UNIVERSITY OF TASMANIA.

FACULTY OF ENGINEERING.

Thesis submitted for the degree of Master of Engineering.

November, 1952.

Some Aspects of the Operation of Circuit. Breakers
in High Voltage Power-Systems.

By J.A. Callow, B.E., B.Comm. AMIE Aust.

Part I. Reduction of Circuits for Transients.
Part II. Rate of Rise of Restriking Voltage.
Part III. Interruption of Small Currents.
Part IV. Disconnection of Long Lines.
Part V. A Theory of the Long Arc.
Part VI. Auto-Reclosure.

$$
\mathrm{PREFA} \mathrm{CE} .
$$

The Australian Commonwealth Department of Supply periodically sends groups of young scientists and engineers abroad for study and research in approved fields, absorbing them into Commonwealth Departments and Instrumentalities on their return. These "Attached Scientists" are selected by competitive interview.

The author was fortunate enough to be selected, and in July, 1949, was sent to Lingland for two years' study in power system network analysis and circuit breaker operation. The first year was spent at the Stafford. Works of the English Electric Co., in the A.C. Network Analyser Section, Switchgear Engineers Section, and Circuit Breaker Testing Section. The second year was spent at the London Laboratories of the British Electrical and Allied Industries Research Association (E.R.A.) attached to the Switchgear Section. While stationed in England, visits were made to installations, and manufacturers works: in various European countries. The 1950 CIGRE conference in Paris, and several courses of lectures at Imperial College, London, were also attended.

This thesis is the result of work in England, and applications to problems encountered since transferring to the System Design Branch of the Snowy Mountains HydroElectric Authority on return to Australia in October, 1951.

In particular, the investigation into auto-reclosure was started at Stafford, and the long arc was studied at E.R.A. in an endeavour to fix the theoretical limits for auto-reclosure. The investigation into simplified methods of circuit reduction, and rates of rise of restriking voltage, was carried out as part of the preliminary work of a proposed large scale survey of the British 132 KV and 275 KV grids by the E.R.A., using all known methods of testing and calculation. The sections on long line and light load switching are the result of investigations at the Snowy Mountains Hydro-Electric Authority into insulation and switching transient problems on the proposed 330 KV system.

In addition to expressing his gratitude to the Department of Supply, and the Snowy llountains Hydro-Flectric Authority, for the opportunity to do this work, and permission to use the results, the author wishes to acknowledge the assistance given by members of the staff of the English Electric Company (particularly Mr. W.E. Scott, Head of the Mathematicai Physics Section, and Mr. S. Newman of the S_{W} itchgear $\operatorname{Hingineers~Section),~of~E.R.A.~(particularly~}$ Mro. I. Gosland. Head of the Switchgear Section), and of System Desicen Branch, Snowy Vountains Hydro-Electric Authority (particularly Dr. W. Diesendorf, System Design Engineer).

Part I. Reduction of Circuits for Transients.
(1) Introduction.
(2) Single Frequency Circuits.

The expression of X and I in per cent is an original approach, and wases the reduction of a power systee very much easier to follow than dealing with the more matheratical L and C.

The standard damping is due to Adams, followed by Gosland and Mortlock.
(3) Double Frequency Circuits.

General formulae (3.2) Prom Hammarlund.
Use of factors y_{L} and y_{H}, and graphs $4,5,6,7$ original. This mathod gives anspers which are obtained more quickly, and are easier to follow.

The voltage time curves are original, and are very useful in analysing oscillograms, or setting up circuits to give particular shapes of curves.
(4) Reduction of Doublo Frequency Circuits.

Rules (i) to (iii), and the area of application graph (Fig.18), are original.

Clife's method was expressed as a graphical construction und was only suitable for applying to recorded curves. Here it is given a mathematical form, and the ratios $P+P_{D}$ computed so that the actual transient need not bet drawn. This saves a great deal of time. Thêrepresentative value for recorded curves is original, and (I understand) has been adopted by the I.E.C.
(5) Reduction of Two Independent Circuits. Original.
(6) Reduction of \mathbb{I} lulti-Frequency Circuits.

The combination of the end sections is original, and avoids a formidable mathematical task.
(7) Combination of Parallel Arms.

Original. It was necessary to prove the validity of this method on the network analyser before it could be accepted.
(8) Application to 3-Phase Systems.

The use of fault [IVA calculations to obtain the impedance of sections electrically remote is original, and has removed one of the main complications, namely remote power stations and interconnections.
(9.1) Reactances.

Due to Gosland.
(9.2) Capacitances.

The values given here and in Section (9.3) are the results of information supplied by manufacturers, and extensive tests on a model transformer, and power station generators, transformers, and reactors. See Part II, Section (3.1).
(9.3) Standard Values.

This is original, and saves a great deal of time, as in general capacitance values, even for existing equipment; are seldom known.
(10) Example.

Hams Hall Power Station, England.

General.
Previously, switching transients were considered to be outside the scope of a power engineer, and more in the line of a mathematician. Consequently, and because of the time involved, very few complex circuits have been analysed.

A junior engineer, after a couple of days practice, may safely be left to carry out a survey of a complete system by the methods described here. The time involved in such a survey is only a fraction of the time a trained mathematician would require for the problem, and the results are of reasonable accuracy.

Part II. Rate of Rige of Restriking Voltage.
(1) Introduction.
(2) Three Phase Systems:

References as noted.
(3) Methods of Testing.
(3.1) Passive Networks.
E.R.A. tests on 132 kV network directed by Gosland, and carried out by Vosper and self.
(3.2) Live Networks.

References as noted.
(3.3) Transient Analyser.

The L.R.A. analyser was not complete, but I was able to test the response of the units available. Vosper and I checked some of the methods developed in my calculations, and had started on the studies of Ref. 13 when I left to return to Australia.
(3.4) Analysis of Records.
(4) Calculation of RRRV.
(4.1) Existing Methods.

References as noted.
(4.2) Simplified Calculation of RRRV.

The concept of $\frac{X}{X t o t a l}$, and the use of per cent reactance and susceptance are original, and represent a considerable simplification. The graphs save time. Adding of the values of RRRV for independent single frequency circuits follows from the simplified methods.
(4.3) Example of Simplified Calculation.

Hams Hall Power Station, England.
(5) Accuracy of Simplified Calculations.

My check calculations on the transient analyser cases of Ref.13.
(6) Survey of System.

Survey of the Snowy Mountains Hydro-Electric Authority's 330 kV and 132 kV system carried out under my direction.
(7) Jimits of RRRV.

Original - should assist customers in specifying circuit breaker requirements, and manufacturers in re-designing test equipment.
(8) Circuit Breaker Characteristics.
(8.1) Scatter of Test Results.

References as noted. Suggestions on fixing the scatter curve with a minimum of shots, the use of pure gases, and the testing of the equivalence of single and multi-frequency circuits are original, and have been incorporated in the E.R.A. programme.
(8.2) Dielectric Recovery.
E.R.A. staff.
(8.3) Post-arc Conductivity.
E.R.A. staff:
(8.4) Resistors.

Original comments.

General.

The work on "Reduction of Circuits for Transients" and "Rate of Rise of Restriking Voltage" was begun as check calculations for the British 132 kV grid, and became a useful toet for checking the proposed British 275 kV grid, and the projected-Australian Snowy Mountains Hydro-Electric Authority 330 kV and 132 kV system. Investigation of general aspects of circuit breaker operation produced some useful by-products.

STATEMEAT OF ORIGINALITY.

Part III. Interruption of Small Currents.
(1) Introduction.
(2) Current "Chopping".

Original, based on avallable information.
(3) Single Phase Circuits.
(3.1) Variation in Arc Voltage.
(3.2) Circuit with Inductive Load.

All original work, including comments on the references.
(3.3) Circuit with Resistive or Capacitive Load.
(4) Three Phase Circuits.
(4.1) Transients on Clearing Phases. All original work.
(4.2) The First (and Third) Phase to Clear. All original work.
(4.3) The Second Phase to Clear. All original work.
(4.4) Interaction of Transients. Original.
(4.5) Effect of Load not Earthed. Original.
(4.6) Test Results. References as shown.
(5) Example.

From Snowy Mountains Hydro-Electric Authority system.
General.
This whole treatment is an original theory on a phenomenon which has not been satisfactorily explained. It provides an easy method for the examination of threephase cases, which are the most important in power systems.

STATEUENT OF ORIGINALITY.

Part IV. Disconnection of Long Lines.

(1) The Classical Theory:

Taken from Ref.I. (Rudenberg).
(2) The Ferranti Effect.

This effect, and the oscillations, are noted by Meyer, (Ref.2), but the analysis and the graphs are original.
(3) Voltage Variation of the Source.

Noted by Bergstrom, (Ref. 3), but not previously calculated.
(4) The Restriike.

Based on Ref. 4 (Peterson) but extended by including the source capacitance.
(5) Subsequent Reflections.

Reflection operator given in $\mathrm{K}_{\text {ef }} .5$ (Bewley).
(6) Maximum Voltage.

Original - variation of generator and line voltages not previously considered.
(7) The Effect of Corona.

Formula for critical voltage and wave shape variation from Ref. 7 (Sunde) and Ref. 9 (Quilico), with confirmation from tests by Bockman (Ref.8). Not previously applied to switching surges. Analysis of surges at different velocities on a lattice diagram is original.
(8) Examples.

Taken from part of Snowy Mountains Hydro-Electric Authority system.

General.
This is the first comprehensive treatment of the disconnection of a really long line, and shows that factors previously neglected may have a considerable influence on the results.

STATEMENT OF ORIGINALITY.

Part V. A Theory of the Long Arc.
(1) Arc Characteristics.

Rased on Refs. 1 and 2, and recent tests at E.R.A.
(2) Energy Balance.

Attempts have been made to produce an energy balance for high current arcs in circuit-breakers, but recent tests have thrown some doubt on their validity except under carefully defined conditions.

The energy balance for a long arc is original, and is not subject to the limitations mentioned above. It is a qualitative estimate only.

General.
This was originally part of "Auto-Reclosure", but was detached so that, in the event of publication of that report, the issue would not be clouded by an unsubstantiated section based on information not yet released.

STATEMENT OF ORIGINALITY.

Part VI. Auto-Reclosure.

(1) The Technique of Auto-Reclosure.

This section describes well-known phenomena, with the following exceptions :-
(1.3) The theory of the low limit of the velocity of the ionized gas, and hence the new scale of de-ionization times, is original, based on a study of the results quoted in the references, and attempted experimental verification at E.R.A.
(1.5) The effect of other circuits has not been noted previously.
(2) Laboratory and Field Tests.

Based on refs. 3, and 4, but extended by separating the arc and capacitance currents.

Discussion of the voltage limit in section (2.5) is original.
(3) Calculations.

The method employed in solving the equations is original, but since it is only a modification of the well-known relaxation method, it is not claimed to be new.
(4) Kesults.

No previous attempt has been made to consider the general case. The method of presentation of the table, enabling any configuration to be considered, is the result of a considerable amount of arithmetical experiment.

General.

This study was undertaken because of the varied opinions expressed at the 1950 CIGRE conference on the practicability of auto-reclosure at 220 KV and higher. Estimates mere urgently required to determine whether the development of single-pole reclosure for very high voltage circuit-breakers should be encouraged, and whether reclosing should be included in transient stability studies on projected systems at very high voltage.

PART I RTDUCTION OF CIRCUITS FOR TRANSIENTS.

Page No

Sumary. 1.
List of Symbols. . . 2.
(1) Introduction. 3.
(2) Single Froquency Circuits. 3. (2.1.) Circuit with I and C only. 3.
(2.2.) Circuit with Resistance. 4.
(3) Double Frequency Circuits. 4.
(4) Reduction of Double Frequency Circuits. 7.
(5) Reduction of Two Indepondent Circuits. 9.
(6) Reduction of Multi-Froquency Circuits. 10 ,
(7) Combination of Parallel Arms. 10.
(8) Application to Throc-Phose Systems. 1I.
(9) Impedances. 12.
(9.1.) Roactances. 12.
(9.2.) Capacitances. 12.
(9.3.) Standard Values. 12.
(10) Example. 12.
(11) Conclusions. . 15.
(12) Bibliography. 16.

Figures 1-25.

Summary.
In the: report, methods are described, by means of which comples power circuits may be reduced by following definite rules. Application of a voltage to the resultant circuit will produce a tranciont having a voltage magnitude, and initial rate of rise of voltage, approximating to those produced by the original circuit.

These methods should provide a satisfactory means of rapidly reducing notworks during a survey of the amplitude: and frequency of the transionts to which switchgear and associated equipment ait a given site or number of sites are subject.

The most severe cases may be solected readily, and oxamined morc closely by a complete analysis.

List of Symbols.

a, a^{\prime}	$=$	Ratios of susceptances.
b, b^{\prime}	=	Ratios of reactances.
c	$:$	Gapecitance in Farads.
F	$=$	Frequency.
F_{H}	$=$	Higher frequeincy.
$\mathrm{F}_{\mathbf{L}}$	$=$	Lower frequency.
K^{2}	$=$	Ratio of higher to lower frequency.
L	-	Inductance in Henries.
$\mathrm{M}_{1} \mathrm{M}_{2}$ etc.	-	Magnitudes of voltage peaks.
$\mathrm{N}, \mathrm{N}_{2}$ etic.	:	Times at which voltage jeaks occur.
P	-	Factor by which the rate of rise of the lower frequency component is multiplied to give an equivalent rate of rise for a double frequency circuit.
$P_{\text {D }}$	$=$	Multiplying factor whe: standard dempine is assumed.
p, q	$=$	Factors used in eeneral equation for double freguency circuits.
i	$=$	Time.
V	=	Instantaneous value of transient voltage.
V_{0}	$=$	Applied voltage.
V_{1}, V_{2} etc.	\div	Lines drawn to voltage peaks $\mathrm{M}_{1} \mathrm{~N}_{2}$ etc. in Fig. 13.
V_{r}	$=$	Line drawn to representative voltage peak in Fig. 13.
X	$=$	Reactance of circuit elenents in per cent.
X_{F}	$=$	Reactance of hisher frequency component.
X_{L}	=	Reactance of lower frequency component.
Xtotal	$=$	Total reactance to the source.
x	=	Proportion of total reactance in a double frequency.circuit atiributed to the lower frecuency component.
1-x	$=$	Proportion attributed to the higher frequency component.
Y	$=$	Suscoptance oif a circuit elenent in per cont.
Y_{H}	$=$	Susceptance of higher frequency component.
$\Psi_{ \pm}$	=	Susceptance of lower frequency component.
y_{H}	$=$	Proportion of total suscoptance in a double frequency circuit aitributed to the higher frequency component.
$\mathrm{y}_{\text {L }}$	$=$	Proportion attributed to lower frequency component.
θ_{1}, θ_{2} ett.	$=$	Angles corrosponding to $\mathrm{V}_{1}, \mathrm{~V}_{2}$ etc.

(1) Introduction.

In problems involving transionts in complex power circuits, the usual methods of ctrcuit roduction, involving chiefly series and parallel additions of inpedances, and star-delta or delta-star transformations, canoot be used, as the reduced circuit will not, in general, have the same frecuoncy response as the oricinal circuit.

The best of the rethods available for the mathematical analysis of complex circuits is that usine the Laplace Transform, (Ref, 1), by means of which any circuit may be represented by a number of independent single frequency circuits in series. The component curves mey then be plotted, or calculated, to give the resultont curve. Graphs have been produced for circuits with two component frequencies (Refs.2, 3, 4), Other methods are also available, chiefly based on the theory of travelling waves (Ref. 5).

These approaches are limited by the amount of work involved, and practice up to now has boon to reduce complex power circuits arbitrarily to single frequency circuits. This usually involved sweening assumptions that were not justified, and onswers were subject to error.

In this report, methods are described, by means of which complox power circuits may be reduced by following definitc rules. The resultant circuit will produce a transient, having a voltage magnitude, and initial rate of rise of voltege, the same as those of the original circuit, with on accuracy sufficient for most practical purposes, and with a minimum of colculation. It is an acded advantage that the parameters are expressed in a form familiar to powor system ongineers, nemely per cont on a. given base MVA.

(2) Sincie Frequency Circuits.

(2.1) Gircuit with L and C only.

Tho notural frequency of a circuit consistins of an inductenco I Honries in parollel with a capacitance C Farads is given by the formula:-

$$
F=\frac{\underline{I}}{2 \pi / L C} \quad \text { cycles per soc. } \cdots \cdots\left(2.1 .1_{0}\right)
$$

If L is expressed in per cent reactance at 50 cycles (X) on any given base mVA, and C is exprossed in per cent susceptence at 50 cycles (Y) on the same base MVA, then the natural frequency is given by

All calculetions of netural froquocy may be corried out on this basis, and sinco system reactences in particular are normally aveilable in por cent, this method will be used herc.

If a woltage of amplitude V_{o} is suddonly applicd to the singlefroquency circuit of Fig. 1 , the resulting transiont is spocified by:-

$$
V=V_{0}(1-\cos 2 \pi F t),
$$

or, assuming the shape of the curve, by V_{0} and F. The maximum magnitude is twice the amplitude, or OV_{o}.

(2.2) Circuit with Resistance.

It is only in unusual cases that the series resistance of a power circuit has a material effect on the frequency, beyond the offect which can be brought in by considering impedances of network elements instead of reactances. Losses associated with the flow of transiont currents at high frequency, howover, affect the voltage mognitude, sinco they produce approciablo domping of the tronsiont. It is a matter of observation that the offect is usually such as to produce damping to about 20% of the initial amplitude in 5 cycles of the transiont frequency concerned. (Refs. 6, 7). Whilst in particular cascs the decrenent may be sreater or less, the decrement to 20% in 5 cycles may be accepted as a reasonable uiversal compromise for the purpose under discussion. This means that for a single frequ ncy circuit, the magnitudo of the first poak, and the rate of rise of voltage to the first poak aro 92% of those appropriate to the undemped transient.

In this roport, all circuits are assumed to consist of pure reactances only, and dampine, if requircd, is applied to the resultant curves or values.

(3) Double Frequency Circuits.

The double frequency circuit which is eosiost to consider is that containing two indepondent sincle-frequency components, as shown in Fig. 2. The highor froquoncy componont is reprosentod by X_{H}, Y_{H} in parallel, and the lowor frequency component is reprosented by X_{L}, Y_{L} in parallel.

If a voltafe V_{0} is applied suddenly to this circuit, the form of the resulting transient may bo writton down by inspoction as:-
$V=V_{0}\left(x\left(1-\cos 2 \pi F_{L i t}\right)+(1-x)\left(1-\cos 2 \pi F_{H} t\right)\right\}--(3.1$.
where $x=\frac{X_{L}}{X_{L}+X_{H}}=$ Proportion of lower frequency component.
$(1-x)=\frac{X_{H}}{X_{L}+X_{H}}=$ Proportion of hicher frequency component.
$F_{L}=\frac{5000}{\sqrt{X_{L}} \bar{Y}_{L}}=$ Frequency of lower frequoncy component.
$F_{H}=\frac{5000}{\sqrt{X_{H} Y_{H}}}=$ Frequency of higher frequency component.
The double-frequency circuit most commonly found in practice is that shown in Fie. 3, in which the components normily can ot be soparated by inspection. This case has been evaluated éenerally, the formulco obteincd boing as follows:-

$$
\text { Lot } a=\frac{Y_{A}}{Y_{B}} \quad, \quad b=\frac{X_{A}}{X_{B}}
$$

$$
F_{A}=-\frac{5000}{\sqrt{X_{A} Y_{A}}}, \quad F_{B}=\frac{5000}{\sqrt{X_{B} Y_{B}}}
$$

$$
\begin{aligned}
& \frac{F_{B}}{F_{A}}=\sqrt{a b} \\
& p=\frac{1}{2}(1+b a a b) \\
& q=\sqrt{p^{2}-a b} \\
& K=\left(\frac{p+q}{p-q}\right)^{\frac{1}{4}}
\end{aligned}
$$

Then, in the equation (3.1),

These expressions may be evaluated from the circuit parameters, and the values substituted in the equation (3.1.). In order to save the labour of calculation, several sets of graphs have been produced to enable x, F_{L} and F_{H} to be obtained quickly from the ratios of the circuit parameters. (See Refs. 2; 3, 4.). For each set of graphs, some extraneous calculations arc necessary, and it is questionable which set requires the least expenditure of effort.

The following method is believed to be faster than previous me hods:-

$$
\text { Obtain the ratios } a=\frac{Y_{A}}{Y_{B}} \text { and } b=\frac{X_{A}}{X_{B}}
$$

$$
\text { Road } x \text { from the graph of Fig. } 4 \text { (or Fig. } 4 \mathrm{~A} \text {). }
$$

$$
\begin{gather*}
\text { Let } F_{L}=\frac{5000}{\sqrt{X_{L} Y_{L}}}=\frac{1}{K} \sqrt{F_{A} F_{B}}=\frac{5000}{\sqrt{y_{L}\left(X_{A}+X_{B}\right)\left(Y_{A}+Y_{B}\right)}} \\
\text { Then } X_{L} Y_{L}-K^{2} \sqrt{X_{A} Y_{A} X_{B} Y_{B}}=y_{L}\left(X_{A}+X_{B}\right)\left(Y_{A}+Y_{B}\right) \\
y_{L}=K^{2} \frac{\sqrt{X_{A} X_{B}}}{X_{A}+X_{B}} \cdot \frac{\sqrt{Y_{A}} \frac{Y_{B}}{Y_{A}+Y_{B}}}{(3.3 .)} \tag{3.3.}\\
y_{L}=K^{2} \cdot \frac{\sqrt{b}}{b+1} \cdot \frac{\sqrt{a}}{a+1}
\end{gather*}
$$

y_{i} nay be rom from tho wrap h of Fir. 5.

Similarly

$$
F_{H}=\frac{5000}{\sqrt{y_{H}} \frac{5}{\left(X_{A}+X_{B}\right)}-\left(Y_{A}+Y_{B}\right)}-
$$

and

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{H}}=\frac{1}{K^{2}} \cdot \frac{\sqrt{b}}{b+1} \cdot \frac{\sqrt{a}}{a+I}(\sec \text { Fig. 6) } \cdots(3.6 .) \\
& \mathrm{K}^{2}=\sqrt{\frac{\mathrm{y}_{\mathrm{L}}}{\mathrm{y}_{\mathrm{H}}}},
\end{aligned}
$$

and may be read from the graph of Fig. 7 (or 7A).
For any aiven double frequency circuit of this type, road x, y_{I} and ${ }_{Y_{H}}$ from Fics. 4,5 and 6 respectivoly, obtain F_{L} and F_{H}, and substitute in equation (3.1.).

If the actuol values are required, for inscrtion in the circuit of Fig. 2, these may be obtained as follows:-

$$
\begin{aligned}
& X_{L}=x\left(X_{A}+X_{B}\right) \\
& X_{H}=(1-x)\left(X_{A}+X_{B}\right) \\
& Y_{L}=\frac{y_{L}}{X}\left(Y_{A}+Y_{B}\right)
\end{aligned}
$$

where YL_{K} may be read from the graph of Fig. 8.

$$
Y_{H}=\frac{\mathrm{Y}_{\mathrm{H}}}{1-\mathrm{x}}\left(\mathrm{Y}_{\mathrm{A}}+Y_{B}\right)
$$

wherc $\frac{Y_{H}}{1} \frac{{ }_{H}}{-X}$ may be road from the granh of Fic. 9.

When the frequencies of the two components are widely scparated ($K^{2}>8$) they the frequencies of the two components are widely scpar Fig. 3. Thee two frequoncies aro given by

$$
\frac{5000}{\sqrt{X_{A} \bar{Y}_{A}}} \text { and } \frac{5000}{/ X_{B} \bar{Y}_{B}}
$$

and x.is the proportion of total reactance associated with the lower of these two frequoncies.

Soveral other types of double frequency circuits havo beon analysed and the oxprossions tabulated (Refs. 2, 3).

When the relevant volues havo been substituted in oquation (3.1.), curvos of voltage aeainst tino may bo drawn for each componont soparatoly, and for the rosultati, as in Fir. 10. Tho affoct of daming of each componont as coscribed in soction (2.2.) is slyom in Fig. 11.

Voltare - time curves showint the variatirn of the shape of the resultant curvo with vartation in tho ratios x and K^{2} are given in Fic. 12.

(4) Reduction of Double Froquency Circuits.

For most problems connected with transients in power networks, the most important parts of the voltage-time curve are the rate of rise to tho first pook of reasonable mocnitude, and tho maximum magnitude.

On this assumption, it is possible to represent most double frequency circuits, of the type shown in Fig. 3, by an equivalont sincle froquency circuit having eithor approximately the same rato of riso, and maximum magnitudo, or approximately the same equivalont frequency, and maximum magnitude. Those two reprosentations are tiken as interchangeable.

Aftor an oxamination of the curves of Fig. 12, and considoring the limits of accurocy of tho graphs of Figs. 4, 5, 6 and 7, the following approximations scon justifiod.
(i) If $x\left(\mathrm{Fi}_{\mathrm{G}} .4 .4\right.$) is groator than 0.85 , the offoct of the highor froquoncy circuit may bo nocloctod, and the circuit moy be considered as a sincle froquency circuit of amplitude V_{0}, and a frequency of

(ii) If x is less then 0.15, the offect of the lower frequency componont mey bo noglocted, ond tho circuit may be considered as a single froquoncy circuit of amplitude $V_{0} .(1-x)$ and a frequoncy of

$$
\frac{5000}{\sqrt{Y_{H}\left(X_{A}+X_{B}\right)\left(Y_{A}+Y_{B}\right)}}
$$

(iii) If a is very largo, and b is of the order of unity, then Y_{A} in the circuit of Fige 3 may bo roplaced by a short circuit, eiving a single frequoncy circuit containing X_{B} and Y_{B} only. The amplitude is $V_{o}\left(\frac{X_{B}}{X_{A}+X_{B}}\right)$ and the frequency $\frac{5000}{\sqrt{X_{B} Y_{B}}}$.
(iv) Cliff (Rof. (8) has sugecsted the following graphical construction for obtaining on equivalont from a recorded or computed curvo:-

Lines V_{1}, V_{2} otc. are drewn to the first and subsequent peaks, of macnitude $\mathrm{F}_{1}, \mathrm{M}_{2} \ldots$, occurring at times $\mathrm{N}_{1}, N_{2} \ldots$, as shown in Fic. 13 .

From the first poak, a line $V^{\prime} 2$ is drown parallel to V_{2} of such a length that $\frac{V_{2}}{V_{1}}=\frac{M_{2}-M_{1}}{M_{1}}$.

A third line V_{3}^{\prime} may be drawn from the ond of V_{2}^{\prime} such that

$$
\frac{V^{\prime} 3}{V_{1}}=\frac{M_{3}-M_{2}}{M_{1}} \quad \text { otc }
$$

A represontativo line V_{r} is drawn from tho origin to the end of the last line $V{ }^{\prime}$ n.

This method may be used for cases not othervise covered, as follows:Let slope of representative line $V_{r}=P-\frac{M}{N}$

$$
\text { where } M=M_{1}+\frac{M_{2}-M_{1}}{\sin \theta_{1}} \sin \theta_{2}+\frac{M_{3}-M_{2}}{\sin \theta_{1}} \sin \theta_{3}+\cdots
$$

and $N=N_{1}+\frac{M_{2}-M_{1}}{\operatorname{Sin} \theta_{1}} \cos \theta_{2}+\frac{M_{3}-M_{2}}{\operatorname{Sin} \theta_{1}} \cos \theta_{3}+\cdots$

$$
\operatorname{Cos} \theta_{n}=\frac{1}{/ 1+\left(\frac{\left(N_{n}\right)^{2}}{\left(N_{n}\right)}\right.}
$$

Hence $P=\frac{M_{1} \sin \theta_{1}+\left(M_{2}-M_{1}\right) \sin \theta_{2}+\left(M_{3}-M_{2}\right) \sin \theta_{3}+\cdots}{N_{1} \sin \theta_{1}+\left(M_{2}-M_{1}\right) \operatorname{Cos} \theta_{2}+\left(M_{3}-M_{2}\right) \cos \theta_{3}+\ldots}-$ (4.1.)

