THE PHYSTOLOCY OR PTOHERTMO

and

SONE ASPECTS ON THE REGULATION OF RLOWERTNG TH PEAS

a thesis submitted by
J. T. AMOS B.Sc. (Melb.)
in partial fulfillment for the degtee of
B. Sc. (Hons.)
in the University of Tasmania.

CONTENTS

Preface
Acknowledgements
Ablreviations

PART I - THE PHYSIOLCOY OF ELOMEXAG.
INTROMCTION 1.
Chapter 1. NUCLETC ACD METABOLSM TN THE DUD 2
Synthests of nucleic acid 2.
A specific floral RNA 4.
Chapter 2. CONTROL MECHANSMS IN THE NUCLESS 5.
Gene activation and repressar action 5.
The xole of histones 5.
The xale or proteins 7.
Chapter 3. Endogenous pegulators 9.
Endogenous initiators 9.
a) Flarigens 9.
b) Gibberelling 12.
Endogenous inhibitors 13.
Chapter 4. COMTROL OF ENOGENOS PRCuLATORS 19.
Photoperiodic induction 19.
Endogenous cixcadian thythms 21.
The phytochrome systen 25.
Chepter 4. Tempewature eftects 30
a) Themopertodic induction 30.
b) Vemalization 31.
Nutritional and hommonal ractors 32.
Chapter 5 CHEMTCAT CONTROL OF TOMERTK 35.
COMOLUSTON 37.
LTTHRATURE CITED 38.
PART IT - SOME ASPECTS ON THE RECULATION OF ELOEERTG IN PEAS
Chapter 1. Intmeduction 48.
Matemials and Methods. 51.
Chapter 2. THE EPBECT OR THE COTMEDONS ON THE PLOWRINO TN PEAS
Introduetion 57.
Expeximent 2. 58.
Experiment 2.2. 58.
Results and Discussion 60.
Chapter 3_{0} THE ERECT OF VERNALTZATON ON THE RLOMERME OF Pi Sum sotivumIntroduction72.
Expomiment 3ola 74.
Results 75.
Discussion 76.
Chapter 3. Exper inent 3.2. B8.
Results and Discussion 89.
Discussion - general. 92.
SUMMARY 103.
Appendix 1 1.040
Appendix 2. 105
Interature cited 111.

PREACE

This thesis is divided into two parts:

Part I is a review of the current Ilterature on "The phusiology of Flowering".
part If contains the results of research done into the environmental conditions and inte the xole of the cotyledons in regulating the flowering behaviour of two varieties of pisum sativum.

ACKMOULEDEVENTS

I wish to thank my supervisor, Doctor R. F . Growden, for the help and encouragement he has given during all stages of the work o

The statistical advice of professor WaD. Jackson has been of great assistance in Interpreting the data

The milling assistance of the technical steffof the University of Tasmania is gratefully acknowledged. my thanks are also due to Miss Te Thompson and to Mr o S. Meredith for the help given in collecting the data, and to Mrs. Io c. Mamet Pan typing this thesis.

This work has been carried out while I was in receipt of a Commonwealth Scholarship.

ABBREVATIONS USE IN TEXT

DNA	\%	deoxymibose nucleic acid.
EDTA	$=$	ethylene diamine tetramoctic acid.
$5-20$	"	5 --fluorodeoxyuridine.
$5-10$	$=$	5-fluorouracil.
$\mathrm{CA}_{3}(7)$	\pm	gibberelin A_{3} (7)
L.D	$=$	long day
R.N.A	$=$	ribose mucleic acid.
S. ${ }^{\text {d }}$	$=$	shoxt day
$5-1 D$	$=$	short long day.

```
PART I
```

THE PHystology of Elowering.

IMTRODUCTION

The process of tlowering involves 4 najox stages:- a) the differentiation of floral primordia; b) the differentiation of the individue, flower parts s c) flomal maturation; and d) anthesis. This review will only be concerned with the first aspect, that of the transition from vegetative to reproductive growth, and of the developments which precede this transition since the early review by Lang (140), many reviews dealing with certain aspects of flowering have appeared $(24,25,50,52,65,74,154,155,171,187,197,198$, 201, 209, 224, 245, 247, 252, 261), giving an excellent coverage of the field, and the approach of this xeview is similar in its presentam tion to that of Seaxle (209) Similaxities can be sen of virtually all the steps involved in the flowering process in othex biological Functions eog. photoperiodism implies a response to light and a measurement of time, and the responee to the flowering hommone is an example of morphogenesis m perhaps the most fundamental phenomenon of biology. Since floral initiation is basically a morphogenetic response, these changes and causes will be noted first, to be followm ed by a discussion on substances causing this response, and then to the regulation of these substances.

CHAPTER ONE

NUCLETC ACTD METABOLISM IN THE BUD.

Since meristematic cells are potentially capable of any of the functions of specialised cells, differentiation processes, of which flowering is one aspect, must be controlled by the genetic information of the cells contained in their DNA molecules, either by activating passive genes or by inhibiting active genes. (220). Synthesis of nucleic acid.

Synthesis of nucleic acid in the bud is concerned with floral induction, and this fact has been confimed by using nucleic acid jnhibitors.

Salisbury, Bonner \& Zeevart have shown that 5 - FU can inhibit flower induction in Xanthiun if it is applied during the inductive dark period (21, 202) while in Pharbitis, its greatest effect seems to be at the end of the inductive dark period (257). In both these Sod plants 5 - FU has its effect by inhibiting nucleic acid synthesis (48, 49) - and thus bud growth (211)-being incorporated into bud R.N.A. (21). However while its effect on induction in Xanthium is caused by a repression of $\mathrm{R} . \mathrm{N} . A$. synthesis (21), its effect on induction in Pharbitis seems to be caused by an inhibition of DNA synthesis (257). Evans, working with the Lad. plant Lollum temulentum, has shown that 5 -- FU was most effective at inhibiting flowering if added at the end of the inductive period, and by using actinomycin - D, an inhibitor of R.N.A. synthesis, and orotic acid, a nucleotide precursor, he showed that its mode of action was by inhibiting the synthesis of R.N.A.
a similar effect to that in Xanthium (73)。Cytological effects with Allium have shown that DNA synthesis is blocked by $5-\mathrm{FU}$, and that 5 - FU is incorporated into R.N.A. (12).

5 - FDU is a more specific nucleic acid inhibitor than 5 - FU, inhibiting DNA synthesis by blocking the formation of thymidylic acid (100a). This substance also inhibited floral induction in Xanthium, Pharbitis and Lolium, but whereas the DNA synthesis in the apex seens to be an essential component of induction in Pharbitis (257), this is not the case in Xanthium or Lalium (21, 73) o Thymidine, a DNA precurser, can reverse the inhibition of $5-F D U$, but not of $5-\mathrm{FU}$. The inhibitory effects of both $5-E U$ and 5 - FDU were not permanent: the buds were once more inducible after the inhibitors had dissipated. Working with the S.D. plant Cannabis, Heslop - Harrison showed that 2 - thiouracil inhibited floral induction and disrupted cellular differentiation (106). This substance also becones incorporated into R.N.A. $(107,254)$. Collins and Salisbury showed that $2-$ thiouracil has a similar effect on Xanthium (54).

These results show that the cells of the apical meristem lose temporarily their capacity to respond to the leafmgenerated stimuli (18, 212). Even if the floral genes axe activated during induction, they cannot produce the characteristic proteins necessary as a result of the modified stages of R.N.A. synthesis. Since dormant buds are unresponsive to the flowering stimulus (198), it seens that flowering can only be induced when DNA and RoN.A. are being synthesised (55). Thomas found in Xarthium that there was an increase in mitotic activity caused by the presence of a floral inducer (238), and he suggested a

DNA regulatory mechanism which is upset in the presence of the floral stimulus (236). Other workers have also found that after induction, mitotic activity increases. (14,90).

A specific floral RNA.

A small amount of work has been done on the analysis of bud nucleic acid before and after induction. Ross (192), using a paper electrophoretic technique, failed to show any difference in the composi-m tion of RNA between the vegetative and floral buds of Xanthium. Using histochemical techniques, Gifford and Tepper (90) have shown with Chenopodium that the DN/A : histone ratio increases soon after photoperiodic induction, together with a rapid rise in the RNA contento Knox and Evans (132), working with Lolium, and Nongarède et al (175), working with Amaranthus, obtained similar results, again using histoehemical methods, and noted that after induction the content of RNA rose sharply, accompanied by a small histone change and an increase in the nuclear and nucleolar size. Although it is known that floral initiation involves the synthesis of bud nucleic acjd, (54, 55, 202, 257), and that the meristematic growth rate is proportional to the RNA content (255), the chances of isolating a specific flaral RNA seem very small indeed, especially if only a few genes are involved in the actual conversion of the bud from a vegetative to a reproductive state. In fact, the conversion may simply involve a change in the proportions of the same enzyme systems, in which case no new nucleic acid would be formed. However, the results of Gifford and Tepper, and of Knox and Evans, showing a rise in the DNA : histone ratio and an associated rise in RNA, indicate that new genes are being activated.

CHAPTER TWO

CONTROL MECHANTSUS IN THE NUCLEUS

Gene activation and repressor action.
In their article, Jacob and Monod (121) bring forward the theory that there are two different functions of a gene, the first to transcribe the structural message via $m-R N A$, and the second to regulate this transcription. This regulation involves a system of regulator genes (or a transmitting system) and operator genes (or a receiving system), the operator genes receiving a specific cytoplasmic signal in the form of a repressor molecule, which in turn recognises a particular metabolite and a particular operator gene, The metabolite, by some unknown mechanism, can either activate or inactivate the repressor. The repressor molecule seems to be an RNA molecule which - when activated - has such a base secuence that it can combine specifically and reversibly with the operator gene, thus causing cessation of messenger RNA and thus of protein. Upon inactivation of the repressor, the production of the particular protein recommences.

Al though this theory is concerned with bacterial systems, a similar system could be involved in floral induction. on arrival at the apex, the floral stimulus could combine with the repressor RNA, inactivating it ; this would thus allow for the synthesis of m-RNA and thus proteins - concerned with the flowering process. The role of histones.

The rale of the histone proteins in the nuclear control of cell differentiation has become the topic of a great deal of experimentam
tion and research (20, 33). In 1951, Stedman and Stedraan (221) suggested that histones act as gene inhibitors, each histone being capable of suppressing the activities of specific groups of genes. Similar ideas (17,146) and much evidence (e.g. $2,10,85,115$) have been brought forward which support this viewo Huang and Bonner (115), working with pea embryo chromatin, have shown that histone, when bound to DNA, increases the stability of DNA, and if the histone is removed, there is an increased rate in RNA synthesis, mainly - as m-RNA (3). Later, working with a specific gene, (or genes), responsible for globulin formation in peas, Bonner et al (19) showed that this gene is only active in vivo in the cotyledons. When the histone was removed from bud chromatin, globulin formation resulted. Other workers have also shown that histone in calf thymus tissue can suppress RNA synthesis (2, 147). However, it is thought that histone structure may not be specific enough to control gene action (17, 124, 125).

It has been suggested that as there are relakively few histone types, a much smaller number than genes, gene activation may in fact be due to an enzymic removal of a type histone (10). Several workers $(2,10,117,153)$ heve found that different histone types dffer markedly in thetr ability to repress gene action, lysine-rich histones having a much greater effect than argininewrich histones. It has been found that the lysinemich histones play an important role in the structural organisation of chromosomes (241) by binding the chromatin threads together while axgininemich histones occur more frequently in the diffuse region of the nucleus (153). Since RNA synthesis can occur in loose chromatin (152) but not in dense chromatin (11.4), this would
explain why lysine-xich histones can suppress RNA synthesis to a greater extent than argininewrich histones. It has also been shown that certain lysinemich histones are only formed in cells where DNA is being duplicated (45). Allfrey, Faulkner and Mirsky (1) have shown in vitro that if histones are acetylated or methylated, al though they are still complexed with DNA, RNA synthesis is not suppressed. In fact pogo et al (183) have found that histone acetylation is a pre-requisite for RNA synthesis, and Nohara et al (174) have acetylated histones with an acetylating enzyme. Lately, two groups of workers, one group working with aninal tissue (11), and the other group with plant tissue (116), have found a special class of RNA which is intimately associated with histone.

Gene function may in fact be regulated by a reversible acetylam tion process, in the case of flowering the flowering hormone pexhaps being an acetylating agent - or an inhibitor repressing acetylation m of a type histone.

The role of proteins.

It has been shown in animal cells that differentiation can only proceed if the substrates and comfactors necessary for the synthesis of proteins are present. If they are not, then even though a specific gene is activated, the corresponding protein can not be synthesised and therefore differentiation will not ensue. Flickinger calls this a "temporal sequence" in gene action (80), and this may explain some of the results obtained by workers using amino acid analogues as inhibitors. Attempts to isolate specific proteins concerned with flowering have not succeeded as yet. Nitsan, working with Xanthium (172), and Marushige and Marushige, working with Pharbitus (160),
have shown a quantitative but not a qualitative difference in electrophoretic patterns of extracts from vegetative and floral buds. This may mean that it is not that new proteins are being synthesised, but that the balance of enzyes already existing in the bud are altered, thereby causing a change from the vegetative to the floral state. This idea, that a change in the balance of enzymes causes a change in function of the cell, has also been arrived at by working from a theoretical stand-point (64).

Also tying in with this view is the idea of Commoner (56), who suggests that DNA plays two interrelated roles, the first role being that of genetic coding, which occurs in the euchromatic region of the chromosome and is observed as a qualitative difference, and the second role being a regulatory role, occurring in the heterochromatic region of the chromosome and appearing as a quantitative difference. This second role is one by which metabolism is genetically regulated, this regulation being carried out by nucleotide sequestration and thus making them unavailable for other metabolic processes e.g. ATp synthesiso The composition of the residual nucleotide pool will therefore be controlled by the amount of DNA present, and to the base composition of the replicating DNA. This idea, that of the dual role of DNA, is very similar to the theory proposed by Jacob and Monod, mentioned previously (see P.5).

It can be seen thexefore, that nucleic acid metabolism is certainly involved in floral differentiation, and that this metabolism must be both controlled and regulated.

CHAPTER THREE

ENDOGENOUS REGULATORS.

Most work on endogenous regulators has been done on plants which respend to only one or a few inductive cycles. Since the site of photoperiodic induction is the leaf (e.g. 197,261), and the site of floral differentiation is the bud, the synthesis of the floral regulm ants and their transport can be studied separately fxom the morphom genetic reactions occurring in the bud. Endogenous floral initiators.
a) Florigens.

It has been shown with the S.D. plant Xanthium, that when the plant is given its induction treatment, a flowering stimulus is produced in the leaves where it can be stored (151), this stimulus being stable and easily transportable under eithex light or dark conditions (210). Nucleic acid metabolism - and thus protein synthesis (164) is involved in production of the stimulus, and the donation of methyl groups is involved (54). Using a metabolic inhibitor of animal cholesterol biosynthesis, tris - (2 diethylamino ethyl) phosphate (SKH $7997-A_{3}$), it has been shown that steroid biomsynthesis is also concerned in the production of the flower stimulus, at least in Xanthium (18), pharbitis $(18,196)$ and tomato (180). Since these reactions are all enzymatic, specific proteins may be involved.

Hess $(108,109,110)$, working wi th Streptocarpus weinlandii, has shown that by adding exther 2 whiouracil or ethionine to the leaf, flowering can be inhibited without disrupting vegetative growth results which are quite different to those of Heslop - Harrison, who
found that the addition of 2 -thiouracil had a maxked effect on vegem tative growth (106). (see p.3). The RNA's of the induced leaves had different guanine-adenine ratios, a result which could mean that these anti-metabolites blocked a RNAmpotein system associated with the production of the flowering stimulus. In an animal system, ethionine has been shown to inhibit protein synthesis, not by competing with methionine for incorporation into the protein (197), but by decreasing the level of ATP, this being achieved by reacting with the nucleotide to form adenosyl wethionine (242). Ethionine therefore may cause its inhibitory effect on flowering by interrupting the energy supply in the leaf during the induction process, a finding which supports the idea advanced by Commonex (see p. 8).

