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ABSTRACT 

A series of experiments were conducted to investigate the protein, energy and 

lysine requirements of greenlip abalone Haliotis laevigata. An initial experiment 

estimated the optimal crude protein requirement. Digestibility coefficients of the protein 

and energy components of feed ingredients were then estimated and used to formulate 

diets to investigate the optimal dietary ratio of digestible protein to digestible energy and 

the effect these parameters have on tissue quality in abalone. Finally, the lysine 

requirement of greenlip abalone was estimated using two methods of lysine 

supplementation. 

The first experiment involved feeding a series of semi-purified diets in which the 

essential amino acid profile was similar to that of the soft tissue of abalone. Abalone 

grew fastest at a crude protein level of 20.1%. Excess dietary protein reduced the 

growth rate. The optimal digestible protein:digestible energy ratio was estimated at 14.4 

gDP.M.VDE. Leaching of essential amino acids over 24 hours immersion ranged from 

26-54%. 

The apparent and true digestibility coefficients of the protein and energy 

components of five feedstuffs were estimated. Defatted soyflour provided the most 

digestible protein (96.7% digestible). Pre-gelled starch provided the most digestible 

energy (80.6%). Cost analysis indicated that defatted soyflour was the most cost-

effective source of protein and energy of the feedstuffs studied. 

In a factorial experiment, abalone were fed diets at ten levels of protein and two 

levels of energy. The optimal dietary digestible protein level was estimated at only 

13%, and the optimal ratio of digestible protein:digestible energy between 12.3-17.9 



g.M.T. Abalone grew poorly on diets with fish oil levels of 6.0 - 9.0%, although their 

growth rate increased when returned to a commercial diet containing less oil. The 

composition of abalone foot muscle and, to a lesser extent, viscera, was affected by 

dietary protein level and, in some cases, by dietary energy level. Carcass partitioning 

revealed that meat yield was also affected by dietary protein level. 

The lysine requirement of greenlip abalone was determined using two methods 

of lysine supplementation; the addition of free L-lysine-hydrochloride to diets and the 

use of gluten enriched with covalently-bound lysine. Abalone showed a linear response 

to free-lysine, and a curvilinear response to covalently-bound lysine. The former 

method was therefore unable to produce an estimate of dietary lysine requirement. Use 

of covalently-bound lysine predicted that maximal growth occurred when lysine 

accounted for 3.9% of crude protein. 
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CHAPTER 1 

INTRODUCTION 

Australia exported 3,000 tonnes of wild-caught abalone valued at $147.6 million 

in 1995-6 (ABARE, 1996). Demand is growing, yet, with the exception of the tropical 

abalone, Haliotis asinina, the abalone fisheries of Australian waters are thought to be 

fully exploited (S. Shepherd, Pers. Comm.). In an attempt to fill increasing demand for 

this commodity, two species of abalone native to Australian waters, Haliotis laevigata 

and H. rubra ("greenlip" and "blacklip", respectively) are now being farmed 

commercially. Culture of these valuable marine molluscs has the potential to generate 

significant export income. 

Commercial farming of abalone has presented many challenges, particularly in 

relation to nutrition. Currently, in mainland Australian waters, a moratorium exists on 

the harvest of wild macroalgae, the natural diet of abalone, for use as abalone feed. Use 

of macroalgae has the following disadvantages: supply can be variable, may introduce 

pathogens, predators and competitors to the farmed abalone, requires a high labour input 

and results in high feed conversion ratios (FCR); in the order of 25: 1 (Mozqueira, 1992). 

These constraints and disadvantages have stimulated research into the development of 

cost-effective manufactured feeds for farmed abalone. Manufactured feeds may be 

made all year round, may be produced pathogen-free, result in low FCR (about 1.5:1), 

constant nutrient values, and automated feeding systems may be designed for their use. 

Despite research into the evaluation of ingredients for use in abalone diets (Uki 

et al., 1985a, Viana et al., 1994) and the testing of manufactured feeds (Uki et al., 

1985b, Mozqueira, 1992, Viana etal., 1993, Britz et al., 1994), there has been limited 
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definition of the nutritional requirements of the animal. Uki etal. (1986a) and Mai et 

al. (1996) both investigated the requirement of abalone for essential fatty acids and Mai 

et al. (1995a) examined the response of abalone to various levels of dietary lipid. Uki 

etal. (1986b), Taylor (1992), Mai et al. (1995b) and Britz (1996) evaluated the dietary 

protein requirement of abalone but all focused on crude protein and only Mai et al. 

(1995b) balanced the amino acid profile of the diet to that of the abalone body. No 

studies examining the dietary requirements of abalone for essential amino acids or 

concerning the ability of abalone to digest feed ingredients have been published. Thus, 

the most basic nutritional information required to optimise the growth of this valuable 

animal is lacking. 

The normal way of assessing the dietary requirement of a nutrient (eg, protein) 

is by growth experiment, in which the growth response of the animal is measured to 

increasing levels of the nutrient. This method has limitations, in the case of abalone, as 

water-soluble nutrients such as free amino acids leach from the feed prior to 

consumption. Much effort has been directed toward overcoming this problem by 

methods such as microencapsulation (Villamar and Langdon, 1993, Lopez-Alvarado et 

al., 1994) but with limited success. The covalent attachment of free amino acids to 

intact protein sources, such as that used by Fox et al. (1995,b) to investigate the 

requirement of Penaeus vanamai for lysine, offers an alternative method to overcome 

leaching loss. 

Ideally, evaluation of the dietary protein requirement of an animal should be 

carried out on a digestible protein basis at a minimum of two energy levels. This will 

allow an estimate of the optimal digestible protein:digestible energy ratio. Obviously 

this cannot be carried out until the ability of abalone to digest feedstuffs is known. 
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The objectives of this thesis were to optimise nutrient specifications in 

manufactured feeds for greenlip abalone. These objectives were to determine: (1) 

digestibility, (2) optimal dietary crude protein level, (3) optimal dietary protein:energy 

ratio, (4) optimal dietary lysine level, and (5) effect of different calcium and phosphate 

levels on growth. This information may then be used to refine and reduce the cost of 

commercial abalone diets, with the objective of enhancing the viability of the abalone 

aquaculture industry. 
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1 The emergence of abalone aquaculture: the need for a manufactured feed 

The decline of wild fisheries and the emergence of spawning technology. 

Abalone are marine snails of the genus, Haliotis. This genus is characterised by 

an oval shell and a large, muscular foot. McCormick and Hahn (1983) and Fallu (1991) .  

estimated the number of species at about 100, although Lindberg (1992) suggested only 

60-70. All belong to the monogeneric family Haliotidae (Cox, 1960) and are members 

of the class Prosobranchia. However, Brown and Murray (1992) found large genetic 

differences among some haliotid species, and suggested a taxonomic review. 

Abalone generally inhabit shallow, rocky waters close to land. They occur in the 

waters off most land masses except South America and Eastern North America (Hahn, 

1989). The distribution of species off the coasts of Japan, North America, Australia and 

Southern Africa was described by Lindberg (1992). Being herbivorous, subsisting by 

grazing or catching drift algae, abalone are usually restricted to the depth of water that 

can sustain macroalgal growth. Most temperate abalone occur from the intertidal zone 

to water of about 20 m depth, but tropical species occur to depths of up to 200 m 

(Lindberg, 1992). Recently, abalone have been introduced to the coast of Chile (Godoy 

et al., 1992) and to Iceland (Nielsson, 1994), although in the latter case they are confined 

to land-based farms. 

The meat of the muscular foot of abalone (individuals of H. rufescens may attain 

a weight of one kilogram, yielding over 400 g of meat) has been sought as food by 
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humans for millennia (Knauer, 1994). In recent times, demand for the meat has 

escalated, particularly in Japan and China. Increased demand may be due to a 

combination of human population increase, depletion of wildstocks, a higher profile of 

the commodity, and an increase in the number of people able to afford it. The meat of 

abalone is utilised in either canned, dried or frozen forms. 

In addition to the meat, the inside of abalone shell has a layer of nacre, with a 

characteristic iridescent lustre. The shell, (particularly that of the New Zealand "paua"; 

H. iris) is used for the manufacture of jewellery, buttons and for works of art, and is of 

considerable value (Nie, 1992). Abalone have also been known to produce pearls, and 

some enterprises now farm various species and are attempting to produce cultured 

abalone pearls (Fankboner, 1991; 1993). 

Commercial demand for abalone meat was originally satisfied by exploiting wild 

stocks. The most commercially important fisheries are/were located along the coasts of 

Australia (Prince and Shepherd, 1992), California (Tegner et al., 1992), Canada 

(Farlinger and Campbell, 1992), China (Nie, 1992), Japan, Mexico (Guzman del Proo, 

1992), New Zealand (Schiel, 1992), and South Africa (Tarr, 1992), with smaller 

fisheries located in the Channel Islands (Clavier, 1992) and the Middle East (Johnson 

et al., 1992). In recent times, however, wild stocks in several fisheries have declined 

(Hooker and Morse, 1985; Genade etal., 1988; Tegner etal., 1992). World production 

peaked at 27,600 tonnes in 1968, but has since declined to about 12,000 tonnes (FAO, 

1973-1988). Australia's production peaked in the early 1970's as virgin stocks were 

exploited (Shepherd, Pers. Comm.) but the introduction of fishing quotas and restriction 

on licence numbers has seen production stabilise at about 5,000 tonnes. 

Following unsuccessful attempts at the artificial fertilisation of eggs in 1894/5 
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(Walker, 1990), the first successful attempts to cultivate abalone were made in 1935 

(Hahn, 1989) and subsequently by Ino, (1952). As early as the late 1950's hatcheries 

were operational in Japan, but it was not until the 1970s that intensive research into 

culture techniques commenced (Grant, 1981). By 1978, Japanese hatcheries were 

producing 28 million abalone spat (Walker, 1990). By the early 1980's, abalone culture 

techniques developed by the Japanese were being adopted by other countries. With wild 

fishery stocks in decline due to over exploitation and pollution, the price of abalone 

increased to a point where culture of abalone became profitable. 

Economics and ecology: why a manufactured feed is sought. 

The culture of abalone is usually carried out by one of three methods. The first 

(stock enhancement), was pioneered by the Japanese and involves raising juvenile 

abalone until they are about 20-30 mm in length. They are then released into the wild 

to enhance natural stocks, and are harvested when they attain legal size (Grant, 1981). 

Survival rates vary widely, with Saito (1984) reporting 20% and McCormick and Hahn 

(1983) suggesting 3-6% for a 13 mm release size, and 10-30% for 20-30 mm. Tegner 

and Butler (1985) recorded only 1% survival of seed over one year, (with predator 

collection to ease pressure) with an estimated mortality of 43%. The remaining animals 

(56%) were presumed to have left the area. Stock enhancement is still practised in Japan 

(Hahn 1989) and China (Hooker and Morse 1985). Capital and running costs for this 

type of culture are low, but losses due to predation, poaching and animal movement are 

obviously high. 

The second method involves holding the abalone in barrels or cages either 

anchored to the sea floor or suspended in mid-water. This method is particularly popular 

6 



in certain coastal areas of mainland China (Nie, 1992). Advantages of this system are 

that the animals are usually exposed to good water conditions and there are no pumping 

costs. Disadvantages are that feed must be supplied to the cages manually, raising 

labour costs (Nash, 1991) and animals are exposed to potential predators such as 

starfish, crabs and to infestations, such as mudworm (Polydora and Boccardia spp.; 

Lleonart and Handlinger, 1997). 

The third method of raising abalone is in tanks or raceways on land, with water 

pumped from the sea (Hooker and Morse, 1985). Capital costs for this method are 

usually high (land must be purchased; pumps, tanks and piping installed), but the 

advantage is that the farmer has more control over such parameters as flow rate, aeration 

and feeding regimes. 

Feed is one of the major operating costs associated with holding abalone in the 

sea or on land. Prior to attaining a size of about 10 mm, juvenile abalone graze on 

diatoms (McCormick and Hahn, 1983; Ebert and Houk, 1984; Nash, 1991). However, 

diatoms quickly become a limited food source due, in part, to the density at which the 

animals are stocked, and the farmer is required to wean the animals onto either 

macroalgae or manufactured feed (Knauer et al., 1995). Algae (either drift or harvested) 

are usually cheap (on a wet-weight basis) and have the advantage of being the natural 

food of the animal. However, supplying macroalgae to tanks is labour-intensive, their 

abundance is often seasonal (Mozquiera, 1992), and feeding abalone continuously on 

one or two species could result in nutritional deficiencies (Britz et al., 1994). The 

farmer also runs the risk of introducing organisms with the algae that are predators, 

pathogens or parasites of abalone or competitors for food and oxygen. In addition, in 

some countries (for example Australia), the harvest of wild macroalgal stocks is limited 
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or prohibited altogether. The feed conversion ratio of algae (wet weight of algae 

consumed to weight gain of whole, wet abalone) is poor, typically 25:1 (Mozqueira, 

1992). 

In contrast to macroalgae, manufactured feeds can be produced year-round, they 

can be easily stored and feeding systems can be automated. There is evidence that they 

result in increased survival rates, better feed conversion and faster growth than natural 

feed (McCormick and Hahn, 1983; Hahn, 1989; Britz etal., 1994). Manufactured feeds 

may be adapted to supply the nutritional requirements of abalone of different ages and 

may also be adapted for use in different culture systems. 

Desirable characteristics of manufactured feed for abalone. 

Palatability: Any feed manufactured for any cultured species must be palatable but 

fortunately abalone readily consume a wide range of diets based on ingredients as 

diverse as semolina, fishmeal and casein without palatability problems (Fleming et al., 

1996). However, the candidate did find that greenlip abalone (H. laevigata) refuse to 

eat diets high (20% dry matter) in gelatine. Substances that act as attractants and may 

increase the palatability of diets have been studied, such as amino acids, phospholipids 

and dipeptides (Harada et al., 1987; Harada, 1989), as have the attractant properties of 

feedstuffs themselves, such as fish silage, fresh and dried macroalga, gelatin, and 

soybean meal (Viana et al., 1994). Currently, no commercial Australian diet includes 

an ingredient specifically as an attractant or to increase palatability. 

Digestibility: An essential characteristic of any feed is that it must supply enough 

digestible protein, energy and micronutrients to ensure the animal grows at an economic 

rate. Most farmers report that they require a growth rate of 67-100 l_un.d 1  to ensure their 
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stock reach a shell length of 70-80 mm in 3 years (Fleming etal., 1996). To accurately 

meet the dietary requirements of the animal, it is necessary to know the ability of the 

animal to digest, absorb and metabolise potential feedstuffs. Although some researchers 

have addressed the (crude) protein requirements of abalone (Uki et al., 1986b; Taylor, 

1992; Mai et al., 1995b; Britz, 1996) none have investigated digestible protein 

requirements. Similarly, some research has been undertaken into the lipid requirements 

of abalone (Mai et al., 1995a) but no published data on lipid digestibility are available. 

No data concerning essential amino acid, vitamin or mineral requirements of abalone 

have been published apart from results arising from this thesis (Coote etal., 1996). 

Leaching: Manufactured feeds developed for abalone should be highly stable in water. 

Abalone are slow feeders that rasp their feed with a radula, unlike finfish, that quickly 

swallow feed pellets intact. Farmers report a desire to keep labour costs low by feeding 

as infrequently as possible. Additionally, it is important that excessive leaching of 

nutrients from the feed be restricted as much as possible to help maintain good water 

quality and to conserve feed nutrient levels. Highly water-stable feeds would help 

achieve these goals. Water stability of feeds is related to feedstuffs used, method of 

manufacture and use of binders. With the exception of Knauer et al. (1993), no 

research results that have focused on abalone diets in any of these areas are published. 

Waste: It is essential that manufactured feed produces as little waste as possible. 

Unutilised digested nutrients exert an energetic demand on the animal to excrete them 

and, along with food wastes and faeces, provide a food source for other organisms (eg; 

bacteria and fungi) that may flourish, resulting in sub-optimal conditions for the cultured 

species. The risk of disease outbreak may also be increased. From an economic point 

of view, the reduction of waste, in the form of uneaten feed, faeces and metabolic wastes 
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(eg; ammonia) is highly desirable. Many countries have in place environmental 

guidelines that limit the amount of waste that can be disposed of in the sea, or impose 

taxes proportional to the amount discharged (EPA, 1993). 

The state of abalone feed development, commercialisation and research 

Research into manufactured feeds for abalone has been conducted for over 30 

years and has been extensively reviewed by Fleming et al. (1996). Practical diets have 

been produced both in the form of gels (Ogino and Ohta, 1963; Sagara and Sakai, 1974; 

Koike et al., 1979) and pellets (Gorfine and King, 1991; Morrison and Whittington, 

1991; Viana etal., 1993; Britz et al., 1994). 

Although considerable effort has been directed toward the development of 

manufactured feeds for abalone, there are surprisingly few produced commercially. 

Fleming et al. (1996) reported a total of 11 commercial abalone feeds produced. The 

Chinese and Japanese feeds are for local use, while small amounts of the New Zealand 

feed have been exported to Australia. In Australia, Deakin University has developed an 

abalone feed that has been commercially manufactured (Fleming etal., 1996). Since 

that 1996 review, three companies have commenced the manufacture of abalone feed 

in South Australia. 

Until recently, some Australian abalone farmers were able to supply their needs 

by making feed on-site. These feeds were usually made on a "trial and error" basis and, 

consequently, were of sub-optimal formulation. The recent involvement of commercial 

feed companies has seen the cessation of this practice in Australia. 

