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Abstract 
 

 

The maintenance and improvement of quality of Pinot Noir table wines has been 

highlighted as a key factor in the development of the Tasmanian wine industry.  This 

study was designed to further investigate the cultural and environmental impacts on 

the composition of Pinot Noir fruit in a cool climate.  

Over three vintages, 2005, 2006 and 2007, the industry practice of pre-veraison leaf 

removal in the fruiting zone is investigated. Defoliation was shown to delay ripening 

and this study provides evidence that the environmental influence over the entire 

season may have more impact on fruit composition, than increased fruit exposure or 

source/sink relationships during berry ripening. 

The impact of bunch exposure on fruit composition was investigated in 2007 by 

imposing a range of shading and light exclusion treatments. Results support the 

conclusions of previous authors that biosynthesis of anthocyanin occurs 

independently of carbohydrate metabolism. 

The impact of bunch compactness on the composition of Pinot Noir is investigated 

over two growing seasons by manipulation with pre-bloom application of Giberrellic 

Acid (GA3). Observations suggest that a reduction in bunch compactness, lead to an 

improvement in grape composition, including higher anthocyanin concentration, in 

one of two experimental seasons. An argument for a relationship between increasing 

berry size and reduced total anthocyanin in Pinot Noir is presented. 
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Chapter 1    - Introduction  

1.1 The Australian and Tasmanian wine industries 

 

The Australian wine industry in recent times has experienced a phase of limited 

growth, following the unprecedented growth of the previous decade. Statistics 

presented in the 2009-2010 Australian Wine and Brandy Corporation (AWBC) 

annual report (AWBC, 2010) reported a reduction in 3.3% growth in export wine 

sales, and a drop by 11% in value due to a reduction in the price paid per litre and a 

strong Australian dollar. A recognised glut on the world wine market, combined with 

a strong Australian dollar has seen increased pressure on Australian producers of bulk 

wine products and reduced returns to growers, leading to a reduction in viticultural 

area, displaying a continued downward trend in both variables during the 2009-2010 

financial year. The AWBC highlighted that increasing the price paid per bottle was a 

key performance indicator for the future development of the Australian wine industry, 

with the view for Australia to become recognised as a producer of premium wine 

products.  

In spite of the reduction in area seen in other viticultural regions of Australia, the cool 

climate Tasmanian wine industry has seen sustained growth with continuing 

investment and increasing area under vine. Though small when compared to the size 

of the national industry, Tasmania represents 0.4 percent of the national industry 

which as of 2009 represented 1549 bearing hectares (Ha) with annual crush of up to 

9628 tonnes (Wine Industry Tasmania Data 2009). The Tasmanian wine industry 

does however produce (As of 2009) 1.9 percent of the national total in terms of value 

at 49 million AUD, which reflects high grape prices (Kerslake, 2011). These figures 

and growing accolades for wines produced from the region indicate that Tasmanian 

grapes and wines are increasingly being recognised as a premium product. Though 

rapidly expanding, the Tasmanian wine industry is often described as “still in its 

infancy”.  
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In the 2002-2007 Vineyards Association of Tasmania strategic plan (VAT, 2002) it 

was identified that for the industry “to be recognised internationally as a world leader 

and innovative producer of premium cool climate wines”, measures would need to be 

put in place to maintain or ensure the production of grapes and wines of “intrinsic 

quality”. Maintenance of yields and quality have been identified as key factors in the 

development of the Tasmanian wine industry (Heazlewood, 2005).  

1.2 Climate, weather and geology of Tasmania 

The influence of climate and soil have been demonstrated to have a large influence on 

fruit composition in particular their relationship to water stress (van Leeuwen et al., 

2004). A short growing season, cool weather, and unfavourable precipitation patterns 

are all factors which may affect the yield and quality of a vintage. (Vasconcelos & 

Castagnoli, 2001) 

The Australian Bureau of Statistics (ABS) describes the Tasmanian climate as mostly 

a temperate, maritime climate dominated by a prevailing westerly airstream, which 

leads to variation in cloud cover, rainfall and temperature (ABS, 2005). The western 

half of Tasmania including the central highland areas, are generally cool, wet and 

cloudy, while the eastern half and lowlands are milder, drier and subject to less cloud 

cover (ABS, 2005).  

It is the author’s opinion that a number of distinct weather patterns are often 

discussed locally as being of key influence on climate and viticulture. Rainfall events 

are dominated by two major weather patterns. The first is associated with prevailing 

westerly winds with embedded cold fronts which often cross the state bringing 

rainfall to the western mountainous part of the state and north western and northern 

coastal regions, though significant precipitation rarely extends to eastern districts due 

to the geological influence of the mountainous west (ABS, 2005; Wilson, 2002). The 

second rainfall pattern is associated with a “Tasman Low” low pressure system which 

extends a moist easterly flow across the Tasmania. These events are less numerous 

and predictable than those associated with westerly flow which accounts for the 

reduced frequency (ABS, 2005; ACE-CRC, 2010) and lower average (mean) rainfall 
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(Figure 1-1). During spring (September and October) and coinciding with bud burst 

and early shoot growth, westerly flow can be interspersed with high pressure systems 

which bring windless or calm conditions and clear, cloudless skies. This pattern 

increases the risk of wide spread frost, which is of concern to a large portion of the 

local industry (Wilson, 2002). Though not unique to the Tasmanian wine industry 

widespread frost presents significant risks to future development of the industry. 

The ABS  describe three major influences on average temperatures in Tasmania 

(ABS, 2005). Proximity to the sea ensures coastal locations experience milder 

conditions than those further inland. Afternoon sea breezes are common along the 

coasts of Tasmania where much of the local industry is situated. Average surface 

temperature decreases as altitude increases, making locations at higher elevations 

cooler than those situated lower in the landscape. “Cloudiness” in the western part of 

Tasmania suppresses average daily temperatures as a result of westerly winds. Also 

of note are the hot northerly and north westerly winds which extend from continental 

Australia during summer months which lead to warmer than average weather events 

(ACE-CRC, 2010; Wilson, 2002).  

The Tasmanian wine industry is divided over seven regions ranging from 

approximately 41 to 43.5° S (Figure 1-2) all of which are located in the centre or east 

of the state at low elevation. Smart and Dry (1980) suggest that Tasmanian 

viticultural regions fall within the guidelines for cool climate wine regions, though 

Kerslake, (2011) presents an argument that it may be more appropriate to define 

Tasmania as “cold climate” region based on mean January temperature (MJT) of less 

than 18°C.  

Comparison of climatic data presented within this study for, Coal River Valley (CRV) 

and Tamar River (TR) (Kerslake, 2011), allows for two of the seven regions to be 

compared. Some similarities can be seen in terms of climate for CRV and TR (Table 

3-1) for example from MJT (17.4 CRV , 17.2 TR), growing degree days both during 

the vegetative growth cycle (419.5CRV,  421.2 TR) and growing degree days over 

the entire season (1178.5 CRV, 1272.5TR) . Large differences however can be 

observed for annual rainfall (Figure 1-1) and rainfall distribution (Figure 1-3 & 
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Figure 1-4). Examination of long term averages between maximum, minimum and 

average temperatures (Figure 1-5 & Figure 1-6) over a 12 month period displays that 

the southern region is warmer on average during the summer, cooler during the 

winter and a greater difference between minimum (night) and maximum  

temperatures. Weather data from the Hobart Airport Australian Bureau of 

Meteorology (BOM) weather station has been chosen to examine these differences, as 

it is situated at the south most end of the Coal River Valley and is the closest weather 

station to many vineyards in the Coal River Valley region, including two of the major 

trial sites in this study. It was also selected based on the quality and length of the 

records and taking into the consideration spatial variability in rainfall distribution 

over relatively short distances (5 kilometres) in this region.  

 

 
 

Figure 1-1, Annual rainfall distribution map of Tasmania generated using “Climate Data 

Online” using “all available data” (Bureau of Meteorology, 2011). 

N 
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Figure 1-2, The seven wine regions of Tasmania (WIT, 2009). Experimental vineyards in the 

current study fall within regions 4 (East Coast) and 5 (Coal River Valley) 
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Figure 1-3, Mean monthly rainfall for BOM (Australian Bureau of Meteorology) Hobart Airport 

weather station (Station number 094008) from 1981 – 2010. 

 

 
 

Figure 1-4,  Mean monthly rainfall for BOM (Australian Bureau of Meteorology) Low Head 

weather station (Station number 091923) from 1981-2010. 
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Figure 1-5, Mean monthly average, maximum and minimum rainfall for BOM (Australian 

Bureau of Meteorology) Hobart Airport weather station (Station number 094008) from 1981 – 

2010. 

 

 

 
 

Figure 1-6, Mean monthly average, maximum and minimum rainfall for BOM (Australian 

Bureau of Meteorology) Low Head weather station (Station 091293) from 1981 – 2010. 
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Geologically Tasmania’s landscape is diverse (Figure 1-7). The soils under greatest 

viticultural development in Tasmania are brown and red soils developed from both 

Jurassic dolerite and Tertiary basalt, though vineyards have been planted on a diverse 

range of soils (Doyle & Farquhar, 2011). The variation described by Doyle and 

Farquhar (2011) in vineyard soil type is present between and within regions and 

within individual sites. For example the Tamar Valley region has a wealth of different 

soil types ranging from Vertisols; medium to heavy “shrink swell” clay soils formed 

on Jurassic Dolerite, silty clay Acidic Grey Kandosol and duplex, Bleached Grey 

Kurosols formed on Permian mudstone, duplex Brown Kurosols such as that 

described in (Kerslake, 2011) and duplex Bleached Brown Chromosol formed on 

tertiary sediments (Doyle & Farquhar, 2011). Conversely Ferosols formed on Tertiary 

Basalt predominate in the Pipers Brook region in the north east of the state. A similar 

diversity in soil type is seen in southern and eastern Tasmania where the current study 

was carried out. Viticulture in the four regions however is predominately situated on 

the north to eastern facing slopes of Jurrasic Dolerite features which dominate the 

southern and eastern parts of the Tasmanian landscape (Figure 1-7).  
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Figure 1-7 Geology of Tasmania, displaying a diverse range of parent material (Forest education 

foundation, 2010). 

1.3 Pinot Noir 
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wine industry accounts for 46 percent of production, the next closest in Chardonnay 

which accounts for 26 percent (Wine Industry Tasmania data, 2009). Pinot Noir is 

also the seventh most planted variety on a national scale and the fourth most planted  

red wine grape variety behind Shiraz (Syrah), Cabernet Sauvignon and Merlot 

(AWBC, 2010) constituting  9% of the national plantings.  

Tasmania is recognised for producing both premium sparkling and table wines from 

Pinot Noir. The focus of this thesis will be for table wine production in both 

discussion and interpretation of results. One of the “Noble” varieties, Pinot Noir is 

planted in many locations around the world. Cooler climates tend to dominate the 

regions recognised for producing the most esteemed wines made from this variety. 

Pinot Noir is often described as fickle, challenging to produce and make and difficult 

to “get right” (Robinson, 2006). The red wines of Burgundy provide the benchmark 

to which all other Pinot Noir wines are compared and are those that most producers 

aim to emulate in premium and super premium styles. There is a need for localised 

research on Pinot Noir, due to the lack of literature pertinent to viticultural 

management of the variety in a cool maritime climate (Kerslake, 2011). As 

highlighted by Heazlewood (2005) from which this study follows on, variation in 

climate from vintage to vintage may also have an impact on  both yield and fruit 

composition. Specific reference is made to the influence of bunch size to impact 

grape composition as a function of fluctuating berry number and for further 

investigation of bunch “compactness” to influence grape composition and therefore 

quality.  
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1.4 Objective 

The purpose for study was to provide information and recommendations to industry 

that assist in the maintenance and improvement of the ‘intrinsic quality’ in Pinot Noir 

table wines. It follows on from several key areas identified as requiring further study 

by Heazlewood (2005). 

The objectives of this study were to: 

 Investigate the influence of the industry practice of pre-veraison leaf removal 

in the fruiting zone on a vertically shoot positioned canopy of Pinot Noir to 

make recommendations to industry based on: 

- The impact on yield components within current and subsequent seasons.  

- The potential to manipulate fruit composition for winemaking. 

- For the assessment of bunch morphological factors over multiple seasons 

for use in yield prediction. 

 Investigate the influence of bunch exposure in isolation of source and sink 

impacts during berry ripening to optimise fruit composition. 

 Investigate the potential for fruit composition of Pinot Noir to be influenced 

by bunch compactness. 

The hypotheses of this thesis were: 

 Does fruiting zone defoliation lead to an improvement in fruit composition? 

 Does increasing severity of fruiting zone defoliation lead to a reduction in 

yield components? 

 Does measuring bunch length or primary branch number of the rachis predict 

bunch size at harvest? 

 Does increased shading of bunches lead to a negative influences on fruit 

quality?  

 Does increased shading within the bunch lead to a negative impact on grape 

composition? 
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Chapter 2    - Background

2.1 Phenology 

The growth cycle of the grapevine is extended over two seasons (Figure 2-1) with 

development of reproductive and vegetative organs spread over a two year cycle 

(Pearce & Coombe, 2004).  Development of vegetative shoots occurs in latent buds in 

the previous spring and followed by a period of dormancy from late summer through 

to budburst in the following spring. Following budburst rapid shoot extension occurs. 

Cessation of shoot growth may be observed between bunch closure and veraison 

(Vasconcelos & Castagnoli, 2000). In Tasmania cessation of shoot growth regularly 

occurs following berry set and often coincides with the lag phase of berry growth. It 

has been observed by the author that leaf fall in Tasmania may begin during berry 

ripening particularly in stressed vines and complete fall often occurs in the period 

immediately following harvest. 

Induction and initiation of inflorescence primordia occur during spring and summer 

of the previous year (Pearce & Coombe, 2004). Immediately following bud burst in 

spring, rapid inflorescence growth occurs (Mullins et al., 1992), with the most rapid 

growth immediately preceding flowering (Shavrukov et al., 2004). In Tasmania 

flowering in Pinot Noir commonly occurs through the month of December and may 

proceed over an extended period (Heazlewood, 2005).  

Following fruit set, development of the berry can be divided into two major sigmoidal 

growth phases (Figure 2-2), separated be a lag phase in berry growth (Coombe and 

McCarthy, 2000, Ollat et al., 2002, Pearce and Coombe, 2004). While in the past it 

has been common to divide berry development into three phases based on berry 

growth (Percival et al., 1994b), there is a growing trend in literature for a 2 stage 

description of berry growth; stage 1, berry formation, and stage 2, berry ripening 

(Coombe, B. G. & McCarthy, 2000; Ollat et al., 2002) (Figure 2-2). Berry formation 

begins with rapid cell division in pericarp tissue, the amount and direction of which 

determines berry shape and size to a large degree (Coombe, B. G. & McCarthy, 2000).  
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Figure 2-1 Biennial growth cycle of grapevines displaying both vegetative and reproductive 

growth cycles differentiated in relation to the months of the year in the Southern Hemisphere. 

Cycles begin at the circle and end at the rectangle.  (Modified diagram from Pearce and Coombe, 

2004) 
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Figure 2-2,  Modified notional diagram describing the development of berries from flowering to 

harvest. Displaying differences in development for Muscat (solid lines) and Shiraz (dashed lines). 

The berry volume is an idealised curve against days after flowering and juice °Brix and shows 

the berry shrinkage and phloem blockage of Shiraz starting at about 18-20°Brix; Accumulation 

of key berry compositional parameters are included and modified to include tannin synthesis 

and ripening (Coombe, B. G. & McCarthy, 2000). 

 

tannin synthesis 
tannin rippening 
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Pericarp cell division slowly changes to cell enlargement, which later slows during 

the lag phase of development (Coombe, B. G. & McCarthy, 2000). During berry 

formation tartrate and later malate accumulate (Jackson, DI & Lombard, 1993) and 

tannin biosynthesis occurs (Kennedy et al., 2006). Water influx during berry 

formation is derived from both the xylem and phloem, xylem function of the berry is 

interrupted and discontinued shortly after the beginning of veraison solute 

accumulation  (Creasy et al., 1993).  