Many attempts have been made to isolate and identify the flowering stimuluso In 1950, Roberts obtained crystals of a flower - promoting substance from leaves of Xanthium (190), this substance being lipidmlike in character (191). However, this experiment has not been successfully repeated By lyophilising leaves of flowering Xanthium stumarium plants and extracting them wi th cold absolute methanol, Lincoln et al obtained a crude extract which induced a flowering response in vegetative Xanthium pennsylvanicum plants when added as a lanolin paste (1.49). By a similar method, a crude extract from leaves of the day neutral flowering Helianthus plant induced flowering in vegetative Xanthium plants (150). As paper chromatograns of the extracts from both plants were similar (161), it seems probable that the inducing substance is the same in both plants, or at least very similar. This substance, which has been naned florigenic acid (148), has been shown to be stable to both wide pH and temperature variations (161), as well
as having an acidic character and being water soluble (148,161).
Working with the S.D. grass Rottboellia exaltata, Evans (71) showed that a flowering stimulus was formed in the expanding leaf, and was transported via the assimilation stream in either light or darkness mas in Xanthium $(135,210)$. This stimulus was sumated at the apex, a phenomenon which also occurs in sugarmcane (53). Evans found in a L.D. grass, Lolium temulenturn, that steroid metabolism may be involved in the synthesis of the floral stimulus (73). With Wardlaw (78), he also found by removing the induced leaf at various intervals that enough stimulus had moved out of the leaf four hours after the cxitical period to induce flowering, and postulated that the sate of movement of the stimulus was approximately two centimetres/hour. Although this figure differs markedly from the figures of $2.6=3.8$ millimetres/hour obtained by workers using the SoD plant pharbitis nil $(120,261)$ it agrees with the figure obtained by Canny (39) on the rate of movement of the assimilation strean.

Grafting experiments have shown the presence of a floral inducer. With both Bryophylum, a L-5D plant, (259), and with Pharbitis, a S.D. plant (261), it has been shown that an induced stock can cause a vegem tative scion to flower. In fact an induced S.D. stock Kalanchöe can cause flowering in a L.D. scion (Sedun). (261). By intergrafting two species of Cestrum, Griesel has shown that more than one type of floral stimulus is involved in the flowering of this plant (93), and croosw breeding experiments, which have shown that two floral genes are involved $(94,95)$, support this statement.

Therefore it can be seen that floral initiation in both S.D. and L.D. plants, both monocotyledon and dicotyledon, is associated with the action of a promotive substance which is produced in the leaves. However whether this substance is universal for all plants or not is still a matter of speculation.
b) Gibberellins.

It has been shown that the gibberellins can induce flowering in L.D. plants and in plants requiring a vernalisation treatment, when these plants are grown under non-inductive conditions (5, 122, 222) Wi.th S.D. plants however, gibberellin can promote flowering in sone plants (e.g. Pharbitis) but not cause induction (261). It seems highly probable that gibberellin is only indirectly associated with flowering, its primary effect being that of inducing meristematic activity ($72,119,141,142,145$). In fact in some plants flowering may have to be preceded by a bol.ting process e.g. Spinach (123) , Working with petasites hybridus, Wardlaw (244) has shown that gibberellin has no effect on the vegetative apices, but can promote flowering once initiation has occurred. of the nine different gibberellins know, G.A.7 is generally the most effective gibberellin in inducing flowering, G.A3 also being a very strong inducer (26,72,162). An inhibitor of gibberellin action (2-chloroethyl) - trimethyl Chloride (CCC) has been shown to inhibit. flowering in both S.D, and L.D. plants, its effect being completely reversed by the addition of $\mathrm{G}_{\mathrm{A}} \mathrm{A}_{3}(5,258)$ and it is thought that this inhikitor suppresses the formation of gibberellin (5, 145).

Gibberellins are present at the time of induction (173,258). The role of gibberellin may be that of a precursor to florigen (5), or to initiate a sequence leading to floral induction (1.42). Working with the L.S.D. plant Eryophyllum, Zeevart and Lang (262) have shown that under S.D. conditions, gibberellin regulates the floral stimuius by substituting for the L.D. requirement. It may be concluded however, that the gibberellins, although photoperiodically involved in the flowering process, are not biochemically related to the floral stimulus $(256,262)$. In fact, in Pisum varieties, the presence of G.A3 inhibited flower formation $(8,126,217)$ perhaps by disorganising the apex. pictures illustrating this disorganisation have been presented by Sprent (217).

Endogenous floral inhibitors.
The question as to whether flowering is under the regulation of endogenous floxal inhibitors is as yet unxesolved, evidence still, being accumulated for both sides. According to Zeevart (261), inhibition can be divided into two categories, that of a specific type where an actual substance is produced, and that of a non-specific type, the result being caused by the lack of stimulus. For a specific endogenous inhibitor, three main points arise:-
a) its mode of action may be with relation to the production of florigen, or else at the site of floral differentiation.
b) it may or may not be transmissable.
c) if the site of action is the bud, it may either be produced at the bud, or else it may be produced away from the bud. In the latter case it will need to be transported to the bud.

If the inhibition is of a nonspecific variety, again three points axise:-
a) it may be a general inhibition of metabolic processes
b) It may interrupt cell division in the apex at a time when the stimulus is present
c) it may interfere with the translocation of the stimulus (209). With regard to the translocation effect, Chailakhyan and Butenko (44) working with perilla, have presented some results which support this idea. By exposing both induced and non-induced leaves to radioactive carbon dioxide $\left(\mathrm{C}^{14} \mathrm{O}_{2}\right)$ and determining the distribution pattern of the photosynthates, they found that if nonminduced leaves wexe present between the induced leaves and the apex they absorbed most of the labelled assimilates, and also in this situation the plant did not flower. Since it was assumed that the stimulus travels with this transport stream, the inhibitory effect of the non-induced leaves would be the result of an interference of this stream to the apex. Guttridge, on the other hand, working with the cultivated strawberry - a S.D. plant - has brought forward convincing evidence for the presence of a floral inhibitor (97). He showed that flowering is repressed and vegetative growth is enhanced in the one plant if, during its inductive period, a second plant connected to the first by a stolon had its inductive dark period intexrupted by lighto Thompson and Guttridge (240) showed that a defolited plant, but not an intact one, would flower in continuous light, while an intact plant would flower in continuous darkness. In long days therefore, the plant was inhibited from flowering by a transmissable inbibitor
which is formed in the leaves. Lesham and Kollex (144) confirmed this inhibitor idea, and brought forward evidence suggesting that the inhibitor was stored in the daughter strawberry plantso

Schwabe (206), working with Kalanchöe and other S.D. plants, has shown that intercalating one long day between inductive short days not only stops initiation but actually inhibits it - in the case of Kalanchöe, the inhibition by one long day being equivalent to that of $1.5-2$ succeeding inductive short days. The effect of several long days is not cumulative. Schwabe postulated an interaction between a stimulus and an inhibitor, the latter being formed during long days and its effect being on the formation - not the action of the stimulus. It seens likely that in S.D. plants the effect of the dark period is two-fold : in the first case removing the light-dependent inhibitor which interferes with the induced state, or flower hormone production, and second, the formation of the induced state or production of the flower hormone (256).

Thomas (237) found that intercalated long days inhibit flower formation in the S.D. plants Xanthiur and Chenopodium, but only if the induction was slight. If the plants were strongly induced, the effect of the intercalated long days was stimulatory. In the former instance, he concluded that the effect was caused by an inhibition of the inductive processes in the leaves, while in the latter case, the effect was caused by an altered sensitivity of the apex to the stimulus.

These results could equally well be explained on the basis of a single inductive substance. This substance, which is dependent on Iight for its formation, must reach a threshold value before it becomes
effective, and under long light periods, the concentration reaches such a high value that the substance becones inhibitory, and thus would inhibit flowering In darkness, this substance is slowly broken downo

Frotianne observed the effects of the leafless, parasitic doddex plant on various host plants (81). He found that under an inductive photoperiod, dodder does not affect the flowering of the host olant. If a dodder bridge was formed between an induced plant (e.g. Glycine a S.D. plant) and a nonminduced plant, the flowering of the induced plant was deoreased: the nonminduced plant did not flower. He assumed that an inhibitor was produced in the leaves under non-inductive conditionso

Non-inductive conditions in Salvia, another SoD. plant, also causes the production of an inhibitor in the leaves (15). Evans (71). working with the S.D. grass Rottboellia, found that if non-induced Leaves were situated below an induced leaf, they still had an inhibitory effect, Since interference with translocation is ruled out, he suggested that the nonwinduced leaves produce an inhibitor while the induced leaves produce a stimulus. Flowering in Salva and Rottboellia is therefore regulated by both an inhibiton and a stimulus, both being transmissable and both acting at the apex.

Working with the L.D. grass Lolium (69). Evans showed that flowering in this plant is alse regulated by a stimulus and an inhibitor, the former being produced in induced leaves and the latter in non-induced leaves. Although Zeevart (256) suggested that this Inhibitory effect by the SoD leaves could be caused by either theix Intexference with the translocation of the LoD stimulus, or ta
dilution of the dimulus reaching the apex by assimilates from the lower leaves, Evans and Waxdlaw (78) later found by using $\mathrm{C}^{14} \mathrm{O}_{2}$ that the idea of a sink was in this case not correct, since only a very small proportion of the assimilates noved from the upper leaves to the lower leaves, and that the most feasible idea was that of an inhibitor being produced under non-inductive conditions. Further it was shown that the fomation of the stimulus could be carmed out under anaerobic conditions, while the production of the inhibitor required oxygen (70). Evans has found that abscisin IT inhibits flowering in Lolum (76). He suggested that abscisin II, which is actually the same substance as domin of woody plants (57), may be the S.D. inhibitor. However, it has been found that abscisin $I T$ is effective in inducing the SoD. plants pharbitis and Chenopodium, but not Kanthium (68).

By growing buds of the S.D. plant Perilla in culture, Raghaven and Jacobs (188) have shown that under S.D. conditions normal flowers were produced, while under L.D. conditions only a rudimentary stage was reached, This suggests that although Perilla requires S.D. conditions for normal floral development, it has an inherent ability to initiate flowers independent of daymength. If small leaves were attached, under S.D. conditions they pronoted flowering while under L.D. conditions they inhibited flowering. They therefore concluded that flowering in perilla is controlled by a balance between an inhibitor and a stimulus.

By intergrafting early and late varieties of Glycine, Kiyosawa and Kiyosawa (131) concluded that flowering in this plant was also determined by a balance between an inhibitor and a stimulator, a
conclusion which Curtis, by intergrafting different varieties of beet, al.so reached (63).

In 1952, Barber and Paton proposed that a floral inhibitor was present in late varieties of Pisum (9). This was soon confirned by intergrafting early and late varieties $(178,179)$ and from experiments involving cotyledon excision (126,178). This substance is synthesised in the cotyledons soon after germination (178), moving into the plumule in about two weeks, during which time it can be leached from cuttings (218). It was found that vernalisation and long photopertodic regimes decreased the anount of inhibitox (178, 217), and Barber gave it the name colysanthin (7). Colysanthin may be involved in gibberellin metabolism (8). Lately it has been found that a short-lived inhibitory substance is present in early varieties also (126).

It can be seen therefore that there is a great deal of evidence present to suggest an inhibitor-xegulation of flowering. At the moment however, it is not known what form the inhibitor(s) takes and what its mode of action is.

CHAPTER FOUR

CONTROL OF ENDOGENOUS REGULATORS

The majority of work done on flowering has been concerned with the aspect of photoperiodic control and its underlying mechanism, and recent reviews and surveys have emphasised different aspects of this field $(30,65,98,99,105,197,198)$.

Photoperiodic induction.
plants have a wide range of photoperiodic responses, ranging from those that are completely insensitive to photoperiod (i.e. daym neutral plants) to those which will respond to only one inductive perjod (eog. the S.D. plants Xanthium (210), Chenopodium (62), and Pharbitis $(227,257)$ will flower after one long night period, and the L.D. plants Lolium (75), Anagiliis (6), Sinapis (13), and Erassica (88) will flower after being given one short night). In general though, photoperiodically sensitive plants will require repeated inductive cycles before flawering is initiated, and Salisbury has compiled a list of plants, classifying them with respect to their photoperiodic response (198).

Most wark on photoperiodic control has been done with plants which are highly responsive to photoperiodic treatment eag. Xanthium, Pharbitis. It has been known for some time now that the leaves are the site of photoperiodic induction, although in pharbitis and Anagilis, the cotyledons al so are sensitive $(6,257)$, and that induction is caused by the length of the night period, and not the length of the light period (65). For the S.D. plant Xanthiun therefore, a day-length of 8.5 hours or less will cause flowering as long as the
dark period is not interrupted by a flash of light (210). In some L.D. plants on the other hand, the plant will flower if the night length is too long, so long as it is interrupted by a light flash. In these cases, too long a period wi thout light will inhibit flowering (261).

Before the inductive night period can begin however, a period of high intensity light is required, in the first instance simply to provide photosynthates, and secondly to convert a photopigment to a physiologically active form, a point which will be discussed a little later in this chapter. It was once thought that a second high-intensity light pexiod was required to stabilise the newly-formed flower hormene or its precursor(s) (154,156), but since then experiments have been conducted which show that this is not the case, at least for Xanthium (210), pharbitis (227) and Lolium (69).

It can therefore be seen that a S.D. plant will flower if the dark period is greatar than a critical value, and it is thought that during this dark period a sequence of reactions occurs which is
inhibited - or reversed - by light. On the other hand, with L.D. plants a dark period greater than a critical value will inhibit flowering. This inhibition may be the result of an inhibitor being produced during the dark period wich requires a certain anount of light for its removal (261), or that during a long night the concentration of a darkwroduced stimulus reaches such a value that it inhibits flowering (105), although many L.D. plants axe known to flower under continuous 13ght (105)。

Two theories have been brought forward in an attempt to explain this photoperiodic induction. The first theory concerns an endogenous circadian xhythm, while the second involves a photomeceptor pigment. At this stage it seens likely that the actual mechanism of photoperiodic induction involves a combination of both theories. Endogenous circadian rhythms.

Endogenous circadian rhythms have been observed in a great variety of organisms, ranging from unicellulas to highly complex forms, and Sweeney in her review has discussed many examples of these (224). It is now clear that these xhythms play a part in the time perception process, although the mechanism is not at all understood e.g. diurnal fluctuations of chlorophyll content have been observed in perilla and Rumex $(29,167)$, together with the fixation of carbon dioxide in certain succulants (224), and of carbon dioxice metabolism in plant tissue cultures (251). Although diurnal changes have been observed in plant cell nucleit $(31,246)$, and in the proportion of ribosomes aggregated in active polyribosome form in leaf tissue (51) - both observations suggesting that nuclear DNA-controlled protein synthesis is involved Sweeney has observed that diurnal shythmicity is maintained in Acetabularia cells after enucleation - at least as far as photosynthesis is concerned (226). Contrary to Sweeney, Schweiger et al (207) have shown that the circadian thythm of oxygen balance in the cells is determined by the nucleus, and other workers have shown a photosynthetic xhythm in intact cells of various plants ($66,113,129,177$). Chance and comorkers $(46,47)$ have shown that the NADH level of yeast cells undergoes a thythm, both in whole cells and in cell-free extracts, showing that metabolic enzyme systams are involved in the biological
clock, and in fact, thythns can be disxupted by anaerobic conditions (250).

The interesting factor of the biological clock is that the circadian period is almost temperature independent, have a Q10 of approximately 1-1.2 (249). Since biochemical reactions have a Q10 of the order of two to three, it seems that biochemical reactions alone do not operate the clock. A model has been brought forward by Ehret and Baxlow (67), involving a feed-back system of biochemical steps with relatively temperature-independent biophysical steps (e.g. diffusion); this model has a qlo of 1.2. Irrespective of the mechanism, it is now known that the clock has the properties of an oscillator $(30,31,98,208)$, it can be rephased by temperature, $(208,249)$, light (181,182,250), and ultra-viclet light (225), and can be coupled with Its enviromental light regime (98).

With respect to flowering, the endogenous rhythm seems to give rise to, and couple with, a sequence of biochemical reactions which vary in their sensitivity to light. In this way, the endogenous rhythm can control the synthesis of the floral stimulus. The "photophile" and scotophile" phases of the endogenous rhythm as proposed by Bunning (31, 99) Can thus be accounted for. If for example the scotophile - or as Hamner has called it, the photophobe - phase of the rhythm was interrupted by a flash of light, the light would inhibit the sequence either by inhibiting a light-sensitive reaction or else by resetting the clock mechanism, thus causing the reaction sequence not to reach completion. This would be caused either by a light-mensitive reaction being made to co-incide with the oncoming light period, or else an essential component
of the xeaction sequence would be critically displaced from following reactions of the pathway (l81). Similax consequences could be obtained by altering the length of the cycle, and this is substantiated by many experiments in which light flashes have been used at various times during a prolonged dark period.