There are compelling reasons why research should be directed toward the 

development of a manufactured feed for abalone in Australia. These include: 
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1/ Diets that have been formulated for exotic abalone may not produce similar results 

when fed to Australian species. 

2/ The importation of large quantities of feed is expensive, and carries with it the risk 

(however slight) of pathogens. 

3/ Australia has a large range of inexpensive feed ingredients used in established feed 

industries. 

4/ There is currently a moratorium on the harvest of wild macroalgal stocks from the sea 

in the waters off mainland Australia, and only limited amounts may be taken from 

Tasmanian waters. 

5/ There are few published reports on the nutritional requirements of abalone and no 

workers have established a logical sequence of research to fill the information gaps in 

this field. 

6/ Formulated feeds have a more consistent nutrient content. 

7/ Formulated feeds are readily available year-round. 

8/ Formulated feeds may have a lower labour cost than harvested macroalgae. 

In order to formulate cost-effective, nutritionally complete diets for any cultured 

species, one requires a pool of potential feedstuffs, knowledge of the nutritional 

requirements of the species and the apparent digestibility coefficient of the species for 

the feedstuffs (De Silva and Anderson, 1994). As an impressive range of traditional 

feedstuffs are available in Australia, the next logical steps are to evaluate the ability of 

abalone to utilise them and use that information to evaluate their nutritional 

requirements. This thesis attempts to apply the above strategy by evaluating the dietary 

protein requirements of abalone, the optimal dietary protein:energy ratio and 

requirement for at least one of the essential amino acids. The starting point is the 
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evaluation of feed design and preparation methods in a growth experiment that allowed 

the candidate to gain experience with husbandry procedures. In relation to protein 

requirements it was necessary to conduct a "range-finding experiment" on dietary 

protein and then to assess certain feedstuffs for protein and apparent energy digestibility. 
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2.2 Digestibility and digestion in abalone. 

Determination of digestibility 

Feeds for farmed animals can be formulated on a crude basis but this can lead to 

over-supply of nutrients or nutritional inadequacies when considered on a digestible 

basis. Clearly, research into digestibility and availability of nutrients has great 

importance to both the feed manufacturing and farming sectors. 

Apparent digestibility may be estimated by the direct method, involving the 

determination of feed consumed and faeces produced, or by the indirect method, 

involving either the addition of an indigestible marker to the feed (eg, chromic oxide), 

or use of an indigestible component of the feed (eg, acid-insoluble ash). Most 

digestibility work involving abalone has used the indirect method, requiring the 

collection of only a representative faecal sample (Wee et al., 1992, 1994), although 

Fleming (1995) used the direct method. Much of this work evaluated the digestibility 

of macroalgae and hence is of limited use in the formulation of a manufactured feed. 

Where digestibility data on manufactured feeds were given (Wee, etal., 1992, 1994), 

the proprietary formulations were not presented. The candidate has generated 

digestibility data for the protein and energy components of some feedstuffs when fed to 

abalone and used these data in research to quantify protein and energy requirements for 

abalone. The focus of this research is directed at the protein and energy requirements 

of abalone because protein is traditionally the most expensive dietary component due 

to inclusion level. Energy is considered because adequate supplies are necessary to 

ensure efficient utilisation of protein (see "Protein deposition and growth"; Section 2.3). 
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Apparent, true and real digestibility of nutrients 

Apparent Digestibility 

This is the most crude estimate of digestibility and is defined as the difference 

between the amount of the component of interest in the diet and that in the faeces, 

divided by the amount in the diet (Low, 1982). The apparent digestibility of protein 

does not correct for endogenous losses of protein or amino acids. It is also less accurate 

at lower dietary protein levels, as endogenous N production accounts for a higher 

proportion of faecal protein (Eggum, 1973). Thus, Sauer et al. (1989) recommended 

that apparent digestibilities should only be carried out under standard conditions (for 

example, all test diets should contain similar protein levels). In practice, this is difficult 

to achieve, when some of the feedstuffs evaluated have a lower protein content, without 

confounding the experiment by varying the inclusion level of ingredients with higher 

protein content, in the basal diet. 

True Digestibility 

True digestibility is determined in a similar way to apparent digestibility, but an 

attempt is made to account for the endogenous production of certain components such 

as protein. Endogenous proteins consist of digestive secretions (eg; enzymes) that are 

usually soluble, cells shed from the digestive tract lining, and bacterial protein 

contributed by resident microflora (van Barneveld, 1993). Endogenous protein 

production may be estimated by feeding the animal a protein-free diet, or by regression 

to zero using a series of test proteins at various levels. However, such methods are 
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subject to error, as endogenous losses depend, in part, on the composition of the diet and 

on the intake level (Sauer and Ozimek, 1986; de Lange etal., 1989). 

Real Digestibility 

Real digestibility differentiates between endogenous and exogenous amino acids. 

The "N isotope dilution technique (de Lange et al., 1990), involves infusion of "N-

labelled amino acids into the body and their subsequent incorporation into endogenous 

protein. These can then be differentiated in the faeces from dietary amino acids. The 

chemical transformation method of Hagemeister and Erbersdobler (1985) may also be 

used. Values for real digestibility tend to be 4-5% higher than those for true digestibility 

- (Low, 1982). However, the high cost associated with the use of "1\1 isotopes and that 

of the chemical labelling technique limit the use of these techniques in terrestrial 

animals. There may be greater potential for their application in the study of animals 

such as abalone due to the comparatively small quantities of feed they consume. 

Brief overview of the digestive tract 

The digestive tract of abalone is complex (Fig. 2.1). Four distinct, main regions 

may be discerned along the tract: the buccal region, the oesophagus, the stomach and the 

intestine (Crofts, 1929). The radula is rasped against algae, feed pellets or a substrate 

and edible particles are conveyed into the buccal cavity, probably aided by the 

backward-pointing teeth (Crofts, 1929). Food particles are mixed with copious amounts 

of mucus in the buccal cavity and with secretions from the salivary glands (McLean, 

1970) as the food passes along the oesophagus. From the oesophagus, the food passes 

into the large, thin-walled muscular crop, where mixing of food and secretions occurs. 
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z  DD 

Fig. 2.1: Schematic diagram of abalone digestive tract. 
A, anus; BR, buccal region; C, crop; DD, digestive gland duct; 
E, oesophagus; M, mouth; S, stomach; SC, spiral caecum 
SG, salivary glands; I-V, intestinal regions. 

(Adapted from McLean, 1970). 
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Algae are (at least partially) digested at this point as Foale and Day (1992) reported that 

some algal types are degraded to an unrecognisable state within six hours of ingestion. 

Crofts (1929) describes a semi-circular valve guarding the narrow opening leading to 

the muscular stomach, that has less than half the capacity of the crop. Stomach contents 

are kept in motion not by peristalsis but by cilia. Digestive glands secrete enzymic 

secretions into the stomach via ducts guarded by valves (Crofts, 1929). The digestive 

fluid/food mix is directed by the beating of cilia into "gutters" that lead to the spiral-

shaped caecum. Crofts (1929) states that the digestive juice travels up the deep anterior 

gutter of the caecum and passes back to the stomach via the posterior gutter. A 

longitudinal fold of the caecum, the typhlosole, keeps the gutters separate. The mixture 

emerges from the caecum into the first of the five intestinal sections described by 

Campbell (1965), known as the "sorting area" that is lined with prominent ridges and 

grooves (Campbell, 1965) and marked by a one-way valve to prevent regurgitation of 

food (Crofts, 1929). Mucus is secreted into this region, combined with the fine material 

in the intestine and carried into grooves and formed into fine threads by the action of 

cilia. Indigestible material is formed into a faecal rod, that is compacted as it passes 

along the intestine through regions II, III and IV. Material not already in the faecal rod 

is added to it in regions III and IV. Final compaction and pellet formation takes place 

in region V (Campbell, 1965). Faecal pellets discharge into the mantle cavity. Fretter 

and Graham (1976) postulate that compaction of the faecal pellet aids in preventing the 

disintegration of the pellets in the mantle cavity of the animal. 

Protein digestion by abalone 
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Knowledge of protease activity in the gut of abalone is limited, having been 

detected in the midgut gland (McLean, 1970), digestive tract (Cho et al., 1983; 

Yamaguchi et al., 1989) and intestine (Groppe and Morse, 1993) of abalone. Britz, et 

al., (in press) demonstrated that protease concentration in H. midae increased by a factor 

of approximately 20 to peak at 18 hours after feeding and returned to the pre-feeding 

level after 24 hours. Similarly, protease activity rose by a factor of approximately seven 

to peak six hours after feeding, and had returned to pre-feeding levels by 24 hours after 

initial feeding. Despite a deficiency of information on the ability of abalone to digest 

protein, manufactured feeds tend to contain higher levels of protein than macroalgae; 

typically 20-54 percent (Fleming et al., 1996). Much of this protein is of terrestrial 

origin (eg cereal proteins). The effects of high levels of dietary protein of terrestrial 

origin on abalone growth and tissue composition are unknown. 

Carbohydrate digestion, metabolism and storage in abalone 

Abalone have evolved an ability to supply most of their energy requirements 

from carbohydrates (Britz et al., in press). Knauer (1994) has presented a summary of 

the mono-, di- and polysaccharide substrates found to be hydrolysed by abalone 

digestive enzymes. Structural and reserve carbohydrate levels of marine macroalgae can 

be quite high. The main reserve carbohydrates of macroalgae are laminarin (brown 

algae) and Floridean starch (red algae). A study by Powell and Meeuse (cited by 

Percival and McDowell, 1967) revealed that some brown algae of the Pacific coast of 

North America contain 22-34% laminarin (dw). Structural carbohydrates include 

cellulose, xylans and mannans, but mucilages such as alginic acid, carrageenan and 

fucoidin also occur. Carrageenan has been shown to make up to 55% of the dry weight 
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of Eucheuma spinosum, while cellulose ranges from 0.6% to 10% (dw) for brown algae, 

with a similar range for red algae (Percival and McDowell, 1967). 

It is likely that enzymes acting on reserve carbohydrates (eg; laminarin and 

Floridean starch) show the highest activity (Hylleberg-Christiansen, 1972; Elyakova et 

al., 1981), although structural carbohydrates (eg; cellulose) are also hydrolysed to some 

degree (Bennett and Nakada, 1968; Nakagawa and Nagayama, 1988). Although abalone 

are undoubtedly capable of digesting marine carbohydrates, the degree to which they are 

able to digest terrestrial carbohydrates is unknown. Although some commercial abalone 

feeds contain macroalgae and/or their extracts, others contain high inclusion levels of 

terrestrial carbohydrates (Fleming etal., 1996). An assessment of the ability of abalone 

to digest raw and processed terrestrial starches would be a useful addition to the 

available information on abalone nutrition. 

Do bacteria play a role in the digestive processes of abalone ? 

It has been suggested that, given the long gut (relative to the size of the abalone) 

and the fact that it is a herbivore, bacteria may play some part in the digestive processes 

of abalone, in a way analogous to the symbiotic relationship between gut microflora and 

ruminants. In brief, ingested microbes may attach to, and proliferate in, favourable 

regions of the gut, providing benefits to the host. In the case of abalone, benefits may 

include breakdown of structural carbohydrates of algae via extracellular enzymes, food - 

pre-conditioning (Harris, 1993) and the provision of amino acids (Fong and Mann, 

1980) and vitamins (Shiau and Lung, 1993). Some researchers (Garland et al., 1985; 

Erasmus etal., 1994; Harris, 1994) have found bacteria in the gut of abalone, but their 

exact contribution (if any) to the efficiency of digestion is yet to be established. 
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2.3 Dietary protein and amino acid requirements 

Protein deposition and growth 

Protein deposition in animals is determined by both intrinsic (eg; age, sex, 

genotype of animal) and extrinsic (eg; protein intake, protein availability and energy 

intake) factors (Miller and Payne, 1963). However, the relative importance of intrinsic 

and extrinsic factors is still unclear. Research directed toward the nutrition of terrestrial 

farm animals resulted in the concept of protein- and energy-dependent phases of protein 

deposition (Black and Griffiths, 1975). At a constant energy intake, protein deposition 

(PD) in growing animals increases linearly with protein intake until energy becomes 

limiting (Fig. 2.2). At this point (the optimal digestible protein: digestible energy ratio 

(DP:DE)) for that energy level, provision of more protein will result in no further gain 

in PD. That is, maximum protein deposition (PD inax) has been reached. At a higher 

energy intake, protein deposition continues as dietary protein levels increase until energy 

once more becomes limiting. 

This concept is often described as a linear-plateau relationship, but it has also 

been reported as linear (Zhang et al., 1984), curvilinear (Fuller and Garthwaite, 1993) 

and 2-phase linear (Batterham et al., 1990). The slope of the relationship between 

protein intake and protein deposition represents the efficiency of protein utilisation 

(Bikker, 1991). This situation is more likely to be seen in young, fast-growing animals, 

such as the result obtained by Close et al. (1983) for pigs of less than 40 kg liveweight. 

However, as Whittlemore and Fawcett (1976) predicted, pigs should have a 

maximum capacity for PD. This PD max  is dependent on the protein and energy levels 

of the feed, the feed intake of the animal and the capacity of the animal for growth. 
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PD„,m, is more likely to be reached if the pig is older, castrated or has a poor genotype 

for PD (Bikker, 1991). The linear-plateau responses reported by Campbell et al. (1983 

and 1985) for pigs indicate that PD max  was reached. 

Little work of a similar nature has been applied to the study of protein deposition in 

abalone. This thesis examines the effect of dietary protein and energy levels on protein 

deposition in abalone. 

Dietary protein requirements of abalone 

The protein content of macroalgae eaten by abalone is highly variable. Britz et 

al. (1994) gave the protein content of dried Plocamium corallorhiza and Ecklonia 

maxima as 20% and 10% respectively, while much lower values (0.1% for Laurencia 

papillosa to 2.8% for Ulva lactuca) were reported by Abbas etal. (1992) for 15 species 

of benthic algae from the Arabian Gulf. Macrocystis pyrifera was reported by Ma et al. 

(1989) to have a protein content of 20.0%. 

Uki etal. (1986b) conducted growth experiments on juvenile H. discus hannai 

using test diets containing either casein or white fishmeal as a protein source. Dietary 

protein levels ranged from 0% to 55%. The highest growth rate was recorded for those 

animals consuming a diet containing 46.5% crude protein (50% casein). However, when 

feed conversion efficiency, protein retention and net protein utilisation were taken into 

consideration, the authors concluded that an optimal protein level for practical diets, 

using casein, would be 20-30%. Similarly, Taylor (1992), concluded that a diet of at 

least 30% crude protein (the maximum protein level of the experimental diets was only 

30%) was necessary to produce maximal growth in H. kamtschatkana. Britz (1996), 

using fishmeal-based semi-purified diets, found that the specific growth rate of H. midae 
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tended to increase as dietary protein level increased to the maximum dietary protein 

level (47%) used in this experiment. The author noted, however, the need to acquire 

data on digestible energy content of feedstuffs in order to define the optimal digestible 

protein:digestible energy ratio. The main criticism of the above experiments is that the 

diets relied on a single source of protein. It is unlikely that either casein or fishmeal 

contains the ideal profile of essential amino acids for optimal growth of abalone. 

Estimates derived from such studies are likely to be high as the animals fed diets of 

lower protein content will suffer growth reduction due to a deficiency of essential amino 

acids. 

Mai etal. (1995b) improved on the nutritional studies outlined above in that the 

essential amino acid profile of the experimental diets was adjusted to be similar to that 

of the soft tissue of the abalone. The dietary protein content for optimal growth was 

reported to be between 24.0-34.5% and 25.2-36.6% for H tuberculata and H. discus 

hannai, respectively. However, these workers also acknowledged the shortcomings of 

their results due to the fact that digestibility values for protein were not determined. 

The above reports yield a wide range of "optimal dietary protein levels" for 

abalone. Research at the fundamental level of digestibility of individual feed ingredients 

is required prior to the elucidation of an optimal (digestible) protein level. 

Essential and non-essential amino acids 

Of the twenty or so amino acids that are incorporated into protein, ten are unable 

to be synthesised by most metazoans and are termed "essential", and must be provided 

in the diet. These are arginine, histidine, lysine, threonine, phenlyalanine, tryptophan, 

methionine, valine, leucine and isoleucine. The remaining amino acids are termed "non- 
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essential" and can be synthesised to meet requirements, provided that adequate essential 

amino acids and energy is available. Using the radiometric technique of injecting ' 4C-

glucose into H. rufescens, Allen and Kilgore (1975) concluded that all of these ten 

amino acids are essential for abalone. No conclusion was drawn concerning the 

dispensibility of tyrosine, as in many animals it can be synthesised from phenylalanine. 

Dietary essential amino acid requirements of abalone 

Although the study by Allen and Kilgore (1975) indicated qualitative 

requirements of abalone for the 10 common essential amino acids (EAA's), no 

information is available concerning the quantitative requirements of abalone for any of 

these. Even in the case of finfish, complete requirements for all EAA's have been 

established for fewer than 10 of the 300 or so species cultured worldwide, although 

partial requirements are known for several others (Wilson, 1994). These data have been 

derived from growth experiments on the eels Anguilla anguilla and A. japonicus (Arai 

et al., 1972), carp (Nose et al., 1974), channel catfish ktalurus punctata (Wilson et al., 

1978 and 1980), Nile tilapia (Santiago and Lovell, 1988) and Catla catla (Ravi and 

Devaraj, 1991). Other methods of quantitative estimation of amino acid requirements, 

such as serum amino acid levels, or amino acid oxidation, have been found to be of 

limited use (Wilson, 1994). 

