most highly correlated with axisl (table 3.12). Aquatic vegetation 

cover, stream width and current velocity were highly correlated with axis 2, and distance 

upstream and stream width were correlated with axis 3. Significant R-values from the vector 

fitting show the correlations between the environmental and cover/richness vectors and the 

ordination space. Width and depth were the independent (environmental) variables with the 

strongest correlation, followed by percentage shading and distance upstream. Aquatic 

vegetation cover and aquatic species richness were the dependent variables with the strongest 

correlations. 

Table 3.12 Correlations between the site scores on the (aquatic) IVIDS axes and 
environmental variables. Speannans rank correlation coefficients (P < 0.05) were used for 
continuous variables, and Kruskal-Wallis test probabilities were used for categoric variables. 
R-values are the significant (P<0.05) correlation coefficients from vector fitting. 
Velocity, slowness of current velocity; %shade, percentage of site overshadowed by bank vegetation; Substr, 
dominant substrate; Bankht, height of bank on highest side; Width, maximum width at site; Depth, maximum 
depth at site; Bankvg, nativeness of bank vegetation; Kmsup, distance upstream from junction of the two rivers; 
Erosion, visible erosion of banks; Stockd, obvious trampling by stock; Aqcover, % of site covered by aquatic 
species; Aqrich, number of aquatic species; Probability values from Kruskal-Wallis Tests are shown: ***, P < 
0.001; **,P <0.01; *,P <0.05; -,P >0.05. 

Variable Axisl Axis2 Axis3 
Velocitya *** - 
%shade 0.38 0.41 
Substr *** 
Bankht 
Width 0.49 -0.24 0.52 
Depthb ** *** 0.57 
Bankvge  
Kmsup 0.28 0.38 0.40 
Erosiond  - 
Stockde ** 
Aqcover -0.76 -0.51 0.85 
Aqrich -0.59 0.61 

'Slowness of current velocity, 1=fast 2=slow 3=no current velocity 
bDepth, 1 = < 1 in, 2= 1-2 m, 3= >2 in 
'Nativeness of bank vegetation, on a scale of 1-6 from least native to most native 
°Erosion, 1-3 from none to severe 
'Stock damage, 1-3 from none to severe 
1 Maximum R-value from Vector Fitting in DECODA (Minchin 1990) 
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3.4.4 Results of the analysis of the site vegetation using marginal species only 

3.4.4.1 Species composition and geographical distribution of the Marginal Groups 

Nine different groups were apparent from the TWINSPAN sorted table. Table 3.13 gives the 

percentage frequency of species in each marginal group, figure 3.9 illustrates the geographical 

distribution of the marginal groups and figure 3.10 shows the indicator species for each 

TWNSPAN division: 

1. Marginal Group 1 consisted of five sites, all with Poaceae species, all but one with Juncus 
species, and three with Hydrocotyle species and Persicaria species, and/or Galium 
palustrium. Four of these sites were spread along the South Esk, and one was on the 

Macquarie between Ross and Campbelltown. 

2. The 37 sites in Marginal Group 2 were characterized by Juncus species and Carex 
gaudichaudiana. Hydrocotyle species and Lysimachia nummularia were the next most 

common species, each occurring in about a quarter of the sites in this group. These sites 

were spread along the entire South Esk, and the upper section of the Macquarie above any 

towns or major tributaries. 

3. The five Marginal Group 3 sites contained a large range of species. All sites had 

Persicaria species, and most also had Myosotis caespitosa and Juncus articulatus with 

Hydrocotyle species, Cyperus gunnii, Ranunculus repens and Lotus species each 

appearing in three sites. Three of these sites were on the South Esk upstream of Storys 

Creek, and two were on the lower Macquarie, downstream of Brumbys Creek. 

4. All Marginal Group 4 sites had Juncus articulatus, Lysimachia nummularia, and 

Alopecurus geniculatus, and all but one had Agrostis stolonifera and Lolium perenne. 
Carex appressa and Leontodon taraxacoides were also in most sites. A wide range of 
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other species were found in several of the sites. There were eight sites in the group, all on 

the Macquarie downstream of Ross. 

5. Marginal Group 5 sites all had a high percentage of Hydrocotyle species, and all but two 

sites also had Carex gaudichaudiana, Lysimachia nummularia and/or Persicaria species. 

There were seven sites in this group, all but one on the Macquarie downstream of the 

Blackman River. 

6. Marginal Group 6 was made up of 13 sites, with all but one containing Carex 

gaudichaudiana. Each Group 6 site also had one or more of Hydrocotyle species, 

Lysimachia nummularia, Cyperus gunnii, Persicaria species and Leontodon taraxacoides. 

All but one of the Group 6 sites were found along the Macquarie between the Elizabeth 

and Lake Rivers. 

7. This group of eleven sites all contained Carex gaudichaudiana. There was almost no other 

marginal vegetation in these sites, with only four sites containing one other species. Five 

of these sites were on the South Esk just downstream of Avoca, and the remaining six 

were at various points on the Macquarie between Brumbys Creek and the top of the study 

area. 

8. Marginal Group 8 was made up of 5 sites which all had only Lysimachia nummularia and 

one other marginal species (a different one in each site). Two of the sites were on the 

South Esk just downstream of Fingal, and the other three were near Ross on the 

Macquarie. 

9. Marginal Group 9 consisted of ten sites that had no marginal species. These occurred at 

various points on both the South Esk and Macquarie, and included the three willow-

choked sites on the South Esk that had no marginal or aquatic vegetation. 
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Table 3.13 Percentage frequency of species in marginal groups 
Marginal group 9 is not shown as it had no marginal vegetation. 

SPECIES Groupl 
(n=5) 

Group2 
(n=37) 

Group3 
(n=5) 

Group4 
(n=8) 

Group5 
(n=7) 

Group6 
(n=13) 

Group7 
(n=11) 

Group8 
(n=5) 

Acaena novae-zelandiae - - 20.00 - - - 
Agrostis aem ula - - - - 14.29 - - - 
Agrostis avenacea - - 20.00 - - - - 
Agrostis stolonifera - 5.41 40.00 87.50 - - - - 
Alopecurus geniculatus - - - 100.00 - - - 20.00 
Carex appressa - 5.41 20.00 75.00 - 15.38 - - 
Carex fascicularis - 2.70 - - - - - - 
Carex gaudichaudiana - 75.68 40.00 12.50 71.43 92.31 100.00 
Centella cordifolia - - - - - 7.69 - 
Crassula helmsii - 2.70 - - - - 
Cyperus gunnii 20.00 8.11 60.00 - 57.14 61.54 - - 
Cyperus lucidus - 5.41 - - - - - 20.00 
Festuca spp. - 2.70 20.00 - 28.57 - - - 
Galium palustrium 60.00 2.70 40.00 37.50 - - 
Geranium spp. - - - -  14.29 -  
Gratiola spp. - - 20.00 - - - 
Haloragis heterophylla - 2.70 - - - 
Hemarthria uncinata - 8.11 - - - - 
Hordeum marinum 
ssp. gussoneanum - - - 37.50 - , 	- 
Bydrocotyle hirta - - - 12.50 42.86 15.38 
Bydrocotyle pterocarpa - 2.70 - - - - - 
Bydrocotyle spp. 60.00 35.14 60.00 50.00 100.00 53.85 9.09 
Bypericum spp. 20.00 - - - - - - 
Juncus articulatus 40.00 40.54 80.00 100.00 14.29 7.69 
Juncus astreptus - 27.03 40.00 50.00 - - - - 
Juncus australis - 5.41 - 25.00 - - 
Juncus holoschoenus 20.00 2.70 - - 14.29 - 
Juncus procerus 60.00 43.24 20.00 12.50 14.29 - 
Juncus spp. 80.00 94.59 60.00 100.00 28.57 15.38 
Leontodon taraxacoides 40.00 10.81 40.00 75.00 - 53.85 
Leptinella reptans 40.00 2.70 - - 14.29 38.46 - 
Lolium perenne - 2.70 20.00 87.50 14.29 7.69 9.09 
Lotus pedunculatus - 2.70 - - - - - - 
Lotus spp. 20.00 8.11 60.00 37.50 - 15.38 - - 
Lotus tenuis - 2.70 - - - - - - 
Lysimachia nummularia - 24.32 60.00 100.00 71.43 92.31 18.18 100.00 
Mentha pelugium - - - 50.00 - _ _ - 
Myosotis caespitosa 40.00 2.70 80.00 - 28.57 7.69 9.09 
Nymphoides spp. - - - - - 7.69 - 
Oxalis perennans - - 20.00 - - - - - 
Persicaria decipiens 20.00 2.70 20.00 - - - - 
Persicaria hydropiper 20.00 2.70 40.00 - - - - - 
Persicaria prostrata - 2.70 - - - - - 
Persicaria spp. 60.00 13.51 100.00 50.00 71.43 53.85 18.18 
Plantago coronopus - - - - - 7.69 - - 
Poaceae spp. 100.00 16.22 40.00 12.50 14.29 23.08 - 20.00 
Potentilla anglica - - 40.00 - - - - - 
Pratia pedunculata - 8.11 - 50.00 28.57 15.38 - - 
Prunella vulgaris - 20.00 - - - - - 
Pseudognaphalium 
luteo-album - - 20.00 - - - - - 
Ranunculus amphitrichous - - 20.00 - - - - - 
Ranunculus repens - - 60.00 37.50 - - - - 
Ranunculus rivularis - 2.70 - - - - - - 
Rumex crispus - - 20.00 12.50 - 7.69 - - 
Rumex spp. - 20.00 62.50 14.29 30.77 - - 
Schoenoplectus validus - - - - 15.38 - 20.00 
Trifolium spp. - - - - - 7.69 - - 
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Figure 3.9 Geographical distribution of TW1NSPAN groups of sites using marginal species only 

1200 

1000 . 	Perth Junction • • 
Cressy 

rumbys Ciretik 
800 

Lake River 
•• 

12  600 

400 

200 

0 

South Esk 
River 

%Nile  River 
Fingal 

• 
Elizabeth River 

k Ross 

Blackman River 
-t  • 

Storys Creek 

Buffalo Brook 
4+ 

• *-F  ••-  -  St PauIs River 
Avoca 

• 
Tooms Oliver 

Macquarie River 

100 
	

200 
	

300 
	

400 	500 
	

600 	700 	800 	900 

easting 

• Group 1  •  Group2  A  Group 3  X  Group 4  x  Group 5  •  Group 6  •  Group 7 ci Group 8 •  Group 9 -Group10 +Towns and tributaries 

85 



HYdrocotyle spp. 
Lysimachia nummularia (n=24) 

Alopecuris geniculatus 
	 (n=13) 

Cyperus luck/us 

Carex gaudichaudiana 
Hydrocotyle spp. 

(n=31) 

Hydrocotyle spp 
Festuca spp. 

(n= 

Leontodon taraxacoides 
Leptinella reptans 

(Hydrocotyle spp. 
Lysimachia nummularia) 

(n=11) 

Figure 3.10 Dendrogram showing the preferential species for each TWINSPAN 
cluster, using abundance data for marginal species in all sites on the Macquarie and 
South Esk Rivers. Groups with species in brackets are defined by the absence of those 
species, rather than the presence. Marginal group numbers are given in bold type. 

Poaceae spp. Persicaria spp. 
Myosotis caespitosa 

Carex gaudichaudiana 
Juncus procera (n=5) 

(n=42)  
Carex gaudichaudiana 
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Agrostis stolonifera 
Alopecuris geniculatus 

(n=13)  Agrostis stolonifera 
Alopecurus geniculatus 

(n=37) 
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ryperuc gjlnnii 

(n=5) 

Agrostis stolonifera 
Juncus spp. 

(n=55) 

(n=8) 

Cyperus gunnii 
Lysimachia nummuktria 

(n=36) 

(n=5) 
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3.4.4.2 Variation in richness and cover between marginal groups 

There were significant differences in cover, species richness and exotic species richness 

between marginal groups (table 3.14). Marginal groups 1, 3, 4, 5 and 6 had a high 

percentage cover of marginal species, although this was only significantly higher than 

group 9, which had no marginal vegetation. Marginal groups 3 and 4 had a significantly 

higher richness than groups 7, 8 and 9. Groups 5 and 6 had a significantly higher 

richness than groups 7 and 9, and groups 1 and 2 had a significantly higher richness than 

group 9. Groups 3 and 4 had a significantly higher exotic species richness than groups 2, 

7 and 9. Group 6 had a significantly higher exotic species richness than groups 7 and 9. 

Table 3.14 Mean values for richness variables by marginal group 
Mcover, percentage of site covered by marginal species; Exrich, number of exotic species; Mrich, number 
of marginal species; 
Probability values from Kruskal-Wallis Tests are shown: ***, P < 0.001; **, P < 0.01; *,P < 0.05; n.s., P> 
0.05. n = number of sites. 

Groupl Group2 Group3 Group4 Group5 Group6 Group7 Group8 Group9 P 
n =5 n=37 n =5 n =8 n =7 n =13 n=11 n=5 n =10 

Mcover 13.1 a  3.9 ab 16 .3 a 14 .5a 29 .3a 13.4 a 1.0 ab 70 ab 0 b *** 

Exrich 2.2 ab  1.24 ac  6.2b 875 b 1.71 ab  2.85 bc 0.45a 1.6 w' 0 a *** 
Mrich 7.2 6  4.84' 12•8 b 1288b 6.57 bc  6.77 bc  1.64' 1.8' 0 d *** 

abedif any letter is the same then figures are not significantly different 

3.4.4.3 Environmental variation between marginal groups 

Table 3.15 summarises the environmental variation between the Marginal Groups. 

The marginal groups differed significantly in 'rockiness of substrate', width, 'nativeness 

of bank vegetation, distance upstream and level of stock damage. Significant pairwise 

differences at P<0.05 could only be determined for width, using Dunn's method of 

pairwise comparisons. Groups 3 and 7 had substantially higher mean values of 

• 'rockiness of substrate' than group 4. Group 8 was significantly narrower than group 4. 

Group 7 had a much higher mean value on the 'nativeness of bank vegetation' scale and 

had a lower mean value of 'level of stock damage' than groups 4 and 5. 
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Table 3.15 Mean Values for Environmental Variables by Marginal Group 
Vel, slowness of current velocity; %shade, percentage of site overshadowed by bank vegetation; Substr, 
dominant substrate; Bankht, height of bank on highest side; Width, maximum width at site; Depth, 
maximum depth at site; Bankvg, nativeness of bank vegetation; ICmsup, distance upstream from junction of 
the two rivers; Erosion, visible erosion of banks; Stockd, obvious trampling by stock; 
Probability values from Kruskal-Wallis Tests are shown: ***, P < 0.001; **, P < 0.01; *, P < 0.05; n.s., P> 
0.05. n = number of sites. 