During a 72 -hour cycle (8 hours inductive light period, 64 houms dark period) Hamner (99), using the S.D. plant Glycine max, found that If a light intermuption was given when the plant expected darkness (i.e. the photophobe phase i.e. at 24 hour intervals of 14 hours, 38 hours and 62 hours after the beginning of the Iight period), fiowerm Ing was markedly inhibited, while inght flashes ocourcing during the 'expected' light periods (3.0. the photophile phase at 26 hours and 52 hours after the beginning of the Itght period) enhenced flowering above that of the contrals. In other experiments (99), whexe the cycle length was varied by extending the dark period after 8 hours of light, flowering was enhanced with cycle lengths of 24 hours, 48 hours and 72 hours, and inhibited with lengths of 34 hours and 60 hourse

Coulter (58), using a 72 hour cycle and Glycine mex, found similar photophile and photophobe reactions, and wi th Hamer (59), guggested that an 8 -hour photoperiod inttiates a fundamental oscillation, the amplitude of which can be increased or dampened by light breaks, depending on when they occur. They found (60) that light falling in the first photophobe phase was twice as inhibitary as in the second photom phobe phase, as did Gchumate (204), while light falling in the second photophile phase was twice as stimulatory as in the rirst photophile phase.

It was found by using two successive light interruptions (41), that if each fell in a photophile phase flowering was enhanced, and if each fell in a photophobe phase, flowering was irhibtted. If one light interruption fell in a photophile phase, and the other interxuption Fell in a photophobe phase, the stimulation from the photophile Interwuption partially overcame the inhibition from the photophobe interruption Using cycles of different lengthsg similar results to those above have been obtained with another SoD plant pharbitis, while the LiD. plants Hyosevamus and gilene showed results similar to, but out of phase with, the S.D. plants $(79,99)$.

Coulter and Hamer, working with Glycine (59), and Takincto and Hamner, working with Pharbitis (223,229) have suggested that the basic endogenous rhythn is composed of three separate mechanismssm
a) an "hour-gless" component. By increasing the dark period. Flowering is increased. This component is temperature sensitive.
b) an endogenous circadian thythm component, which is initiated by the beginning of a light period. This mhthm is temperam ture insensitive, although the magnitude may be affected by temperature.
c) an oscillating mechanism which begins at the commencenent of a dark period. This component is also insensitive to tempm erature.

Mitchell (166) has shown that the flowering response in Xanthium is regulated by an Gndogenous rhythm, flowexing maxima being obtained with cycles of 24 hours, 48 hours and 72 hours, and flowering minima occumring with cycles of 36 hours, 60 hours and 84 hours. These
results suggest that a comon clock mechanism is in operation in widely different types of plants.

The phytochrome system.

Plante can discximinate between the quality of light received, and it is now thought that this is the result of a pignent called phytachrome (34). The effects of different light qualities on plant growth have long been observed and in 1959, Butlex et al first separated a crude fom of this pigment (38). The phytochrome pigment is a soluble cytoplasmic protein, attached to a chronatophore of the bilitriene type (214,215). Phytochrone can occur as two inter-convertible forms, one foxm (p730 or prr) having an absorption maximum at a wavelength of 730 mp in the far-red region of the spectrun, and the other form (P660 ox pr) having an absorption maximun at a wevelength of 660 mp in the red region of the spectrum.

Irradiation by farwed light causes the p730 to revert to the p660 form, and red light will cause the 9660 form to be converted to the 730 form, perhaps via an intermedjate form $(27,37)$ In fact Sprift has observed that phytochrome has four different absorption maxima at wavelengths of $650 \mathrm{mp}, 670 \mathrm{mp}, 698 \mathrm{mp}$ and 744 mp and thinks that perhaps phytochrone can exist in four forms (219). In dorkness, 9730 slowly reverts to the $P 660$ form, and also decomposes to give a net loss of reversible phytochrome (36). White light appears to be equivalent in its action to red 1 ight $(34,250)$ so that at the onset of darkness, the pigment is in the 9730 form In darkmorown seedlings however, all phytochrome is in the stable P660 form (34).

In dark-grown seedlings, it was initially thought that a flash of red light converted all the phytochrome from P660 to P730, there being a 20\% xeversion to p660 in darkness, 80% of P 730 being destroyed. It has now been found however that 20% of the phytochrome remains as p660 (35), the rest of the phytochrone which had been converted to the p730 being enzymatically destroyed (184). This leads to an overall loss in reversible phytochrome $(36,136)$. This enzymatic destruction is correlated with the respiratory rate of the seedlings, being inhibited by respiratory inhibitors, anaerobic conditions and low temperatures $(28,32,136)$. In cauliflower heads however, the reaction Pfr $\rightarrow \rightarrow \rightarrow$ Pr is not affected by anaerobic conditions $(35,36)$.

A prolonged farmed interruption has the same overall effect as a red one, owing to the long absorption tail of Pr in the fax-red region of the spectrum (36). It is in the manner of the diagram above that plants respond to red and farmed light, wi th the corresponding photom morphogenic effects, and many surveys have been made on phytochrome and Its involvenent in the photoperiodic effect $(22,24,103,105,197,198,213)$. The classic behaviour of a S.D. plant to different light qualities is as follows, the example taken being that of Xanthium.

A brief interruption of red light given near the middle of an otherwise inductive night period will inhibit flowering. If this is followed by a flash of far-red light, flowering is re-promoted. This behaviour will continue for a series of red - far-xed interruptions, the quality of the last interruption determining the flowering pattern (22). This behaviour has been observed in a variety of S.D. plants (42,84,127,185). The effect on L.D. plants is the opposite ; a red light interruption will promote flowering, while a farmed light
interruption is inhibitive (22,118)。
The actual role of the phytochrome pigment in photoperiodic induc.tion is still not known however. Hendricks and Borthwick have suggested that the phytochxome pigment acts as an enzyne when in the P730 form; inhibiting flowering in SoD. plants by diverting essential internediates, and enhancing flowering in L.D. plants by reducing some inhibition (105). Price et al have noticed that red light increases the rate of disappearm ance of starch and sugars, (186) while Gordon suggests that red light can control energy transfer by esterifying phosphate (91). Both these phenomena are reversed by farmed light. Lane and co-workers (139) have detected the presence of phytochrone in green tissue of about twenty plants, but failed to detect it in Chrysanthenur, Perilla and Glycine, all three plants having a strong photoperiodic response. Briggs and Siegemann found that the highest concentration of phytom chrome lies in the meristematic region (28), an idea that agrees with that of Butler and Lane (35), who suggest that phytochrome synthesis occurs in new formed tissue.

Much of the recent work with L.D. plants has suggested that light breaks in the middle of long nights are rather ineffective in causing induction, A much more efficient method is to supplenent the natural day length with axtificial light, but only if this supplementary light contains both red and far-red light ($4,77,137,138,176,243$). Lane, Cathey and Evans, using lights of different red: farmed ratios on a variety of LeD. plants, found that optimal induction required the action of Pfr over a long period each day. The optimal pfr level was low when the concentration of the products of the high energy reactions during the day was high, and vice versa. High levels of pfr inhibited induction (137).

In S.D. plants, depending on the experimental conditions, a variety of responses can occur which differ from the classic response.
a) In Xanthium, a long farmed interruption during an inductive night period will inhibtt flowering (159). It is thought that under a long period of farmed light a photostationary state is set up between Pr and Pfr, and it is the presence of the Pex which causes the inhibition, even though the Pfr : Pr ratio would be very small.
b) If Xanthium is given a photoperiod of only two hours light per day, it has been found that a farmed light interruption given at the beginning of the dark period actually inhibits flowering, while at the end of the dark period, flowering is inhibited by a flash of red light. It has been suggested that at the beginning of the dark period, Pfr is involved in a flower-promoting function, the far-red light flash causing reversion of Pfr to Pr before this function is completed. This fax red light inhibition can be reversed by red light ($23,83,84$). This effect has also been observed in pharbitis and Kalanchöe (82).
c) It has been noted also that if Xanthium is subjected to prolonged dark periods, a farmed interruption does not reverse a red light inhibition $(169,189)$.

In Chenopodium also. the prolonged far-red light inhibition has been observed (159), Pfr being at a level of 1 - 2% of photoreversible phytochrome (127). Kasperbauer et al have al so shown that the rate of dark reversion of phytochrome in vivo is approximately 1% of the total amount of phytochrone present per minute (128). Cumming (62) has shown that increasing the red : farwred ratio at the end of the photoperiod increases the length of the optimum night. He concludes that flowering in Chenopodium is regulated by a p730-mpendent homone, the concentration
of which depends on the amount of p730 remaining after dark reversion to the inactive p600 form. konitz (134) has shown that a farmed flash during the inductive photoperiod inhibited flowering, although this work was not confirmed by others (133).

It was found that whereas one minute of incandescent light given during the dark period could inhibit Xanthium, or Glycine, this was not the case in Chrysanthenum, In Chrysanthemum, it was found that one minute of fluorescent light could inhibit flowering, and it was suggesm ted that chlorophyll absorbing red light gave a higher red : fax-med ratio of light reaching the phytochrone, as this red light inhibition by fluorescent light could be reversed by farwed light. Since incanm descent light contains appreciable quantities of farmed light, a light interruption from this source was equivalent to that of a farmed interm xuption, thus causing no inhibition $(42,43)$.

With Glycing, the story is a little different. As in Hamner's experinent with white light, it was found that red light intermptions given during a dark period greater than 16 hours aither enhanced or delayed flowering, depending at which stage of the night period the dark flash was given (ioe. a rhythmic effect), and it was also shown that farmed light did not always reverse this inhibition (40). It was concluded from these experinents that phytochrome only influences the time neasurement within the framework of the endogenous clock mechanism. Kalanchöe showed a similar rhythmic response to that of Glycine (32),

Wift anothex S.D. plant pharbitis, Takimoto et al $(227,233)$ have shown that induction can be caused by a photoperiod of white or red 1 ight, but not by far-red light. This would be because Pfr is required at the beginning of the dark period (84). In the middle of the dark period
red - far-red reversibility can occur only if the light treatments have a duration of only 30 seconds and are not separated by a dark period. This would explain why other workers have not been able to cause a far-red-reversibility (e.g. 105). It is thought that perhaps once Pfr is formed, it has a very fast action (84).

The results of Takimoto and Haner have suggested that the main time-keeping mechanism in this plant is that of an endogenous clock, this clock having three distinct mechantsms (see above). They found that a red light effect was not reversed by fax-red light, but a far-red light effect was reversed by red light, and that the level of pfr xemains relatively constant during the dark period. They conclude from these results that there are two pigment systems in operation, and that phytom chrome is concerned with the 'hour-glass' mechanism component, farmed light stopping the mechanism of this component after a certain time $(228,229,230,231,232)$. Mohr has also posturated that another pigment system is also present (168), and Friend $(86,87)$ has carried out experiments with wheat which have tended to support hisidea.

It seens therefore that the phytochrone pigment plays some part in the plant's ability to measure time, most likely by being coupled to some ascillator system, the mechanism of which is still not known (31). Hendricks and Borthwick (103,104, 105) however believe that the principal measurement of time is the dark conversion of P730 to P660, this process interacting with tirne-dependent metabolic reactions.

Temperature effects.

a) Thermoperiodic induction

Temperature changes are known to interact with photom period by being able to change the amplitude and phase of an oscillation,
and in fact rhythmic responses have been inftiated by temperature changes $(30,31,98,240)$. However, only scant information exists to show a themoperiodic induction equivalent to photoperiod.

Evans, for example, working with Lolium temulentum, has shown that a low temperature given during the inductive period inhibited flowering (69) and Takinoto and Hanner have found a similar effect in Pharbitis (228). Others have found that low temperatures axe a prewrequisite for flowering (101,170). The dark reactions of Pfr may be involved here (36,136). Wi th the L.D. plant Hyoscyanus flowering was pronoted by a 3-hour period of high temperature given in the middle of the dark period, and inhibited by a cold period; in the S.D. plant perilla, the effects were opposite (208). Low temperatures could slow down the rates of synthetic reactions, and transportation, However, these results suggest that in certain cases high temperature can substitute for light, and low temperatures can substitute for darkness (208). In the SoD. plant Glycine, the time between flowering maxima was lengthened if the plant was subjected to low temperatures, either during the day or might (99). It seems as though the endogenous clock is in this case sensitive to temperature, al though usually it is relatively temperature independent, with a Q10 of about 1.2 (98).
b) Vernalisation.

Chouard has covered this topic very thoroughly indeed in his review of 1960 (50) and so this segment of the review will be confined to reports which have been published since then.

Working with the cereal Petkus rye, Friend and Purvis found that the effects of vernalisation could be reversed by high temperatures (ine, greater then $15^{\circ} \mathrm{C}$). This reversal was prevented by neutral temperatures
(c.a. $12^{\circ} \mathrm{C}$), weak light, a restricted water supply, and long vernalisation periods of from ten to twelve weeks (89). They formulated the following diagran: -
A (precursor) $\triangle B$ (involved in flowering). high temperature devernalisation

Schwabe has suggested that vernalisation in Petkus aye is probably controlled by only one gene. No matter what treatment was given to the parent plant, the new gratin was unvernalised (205). Wellensiek suggested that a devernalisation process may occur at melosis. He showed that the locus of vernalisation, oxiginally thought to be at the growing tip, was with dividing cells (248). Grant has found that best results are obtained with winter varieties af wheat if they are vernalised for from five to eight weeks (92), a figure which agrees with that of other cereals (50).

Mutritional and homonal factors.
Hillman has found that heavy metals have an influence on the Glowering behaviour of Lema (112). Lemna perpusilla, a S.D. plant on Hoagland's medium, becones a day neutral plant, and Lema giboa, a L.D. plant on Hoagland's medium, is inhibited from flowering if cupric or mercuric ions are present. This effect is reversed when EDTA (ethylene diamine tetraacetic acid), a metal chelating agent, is present (111). The appaxent requirment of EDTA for the flowering of Wolffia microscopica, another member of the Family Lemaceae, may in fact be simply this reversal effect, since the plants were sterilised with mercuric chloride (158). Leaves of Xanthium which had, been bleached with streptomycin were found to be incapable of floral
induction (130). Since an albino L.D. wheat variety mutant was quite sensitive to photoperiod (223), it seems that iron, but not the photom synthetic pigments, is required in the induction process. The flower. of Phleum, a L.D. plant, is delayed if the concentration of nitrogen is 1ow (195).

In the tomato and the pea, the effects of kinetin are opposite to gibberellin A3 (253). Flowering is inhibited in tomatoes and enhanced in peas if kinetin is added, and it is thought that in these cases kinetin antagonises growth. It has been shown that both kinetin and gibberellin can replace the red-farmed light effect (141,163), and a few reviews concerning the physiological action of both gibberellins and auxins on flowering have been written (141,143,222). There is a great amount of contradictory ovidence concerning the role of auxin. Salisbury found that auxin inhibited flowering in Xanthium if it was applied before transiocation of the leaf stimulus, but enhanced flower ing after the stimulus had been translocated (199). Evans on the other hand, working with the L.D. plant Lolium (72), found that auxin inhibited Rlowering if applied at the end of the L. D. photoperiod, but stimulated flowering if given during a SoD., accompanied by a two hour light break during the night. He concluded that the effect of auxin was on processes occurring during the long day.

Zucker et al have found that the concentration of leaf chloragenic acid in Nicotinia rises just prior to induction, and falls during inducm tion (263). Since phenols inhibit laA oxidase (102), and since chlorm ogenic acid is a plenol- type substance, $\frac{\text { it }}{}$ seems that the removal of IAA is concerned with induction in Nicotinia. However, induction in
pharbitis is preceded by a drop in the phenol concentration (263). I.ang has suggested that the primaxy effect of auxin is concerned with the processes leading up to or concerned with the plant's "ripeness to flower" (141). Nitsch and Nitsch (173), using chromatographic techniques on extracts of induced Nicotinia, have found five different peaks of activity, and they think that the middle peak - or substance C - may be an auxin, and the fifth peak or or substance E - may be a gibberellin, a finding which agrees with that of Harada (100).

Griesel and Caplin have been able to photominduce nodes of Cestrum on an agax medium (96), while floral buds of Acuilegie $(234,235)$ and of Viscaria (16) have been grown in vitro. In all cases hormones have been required in the medium, as well as nutrients.

These results suggest that although certain nutrient or hormone deficiencies may inhibit the expression of the stimulus at critical times, no particular combination of nutrients and homone can, by itself, iniciate floral inductiono

CHEMTCAL CONTPOL O ELONERTNG

A variety of work has been done on flowering by adding metabolic inhibitors to the plant.