The start of the second phase (berry ripening) is termed veraison, which constitutes 

the collective onset of sugar accumulation, berry softening and berry colouring 

(Coombe, B. G. & McCarthy, 2000). Anthocyanin accumulation and tannin ripening 

occurs (Kennedy et al., 2006), malate is metabolised (Lakso & Kliewer, 1975), sugar 

accumulates in the skin and flesh and potassium accumulates in the skin (Coombe, B. 

G. & McCarthy, 2000). The accumulation of flavour and aroma compounds is 

believed to occur during the latter stages of berry ripening and has been termed 

Engustement (Coombe, B.G. & McCarthy, 1997). 

2.2 Yield, quality and vine balance 

The concept of vine balance is a key consideration for the viticulturist. Due to the 

biennial cycle of growth (Figure 2-1) a balance between vegetative and reproductive 

phases of growth need to be achieved in order to maintain yield and quality of wine 

grapes (Howell, 2001).  

The relationship between yield and fruit and wine composition has been studied 

extensively in Vitis vinfera. A far greater wealth of literature exists for warm climates 

(Chapman et al., 2004; Hummell & Ferree, 1998; Keller et al., 2008; Kliewer & 

Dokoozlian, 2005; Kliewer et al., 2000; McCarthy et al., 1987; Smart, R. E., 1985; 

Smart, R. E. et al., 1990) than does for cool climates (Heazlewood, 2005; Kerslake, 

2011; Petrie et al., 2000a, 2000b, 2000c).The present study follows on from the work 

of Heazlewood (2005), examining the potential to stabilize fluctuating yields of Pinot 

Noir in Tasmania. This study reported an increase in anthocyanin concentration 

paralleled by an increase in yield in vines pruned to 20, 30 and 40 nodes compared 
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vines pruned to 10 nodes. The observation that anthocyanin concentration increased 

at yields greater than 6 tonnes per hectare, and therefore fruit quality, was described 

as being contrary to the industry recommendation and benchmark yield of six tonnes 

per hectare. It has however been suggested that independently, yield is not a good 

indicator of wine quality and the ratio of fruit yield to pruning weight (Y:P) was a far 

better indicator of wine quality (Bravdo et al., 1985). 

The relationship between yield and vegetative growth was first investigated during 

the early 1900’s (Ravaz, 1903). The “Ravaz Index” was established which compared 

yield and pruning weight of one year old wood (Ravaz, 1903, 1906). Practically a 

retrospective view of balance in a particular season is less appropriate than one which 

enables us to predict or set a yield target in the following vintage (Howell, 2001). 

Partridge (1925) suggested that yield in a particular  season was a function of the 

pruning weight from the previous season, which the author termed “The Growth-

Yield Relationship” or yield to pruning weight ratio (Y:P). This was then expanded 

upon by numerous pruning trials between the 1940’s to 1960’s  which suggested the 

amount of cane growth of the previous season, determined the yield capacity in the 

following season, with increasing vegetative growth leading to increasing yield 

capacity (Shaulis et al., 1966). It has been suggested that for varieties with small 

bunches such as Pinot Noir a Y:P ratio between  of 3-6 is optimal (Kliewer & 

Dokoozlian, 2005) and that this ratio should possibly be lower in cool climates (Dry, 

PR et al., 2004). 

The leaf area to yield ratio (LA:Y) has also been highlighted for use in describing the 

balance between vegetative and reproductive growth (Jackson, DI & Lombard, 1993). 

LA:Y is the ratio between exposed leaf area (source) and bunches (sink) (Kerslake, 

2011). LA:Y is inversely related to Y:P due to the close correlation of pruning weight 

and leaf area (Bravdo et al., 1985; Gal et al., 1996). Typical ratios of balanced 

canopies range between 5 to 15 cm
2
/g (Dry, PR et al., 2004). Within the Tasmanian 

industry it has been suggested by growers that 1 m
2
 of foliage will ripen 1 kg of crop, 

which equates to a LA:Y 10 cm
2
 per gram of fruit which is well within the range 

suggested by Dry et al., (2004). LA:Y is however less time efficient and less practical 

to measure than Y:P (Kerslake, 2011). 
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In Tasmania, yield tends to fluctuate from year to year based on seasonal weather 

patterns around flowering, which may influence fruit set (Heazlewood, 2005). As a 

result of the fluctuation in seasonal weather events, the effectiveness of using Y:P as 

a tool to benchmark yields and quality is reduced in the Tasmanian climate (Kerslake, 

2011). It has been suggested that pruning to higher bud numbers and adjusting yields 

following fruit set may be a suitable way of achieving yield benchmarks (Kerslake, 

2011).  

Practically vine balance may be achieved by the viticulturist by taking into account 

climatic (Heazlewood, 2005) and geological influence (Deloire et al., 2004) and by 

interventions during the growing season through pruning, yield manipulation, 

trimming, leaf removal, vine nutrition and irrigation (Howell, 2001). 

2.3 Yield Components  

Yield in Vitis sp. can be expressed as a function of the number of vines per hectare, 

the number of nodes per vine, the number shoots per node, the number of bunches per 

shoot, the number of berries per bunch and the weight of berries per bunch (Kerslake, 

2011). More simplistically yield can be expressed as “the product of the number of 

berries present at harvest and their average size” (Dunn & Martin, 2000). 

As identified by Heazlewood (2005) the key determinate of yield variation in cool 

climate Pinot Noir is variability in bunch size as a function of berry number. 

Variability in mean berry number is greater than berry size, from bunch-to-bunch, 

from vine-to-vine and from season-to-season and hence, berry number explains more 

of the vine-to-vine variation in yield. Berry number is determined by (i) the number 

of flowers present at anthesis, (ii) the proportion of these that set successfully and, 

(iii) the percentage of berries that remain attached until maturity (Dunn & Martin, 

2000).  
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2.4 Fruit composition 

The composition of the grape berry varies at any point during berry development up 

until the point of harvest. Developmental changes which occur during berry 

formation and during ripening need to be considered when discussing the 

composition of harvested fruit. During berry formation the principal organic 

compound being accumulated is malic acid. Grape berry ripening is characterised by 

the accumulation in the berry flesh of hexose sugars, predominately glucose and 

fructose (approximately 99%), (Hamilton & Coombe, 2004) and in the skin of sugars, 

potassium and phenolics (Coombe, B. G. & McCarthy, 2000).   

Over 700 compounds are known to exist in grape juice (Hamilton & Coombe, 2004). 

Water and sugar are the main components of grape berries at harvest (Jackson, DI & 

Lombard, 1993). The percentage of water in the berry at harvest is largely determined 

by transpiration of berries (Hamilton & Coombe, 2004) as a function of Xylem 

discontinuity during ripening (Creasy et al., 1993), and during the later stages of 

ripening, due to the impedance phloem sap flow (Coombe, B. G. & McCarthy, 2000). 

The aroma compounds found in Pinot Noir grapes and wines are not well understood 

(Fang & Qian, 2005), but are thought to develop late during berry ripening in red 

wine varieties such as Shiraz (Coombe, B. G. & McCarthy, 2000). 

Up to ninety percent of the soluble solids in grape juice are hexose sugars, the 

remainder consists of organic acids, phenolics, polysaccharides, pectins, potassium, 

proteins and other compounds (Hamilton & Coombe, 2004).   

The major acids found in grapes are tartaric and malic acids, with citric acid and a 

number of others making up the balance (Hamilton & Coombe, 2004). During early 

berry growth tartrate is accumulated in high concentrations, while malate 

accumulation occurs most rapidly in the period immediately preceding the beginning 

of veraison. Titratable acidity declines following veraison, due to decreases in malate 

as a result of berry respiration (Lakso & Kliewer, 1975), and dilution by water, as 

berries expand and acids are converted to salts (Jackson, DI & Lombard, 1993).  
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Phenolics found in grapes, and in turn in wine, contribute to the flavour, colour and 

health benefits of red wine (Mazza, G.  & Miniati, 1993). Phenolics are an important 

consideration for red wines as they contribute to elegance, softness and depth 

(Jackson, DI & Schuster, 1987). The phenolic composition of grapes has been shown 

to vary as a result of both seasonal and viticultural influence (Kennedy, 2008; 

Kennedy et al., 2006).  

There are two main groups of phenolics, flavanoids and nonflavanoids (Allen, 1997; 

Kennedy et al., 2006). Flavanoids (Figure 2-3) are found in solid parts of the grape 

and in the bunch stem and non-flavanoids are found in the juice and pulp of grapes 

(Kennedy et al., 2006). The most important flavanoids in terms of sensory 

consequence for fruit and wines are anthocyanins, flavan-3-ol monomers and 

proanthoynadins, all of which exhibit the same base chemical structure (Souquet et al., 

1996). Hyroxycinnamic acids are the most abundant non-flavanoids found in grapes, 

they are important to the colour of white wines and are found in similar amounts in 

both white and red wines (Kennedy et al., 2006). 
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Figure 2-3, Flavanoid ring structure (Jackson, RS, 2000) cited in (Kerslake, 2011). 

 

Anthocyanins are largely responsible for the red colouration of grapes and contribute 

to the red colour of wine (Allen, 1997; Boulton, 2001; Kennedy et al., 2006). Most 

commonly located in the skins of grapes (Kennedy et al., 2006) they may also be 

located in the pulp as well as in the flesh of some varieties (He et al., 2010). 

Anthocyanin biosynthesis occurs during berry ripening, stage 2 of berry growth 

(Figure 2-2), following the commencement of veraison (Kennedy et al., 2006). It has 

been established that Pinot Noir contains only non-acylated anthocyanins (Cortell & 

Kennedy, 2006; Heazlewood, 2005; Mazza, G. et al., 1999) which is unique in Vitis 

vinifera.  
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Two pathways have been proposed for the biosynthesis of anthocyanins which are 

enzyme moderated (Boss et al., 1996a, 1996b). The F3’H pathway results in the formation 

of cyanidin-3-glucoside and peonidin-3-glucoside and the F3’5’H pathway results in the 

formation of petunidin-3-glucoside, delphinidin-3-gluoside and malvidin-3-glucoside (Boss 

et al., 1996a).  

The flavan-3-ol monomers are thought to contribute to the bitterness and possibly 

astringency of red wine (Kennedy et al., 2001). Synthesised predominately in the 

seed coat (Downey et al., 2004) but also in grape skins during berry development 

(Figure 2-2), compounds such as (+) catechin and (-) epicatechin are the subunits that 

polymerise to form tannins.  

Proanthocynadins (condensed tannins) are flavanoid based compounds which are 

formed be the polymerisation of the above flavan-3-ol monomers. Found in skins, 

seeds and bunch stems at harvest, it is believed that proanthocynadins are formed 

during stage 1 of berry growth and that “ripening” of this group of compounds occurs 

during stage 2 following veraison (Figure 2-2) (Kennedy et al., 2006).  
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Chapter 3    - General methods  

3.1 Climate  

Climate description is based on observations taken from the “Hobart Airport” Bureau 

of Meteorology (BOM) station: 09400, 42°50'24"S, 147°30'34"E, elevation 2m. The 

three trial sites of chapters three, four and five were located at 7.4 km, 8 km and 27 

km from this location respectively. This weather station was concluded to be the most 

appropriate for data collection due to proximity to trial sites, rainfall distribution as 

discussed in chapter one and also as a factor of the length and quality of observation.  

There is a need to provide recommendations for management which are directly 

applicable to the local environment. 30 year average rainfall observations suggest that 

the southern sites described in the present study have an annual rainfall of 

approximately 469 mm per year. Rainfall is distributed evenly throughout the year 

with the highest averages recorded for the month of January (Figure 1-3). As a result 

of the unpredictable nature and frequency of rainfall events (chapter one), observed 

daily totals for Hobart Airport can vary significantly and account for large 

proportions of the annual total rainfall. For example the highest daily total (64.2mm) 

was observed on the 27
th

 of December 1993 with other high daily totals distributed 

randomly throughout the year. January and February have the lowest number of mean 

days of rain with 9.4 days and 7.8 days respectively. The highest mean days of rain 

occurs during September at 14.3 days. Below average rainfall and growing season 

rainfall was recorded for the 2005, 2007 and 2008 vintages and above average rainfall 

was recorded in 2006. Similar trends in rainfall were observed within years and 

between the north and the south (Table 3-1). 

Smart and Dry (Dry, PR & Smart, 1988) suggest that GDD in the viticultural regions 

of Australia range between 3136 in Roma, 2084 in the Riverland, 1715 in the Barossa, 

1432 in Coonawarra and 1020 in Launceston (Tamar River). These figures do not 

include the month of September, which is included in the present study. Different 

cool climate viticulture growing regions can exhibit large differences of up to 400 
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growing season degree days (GDD) (Howell, 2001). Summation data was calculated 

between the months of September to December, degree days to flowering (FDD) and 

between the months September to May, growing degree days (GDD). 

Day degrees were calculated as follows 

Day Degree = 
Temp max+Temp min 

-  Tempbase 
2 

 

Where Tbase = 10 as for (Dry, PR & Smart, 1988) 

Data presented in Table 3-1 suggests heat accumulation in the CRV region was 

warmer than the long term average in all experimental seasons and warmer than the 

TR in two of the three experimental seasons reported in Kerslake (2011). Deviation 

from the average in both regions was not necessarily consistent between regions in 

particular years. 
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Table 3-1, Climatic records over the four experimental seasons of the current study for Hobart Airport (BOM station 094008). Blue and red denote 

deviation from the long term average. 

 
2005  2006 2007 2008 

 Hobart 

Airport 

(1981-2010) 

 

  
 

   
 

 
 

Mean January temperature (°C) 17.7 (+0.3)  17.6 (+0.2) 18.2 (+0.8) 19.0 (+1.6)  17.4  

Mean February temperature (°C) 16.7 (-0.7)  17.8 (+0.4) 18.9 (+1.5) 16.2 (-1.2)  17.4  

Rainfall  (mm, Sept – May) 285.8 (-65.2)  417.4 (+66.4) 323.4 (-27.6) 270.2 (-80.8)  351.0  

Rainfall (mm, Jul – Jun) 413.6 (-55.7)  480.4(+11.1) 391.0 (-78.3) 357.4 (-1.2)  469.3  

Degree Days (Sep-May GDD, Tbase =10°C) 1260.1 (+81.6)  1285.3 (+106.7) 1373.9 (+195.4) 1325.3 (+146.7)  1178.5  

Degree Days (Sep-Dec, FDD, Tbase =10°C) 472.6 (+53.1)  561.7 (+142.3) 448.5 (+29.1) 538.5 (+119.0)  419.5  
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Field sampling, bunch structural measurement and fruit compositional measurement 

were consistent across the entire study except where specified in Chapter 4. It was a 

conscious decision not to destructively sample treated vines before commercial 

harvest because of issues associated with within bunch variability (May, 2000) and 

the potential to influence source sink interactions of the vine. All experiments were 

conducted in commercial vineyards which also contributed to the chosen sampling 

and measurements methods.   

3.2 Field sampling 

In all experiments bunch number was recorded at the time of harvest. Harvest was 

carried out by hand and timed to correspond with commercial harvest as per the 

recommendations of the management of each site. A random sub sample of 10 

bunches was taken from each experimental plot (defined as an individual treatment 

within a replicate) using a list of random numbers. The fruit was then placed in re-

sealable plastic bags and then on ice for transportation. Samples were frozen at -18°C 

until processing was carried out.  

3.3 Bunch structural measurement 

Sub-samples were processed while frozen. Bunches were individually weighed and 

the bunch weight was recorded. The length and width of bunches were measured to 

the widest possible point along both horizontal and vertical axis. Berries were then 

removed from the rachis by hand and counted for each bunch of the sub-sample; 

recording berry number for six of the ten bunches which were randomly selected. 