Groupl Group2 Group3 Group4 Group5 Group6 Group7 Group8 Group9 P 
n=5 n=37 n=5 n=8 n=7 n=13 n=11 n=5 n=10 

Vei l  2.4 2.27 1.6 2.5 1.86 2.08 1.91 2 2.6 n.s. 
%shade 1.658 7.61 27.61 4.83 6.05 13.12 17.71 11.83 25.03 n.s. 
Substr2  2.4 *  2.27 3 1.13 1.57 1.62 2.82 1.4 2 * 
Bankht 1.98 2.22 1.7 1.13 1.27 1.63 1.96 1.32 5.75 n.s. 
Width 27.2 ith  33.51 ab  28.8 ab 37 .38a 12.86 al' 24.5 ab 

1991 b 92
b 35.9 ab * * 

Depth3  2.4 2.23 1.8 2.75 2.14 2.46 2 1.8 2.2 n.s. 
Bankve 2.4 *  3.05 2.8 2 2 2.31 3.91 2.4 2.82 * 
Kmsup 78.66 *  88.48 80.86 50.88 64.86 59.28 92.91 116.06 72.81 * 
Erosion5  1.6 1.62 2.2 1.88 1.71 2 1.36 2.4 2 n.s. 
Stockd6  2 *  1.59 2 2.38 2.43 2.08 1.55 2 1.6 * 

°If any letter is the same, the figures are not significantly different. 
Although a Kruskal-Wallis test found that the groups were significantly different at P<0.05, the pairwise 

test was not able to determine which pairs differed. 
'Slowness of current velocity, 1=fast 2=slow 3=no discernable current velocity 
2 'Rockiness' of substrate, 1=mud, 2=mud/rock, 3=gravel, 4=rock 
'Depth, 1 = < 1 m, 2= 1-2 m, 3= >2 m 
4Nativeness of bank vegetation, on a scale of 1-6 from least native to most native 
5Erosion, 1-3 from none to severe 
6Stock damage, 1-3 from none to severe 

3.4.4.4 Multidimensional Scaling (MDS) of sites by Marginal Species 

A four-dimensional solution to the ordination was found to be most useful. When the 

sites were plotted onto three scattercharts using pairs of the ordination axes (figure 3.11), 

some of the marginal groups did form distinct clusters on some of the graphs. 

The vectors on these three charts could be described as two groups of vectors with 

opposite directions, that is inversely related variables. One group consisted of 'richness 

of exotics' and 'stock damage', the other 'distance upstream, 'nativeness of bank 

vegetation' and 'rockiness of substrate'. 

Several variables were significantly related to the site scores on the ordination axes (table 

3.16). Distance upstream was the only environmental continuous variable that was 

significantly correlated with the ordination space. Marginal vegetation cover, marginal 
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species richness and exotic species richness were the vegetation variables that were 

significantly correlated with the ordination space. 

Table 3.16 Correlations between the site scores on the MDS axes and environmental 
variables. The significant correlation coefficients (P< 0.05)from Vector Fitting are also 
shown. Spearmans rank correlation coefficients (P < 0.05) were used for continuous 
variables and Kruskal-Wallis test probabilities for categoric variables. Velocity, slowness of 
current velocity; %shade, percentage of site overshadowed by bank vegetation; Substr, dominant 
substrate; Bankht, height of bank on highest side; Width, maximum width at site; Depth, maximum depth 
at site; Bankvg, nativeness of bank vegetation; Kmsup, distance upstream from junction of the two rivers; 
Erosion, visible erosion of banks; Stockd, obvious trampling by stock; Margcover, % of site covered by 
marginal species; Exrich, number of exotic species; Mrich, number of marginal species; Probability values 
from Kruskal-Wallis Tests are shown: ***, P < 0.001; **,P < 0.01; *,P < 0.05; -,P > 0.05. 

Variable Axisl Axis2 Axis3 Axis4 
Velocity' ** ** ** 
%shade - 
Substr ** 
Bankht 
Width -0.32 - 
Depth" - 
Bankvge ** 
Kmsup 0.42 0.40 
Erosione  - 
Stockdd  
Margcover -0.70 0.34 0.42 0.47 0.78 
Exrich -0.36 0.54 0.54 
Mrich -0.47 0.30 0.35 0.59 

aSlowness of current velocity, 1=fast 2=slow 3=no current velocity 
bDepth, 1 = < 1 m, 2= 1-2 m, 3= >2 m 
cErosion, 1-3 from none to severe 
dStock damage, 1-3 from none to severe 
`Nativeness of bank vegetation, on a scale of 1-6 from least native to most native 
1Maximum R-value from Vector Fitting in DECODA (Minchin 1990) 
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3.5 Relationships between classification groupings 

Most of the dominant species groups are not evenly distributed between all-species 

groups, aquatic groups or marginal groups. Similarly, the sites in each all-species groups 

do not strictly fall into the same aquatic and marginal groups, as the environmental 

factors have differing effects on the different growth forms. For many sites the aquatic 

vegetation appears to be largely independent of the marginal vegetation. 

The six tables below show the relationships between the different classification 

groupings. 

Table 3.17 Cross-tabulation of dominant species types by all-species groups 

Dominant species All- 2 3 4 5 6 7 All 
sppl 

Batrachium tricophyllum 0 1 0 0 0 0 0 1 
Baumea arthrophylla 0 0 6 3 0 2 0 11 
Carex gaudichaudiana 1 15 2 13 5 2 0 38 
Charophytes 0 3 1 1 2 1 0 8 
Cyperus gunnii 0 0 0 1 0 0 0 1 
Eleocharis acuta 0 7 1 11 0 2 0 21 
Eleocharis pusilla 0 3 0 0 0 0 0 3 
Eleocharis sphacelata 0 15 4 13 3 6 0 41 
Elodea canadensis 0 1 0 3 1 1 0 6 
Hydrocotyle spp. 0 1 1 1 3 4 0 10 
Isolepis spp. 0 0 1 0 2 0 0 3 
Isolepis fluitans 3 8 3 2 2 0 0 18 
Juncus articulatus 0 3 0 0 1 0 0 4 
Juncus spp. 0 4 3 0 0 1 1 9 
Lysimachia nummularia 0 0 2 4 1 0 1 8 
Neopaxia australasica 0 2 3 2 0 0 0 7 
Myriophyllum salsugineum 1 2 4 6 0 3 0 16 
Myriophyllum simulansl 
variifolium 

0 7 0 7 2 0 0 16 

Persicaria spp. 0 0 0 0 1 0 0 1 
Phragmites australis 6 8 0 0 1 1 0 16 
Potamogeton ochreatus 0 2 0 0 0 0 0 2 
Ranunculus repens 0 0 0 0 1 0 0 1 
Schoenoplectus validus 0 0 0 4 0 0 0 4 
Triglochin spp. 0 3 5 3 3 1 0 15 
Vallisneria americana 0 10 1 10 0 4 0 25 
Villarsia reniformis 0 0 0 0 0 1 0 1 
Typha spp. 0 0 1 0 0 0 0 1 
Poaceae spp. 0 2 1 2 1 0 2 8 

All 11 97 39 86 29 29 4 295 
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Table 3.18 Cross-tabulation of dominant species types by aquatic groups 

Dominant species Aqgr1 2 3 4 5 6 7 8 All 
Batrachium tricophyllum 0 0 0 0 1 0 0 0 1 
Baumea arthrophylla 0 0 5 4 1 1 0 0 11 
Carex gaudichaudiana 1 7 10 5 7 6 1 1 38 
Charophytes 0 1 2 0 1 4 0 0 8 
Cyperus gunnii 0 0 1 0 0 0 0 0 1 
Eleocharis acuta 0 7 7 1 6 0 0 0 21 
Eleocharis pusilla 0 3 0 0 0 0 0 0 3 
Eleocharis sphacelata 0 13 17 2 6 2 1 0 41 
Elodea canadensis 0 0 3 0 2 1 0 0 6 
Hydrocotyle spp. 0 0 5 0 2 3 0 0 10 
Isolepis spp. 0 1 0 0 0 1 0 1 3 
Isolepis fluitans 0 1 1 2 7 2 2 3 18 
Juncus articulatus 1 2 0 0 0 0 1 0 4 
Juncus spp. 2 2 1 1 3 0 0 0 9 
Lysimachia nummularia 1 1 0 0 5 0 1 0 8 
Neopaxia australasica 0 1 0 0 4 2 0 0 7 
Myriophyllum salsugineum 0 0 7 2 6 1 0 0 16 
Myriophyllum simulansl 
variifolium 

0 1 5 0 9 1 0 0 16 

Persicaria spp. 0 0 0 0 0 1 0 0 1 
Phragmites australis 0 5 1 0 1 1 8 0 16 
Potamogeton ochreatus 0 1 1 0 0 0 0 0 2 
Ranunculus repens 0 0 0 0 0 1 0 0 1 
Schoenoplectus validus 0 0 3 0 1 0 0 0 4 
Triglochin spp. 0 0 5 4 2 4 0 0 15 
Vallisneria americana 0 9 16 0 0 0 0 0 25 
Villarsia reniformis 0 0 1 0 0 0 0 0 1 
Typha spp. 0 0 0 0 1 0 0 0 1 
Poaceae spp. 2 2 1 0 1 2 0 0 8 

All 7 57 92 21 66 33 14 5 295 

Table 3.19 Cross-tabulation of dominant species types by marginal groups 

Dominant species Mgl 2 3 4 5 6 7 8 9 All 
Batrachium tricophyllum 0 1 0 0 0 0 0 0 0 1 
Baumea arthrophylla 0 2 0 1 2 1 2 2 1 11 
Carex gaudichaudiana 2 17 2 1 4 10 2 0 0 38 
Charophytes 0 5 1 0 0 1 0 0 1 8 
Cyperus gunnii 0 0 0 0 0 1 0 0 0 1 
Eleocharis acuta 0 8 0 1 5 4 2 0 1 21 
Eleocharis pusilla 0 2 0 0 0 0 1 0 0 3 
Eleocharis sphacelata 7 10 1 •6 3 7 3 0 4 41 
Elodea canaderzsis 0 1 1 0 0 3 0 0 1 6 
Hydrocotyle spp. 0 0 3 4 3 0 0 0 0 10 
Isolepis spp. 1 0 1 0 0 0 0 0 1 3 
Isolepis fluitans 1 9 1 0 1 2 2 1 1 18 
Juncus articulatus 1 3 0 0 0 0 0 0 0 4 
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Juncus spp. 0 6 0 2 1 0 0 0 0 9 
Lysimachia nummularia 0 0 1 2 1 4 0 0 0 8 
Neopaxia australasica 0 3 0 1 1 1 0 1 0 7 
Myriophyllum 
salsugineum 

1 3 0 3 2 2 3 2 0 16 

Myriophyllum simulansl 
variifolium 

1 9 0 0 5 0 1 0 0 16 

Persicaria spp. 0 0 1 0 0 0 0 0 0 1 
Phragmites australis 2 8 1 1 0 1 2 0 1 16 
Potamogeton ochreatus 0 2 0 0 0 0 0 0 0 2 
Ranunculus repens 0 0 1 0 0 0 0 0 0 1 
Schoenoplectus validus 0 0 0 0 0 3 0 1 0 4 
Triglochin spp. 0 5 2 1 1 1 2 1 2 15 
Vallisneria americana 3 8 0 4 3 4 1 0 2 25 
Villarsia reniformis 0 0 0 1 0 0 0 0 0 1 
Typha spp. 0 1 0 0 0 0 0 0 0 1 
Poaceae spp. 2 1 1 2 0 0 1 1 0 8 

All 21 104 17 30 32 45 22 9 15 295 

Table 3.20 Cross-tabulation of all-species groups by aquatic groups 

	

All-spp1 	2 	3 	4 	5 	6 	7 	8 All  

	

Aqgr1 	0 	1 	0 	0 	0 	0 	3 	0 	4 

	

2 	0 	11 	1 	2 	1 	0 	0 	0 	15 

	

3 	0 	2 	1 	10 	0 	5 	0 	0 	18 

	

4 	0 	3 	8 	3 	0 	0 	0 	0 	14 

	

5 	1 	7 	5 	10 	1 	0 	0 	0 	24 

	

6 	1 	3 	3 	0 	5 	0 	0 	0 	12 

	

7 	5 	2 	0 	0 	1 	0 	0 	0 	8 

	

8 	2 	1 	0 	0 	1 	0 	0 	0 	4 

	

9 	0 	0 	0 	0 	0 	0 	0 	3 	3 
All 	 9 	30 	18 	25 	9 	5 	3 	3 	102 

Table 3.21 Cross-tabulation of all-species groups by marginal groups 

All- 
spp1 

2 3 4 5 6 7 8 All 

Mg1 0 3 0 1 1 0 0 0 5 
2 1 25 7 1 3 0 0 0 37 
3 0 0 0 0 5 0 0 0 5 
4 0 0 1 0 0 4 3 0 8 
5 0 1 1 5 0 0 0 0 7 
6 1 0 0 11 0 1 0 0 13 
7 5 1 2 3 0 0 0 0 11 
8 0 0 3 2 0 0 0 0 5 
9 2 0 3 2 0 0 0 3 10 

All 9 30 18 25 9 5 3 3 101 
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Table 3.22 Cross -tabulation of aquatic groups by marginal groups 

Aqgr1 2 3 4 5 6 7 8 '9 All 

Mg1 0 2 1 0 0 1 1 0 0 5 
2 1 9 2 8 9 5 2 1 0 37 
3 0 0 0 0 0 3 1 1 0 5 
4 3 0 4 0 1 0 0 0 0 8 
5 0 0 3 0 4 0 0 0 0 7 
6 0 1 6 2 3 0 1 0 0 13 
7 0 1 1 2 3 1 2 1 0 11 
8 0 0 0 0 3 2 0 0 0 5 
9 0 2 1 2 0 0 1 1 3 10 

All 4 15 18 14 24 12 8 4 3 101 

3.6 Discussion: variation in macrophytic vegetation and environmental 

factors along the two rivers 

The differences in geographical distribution of the different species and species 

assemblages can be at least partly explained by individual species adaptations to 

environmental variation between different reaches of the two rivers. Fox (1996) 

identified three major factors that determine the presence or absence of species at a 

particular site: dispersal, tolerance of the abiotic environment, and interactions with the 

biota. If a species has had the opportunity to reach a site through dispersal- which would 

apply to all species except recent introductions in the small area of this study- then its 

absence from a site is due to either intolerance of the abiotic environment or unfavourable 

interactions with the biota. Fox (1996:30) explained that "the absence of a species will 

be determined by intolerance of extremes of abiotic conditions. The abundance of a 

species will be related to how near the conditions are to those optimal for maximum 

growth rates". 

Combining the dominant species groups with all three sets of TWINSPAN groups of the 

sites: all-species groups, aquatic groups and marginal groups- gives the clearest picture of 

the variation in vegetation along the different reaches of the two rivers. When this is 

added to the distribution of environmental variables along the rivers, a picture is 

developed of the relationships between the species composition of the macrophytic 
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vegetation and the environmental variation along the two rivers. This satisfies aim three 

in chapter 1: to determine the environmental correlates of variation in aquatic macrophyte 

species composition. 

From the geographical distribution of the all-species groups and the aquatic groups 

(figures 3.3 and 3.6) six distinct reaches could be defined, three on the Macquarie and 

three on the South Esk. The marginal groups did not divide so clearly along the reaches, 

but still contribute valuable information to the overall picture (figure 3.9). Note that the 

terms 'upper', 'middle' and 'lower' in the following discussion refer to the sections of the 

rivers covered in this study. They do not refer to the upper and lower reaches of the 

whole rivers. 