Growth experiments typically involve purified diets containing crystalline 

EAA's to formulate a series of diets containing graded levels of the EAA under scrutiny, 

but replete in all others. Requirements are estimated based on the conventional growth 

response curve. An increase in weight gain is normally observed with increasing amino 

acid intake up to a break-point (corresponding to the requirement of the specific amino 
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acid), beyond which weight gain levels off. Methods used to estimate the break-point 

include regression analysis (Akiyama et al., 1985), continuous broken-line models 

(Wilson et al., 1980) described by Robbins et al. (1979), and quadratic analysis 

(Santiago and Lovell, 1988). 

Difficulties encountered with growth experiments to assess amino acid 

requirements include the leaching of crystalline EAA's into the water from the feed, 

(this would be especially significant in experiments with abalone, due to their slow 

feeding behaviour), lack of precision in interpretation of the growth curve (Wilson, 

1994) and evidence from prawn nutrition suggesting that free EAA's are incorporated 

into muscle tissue at very low rates (Deshimaru, 1981). It would be desirable to slow 

the release of crystalline EAA's into the blood via a method such as encapsulation 

(Lopez-Alvarado, 1994) or to avoid the problem of leaching altogether by covalent 

attachment of free EAA's to intact protein known to be limiting in one EAA as 

developed by Fox et al. (1995,a). 

Essential amino acid profile of abalone 

For some time, the "ideal protein" concept has been advocated as the method to 

estimate the dietary EAA requirements of animals (ARC, 1981). The "ideal protein" is 

the amino acid balance of a diet that would most perfectly meet the animal's immediate 

amino acid needs at all stages of the life cycle. Thus, the "ideal protein" would change 

with maturity of the animal. One way to approximate the "ideal protein" in a real diet 

for an animal is to examine the amino acid profile of the whole body, and to formulate 

a diet that closely resembles the amino acid profile of the body. Although not strictly 

the "ideal protein", such a diet is likely to be a good starting point for a commercial diet 
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for abalone as they are grown for a relatively small percentage of their lifespan and are 

usually sold prior to full maturity. In addition, if one knew the EAA profile of the 

animal, and the most limiting EAA of the diet (normally lysine for animals fed a cereal-

based diet), then one would need only to evaluate the dietary requirement for lysine, and 

the requirements for the rest could be estimated based on their ratio to lysine (Wilson, 

1994). 

Cowey and Tacon (1983) applied a similar concept to fish nutrition and found 

a high correlation between the experimentally determined EAA requirements of carp 

(Nose, 1979) and the pattern of these amino acids in the body of young, growing carp. 

Similarly, Wilson and Poe (1985) obtained a regression coefficient of 0.96 when 

regressing the EAA requirement pattern for channel catfish against the composition of 

a 30 g catfish. 

This approach of tailoring the EAA pattern of the feed to that of the body has 

been used to develop diets for prawns (Deshimaru and Shigeno, 1972; Colvin, 1976) and 

finfish (Arai, 1981; Wilson and Poe, 1985). More recently, Knauer et al. (1994) 

analysed juvenile H. midae with a view to using the EAA profile of the body as a base 

for the development of a weaning diet for that species. Table 2.1 depicts the known 

amino acid profiles of some species of abalone. 
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Table 2.1: Amino acid composition of the whole soft body of abalone. 

All values are %16N (equivalent to % protein) of soft body (dry wt.) 

A A H. rubra' H. midaez  H. 
rufescensf 

H.iris4  H. 
japonica' 

H. 
laevigata6  

Cys 1.42+0.12 2.41+0.35 0.69+0.07 1.42 1.18 1.29 

Asp ND 10.54+0.06 11.20+0.72 10.20 10.20 7.96 

Thr* 4.13+0.26 4.99+0.05 4.63+0.25 4.30 5.06 3.99 

Ser ND 5.13+0.13 4.29+0.25 5.70 5.30 4.46 

Glu ND 14.82+0.39 13.50+0.52 14.60 15.20 14.04 

Pro ND 5.24+0.03 2.68+0.31 4.30 5.21 4.59 

Gly ND 8.37+0.37 4.96+1.02 8.40 7.81 7.32 

Ala ND 5.82+0.07 5.45+0.14 5.90 6.58 4.72 

Val* 4.23+0.21 4.61+0.09 4.72+0.42 4.10 4.36 4.40 

Met* 1.96+0.13 2.09+0.06 2.60+0.25 1.53 2.54 1.43 

Ile* 3.62+0.21 4.11+0.03 3.78+0.49 3.70 4.18 3.77 

Leu* 6.13+0.31 6.93+0.07 7.84+0.53 7.30 8.10 5.55 

Tyr' 2.88+0.22 ND 3.81+0.65 3.20 3.52 2.60 

Phe* 3.12+0.27 3.90+0.14 4.07+0.86 4.20 3.73 3.10 

Trp* 0.93+0.06 0.82+0.17 0.38+0.02 1.10 0.88 ND 

Lys* 5.30+0.26 6.21+0.03 5.99+0.45 5.90 6.43 5.00 

His* 1.78+0.13 1.82+0.10 1.97+0.26 2.10 1.48 1.35 

Arg* 9.03+0.47 7.91+0.13 7.26+1.06 10.00 9.48 7.29 

* Denotes essential amino acid. (For amino acid names in full, see Appendix 3.) ND = Not determined 
1 King etal. (1996) 
2 Knauer etal. (1994) 
3 Allen and Kilgore, (1975) 
4 Promak Technology Ltd. (Fleming etal., 1996) 
5 Suyama and Sekine (1965) 
6 Coote et al., in prep. NB: These animals were raised on manufactured feed. 
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2.4 Energy requirements 

Biological partitioning of energy in abalone 

The energy requirements of abalone differ to that of mammals and birds in three 

main respects. Firstly, abalone, being poikilotherms, do not expend energy to maintain 

a body temperature different to the surrounding water. Secondly, abalone excrete waste 

nitrogen as ammonia. This requires virtually no energy compared to the production of 

urea or uric acid, the principal compounds generated in nitrogen excretion by birds and 

animals (Hainsworth, 1981). Thirdly, abalone spend little time engaged in voluntary 

movement (eg; foraging) compared to finfish, for example, that spend a considerable 

part of each day swimming. A flow diagram depicting energy partitioning in abalone 

can be seen in Fig. 2.3. Note that the energy needs for maintenance and voluntary 

activity must be met before energy is available for growth. 

Energy is lost from the body of an abalone via faeces, ammonia, gill excretions, 

mucus production and as heat. The energy lost via faeces (FE) and ammonia (UE) has 

been estimated by Peck et al. (1987) as 20.7% of the energy intake (IE) of a 1.0 g (dw) 

abalone and by Barkai and Griffiths (1988) as 63%. Energy loss due to ammonia 

excretion is estimated as less than 1% of consumption by Barkai and Griffiths (1988), 

which correlates well with the estimate of 1.1% for a 1.0 g (dw) abalone by Peck et al. 

(1987). The amount of energy available for metabolic activity (ME) and ammonia 

excretion is assumed to be approximately equal to the amount of total digestible energy 

Thus, 

TDE = ME + UE 	 (1) 
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Fig. 2.3: Schematic depiction of energy partitioning in abalone 
(Adapted from Peck et al. 1987) 
TDE: Total Digestible Energy, HE: Heat Energy 
SE: Surface Energy, RE: Recoverable Energy 
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As UE is negligible (see above), 

	

ME TDE 	 (2) 

Thus, for abalone, metabolisable energy is approximately equal to dietary digestible 

energy (DE). 

Metabolisable energy can be further subdivided into energy required for growth, 

reproduction and maintenance, but is ultimately expressed in only two forms, 

recoverable energy of products formed (RE), for example, meat, eggs or mucus, and heat 

energy (HE) (Fleming, 1991). Heat generated by abalone by respiration was estimated 

by Peck et al. (1987) to comprise 21.6%-31.1% of energy intake, depending on animal 

size. These estimates are in good agreement with the estimate of Barkai and Griffiths 

(1988), of 32% of the energy budget of H. midae at 19 °C. These authors admit that this 

value far exceeds laboratory measurements of about 8%, and suggest that these low 

values probably result from suppression of normal activity within respirometry 

chambers. So, 

	

ME = RE + HE 	 (3 ) 

Mucus, a protein-carbohydrate complex, is secreted from the foot and gills of 

gastropods and may account for a considerable proportion of the energy budget of these 

animals (Kideys and Hartnoll, 1991). It is estimated that the whelk, Buccinum undatum 

expends 27% of its energy intake as mucus (Kideys and Hartnoll, 1991). Mucus 

production of the abalone H. tuberculata, ranged from 23.3% of the energy intake of a 

0.01g (dw) animal to 29.1% of intake in a 50g (dw) animal (Peck et al., 1987). As 

mucus production in abalone apparently accounts for a large percentage of energy 

intake, some authors treat it as a separate component, (SE or "surface energy") and add 

it to equation (3), resulting in: 
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ME ----- RE + HE + SE 	 (4) or, 

DERE+HE+SE 	 (5) 

As allocations of the energy intake have already been estimated as approximately 30% 

and 20% for HE and SE respectively (see above), then RE must approximate 50% of 

DE. As DE can be estimated if intake rates and digestibility of the energy of diets are 

known, it should be possible to construct a model for growth of abalone. Work 

undertaken in this thesis may advance knowledge in this area. 

Calorific values offood components 

Apart from water, most of the components of food can be categorised as protein, 

lipid, or carbohydrate. Each of these compounds has a distinctly different chemical 

structure, and consequently, each yields different quantities of energy when oxidised. 

Mean values generally accepted as reliable for complete combustion of carbohydrate, 

protein and fat are 17.2 MJ.kg -I , 23.6 MJ.kg  and 39.5 MJ.kg  -1 , respectively. Fish oil, 

however, being highly unsaturated, may yield a value closer to 36.2 MJ.kg  -1 . The 

"true" energy yield of protein catabolised in vivo is normally considered less (about 19.7 

MJ.kg  -1 ), when ammonia is produced (Brafield, 1985). Lipids yield more than twice 

the amount of energy, when oxidised, than either protein or carbohydrate, making them 

an efficient energy storage mechanism for many animals (eg; migratory birds and 

hibernating mammals). 

Energy storage in abalone 

The main storage compounds in molluscs is the carbohydrate glycogen, rather 
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than lipids, which, for example, are the main storage compounds in mammals. Storage 

of energy as carbohydrate or by production of glycogen requires water, and adds more 

weight to an animal (Hainsworth, 1981). However, these factors, considered handicaps 

for terrestrial animals, do not pose such problems for marine creatures. Glycogen, a 

branched polysaccharide, is composed of D-glucose units linked by a-(1—>4) glycosidic 

bonds, with chains branching off via a-(1—>6) glycosidic linkages. Glycogen is found 

mainly in the foot of abalone, with concentrations changing according to food supply, 

time of year, and age and sex of the animal. Levels have been reported to be as high as 

41-48% (Knauer etal., 1994). Some workers (01aechea etal., 1993) have linked tissue 

glycogen with toughness in abalone meat, although others (Carefoot etal., 1993) found 

no such correlation. If there is a link between glycogen and toughness it may be of some 

concern to abalone farmers and processors. The dietary manipulation of tissue glycogen 

levels has not yet been investigated but this would seem to be an area deserving of some 

attention. 

In contrast to glycogen, lipids constitute only a minor percentage of the foot 

tissue. Values range from a low of 0.2% (Konosu and Mori, 1959) to 3% (Webber, 

1970). However, this study found that visceral crude fat levels ranged from 

approximately 7.5-10.0% (see Figs. 5.16 a and b). The fact that values change during 

the growth of the animal is demonstrated by Knauer etal. (1994), who reported values 

of 2.4% for 10-20 mm shell length specimens of H midae, but only 0.76% for those of 

45-55 mm. 

Optimal digestible protein:digestible energy ratio of abalone 

As discussed earlier, (Section 2.3) protein deposition in growing animals takes 
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the form of a two-phase process. As dietary protein levels rise, so too does protein 

deposition, until limited by the energy content of the diet. When additional energy is 

provided, growth continues to a new, higher dietary protein level. Irrespective of the 

energy level of the diet, the point of inflection of the growth function (ie; the point 

beyond which additional dietary protein results in no additional protein deposition) 

allows one to calculate the optimal protein:energy ratio of the animal for the conditions 

of the experiment and the essential amino acid profile. Obviously this value is best 

expressed as digestible protein:digestible energy. If diets are formulated taking this ratio 

into account, protein wastage is kept to a minimum, and pollution is reduced. Both 

factors could translate into significant cost savings for the industry. No information has 

been published concerning this facet of nutrition for abalone. This thesis aims to 

evaluate the optimal digestible protein:digestible energy ratio for abalone. 

2.5 Conclusions 

i) Abalone aquaculture has the potential to generate significant export income. The 

harvest and feeding of macroalgal wildstocks is not permitted in mainland 

Australian waters. The development of an economically viable manufactured feed 

is therefore needed to realise the potential of abalone aquaculture. 

ii) Australia has an abundant supply of inexpensive feed ingredients. These ingredients 

need to be evaluated for their suitability for inclusion in abalone diets. 

iii) Very little information is available on the nutritional requirements on abalone. The 

work done in this field has not always been rigorous and refers to species not 

found in Australian waters. There is a need for information on species native to 
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Australia. 

iv) All but one of the previous estimates of the dietary protein requirements to sustain 

optimal growth of abalone were based on experiments in which the animals were 

fed diets unbalanced in essential amino acids. This may have resulted in elevated 

estimates of dietary protein requirement. In addition, no studies have been carried 

out in which the ratio of energy to protein has been taken into account. 

v) No published data are available concerning the quantitative dietary requirements of 

abalone for essential amino acids. 

From the above conclusions, the following experimental strategy will provide data that 

will be of use in the formulation of a commercially viable manufactured feed for 

abalone. 

The nutritive value of individual feed ingredients should be evaluated to provide 

a database on which future diets can be formulated. 

The optimal dietary protein inclusion level should be determined at a minimum 

of two energy levels to provide the optimal ratio of digestible energy to 

digestible protein. 

An estimate should be made of the dietary requirement of the animal for the most 

limiting essential amino acid(s). This can be done by formulating a diet limiting 

only in the amino acid under investigation, and a series of diets with increasing 

allowances of the limiting amino acid. Abalone are slow feeders, and soluble 

feed components often leach from the feed before the animal consumes it. 

Therefore, it will be necessary, in experiments involving species such as free 

amino acids, to in some way retard or, preferably, eliminate altogether, the effect 
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of leaching. This may be achieved by encapsulation of the amino acid or, 

preferably, covalent attachment of the test amino acid to an existing dietary 

protein. 
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CHAPTER 3 

OPTIMAL PROTEIN LEVEL IN A SEMI-PURIFIED DIET FOR 
JUVENILE GREENLIP ABALONE (Haliotis laevigata) 

3.1 Introduction 

Utilisation of dietary protein by an organism depends on a number of factors. 

These may be linked to the diet itself and include the digestibility of the protein, its 

amino acid profile, the ratio of energy to protein in the diet and the amount of protein 

supplied. Other factors that affect protein utilisation are animal size, sex, genotype and 

environmental conditions (ARC, 1981). The provision of dietary protein from a single 

source is unlikely to provide essential amino acids in the optimal ratio required by the 

animal for growth. Thus, the protein requirements for abalone, determined by feeding 

a sole protein source, are likely to be overestimates. 

This experiment aimed to determine the optimal protein inclusion level for H. 

laevigata, using a diet with an amino acid profile similar to the soft body profile. 

Bodyweight (BW) was used as the growth indicator. Digestibility, of the protein and 

energy content of the feeds was also estimated, along with the loss of essential amino 

acids from the feed due to leaching. 
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3.2 Materials and Methods 

Abalone 

Juvenile H. laevigata (15-25 mm shell length (SL)) from a commercial abalone 

farm were used. These had been grown on manufactured feeds for about nine months. 

Abalone were anaesthetised with 1.0 m1.1 -1  of a stock solution of benzocaine (Sigma), 

removed from water and allowed to drain on absorbent paper towel for five minutes to 

remove excess water. Each animal was weighed to the nearest 10mg before being 

tagged and assigned to an aquarium. A numbered plastic tag (Hallprint, Adelaide, South 

Australia) was affixed using a cyanoacrylate glue (Selleys "SupaGlue Gel"). Ten 

animals were randomly assigned per tank, with duplicate tanks for each treatment. 

Aquaria 

Rectangular acrylic tanks of 10 L, each containing one U-shaped plastic refuge, 

were used in a flow-through system. Incoming water was filtered to 30 p.m nominal by 

primary sand filters, then to 10 p.m nominal by secondary, composite sand filters. The 

water flow rate was 0.5 1.min-1 .tankl . Each aquarium was supplied with air via a single 

airstone at a rate of 0.2 1. miri 1 .tank-1 . The water temperature was adjusted manually 

to be as close to 20 °C as possible, and was recorded at 0900 on weekdays (range: 14°C 

- 22°C, mean = 20°C). The tanks were cleaned three times weekly at 1600 hours, after 

which the abalone were fed at a rate of one gram/aquarium three times weekly. Abalone 

were allowed to adjust to their diets for 22 days prior to the start of the experiment 

proper (day 0) that lasted 59 days. Animals were measured on days 0 and 59. 
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Feed formulation and manufacture 

Initially, feeds with nine different protein levels were manufactured. This was 
.13 

achieved by formulating a "basal" diet with a high protein level (Diet 11, Table 3.1). 