Where bunches were damaged or not intact, only sound bunches were chosen to 

record berry number per bunch.  

The number of primary branches from the rachis was recorded after visual 

examination. Primary branch number was defined as the number of branches in the 

main stem of the rachis (Plate 3-1) which lead to further braches in the bunch 

structure and bearing two or more berries (May, 2000).  
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Plate 3-1, Typical primary branching of the rachis Vitis vinifera cv. Pinot Noir. 
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3.4 Fruit compositional measurement 

Total anthocyanin concentration of samples was measured according to AWRI 

industry standard methods, CRCV (2006).  

One of the two, 100 g subsamples was homogenised using an Ultra Turrax RT25 

basic and an IKA S25N-18G Dispersing Tool. Samples were macerated for 30 

seconds in a 200 ml plastic beaker. The homogeniser was then stopped, the macerated 

tissue scrapped from the outside of the head, returned to the sample which was then 

macerated for a further 30 seconds, ensuring that all seeds were macerated and that all 

homogenate was scraped from the shaft and head on completion and returned to the 

sample.  

One gram of this homogenate was then transferred to a 10 ml plastic centrifuge tube 

and the weight of the homogenate (homogenate weight) was recorded to two decimal 

places. 10 ml of 50% v/v aqueous ethanol was then added to the tubes and mixed by 

inverting every 10 minutes for a period of one hour. The mixture was then 

centrifuged at 1800 g for 10 minutes using a Beckman Coulter Avanti J-301 

Centrifuge. The supernatant is now termed the extract. Its final volume was estimated 

as 10.5ml, as all extract sample weights weighed between 0.95 and 1.05g as per the 

standard method.  

200 µL of the extract was then transferred to a 4ml acrylic cuvette of 10 mm path 

length. 3.8 ml of 1.0M HCl was then added to the extract. Cuvettes were then covered 

with Parafilm and mixed by inverting several times and allowed to incubate for 

between 3 and 24 hours. The absorbance of the acidified diluted extract was then 

measured at 520 nm (A520) using a 1.0 M HCl blank and S2000 WDA Lightwave, 

diode-array UV/Vis spectrophotometer.  

Duplicates were run every 10 samples to estimate the laboratory accuracy for the 

method.  The accuracy of the laboratory was determined to be ±2.01%. 
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Total anthocyanin and anthocyanin per berry were then calculated using the 

following method:  

 

Total anthocyanin per gram  (mg/g) = A520 x *DF x final extract volume (mL) x 1000 

500 x 100 x homogenate weight (g) 

 

 

*Dilution factor (DF) is the level of dilution upon addition of 3.8 ml of 1.0 M HCl which in this case is 

20.  

 

Total anthocyanins per berry were calculated by multiplying total anthocyanin per 

gram by mean bunch weight and dividing by the number of berries. 

Total anthocyanin calculations are based on the absorbance of a 1% w/v (1 g/100 mL) 

solution of malvidin-3-glucoside, 10 mm path length  (Somers & Evans, 1974). As 

per industry standards (CRCV, 2006). Malvidin-3-glucoside is one of the five major 

anthocyanins in Vitis vinifera Cv. Pinot Noir grapes (Cortell & Kennedy, 2006; 

Heazlewood, 2005; Mazza, G. et al., 1999). Malvidin-3-glucoside has been shown to 

be the major anthocyanin accumulated in Pinot Noir (Cortell & Kennedy, 2006) and 

hence it is appropriate results are expressed in malvidin-equivalents for comparative 

purposes only as per (CRCV, 2006). 

The second sub-sample was allowed to thaw to room temperature and berries were 

then pressed by hand and the free run juice separated through a gauze for 

determination of soluble solids, pH and titratable acidity which is expressed as 

Tartaric acid equivalents (Jackson, DI & Lombard, 1993).  

Soluble solids were measured using an optical hand held refractometer. pH and 

Titratable acidity (TA) were measured using a Metrohm SM Titrino 702, autotitrator, 

titrating against a 10ml volume of 0.1 M NaOH standrard. 
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Mean berry weight was calculated as bunch weight divided by berry number for 

selected bunches from the subsample.  

Yield was calculated by multiplying bunch weight and bunch number to give yield 

per vine which was then multiplied by the number of vines per hectare and the units 

converted to tons per hectare (t/Ha). Average treatment yields for all experiments 

across all years ranged between 5.24 and 10.11 tonnes per hectare. 

 

Statistical design and method is detailed in individual chapters.  
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Chapter 4    - The influence of fruiting zone 

defoliation on fruit composition and yield  
 

4.1 Introduction 

Studies have described the effects of defoliation on the vegetative biology of 

grapevines with particular focus on photosynthetic capacity and partitioning of 

carbohydrates to vegetative and reproductive organs. Examination of the literature 

indicates that the vegetative response of the Vitis sp. to defoliation is dependent on a 

number of factors, the most relevant being the timing, level and environmental 

stimulus. 

Removal of leaf area directly affects the energy produced by source leaves of the vine 

and therefore may influence growth of both reproductive and vegetative organs and 

changes the carbohydrate metabolism of the plant (Heuvel et al., 2005). Sugars are 

the main source of energy in the grapevine (Caspari et al., 1998). Sink organs are 

those which attract sugars, for example the growing shoot, developing leaves, 

inflorescences or bunches (Lebon et al., 2008). Source organs are those that 

synthesise and export sugars, namely from converted carbohydrate stored in the roots 

and wood early in growth and later from the leaves (Lebon et al., 2008). Developing 

leaves and inflorescences act as sinks up until the point of fruit set, whereby 

developing bunches become the dominant sink (Mullins et al., 1992). Factors which 

influence the number of sinks or sources directly impact on sugar transport around 

the plant for example defoliation (source removal), shoot trimming (source removal) 

or bunch removal (sink removal) (Williams, 1996). 

Defoliation has the effect of removing leaf area available for production of 

photosynthate and may therefore reduce sink strength. A leaf area of between 7-14 

cm
2
 is required to adequately ripen 1 gram of fruit (Jackson, DI & Lombard, 1993). 

Delayed ripening has been observed as a consequence of defoliation by shoot 

trimming of field grown Sauvignon blanc over a range of 17-21 cm
2
/g (Petrie et al., 
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2003) which supports the conclusion, that this ratio may vary between varieties or 

due to climatic influence (Dry, PR et al., 2004; Kliewer & Dokoozlian, 2005).  

Defoliation has been shown to affect root growth and accumulation of root dry matter. 

Partial defoliation across the whole vine has been shown to increase root growth by 

increasing root density, in particular when the treatment is applied at pea size (Hunter 

& Le Roux, 1992). Pre-Harvest defoliation has also been shown to increase the sugar 

concentration of roots. Petrie et al., (2000b) found that various levels of defoliation in 

potted Pinot Noir vines lead to a proportional decrease in root weight but caused no 

difference in partitioning of dry matter between above and below ground parts of the 

vine. The author reported a “highly conserved relationship” for dry matter 

partitioning between above and below ground parts of the vine. 

It has been described that the grape vine may compensate for the photosynthetic area 

removed by defoliation by either subsequent growth resulting in increased leaf area, 

or as a result of increased photosynthetic rates in response to altered source sink 

relationships. In potted Pinot Noir vines, Petrie et al., (2000b) observed no effect on 

shoot extension except in cases of extreme defoliation in both bearing and non-

bearing vines. New leaf area across bearing and non-bearing vines was reduced by 

defoliation indicating that vines were unable to compensate for defoliation. Total leaf 

area was less on cropped, than uncropped vines. Non-bearing vines responded to 

defoliation by reducing internode length which resulted in the production of more 

leaves and a larger leaf area (Petrie et al., 2000b). In field experiments, various 

authors have commented on the ability of the grapevine to produce additional leaf 

growth in order to compensate for defoliation. Soil water availability is likely to have 

large influence on the ability for additional growth (Candolfivasconcelos et al., 1994). 

In field grown Cabernet Sauvignon, Hunter and Le Roux, (1992) observed no 

difference in shoot extension in response to defoliation. Both studies however 

observed a reduction in dry matter accumulation in response to defoliation that was 

attributed to the observed smaller, thinner shoot growth. Lateral shoot length has been 

reported to increase in response to partial defoliation (Vasconcelos & Castagnoli, 

2000), especially when defoliation is carried out earlier in the season (Weaver & 

McCune, 1959a). 
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There has been a focus in past research as to the effect of defoliation on remaining 

leaves, particularly on photosynthetic rates. Hunter et al., (1995) found that 

defoliation at fruit set in Cabernet Sauvignon/99 Richter increased the photosynthetic 

activity of old leaves lower in the canopy and lead to a reduction in leaf sucrose and 

fructose concentration. Poni and Intrieri, (1990) suggested that leaves higher in the 

canopy may contribute more to total assimilation than leaves lower in the canopy, 

however when leaf size was taken into account, photosynthetic rates appear to be 

similar across the whole vine. Candolfivasconcelos et al., (1994) found that in Pinot 

Noir, photosynthetic rates were similar in defoliated and non-defoliated vines. Their 

observations also indicated that defoliation had little effect on the rate of transpiration 

and water use efficiency of vines. Leaves opposite clusters were however found to 

have a decline in photosynthetic rate during fruit maturation and these leaves also had 

lower transpiration and water use efficiency. This observation is similar to that of 

Intrieri et al., (1992), where it was suggested that following the lag phase of berry 

growth, photosynthetic rates of leaves directly adjacent to the developing clusters  

declined.  

The experiments of Intrieri et al.,(1997) using bush and cordon trained spur pruned 

Chardonnay vines found that total assimilation was not impacted by removal of up to 

27% of leaf area. In these experiments total assimilation was greatest in bush grown 

vines at 6-6.5 m
2
/m of canopy whereas in vines trained to a fixed cordon, rates were 

not saturated and a linear relationship was recorded between total assimilation and 

leaf area. These experiments highlight the potential interaction of trellis/training 

system on the total assimilation of defoliated vines. Vines grafted to differing 

rootstocks have also been shown to have different photosynthetic rates 

(Candolfivasconcelos et al., 1994).  

Petrie et al., (2003) measured whole vine photosynthetic response of Sauvignon 

Blanc to defoliation during the lag phase of berry growth by removing leaf area from 

both the top and bottom of the canopy. The author concluded that defoliation in the 

lower part of the canopy had the largest effect on photosynthesis per unit leaf area 

immediately following defoliation, suggesting that the lower part of the canopy 

contributes more to whole vine photosynthesis. This contradicts the arguments 
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outlined by other authors. Later measurements of whole vine photosynthesis in this 

experiment suggest that while some compensation for defoliation, through increased 

photosynthetic rate, may occur, this increase could not fully compensate for the leaf 

area removed by defoliation.  

In the experiments of Petrie et al., (2000b) increased leaf area, as a result of 

defoliation in non-bearing vines, did not result in increased dry matter production. 

The author concluded that these vines were likely to be carbohydrate sink limited, 

which in previous studies had been linked to a declining photosynthetic rate. In the 

same experiment the author concluded that cropped vines were likely to be source 

limited, due to an observed delay in fruit maturity (Petrie et al., 2000a). Similar dry 

matter accumulation between bearing and non-bearing vines in the presence of 

defoliation appears to have implications for previous studies where leaf age has often 

been attributed to declining photosynthetic rates of older leaves and their importance 

in crop ripening questioned. The degree of sink limitation may also affect the ability 

of the canopy to increase photosynthetic rate in response to defoliation a conclusion 

which supported by the results of Petrie et al., (2003). 

The ability of the vine to compensate for significant leaf removal either through 

increased photosynthetic rate or vegetative growth would therefore seem to be 

moderated by: 

 The degree of sink limitation following defoliation. 

 The ability of the vine to establish new leaf area through environmental 

limitation. 

 The previous carbohydrate status of the vine. 

Decisions made in the vineyard in one season have been shown to have impacts both 

within the season and in subsequent seasons (Howell et al., 1994).  In experiments 

conducted by Percival et al., (1994a, 1994b) in Riesling, yield was shown to both 

increase and decrease with defoliation. The direction of the response was impacted by 

the timing of the defoliation. When vines were severely defoliated earlier in the 

season, a reduction in yield due to inhibited berry growth lead to a reduction in 
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cluster weights (Percival et al., 1994b). Defoliation applied later in the season has 

lead to an increase in berry size and a resultant increase in cluster weight in Riesling 

(Percival et al., 1994a). This observation has also been reported by a number of other 

authors (Ezzahouani & Williams, 2003; Hunter et al., 1995; Petrie et al., 2003). The 

author also reported that no reduction in bud fertility in subsequent seasons was 

observed. It is worth noting that these experiments were conducted on vigorous 

grapevines. Experiments on Cabernet Sauvignon have demonstrated that leaf removal 

following fruit set strongly reduced berry growth by reducing the cell size of the 

berry  pericarp, so that berry size at the lag phase of berry growth, size was half that 

of the control (Ollat & Gaudillere, 1998). In the same experiment restoration of leaf 

area, as a result of further vegetative growth, allowed berries to grow at the same 

relative rate during ripening. Growth rate compensation did not occur during ripening, 

meaning berry size was proportional to size of the fruit at the beginning of berry 

ripening. Kliewer and Antcliff (1970) in Sultana found that berry weight was the 

variable most affected by defoliation, stating that the earlier the treatments were 

applied, the greater the impact. Many of the major effects of defoliation on yield and 

yield components observed are likely to be the result of source limitation following 

defoliation. Defoliation has been shown to significantly reduce the sucrose and 

fructose concentration of leaves (Heuvel et al., 2005). It has also been observed that 

in some cases defoliation, though not extreme, had no effect on yield components 

(Bledsoe et al., 1988).   

While contradictory observations exist, a general consensus of the effects of the 

severity and timing of defoliation on yield and yield components can be suggested.  

 Defoliation during berry formation generally corresponds to reduced yield as 

a result of a reduction in berry size. This effect increases with severity of the 

treatment. In cases where this is not observed the change in temperature 

imposed by the exposure of fruit, or the proportion of the canopy removed, 

may not have been sufficient to alter normal tissue growth. This observation 

seems more likely to be observed in cool climates or vigorous canopies.  
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 Defoliation during the lag phase or berry ripening generally has little or no 

impact on berry growth to harvest, except in the case where removal from 

dense canopies may stimulate growth through increased exposure and a 

resultant increase in evapotranspiration, sugar loading and bunch size as a 

function of larger berries, is observed (Dreier et al., 2000).  

Changes to fruit composition have been shown to occur as a result of defoliation 

though they may not be consistent between vintages (Main & Morris, 2004; Reynolds 

et al., 1996). Soluble solids in response to defoliation have been shown to increase 

(Main & Morris, 2004; Petrie et al., 2003), show no response (Hunter et al., 1995; 

Main & Morris, 2004), or decrease  (Koblet et al., 1994; Petrie et al., 2000a; 

Reynolds et al., 1996; Vasconcelos & Castagnoli, 2000). It has been reported that 

excessive removal of leaves in Pinot Noir may lead to a reduction in soluble solid 

accumulation possibly as a result of source limitation (Bledsoe et al., 1988). While 

increases in soluble solids are likely to be the result of increased sink strength as a 

result of increased berry size, increased evapotranspiration of the berry through 

increasing exposure or a combination of the two (Dreier et al., 2000). 

Similarly both increases (Hunter et al., 1995; Petrie et al., 2003) and decreases (Main 

& Morris, 2004; Reynolds et al., 1996) have been observed in titratable acidity in 

response to defoliation while pH has been observed to decrease (Hunter et al., 1995; 

Koblet et al., 1994; Petrie et al., 2003). 