The highest reach on the Macquarie was between the confluence with Tooms River and 

the confluence with the Blackman River. This reach was above any towns or major 

tributaries, and had the most intact native bank vegetation of all reaches (figure 3.12). 

Erosion and stock damage were both very low (figures 3.13 and 3.14). Sites mostly had a 

rock or mud/rock substrate (figure 3.15). The river vegetation was dominated by all-

species group 3 and aquatic group 4. That is, by native aquatic communities with a low 

species richness and low vegetation cover, and very few marginal species. Triglochin 

procerum, Myriophyllum salsugineum and Isolepis fluitans were common submerged and 

floating-leaved species along this reach, along with the emergent species Eleocharis 

sphacelata, Baumea arthrophylla and marginal species Juncus species. This reach was 

the steepest reach on the Macquarie, with a drop of 150 m over a distance of 50 km (see 

Chapter 2). Aquatic vegetation growth along this reach was probably limited by abiotic 

factors such as low nutrient levels, a high water velocity and resultant lack of fine 

substrate. 

The middle reach on the Macquarie was between the confluence with the Blackman 

River and the confluence with Brumbys Creek. This reach included the confluences with 

the Elizabeth River and the Lake River, and received primary treated sewage from the 

towns of Ross and Campbell Town. A large part of the landuse was agricultural, and the 

bank vegetation was predominantly pasture, often right to the river edge. Willow 

97 



infestation occurred in some areas. The river gradient was low (see Chapter 2), and the 

substrate was mostly mud. The river vegetation was dominated by all-species groups 4 

and 6 and aquatic groups 3 and 5. That is, this reach of the Macquarie had a high aquatic 

vegetation cover, a high total aquatic and marginal species richness and a high exotic 

species richness in parts. Since there was only one exotic aquatic species found in this 

study (Elodea canadensis), high exotic species richness at a site implies a high exotic 

species richness in the marginal vegetation. This was mostly due to the invasion of the 

river margins by pasture species. The one exotic aquatic species, Elodea canadensis, was 

found in more than a third of the sites along this reach. Other common aquatic species 

were Triglochin species, Isolepis fluitans, Neopaxia australasica, Eleocharis acuta, E. 

sphacelata, Myriophyllum species, Vallisneria americana and Potamogeton ochreatus. 

Common marginal species were Carex species, Juncus species, Hydrocotyle species, 

Lysimachia nummularia and Persicaria species. Vegetation growth at these sites was 

probably only limited by competition between species for space and light, as there was 

plentiful suitable habitat for macrophytic growth at most of these sites. 

It is probable that fertilizers used on adjacent agricultural land are washed into the river 

during rainfall events, increasing the nutrient levels along this reach. This may be one of 

the causes of the high vegetation richness and abundance along this section of the river. 

The DPIF (1996) found that nitrogen and phosphorus levels increased dramatically 

during times of flood (see chapter 2). A more detailed study of the correlation between 

water nutrient levels and rainfall is necessary to determine the effects of agricultural 

fertilizers on macrophyte growth in these two rivers. 

The lower reach of the Macquarie was a short stretch of river between the confluence 

with Brumbys Creek and the confluence with the South Esk. Because of the large 

volume of water entering the Macquarie from the highlands via Poatina power station at 

the Brumbys Creek junction, this reach was distinctly different in character to the reaches 

upstream. The river was wider and the larger volume of water was clearer and colder 

with a faster current velocity. All-species groups 7 and 5 corresponded with aquatic 

groups 1 and 6 and marginal groups 3 and 4 for the five sites surveyed along this reach. 

That is, these sites were conspicuously low in aquatic species but had a high marginal 
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species richness and a high exotic species richness. Percentage vegetation cover was low, 

as vegetation only occurred on the river margins. Bank vegetation was entirely pasture 

and willows. Common species were Juncus species, Eleocharis acuta, Lysimachia 

nummularia, Agrostis species, Alopecurus geniculatus, Carex gaudichaudiana, Myosotis 

caespitosa and Persicaria species. The occasional aquatic species were mainly Isolepis 

Alums, charophytes and Triglochin species. Vegetation cover and richness were most 

likely limited by the water velocity and low nutrient levels. 

The highest reach on the South Esk was between Fingal and the confluence with Storys 

Creek. This reach was dominated by all-species group 5, aquatic group 6 and a mixture 

of marginal groups. That is, the aquatic vegetation was low in both richness and cover, 

mostly consisting of only two or three native species, while the marginal vegetation was 

richer and contained a mixture of native and exotic species. The bank vegetation was 

predominantly a mixture of pasture and willows, with some infestation by gorse, 

hawthorn and blackberry. Common aquatic species were Juncus species, Triglochin 

species, Isolepis fluitans and Eleocharis acuta. Common marginal species were 

Persicaria species, Lotus species, Leontodon taraxacoides, Myosotis caespitosa and 

Carex gaudichaudiana. 

The middle reach of the South Esk was between the confluences with Storys Creek and 

with Buffalo Brook. This section had a low total species richness and a low diversity of 

species. The bank vegetation was a mixture of exotic (gorse, hawthorn, blackberries) and 

native species. There was a high proportion of gravel substrates along this reach. All-

species groups 1 and 2, aquatic group 7 and marginal group 7 were the dominant river 

vegetation groups. Carex gaudichaudiana and Juncus species dominated the marginal 

vegetation, while Isolepis fluitans,Eleocharis acuta, Triglochin species and Phragrnites 
australis were the most common aquatic species. This section of the river is known to be 

biologically impoverished due to heavy metal contamination from mining activity on 

Storys Creek (Norris et al. 1982; Locher 1993). However determining the cause of the 

low aquatic plant species richness and diversity was complicated by the high percentage 

shading along this reach, which is correlated with low aquatic species richness (see Ch.4). 
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The lower reach of the South Esk stretched from Buffalo Brook all the way to the 

confluence with the Macquarie. This section of river was dominated by all-species group 

2, aquatic groups 2 and 5 and marginal group 2. That is, these sites contained a mixture 

of species of different growth forms. They tended to have a high percentage vegetation 

cover and a high aquatic species richness, but only a moderate marginal species richness 

and a moderately low proportion of exotic species., The bank vegetation was entirely 

pasture and willows. Common species were Juncus species, Isolepis fluitans, Triglochin 
species, Eleocharis sphacelata, E. acuta, Carex gaudichaudiana, Phragmites australis 
and Myriophyllum species. 
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Figure 3.12 Geographical Distribution of Bank Vegetation 
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Figure 3.14 Geographical Distribution of Stock Damage 
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Figure 3.15 Geographical Distribution of Dominant Substrate Types 
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Plate 3 

Native vegetation on the Upper Macquarie River 

105 



A floodplain on the lower Macquarie River 
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Chapter Four 

Relationships between environmental variation and variation in 
macrophyte diversity, richness and cover- a comparison of the two 
rivers. 

4.1 Introduction 

The second aim of this study was to compare the spatial distribution of the species richness, 

abundance and diversity of aquatic macrophyte communities in the Macquarie and South Esk 

rivers, and to relate this distribution to environmental characteristics of the two rivers. In this 

chapter, between-site variation in the species diversity, richness and percentage cover of the 

macrophytic vegetation are related to environmental variation between sites. These 

relationships are analysed for each river, providing an overview of the differences in 

environmental relationships between the two rivers. 

4.2 Methods 

Statistical tests were used to determine the relationships between the species richness, diversity 

and percentage cover and the environmental variables (described in Chapter 3), and between 

the environmental variables themselves. The tests used were Spearmans Rank Correlation 

Coefficients for non-parametric continuous by continuous data and Kruskal-Wallis tests for 

non-parametric continuous or ordinal data. Some of the ordinal data were measured in as few 

as three classes. However, despite the low number of classes, Kruskal-Wallis tests were used 

in preference to chi-squared tests as the small number of samples in the groups created 

uncertainty about the validity of chi-squared tests. Mann-Whitney U-tests were used to 

compare the environmental variables in the two rivers. 
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4.3 Results 

4.3.1 Upstream-downstream relationships 

The most obvious environmental gradient in this study was that of distance upstream from the 

confluence of the two rivers. Table 4.1 shows that type of bank vegetation and level of stock 

damage were significantly related to distance upstream in both rivers, substrate type was 

significantly related to distance upstream in the Macquarie, and river width and depth 

decreased with distance upstream in the Macquarie. Native bank vegetation and rock 

substrates were more often found at upstream sites, and modified bank vegetation and mud 

substrates were more often found at downstream sites (see Tables 4.4 and 4.5). Sites with no 

stock damage were more often found upstream on the Macquarie. Figures 3.12, 3.14 and 3.15 

provide an illustration of the distribution of bank vegetation, stock damage and substrate types 

along the two rivers. 

Upstream-downstream differences were not as dramatic on the South Esk, is the study area did 

not extend up into the steeper rockier parts of the catchment. There was, however, a 

relationship between the type of bank vegetation and distance upstream on the South Esk, with 

the most modified bank vegetation types (pasture and willows) occurring furthest downstream 

(see Table 4.4). 

Table 4.2 summarises the relationship between the richness variables at each site and the 

distance upstream. Figures 4.1, 4.2, 4.3 and 4.4 illustrate the distribution of macrophyte species 

richness and cover along the two rivers. The total species richness, the marginal species 

richness, the exotic species richness and the proportion of exotic species lessened with distance 

upstream on the Macquarie. These variables were all inter-related, see Table 4.3. The 

proportion of aquatic species increased with distance upstream. This was due to the decline in 

marginal species richness with distance upstream, rather than any increase in aquatic species 

richness. Aquatic species richness (which consisted almost entirely of native species) did not 

vary significantly with distance upstream. The chart 
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Ingure 4.2 Geographical Distribution of Classes of Aquatic Species Richness 
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1Figure 4.4 Geographical Distribution of Classes of Native Species Richness 
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showing the geographical distribution of aquatic species richness (figure 4.2) shows that the 

highest species richness appears to occur in the mid-reaches. 

It is important to note that the lower part of the Macquarie, below Brumbys Creek, was of a 

completely different character to the other parts of the lower reaches of either river, as it was 

diluted by large amounts of cold, clear water from the Central Highlands. This uncharacteristic 

stretch of river lessened the statistical significance of upstream-downstream variation in some 

variables. When the 7 sites downstream of the confluence with Brumbys Creek were excluded 

from the dataset, percentage total vegetation cover (figure 4.5), percentage aquatic vegetation 

cover and diversity (figure 4.6) were all significantly negatively correlated with distance 

upstream. 

There was not a significant upstream-downstream difference in richness variables on the South 

Esk. 

4.3.2 Relationships with shading 

Tables 4.1 and 4.4 show that percentage shading by bank vegetation is significantly inversely 

related to 'nativeness' of bank vegetation on the South Esk, with willow dominated sites 

having a significantly higher level of shading than sites dominated by native species on the 

banks. Percentage shading is negatively correlated with river width on the South Esk, and is 

significantly related to lower levels of stock damage on the Macquarie (table 4.1). A high 

percentage of shading by bank vegetation is also significantly associated with a low percentage 

cover of aquatic and marginal vegetation on the Macquarie, a low total species richness on 

both rivers and a low aquatic species richness on both rivers (table 4.2). 

4.3.3 Relationships with bank vegetation type 

Substrate type and river depth were significantly related to bank vegetation type on both rivers. 

Mud sites had the least native bank vegetation and gravel and rock sites the most native bank 

vegetation (see table 4.5). On the South Esk, sites with more native bank vegetation were 
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shallower than sites with willows or pasture as bank vegetation (table 4.4). As mentioned in the 

section on upstream-downstream differences above, bank vegetation was also significantly 

related to distance upstream- willow and pasture sites were furthest downstream, native sites 

were furthest upstream (see table 4.4). 

Table 4.2 shows that on both rivers there was a significant relationship between type of bank 

vegetation and percentage cover of aquatic and marginal vegetation, diversity of aquatic and 

marginal vegetation, total aquatic and marginal vegetation richness and total native species 

richness. On the Macquarie there was also a significant relationship between bank vegetation 

type and the proportion of exotic species. Sites with more exotic bank vegetation (pasture 

sites) had a greater diversity, cover and species richness in the (combined) marginal and 

aquatic vegetation, and a greater proportion of exotic species in the marginal vegetation than 

sites with native bank vegetation or willow-choked sites (Table 4.4). On the Macquarie, sites 

with mixed exotic/native bank vegetation had a higher proportion of aquatic species (growth 

forms 1,2 and 3), due to the lower number of marginal species (growth form 4), than pasture 

sites. 

Correlations between percentage shading by willows and percentage macrophyte cover and 

macrophyte species richness and diversity were investigated using 62 sites with only willows 

and pasture as bank vegetation (that is, with no shading from native vegetation or exotic 

species other than willows). Percentage shading was significantly negatively correlated with 

aquatic and marginal vegetation cover, diversity, total species richness, aquatic species 

richness, marginal species richness and native species richness. Observations in the field 

suggested that there was almost never any vegetation growing under willows. 

4.3.4 Relationships with stock damage 

Tables 4.1 and 4.7 show that the level of stock damage at sites on the Macquarie was 

significantly related to percentage shading, substrate type, distance upstream and bank 

vegetation type. It was also significantly positively related to percentage aquatic and marginal 

vegetation cover, total aquatic and marginal species richness and exotic species richness. Sites 
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with moderate levels of stock damage had the highest diversity. Many of these variables were 

inter-related. Distance upstream was related to substrate and bank vegetation, and decreasing 

species richness (Table4.2). Total species richness was positively related to exotic species 

richness (Table 4.3). 

On the South Esk, level of stock damage was significantly related to type of bank vegetation 

(see Table 4.4), and total species richness. 

4.3.5 Relationships with erosion 

Table 4.1 shows that on the Macquarie the level of erosion was significantly related to the bank 

vegetation type. That is, sites with bushy vegetation on the banks were not as eroded as 

pasture sites, which had been cleared right to the river margins (see table 4.4). On the 

Macquarie, level of erosion was also significantly related to level of stock damage (see table 

4.7) which is higher in pasture-dominated areas. 

4.3.6 Relationships with substrate 

On the Macquarie there was a significant relationship between substrate type and total species 

richness, exotic species richness and proportion of exotic species (table 4.5). That is, on the 

Macquarie, sites with muddy substrates had a higher species richness and higher degree of 

invasion by exotics than sites with a gravel or rock substrate. On both rivers substrate type was 

significantly related to both river form and depth, illustrating the difference in current velocity 

between riffles, runs and pools. Substrate type was also associated with bank vegetation type 

on both rivers. See the relationship (below) between form of river site and bank vegetation. 
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4.3.7 Relationships with river form 

As would be expected from the criteria used to define riffles, runs and pools, riffles were 

shallow, runs were variable in depth, and pools were deep (table 4.6). Similarly riffles were 

narrow, runs wider and pools wider again. On both rivers there was also a positive correlation 

between site width and site depth (table 4.1). 

Riffles had mostly a bedrock or gravel substrate, runs mostly a mud or gravel substrate, and 

pools mostly a mud substrate (table 4.6). Note that substrate was also significantly correlated 

with depth- muddy sites were medium or deep, gravel and bedrock sites were shallow (table 

4.5). 