In case the successive valuos of $\operatorname{Tan} \theta$ oscillate, strict adherence to this foim introducos slight difforences from the voluo obtained by Cliff's convention, and a suitablo corroction has beon mode in the colculations describod bolow.

For the double frequency undamped casc, wo may toke the pook value (magnitude) of the envelope (approx. $2 \mathrm{~V}_{0}$) as unit voltage, and the time to the first low frequency peak as unit time. With a closo degroc of approximation N_{1}, N_{2}, N_{3}. . . may then be tokon as

$$
\frac{1}{K^{2}}, \frac{3}{K^{2}}, \sum_{K^{2}}-\cdots
$$

where K^{2} is the ratio of the higher frequency to the lower frequency, and is givon in Fig. 7. ageinst a, b. The value P is thon the factor by which the rate of rise to the envelopo poak (at the lower frequency) must bo multiplicd to give the equivalent rate of risc. This factor P has boon celculatod over a rango of valuos of a, b, and tho results are presented in the form of curves in Fig. 14.

In computing P, calculations were takon up to and including whichever of the following occurrod carlicst :-
(a) The carlicst pook with $M_{n} \geq 0.75$ unit voltage.
(b) The exrliest poak with $N_{n} \geq 1.00$ unit time.
(c) The highest pock.

For cascs in which it is desired to allow for the existence of damping, at the standard rate doscribed in Section (2.2.), a similar set of curvos of P_{D} has beon colculated (soo Fig. 15), in which each component curve has been considerod to bo dampod soparately in obtaining the values $\mathrm{M}_{1}, \mathrm{M}_{2}$ otc.
T. The equivalent rate of rise P may be considered as that given by an undamped single frequency circuit of

$$
\begin{array}{ll}
X=X_{A} \div X_{B} \\
Y=\frac{Y_{L}}{P^{2}}\left(Y_{A}+Y_{B}\right) \\
F=\frac{}{\sqrt{Y_{L}\left(X_{A}+X_{B}\right)\left(Y_{A}+Y_{B}\right)}}
\end{array}\left\{\begin{array}{l}
\text { (4.2.) }
\end{array}\right.
$$

The value P_{D} may be used in these equations without loss of accuracy. A graph of M_{1}, the equivalont magnitude of the first peak for the undamped case, is given in Fig. 16, while Fig. 17 is a graph of MID, for the damped case. It will be seen that the first peok has a magnitude less than 0.5 for all values of b greater than 1.0 .

It should be noted that in the calculation of the curves of P and M, the chicf approximation is in taking, instead of the actarl succossive peak values of the transients and the times at which they occur, the values of the upper envolope of the higher frequency component superimposed on the lower froquency component, at times corresponding to 1,3,5 - -half-periods at the hicher froquency. This introduces appreciable error only when the frequencies are close and their amplitudes comparable; and allowanco has bcen mede for this in the appropriate range, for both the undamped and the dampod cases.

In practice, where a represontative value is required for a given rocorded curve, tho lino V^{\prime}, may be mado of length $M_{2}-M_{1}$, and subsequent pooks trooted similorly. This mothod is somewhat casior, as it is only nocossary to draw a line from the first peak parallcl to V_{2}, mark off on it with a pair of dividors tho scalo longth $M_{2}-M_{1}$, and proceed, without the necossity of dividing each valuc by $\sin \theta_{1}$. This mothod placos a littlo more cmphasis on the first poak, and gives results which may be highor than those obtained by tho use of Cliff's mothod, but the orror is small (loss than 4%). Unit voltage ($2 \mathrm{~V}_{0}$) must bo known for this case, before a comparison with calculated values can be made.

The arcas of application of rules (i) to (iv) in torms of a and b aro cloarly shown in Fig. 18, which includes a table of representative values of the parmeters for each arca. This graph should bo used as a sterting point for tho reduction of any double-frequoncy circuit of the type shown in Fig. 3.
(5) Roduction of Iwo Indopendent Circuits.

For the casc of two indepondont single-frequency circuits in serios, as in Fif. 2, the oppropriate values may bo substituted directly in tho equation (3.1.), and the curve computed.

To obtain an equivalent single frequency circuit, the rujes of Scetion (4) may be appliod. As tho raduction of caso (iv) has beon carriod out in terms of tho ratios a and b, it is necessary to find the appropriate values of a and b bofore the graphs of Fies. 14 etc. can be used. Those valuos may bo obtainod from Fig. 19s which is in terms of $x_{\text {, }}$ or

$$
\frac{X_{L}}{X_{L}+X_{H}} \text {, and } K^{2}
$$

or

$$
\sqrt{\frac{X_{L} Y_{L}}{X_{H} Y_{H}}}
$$

It should be notod that $Y_{L}=\frac{Y_{L}}{x}\left(Y_{A}+Y_{B}\right)$ and $Y_{H}=\frac{y_{H}}{(1-x)}\left(Y_{A}+Y_{B}\right)$,
when applying formulac from Fig. 3 .

Nost multi-frequency series circuits can be reduced to equivalent sincle or double frequency circuits by the cxercise of judgnent, and the use of the graphs.

To reduce the four froquancy circuit of Fig. 20 to a lower order equivalent circuit, as seen from the end S, the two sections farthest from $S, X_{1} Y_{1}$ and $X_{2} Y_{2}$ may be considered as a double freciuncy circuit, and roplaced, with the aid of Fic: 18, by on equivalent single frequency oircuit $X^{\prime}{ }_{2} Y^{\prime}{ }_{2}$. This section may then be combined with $X_{3} Y_{3}$, and these two soctioñs roplaced by an equivalent $X^{\prime}{ }_{3} Y^{\prime}{ }_{3}$. Finally $X^{\prime}{ }_{3} Y^{\prime}{ }_{3}$ and $\mathrm{X}_{4} \mathrm{Y}_{4}$ may be cornbined, as $\mathrm{X}_{4}^{1} \mathrm{Y}^{1} 4_{4}$. The equivalent voltage amplitude is

$$
V_{0}\left(\frac{X_{1}}{X_{1}+X_{2}+X_{3}+X_{4}}\right)
$$

After a little exporience, the following rules will be found to apply:-
(i) A small value of X (other than the one nearest the circuit breaker) adjacont to an X more than 7 times as great, may be added to the larger value, and the appropriate susceptances added.
(ii) If the capacitance noarost the circuit breaker is vory large, other capacitances may ofton be noglected, giving a single frequoncy circuit dircctly.
(iii) If the capacitance nearost the circuit brcaker is small, and a vory large cepacitanco occurs clsewhere in the circuit, this largo capacitanco may be replacod by a short circuit, and sections beyond the short circuit nogloctod. Caution should be used in this process, as the size of capacitance (or suscoptance) which can be short-circuited depends on the ratio of the reactances on cither side.

Any multi-frequency circuit may bo analysed mathomatically if roquired, the curves drawn, with or without dampinc, and an oquivalent circuit obtained as described in Scetion (4). In Ref. 7, the solution of circuits of various types, hoving up to fivo frequencics, is given in a form suitablo for tabulation. The time involved in such anolyses is inordinately lorgo, having rogard to the small increaso in accuracy obtained, and the usefulness of the mathomatical appronch is limited oxcopt in critical coses.

(7) Combination of Porallol Arms.

Most complox power circuits may be roarrangod as several "arms" in parallel. When cach of the parallel arms has boen roduced, by the methods outlinod above, to an cquivalont singlo-froquoncy circuit, and the represontative values of X and Y obtained for tho undamped curves, an approximnte method of solution may be applied. The method is simply to parallel the X and Y values in the usual way, and this has been found to give good results.

For the circuit of Fig. 21.

$$
X=\frac{X_{1} X_{2}}{X_{1}+X_{2}} \quad, \text { and } Y=Y_{1}+Y_{2}
$$

If the ratio $\frac{X_{1}}{X_{2}}=b^{\prime}$ and $\frac{Y_{1}}{Y_{2}}=a^{\prime}$ the frequency of the combined circuit is given by

$$
\frac{5000^{\prime}}{\sqrt{X_{l} \bar{Y}_{1}}} \sqrt{\frac{a^{1}\left(b^{\prime}+1\right)}{a^{1}+1}}
$$

The voltage amplitude is equal to $V_{0} \cdot \frac{X}{X t o t a l}$, where Xtotal is the total reactance to the source.

It is preferable to bring all calculations to this stage as values for undanped curves, as othervise some difficulty may be found in determining the values of the cquivalent reactances. Standard damping as describod in Scetion (2.2.) may be applied to the result by multiplying the voltago poak manitude by 0.92 .

Checks on the validity of this mothod of reduction and combination wero carricd out usine a Restriking Voltage Indicator in conjunction with a network analysor, and geve results within 4% of the corrcct value.

Application to Threo-Phase Systoms.

Discussion has so far rolated to 2 - torminal circuits only. When practical throc-phase power systoms are being considerod, a variety of circuit conditions is possible, according to the type of disturbance considered. The full threo-phase diagram may be drawn for any particular case, and rocrranged to give a combination of series and parallel sections as vicwed from the circuit breaker, or point of disturbance. The diagram may then be reduced as required.

For many purposes, it is possible to represent the system by the single phese or one-line diagram, in which all the inductive reactances concrned are the normal positive phase sequence series reoctances per phase, and the susceptances ore the offective susceptancos per phase between line and noutral, corresponding to the positive phasc sequence capacitances.

The offects of switchine tronstionts may be ostimated at the same time as, or subscquent to, the colculation of the fault MVA at the points considercd, and it is convonient to use the calculations and diagrams for fault MVA as a basis for switching transiont calculations whercver possiblc. Thus Xtotal is the reactance corrosponding to the total fault MVA at the point considerod.

The per cont roactence of any arm of the network, to the source, is given by:-

$$
X_{\rho}^{\prime}=\frac{\text { Base MVA } x 100}{\text { Fault MVA }}
$$

Tinjs is of use whon the foult NVA, the per cent reactance of the first elemont, and the por cent suscoptanco directly across the circuit breokor or point of disturbance, are the only casily obtainable parametors. If it is soon that the first oloment contains a substontial part of the total reactance of thet crm , dotailed investigation of the romaining clements may be. unnecessery.

Whore a known fault MVA is contributcd over a line of roasonablo lencth (say 40 miles) the frequency of that arm will bc low, and rule (ii) of Soction (6) applios. The circuit may be considored as a sincle-frequency circuit of capacitance approximatoly equal to half the total capacitance of the lino, and reactance detormined from the fault MVA as described above.

The example which is worked through later contains scveral types of network arms encountored in practice.

Impedances.

(9.1.) Reactances.

Tests made on power network elements indicate thot, for the ordor of frequencies encountered in switching tronsients, the posjtive sequence reactance of cenerators and transformers is appoximately constant, at a value somewhat less than tho power frequency positive sequence roactance. The ratio of the reactance at high frequency to the reactance at power frequency appears to vary from 0.85 to 0.95 , and an average ratio of 0.90 has been suggested. (Rof. 9).

As a result of this change in reactance under trensiont conditions, it could be assumed that 10% of the systom voltago is "not availableli, and also that the true frequency is approximately 105% of the calculatod value, giving a 5% lower rate of risc in a singlo frequoncy circuit. Negloct of this factor will give a conservative answer, and, in view of the nature of the assumptions involved in the problem, it has been noglected. here. All reactancos used in the calculntions aro the normal positive, nogative, and zero sequence reatonces of the various elements.

(9.2.) Capacitances.

Transmission linos may be taken as one π - soction, with half the total capacitance at each end.

For transformers, the measurcd capacitance of the isolatod high voltage windine to the earthod secondary is divided in two, half beine placed at each end of the reactance in the equivalent circuit. Both soctions of capacitance are considered to be reforred to the high voltage basc. If one side of the tronsformer is carthed through a foult, the capacitance on that side is short-circuited, and the capacitance on the other side is increased to 0.65 of the value measured above. (Ref. 3 and tests at the Electrical Rescarch Association Laboratories, London). For cases in which the capacitance is not known, the graph of Fig. 22 may be used. This graph is based on valucs supplied by various manufecturers, and the information from Refs. 3, 6 and 10.

The capacitance of gonerator windings may be measured in a similar manner, but where this value is not known a suitable minimum value is 0.004 microfarads at each ond of the winding, or 0.005 micro-farads at the torminals if the neutral is carthed. These values are roforrod to the generator voltage.

The capacitance of a shunt reactor is teken as equal to that of a transformer of the same rating.

A cable js roprosonted by its capacitance only.

The capocitance of various other network olements is discussed in Refs. 3 and 6.

(9.3.) Standard Valucs.

For a projectod system, it is dosirable to draw up a table of system parameters, using minimum or average values, axpressed in por cont reactance and susceptance on the system bascs. If the some MVA base is used for all voltoges, the values from the table, for the correct voltoge base, may bo inscrted directly on the systom diagram. Such a table is given in Fig. 23.

Consider tho systom in Fire. \%(a). A three-phase to carth foult has occurred on, the transmission line just beyond circuitwbreaker (A) and the equivalent circuit as scen from (A) is roquired.

System bases 13.2 KV , $132 \mathrm{KV}, 100 \mathrm{NVA}$.
Figure 23 used except as stated.
Reactonces.
Each transformer $10 \times \frac{100}{50}=20 \%-3$ in parallel $=6.67 \%$
Each altornator $10 \times \frac{100}{50}=20 \%-3$ in parallol $=6.67 \%$
Reactor $\quad 20 \times \frac{100}{100}=20 \%$
Total fault MVA contributed by transmission lino with reactor 300 MVA (given).

Reactinnce of this arm $\frac{100}{300} \times 100=33 \%$.

Susceptonces.
Bach transformer 0.006 micro Farads (measured)
$\frac{0.006}{18.3} \times 100=0.0328 \%$ or 0.016% cach end.
Throe in parallel $=0.048 \%$ oach end.
Bach alternotor, noutral carther?, 0.005 micro Farads (moasurod)
$\frac{0.005}{1830} \times 100=0.00027 \%$. Three in parallel $=0.0009 \%$ at terminals.
Reactor -0.0028% or $0.0014 ;$ cach ond.
' 20 miles ovorhead line.
$0.5 \times 20 \times 0.079=0.3 \%$ a ach end.
H.V. $\%$ bars $=0.0056 \%$
I.V. buabars and short cables noglected.

The diafram may now be redrawn as Fig. 24 (b) and each arm considered in turn.

Reactor, line, and source.

$$
a=\frac{0.5}{0.0014}=570 \quad b=\frac{13}{20}=0.65
$$

From Fig. 18: - Y_{A} is short circuit $X=X_{B}=20, \quad Y=Y_{B}=0.0014$.

3 Local transformers and alternators.

$$
a=\frac{0.049}{0.048}=1.02 \quad b=\frac{6.67}{6.67}=1
$$

From Fig. 18, singlo low froquency circuit

$$
\begin{aligned}
& y_{L}=0.66(F E \cdot 5) \\
& X=\left(X_{A} \div X_{B}\right)=(6.67+6.67)=13.3 \\
& Y=y_{L}\left(Y_{A}+Y_{B}\right)=0.66(0.049+0.048)=0.063
\end{aligned}
$$

Reactor and other section of station.
Combine two outer sections.
$a=\frac{0.049}{0.055}=0.89$
$b=\frac{6.67}{6.67}=1$.

From Fig. 13, single low frecuency circuit
$\mathrm{y}_{\mathrm{L}}=0.68$ (Fig. 5)
$X=\left(X_{A} \div X_{B}\right)=(6.67 \div 6.67)=13.3$
$Y=y_{I}\left(Y_{A}+Y_{E}\right)=0.68(0.049 \div 0.055)=0.070$
The reduced arm is $X_{A}=13.3, X_{B}=20$.
$Y_{A}=0.070, Y_{B}=0.0014$.
$a=\frac{\dot{0} .070}{0.0014}=50 \quad b=\frac{13.3}{20}=0.665$.

From Fig. 18, Y_{A} is short circuit.
$X=X_{B}=20 . \quad Y=Y_{B}=0,0014$.
Alternatively, consider as single high frequency section
$\mathrm{x}=0.4($ Fig. 4)
$\mathrm{X}=(1-\mathrm{x})\left(\mathrm{X}_{\mathrm{A}} \div \mathrm{X}_{\mathrm{B}}\right)=0.6(13+20)=19.8$
$\mathrm{Y}_{\mathrm{H}}=0.015\left(\mathrm{Fig}_{0}\right)$
$\mathrm{Y}=\mathrm{Y}_{\mathrm{H}}\left(\mathrm{Y}_{\mathrm{A}}+\mathrm{Y}_{\mathrm{B}}\right)=0.015(0.070+0.0014)=0.0011$.
This indicates the order of errors in borderline cases, 132 KV Busbars.

$$
Y=0.0056
$$

Combination.
The circuit has now been reduced to that shown in Fic. 24 (c), and the arms may be combined in parallel to give
$X=5.70 \quad Y=0.071 \quad X Y=0.405$.
Xtotal, from Fig. 24 (b), is given by 33, 13.3, and 33.3 in parallel, or 7.4%.

Total fault MNA $=\frac{100}{7.4} \times 100-1350 \mathrm{MVA}$.
Voltage amplitude $=\frac{X}{X t o t a l}=\frac{5.70}{7.40}=0.77$ per unit. undamped $=0.71$ per unit darnped.

Frequency $=\frac{5000}{\sqrt{0.405}}=7960$ cycles per sec.

Alternative.
The insertion of a section of 132 KV cable, of assumed capacitance 0.015% (about $30.9 t$) between the local busbar and the interm bus reactor would give a circuit, for this arm, as shown in Fig. 25 (a). This may be roduced, as shown above, to the circuit of Fig. 25 (b).

For this section,
$a=\frac{0.070}{0.016}=4.4 \quad b=\frac{13.3}{20}=0.665$.
From Fic. 18 , this is a double froquency case.
$y_{L}=0.41$ (Fig. 5) $\quad P=1.10$ (Fig. 14)
$X=X_{A}+X_{B}=13.3+20=33.3$
$Y=\frac{Y_{L}}{P^{2}}\left(Y_{A}+Y_{B}\right)=\frac{0.41}{(1.10)^{2}}(0.070+0.016)=0.0292$
Substitutine these values in Fig. 24(c), and calculating as above,
Voltage amplitude $=0.872$ undamped.
Froquency $=6250$ cyclos per sec. .
(11) Conciusions.

The method of reducine circuits described here should provide a satisfactory means of rapidly surveyine the voltage and frequency of the transionts to which switchgear at a riven sito or number of sites is subjoct. Whilst the calculations aro aporoximate, and in the more complicated cases cannot bo supportod by theoretical roasoning, the method will clearly indicatc which of a number of casos will set limits. The latter may then be exomined more closely by complete analysis, in which account can be taken of details of notwork paranotors neglected in the wider survey.

1. An Introduction to the Laplace Transformation with Engineering Applicetiong. J. C. Jacgar.
2. The Determination of Circuit Recovery Rates. E. W. Boehne. Trans. AIEP , 1935 54, pp 530.
3. Transient Recovery Voltage Subsccuont to Short Circuit Interruption with Special Reforence to Swedish Power Systems. P. Homarlund. Proc. Royal Swedish Academy of En!. Sc. Stockholn, 1946, No 189.
4. Voltage Recovery in a Dual-Frequency Circuit. N. N. Linnichenko. Elektrichestivo, 1949, No. 11, pp 59.
5. The Calculation of Rocovery Voltages and Intornal Voltage Surgos by Mcans of Berceron's Mothod. P. Satche and V. Grosse. CIGRE, 1950, Paper No 128.
6. Practical Calculation of Circuit Transient Recovery Voltoges. J.A. Adams, W. F. Skeats, R. C. Van Sickle and T.G.A. Sillors. Trans. AIET, 1942, 61, pp 771.
7. The Evaluation of Rostriking Voltages. J. R. Mortlock. JIPR, 1945, 92 Ft. II, pp 562.
8. Testing Station Restriking - Voltage Characteristics and Circuit Breaker Provinge J. S. Cliff. CIGRE, 1950, Papor No 109.
9. Calculation and Exporinent on Transformer Reactance in Relation to Transients on Restriking Voltage. L. Goslond and W.F.M. Dunne. GRA Foport, NoG/T 125.
10. Rostrikine Voltage as a Factor in the Performance, Rating, and Solection of Circuit Breakers. J. A. Harle and R. W. Wild. JIEE 1944, 91, Pt. II, pn 469.

Gencral Roforence.

Simplified Calculations for Rate of Riso of Rostrikine Voltare. J.A. Callow, BRA Report, No G/T 26l. (Issued to mombers only).

Fig 1: Single Frequency Circuit [See Section (2.1)]

Fig 2: Double Frequency Circuit with Independent Components. [see Section (3)]

Fig -3: Typical Double Frequency Circuit [see Section (3)]

$b=\frac{X_{9}}{X_{B}} \quad$ Fia $4 A:$ Graph of x to cnlaraed scal

Fig 10: Undamped Vottage, Time Curve for Tybical Double Frequency Circuit [See Section (3)]

Fig 11: Damped Voltagex Tirre. Curve for Typical Double Frequency Circuit.

Fig 13. Representative Vector (Cliffs Method).
[See Section (4)]

Fig 18. Areas of Application of Methods of Reduction.
[See Section (1)]

to

obtain $a=\frac{Y_{A}}{Y_{B}} \& b=\frac{X_{A}}{X_{B}}$.
Find area from graph above and apply formulae from table below.

Fig 20: Multi-Frequency Circuit.
[See Section (6)]

Fig 21:. Two Single Frequency Circuits in Parallel.
[See Section (7)]

Fi:.23. Metwork Elements - Stondard Values (See Section (9.3.)).

Voltage KV.	13.2	33	132	330
Brse				
MVA MVA	100	100	100	100
impedance ohms	1.74	10.2	174	1090
reactance Henries	0.00554	0.0347	0.554	3.47
susceptance . micromhos	575,000	91,600	5,750	916
capocitance micro Farads	1830	292	18.3	2.92
Feactonces on 100 MVA bese or rating				
Overhead line \% por mile	30	5.5	. 38	. 048
Cable single core \% per 100 ft .	. 13	. 020	. 002	. 0004
" threo core p per 100 ft .	. 13	. 028	-	-
Generators stoan X "d $\%$ on rating	10	10	-	-
" hydro Xit ${ }^{\text {it }}$ \% on rating	20	20	-	-
Transformers 2-winding \% on rating	10	10	10	12
Transformers auto \% on rating	5	5	5	10
Shunt Reactors \% on rating	100	100	100	100
Scrios Fioactors \% on 100 MVA	10	10	20	20
Susceptances on 100 IVA base				
Overhoad lino $\ddot{\circ}$ per mile	. 0011	. 0062	. 079	. 59
Coblo single core $\%$ per 100 ft .	. 0009	. 0038	. 045	. 206
	. 0009	. 0038	-	-
Gonorators stoan	- 00044	. 0027	-	-
Gonorutors hydro	.00066	. 0041	-	-
Transformers 2 winding \% on H.V. base	. 0004	.0017	. 02	. 10
Transformors auto $\%$ on H.V. basc	-	-	. 01	. 05
Shunt roactors i\%	. 0004	. 0017	. 02	. 10
Sorios reactors - oil in mersed , - in_{6}	. 00001	. 00007	. 0023	. 018
Total substation exclucling above \%	. 00005	-.0035	. 0056	. 036
Poctontial tronsformor \%			. 0028	. 018
Curront transformer - oil fillod \%			. 0017	. 011
" ." - compoun? filled $\%$. .0006	. 004
Circuit breakers - \%			. 011	. 007
Isolators -			.0006	. 004
Bushings - condenser \%			. 0.11	.0.7
Liehtnine orrostors \%			.0001	.001
Insulator strings \%			.00003	-004
Strung busbors is per loo ft.			$\bigcirc 311$. 0.7
Rigid busbars \%por 10 ft.			. 0022	$\therefore 14$

For generators with noutral carthod, or transformers with a fault on ono side, incroase capacitance on othor side of equipment to 0.65 of total. Otherwisc 0.50 of total capacitance at cach side of equipnent.

(a) One Line Diagram of Station Arrangement

(b) Reduced imit for Station, (All Values are in per cent)

(c) Final Stage of Reduction

Fig 24: Reduction of Network

(a) Alternative

(b) Reduced circuit for Alternative

Fig 25: Reduction of an Alternative [See Section (10)]
Summary 1
List of Symbols. 2
(1) Introduction. 3
(2) Three-Phase Systems. 3
(3) Methods of Testing. 4
(3.1) Passive Networks. 4
(3.2) Live Networks. 5
(3.3) Transient Analyser. 5
(3.4) Analysis of riecords. 6
(4) Calculation of RRRV. 6
(4.1) Existing Methods. 6
(4.2) Simplified Calculation of RRRV. 7
(4.3) Example of Simplified Calculation. 9
(5). Accuracy of Simplified Calculation. 10
(6) Survey of System. 10
(7) Limits of RRRV. 11
(8) Circuit Breaker Characteristics. 13
(8.1) Scatter of Test Results. 13
(8.2) Dielectric Recovery. 14
(8.3) Post-arc Conductivity. 15
(8.4) Resistors. 15
(9) Conclusions. 15
(10) Bibliography. 17
Figures 1 - 15.
Photographs 1 - 4.
Summary.
Methods of testing and calculating the rate of riseof circuit breaker restriking voltage in three phase powersystems are reviewed, with particular emphasis on a methodof calculation based on simplified circuit reduction. Theorder of accuracy of this method is demonstrated, and therosults of a survey of a large projected system are given.Theoretical limits of RRRV are discussed, and a standard issuggested.
Recent tests on circuit breaker contact assemblics are described, and it is shown that knowledge of the dielectric recovery characterietio of commercial circuit breakers is lagging behind the customer's specification of the performance required.

List of Symbols.

${ }^{\text {E }}$ L	$=$	r.m.s. line to line voltage in KV.	
n	$=$	2 II times the frequency associated with	
		the corresponding component.	
RRRV	$=$	Rate of rise of restriking voltage, in KV/	
		micro-second.	
t	$=$	Time.	
V	$=$	Peak power frequency line to neutral voltage.	
v_{s}	$=$	Instantaneous value of restriking voltage.	
X	=	Reactance in por cent on the system base.	
X"d	$=$	Generator direct-axis subtransient reactance,	
X"q	=	Generator quadrature-axis subtransient reactance.	
Xtotai	=	Total positive sequence reactance per phase to	
		the source.	
Y	$=$	Susceptance in per cent on the system base.	
\propto	$=$	Damping factor.	
β	=	Factor depending on fault conditions - max 1.5.	
γ	=	$\frac{\mathrm{X"q}}{\mathrm{X} \\| \mathrm{d}} \quad=$ Factor depending on generator	
ω	=	2 II times power frequency.	

When a circuit breaker opens, a voltage will appear between the contacts. A graph of this voltage will show a transient, of a type determined by the circuit parameters, superimposed on the steady state voltage difference, or recovery voltage, between the open contacts. The total voltage between the contacts is known as the restriking voltage.

Circuit breakers in power systems interrupt circuits in a very short time, of the order of hundredths of a second, and this requires rapid establishment of dielectric strength between the contacts. In addition to rapid separation of the contacts, various devices are employed to ensure that, after a current zero, the ionised gases are cooled or replaced as quickly as possible. As system voltages increased, it was found that, in particular locations; some types of circuit breakers were unable to clear faults expeditiously, even though the fault current was less than the rated maximum for the circuit breaker:

These locations were investigated closely, and it was found that the transient components of the restriking voltage included a high frequency oscillation (5,000 to 20,000 cycles per second), of amplitude of the order of the power irequency peak voltage. These tests indicated that the restriking voltage could, under some circumstances, reach a value of more than twice the normal system peak phase to neutral voltage, in a time corresponding to one half cycle of the high frequency oscillation.