Maturation of grape berries following veraison is characterised by a decline in acid 

levels and an increase in pH (Jackson, DI & Lombard, 1993). It is accepted that the 

reduction in titratable acidity during berry ripening is related to the respiration rate of 

the berry and is a function of temperature (Jackson, DI & Lombard, 1993). Malic acid 

and tartaric acid are the most important organic acids contributing to the titratable 

acidity and pH of grape berries. Experiments by Kliewer & Lider (1968) found that 

increasing exposure of Thompson seedless grapes led to lower titratable acidity and 

higher pH than shaded fruits, with malate being 2-3 times greater in shaded fruits, 

whereas tartaric acid levels remained relatively constant. Kliewer (1971) reported that 

malic acid metabolism was temperature dependent and increased at higher 
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temperatures, while later experiments have suggested that accumulation was at its 

greatest between 20-25°C (Lakso & Kliewer, 1975). Diurnal fluctuations in 

temperature have also been discussed as being important in maintaining acid and 

lowering pH for longer during maturation with high day temperatures and low night 

temperatures being the most favourable (Kliewer & Torres, 1972). It has also been 

highlighted that increases in pH and decreases in malate proceed more slowly in cool 

climates than in warm climates (Jackson, DI & Lombard, 1993).  

Increased incident light has been observed to both increase (Ezzahouani & Williams, 

2003; Heuvel et al., 2005; Hunter et al., 1995; Mazza, G. et al., 1999; Staff et al., 

1997), inconsistently  increase (Zoecklein et al., 1997) and have no effect on 

anthocyanin accumulation in red grape varieties such as Pinot Noir (Vasconcelos & 

Castagnoli, 2000) in response to leaf removal.  Leaf removal has been shown to lead 

to improved colour, aroma and palatability of both Optima and Cabernet franc wines  

(Staff et al., 1997) and lead to improved colour in wines made from Cynthiana (Vitis 

aestivalis  Michx.) (Main & Morris, 2004).  

The effects of increasing exposure through leaf removal on flavour and aroma are 

probably best described in white wine varieties. Leaf removal has been shown to 

increase flavour precursors in Chardonay and Riesling (Zoecklein, Wolf, Duncan, et 

al., 1998; Zoecklein, Wolf, Marcy, et al., 1998) and increase flavour compounds in 

Gewurztraminer which carried through to sensory differences (Reynolds et al., 1996).  

As a result of changes to the fruiting zone microclimate, defoliation has been shown 

to significantly decrease the incidence of economically important diseases powdery 

mildew (Chellemi & Marois, 1992; Stapleton et al., 1995) and botrytis bunch rot 

(Duncan et al., 1995; English et al., 1993; Ferree et al., 2003; Gubler et al., 1991; 

Percival et al., 1994b; Staff et al., 1997; Stapleton & Grant, 1992; Zoecklein et al., 

1992). Whilst the management of disease remains an important practical 

consideration for the local industry, this study was conducted to measure changes in 

grape composition and yield components in response to varying degrees of 

defoliation. 
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4.2 Materials and Methods  

4.2.1 Site characteristics 

The trial was carried out at a commercial vineyard, Cambridge, Tasmania, at 

42°48'39"S, 147°25'39"E and an elevation of between 55 and 60 metres above sea 

level. Vines were cane pruned to 24 buds, consisting of two horizontally trained, ten 

bud, cordons, and two, two bud spurs located in the head of the vine to provide 

replacement shoots. Shoots were positioned vertically. Vine spacing was 1500 mm 

and row spacing was 2100 mm, 3175 vines per ha.  Fruiting wire height 900 mm and 

hedging height 2000 mm. Row orientation for four replicates was in a north-south 

direction and four replicates were orientated North-north-west and south-south-east.  

4.2.2 Treatment design  

Four defoliation treatments were applied to eight replicates in a randomised complete 

block design. Blocks were distributed over three clones of Vitis vinifera Cv. Pinot 

Noir (MV6 replicates 2 and 5, D2V5 (8104) replicates 3 and 6, D5V12, (2051) 

replicates 1, 4, 7 and 8). Each trellis panel of four vines was designated a plot. The 

centre two vines were used to measure bunch number and weight, berry number and 

weight, pruning weight, trunk circumference and fruit compositional analysis at 

harvest. The outside two vines of each plot were used as buffer vines. Treatments 

were applied in the final week of January during 2005, 2006 and 2007. Four 

defoliation treatments were carried out 10 to 14 days before the beginning of veraison 

denoted as EL31-32 using the modified EL system as for Coombe (1995). This 

timing was considered to be in line with current industry practice.  The treatments 

aimed to manipulate leaf area within the fruiting zone, denoted as the area between 

the fruiting wire and extending 300 mm directly above it. Defoliation was carried out 

by hand. Treatments aimed to remove 0% of leaf area in the fruiting zone (control), 

Treatment 1 (Plate 4-1), 40% of leaf area in the fruiting zone, Treatment 2 (Plate 4-2), 

70% of leaf area in the fruiting zone, Treatment 3 (Plate 4-3) and 100% of leaf area in 

the fruiting zone, Treatment 4 (Plate 4-4). This experiment was designed as a 
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longitudinal study, treatments were imposed annually on the same vines for three 

consecutive years. 

 

Plate 4-1. Treatment 1, control or 0% leaf area removal in the fruiting zone 

 

 

Plate 4-2. Treatment 2, 40% leaf area removal in the fruiting zone 
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Plate 4-3. Treatment C, 70% leaf area removal in the fruiting zone  

 

 

Plate 4-4. Treatment D, 100% leaf area removal in the fruiting zone 
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Climate data from Hobart Airport (BOM station 094008) were calculated to be 

compared to seasonal averages for yield and fruit compositional parameters 

relationships. Sunshine hours were obtained from the Campbell-Stokes sunshine 

recorder as per BOM methods. Biological significance was denoted as relationships 

which had a P-value less than or equal to (P=0.05). 

Hour degrees were calculated as the sum of degrees above 10°C over the entire 

vintage July – June.  

Harvest and fruit processing was carried out as per the general methods. 

Data from all years was pooled for analysis by univariate linear regression.  

4.2.3 Estimation in timing of veraison  

During veraison in 2007 progression through veraison was estimated. All bunches 

were scored from replicates 1, 4, 7 and 8. All bunches were individually divided into 

4 categories. Category 1, 0% of berries coloured, category 2, less than 50% of berries 

coloured, category 3, greater than 50% of berries coloured and category 4, all berries 

coloured. A mean bunch veraison score was then calculated by multiplying the 

category number, by the number of bunches in that category and creating a sum value 

of all categories. This number was then divided by the total number of bunches for 

the sample. This number was denoted as the veraison score for each plot.  

4.2.4 Pruning weights  

Pruning weights were recorded in the field following the 2005 and 2006 vintages. 

Yield to Pruning (Y:P) ratio was calculated where Y:P = Yield (g) / Pruning weight 

(g). Bunch density was calculated by dividing bunch  length by bunch weight as in 

Ferree et al., (2003). 

4.2.5 Statistical analysis 

This experiment presented significant statistical difficulties as a result of inadequate 

and unbalanced experimental design. The experiment was conducted over a three 

year period and though design issues were highlighted immediately after the initial 

field trial setup, it was deemed more important to continue than abandon the 
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experiment, as a full season of data would have been lost given that the critical stage 

for treatment application had passed. The design issues highlighted for statistical 

analysis are further exacerbated by missing data, the result of the grower harvesting 

multiple and differing replicates across years combined with significant bird damage. 

It was deemed that the following analysis was most appropriate given the constraints 

imposed by poor design and missing data.  

All results were normally distributed and untransformed data were analysed using an 

ANOVA in SAS 9.1 using a type III sum of squares analysis, both for individual 

years and across years. Means were compared using Fischers Least Significant 

Difference (LSD) calculated at P=0.05 after the method of Steele and Torrie (Steel & 

Torrie, 1980). As no significant interactions were found between replicates and 

treatments, row orientation and clonal difference were treated as natural variability in 

the final analysis.  

Correlation analysis was carried out using the univariate linear regression models 

package in SPSS version 19 to assess independent variables.    
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4.3 Results  

4.3.1 Fruit composition and yield parameters 

 

For the 2005, 2006 and 2007 vintages there was no significant effect (P<0.05) of 

treatment on fruit compositional parameters at harvest. In 2005 there was a 

marginally significant treatment effect on bunch number (P = 0.046). The control 

treatment with a mean of 30.57 was not significantly different to the 40 and 70% 

treatments with bunch numbers of 29.06 and 25.00 respectively but was significantly 

different to the 100 % defoliation treatment, 24.50 bunches, which was also not 

significantly different from 40 or 70% defoliation. In the following vintages there 

was no significant effect of treatment on bunch number (Table 4-1). Pruning weights 

were not significantly different for either vintage. Y:P ratio was significantly lower in 

the 40% and 70% treatments in the 2007 vintage. No other significant treatment 

effects on yield components were recorded for yield or individual yield components 

within a single vintage (P>0.05). There were no significant treatment by replicate 

interactions (P>0.05).  

When data from all three vintages were combined, increasing levels of defoliation 

were shown to have a significant effect on bunch number, yield and soluble solids ( 

Table 4-2). More severe levels of defoliation were linked to a reduction in bunch 

number yield and soluble solid accumulation. There were no other significant effects 

of treatment on any of the measured or calculated variables (P>0.05). 
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Table 4-1, The effect of increasing fruiting zone defoliation on bunch number, yield and soluble solids separated by vintage. (Superscript denote 

significantly different groupings based on Fischers Least Significant Difference (LSD) calculated at P=0.05) 

 

Bunch number  Yield (t/ha)   Soluble solids (°Brix)  Y:P 

Level of Defoliation 2005 2006 2007  2005 2006 2007  2005 2006 2007  2006 2007 

               

0% 30.57 
A
 24.64 31.83  10.11 6.85 9.68  24.12 23.79 22.24  2.79 2.65

A
 

40% 29.06 
AB

 24.21 27.58  10.03 6.44 7.19  23.54 23.37 22.40  2.81 2.05
B
 

70% 25.00 
B
 24.43 29.50  8.89 5.63 8.73  23.14 23.41 21.98  3.35 2.75

A
 

100% 24.50 
B
 22.14 24.92  8.18 5.24 6.88  23.49 22.70 22.02  2.45 1.98

B
 

               

LSD (p=0.05) 4.63 ns ns  ns ns ns  ns ns ns  ns 0.54 

 

Table 4-2, The effect of increasing fruiting zone defoliation on bunch number, yield and soluble solids concentration across combined vintages 2005, 

2006 and 2007, (Superscript denote significantly different groupings based on Fischers Least Significant Difference (LSD) calculated at P=0.05) 

Treatment Bunch number Yield (t/ha) 
Soluble solids 

(°Brix) 

   

 

0% 28.87 
A 

 8.91 
A
 23.46 

A
 

40%   27.02 
AB

   8.05 
AB

   23.12 
AB

 

70%   26.15 
AB

   7.81 
AB

   22.89 
AB

 

100% 23.83 
B 

 6.90 
B
 22.77 

B
 

    

LSD (p=0.05) 3.325 1.30 0.627 
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There were marked differences recorded between different vintages. Significant 

differences were recorded across all fruit compositional parameters (Table 4-3). pH 

was significantly different in all vintages being the highest in 2005 (3.62), lowest in 

2007 (3.40). The mean pH was 3.53 in 2006. Titratable acidity was significantly 

lower in 2006 (4.09) than 2005 (4.64) which was also significantly lower than 2007 

(5.25). Soluble solid concentration was significantly lower in 2007 (22.15), than 

vintage 2005 (23.55) and vintage 2006 (23.31), which were not significantly different. 

Anthocyanin concentration (mg/g) was significantly different across all vintages, 

being highest in 2006 (0.882) and lowest in 2005 (0.619). Anthocyanin concentration 

(mg/g) was 0.755 in 2007. When converted to a per berry basis, anthocyanin 

concentration per berry was significantly higher in 2007 (0.863), than in both 2005 

(0.673) and 2006 (0.740) which did not differ significantly. 

Marked differences were also recorded across all yield and bunch structural 

components across years (Table 4-4). Bunch number was significantly lower in 2006 

(23.86) than in 2005 (27.25) and 2007 (3.40), which were not significantly different. 

Bunch weight was significantly different in all vintages, being lowest in 2006 (80.46) 

and highest in 2005 (109.06), bunch weight was 90.80g in 2007. Berry number was 

significantly lower in 2007 (74.56) than in 2005 (93.03) and 2006 (88.29), which did 

not differ significantly. Berry weight was significantly different in all three vintages, 

being lowest in 2006 and highest in 2007. Yield was also significantly different in all 

three vintages and was highest in 2007 (8.12) and lowest in 2006 (6.06). Yield was 

8.12 t/Ha in 2007. Primary branch number was significantly lower in 2006 (12.75), 

than in 2005 (14.07) and 2007 (14.25), which were not significantly different. Bunch 

length was significantly different in all vintages, being highest in 2005 (93.09) and 

lowest in 2007 (80.75). Bunch length in 2006 had a mean of 88.18. Bunches were 

significantly wider in 2005 (63.85) than both 2006 (56.75) and 2007 (54.75), which 

were not significantly different. Timing of veraison was significantly affected by 

treatment. In 2007 Veraison score was significantly lower in the 100% defoliated 

treatment than all other treatments (Table 4-5). 
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Table 4-3, The influence of vintage on fruit compositional parameters across vintages 2005, 2006 and 2007. (Superscript denote significantly different 

groupings based on Fischers Least Significant Difference (LSD) calculated at P=0.05) 

Vintage pH 
Titratable 

acidity (g/L) 

Soluble solids 

(°Brix) 

Anthocyanin 

concentration 

(mg/g) 

Anthocyanin 

concentration 

(mg/berry) 

      2005 3.62 
A
 4.64 

B
 23.55 

A
 0.619 

C
 0.673

 B
 

2006 3.53 
B
 4.09 

C
 23.31 

A
 0.882 

A
 0.740 

B
 

2007 3.40 
C
 5.25 

A
 22.15 

B
 0.755 

B
 0.863 

A
 

      

LSD (p<0.05) 0.07 0.19 0.54 0.073 0.073 

 
Table 4-4, The influence of vintage on yield and bunch structural components across vintages 2005, 2006 and 2007. (Superscript denote significantly 

different groupings based on Fischers Least Significant Difference (LSD) calculated at P=0.05) 

Vintage Bunch number 
Bunch weight 

(g) 
Berry number 

Berry  weight 

(g) 
Yield (t/ha) 

Primary 

branch 

number 

Length (mm) Width (mm) 

         2005 27.25 
A
 109.06 

A
 93.03 

A
 1.10 

B
 9.29 

A
 14.07 

A
 93.09 

A
 63.85 

A
 

2006 23.86 
B
   80.46 

B
 88.29 

A
 0.85 

C
 6.06 

C
 12.75 

B
 88.18 

B
 56.75 

B
 

2007 28.46 
A
   90.80 

C
 74.56 

B
 1.15 

A
 8.12 

B
 14.25 

A
 80.75 

C
 54.75 

B
 

         

LSD (p<0.05) 2.89 8.66 7.21 0.055 1.13 0.82 4.59 4.32 
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Table 4-5, The effect of defoliation treatment on the level of progression through veraison in 

2007. (Superscript denote significantly different groupings based on Fischers Least Significant 

Difference (LSD) calculated at P=0.05) 

 

Level of defoliation Veraison Score 

0% 2.891
A
 

40% 2.876
A
 

70% 2.664
A
 

100% 2.165
B
 

  

LSD (P<0.05) 0.464 
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4.3.2 Comparison of yield, structural and fruit compositional components 

 

Yield components were compared by linear regression analysis (Table 4-6). There 

was a strong relationship between berry number and bunch weight (Figure 4-5).  

Primary branch number displayed moderate to weak relationships, with berry number 

and weight, bunch weight and length (Table 4-6). No correlation was recorded 

between primary branch number and bunch width or bunch number.  