On the Macquarie, deep sites (>2 m) had a higher species diversity than shallow sites (1-2 m). 

That is, pools had a higher species diversity than riffles (table 4.6). However on the South Esk, 

shallow sites had a significantly higher diversity than medium-depth sites, but there was not a 

significant relationship between form and diversity. 

4.3.8 Comparison of the two rivers 

Table 4.9 gives a comparison of the median values for environmental variables, species cover 

and richness between the two rivers. The species composition of both the marginal and aquatic 

vegetation varied between different reaches of the two rivers, see Chapter 3. 

The most notable differences between the rivers were that the middle section of the Macquarie, 

after the rocky, fast flowing higher reaches, tended to be flatter and slower flowing than the 

South Esk, with long deep runs and pools through pasture land, generally with stock access 

right into the river, little shading, and a high aquatic vegetation cover and total species 

richness. The South Esk had long stretches of shallower fast flowing water over a pebbly 

riverbed, mainly runs and riffles, with little aquatic vegetation cover. The bank vegetation 

tended to be a mixture of pasture, gorse, blackberries, wattles, tea-tree, and willow, with only a 

few sites of pure pasture. Percentage shading was higher than on the Macquarie, the river was 

wider and the banks tended to be higher. 
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* *M 	*M 	*M 

*SE 	*SE 

**M 	 ** M 

**SE 

Table 4.1 Correlations between environmental variables, divided by river. 
Spearmans Correlation Coefficients (P < 0.05) were used for continuous variables, and ICruskal-Wallis 
probabilities for categoric variables. Form, form of river site; %shade, percentage of site overshadowed by bank 
vegetation; Subst, dominant substrate; Bankht, height of bank on highest side; Width, maximum width at site; 
Depth, maximum depth at site; Kms, distance upstream from junction of the two rivers; Erosn, visible erosion of 
banks; Stock, obvious trampling by stock; Bankvg, nativeness of bank vegetation; Probability values from 
Kruskal-Wallis Tests: ***, P < 0.001; **, P < 0.01; *, P < 0.05; P> 0.05. 

%shade Subst Bankht Width Depth Kms Bankvg Erosn 	Stockd  

Forma  

%shade 

Substf  

Bankht 

Width 

Depthb  

Kms 

Bankvge  

Erosne  

***M 
***SE 

*M 
**SE 

***M 
***SE 

**SE 	 ***SE 

-0.51 SE  

* M 

* ** M 
*SE 

m 	 ** M 

-0.39' - 

sESouth Esk River 
mMacquarie River 
'Form of river site, 1=run 2=riffle 3=pool 
bDepth, 1 = < 1 m, 2= 1-2 m, 3= >2 m 
'Erosion, 1-3 from none to severe 
dStock damage, 1-3 from none to severe 
'Nativeness of bank vegetation, on a scale of 1-6 from least native to most native 
Substf  , Dominant substratum, 1= mud, 2=mudirock, 3=gravel, 4=rock 
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Table 4.2 Correlations between environmental variables and vegetation cover, diversity 
and richness, divided by river. Spearmans Correlation Coefficients (P < 0.05) were used for continuous 
variables, and Kruskal-Wallis probabilities for categoric variables. Form, form of river site; %shade, percentage 
of site overshadowed by bank vegetation; Subst, dominant substrate; %cover, percentage of site covered by 
aquatic and marginal vegetation; Bankht, height of bank on highest side; Width, maximum width at site; Depth, 
maximum depth at site; Kms, distance upstream from junction of the two rivers; Erosn, visible erosion of banks; 
Stock, obvious trampling by stock; Exrich, number of exotic species; Totrich, total number of species; Bankvg, 
nativeness of bank vegetation; Ex/tot, proportion of exotic species; Aqrich, number of aquatic species; Marich, 
number of marginal species; Aq/tot, proportion of aquatic species; Aqcover, percentage cover of aquatic species; 
Divers, Shannons diversity. Probability values from Kruskal-Wallis Tests: ***, P < 0.001; **, P < 0.01; *, P < 
0.05; -,P > 0.05. 

%cover Totrich 	Exrich 	Ex/tot 	Aqrich 	Marich 	Natrich 	Aq/tot 	Aqcover Diversity 

Forma  

%shade 	33 M 	030 M 	 030M 	m 	 034M 	-0.34m 
-0.37 sE 	 -0.47 SE 	 -0.48 SE  

Substf 	 *m 	*m 	*M 

Bankht 
0 . 3 4 s E  

Width 	 035M 	0.29m 	027M 	 039 M 	 -0.43 m 	 0.43 m  

Depthb 	 * m 	*m 	*m 

Kms 	 051 M 	67M 	-0.66 m  065 M 0•67 m  

Bankvt 	** M 	***m 	** m 	** m 	* M 	** M 	**M 	**M 	 *M 
**SE 	*** SE 	 *** SE 	* SE 	**SE 	 **SE 

Erosn' 

Stockd 	* *M 	** m 	* M 	 ** M 
	

M 	 * * M 	** M 
*** SE 	 *** SE 	* SE 	*** SE 

	
*SE 

sESouth Esk River 
mMacquarie River 
'Form of river site, 1=run 2=riffle 3=pool 
"Depth, 1 = < 1 m, 2= 1-2 m, 3= >2 m 
'Erosion, 1-3 from none to severe 
dStock damage, 1-3 from none to severe 
'Nativeness of bank vegetation, on a scale of 1-6 from least native to most native 
fSubst, Dominant substratum, 1= mud, 2=mud/rock, 3=gravel, 4=rock 
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Table 43 Correlations between vegetation cover and richness, divided by river. Spearmans 
Correlation Coefficients (P < 0.05) were used. %cover, percentage of site covered by aquatic and marginal 
vegetation; Exrich, number of exotic species; Totrich, total number of species; Ex/tot, proportion of exotic 
species; Aqrich, number of aquatic species; Marich, number of marginal species; Aq/tot, proportion of aquatic 
species. 

%cover Totrich Exrich Ex/tot 	Aqrich Marich Natrich Aq/tot 	Aqcover Diversity 

%cover 	 0.52 m 	037m 	 052 M 	042 M 	061 M 	 091 M 
0.57  SE 031  SE 	0.58 SE 	 0.55  SE 0.94 SE  

Totrich 	 076 M 056 M 060 M 	089 M 	082 M 	064 M 033 M 	069 M 
0.62 SE 	 0.81 SE 	085  SE 	0.97  SE 	 0.51 SE 	0.76 SE  

Exrich 	 095 M 	 082 M 	035 M 	074 M 	 046 M 
0•88  SE 	 0.82 SE 	0.43 SE 	-0.74sE 	 0.48 SE  

Ex/tot 	 - 	 0.68 m 	 -0.70 m 	 0.31 m  
0.57  SE 	 _0.77  SE 

Aqrich 	 0.42sE 	0•81M 	0.34 SE 	053 M 	028 M 
0.88 SE 	 0.66  SE 	0.50 SE  

Marich 	 0.64 m 	-0.91 m 	- 	0.68 m  
0.74 SE 	-0.72 SE 	0.30 SE 	0.69 SE  

Natrich 	 - 	033 M 050 M 	057 M 
0.54sE 	0.71 SE  

Aq/tot 	 -0.55 m  
-0.34 SE  

Aqcover 

Diversity 

sESouth Esk River 
mMacquarie River 
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0.5(0.3-1.5) 
4.3(1.3-14.8) ab  

2(0.5-2.8) 
0.8(0.1-3.8) b  

1(1-2.8) 
2(1-2.3) at  1(1-2) "  

2.5(2-3) 

Table 4.4 Median values of environmental and richness variables for each bank 
vegetation type. Significant differences between pairs of bank vegetation type were tested using Kruskal-
Wallis tests, then Dunn's Method of pairwise multiple comparisons. Only variables that differed significantly by 
bank vegetation for at least one river are shown. %shade, percentage of site overshadowed by bank vegetation; 
Depth, maximum depth at site; ICms, distance upstream from junction of the two rivers; Erosn, visible erosion of 
banks; Stock, obvious trampling by stock; %cover, percentage of site covered by aquatic and marginal 
vegetation; Divers, Shannons diversity; Totrich, total number of species; Natrich, number of native species; 
Exrich, number of exotic species; Ex/tot, proportion of exotic species; Aqrich, number of aquatic species; 
Marich, number of marginal species; Aq/tot, proportion of aquatic species. n = number of sites 

1 Willow 	2 Pasture-willow 3 Exotic-willow 	4 Exotic-native 	5 Native-exotic 	6 Native 

(n=2m,5 SE) 
	

(n =37 m,18 SE) 	(n =0 M ,9 SE) 
	

(n =4 m ,11 sE) 	_7  m ,5  sE) 	n =(4 m ,0 sE) 

33.5(27-40) 
44.4(20-85) a  

3(3-3) 
3(1.8-3) ab  

10.5(0-21) a  
50.2(18.8-72.5) a  

1(11)a 
2(1.8-2.3) 

1(1-1) ab  
1(1-1.3) ab  

0.55 (0.38-0.71) a  
0.41(0.28-0.54) 

0(0-1) 
5.5(1.2-30.0) ab  

70(40.5-97.5) a  
59.8(32-100.5) a  

2(1-3) '  
2(1-2) 

3(23) a 
2(2-2) a  

0.86(0.77-0.97) b  
0.72(0.47-0.81) 

24.2(2.1-39.0) ab  

131(72.8-139.6) b  103(96.3-119.5) b  
80.8(77.8-104.3) ab  

1.5(1-2.5) ab  
2(1-2) 	2(1-3) 

2(2-2.5) ab  
2(1-2) ' 	1(1-2) a°  

0.73(0.67-0.76) al  
0.62(0.48-0.69) 

	
0.73(0.48-0.90) 

12.8(0.3-27.5) 

1.5(1-2) 

116.0(60.3-128) ab  132.5(129.5-135 
88(84.5-97.5) ab  

1(11) a 	 1(1_1) a  
2(1-2.3) 

1(1-1) b  

0.79(0.46-0.88) ab 	0.64(0.41-0.77) a  
0.48(0.35-0.52) 

%Shade M  
SE 

Depthl m  
SE 

Kms 
SE 

Erosn2  
SE 

S tock3  
SE 

Divers 
SE 

3(2-3) 
3(23) a 

1(0.9-1) 
0(0-1.0) a  

4.7 (1.1-8.3) ab  
0(0-1.7) a  

6(6-6) ab  
0(0-3.25) a  

4(4-4) a  
0(0-2.8) a  

2(2-2)ab  
0(0-0.5) 

0.33(0.33-0.33) ab  
0.14(0-0.29) 

2(1-3) ab  
0(0-2) a  

26.3(8.9-48.3) 
16.9(8.4-47.0) b  

38.8(13.2-76.2) a  
17.6(11.2-58) b  

14(11-18) b  
12(9-15) b  

11(8-14) b  
11(7-13) b  

3(1-7) a  
1(0-3) 

0.23(0.08-0.36) a  
0.13(0-0.24) 

8(69) a  
6.5(5-8) b  

6.7(0.7-19.7) ab  

12.9(3.7-22.7) ab  

10(4-12.8) b  

7(3.8-10.5) 6  

1(0.8-2) 

0.2(0.05-0.35) 

3(1.8-6.3) b  

15.5(7.0-31.8) 
7.8(2.5-13.5) ab  

15.5(8.7-25.1) ab  
10.1(4.3-24.4) ab  

7.5(7-8) ab  
10(5.5-12.3) b  

7(6.5-7) ab  
8(5.3-10.8) ab  

1(0.5-1) ab  
2(0-2.8) 

0.10(0.06-0.13) ab  
0.15(0-0.2) 

6(4.5-7.5) ab  
5(3.3-6.5) bc  

21.1(2.4-43) 
2.8(1.8-16.8) ab  

29.4(2.7-43.4) ab  
13.1(2.3-18.1) ab  

10(7.5-11) a.  b  
7(4.5-7.3) a°  

9(7.5-9.8) al,  
6(3.8-7.3) ab  

0(0-1) ab  
0(0-1) 

000(001) b 
0(0-0.16) 

6(5.3-7.3) ab  
3(1.8-4.5) ab  

Aqcover M  
SE 

%cover M  
SE 

Totrich M  
SE 

Natrich M  
SE 

Exrich M  
SE 

Ex/totr M  
SE 

Aqrich M  
SE 

4(2.7-6) 

3.6(1.8-5.5) b  

6.5(4-8) a  

6.5(4-8) ab  

0(0-0) b  

0.00(0-0) b  

4(2.5-5.5) b  

A /totr M 	0.33 0.17-0.5 a 	0.5 0.41-0.63 a 	 0.86 0.61-1.0 
	

0.71 0.6-0.8 	0.75 0.55-0.92 
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E  

Marich M  
SE  

0.64(0.29-1) 

4(3-5) ab  
oo-1.3y 

0.5(0.43-0.62) 

7(3.8-12.3) a  
5(4-8) b  

0.5(0.31-0.53) 

4(2-8.3) at 
 

0.54(0.43-0.78) 

1(0-3) ab  
5(1-6) ab  

0.57(0.37-0.69) 

2(2-4.5) b  
3(1.8-4) ab  

2(0.5-3.5) ab  

mMacquarie River 
sESouth Esk River 
a 'b ' different letters indicate a significant difference 
idepth, 1= <1 m, 2= 1-2 m, 3= >2 m. 
2erosion, 1=none, 2 = moderate, 3 = severe 
3stock damage, 1=none, 2 = moderate, 3 = severe 
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Table 4.5 Median values of environmental and richness variables for each substrate type. 
25% and 75% percentiles are given in brackets. Only variables which differed significantly by substrate type for 
at least one river are shown. Significant differences between pairs of substrate type were tested using Kruskal-
Wallis tests, then Dunn's Method of pairwise multiple comparisons. 
Vel, slowness of current velocity; Depth, maximum depth at site; Kms, distance upstream from junction of the 
two rivers; Stock, obvious trampling by stock; Exrich, number of exotic species; Totrich, total number of species; 
Ex/tot, proportion of exotic species; n = number of sites 

1 mud 
n=29m,18 SE  

2 mud/rock 
n=10 M,6  SE 

3 gravel 
n=6 m,15 SE  

4 rock 
n_9  m,9  SE 

Vel 1 
SE 

Depth2  xt 
SE 

Bankvg3 _m  

Kms 
SE 

Stock4  
SE 

Totrich 
SE 

Exrich 
SE 

Ex/totr m  
SE 

2(23) a 
3(23) a 

3(2-3)a  
3(23) a 

2(2-2) a  
2(2-3) a  

68(38.75-90.5) a  
66.5(50.2-102) 

2(23) a 
1.5(1-2) 

14(10-18.3) a  
8(2-12) 

3(1-7) a  
0.5(0-1) 

0.23(0.09-0.36) a  
0.1(0-0.25) 

2(2-3) ab  
2.5(2-3) ab  

2(1-3) ab  
2.5(2-3) ab  

3(2-5) ab  
2(2-4) ab  

97.5(86-126.0) ab  
82(51-114) 

2.5(1-3) ab  
2(1-2) 