Ingredients were sourced as follows: semolina; Allied Milling Co., Adelaide, South 

Australia, casein; New Zealand Milk Products, Rowville, Victoria, gelatine; Davis 

Gelatine, (Australia) Botany, New South Wales, sodium alginate, calcium sulphate, 

L-arginine, L-threonine, DL-methionine; Ace Chemical Co., Camden Park, South 

Australia, chromic oxide; Sigma, vitamin and mineral premixes and vitamins C and 

E; Rhone-Poulenc Animal Nutrition Australia, Carole Park, Queensland. Wheat starch 

(Wade's B011C, Goodman Fielder Mills Ltd., Lidcombe, New South Wales) was then 

substituted at increasing levels for protein-contributing ingredients so as to dilute the 

level of protein for the other diets (Table 3.2) without alteration of the level of oil, 

vitamins or minerals. The amino acid profile of each feed was identical, and was 

formulated such that the ratio of each essential amino acid to lysine was at least as great 

as that of the soft body tissue of H. laevigata (Table 2.1). It was necessary to include 

free essential amino acids to achieve the correct balance of amino acids (Table 3.1). A 

representative sample of abalone were removed from the cohort of abalone reserved for 

this experiment. After fasting for two days to allow voiding of gut contents, the abalone 

were killed by chilling and shucked. The soft tissue was freeze-dried, milled, and a 

representative sample analysed for amino acid profile using HPLC as per Mason et al., 

(1978). The feeds were developed using the "Feedmania" program (Version 7.06, 

Mania Software Pty. Ltd., Armidale, NSW). Dry ingredients (Table 3.1) were weighed 

on an electronic balance and thoroughly hand mixed. Fish oil (Jack Mackerel oil, 

Triabunna Fish Oils, Triabunna, Tasmania) was blended into the dry, mixpd ingredients. 
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Sodium alginate and gelatine (binders) were pre-hydrated and dissolved, respectively 

with hot (95 °C) deionised water using a hand-held electric mixer and added to the dry 

mix. After preliminary hand mixing, the resultant "dough" was mixed in a spiral-action 

dough mixer ("Impastrice"; Hill Equipment and Refrigeration, Adelaide, South 

Australia). 

The "dough" was extruded through a commercial pasta-machine ("La 

Prestigiosa" medium, IPA, Vicenza, Italy). The resultant strips of feed were dried for 

12 h in a forced-draught oven at 55°C and stored at —35C until use. Strips of feed 

were broken into pieces approximately 7mm square prior to feeding. All diets were 

analysed for crude protein content using methods of the AOAC (1980). 
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Table 3.1: Ingredient inclusion levels for experimental diets (g.kg-1) on an "as is" basis. 

Ingredient Diet 

11 10 9 8 7 6 5 4 3 2s Is 

Semolina 495.8 446.2 421.4 396.7 371.9 347.1 322.3 297.5 247.9 198.3 124.0 
Casein 290.4 261.4 246.8 232.3 217.8 203.3 188.8 174.2 145.2 116.2 72.6 

Gelatine 120.8 108.7 102.7 96.6 90.6 84.6 78.5 72.5 60.4 48.3 30.2 

Cr20 3  5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

Na Alginate 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

Mineral PM 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

Vitamin PM 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

Vitamin C 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Vitamin E 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

CaSO4  5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

Fish Oil 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

L-Arginine 11.5 11.4 9.8 9.2 8.6 8.1 7.5 6.9 5.8 4.6 2.9 

L-Threonine 4.5 4.1 3.8 3.6 3.4 3.2 2.9 2.7 2.2 1.8 1.1 

DL-Met 1.4 1.2 1.2 1.1 1.0 0.9 0.9 0.8 0.7 0.6 0.4 

Wheat Starch 0.0 92.4 138.7 184.9 231.1 277.2 323.5 369.8 462.2 554.6 693.2 

Total 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

"s-  denotes supplementary diet. PM = Premix, DL -Met = DL -methionine. 
Mineral Premix: (All activities in g.tonne) Cobalt 0.025, as CoCO 3 , Iodine 0.180, as KI, Copper 0.780, as CuSO 4, Iron 30.000, as FeSO 4, Magnesium 148.000, as MgO, Manganese 

4.000, as MnO, Zinc 7.870, as ZnO. All subsequent diets used this premix. Vitamin C provided as "Rovimix Stay-C 35" ® by Roche (L-Ascorbyl 2-Monophosphate). Vitamin E provided 
as "Rovimix E 50" ® by Roche (500mg synthetic dl a-tocopherol/g). 2  Vitamin Premix: (g.tonne except where indicated) Vitamin A 1500 mg retinol equivalents as "Rovimix A-500 
Type P" by Roche, Vitamin B1 6.0, Vit. B12 0.009, Vit. B2 5.0, Vit. B6 2.0, Vit. C 200.0, Vit. D3 100 IU, Vit. K3 4.0, Ethoxyquin 40.0, BHT 100, Biotin 0.200, Ca Pantothenate 10.0, 
Folic Acid 1.5, Inositol 200.0. All subsequent diets used this premix. 
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Additional treatments 

Measurements taken after the acclimation period indicated that the animals were 

growing better than expected at the lower protein levels. In an effort to obtain data on 

abalone growth on diets in which protein was limiting, two additional diets (12.2% and 

18.8% CP) were formulated (Table 3.1). Duplicate tanks of animals (mean initial SL 

and BW of 18.55±0.16 mm and 0.78±0.02 g, respectively) from the same cohort were 

assigned to these diets and to another treatment (diet 3) in common with the experiment 

already under way. These abalone were smaller than those in the main experiment 

(Table 3.3). These additional treatments, hereinafter referred to as the supplementary 

treatments, were run under the same conditions and for the same duration as the original 

treatments. 

Intake 

On ten occasions during the experiment, feed from diets 3-11 remaining after 

three days was removed by siphon onto a filter paper, dried overnight at 55 °C and 

weighed. Using this data, feed consumption was estimated and used, on an "as is" basis 

for diets prior to immersion, along with BW increase, to estimate the feed conversion 

ratio (FCR). The same procedure was carried out on nine occasions for diets 1 and 2. 

Statistical analysis 

Measurements of BW were used to calculate growth and expressed as specific 

growth rate (S OR) to minimise the influence of differences in initial size: 

SGR= 100* In WO/W(i) 	
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Where W(i) = initial body weight, W(f) = final body weight and T = time in days. 

Data were analysed by Systat® (SYSTAT, 1992) using single factor ANOVA on the 

SGR of bodyweight and expressed as the mean ± standard error. Multiple comparison 

of means was performed using Tukey's HSD test. Growth rates of abalone fed diet 3 

in the supplementary experiment were compared to those fed diet 3 in the main 

experiment by Student's 2-tailed t-test assuming equal variance. Protein requirements 

of abalone were estimated from SGR using the second-order polynomial regression 

model (Lovell, 1989). Linear regressions were also applied to the growth data after the 

data from the supplementary diets were adjusted downwards by a factor of 0.85 ("Diet 

3 correction factor"). This factor reflected the adjustment needed to equate the SGR of 

supplementary diet 3 with that of diet 3 in the original series (Table 3.2). F-values from 

ANOVA were used to test the significance of the fit of the regressions. 

Apparent digestibility 

Apparent digestibility of the protein and energy components of some of the diets 

was estimated after the completion of the growth experiment. Animals were held in the 

same tanks under the same conditions as the growth experiment. Feeding took place 

between 1600 and 1800 hours. The next morning tanks were cleaned by siphon at 0900 

and subsequently faecal pellets were collected on 200 pm mesh at two hourly intervals. 

Faeces were dried (55°C overnight) and stored at -20°C until analysed. All feeds 

contained chromic oxide as an indigestible marker (Table 3.1). Crude protein was 

estimated using the Macro Kjeldahl method (AOAC, 1981) and GE was determined 

using a Parr 1261 bomb calorimeter (Parr Instrument Co., Moline, II.). All CP results 

are means of duplicate analysis of each replicate sample. 
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Table 3.2: Crude protein (CP), gross energy (GE), crude protein :gross energy ratio 
of diets, specific growth rate (SGR) of abalone and experimental diet consumed. 

Feed CP (%) GE (MJ kg') CP:GE (g.MJ-I ) SGR (BW) I  Consumed2  (g) 
is 12.2±0.06 17.29 7.08 1.05(0.92)+0.12" 12.38+2.69 
2s 18.8±0.07 16.90 11.14 1.26(1.10)±0.04a 13.74+0.44 
3s 23.9±0.04 17.96 13.28 1.13(0.96)+0.04" 13.03+0.21 

3 23.9±0.04 17.96 13.28 0.96+0.07" 13.23+2.23 
4 27.4±0.18 17.99 15.22 1.14+0.17" 14.67+0.81 

5 29.9±0.09 18.32 16.34 0.96+0.00" 14.76+1.73 

6 32.3±0.37 18.08 17.88 0.93+0.09" 13.35+0.15 

7 35.3±0.27 18.73 18.83 1.00+0.04" 13.71+0.10 

8 37.4±0.10 17.35 21.54 0•83+0•07' 12.97+0.06 

9 39.5±0.18 19.02 20.75 0.83+0.18 13.63+0.96 

10 41.8±0.11 18.70 22.34 0.82±0.02bc 13.82+0.08 
11 46.1±0.01 18.92 24.34 0•77±0.15bc 14.08+0.81 

(4.463) 

I  Data are means ± sem, n = 2 replicate aquaria. 2 n = 9 for supplementary treatments, n = 10 for all other 
diets. Values in parentheses are means adjusted by the correction factor. Means with the same superscript 
are not significantly different (P> 0.05). 

s = Supplementary treatment; BW = Bodyweight, F = F statistic for quadratic regression model (P < 
0.05). 
CP values are mean ± sem, n = 2. GE values are from single analyses. 
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Dried faecal samples were ground with pestle and mortar. Chromium analysis 

was performed at the Dept. of Physical Science, University of Tasmania, Launceston, 

Tasmania using the following method: The sample was dried at 110°C for two hours 

then 200-500 mg were weighed into a nickel crucible. The crucible was placed in a 

muffle furnace at 100 °C and the temperature raised to 500°C for one hour to remove 

organic material. When cooled, the sample was mixed with sodium peroxide and fused 

over a Bunsen burner. The fusion product was allowed to cool and was then placed in 

100 ml of distilled water. To this, 60 ml of hydrochloric acid was added and the reaction 

allowed to go to completion. This solution was made up to 200 ml with distilled water 

and chromium levels determined by atomic absorption spectroscopy (Varian, 1989) 

using an air/acetylene flame. 

Apparent digestibility of the protein and energy components of diets was calculated 

using the following equation (Maynard and Loosli, 1969): 

( N( faeces)  *  '(feed)  ADC =100  
N(feed) 	

1
(faeces) 

Where ADC = Apparent digestibility coefficient 

N = Nutrient (protein or energy), I = Indicator (chromic oxide) 

Leaching of essential amino acids 

Leaching was carried out by placing preweighed feed onto 85 micron mesh screens 

(Swiss Screens Australia, Brooklyn Park, South Australia) and allowing it to settle to 

the bottom of aquaria without abalone. Temperature, flow rate and aeration were 

adjusted to match those of the experiment. At the end of the allotted time, the screens, 

with leached feed, were removed from the tanks and dried for 12 h at 55°C in a forced- 
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draught oven. Representative samples of intact feed and leached, oven dried feed (diet 

3) were then analysed for amino acid content. 

AMINO ACID ANALYSIS 

Samples of feed, feed ingredients, or abalone tissue were analysed for amino acid 

content using post-column derivatisation HPLC . The process used a Waters machine 

with 712 WISP injection system, 600E Multi-Solvent delivery system and Millenium 

Version 2.10 software. Briefly, protein-bound amino acids in the sample are released 

by hydrolysis with boiling, semi-concentrated hydrochloric acid. The hydrolysate is 

passed through a cation exchange resin, where chromatographic separation of the amino 

acids takes place. The individual amino acids are then mixed with ninhydrin, which 

reacts with them in a heated reaction loop to form a violet dye. This dye is detected at 

either 570 nm or 440 nm (for proline derivatives). Peak integration software calculates 

the area under the peak corresponding to each amino acid and compares it to that of the 

internal standard. 

In some cases (eg, where the primary interest was in the lysine content of the sample, 

such as in Chapter 6), samples were subjected to hydrolysis only, which allowed 

quantification of lysine, threonine, arginine, isoleucine, leucine, valine, histidine, 

phenylalanine, tyrosine, glycine, serine, proline, alanine, aspartic acid and glutamic acid. 

The hydrolysis-only method largely destroys cysteine and, to some extent, methionine. 

Yields of serine, threonine, isoleucine, valine and tyrosine are often less than 100%. 

Correction factors (based on extended hydrolysis times for casein) were used to re-

calculate values for the latter in this case. 
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In other cases, samples were subjected to oxidation followed by hydrolysis, in which 

cases values for cysteine and methionine were available in addition to those above, but 

tyrosine was not. Neither of the above methods allows tryptophan to be quantified, as 

it is destroyed by the hydrolysis process. 

ACID HYDROLYSIS METHOD 

Samples were freeze-dried and ground to less than lmm particles. Hydrolysis tubes were 

pyrolysed for 2 hours at 500°C, then allowed to cool prior to sample weighing. Samples 

of between 0.5 and 4mg of protein were added to duplicate tubes. Duplicate samples of 

lysozyme were used as controls. To each tube was added 1 ml of redistilled 6M HC1 

containing 0.1% phenol. The tubes were degassed and the evacuated tubes sealed and 

placed in an oven at 110°C for 24 hours. After 24 hours, the cooled tubes were 

centifuged at 3,000 rpm for 3 minutes. 

The tubes were then cracked open and norleucine was added (500 of 4rnM norleucine 

to tubes containing less than 2 mg of protein and 50 pl of 40mM norleucine to tubes 

containing more than 2 mg of protein. Samples were dried down using a Savant 

Speedvac and 2m1 of loading buffer was added. The amino acids were dissolved by 

sonication and vortexing and the samples filtered through a 0.45 pm Millipore filter into 

a Waters 4 ml vial using a syringe. Vials were capped with teflon liners and loaded onto 

the HPLC. 

OXIDATION STEP 
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Duplicate samples were weighed into tubes and cooled in an ice-bath to ice temperature. 

To each tube was added 1 ml of freshly-made, ice-cold performic acid. Tubes were 

allowed to incubate in the ice-bath for 16 hours. Ice-cold HBr (150 pl) was added to 

each tube and the samples were allowed to sit on ice for 10-30 minutes or until bubbling 

had subsided. Samples were then dried in the Savant Speedvac and hydrolysed by the 

addition of redistilled 6M HC1 as above and processed as described above. 

3.3 Results 

Survival and growth 

Survival rates were 100% for all treatments. Of the original nine diets, the diet 

containing 27.4% CP yielded the highest SGR (1.14±0.17) and best FCR (1.22:1±0.02). 

Neither SGR(BW), FCR, nor diet consumed differed significantly (P> 0.05) between 

any of the treatments (Table 3.2). When data from the supplementary treatments were 

included in the analysis, significant differences (P <0.05) in SGR(BW) were noted 

(Table 3.2). The mean SGR of abalone fed diet 3 was 15% higher (n = 20) in the 

supplementary trial than in the main trial. This difference was significant (P <0.05). 

Quadratic regression of unadjusted data (Fig. 3.1), for both trials combined, predicted 

maximal growth (Ymax  = 1.103) occurs at 17.0% CP (X max). Quadratic regression of the 

data, adjusted by the "diet 3 correction factor" (0.85) predicted maximal growth (Y,„ a„ 

= 1.033) at 27.0% CP (Fig. 3.2). The F-value (4.463) from the ANOVA for adjusted 

growth data used in Fig. 2 indicated that the R2  value (0.4318) for the regression was 

significant at the 0.05 level. When data from the supplementary treatments is included, 
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abalone fed diet 2 (18.83% CP) experienced the highest SGR (1.26±0.04). Feed 

consumption ranged from an estimated 12.38±2.69 g for diet 1 to 14.76±1.73 g for diet 

5 (Table 3.2), but there was no significant difference between treatments. FCR values 

were highest for diets with both lowest and highest protein levels (Fig. 3.3), although 

FCR values did not differ significantly (P> 0.05) across treatments. 

There was no significant difference (P> 0.05) in BW or SL among the abalone 

allocated to the original nine diets on days 0, 26, or 85 (Table 3.3). The abalone of the 

supplementary treatments also showed no significant difference (P> 0.05) in BW or SL 

on day 0, but by day 26, significant differences (P < 0.05) had appeared. These 

differences were still present on day 85 (Table 3.3). Significant differences (P <0.05) 

in body weight gain (BWG) over the period from days 26-85 were seen for data from 

supplementary and main experiments (Table 3.3). 
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Table 3.3: Abalone body weight (g.abalone-1 ) and shell length (mm) at each measurement point of the experiment, and body weight gain for the post-

acclimation period (days 26-85). (Mean ± sem, n = 2 replicate aquaria). 