Extensive investigations are now being made; in many countries, to determine the range of rates of rise of restriking voltage, or RRRV, in existing and projected networks. At the same time, new methods are being developed for testing circuit breakers to determine rupturing capacities for a range of values of RRRV.
(2) Three-Phase Systems.

In three-phase power systems, locations which should be investigated are those involving large fault MVA, and those involving high RRRV. Both factors need not necessarily be present at the same time.

Large fault MVA will be expected at locations where the combined impedance to the sources of supply is low. A high RRRV is likely when a fault occurs at or near the terminals of a network element having a reactance which is an appreciable part of the total reactance to the source, and where little effective capacitance is normally present between the reactance and the circuit breaker. Possible faults near any alternator. transformer, shunt or series reactor should be carefully considered.

If the three-phase diagram for a fault condition is drawn, showing the three poles of the circuit breaker, and capacitances to neutral and to earth, different circuits will be obtained for the application of different types of fault. Alternatively, sequence diagrams may be drawn, and combined by symmetrical component methods. Since the three poles of the circuit breaker clear at different instants, different circuits must be corsidered for the clearance of each pole.

Of these possibilities, the type of interruption which is usually most simple to test or calculate, and which usually gives the highest RRRV across a single pole of a cireuit breaker, is the interruption of the first phase to clear a three phase unearthed fault, where the system beyond the fault is supposed completely disconnected. In this case all the inductive reactances concerned are the normal positive phase sequence series reactances per phase of the circuit, and the capacitances are the effective capacitances per phase between line and neutral (the positive phase sequence capacitances).

The three phase diagram for a simple case, and the reduction, are shown in Fig. 1. It is obvious that the frequency of each section of the final circuit is the same, and since the reactance X corresponds to unit voltage, the resultant transient will have an amplitude corresponding to 1.5 times unit voltage, and a frequency fixed by the single phase parameters; X and Y. It is thus permissible to consider the single phase diagram of any system, and multiply the amplitude of the resultant transient by 1.5. This factor is designated β.

Similar reductions may be carried out for other types of faults. Fig. 2 shows the reduction of a three phase earthed fault case. Here the frequency is the same as for Fig, 1 and 3 is equal to unity. Other cases have been investigated, and the results tabulated by Gosland (Ref. 1). It should be noted that if the system neutral is unearthed, it is necessary to take account of zero sequence reactances and susceptances. (Ref.2). The frequency for all faults at the same point in a particular system is approximately the same, and the maximum value of β is 1.5 , as found above. A three phase unearthed fault is generally taken as the criterion for RRRV.

The magnitude of the transient may also be influenced by generator characteristics. Factors for field decrement, and quadrature reactance, have been suggested by Park and Skeats (Ref. 3), and an overall factor $\gamma=\frac{X^{\prime \prime} a}{X^{\prime \prime} d}$ is suggested by Lundholm (Ref. 4). The influence of D.C. components is considered to be small. For a survey of any system, either by testing on passive rortions of the network, or by calculation, it is necessary to make assumptions on these points.

(3) Methods of Testing.

(3.1.) Passive Networks.

The transient response of any existing passive circuit may be tested by the application of a surge of known characteristics, the response being displayed on an oscilloscope. For the high frequencies involved. it is dosirable to inject surges at short intervals, so that a series of traces will appear on the oscilloscope. If a suitable time base is used, these traces will be coincident, and may be photographed.

Several suitable instruments have been developed. A description of the Restriking Voltage Indicator used by the British Electrical Research Association (E.R.A.) is given in Ref. 5. Others are similar in principle, but differ in detail.

The chief disadvantage of this method is that the section of system investigated must be made dead. This may be difficult to arrange. Another drawback is the time taken to change the section under test, as actual circuit connections
must be broken and made, and normal safety precautions in respect of earthing, and circuit checking, must be observed. The effect of pick-up from adjacent line sections may be appreciable at voltages of 132 KV and higher.

Results of investigations by the E.R.A. on 66 KV networks, using the Restriking Voltage Indicator, are given in Ref.6. These tests were made on one phase only, the results being multiplied by $\beta=1.5$ as explained in Section (2).

On higher voltage networks, this equipment is most useful in checking the capacitance and reactance of small sections of the network, by observation of the amplitude and frequency of the record. Checks can also be made with a variable frequency oscillator, and a bridge. This was done by E.R.A. at several power stations and substations connected to the British Electricity Authority 132 KV grid, the author assisting at the tests. Photograph 1 shows connections being made to the Restriking Voltage Indicator. Photograph 2 illustrates the operation of the variable frequency oscillator. Photographs 3 and 4 show two different types of 132 KV series reactors about to be tested.

When accurate values of capacitance and reactance have been obtained for the various sections of the network, cases involving larger sections of the same network my be investigated by calculation, or on a transient analyser, for various operating conditions.

(3.2) Live Networks.

In theoretical studies, it is usually assumed that the circuit is interrupted by an ideal switch. In live networks, the circuit breaker arc may modify the transient. Also, in the case of a record taken on an actual circuit breaker at low current in a passive network, care is required in extrapolation to fault conditions, as the effect of the arc may vary for large changes in current. For this reason, it is desirable to be able to measure RRRV on live networks under fault conditions, and methods of doing this are being developed.

Dannatt and Polson (Ref. 7) describe one method, but point out that their tests could not be carried out under conditions of severe fault MVA and RRRV without dislocation of the supply.

Kurth, in Ref.8, describes tests in Switzerland, using a reactive load absorbing 10% of the short circuit ourrent. This method may be used up to 20 KV , but for voltages higher than this, the reactors must be connected to the system through a transformer, and the equipment becomes somewhat complicated.

Fourmarier, in Ref.9, deseribes a modification of Kurth's method, using a device for compensating the power frequency voltage, and recording the voltage transient at the circuit breaker when small loads are switched off. This method has been used on the Belgian network up to 70 KV . (See also Refs. 10 and 11).

(3.3) Transient Analyser.

Where network conwtants are known with some accuracy, it is possible to set up the system in miniature on a transient analyser, applying faults and clearing them as required, and recording the transients. The system could be represented as
single phase, three phase, or sequence networks; depending on the size of the system, and the types of faults to be investigated. (K_{ef}. 12).

If a transient analyser is not available, good results can be obtained by using a Restriking Voltage Indicator in conjunction with an A.C. Network Analyser. This method is of particular advantage in checking the effect of changes in circuit parameters. It may be necessary to use amplifiers in the recording circuit if the analyser base voltage and current are small. The results may be inaccurate if the impedances of the units vary with frequency in a manner different to that observed in high voltage network elements, and it is advisable to use analyser units with substantially constant characteristics over a frequency range of 100 to 1 , and apply corrections to the result if required.

This method has been used at the E.R.A. Laboratories, London. The author tested the network analyser units, and assisted with the series of studies reported in Ref. 13. These studies were based on network constants measured at the actual locations investigated. (See Section 3.1).
(3.4) Analysis of Records.

When the form of the restriking transient appropriate to a given circuit breaker location and circuit condition has been obtained, by any of the above methods, in the form of a photograph or oscillogram, the rate of rise of restriking voltage can be determined readily by a straight-forward process of measurement.

For a circuit having a single or greatly predominant natural frequency, this measurement consists of determining the slope of the line from zero voltage at zero time to the first voltage peak. The coale of voltage and time is read from calibration curves, which should be recorded on the same sheet.

For circuits having two or more natural frequencies, the convention suggested by Cliff. (Ref.14), or that suggested in Part I, "Reduction of Circuits for Transients", Section (4). may be used.

If a single-phase circuit has been considered, the maximum RRRV is obtained by multiplying the value from the record by 1.5, as in Section (2).
(4) Calculation of RRRV.

(4.1) Existing Methods.

Several methods have been used for the calculation of RRRV for cases where the information has been available in the form of system parameters (reactances, capacitances, and resistancer)。

The classical approach is mathematical analysis by means of the Heaviside or Laplace Transform. This is still of use where a rigorous solution is required.

Boehne: (Ref. 15) showed the equivalence of several types of double frequency networks. Adams, and others (Ref. 16) described a very approximate method of reducing networks to single or double frequency circuits.

This method was applied to a large network (Ref. 17).

Mortlock (Ref. 2) has tabulated the procedure for the analysis of several cases of multi-frequency circuits.

Hammarlund (Ref.18), in the course of a survey of the Swedish system, showed, using Iaplace transforms, that many types of network sections encountered in the system could be represented by equivalent circuits. Most of these equivalent circuits, however, were still fairly complex. This approach was the first real attempt to rationalise the calculations for practical networks, and the method was usad by Ter Horst on the 110 KV Netherlands system (Ref. 19) and later by Johansen on the Swedish 220 KV system (K_{ef}. 20).

Satche and Grosse ($\mathrm{rlef}_{\mathrm{e}}$. 2l) showed how the form of the transient could be obtained graphically, using a method based on travelling wave theory.

In all tnese methods except the last, it is necessary to calculate the component ourves, add them, and plot the form of the restriking voltage transient. The methods of measurement described in Section (3.4) can then be applied. These processes are tedious, and make the survey of a large system a lengthy investigation.

The next Section describes the calculation of RRRV using the simplified methods of Part I, "Reduction of Circuits for Transients".
(4.2) Simplified Calculation of RRRV.

Following Hammarlund (R_{ef}. 18), the following assumptions are made :
(i) Power frequency voltages and currents are sinusoidal.
(ii) The power factor of the circuit is zero.
(iii) The circuit breaker is ideal.
(iv) Recovery voltages are based on system nominal voltage.
(v) Only the first phase to clear a three phase unearthed short circuit on an earthed system is considered. $\beta=1.5$.
(vi) The quadrature reactance factor, γ; is equal to unity.
(vii) Field decrement is neglected.
(viii) Armature direct current components are neglected.

When the circuit breaker clears, at current zero, the steady state recovery voltage is at its maximum value, and the restriking voltage transient is specified by an equation of the form :-
$V_{S}=\beta V\left(\cos \omega t-\frac{X_{1}}{X t \cdot t a 1} e^{-\alpha} 1 t \cos n_{1} t-\frac{X_{2}}{X_{t o t a 1}} e^{-\alpha} 2^{t} \cos n_{2} t+-\right)$
... (4.2.1.)

$$
\begin{aligned}
\text { where } V_{S} & =\text { Instantaneous value of restriking voltage. } \\
B & =\text { Factor depending on fault condition. } \\
V & =\text { Peak power frequency phase to neutral voltage. } \\
\omega & =2 \text { II times the power frequency. } \\
t & =\text { Time. }
\end{aligned}
$$

$X_{1,2}=$ Reactances associated with the corresponding components.

Xtotal $=$ Total positive sequence reactance per phase to the source.
$\alpha_{1,2}=$ Damping factors.
$n_{1,2}=2$ II times the frequencies associated with the
Assuming that the frequency of the transicnt is high compared to the power frequency, this equation may be rewritten as :-

$$
\begin{array}{r}
V_{S}=\beta V\left(\frac{X_{1}}{X \operatorname{total}}\left(1-e^{-\alpha_{1} t} \cos n_{1} t\right)+\frac{X_{2}}{X \operatorname{total}}\left(1-e^{-\alpha_{2} t} \cos n_{2} t\right)\right. \\
\vdots+--) . \\
\ldots \ldots(4 \cdot 2 \cdot 2) .
\end{array}
$$

When the circuit has been reduced, by the methods described in Part I, "Reduction of Circuits for Transionts", to a representative single frequency circuit, the equation becomes, for a power frequency of 50 cycles for second,

$$
V_{S}=V \cdot \frac{X B}{X t o t a l} \cdot\left(1-e^{-\alpha t} \cos \frac{2 I I \cdot 5000}{\sqrt{X Y}}\right) \ldots \quad \ldots(4 \cdot 2 \cdot 3) .
$$

where $X=$ Representative reactance seen from the circuit breaker in per cent.
$Y=$ Representative susceptance seen from the circuit breaker in per cent, on the same base.
$\alpha^{:}=$Standard damping factor, which will reduce the transient to 20% of its initial amplitude in 5 cycles.

Taking the RRRV as the slope of the line from the origin to the peat of the representative single frequency transient, as shown in Fig. 3, the RRRV in terms of the r.m.s. line-to-line voltage E_{L} may be obtained as follows :-

$$
\begin{aligned}
& \text { Amplitude of peak (undamped) }=\frac{E_{工} / 2}{\sqrt{3}} \cdot \frac{2 X \cdot B}{\text { Xtotal }} \text { KV } \quad . \quad . \\
& \text {.. .. (4.2.4). } \\
& \text { Time to peak }=\frac{\frac{1}{2.5000}}{\sqrt{X Y}} \text { sconds } \quad . \quad . \quad . \quad . \quad(4.2 .5) \text {. }
\end{aligned}
$$

$\dot{R R R V}=\frac{\text { Amplitude }}{\text { Time }}=\frac{E_{I} / 2}{\sqrt{3}}, \quad 2 \frac{X \cdot B}{X \operatorname{total}}, \frac{2.5000}{\sqrt{X Y}} \mathrm{KV} /$ second \ldots
$\operatorname{RRRV}=\frac{0.0163}{\sqrt{X Y}} \cdot \frac{X . B}{\text { Xtotal }} \cdot E_{\mathrm{I}} \mathrm{KV} /$ microsocond (undamped)...
where $\frac{X}{\text { Xtotal }}$ and $X Y$ are tho known representative values, and β may be taken as 1.5 for the worst case. Fig. 4 is a graph of $\frac{\frac{R R R V}{E_{\mathrm{L}}}}{}$ against XY for various values of $\frac{X \dot{B}}{X \text { Xtotal }} ;$ while Figs: 5, 6, 7 give RRRV for systen voltages of $13.2 \mathrm{KV}, 132 \mathrm{KV}$ and 330 KV respectively.

The RRRV to the damped curve is obtained by multiplying the value from tho appropriate graph by 0.92 .

If the slope of the line tangential to the curve of Fig. 3 is required, for the undamped or damped case, the above results are multiplied by l.135.

When the reduced circuit consists of two or more independent single frequency components, and the high frequency component is large, an approximate value of the RRRV may bo quickly obtained by reading the RRRV for each component from the graph, for the appropriate value of $\frac{X B}{X \text { Xotal }}$, and adding them.

Another value often referred to is the Amplitude Fastor, or ratio of the maximum voltage magnitude to the power frequency peak recovery voltage. For an undamped circuit, this is equal to $\frac{2 X}{X t o t a l}$, with a maximum of 2 , and for a damped circuit the maximum value may be taken as $\frac{1,84 X}{X t o t a l} \cdot$

An abridged description of this method, including the simplified methods of circuit reduction, is given in Kef. 22.

(4.3) Example of Simplified Calculation.

For the circuit considered in the example in Part I, Section (10), on a 132 KV network,

$$
X Y=0.405 .
$$

$\frac{\mathrm{XB}}{\mathrm{Xtotal}}=0.77 \times 1.5=1.16$, for a three phase unearthed fault.
Amplitude $=\frac{132 \cdot 2 \sqrt{2}}{\sqrt{3}} \cdot \frac{X \cdot \beta}{X \operatorname{Xtotal}}=249 \mathrm{KV}$.
Amplitude Factor $=\frac{1.84 \mathrm{X}}{\text { Xtotal }}=1.42$.
RRRV (undamped) from Fig. $6=3.89$.
RRRV (damped) $=0.92 \times 3.89=3.58 . \mathrm{KV} /$ microsecond.
Fault MVA $=\frac{100}{\text { Xtotal }} \times 100=1350 \mathrm{MVA}$.

For the alternative,
$\mathrm{XY}=0.645$.
$\frac{\mathrm{XB}}{\text { Xtotal }}=0.872 \times 1.5=1.31$
Amplitude $=282 \mathrm{kV}$.
Amplitude Factor $=1.60$.
RRRV (undamped) $=3.51$
RRRV (damped) $=3.23$
Fault MVA $=1350 \mathrm{MVA}$
(5) Accuracy of Simplified Calculation.

In order to. demonstrate the accuracy of the simplified method of calculation described in Section (4.2), several of the cases considered in Ref. 13; using a restriking voltage indicator and network analyser, were checked by calculation. The two sets of results are given in the following table, the calculated values, being in brackets.

Location	Case	RRRV	MVA	Amplitude Factor.
Hams Hall	2.1	3.5(3.7)	230	1.84 (1.84)
" "	$2 \cdot 2$	3.4(3.1)	230	1.84(1.13 first peak)
" "	2.3	$2.8(3.0)$	800	1.50(1.84)
" 1	2.4	$7.5(7.5)$	380	1.40(1.40)
"	2.5	4.1 (3.7)	1020	1.69(1.57)
"	2.6	3.8(3.7)	1180	$1.72(1.62)$
"	2.7	$1.2(1.2)$	1750	$1.82(1.64)$
Coventry	5.1	$3.9(3.1)$	230	1.87(1.84)
" 1	5.2	$6.8(6.2)$	350	1.64 (1.30 first peak)
" "	5.3	1.7(1.5).	740	$1.53(1.53)$

The difference between analyser and calculated values of RRRV is less than 10%, with the exception of case 5.1, in which the result may vary considerably, depending on which transformer, cables and geverators are connected. For amplitude factors the discrepancy is less than 10% for all cases.

Bearing in mind that average values of capacitance from Part I "Reduction of Circuits for Transients", Section 9, were used in the calculations, the order of agreement found is very good.
(6) Survey of System.

A comprehensive survey of RRRV has been carried out on a projected system. The network considered consists of 14 hrdro generating stations, the larger ones being connected through step-up transformers dircctly to a 330 kV transmission system, and the power from the smaller stations being collected at 132 KV , and thence transformed to 330 KV .

The bulk of the power is transmitted approximately 240 miles to three terminal stations, via two intermediate swjtching stations. Step-down auto-transformers, 330/132KV, are installed at each of these five stations. In all there are 14 major switching stations. with approximately 120 circuit breakers, and approximately 40132 RV clrouit broakers. There are no series reactors in the proposed system.

The envelope of the results for the 330 KV breakers is shown in Fig. 8. This envelope shows two distinct cases :-
(i) Fault on bus or line, with transformer circuit breaker opening, or fault on low voltage side . . of transformer, cleared by transformer circuit breaker, bus coupler, or line circuit breaker. This case gives RRRV up to $14.5 \mathrm{KV} /$ microsecond, Ior faults up to 2500 MVA.
(ii) Fault on line, with other high voltage lines connected, cleared by line circuit breaker or bus coupler. Owing to the high capacitance of the lines; the RRRV is less than 2 KV per microsecond, for faults up to 10,000 MVA.

Almost any circuit breaker in the system may be required, under some operating conditions, to clear either of these cases.

The envelope of the results for the 132 KV breakers is shown in Fig. 9. Here the distinction between the transformer and line cases is not as clear owing to the smaller capacitance of the 132 KV lines, and the large size of some of the transformers (200 MVA). Extreme values. are 7 KV per microsecond at 1800 MVA , and 2 KV per microsecom at 3000 MVA .

(7) Limits of RRRV.

In a large power station, it is common practice to have several generator-transformer units connected in parallel to a high voltage bus. For a fault on the busbar side of a transformer circuit breaker, the RRRV is high, but the fault MVA is limited by the size of the generator.

For a fault on the bus, an outgoing line, or the transformer side of a circuit breaker, it is possible, under some switching conditions, to have several generator- transformer units in parallel, each contributing fault MVA. In this case the RRRV will be approximately the same as for a single generator-transformer unit, the only difference being that due to the addition of the busbar capacitance, which is relatively small. The RRRV will, of course, be considerably reduced by the connection of other high voltage lines, but not appreciably affected by the connection of lines and cables at generating voltage.

Thus, in a large power station, a high RRRV may be associated with a fault MVA limited only by the size of the station, and other stations interconnected at generating voltage. The theoretical limit of the fault MVA is given by considering the low voltage terminals of the transformers to be connected to an infinite bus. One 100 MVA transformer, with a reactance on rating of 10%,
could then supply 1000 MVA to a three phase fault.
Two 50 MVA transformers, with a reactance on rating of 10%, could also supply 1000 MVA, but the RRRV would be somewhat less, A graph of RPRV against size of transformer, for any total fault MNA, is given in Fig, 10 for 132 KV transformers, including standard damping. Normal transformer reactance is taken as 10%, and the effect of the busbar capacitance is shown. The curves corresponding to reactances of 15% and 20% may be used to allow for a finite system beyond the transformers.

From this graph, a reasonable maximum of RRRV for locations near transformers is 9 KV per microsecond, which covers all two-winding transformers. A reduction to 7.5 KV per micro-second is reasonable for most cases, but this value may be associated with the full rupturing capacity of the circuit breaker.

A similar graph has been drawn for 330 KV transformers (Fig. ll), and indicates a maximum of 16 KV per microsecond as a reasonable value for most cases. Again, this value could be associated with the full rupturing capacity of the circuit breaker, but the probability is less:

Several writers have expressed the opinion that RRRV tends to diminish with increasing voltage owing to the increase in size of the system. These graphs show that.this is not necessarily correct, the limit of RRRV actually increasing with increasing voltage. However, assuming that the number of series breaks per phase on the circuit breaker increases roughly in proportion to the voltage, and that the voltage across the breaks is evenly distributed, the RRRV per break is reduced at higher voltages. This means that when the same interrupter heads are used for a range of circuit breakers for various voltages, and efficient voltage distribution devices are incorporated, RRRV tests in the lower voitage range may be sufficient. A reasonable value of RRRV is Line to line voltage in KV KV per micro 15.
second. This gives $9 \mathrm{KV} /$ microsecond at 132 KV .
Fig. 12 is a graph for 132 KV series reactors, and shows RRRV against MVA throughput, for reactances on rating of 10% and 20%, This graph indicates that 132 KV series reactors of reactance less than 20% on 100 NNA should not be used. Where these reactors are installed, circuit breakers should be fitted with special interrupter heads, capable of clearing half the rated rupturing capacity at an RRRV of 15 KV per micro-second. These special heads should also be used for locations where an auto-transformer is used for stepping up the voltage, from an extensive system, to 132 KV . It is assumed that series reactors will not be used on higher voltage systems.

An alternative to the use of special interrupter heads on circuit preakers when connected to series reactors or auto-transformers, is the connection of a few yards of high voltage cabie to each piece of equipment. This cable. is only required to provide additional shunt capacitance, and need not be in series with the equipment.

It should be noted that at present no large circuit breaker proving station can directly test a circuit breaker of reasonable rupturing capacity at RRRV greater than about 4 KV per microsecond (Ref. 14). Facilities for tests on circuit breakers at' much higher RRRV than this are now a necessity,

(8.1) Scatter of Test Results.

It is well known that, if a circuit breaker is operated, in a testing station, to interrupt a succession of faults, of increasing total NVA, the distinction between satisfactory and unsatisfactory operation is not clearly defined.

This has been 'clearly demonstrated at the E.R.A. Laboratories, London, and it has been shown that, after controlling current, voltage, RRRV, contact gap, contact material, a nd the point on the power frequency wave at which the operation takes place, there is still a considerable scatter of results. The tests were carried out on an air blast circuit breaker, and the scatter was assumed to be. partly due to the variable composition of the air, and partly due to variation in the amount of active nitrogen produced during the operation.

For an air blast breaker, the three parameters which may be most easily varied are the fault INTA, the RRRV, and the air pressure. Most commercial breakers are tested at constant RRRV and air pressure, and with a range of fault MVA, to demonstrate that the rated rupturing capacity of the breaker is less than the scatter band. Attempts have been made to obtain maximum RRRV, in a single frequency circuit, for constant fault NWA and air pressure (Refs. 18,23,24,25). The results also showed considerable scatter, and insufficient tests were made to give reliable values.
E.R.A. have conducted tests with constant fault MVA and RRRV, to define the scatter band in terms of air pressure. The results ($\mathrm{Ref}_{\mathrm{f}} .26$) give the range of critical pressures for various arrangements of contacts, etc., with controlled tripping. The curves of percentage breaking against air pressure, Fig. 13, indicate a normal distribution of results. It should be possible, therefore, in future tests, to establish such a curve by fixing three points in the scatter band, say A, B, and C in Fig. 13. A few proliminary shots would be required to give an indication of the extent of the scatter band, and then say: 10 shots at each of three points. These tests could be carried out as part of the manufacturers' development tests, and the relation between fault $1 / \mathrm{AA}$, RRRV for single frequency circuits, and air pressure, for various commercial circuit breakers, would become known more definitely.

During the E.R.A. tests reported above, commercial nitrogen was used for one set of tests, requiring a much higher pressure for the same rupturing capacity, but showing 8 mewhat less scatter (about 10% less). Later tests, on short arcs, indicate that with pure gases the scativer may be much less, and, in particular, that the band may be very narrow for pure hydrogen or "white-spot" nitrogen. If this is further substantiated, then commercial circuit breaker: contact assemblies could be tested economically with a closed gas cycle. It is doubtful if a relation between performance in pure hydrogen or nitrogen and performance in air could be
obtained without a considerable amount of work, but this would be a very good method for demonstrating the effect on the performance of any particular circuit breaker of variation in the shape of the RRRV transient. Cliff's method of representation of multiple frequency transients (Ref.14) could then be checked.

(8:2) Dielectric Recovery.

Tests are in progress at E.R.A. with a view to determining the dielectric recovery curve of contact assemblies for air blast circuit breakers.

Preliminary experiments indicated that at current zero a thin layer of hard deionized gas forms near the surface of one electrode. This layer appears to be about 1 mm in thickness for low current and atmospheric pressure. The remainder of the arc path is still ionized, and may be considered to act as a resistance.

After current zero, as the gap strength voltage is rising, breakdowns, of infinitesimal duration, occur at intervals of about 1 microsecond: These breakdowns are assumed to be due: to impurities in the hard gas layer, or thermal electrons; The path thus formed is normally not capable of carrying the follow current, and these breakdowns are selfhealing, unless the restriking voltage is approaching the gap strength voltage; when a restrike is initiated.

The testing equipment used at E.R.A. is based upon an ex-army x-ray unit, and a radar pulse generator. A pure hydrogen atmosphore is used for demonstration purposes. The generator injects puises varying in magnitude and time according to a pre-arranged pattern, and oscillograph traces indicate whether or not a restrike occurs for each type of pulse. Hundreds of records are taken in a very short time, and the results may be plotted as in Fig. 14. Restrikes are indicated by crosses, and other test points by circles. A line giving the gap strength voltage may be drawn readily.

The curve of gap strength voltage shows a very rapid increase in the first one or two microseconds, and then an increase at a slower rate. This total curve may be further investigated by measuring the gap strength voltage between various points in the ar.c path. If measurements are taken between the points A B C and D in Fig. 15 (a), the component and total voitages aro as shown in Fig. 15. (b) for no restrike, and as shown in Fig. 15 (c) for a restrikc. For the latter case, the total voltago is a continuous curve, but the component curves indicate clearly the formation and breakdown of the hard gas layer.

The initial rate of rise of gap strength, for a given contaet assembly, may bo increased by increasing tho pressure, and the velocity of gas, and it may be possible to extend these teats to include the normal operating fields of commercial air bläst circuit breakers. However, much more work will be required before curves of gap strength against time, with air as the gas, are obtainable.

A bias current may be introduced in the tests, to simulate the effect of "current chopping". "Early chopping" prolongs the zero pause, and "late chopping" gives faster rates of rise of gap strength.

(8.3) Post-arc Conductivity.

An investigation of three types of commonly used contact material has been made at E.R.A., to indicate the possibility of the occurrence of post-arc conductivity. Copper, at its boiling point, produces few thermal electrons. Tungsten, on the other hand, gives off sufficient thermal electrons at its boiling point to supply a current of several amps. Alconite, or tungsten in a copper base, is intermediate in its properties, but after being in service for some time acts like pure tungsten.

In most circuit-breakers, the electrodes are cooled sufficiently by thermal conductivity to ensure that during a single break (a few half-cycles) the electrode will not be heated to its boiling point. A circuit breaker adapted.for auto-reclașure, however, should be considered more carefully, as alconite contacts could conceivabiy reach their boiling point after two or three fast reclosures, and the breaker may be unable to clar the circuit after the final shot.