10.5(7-15) ab  
11.5(9-15) 

0.5(0-3) ab  
2(1-3) 

0.06(0.00-0.21) ab  
0.17(0.13-0.2) 

2(1-2) ab  
2(2-2) b  

1.5(1-3) ab  
1(1-2) b  

2(2-2) a  
4(2.25-4) b  

76(9.8-117.0) ab  
85(49.8-105.8) 

2(1-3) ab  
2(1-2) 

9.5(7-18) ab  
10(5.5-14.5) 

1.5(0-4) ab  
1(0.3-7.8) 

0.18(0.00-0.33) ab  
0.15(0.02-0.20) 

2(1-2.25) ab  

2(1-2) b  
2(1-3) ab  

5(4.75-6) b  
4(2.75-4.25) b  

116(74.88-131.3) ab  
101(91-129) 

1(1-1.25) b  
1(1-1.3) 

9(6.75-11.3) b  
8(3-12.8) 

0(0-1) b  

0(0-3.5) 

0.00(0.00-0.11) b  
0(0-0.22) 

mMacquarie River 
sESouth Esk River 
a' b' c  different letters indicate a significant difference 
'slowness of current velocity, 1=fast(riffle), 2-moderate/slow(run), 3=negligible(pool) 
2depth, 1= <1 m, 2= 1-2 m, 3= >2 m. 
3  'nativeness' of bank vegetation, on a scale of 1-6 from least native to most native 
4stock damage, 1=none, 2 = moderate, 3 = severe 
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Table 4.6 Median values of environmental and richness variables for each form of river 
site. 25% and 75% percentiles are given in brackets. Only variables that differed significantly by form for at least 
one river are shown. Significant differences between pairs of different forms were tested using Kruskal-Wallis 
tests, then Dunn's Method of pairwise multiple comparisons. Divers, Shannon's diversity; Vel, slowness of 
current velocity; Depth, maximum depth at site; Kms, distance upstream from junction of the two rivers; Stock, 
obvious trampling by stock; Exrich, number of exotic species; Totrich, total number of species; Ex/tot, proportion 
of exotic species; n = number of sites 

1 runs 
n=28 1'4,26 SE  

2 riffles 
n_9  M,6 SE 

3 pools 
n=l7 m,16 sE  

Divers 
SE 

Subst l  
SE 

Width 
SE 

Depth2  
SE 

Erosion3  
SE 

0.82(0.74-0.92) ab  
0.51(0.36-0.74) 

1(1-2) a  
3(1 _3)  ab 

15.25(10-26.5) a  
18.5(15-27) a  

2(2-3)a  
2(1-2) a  

2(1-3) a  
2(1-2) 

0.60(0.47-0.84) a  
0.76(0.63-0.88) 

4(2.75-4) b  
3.5(3-4) a  

9(6.75-10.5) a  
12.5(9-14) a  

1(1-1) b  
1(1-1) a  

2(1-3) 

0.92(0.73-0.99) b  
0.72(0.49-0.90) 

1(1-2) a  
1(1-2) b  

36(26.5-47.8) b  
52.5(42.5-70) b  

3(3-3) a  
3(3-3) b  

1(1-2) ab  
1.5(1-2) 

mMacquarie River 
sESouth Esk River 
a ' 13 'c  different letters indicate a significant difference 
1Subst, 'rockiness' of dominant substrate type, 1= mud, 2=mud/rock, 3=gravel, 4=rock 
2depth, 1= <1 m, 2= 1-2 m, 3= >2 m. 

erosion, 1 =none, 2 = moderate, 3 = severe 
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Table 4.7 Median values of environmental and richness variables for each level of stock 
damage. 25% and 75% percentiles are given in brackets. Only variables that differed significantly by level of 
stock damage for at least one river are shown. Significant differences between pairs of levels of stock damage 
were tested using Kruskal-Wallis tests, then Dunn's Method of pairwise multiple comparisons. %shade, 
percentage of site overshadowed by bank vegetation; Subst, dominant substrate type; Bankvg, bank vegetation 
type; Kms, distance upstream from junction of the two rivers; Erosn, visible erosion of banks; %cover, 
percentage of site covered by aquatic and marginal vegetation; Totrich, total number of species; Natrich, number 
of native species; Exrich, number of exotic species; Aqrich, number of aquatic species; Marich, number of 
marginal species; n = number of sites. 

1 none 
n=l6m,23 SE 

2 moderate 
n=18 l'4,24 SE  

3 severe 
n=20 M91  SE 

%Shade M  
SE 

Subst l 	1'4  
SE  

Bankvg2m  E  

Kms 	M  
SE 

Erosn3  M  
SE 

Divers M  
SE 

%cover M  
SE 

Aqcover M  
SE 

Totrich M  
SE 

Natrich M  
SE 

Exrich M  
SE 

Aqrich M  
SE 

Marich M  
SE 

2.38 (0.50-28.5) a  
11.0(2.1-29.4) 

3 (1.5-4)a  
3(1-4) 

5 (2-5.5) a  
4(2-4) 

113.5 (62.5-130.5) a  
97(77.8-129.5) 

1 (1-1)a  
2(1-2) 

0.67(0.45-0.8) a  
0.49(0.35-0.65) 

7.17 (2.18-25.2)a  
10.11(1.09-16.59) 

4.38(2.07-17.5) a  
6.62(1.13-14.37) 

9 (6-11) a  
7 (3-8.75) * 

9 (5.5-9.5) a  
5 (3-7) * 

0.5 (0-2)a 
1(0-2) 

5.5(3.5-7.5) a  
3(1.25-4.75)* 

3(2-5) a 
2(1-5) * 

0.50 (0.00-3.35)6  
3.66(0.51-26.01) 

1 (1-2)b  
2.5(1-3) 

2 (2-2) b  
2(2-3) 

44.5 (37-79.1) b  
69(40.7-1025) 

2 (1-2)a  
2(1-2) 

0.89(0.76-0.97) b  
0.72(0.5-0.82) 

31.1 (7.83-63.6) ab  
14.82(4.44-54.58) 

19.22(2.77-42.2) ab  
11.41(2.21-43.95) 

13.5 (8-16)b  
12 (9-15) 

10.5 (7-12) 6  
10 (7.5-13) 

15(19)b 
1(0-3) 

6.5(4-8) a  
6(4.5-8) 

6(2510)
b 

5(4-8) 

0.00 (0.00-0•5)b  
1.23 

1 (1-2)b  
2 

2 (2-2) b   
2 

88 (68.5-99.5)ab  
129 

3 (2-3)b  
1 

0.84(0.74-0.92) ab  
1.06 

58.25 (15.47-80.4) 1' 
4.83 

38.11(11.86-55.5) b  
2.45 

14 (10-18.5)b  
21(21-21) 

11 (8-15) '  
17 (17-17) 

3 (0-4.5) ab  
4 

8(7-9) b  
7(7-7) 

6.5(3-13) ab  
14(14-14) 
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mMacquarie River 
sESouth Esk River 
a'b 'c  different letters indicate a significant difference 
*Because one group was very small, Dunn's method of pairwise comparisons could not determine significant 
differences 
1Subst, Dominant substratum, 1= mud, 2=mud/rock, 3=gravel, 4=rock 
2 'nativeness' of bank vegetation, on a scale of 1-6 from least native to most native 
3erosion, 1=none, 2 = moderate, 3 = severe 

Table 4.8 Correlations between percentage shading by willows and macrophyte diversity, 
percentage cover and richness. 

Spearmans correlation 
coefficient 

P 

diversity -0.44 0.00 
% cover -0.43 0.00 
Total richness -0.42 0.00 
Aquatic richness -0.44 0.00 
Marginal richness -0.31 0.01 
Native richness -0.43 0.00 
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Table 4.9 Comparison of median values of environmental variables, 
cover and richnesses in the two rivers. 
P-values are from Mann-Whitney Rank Sum Tests. Velocity, slowness of current velocity; %shade, percentage of 
site overshadowed by bank vegetation; Substrate, dominant substrate type; Bankvg, bank vegetation type; Width, 
stream width; Depth, maximum depth at site; Erosn, visible erosion of banks; Stockd, damage caused by stock 
trampling; %cover, percentage of site covered by aquatic and marginal vegetation; Totrich, total number of 
species; Exrich, number of exotic species; Ex/totr, proportion of exotic species; Aqrich, number of aquatic 
species; Marich, number of marginal species; Aq/totr, proportion of aquatic species. 

Median in M Median in SE P 
Velocity 2.00 2.00 n.s. 
%Shade 0.50 6.58 *** 
Substrate 1.00 2.50 n.s. 
%Cover 24.9 13.0 ** 
Bankht 1.00 2.00 *** 
Width 17.5 21.5 * 
Depth 2.50 2.00 n.s. 
Erosn 2.00 2.00 n.s. 
Stockd 2.00+ 2.00 ** 
Exrich 1.50 1.00 n.s. 
Totrich 12.00 9.00 ** 
Bankvg 2.00 3.00 n.s. 1  
Ex/totr 0.14 0.13 n.s. 
Aqrich 7.00 5.00 *** 
Marich 5.00 4.00 n.s. 
Aq/totr 0.57 0.50 n.s. 

'Bank vegetation did vary significantly by river. Most pure pasture sites and most native sites were on the 
Macquarie. Most of the sites with bushy exotic vegetation (gorse, blackberry etc) and most willow dominated 
sites were on the SE (Tabulated Statistics on an un-ordered classification of bank vegetation types by River; Chi-
Square = 25.812, DF =6, P=0.000). 
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4.4 Discussion 

When describing the effects of environmental variables on aquatic species it is necessary to 

consider each variable separately. However it is important to remember that aquatic plants do 

not respond to each variable independently. For example, a plant's growth may be directly 

influenced by substrate particle size, but it is difficult to separate these effects from those of 

water velocity, which directly affects the plant growth and also determines substrate particle 

size. The effects of environmental variables may also interact if suboptimal conditions of one 

variable effect the tolerance of a species to another variable (Fox 1996). 

4.4.1 Effects of distance upstream from the confluence of the two rivers.  

The upstream-downstream differences in substrate and bank vegetation type on the Macquarie 

reflect differences in land use and geomorphology between upstream and downstream areas. 

The more upstream sites on the Macquarie generally did not run through intensively farmed 

land, and so had less disturbed bank vegetation than downstream sites. Upstream sites were 

also narrower, shallower and rockier than downstream sites, due to natural changes in the slope 

of the land, the volume of water carried and the underlying geology of the river between high 

and low areas of the catchment. 

The decline in species richness and percentage cover with distance upstream on the Macquarie 

could be due to several factors. It is possible that richness and cover were limited by the higher 

proportion of sites with a rock substrate occurring upstream. Table 4.5 shows that on the 

Macquarie sites with a rock substrate have the least total species richness of all sites. This 

relationship needs to be treated with caution, however, as more of the rock sites were upstream 

on the Macquarie (see table 4.5), and so the apparent low species richness on rock substrates 

could have been caused by upstream-downstream variation in other factors. It has also been 

shown that aquatic vegetation traps sediments (Sand-Jensen 1998; French and Chambers 1996) 

and so causes a finer substrate to develop over time, so it is difficult to separate cause and 

effect between macrophyte presence and substrate type. Stream velocity has been shown to 
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have a strong effect on both substrate type and species cover and richness (Butcher 1933, 

Haslam 1978). Stream velocity was not measured directly in this study, but was derived from 

the 'river form' of each site: riffle=fast velocity, run=slow velocity, and pool= negligible 

velocity. River form did not vary significantly with distance upstream, but it is possible that 

this is not a good substitute for independent current velocity measurements. There is a 

markedly steeper river slope in the upper part of the Macquarie (see figure 2.5), which would 

be likely to create higher velocities in this section. Slope has been shown to be negatively 

associated with aquatic species richness in a study of the river-edge vegetation on the 

Murrumbidgee River in New South Wales (Roberts 1994), but it is not included as a separate 

variable here. 

The change in bank vegetation type from the mid to the higher reaches of the study area on the 

Macquarie could at least partly account for the upstream-downstream variation in species 

richness. The upstream section of the Macquarie had more sites with native bank vegetation 

than the lower reaches, and thus many sites in the upper section were not invaded by pasture 

species from adjacent agricultural land. Pasture species in the marginal vegetation accounted 

for a large proportion of the total species richness and for almost all of the exotic species 

richness in sites in the mid and lower reaches of the Macquarie. 

The DPIF (1996) study of the rivers for its State of the Rivers Report found that there was an 

upstream-downstream gradient in several water quality variables, which could also have 

contributed to the variation in vegetation. Dissolved inorganic nitrogen levels increased 

downstream, as did levels of Total Kjeldahl Nitrogen (mostly composed of organic nitrogen). 

The downstream increase in nutrient levels was most likely due to agricultural activity and the 

impact of sewage treatment outflows in the lower parts of the catchments (figure 2.4 on page 

19 shows the variation in landuse between different parts of the catchment). High levels of 

nutrients in the water column have been found to increase plant growth and biomass, but 

decrease diversity (see Demars and Harper 1998; Haslam 1978,1990). The former appears to 

be the case in this study but not the latter. More detailed studies of nutrient levels in the two 

rivers, particularly in relation to rainfall, are needed to determine the effects of agricultural 

chemicals on aquatic macrophyte richness and abundance. 
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Turbidity also generally increased downstream. Turbidity has been found to reduce 

macrophytic growth by reducing light penetration in the water (Haslam 1978), and would have 

a stronger effect on the aquatic species than the marginal species. This could partly explain the 

decrease in aquatic vegetation cover in the upper parts of the Macquarie. 

Electrical conductivity would also be expected to affect the aquatic vegetation rather than the 

bank vegetation. Electrical conductivity increased with distance downstream in the Macquarie, 

with dilution occurring at the junction with each major tributary. However the levels were low 

throughout the catchment, well below the ANZECC standards for the protection of ecosystems 

(ANZECC 1992). 

In a study of the bank (marginal) vegetation along two Swedish rivers by Nilsson et al. (1989), 

it was found that 'natural' species richness was highest in the mid-reaches of both rivers, 

whereas `ruderal' species showed a significant, monotonic increase with distance downstream. 

Although the present study area does not cover the entire length of either river, the richness 

patterns observed appear to correspond to those found by Nilsson et al. (1989). The decrease 

in exotic species richness with distance upstream on the Macquarie would be likely to continue 

above the study area, as the higher reaches of the Macquarie, although disturbed by siltation 

from forestry activities (Askey-Doran 1993), do not flow through agricultural land. 

Downstream of the confluence of the Macquarie with the South Esk, there may not be an 

increase in exotic species richness, but there is unlikely to be a dramatic decrease as the 

landuse remains dominantly agricultural. Total species richness and marginal species richness 

were strongly correlated with exotic species richness on both rivers, and so varied in a similar 

way. 

It is likely that the trend towards highest aquatic species richness in the mid-reaches of the 

study area on the Macquarie would become clearer if the entire length of the river was studied. 

Aquatic species richness is likely to be lower in the higher reaches than the mid-reaches 

included in the present study, because of steeper, rockier terrain, faster current velocity and 

greater shading by native bank vegetation (see Askey-Doran (1993) for a brief description of 
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the aquatic communities in the Upper Macquarie). In the lower reaches of the South Esk, 

below the confluence with the Macquarie, the physical nature of the river with a high flow, 

steep banks and more turbid water does not provide optimal habitat for aquatic communities. 