Diet BW (day 0) BW(day 26) BW(day 85) BWG(days 26-85) SL(day 0) SL(day 26) SL(day 85) 
Is 0.55° ± 0.01 0.698  ± 0.01 1.30' ± 0.12 0.61" ± 0.11 15.76' ± 0.01 17.73 8  ± 0.05 22.85° ± 0.66 
2s 0.56' ± 0.03 0•78b  ± 0.02 1.62b  ± 0.01 0.85" ± 0.01 16.04' ± 0.24 18•50b  ± 0.24 24.81 b  ± 0.23 
3s 0.63 ± 0.04 0.88' ± 0.01 1.75 b  ± 0.01 0.88" ± 0.01 16.63' ± 0.29 19.47` ± 0.05 25•58b  ± 0.13 

3 0.96 ± 0.04 1.43 ± 0.02 2.49 ± 0.10 1.07' ± 0.08 19.80 ± 0.21 22.69 ± 0.08 28.02 ± 1.03 
4 0.88 ± 0.11 1.29 ± 0.13 2.49 ± 0.09 1.20' ± 0.04 19.22± 1.27 22.27± 1.24 28.22 ± 0.08 
5 0.94 ± 0.16 1.44 ± 0.28 2.54 ± 0.52 1•10ab  ± 0.24 19.70 ± 1.20 22.93 ± 1.05 28.54 ± 1.89 
6 0.86 ± 0.24 1.29 ± 0.29 2.19 ± 0.37 0.91" ± 0.08 19.05 ± 1.99 22.09 ± 1.99 27.09 ± 1.33 
7 0.91 ± 0.06 1.39 ± 0.15 2.45 ± 0.28 1.07'd  ± 0.13 19.50 ± 0.47 22.62 ± 0.62 28.43 ± 0.78 
8 0.87 ± 0.01 1.21 ± 0.02 1.94 ± 0.04 0.74bde ± 0.06 19.14 ± 0.34 21.67 ± 0.48 26.09 ± 0.14 
9 0.91 ± 0.05 1.30 ± 0.17 2.11 ± 0.05 0.81"± 0.12 19.57 ± 0.47 22.41 ± 0.78 27.00 ± 0.24 
10 0.90 ± 0.04 1.29 ± 0.03 2.06 ± 0.08 0.77bd' ± 0.06 19.36 ± 0.06 22.29 ± 0.04 26.57 ± 0.47 
11 0.93 ± 0.15 1.32 ± 0.22 2.04 ± 0.23 0.73 bde ± 0.01 19.69 ± 1.05 22.40 ± 1.01 26.71 ± 0.66 

BW = Body weight, SL = Shell length, "s" denotes supplementary diet. Means with no superscript or the same superscript are not significantly different (P> 0.05). Note that means for 
supplementary diets have been analysed by single factor ANOVA and Tulcey HSD test separately to data from the main experiment, with the exception of the data for BWG(days 26-85). 
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Protein and energy digestibility 

Three diets (diets 5,6 and 7) were selected for apparent digestibility evaluation 

and yielded similar results. The mean protein digestibility was 71.7± 1.9% and the 

mean energy digestibility was 55.6%± 1.7%. Thus, a diet containing 25% CP and 18 

MJ kg - ' GE would contain approximately 18% and 10MJ kg"' digestible protein and 

energy, respectively. 

Amino acid loss due to leaching 

Loss of essential amino acids (EAA's) supplemented in crystalline form 

exceeded 44% over 24 hours leaching, while loss of unsupplemented EAA's ranged 

from almost 26% (leucine) to 40% (isoleucine) (Table 3.4). 
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Table 3.4: Essential amino acids lost from diet 3 after 24 hours immersion in 

seawater 

EAA Intact Feed (g kg') Leached Feed (g kg- ') Supplemented (g kg') % Loss 

Met 5.21 2.74 0.68 (13.1) 47.4 

thr 9.85 5.49 2.27 (23.0) 44.3 

arg 14.87 6.92 5.75 (38.7) 53.5 

vat 11.95 7.41 0.00 38.0 

lie 9.70 5.82 0.00 40.0 

leu 15.67 11.62 0.00 25.9 

lys 12.23 8.87 0.00 27.5 

EAA = Essential amino acid 

NB: Histidine, phenlyalanine and tryptophan not analysed. 

Values in parentheses are supplementation as a percentage of the total for that amino acid. 
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3.4 Discussion 

Many previous studies have chosen growth, usually as an increase in length or 

body weight, to quantify the dietary protein requirements of aquatic species (Lovell, 

1989). Sometimes, measurements such as protein efficiency ratio, net protein utilisation 

and feed conversion efficiency are also employed (Uki et al., 1986b). In this work, 

growth is reported principally in terms of weight gain (as SGR) but the FCR and BWG 

of each diet are also reported. SGR was chosen as it generally reflects protein 

utilisation. In fact, Mai etal. (1995b) reported that protein gain was highly correlated 

with weight gain (r = 0.99) for two species of abalone. 

Quadratic regression models fitted to the data predicted that diets containing 17- 

27% CP would elicit maximal growth (Figs. 3.1 and 3.2). This experiment indicated 

that young H. laevigata grew best when fed a semi-purified diet containing 27.4% CP, 

18.0 MJ kg-1 GE and a CP:GE ratio of 15.2 g.M.1 -1 . The higher optimal protein levels 

recommended by Uki et al. (1986b, 38% for H. discus hannai using casein as a protein 

source) and Taylor (1992) (at least 30% for H kamtschatkana also using casein) and the 

much higher value (47% for H. midae) reported by Britz (1996) may have been due to 

the use of experimental diets with a sub-optimal EAA profile. If this was the case, 

optimal growth would tend to occur at higher levels of dietary protein than if the diet 

contained a balanced EAA profile, assuming the animals on lower CP levels were 

unable to compensate by higher intake rates. There was no evidence in the present trial 

to suggest that animals on the feeds with lower protein levels consumed more feed to 

compensate (Table 3.2).. The optimal dietary protein level (20.1%) estimated by 

quadratic regression (without the diet 3 correction factor) is lower than any previously 
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published for abalone. 

The results of this experiment were complicated by the addition of the 

supplementary treatments. The abalone fed diet 3 in the supplementary experiment grew 

significantly (P <0.05) better than those fed diet 3 in the original experiment (Table 

3.2). This may be due to the smaller initial size of the abalone used in the supplementary 

treatments, as SGR (weight) tends to be biased in favour of smaller animals, when 

comparing growth rates of animals of unequal sizes. Consequently, it was necessary to 

re-examine the data by adjusting downward the growth rate of animals on 

supplementary diet 3 to equal that of the animals on the original diet 3. An equal 

downward adjustment of the SGR of those fed diets 1 and 2 was also made prior to 

regression analysis (Fig. 3.2). This adjustment may compensate for the difference in 

initial size of the abalone, and resulted in a shift of X tna„ from 17.0% (Fig. 3.1) to 27.0% 

(Fig. 3.2). The estimate given by analysis of the adjusted data lies within the optimal 

ranges of 24-34.5% and 25.2-36.6% given for H. tuberculata and H discus hannai 

respectively by Mai et al. (1995b). 

Accretion of protein by an organism is a two-phase process, limited firstly by 

protein availability. If protein is not limiting, energy becomes the limiting factor. The 

CP:GE ratios for the two diets that yielded the best growth in this experiment were 11.1 

g MP for diet 2 and 15.2 g MJ -1  for diet 4 (Table 3.2). These are slightly lower than the 

estimates provided by Mai et al. (1995b) of about 50-60 kJ g"' in casein/gelatin based 

diets (equal to a CP:GE ratio of 16.7-20 g MJ -I). A more accurate estimate of the levels 

of dietary nutrients that are required for growth and their ratios would have been 

achieved using diets formulated on a digestible basis. Although digestibility data for 

abalone were not available for the feed ingredients used, whole-diet protein and energy 
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digestibilities can still provide valuable estimates. 

While the digestibility of the diet that produced the best growth overall (diet 2) 

was not evaluated, the digestible protein and energy content can be estimated using the 

data from the diets that were evaluated (diets 5-7). Thus, diet 2 contained approximately 

13.5% digestible protein (18.8 x 0.717) and 9.4 M.I.kg -1  digestible energy (16.9 x 0.556). 

Thus, an estimate of the optimal dietary DP:DE ratio is approximately 14.4g MP. For 

diet 4 the ratio is even lower at 10.9g MT'. 

A notable result from this experiment is the marked decrease in SGR as the 

dietary protein level increased. At least two explanations exist for this observation, 

which was also made by Mai etal. (1995b). Firstly, as the dietary CP level increased, 

the GE of the diets did not increase proportionately (Table 3.2). Consequently, protein 

may have been catabolised to provide energy to digest and then excrete excess protein. 

Secondly, Mai et al. (1995b) suggested that the utilisation of gelatin by some aquatic 

species is poor. In the diet series used here, the inclusion rate of gelatin increased with 

CP level. We have observed that greenlip abalone at this facility reject feed containing 

high (approximately 20% w/w) gelatin levels. The possible negative effects of gelatin 

in abalone diets warrants further investigation. 

Despite the use of both alginate and gelatine binders and the binding effect 

afforded by the high inclusion rate of semolina, a large proportion of EAA's were 

leached from the feed in 24 hours (Table 3.4). Essential amino acids supplemented in 

crystalline form were, not surprisingly, especially prone to loss. This loss should have 

been proportionately equal across treatments and should not, therefore, have affected 

growth more in one treatment than another. However, it raises some concerns about the 

economic benefit of addition of free amino acids to commercial abalone diets. Video 
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evidence of abalone feeding at this facility reveals that abalone mostly complete feeding 

activity six hours after the addition of feed (S. Madigan, Pers. Comm.). During this 

time, nutrient loss is assumed to be small, but, if feed is given, for example, only every 

third day as in many abalone farms, the nutritional profile of the feed is likely to have 

undergone significant change. This is of concern not only to growers and feedmakers, 

but also to researchers. It is important to investigate the process of nutrient loss further 

and, if necessary, to evaluate strategies aimed at reducing it. 

In the wild, abalone are herbivores, and have adapted to live and grow on a diet 

relatively low in protein. For example, Mercer et al. (1993) evaluated the nutritional 

value of eight algal diets for abalone and reported that the single species yielding best 

growth for H tuberculata and H discus hannai were Palmaria palmata and Alaria 

esculenta, respectively, with respective protein levels of 15.93-18.38% and 11.06- 

15.73% (on a dry matter basis). 

The results presented here suggest that high dietary protein levels (in excess of 

30%) in manufactured feeds (Fleming et al., 1996) may be unnecessary for abalone fed 

diets with appropriate amino acid balance. These findings should lead to cheaper feeds 

for the abalone aquaculture industry in Australia. Future work in this area could build 

on and extend these findings by establishing a database of the digestible protein and 

energy content of feedstuffs and by investigating different dietary ratios of protein to 

energy. Formulation of feeds on a digestible basis may help reduce farm effluent, 

increase feed conversion efficiency and lower production costs. 
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CHAPTER 4 

ESTIMATED TRUE DIGESTIBILITY 
OF THE PROTEIN AND ENERGY OF POTENTIAL INGREDIENTS FOR 

USE IN MANUFACTURED ABALONE FEED 

4.1 Introduction 

A diverse range of feed ingredients are available in Australia for use in 

stockfeeds. However, there is no information on the nutritional value of these feed 

ingredients for abalone, and the utilisation of corresponding data from terrestrial animals 

or even finfish in the formulation of diets for abalone would be unwise. In the case of 

abalone, much of the published data (Fleming, 1995) relates to macroalgae and is of 

little assistance in the formulation of a diet based on terrestrial materials. Other research 

(Wee et al., 1992, 1994) has investigated the digestibility of protein, energy and lipid 

in whole manufactured feeds, to compare the efficacy of inert markers, and, again, is of 

limited use for feed formulation. Therefore, the compilation of a digestibility database 

for feed ingredients for use in abalone diets is of paramount importance. Highly 

digestible diets will also reduce the faecal load from farms, thereby diminishing their 

environmental impact. In addition, information on digestibility is itself a tool to aid in 

the determination of more detailed nutritional information. This research is the first step 

in the compilation of digestibility data for abalone with the aim of producing better 

commercial and research diets. 
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4.2 Materials And Methods 

Feed Ingredients 

Semolina, Peruvian fishmeal, casein, soyflour and pre-gelled starch (PGS) were 

chosen for evaluation as all except PGS are currently used in commercial abalone feed. 

Semolina and PGS were obtained from Allied Milling Co., Mile End, South Australia. 

Casein was from Alaco Food Ingredients, Rowville, Victoria. Solvent extracted 

soyflour was purchased from Ace Chemical Co., Camden Park, South Australia and the 

fishmeal, of Peruvian origin, from Agribusiness, Macclesfield, South Australia. 

A diet consisting largely of PGS and therefore containing negligible protein 

served two purposes. Using this diet, both the digestible energy of PGS and the 

endogenous protein content of abalone faeces could be estimated. 

Diets 

Five diets were used in this experiment (Table 4.1). All ingredients were finely 

ground prior to purchase, with the exception of fishmeal, which was re-ground and 

sieved through 1 mm mesh on arrival. All feedstuffs were analysed for CP and GE prior 

to formulation (Table 4.2). All diets were produced in the form of flat, well bound 

"chips" as described in Chapter 3. A diet consisting largely of semolina was used as a 

reference diet. Other ingredients were substituted into the reference diet to make the test 

diets. Each diet contained chromic oxide (0.50%), or, in the case of the PGS diet, n-

hexatriacontane (3.2 g kg - ') as an indigestible marker. 
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Table 4.1: Composition (g kg - ') and analyses of experimental diets 

Diet: Semolina Casein Fishmeal Soyflour PGS 

Semolina 

Casein 

952.5 732.5 

220.0 

- 503.5 - 

- 

Fishmeal - 550.0 .■ 

Soyflour 454.0 

PGS 415.0 970.0 

Mineral Mix 2.0 2.0 2.0 2.0 2.0 

Vitamin Mix 3.0 3.0 3.0 3.0 3.0 

CaSO, 2.5 2.5 2.5 ■ 

Na-Alginate 10.0 10.0 10.0 .■ 

Fish Oil 25.0 25.0 25.0 25.0 25.0* 

Cr203 5.0 5.0 5.0 5.0 

Total (%): 1000 1000 1000 1000 1000 

CP(%) 9.86 28.17 33.94 27.76 0.3 

GE (MJ kg') 17.19 18.45 18.47 17.88 16.42 

PGS = Pre-gelled starch 

CP = Crude protein; GE = Gross energy 

*Contained 3.2 g.kg -1  n-hexatriacontane by analysis. 
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Digestibility of nutrients was calculated by difference, using equation (4.1) 

(R. van Barneveld, Pers. Comm.) 

DI(%)= 100 * (NUT.die , * ADd,„)—E (NUT .0ther  * IL „,h„* AD 	1 * 1 „,hij* 	 
ILI NUT.I 

Where 

DI(%) = Digestibility of ingredient 

NUT.diet  = Nutrient level of diet expressed as 18 MJ.kg  -1  or % CP 

AD. die, = Apparent digestibility expressed as a decimal. (eg, 0.67) 

NUT.other = Nutrient level of ingredient other than test ingredient 

IL other = Inclusion level of ingredient other than test ingredient 

Aaother Apparent digestibility of non-test ingredient 

ILI = Inclusion level of ingredient expressed as a decimal (eg, 2.5% = 0.025) 

Nutrient I = Nutrient level of ingredient expressed as 18 MJ.kg  -1  or % CP 

When estimating the protein digestibility of test ingredients, ingredients other 

than the test ingredient were assumed to contribute negligible protein. When estimating 

the energy digestibility of test ingredients, fish oil was assumed to have a digestibility 

coefficient of 70%. This value was kindly supplied by Mr. Graeme Dunstan of CSIRO 

Marine Laboratories, Hobart, Tasmania. Alginate was also assigned an estimated 

digestibility coefficient of 70%. All other ingredients were assumed to contribute 

negligible energy to the diet. 

Abalone 

Juvenile H. laevigata (shell length 30-40 mm) were raised on diatoms from 
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settlement to about 10 mm shell length, then grown on a manufactured abalone feed 

containing 26% crude protein (CP) and 18 MJ kg- ' gross energy (GE). 

Tanks and collection system 

Conical tanks (n = 4) were fitted with faecal collection and drainage plumbing 

(Fig. 4.1). A bucket (20 L capacity) with a mesh bottom (4 mm mesh) was employed 

to hold the abalone within the tank whilst permitting faeces to drop into the collection 

tube, that was packed in ice during collection. This system allowed easy cleaning of the 

tanks with minimal disturbance to the animals. Seawater, filtered to 30 grn by primary 

sand filters, then to 10 p.m by secondary composite sand filters, was supplied to each 

tank at approximately 2 L min -1 . Water temperature was held at 20 °C (±0.2 °C) by a 

computer-controlled mixing system and aeration (0.5 L min-l ) was provided by one air 

stone per tank. Each tank contained a piece of plastic sheeting to increase the available 

surface area. 

Feeding 

Abalone (approximately 100 per tank) were pre-conditioned on each diet by 

feeding daily for one week before faecal collection. Animals were fed to slight excess 

at 1700 h each evening and lights were switched off at 1800 h. Following collection of 

an adequate sample (5-7 days), abalone were returned to their commercial diet for one 

week, prior to acclimation on the next test diet. 
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Fig. 4.1 
Diagram of faecal collection tanks used for 
abalone digestibility work. 
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Faecal Collection 

Following the acclimation period, faeces were collected daily in the following 

manner: the buckets were removed and the tanks and collection pipes cleaned 

thoroughly using ethanol, a bottlebrush and paper towel. Buckets were cleaned of faecal 

matter and uneaten feed by hosing with seawater. Abalone were out of water for 

approximately 8 min. each day. The tanks were rinsed and refilled, and the buckets 

replaced. Collection tubes were packed in ice by 0930 h, when the collection began and 

continued until 1600 h, when the tubes were removed and the contents poured over 1 

mm mesh. Fines were discarded due to concerns that they would have leached 

excessively. Intact pellets trapped on the mesh were dipped in freshwater to remove salt, 

and air dried overnight at 22°C. The pellets were then placed in a vacuum desiccator at 

15" of mercury for 24 h at room temperature to ensure that faeces were dried without 

heat damage. 