 

Table 4-6, Significant (P≤0.05) positive linear relationships between yield components and bunch 

morphology comparing pooled data across the 2005, 2006 and 2007 vintages (Values presented 

represent the value for the correlation coefficient, R
2
) 

 

Yield 

(T/Ha) 

Primary 

branch 

number 

Bunch weight 

(g) 

Berry 

Weight 

(g) 

    

 

Berry number 0.2079 0.3347 0.6386 ns 

Berry weight (g) 0.3241 0.2865 0.3807  

Bunch number  0.3294 ns 

 

 

Bunch weight (g) 0.4987 0.4987 

 

 

Length (mm) 0.1983 0.5218 

 

 

Width (mm) 0.2147 ns 

 

 

Primary branch number 0.2363 
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Figure 4-5, The positive relationship between berry number and bunch weight (g) using 

combined data across the 2005, 2006 and 2007 vintages. Linear regression where y = 0.5600 x - 

58.95, and R
2
 0.6386. 

 

Berry weight was shown to be significantly correlated with TA (Figure 4-6) and 

anthocyanin concentration (mg/g) (Figure 4-7). Anthocyanin concentration displayed 

significant relationships with yield (Figure 4-8) and compactness of the bunch 

(Figure 4-9). Significant correlations were displayed when comparing vintage 

averages of anthocyanin (mg/berry) and pH (Table 4-7), to climatic variables 

associated with temperature. Though not significant, pH displayed a correlation 

coefficient (R
2
 = 0.9826) with average minimum temperature. 
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Figure 4-6, The positive relationship between titratable acidity (g/L) and berry weight (g) using 

combined data across the 2005, 2006 and 2007 vintages. Linear regression where y = 2.414x + 

2.149, and R
2
 0.4228. 

 

 

 

Figure 4-7, The negative relationship between anthocyanin concentration (mg/g) and berry 

weight (g) using combined data across the 2005, 2006 and 2007 vintages. Linear regression 

where y = -0.6270x + 1.396, and R
2
 0.3981. 
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Figure 4-8, The relationship between anthocyanin concentration (mg/g) and yield (t/Ha) using 

combined data across the 2005, 2006 and 2007 vintages. Linear regression where y = -0.03886x + 

1.053, and R
2
 0.3447. 

 

 

 
Figure 4-9, The relationship between anthocyanin concentration (mg/g) and bunch density 

(Bunch weight/bunch length) using combined data across the 2005, 2006 and 2007 vintages. 

Linear regression where y = -0.5464x + 2.426, and R
2
 0.3469. 
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Table 4-7, Displaying average climatic data for Hobart Airport (BOM station 094008) and 

significant and non significant (ns) linear regression relationships between anthocyanin per 

berry and pH comparing average across years, the direction of the correlation is displayed in 

brackets. 

Vintage 

Accumulated 

hour degrees 

above  10°C 

Average daily 

temperature 

Number of 

hours of 

bright 

sunshine 

 
   

2005 10583 16.31 7.50 

2006 11056 16.59 7.33 

2007 
11991 17.04 7.61 

Linear regression 
   

Anthocyanin per berry (mg/berry) (R
2
) 0.9996 (+ ve) 0.9984 (+ ve) ns 

pH (R
2
) 0.9931 ( - ve) 0.9994 ( - ve) ns 

Berry weight ns ns ns 



52 

 

4.4 Discussion 

Interpretation of the results of this experiment must be made within the limitations of 

the experimental design. This does not allow for conclusions to be drawn for the 

response of a specific clone of Pinot Noir or of the entire Pinot Noir variety in 

response to defoliation. The following discusses the observations and trends recorded 

across several common clones and several years which provide interesting 

background for discussion and further study.    

4.4.1 The impact of defoliation 

Fruit composition was not influenced by defoliation, except for soluble solids when 

data was combined from all three seasons. This observation would suggest that for 

Pinot Noir in a southern Tasmanian vineyard, anthocyanin concentration, pH or TA 

was not affected in response to increased exposure from fruiting zone defoliation.  

Leaf removal was observed to both increase (Ezzahouani & Williams, 2003; Hunter 

et al., 1995; Kerslake, 2011; Staff et al., 1997) and have no effect on anthocyanin 

accumulation in red grape varieties (Vasconcelos & Castagnoli, 2000). This increase 

is however not consistent between years (Kerslake, 2011; Zoecklein et al., 1997). The 

observation of inconsistent increases in particular seasons may point to interaction 

between exposure and source sink relationships of the vine which are extremely 

difficult to separate (Downey et al., 2004). Source limitation of energy within the 

grape vine may have limited anthocyanin biosynthesis (Downey et al., 2004). It is 

also expected that canopies of lower vigour, such as in the present study, are less 

likely to exhibit increases in anthocyanin, as exposure in non-defoliated vines may be 

adequate to enable maximal anthocyanin biosynthesis. The relationship between 

exposure and anthocyanin development in isolation of source limitation will be 

explored further in chapter 5 of this thesis.  

There was no significant effect of treatment on titratable acidity or pH. The results of 

this experiment are similar to that of Ollat & Gaudillere (1998) and Vasconcelos & 

Castagnoli (2000). The impacts of fruiting zone defoliation experiments on acid 
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metabolism in the developing berries of Vitis Vinifera are varied. Hunter et al., (1995) 

and Reynolds et al., (1996) reported a decrease in titratable acidity and pH in 

response to defoliation, while Kliewer & Antcliff (1970)  reported an increase. 

Considering the strong influence of temperature on acid metabolism of Vitis vinifera 

fruits, particularly temperatures above 20°C it is expected that the lack of an effect of 

defoliation on the acid metabolism of fruit in this instance is not entirely unexpected 

due to the cool local climate and the lack of a vigorous growth and heavily shaded 

canopy.  

When measurements were combined across all vintages soluble solids were 

significantly decreased (Table 4-2) as a result of defoliation. Only the control and 

severe levels of defoliation were significantly different in soluble solids accumulation. 

The results of this experiment are both in agreement with some authors, who 

observed reduced soluble solids with defoliation (May et al., 1969; Reynolds et al., 

1996; Vasconcelos & Castagnoli, 2000), and in disagreement with other authors, who 

observed increasing or no difference in soluble solids with defoliation (Bledsoe et al., 

1988; Main & Morris, 2004; Ollat & Gaudillere, 1998; Percival et al., 1994b). The 

delayed timing of veraison (Table 4-5) observed in response to the 100% treatment is 

likely to have caused lower soluble solids at harvest as a result of source limitation of 

the plant (Petrie et al., 2000a). It has been observed that the leaves of Vitis vinifera cv. 

are able to compensate for defoliation by increased photosynthetic rates (Bledsoe et 

al., 1988; Hunter et al., 1995). In Pinot Noir photosynthetic rates between defoliated  

and  non-defoliated vines have been observed to be similar (Candolfivasconcelos et 

al., 1994). Candolfivasconcelos et al., (1994) attributed the lack of compensation of 

photosynthetic capacity to a later timing of defoliation. The observations of Bledsoe 

(1988) in Sauvignon Blanc also support this theory. In the current experiment 

cessation of shoot growth was observed to have occurred in all three years coinciding 

with, or immediately preceding defoliation. Additional vegetative growth was not 

observed to have occurred but this was not measured.  In the present experiment, the 

observed delay in ripening and reduced soluble solids, indicate that photosynthetic 

compensation did not occur. The results of the present study would confirm the 



 54 

conclusion that anthocyanin accumulation is independent of sugar accumulation 

(Kerslake, 2011).   

Defoliation lead to significant differences for bunch number and yield when data was 

combined across all vintages (Table 4-2). A reported significant effect on bunch 

number in the first experimental season (Table 4-1) was dismissed, as natural 

variability as bunch number was set before treatments were imposed. Fruiting zone 

defoliation has been reported to reduce yield and yield components through a 

reduction in bunch number by affecting bud fertility in subsequent seasons (May et 

al., 1969), a reduction in berry weight (Coombe, B. G., 1959; Kliewer & Antcliff, 

1970; May et al., 1969) and reduced fruit set (Coombe, B. G., 1959). Shoot numbers 

were not measured. It is not known if bunch number reduced as a function of reduced 

shoot number or reduced bunch number per shoot, making it difficult to propose a 

mechanism for the observed reduction in yield.  

The observation that Y:P ratio was significantly affected by defoliation (Table 4-1) 

would support an argument that defoliation was impacting vine growth in the 

subsequent season, and therefore potentially fruit quality, as a result of changes to 

vine balance. In the experiments of Kerslake (2011), Y:P increased with defoliation 

in one of the two vintages suggesting vine balance (Y:P, >4) was not necessarily 

negatively impacted by defoliation through sink limitation. It is the author’s opinion 

that the observations of Kerslake (2011) were associated with a more vigorous 

canopy, which as a result of environmental influence lead to an increase in berry 

weight, not observed in the present study, and therefore bunch weight. It has been 

shown that vigour may influence anthocyanin accumulation of Pinot Noir (Cortell et 

al., 2007). Canopy vigour and size may therefore explain the lack of consistency 

observed for fruit composition between regions and between seasons (Kerslake, 2011; 

Zoecklein et al., 1997). In the present study Y:P ratios for 2006 and 2007 vintages 

were 2.85 and 2.34, below that suggested to be optimal for Pinot Noir (Kliewer & 

Dokoozlian, 2005) Y:P is generally lower in cool climates (Dry, PR et al., 2004). The 

delay in ripening observed in the present study and a decrease in the Y:P ratio in two 

of the three defoliated treatments, suggest that  in low vigour sites the optimal Y:P 

ratio may be below that of previous recommendations.  
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4.4.2 Seasonal variation  

It has been identified that season or site differences have a significant impact on the 

direction and magnitude of response of grape composition to defoliation (Kerslake, 

2011; Zoecklein et al., 1997). Significant differences were observed in all variables 

across all years, confirming these observations (Table 4-3 & Table 4-4). Kerslake 

(2011) suggests that in seasons with high rainfall or lower than average MFT, leaf 

plucking may be of little or no use for improving grape composition, a major 

conclusion of this study is that seasonal influences have a far greater impact on fruit 

composition than management techniques and that a range of climatic variables may 

be associated with grape and wine composition (Presented in Table 3-1). Averaged 

fruit quality and yield component data compared to MJT, MFT, Rainfall, (mm, Sept – 

May), Rainfall (mm, Jul – Jun), GDD or FDD presented in Table 3-1, were shown to 

have no significant correlation in this study, though principal component analysis 

was not conducted and may have been more appropriate for examining differences 

between seasons. Both hour degrees and average temperature were shown to have 

significant positive relationships with pH and total anthocyanin (Table 4-7). This 

may suggest the pH and total anthocyanin accumulation were related to temperature 

accumulation or controlled by the availability of photosynthate. In a complex field 

environment the underlying mechanisms of this observation are difficult to separate 

(Downey et al., 2006).  

The amount of variability and the size of the data set of this experiment allows for 

further investigation of relationships between yield components, or between yield 

components and fruit composition.  

Variation in bunch weight was shown to explain approximately 50% of the 

variability in yield greater than all other components (Table 4-6). Berry number was 

observed to be strongly correlated with bunch weight (Figure 4-5). This confirms the 

well established relationship bunch weight as a function of berry number is a key 

determinate of yield (Dunn & Martin, 2000). Berry number in Pinot Noir is strongly 

influenced by the effect of weather at flowering (Heazlewood, 2005), this is the likely 

major underlying factor for differing bunch weights and yields displayed in Table 4-4. 
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Berry weight was significantly different across all vintages though they were largest 

in 2007.  

Early prediction of bunch weight would significantly aid growers in achieving target 

yields and further reducing variability. Branch number, width and length are to a 

large degree determined prior to anthesis (Shavrukov et al., 2004) and, given a 

suitable level of a association with berry number and weight, would provide further 

information for early yield estimation and potentially manipulation. There is a 

logarithmic relationship between branch number and inflorescence number (May, 

2000). Correlation analysis (Table 4-7) suggests that primary branching accounts for 

less than 50% of the variation in yield. The results observed for primary branch 

number in Table 4-7 confirm the observations of previous authors. Variation in 

branching within the rachis accounts for less than 50% of variation in bunch size in 

cool climates, primarily due to the effects of weather pattern on fruit set (May, 2000). 

In the present study, increasing berry weight was found to be positively correlated 

with TA (Figure 4-6) and negatively correlated with anthocyanin concentration mg/g 

(Figure 4-7).  It is proposed that both relationships are based on the surface area to 

volume ratio of the fruit, but each in a different manner. TA is directly influenced by 

the respiration rate of the berry which is a direct function of temperature (Kliewer & 

Lider, 1968), larger berries are likely to heat and cool at a slower rate and therefore 

have a lower  TA (Jackson, DI & Lombard, 1993). Increased total anthocyanin was 

also shown to be negatively correlated with berry weight. This relationship has been 

discussed by a number of authors (Roby et al., 2004; Roby & Matthews, 2004) and in 

greater depth in Chapter six.  

A significant relationship was found between yield and total anthocyanin 

concentration (Figure 4-8). In 2006 small bunch weights were recorded partly as a 

result of reduced berry weight. Weather, such as unusually cool temperatures or rain, 

at flowering have been suggested to be implicated in reduction of yield (Heazlewood, 

2005), these events are often associated with a disorder known colloquially as "Hen 

and Chickens" (millerandage) (May, 2000). Significantly lighter berries as a result of 

the disorder in the 2006 vintage may have driven this relationship through a 
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significantly higher surface area to volume ratio as outlined above. An alternative 

hypothesis is that a smaller number of berries in the 2006 vintage, spread over a 

greater length (Table 4-4), reduced the compactness of the bunch increasing the 

exposure of individual berries and therefore increasing the total anthocyanin 

concentration as displayed by the relationship presented in Figure 4-9. The fact that 

the anthocyanin concentration per berry was higher in the 2007 vintage, would seem 

to favour the first of the two hypotheses. The relationship between bunch exposure 

and bunch compactness and their individual or combined influence on fruit 

composition, are examined in the final two experimental chapters of this thesis.  
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Chapter 5    - The influence of fruit exposure on the 

composition of Pinot Noir  

5.1 Introduction 

In chapter 4 it was reported that defoliation in the fruiting zone of Vitis vinifera Pinot 

Noir grown in Tasmania had a limited effect on basic measures of fruit composition, 

though seasonal differences and interactions with aspects of natural and cultural 

influence have previously been shown to significantly impact fruit composition of 

Pinot Noir (Cortell et al., 2008; Kerslake, 2011; Koblet et al., 1994). Experimentally 

it has remained difficult to isolate the direct impact of fruit exposure on basic fruit 

composition without compromising to at least some degree the source sink 

interactions of the plant (Downey et al., 2006).  The results of chapter four suggest 

that source limitation due to defoliation in Pinot Noir may have been an overarching 

factor in a lack of a result; field variability may have also been a factor. GDDs were 

also found to be correlated with total anthocyanin per berry. The possibility of light 

regulated changes to berry composition have been highlighted by recent research 

(Shabala & Wilson, 2001), as has the potential for intra-bunch shading to occur  

(May, 2000). An attempt is made in this chapter to separate the effects of exposure to 

light and ambient temperature surrounding the bunch without altering the source sink 

relationships of field grown Pinot Noir vines. 

Anthocyanins accumulate steadily during berry ripening, stabilising toward 

maturation and may reduce during over ripening and berry shrivel (Mazza, G. et al., 

1999). Modification of the fruiting microclimate, by defoliation, has been shown to 

significantly increase anthocyanin biosynthesis of Vitis sp. fruits. Heuvel et al., 

(2005). Increased anthocyanin biosynthesis  has been reported in the De Chaunac 

variety and Mazza et al., (1999) reported increases in the anthocyanin production of 

Merlot, Cabernet Franc and Pinot Noir as a result of defoliation. Vasconcelos and 

Castagnoli (2000) reported that there was no change in the accumulation of 

anthocyanin in response to defoliation.   
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The relationship between exposure of fruit of Vitis sp. to solar radiation and the 

development of anthocyanin has been explored to a considerable degree and has been 

recently reviewed by Downey et al., (2006). The review highlights a number of 

investigations that suggested that lower levels of light led to reduced colour of Pinot 

Noir (Kliewer, 1970), Emperor table grapes (Kliewer, 1977), Shiraz (Smart, R. E. et 

al., 1985) and Cabernet Sauvignon (Dokoozlian & Kliewer, 1996; Hunter et al., 1995; 

Morrison & Noble, 1990) and the emergence of contradictory studies suggesting that 

exposure led to no change (Vasconcelos & Castagnoli, 2000), or even lower levels of 

anthocyanin as a result of overexposure or limited photosynthate (Bergqvist et al., 

2001; Hunter et al., 1995; Spayd et al., 2002). Other authors have observed shifts in 

the levels of various anthocyanins contributing to overall composition (Cortell & 

Kennedy, 2006; Downey et al., 2004; Haselgrove et al., 2000; Joscelyne et al., 2007; 

Price et al., 1995).  