Higher species richness in the mid-reaches is consistent with the intermediate disturbance 

hypothesis (Connell 1978; Huston 1979; Ward and Stanford 1983), which proposes that 

species diversity is maximised by the environmental heterogeneity which results from an 

intermediate level of disturbance. 

4.4.2 Effects of shading 

The relationship between percentage shading and low levels of stock damage on the Macquarie 

was probably due to the presence of bank vegetation preventing stock access to the river. It was 

probably also partly due to the fact that the sites with the highest levels of stock damage were 

the sites that had cleared pastoral land right to the river edges, and therefore had low levels of 

shade. 

The relationship between percentage shading and vegetation cover and richness is probably 

mainly due to the direct effect of lower light levels on vegetation growth (Haslam 1978, Fox 

1996). It could also be caused by the effects of willow roots on aquatic vegetation in 

downstream areas. Willow roots form a dense network and reduce the available substrate for 

aquatic macrophyte colonisation. 

4.4.3 Effects of bank vegetation type 

The differences in richness and cover between sites with different bank vegetation types were 

at least partly related to shading on the South Esk- willow dominated sites were most shaded, 

then willow/exotic sites, then native sites. Pasture sites were least shaded (table 4.4). Species 

richness was also higher in pasture sites because of the invasion of pasture species into the 

marginal vegetation. 

Willows are members of the genus Salix and are not native to Australia. Willows were 

originally planted along watercourses to control riverbank erosion. The early varieties were 
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either wholly male or wholly female, so fertile seeds were not produced. However recently 

introduced willow varieties have cross-pollinated with varieties already growing in Australia, 

allowing the release of millions of seeds which are distributed long distances by wind or water 

(see Trounce 1999). It is now widely acknowledged that willow infestation has an adverse 

effect on most aspects of natural river ecosystems (see Frankenberg 1992). See Chapter 5 for 

a more detailed discussion of the management issues related to willows. 

4.4.4 Effects of stock damage 

Table 4.7 shows that stock damage was greatest in the middle areas of the catchments, where 

there was more intense agricultural activity and stock often had direct access to the river. This 

was particularly the case on the Macquarie, and the Macquarie had a higher number of sites 

with severe stock damage than the South Esk (Chi-square Test, P = 0.000). The areas with a 

high level of stock damage generally had no native bank vegetation and pasture species grew 

adjacent to the river margins, explaining the relationship between higher levels of stock 

damage and lower percentage shading and high exotic species richness. The middle and lower 

reaches of the rivers also tended to be the parts of the rivers with the highest percent cover of 

aquatic and marginal vegetation and the highest species richness, most likely because of the 

gentle slope of the river, and nutrient input from the agricultural land as well as sewage 

treatment plant outflows. 

It is also possible that trampling and grazing by stock may have preferentially increased the 

cover of some species in the macrophytic vegetation. Brock and Casanova (1991) found that 

trampling stimulated new growth from vegetative fragments and the growth of lateral shoots in 

Myriophyllum variifolium. Blanch and Brock (1994) studied the effects of grazing and water 

depth on Myriophyllum variifolium and Eleocharis acuta. They found that Myriophyllum 

variifolium, with its large number of dispersed, above-ground meristems, was able to increase 

its vegetative reproduction under a light grazing regime. However Eleocharis acuta was not 

able to reproduce vegetatively in this way, and both species were adversely effected by grazing 

to below water level. It also appeared that low intensities of cattle and sheep grazing may have 

been beneficial by increasing species diversity. The present study supports this finding, as 
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sites with moderate levels of stock damage had a significantly higher macrophyte diversity 

than sites with no stock damage. However it is important to note here that both the extent of 

stock damage and the macrophyte species diversity were affected by other factors, such as 

percentage shading and bank vegetation type. 

4.4.5 Effects of erosion 

Erosion is a natural stream process, as streams are very dynamic systems. However European 

settlement has introduced additional episodes of erosion and bank instability, caused by 

changes in flow patterns, gradient and bed and bank conditions (Frankenberg 1992). 

Particularly relevant to this study are increased flows due to catchment clearing, changes in 

seasonal flow regimes because of river regulation, and removal of bank vegetation by clearing 

and grazing. The higher levels of erosion at sites with high levels of stock damage were 

probably caused by the trampling of the riverbanks by many hard hooves. This also partly 

explains the higher level of erosion at pasture sites on the Macquarie. The loss of the 

stabilising effects of native bank vegetation could also increase erosion at these sites. 

4.4.6 Effects of substrate type 

Effects of substrate type cannot be interpreted without reference to water velocity, which is the 

major determining force for both substrate type and macrophyte growth (Butcher 1933; 

Haslam 1978). Effects of water velocity are discussed in a separate section below. 

The association of difference species with different particle sizes in the substrata has been 

described in other studies (see Butcher 1933, Haslam 1978, Fox 1996). The findings of the 

present study support those of Baattrup-Pedersen and Riis (1999), who found that submerged 

species were primarily associated with coarser-textured substrata, whereas species growing 

both submerged and emergent and species growing only emergent were associated with finer — 

textured substrata. With the exception of four or five submerged species, the aquatic plants in 

the present study were mostly found growing on a fine (mud) substrate. It is difficult to 

determine whether the plants preferentially colonised areas with finer substrate, or whether the 
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finer substrate developed secondarily in response to the presence of the plants. It has been 

found that macrophyte beds can produce both sufficient organic material and sufficient slowing 

of water movement to allow the sedimentation of suspended particles. This sediment 

accumulation may then allow less hydrodynamic species to colonise (Haslam 1978; Fox 1996; 

Sand-Jensen 1998). 

4.4.7 Effects of river form 

Variation in the resistance of underlying rocks determines erosional channel features such as 

runs, riffles and pools (Fox 1996). The relationships found in this study between river form and 

depth and substrate were probably due to the effects of stream depth on stream velocity, and of 

stream velocity on the river substrate (Butcher 1933; Haslam 1978). Table 4.1 shows that the 

stream velocity decreased with increasing width and depth on both rivers. See below. 

4.4.8 Effects of differences in stream velocity 

Increased water movement has been thought to increase the growth of macrophytes in rivers, 

through an increase in plant exposure to nutrients and carbon dioxide for photosynthesis (Fox 

1996). Water movement also helps with dispersion of propagules. However fast flowing water 

can decrease the cover of macrophyte species through mechanical damage, problems with 

propagule establishment and the indirect effects of current velocity on substrate and fauna (Fox 

1996). The hydraulic resistance of individual plants depends on their dimensions relative to 

the direction of current velocity. Plants with long narrow leaves have a greater resistance to 

damage caused by high water velocities than plants with many branches and a complex, bushy 

structure. The root system also plays a key role in protecting plants from uprooting in fast-

flowing streams. Species with a well-developed root and rhizome system that winds securely 

around the stones in the substrate will most easily survive in faster-flowing water. However 

some studies (e.g. Pitlo and Dawson 1990) have shown that if the macrophyte bed has an 

overall streamlined shape, this can counter the water-resistance effect of bushy species, as long 

as the bed establishes in a period of slower current velocity. The individual stems are protected 

from sudden increases in velocity by the significant reduction of velocity within the bed. 
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In this study the fastest flowing stretches were sparsely vegetated. Isolepis fluitans, Neopaxia 

australasica and Triglochin species were the species most commonly found in fast flowing 

sites (riffles), all of which have fine, narrow or strap-like leaves and well-developed root 

systems. The stretch of river with the highest macrophyte richness was the middle stretch of 

the Macquarie (see figure 4.1), which was generally narrow with a slow to moderate current 

velocity. This result supported that of Nilsson (1987), who found that the number of species in 

the water in a Swedish stream reached a peak at an intermediate current velocity, consistent 

with the predictions of the intermediate disturbance hypothesis (Connell 1978; Huston 1979). 

Nilsson (1987) suggested that substratum type was partly responsible for this pattern of species 

richness along the stream. The zone of intermediate current velocity provided the most 

heterogenous environment in the substrate, which is often associated with a peak in both 

coexistence of species and utilisation of space. 
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Plate 5 

Erosion of the riverbanks of the Macquarie River 
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Plate 6 

Severe stock damage along the mid-reaches of the Macquarie River 
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Chapter Five 

Conservation values of the aquatic and marginal vegetation and 
related management issues 

5.1 Introduction 

A healthy river from an ecological viewpoint is one in which the native communities of flora 

and fauna are healthy and diverse, and the essential processes of nutrient cycling and waste 

assimilation are intact (Amos et al. 1993; Bunn et al. 1999; Gaffney et al. 1999). The health of 

the aquatic and marginal vegetation is an essential component of river health. Along the mid 

and lower reaches of the Macquarie and South Esk Rivers, there were very few areas of 

aquatic, marginal or bank vegetation that had not been impacted upon by human activity. In 

some areas human activities have had a deleterious effect on the vegetation, whereas other 

areas appeared to be relatively healthy. Common disturbances were: 

1. land clearing adjacent to the riparian area, including the removal of native vegetation from 

the riverbanks with subsequent accelerated erosion and a reduction in shading; 

2. the planting of willows to prevent riverbank erosion, causing an increase in shading and 

depletion of aquatic biota; 

3. trampling and grazing damage by stock, causing erosion, the spread of exotic plant 

species, local native plant damage and water pollution; 

4. the invasion of exotic plant species into the marginal and aquatic vegetation; 

5. the input of agricultural runoff and sewage treatment plant effluent, causing an increase in 

nutrients in the water column and sediment; 

6. increased sediment loads from forestry and agricultural activity. 
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As there is no information on the species composition or cover of aquatic and marginal 

vegetation communities along the two rivers prior to European settlement, it is not possible to 

quantitatively describe the changes that have occurred since. However it is likely that all of the 

above disturbances would have affected the river vegetation to some extent. For large 

stretches of the banks and margins of both rivers, the concept of the maintenance of native 

vegetation is meaningless, as the vegetation is either entirely exotic or non-existent. The 

aquatic vegetation has retained a higher proportion of native species, with only one exotic 

species occurring in the study sites. It is possible that human disturbance- an increase in 

nutrients and the removal of shade-trees in particular- has led to an increase in the species 

richness and cover of native aquatic vegetation in some areas (see Chapter 4). 

The fourth aim of this thesis is to identify conservation values and discuss management issues 

relevant to the conservation of the aquatic macrophyte communities. This chapter describes 

the health and conservation values of the aquatic macrophyte communities along the two 

rivers. It then discusses threats to the health of the macrophyte communities in the context of 

the human-induced disturbances noted above, and gives an overview of management options 

which would assist in the maintenance or restoration of the health of the macrophyte 

communities. 

5.2 The health and conservation values of the macrophyte communities 

5.2.1 Macrophyte community health 

There is a high degree of natural variation in the richness, diversity and cover of aquatic 

macrophytes along river systems. This variation is related to the geomorphological and 

hydrological variation along the river system, and the complex interactions of biotic and 

abiotic factors, as has been discussed in the previous chapters. 

In relatively large (in a Tasmanian context) lowland rivers such as the Macquarie and South 

Esk, human disturbance tends to increase in severity with distance downstream from the river 
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source. As a result the riparian vegetation in upland areas tends to be in a more or less pristine 

condition, but there is then increasing degradation as the land use intensifies with distance 

downstream. Therefore it can be difficult to find 'natural' or undisturbed areas of vegetation in 

lowland areas with which to compare the existing communities, in order to determine the 

relative health of the ecosystem. A comparison with the undisturbed upstream areas is likely to 

be meaningless due to the natural variation in both abiotic and biotic factors between upstream 

and downstream areas. For these reasons the following discussion is not based on the 

comparison of disturbed sites with ideal 'natural' sites, but focuses instead on the instream-

values of various macrophyte communities along the two rivers. 

Species rich macrophyte communities on the Macquarie and South Esk have been found to 

support a diverse array of invertebrate fauna (Davies and Humphries 1996), which is generally 

regarded as a sign of a healthy river ecosystem (see Bunn et al. 1999). Coverage and diversity 

of macrophyte communities are positively related to the heterogeneity of the substrate 

(Baattrup-Pedersen and Riis 1999), and the existence of suitably shallow, clear and slow to 

moderately fast flowing water. Many of the richest and most diverse macrophyte communities 

on the Macquarie and South Esk were found in areas with highly modified bank vegetation and 

intensive agricultural or pastoral use of adjacent land. On the Macquarie in particular this 

relationship is probably due to preference of both macrophytes and farmers for the flat areas 

with rich soils found along the alluvial plains in the lowland areas. The gentle slope of the 

riverbanks along these sections provides large areas of suitable habitat for macrophyte 

communities. The growth of macrophytes in agricultural areas could also be partly influenced 

by the lack of shading and addition of nutrients to these areas (see Chapter 4). 

5.2.2 Conservation values 

The protection of endangered, rare, vulnerable or endemic plant species or communities is one 

of the important roles of riparian vegetation management. Persicaria decipiens, which was 

positively identified in the marginal vegetation of two sites on the South Esk and one on the 
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Macquarie, is listed as vulnerable (Kirkpatrick and Gilfedder 1999). Persicaria species were 

recorded at 30 other sites on the two rivers, but could not be identified to the species level as 

no flowering parts were present. It is likely that some of these plants were the vulnerable P. 

deci piens, and it is possible that the endangered species P. subsessilis, which has been recorded 

along rivers in northern Tasmania (Kirkpatrick and Gilfedder 1999), was also present. Another 

vulnerable species that has been found occasionally along rivers in the Midlands is 

Myiophyllum integrifolium. This species was not identified at any of the sites in this study. 

The large and stable macrophyte beds along the Macquarie and South Esk Rivers are a 

functionally important part of the river ecosystems. As well as providing food and shelter for 

macroinvertebrates and fish, they are important in the maintenance of high water quality 

through their ability to trap and process nutrients and sediments, and maintain dissolved 

oxygen levels during low flows (Davies and Humphries 1996). Therefore the areas of the two 

rivers that support rich and diverse macrophyte communities are of a high conservation value 

and warrant protection (Davies and Humphries 1996). 

The invasion of exotic species, changes in flow regimes and changes in water quality are three 

factors that could have a deleterious effect on these vulnerable species and important 

communities. The present extent of these threats and possible management options are 

discussed below. 

5.3 Elodea canadensis- an exotic aquatic species 

5.3.1 The biology of Elodea canadensis and the extent of the problem 

Elodea canadensis has spread around the temperate world from North America. At times it 

dominates the aquatic environment, and in New South Wales and Victoria it has been a serious 

problem in irrigation channels. However, in many river systems, after an initial period of rapid 

growth, it has been found to die back and thereafter exist as a balanced component of the 

aquatic plant population (Sainty and Jacobs 1981; Nichols and Shaw 1986). It is thought that 
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its growth may be limited over time by the concentration of a key nutrient (perhaps iron) in the 

sediment (Sainty and Jacobs 1981). 