Each diet was fed to all four tanks simultaneously. Each tank contributed one 

subsample per day, and a further subsample consisting of equal contributions from all 

four tanks was collected. A sample providing enough material for both crude protein 

(CP) and gross energy (GE) analyses required a total of 5-7 subsamples. Only three 

replicates of PGS faeces were available for CP analysis. These samples were not large 

enough to permit GE determination as well. A larger, pooled sample was collected for 

GE analysis, all of which was used for this purpose, thus, a CP value was unavailable 

for this sample. Due to unexpected results (not shown) obtained from the first fishmeal 

diet, a second diet, based on the PGS reference diet, was tested. This resulted in time 

constraints, so four replicate samples were analysed for CP only and one pooled sample 

was collected for GE evaluation only. 
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Analysis 

Dried faecal samples were ground with pestle and mortar. Crude protein and GE 

were determined using methods of the AOAC (1980). All CP results are means of 

duplicate analyses of each replicate sample, except where indicated. Chromium analysis 

was carried out using the method detailed in Chapter 3. 

Analysis of n-hexatriacontane was determined with the following method: 

The dried sample was weighed into a tube to which was added internal standard (1 

mg.m1 -1  C24H70 in dodecane), 94% ethanol and 7.5M KOH. The tubes were stirred at 

80°C for one hour and then cooled. N-heptane and water was added and the samples 

were extracted with shaking for 10 mm. The tubes were centrifuged and the heptane 

layer was collected while the samples were warmed in a water bath at 40°C. The 

extraction was repeated. The tube with the collected heptane was evaporated to dryness, 

made up to 1 ml with heptane and eluted through a Florisil column into another tube. 

This tube was evaporated to dryness and made up with enough n-hexane to inject into 

the HP-GLC. GLC parameters were: SGE BP1, 6m x 0.33mm ID, 0.25 micron film 

thickness, FID, 300°C isothermal, Helium carrier, split-splitless injector. 

4.3 Results 

Three samples of faeces from abalone fed the protein-free diet based on PGS 

contained a mean 4.31(±0.57)% CP. This provides an estimate of the endogenous 

protein content of abalone faeces, and was used to convert apparent protein 

digestibilities to estimated true digestibilities. Soyflour was the most digestible protein 

source (96.7%) followed by semolina (89.2%), casein (77.9%) and fishmeal (58.8%) 
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(Table 4.2). Pre-gelled starch was the most digestible source of energy (80.6%) followed 

by fishmeal (79.4%), soyflour (78.6%), semolina (55.5%) and casein (51.9%). 

Using the lowest prices available at the time for the feedstuffs, cost per kilogram 

of DP and per megaJoule of DE were estimated (Table 4.2). Semolina was by far the 

most expensive protein source ($73.67 kgDP -1 ), followed by casein ($13.21 kgDP -1 ), 

with fishmeal ($3.00 kgDP -I ) and soyflour ($1.76 kgDP -I ) more economical. Casein was 

the most expensive source of digestible energy ($0.800 MJDE -I), followed by PGS 

($0.156 MJIDE -1 ), with little difference between semolina ($0.077 MJDE -I ) and fishmeal 

($0.073 M.TDE -1 ). Soyflour was the cheapest source of DE ($0.055 MTDE -1 ). 
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Table 4.2: Crude protein, mean (± sem) apparent digestibility of protein, true protein digestibility, digestible protein content, gross energy, apparent 

digestibility of energy, digestible energy content and dry matter digestibility of feedstuffs with feedstuff cost and cost per kilo of digestible protein 

and per megajoule of digestible energy. (n = 5 except where indicated). 

Feedstuff 

CP 
Content 
(g.ke) 

APD 
Coefficient 

(0/0) 

TPD 
Coefficient 

(%) 

DP 
Content 
(g.kg-I) 

GE 
Content 

(MJ.kg-1) 

DE 
Coefficient  

(%) 

DE 
Content 
(MJ.kg-1) 

DMD 
Coefficient 

(%) 

Cost 
&tonne' 

Cost 
$.kgDP-1  

Cost 
$.M.JDE -1  

Semolina 104 64.96± 1.91 89.2± 1.57 92 16.00 55.5 ±2.70 8.88 46.8± 1.98 680 73.67 0.077 

Casein 860 67.61 ± 2.00 77.9± 1.33 670 21.30 51.9 ± 4.78 11.05 44.6± 1.47 8850 13.21 0.800 

Fishmeal 630 54.65 ± 1.39' 58.8 ± 1.13 370 19.25 79•4b  15.28 30.2 ± 4.35 1110 3.00 0.073 

Soyflour 470 83.68 ± 0.33a 96.7 ± 0.49' 454 18.50 78.6± 1.01 14.54 54.0 ± 0.55 800 1.76 0.055 

PGS 16.00 80.6b  12.80 71.0b  2000 NA 0.156 

a: n = 4; b: n = 1 
CP = Crude Protein; APD = Apparent Protein Digestibility; TPD = True Protein Digestibility; DP = Digestible Protein; GE = Gross Energy; DE = Digestible Energy; 
DMD = Dry Matter Digestibility 
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4.4 Discussion 

Methodological Issues 

One interesting finding of this work has been the estimate, using a diet based on 

PGS, of the amount of protein in the faeces of abalone fed a protein-free diet (Section 4.3). 

Naturally, concerns exist about the feeding of nutritionally deficient diets such as this one 

for any length of time. However, this was only done in this case to obtain an estimate 

(albeit crude) of endogenous protein loss. 

Bush (1988) suggested that the proteinaceous sheath secreted by the limpet Patella 

vulgata around faecal pellets prevented their disintegration while still within the animal's 

mantle cavity. The coating observed to cover abalone faecal pellets may serve the same 

function. The estimate of endogenous protein loss for abalone given here does not include 

soluble proteins such as enzymes, that are undoubtedly lost from the faeces prior to 

collection and hence, must be an under-estimate. Nor did this study take into account the 

fact that endogenous protein excretion is almost certainly influenced by feed intake. 

Studies with pigs (de Lange et al., 1990) and rats (Moughan and Rutherfurd, 1990) have 

demonstrated that endogenous amino acid secretion from the small intestine is greater in 

animals fed a diet containing protein than from those fed a protein-free diet. It has been 

proposed that this is a result of the stimulatory action of dietary peptides on the gut wall. 

Nevertheless, inspection of Table 4.2 shows that the endogenous protein content of the 

faeces can clearly have a profound effect when converting apparent protein digestibility 

coefficients to true digestibility coefficients, particularly those of feedstuffs with a 

relatively low protein content, such as semolina. 

Initial data gathered from this work were substituted into the equation proposed by 
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Cho and Slinger (1979) to evaluate digestibilities of test ingredients substituted into a 

reference diet. The answers provided were often in excess of 100%. This phenomenon, 

in which the digestibility of a mixture of ingredients is greater or lesser than the mean 

digestibility of the individual ingredients has been encountered before in digestibility 

studies of red swamp crayfish (Procambarus clarkii; Brown et al., 1989; Reigh et al., 

1990). The equation initially used (Cho & Slinger, 1979) does not account for possible 

associative effects between dietary ingredients. This equation was subsequently replaced 

by equation (4.1), that has been used for some time in swine nutrition. Digestibility results 

obtained using this equation were always less than 100%. 

Initially, diets were made containing n-hexatriacontane as a digestibility marker. 

However, the high analysis cost of this marker compared to that for chromic oxide forced 

a change to the latter marker. Consequently, only the PGS data reported here were derived 

from the use of n-hexatriacontane. 

Two factors that could affect the end result of digestibility estimates are leaching 

of nutrients from the feed prior to consumption and leaching of nutrients from the faeces 

prior to collection and analysis. These two processes will tend to have opposite and, 

therefore, compensating effects. No attempt was made to quantify these effects in this 

work. 

Overall, the standard errors of measurement (s.e.m.) were small, the exceptions 

being for the DE of semolina and casein and the DMD values (Table 4.2). In a study of the 

experimental parameters that affect digestibility data in prawn diets, Ellis (1995) concluded 

that the number of samples collected and the number of days of collection were of 

approximately equal importance, and that the number of tanks was less so. Ellis (1995) 

showed that the s.e.m. decreased greatly when the number of days of collection increased 
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from two to six, but further increase to 10 days resulted in little extra reduction. Double 

grinding and extrusion of feed also resulted in a substantial reduction in the s.e.m. of feed 

samples. When evaluated by the recommendations of Ellis (1995), the faecal collection 

time and number of replicates of this study appear satisfactory, but the s.e.m. might have 

been further reduced by more exhaustive analyses of feed samples. 

Thomas (1995), drawing on the work by Ellis (1995), recommends that faeces 

should be collected for at least six days and preferably for ten. However, Thomas (1995) 

also demonstrates the effect of inclusion level of the test ingredient into the reference diet 

on the variance of the digestibility. Thomas (1995) argues that the estimation of ingredient 

digestibilities is not feasible at inclusion levels of 0.2 (ie. 20% of the reference diet replaced 

by test ingredient) and should be based on inclusion levels of 0.5. In this study semolina 

and PGS were evaluated at inclusion levels in excess of 0.95, fishmeal at 0.55, and soyflour 

at 0.45. Only the digestibility of casein, with an inclusion level of 0.22 appears to have 

been evaluated in less-than-ideal manner. This was done in order to avoid an excessively 

high dietary protein level. 

Digestibility of ingredients 

Evaluation of the digestibility of PGS proved difficult and time consuming, as the 

faecal matter produced by animals on this diet resembled the stringy "type C" faeces 

described by Wee et al. (1992) and were almost neutrally buoyant. Thus, they were 

difficult to collect in the apparatus. Abalone apparently digested the energy component of 

PGS with an efficiency of over 80%. Although not as high as the values for carp for 

hydrated corn (90.3%±2.3) and wheat starch (90.9%±3.4) respectively (Schwarz & 

Kirchgessner, 1991), this figure may have been influenced by the high level of starch in the 
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diet (97%). Starch digestibility has been shown to be negatively correlated with the 

incorporation level of starch in fish (Inaba, 1963; Chiou and Ogino, 1975; Shimeno et al., 

1977). Bergot (1991) reported that rainbow trout (Oncorhynchus mykiss) were able to 

digest extruded or gelatinised starch with an efficiency of nearly 96%, but their ability to 

digest raw starches varied from less than 5% for potato starch to 52-58% for waxy maize 

and wheat starches. 

Greenlip abalone apparently digest the protein component of semolina with an 

efficiency (corrected for endogenous protein) of 89%. Failure to account for endogenous 

protein reduces the apparent digestibility to approximately 61%. The corrected value 

compares favourably with those reported for rainbow trout of 88-91% (Bergot, 1991), and 

suggests that digestion of the protein component of feedstuffs such as semolina may well 

be independent of the digestion of the carbohydrate component. Abalone were unable to 

digest the carbohydrate component of semolina very efficiently, with an apparent 

digestibility of only 55.5% (±2.70). This is similar to the ability of rainbow trout (0. 

mykiss) to digest raw starch from wheat (Bergot, 1991). The fact that abalone digested 

PGS with an efficiency of more than 80% suggests that the physical structure of the starch 

grains reduces the ability of the enzymes to act on the starch molecules. 

Processed soybean meals have been suggested as possible partial replacements for 

fishmeal in finfish diets (Oliva-Teles et al., 1994) and this study strongly suggests that is 

also possible in abalone feeds, with abalone apparently digesting almost 97% of the protein 

and 79% of the energy in solvent extracted soyflour. These values, combined with 

widespread availability and low cost make soyflour extremely useful for commercial 

abalone feeds. Table 4.2 shows that defatted soyflour is by far the most economical source 

of digestible protein for an abalone diet, Among the few ingredients evaluated here. It 

68 



should be noted, however, that soluble proteins leaching from the faeces prior to collection 

may have contributed to the high protein digestibility value obtained here. No effort was 

made to quantify the amount of protein lost from the faeces by leaching. 

Casein, like soyflour, has also been included in many experimental (Uki et al., 

1985a, b; Viana et al., 1993; Britz et al., 1994) and some commercial abalone diets 

(Fleming et al., 1996). However, despite the fact that it is very high in protein (around 

86%) and that the protein is highly digestible (79%), its high cost and restricted availability 

must limit its inclusion rate in a commercially viable feed (Table 4.2). In addition, casein 

returned a very low value for energy digestibility of 51.9%. 

Fishmeal, like PGS, proved difficult to evaluate, but for different reasons. The first 

diet (not shown) was similar to those for casein and soyflour, yet yielded digestibility 

coefficients that were well in excess of 100% (not shown). This may have resulted from 

associative effects among feed ingredients. A second diet was formulated (Table 4.1) using 

PGS in place of semolina in an attempt to reduce associative effects. The results indicated 

that this was achieved and that abalone do not digest the protein present in this particular 

fishmeal with high efficiency. It is possible that overheating during processing might have 

negatively affected protein digestibility of this feedstuff. 

Economic Evaluations 

The ingredients investigated in this study were compared to each other by costing 

their digestible protein and digestible energy content (Table 4.2). Feedstuff values were 

applicable, in Adelaide, Australia, at the time of the experiment, and will, no doubt, change 

from time to time, depending on availability, for example. Defatted soyflour supplied 

digestible protein and digestible energy more cheaply than the other feedstuffs. Fishmeal 
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was the second-cheapest source of digestible protein, followed by casein and semolina. 

However, semolina is primarily included to supply energy and function as a binder. 

Fishmeal and semolina supplied digestible energy at almost equal cost, while casein was 

almost ten times as expensive per megajoule of digestible energy. PGS was almost twice 

as expensive as semolina when compared by digestible energy cost. 

4.5 Conclusions 

Defatted soyflour is strongly recommended as an ingredient in manufactured feeds 

for abalone, not only on a digestibility basis, but also on economic grounds. Peruvian 

fishmeal, as a crude protein source, although not expensive, is less economical than 

soyflour due to its lower digestibility. Casein, although rich in highly digestible protein, 

is largely uneconomical due to its high cost and limited availability. Semolina, although 

costly per kg of digestible protein, is still likely to be utilised as an ingredient, as it is 

readily available, functions as a binder and supplies non-protein energy. Processing by 

extrusion or enzymic treatment may increase the digestibility of the non-protein energy 

component of this feedstuff for abalone. PGS is a source of readily digestible carbohydrate 

and helps bind pellets, but may be too expensive to be included as a bulk ingredient. 

This work has been a small step in the compilation of a digestibility data base to aid 

in the formulation of cost-effective feeds for abalone. Data obtained from this work will 

be used to formulate diets on the basis of DP and DE for an experiment investigating the 

independent effects of energy and protein intake on protein deposition in growing abalone. 
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CHAPTER 5 
THE EFFECT OF DIFFERENT DIETARY DIGESTIBLE 

PROTEIN:DIGESTIBLE ENERGY RATIOS ON THE GROWTH AND BODY 
COMPOSITION OF JUVENILE GREENLIP ABALONE (Haliotis laevigata) 

5.1 Introduction 

Growth in any animal is highly dependent on protein deposition rate which is, in 

turn, controlled firstly by the intake of dietary digestible protein and secondly by the intake 

of digestible energy (Pond et al., 1995). This results, typically, in a two-phase growth 

response as depicted in Fig. 2.2. In the first phase, digestible protein is the limiting factor 

and, once the intake of digestible protein that supports maximal growth has been attained, 

digestible energy becomes limiting and no further increase in growth rate is possible at that 

energy level. In fact, growth rate may decline if excess protein is ingested (Sugahara et al., 

1969). If an additional quantity of protein-free energy is made available, a further increase 

in growth may be possible beyond the level of protein that previously elicited maximal 

growth. 

Regression analysis of experimental data by either the broken line method 

described by Robbins etal. (1979) or the quadratic method described by Lovell (1989) can 

be used to ascertain the nutrient level required to elicit maximal growth. The quadratic 

method can also be used to estimate the lowest dietary nutrient level that elicits a growth 

response within the 95% confidence limits of the maximum. This can be termed the 

optimal level. 

A growth experiment at numerous levels of DP and two levels of DE may be used 

to estimate the optimal DP:DE ratio, assuming the dietary energy level and essential amino 

acid levels are high enough to promote maximum potential growth. Feeds formulated to 
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this ratio should result in more efficient growth, less effluent and more cost-effective 

production. The aim of this experiment was to estimate the optimal dietary digestible 

protein:digestible energy ratio for an abalone diet and to note the changes (if any) to the 

meat caused by deviations from the optimum ratio. 

5.2 Materials and Methods 

Experiment I: Growth 

Abalone 

Young, growing juvenile IL laevigata were purchased from South Australian 

Abalone Developments Pty. Ltd. for use in this work. These animals had been raised on 

diatoms to about 10 mm shell length (SL), then grown on a commercially manufactured 

feed. The animals were held until needed in a flow-through holding tank and were fed ad-

libitum their usual commercial diet. Abalone were size-graded prior to selection for the 

experiment to reduce the variance as much as possible. At the commencement of the 

experiment, the mean shell length was 29.66 ± 0.06inm, and bodyweight was 3.52 ± 0.03g 

(n = 800). Details of the control animals that were sampled from the initial cohort are 

provided in Table 5.1. 
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Table 5.1: Analyses of the foot and viscera of control abalone. 

Foot Viscera 

Crude Protein (% dw) 67.05(±0.24) 52.47(±0.91) 

Gross Energy (M.I.kg -I ) 17.81 18.34 

Moisture (% ww) 69.7 76.0 

Ash (% dw) 9.21 12.16 

Crude Fat (% dw) 2.81 6.80 

Glycogen (% dw) 7.41 1.24 

(n = 1 for all analyses except crude protein, where n = 2). 