It was previously thought that anthocyanin biosynthesis seems to be mostly regulated 

by temperature (Downey et al., 2006). A review by Downey et al., (2006) discusses 

the attempts of various authors to separate the effects of temperature and light on 

anthocyanin biosynthesis, highlighting three approaches to separate these variables. 

Kliewer and Torres (1972) and Dokoozlian and Kliewer (1996) in Pinot Noir and 

Cabernet Sauvignon respectively, successfully manipulated anthocyanin 

concentration by differing temperature using potted vines in a phytron. The 

conditions imposed in the experiments were highly artificial and the result may have 

been an artefact of either or both using potted vines or the phytron. The second 

approach discussed were experiments using the vine canopy to impose different 

levels of exposure. Bergqvist et al., (2001) concluded that in Grenache and Caberenet 

Sauvignon when monitoring the shaded and sunny sides (east west orientated rows) 

of the canopy that increasing light up until 100mmol/m
2
/s increased the accumulation 

of anthocyanin but beyond this, accumulation began to decrease (Downey et al., 

2006). Spayd et al., (2002) used north south orientated rows to expose fruit to the 

morning sun on the eastern side and the afternoon sun on the western side. The 

author showed that the temperature of fruit exposed on the western side of the canopy 

was substantially higher than that on the eastern side of the canopy. Fruit from the 
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cooler (eastern) side of the canopy was shown to have lower levels of anthocyanin. 

When fruit of the western side was artificially cooled and when fruit from the eastern 

side was artificially heated, both treatments lead to in an increase in anthocyanin 

biosynthesis suggesting that temperature played a key role. The third approach is that 

used by Downey et al.,(2004) on Shiraz and by Cortell and Kennedy (2006) on Pinot 

Noir. In these experiments a light exclusion box was used to modify the light 

environment of bunches without modifying temperature or humidity. Downey et al., 

(2004) observed that Shiraz was able to accumulate anthocyanin, in the absence of 

light, at similar levels to that of exposed fruit, and anthocyanin accumulation of 

Shiraz was not influenced by fruit exposure to light. In Pinot Noir total anthocyanin 

content was not observed to be impacted by exposure, while ratios of individual 

anthocyanins were shown to differ (Cortell & Kennedy, 2006).   

The issue of temperature and light is further complicated by the suggestion that the 

optimal temperature for biosynthesis is likely to differ for individual varieties and 

that diurnal temperature fluctuations may influence anthocyanin biosynthesis (Mori 

et al., 2005). 
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5.2 Materials and Methods 

5.2.1 Site Characteristics 

 

The experiment was carried out in a commercial vineyard located in southern 

Tasmania, (42°52'30 "S 147°25'21"E), on a north facing slope with an elevation of 75 

metres above sea level. Vine spacing was 1m between vines and a row spacing of 2 

m. The fruiting wire height was 90 cm. Vines were eight years old and cane pruned 

consisting of two, ten bud, horizontally trained cordons, and two, two bud spurs 

located in the head of the vine to provide replacement shoots. Shoots were positioned 

vertically. Management was carried out in line with normal commercial practice and 

was uniform across all treatments. Rows were orientated in a north south direction. 

The variety was Pinot Noir clone D5V12 (2051).  

5.2.2 Treatment design 

The experiment was a 5 replicate by 6 treatment random block design. Replicates 

were blocked to rows with treatments randomly assigned within the block. 

Treatments were applied at the first sign of berry colouration, January 23
rd

 2007. 

Treatments were applied to eight basal bunches on a single vine and kept in place 

until harvest, April 2
nd

 2007.  

Treatment 1 was designed to exclude all light from the bunch (Plate  5-1). 

Polyethylene sheeting was cut and shaped into two separate dish shaped structures. 

Each dish measured 200 mm deep and 120 mm wide at the base. The sides were 

folded and glued into place so as the opening of the wider dish measured 200 mm 

deep and 190 mm wide and the narrower dish 200 mm deep and 140 mm wide. A 

small slit was cut into the dishes at one end to allow the rachis to fit through and the 

bunch to be completely covered by the two halves. The insides of the dishes were 

then coated by two coats of black acrylic paint.  In the field the narrower dish was 

placed inside the wider dish and fitted in such a fashion that a 10 mm gap occurred 

on both sides of the narrower dish from the wider dish so as to provide sufficient air 
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movement. The two dishes were then set in place with heavy duty plastic adhesive 

tape (Plate 5-2).  

 

 

Plate  5-1, Light exclusion box placed over a bunch in the field. 

 

Treatments 2, 3 and 4 were applied using bags made from 90%, 70% and 50% 

exclusion, commercial shade cloth (Plate 5-3). Bags were made by cutting shade 

cloth to 200 mm by 500 mm strips. The shade cloth was then folded in half to 

measure 200 mm by 250 mm. The two longer sides were sewn together to form a bag.  

The bags were then placed over individual bunches and 4 staples placed around the 

opening and top of the bag to secure it in place.   

Treatment 5 (Plate 5-4) was designated the untreated control. Eight basal bunches 

were harvested at random from a single pre-designated vine. 

Treatment 6 (Green house) was designed to increase ambient temperature around the 

bunch.  A 1 litre slightly opaque cylindrical bucket was used to completely surround 

bunches.  Four 20 mm evenly spaced holes, were drilled 1 cm from the bottom of the 

bucket, in the side of the cylinder to allow air movement. In the base of the bucket a 

large cross was cut using a razor blade. This allowed passage of the bucket over the 
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bunch so as the bunch was able to fit neatly in place. Care was taken not remove 

berries from bunches (Plate 5-5).   

All treated samples were taken from vines and processed as per the general methods. 

 

 
Plate 5-2, Treatment 1, 100% light exclusion 
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Plate 5-3, Treatments 2-4 light exclusion shade cloth 

 
Plate 5-4, Treatment 5, untreated control 
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Plate 5-5, Treatment 6, green house,  slightly opaque plastic bucket 

 

5.2.3 Monitoring and description of bunch microclimate 

In two replicates of this experiment, monitoring equipment was deployed to describe 

changes to temperature and light as a result of the imposed treatments. Four bunches 

were selected in each treatment to be monitored, with a sensor for both temperature 

and light. Four sensors, two for temperature and two for light, were also placed 

within a monitoring station suspended 1m above the ground and under canopy nets 

(Plate 5-6).  

A Datataker DT80 and channel expansion model (data taker CEM) were used to 

record temperature and light readings every 10 minutes for a three week period 

between the 9
th

 March 2007 and 29
th

 of March 2007. 

Light was monitored using calibrated handmade sensors from light sensitive 

photodiodes peak intensity at 525 nM. (Model EPD-525-0-1.4. senetivity range 480-

560 nM, sensitive area 1.79 mm
2
, Roithner Lasertechnik) soldered to commercial 2 
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mm dual core speaker wire. The light sensor was placed at a point immediately above 

the highest berries directly adjacent to the rachis and facing north and directly in line 

with the row. Temperature was measured using handmade thermocouples made from 

1 mm Type K, wire with a 10 mm polystyrene ball attached using an epoxy resin to 

buffer temperature fluctuations. Temperature sensors were calibrated and 

standardised using a mercury thermometer at 10 °C and 20 °C in the laboratory. 

Temperature sensors were placed in close proximity to the outer edge of the bunch on 

the northern side. 

The six different treatments were monitored in two replicates, three treatments in 

each replicate, due to the logistics of running sensors from a data logger to randomly 

allocated treatment and the number of channels available for monitoring. For each 

treatment, three temperature and three light sensors were placed in different bunches, 

within a single replicate of that treatment. Each bunch was assessed for fruit 

composition, length, width, bunch weight and berry number as per the general 

methods. Individual points of this subset were used for correlation analysis. 

Measurements were averaged and converted to a percentage of the ambient light to 

estimate the degree to which each treatment shades the bunch.  
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Plate 5-6 Monitoring equipment deployed in the field. 

5.2.4 Statistical Analysis 

All results were normally distributed and untransformed data were analysed using a 

ANOVA in SPSS version 19 using a type III sum of squares analysis. Means were 

compared using Fischers Least Significant Difference (LSD) calculated at P=0.05 

after the method of Steele and Torrie (Steel & Torrie, 1980) 

Correlation analysis was carried out using the univariate linear regression models 

package in SPSS version 19 to assess independent variables.  
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5.3 Results 

Total anthocyanin concentration (mg/g) was found to be significantly increased only 

by the greenhouse treatment (Table 5-1). No significant differences were observed 

for any other recorded variables (Table 5-1). TA was lowest in the Greenhouse 

treatment. A significant correlation was observed between exposure (total 

accumulated light percentage of ambient) and total anthocyanin development when 

monitored bunches were processed individually (Figure 5.1). No relationship was 

recorded between any characteristic and average temperature.  

 

 
Figure 5-1, Relationship between total accumulated light and accumulated anthocyanin in Pinot 

Noir   

 y = 0.0345x + 0.7864 and R
2
 = 0.61.  

 

A significant correlation was also found between accumulated light and anthocyanin 

mg/g (P<0.05, R
2
 = 0.61)



69 

 

Table 5-1 The response of fruit compositional and yield components to shading treatments in Vitis vinifera cv. Pinot Noir  

 

pH 

Titratable 

acidity 

(g/L) 

Total 

Anthocyanin 

(mg/g) 

Total 

Anthocyanin 

per berry 

Soluble 

solids 

(°Brix) 

Mean 

bunch 

weight 

(g) 

Berry 

number 

Primary 

branch 

number 

Mean 

berry 

weight 

(g) 

    
 

     
Dark 4.13 6.06 0.70a 0.32 25.9 59.0 129.3 14.4 0.47 

90% shade 3.82 6.13 0.90a 0.40 24.9 59.3 133.9 14.4 0.42 

70% shade 3.66 6.48 0.92a 0.39 24.6 51.4 119.4 13.5 0.44 

50% shade 3.90 6.01 0.94a 0.44 25.6 57.1 122.0 14.0 0.49 

Untreated 4.12 6.55 0.87a 0.41 24.3 51.5 108.6 12.0 0.48 

Green house 3.95 5.27 1.15b 0.50 26.3 44.2 102.1 12.9 0.44 

    
 

     
Pvalue ≤0.05 ns ns 0.045 ns ns ns ns ns ns 
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Table 5-2, Total mean accumulated light for shaded bunches expressed as percentage of total ambient light 

Treatment Mean light interception 

( % ambient) 

Standard 

error 

  

 

Dark 0.03% 0.02 

90% shade 2.08% 0.69 

70% shade 2.73% 0.63 

50% shade 4.76% 0.40 

Untreated 9.56% 2.45 

Green House 14.28% 2.98 

 

 
Table 5-3, Maximum temperature, minimum temperature and mean temperature of sensors located within the bunch in response to imposed shade 

treatments  (Standard error represents variation between sensors) 

 

Maximum 

temperature (°C) 

Standard 

error 

Minimum 

temperature (°C) 

Standard 

error 

Mean 

temperature (°C) 

Standard 

error 

       Dark 37.16 0.39 3.41 2.80 20.33 0.19 

90% shade 36.34 1.03 7.80 2.91 20.45 0.10 

70% shade 40.20 0.89 4.00 2.60 20.58 0.12 

50% shade 40.43 0.24 4.13 1.30 20.73 0.06 

Untreated 41.85 0.14 4.85 0.58 21.02 0.04 

Green House 39.92 0.81 0.03 3.18 20.30 0.23 

Ambient 41.67 0.07 5.93 0.00 21.35 0.02 
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Figure 5-2, 24 hour mean temperature of sensors located within shaded bunches of Pinot Noir and ambient between 10/03/2007 – 12/03/2007 
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Figure 5-3, 24 hour mean light curves located within shaded bunches of Pinot Noir and ambient between 10/03/2007 – 12/03/2007 
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5.4 Discussion  

Shading did not significantly influence anthocyanin composition of shaded 

treatments (Table 5-1). This result is similar to that of  Cortell and Kennedy, (2006) 

and Downey et al., (2004) in Pinot Noir and Shiraz respectively. Both studies 

reported a significant shift in the proportion of individual anthocyanin glucosides, but 

no impact on total anthocyanin concentration. The correlation between increasing 

exposure and total anthocyanin development (Figure 5.1) on the other hand, 

contradicts the analysis of variance results for in this experiment and also the results 

of Cortell and Kennedy, (2006) and Downey et al., (2004). Though not significantly 

different from the control or shaded treatments the lowest average anthocyanin 

concentration was recorded in the dark treatment.  

UV radiation has been implicated in increasing the anthocyanin concentration in 

fruits such as peach (Kataoka & Beppu, 2004). Anthocyanins have been implicated 

as scavengers of free radicals in berries (Kahkonen et al., 2003). Cortell and Kennedy, 

(2006) present an argument that differences in UV exposure shift the ratio of 

anthocyanin biosynthesis in the skin tissues as a response to stress. Though not 

significantly different, the lowest amount of anthocyanin was recorded in the shaded 

treatment. In the present experiment berry size was consistently small. High total 

anthocyanins were recorded across all treatments and were twice that observed by 

Cortell and Kennedy, (2006). Greater replication in this experiment may have lead to 

significant differences between treatments being observed by accounting for more 

natural variation. It is not known if high absolute values recorded in the present study 

are an artefact of differing method, differing levels of plant “stress” associated with 

environmental influence (Cortell et al., 2007), differing  genotype (Mori et al., 2005), 

or possibly increases in UV B radiation as a result of a cyclic pattern in stratospheric 

ozone depletion associated with proximity to Antarctica (Solomon et al., 2005).  

It has been observed that gene expression of key enzymes of the two biosynthetic 

pathways for anthocyanin in grapevine may be significantly altered in response as a 

result of temperature (Mori et al., 2005),  a similar influence may have occurred here. 
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The present experiment should be repeated with specific attention to shifts in 

individual polyphenols and monitoring of radiation in the UV spectrum.  

Total anthocyanin concentration of fruit in this experiment was significantly affected 

by only the “green house” treatment, in which the highest level of accumulated 

anthocyanin was observed (Table 5-1). This treatment was designed to increase the 

temperature of fruit by trapping solar radiation inside the cylinder structure, in a 

greenhouse like effect. Anthocyanin concentration of fruit has been shown to 

increase as a result of higher temperature (Dokoozlian & Kliewer, 1996). 

Observations of minimum temperatures and maximum temperatures (Table 5-3) 

recorded for the green house treatments did not appear to vary markedly from other 

treatments. An unexpected observation recorded for this treatment was a reduction in 

overnight temperatures, as displayed by mean minimum temperature (Table 5-2) and 

when viewing pre-dawn temperature curves (Figure 5-3). This observation was only 

recorded in only the green house treatment. There are a number of possible 

explanations for this observation. Equipment failure can’t be ruled out as factor. The 

equipment was calibrated in laboratory conditions between 10 °C and 20 °C. 

Examining the curves in Figure 5-3 much of the variability in temperature between 

treatments occurs over two periods, during pre-dawn measurement or during light 

exposure in the fruiting zone during the middle of the day before and directly after 

the canopy is shaded as a result of the mid day sun being directly shaded by the 

canopy (Figure  5.4). Given the absence of intense light on the sensor or within the 

bunch zone, little variation between sensors occurs. A consistent curve is observed 

particularly for large parts of the night leading up to the predawn period, the evening 

and during cloudy cooler days for example the 12
th

 of January 2007 (Figure 5.3). 