Byadding the nucleje acid antimetabolites 5 -fiuorouracil (5-fu) $(18,21,73,202,211,257), 5-f 1 v o r o d e o x y u r i d i n e(5-F 0 U)(18,21,73,257)$, 2 -thiouracil $(106,107)$, and 6 azaurac $11(193,211,212)$ te a variety of plants under inductive conditions (both S.D. and L.D.), it has been shown that flowering is inhibited while vegetative growth continues nomally Thompson found that maleic hydrazide, another inhibitor of nucleic acid synthesis, inhibited induction in strawbery (239). CC (2mchloroethyl) trimethyl amonium chloride) is also a growth inhibitor and it is has been observed to inhibit flowering in Pharbitis (258), Bryophylum (260) and Samolus (55). Apparently CCC causes the inhibition of cell division (258), or inhibits the bugenests af GA (145). The effect of CCC heriseversed by appiying GA (5). Since these antimetabolites inhibit nucleic acid synthesis and RNA replicam tion, the buds would be induced into a domant state, and would therem fore be unable to perceive the flowering stimulus.

Metabolic inhibitors have also been used on the leaf Antimamino acids (55,194), including p-Fluorophenylalanine (PPPA) (165,194) have inhibited floral induction in Xanthiumg as have also such breadmspectrum enzyme inhibitors such as azide, cyanide and mercuric ions (211). As the inhibition by the anti-amino acids can be reversed by the corresm ponding amino acids (e.ge in the case of PrpAg with L-mhenylalanine), jt is thought that these inhibitors interfere with the synthesis of
enzymes in the leaf.
The cobaltous ion $\left(\mathrm{Co}^{+2}\right)$ inhibits flowexing by slowing down the timing mechanism of the biological clock $(200,203)$. Since cysteine and glutathione both reverse this effect, it is thought that - SH - contain.. ing enzymes are involved. Loerchex and Liverman (157) have found that Co^{+2} inhibits the activity of the enzyme adenosine triphosphatase.

Trism-(2mdiethylaninoethyl) phosphate, or SK+f 7997~A3, is a subm stance which inhibits cholesterel synthesis in animals. This substance inhibits the formation of the flowering stimulus in the leaves of Pharbitis (18,196) Xanthium (18), Lolium (1) and the tomato (180), which suggests that steroid metabolism may be associated with the inductive processes in the leaves, and in fact that the flowering homone may be a steroid.

It can be seen therefore that the more specific the inhibitor used, the more information can be gained concerning the reactions associated with floral induction.

CONCLUSTON

This review has been mainly concerned wi th reports that have been published during the last decade. The main question axising from these recent developments is: What is the mechanism regulating the physiological process of flowering?, and more refined biochemical techniques may lead us to the answer.

Histones obviously play a role in differentiation processes, but whether histones can be regulated by a flower hormone and/or an inhibitor is a problem still to be resolved. The results with antimetabolytes show that nucleic acid synthesis is involved, and further histochemical studies should show the actual role thet nucleic acids olay in the flowering process upon the arrival at the apex of the flowering stimuluse

A breakmbhrough would be the isolation and characterisation of the flower hormone, since the reactions concexned with its synthesis in the leaf wuld then be better understood. This hormone is produced in the leaft under favourable envimonental conditions of temperature and daylength, and a system of time measurenent must be involved. The phytochrome pigment obviously plays a part in this connection. but the seactions with which it is associated are still very obscure phytom chrone may be a part of an overall endogenous clock mechanism, the reactions of the oscillatory mechan sm being as yet completely unknowno

Plant homones and nutrients play a role in flowering, but it seems that this role is essentially a secondary one.

In sumary then, under favourable condttions, a biochemical syothesis of a flowering hormone occurs in the leaves, this hormone being able to transform the mexistem from a vegetative to a reproductive condition.

References.

1. Allfrey, VoGo, Faulkner, Ro, and Mixsky, A.E., (1964). Proc, Natl. Acad.Sci. U.So, 51, 786.
2. Allfrey, VoGo, Litta, VoCo, and Mirsky, A.E., (1963), Proc,Natl。 Acad.Sci. U.So, 49, 414.
3. Allfrey, V.G., and Mirsky, A.E., (1964). The Nucleohistones, 267. (Bonner J_{0}, and Tsb P.Ed., Holden-bay Inc. San Francisco).
4. Aspinall, G.O., and Paleg, L.G.9(1963). Botan. Gaz., 124, 429.
5. Baldev, Bo, and Lang, Aog (1965). Am. J. Botany, 52, 408.
G. Ballard, L.A.T., and Lipp, A.E.G., (1964). Australian J. Biol. Gci. 17. 323.
6. Barber, HoNo. (1959): Heredity, 13, 33.
7. Barber, HoNo, Jackson, WoD., Murfet, IoC., and Sprent, J.I., (1958). Nature, 182. 1321.
8. Barber, H.N., and Paton, D.M., (1952). Nature, 169, 592.
9. Barr, $\mathrm{G}_{8} \mathrm{C}_{9}$, and Butler, J.A.V., (1963). Nature, 199, 1170,
10. Benjamin, W., Levander, O.A., Gelhorn, As, and de Bellis, R.Ho, (1966). Proc. Natl. Acad. Sci. U.S. $55,858$.
11. Berger, CoA., and Witkus, E.Ro, (1962). Exptl. Cell Res., 27, 346.
12. Bernier, G.g (1957). Naturwis5. 24, 101.
13. Bernier, Ge, Kinet, JoM, and Eronchart, Ro, (1966), Plant physiolo, 41, Suppl. XXIX
14. Bhargava, $\mathrm{S}_{\mathrm{C}} \mathrm{Co},(1965)$. Science, 147, 60.
15. Blake, J., (1966). Nature, 211, 990.
16. Bloch, D.P., (1963). The Celd in Mitosis, 205 (Levine, Lo, Ed. Academic, NoX.).
17. Bonner, Jo, Heftmann, Es, and Zeevart, T.A.D., (1963), plant Physiol., 38, 81.
18. Bonner, Jo, Huang, R, C_{0}, and Gilden, R.V*, (1963). Proc, Nati,Acad, Sci. U. So, 50, 893.
19. Bonner, Jo, and TSO, Po, (1964) : Ed., The Nucleohistones (Holdenm Day Inc: San Francisco).
20. Bonner, Jo, and Zeevart, J.A.D., (1962). Plant Physiol., 37, 43.
21. Borthwick, HoA., (1959). Photoperiodism and Related Phenonena in Plants and Animals, 275 (Withrow,R.B.,Ed., AAAS, Washington D.C.).
22. Borthwick, H.A., and Dewns, R.J., (1964). Bot. Gaz., 125, 227.
23. Borthwick, H.A., and Hendricks, S.B., (1961). Encyclopaedia of Plant Physiol., 16, 299.
24. Borthwick, H.A., and Hendricks, S.E., (1960). Science, 132, 1223. 26. Brian, Pow., Hemming, HoG., and Lowe, D., (1964). Ann, Bota (London) N. S. , 23, 369.
25. Briggs, W.R. and Fork, D.C., (1965), Plont Physiolo, 40, Suppl.LTI.
26. Briggs, W.R., and Siegelman, HoW, (1965). Plant Physiolo, 40, 934.
27. Bukatsch, F_{g}, and Rudolph, F_{0}, (1963). Photochem. Photobid. . 2, 191.
28. Eunning, E., (1960). Cold Spring Harbour Symp. Quant. Bio., 25, 1, 249.
29. Bunning, E, (1964). The Physiological Clock (Academic, No. . . .
30. Bunsow, R.C., (1960). Cold Spring Harbour Symp. Quant. Biol., 25,257.
31. Butler, J.A.V., (1965). Nature, 207, 1041.
32. Butler, WoLo, (1964). Quaxt. Rev. Biolo, 39, 1.
33. Butlex, W.L., and Lane, KoC., (1965). Plant Physiolo, 40, 13.
34. Butler, WoL., Lane, H.Ceq and Siegelman, H. H_{H}, (1963), Plant Physiolw, 38,514.
35. Butier, WoLs, Linschitz, H ., Siegelman, H.W. and Norris, K.H., (1965) , Plant Physiol. 40, Suppl. LITT.
36. Butler, WoL., Norris, KoH., Stegelman, H.W., and Hendricks, S.Bos (1959). Proc. Nati. Acad. Sci., 45, 1703.
37. Canny, M.J., (1961). Ann. Boto (London) NoSo, 25, 152.
38. Carpenter, B . H ., and Hamer, K.C., (1963). Plant Physiolo, 38, 698.
39. Carpenter, B.H., and Hamer, K.C., (1964). Plant Physiol., 39, 884.
40. 42. Cathey, HoM., and Borthwick, HoA., (1964). Botan. Gaz., 125, 232.
1. Cathey, H.M., and Borthwick, H.A., (1963), Plant Physiol., 38, Suppl. XXXV.
2. Chailakhyan, M. Kh, and Butenko, R.G., Plant Physiol. (U.S.S.R.) English translation, 4, 426. (as queted in 261.)
3. Chalkley, G.R., and Maurer, HoRo, (1965) F Froce Natl. Acad. Scio U. So, 54, 498.
4. Chance, B., Estabrook, R.W., and Ghosh, A., (1964). Proc. Natl. Acad. Sci. U.So 51, 1244.
5. Chance, Bo, Schoener, Bo, and Elsaesser, S., (1964). Proco Natl. Acad. Sci. U. S. $52,337$.
6. Cherry, J.Ho, and van Huystee, R., (1965). Plant Physio1., 40, 987.
7. Cherry, JoH., and van Huystee, R., (1965). Plant Physiol., 40, Suppl. XITV.
8. Chouard, Pos (1960). Anno Rev, plant Physiol., 11, 9l.
9. Clark, MeF, Matthews RoE.Fo, and Ralph, R.K., (1963). Biophys. Res. Communt. 13, 505.
10. Cold Spring Haxbour Symposium of Quantitative Biology, 25. (1960).
11. Colenan, R.E., and Nickell, L.G., (1964). Nature, 201, 941.
12. Collins, W.T., and Salisbury, Fo. Fo, (1960). Plant Physiolo, 35, Suppl. XXXITT
 $60,131$.
13. Commoner, B., (1964). Nature, 202, 960.
14. Cornforth, J.W., Milborrow, B.V., Ryback, Ge, and Wareing, PoF., (1965). Nature, 205, 1269.
15. Coulter, M.W., (1965). Plant Physiol. , 10, Suppla XLV.
16. Coulter, M.W., and Hamer, K.C., (1964) Plant Physiol., 39, 848.
17. Coulter, MoWo, and Hamner, KoCo, (1965). Plant Physiol., 40, 873.
18. Cuming, B.G., (1963). Can.J.Botany, 41, 901.
19. Curming, B.G., (1059). Nature, 184, 1044.

* 63. Curtis, C.J., (1964). Nature, 203, 201.

64. Dean, A.C.Ro, and Hinshelwood, Co, (1964). Nature, 201, 232.

* 65. Doorenbos, Jo, and Wellensiek, S.J., (1959). AnnoRev.Plant Pnysiol., $10,147$.

66. Dxiesche, To, (1966). Extl. Cell Res. 42, 18.
67. Ehret, C.F., and Barlow, J.So, (1960). Cold Spring Harbour Symp, Quant. Biolo, 25, 217.
68. ElmAntably, HoMoMo, and Wareing, FoF., (1966). Nature, 210, 328.
69. Evans, L.T., (1960). Australian Jobiol.sci., 13, 429.
70. Evans, LoTo, (1962). Australian JoBiol.Sci., 15, 281.
71. Evans, L.To, (1962). Australian JoBiol.Sci., 15, 291.
72. Evans, L.T., (1964). Australian Jobicl. Sci., 17, 10.
73. Evans, I. To, (1964). Australian J.Biol.Sci., 17, 24.
74. Evans, L.T., (1963). Ed. Environmental Control of Plant Growth (Academic, $\mathrm{N}_{0} \mathrm{Y}_{\mathrm{o}}$).
75. Evans, L.T., (1958). Nature, 182, 196.
76. Evans, L.T., (1966). Science, 151, 107.
77. Evans, L.T., Borthwick, HoAo, and Hendricks, S.B., (1965). Australian J. Biol. Sciog 18, 745.
78. Evans, L.T., and Wardlaw, I.F., (1964). Australian J.Biol.sci., 17. 3.
79. Finn, J. C_{9}, Jr., and Hamer, $\mathrm{K}_{\mathrm{o}} \mathrm{C}_{0},(1960$) Plant Physiol., 35, 982.
80. Flickinger, R.A., (1963). Science, 141, 608.
81. Fratianne, D.G., (1965). Am.J.Botany, 52, 556.
82. Frederica, Ho, (1963). Nature, 198, 101.
83. Fredericg, Ho, (1963), Plant Physiol., 38, Suppl. XLVItT.
84. Fredericq, Ho, (1964), plant Physiolo, 39, 812.
85. Frenster, JoHo, (1965). Nature, 206, 680.
86. Friend, D.J.Co, (1964), Physiol. Plantae 17, 909.

* 87. Friend, D.J.C., (1964). Plant Physiol. 3 39, Suppl. XLTX

88. Friend, DoJ.C., and Helson, V.A., (2966). Science, 153, 1115.
89. Fitiend, D.J.C. and Purvis, O.No, (1963). Annobot. (Lenden) N. So, 27.553.
90. Gifford, E.M., Jr., and Tepper, H.B., (1962). Am.J.Botany, 49, 706.
91. Gordon, $\mathrm{S}_{\mathrm{A}} \mathrm{A}_{\mathrm{n}}$, (1964). Quart.Rev. Biol., 39, 19.
92. Grant, MoN., (1964). Can.J.Plant Science, 44, 446.
93. 93. Griesel, W.O., (1963). Plant Physiol. 38, 479.
1. Griesel, W.O., (1964). Plant Physiol., 40, Suppl. XLIV.
2. Griesel, W.O., (1965). Plant Physiol., 41, 111
3. Griesel, W.O., and Caplin, S.M. (1964). plant Physiolo, Suppl. XXXVI.
4. Guttridge, C.G. (1959). AnnoBot. (London), 23, 351. (N.S.)
5. Hamnex, KoC., (1960), Cold Gpring Harbour Symp. Quant.Biol.,25,269.
6. Hamner, K.C. (1963). Environmental Control of Plant Growth, 215
(Evans I. To, Ed, Academic, NoY.)
7. Harada, MoHo, (1962). RevoGen.Botano 69, 201. (as quoted by 173).

100a. Harber, E. Chaudhurt, Nok., and Heidelberger, Co, (1959). J.Biol. Chem. 234, 1255.
101. Heide, O.M., (1963). Physiol. Planta, 16, 104.
102. Henderson, J.H.M., and Nitsch, J.P., (1962). Nature, 195, 780.
103. Hendricks, S.B., (1960). Cold Spring Harbour Symp, quant. Biol., 25,245.
104. Hendricks, S.B., (1964). Photophysiology, 1, 305. (Giese, A.C., Ed., Academic, $\mathrm{N}_{\mathrm{o}} \mathrm{Y}_{\mathrm{o}}$) 0
105. Hendricks, S.B., and Borthwick, H.A., (1963). Enviromental Control. of Plant Growth, 233 (Evans, LoTo, Ed., Academic, N. Y_{0})
106. Heslop-Harrison, Jo, (1962). AnnoBoto(London), NoSo, 26, 375.
107. Heslopmarrison, J., (1960) Science, 132, 1943.
108. Hess, D., (1959). Planta, 54, 74.

* 109. Hess, D.g(1961). Planta, 56, 229.

110. Hess, Do, (1961). Planta, 57, 13.
111. Hillman, W.S., (1961). AmoJ.Botany, 48, 413.
112. Hillman, W.S., (1962). Am.J.Botany, 49, 892.
113. Hoffman, E.M., and Miller, J.H., (1966). Arn.J.Botany, 53, 543.
114. Hsu, T.C., (1962). Ext1. Cell Res. 27, 332.
115. Huang, R.C., and Bonner, J., (1962). Proc.Nat1.Acad. Sci. U. S., 48, 1216.
116. Huang, RoCo, and Bonner, J., (1965). Proc.Natl.Acad. Scio U. S., 54, 960.
117. Huang, R.C., Bonner, J., and Murray, Ko, (1964). JoMolec.Biol., 8, 54.
118. Hughes, AoPs, and Cockshull, K.Eo, (1965). Ann。Botany (London), 29, 131.
119. Hurd, R.Ge, and Purvis, O.No, (1964). AnneBotany (London), 18, 137.
120. Tmamura and Takinoto, Aog (1956). BotanoMago(Tokyo), 69, 23.
121. Jacob, Fis, and Monod, J., (1961). Cold Spring Harbour Symp. Quant. Biol., 26, 103.
122. James, NeI., and Lund, So, (1965). AmeJ. Botany, 52, 877.
123. Janick, J_{0}, and Leopold, A.C., (1961). Nature, 192, 887.
124. Jellum, E., Nygaard, O.F., Harrington, H., and Eldjarn, L., (1966) Biochim. Biophys. Actà., 114, 612.
125. Johns, E.N., and Butler, J.A.V., (1964). Nature, 204, 853.
126. Johnston, MoJ. (1966). B.SC. (Hons.) Thesis, University of Tasmania.