Values in parentheses are standard errors. 

Dw = dry weight 

Each sample was based on a pool of 20 abalone. 
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Feed formulation and manufacture 

A range of feedstuffs were assessed previously to determine digestible protein (DP) 

and digestible energy (DE) (Chapter 4) for use in experimental diets. Two pairs of diets 

were formulated on the basis of DE. Each pair consisted of one diet high in DP and one 

diet with negligible protein (Table 5.2). Blending differing amounts of the isocaloric pairs 

produced a range of 10 DP levels at two discreet levels of DE, referred to as high energy 

(HE) and low energy (LE). The DP:DE ratio of individual diets can be seen in Table 5.3. 

The essential amino acid (EAA) profile was identical for all diets at both energy levels, 

and was based on the EAA profile of the soft body tissue of greenlip abalone obtained by 

analyses (Table 2.1). Diets contained chromic oxide at 0.5% as an indigestible marker, and 

were produced in the form of flat "chips" as described in Chapter 3. 

Treatments 

The 20 different diets (10 protein levels each at two energy levels) were each fed 

to four replicate tanks of 10 abalone. Abalone were anaesthetised, tagged, weighed and 

measured as previously described in Chapter 3, and randomly assigned to treatments. 

There was no significant size difference between replicates at the beginning of the 

experiment, that lasted 61 days 

Aquarium system 

For a description of the aquarium system see Chapter 3. In this experiment the flow rate 

was 0.2 L.min -1  and air was supplied via a single airstone at 0.5 L.min -1 . Water temperature 

was recorded on 45 of the 61 days at 0900 (range; 15.5-21.0°C, mean = 17.8 ± 0.2°C). The 

water supply for the experiment was taken into the facility via a pipeline 1.51cm offshore. 

74 



Salinity (typically 36 ppt), pH (8.1), ammonia (<1 mg.[') and oxygen (8.2mg.1 1 ) were 

monitored regularly and changed little during the experiment. 
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Table 5.2: Ingredient composition, DP (g.kg-I ) and DE (M.1.kg -1 ), IL (g.kg -1 ) and total 

dietary DP (g.kg - ') and DE (MJ.kg-I ) of the four base diets 

Ingredient DP DE IL(l) IL(2) IL(3) IL(4) 

Na Alginate 0.0 9.5 5.0 5.0 5.0 5.0 

Semolina 91.0 8.9 0.0 320.0 0.0 320.0 

PGS 0.0 13.2 840.0 105.0 785.0 50.0 

Fish Oil 0.0 26.5 55.0 90.0 6.0 40.0 

Vitamin Mix 0.0 15.0 3.0 3.0 3.0 3.0 

Mineral Mix 0.0 0.0 2.0 2.0 2.0 2.0 

Kaolin 0.0 0.0 90.0 0.0 194.0 105.0 

Casein 678.0 11.1 0.0 268.0 0.0 268.0 

Fishmeal 370.0 15.3 0.0 60.0 0.0 60.0 

Soyflour 454.0 14.5 0.0 120.0 0.0 120.0 

Chromic Oxide 0.0 0.0 5.0 5.0 5.0 5.0 

Arginine* 1000 15.0 0.0 17.0 0.0 17.0 

Threonine* 1000 15.0 0.0 5.0 0.0 5.0 

DE Total 12.65 12.66 10.63 10.61 

DP Total 0.0 31.0 0.0 31.0 

DP = Digestible protein (Refer to Table 4.2) 
DE = Digestible energy (Refer to Table 4.2) 
IL (1) = Inclusion level in diet 1 etc. 
PGS = Pre-gelled starch 
* Free amino acids are assumed to be 100% digestible. 
Vitamin and mineral mixes were as described in Table 3.1 
Vitamin mix was assumed to contain 15.0 MJ.kg 1  DE 
Alginate was assumed to contain 9.5 MJ.kg -I  DE (see section 4.2) 
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Table 5.3: Digestible protein and energy levels of the experimental diets and their 

DP:DE ratios. 

DP (g.14 1 ) DP:DE Ratio 
LE (g.M.V) 

DP:DE Ratio 
HE (g.M.J1 ) 

40 3.8 3.2 

70 6.6 5.6 

100 9.4 7.9 

130 12.3 10.3 

160 15.1 12.7 

190 17.9 15.1 

220 20.8 17.5 

250 23.6 19.8 

280 26.4 22.2 

310 29.2 24.6 

DP = Digestible protein 
DP:DE = Digestible protein to digestible energy ratio 
LE = Low energy 
HE = High energy 
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Abalone were fed their allocated diet three times weekly to satiation level with slight 

excess. 

Carcass analysis 

After the final measurement, 20 abalone from each replicate were selected 

randomly, drained of excess water, placed in labelled bags and killed by freezing while still 

anaesthetised. Control animals selected randomly at the start of the experiment were also 

kept for carcass analysis. Frozen animals were allowed to thaw slightly before shell and 

soft-tissue were separated. The soft-tissue was weighed and further separated into meat 

and visceral components. Meat, shell and viscera to whole body ratios (w/w) were 

calculated to indicate the nutritional status of the animals. Meat and viscera samples were 

then freeze-dried prior to analyses for moisture, ash, crude protein (CP), gross energy (GE), 

crude fat and glycogen content. 

Crude protein, moisture, ash and crude fat were determined using the methods of 

the AOAC (1980) and GE was determined using a Parr 1261 bomb calorimeter (Parr 

Instrument Co., Moline, Illinois). Glycogen content was estimated using the method of 

Murat and Serfaty (1974). 

Feed Consumption 

On three occasions during the growth experiment, uneaten feed was removed from 

the aquaria, dried, and weighed to estimate feed consumption. Accurate data was obtained 

for diets containing 40 - 160 g.kg"' DP at both energy levels. At higher levels of DP, the 

feed tended to create excessive fines that were difficult to separate from faeces. An 

estimated consumption rate was used to calculate protein retention where accurate feed 
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recovery was not possible. The consumption rate was assumed to be equal to the mean 

value for those diets for which consumption was accurately determined. Protein retention 

was calculated using equation 5.1. 

PR = 100* 
[CPv* if/v (0W * %11+ CP„, * W(ABW1  

%FC* FEED* DP) 
	.Equation 5.1 

Where PR= Protein Retention, CPv  = Crude Protein of viscera, Wv  = Dry Matter content 

of viscera, AIM = Change in body weight of replicate, %V = Viscera as percentage of 

whole abalone for that treatment, CPm = Crude protein of meat, Wm  = Dry matter content 

of meat, %M= Meat as percentage of whole abalone for that treatment, %FC = Percentage 

of feed consumed, 2TEED= Total feed given, DP = Digestible protein content of that feed. 

Experiment II: digestibility 

Diets containing 40, 190 and 280 g.kg -I  DP from both energy levels were assessed 

for protein digestibility using abalone of a similar size to those in the growth experiment. 

These three diets were chosen to because they almost span the range of dietary protein 

content used in the experiment. The methodology and chemical analysis were as described 

previously (Sections 3.2 and 4.2). 

Experiment III: diet change 

In an effort to determine whether abalone grown on low protein diets and/or high 

energy diets suffered permanent impairment, those that were not sacrificed for carcass 

analysis from diets 40, 70 and 130 g.kg -1  DP (HE and LE) were returned to aquaria and fed 

a commercial growout diet for a period of 43 days, after which they were again measured. 

Stocking density was maintained as per the growth experiment by halving the number of 
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replicate tanks. 

Statistical analysis 

Gain in body weight was expressed as specific growth rate (SGRBW) calculated 

using the formula from Chapter 3. Protein requirements of the abalone were estimated 

from weight gain using the second-order polynomial regression analysis model (Lovell, 

1989). All percentage data were arcsine transformed prior to analysis. All statistics were 

calculated using Systat (1992). Tukey's HSD test was used in pairwise mean comparisons. 

A two-tailed t-test was used to test for significant differences in growth rate due to diet 

change in Experiment II. 

5.3 Results 

Survival and growth rates 

Due to a system failure in one tank (out of 80), all 10 animals of that replicate died. 

Apart from this mishap, only one other animal died during the experiment. The data for 

SGR based on BW of the abalone fed the LE and HE diets are shown in Figs. 5.1(a) and 

(b), respectively. The SGRBW of abalone fed LE diets was significantly affected by 

DP:DE ratio (P < 0.001), while that of abalone fed HE diets was not (P> 0.05). The 

SGRBW of abalone fed the LE diets increased significantly (P < 0.05) from 3.8 g 

DP.MJDR I  to a maximum at 17.9 g DP.MIDE 1  and then decreased significantly (P < 0.05) 

as DP:DE ratio increased to 29.2 g Tukey's HSD test revealed that the 

SGRBW of abalone was not significantly different from 12.3 - 17.9 g DP.M.TDE -1  inclusive 

(P> 0.05). Second-order polynomial regression of the data (Fig. 5.1a) gave an estimate of 
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Fig. 5.1: Specific growth rate (SGR) of abalone. (a): Fed LE diets. (b): 
Fed HE diets. (Mean ± s.e., n = 4) Means with the same subscript are 
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Xmax  of 16.3 g DP.M.TDE -1  , with Yrnax  = 0.95. The lower 95% confidence limit of Y„, a„ was 

bounded by Y, = 0.92, with the corresponding DP:DE ratio of 12.3 g DP.MJD 

Abalone fed HE diets exhibited significantly lower growth rates than those fed LE 

diets (Fig. 5.1b). SGRBW of these animals reached a maximum at a DP:DE ratio of 19.8 

g DP.MJD E. Due to the growth restriction imposed by the energy level of this diet, these 

data were not analysed further by broken-line or quadratic regression. 

Relationship of muscle, viscera and shell to total weight 

Foot muscle, expressed as a percentage of the body weight of animals (ww) fed LE 

diets, increased from 34.0% for those fed the 3.8 g DP.M.TDE -1  diet to plateau at about 

36.5% for diets with 6.6 - 15.1 g DP.M.IDE -1  and declined at higher DP levels (Fig. 5.2a). 

Opposite trends were evident in shell weight and visceral weight (Figs. 5.3a and 5.4a) (as 

a percentage of body weight). Trends for the three body component indices were similar 

for HE diets although foot muscle, shell and viscera indices were lower, higher and lower, 

respectively (Figs. 5.2b, 5.3b, 5.4b). 

Carcass analyses results 

Results of the CP, GE, ash, moisture, glycogen and crude fat content of the meat 

and viscera of abalone can be seen in Figs. 5.5-5.16. The crude protein content of the foot 

muscle of abalone fed LE diets increased linearly from a low of 44.2% for the diet 

containing 3.8 g DP.MJDE -1  to a high of 70.6% for the diet containing 29.2 g DP.M.TDE -1  

(Fig. 5.5a). A similar trend was noted for the abalone fed the HE diets (Fig. 5.5b), with 

protein increasing from a minimum of 45.2% (3.2 g DP.MJDE -I) to the maximum of 72.3% 

(24.6 g In all cases except one (250 g.kg-I DP) the protein content of the foot 
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muscle of animals fed HE diets exceeded that of those fed the LE diets. Trends for visceral 

protein content were less clear, (Figs. 5.6a and 5.6b) with protein content increasing 

significantly (P <0.05) with dietary DP:DE ratio from 3.8 - 9.4 g DP.M.TDE -1  for LE diets 

and from 3.2 - 5.6 g DP.M.TDE"' for HE diets. 

The GE content of foot muscle was similar for both HE and LE diets (Figs. 5.7a 

and b), increasing from approximately 17.6 M.T.kg -1  (40 g.kg -1 DP) to approximately 19.1 

M.J.kg -I  (310 g.kg -IDP). The GE content of viscera tended to be greater for abalone fed LE 

diets. The GE of viscera from animals fed LE diets increased steadily from 3.8 - 17.9 g.kg -

'DP, then declined slightly (Fig. 5.8a), while the GE of viscera from abalone fed HE diets 

increased initially, then tended to plateau beyond 7.9 g.kg -I DP (Fig. 5.8b). 

Diets with higher DP:DE ratios (20.8 - 29.2 and 17.5 - 24.6 g.kg-1 DP of LE and HE 

diets, respectively) produced higher foot muscle moisture content (Figs. 5.9a,b) but there 

were no clear trends in the visceral moisture content data (Figs. 5.10a,b) other than the 

viscera of abalone fed HE diets contained more water than those fed LE diets. 

Trends for ash content (Figs. 5.11 and 5.12) were similar to those for moisture. 

Trends for glycogen (Figs. 5.13 and 5.14) were the inverse of those for protein. Foot 

muscle contained little fat, although it was elevated at the highest levels of DP and was 

usually lower for the HE diets (Fig. 5.15a,b). Viscera fat content was much higher 

(typically 8-10%) and largely unaffected by DP or DE (Figs. 5.16a,b). 

Results of the analyses of the control animals can be seen in Table 5.1. Partitioning 

of the carcass of control animals showed that they yielded 30.72% (+0.41, -0.39) foot 

muscle, 40.90% (+0.48, -0.47) shell and 19.96% (+0.61, -0.51) viscera (mean +s.e., -s.e.) 

Protein retention (%) (net protein gain/digestible protein consumed) was calculated 

for each treatment. Protein retention for animals fed LE diets ranged from almost 90% for 
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the 3.8 g.kg-I DP diet to 13% for the 29.2 g.kg -I DP diet (Fig. 5.17a). A polynomial function 

accurately described the relationship between retention and DP. Similarly, retention for 

abalone fed HE diets ranged from almost 80% (3.2 g.kg -I DP) to 10% (24.6 g.kg -1 131)) (Fig. 

5.17b). 

Experiment II: digestibility 

Mean protein digestibilities (± se) of the 70, 190 and 280 g.kg -I  DPLE diets were 

84.7% (±0.72), 90.7% (±0.26) and 77.3% (±1.97), respectively. Mean protein 

digestibilities for the corresponding HE diets were 88.4% (±0.43), 81.4% (±0.79) and 

77.5% (±1.88). (n = 6 for all treatments except 280 g.kg -1  LE, where n = 5). There was no 

significant difference in mean protein digestibility between the HE and LE diets at the 70 

and 280 g.kg -1 DP level (P> 0.05). However, protein digestibility at the 190 g.kg-1 DP level 

was significantly lower for the HE diet (81.4 ± 0.8%) than for the LE diet (90.7 ± 0.3%) 

(P < 0.05). The digestibility of the dietary protein (irrespective of energy or protein levels) 

was calculated using digestibility estimates and inclusion levels of individual ingredients 

(Chapter 4) and was found to be 80%. 

Experiment III: diet change 

When changed from experimental diet to commercial feed, abalone previously fed 

the 40 g.kg LE diet showed a significant increase in growth rate (P < 0.001). Abalone 

switched from the 70 g.kg"' LE diet to the commercial feed experienced a slight, non-

significant increase in growth rate (P> 0.05). In contrast, abalone fed the 130 g.kg -I  LE 

diet experienced a slight, non-significant reduction in growth rate (P> 0.05) when returned 

to the commercial diet (Fig. 5.18a). Abalone fed the 40, 70 and 130 g.kg"' HE diets all 
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experienced a significant increase in growth rate when changed to the commercial diet (P 

<0.001, P < 0.05, P < 0.001, respectively) (Fig. 5.18b). 

5.4 Discussion 

Experiment I: Growth Experiment 

The optimal dietary DP:DE ratio of juvenile H laevigata was evaluated by growth 

data in this experiment, where growth was expressed as SGR of whole body weight and 

was found to be 12.3 g DP.MJDE-I . Unlike the use of criteria such as net protein utilisation 

and feed conversion efficiency, growth response avoids the necessity of having to 

determine the feed consumption, a difficult task in species such as abalone, as noted by 

previous workers in this area (Mai et al., 1995b). Although protein gain may yield a more 

reliable estimate of protein requirement than growth, recent work has shown that protein 

gain is highly correlated with weight gain and yielded a very similar estimate (Mai et al., 

1995b). The dietary protein requirements of abalone have previously been estimated by 

both broken-line and quadratic regression models. Mai et al. (1995b) found the broken-line 

model gave a closer fit to the data from H discus hannai, whereas the quadratic model was 

more suited to the data of H tuberculata. In this study only the quadratic regression model 

was used. It predicted that maximal growth of H laevigata occurs at a DP:DE ratio of 16.3 

g DP.M.TDE-I , corresponding to a digestible protein level of 17.3% DP, when the dietary 

digestible energy content is 10.6 M.I.kg -1 , while reduction of the DP:DE ratio to 12.3 g 

DP.M.IDE -1  will result in a 5% likelihood of growth rate reduction. As there are no other 

published data on the DP:DE ratio or DP requirements of abalone, these results can only 

be compared indirectly with other reports of crude protein requirements. If an average 
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digestibility of 80% (Section 5.3) is assumed for protein sources in this diet, then these 

results equate to a dietary crude protein requirement of approximately 21.6%. This is 

similar to the estimate of 20% found for H discus (Ogino and Kato, 1964) and falls at the 

lower end of the range (20-30%) recommended for H. discus hannai (Uki etal., 1986b). 

It is below the range estimated by Mai etal. (1995b) for H. tuberculata (22.3-32.3%) and 

H discus hannai (23.3-36.6%) and much lower than the minimum 30% reported by Taylor 

(1992) for H. kamtschatkana and 47% for H midae by Britz (1996). A DP requirement of 

17.3% is relatively low for an aquaculture species but a precedent exists for Penaeus 

vannamei when appropriate protein/energy/amino acid balances have been achieved 

(Aranyakananda and Lawrence, 1993). 