A study of the ecological life history of Elodea canadensis by Nichols and Shaw (1986) found 

that vegetative reproduction in this species allows it to rapidly invade areas which have been 

disturbed by natural causes or humans. They noted that "the disturbance may be obvious or it 

may be subtle such as accelerated eutrophication". The opportunistic nature of Elodea 

canadensis with regard to nitrogen and phosphorus uptake allows it to utilise nutrients from 

both soil and water without being solely dependent on either. It also has a more efficient 

photosynthetic mechanism than many species, giving it a competitive advantage in low light 

intensities, and is a cool weather strategist which does not die off completely in winter, even 

surviving under ice (Nichols and Shaw 1986). 

Where the conditions are favourable for the growth of Elodea canadensis, it can displace other 

macrophytic species (Nichols and Shaw 1986). However, Nichols and Shaw (1986) point out 

that Elodea does provide some benefits to the ecosystem, through its roles in harbouring 

invertebrates and providing cover for fish. It also increases the productivity of the water 

column by recycling nutrients from the sediment into the water column. This may or may not 

be seen as a benefit, depending on whether the increased productivity is channelled into the 

growth of desirable or undesirable species. 

Elodea canadensis has been in Tasmania since the late nineteenth century (Sculthorpe 1967). 

Its spread would have been limited by the need for assistance in vegetative dispersal between 

river systems, and its preference for moderately high levels of nutrients, deep water (1-12 m) 

and a fine substrate (Nichols and Shaw 1986). It is not known how long Elodea has been in 

the Macquarie and South Esk Rivers. 

Elodea canadensis was the only exotic aquatic species found in this study. The presence of 

Elodea canadensis at a site was significantly positively related to the vegetation cover at the 

site, the total species richness (and thus the exotic species richness and aquatic species 

richness) at the site, and the proportion of exotic species in the marginal vegetation (table 5.1). 

In other words, sites with a high macrophytic vegetation cover and richness and a high 

proportion of exotic marginal species were most likely to have been invaded by Elodea 
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canadensis. These sites were also most likely to have a high level of stock damage and a high 

level of erosion, see Chapter 4, and so levels of erosion and stock damage were also positively 

correlated with presence of Elodea canadensis. 

There was a much higher proportion of sites containing Elodea canadensis on the Macquarie 

River (14 sites) than the South Esk River (4 sites). On the Macquarie, all sites were 

downstream of the township of Ross, where the sewage treatment plant releases treated 

effluent into the river. There was a cluster of sites containing Elodea canadensis just 

downstream from Ross, then another cluster just downstream from the confluence with the 

Elizabeth River (figure 5.1), where the sewage effluent from Campbelltown enters the 

Macquarie. The other sites with Elodea canadensis present were scattered down the remainder 

of the river. This distribution pattern suggests that the presence of nutrient-enriched water 

from the sewage treatment plants has encouraged the establishment of Elodea canadensis in 

the river downstream. 

5.3.2 Management of Elodea canadensis 

Once established Elodea canadensis is very difficult to eliminate from a water course (Sainty 

and Jacobs 1981). Considering the time the species has been present in Tasmania, and its 

current distribution and abundance, Elodea canadensis does not appear at this time to present a 

serious problem in the Macquarie or South Esk Rivers. However the tendency for Elodea 
canadensis to occur in areas enriched by point sources of nutrients suggests that it could 

potentially create a greater problem if the water quality of the rivers were to deteriorate. 
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Table 5.1 Median values and significant differences in environmental and richness/cover 
variables between sites with Elodea canadensis present and sites with Elodea canadensis 
absent. 
Erosion, visible erosion of banks; Stockd, obvious trampling by stock; %vegcover, percentage of site covered by 
aquatic and marginal vegetation; Totrich, total number of species; Exrich, number of exotic species; Ex/tot, 
proportion of exotic species; Aqrich, number of aquatic species. Significance is from Mann-Whitney Rank Sum 
tests: ***, P < 0.001; **, P < 0.01; 
brackets. 

*, P < 0.05; 	P> 0.05. n= number of sites. 25 and 75 percentiles given in 

Present n=18 Absent n=84 

Erosion 

stockd 

%vegcover 

Totalrich 

Exrich 

Ex/tot 

Aqrich 

2(2-3) 

2 (2-3) 

37.4 (14.63-75.1) 

13 (10-18) 

3 (2-4) 

0.25 (0.15-0.33) 

8 (7-9) 

2 (1-2) 

2 (1-2) 

13.0 (4.07-34.9) 

10 (7-14) 

1 (0-3) 

0.09 (0.00-0.22) 

5 (3-7) 

** 

*** 

** 

*** 

5.4 Exotic Marginal Species 

5.4.1 The extent of the problem 

There was a high degree of invasion of exotic pasture species into the marginal vegetation on 

the Macquarie River. Invasion by pasture species was significantly related to bank vegetation 

type and therefore to landuse. The highest numbers and proportion of exotic marginal species 

occurred in sites in agricultural areas that had been cleared to the water edge. Most exotic 

marginal species were opportunistic species such as Lysimachia nummularia, Lotus species, 
Trifolium species, Rumex crispus, Agrostis stolonifera and Festuca species. 
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On the Macquarie, both the exotic marginal species richness and the proportion of exotic 

species in the marginal and aquatic vegetation were significantly related to substrate type, 

stream width and depth, distance upstream and bank vegetation type. Level of stock damage 

was significantly related to exotic marginal species richness, but not to proportion of exotic 

species, see Chapter 4. These environmental variables were all inter-related, with substrate 

type, stream width and depth, bank vegetation type and level of stock damage all varying with 

distance upstream. There was no correlation between exotic marginal richness and 

environmental variation on the South Esk. 

5.4.2 Management of exotic marginal species 

Most of the exotic marginal species were opportunistic species that had colonised disturbed 

areas along the river margins. The proximity of pastoral land to the river margins would make 

it very difficult to stop these species taking advantage of open areas caused by erosion, 

flooding or stock damage. Native riverbank species such as Carex and Juncus species were 

also common in the sites with a high exotic marginal species richness. The maintenance of the 

integrity of less-disturbed sections of the bank vegetation would reduce the invasion of exotic 

species. Unfortunately it is too late for this to be of benefit along most of the mid to lowland 

sections of the Macquarie and South Esk Rivers. 

The establishment of 'buffer zones' of native vegetation along riverbanks has been suggested 

as a useful means of conserving or restoring native flora and fauna (see Large and Petts 1994). 

Many benefits would result from the establishment of buffer zones along the South Esk and 

Macquarie Rivers, for example, the filtering of nutrients and sediment from surrounding 

farmland, stabilisation of the riverbanks and the re-establishment of native flora. However it 

would be important to firstly determine the potential impact of buffer zones on opportunistic 

native species such as Persicaria species, some of which are of high conservation value. 

Controlled grazing of buffer zones can sometimes be beneficial (Frankenberg 1992). The 

fencing of riverbank areas to provide a buffer zone has also been known to lead to an increase 

in exotic plant species. In such cases an active management program involving the planting of 
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native species and control of exotics is necessary to enable the native vegetation to re-establish 

(Gaffney et al. 1999). 

5.5 Exotic bank species 

5.5.1 Willows  

5.5.1.1 the extent of the problem 

Willows, members of the genus Salix, were introduced to Australia, mainly from Asia and 

Europe. Willows have been used extensively to stabilise riverbanks and prevent erosion, as 

they are easily obtained, grow quickly and create a solid hedge that effectively stabilises the 

banks. It is only recently that the disadvantages of willows have been recognised (Frankenberg 

1992). 

The first varieties of willow imported into Australia were either entirely male or entirely 

female, and were not usually planted close enough to a compatible partner to produce viable 

seed. However over the last two decades, there have been new imports of willow varieties that 

can self pollinate or cross pollinate with trees already growing in Australia. As a result 

millions of seeds have been released and seedlings are establishing, sometimes forming forests 

or thickets that are capable of blocking the flow of the stream by build up of debris and 

sediment (Trounce 1999). Willows also spread readily through vegetative means, as every 

branch that breaks off and floats downstream can take root wherever it lodges on the riverbank 

(Frankenberg 1992). Willows prevent the growth of any other vegetation by shading out all 

competition, provide very little terrestrial habitat, and support few insects on the leaves and 

bark, which discourages birdlife. Being deciduous, they provide a completely unnatural food 

supply to Australian streams, as all the leaves fall in the autumn, compared to the summer peak 

in leaf fall found in the native vegetation (Frankenberg 1992). 

In this study, of the 54 sites on the Macquarie, there were 13 with willows present on the 

banks, and 2 in which willows completely dominated the bank vegetation. On the South Esk, 
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with 48 sites in total, 23 had willows present and 5 were completely dominated by willows. Of 

these 5, 3 had no aquatic or marginal vegetation (Table 5.2). 

Table 5.2 Presence and dominance of willows (Salix spp.) at sites on the Macquarie and 
South Esk Rivers. 'Willows dominant' indicates that no other bank species were recorded for 
that site. 

Total no. of Sites with 	Sites with willows Sites with no other 
sites 	willows resent 	dominant 	ve etation 

Macquarie River 54 13 2 0 
South Esk River 48 23 5 3 

5.5.1.2 Management of willows on riverbanks 

Willow infestation of the riverbanks provides perhaps the greatest threat to the health of the 

aquatic macrophyte communities in the Macquarie and South Esk Rivers. Dense growths of 

willows effectively remove all suitable habitat for macrophyte species along the affected 

sections of the river. Recent introductions of willow species that produce viable seeds, and the 

discovery of seedlings of older species once believed to be sterile, have increased concern 

about the potential for willows to spread. 

Willows can be removed by cutting and applying herbicide, or by hand if small enough 

(Trounce 1999). However, willow control can cause severe damage to streams if not 

undertaken sensitively. Care needs to be taken to replace willows with native species to 

stabilise banks, as the removal of willows leaves the riverbanks open to erosion (Glazic and 

Rudman 1999). Native riverbank species grown from local seed are usually effective in 

providing long-term bank stability, especially if grass species and native emergent macrophyte 

species are used as well as tree species (Frankenberg 1992). It is generally recommended that 

willows be removed from upstream areas first, as vegetative fragments from upstream willows 

can wash downstream and take root along the riverbanks. 
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5.5.2 Gorse, blackberry and hawthorn 

All three of these weed species were found growing along the Macquarie and South Esk 

Rivers, in some places so thickly that there was little other bank vegetation. These are 

opportunistic species that are spread by seed and rapidly colonise disturbed areas, 

outcompeting native species. They are frequently found along riverbanks. Control of these 

weeds is difficult but possible, usually involving the application of herbicides (see Kirkpatrick 

and Gilfedder 1999). Again, the presence of a healthy area of native vegetation along the 

riverbanks would discourage the establishment and spread of these three weed species. The 

sections of the riverbanks in which native vegetation is still intact, for example large sections 

of the upstream areas of the Macquarie River, have been protected from these weed species. 

The maintenance of the native bank vegetation will keep these areas relatively weed free. 

5.6 The potential impact of changes in flow regimes 

Davies and Humphries (1996) have studied in some detail the effects of low flows on the 

Macquarie and South Esk Rivers during the irrigation season. It was found that the current 

levels of abstraction were not posing a significant risk of habitat loss for aquatic biota on the 

South Esk. However on the Macquarie it was found that the river flow during the irrigation 

season was often low enough to pose a serious threat to the macrophyte communities. 

Although historically the Macquarie catchment has very low flows in summer, increasing 

irrigation abstractions have the potential to dewater macrophyte beds that are usually protected 

by their location in deeper pools and runs (Humphries et al. 1996). Dewatering of macrophyte 

beds occurred at flows less than the natural (pre-irrigation) median summer discharge of 

1m3s -1 . Although macrophyte communities were able to shift to lower elevations in the 

channel during periods of low flow, this movement was limited by the steep dropoff that was 

usually found on the instream edge of platforms on which they were established. 

Davies and Humphries (1996) found that the greatest abundances of invertebrates were 

associated with the most structurally complex macrophyte species (e.g. Myriophyllum species), 
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which also occurred in the shallowest depth zone. However as water levels and other 

environmental conditions changed, the macrophyte species supporting the highest taxonomic 

richness of invertebrates also changed. Davies and Humphries (1996) wrote that 

"Water allocations for instream purposes must therefore be commensurate with the 

requirements of all species of macrophytes. It may be that by maintaining the heterogeneity of 

this type of habitat, a major step in ensuring both biodiversity and riverine health are 

maintained". 

5.7 The potential impact of changes in water quality 

Despite intensive agricultural landuse in the lower areas of the South Esk basin, and the point 

source input of nutrients from sewage treatment plants, there are still healthy, diverse aquatic 

plant and animal communities in the mid to lowland reaches of these rivers. Nutrient 

enrichment from surrounding agricultural areas may have actually increased the richness and 

abundance of macrophyte communities in some areas. However, if the level of artificial 

enrichment increases, this is unlikely to continue to be the case. Compared with the large 

lowland rivers in mainland Australia, water quality in the Macquarie and South Esk is 

relatively high. There are not at present the large-scale problems of salinity and eutrophication 

that have plagued river systems such as the Murray-Darling. Both salinity and eutrophication 

reduce the diversity of macrophyte species in rivers, favouring those species with a high 

tolerance of the altered conditions (Fox 1996; Haslam 1978). Eutrophication can lead to an 

increase in the abundance of nuisance exotic weed species and algal growth (Jacobs 2000). 

While dense algal growth was noted in several sites on the Macquarie River, this was 

concentrated in sites just downstream from sewage outflows. The exotic species Elodea 

canadensis was also more abundant in these areas. This gives some indication of the problems 

that could occur if water quality were to deteriorate in these rivers. Maintenance of the species 

and communities of high conservation value requires the maintenance of water quality in the 

Macquarie and South Esk. 
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Plate 7 

Willows on the South Esk River 
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The mid-reaches of the South Esk River 



Plate 8 

Mixed native/exotic bank vegetation on the Macquarie River 

Plate 9 

Algal growth on the Macquarie River near Ross 
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Chapter 6  

Overall Discussion and Conclusion 

6.1 Variation in macrophyte communities along the South Esk and Macquarie 

Rivers 

The third aim of this thesis was to determine the environmental correlates of variation in 

aquatic macrophyte species composition. It was found that the species composition of the 

marginal and aquatic macrophyte communities in the Macquarie and South Esk Rivers differed 

between rivers and between different reaches within each river. Both the communities of sites 

grouped by similar compositions of aquatic macrophyte species and those grouped by similar 

compositions of marginal species differed significantly with distance upstream, stream width, 

substrate type and bank vegetation type. The aquatic communities also differed significantly 

with river form (which is in part a basic measure of current velocity), river depth and 

percentage shading. 

The second aim was to compare the cover, species richness and diversity of the aquatic 

macrophyte communities in the Macquarie and South Esk Rivers, and to relate these variables 

to the environmental characteristics of the two rivers. The cover and species richness of the 

macrophytic vegetation differed significantly between the two rivers, with the Macquarie 

having a higher percentage cover, higher total aquatic and marginal species richness and higher 

aquatic species richness. Several physical variables also differed significantly between rivers, 

with the Macquarie having a significantly lower percentage shading, a lower average bank 

height and stream width, a higher proportion of sites with pure pasture as the bank vegetation, 

a lower proportion of willow-dominated sites and sites infested by gorse or blackberry, and a 

higher level of stock damage. All of these inter-related variables could have contributed to the 

differences in macrophyte species richness, diversity and cover between the two rivers. 