3 127. Kasperbauer, M.Jo, Borthwick, H.A., and Hendricks, S. Bo, (1963).
Botan. Gaz., 124, 444.
128. Kasperbauer, M.J., Borthwick, H.A., and Hendricks, S.B., (1964). Botan. Gaz., 125, 75.
129. Ketellappar, H.J., (1963). Plant Physiol., 385 Suppl. XIV.
130. Khudairi. A.K., (1960) , Physiol. Plantarum, 13, 1.
131. Kiyosawa, So, and Kiyosawa, Ko, (1962). Plant Cell Physiol. (Tokyo), 3. 263.
132. Knox, R.B., and Evans, L.T., (1966). Australian J.Biol.Sci., 19, 233.
133. Kofranek, AoMo, and Sachs, RoMo, (1964). Am.J.Botany, 51, 520.
134. Konitz, Wo, (1958) , Planta, 51, 1.
135. Lam, S.L., (1965). Am.J.Botany, 52, 924.

136．Lane，H．Co，and Butler，Wols，（1963）．Plant Physiol．，38，Suppl．V．
137．Lane，H．C．，Cathey，HoM．，and Evans，L．T．，（1965）．Am．J．Botany， 52， 1006.
138．Lane，HoC．，Cathey，H．M．，and Evans，L．T．，（1965）．Plant Physiol．， 40，Suppl．XLIV。
139．Lane，H．Co，Siegelman，HoW．，Butler，WoLo，and Firer，E．Mo，（1063）． Plant Physiol．，38，414．
140．Lang，A．（1952）．AnnoRev，Plant Physiolo，3． 265.
141．Lang，A．，（1959）．Photoperiodism and Related Phenomena in Plants and Animals，329．（Whthrow，R．B．，Edo，AAAS，Washington，D．C．，）
142．Langer，R．HoM．，and Bussel．，W．T．，（1964）．Ann．Botany（Iondon）N．S．， 28，163．
143．Leopold，A．Co，（1958）．AnnoRevoplant Physiolo，2， 281.
144．Lesham，Y．，and Kollex，Do，（1964）．AnnoBotany（London）NoSo，28，569．
145．Lesham，Y．，and Koller，D．，（1966）．AnnaBotany（London）．NoS．，30，587．
1．46．Leslie，I．，（1961）．Nature，189，260．
147．Liau，．，Hnilica，．，and Hurlbert，o，（1965）．Proc．Natl． Acad．Sci．，U．S．53，626．
10．8．Lincoln，B．G．，Cunningham，Ao，and Hamex，K．C．，（1964），Nature， 202，559．
149．Lincoln，RoGo，Mayfield，D．L．，and Cunningham，Ao，（1961）．Science， 133，756．
150．Lincoln，RoGo，Mayfield，D．L．，Hutchins，R．O．，Cunningham，Ao， Hanner，KoCo，and Carpenter，BoH：，（1962）．Nature，195， 918.
151．Lincoln，RoG．，Raven，K．Ao，and Hamner，K．C．，（1958）。 Botan．Gazo， 119，179．
152．Littan，V．C．，Allfrey，V．G．，Frenster，J．H．，and Mirsky，A．E．，（1964）． Proc．Natl．Acad．Sci．U．S．，52，93．
153．Littau，V． C_{8} ，Burdick，CoJ．，Alfrey，V．Go，and Mirsky，A．E．，（1965）。 Proc．Natl．Acad．Sci．U．S．，54，1204．
154．Liverman，J．I．，（1955）．AnnoRev．Plant Physiolo，6，177．
155．Lockhart，JoA．，（1961）．Encyclopaedia of plant Physioloop16， 390 （Ruhland，Wo，Ed．，Springer，Bexlin）．
156．Lockhart，JoA．，and Hamner，K．C．，（1954）．Botan．Gazon，116，133．
157．Loercher，L．，and Liverman，JoLo，（1964）．Plant Physiolo，39，720．
158．Maheshwart，S．C．，and Chauhan，O．S．，（1963）．Nature，198， 99.
159. Mancinelli, A. (1963). Plant Physiol., 39, Suppl. XLVITI.
160. Marushige, K. and Marushige, Y. (1962). plant Cell Physiol. (Tokyo), 3, 319.
161. Mayfield, D.Lo, Lincoln, R.Go, Hutchins, RoGo, and Cunningham, Ao, (1963). J.Agr.Food Chem, 11, 35.
162. Michniewicz, Mo, and Lang, Ao, (1962). Planta, 58, 549.
163. M11ex, C.O. (1961). AnnoRevoplant Physiol. 12, 395.

* 164. Miller, J., and Ross, Co, (1965). Plant Physiolo, 40 g Suppl. XLIVo

165. Miller. Jo, and Ross. Cog (1966). Dlant physiol. 41, 1185.
166. Mitchell, MoD., (1964). Plant Physiolo, 39, Supplo XXXVTTT
167. Mitrakos, Kos (1963). Photochen. Photobiol. 2, 223.

* 168, Mohr, Ho, (1963). Environmental Control af Plant Growth. 261. (Evans, L.To, Edo, Academic, N. K_{o})

169. Moore, P.H. and Hamex, K.C., (1966). Plant Physiolo, 41, SupploxKx
170. Nakata, S., and Watanabe, Yo, (1966). Botan. Gazo, 127, 1460
171. Naylor, A. No, (1961)。Encyclopaedia of Plant Physiol., 16, 331.
(Runland Wo, Ed., Springer, Berlin).
172. Nitsan, J., (1962). Plant Physiola, 37. 291.
173. Nitsch, Ja. and Nitsch. C., (1965). Am.J.Batany, 52, 591.

17A. Nohara, Ho, Takehashi, To, and Ogata, Kag (1966). Biochimo Biophyso Acta, $127,282$.
175. Nougarde, A. Gifford, E.N. Jro, and Rondet, p., (1965). Botan. Gazoq 126, 248.
176. Paleg, L. Ge, and Aspinall, Go., (1964). Botan, Gazo, 125, 149.
177. Palmer, J.D. Livingston, L*, and zusy. D., (1964). Nature, 203, 1087.
178. Paton, D.Mo, (1956) PheD. thesis, University of Tamania.
179. Paton, D.M., and Barber, HoN. (1955). Australian J.Bial. Sci. . 8, 231.
180. Phatak, SoC. and Wittwer, S.H., (1964). Plant physiol. 39. Suppl. XXXVTX
181. pittendrigh, C.So, (1960). Cold Spring Harbour Symp. Quant. Eiolog $25,159$.
182. Pittendrigh, Coso, and Bruce, V.Go, (1959), Photoperiodism and Related Phenomena in Plants and Animalso, 475. (Withrow Rodog Ed, AAAS, Washington D.Co).
 Acad. Sci. U.S. 55, 805.

* 184, Pratt, L.Ho, and Briggs, WoRo, (1966). Plant Physiol. 41, 467. 185. Preston, W.H. , and Haun, J.Ro, (1963). Botan. Gazo, 124, 346. 186. Price, LoKo, Mitrakos, Ko, and Klein, WoHog (1963), Plant Physiola, 38, Suppl. Vo

187. Purvic, OnNo, (1961). Encyclopaedia of Plant Physiolo, 16, 76. (Ruhland, Wo, Ed, Springer, Bexlin).
188. Raghaven, V_{0}, and Jacobs, W.P., (1961). American J. Botany, 48,751. 189. Reid, H.B., (1966). Plant Physiol., 41, Suppl. XXXX
189. Roberts, Rot. (1951). Plant Growth Substances, 347. (Skoog, F., Edo, Univa Wisconsin Press).
190. Roberts, R.H., and Struckneyer, B.E., (1964). Plant Physiol., 39, Supp1. XXXVI.
191. Ross, C.W. (1962). Biochim. Biaphys. Acta, 55, 387.
192. Ross, C.W., (1963). Plant Physiol., 38, Suppl. LVo
193. Ross, C.W., and Starr, R., (1964). Plant Physiol., 39, SupplaXXXVIJT
194. Ryle, G.J.A., and Langer, R.H.M., (1963)。Ann. Boto (London) N No So, 27 213.

* 196. Sachs, R.Ma, (1966). Plant physiolo 41, 1392.

197. Salistury, FoB., (1961). AnnoRev.Plant Physiol., 12, 293.
198. Galsibury, F.B. (1963). The Flowering Process (Macmillan, N.Y.)
199. Salisbury, Fo. (1955), Plant Physiol., 30, 327.
200. Salisbury, F.E., (1959). Plant Physiol. 34, 598.
201. Salisbury, E.B., (1958). Scientific Anerican,198.
202. Saljsbury, E.B., and Bonner, J., (1960), Plant Physiolo, 35, 173.
203. Gelisbury, E.B., and Eichorn, GoL., (1963), Planta, 60, 145.
204. Schmate, U.H., (1960). Plant Physiolo. 41, Supp1. XXIX.
205. Schwabe, W.W., (1963). AnneBot. (London) N.S., 27, 671.
206. Schwobe, WoW, (1959). JoExt.Botany, 10, 317.
207. Schweigex, E., Wallraff, H.Go, and Schweiger, H.G., (1964). Science, $146,658$.
208. Schwemmle, B., (1960). Cold Spring Haxbour Symp. Quant.Biolog 25, 239.
209. Searle, NoE., (1965). AnnoRev.Plant Physiol., 16, 97.
210. Searle, NoE. (1961). Plant physicl. 36, 656.
211. Searle, NoE., (1964). Plant Physiol, 32, Supp1。 XXXVTI
212. Searle, NoEo, (1965), Plant Physiolo, 40, 261.
213. Siegelmang H.W., and Butler. Wel. (2965) Ann Rev. Plant Physiol. 16,383.
214. Stegelman, H.W. Turner, B.Gogand Hendricks, SoB. (1965). Plant Physiol 40 Suppl ITIT.
215. Siegelman, How , Tumer, B.C., and Hendricks, S.B. (1966). Dlant physiclaq 41, 1289.
216. Skene, K.G.M.g and Lang, A.g (1963). Plant physiol., 39, Suppl. XxyVIT.
217. Sprent, T. To (1958). Ph.D.Thesis, Universtty of Tamania.
218. Sprent, J.I., and Barber, HoNo (1957) Nature, 180,200 .
219. Sprutt, G.J.P., (I966). Biochim. Biophyso Acte, 12, 186.
220. Stange, $1 .(1965)$. AnnoRevalat Physiolog 16, 119.
221. Stedman, F. and Stedman, E. (1951) P Pha, TransoRoyosocoLondon Sera Bog 235, 565.
 12, 369.
222. Suginno, Mo, (1961) © Science, 134, 1529.
223. Sweeney. B.Mo, (1963). Annarev. Rlant Physiol. 14. 411.
224. Sweeney, BoMo, (1963). Plant Physiol. 38, 704.
225. Sweeney, BoMo, and Haxa, T. To, (1961). Science, 130, 1361.
226. Takimoto. A. and Tkeda, K, (1960), Botan,Mag (Tokyo), 73, 91.

1 229. Takimoto, A., and Hamner, K.Co, (1965). Plant physioloy40, 852.
227. Takamoto, A, and Hemner, K.C. (1965). Plant Physiol., 40, 855.
228. Takimoto, Ao, and Hemner, KoCo, (1965) P Plant Physiol. $40,859$.
229. Takimoto. Ao, and Hamer, KaC. (1965) . Plant physiol., 40, 865.
230. Takimoto, A. and Naito, Y. (1962). Botanomago(Tokyo), 75, 2550

234, Tepfer, SoSo, Greyson, RoTo, Graig, W.R., and Hindman, JoIo, (1963)。 Amo J. Betany, 50, 1035.
235. Teprer, S. So, Karpoff, AoJ., and Greyson, R. T: (1966). Am. T. Botany, 53, 148.
1236. Thomas, R.Go, (1962). Amno Boto (Iondon) N. S.g. 26, 329.
237. Thomas, Ra_{0}. (1962). J.Exptlo Botog 13, 26e.
238. Thomas, R.G. (1963). Science, 140,540
239. Thompson, PA. (1963). Nature, 200, 146.

1 240. Thompson, PoAog and Guttridge, CoGog (1960). Annoboto (London) N. Sog 24,482.
24. Tonino, G.J.M., and Rozijn, T.H., (1966). BiochinoBiophysoActa, 124.427.
242. VillamTrevino, S., Shull, KoHo, and Farber, E.J., (1963). Jobiol. Chem, 238, 1757.
243. Vince, D., Blake, Jo, and Spencer, Ro, (1964). Physiol. Planta, 17,1190
244. Wardaw, Cow., (1964). Nature, 202, 575.

1 245. Wareing, P.F., (1956). AnnoRev. Plant Physiol., 7, 191.
246. Wassemann, L., (1959). Planta, 53, 647.

1 247. Wassink, E.Co, and Stolwijk, J.A.J., (1956). AnnoRevoplant Physiol.g 7. 373.
248. Wellensiek, S.J., (1964), Plant Physioloq 39, 834.
249. Went, F.W., (1960). Cold Spring Harbour Symp, quant. Biol., 25, 221.
250. Wilkins, MoB., (1960). Cold Spring Harbour Symp. Quant. Biolon25, 115.
251. Wilkins, M.B., and Holowinsky, (1965). Plant Physiol., 40, 907.
252. Withrow, R.B.g(1959). Photoperiodism and Related Phenomena in Plants and Animals. (AAAS Washington D.C.).
253. Wittwer, S. H_{0}, and Dedolph, R.R., (1963). Am.J.Botany, 50, 330. 254. Woodstock, L. W., and Brown, Rs, (1966). Botan. Gaz., 127, 6.
255. Woodstock, L.M., and Skoog, F_{H}, (1960). Am。J. Botany, 47, 713.
256. Zeevart, J.A.D.g (1963). Environmental Control of Plant Growth, 289. (Evans, LuR., Edo, Acadenic, NoY.).
257. Zeevart, J.A.D., (1962). Plant Physiol., 37, 296.
258. Zeevart, J.A.D., (1964). Plant Physiolo, 39, 402.
259. Zeevart, J.A.D., (1962). Planta, 58. 543.
260. Zeevart, J.A.D., (1963). Planta 59, 509.
261. Zeevart, J.A.D., (1962). Science, 137, 723.
262. Zeevart, J.A.D., and Lang, A.g (1962). Planta, 58, 531.
263. Zucker, M., Nitsch, Go, and Nitsch, J.Po, (1965). Am. J.Bot. 52, 27.

PART II

some aspects on the regulation of flowertg in peas

CHAPTER ONE

Introduction:

A general review of the literatuxe concerning the endogenous control of flowering by both floral stimulants and floral inhibitors has been presented in the first paxt of this thesis.

The gaxden pea, Pisum sativum L_{0}, has been extensively used in studies of flowering behaviour (e.g. $1,14,15,18,22,24,25,27,28,30$). Varieties of this plant can be divided into two distinct groups categor-m ised by theit flowering habit. Late varieties typlcally flower above the fifteenth node, are capable of beang vernalised and respond to photom period as quantitative long day plants, while early varieties flower at about the ninth to eleventh node above the cotyledons and are insensivive to vernalisation and photoperiod. Flowering in this plant is under the major control of the specific locus (Sn sn), late varieties possessing the dominant Sn gene which causes latex flawering by jnducing a response to vernalisation and photoperiod (1).

$$
\text { e.g. }(29)
$$

Description	Variety, e.g.	Conetic
Late	Telephone,Greenfeast.	Sn Sn
Early	Alaska, Massey.	sn sn

Although transmission of the floral stimulus from the leaves or cotyledons to the apex is a proven partial process of photoperiodic induction (37), the actual hormonal regulation of floral induction in Pisum has been interpreted differently by different workers. Hapt $(9,10,11,12)$ has interpreted his results by suggesting that floral
induction in peas is mediated by the positive action of a flomigen, and this theory has been supported by Highkin (13), working with peaseed diffusates. Moore and Bonde (23) found that peamsed diffusates could also delay flowering as well as promoting it, and Houpt (12) has also suggested that a flower-inhibiting substance may be present in vegm etative plants.