This question has also been considered in Ref. 27.

(8.4) Resistors.

Some manufacturers favour the use of linear or nonlinear resistances across the circuit breaker contacts, and claim that. this reduces the possibility of restrikes. Published information, however, particularly Refs. 18 and 28, indicates that the resistors must be tailor-made for particular locations, as a given value of resistance in a circuit will be most effective in damping a particular frequency.

As a circuit breaker in a particular location may operate on circuits of widely different characteristics, depending on the circuit connections, this posés the interesting problem of whether the manufacturer or the customer should decide what value of resistance would be most suitable for each location. A useful alternative would be for the manufacturer to make a range of interchangeable resistors. The chief objection to specifying the resistance to suit the location is that all circuit breakers on a system would not be interchangeable without modification, but this. is of small moment when the cost of the resistor is compared to the cost of the circuit breaker.
(9) Conclusions.

Simplified methods of circuit reduction enable an RRRV survey of an existing or projected system to be carried out expeditiously, with a minimum of calculation, and with an accuracy sufficient for most practical purposes. Critical cases can be checked by more complete theoretical or practical tests. It is thus possible to specify, for. a particular system, the RRRV-MVA characteristic which will be required of the circuit-breakers.

It is also possible to specify a theoretical RRRVMVA characteristic which would cover all systems, and which could be met by a circuit breaker able to operate against a rate of rise of
$\frac{\text { line to line voltage in } \mathrm{KV}}{15} \mathrm{KV} /$ microsecond,
and an undamped amplitude of 3 times the nominal phase to neutral peak voltage, provided that additional capacitance is connected to series reactors, and auto-transformers with.a reactance on rating of less than 10%. The use of series reactors is deprecated.

Research to determine circuit breaker dielectric recovery voltage characteristics is in hand, but much more work is required.
(10) Bibliography.
I. Restriking - voltage Characteristics under Various Fault Conditions at Typical Points on the Network of a Large City Supply Authority. L. Gosland. JIEE; 1940, 86, pp 248, and ERA report, No. G/T 104.
2. The Evaluation of Restriking Voltages. J.R.Mortlock...JIEE, 1945, 92 pt II, pp 562, and discussion JIPE, 1946, 93 Pt II, pp 393. (I. Gosland).
3. Circuit Breaker Recovery Voltages, Hagnitudes and Rates of Rise. R.H. Park and W.F. Skeats. Trans. AIEP, 1931, 50, pp 204.
4. Den atervandande spanningen vid brytning av kertslutningsstrommen i en generator. R: Lundholm. TT/Elektr. 1939, 69, pp 77.
5. Restriking Voltage and its Import in Circuit Breaker Operation. H. Trencham and K.J.R.Wilkins on. JIEE, 1937, 80, pp 460.
6. Restriking Voltage in British 66 KV Networks. I. Gosland and J.S. Vosper. CIGRE, 1950, Paper No. 110.
7. A method for Determining the Restriking Characteristics of Power Networks whilst in Service. C. Dannatt and R,A. Polson. . JIEE, 194I, 88, Pt II, pp 4I.
8. A Method for the Direct Measurement of the Recovery Voltage in Networks without Service Interruption. F. Kurth. CIGRE, 1950, Paper No. 136.
9. New Experimental Method for Determining Restriking VoltageResults obtained on the Belgian Systems. P. Fourmarier. CIGRE, 1950, Paper No. 117.
1.0. Inherent Frequencies of the Transmission Networkg of the Unions de Centrales Electriques du Hainaut. R. F.jlot. CIGRE, 1950, Paper No. 317.
11. The Amplitude and Inherent Frequencies of the tecovery Voltage in the Networks of the Unions de Centrales Electriques du Hainaut. R. Belot. CIGRE, 1952, Paper No.109.
12. An Electric Circuit Transient Analyser. H.A. Petersen. G.E. Review, 1939, 42, pp 394.
13. Network Analyser Study of Inherent Restriking Voltage .Transients on the British 132 KV Grid. L. Gosland J.S. Vosper. CIGRE, 1952, Paper iNo. 120.
14. Testing Station Restriking-Voltage Characteristics and Circuit Breaker Proving. J.S. Cliff. CIGRE, 1950,Paper No. 109.
15. The Determination of Circuit Recovery Rates. E. W. Boehne. Trans. AIEE, 1935, 54, pp. 530.
16. Practical Calculation of Circuit Transient Recovery Voltages. J.A. Adams, 甸.F.Skeats, R.C. Van Sickle, and T.G.A. Sillers. Trans. AIEE, 1942, 61, pp. 771.
17. Transient Recovery Voltage Characteristics of Electric Power Systems. H.P.S. Clair and J.A. Adams. Trans. AIEE, 1942, 61, pp 666.
18. Transient Recovery Voltage Subsequent to Short Circuit Interruption with Special Reference to Swedish Power Systems. P. Hammarlund. Proc. Royal Swedish Academy of Eng. Sc. Stockholm, 1946, No. 189. (with extensive bibliography):
19. The Natural Prequencies in a 50 KV Overhead Line System and in the 110 KV Transmission System of the Netherlands. J. Ter Horst. CIGRE, 1950, Paper No. 127.
20. An Investigation of the RRRV Values and Amplitude Factors in Swedish Power Networks, and a Proposal for RRRV Reference Values. O.S. Johansen. CIGRE, 1952,Paper No.l04.
21. The Calculation of Pccovery Voltages and Internal Voltage Surges by Means of Bergeron's Method. P. Satche and V. Grosse. CIGRE, 1950, Paper. No. 128.
22. Simplified Calculations for Rate of Rise of Restriking Voltage. J.A. Callow. ERA Report, No. G/T 261. (Issued to members only.)
23. Restriking Voltage as a Factor in the Performance, Rating and Selection of Circuit Breakers. J.A. Harle and R.W.Wild. JIEE, 1944, 91 Pt. II, pp 469.
24. The Extinction of Arcs in Air-blast Circuit, Breakers. A. Allen and D.F.Amer. JINE, 1947, 94 Pt.II, pp 333.
25. Factors Influencing Design of High Voltage Air-Blast Circuit Breakers. C.H. Flurscheim and E.I.l'Estrange Próc IEE, 1951, 98 Pt.II. pp 97.
26. Gas Blast Circuit Breakers. F.O. Mason, I.H. Orton, and A.M. Cassie. Engineering, Dec. 2nd, 1949, pp 630.
27. Contribution to the Study of Post Arc Current in High Voltage Circuit Breakers. S. Teszner, A. Guillame, P. Fourmarier, J. Blase and P. Walch. CIGRE, 1952, Paper No. 130.
28. The effect of Linear Resistors Inserted during the Interruption of Current on A.C. Circuits. J.R. Mortlock and K.M. Jones., CIGRE, 1952, Paper No. 101.

(b) Three Phase Diagram.

(c) Resulupd Diagram.

(d) Final Circuit.

Fig. 1: Three Phase Unearthed Fault. [See Section (2)].

(a) Three Phase Diagram.

(b) Final Circuit

Fig 2: Three Phase Earthed Fault [See Section (2)]

Fig 7: Graph of RRR.V. for 330 kV Systems. [See Section (4.2)]

Fig 8: RRRV Envelope for 330 kV Circuit Breakers [see Section(6)]

Fig 13: Variation of Operation with Air Pressure. [See Section (8.1)]

(a) Test Points.

(b) Component Voltages with No Restrike

(c) Component Voltages with Restrike

Fig 15: Components of Dielectric Recovery Curve [See Section (8.2)]

Photograph 1. Connecting Restriking Voltage Indicator.

Photograph 2. Operation of Variable Frequency Oscillator.

Photograph 3. 132 KV Series Reactor.

Photograph 4. 132 KV Series Reactor.

PART III INTERRUPTION OF SMALI CURRENTS:
Page iNo.
Summary. 1
List of Symbols. 2
(1) Introduction. 3
(2) Current "Chopping". 4
(3) Single Phase Circuits. 4
(3.1) Variation in Arc Voltage. 4
(3.2). Circuit with Inductive Load. 5
(3.3) Circuit with Kesistive or Capacitive. Ioad. 7
(4) Three Phase Circuits. 8
(4.1) Transients on Clearing Phases. 8
(4.2) The First (and Third) Phase to Clear. 9
(4.3) The Second Phase to Clear. 11
(4.4) Interaction of Transients. 11
(4.5). Effect of Neutral not Earthed. 13
(4.6) Test Results. 13
(5) Example. 13
(6) Conclusions. 15
(7) Bibliography. 16

Figures l-20.

Summary.
Existing theories on the cause of current "chopping" are examined, and found to be unsatisfactory.

It is shown that, in a three phase circuit, apparent "chopping", and corresponding overvoltages, may occur in the second and third phases as a result of transients induced by the restriking transient in the first phase when clearing at normal current zero.

Comprehensive graphs are given for use in obtaining the values of the induced transients when any phase clears, in a three phase circuit, and an example is worked.

a, b, c	$=$ Phases in three phase circuit.
$B_{1} B_{2}$	$=$ Amplitude coefficients.
C	- Capacitance in Farads.
C_{1}	$=$ Capacitance on load side of circuit breaker.
C_{2}	$=$ Capacitance on source side of circuit breaker.
$\mathrm{D}_{1} \mathrm{D}_{2}$	= Amplitude coefficients.
f	$=$ Natural frequency.
$\mathrm{F}_{1} \mathrm{~F}_{2}$	$=$ Frequency factors.
H	$=\text { Capacitance ratio }=1+\frac{C_{2}}{C_{1}}$
I	$=$ Instantaneous current in amps.
I_{0}	= "Chopped" current.
J	$=\text { Inductance ratio }=\frac{L_{2}}{\mathrm{~L}_{1}} \text {. }$
k	$=$ Constant coefficient.
K	$=$ Constant.
I	= Inductance in Henries.
L_{1}	$=$ Inductance on load side of circuit breaker.
L_{2}	$=$ Inductance on source side of circuit breaker.
M	$=$ Mutual inductance.
M_{1}	$=$ Mutual inductance on load side of circuit breaker.
M_{2}	= Mutual inductance on source side of circuit breaker.
n	$=2$ II times natural frequency $=\frac{1}{\sqrt{\text { IC }}}$.
P	= Laplacian operator.
t	$=$ Time .
v	$=$ Change in voltage.
V	$=$ Instantaneous voltage.
V_{0}	- Power frequency voltage corresponding to I_{0}.
V_{e}	$=$ Voltage across capacitance due to release of energy stored in inductance.
x	$=$ Arc length in cms.
α	$=$ Damping factor.
ϕ	= Phase angle.

In early high voltage networks, it was found that, at particular locations, an oil circuit breaker might take appreciably longer to interrupt a small current than to clear the much larger current corresponding to its rated rupturing capacity. Investigators pointed out that the efficiency of arc extinction depended chiefly on the amount of gases generated, and hence on the current to be interrupted. This theory was generally accepted, and attention was given to the development of arc control devices which would be substantially independent of the current.

Highly efficient arc control devices have been developed for oil circuit breakers; and air-blast circuit breakers, in which the quantity and movement of the quenching medium is independent of the current, are in use, but a problem still remains. Emphasis has shifted from the consideration of the difficulty of interrupting small inductive currents to the prevention of overvoltages when such currents are interrupted.

Transient overvoltages as high as five to six times normal phase to neutral voltage have been recorded during disconnection of shunt reactors and unloaded transforincrs. These overvoltages have caused restrikes across the circuit breaker contacts, and flashovers on the bushings of the equipment concerned.

Several articles (Refs. l to 6) have been written describing the efficacy of linear and non-linear resistors, parallel to the arc, in damping the overvoltages at particular locations in laboratory and ficld networks. In these articles, the cause of the overvoltages is usually mentioned briefly.

The theories supported fall readily into two groups. The first group considers that the quenching action of modern circuit-breakers, being designed to interrupt very large currents in extremely short times, is likely to be severe in its effect on small currents, and, if the characteristic of the arc control device is substantially independent of current, may extinguish them before their normal current zero. This pheromenon is called current "chopping", and it is shown in a simplified single phase circuit that if the current through the circuit' breaker is suddenly reduced to zero, the energy in the inductance could produce a high voltage across a small capacitance in accordance with the energy equation:-

$$
\frac{1}{2} I_{0}^{2} \mathrm{~L}=\frac{1}{2} \mathrm{~V}_{0}^{2} \mathrm{C} \quad . . \quad . \quad . . \quad . .(1.1)
$$

See References :- $\quad 3$ to 10.
The second group considers that it is unlikely that a current can be forced to zero, and suggests that when the arc current is low, the arc is relatively unstable, and large changes may cocur in the arc voltage drop. The resulting. sudden change in the voltage, applied to the circuit beyond the circuit breaker, would cause a current and voltage transient.

If, due to the transient current, the total current theough the circuit breaker showld reach zero at any instant, the breaker could clear normally. , This theory is then applied to the same single-phase circuit as before, and the same conclusion is reached.

See References :- 1, 2.

In this article, these theories are examined, and found to be incomplete. A new and, it is believed, correct theory for three-phase equipment is advanced. Comprehensive graphs are given, so that the probability of restrikes and flashovers at any circuit breaker location may be assessed. It is hoped that this will assist in the production oi a range of interchangeable resistances for circuit breakers, so that the optimum value of resistance may be used at each point in the network.

(2) Current "Chopping".

The current "chopping" theory may be dismissed briefly. This theory requires that the current should be reduced suddenly from some finite value to zero. The easiest type of breaker to consider is the air-blast circuit breaker, where the effect of the quenching medium is to move the arc gases bodily. For the current to be reduced suddenly to zero, the arc length must increase suddenly from a stable length for the current considered to the critical length for that current, and the arc voltage drop must increase to its corresponding value.

If "suddenly" is defined as one degree of a 50 cycle wave, or $\frac{1}{13,000}$ second, and the air is assumed to be moving a.t the velocity of sound in air, or approximately 13,200 inches per second, then the mid-point of the arc gases will have moved about $\frac{3}{4}$ inch. Photographic evidence shows that the arc continually changes its path, so that even if the gas or iginally in the path has moved, it does not follow that the arc length has been increased appreciably.

In an oil circuit breaker, the electrodes are moving, but this movement, and that of the gas generated, is slow in comparison to the above time of one degree of a 50 cycle wave. The natural frequency of any circuit involving a transformer or reactor will be of the order of thousands of cycles per second, so if a longer period than one degree of a 50 cycle wave is considered, it should be treated as a series of small voltage and current changes, each causing a transient. This leads to the theory of the second group.
(3) Single Phase Circuits.
(3.1) Variation in Arc Voltage.

The arc voltage drop in a circuit breaker may be
taken as

$$
\begin{aligned}
k_{1} * k_{2} x & +\frac{k_{3}+k_{4} x}{I} \\
\text { where } I & =\text { Current in amps } \\
& x=\text { Arc length in cms. }
\end{aligned}
$$

for each break. The constants k_{1} and k_{3}, representing the voltage drops at the contacts, are functions of the temperature of the portions of contact concerned, and since each end of the arc moves rapidly over its contact, variations in k_{1} and k_{3} may be expected. The length of the arc, x, also varies arbitrarily from instant to instant. Thus for a constant current, the arc voltage drop may vary appreciably. Since these variations may occur in a time of the order of a microsecond or less, it can be assumed that they take place instantaneously..

When an instantaneous change occurs in a circuit in which energy is stored in inductances and capacitances, the energy is redistributed between these components in such a way as to satisfy the new current and voltage relationships. The change will take place as a damped oscillation about the new conditions, with an indilal amplitude equaloto the difference between the steady-state values, and a frequency fixed by the circuit parameters. This frequency will normally be high, and the 50 cycle voltage and current can be considered to be fixed for the first few oscillations of the transient.

If the amplitude of the transient current os cillation is equal to or greater than the 50 cycle current at that instant, the resultant current will reach or pass through a current zero. Tests on contact assemblies at the Electrical Research Association Laboratories in London have shown that a high di-electric strength is established within one or two microseconds from current zero. See Part II, "Rate of Rise of Restṛ̛iking Voltage," Section (8.2). Even for the high frequencies considered here, the speed of establishment of di-electric strength may be sufficient to prevent a restrike from occurring immediately, and the breaker will have cleared.

It is apparent that this phenomenon may occur in any circuit, the load being inductive, resistive, or capacitive, but its behaviour will be different in each type of circuit.

(3.2) Circuit with Inductive Load.

Assume that the network on the load side of the circuit-breaker has been reduced, by the methods of Part I, "Reduction of Circuits for Transients," to a single inductance I_{1} and a single capacitance C_{1}, and that the source has been reduced to a single inductance L_{2} and a single capacitance C_{2}. Fig. I shows this circuit, with the circuit breaker arc resistance denoted by R.

A sudden increase in the value of R is equivalent to a sudden decrease in the voltage across C_{1}, the circuit conditions otherwise remaining unchanged, and a transient, caused by the partial discharge of C_{1} from voltage V_{1} to V_{I}^{\prime} will be superimposed on the steady state conditions. This transient may be studied by considering C_{1} to discharge, at tifie $t=0$, from an initial voltage $\left(V_{1}-V_{1}\right)$, or v, the remainder of the circuit being dead.

The derivation of the Laplacian expression for the current through the circuit breaker is outlined in Fig. 1. The form of this equation indicates a solution consisting of two terms. The first term would be expected to be of exponential type, as would occur if two condensers, one of which was biarged, were connected together through a resistance, and represerts the discharging of one and the charging of the other. The effect of the residual resistances of the capacitances may be neglected. The second term would be expected to be of an oscillatory nature, representing the oscillation at natural frequency of the combined circuit of I_{1} and I_{2} in parallei, and $\left(C_{1}+C_{2}\right)$.

For most power system problems, these two terms may be separated legitimately, as the condenser discharge and charge will be virtually completed before the oscillation has progressed more than a small fraction of a cycle.

An attempt was made to solve the final Laplacian equation of Fig. l generally, but this required the general solution of an equation of the sixth order, and was discontinued. Several typical cases were investigated by the substitution of the appropriate values and the use of normal methods of factorization, and yielded two types of solution.

$$
\begin{array}{r}
I=\frac{r}{\hbar}\left(k_{1} e^{-\alpha_{1} t}+k_{2} e^{-\alpha_{2} t}+k_{3} e^{-\alpha_{3} t} \cos (n t-\phi)\right) \tag{i}\\
\ldots \cdots \cdots \cdots(3 \cdot 2,1 \cdot)
\end{array}
$$

which is of the type expected, the values of n being within about 1\% of

$$
\left(\frac{C_{1}}{\left(C_{1}+C_{2}\right.}-\frac{L_{2}}{I_{1}+L_{2}}\right), \dot{\vdots}
$$

$$
\begin{array}{r}
I=\frac{V}{R}\left(k_{1} e^{-\alpha_{1} t}+k_{2} e^{-\alpha_{2} t}+k_{4} e^{-\alpha_{4} t}+k_{5} e^{-\alpha_{5} t}\right) \tag{ii}\\
\ldots \ldots \quad \ldots(3.2 .2 .)
\end{array}
$$

which contains only aperiodic members, and indicates that the value of R used has caused the oscillation to be over-damped.

Fig. 2 shows a typical curve of the transient current through the circuit breaker, in terms of $\frac{v}{R}$, where v is the change in arc voltage, and R is the arc resistance. The case considered here has $C_{1}=C_{2}=10^{-8}$ Farads, $I_{1}=10 . I_{\text {L }}^{2}=0.1$ Henry,$R=500$ ohms, a nd corresponds to that of a large source feeding a bank of single phase shunt reactors through single phase transformers, the circuit breaker being located between the transformers and the reactors.

The voltage equalization effect is clearly seen, as a peak of magnitude $\frac{v}{R}$, and of very short duration. The oscillation has a period of 84 microseconds, approximately equal to

$$
2 \text { II } \sqrt{\left(\frac{0.1 \times 0.01}{0.1+0.01}\right)\left(2 \times 10^{-8}\right)}=84.2 \text { microseconds, }
$$

and a magnitude of $0.88 \frac{\mathrm{~V}}{\mathrm{R}}$, approximately equal to

$$
2\left(\frac{10^{8}}{10^{8}+10^{8}}-\frac{0.01}{0.1+0.01}\right) \frac{\mathrm{V}}{\mathrm{R}}=0.82 \frac{\mathrm{v}}{\mathrm{R}}
$$

It would sem that, for C_{1} greater than \dot{C}_{2}, and I_{1} greater than L_{2}, the magnitude of the oscillation may exceed $\frac{v}{R}$. This, however, depends to a large extent upon the value of R, and in the example considered above, the effect of increasing
C_{1} from 10^{-8} to 10^{-6} Farads is to change the result to an overdamped curve, as shown by the dotted line.

From these results, the maximum transient current through the circuit breaker is taken as between $\frac{v}{R}$ and $2 \frac{V}{R}$, and clearing will not take place unless the 50 cycle current through the breakor is less than this value.

Assuming that the maximum change in arc voltage is $\mathrm{K} \%$ of the total arc voltage, then since total arc voltage is proportional to arc resistance, $\frac{V}{R}$ is equal to $K \%$ गf of the instantaneous value of the 50 cycle current through the circuit breaker, and the transient current cannot equal the 50 cycle current unless $\mathrm{K} \%$ is greater than 50%. This is unlikely to occur except close to current zero, when the arc is relatively unstable. Recent tests (Ref.ll) indicate that the region of this order of instability may be confined to a few microseconds before and after current zero.

Laboratory tests on this phenomenon have been carried out chiefly on equipment such as single phase air cored reactors; which have extremely small capacitance, and hence very high rates of rise of restriking voltage. Published os cillograms do not, in generail, show any clearly defined "chopping" of the current at times other than very close to current zero, but do show a rapid rise of voltage, and restrikes. While "chopping" of even a very small current through such equipment could produce high overvoltages, it is sometimes difficult to separate the "chopping" effect from the normal restriking voltage.

An equation for the circuit breaker arc, containing an oscillatory term, is given in Ref. 1. The oscillation is between the inductance of the circuit breaker connections, and the circuit capacitance, and it has been suggested that the amplitude will increase or decrease according to a quantity, which is stated to vary on account of irregular blast produced by the arc. The effect is shown for a current curve approaching zero.

Ref. 10 contains an oscillogram, of the interruption of an air-cored inductance, showing a current and voltage oscillation, commencing about 30° after current zero, and increasing in amplitude until current zero is reached. This certainly seems to be a forced oscillation, and as both these cases are for an air-blast breaker, it is suggested that it may be caused by pressure waves in the air passages. Ref. 5 has an oscillogram showing an os cillation at considerably higher frequency than the restriking voltage, when a multiple break air-blast circuit breaker interrupts a small inductive current.

Other factors which may produce transientes are harmonics due to non-sinusoidal wave form of the generator (eliminated in ref . 1.) or saturation of iron cores. In Ref. 1, it is shown that hysteresis losses in iron cores have a damping effect.

(3.3) Circuit with Resistive or Capacitive Ioad .

In circuits with a mainly resistive or capacitive load, large transient currents may occur. However, since little inductance is present, there will be insufficient istored electromagnetic energy available to cause overvoltages, even if the total current becomes zero before normal current zero.

In a resistive circuit, the voltage is substantially in phase with the current, and recovery voltage is low.

In a capacitive circuit, the voltage is out of phase with the current and high recovery voltages may be expected, at low frequency. If no restrike takes place, the capacitance may remain charged for an appreciable time, and this problem may be treated by the methods developed for the investigation of the problem of switching long lines. (See Part ${ }^{\text {S }}$ "Disconnection of Long Lines").
(4) Three Phase Circuits.
(4.1) Transients on Clearing Phases.

In a three phase circuit, where the three phases are magnetically coupled in the equipment constituting the load, a transient in one phase will induce a transient in each of the other two phases. Under these conditions, it is not ne cessary to rely on random effects in the circuit breaker arcs to initiate transients, as transients will occur as each phase is cleared by the circuit breaker. Resistance loading will decrease the magnitude of the transient voltages, and this effect is not considered, except as it affects damping.

The circuit on each side of the circuit breaker may be reduced to an equivalent inductance and oapacitance in each phase, as for Section (3.2). This gives the general circuit of Fig. 3 (a), described by $L_{1} C_{1}$ on the load side, and $L_{2} C_{2}$ on the source side, with mutual coupling M_{1} between the three inductances L_{1}. Mutual coupling M_{2} may also exist between the three inductances L_{2}. Fig. 3 (b) shows the phase circuits for the first phase cleared, neglecting the mutual coupling, and Fig. 3 (c) shows the phase circuits for the second phase cleared. The neutral point is assumed to be earthed on each side of the circuit breaker.

When phase 1 clears, the capacitance C_{1} of phase 1 , which was charged to a potential V, equal to the peak phase to neutral voltage, commences to discharge, and a transient occurs.

The form of this transient may be studied by setting up and solving the Iaplacian equations for the circuits. The following three assumptions are made :
(i) The three single phase networks are identical.
(ii) Resistances may be neglected, and standard damping, such that the amplitude of an oscillation is reduced to 20% of its initial amplitude, may be applied to the solution.
(iii) Flux associated with each phase will divide into two squal parts, one part being associated with each of the other two phases. It follows from this that $M_{1}=\frac{I_{1}}{2}$, and $\dot{M}_{2}=\frac{L_{2}}{2}$. This assumption may not be strictly true, but it is only in rare cases that M_{1} and M_{2} are known accurately. For these cases, the complete circuit may be solved rigorously if desired.

Fig. 4 gives the circuit and the Laplacian expressions for currents for the first phase to clear, with M_{2} neglected. These expressions are in terms of

$$
H=I+\frac{C_{2}}{C_{1}}, \quad J=\frac{I_{2}}{I_{1}} \quad, \quad \text { and } \quad n_{1}=\frac{1}{\sqrt{I_{1} C_{1}}}
$$

Fig. 5 gives similar expressions for the first phase to clear, with M_{2} included. The expressions for the second phase to alear are given in Fig. 6. Values for the third phase to clear are obtained by substituting $H=1, J=\infty$, in the expressions for the first phase to clear.
(4.2) The First (and Third) Phase to Cle ar.

The expressions of Figs. 4 and 5'give solutions of the form :-
$\left.I_{1}=\frac{V}{\sqrt{L_{1}}} \frac{B_{1}}{C_{1}} \sqrt{\sqrt{F_{1}}} \sin \sqrt{F_{1}} n_{1} t+\frac{D_{1}}{\sqrt{F_{2}}} \sin \sqrt{F_{2}} n_{1} t\right)$ (4.2.1.)
$I_{2}=-\frac{V}{\sqrt{I_{1}} C_{1}} \cdot\left(\frac{B_{2}}{\left(2 / \bar{F}_{1}\right.} \sin \sqrt{F_{1}} n_{1} t+\frac{D_{2}}{2 / F_{2}} \sin \sqrt{F_{2}} n_{1} t\right), ~(4 \cdot 2 \cdot 2 \cdot)$.
The coefficients have been calculated in terms of H and J, and plotted as follows :-
Fig. 7, $/ \bar{F}_{1}$: Fig. 8, \sqrt{F}_{2} : Fig.9, $\frac{B_{1}}{\sqrt{F_{1}}}$: Fig.10, $\frac{D_{1}}{\sqrt{F_{2}}}$:

$$
\text { Fig.Il, } \frac{B_{2}}{2 / \bar{F}_{1}} ; \text { Fig.12, } \frac{D_{2}}{2 / \bar{F}_{2}}
$$

On each graph, values for Fig. 4 (M_{2} neglected) are shown as full lines, and values for Fig. 5 (\mathbb{M}_{2} included) are show n as dotted lines. The curve of $J=\infty$ is also included, to give the values for the third phase to clear.