There were other factors that differed between the two rivers and between reaches within the 

rivers which were discussed in a general sense, but were not included as variables in this study. 

These include flow regime, water quality parameters and river slope, all of which are likely to 
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have influenced the distribution, richness and cover of macrophyte communities. For example, 

Wiegleb (1984) found that the chemical parameters that differed most among vegetation types-

water oxygen content, acidity and calcium- were as significant as the physical parameters of 

current velocity and turbidity in detennining the distribution of vegetation types in three rivers 

in Germany. The cross-sectional profile of the river is another important factor that was not 

included in this study. Macrophytes can only establish in sites where there is a suitably 

shallow platform or gently sloping bank which provide the shallow water and high light levels 

needed by most species. Sites with almost-vertical banks dropping straight down into deep 

water would not facilitate the establishment of macrophyte species. However once established 

macrophyte communities have an effect on the river profile, by trapping sediments and so 

reducing depth and increasing the suitability of the site for further macrophyte colonisation. 

Future studies could include a more detailed analysis of the effect of site profiles on the species 

composition and abundance of aquatic macrophytes. Similarly, further research on the 

relationships between water chemistry and the macrophyte communities in the Macquarie and 

South Esk Rivers would help to determine more of the environmental causes of the variation in 

species distribution, vegetation richness and abundance. 

Many studies have shown that physical and chemical parameters have a considerable influence 

on the composition of riverine macrophyte communities (e.g. Butcher 1933; Wiegleb 1984; 

Haslam 1987; Penuelas and Sabater 1987; Ferreira 1994; Ferreira and Moreira 1999; Riis et al. 

2000). The parameters found to be significantly associated with the composition of the 

vegetation in the Macquarie and South Esk Rivers were similar to those recorded in previous 

studies in various countries around the world. For example, in a comparable study in southern 

Iberia, Ferreira and Moreira (1999) found that altitude, conductivity, river width, pH, 

percentage of hard substrates and fine particulate matter on the river bed, average rainfall and 

temperature and human-related disturbance were significantly related to the aquatic species 

distribution. Similarly, in a recent Danish study, alkalinity and stream size were the most 

important chemical and physical variables separating plant communities (Riis et al. 2000). 

In Australia, most of the studies on the distribution and environmental relationships of riverine 

macrophyte communities in the literature refer to large regulated river systems such as the 
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Murray-Darling and the Murrumbidgee. The richness of aquatic vegetation along the river-

edges of the highly regulated Murrumbidgee River was found to be affected by river slope and 

the variability of the water regime (Roberts 1994). A study on the effects of water level 

changes induced by weirs on the distribution of littoral plants along the river Murray, South 

Australia, found that plant species varied in their tolerance of water level fluctuations. The 

influences of physical channel characteristics such as bank slope, bank erosion and sediment 

composition were not so clear, perhaps because of the relationships between these 

characteristics and the water level gradient, which was reset at each weir (Walker et al. 1994). 

There has also been some work on the aquatic macrophytes of the Fitroy River Catchment and 

other smaller streams in Queensland (see Duivenvoorden 1992; Bunn 1998), but as these are 

tropical rivers the flow regimes, seasonal growth patterns and management problems tend not 

to be directly relevant to the present study. 

Hughes (1987b) found that the longitudinal distribution of aquatic macrophyte species in two 

rivers on Tasmania's east coast reflected the patchiness of suitable environments in which to 

colonise. Well-defined groupings of plant communities did not exist. The clearest factors 

associated with the variation in aquatic communities at the whole-river scale were water 

chemistry, which separated saline estuarine communities from freshwater communities, and 

substrate, which separated the communities in pebbly upstream areas from those in the mid and 

lower reaches. Species diversity and richness were highest in the mid-reaches of both rivers. 

At the plot scale aquatic communities were influenced by shading from riparian vegetation and 

substrate, but predictions of species composition and distribution at the plot or stream-reach 

scale were found to be problematic because of unpredictable hydrological variability. The 

present study did not include an analysis of variation in macrophyte community composition 

over time, so it is not possible to compare these results. However the importance of shading 

and substrate in determining the distribution of aquatic plant communities is supported by the 

present study. The whole-river patterns of species richness and diversity found by Hughes 

(1987b) for the east coast rivers were also similar to those found in the present study. The 

highest species richness and diversity were found in the mid reaches of the Macquarie, and it is 

probable that in a whole-river context this would also be the case in the South Esk. 

154 



It is necessary to be cautious when discussing cause and effect between the species 

composition of aquatic vegetation and environmental variables, as many of the environmental 

variables are inter-related (see Westlake 1973; Wiegleb 1984). For example, stream width and 

depth, bank vegetation type and substrate are all related to distance upstream. The scale of the 

analysis is also important, as an environmental gradient which may appear uniform at a large 

scale may be discontinuous at finer resolutions (see Walker 1994). For example, current 

velocity is related to river slope at the whole-river scale, but varies according to river form 

(riffle, run or pool) at the reach scale, and is even more variable at the plot scale because of the 

obstructions caused by rocks, logs and macrophyte beds. Wiegleb (1984) has described many 

of the problems commonly encountered when attempting to relate riverine plant community 

data to ecological data. Included are problems with the inter-related nature of the variables, the 

temporal variability of both the vegetation communities and the physical and chemical 

parameters, and the lack of a general model on the causal relationship between ecological 

parameters and the occurrence of species. Nonetheless it is often possible to establish general 

relationships between the species composition of the aquatic vegetation and environmental 

variables, particularly if a large number of sites are used across different catchments, and if the 

relationships are studied over a period of time to avoid the confusing effects of short-term 

instability of communities. 

62 The use of aquatic macrophytes for water quality assessment 

Butcher (1933) was a pioneer of studies relating plant groups in rivers to variables such as 

geology, channel gradient, altitude, substrate and current velocity. Butcher's classification 

system for rivers on the basis of aquatic plant communities has been developed and refined in 

several more recent studies, culminating in the identification of the 10 river community types 

and their 38 sub-types presently established for the UK (see Holmes et al. 1998). The 

association of these aquatic plant river community types and sub-types with particular 

environmental conditions has been used to assess the health of rivers. The classification system 

described by Holmes et al. (1998) has been used extensively in the UK since the early 1980s, 

mainly for nature conservation assessment. In more recent times it has been applied to the 
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Mean Trophic Rank (MTR) system for assessing trophic enrichment in British rivers. In this 

system all aquatic macrophyte species are assigned a number from 1 to 10 depending on their 

tolerance to, or preference for, nutrient-enriched (1) or nutrient-poor (10) water. Early 

indications were that the system was a very effective tool in water quality monitoring, 

especially when used alongside invertebrates and other biota (Holmes et al. 1998). 

Other European studies have described in detail the changes in aquatic vegetation along rivers 

(e.g. Wiegleb 1984; Penuelas and Sabater 1987; Ferreira 1994; Ferreira and Moreira 1999; Riis 

et al. 2000), but classificatory systems have rarely been developed. Ferreira and Moreira 

(1999) studied the environmental factors influencing the distribution of river plants in a 

southern Iberian river basin. They found that the underlying geomorphology in southern 

Iberian rivers was spatially heterogeneous, creating variations in channel slope and riffle and 

pool sequences along the length of the river systems, rather than the steeper upper reaches and 

flatter lower reaches described in the British studies. Several physical and chemical parameters 

were related to the species distribution, but they noted that the abiotic variables frequently 

explained only a small part of the species variability in southern Iberian rivers, and they found 

that a clear separation of river plant groups was difficult. Ferreira (1994) found that human 

disturbance, enrichment and silting also tended to reduce the differences between groups. For 

these reasons river plant assemblages have not been developed into a successful indicator 

system of either aquatic regions or river conditions in southern Iberia. 

Thus it appears that not all regions or river systems have aquatic macrophyte communities that 

can be easily classified into groups that indicate underlying environmental factors. 

Complicating factors can include the uniformity produced by human-induced disturbance (e.g. 

Ferreira and Smeding 1990), or the existence of a naturally homogeneous environment (e.g. 

Riis et al. 2000), an underlying heterogeneity of geological and geomorphological factors that 

obscures other environmental influences (e.g.Ferreira and Moriera 1999), or a very variable 

flow regime that creates random responses in plant species abundances over time (e.g Hughes 

1987b, 1990). 

156 



Biological assessment of river health in Australia has to date mostly involved the use of 

invertebrates. RIVPACS, the River Invertebrate Prediction and Classification System, was 

developed in the UK and introduced to Australia in the 1990s. This approach is based on 

comparing monitored river sites against reference unimpacted, or least-impacted sites. The 

potential for the complementary use of fish, diatoms, phytoplankton and macrophytes is being 

investigated (Schofield and Davies 1996). Work on the development of macrophyte-based 

systems for the assessment of water quality and river health has commenced in Australia. It 

has been limited by the need for research on the interpretation of species absences, the role of 

epiphytes, applicability of the community concept, species presence/abundance variations at 

different time scales and species response to water and sediment quality (Schofield and Davies 

1996). Recent studies have addressed some of these issues (see the CSMO 1999), and a 

wetland monitoring system using macrophytes has been described by at least one author (see 

Jacobs 2000). 

It is possible that a macrophyte indicator system could be developed for water quality 

assessment in Tasmanian rivers. The RIVPACS (River Invertebrates Prediction and 

Classification System) is already in place, and it is hoped that complementary systems, 

including the use of macrophyte communities, will be included in the development of a "toolkit 

of reliable bioassessment methods with sound national protocols and guidelines for their most 

appropriate uses" (Schofield and Davies 1996:43). The baseline data collected for this study 

could be used in the development of an indicator system for water quality in the Macquarie and 

South Esk catchments. A potential problem associated with the development of macrophyte-

based assessment of river health across the whole of Tasmania is that rivers in some regions of 

the state are characterised by very few macrophyte species (Hughes 1987b). The macrophyte 

communities in these areas may not provide enough information to be used in water quality 

assessment. Further research is also needed on the stability of macrophyte communities in 

different regions of Tasmania over time, as temporal fluctuations in macrophyte communities 

could confuse water quality assessments. Holmes et al. (1998), when using macrophytes to 

classify rivers in the UK, suggested that in the absence of natural stress or human impact, most 

communities are sufficiently robust to remain stable over time. This is in contrast to the 

findings of Hughes (1987b, 1990) that variation in macrophyte community composition over 
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time is significant and not necessarily predictable in two rivers in eastern Tasmania. The 

robustness of macrophyte communities depends on the frequency and severity of disturbances 

and the time-scale in which the stability of communities is considered. 

6.3 Management of aquatic macrophytes in the Macquarie and South Esk Rivers 

The fourth aim of this thesis was to identify conservation values and discuss some of the 

management issues relevant to the conservation of the aquatic macrophyte communities. The 

species rich and diverse macrophyte communities along the middle reach of the Macquarie 

River and marginal communities containing vulnerable species are considered to have high 

conservation value. Of particular concern are the findings of Davies and Humphries (1996) 

that on the Macquarie River the current volume of water abstracted for irrigation is 

endangering the macrophyte beds of run and pool sections of the river. These beds provide 

habitat for a diverse array of invertebrates and several native fish species, plus the highly 

valued exotic brown trout, and their conservation has been noted as being of high priority 

(Davies and Humphries 1996). In contrast, current irrigation abstractions do not appear to be 

endangering macrophyte communities on the South Esk River, as the flow of this river during 

the summer irrigation season is greater. 

The potential for the spread of willows along the riverbanks is also a threat to the health of the 

macrophyte communities in the South Esk and Macquarie Rivers. One-quarter of the sites on 

the Macquarie and almost half of the sites on the South Esk had willows on the banks, and a 

small proportion of these had become so densely infested with willows that no other vegetation 

was present. Assessment and careful removal of those willow species that can produce viable 

seed (see Askey-Doran 1993; Trounce 1999) and the removal of willow saplings that have 

spread through vegetative means would lessen this threat. 

The maintenance of water quality in the rivers, through the avoidance of substantial increases 

in nutrient inputs or other pollutants, is seen as being essential for the longterm health of the 

macrophyte communities of the two rivers. The development of buffer zones of native bank 
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vegetation along the rivers would help to maintain the water quality of these rivers. Buffer 

zones provide shade, filter out nutrient runoff from agricultural land, minimise further invasion 

of the river margins by exotic pasture species, prevent erosion of the riverbanks, and prevent 

direct stock access to the river (Large and Petts 1994). These benefits would prevent the 

problems caused by eutrophication, help conserve the areas of macrophytic vegetation that are 

still in a natural state, and perhaps start the journey towards restoration of some areas of the 

river in which human impact has had a negative effect on the macrophyte communities. 

Hughes (1987b: 248) wrote that "managing riverine plant communities is an activity that can 

only occur appropriately at the catchment scale. Reservation of small stretches of river 

(stream-side reserves) is unsuitable for conserving rare aquatic species, due to the changing 

and mobile nature of the communities". This was based on her study of two rivers on 

Tasmania's east coast. Whether it is the case for all Tasmanian rivers has not been determined. 

Anecdotal evidence has suggested that the macrophyte communities along pools in the 

Macquarie and South Esk Rivers are relatively stable over time (see Davies and Humphries 

1996). A longer term study is required to determine the nature of temporal change in these 

communities. Management at the catchment scale is obviously the preferred option, as 

disturbances caused by irrigation abstractions, diffuse inputs of pollutants and increased 

sedimentation effect the whole river system. However local management of areas of high 

conservation value may also be an option, particularly in the case of stable communities such 

as those growing on the margins of large pools. Local protection could regulate grazing by 

stock, which would help protect vulnerable native species in the bank and marginal vegetation. 

6.4 In Conclusion 

The data collected in this study provide baseline information on the distribution and 

composition of aquatic macrophyte communities along the mid- to lower reaches of the South 

Esk and Macquarie Rivers. This information may be used as a reference point for future 

comparative studies. Information on the nature and extent of the aquatic plant communities 

along the mid.  to lower Macquarie and South Esk Rivers complements previous studies, such as 

Askey-Doran's (1993) study of the riparian vegetation of Midland Tasmania, Hughes'(1987b) 
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survey of macrophyte communities in a regional context across the state, and Hughes' (1987b, 

1990) more detailed studies of the riverine vegetation of the Swan and Apsley Rivers on 

Tasmania's east coast. 

This study also describes some of the environmental correlates of the variation in the aquatic 

macrophyte communities along the two rivers. This provides information that can be used by 

land managers to plan for the protection of areas identified as being of high conservation value. 

Although management at the catchment scale would provide the best protection to aquatic 

macrophyte communities, local actions such as the removal of willow seedlings and the 

development of buffer zones of native vegetation would also have some benefits. 

Aquatic macrophytes are an integral part of river ecosystems. Any impact that adversely 

affects the macrophyte communities inevitably affects the health of the river. Sections of the 

Macquarie and South Esk Rivers contain species rich and abundant macrophyte communities 

that provide numerous benefits to the river ecosystems. The conservation of these 

communities should be a priority when planning for the management of the rivers. 
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