Barber and his associates ($1,3,26,27,29,30$) have studied flowerjing in several varieties of peas, and have suggested that the Sn gene present in late varieties is responsible for the production of a flowerm inhibitor hermone in the cotyledons soon after germination, which Barber has naned colysanthin. flowering in late varieties of peas was thought to be mediated by the destruction of colysanthin, this destruction occurrm ing rapidly at low temperatures and long days (1). Leaching of a flower inhibitor from the cuttings of young seedings has conftrmed this idea (30), as did the work of Johnston (15), using the technique of cotyledon excision. The ldea has been brought forward by von Denfer that flowerm ing is controlled by the sudden drop in the production of a floral imhibitor, and not by the production of a floxigen (5). Paton (26) has suggested that perhaps a flower-inducing substance (fiorigen) is a prem cursor to colysanthin, and that under short day conditions the leaves are able to produce colysanthin, while under long day conditions, they can inactivate this substance, perhaps by transforming it into a flower prom moter. Early varieties of peas, on the other hand, are believed not to produce colysanthin.

Sprent (29) has suggested that the production of flowers in peas and other plants is most likely governed by a balance of flower - promoting and flower-inhibiting substances.

The role of the cotyledon in the regulation of flowering in pisum sativum has been investigated by a number of workers (1, 3, 9, 10, 11, 12, $15,19,27,28$) and an intexesting reciprocal influence of the shoot axis on the cotyledons has also been reported (32,36). In particular. it has been shown with certain varieties of peas that flowering can be morkedly effected if the cotyledons are excised from young seedlings $(1,3,9,10,11,12,15,27)$.

The work to be described in this thesis is concerned primarily with the rale of the cotyledon on the flowering in peas, and in its relation ship with the environnental conditions of photoperiod and especially vernalisationo

MATERTALS AND METHODS

plants:- Two commerial varieties of peas were used in the experiments to be described, the early variety 'Massey', and the late variety 'Greenfeast'.

Seed treatment:- Seeds were selected so that themr testas were free from cracks or blemishes. Since the tissue inside the testa of normal healthy pea seeds is sterile, seeds were sterilised in a woak solution of sodium hypochlorite for two three minutes, followed by several rinses in sterile demionzed water. After sterilisation all seeds were imbibed in de-ionized water for eight hours at room temperature (about $20^{\circ} \mathrm{C}$). Since over short periods (e.g. 8 hours), the leaching action reported by Bonner et al (4) and Eyster (6) does not affect subsequent germination, growth and development, and since this method ensures uniform gemination, this method was adopted. Conditions of gemminationsm The imbibed seeds were planted into a moist vermiculite - gravel mixture (1 : 1) and grown in the departmental phytotron under the controlled environmental conditions of high light intenm sity, a tempexature of $21 \pm 2^{\circ} \mathrm{C}$, and either a long day (16 hours) or a short day (8 hours) photoperiod, supplenentary light being given by banks of mixed fluorescent tubes and incandescent globes. For experim ments which involved a vernalisation treatnent, the imbibed seeds were planted in pure vermiculite and grown at a temperature of $4^{\circ} \mathrm{C}$ for a period of o weeks, unless otherwise stated, In addition to watering, plants were given a regular treatnent of a nutrient solution every four days.

Embryo culture: - In experiments concerning embryo culture, the embryos were aseptically dissected from the seed at the end of the 8 hour
imbibition period. In making cotyleden extracts, the cotyledons from 25 plants were ground in 125 mlse of water in a Wareing blender, and then added to 125 mls . of double strength white' s medium $(34,35$) To this was then added and dissalved 5 grams ($=2.0 \%$ of dextrose and 1.38 grams ($=0.75 \%$) of agar. 10 ml s. of the resultant solution was then added to each of 25 test tubes ($1.5 \times 15 \mathrm{~cm}$), which were then capped and autoclaved. On cooling, a gel was present in the test tubes, each test tube contain.ing 10 ml s of cotyledon extract, equivalent to the extract from one plant. The embryos which are aseptically dissected were planted on this cotyledon extract, one enbryo per test tubes

A pilot experiment was carried out which showed that a cotyiedon extract equivalent to for plants per test tube had toxic effects, the embryos planted on this extract dying.

Overall, the rate of contanination was low, but additional cultures were prepared for each treatment none the less, and replacenents made where necessary.

The seedlings continued to grow in the test tubes under sterile conditions until such time as they had a well-developed root system, and 3 or 4 nodes fully expanded. (Figure 1): They were then transplanted out into tins containing a moist 1 : 1 vemiculite : gravel mixture. Grafting: -" For the experiment involving grafting, plants were grown in moist vermiculite until such tine as the epicotyl was a little less than $2 \cdot \mathrm{cms}$. long and the second internode was just visible, about 5 days after planting, A cleft - graft technique similar to that used by Paton and Barber (27) was used, the stock plant being decapitated between the cotyledonary node and the node of the first leaf. A median longitudinal cut for approximtely half the length of the stock epicotyl allowed
the wedgemshaped scion to be easily pushed into positione For strapping the cut surfaces together, thin rubber rings cut from bicycle valve rubber bubing is all that is required, the rubler ring being slipped over the stock just before insertion of the scion (Figure 2). With this method, a figure of 75% successful grafts was obtained, each individual graft being completed in about 1 minute. The plants were then transplanted into a moist 1 : 1 vermiculite : gravel mixture. No marked scion growth occurred for a period of 10-14 days, and until apical dominance was restored (a period of $3-4$ weeks), the cotyledonary buds of the stock produced vigorous basal shoots. These shoots were renoved daily until the scion had established dominance, and after that the scions were regularly checked for lateral bud growth.

Scoring: All plants were grown to anthesis, the results of all experm Inents being analysed solely in terms of node number of the first flower (N), taking as zero the cotyledonary node.

All time measurements are taken from the beginning of the 8 mour imbibition time.

Eigure ${ }^{2}$
Conditions of Embryo Culture. "Creenteast" seodines ready for
wransplanting. The enbryoswere excised from tho seed after 8 hours
tmbibition, and grom under S.D. conditions (from Johnston (15)).

Figure 2.

The grafting technique : m A, intact seeding; B, decapitation between the cotyledonary node and the first leaf node ; C_{9} wedge shaped scion and stock with the inserted rubber ring and longitudinal slit; D, the completed graft.

Figure 2.

A.

8.

C.

CHAPTER THO

The effect of the cotyledons on the flowering of peas.

Tntroductions

The cotyledons of peas are fleshy organs and are the major source of mutrition and of plant growth substances (33) for the young seedlings. Highkin (13) has shown that preparations of pea-seed diffusates have a flower promoting activity By suggesting that the active principle in the cotyledons may be a flower homone or hormone precursor, he supports the view of Haupt $(9,10,11,12)$ who has consistently advanced the view that flowering in peas is mediated by the postive action of a florigen. Barber and collaborators ($1,3,27,30$), using various experimental techniques, have postulated that late varieties of peas contain a mobile flower-delaying substance, colysanthin, in theix cotyledons, a hypothesis which has been supported by results recently obtained of Moore (20,21), Sprent (28) and Johnston (15). However, Moore and Bonde (23) found that aqueous extracts of pea seeds from the late variety 'Telephone' could be prepared which had either flowermpromoting or flowerminhibiting properties.

It has been shown that renoval of cotyledons causes late varieties to flower at an earlier node $(16,20,21,27)$ while in early varieties cotyledon removal after 4 days germination caused a delay in flowering (20). Haupt (9) showed a similar result on the early varjety'kleine Pheinlanderin' if the cotyledons were xemoved after 8 hours and the embryos grown on a nutrient culture. Floral initiation in the early variety 'Massey' was delayed if cotyledons were remyed between 1 and 4 days after germination, and it was suggested that a floral inhibitor was present in the cotyledons, being rapidly mobilised after germination commences, and being either inactivated or converted to a promotive
substance aftex about 4 days $(15,16)$.
The experinents discussed in the following pages were carried out for the following 2 reasons:-
a) to obtain further information about the nature of the flower hormone in the cotyledons of a late and an early variety of Pisum sativum.
b) to try and reproduce the results obtained previously (15) by employing a slightly different technique. Instead of removing cotyledons at different stages of developnent, cotyledon extracts were mede at various stages after germination on to which were planted freshly imbibed embryos. Since cotyledons in peas are the source of floral hormone, it was hoped to determine whether, by this method, the pattern of flowering of one variety could be transformed into that of the other. Experinent 2s 1:-

Cotyledon extracts of the early variety 'Massey' and of the late variety 'Greenfeast' were made up in the manner mentioned previously (0.51) at the stages of the dry seed $(=$ time 0), after 8 hours imbibition (: time $1 / 3$) and after having germinated for $1,2,4$ and 6 dayse A plain nutrient medium was also set up as a control. Embryos of the variety 'Massey' were excised after having been imbibed in theix seed for 8 hours, and placed on the extract, and after transplanting, the seedlings of the individual treatnents were randomised, grown to anthesis and scored for the node of first flower.

The results are sumarised in Table 2.1 and graphically in Figure 3. Experiment 2.2:-

Experiment 2.1 was repeated and expanded, using both 'Massey' and 'Greenfeast' embryos and either 'Massey' or 'Greenfeast' cotyledon extracts.
'Massey' extracts were made up at the stages of $3,5,6$ and 9 days after germination, and 'Greenfeast' extracts were prepared at the stages of $3,6,9$ and 12 days after germination.

The results are summarised in Tables 2.2 and 2.3 , and graphically in Figures 4 and 5 .

Results and Discussions

It has previously been shown that pea seedings are dependent on the cotyledons as a source of food supply and growth substances up to a week after germination, after which time they can produce their own food material (15,30).

From the results, it can be seen that since variety Massey" usually Flowers at node 9 or 10 , there is a significant inhibition to mean treatnent node 11.50 if the decotyledonised embryo is placed on a plain nutrient agar medium, wh variety 'Greenfeast', a plant which under LoD. Conditions uswally flowers at node 16 or 17 , the mean treatrent node of first flowew has been brought forward to node 15.33 if the decotyledonised embryo is placed on a plain nutrient agar medium (Table 2.2).

On extracts of 'Massey' cotyledons, 'Massey' embryos were delayed in their flowering when the extract was mede with cotyledons $2-4$ days old. (Table 2.1, $\mathrm{P}=.01$; Table 2.2, $\mathrm{P}=.05$) 。 A1though 'Massey' extracts of all ages tested significantly inhibited the flowering of 'Greenfeast' enbryos ($\mathrm{P}<\mathrm{n}$ D01), the greatest delay in flowering was caused by 3 . day extracts (Table 2.2).

On extracts of 'Greenfeast' cotyledens, 'Massey' enbryos were delayed in their flowering wen the extract was made with cotyledons A days old (Table 2.1, $p=06$). Although 'Geenfeast' extracts of all ages tested significantly inhibited the flowering of 'Greenfeast' embryos ($P<001$), the greatest delay in flowering was caused by the 6 -. day extracts (Table 2.3).

The deaths of many 'Massey' embryos occurred during the course of these experimonts, especially on 3-day cotyledon extracts of both verieties, and on the 6-day 'Massey' cotyledon extract. Since Johnston
(15) found that no cell division (and hence no new node fomation) occurred in the embryo until four days after the commencement of gexminw ation, some substance may be present in the cotyledons at this stage which causes a shock to the embryo from wioh 'Greenfeast', but not 'Massey' can recover.

Moore (20) has round that at high ilght intensities cotyledon excision causes a signficant delay in variety 'Massey' peas, and this has been observed in the present experiments. Although many workers $(3,9,11,23,26,27,29)$ have attributed this delay to the removal of a florigen present in the cotyledons, Johnston (15) has produced good evidence for the presence of a temporary inhibitar, which moves from the cotyledons to the piumule 24 - - 36 hours after germination. The results presented here show a similar trend to those obtained by Johnston. Extracts of "Massey" cotyledons at the age of $2-3$ days can delay the node of first flower of both 'Massey' and 'Greenfeast' embryos. This could be the result of a temporary inhibitory substance, which reaches its maximum level in the cotyledons of "Massey" after about 3 days of germinations or it could be the result of a flower inducing substance, which suxpasses a maximm threshold level after 3 days, and thus becones inhibitory, After 3 days, a regulatory mechanism becomes fully estabm lished which would control the rate of production of this inducing substance.

Since the extracts wexe autoclaved, the results of these expeximents show al so that this substance affecting the node of first flower in Massey cotyledons is quite stable to heat extrenes.

The results concerning the variety 'Greenfeast' cotyleden extracts
are in agreenent with the colysanthin theory of Barber and Paton (3,27). Colysanthin reaches its highest level in the 'Greenfeast' cotyledons $4-6$ days after germination, whereupon it begins to move out of the cotyledons into the plunule. The fact that the node of first flower of 'Greenfeast' embryos is brought down when the embryos are placed on a plain mutrient agax medium could mean that colysanthin is present in low quantities in the plumules soon after germination.

Although the results of these experiments show the same general trend as those obtained by Johnston, they are in themselves far from conclusive. Because of this fact, the experiments are presently being repeated, using pure genetic lines instead of the comercial varieties, and also modifying the cotyledon extract media.

TABLE 2.1

Effect of cotyledon extracts of various ages on the flowering of 'Massey' embryos. Data is for node of first flower (FN). The number of plants scored per treatment is given, together with the treatw ment means and standard errors.

Expt. 2.1

Age of cotyledon extract (days) 'Massey'	PN	No. scored for EN		FN	$\begin{aligned} & \text { No. } \\ & \text { scored } \\ & \text { for } \mathrm{FN} \end{aligned}$
Control	$11.38{ }^{\text {t. }}$, 18	8	Control	$11.388^{ \pm+.18}$	8
0	$11.88 \pm .22$	8	0	$11.40 \% 19$	15
$1 / 3$	$11.92 .1 .15^{x}$	12	$1 / 3$	$11.35+15$	1.7
1	11.69*.12	16	1	13. $90 \cdots . .23$	10
2	12.15t. 19^{xx}	13	2	11. $41 \pm .12$	17
4	$12.23 \pm .16^{x x}$	13	4	$12.14^{*} \cdot 18^{x}$	14
6	11.40**.51	5	6	$11.71 \pm .13$	14

The significance of difference between the means of the control and the treatment means is indicated at the . 05 level of probability (x), at the . 01 level of probability $(x x)$, and at the . 001 level of probability ($x x x$)。

Fiqure 3.

Scatter diagram showing the effects of different cotyledan extracts on the node of first flower of 'Massey' embryoso (Experiment 201). Treatment means and standard exrors are shown in each case.

Raure 3.

Effect of Massey cotyledon extracts of various ages on the flowering of 'Massey' and 'Greenfeast' embryos.

Data is for node of fixst flower (FN). The number of plants scored per treatment is given, together with the treatment means and standard errors.

Expt. 2.2

' Massey' embryos			'Greenfeast' embryos		
Age of cotyledon extract (days) 'Massey'	FN	NO. scored for EN	Age of cotyledon extrect (days) 'Massey"	FN	$\begin{aligned} & \text { scoced } \\ & \text { for EN } \end{aligned}$
Control	$11.50{ }^{\text {t/ }} 17$	18	Control	15,33w. 12	33
3	12.50*.50	2	3	$16.50{ }^{\text {t. }} 17^{\mathrm{xxx}}$	18
5	11.67\%.19	12	5	$16.14^{+\ldots .1} \cdot 18^{x \mathrm{xx}}$	22
6	-	0	6	$16.22^{\frac{3}{m}} \cdot 14^{x x x}$	23
9	$11.93{ }^{\text {t }} \cdot 10^{x}$	29	9	$16.11^{\text {t. }} .12^{x \times x}$	36

The signdificance of difference between the means of the controls and the treatment means is indicated at the .05 level of probability (x), at the . Ol level of probability $(x x)$, and at the ool level of probability $(x x x)$ 。

Figure 4.

Scatter diagram showing the effects of 'Massey' cotyledon extracts on the node of first flower of both 'Massey' and 'Greenfeast' embryos. (Experiment 2.2). Treatment means and standard errors are shown in each case.

Eigure A.

TABLE 2.3
Effect of 'Greenfeast' cotyledon extracts of various ages on the flowering of 'Massey" and "Creenfeast" enbryos.

Data is for node of first flower (FN) The number of plants scored per treatment is given, together with the treatment means and standard errors.

Expt. 2.2

'Massey' embryos			'Greenfeast' embryos		
Age of cotyledon extract (days) ' Greenfeast'	EN	No. scored for PN	```Age of cotyledon extract (days) 'Greenfeast'```	FN	No. scored for EN
Contral	11.50**. 17	18	Contral	$15.33 \pm .12$	33
3	-	0	3	$16.25{ }^{+} .25^{x x}$	8
6	11.83*.30	6	6	$16.45^{+\ldots .17^{x x x}}$	20
9	11.84\%. 14	32	9	$16.34{ }^{\text {t. }} .11^{x x x}$	38
12	$12.18{ }^{\text {t. }} 1.33^{x x}$	33	12	$16.244^{t} \cdot 11^{x x x}$	37

The sicnificance of difference between the means of the control and the treatment means is indicated at the os level of probability (x), at the . 01 level of probability ($x x$), and at the . 001 leval of probobility $(x x x)$

Figure 5.