This would suggest that equipment was operating normally for the majority of the 

day.  

High daily maximum and minimum temperatures recorded in Figure 5.2 are well 

above those recorded at the nearby Hobart Airport for similar days. For example, 

maximum temperature recorded at the Hobart airport from the 10
th

-12
th

 of March 

2007 were 23.5, 26.3 and 16.1. In some cases there was over 10 °C difference 

between the recorded maximum in the experiment and the recorded daily maximum 
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at the Hobart airport. The two sites have different microclimates as a result of 

differing aspect and the surrounding geography. This may explain some of the 

variability in maximum temperatures between the Hobart Airport and the 

Experimental site, but it is unlikely that it explains a 10 °C shift in temperature. The 

equipment used to measure differences in voltage produced by thermocouples, 

utilises an internal standard, on which it bases temperature values. For this reason 

polystyrene protection was added around the recording device. Insufficient insulation 

around the device, which was located in a large metal box (Plate 5.6), may be 

responsible for some of the differences in daily maximum temperatures recorded. 

Although it is reasonable to question the accuracy of temperatures reported in this 

study, the differences between treatments are expected to have been affected 

similarly, given the utilisation of a standard internal measure from which all 

measurements are compared at any given time. The standard error calculated for 

temperature measurements does not suggest that a particular treatment exhibits more 

variability than other treatments (Table 5-3). The low standard error term for the 

ambient sensors may also suggest that the variability in measurements may be either 

in response to treatments or natural variability in the bunch microclimate. This 

explanation may take into account high maximum temperatures, but does not explain 

low temperatures, particularly those recorded in the green house treatment. 

A plausible explanation for this observation may be that the lack of a buffering leaf 

layer immediately surrounding the bunch caused lower pre-dawn fruit temperatures. 

Increasing diurnal fluctuation in temperature has been observed to increase 

anthocyanin accumulation in grape berries (Mori et al., 2005). Differences in gene 

expression of key enzymes in the anthocyanin biosynthesis pathway were discussed 

as the likely cause for this increase (Mori et al., 2005), and that absisic acid may 

control the expression of anthocyanin biosynthetic enzyme genes (Yamane et al., 

2006). Speculating, it may also be the case that increased capture of radiation within 

the cylinder, created by the bucket, did indeed result in intensified levels of radiation 

of a particular wave length. Without further experimentation the mechanism of this 

observation remains unknown.  
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Other fruit compositional parameters were unaffected as a result of changes to in 

exposure to light. While soluble solids have been shown to increase with fruit 

exposure (Petrie et al., 2003) the lack of a result is in agreement with other authors 

(Cortell & Kennedy, 2006; Hunter et al., 1995). Though lowest in the greenhouse 

treatment, TA was unaffected by treatment. TA is directly influenced by the 

respiration rate of the berry which is a direct function of temperature (Kliewer & 

Lider, 1968). It would have been expected that if exposure significantly impacted on 

fruit temperature TA would have been lower in less shaded treatments (Jackson, DI 

& Lombard, 1993). Diurnal fluctuations in temperature have also been discussed as 

being important in maintaining acid and lowering pH for longer during maturation, 

with high day temperatures and low night temperatures being the most favourable 

(Kliewer & Torres, 1972). The lack of an observable difference in pH due to the 

complicated nature of conditions imposed by this experiment and the complicated 

nature of changes to pH in the vineyard (Bisson, 2001) is therefore not surprising.  
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Chapter 6    - The effect of bunch architecture and 

internal shading on fruit composition in Pinot Noir 
 

6.1 Introduction 

In some Vitis vinifera  varieties, particularly Pinot Noir and Chardonnay, berries may 

grow and expand so that the bunches of some varieties form almost solid bodies 

(May, 2000). This observation has created speculation (Heazlewood, 2005) that fruit 

composition may be influenced by the degree to which individual berries are shaded 

within the greater structure of the bunch (cluster). Visual examination of clusters with 

a “tight” structure often reveals berries which appear to be of reduced colour intensity. 

The degree of “compactness” of a bunch is directly influenced by berry number and 

size, in comparison to the volume occupied by the extremity of the bunch. The final 

volume occupied is largely determined by the growth of the inflorescence and in 

particular the cluster rachis which provides the framework to which berries attach 

(Shavrukov et al., 2004). It has also been observed that a relationship between 

anthocyanin (absorbance at 520 nm of skin discs taken from Pinot Noir) and the 

number of berries per bunch, may indicate that bunch size or compactness could be 

related to the fruit composition of Pinot Noir. A review by May (2000) has suggested 

that rachis branch number, inflorescence and berry number and the overall 

morphology of the bunch, may all be important in determining the final compactness.  

Inflorescence primordia growth begins in the previous vegetative season in latent 

buds (Mullins et al., 1992). Following bud burst, a sigmoidal pattern of inflorescence 

growth is observed. The most rapid growth immediately precedes capfall, after which 

the growth rate slows then plateaus until the point of harvest (Shavrukov et al., 2004). 

Environmental factors such as temperature and day length influence inflorescence 

initiation and development (Buttrose & Hale, 1973; Sugiura et al., 1975). Rachis 

internode length has also been shown to be a major factor in bunch compactness and 

is likely to be under the control of a single major gene in Vitis vinifera (Dry, IB & 

Thomas, 2003). Studies reveal that changes to inflorescence architecture may be a 
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function of cell division, cell expansion, or both within the rachis of the inflorescence 

(Goosey & Sharrock, 2001). In Vitis extension of the rachis has been shown to be 

almost solely the function of internode cellular expansion prior to anthesis 

(Shavrukov et al., 2004).  

Application of Gibberelic Acid (GA3) has been used experimentally in Vitis vinifera 

since the mid 1950’s. It has widely been discussed as a tool for reducing the 

compactness of the bunch and as a tool for yield control in various species including 

Vitis vinfera. Early studies indicated that the response of Vitis vinfera to application 

of GA3 were numerous and diverse. Spraying and dipping treatments at various 

developmental stages in Vitis vinfera resulted in an increase in shoot and internode 

length, berry elongation, hastened onset of flowering, increase in cluster and rachis 

length, an increase in the number of shot (seedless) berries and that the colouration of 

the red wine grape variety Zinfandel was advanced following application (Weaver & 

McCune, 1959b) and further that treatment at bloom resulted in many shot berries, 

reduced frequency of bunch rot, crop reduction and reduced berry number (Weaver & 

McCune, 1959a).  The translocation of GA3 within the vine was also observed to be 

readily translocated from leaves into developing clusters and also from clusters and 

lower leaves to the shoot apex, but not from one shoot to another. (Weaver & 

McCune, 1959a).  

Studies have indicated that the ability of GA3 to manipulate bunch architecture and 

compactness fall into two groups, treatments which affect fruit set (Dokoozlian et al., 

2001; Teszlak et al., 2005; Weaver & McCune, 1959b) and those that affect bunch 

length (Ferree et al., 2003; Shavrukov et al., 2004). Treatments applied later in the 

development of the cluster, for example those applied at bloom or fruit set, reduce 

berry number and lead to an increase in berry size. This response may or may not 

lead to significant reduction in yield but do not significantly increase cluster length 

(Weaver & Pool, 1971). Pre-bloom treatment tends to lengthen clusters and hence 

decrease the cluster compactness  (Ferree et al., 2003). GA3 application has been 

shown to affect a number of growth and developmental processes in plants including 

the stimulation of cell division and elongation in rapidly growing tissues (Davies, 

1995). As a factor of increased cell division and enlargement it is hypothesised that 
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application of  GA3 two weeks prior to the beginning of capfall (Ferree et al., 2003) 

and coinciding with the most rapid period of cluster elongation (Shavrukov et al., 

2004) will induce elongation of the rachis. 

The aim of the experiment is to examine the effect of GA3 on bunch architecture in 

Vitis Vinifera cv Pinot Noir through application at EL15 approximately two weeks 

before the beginning of capfall. The expectation was that early application would 

increase cluster length with limited effects on berry number or size, thereby reducing 

the compactness of the bunch. 
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6.2 Materials and methods  

 

6.2.1 Site Characteristics 

The experiment was carried out in a commercial vineyard located in southern 

Tasmania over three consecutive vintages between 2006 and 2008. The canopy was 

trained to a modified lyre trellis with shoots positioned vertically. Vines were Pinot 

Noir clone D5V12 (2051) greater than 25 years in age. They were pruned to two, two 

bud spurs and two, ten bud canes. Rows were orientated in an east west direction. 

BCV 42°49'12"S 147°50'26"E, elevation 65 m 27 km from the Hobart Airport 

Bureau of Meteorology weather station (BOM station 094008). 

6.2.2 Treatment Design 

Pro Gibb (Sumitomo Chem, GA3) was applied as a single application at EL 15 

approximately two weeks preceding the initial stages of capfall using 2.5 ml / L of 

Horti Oil (Synertrol) as a wetter. Previously treated vines were not used in 

subsequent seasons.  

No reference to application of GA3 on Pinot Noir could be found in the literature, 

studies have reported effective concentrations between 5 and 1000 ppm (Weaver & 

McCune, 1959b) with most in the range of 0 – 50 ppm (Ferree et al., 2003). In 

vintage 2006 concentrations of 0, 5, 10, 25 and 50 ppm GA3 and were applied to 

individual vines both by dipping bunches in a beaker of solution and spraying to the 

point of runoff in the fruiting zone in a 5 treatment, 2 application method, 4 replicate 

random block design. Vines were separated by untreated buffer vines on both sides. 

No significant differences were observed in relation to the bunch structure and the 

concentrations were concluded to be too low to significantly impact rachis length and 

width. Results are not presented. 

In vintage 2007 concentrations of 0, 150, 300 and 600 ppm GA3 were applied to two 

vines on opposite (north and south) sides of the modified lyre. Bunches were either 

dipped in a beaker of solution of containing the four different GA3 concentrations or 
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the fruiting zone was sprayed by hand to the point of runoff with the four different 

concentrations. Vines immediately neighbouring treated vines were left untreated and 

designated as buffer vines. The experiment was set up as an 8 treatment by 4 

replicate random block design. 

In the 2008 vintage concentrations of 0, 150, 300 and 600 ppm GA3 were applied to 

two vines on opposite (north and south) sides of the modified lyre. Bunches were 

sprayed with the 4 different concentrations in the fruiting zone, by hand to the point 

of runoff. Vines immediately neighbouring treated vines were left untreated and 

designated as buffer vines. The experiment was set up as a 4 treatment by 8 replicate 

random block design. 

6.2.3 Measurement and observation  

Treatment application took place on the 23
rd

 of November 2006 and the 25
th

 of 

November 2007 for harvest on the 8
th

 April 2007 and 15
th

 of April 2008 respectively.  

Observations of yield and fruit composition were carried out as per the general 

methods presented in chapter 3. 

Theoretical bunch volume was estimated using rachis width and length. 

 

Theoretical volume = 1/3 πr
2
 l, where r = width/2 and l = length 

 

Shavrukov et al., (2004) used displacement volume to measure the degree of bunch 

“compactness”. Extremely ripe fruit cracked and disintegrated when plunged into 

water and the likely influence on fruit composition deemed the method inappropriate. 

Other authors such as Ferree et al., (2003) used bunch length divided by bunch 

weight as a measure of compactness. The approach taken in the present study is 

therefore a combination of these two methods. ‘Bunch density’ was calculated to 

estimate the compactness of the bunch. This measure is calculated by dividing the 

weight of the bunch by its theoretical volume.  
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Density = Bunch weight / Theoretical Volume 

 

6.2.4 Statistical Analysis 

 

All results were normally distributed and untransformed data were analysed using a 

type III ANOVA in SPSS 17. Means were compared using Least Significant 

Difference (LSD) calculated at P=0.05 after the method of Steele and Torrie (1980). 

For the 2007 vintage application method was found not to be significantly different 

and the experiment was therefore analysed as an 8 replicate by 4 treatment random 

block design. 
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6.3 Results 

Application of GA3 significantly increased the length and width of clusters in the 

2007 vintage by a mean of up to 20 and 27 mm respectively (Table 6-1). In the 2008 

vintage GA3 had no significant effect on length but significantly increased width by a 

mean of 22 mm (Table 6-1). Volume of the bunch was significantly increased in both 

the 2007 and 2008 vintages and density was significantly reduced in both vintages, 

density and volume were impacted by treatment with GA3 to a greater extent in the 

2007 than the 2008 vintage (Table 6-1). 

Berry weight was significantly increased by the 600 ppm treatment in the 2007 

vintage (Table 6-2) Mean berry weight for all but the 600 ppm treatment was similar 

for both the 2007 and 2008 vintages. Bunch weight and berry number were not 

significantly affected in either vintage. Berry number and bunch weights were 

approximately 25 -30% larger in the 2008 vintage. 

Significant differences in fruit composition were observed in the 2007 vintage but not 

the 2008 vintage in the GA3 application treatments (Table 6-3). Total anthocyanin per 

unit weight and per berry, were both significantly increased while TA and pH were 

both reduced. Soluble solids concentrations were not significantly different between 

treatments.
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Table 6-1, The effect of pre-bloom gibberellic acid (GA3) application at varying concentrations on bunch length, width, theoretical volume and 

estimated density of Vitis vinifera cv. Pinot Noir over two vintages. (Significant differences are represented by letter groupings in superscript) 

 

 
2007 

 
2008 

    Concentration 
GA3 (ppm) 

Bunch 
Length 
(mm) 

Bunch 
Width 
(mm) 

Theoretical 
Bunch 

Volume 
(cm

3
) 

Bunch 
Density 
(g/cm

3
) 

 Bunch 
Length 
(mm) 

Bunch 
Width 
(mm) 

Theoretical 
Bunch 

Volume 
(cm

3
) 

Bunch 
Density 
(g/cm

3
) 

          0 109.1a 81.6a 286.6a 0.294a 
 

128.6 86.4a 384.5a 0.313a 

150 111.7ab 82.7a 316.9a 0.266a 
 

130.5 96.0b 481.1ab 0.249b 

300 121.0ab 97.2b 464.3b 0.179b 
 

137.0 97.7b 518.6ab 0.244b 

600 132.2b 107.1b 619.9c 0.154b 
 

134.0 108.2c 621.8b 0.220b 

          
Pvalue ≤0.05 0.028 0.001 0.003 0.001 

 
ns 0.001 0.001 0.002 
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Table 6-2, The effect of pre-bloom gibberellic acid (GA3) application at varying concentrations on yield components of Vitis vinifera cv. Pinot Noir over 

two vintages. (Significant differences are represented by letter groupings in superscript) 

 

 
2007 

 
2008 

        

Concentration 
GA3 (ppm) 

Mean Bunch 
Weight (g) 

Mean Berry 
Number 

Mean Berry 
Weight (g) 

 Mean 
Bunch 

Weight (g) 

Mean Berry 
Number 

Mean 
Berry 

Weight (g) 

0 84.3 119.4 0.71a 
 

116.6 130.6 0.67 

150 74.6 115.4 0.66a 
 

116.3 140.2 0.69 

300 78.0 113.9 0.72a 
 

125.1 142.9 0.69 

600 86.6 105.3 0.84b 
 

133.5 153.3 0.71 

        Pvalue ≤0.05 ns ns 0.016 
 

ns ns ns 
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Table 6-3. The effect of pre-bloom gibberellic acid (GA3) application at varying concentrations on fruit composition of Vitis vinifera cv. Pinot Noir over 

two vintages. (Significant differences are represented by letter groupings in superscript) 

 2007  2008 
            

Concentration  
GA3 (ppm) 

pH Titratable 
Acidity 
(g/L) 

Anthocyanin 
(mg/g) 

Soluble 
solids 
(°Brix) 

Anthocyanin 
(mg /berry) 

 pH Titratable 
Acidity 
(g/L) 

Anthocyanin 
(mg/g) 

Soluble 
solids 
(°Brix) 

Anthocyanin 
(mg /berry) 

0 3.26a 6.45a 0.99a 23.8 0.70a  3.78 5.39 0.86 25.8 0.76 

150 3.19b 5.89b 1.22c 23.6 0.79a  3.78 5.71 1.05 26.3 0.87 

300 3.21ab 5.67b 1.03ab 23.5 0.74a  3.65 5.52 0.94 25.9 0.82 

600 3.13b 5.99ab 1.14bc 23.1 0.93b  3.89 5.49 0.94 25.5 0.80 

            

Pvalue ≤0.05  0.006 0.034  0.008 
 

ns 0.002  ns ns ns ns ns 

 

 

 

 



87 

 

 
 

 

 

Plate 6-1, Comparison of bunches taken from Vitis vinifera cv Pinot Noir treated with GA3 at 

three concentrations (ppm) and a water control using two application methods spray (a) and dip 

(b). 

a) 

b) 
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Plate 6-2, Comparison of bunches taken from Vitis vinifera cv Pinot Noir treated with a water 

control (a) and 600ppm GA3 (b) applied at EL15 following harvest. 

a) 

b) 
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By combining the results of chapter 3 and chapter 5 into a bulk data set and 

comparing total anthocyanin and mean berry weight via a linear regression a 

significant negative correlation is observed between mean berry weight and total 

anthocyanin concentration (Figure 6-1).        