The form of the transient currents I_{1} and I_{2} may be calculated and plotted, standard damping being applied to each component if desired. For the undampod case, the absolute maximum currents are given by the sums of the envelopes, or :$\left.I_{1}=\frac{V}{I_{1}} \frac{B_{1}}{C_{1}}+\frac{D_{1}}{\sqrt{I_{1}}}\right)$ (4.2.3.)
$\left.I_{2}=-\frac{V}{\sqrt{I_{1}}} \frac{B_{\dot{2}}}{2 / \bar{F}_{1}}+\frac{D_{2}}{2 / F_{2}}\right) \quad \because \quad \ldots \quad(4.2 .4$.

$$
\text { The function }\left(\frac{B_{1}}{\sqrt{F_{1}}}+\frac{D_{1}}{\sqrt{F_{2}}}\right) \text { is plotted in Fig.13, }
$$

and $\left(\frac{B_{2}}{2 / \bar{F}_{1}}+\frac{D_{2}}{2 / \widetilde{F}_{2}}\right)$ is plotted in Fig. 14. The actual maximum
will normally be less than the above values.
The transient voltages associated with these transient currents may be determined by modifying the Laplacian expressions, but it is simpler to work from the transient currents. Thus the voitage across the capacitance C_{1} in the cleared phase is given by

$$
v_{1}=\frac{j n L_{1} I_{1}}{1.5}
$$

where n is 2π times the frequency of I_{1}
$V_{1} \equiv \frac{V \cdot L_{1}}{1.5 I_{1} n_{1}}\left(\frac{B_{1}}{\sqrt{F_{1}}} \sqrt{F_{1}} \cdot n_{1} \cos /{ }_{F_{1}} n_{1} t+\frac{D_{1}}{\sqrt{F_{2}}} /{ }_{F} n_{1} \cos /{ }_{F} n_{1} t\right)$
$V_{1}=\frac{V}{1.5}\left(B_{1} \cos / \bar{F}_{1} n_{1} t+D_{1} \cos /{ }_{F} n_{1} t \quad . . \quad .\right.$. (4.2.5)
and for the undamped case the absolute maximum is given by

$$
\begin{aligned}
& v_{1}=\frac{V}{1.5}\left(B_{1}+D_{1}\right) \quad . . \quad . . \quad \text { (4.2.6) } \\
& v_{\text {Imax }}=\text { for all cases. }
\end{aligned}
$$

Similarly,
$V_{2}=-\frac{V}{1.5}\left(\frac{B_{2}}{2} \cos \sqrt{F_{1}} n_{1} t+\frac{D_{2}}{2} \cos \sqrt{F_{2}} n_{1} t\right) \ldots \ldots(4.2 .7)$ the maximum value being given by

$$
v_{2 \max }=-\frac{v}{1.5}\left(\frac{B_{2}+D_{2}}{2}\right) . \quad . \quad . \quad . \quad . \quad . . \quad(4.2 .8)
$$

The expression $\frac{B_{2}+D_{2}}{2}$ is plotted in Fig. 15 .
Having determined V_{2} the current $\left(I_{2}-I_{3}\right)$ through the capacitance C_{1} may be readily calculated, and the current I_{3} through the circuit breaker obtained by subtraction.

(4.3) The Second Phase to Clear.

As a comprehensive treatment of the expressions for the second phase to clear (Fig. 6) would entail a great deal of computation, only selected cases were considered, and the following conclusions were drawn.
(i) I_{1} has a maximum value approximately equal to $I_{\text {I }}$ for first phase to clear.
(ii) I_{2} is in general a two frequency transient of the same form as I_{2} for first phase to clear. $\left(\frac{B_{2}}{2 \sqrt{F_{1}}}+\frac{D_{2}}{2 \sqrt{F}}\right)$ is plotted in Fig. 16, the curves being
approximate.
(iii) I_{5} has values intermediate between I_{1} and I_{2} fron (i) and (ii).

> (iv) $V_{I}=V$ as for first phase to clear.
> (v) V_{2} is obtained from $I_{2}($ see (ii)), and Fig. 17
> shows approximate curves for $V_{2 \max }=\frac{B_{2}+D_{2}}{2}$
(vi) V_{5} has values intermediate between V_{1} and V_{2} from (iv) and (v).

(4.4) Intcraction of Transients.

For the neutral solidly earthed, the three phases may be considered as reasonably separated. Thus the clearance of one phase will not affect the power frequency current and voltage relationships of the other phases. These relationships are shown in Fig. 18 for reference, the phases being denoted a, b, c.

If the first phase, a, clears at a normal power frequency current zero, the ensuing current and voltage transients in all three phases may be obtained as described above. In general, the normal restriking voltage transient associated with the clearing of this phase will not produce restrikes or flashovers. If a restrike occurs, the system reverts to its state immediately before the clearance.

When phase a clears, the current transient through the circuit breaker in phases b and c, added to the power frequency current, may give a total current approaching zero. This is more likely to occur in the case of phase b, as the current is decreasing, and if the trinsient were not damped out, the total current would reach zero at some time before the normal current zero. Any particular case may be investigated readily, using standard damping if the damping factor of the circuit is not known.

For the case in which the transient is rapidly damped out, and phase b clears at normal current zero, the new set of
transients may cause the total current in phase c to approach zero, but an early current zero would not be expected if this did not oc cur in phase b. Also, if no serious overvoltages occurred on clearing phase b, none would be expected on clearing phase c.

If, shortly after phase a clears, the total current in phase b reaches zero, and the circuit breaker clears on that phase, the voltage in the phase b circuit on the load side of the circuit breaker will consist of three components:-
(i) The voltage associated with the transient induced by the clearance of phase a. The current associated with this transient is presumably nuar its maximum value, and the corresponding voltage will therefore be small, and may be neglected.
(ii) A transient equal to that caused by a normal clearance of the second phase, the form of which is described in Section (4.3).
(iii) A transient given by the release of the electromagnetic energy stored in the inductance. This energy is equal to $\frac{1}{2} I_{1} I_{0}$ where I_{0} is the nominal power frequency current at the moment of clearance, and would produce a voltage across C_{1} (in the absence of the other phases) of

$$
V_{e}=I_{o} / \frac{\overline{L_{1}}}{\mathrm{C}_{1}} \quad \ldots \quad \ldots \quad \ldots \quad \ldots(4.4 .1)
$$

or

$$
V_{e}=\frac{V_{0} f}{50} \text { for } 50 \text { cycles power } \begin{gathered}
\text { frequency }
\end{gathered} \quad(4.4 .2)
$$

where f is the natural frequency of the isolated section,

$$
=\frac{1}{2 \Pi I \sqrt{I_{1} C_{1}}}
$$

$$
\begin{aligned}
& V_{0} \text { is an equivalent voltage } \\
& =2 I I \cdot 50 \cdot I_{1} I_{0}
\end{aligned}
$$

Due to the presence of the other phases, V_{e} must be multiplied by 0.817 .

The actual value of this component, and the transients induced in the other two phases, may be obtained as in Section (4.3) for a voltage V_{e} across capacitance C_{I}, this transient giving maximum voltage across C_{1} at a time $\frac{1}{4}$ cycle (at its own frequency) later than the transien described in (ii) above.

These transients may cause restrikes on either of the cleared phases, clearance on phase c, or flashovers on any phase. Any of these phenomena would start a fresh set of transients.

If phase b clears, even thuugh before normal current zero, there may be two sets of transients operating in phase c and an even earlier current zero could be expected on that phase, with consequent higher voltages.

If the Icad neutral point is not solidly earthed, it is necessary to modify the above analysid.

The circuit for the first phase to clear would become as shown in Fig. 19, and for this condition the magnitude of the restriking voltage will be of the order of 1.5 times that of the earthed neutral case, This is an onerous condition for the circuit breaker, and restrikes may occur.

Assuming that no restrike occurs, transients will continue in the other two phases, and may cause an early current zero. The power frequency currents in the two connected phases will now be equal and opposite, since there is no earth return, and if an early current zero occurs on one phase, it is likely that the current in the other phase will reach zero also, at about the same time. Thus two transients caused by electromagnetic energy stored in the inductances may occur simultaneously, giving the possibility of high overvoltages.

Much will depend on the capacitance between the load neutral point and earth (C_{0} in Fig. 19a), and as this increases the condition will more nearly approach the solidly earthed case.
(4.6) Test Results.

Bresson (Ref. 7), has given the results of field tests on the switching of a three phase transformer. Although the results are presented as supporting the current "chopping" theory, they may equally well be interpreted as supporting the theory outlined above. The graphs show that overvoltages increase in severity for the second and third phases to clear, for the solidly earthed case, and that difficulty is experienced in clearing the first phase for the unearthed case, the three phases sometimes clearing almost simultaneously. No very high overvoltages were recorded.

A number of three phase cases were reported in Ref.'9. On page l23, oscillograms are given for the disconnection of a three phase transformer supplying a shunt reactor bank. Nothing untoward happens until phase a clears. The induced transient in the other two phases may be clearly seen, and phase b reaches an early current zero. The resulting transient induces transients in phases a and c, which, again, may be clearly seen. A flashover apparently occurs on phase c.

Tests on minimum oil circuit breakers were made in Ref. l, and the results compared with those of air-blast circuit breakers. The overvoltages, and values of current "chopped", were of the same order (maximum value about 20 amps), and it was concluded that gas pressures were about equal, the pressure in the minimum oil circuit breaker being somewhat less stable than in the air-blast breaker.

(5) Example:

An unloaded 100 ivN star-star step down auto-transformer is connected to the main busbar of a 330 kV terminal station through a circuit breaker, as shown in Fig. 20 (a). Several transmission lines are connected to the bus, giving a total of 6000 MVA for a three phase fault on the busbar. The effective capacitance associated with the busbar is that of 50 miles of 330 kV lire.

From Section (6) of Part I "Reduction of Circuits for Transients," Rule (ii), the busbar and source network may be represented directly by a single frequency circuit, ard the reduced circuit for one phase becomes as shown in Fig. 20(b), the mutual coupling to the other phases being indicated.

Taking average values from Figs. 22 and 23 of Part I;, on a base of 100 NVA,
$I_{1}=\frac{10}{100} \times 3.47=0.347$ Henries.
$I_{2}=\frac{100}{6000} \times 3.47=0.0578$ Henries.
$c_{1}=2.4 \times 10^{-9} \times 0.9 \times 0.65=1.40 \times 10^{-9}$ Farads.
$C_{2}=50 \times \frac{0.59}{100} \times 2.92 \times 10^{-6}=0.86 .3 \times 10^{-6}$ Farads.
Referring to Section (4.1).
$H=1+\frac{\mathrm{C}_{2}}{\mathrm{CI}}=618 . \quad \mathrm{J}=\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}=0.167$
$n_{1}=\frac{1}{/ \bar{I}_{1} C_{1}}=14,300 / \frac{\bar{I}_{1}}{\bar{C}_{1}}=15,800$
From Equation (4.2.2.), and Figs. 7, 8, 11, 12

$$
\begin{aligned}
I_{2} & =\frac{330,000-\sqrt{2}}{\sqrt{3} \cdot 15,800}(-0.407 \sin 1.225 \times 45,300 t) \\
& =6.95 \mathrm{amps} \text { peak, at a frequency of } 8800 \text { cycles/sec. }
\end{aligned}
$$

Transient current through circuit breaker -

$$
=\frac{617}{618}: 6.95=6.95 \mathrm{amps} .
$$

Normal open circuit magnetising current is

$$
\frac{0.03 \times 100,000 / 2}{330 / \frac{2}{3}}=7.42 \mathrm{amps} \text { peak. }
$$

Referring to Fig 18 (a), when the first phase clears, the current in each of the other phases is $0.866 \times 7.42=6.42 \mathrm{amps}$.

Since the peak transient current through the circuit breaker in the two connected phases is greater than the instantaneous value of the 50 cycle current, both these phases could also clear. The electromagnetic energy due to the 50 cycle current in I_{1} of each phase will give a voltage across C_{1} of that phase of

$$
\begin{aligned}
& V_{e}=0.817 I_{0} \sqrt{\frac{I_{1}}{C_{1}}} \\
& V_{e}=0.817 \times 6.42 \times 15.800=82.7 \mathrm{kV} .
\end{aligned}
$$

There will now be five transients operating, one in each phase due to clearance, of peak amplitude 260 kV , and one in each of the last two phases to clear, of 82.7 kV .

Referring to Fig. 15, for the new condition of $J=0, H=1, V_{2 \text { max }}=0.84$, and the first'phase to clear will now have transient voltages of $269 \mathrm{kV}, 226 \mathrm{kV}, 226 \mathrm{kV}, 69.5 \mathrm{kV}$, 69.5 kV , not necessarily in phase. It is apparent that restrikes or flashovers may be expected.
(6) Conclusions.

It is concluded that current "chopping; solely due to the action of the circuit breaker arc extinction device, or to the instability of the arc, is not proved.

In single phase cases, other contributory factors may be harmonics, due to non-sinusoidal wave shape of the generator. or to saturation of iron cores, and pressure waves in air passages.

For three phase cases, the process of apparent "chopping" of the current in the second and third phases by a transient induced by the clearing of the first phase at normal current zero, may be clearly followed, and this is considered to be the most important effect.

If "chopping" in single phase circuits is really a fact; then the phenomenon may also occur in the first phase to clear of a three phase circuit, followed by early current zeros in the other two phases due to induced-transients.

When early current zeros occur, the values of resulting overvoltages may be readily calculated.

The transients are usually damped by resistance in the arc and in the circuit, and by hysteresis losses in iron cores.

The use of linear or non-linear resistors on circuitbreakers limits the overvoltages, but care is required in selecting the value of resistor for any particular location.
(7i) Bibliography.

1. Overvoltages due to the Interruption of Small Inductive Currents. P. Baltensperger. CIGRE, 1950, Paper No. 116.
2. The Fundamental Problems of High Voltage Circuit Breakers. Brown Boveri Review, April-May 1950, pp 108.
3. The Influence of Resistance Switching on the Design of High-Voltage Air-Blast Circuit-Breakers. H.L. Cox and T.W. Wilcox, JIEE, 1944, 91 Pt.II, pp 483.
4. Resistance Shunts for High Voltage Circuit Breakers. C.H.flurecheim, K.J. Saulez and R.W. Sillars. CIGRE, 1950, Paper No. 103.
5. Circuit Breakers for Very High Voltage Tie Lines. M. Perolini. CIGRE, 1950, Paper No. 130.
6. Some Technical Considerations Relating to the Design, Performance, and Application of High-Voltage $\mathrm{S}_{\mathrm{witch}}$. C.H.W. Lackey. Trans. SAIEE, 2951, 42, pp 261.
7. Particular stresses on Circuit Breakers in Networks. C. Bresson. CIGRE, 1950, Paper No. 104.
8. Transient Voltage Rise in Transformers due to Interruption of Exciting Current. A. Srinivasan. CIGRE, 1950, Paper. No. 330.
9. The Field Testing of 220 kV Air-Blast Circuit Breakers. L.R. Bergstrom and U. Sandstrom. Electrical Engineering,Feb.

،.4. 1951, pp 118.
10. Surges due to Switching and to High Voltage Fuses and their Relation to Insulation Co-ordination. J. Saint-Germain and M. Perolini. CIGRE, 1952, Paper No. 131.
11. Gas Blast Circuit Breakers. F.O. Wason. The Engineer, May 23rd 1952, pp 686.
see also Brown Boveri Review Dec. 1951.

Ci^{+}charged to V , commences discharging at time $\mathrm{t}=0$ In Laplace notation

$$
\begin{aligned}
& \left.\mathrm{I}_{1} P I_{2}-\frac{\partial}{C_{1}{ }^{P}}\left(\bar{I}_{1}-\bar{I}_{2}\right) \quad=-\frac{V}{P}\right) \\
& \frac{1}{C_{1} P}\left(\bar{I}_{1}-\bar{I}_{2}\right)+R \bar{I}_{1}-\frac{1}{C_{2} P}\left(\bar{I}_{3}-\bar{I}_{1}\right)=\frac{v}{P} \\
& \frac{1}{\mathrm{C}_{2}}\left(\bar{I}_{3}-\bar{I}_{1}\right)+\mathrm{I}_{2} P \bar{I}_{3} \\
& =\quad 0 \\
& \begin{array}{l}
\bar{I}_{1}=\frac{\frac{\text { PP }}{R}\left(P^{2}+\frac{I}{I_{2} C_{2}}\right)}{P^{4}+\frac{C_{1}+C_{2}}{R C_{1} C_{2}} P^{3}+\frac{I_{1} C_{1}+I_{2} C_{2}}{I_{1} I_{2} C_{1} C_{2}} P^{2}+\frac{I_{1}+I_{2}}{\text { II }_{1} I_{2} C_{1} C_{2}} P}+ \\
\\
\\
\text { putting } \frac{1}{I_{1} C_{1}}=n_{1}{ }^{2} \text { and } \frac{1}{I_{2} C_{2}}=n_{2}{ }^{2} .
\end{array} \\
& \bar{I}_{1}=\frac{v}{R}\left(\frac{p\left(p^{2}+n_{2}^{2}\right)}{p^{4}+\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) p^{3}+\left(n_{1}^{2}+n_{2}{ }^{2}\right) p^{2}+\frac{1}{R}\left(\frac{\left.\left.n_{2}{ }^{2}+\frac{n_{1}}{C_{1}}\right)^{2}\right) P+n_{1}{ }^{2} n_{2}{ }^{2}}{}\right)}\right.
\end{aligned}
$$

Fig. 1. Transient Current through Circuit Breaker. (See Section (3.2)).

(a) Three Phase Circuit Diagram.

Phase 2.
(c) Second Phase Cleared (Mutuals nat shown).

Fig. 3: General Circuit Diagram. [See Section (4.1)].

$\mathrm{C}_{2}{ }^{+}$charged to V, commences discharging at $t=0$.

$$
\begin{aligned}
& u_{1}=\frac{I_{1}}{2}, \quad M_{2}=0 . \\
& \left.\begin{array}{ll}
\left(I_{1} P+\frac{1}{C_{1} P}\right) \bar{I}_{1}+2 H_{1} P \bar{I}_{2} & =\frac{Y}{P} \\
M_{1} P \bar{I}_{2}+M_{1} P \bar{I}_{2}+\left(I_{1} P+\frac{1}{C_{1} P}\right) \bar{I}_{2}-\frac{1}{C_{2} P} \bar{I}_{3} & =0 \\
-\frac{1}{C_{1} P} I_{2}+\left(\frac{1}{C_{1} P}+\frac{1}{C_{2} P} I_{3}-\frac{1}{C_{2}^{P}} \bar{I}_{4}\right. & =0 \\
-\frac{1}{C_{2}^{P}} \bar{I}_{3}+\left(I_{2} P+\frac{1}{C_{2} P}\right) I_{4} & =0
\end{array}\right\} \\
& \text { Let }\left(1+\frac{C_{2}}{C_{1}}\right)=H, \frac{I_{2}}{L_{1}}=J, \frac{I}{I_{1} C_{1}}=n_{1}{ }^{2} \\
& \left.I_{1}=\frac{\frac{V}{I_{1}}\left(\frac{3}{2}+J\right.}{H} n_{1}^{2}+\frac{3}{2} P^{2}\right) \quad P^{4}+\left(\frac{3}{2}+\frac{1+J}{H J}\right) n_{1}{ }^{2} P^{2}+\frac{\frac{3}{2}+J}{H J} n_{1}{ }^{4} \quad, \\
& \bar{I}_{2}=\frac{\frac{-Y}{2 I_{1}}\left(\frac{1}{L} n_{1}{ }^{2}+p^{2}\right)}{P^{4}+\left(\frac{3}{2}+\frac{1+J}{H J}\right) n_{1}{ }^{2} P^{2}+\frac{3}{2}+J n_{1}{ }^{4}} \\
& \frac{I_{3}}{I_{2}}=\frac{1+I_{2} C_{2} p^{2}}{i+\left(C_{1}+C_{2}\right) I_{2} P^{2}}
\end{aligned}
$$

$\frac{\text { Pig. } 4 \text { First Phase to Clear. }}{\text { See Section }(4)}$ not included.

$C_{1}{ }^{+}$charged to V, commences discharging at time $t=0$

$$
\begin{aligned}
& u_{1}=\frac{I_{1}}{2}, \quad M_{2}=\frac{I_{2}}{2} \\
& \left(I_{1} P+\frac{1}{C_{1} P}\right) I_{1}+2 M_{1} P I_{2} \\
& \left.\begin{array}{l}
=\frac{\nabla}{P} \\
=0 \\
=0 \\
=0
\end{array}\right\} \\
& \operatorname{Let}\left(1+\frac{C_{2}}{C_{1}}=H, \frac{I_{2}}{I_{1}}=J, \frac{1}{I_{1} C_{1}}=n_{1}^{2}\right. \\
& \bar{I}_{1}=\frac{\frac{\eta}{I_{1}}\left(\frac{1+J_{n_{1}}}{}{ }^{2}+\frac{3}{2} p^{2}\right)}{p^{4}+\left(\frac{3}{2}+\frac{2}{3}+J\right.} \frac{n_{1}}{}{ }^{2} p^{2}+\frac{1+J_{n_{2}}}{H J}{ }^{4}{ }^{2} \\
& \stackrel{I}{I}_{2}=\frac{-\frac{V}{2 I_{1}}\left(\frac{2}{3} n_{1}{ }^{2}+p^{2}\right)}{P^{4}+\left(\frac{3}{2}+\frac{2}{3}+J\right) n_{1}{ }^{2} p^{2}+\frac{1+J}{H J} n_{2}{ }^{4}} \\
& \frac{I_{3}}{I_{2}}=\frac{1+\frac{3}{2} I_{2} c_{2} p^{2}}{1+\frac{3}{2}\left(C_{1}+C_{2}\right) I_{2} p^{2}}
\end{aligned}
$$

Fig. 5. Frost Phase to Clear, \mathbf{M}_{2} included.

$\mathrm{C}_{1}{ }^{+}$charged to V , commences discharging at time $t=0$

$$
\begin{aligned}
& u_{1}=\frac{L_{1}}{2} \\
& \left.\begin{array}{ll}
\left(I_{1} P+\frac{1}{C_{1} P}\right) \bar{I}_{1}+H_{1} P \bar{I}_{2}+M_{1} P \bar{I}_{5} & =\frac{y}{P} \\
M_{1} P I_{1}+M_{1} P \bar{I}_{5}+\left(I_{1} P+\frac{1}{C_{1} P}\right) \bar{I}_{2}-\frac{1}{C_{1} P} \bar{I}_{3}=0 \\
-\frac{1}{C_{1} P I_{2}+\left(\frac{1}{C_{1} P}+\frac{1}{C_{2} P} I_{3}-\frac{1}{C_{2} P} I_{4}\right.} & =0 \\
-\frac{1}{C_{2} P} I_{3}+\left(I_{2} P+\frac{1}{C_{2} P} \bar{I}_{4}\right. & 0 \\
H_{1} P \bar{I}_{1}+H_{1} P I_{2}+\left(I_{1} P+\frac{1}{C_{1} P} I_{5}\right. & =0
\end{array}\right\} \\
& \text { Let }\left(1+\frac{C_{2}}{C_{2}}=1, \frac{I_{2}}{I_{1}}=J_{1} \frac{1}{I_{1} C_{1}}=n_{1}{ }^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \bar{I}_{2}=\frac{-V}{\Sigma_{1}}\left(P^{6}+\left(3+\frac{1}{H}\right) P^{4} n_{1}{ }^{2}+\left(2+\frac{3}{H J}\right) P^{2} n_{1}{ }^{4}+\frac{2}{H E} n_{1}{ }^{6}\right) \\
& \frac{\bar{I}_{3}}{\bar{I}_{2}}=\frac{\left(1-\frac{1}{\mathrm{H}}\right) \mathrm{P}^{2}+\frac{1}{\mathrm{Bj}} n_{1}{ }^{2}}{\mathrm{P}^{2}+\frac{1}{\mathrm{HJ} \mathrm{n}_{1}}{ }^{2}} \\
& \bar{I}_{5}=-\frac{V}{I_{1}} \cdot \frac{P^{2}}{P^{2}+n_{1}{ }^{2}} \cdot \frac{P^{6}+\left(2+\frac{1}{H J}+\frac{2}{H}\right) P^{4} n_{1}{ }^{2}+\left(1+\frac{2}{H J}+\frac{4}{H}\right) P^{2} n_{1}^{4}+\left(\frac{2}{\mathrm{H}}+\frac{1}{\mathrm{HJ}}\right) n_{1}{ }^{6}}{\text { Denominator as above. }}
\end{aligned}
$$

Fig. 6. Second Phase to Clear.

H Fig.7: Graph of $\sqrt{F_{1}}$. [See Section (4.2) $]$

\bullet

Fig 11: Graph of $\frac{32}{2 \sqrt{2} \text {. }}$. [See Section (4.2)]

Fig. 12: Graph of $\frac{D_{2}}{2 \sqrt{F_{2}}}$. [See Section (4.2)]

Fig. 16. Graph of $\frac{B_{2}}{2 \sqrt{F}}+\frac{D_{2}}{2 \sqrt{F_{2}}}$ (2nd. Phase). [See Section (4.3)]

(a) Three Phase Circuit

$\therefore \therefore$ (b) Circuit for First Phase to Clear

Fig. 19: Circuit for Restriking Voltage Load Neutral not Earthed.
[See Section (4:5)]

(a) Unloaded Transformer in Network.

(b) Reduced Diagram

Fig. 20: Switching of Unloaded Transformer [See Section (s)]

Page No.

PAET IV DSCONMEGTON OR LOMG LITSS.
Summary. 1.
List of Symbols. 2.
(1) The Classical Theory. 3.
(2) The Ferranti Effoct. 4.
(3) Voltage Variation of the Source. 6.
(4) The Restrike. 6.
(5) Subsoquent Reflections. 8.
(6) Maximum Voltage. 9.
(7) The Bffect of Corona. 9.
(8) Exsinplos on a 240 Mile Line. 11.
(8.1) Example (1) $n^{2} \ll 0$ 11.
(8.2) Example (2) $n^{2}<0$ 14.
(8.3) Pxamplo (3) $n^{2}=0$ 15.
(3.4) Ixample (4) $n^{2}>0$ 15.
(9) Conclusions. 16.
(10) Bibliography. 17.

Ficures 1 - 22.

Summary.
It is evident that the classical theory of restrikes on oponing trensmission lines must bo modified if the olectrical length of the line corresponds to an aporeciable portion of the power frequency weve. For this condition, tho voltogo surge must bo treated as a travelling wave.

Mothods arc cevoloped for analysing the effects of several factors, and it is suggested the for nost lone lines at very high voltage, corona will limit the roximum voltoges; ovon after ropoated rostrikos, to a roasonablo volue.

This is portly due to tho fact that very high voltege lines operate nearer to the corone critical voltage than lower voltago lines.

The effoct of viryine the amount of capacitance connected near the circuit broaker is considered in worked examples, and it is shown that additionsl capecitance will ceuse the maximum volteges to be improssed on a larger proportion of the line lenth.

List of Symbols.

A	$=$	Source end of line.
a	$=$	Radius of conductor in meters.
a^{\prime}	$=$	Radius of one of twin conductors in meters.
B	$=$	Renote end of line.
C	-	Capacitance in Farads.
C_{P}	F	Line capacitance in Farads per mile.
C_{1}	=	Line capacitance in Farads per meter.
E	$=$	Nominal peok line to neutral voltage.
h	$=$	Averege height of conductor above ground.in meters.
I	$=$	Current.
I,	$=$	Marnitude of current surge.
K	=	Constant obtained from $\mathrm{n}^{2}=-\mathrm{K}^{2}<0$.
k	=	Ionization constant for corona.
L	$=$	Inductance in Henries.
IM_{M}	E	Linc Inductance in Henries per mile.
N	=	Line leneth in miles.
n	$=$	Any intecer.
n	$=$	2π times natural froquency.
P	=	Laplacian operator.
R	$=$	Resistance.
S	=	Velocity of surce.
T	$=$	Tine for surge to travel fron one end of the line to the other.
t	=	Tine.
u	=	Damping factor.
V	=	Peak line to neutral voltace at the source end of the line.
V^{\prime}	$=$	Instanteieous voltege on line side of circuit breaker.
Vc	\pm	Criticel voltage for corona.
V_{6}	$=$	Peak voltace to noutral back of gencrator transient reactance.
$V^{4} g$	$=$	Instentanoous voltare on source side of circuit broaker.
Vr	E	Macnituce of reflected voltage surç.
Vs	=	Rostrikinc voltago $=\mathrm{V}^{\prime}+\mathrm{V}^{\prime} \mathrm{g}$.
Vw	*	Voriation in power frequency voltage in time T.
V_{1}	$=$	Magnitude of voltare surge.
V_{0}	\pm	Peak line to noutral voltage at open-circuitod end of line.
v	$=$	Per cont voltage rise along opon circuited line.
$\mathrm{v}_{0} 1$	$=$	Instantanoous per cent voltage risc on line side of circuit breaker 0.01 sec . after line is switched out.
v_{av}	$=$	Average per cont voltege rise on line after being switched out.
2	$=$	Surge inpodanco of lino.
Δ	$=$	Spacing of twin conductors in noters.