Scatter diagram showing the effects of 'Greenfeast' cotyledon extracts on the node of first Elower of both 'Massey' and "Greenfeast' enbryos (Experiment 2.2). Treatment means and standard axpors are shown in each casen

Figure 5.

CHAPTER THREE

The effect of vemalisation on the flowering of pisum sativum

Introductions

In the garden pea, pisum sativum I., the first flower is formed on a precise, genetically defined node fox each variety, and as explained previously, pea varieties can be divided into two categories, depending on their flowering habit Early varieties are insensitive to vernalisam tion and act as day-neutral plants, while late varieties show a positive response to vernaljsation and behave as quantitative long day plants $(1,14,23,27)$.

Barber (1) and paton (26) have suggested that flowering occurs in late varieties whon the cotyledon inhbitor, colysanthin, is destroyed, and suggest that the vernalisation and photeperiod reactions compete with one another for the colysanthin substrate. Although gibberellin can reverse the vernalisation effect, (22) it is not identical with colysanthin (1): and high temperatures given after the vernalisation treatment can partially annul the promotive action (23). Moare and Bonde (23), working with the late pea variety Dwarf Telephone', have suggested that vemalisation reduces auxin activity and thus promotes flowering, a concept which ties In with the idea of Galston (7), who suggests a functional association between a growth hommen (auxin) and a flowering homone (e.ge florigen). However. Leapold and Guernsey (18) have shown that flowering in 'Alaska' peas can be promoted if low temperatures follow treatment of the seeds with auxine

It has been shown in rye that gemmation is dependent on the reaction of the embryo - and not of the endosperm ox aleurone layer - to
vernalisation (8), Moore and Bonde (24) have proposed the theory that vernalisation and cotyledon excision in peas may be explained on a common basis, and paton, using grafting experiments, has suggested that there is less inhibitor present in vernalised than in unvernalised stocks (26).

Thus the current information regarding the regulation of flowering in peas by vernalisation is maked by conflicting interpretations and the series of experiments reported in the fallowing pages were done in an atterpt to understand the vernalisation reaction in a clearer light. The experiments had a three-fold purpose:-
a) to try to determine the site of action of the vernalisation reactiono
b) to try to determine whether the vernalisation reaction is associated with the cotyledonary inhibitor.
c) to try to determine any relationship between the vernalisation reaction and the photoperiod response.

Experiment 3.1:

A full factorial experiment was performed involving grafting, two pea varieties, two vernalization treatments and two photoperiod regimes.

The plants were randomised within each photoperiod regime, grown to anthesis and scored for the node of first flower. The results are sumarised in Tables $3.1,3.2$ and 3.3 and graphically in Figures 6,7 and 8 .

Results:

Prise to gemmination, six nodes have usually been laid dow in the dry embryo, and no further nodes are formed until 4 days after soaking, after which time node fornation occurs rapidy (Johnston).

Since variety 'Massey' flowers at about node 9 or 10 , the results of the grafting experiment involving 'Massey' scions will not bo considered in any detail in this discussion, because by the time of grafting, the flowering node of 'Massey' plants has in all probability been laid down However, this point was not actually confirmed by dissection. Further experiments involving embry grafting are needed to claxify this position. The discussion concerning the grafting experiment (Experiment 3.1) will therefore be confined to the results involving 'Greenfeast' scions.
a) Grafting lowers the node of first flower in both vernalized and unvernalized plants, especially under L.D. conditions (P < 0.001). Under S.D. conditions, the effect of grafting is only slight (P <0.8 and $\mathrm{P}<0.7$ respectively). (see table 3.3 I).
b) Vernaliztion decreases the flowering node significantiy ($p<0.001$), in both intact and selfmafted plants, and under either photopexiod regime.
c) Comparison of crossegrafting plants involving a similarly treated scion on a vernalised and en unvernalised stock (see table 3.3 II), shows that vernalising the stock has a small effect on the flowering node, but generally, this effoct is not very significant.
d) By comparing cross-grafted plants involving a vernalised and an unvernalised scion on a similarly treated stock however, it can be seen that the effect of vernalizing the scion is very significant, in ejther photoperiod regime (see table 3.3 IIT).
e) Under S.D. conditions, unvernalized 'Greenfeast' scions on a 'Greenreast' stock all Plower at about the same node (i.e. GU 23.4 , $\frac{G U}{G U} 23.1, \frac{G U}{G V} 22.7-$ see table 3.2$)$, irrespective of the treatment to the stock, and vernalised 'Greenfeast' scions on 'Greenfeast' stocks Ilower

f) Under two conditions, the efect of selfagrafting is quite evident, as is the effect of crossmgrafting (i.e. GU 16.90 , $\frac{\mathrm{GU}}{\mathrm{GU}} 15.6 \mathrm{~L}$. $\frac{\mathrm{GU}}{\mathrm{GV}} 14.17$ and $\mathrm{GV} 14.53, \frac{\mathrm{GV}}{\mathrm{GU}} 12.79, \frac{\mathrm{GV}}{\mathrm{GV}} 12.90 \mathrm{~m}$ see table 3.2).

Discussion:

These results tie in with the theory of an inhibitor a colysanthin m being produced in the cotyledons of late varieties of peas. The presence of colysanthin at the apex detemmines a threshold value which the floral. inducing substance, produced in the leaves, must attain before it can be effective This inducing substance is dependent on light far its formation, moxe inducer being produced in long days than in short dayso a) Grafting disupts the passage of the inhibitor from the cotyledons to the apex until full physiological union has been restored (27), and thus the threshold value will be lowered. Under S.D. conditions, physiological union is restored and the original threshold value is almost regeined before the stimulus can reach the threshold value. Under L.D. conditions, enough stimulus is produced to reach the lowered threshm old value before full transport of colysanthin is restored.
b) The effect of vernalization is to lower the threshold level set by colysanthin, and it could achieve this in a variety of ways:

1) It could halt or decrease the rate of production of colysanthin
2) It could affect the mobilisation and transportation of colysanthin.
3) It could cause the destruction of colysanthin at the apex, perhaps by intiating a reaction which produces a colysanthinwestroying substance.
4) It could make the apex less sensitive to colysanthin or 5) jt could perhaps make the apex more senstive to the inducer. c) Since the effect of vemalizing the stock is generally small, it seens that the amount of colysanthin present in unvernallzed and vernal.m ized stocks is similar. The mall effect absexved could be the result of a decreased rate of colysanthin production, which picks up once the period of vernalization is over.
d) Vernalization of the scion gives a highly significant effect, the threshold value being greatly decreased. The major site of action of the vernalisation response would therefore seem to be at the apex and not in the cotyledons ($b m 3$, mentioned previously).
e) Since undex S.D. conditions, all grafted 'Greenfeast' scions flower at approximately the same node as the ungrafted control, irmespecm tive of the treatment to the stock, this backs up the statements made previously The original threshold level can be regained before the stimulus reaches the required level, and although the rate of colysanthin production may be delayed duming the vemnalization treatment, it picks up after completion of the vernalization treatment, the lower threshold value still being too high for the amount of inducer produced up to that trime.
f) This is not the case under L.D. conditionso The lowered threshold value caused by grafting can be attained, since the inducer is xeaching the apex at a much faster rate than is the colysanthin The decreased rate of production of calysanthin caused by vernalizing the cotyledons

78.

causes a further lowering of the flowering node, as can be observed under the S.D. conditions. That it canot be observed under I.D. conditions is most likely because 'Greenteast' has a certain node (12 or 13) below which it will not flower up to this node, it is in a juvenile state, and once this node is laid down, the plant attatno its "wipeness to mower*

If it is assumed that the cotyledons of Massey peas do not contain colysanthin then the comparison between stocks of the two different variem ties carmying simlar scions supports the idea that vernalization causes a temporary decrease in the rate of production of the inhibt tor in the coty ledons. Since the threshold value is brought down, under L. D. conditione the scions will not differ much in their flowering node, as the decreased threshold level is reached by the level of the inducer befone the colysan thin supply can raise the level again. Under Bob condtions, the colym santhin from the 'creenfeast' stacks can raise the threshold level, and therefore a signficant difference in the node of first flower would be expected between the scions. However, further evidence must be obtained regarding 'Massey' scions and stocks before an assumption such es this con really be considered.

It therefore sems that vemalization has its major effect in the scion by decxeasing the threshold level set by colysanthin. It causes a minor effect in the cotyledene by decreasing the rate of production of colysanthin This minor effectmay be patt of a general glowing down of metabolism,

TABEE 3.1

The effect of vernalization, grafting and photoperiod, and their interaction, on the flowering behaviour of 'Massey' scion

Data is for node of first flower (FN). The number of plants scored per treatment is given, together with the treatment means and standard errors.

$\begin{aligned} & \text { Graft } \\ & \text { type } \end{aligned}$	SD		D	
	FN	no. scored	FN	no. sconed
MU	$9.74{ }^{\text {ta }} 0.10$	19	10.00 ± 0.30	19
$\frac{\mathrm{MU}}{\mathrm{MU}}$	9.91 to. 18	12	9.90 +0.18	10
$\frac{\text { MV }}{10}$	10.00 ± 0.12	1.0	10.00*0. 10	12
MV	$10.38{ }^{*}{ }_{0.12}$	16	10.06 ± 0.13	18
$\frac{\text { MV }}{\text { WV }}$	10.00*0.11	13	9.92 ± 0.08	13
$\frac{M U}{G U}$	$10,00^{+0.45}$	5	$10.14{ }^{+0.23}$	14
$\frac{W V}{G U}$	$10.33 * * .23$	9	10.00 ${ }^{+0.08}$	1.9
$\frac{\mathrm{MU}}{\text { GV }}$		9	9.94 ± 0.16	17
$\frac{M V}{G V}$	10.1940 .14	16	9.89 ± 0.07	19

Figure 6.

Scatter diagram showing the effects of grafting, photoperiod. vernalization, and their interaction on the node of first flower of Massey scions. Treatment means and standard errors are shown for each case.

Pioure 6.

TABIE 3.2

The effect of vernalization, grafting and photoperiod, and their interaction, on the flowering behaviour of 'Greenfeast' scionso

Data is for node of first flower (FN). The number of plonts soored per treatment is given, together with the treatnent means and standard errorso

Eigure 7

Scattex diagram showing the effects of gnatting, vernalization, and their interaction on the node of first flower of "Greenfeast" scions under S.D. conditions. Treatment means and standard errors are shown fox each case.

Efure $\%$

Eigure 8.

Scatter diagram showing the effects of grafting, vexnalizationg and their interaction on the node of first flower of 'Creenfeast' scions under L.D. conditions. Treatnent means and gtandard errors are shown for each case.

Elgure 8_{0}

TABLE 3.3
The tests of significance between different graft types, under both photoperiod regimes. The method of calculation is denonstrated in Appendix 1.

The significance of difference between the means of the graft treate ments is indicated at the 0,05 level of probability (x), at the 0.01 level of probability $(x x)$, and at the 0.001 level of probability ($x x x$).

```
83.
```


Experiment 3.2:

After 8 hours imbibition, seeds of the pea variety 'Greenfeast" were given vernalization treatnents of $0,1,2,3$ and 4 weeks. At the end of the cold treatment, half of the seedings in each treatment had their cotyledons removed, the other half remaining intact. The seedings were then placed in the phytotron and subjected to a photoperiodic troatm ment of either 8 hours (S.D.) or 16 hours (L.D.), the individuad treatments being randomised within each photoperiodic regime Seedings which had had their cotyledons removed at the stages of $0,1,2$ and 3 weeks wexe grown on a nutrient agar medium until ready for transplantinge The plants were then randomised within each photoperiod regime, grown to anthesis and scored for the node of first flower.

The results ate summarised in Tables $3,4.3 .5$ and in Figures 9,10 and 11 and can be explained in the same terms as in the previous discussiono

Results and Discussion:

1. The effect of photoperiod is very highly significant (P \mathbb{k} 0.001-Table 3.5). plants under L.D. conditions flower at a lower node than those under $S_{0} D_{0}$ conditions, irrespective of the vernalm ization or cotyledon treatment (Figure 11). This is to be expected, since more stimulus is produced in the leaves in long days than in short days, and therefore the threshold level set by colysanthin will be reached sooner. Also under I.D. conditions, the threshold level may be less than under S.D. conditions, since by the time floral initiation occurs, not $2 l l$ of the colysanthin from the cotyledons has arrived at the apex. Under S.D. conditions, the slower rate of production of stimulus allows time for all of the colysanthin to arrive at the apex. 2. The effect of removing cotyledons after completion of the vernalization treatment is highly significant ($P \mathbb{K} 0.001$-Table 3.5). plants which have been decotyledonised flower at a lower node than intact plants, frrespective of the photoperiod or vernalization treatment (Figure 11). This is to be expected since by removing the cotyledons the source of colysanthin is also removed, and therefore the threshold level will be lowered. Sone colysanthin will still be present in the plunule however, since the cotyledons are intact during the vernalization treatment, but at a much lower concentration from that in intact plants.
2. The effect of vernalization is highly significant ($P \ll 0,001$ - Table 3.5). As the time of the vernalization treatment is increased, there is a decrease in the node of first flower, irrespective of the photoperiod or cotyledon treatment (Figure 11). This is also to be expected if vernalization has its effect in inactivating of destroying colysanthin at the apex, as the threshold level set by the colysanthin
level would be decreased.

- a) Vernalization for 1 week has little effect in intact plants, but has a marked effect in decotyledonised plants. it seens therefore that the reactions set in motion by vernalization require about I week of cold treatment before becoming operative. At the high colysanthin concentrations in intact plants, these reactions make little difference to the theshold level, and xequire a vernalization period of 2 weeks or more before being able to lower the threshold level. In decotyledenised plants however, the threshoid level is much reduced, as not much colysanthin has reached the plumule, and although the vernalization reactions are occurring at a very low rate, they can still show a marked effect.
b) In decotyledonised plants, vernalization had its maximum effects after 2 weeks, whereas for intact plants the node of first flower is still decreasing at 4 weeks vernalization, this being because of the reduced anount of colysanthin present in the decotyledonised plants. it appears that under L.ID. conditions, vernalization of decotyledonised plants is effective after 1 week, but this could be because it has brought the node of first flower down to the minimu value - the "xipeness to flower" threshold. Although a little colysanthin may still be present in the plumule after 1 week, destroying it will have no effect on the flowering node.

4. On this argument therefore, one would expect an interaction between photoperiod and vernalization, and between photoperiod and cotym ledon status. The analysis of variance shows that this is the case $(0.01<P<0.05-$ table 3.5). That these interactions are significant may be the result of the extrenely large photoperiod effect. I.ong days decrease the flowering node by enhancing the rate of production of
inducer, while both cotyledon removal and vernalization decrease the flowering node by lowaring the effective threshold level. 5. If the theory that the effect of vernalization is to inactivate or destroy colysanthin, a highly significant interaction between vernaliz-m ation and cotyledon status would be expected, and this was found to be the case ($\mathrm{P}<0.001$ - table 3.5).
5. The third order interaction was also found to be significant. All three treatments individually lower the flowering node, and there is also the very large interaction between vernalization and cotyledon status, and this would explain the order of significance of the third oxdex interaction.

Discussion - - general:

The original theory proposed by Paton (26) and Barber (1) and Sprent (29) was that an inhibitox (colysanthin) was produced in the cotym ledons of late-flowering pea varieties, which was selectively destroyed or converted into aflowering stimulus by long days and a cold treatnent. Paton went one step further by suggesting that the inhbitor acts as a precursor to a floral stimulus (flowigen) (26).

In the light of the present experiments, this theory needs to be modified and in fact flowering in peas can be explained in a much less complicated way, by assuming that there are two distinct independent mechanisns regulating flowering.
a) The first mechanism involves colysanthin. Colysanthin sets a new threshold level at the apex above that of the intrinsic "xipeness to flower" threshold, which is set by the anount of inducer substance produced by the leaves. Before the inducex can be effective, it must reach this increased level. Vernalization has a direct effect on the new threshold level, lowering it by inactivating or destroying colysanthin.
b) The second mechanism involves the floral inducer. Increasing the photoperiod increases the anount of inducer produced and therefore the threshold level is attained sooner.

In this way, the complex idea of the inhibitor acting as a precurson to the inducer, and of the interconvortibility of the two substance, can be avoided.