 

Figure 6-1, The relationship between mean berry weight and total anthocyanin concentration in 

Pinot Noir over 4 vintages and from two commercial vineyards in southern Tasmania (R
2
 = 0.47, 

P<0.0001, y = -0.741x + 1.505).        
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6.4 Discussion 

A single application of GA3 to Pinot Noir grapevines significantly affected bunch 

length in the 2007 vintage and width in both the 2007 and 2008 vintages. For the 

2007 vintage both width and length were increased incrementally and at the highest 

concentration by 23% and 18% respectively. In the 2008 vintage width increased by 

up to 20% in the 600 ppm GA3 Treatment (Table 6-1, Plate 5-1 & 5-2). These 

observations indicate that pre-flowering application of GA3 may increase the length 

of clusters by extending the rachis (Ferree et al., 2003). However the observation that 

width, not length was extended during the 2008 vintage may indicate a number of 

things. Studies suggest that the response of Vitis vinifera to GA3 is affected by timing 

(Weaver & McCune, 1959b). It is possible that treatment of clusters in this study may 

have occurred following the period of rapid growth in bunch length and was only 

active during the period when bunch width increased. The timing of extension of 

secondary branches is a research question that arises from this study. It may also be 

argued that a reduction in berry number may also have been observed due to a 

pollenicide effect of GA3 application timings closer to anthesis (Weaver & McCune, 

1960). However in cool climates such as Tasmania, flowering and other 

developmental processes may occur over an extended period (Heazlewood, 2005) 

which may have reduced the ability of GA3 application to act in this manner. The 

effect of GA3 on plants is also known to be affected by environmental influence, such 

as temperature (Olszewski et al., 2002), which may have also moderated the 

influence of GA3 application in this instance. If the results of this study were to be 

considered for commercial use in Pinot Noir, careful consideration would need to be 

given to the timing and rate of the spray. Unpublished data suggests that applications 

of GA3 at concentrations lower than 50 ppm at EL15 were not sufficient to induce 

changes to bunch structure in Pinot Noir. Variation in the sensitivity of different 

varieties of Vitis vinifera to the exogenous application of GA3 rates between 10 ppm 

to 1000 ppm have been described (Ferree et al., 2003; Harell & Williams, 1987; 

Weaver & McCune, 1959a, 1959b; Weaver & Pool, 1971) .  
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Berry weight was significantly larger in the 600 ppm GA3 treatment in 2007 but not 

in the 2008 vintage (Table 6-2). Changes to berry weight and shape as a result of GA3 

have been observed in many previous studies (Ferree et al., 2003; Harell & Williams, 

1987; Weaver & McCune, 1959a, 1959b; Weaver & Pool, 1971), though these results 

were due to reduced berry number and increases in shot berries which may not have 

significantly impacted yield. No treatment effect on berry number was observed for 

either the 2007 or 2008 vintage suggesting that fruit set was not impacted in this 

study. The 600 ppm GA3 treatment though not significant (p=0.61) had the least 

number of berries. This may in part explain the observation of larger berries and no 

significant treatment effect on bunch weight and hence yield (not measured).  

It was observed, but not measured, that hen and chickens (millerendage) seemed to 

be more prevalent at lower concentrations, whereas at higher concentrations of GA3, 

a higher number of shot berries (collure) were observed. Further investigation would 

be required to confirm this observation in Pinot Noir. Previous studies have 

highlighted the theory that the number of berries in a tight bunch may be reduced as a 

result of competition for space and that berries may effectively be pushed off the 

pedicel (May, 2000). The results of this experiment do not support this theory.  It is 

worth noting that bunches at maturity in the control treatments were not so compact 

as to see major abnormality to the shape of the berry. 

There was no treatment effect on bunch weight in either vintage though bunch 

weights were lower in the 2007 vintage which also corresponded to shorter bunches 

in the control treatment. It is not known if the larger size of bunches could have 

impacted the influence of GA3 on extension growth in 2008. 

One objective of the experiment was to modify bunch width and length and thereby 

increase the volume occupied by the extremity of the bunch and decrease the density 

or ‘compactness’ of the bunch. In 2007 and 2008 bunch volume was significantly 

increased by application of GA3 by as much as 100% in 2007 and 50% in 2008. In 

the 600ppm treatment bunch density was reduced by almost half in 2007 and by 

approximately a quarter in the 2008 vintage. This result confirms the observations of 
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previous authors who reported an increase in cluster length and decrease in 

compactness with pre-bloom application (Ferree et al., 2003).  

Reduced bunch density significantly altered the visual appearance of bunches which 

may have had significant implications for the microclimate of the bunch. Bunches 

were no longer a single solid mass at harvest with all berries being visible from the 

exterior in the 600ppm (Plate 6-2). 

Application of GA3 significantly influenced fruit composition for the 2007 vintage 

but not the 2008 vintage. This observation would seem to both support and reject the 

hypothesis that changes to the architecture and therefore the density of the bunch can 

directly influence fruit composition. The results of previous chapters suggest that 

large changes to the microclimate of the fruiting zone have a limited influence on 

fruit composition of Pinot Noir grown in the cool maritime climate of Tasmania 

(Chapter 4). The observation that GA3 application altered volume and density far less 

in the 2008 vintage may also further assist to serve as explanation.  

In 2007 the application of GA3 significantly increased total anthocyanin 

concentration per mg and per berry. This observation would seem to support the 

hypothesis that increasing the exposure of individual berries in grape varieties, which 

form dense bunches, may lead to a significant increase in total anthocyanin 

biosynthesis. Notably the highest concentration of anthocyanin mg/g in both seasons 

was in the 150 ppm treatment which, though not significant, in 2007 had the smallest 

mean berry size and was also observed (though not measured) to have a greater 

proportion of ‘chickens”.  

One of the justifications of the present study was the observation that berry number 

per bunch was correlated (R
2
 = 0.61) with anthocyanin concentration (Heazlewood, 

2005). In this study a correlation was observed between increasing berry number and 

decreasing anthocyanin concentration. No correlation between berry number and 

anthocyanin mg per g (R
2
 = 0.05) or between berry number and anthocyanin mg per 

berry (R
2
 = 0.02) was observed in this study. 

 It has been suggested that berry size may influence the total anthocyanin 

composition of red grape varieties and therefore the resultant wines as a function of 
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the skin to juice ratio (surface area to volume) (Dunn et al., 2004; Roby et al., 2004). 

Not only does it assist to explain the increased levels of anthocyanin in the 150ppm 

treatment, but the relationship may also have implications for assessing fruit quality, 

site selection, canopy management strategies and selection of clones for new 

plantings.  

Small berries may result in improved spectral properties and higher wine sensory 

scores (Johnstone et al., 1996). Skins are the primary site of important phenolics 

associated with Pinot Noir quality (Cortell & Kennedy, 2006; Cortell et al., 2008).  

Increases in wine quality are thought to occur because of the ratio for skin surface 

area to the volume of the flesh, in small berries, relative to large berries (Matthews 

and Anderson 1988). Cultural practices which influence berry size, such as partial 

rootzone drying, also influences berry skin thickness which determines the amount of 

tissue available for anthocyanin and tannin accumulation (Mathews & Kriedemann, 

2006). Small berries have therefore been reported to have a similar skin to fruit ratio, 

and a similar juice yield when compared to large berries (Roby et al., 2004; Walker et 

al., 2005). Further work should identify weather the berry size influence reported in 

the present study is associated with an increase in skin thickness.  

In the context of the present experiment it is notable that despite the relationship 

between berry size and anthocyanin concentration, in the 2007 season the 600 ppm 

treatment was the only treatment to have significantly increased concentrations of 

total anthocyanin concentration in both mg/g and mg per berry. This observation 

would seem to further support the hypothesis that lower bunch density in some 

seasons could lead to an increase in total anthocyanin concentration.  

Coombe (1987) suggested that light exposure effects on fruit may be more dependent 

on temperature than exposure to light per se. The results of chapter 4 of this thesis 

and other authors (Cortell et al., 2007; Cortell & Kennedy, 2006; Downey et al., 2004) 

suggest that light exposure may have some influence on total anthocyanin 

composition, though the degree to which fruit may be impacted is limited. May (2000) 

highlights that in warm climates canopy manipulation to limit over exposure may be 

important, whereas in cooler climates manipulation, that reduce bunch compactness 
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or techniques that encourage a greater number of smaller bunches, may be an 

important for increasing fruit quality.  

Application of GA3 significantly reduced both pH and TA in 2007, though to a 

limited extent as displayed by a lack of separation between a number of treatments 

and the control. Maintenance of low pH with sufficient acid degradation has been 

linked to the quality and capacity of red wines to age (Somers & Evans, 1977). In 

cool climates such as that of Tasmania, achieving suitable acid degradation in 

association with low pH and optimal sugar concentrations can be a challenge, 

particularly in less favourable vintages. Acid metabolism is largely a function of 

temperature (Jackson, DI & Lombard, 1993). It may be expected that if exposure was 

increased to the extent whereby it could induce temperature up-regulated anthocyanin 

biosynthesis that TA may also have decreased in response to temperature induced 

heating and or cooling. The pattern of acid metabolism observed in this study seems 

to support this conclusion.   

Changes to pH are complex and not necessarily a function of berry age (Bisson, 

2001). It is therefore not surprising that pH remained low while TA also decreased. A 

combination of reduced TA in association with maintained low pH suggest that 

management techniques which promote a less dense bunch structure may lead to an 

improvement in fruit composition and in turn wine quality in cool climates.     

The observation that there was no treatment effect on soluble solids in either vintage, 

suggests earlier reports of hastened ripening following treatment at fruit set or bloom 

(Harell & Williams, 1987; Weaver & McCune, 1959b) are likely to be the result of 

either crop reduction and hence carbohydrate availability, or the influence of greater 

cluster or berry exposure. Dreier et al., (2000) suggests that evapotranspiration is an 

important driver of carbohydrate loading of berries during ripening. A less compact 

cluster is likely to have a similar effect through increased airflow and solar heating of 

fruits, and therefore increase the evapotranspiration of individual berries within 

clusters. The bulk of the experiments utilising GA3 describe warm climate situations 

where exposure has been shown to be very important for sugar accumulation 

(Coombe, B. G., 1987; Jackson, DI & Lombard, 1993). It is plausible that different 
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results would be observed in cool climates where berries heat to temperatures above 

ambient for only a very small period of the day as a direct result of exposure to solar 

radiation. A combination of carbohydrate source limitation combined with limited 

exposure effects on fruit evapotranspiration may explain the lack significant 

differences in the onset of ripening or sugar accumulation in this study. 
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Chapter 7    - Conclusions industry recommendations 

and further research 
 

This study has shown that leaf removal in the fruiting zone of Pinot Noir had no 

positive impact on fruit composition over a three year trial period. Instead leaf 

removal was shown to delay ripening and significantly affect vine balance. Ongoing 

sustained defoliation at high levels is likely to significantly reduce the quality of 

wines through a delay in ripening. The results of the study therefore neither confirm 

nor reject the hypothesis that fruiting zone defoliation lead to an improvement in fruit 

composition of Pinot Noir. It instead highlights the challenges and variability 

associated with field research. 

Seasonal influences were shown to account for greater variability in fruit composition 

than for applied defoliation treatments. In this instance increasing severity of fruiting 

zone defoliation did not lead to a reduction in yield components and primary 

branching was not shown to be a better predictor in bunch size than other commonly 

used measures. Measurement of bunch morphology, shows little promise to be used 

in yield prediction models due to the strong over arching problem of variability in 

fruit set as a result of poor weather during flowering (Heazlewood, 2005; May, 2000). 

The decision to use this tool in vineyard management should consider overwintering 

carbohydrate reserves of the plant, vine balance as defined by Y:P and vigour of the 

vine canopy. Though not examined in this thesis leaf removal should be considered 

for the management of both powdery mildew and bunch rots.  

Since the commencement of this thesis, much progress has been made in relation to 

our understanding of the development of phenolics in grapes and wine. The report 

here of a relationship between exposure and total anthocyanin per berry and 

potentially with diurnal temperature fluctuation, requires further research to examine 

the underlying mechanisms. The results of this study suggest that increased shading 

of bunches did lead to a negative influences on basic fruit composition in particular 

anthocyanin development. There is a growing body of evidence to suggest that ratios 

of particular phenolics may be influenced by exposure to UV light (Cortell & 
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Kennedy, 2006; Downey et al., 2004) or vine (Cortell et al., 2007; Cortell et al., 

2008). The lack of an observed difference in total anthocyanin composition between 

treatments for the 2008 vintage in chapter six suggests that the relationship between 

fruit exposure and anthocyanin development is not a simple temperature driven 

metabolic process, which is in agreement with the conclusions of other studies 

(Downey et al., 2004). It is suggested instead that various other factors, such as 

primary metabolism, may also influence anthocyanin biosynthesis in any particular 

vintage.  Despite the range of evidence presented for the relative effect of bunch 

exposure on total anthocyanin accumulation in Vitis vinifera, the relationship 

presented in Figure 5.1 suggests that fruit exposure should not be dismissed in 

relation to achieving maximum levels of total anthocyanin in fruit and hence the 

potential to achieve maximum levels in must and wine. It should be stressed that 

measures of fruit composition did not take into account many flavour and aroma 

compounds which have been shown to be effected by shading, for example 

methoxypyrazines which cause green or bell pepper aromas (Allen et al., 1995). 

Pre-bloom GA3 application shows promise to improve the quality of fruit and reduce 

the compactness of varieties such as Pinot Noir and it can be neither confirmed nor 

rejected that shading within the bunch, leads to negative influences on fruit 

composition. While it was not the aim of the experiment to influence bunch 

architecture for disease control, many authors (Dry, IB & Thomas, 2003; Ferree et al., 

2003; Shavrukov et al., 2004; Vail & Marois, 1991) have highlighted the influence a 

reduction in bunch compactness may have on disease control particularly for bunch 

rots. Bunch rot by Botrytis cinerea has been identified as a major issue by the 

Tasmanian wine industry. Pre bloom application of GA3 shows significant promise to 

reduce the influence of bunch rot, though further work would be required to optimise 

timing and rates and likely to differ for different varieties. Though not measured in 

the present experiment, return bunch number in the following season should be a 

consideration in further work, as a reduction in number has been observed as the 

result of application of GA3 (Harell & Williams, 1987). Further work should also 

focus on the relationship presented between anthocyanin and berry size to examine 



 98 

juice to skin ratios and if this may be used practically to improve the quality of wines 

made from Pinot Noir. 
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