The Classical Theory. (Soo Ref. 1).
When, in any LRC circuit, a change in circuit conditions occurs, the voltage and current do not change immediately to the new steady state values, but describe damped oscillations about these new volues, with an initiol amplitude equal to the difference in steady state values, and a frequency determined by the circuit parametors.

In the casc of a three-phase transmission line, opencircuited at the far end, the switching off process nay be regarded as the interruption of three independent single-phase circuits, since the mutual coupling between the phases is small. The process will be similar in the throe phases, although difforing in time, and it is only necessary to consider the clearing of ono phesed

The circuit breaker will interrupt each phase at a current zero, which will correspond to a voltage maximum, since the load is chiefly capacitive. Each capocitance element of the line will be charged to this voltage, and since the effective shunt resistance of the line is extrenely high, the line will remain approximately at this voltage.

Abstract

At a time one half cyclo of the fundamental frequency later; the voltage across the circuit breaker contacts will be equal to twice the system normal peak voltage. If the gap breaks dawn under this impressed voltage, and a restrike occurs, the line voltage will change to the new voltage, the change involving a transient of the type described above. Fig. 1 shows the voltage between the line and neutral for the initial interruption, and 2 restrikes at half-cycle intorvals.

In this case, it was assuned that the circuit parancters were such that a rclatively high frequency transient occurred, and the arc maintained a high temperature during the first few passages of the tronsinet current through zero. It was also assuned that the transient was heavily dariped. Under these conditions, the maximum voltege across the circuit breaker contacts at any time will be twice the syster normal pook voltege, and a point will be reached at which the contect separation is such that no further restrikes will take place.

If the natural frequency of the line is lower, the arc temperature will have time to decrease at each passage of the tronsiont current through zero, and the circuit will be cloared again before the transient oscillation has beon completely donped out.

Since zoro transient current corresponds to peak transient voltage, it follows that the new clearing will take place when the voltafe between the line and neutral is ejther more or less than the now stoady state voltoge. This is illustrated in Fig. 2, which shows tho effect of clearing at various transient current zeros.

The nost unfavourable case is that in which the current is interrupted at the first transient current zero, i.e, the first and hichest voltace peak, the line remaining at a voltage above neutral of three tines system normal peak voltage, or 3 E . One half cycle of the fundamental frequency later, the voltage across the circuit breaker contacts would be 4 E , and if a restrike occurred at this point, followed by clearing at the first transient current zero; the line would romain at a voltage of 5 E .

If this process could be continued indefinitely, the voltase between the line and neutral would build up according to the series $E+2 \mathrm{mE}$ (neglocting the sign) and could reach an infinito value. Fig. 3, indicates the way in which such a build up would take place.

The classical approach neglects several importent features of an actuol tronsmission line, which modify the result considerably, and these will be considorod.

The Forranti Effect.

The speed of trevol of a surge along a transmission line is given $\frac{1}{\sqrt{\mathrm{ICMM}^{6}}}$ where I_{M} is the inductance in Henries per mile and C_{Mi} is the capacitance in Farads per mile.

For overhead transrission lines, this is usually taken as oqual to the velocity of light, 186,000 miles per second, but an exanination of conductors and phase spacings in usc on high voltage lines indicatos that a more noarly correct velocity would be 130,000 miles por socond.

Thus, for a frequency of 50 cycles, etach olectrichlidegree on the 50 cyclo sine wave will corrospond to a dítance 0 , $\frac{180,000}{350 \pi 50}=10$ tillos. Any transmission line may be oxpressed in docrees $350 x 5$ by dividing its longth in miles (M), by 10, This is of use whon considering the voltage distribution on a lone line. (Ferranti offect).

When a long transmission line is opon-circuited at one ond, the approxinate voltage distribution along its longth may be most easily obtaince by considering a standing wave, of sinusoidal form, such that the opon-circuited end is at 490°, and tho ond still comected is at $+\left(90-\frac{M}{10}\right)$, the voltage at tho connected end being unity. This is shown
in Fi_{i}.

The voltage rise at the open-circuited end is given by

$$
v=v\left(\frac{1-\sin \left(90-\frac{M}{10}\right)^{\circ}}{\sin \left(90-\frac{M}{10}\right)^{\circ}}\right)=V\left(\frac{1-\cos \frac{M}{10}}{\cos \frac{M}{10}}\right)-(2.1 .)
$$

and the total voltage at the open-circuited end is given by

$$
V_{0}=V+V-V\left(I+\frac{1-\cos \frac{M 0}{10}}{\cos \frac{M 0}{10}}\right)=\frac{V}{\cos \frac{M 0}{10}}-\cdots-\cdots(2.2 .)
$$

If the end of the line which was connocted to the supply is now dism connected, a transiont will occur in the line, and will continue until the volitage is equal at evory point in the line, i.e., until the chares oxp the capacitance clonents alone the line have been redistributed. This effoct has been noted by Meycr (Rof.2).

The forn of the transient may be studied by considering that only the chures associcted with that part of the voltage above unity are involved. Referring to Fig. 4, this moans thet wo noed only consider a stending wave of the shape shown shadod. This stendine wave may be restated as two waves, each of half the anplitude of the stending wave, travelling in opposite directions, as shown in Fig. 5.

The wover will. re reflected at oach ond of the line, with refloction factors of +1 , and thus the increnental voltage at either and will vary with time as shown in Fi .6 , where T is the tine taken for a surge to travel from B to A. The raxinum value of the increnental voltage will be $2 \times \frac{v}{2}=v$. one complote cycle will tike a time of 2 T , or the apparent frequency will be
$\frac{180,000}{2 M}$ cycles per sccond.
When the now steady state hes been reacher, the increnental voltago all along the line will be equal to v_{av}, the average height of the voltage curve of Fig. 6.

The transient could also be described by assumine the line to consist of a number of π - sections or T - sections in series, with an incremental charge on each capacitence element corresponding to the voltage distribution of Fig. 4: . At time $t=0$, each capacitance will commence discharginc, and, by using Laplace transforms, the voltage transient at any point may be obtained. If the voltage increased uniformly from A to B, a difference equation could be set up in Laplace transforms, and solved for the boundary conditions at each end.

An approximate solution may be obtained by constdering the line to consist of 2π - sections or $2 T-$ sections These two representations give the same result, and it is therefore convenient to take ? T-sections, as in Fied 7. Tho capacitance shown near end B is cherged to a voltage of v, and at time $t=0$ commonces dischar ing. The resulting trensiont voltage at point A may be written down by inspection, as

Increnental voltage $(A)=\frac{v}{2}\left(1-\cos \frac{\sqrt{8}}{\sqrt{L C}} t\right) \cdots-\ldots$ (2.3.)
Comparine this result with tho travelline weve solution, it is found that the s ape of the transient curve, a cosine wave, is not correct, and the stoady state value, assuming damping, is $\frac{v}{2}$, instead of a higher, and more accurate value. The frequency of the oseillation is of the order of 5\% less then the trevelling wave solution.

Fesistance damping will modify both solutions, but the mathematical expression of its effect is obtained most easily in the case of $2 \mathrm{~T}-$ scetions. Fig, δ shows a more complete circuit, in which the line resistance R_{7} and the resistance of the earth return R_{2} have been arded, and the shunt resistance of the linc has been representod by the resistancos R_{3} and R_{4} in series with the capacitance clements. The form of the transicnt may be writion down by inspection, as approximately equal to :-

$$
\begin{aligned}
& \text { Incromental voltage }(A)=\frac{v}{2}\left(1-e^{-\frac{R}{L} t} \cos \sqrt{8} n t\right)-(2.4 \cdot) \\
& \text { where } R=R_{1}+R_{2}+R_{3}+R_{4} \\
& n=-\frac{1}{\sqrt{L C}} \text { approximately. }
\end{aligned}
$$

Of the components of R, R_{1} is knowi. at 50 cycles only, R_{2} is not know with any accurocy, and R_{3} and R_{4} aro known approximately from tests.

This indicates the difficulty of obtaining the damping factor accuratcly, and in such cases the usual approach is to take a standard rate of damping dictatod by experionce, e.c. one thet reduces the amplitude of an oscillation to 20% of its initial amplitude in 5 cycles.

The numbor of cycles of the tronsient corresponding to one holf cycle of the power frequency may be obteined from the eraph of Fig. 9 for any loneth of line, by dividing the frequency by 100. Fig. 9 also gives curves, plotted against linc leneth, of v, the incremental voltage at the end of a line open-circuitic at that end only, v_{0}, the peak value of the incremental voltago at one half cycle of powor frcquoncy after disconnection of the other end, and $v_{a v}$, the average incromental voltacie after disconnection. Those values aro based on the travelling wave solution.

(3) Voltace Variation of the Source.

Whon a lone line, open-circuitod at the far ond, is disconnoctod, tho voltage on the source side of the circuit-breaker may change to some new steady stato value, depondin on the circuit conditions.

In the casc of a sincle station, or eroup of stetions, with no local load, feoding a singlo lino, the steady state current of the generators after disconnoction at the noer ond will, in general, be zero, and the corresponding steady stetc voltage on the source side of the circuit breoker will be approximetoly equal to the voltage back of sub-transiont rectance of tho generators, allowine for the tronsformation ratio. This will, of coursc, be modificd if shunt roactors aro comoctod at the station.

Tho change will talco placo as e transiont oscillation, Whon no other high voltrec lines or hich voltage cables are connected, the frequoncy of the oseillation will bo of tho ordor of thousands of cycles per second, and may be considered to be darpod out lone bofore one helf eycle of power. froquency has clapscd. This effect has beon notod by Borgstrom and Sandstrom. (Rof. 3).

When high voltage cables or short high voltage lines aro connocted, it is advisable to reduce tho network and cxaninc its natural froquency or freguencies, as the oscillation moy not be ontircly domped out aftor ono holf cycle of the power frequency.

When othor long high voltago lincs are connectod, it may bo nocossary to consider the change in voltage as cousing a travelling wave to move long oach comoctod line, and study tho rofloctions in detail. Usually, however, in such a caso a roosonable anount of power will still bo supplicd by the gencrators, and the voltage will not chengo approcinbly. Tho lines con bo considored as onc or two $T r$-scetions, and the netural froquencios oxmined if dosircd.
(4) Tho Rostrike.

For tho case in which the transionts on tho disconnocted lino and in tho souri a notwork aro of rolatively low frequency, the voltago across the circuit broakor contacts, or restriking voltago $V_{S}=V^{\prime}+V_{G}{ }^{\prime}$, vill vary as shown in Fig. 10.
V_{S} may ronch a moximum value greator than $2 \mathbb{E}_{g}$. but it docs not follow that a rostrike will occur at the time corrosponding to moximum restriking voltage. Tho restrike may occur at any instent if the voltage betwoon the contects is sufficiont to causo the gap to flash over. It is usually assumed that a restrike at the tine of maximum restrikine voltage gives the worst case, but it will bo shown thet this may not bo corroct for all cases.

The restrike is equivalont to closine the switoh in the roduced circuit of Fig. 11, at time $t=0$. (Soc Part I "Roduction of Circuits for Transients"). As V^{\prime} and V^{\prime} are both varyine with time, the analysis of this circit is todifus ovon with the assumption that the voltaeo across the condonser is equal to tho egenorator voltage.

The samo rosult may bo obtained by considerine the applicetion of a voltage - V_{s} betwoon the switch contacts at time $t=0$, as in Fig. 12 : (Soc Fof. 4). The rosultin voltoge and curront variations must be added to the velues existing bufore. the rostrike to give the complete response.

For tho circuit of Figs. 12, tho Laplacian equations are:

$$
\begin{aligned}
& L P=\left(L P+\frac{1}{\bar{P}}\right) \bar{I}_{2} m 0 \\
& 2 \bar{I}_{1}+\frac{1}{P} \ddot{I}_{2}=-\frac{V_{S}}{P}
\end{aligned}\left\{\begin{array}{l}
\quad
\end{array}\right.
$$

from which

$$
\text { Since } \sinh K t=\frac{1}{2}\left(0^{K t}-0^{-K t}\right) \text {, equation (4.5.) may bo written es }
$$

$$
-v_{1}=-v_{s}\left(1-\frac{u}{K} o^{(K-u) t}+\frac{u}{K} o^{-(K+u) t}\right) \cdots(\text { (4.6. })
$$

$$
\text { now } K^{2}-u^{2}=u^{2}-\frac{1}{I C}-u^{2}=-\frac{1}{I C} .
$$

$$
K-u=\frac{-\frac{1}{\overline{L C}}}{K+u}
$$

thus for $K \bumpeq u$,

$$
\begin{align*}
& K+u=2 u=\frac{1}{C Z} \\
& K-u=\frac{-\frac{1}{L C}}{K+u}-\frac{2}{L} \\
&-v_{1}=-v_{s}\left(1-o^{-\frac{Z}{L}}+c^{-\frac{1}{C Z} t}\right)^{-}
\end{align*}
$$

$\left(-V_{1}\right)$ describes the shape of the surge which travels down the line after the restrike. Superimposed on this wave will bo smaller surges, due to the variation with time of V^{\prime} and $V^{\prime} G \cdot$ Variation in $V{ }^{\prime}$ should be considered, but the change in V^{\prime} is relatively smell, and may bo nogloctod.

$$
\begin{aligned}
& \bar{I}_{1}=-\frac{v_{S}}{Z}\left(\frac{P ?}{P\left(P^{2}+\frac{1}{L(B} P+\frac{1}{L C}\right)}\right) \\
& -(4.2 .) \\
& -\bar{V}_{1}=\bar{I}_{1} z=-V_{s}\left(\frac{1}{P}-\frac{2 u}{(P+u)^{2}+n^{2}}\right)-(4.3 .) \\
& \text { whoso } u=\frac{1}{2 C Z} \\
& n^{2}=\frac{1}{L C}-\frac{1}{4 G^{2} z^{2}} \\
& -\dot{V}_{1}=-V_{s}\left(1-\frac{2 u}{n} e^{-u t} \sin n t\right) \cdots(4.4 .) \\
& \text { for } n^{2}>0 \\
& -V_{1}=-V_{S}\left(I-\frac{2 u}{K} e^{-u t} \sinh K t\right) \cdots(4.5 .) \\
& \text { for } n^{2}=-K^{2}<0
\end{aligned}
$$

(5) Subsequent Rofloctions.

The voltage surge $-V_{1}$, travelline down tho line, is accompanied by a current surge $I_{1}=-\frac{V_{1}}{2}$ where the positive diroction of current is taken as down the line. Z Tho surges are reflected from the open-circuited end of the line with roflection factors of +1 for tho voltace, and -1 for the curront.

Assumine that no attonuation or distortion of the surges take placo, then when the surge returns to the circuit-breaker, the totel current on the line side at the moment of roflection will be approminately zero, deponding on the shepe of the surge:

Considering the circuit of Fig. 13, a Laplacian equation may be set up to determine the roflection factors for the surge $-V_{1}$.

$$
\begin{aligned}
& \bar{V}_{r}=\bar{V}_{1} \quad\left(\frac{P^{2}-\frac{1}{D Z} P \cdot \frac{1}{L C}}{\left(P\left(P^{2}+\frac{1}{C Z} P-\frac{1}{L C}\right)\right.}\right) \\
& \bar{V}_{r}=\bar{V}_{1}\left(\frac{1}{P}-\frac{4 u}{(p+u)^{2}+n^{2}}\right) \quad \text { (5.2.) } \\
& V_{r}=V,\left(1-\frac{4 u}{n} c^{-u t} \sin n t\right) \quad(5.3 .) \\
& \text { for } n^{2}>0 \\
& V_{r}=\dot{V}_{i}\left(1-\frac{4 u}{K} c^{-u t} \sinh K t\right) \\
& \text { for } n^{2}=-K^{2}<0
\end{aligned}
$$

The now voltage suge down the line will be of opposite sign to V, , and the now current surgo will be of opposite sign to I_{1}. The total current at the circuit brecker will bocome positive, and must pass through a curront zoro within a fow microscconds of tho reflection. This gives the circuit-brecker on opportunity to clear the circuit, leaving the lino charged at the voltago beforc reflection, the short roflectod surge being noglectod. The magnitude of this voltoge is oxplaincd in the noxt section.

Maxinum Voltage.

The maximum voltage at the far end of the line will normally occur shortly after the initial surge ($-V_{1}$) reaches that point, and will be equal to $\left(V^{\prime}-2 V_{1}\right)$ or $-\left(2 V_{g}+V^{\prime}\right)$. The voltage at the circuit breaker and of the line will reach a maximum, before reflection, of ($V^{\prime}-2 V_{1}+2 V_{W}$), where V_{W} is the variation in the power frequency voltage in a time T. If the circuit breaker clears at this point, the whole line is left chared at this voltage. This is shown also in Fig. 14.

If the restrilk had occurred at the instant when $V^{\prime}{ }_{G}$ was at its negative maximum,

$$
2 V_{V} \bumpeq 2 V_{G}\left(1-\cos \frac{M_{1}}{10}\right) \text {, and will be positive, }
$$

reducine the magnitude of the line voltage, but if the restrike had occurred before the instant when V^{\prime}, was at its negative maximum, $2 V_{w}$ will be-negative, increasing the maximum voltage at the circuit breaker. In the limitinc case, the maximum voltage at either end of the line will be approximately $\left(V \div V_{0 V}-2 V_{1} \max \right)$, where $V_{1} \max$ is the magnitude of the voltage surge if the rostrike occurs when $V^{\prime} g$ is at its nogative maxiumum.

If the circuit breaker does not clear, then an even greater voltage may occur if $n^{2}>0$, as V, then contcins an oscillatory torm. This should be checked elso:

Further restrikes may take place, and may be analysed in a similar manor. When other lines aro connectod near the circuit breaker, (see Ref. 6) the analysis becomes somewhet moro complex owing to the reflections fron the far ends of the othor lines, and a lattice diagram moy be necessary. If the other lines are comparatively short they may be ropresented by lumped capacitanco.

(7) Tho Effect of Corona.

The formation of corona requires energy, which is obtained from the front of the surge. For 0 short surge, this means that the peak is roduced, but for a long surge the shape of the wave front is changed, the moximum valuo boing unaltored.
E.D. Sunde, in Ref. 7, pp 282, by equatine the ionizetion energy required for corona to the change in electronagnotic energy associated with a change in voltoge, shows that a point on the surge front at voltage V_{1}, less than the critical voltage V_{c}, will move forward at volocity S, while joints on the surge front at a voltage greator than V_{C}, will apparontly move forvard at a reduced velocity,

$$
=\frac{S}{1 \div \frac{k}{G_{1}}\left(1-\frac{V_{c}}{V_{1}}\right)}
$$

--n-1. (7.1.)
whero
$S=$ Normal velocity of surge propagation on the line.
$C_{1}=$ Line copacitance in Farads per meter.

$$
k=8.4 \times 10^{-10} / \sqrt{\frac{a}{2 h}} \text { for a positive surge. }
$$

$=3.6 \times 10^{-10} / \sqrt{\frac{a}{2 h}}$ for a nogative surge.
$a=$ Radius of conductor in moters.
$h=$ Average height of conductor above ground in moters.
$\mathrm{V}_{\mathrm{c}}=$ Corona critical voltage.
$=3 \times 10^{6} a \log \frac{2 h}{a}$.
This hos been substantiated by tests (Ref.8).
For twin conductor lines, a is calculated from:

$$
V_{c}=\frac{3 \times 10^{6} \times 2 a^{i} \log \frac{2 h}{a \Delta}}{1+\frac{20}{\Delta}}=3 \times 10^{6} a \log \frac{2 h}{a}-(7.2 .)
$$

Where $a^{\prime}=$ Fadius of the twin conductor in meters, and $\Delta=$ Spocing betweon the conductors in moters. (See Ref. 9.)

When a surge on a line couses the maximum voltage to be ereater then V_{c}, it is conveniont to consider the surge as several componont surges; one, which raises the line voltace to V_{c}, being transmiticed at velocity S, and the remainder being divided into convonient steps of say 50 KV , moving forward separately at appropriato reduced volocities. For a switching surge, theso component surges may bo assumed to have rectangular fronts, and a suitable adjustnont mode on the voltage rraphs.

Surges at various velocities may be represented on a normal lattice digaram. Fie. 15 shows a. lettice diagram for a line on which $V_{c}= \pm 200 \mathrm{KV}$. There is on initial charge on the line of 4100 KV (surge a). At time $t=0$, a surge of $-200 \mathrm{KV}, \mathrm{b}$, moves from A towards B, reaching it at a time T soconds lator. At B, it is refloctod, with a rofloction factor of +1 , and splits into 3 component surges $b^{\prime} 1=\left(-V_{c}-100+200\right)=-100 \mathrm{KV}$, at velocity $S, b^{\prime} 2=-50 \mathrm{KV}$ at volocity $S^{\prime} 2$, and $b^{\prime} 3=-50 \mathrm{KV}$ at volocity $S^{\prime} 3$. Theso threc surges move toward A at their respective volocities.

It was also assuncd that the powor frectuoncy voltage was at its negative moximum at $t=0$, and varice by +30 KV in a time T. This is taken as a surge c_{1} of +30 KV at $t=T$, for the purpose of the illustration. When surge c_{1} meets surge $b^{\prime} 1$. the rosultant voltage is less than V_{c}, so each surgo continues at volocity S. When surge c_{1} meets surge $b^{\prime} 2$, the resultent voltage is $-\left(V_{c} \div 20 \mathrm{KV}\right)$. Surge $c^{c} 1$ slows down, and surge $b^{\prime} 2$ continues at an increased velocity. Similarly, when surge c_{1} meets surge b' 3 , the resultant voltace is $-\left(V_{c}+70 \mathrm{KV}\right)$. Surge cl slows down furthor, and surge $b^{\prime} 3$ continues at an increasod velocity.

At time $t=2 T$, surge $b^{\prime} 1$ roaches A, and is assumed to bo reflected with a reflection factor of -1. At the some time, a further power frequency voltege increment c_{2} of +30 KV moves from A. The resultant suree, $b^{\prime \prime} 1+c_{2}=\div 130 \mathrm{KV}$. When this surge noets surgo $\mathrm{b}^{\prime} 2$, the resultant voltise is less then V_{C}, and each surge procecds at velocity S. Similarly, when the surge moets surge b' 3 , the rosultent voltage is loss than V_{c}, and each surge proceeds at velocity S. Fig. 16 shows the voltage at point A_{1} on the line. Damping has beon neglected. Fig. 16 should be comparod to Fig. 1.

Any actuol casc may be analysed in this menner, usinc the appropriate reflection factor at A, for restrikes at various points on the power frequ ney voltage wave, to obtain the maximum voltage. Circuit brecker clearing at the first current zoro (inmediately after $t=2 \mathrm{~T}$) may also be included.

When the line is lone, the time intervel between the errival of successive surges, scy b ! 1 and b^{\prime}, at point A, may bo hundreds of microseconds, and these surges may be treated individually, with approprinte reflection factors.

The maximum voltage at the end B will bo (returning to the notation of Scction (6)) ($\mathrm{V}^{\prime}-2 \mathrm{~V} 7$) as before, but the voltage at end A at the time of return of the first part of the reflection will be $\left(-V_{c}+2 V_{W}\right)$, which will be less then if corono is not included. Also, the reflection at this end will be of a surge of mar nitude $\left(V c+V^{\prime}-V_{1}\right)$ which will bo equal to or less then V_{l}.

The maximun refloction will be obtained at this and if $V_{c}=\left(2 V_{1}-V^{\prime}\right)$ and will be of a surce of margitude V_{1}, the maximum voltage at B being $\pm\left(2 V^{\prime} g+V_{c}\right)$.

For a vory long line at very high voltage this will also be the absolutc maximum voltage for any number of restrikes, as no portion of a surge giving a total voltage on the line greater than V_{c} could ever reach B.
(8) Exmples on a 240 Wile Line.
(8.1) Xxample (1) $n^{2} \lll$

Fig. 17 shows 2 generators, with no local load, connected to a single tronsformer and supplying full load over one 330 KV line 240 miles long.

Circuit breaker B opens, dropping tho load, tho voltage at A rising to 1.3 nomal. After a steady state is reached, but before the voltage rogulator has acted, circuit brocker A opons. For restrikes and reflections, the circuit may be reduced to that shown in Fie. 18. (Sec Part I. "Reduction of Circuits for Tronsionts"。)

Source $X_{I}=0.30$ on $180 \mathrm{MVA}, 330 \mathrm{KV}$ bese

$$
L=\frac{0.30 \times 330^{2}}{2 \pi 50 \times 180}=0.578 \text { Henries }
$$

$C=0.006 \times 10^{-6}$ Farads (from manufacturer)
$\frac{1}{2 \pi / \mathrm{L}}=2710$ cycles por sec.
$V_{g}=1.0=\frac{330 \sqrt{2}}{\sqrt{3}}=269 \mathrm{KV}$.
$V_{g}^{\prime}=259 \mathrm{KV}$ constant (oscillation demped out)

Line Twin conductors 1.125 in. dioncter, spaced 18 in . $a^{\prime}=0.5625 \mathrm{in} .=0.0143$ meters . $\sqrt{a^{\prime} \Delta}=0.265 \mathrm{ft} .=0.0806$ meters.

Flat construction, 37 ft . spacing, $=46.6$ f.t. equiv. delta.
$h=42 \mathrm{ft} .=12.77$ metors
$a=0.863$ in. $=0.0219$ meters (Section (7))
$\mathrm{X}_{\mathrm{L}}=0.536$ ohras $/ \mathrm{mile}$
$I_{l i}=\frac{0.536}{2 \pi 50}=0.00171$ Henrios / nile
$\mathrm{X}_{\mathrm{C}}=0.184 \times 10^{6}$ ohms / milc
$\mathrm{C}_{\mathrm{M}}=\frac{10^{-6}}{2 \pi 50 \times 0.184}=1.730 \times 10^{-3} \quad$ Farads $/ \mathrm{mile}$
$\frac{1}{\sqrt{I_{M} C_{M}}}=184,000$ miles $/ \mathrm{sec}$.
$Z=\sqrt{\mathrm{X}_{\mathrm{L}} \mathrm{X}_{\mathrm{G}}}=314$ ohms.

Linc Oscillation

$M=240$ milcs $\frac{M}{10}=24^{\circ}$
Apparont frequoncy $=375$ cyclos $/$ sec. (Fis.9)
$T=\frac{240}{184,000}=1305 \mathrm{microsec}$ onds
$\mathrm{v}=9.4 \%$ (FiG. 9)
$v_{a v}=6.5$ (" ${ }^{\circ}$)
$v_{01}=7.1 \%_{i}^{\%}(11)$-use $v_{\text {av }}$
$V=1.3 \times 269=350 \mathrm{KV}$
$V^{\prime}=V \div \nabla_{a v}=1.065 \times 350=372 \mathrm{KV}$ constant

Postrike
V_{S} Moxs $=V^{\prime}+V_{g}^{\prime}=372+269=641 \mathrm{KV}$.
$n^{2}=\frac{1}{L C}-\frac{1}{4 C^{2} z^{2}}=2.88 \times 10^{8}-7.05 \times 10^{10}$
$K \wedge u=2.65 \times 10^{5}$
$K+u=5.30 \times 10^{5}$
$K-u=-\frac{314}{0.578}=-543$
$-V_{1}=-V_{S}\left(1-e^{-543 t}+c^{-5.3 \times 10^{5} t}\right)(\operatorname{Scction}(4))$
This is a surce having an initiol peak of mocnitude - V_{s} decreasing to zero in a few microscconds, and thon incroasing exponentially from zoro at tine $t=0$ to $-0.53 \mathrm{~V}_{\mathrm{S}}$ at $\mathrm{t}=\mathrm{T}$, and $-0.77 \mathrm{~V}_{\mathrm{S}}$ at time $\mathrm{t}=2 \mathrm{~T}$. Soe Fie. 20.