Stanfed at al observed a vernalization effect in the late variety 'Dark Skin Perfoction', if the night temperature fell to $4^{\circ} \mathrm{C}$ (the day temperature being $13^{\circ} \mathrm{C}$) (31). Mcore and Eonde have also observed that vernalization causes a stgnficant lowering of the flowering node in late
pea varieties, but oniy if the vernalization treatment lasted for longer than 10 days (22). Vernalization had its maximum effect after 28 days (23). These results are in accord with those obtaned in the present series of experiments.

The vernalizotion reaction may be associated with gibberelin biosynthesis (2). Lockhant has round in 'Alaska' peas that a natwal gibberellin factor is produced at the stem tip (19). Since applied gibberellin delays flowetting in peas $(15,28)$, if colysanthin was znvolved in the biosynthesis of gibberellin, perhaps as a pecursor, then vernal w fzation could enhance flowering by destroying ox inactivating colysanthin ox by stopping a reaction in the gibberallin biosynthesis pathway Moore and Bonde (22) have Gound that gibberellin apolied aftem a vernal azation treatment to the late variety 'Dwarf Telaphone' completely revorsed the vemnalization efrect.

Further experiments involving vernalization of the excised embryo are being planed at the monent in order to clarsfy further the mechont on of the vernalization effect.

Table 3.4

The significance of difference between the means of the controls and the treatment means is indicated at the 0.05 level of probability (x), at the 0.01 level of probability ($x x$) and at the 0.001 level of probability ($x \times x$).

TABLE 3.4

The effect of the length of the vernalization period, cotyledon excision and photeperiod regime, and the interaction of the three on the flowering of 'Greenfeast' plants

Data is for node of first flower (EN). The number of plants scored per treatment is given, togethex with the treatnent means and standard errers.

Exper ment 3.1

Long Days					
Cotyledons intact			Cotyledons excised		
Length of vernalization treatment in weeks.	PN	No. plants scored for EN	```Length of vernalization treatment```	TN	No. sconed for EN
0	16.90 ± 0.21	20	0	14.94to. 15	18
1	16.70to. 21	20	1	$13.00{ }^{\frac{1}{m} 0.25}$	12
2	15.30-0.12	20	2	13.64 to. 25	14
3		20	3		2
4	$14.42 \pm 0{ }_{0}^{+16}$	19	4	$12.500^{\frac{1}{m}} 0.22$	6
Short Days					
0	$24.35^{10.21}$	20	0	$21.43^{\frac{1}{2}} 0.25$	1.4
1	24.00 ± 0.25	20	1	$20.22^{\frac{3}{4} 0} 0.27^{x x}$	18
2		19	2	18.45*0.16	11
3	21.10-0.24	20	3	18.00	1
4	20.11-0.21	18	4	$\underline{18.57}{ }^{\frac{1}{60} 0.20}$	7

Eigure 9.

Scattex diegram showing the effect of the length of the vernalization treatment and photoperiod on the node of first flower of Intact 'Greenfeast' plants (Experinent 3.1). Treatment means and standard errars are shown in each case.

Eioure 9.

Ficure 10

Scatter diagram showing the effect of the length of the vernalization treatment and photoperiod on the node of first flower of demcotyledonised 'Greenfeast' plants (Experiment 3.1).

Treatment means and standard errers are shown in each case

Ficuse 102

Figure 11.

The effect of the length of the vernalization treatment and of cotyledon removal on the flowering of 'Greenfeast plants in both long dey and short day condttions is shown by the relative lengths of the columns of the histogram. The data summaxized is based on the number of plants indicated at the base of each bax. The standard errors of the means are shom at the tops of each bar.
101.

Beque 11.

TABLE 3.5

The analysis of variance for the results obtained in experiment 3.2

Effect	Degrees of freedom	Sum of squares	Variance	Variance ratio	Probability
P	1	3139.50	3139.50	3608.62	$\ll 0.001$
V	4	267.74	66.94	76.94	\$0.001
C	1	329.91	329.91	379.21	<0,001
PV	4	13.20	3.30	3.79	$0.01<8<0.05$
PC	1	6.36	6.36	7.31	$0.01<P<0.05$
VC	4	168.03	42.01	48.29	$\ll 0.001$
PVC	4	20.25	5.06	5.82	90.001
Error	279	242.52	0.87		
Total	298	4187.51			

SUMMARY

The presence of a flower inhibitor (colysanthin) in the late variety 'Greenfeast' as propesed by Barber and Paton for late (gn) varieties of peas has been confirned. Colysanthin is synthesised in the cotyledons during and aftex the first four days of germination, whereupon it begins to move into the plumule. Cotyledons of the early variety "Massey" also contain some temporary inhibitory substance after 3 days of germination.
peas have a genetically defined node, belaw which they will not flower. This is probably due to a threshold requirement for inducer substance at the apex before it can become effective, and would be caused (at least in part) by the time taken for the production and mobilization of the stimulus. Colysanthin xaises this threshold level, perhaps by making the apex less sensitive to the inducer, the amount of colysanthin arriving at the apex deternining the amount by which the threshold level is raised.

An effect of vernalization appears to trigger a reaction at the apex which causes the destruction or inactivation of colysanthin, thereby lowering the threshold level. This vernalization effect increases with time, and reaches a maximum at about 4 weeks.

By increasing the length of the photoperiod, the overall rate of production of the leafmenerated floral stimulus in the leaves is increased, and thus the predetermined threshold level is attained sooner.

APPEDTX 1.

To demonstrate the method whereby the tests of significance for the graft experiment (table 3.3) were calculated.

$$
t=\frac{23.13-20.67}{\sqrt{\frac{2.9+12.0}{18+8-2}}} \times \sqrt{\frac{18 \times 8}{18+8}}
$$

$$
=\frac{2.46}{\sqrt{\frac{14.9}{24}}} \times \sqrt{\frac{144}{26}}
$$

$$
=2.46 \times \sqrt{\frac{144 \times 24}{14.9 \times 26}}
$$

$$
=2.46 \sqrt{8.9210}
$$

$$
=2.46 \times 2.99
$$

$$
=7.36
$$

number of degrees of freedon $=18+8-2=24$.

$$
p<0,001 .
$$

$$
\begin{aligned}
& \text { The formula used was: } t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{S_{0} S_{1}+S_{0} S_{2}}{n_{1}+n_{2}-2}} \times \sqrt{\frac{n_{1} \times n_{2}}{n_{1}+n_{2}}}} x \\
& \text { where } \bar{x}_{1} \text { and } \bar{x}_{2} \text { are the means, } \\
& \mathrm{SS}_{1} \text { and } \mathrm{SS}_{2} \text { are the sums of squares, } \\
& \text { and } n_{1} \text { and } n_{2} \text { are the numbers in each sample. } \\
& \text { e.g. S.Da } \quad \frac{G U}{G U} \ddot{x}=23.13, S S=2.9, n=80 \\
& \frac{G V}{G U} \bar{x}=20.67, S S=12.0, \quad n=18 .
\end{aligned}
$$

APPERIXX 2.

	I. D.						S.D.						${ }^{7}$ V.Totals		
	$+\operatorname{cots}$.			- cots.			+ cots.			- cots.					
	n	Σx	Σx^{2}	n	$\Sigma \mathrm{X}$	Σx^{2}	n	Σx	Σx^{2}	n	Ex	Σx^{2}	n	$\Sigma \mathrm{x}$	Σx^{2}
Vo	20	338	5730	18	269	4027	20	487	11875	14	300	6440	72	1394	28072
V_{2}	20	334	5594	12	156	2034	20	480	12548	18	364	7382	70	1334	26558
V_{2}	20	316	4998	1.4	191	2617	19	423	0447	11	203	3749	64	1133	20811
${ }^{7} 3$	20	295	4363	2	27	365	20	422	8926	1	18	324	43	762	13978
V_{4}	19	274	3960	6	75	939	18	362	7304	7	130	2416	50	841	14619
Total	99	1557	24645	52	718	9982	97	2174	49100	51	1015	20311	299	5464	104038

[^0]2. Combine the figures for cotyledon treatment - Table A2, far photom period treatment-Table A3, and for vernalization treatnent - Table AA.

Table A2

	L.D.		S.D.	
	n	$\sum x$	n	Σx
V_{0}	38	607	34	787
V_{1}	32	490	38	844
V_{2}	34	507	30	626
v_{3}	22	322	21.	440
V_{4}	25	349	25	492

TabIe A3

Table AA

3. Combine the figures fox cotyleden treatment and vernalization treate ment ." Table A5; for photoperiod and vernalization treatnent Table AG: and for photoperiod treatment and cotyledon treatment - Table A7.

Table A5

Table A6

Table A7

It can be seen that for all tables, the total sum of $n=299$, and the total sum of $x=5464$

The correction factor (Cof) for all calculations is therefore:-

$$
\frac{(5464)^{2}}{209}
$$

$$
=99850.49
$$

Total S.S. (sum of squares) - from Table Al.

$$
\begin{aligned}
& =104038-\frac{(5464)^{2}}{299} \\
& =104038-99350.49 \\
& =4187.51 .
\end{aligned}
$$

degrees of freedom $=298$
24-000en
S.S. for P-From Table A5.

$$
\begin{aligned}
& =\frac{(2275)^{2}}{151}+\frac{(3189)^{2}}{148}=C . F \\
& =34275.66+68714.33-99850.49 \\
& =3139.50
\end{aligned}
$$

S.S. C - from Table Ab.

$$
\begin{aligned}
& =\frac{(3731)^{2}}{196}+\frac{(1733)^{2}}{103}-C_{0}= \\
& =71022.25 * 29158.15-99850.49 \\
& =329.91
\end{aligned}
$$

S.S. V - from Table A7.

$$
\begin{aligned}
& =\frac{(1394)^{2}}{72}+\frac{(1334)^{2}}{70}+\frac{(1133)^{2}}{64}+\frac{(762)^{2}}{43}+\underset{50}{(841)^{2}}=G \cdot F . \\
& =26909.39+25422.23+20057.64+13503.35+14145.62- \\
& -99850.49 . \\
& =\text { 267.74. deorees of freedom }=4 \\
& -900-\cdots
\end{aligned}
$$

S. S. PC ... From Table AA.

$$
\begin{aligned}
& =\frac{(1557)^{2}}{99}+\frac{(718)^{2}}{52}+\frac{(2174)^{2}}{97}+\frac{(1015)^{2}}{51}-C . F \cdot(5.5 \cdot P+5.5 .4 \\
& =24487.36+9913.92+48724.49+20200.49-99850.49- \\
& =\left(\text { G.S. } P+S_{0} S_{Q} C\right) . \\
& =3475.77=(3139.50+329.91) \\
& =6.36
\end{aligned}
$$

decrees of freedon $=1$.
$+0.000 \mathrm{~mm}$
G.S. PV - from Table A2.

$$
\begin{aligned}
& =\frac{(607)^{2}}{38}+\frac{(490)^{2}}{32}+\frac{(507)^{2}}{34}+\frac{(322)^{2}}{22}+\frac{(349)^{2}}{25}+\frac{(787)^{2}}{34} \\
& \frac{4(844)^{2}}{38}+\frac{(626)^{2}}{30}+\frac{(440)^{2}}{21}+\frac{(492)^{2}}{25}=0 . \mathrm{F} \cdot-(5.5 \cdot \mathrm{P}+55 \cdot \mathrm{~V} \\
& =9696.03+7503.13+7560.26+4712.91+4872.04+18216.74 \\
& +18745.68+13062.53+9219.05+9682.56-99850.49 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& =3420.44 \mathrm{~m}(3139.50+267.74) \\
& =13.20
\end{aligned}
$$

S.So V - from Table A3.

$$
\begin{aligned}
= & \frac{(825)^{2}}{40}+\frac{(814)^{2}}{40}+\frac{(739)^{2}}{39}+\frac{(717)^{2}}{40}+\frac{(636)^{2}}{37}+\frac{(569)^{2}}{32} \\
& +\frac{(520)^{2}}{30}+\frac{(394)^{2}}{25}+\frac{(45)^{2}}{3}+\frac{(205)^{2}}{13} \cdots .0 \cdot \cdots(55 V+55 C) \\
= & 17015.63+16564.90+14003.10+12852.23+10932.32+ \\
& 10117.53+9013.33+6209.44+675.00+3232.60-99850.49= \\
& (5.5 . V+6.5 .0) \\
= & 765.68-(267.74+329.91) \\
= & 168.03
\end{aligned}
$$

S.S. PVC - from Table Al.
$=\frac{(338)^{2}+\frac{(334)^{2}}{20}+\frac{(130)^{2}}{7}-C F=\binom{(5 S P+5 S V+5 S C)}{+5 S P V+5 S P G+5 S V C}}{}$
$=103795.48-9985049-\left(\mathrm{S}_{0} \mathrm{~S}^{2}\right)$.
$=3944.99-(3139.50+329.91+267.74+6.36+13.20+$ 168.03).
$=20.25$
degrees of freedem $=A_{0}$

Total S.So
$=4187.51$

Sum of 1 st arder and 3rd order

Abstract

interactions

$=3944.99$

Error S.S.
= 242.52 This figure agrees
wath the figure
obtained from Table Ale 5 each
individual treatment was summed
for $:-\sum x^{2}-\frac{\sum^{2} x}{n}$

Total degrees of freedon $=201 m 1=298$
Sum lst order, 2nd oxder and 3rd oxder = 19
Errar of freedon $=279$

Refremices

1. Barber, HoNe, (1959). Heredity, 13, 33.
2. Barber, HoN., Jackson, W. D. Murfet, I.C., and Gprent, J. I., (1958). Nature, 182, 1321.
3. Barber, HoN., and Paton, D.M., (1952). Nature, 169. 592.
4. Bonner, DoMo, HaagenmSmit, A.Jo, and Went, Fowo, (1939). Boto Gazo, 101. 128.
5. ven Denfer, Do, (1950). Naturwisso, 37, 296, 317.
6. Eyster, H.C., (1940). Anex. J. Bot. 27, 652.
7. Galston. A. Wi. (1947). Aner. J. Bot. 34, 356.
8. Gregory, E,Gog and Purvis, O.N., (1938). Ann. Boto, No So, 2s 237.
9. Haupt, Wo (1952). Z,Bot., 40, 1.

From la
10. Haupt, W. (1954). 2.Bot. $42,125$.
from 1, 23, 24.
11. Haupt, W. (1957). Ber. Deut. Botano Geso, 70, 191. from 23, 24.
12. Haupt, W. (1958). Z.Boto 46, 242. From 23,24.
13. Highking R.R. (1955). Plant Physiol. 30, 390.
14. Highkan, HeRog (1956), Plant Physiolo, 31, 399.
15. Johnston, Mox. (1966) Bosco(Hons) Thesis, University of Tasmania.
16. Johnston, W.jo, and Crowden, R.C. (1967). Australian Jo Bialo Scio (in press).
17. Leopold, A.C., and Guernsey, F.So, (1953). Am. J. Bet. 40, A6.
18. Leopold, A.C., and Guernsey, F. 5.9 (1954). Am. J. Bot. . 41. 181.
19. Lockhart, ToA*, (1957). Plant physiolo, 32, 204.
20. mooxe, T. $0 .(1964)$ plant physiol., 39. 924.
21. Moore, T.C.g (1965), Nature, 206. 1065.
22. Moare, T, C_{3}, and Bonde, E.Ko, (1958) Physiol. Planta, 11, 752.
23. Moore, ToCo, and Bonde, E.ko, (1962), Plant Physiolo, 37, 149.
24. Moare, Toco and Bonde, E.kos (1964). Plant Physiolog 39, 924.
$25 .=21$.
26. Paton, D.M. (1956). Ph. D. Thesis, University of Tasmania.
27. Paton, DaM., and Barber, H.N. (1955). Austo J. Biol. Sci. S, 231.
23. Sprent, J.I., (1966). Nature, 209, 1043.
29. Sorent, 3. I. (1958). Th. D. Thesis, Un versity of Tasmanta
30. Sprent, J. T. and Barber. HoB. (1957). Nature. 180, 200.
31. Stantield, Bo, Gmmod, D.P., and Fletcher, H. F. (1966). CanoJoplant Scio, 46, 195
32. Varner, J.E. Balce, L.V. and Huang, R.Co, (1963) Plant Physiol. 38. 89.
33. Went, F.w., (1938). Amer. J. Bot. 25. 44.
34. white, PoRo, (1937), plant physiolo $12,777$.
35. White, PoRo (1939). Plant Physiolos 14, 527.
36. Young, J. L, F Hang, R.Co, Vanecko, So, Marks, J.D., Varnet, Jotos (1960). Plant Physiolo, 35, 288.
37. Zeevart. J.A.D.g Science, 137. 723.

[^0]: the values of the flowering node obtained in each treatment $(\Sigma x) ;(3)$ the sum of the squares of the