Refloctions

Reflection factor at B is +1 .
Refloction factor at A for a surge V_{1} is given by
$V_{r}=-V_{1}\left(1-4 \frac{u}{K} c^{-u t} \sinh K t\right) \quad(\operatorname{Section}(5))$
$V_{r}=-V_{S}\left(1-e^{\left.-543 t+e^{-5.3 \times 10^{5} t}\right)\left(1-2 e^{-543 t}+2 e^{-5.3 \times 10^{5} t}\right), ~(1)}\right.$
Cn multiplying and calculating,
$\frac{V_{r}}{V_{S}}=-I$ as a fair approxination.

On rofloction at A_{2} curront passos through zoro, and circuit brooker mey clear.

Max. voltages

If circuit breakor cloars, noglocing rosistanco danping, variation in V_{G} and corone.

At B. $\left(V^{\prime}-2 V_{1}\right)=372-(2 \times 641)=-910 \mathrm{KV}$.
At A. $\left(V^{\prime}-2 V_{1}\right)=372-(1.77 \times 541)=-662 \mathrm{KV}$.
This is a vory short poal.
Moximun susteined voltece at any point on the line is given by $\left(V^{\prime}-\left(2 \times 0.77 V_{S}\right)\right)=615 \mathrm{KV}$.

Includine the variation in V_{G},
Rostrike 48° bofore max V_{g}, max sustained voltage 565 KV .

A socond restrike could thus havo a theorotical maximun restriking voltage of $581 \div 269=850 \mathrm{KV}$.

Mox, voltores

If circuit brooker does not cloar, nerlociing rosistance damping, variation in V_{G}, and corona.

The lattice diagran is shown in Fig. 19, the surge V_{I} being sssumed to vary with tine as described above.

The voltacies at B and A are shown in Fics. 21 and 22 respoctively. The highest voltage occurs at B at tine $t=T$, and is 910 KV as bofore. The offect of variation in V_{G} has been indicated for the maximun valucs only.

Corona

```
    \(V_{c}=3 \times 10^{6}\) a \(10 \frac{2 h}{2}(\) Section (7) )
    \(= \pm 465 \mathrm{KV}\).
haximum voltages
```

If circuit breaker clears
At $B_{2} V^{\prime}-2 V_{7}=910 \mathrm{KV}$ as beforo (vory short duration). Elsowhere on tine, $=V_{c}=465 \mathrm{KV}$. Maxirum sustaincd voltages on line, 581 KV as above; decroasine to $4,65 \mathrm{KV}$ by about $t=4 T$. Marinum rostrikinc voltace for second resirike $465 \div 259=734 \mathrm{KV}$. If sccond rostriko occurs, moxinum voltoge at B boconos $2 \mathrm{~V}_{\mathrm{B}}{ }_{\mathrm{G}}+\mathrm{V}_{\mathrm{c}}=1003 \mathrm{KV}$, which is the maximura for any number of rostrikes.

If circuit brookor docs not clear, maximun voltage at B is 910 KV as before, and clsowhere on lino 405 KV (with the exception of a possible rofloction at A). This is shown on Figs. 21 and 22.

Rosistance DanpinG

Assuning a standard rate of dompinc, the maximura at B of 910 KV is roduced to 836 KV or 3.11 E , and the absolutc maximum of 1003 KV is roducod to 923 KV or 3.43 E :

(8.2) Exnmolo(2) $n^{2}<0$

Sone systom as for cxample (1), Figs. 17 and 18, but with the addition of high voltage cables betweon the sending end transforrior and circuit brodior A.

Sourco. H.V. cable 0.18×10^{-6} Farads por 1000 yards
2 cables in parellel, cach 400 yards lone.
$\mathrm{C}=((0.1 \delta \times 0.8) \div 0.006) \times 10^{-6}=0.150 \times 10^{-6}$ Farads
$\frac{1}{2 \pi / \overline{I C}}=560$ cyclos por sec.

$$
V_{G}^{\prime}=259 \mathrm{KV} \text { constant (oscillotion donpod out) }
$$

Restrike
$V_{S} \max =V^{\prime}+V_{G}^{\prime}=641 \mathrm{IV}$.
$n^{2}=\frac{1}{I C}-\frac{1}{4 G^{2} Z^{2}}=0.115 \times 10^{8}-1.125 \times 10^{8}$
$K^{2}=1.01 \times 10^{8} \quad K=10^{4}$
$u=1.06 \times 10^{4}$
$K+\dot{u}=2.05 \times 10^{4}$
$K-u=-\frac{Z}{L}=-543$
$-V_{l}=-V_{S}\left(1-1.06 c^{\left.-543 t+1.06 c-2.06 \times 10^{4} t\right)}\right.$
The shape of the voltoge surge is approxinetely the same as in cxaplo (l), the only difference being in the time constant of the initial poak, which has incroasod from 2 to 50 microscconds, or 0.038 T .

Figs. 19, 20, 21 and 22 represent this case also. Tho maximun voltoge poak of 910 KV at B may extend over a distance of a few miles from the circuit breaker.
(8.3) Rrample (3) $n^{2}=0$

As the capacitanco C is incroascd, the time constant of the initial peok of the voltage surge on restrike will become longer, but the shape of the surge will be of the same general form until $n^{2}>0$.

For $n^{2}=0, \quad \frac{1}{L C}=\frac{1}{L C^{2} Z^{2}}$,

$$
C=\frac{L}{4 z^{2}}
$$

For the systen of examplo (1),

$$
C=\frac{0.578}{4 \times 314^{2}}=1.47 \times 10^{-6} \text { Farads. }
$$

The surge is now specified by

$$
\begin{aligned}
& -v_{1}=-v_{s}\left(1-2 u t c^{-u t}\right) \\
& u=\frac{10^{6}}{2 \times 1.47 \times 314}=1.083 \times 10^{3}
\end{aligned}
$$

This surge is shown on Fig. 20. The reflection factor at A would be -1. Maximum voltegos are as found in oxample (1), 910 KV at B (now extonding over a larger portion of tho lino) and an absoluto maximum of 1003 KV (also extendinc over a larger portion of the line).

(0.4) Exaple (4) $n^{2}>0$

8 generator-transformer sets in parallel, oach pair havine 2 highvoltage cebles 400 yords lone, and 29 milos of hich voltage line conncetod to the bus.

Source $I=\frac{0.578}{4}=0.145$ Henrics.
$C=(0.576 \div 0.006 \div 0.50) \times 10^{-6}=1.082 \times 10^{-6}$ Farads
$\frac{1}{2 \pi \cdot \sqrt{I C}}=403$ cyclos por scc.
$\dot{V}_{G}^{\prime}=269 \mathrm{KV}$ constant (oscillation danped out)
Restrike

$$
V_{S} \max =641 \mathrm{KV}
$$

$$
\begin{aligned}
& n^{2}=\frac{1}{I C}-\frac{1}{4 C^{2} z^{2}}=6.37 \times 10^{6}-2.16 \times 10^{6} \\
&=40.21 \times 10^{6} \\
& n=2050 \\
& u \quad=1470 \\
&-v_{1}=-v_{s}\left(1-\frac{2 u}{n} 0^{-u t} \sin n t\right) \quad(\text { Scction (4)) } \\
&=-V_{S}\left(1-1.440^{-1470 t} \sin 2050 t\right)
\end{aligned}
$$

The shope of this surge is also shown on Fie. 20, and it is seen that it may be consincred as a roctongular front; flat-torped surge of magnitude $-V_{s}$. The method siven in Section (7) may bo used to anolysc this casc, s° and maxinum voltages are as found in examplo (1), 910 KV a.t B (now extonding over a considerable portion of the line) and an absolutc moximun of 1003 KV (also extending over a considerablo portion of the linc).

C would have to be inordinatoly large to give a value of V_{l} approciably croctor then V_{S}.

(9) Conclusions

For a very lone line, two solutions exist, dependinc on the value of C in Fig . 15. occur at $\leq 4^{2}$ the ronoto ond, and will bo oquel to $\pm\left(2 V^{\prime}+V^{\prime}\right)$. This voltage will be of vory short duration. On other socitions of the line, apart froa this poak, which will be ropidly ettonuated by corona and resistance damping, there will be a sustained voltage of a lower value, which will bo attonuated by coron to tho corona critical voltago V_{c}. Further restrikes may cive a voltace of $\pm\left(2 V^{\prime}{ }_{g}+V_{c}\right)$ cxtending over part of the linc at the renote end.

If $C>\frac{L}{4 Z}$, which recuires the addition of a considerable anount of copacitance 42^{2} noar the circuit broaker, the maximu voltace will ogain be equal to $\neq\left(2 V^{\prime} * V^{\prime}\right)$ but nay extend over a considerable portion of the line, Furthor rostrikes nay givo a voltage of $\pm\left(2 V_{G}^{\prime} \div V_{c}\right)$ cxtonding over a considerable portion of tho line.

For the systen considered here, and allowing for resistance damping, those naximun voltages are $\pm 3.11 \mathrm{E}$ and $\pm 3.43 \mathrm{E}$ respectively. This low result is partiy duc to the length of the line, which gives corona sufficiont distenco to offoctivoly romove the upper part of the voltage surec, and partly due to the fact that very hich voltagi linos operate nearor corona critical voltage thon lower voltage linos, c.e. for this 330 KV systom, $\mathrm{V}_{\mathrm{C}} / \mathrm{V}_{\mathrm{E}}=1.7$, whercas for on svorafo 132 KV line $\mathrm{V}_{\mathrm{C}} / \mathrm{V}_{\mathrm{G}}=2.1$.

It is apparont that, for sny lino configuration, and sourco notwork, there will be a critical lencth of linc. For shorter lines, the classical thoory should be used, partly rodified by the effoct of corona, but for longer linos tho maxinun voltago will be a constont, determined from tho corona critical voltofe as above. Whon tosting circuit broakers for disconncetion of tronsmission lines, it is inportant that the most scvere case be tosted. This will normally be the disconnection of a line of loss then the criticel loneth.

1. Teansiont Performance of Elcctric Power Systems. R. Pudenberg.
2. A Rapid Survey of Ficld Tests on a Now Type of Air-Blast CicuitBroaker for very high Voltages. Dr. H. Meyer. Paper No. 115, CIGFP, 1952.
3. The Field Tosting of 220 KV Air-Blast Circuit Breakers. L.R.Bergstrom and U. Sandstrom, Electrical Enginecring, Fob. 1951, pp 118.
4. Transients in Power Systems. H. A. Peterson.
5. Travelling Waves on Trensmission Systons. L, V. Bewley.
6. Switching Surges on Disconncting Lines under No-Load Condilions. R. Kantor. "Elektrichostvo", Fob. 1946, No 2, pp 25 (BRA translation IB820).
7. Barth Conduction Effocts in Transmission Systoms. B.D. Sunde.
8. Propagation of Surge Generator Waves up to 850 KV on a 132 KV Linc. M. Eockmen, N. Hylten-Cavallus and S. Rusck. CIGFE, 1950, Paper 314.
9. Tho Genoral Blectricel Problem of Multiple Conductor Ovorhead Linos, C. Quilico. CICHE, 1950, Paper Ho 219.

Othor Referonces.

Introduction to the Laplace Transformation with Enginecring Applico.tions. J. G. Jacgor.

Eloctrical Transmission and Distribution Reforoncc Book. Westinghousc.

Tochnical Survey of Modorn Lightning and Overvoltage Probloms. K. Berger. CIGPE, 1940, Paper No 327.

The Effect of Corona in Attenuating Surges on Ovorhoad Lines. H. M. Lacoy. CIGRIE, 1940, Paper No 404.

Co-ordination and Protoction of Station Insulation. P.I.Bellaschi. CIGRE, 1948, Papor No 407.

Tho Irapulso Gorona Effoct. V.V.Gay, S.L.Zayenz, and M.V.Kostonko. CIGRE, 1946, Papor 1 No 417.

Comparison of the Overvoltages duc to the Disconnoction of an Open Linc fod by a Transformer with Isolated or Directly Earthed Noutral. R. Pichard. CIGRE, 1952, Paper No 114.

Fig 1: Transients on Opening Transmission Lire. [See Section (1)]

Fig 2 : Effect of Clearing Circuit at Various Transient Peaks. [See Section (1)]

Fig 3: Maximum Theoretical Voltage Build. Up. [See Section (1)]

Fig 4: Voltage Rise on Long Transmission Line Open-circuited at One End. [See Section (2)]

Fig 5 : Resolution of Standing Wave into Two Component Waves. [See Section (2)]

Figs: Variation of Incremental Voltage at A or B : with Time. [See Section (2)].

Fig 7: Line Represented by Two T-Sectinns. [See Section (2)]

Fig e: 2 T-Sections including Damping. [See Section (2)]

Fig 13: Circuit for Reflection of Surge $-V_{1}$.[See Section (5)]

(a) Voltages at Time $t=0+$

Total $V_{\text {oh tape }}=V_{+ \text {liam }}-V_{1}+V_{w}$
Total $V_{\text {allege }}=V_{+} V_{a r}-2 V_{1}$
(b) Voltages at time $t=T+$

Total Voltage V_{i} var $-2 V_{1}+2 V_{\text {u }}$
Total Vottrige $=V+V_{a d}-2 V_{1}+2 V_{\omega}$,

$$
\text { (c) Voltages at Time } t=2 T+
$$

Fig 14. Voltage Distribution on Line During Reflections. [See Section (6)]

$$
V_{c}=-200
$$

Fig 15: Lattice Dlagram for Siwitching surge including Coroma ana 50 Cycle Variation. [See Section (7)]

Fig 16: Graph of Vortage at Point A_{t} on Fig 15. [See Section (7)]

Fig 17: System Diagram. [See Section (8)]

Fig 18: Reduced Diagrams for Restrikes.[See Section (8)]

Fig 19: Switching Surge Reflections - Breaker Not Cleared $[$ See Section (B) $]$

Fig 21: Voltage at point B. [See Section(8.1)]

Fig. 22. Voltage at point A. [See Section (8.0]

Page No.

Sumary.
1.

List of Symbols.
2.
(1) Arc Characteristics. 3.
(2) Energy Balance. : 3.
(2.1) Electrical Input. 3.
(2.2) Loss Through Therral Conduction. 3.
(2.3) Loss Through Convection. 4.
(2.4) Loss. Through Dissociation. 4.
(2.5) Other Losses. . . 4.
(2.6) Energy Balance Equation. . . 5.
(3) Conclusions. 5 .
(4) Bibliography. : 6.

Figures 1 - 80

Sumary.

The physical characteristics of ares are described with the aid of qualitative diagrans.

An energy balance equation is set up; equating the electrical input to the losses through thermal conduction, convection, and dissociation.

It is show that this substantiates the theory that there is a critical value of current for self-extinguishing, in a long arc.

```
Itctof Symbolo
    A = Constant for couvection loss.
    Fb m Buoyancy force tending to cause gos to rise.
    Fv - Viscous restraining force.
    g . :- Acceleration due to gravity.
    H
    I = r.m,o.current in amps.
    K = Absolute temperature (Kelvin).
    k - - Thermal conductivity.
    z : Rodíua.
    r :- Madius of centrol core of the arc.
    T = Terporature in }\mp@subsup{}{}{\circ}\textrm{C}
    Tmax := Maximun velocity of gas.
    Y :- Volocity of gas.
    0: Deasity.
    O m Viscosity.
```

Recent tests at the Electrical Research Association Lakoratories, Iondon, indicate that the arc consists of three portions :-
(a) The central core, carrying most of the current, and at the highost temperature. The dioneter of this portion will vary as a function of the curreat.
(b) The outon corc, carrying little current, but Iu:inous owing to the presence of nitrous oxide.
(c) The outer envelope of heated airi

Tig. 1 show the spafiai distribution of thesc areas for a short are. For a long are wo can consider theoc concontric cyifincios.

Fig. 2 show the tomporature cradiont over the are diancion, the contral core having a mavimen temperature that varios with the curron'.

Fig: 3 poxtrays the vaiation of lumority with radus for each soction, and indicatos that visual or photographic rocords would tond to give anc dianotors which would bo too high,

The variations in tho charactoristics of atr at hige tomporaturo ano also importants Fige b shom tho chango in spocific conductanco, Pig, 5 shows dissociation and (orobably) the fometion of activo nitrogon, and Fig, 6 shows the wamiation jin themal conduevituo
 hotwocn oloctrodes ovon whon no are is visible, but in gracral, cirficulty is oxportoned in dorining are charactoristics at curronts loss than 1 arp.

Emonimontal s'uudios havo boon carricd out at cuments from Z to 10 mps . (soc Fins. 1 \& 2) but figuros for are dianotom wone obtained by visual mothods. Theory supports sonc of tho rosults (Rofs. 3 \& 4) but doubt has boon casi on tho constanto used in this invostigetion, particulerly the dissociation putontial of nitrogon.

The Worof, tosts indicate that the curvo of diacotor of tho contmi coro theroasos. up to a curront of a fow arpse, thon flettcis out at about 10 ampos with a possible alight contraction cbout 15 ams. Tho dianotor thon incroasos agein, a pronounced contruction apooring at about so amp. Anothor conurectson may occur at sono much higho ourcot. Concidoratina of the cacrey balmeo of the are supports the pocibility of a transition in tho region $10-15$ amps.
(2) Wapy Dalance:

$$
(2,1,) \text { Elcotricol Inexs }
$$

This has boca cxecinentally detominod as ($60 \div 1 / \mathrm{I}$) watts por car wich is in linc with fomma for obtainung are voltages.
(2.2.) Ioss Though Thormal Conduction.

If wo assume an arorage tomporaturo in the contral coro of $6000^{\circ} \mathrm{K}$, and a straight lino tomponaruro gradicit fron $6000^{\circ} \mathrm{K}$ to $300^{\circ} \mathrm{K}$, then the heat loss is gingon by -

$$
\frac{2 T r}{d r} k d T
$$

whore k is tho cworoce thomal nonenctivity in tho reging r to $(r: d r)$ and $a T$ is the innge in tomenauro in dro

From Ref 1, $\frac{d T}{d r}$ io of the ordor of $5100^{\circ} \mathrm{C} / \mathrm{cm}$, and taking $k=3 \times 10^{-3}$, the heat loss is $96 r_{1}$ watts/on wherc r_{I} is the radius of the contral corc.

(2.3.) Loss Through Convoction.

Let the buoyancy force on the gas area be denoted by $F b=\pi-r^{2} g \Delta \rho$, whoro $\Delta \rho$ is the difforenco in donsity duc to tomporature.
Tho rostraining forco is cqual to $P v=2 \pi r n \frac{d v}{d r}$ whore 7 is the viscosity, and $\frac{d v}{d r}$ is the volocity. gradiont at tho surface of a eylinder of radius'r.

Equating these two caprossions at the boundary of the control core, $\frac{d v}{d r}=\frac{\text { ri.g } \Delta \rho}{2 \cdot \eta}$.

Fig. 7 shows a curve of vclocitics obtained cxporinontally, (Ref. I) which indicatos that $\mathrm{v}_{\text {max }}$ is approxinatoly oqual to $\frac{d v}{d r}$ at r_{1},
$\Delta p \approx 0.00124\left(1-\frac{300}{T}\right)=0,00117$ at $6000^{\circ} \mathrm{K}$.
$\eta \bumpeq 0,00135$ at $6000^{\circ} \mathrm{K}$. (Extrapolatod iron Fiof. 5)
Henco $v_{\text {max }} \approx 425 \mathrm{r}_{1}$.
Por practical cascs a figuro of 30% of this, or $340 r_{1}$ is suggostod.
The total hat loss by convection is cqual to $H_{c}=\int 2 \pi r d r v A$ whoro Λ is a constant, oqual to 0.020 watts/cc for air. (Ref.1.) Considcring $v=v_{\text {nax }}$ for radius 0 to r_{1}, and docroasing lincarly to 0 at ($r_{1} \div 1$),
$H_{C}=340\left(r_{1}^{3}+r_{1}^{2}+\frac{1}{3} r_{1}\right)$ watts por cn. $\quad . \quad \cdots(2.3 .1)$
(2.4) Loss Through Dissociation.

Dissociation is likely to occur suddenly, (scc Fig. 5 and Ref.6), as the offect of partial dissociation, in incroasing the total losses, will be to cause the are diancter to docrcasc, to rostore cquilibriun, This will give an incroasod tomporature in the contrel core, owing to the incroasod curront donsity, and honce nore dissociation.

Corplcto dissociction is considcrod (Rofs. 3 \& 4) to give a. loss of the order of twice that duc to themal conductivity, and $200 r_{I}$ watts/cri is suggestod.

It scone, also, that a cortain anount of nitrogon beconos "activell at the sanc tinc as dissociation occurs, but the offoct has not boon fully invostigetod. Tho nitrogon affoctod appoars to ronain in the activated statc for an aprociable tine, of the order of hundrodths of a sccond, or longor.
(2.5) Othor Losscs.

The loss due to radiation, thomionic offocts at the olcetrodos, thomal conduction alons the cloctrodes, and difíusivity, aro not oxpoctod to reach norc than 10% of the total, and a factor of 1.1 can bo included to cover this.
(2.6) Bnorgy Balance Ecurtion.

Tho oquilibriuri oquations now havo the form :-

$$
\begin{aligned}
& 60+14 I=\left(96 r_{1}+34 \theta\left(r_{1}^{3}+r_{1}^{2}+\frac{1}{3} r_{1}\right)\right) 1.1 \ldots\left(2.6_{1.1}\right) \\
& \quad \text { for no dissociation, and } \\
& 60+14 I=\left(96 r_{1}+340\left(r_{1}^{3}+r_{1}^{2}+\frac{1}{3} r_{1}\right)+200 r_{1}\right\} 1.1! \\
& \quad \text { for full distociation. }
\end{aligned}
$$

(3) Gonclusions.

Frorn thoso cquations, two curvos of ore redius ageinst curront can bo drawn, as shom in Figo 8. A transition fron tho curve for no dissociation to tho curve for full dissociation noy bo oxpoctod in the rogion show, bocausc of the increasing tomporature of the are at highor curronts.

Once the transition has occurrod, it con bo assunod that tho dissociation and activation will have matoriclily increased the possibility of a conducting are path boing available. This nowns that, undor conditions of no wind, a curront in air groator than the critical value would bo much loss likoly to bo sclf-cxtinguishing than a curront loss than the critical voluo.

This is of gront inportance in the application of auto-rcclosuro, (Sco Part VI, "Auto-Reclosurci"), but more cvidenco is roquirod boforo a critical value can be fizod.
(4) Bibliograply.

1. Convoction Curronts in Arcs in Air. C.G. Suits.

Physical Roviow, Junuary 15th, 1939, 55 pp 198.
2. High Prossurc Arcs in Comen Gascs in Freo Convoction CoG. Suits, Physical Rovicw, March 15th, 1939; 55, pp 561.
3. Positive Colurn of tho Hitrogon Arc at Atmosphoric Prossurc, Part I. E.S. Lanarr, A.lí. Stonc and K.T. Compton. Physicol Rovicw, Junc 15th, 1939, 55, pip 1235.
40. Positivo Colunn of the NiEtrogen Arc at Λ triospheric Prossure, Part II. A.M. Stonc and Eas. Iarnarr. Physical Rcviow, Fobruary 1st, 1940, 57, pp 212.
5. Theory of the Arc H.R. Hasso and W.R. Cook. Prococdings of Royal Socioty, 1929, A.125, 190.
6. Paysical Proportins of Aros in Circuit Broakors. E. Alr, Trans, Royal Inst. of Tochnology, Stockholn, 1949, No. 25. Othor Roigoroncos,

Contribution to the Mininur Thoory of tho Arc Colum. Comparisoin botwoon Thoory and Practico. B. Kirschstoin and F. Koppolman. Wiss. Voroff. aod. Sionons Uorkon, 1937, XVI. 3, 25. 56.

Torporaturos of High Frossurc Arcs, C.G. Suits. Journal of Appliod Physi.cs, 1939, 10, 10, 728.

Thoory of tho Arc anc Ets Gucnching. O. Mayr. E.T.Z., Doc.

ERg. DIVISION OF ARC inTo SECTIONS

Fig:2. TEMPEKATURE GRADIENT]

Fig 3. LUMIMOSITY DiAGRAM FORAES

Fig 4. SPECIFIC CONDUCTAMCE OF AIR:

$$
[\text { Sec section }\}
$$

Fig 5 Dissociation of Ali
[See Section ()]

Fig 6 Thermal Conductivity of Arr.
[Sec Section (1)]

Fig 7: Convection Currents in. Are

Eig 8. ARE RAOHS
Part VI AUTO-RECLOSURE.
Page No.
Summary. 1
List of Symbols. 2
(1) The Technicue of Auto-Reclosure. 3
(IsI) Transient Faults. 3
(1.2) System Stability. 3
(1.3) De-ionization Times for Three-phase Auto-reclosure. 4
(1.4) De-ionization Times for Single-phase Auto-reclosure. 4
(1.5) The Effect of Other Circuits. 5
(2) Laboratory and Field Tests on Capacitance Arcs. 5
(2.1) Test Circuit. 5
(2.2) The Form of the Capacitance Aro. 5
(2.3) The Quenching of the Are. 5
(2.4) The Transient Effect. 6
(2.5) Current and Voltago Limits. 6
(3) Calculations. 7
(4) Results. 8
(5) Conclusions. 9
(6) Bibliography. 10
Figures 1 - 5
Tables I - IV.

Summary.
Auto-reclosure, in both three-phase and single-phaso forms, is now an establishod technicue in power system enginecring, and has been used with considerable success.

However, it has becomo apparent that thoro aro limits to the use of auto-reclosurc, and an attempt has boen mado hore to dofinc the limits of application to long, high voltago lines.

A ready indication of the practicability of throo-phase or single phasc auto-reclosure. for any line from 132 kV to 380 kV is givon in the tablos.

List of Symbols.

a, b, c	$=$ Phascs in threc-phasc circuit.
A, B, C, D, T.	$=$ Points on the curves in Fig. 3 .
A, B, D, E, J, K.	$=$ Towor dinonsions in foct.
Ab	$=$ Distanco fror a to b in foot.
$A b^{\prime}$	$=$ Distanco fron a to the inago of b in foct.
Cab, $\mathrm{Cbc}, \mathrm{Cca}$	= Capacitances betwoon pairs of conductors.
$\mathrm{CaO}, \mathrm{Cbo}, \mathrm{Cco}$	$=$ Capacitances betweon conductors and ground.
C	$=$ Averago of $\mathrm{Cab}, \mathrm{Cbc}, \mathrm{Cca}$
Co	$=$ Averago of Cao, Cbo, Cco.
da	$=$ Diancter of singlo conductor in ins.
d'a	a Equivalont dionctor of multiplo conductors in ins.
co	$=$ Dianctor of corth wirc in ins.
I	= r.n.s. curront.
ha	- Avorago hoight of conductor a abovo ground in foot.
r	- Radius of conductor or equivalent conductor.
V_{1}	$=$ Voltege improssod on tost circuit.
V_{2}	$=$ Voltago across Co in tost circuit.
$\mathrm{Va}, \mathrm{Vb}, \mathrm{Vc}$	$=r . m . s . ~ p h a s c ~ v o l t a g o s . ~$
X	$=$ Reactonce in por cont on a suitablo baso.
Y	$=$ Suscoptance in por cont on the sarc basc.
Z	$=$ Spacing of twin conductors in ins.
Zaa, Zab, otc.	$=$ Inpodances.

(1) The Technique of Auto-Reclosure.

(1.1) Transient Faults.

It is a matter of experionce that a high proportion of faults which occur on high voltage three-ghase overhead transmission lines is of transient origin. A typical case is the flashover of a string of insulators by a lightning discharge. A nower arc, of hundreds or thousands of amperos, may then flow through the ionised gas path in the air. The fault current causes the protective rolays to operate, and the circuit-breakers at each end of the affected portion of the line open and isolate the section.

It would be possible, in such a caso, to reconnect the line, after a suitable pause to allow for the de-ionization of the are path by natural means. Auxiliary equipment has been developed to enable circuit-breakers to reclose one, two or more times, with pre-determined intervals between successive reclosures. The series of operations continues until the fault is cleared, and the relays do not operate to open the circuit-breaker after a reclosure, or until the series of oporations concludes, loaving the circuit-broaker in the open position.

For the perticular fault quoted above, imvolving only one phase, it would be possible to opply the reclosing technique to that phase only, and discriminatory ecquipment has been developed to enable the circuit-brookers to perform this operation. Single-ibhase reclosuro may have advanteges from the point of viow of system stability.

(1.2) Systom Stobility.

When a fault occurs on a system, the total load on the cenerating stations changes suddenly, and the demand on each genorating station changes also.

If, at a particular station, the new demand is greater than the previous demand, the extre onergy roquired will be provided by the rotational cnergy of the machines, which will tend to slow down. If the new domand is less than previously, tho machines will tend to spoed up. The phenomenon will also bo affected by the variation with time of the eonerator's apparent reactance, and by the corrective action of the voltage regulator and the governor. For the purpose of calculation, it is usually assumed that the time constant of cach of these thrce factors is lone in relation to the time of operation of the foult, and their effect nogligible.

Theng If a fault romains on the systom long onough to cause one part of the system to be lagging, or loading, another part by more than 180 electrical degroes, the two sections will lose synchronism. This is known as systom instability.

The same effect can occur if ons section of a transmission line is taken 品市8f service, after a fault, as although the total load will returnat to normal, the distribution of the demand on the various generating stations will depend on the new distribution of interconnecting lines, and instability may still result.

Any paricicular systom may be studied by means of a network analyser, to determine allowoble limits for single and three-phase reclosure times for various fault locations. In genercl, it is found that the open period may be considerably longer with single-phase than with threephese operation.

The permissible open periods for the system may then be compared with the time required for the de-ionization of the are pach.
(1.3) De-ionization Times for Three-Phase Auto-Reclosure.

Tosts to simulate the condition of single circuit linos, at various voltages, and with largo fault curronts, werc made in U.S.A. (refs. 1 and 2). As a rosult of these tosts, the followine do-ionization times, on a 60 cycle basis, were recommended as those for which the chanco of a restrike was less than 1 in 20.

Linc Voltage in kV	23	46	69	115	138	161	230
Time in Cyclos	4	5	6	8.5	10	13	18

The times were steted to be slightly lengthened by increase in are duration or current, and slightly decreased by an increase in the gap length, or the prosence of wind.

Later tests gave general agreement with these figures.
Photographic evidence shows that the heavv current ares considorod woro of considgreblo cross-scotion. Littlo "bowine" of tho arc was obsorved, but, after the current wes writchod off, the ? uminous gas could bo soen to riso under the influence of convection. Restrikes occurred betweon the lower electrode and the bottom portion of this rising mass of gas.

Results of investications into the rate of vortical movement of the ionized mass. indicate that, for heavy-current ares of very short duration (loss thano. 2 sec.) the velocity is proportional to the energy input. The low limit of velocity appears to be of the order of $100 \mathrm{cms} / \mathrm{soc}$, , and this corresponds to approximatcly 0.4 kW secs. per cm lengith of arc. This is equivalent to 1000 amps , for 005 secs. 2000 amps. at 0.025 socs., etc.

```
From this cvidence, it would scom that a now scalc of de-ionization times could be drawn up, taking 1000 amps. for 0.05 sces. (a reasonable breaking time) a vertical volocity of \(100 \mathrm{cms} / \mathrm{scc}\). . and tho diclectric strength of the new air as 4 kV por cm . This gives, on a 50 cycle basis,
```

Line kV	23	46	69	115	138	161	230
Time in Cycles	2.3	4.6	6.9	11.5	13.5	16.1	23.0

The fact that experionce hes shown these figures to be conservative for the highor voltagos indicates that, for most faults on high-voltage lines, arc curronts are approciably groator than 1000 amps. or thet the implied condition of no wind is not fulfilled in practice.

It is doubtful if more than one attempted roclosure can be justificd conomically

(1.4) De-ionization Times for Sinclo-Phaso Auto-Reclosurc.

When one phase of a soction of a transmission linc has beon opened at each ond, the conductor, though isolated, will still heve a cortain residual restriking voltage to corth, owing to the copacitivo coupling between the isoleted conductor and tho two line conductors, and also to carth. This is shown in Fig. 1.

The restriking voltage between tho faulted phesc and earth can be calculatod as a function of the ratios of the capacitances, which are detormined by the physical distances involved.

The actual values of the capacitances; and hence the value of the capacitance current which could continue to flow after the power arc has been cleared by the isolation of the conductor, is dotermined by the length of the line.

Values of the restriking voltage and available current may exist for any line which would preclude the possibility of the capacitance current arc being "self-snuffing". In such a case, single-phase auto-reclosure would be impracticable.

For cases where this does not apply, the capacitance arc should coose in 3 to 5 cycles after the whase is de-enercized, and a safety margin of 3 cycles can be added to the times used for three-phase reclosure.

(1.5) The Zffect of Other Circuits.

For three-phese euto-roclosure, the presence of a second circuit on the same towers would have a similar effect to that described in the previous section.

This effect is small in the case of lower voltoge circuits, and can be covered by the addition of 1 or 2 cycles safety margin, but may be considerable in the case of circuits of 220 kV or higher, particularly when two or more conductors per phase are used.

For single-phase auto-reclosure, the capacitance current is affected to a considerable extent by the configuration of the conductors, the presence of othor circuits, and the use of earth wires, and calculations should be made for eny long line at a voltage of 132 kV or hifher.
(2). Laboratory and Fiold Tosts on Capacitance Arcs.
(2.1) Test Circuit.

For test purposes, the capacitive coupline shown in Fi_{6}. 1 may be simplified, ond we may use the circuit shown in Fig. 2, where C is the averege of $C_{a b}, C_{b c}$ and $C_{c a}$ and C_{0} is the average valuo of $C_{a 0}, C_{b o}, L_{c o,} V_{1}$ is equal to the sum of $V b$ and $V c$, which is equal to -Va .

On closing the circuit-breoker, on arc is initiated across a string of insuletors connectod in parallel with the capacitance C_{O}. A power are follows, the current being limited by the amount of additional reactance in the circuit. After a predetermined interval, the circuit-breaker is opened, and a capacitance current will follow.

(2.2) The Fors of the Copacitance Arc.

Test ose in? ograms (Ref. 3) show threc stages in the capacitance arc:-
(a) Trensient oscillation of frequency 300 to 1000 cycles por sec., damped cut in about 0.01 secs.
(b) Steariv state capacitance current, the duration varying with the current.
(c) A succession of restrikes occurring at succossively higher voltaces, until final clearance takes plece. The duration of this stage is to scme cxtent dependent on the current.
(2.3) The Guonenge of the Arc.

Referring to Fic 3, which shows stages (b) and (c) for a typical arc, we seo that up to point A, the are voltage ond current are in phase, while the smollor current through the capacitance C_{0} leads by 90°.

At the arc current zero A, the arc does not restrike immediately. The voltage across C_{0} tends to rise, and the current in C_{0} which is normally small compared with the arc current increases. A transient ensues, after which the voltage rapidly increases until the arc restrikes at B. The voltage falls to the normal arcing value, and the current in Co follows its previous pattern.

At point C the arc current reaches zero again, and the process described above is repeated. A higher voltage is required for the restrike to occur at D, and the transient is correspondingly greater in magnitude. The curve passes through zero, and the arc ceases, the current curve having the appearanco of a pulse at this point.

Within one or two half cycles, the maximum restriking voltage appears across Co without causing a restrike, and the arc is offectively quenched.

The physicel significance of this may be explainod by considering the main mass of ionized gas to rise (soe Soction (1.3.). Unless the tomporature of the arc in the space betweon the lower clectrode and the mass of gas is sufficiont to causo dissociation, progrossivcly highor voltages will be required to cause restrikes. Also owing to the rapid decrease in specific conductivity as the tomporaturo docreasos, the voltage roquirod to maintain the are will be incroasod.

A typical curvo of arc tomporaturo variation during case cyclo is shown in Fige 4 , the position of the band of variation on tac tomporaturo scalc varying with curront. Aftor stago (c) is roachod, dotorioration is rapid, as the r.mas. valuo of the current during the half cyclo docreases vory quickly owing to tho dolay in starting and the transiont offoct.

(2.4) Tho Transiont Effoct.

The tost circuit of Fig. 2 may bc rodrawn as in Fig. 5, whore X donotos the coribincd roactance of the gonorator, transformer, and reactor, in por cont on a suitablo basc, and C and Co aro roprosontod by Y_{8} thoir combinod suscoptanco, in por cont on the same baso.

For suddor changos in arc conditions, wo have a singlc-froquency circuit, which givos a transiont of froquoncy $\frac{5000}{\sqrt{\bar{X} \bar{Y}}}$, which for most practical cascs is of the ordor of 300 to 1000 cyclos por scc .

Tho maximun rostriking voltage appoaring across Co will bo $2 \sqrt{2} v_{1} \times \frac{c}{c * c_{0}}$ This transiont is tho onc which appoars on tho oscill ographic rocord at oach change in arc charactoristic.

(2,5) Curront and Voltage Limits.

It scoms probable, from exction (2.2), that unloss thic available capacitance curront is sufficiont to kecp tho tomporature of the arc high cnough to causc considerablo dissociation and/or the formation of active nitrogen, tho capacitanco are will bo quonchod rapidly. It would be oxpectod that the critical range of curront is small, and for a particular caso (Rof.3) a sharply dofinod broak at 15 amps. was rocordod. This is in line with the curront at which considcrable dissociation is oxpoctod from thoorotical considorations. Soc Part V, "A Thoory of the Liong Arc". Anothor scrics of tosts gave the critical range as somewhore botwoch 10 amps . and 20 amps . (Rof. 4). Tosts mado in U.S. (Rof. 5) aro of doubtful valuc, as the casos tostod boro littlo rolation to practical casos. Sco. also Rcf. 6, in which a critical curront of 10 amps . is oxpoctod.

Any linc of longth groat onough to mako a capacitanco curront of moro than 10 ampe. probablo should bo considorod carcfully, from
the point of view of auto-rcclosure, and where a capacitance current of 15 amps. secms likcly, auto-rcclosure should be rejected.

The voltage limit is not so.critical. Assuming thet the slowost rate of vertical movement of the mass of gas is $100 \mathrm{cms} / \mathrm{sec}$., a gap of. the order of 1 cm will appear, roquiring a peak flashover voltage of about 4 kV . The voltago required to sustain a low-current arc 220 cms long is of the order of $3-5 \mathrm{kV} \mathrm{r.m.s.}$, of the ordor of $10-12 \mathrm{kV}$ rem.s. would som sufficiont to maintain an other-wiso stable are.

Tho abovo valucs apply to no wind conditions. A cross wind of the order of $100 \mathrm{cms} / \mathrm{scc}$. would bo sufficiont to increasc tho poak voltage requirenents by 6 kV , and would also incroasc the lossos by themal conduction.

(3) Calculations.

Colculations of capacitance curront flowing in cio isolatod phasc of a throc phaso syston havo boon mado on conductors and towor configurations suitablc for voltages from 132 kV to 380 kV .

Tho mothod usod was to writo dow the standard set of cquations for cach configuration, considor any conductor isolatod and carthod, and solvo for the curront in that conductor.

$$
\begin{aligned}
& \text { ctc. otc. } \\
& \text { Va cte }=r_{0} \mathrm{mas}_{0} \text { phase to ncutral voltages in } \mathrm{kV} \text {. } \\
& \text { Zaa cotc }=j 0.08707 \log _{10} \frac{2 h a}{r} \text { nogohns por milc. } \\
& \text { ha . }=\text { Avorage height of conductor a above tho } \\
& \text { ground in foct. } \\
& \text { r : Padius or oquivalont radius of the conductor } \\
& \text { in fect. }
\end{aligned}
$$

$$
\text { Zno rere }=-10.08187 \log 10 \quad \frac{\mathrm{Ab}}{\overline{\mathrm{Ab}}}
$$

$\Delta \mathrm{S}$ is the distanco fron a to b in foct.
Ab: is the distanco irron a to the inago of b in fect.

Ia ctos: $=$ rorios. curronts in milliamps por milc.
For phasc a carthor, $\mathrm{Va}=\mathrm{V}_{\mathrm{g}}, \mathrm{V}_{\mathrm{b}}=\mathrm{V}(-0.5=0.866)$
$V c=V(-0.5+j 0.866)$. Sinco all the impodancos arc inaginary quantitios, it is convoicn't to solve the equations twicc, obtaining tho real and thaginary parts of Ia. Tho valuc requirod is mód Ia.
mo uquatione ano nomally woll-conditionod, and the oasiost mothod of solving is to guoss the ratios $\frac{I b}{I a}, \frac{I c}{I a}$ ctc., and substituto. to obtain a number of oquations in Ia only. Ia is found fron the cquation in $V a$. The ratio $I b$ is thon adjustod fron the oquation in Vb , tho ratio Is Ia Is adjustod fron the cquation in Vc , otc. Whon all hevo boon adjustere chock again for I in tho cquation in $V a$, and ropeat tho prososs. This inthod gives rosults corroct to the noarost millionp in two or throc trials, and can bo dono with a slide rulc,
writine the adjustod retios in on the matrix. The procoss is ropoated for each conductor, to obtain the worst casc.

Fron an oxanination of publishod line designs, and rogulations applicablc in various countrics, "standard" towers have boon solected, having dimonsions conforning to avorage practico. Throc typos of towors have boon considerod at cach voltarc, single circuit flat spocing, singlo circuit triangular spacing, and doublo circuit vortical spacing, oach carrying cithor singlc or multiplo conductors, and with and without oarth wircs and conductor transposition.

(4) Rosults,

It was found that, for any particular linc, a doparture fron the standard towor dinensions could be allowod for by making a porcontege corrcction in the final coupling coofficiont. This corrcction, deponding only on the tower shapo, is sonsibly indopondont of voltage, conductor size, and the prosonce of carth wiros. Thore a particular linc diffors in soveral rospocts, the porcontage variations for oach of the soparato difforoncos aro addod arithnctically, and the rosult applicd as a corroction to the coupling coofficiont.

Tho dinonsions of tho standard towors, togothor with the variation porcontagos for variations in dirconsions of $\pm 10 \%$, aro given in Tablos Ia, IIa, IIIa.

The curronts in an isolatod conductor, in millianps por mile, for various coinditions, aro givon in Tablos Ib IIb IIIb for the threc typos of towors. The valucs given are for the worst casc, which is usually that of phasc ' b ' isolatcd.

Tablo IIIb contains valuos for the offect of the sccond circuit. Tho nagnitudo of tho offoct varios with the phaso arrangonont on cithor sido of the towcr, and, if transposce, on the type of transposition. The use of the positive valuos given is recorranded.

Valucs of the opon circuit rocovory voltage to oarth of the isolatod phaso aro givon in Tablo IV.

The accuracy of the current valuos is of the ordor of $\pm 1 \%$, and, for a towor of the sanc voltego class, but considcrably modificd, $\pm 5 \%$ Bxtrono casos, as for instance a 380 kV lino oporatod at 220 kV , arc within $\pm 10 \%$

If the corroctod curront, multiplicd by tho longth of tho line in milos, is $>10,000$ rilliarps, caution should bo usod in applying single phasc auto-roclosure, and for valuos $>15,000$ single phaso autoroclosure should not be usce.,

For throo phasc auto-rcclosurc, on the doublo circuit towors of Tablo IITa, the volues of current in the worst phaso will bo numorically the sanc as tho valuos givon in Tablo IIIb for the "Effoct of Other Circuit Alirol'.

For transposod circuits on soparato towors, thesc valucs may bc rultipliod by the factor:-

$$
\frac{(2 J \text { fron Tablo IIIa for givon voltago lovcl. }}{\text { (Distance in feet between centros of circuits }} \text {) } \text {.. (4.1) }
$$

o.g, for 2 singlo circuit transposed linos at 380 kV , contro distanco 160 ft., curpront is cqual to

$$
58.5 \times \frac{2 \times 26}{150}=19.0 \text { rilliarns por mile, }
$$

and a linc length of 500 milcs would be suitablo for threc-phasc auto-rcclosure。

The maxinun capacitanco curront likely to flow under single phaso or three-phasc auto-reclosure conditions may be readily deterained fron the tablos, for a largo rango of towor and conductor configurations, and voltagos.

The curront is decroasod by transposing or by adding carthwires, and incroasod by the use of multiplo conductors.

For a singlo conductor, lino longths of loss than 200 miles at 1.32 kV , to 100 milos at 380 kV scon suitablo for single phase autoreclonure, and for multiplc conductors loss than 100 milos at 132 kV to 70 milos at 380 kV . Thosc limits may bo raisod approciably for sone configurations.

For throc phaso auto-roclosurc, suitablo linits would bo 400 milos at 132 kV to 200 milcs at 380 kV for doublo circuit towors, and two to four tinos thoso values for single circuit towers.
(6) Bibliorraphy.
I. Kecping the Line in Service by Rapid Reclosing. S.B. Griscon and J.J. Torok. Elect. Journal, May 1933, 30, pp 201.
2. Ultrahigh-Sped Roclosing of High Voltage Transnission Lines. P. Sporn and D.C. Prince. Trans. AIEE, Jan 1937, 56, pp 81.
3. Luxtinction dos ares dans lo romenclonchonent ultrarapide nonophase sur les lignes a 220kV. Mor. Maury. Revue Generale de 1:Electricite, May 1944, pp 79: ${ }^{\prime}$
4. Wffect of Earthing on Corona Losses, etc. (Review nunber)

Brown Borroi Review, July-iugust 1948, pp 192, 221.
5. Insulator Flashover Deionization Times as a Factor in Applying High Speed Reclosing Circuit Breakers. A.C. Boisseau, B.W. Wyran, W.F. Skeats. CIGRE, 1950, Paper No, 135.
G. Physical Properties of Aros in Circuit Breakers. E. Aing Trans. Royal Inst, of Technology, Stockholn, 1949, No. 25.

Other References.

Arcs en air libre dans les installations a courant alternatif. GeT. Trojials; V.V. Kapion, and EoIo Kondor. CIGRE, 1935, Faper No. 324.

Investigations on H.S. Reclosing on the Ocurrence of Short Circuits in Overiood She Systens and the Applic: tinn of the Air Bladt HoS. Circuit Brearer for this Purpose, H. Thomon, CIGRE, 1939, Paper No. $10 \delta^{\circ}$

High speed Single Pole Reclosing. J.J. Trainor, J.E. Hobson and H.N. Miller. Trans ATEP, Feb 1942, 61, pp 81.

Analysis of the Application of High Speed Reclosing Breakers to Transmission Systens. S.B. Crary, L.F. Kennedy, and C.A. Woodrow. Trons, AJEE: June 1942, 61, pp 339.

Nine Years' Experience with Ultrahighspeed Reclosing of High Voitage Transmission Iines. Ps Spom and C. $\Lambda_{\text {. Miller, Trans. AIEE, May }}$ 1945: 64, pp 225.

Lore 60 -cycle A, C. Ares in Air. A.P. Stron. Trans. AIEE, Manch 1946, 65, pp 113.

Problens relating to Switching of High Voltage A.C. and Extra High Tensions up to 400 kV , H. Thomen. CIGRE, 1946, Paper No. 109.

Results of Many Years of Operation of H.T. Distribution Installations Provided with Instantaneous Autonatic Circuit Breaker Reclosing. A. Parrini. CIGRE, 1946, Paper No. 139.

Circuit Breakers, and Selective Protection for the Ultra-Rapid Reclosing in the Extra High Tension Network. A. Perring and L. Roche. CIGRE, 1946, Paper No. 141.

Experience with Single m Pole Relaying and Reclosing on a Large l32kV Systen. J.J. Trairor and C.E. Parks. Trans A.IEE, 1947, 66, pp 405.

Performance Tost of the AEG Free-Jct Airmblast 220 kV 2,500 MVA Reclosing Circuit Breaker, A. Devjikov and C.C. Dienond. Trans. AIEE, 1948, $67 \mathrm{Pt}, I_{9}$ pp 295.

Dieloctric-- Recovory Characteristics of Powor Ares in Large hir Gaps. G.D.McCarn, J.E. Connor, and H.M. Ellis. Trans. AIEE, 1950, $69 \mathrm{Pt}_{\mathrm{P}} \mathrm{I}, \mathrm{pp} 616$.

Establish Reach Limits as a Measure of Switch Performance. MoA. Anderson. Elect. World, Dec. 18, 1950, pp 79.

Single - Polo Reclosing : Relaying Problens and Are Extinction Tires. W.P. Dobson, V.V. Mason, CIGRE, 1952, Paper No. 316.

$\frac{\text { FIG1 }}{\text { CAPACITIVE COUPLIMG. }}$ [See Section (1.4)]

Fig. 2. TEST CIRCUIT FAR CAPACITANCE ARES

4 VARIATOR OF ARC TEMP IN CyCLE

$$
\begin{aligned}
& \text { ha }= \text { Avorage distance to ground for normal } \\
& \text { spen } \\
& d a=\text { diometer of single conductor } \\
& d^{\prime} a= \text { ocuivalont diametor for multiple } \\
& \text { conductors } \\
&= \sqrt{2 d Z} \text { for two conductors where } Z \text { is } \\
& \text { de }=\text { dismece betwoen in ins. }
\end{aligned}
$$

	Standord Tovors			315 kV	380 kV	$\begin{aligned} & \text { Variction } \\ & +10 \% \quad-10 \% \end{aligned}$	
A ft.	15	25	31.2	35.7	43	-6.5	$+9.0$
d ft.	9	15	18.8	21.5	26	$+1.5$	-1.5
Ift.	7.5	12.5	15.6	17.9	21.5	+0.3	-0.3
ha ft	34.5	40	43.4	46	50	$+4.0$	-5.0
do. ins	0.65	1.1	1.37	1.57	1.9	+2.5	-2.5
d'e ins	5.5	5.5	5.5	5.5	5.5	+3.6	-3.6
do ins	0.7	0.7	0.7	0.7	0.7	-0.5	+0.5

\# "Variation" is the percontago variation in tho value given by the current table, for variations of $\pm 10 \%$ in tho dimensions of the standard tower for that voltage. For casos in which sevoral dimensions have been variod, the soparate variations are added arithmetically, and the total variation applied to the value from the current table.

SIMGLE CIECUTT - FLLT SPACIIVG
 Table 1B.

Current in Isolatod Conductor (worst case) in milliamps per milo for Stenderd Towers.

	132kV	220 kV .	275 kV	315 kV	380 kV
Singlo Conductor					
2 carth wiros	39.6	56.3	65.9	72.9	84.4
1 corth wirc	45.4	63.2	73.7	81.4	94.0
0 onrth wiro	51.8	75.2	86.8	95.1	109.0
2 carth wiros transposed	29.3	41.5	48.6	53.8	62.3
1 carth wirc transposed	34.3	48.5	56.9	62.9	73.0
0 oarth wirc transposod	42.0	59.5	69.7	77.1	39.3
Multiplo Conductors					
2 certh wires	81.4	95.0	103.1	108.9	118.6
1 carth wirc	91.1	106.0	114.9	121.3	132.0
0 ocrth wiro	106.1	133.0	133.1	140.4	152.5
2- carth wircs transposed	60.0	69.5	75.1	79.2	86.0
1 earth wiro transposed	68.0	79.2	85.9	90.7	98.8
0 corth wirc transposed	ठ2. 0	95.0	102.8	108.5	117.8

Multiply value from this table, corrected for tower variation, by longth of linc in miles.

$$
\begin{aligned}
\text { Result should be } & <10,000 \text { for satisfactory operation } \\
& <15,000 \text { for feasible operation }
\end{aligned}
$$

ti "Variation" is the porcontege variction in the value given by tho current table, for varictions of $: 10 \%$ in the dinonsions of the standard towor for thet voltage. For enses in which soveral dimonsions havo boen variod, the scparato variations are added arithnotically, and the totel variation opplied to tho value fron the curront table.

SIMGLE CIRCUIT - TRIAHGULAR SPACING
 Tabīo IIB

Curront in Isolatod Conductor (worst casc) in nillianps por milo for Standard Towors.

	132 kV	220 kV	275 kV	31.51 kV	380 kV
Singlo Concluctor					
1 certl wirc	43.9	71.5	88.3	100.4	111.1
0 carth wiro	50.8	79.9	95,1	106.3	123.7
1 carth wirc tronsposid	39.7	67.1	87.9	92.6	104.5
0 carth wire trensposed	46,6	76.3	90,7	101.1	118.0
Muitiplo Conductors.				‥	
1 corth wirc	84.9 9	116.9	132, 3	144.3	148.5
0 oarth wire	94.8	1230.0	142.0	152:1	168.2
1 corth wirc transposed	75.5	108.8	122.8	132.9	140,8
0 oarth wiro transposod.	85.0	121.5	13408	144.5	160.0

Multiply valuo fron this toble, corroctod for towor variation, by length of line in miloso

$$
\begin{aligned}
\text { Rosult should bc } & <10,000 \text { for satisfactory oporation } \\
& <15,000 \text { for foasiblo oporation. }
\end{aligned}
$$

F5 "Variction" is the percentage varintion in the value given. by the curront table, for variation of $\pm 10 \%$ in the dimensions of the standard tower for that voltage. For cases in which sevoral dimensions have boon variod, the soparato variations aro eddod arithnotically, and the total variation applied to the value from the current table.

DOUBLP CIFECUIT VERTICAL SPACIHG

Table IIIB.
Current in Isolated Conductor (worst case) in Milliamps. per mile for Standard Towers.

	132 kV	22.0 kV	275 kV	315 kV	330 kV
$\frac{\text { Sincle Conductor }}{\text { (other circuit dead) }}$					
2 earth wires	51.7	81.2	99.8	113.2	135.5
1 earth wire	53.6	83.6	103.3	117.4	140.8
0 earth wirc	56.5	89.2	109.3	123.9	148.0
2 earth wires transposed.	40.4	60.8	73.7	83.0	98.5
1 earth wire transposed	42.3	64.0	77.4	87.2	103.3
0 earth wire transposed	44.9	67.0	81.5	92.0	109.4
Effect of other circuit alive	± 12.0	± 20.5	± 25.0	± 28.2	± 33.5
$\frac{\text { Multiple Conductors }}{\text { (other circuit dead) }}$					
2 earch wires	101.3	133.4	151.7	165.0	187.0
1 earth wire	104.5	139.0	157.8	171.4	194.0
0 earth wire	109.3	145.6	165.6	130.0	204.0
2 earth wires transyosed	75.5	96.5	108.9	117.9	132.7
1 earth wire transposed	78.2	100.4	113.6	123.2	139.0
0 earth wire transposed	81. ${ }^{\text {d }}$	106.0	119.7	129.7	146.8
Bffect of other circuit alive	± 25.0	± 37.5	± 44.2	± 50.0	± 58.5

Multiply value from this table, corrected for tower variation, by length of line in miles.

Result should be $<10,000$ for satisfactory operation

OPER CTHCUIT VOLTAC: DETVEM ISOLTM GOMDUCTOR AND GROUMD IN kV . Table IV.

The larcer values are associated with no earth wires and no transposition,