It is clear from the results presented here that H. laevigata grow significantly less 

well at a dietary energy level of 12.6 MJDE.kg -1 . In contrast, they approached a SGR of 

1.0 at a dietary energy level of 10.6 M.TDE.kg-1 . In the three diets that produced the fastest 

growth the DP:DE ratio ranged from 12.3-17.9 gDP.M.TDE -1 . A previous estimate (Chapter 

3) of 14.4 gDP.M.IDE"' falls well within this range. The mechanism by which the HE diet 

resulted in severe growth rate reduction could be explained if abalone eat to satisfy energy 

requirements and not protein. Abalone will reach energy satiation sooner consuming a high 

energy diet than a low energy diet. Thus, protein intake of abalone on a high energy diet 

may be much less than that of those on a low energy diet. This may result in faster growth 

of animals on lower energy diets. This hypothesis is difficult to reconcile with the statement 

by Fleming (1995), however, that abalone select foods that maximise the intake of nitrogen 

and that energy does not appear to play a major role in setting food preference. Another 

explanation for the reduction in growth rate noted in this experiment may be related to 

dietary lipid level. Almost all of the energy difference between LE and HE diets was due 
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to increased lipid content. Excess dietary lipid may reduce nutrient availability to the 

abalone by reducing protein digestibility. One group of researchers (Britz et al., in press) 

have noted very low levels of lipase in the gut of H. midae, while van Barneveld et al. 

(1998) found that inclusion of fish oil above 60 g.kg -1  decreased the digestion of dietary N 

and amino acids, while inclusion of fish oil above 30 g.kg"' decreased gross energy 

digestion. Van Barneveld et al. (1998) also concluded that oil type can influence the 

apparent faecal digestibility of N, amino acids and gross energy. 

The relationship of muscle, viscera and shell to total weight was greatly affected by 

the protein content of the diet and, to a lesser extent, by the energy content. It is of 

commercial interest to note that the diets that produced fastest growth rate also yielded the 

highest percentage of foot muscle, were mid-range in viscera content, low in moisture and 

lowest in shell as a proportion of whole weight. Comparison of the protein content of the 

foot muscle of H laevigata to that of H tuberculata and H discus hannai reported by Mai 

etal., (1995b) is difficult as those workers did not separate foot muscle and viscera. The 

CP content of the foot muscle of our control animals was 67.1% (dw). At the conclusion 

of the experiment, the CP of those on the 3.8 g.M.TDE -I  LE diet had declined to 44.2%, 

while those on the 29.2 g.MJDE1  LE diet had increased to 70.6%. Similarly, those on the 

HE diets had decreased to 45.2% for those on the 3.2 g.M.TDE -1  diet, and had increased to 

72.3% for those on the 24.6 g.M.IDE-1  diet. From this it could be deduced that our controls 

had been maintained on a diet of about 25% DP. This, in fact, was the case. 

The carcass composition of the experimental animals was greatly affected by diet 

(Figs. 5.5-5.16). In general, foot muscle protein, moisture, and GE increased linearly as 

DP increased, while glycogen decreased linearly (except at very low dietary DP levels) and 

ash increased in curvilinear fashion for LE diets and linearly for HE diets. For abalone 
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viscera the trends were not as clear, except in the case of glycogen, that decreased in a 

curvilinear fashion as dietary DP increased. Gut contents are unlikely to have affected 

visceral composition as abalone were sacrificed three days after their final feeding. 

The GE content of the foot muscle of animals fed diets of 100 and 130g DP.kg -1  for 

both LE and HE (18.0 and 18.1 M.I.kg -I , respectively) is close to the value obtained for 

similar tissue from H rubra by Thomas and Day (1995) (18.04± 0.25 MJ. Kg - '). Unlike 

Thomas and Day (1995), however, this study showed that the viscera contained more 

energy than the foot muscle at all but the lowest protein levels. This may be a result of the 

abalone in this study being fed relatively high energy diets, compared to the animals 

investigated by Thomas and Day (1995) that had been fed macroalgae. Similarly, Fleming 

(1991) reported a GE content of 15.8 M.I.kg -I  for flesh of H rubra, but these animals were 

maintained on a macroalgal diet. 

We have found that the glycogen content of the foot muscle and viscera is heavily 

dependent on the diet of the abalone. It is therefore of little value to compare tissue 

glycogen levels measured here to those in the literature, unless the recent nutritional history 

of the animal is known. Greenlip abalone appear to be adept at converting excess dietary 

carbohydrate of manufactured feeds to glycogen and storing it in the foot and viscera. The 

findings in relation to foot muscle may be of special interest to seafood processors and 

growers alike, as glycogen has been shown by Olaechea etal. (1993) to be correlated with 

toughness in abalone meat. However, Carefoot etal. (1993) found no evidence that taste-

testers could detect a difference between high- and low- glycogen abalone meat. Glycogen 

levels in abalone meat have previously been shown to vary greatly with species, location 

and time of year (011ey and Thrower, 1977). 

Focusing on the composition of the fastest growing animals, it can be seen that the 
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animals fed diets containing 12.3 - 17.9 gDP.MJDE -1  (LE) had mid-range levels of foot 

protein, glycogen and foot GE, low moisture and low ash. It is apparent that the diets that 

promote fast growth also avoid undesirable traits such as high moisture and high ash. 

It is difficult to compare the protein retention results obtained here with those of 

Uki et al. (1986b) due to differences, for example, in species studied, diet formulation and 

dietary lipid levels. However, if one estimates the CP digestibility of the diets used by Uki 

et al. (1986b) as 85%, then the retention rate on the casein based diets reached a peak of 

70% when abalone were fed the 95 g.kg -1 CP diet (80 g.kg1  DP). This is close to the value 

obtained in this study for the diet containing 70 g DP.kg -1  diet (LE). Values obtained by 

Uki et al. (1986b) then declined as dietary CP increased, to a low of 280 g.kg -1  for the diet 

with 554 g.kg -1  CP. Values obtained in the current experiment were below 30% for DP 

levels 220 g DP.kg -I . Protein deposited in the shell was not included in this study. 

Experiment II: digestibility 

The digestibility of the dietary protein was estimated for diets with low (70), 

medium (190) and high (280 g DP.kg - ') levels for both high and low energy diets. In the 

case of the 70 and 190 gDP.kg i  LE diets, and the 70 gDP.kg -1  HE diet, digestibility of the 

protein of the whole diet was higher than the calculated value (80%) based on digestibility 

values of individual ingredients. This may indicate that some synergy or additive effect 

occurs in certain circumstances to enhance digestibility. The values obtained for the 280 

g.kg"' LE and HE diets are very close to the calculated value and to each other. It would 

seem unlikely that the difference in SGR observed between abalone fed these diets is due 

to a difference in protein digestibility. More work is needed in this area, however, to 

clarify the mechanism of growth retardation. 
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Experiment III: diet change 

Abalone from treatments 40, 70 and 130 g.kg"' DP at both energy levels were 

returned to aquaria and fed a commercial diet. Animals previously fed HE diets showed 

a significant improvement in growth rate (P <0.05). This demonstrates that the slowing 

of growth by high energy diets did not produce permanently stunted animals in this case. 

If the animals fed the 40 and 70 gDP.kg"' HE diets were restricted in growth due to limited 

protein intake, then their growth should have improved when changed to the commercial 

diet, which in fact is what happened. The animals fed the 130 gDP.kg -1  HE may have been 

consuming feed until energy (not protein) satiation, leaving their protein intake inadequate 

to sustain optimal growth. On changing to the lower energy commercial diet, their intake 

rate may have increased, resulting in higher protein ingestion and faster growth, as 

observed. 

Conversely, the animals fed the 40 gDP.kg -1  LE diet exhibited a significant increase 

(P < 0.001) in growth, when switched to the commercial feed (that contained higher GE 

than the LE diets). Assuming intake rates of the commercial diet were somewhat less than 

those of the LE diets, animals from the 40 g.kg -1  DPLE diet may have been over-

compensated by the increased level of dietary protein, resulting in a net increase in growth 

rate. Animals from the 70 gDP.kg 1  LE diet would have been less affected, (they 

experienced a slight, non-significant increase in growth) and animals from the 130 gDP.ke 

LE diet may have been ingesting less protein on the commercial diet than during the 

experiment, resulting in a slight reduction in growth rate. This is exactly what was 

observed. Unfortunately, feed consumption was not recorded for this experiment. 
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5.5 Conclusions 

Relatively low protein, low energy diets promote fast growth in H. laevigata. 

Excess dietary protein and energy (as lipid) significantly reduces growth. The mechanism 

underlying this diet-related growth reduction is the subject of ongoing investigation, but 

preliminary work in this experiment (Experiment II) showed that the digestibility of dietary 

protein in the HE diets decreased as dietary protein level increased. This may help explain 

some of the growth reduction observed. The hypothesis that abalone eat to satisfy energy 

and may thus ingest less protein on high energy diets cannot be ruled out. More research 

on this topic is needed to explain these observations. Growth retardation is not permanent 

and abalone return to normal growth rates if suitable feed is provided. Carcass partitioning 

revealed that diets promoting the fastest growth resulted in a higher proportion of foot 

muscle, lower viscera and less shell than other diets. Analyses of meat and viscera showed 

that diet significantly affected proximate composition. Low protein diets particularly 

promoted glycogen deposition. These findings suggest that specialised diets, aimed at 

manipulating certain characteristics of abalone flesh, may have a future in abalone 

aquaculture. Further research is required on the potential of this strategy. 
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CHAPTER 6 

THE DIETARY REQUIREMENT FOR LYSINE OF GREENLIP ABALONE 
(Haliotis laevigata) DETERMINED USING COVALENTLY BOUND AND FREE 

AMINO ACID SOURCES 

6.1 Introduction 

There are no published estimates of the quantitative requirements of abalone 

(Haliotis spp.) for any of the essential amino acids (EAA's) as defined by Allen & Kilgore 

(1975). Estimates of lysine requirement available for finfish range from 3.7-5.7 (% of 

dietary protein) with most values close to 5%. These reports are summarised in D'Mello 

(1994). Reports concerning invertebrates are far fewer, one such being Fox etal. (1995,a) 

who estimated the lysine requirement of Penaeus vannamei at 4.67% of dietary protein 

when the diet contained 45% crude protein and 4.49% at a crude protein content of 35%, 

when the lysine supplement was covalently bound to the protein. When L-lysine-HC1 was 

used as a supplement in diets of 35% crude protein, the dietary requirement increased to 

5.19%. 

Most studies evaluating EAA requirements use the dose-response method, whereby 

a series of diets are formulated to contain increasing levels of the EAA under scrutiny. 

Diets commonly contain the EAA in the range from 0% to 10% of dietary protein, and all 

other EAA's are present in the same proportions as in the soft tissue of the animal. Studies 

involving finfish routinely use crystalline EAA's both to increase the level of the EAA 

under investigation and to supplement others to slight excess (Tibaldi and Lanai, 1991). 

Experiments of this design rely on growth as an indication of response, and typically result 
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in a "broken stick" plot, in which the growth rate of the fish increases until the optimal 

dietary EAA level is attained. Ingestion of diets containing higher levels of the EAA do 

not result in increased growth. 

Studies that rely on the use of crystalline EAA's may encounter methodological 

problems such as reduced availability of EAA's due to leaching and differential uptake 

kinetics. For example, Deshimaru (1981) reported that prawns were able to deposit less 

than 1% of free amino acids, indicating the seriousness of these problems. One possible 

solution is to microencapsulate the EAA in lipid to impede its tendency to dissolve. The 

usual composition of such microencapsulated AA is 20% AA and 80% lipid. 

Unfortunately, recent results (see Chapter 5 and van Barneveld et al., 1998) have indicated 

that the growth rates of abalone are depressed when dietary lipid levels exceed about 5%. 

This effectively precludes the use of lipid microencapsulated AA, as supplementation of 

the EAA would exceed 5% dietary lipid and depress the growth rate. Another strategy is 

to covalently enrich a protein source with the EAA under investigation, using the methods 

of Fox etal. (1995a,b). Covalent enrichment of intact protein reduces leaching of the EAA 

under investigation to a minimal level. In addition, absorption of the EAA across the gut 

wall is assumed to be at a similar rate to other intact EAA's. 

The aim of this experiment was to investigate the requirement of abalone for lysine 

because it is commonly the most-limiting EAA in diets based largely on wheat protein. 

Rather than relying entirely on the results of one method, in this experiment the lysine 

requirement of abalone was estimated using diets supplemented with free lysine and also 

diets enriched with covalently bound lysine. This allowed a comparison of the 

effectiveness of both methods. 
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6.2 Materials and Methods 

Abalone 

Juvenile greenlip abalone (Haliotis laevigata) were obtained from a local farm 

(South Australian Abalone Developments, Pty. Ltd.) for this experiment. These animals 

had been raised on diatoms until about 10 mm in length, when they were weaned onto a 

commercially available growout diet. The animals were held for one week in a flow-

through holding tank and fed their usual commercial diet. Abalone were size-graded prior 

to selection for the experiment to reduce the variance as much as possible. Details of the 

animals prior to the experiment can be seen in Table 6.1. 

Feed formulation and manufacture 

Free-lysine diets ("FL" Diets) 

A basal diet (Table 6.2) was formulated using wheat gluten and semolina (Allied. 

Milling Co., Adelaide, South Australia) as the only protein sources. Lysine was presumed 

to be limiting in the basal diet. Feed-grade lysine HC1 (Vedan Enterprises Co., DOng Nai 

Province, Vietnam) was added in increasing amounts to create a series of diets with lysine 

making up an increasing proportion of the protein (Table 6.2). Diatomaceous earth was 

removed as lysine-HC1 was added. Diets contained 0.5% chromic oxide as a digestibility 

marker, although, due to time constraints, no digestibility work was carried out. Diets were 

produced in the form of ribbon-like strips using a pasta machine. The ratio of each EAA 

to lysine was greater in the feed than in the soft body tissue of abalone (Table 6.3), based 

on earlier analyses (see Table 2.1). 
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Table 6.1: Initial body weight data of abalone 

Series 	 N (mortalities excluded) 	Mean Body Weight ± se (g) 

Lysine-HC1 + Controls 	 358 
	

0.98 ± 0.01 

Covalently-Enriched 
	

313 
	

1.01 ±0.01 
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Table 6.2: Formulation of free-lysine (FL) diets (g.kg -I ) 

Ingredient Basal Diet Diet 1 Diet 2 Diet 3 Diet 4 Diet 5 Diet 6 Diet 7 Diet 8 

Pre-gelled starch 405 405 405 405 405 405 405 405 405 

Wheat gluten 300 300 300 300 300 300 300 300 300 

Semolina 160 160 160 160 160 160 160 160 160 

Diatomaceous earth (filler) 105 102.7 100.6 98.2 96.2 93.8 91.7 89.6 87.2 

Fish oil 20 20 20 20 20 20 20 20 20 

Chromic oxide 5 5 5 5 5 5 5 5 5 

Vitamin premix 3 3 3 3 3 3 3 3 3 

Mineral premix 2 2 2 2 2 2 2 2 2 

Lysine-HC1 0 2.3 4.4 6.8 8.8 11.2 13.3 15.4 17.8 

Total 1000 
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Covalently enriched gluten diets ("CEG" Diets) 

A representative quantity of wheat gluten was sent to the Department of Food 

Science, The University of British Columbia, Canada, where the gluten was covalently 

enriched with lysine using the following method: 

Wheat gluten was solubilized by the acid hydrolysis method of Wu et al. (1976) 

with slight variations. Either 0.1 or 0.2 M HC1 was added to wheat gluten while stirring 

to make a 5% solution which was autoclaved at 124°C for 15 mm. The suspension was 

cooled, the pH adjusted to 4.5 using 10M NaOH, and the supernatant decanted after 

standing. The precipitate was washed twice with ice cooled distilled water (adjusted to pH 

4.5 with HC1) by centrifuging at 1100G and 7°C for 10 mm. The pellet was resuspended 

in water (90% of the original volume) and adjusted to pH 6.0 using 10M NaOH. 

Lysine enrichment of the wheat gluten was carried out according to Fox et al. 

(1995a) with minor variations (the amounts shown in brackets represent those for the 

trials / large-scale). To a slowly stirred solution of acid solubilized wheat gluten (10 mL 

/ 4.7L) was added 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (Sigma, 

E-7750) (0.095g / 49.6g), N-hydroxysuccinimide (Sigma, H-7377) (0.025g 113.2g) and feed 

grade lysine or L-lysine HC1 (Sigma, L-5626) (0.35g / 182.8g). The mixture was adjusted 

to pH 6.0 at room temperature and gently stirred for 4 hr. The reaction was terminated with 

glacial acetic acid to pH 2.5. The precipitates at pH 2.5, 4.5 and 8.5 were collected by 

centrifugation at 1100G and 7°C for 10 min following stepwise adjustment of the pH using 

10 M NaOH. Pellets were resuspended in distilled water (<20% solution), 
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Table 6.3: Amino acid content of normal and covalently-enriched wheat gluten (g.kg -I ) 

and the ratio to lysine (RTL) of amino acids in abalone soft tissue and in the basal 

diet. 

Amino Acid Gluten Enriched Gluten Abalone RTL Basal Diet RTL 

lys* 11.4 ± 0.3 49.0 ± 0.42 1.00 1.00 

arg* 26.0 25.2 ± 0.04 1.46 2.28 

his* 14.4 14.1 ± 0.64 0.27 1.26 

ile* 22.5 ± 1.8 27.0 ± 0.03 0.75 1.97 

leu* 46.4± 1.4 51.7 ±0.25 1.11 4.07 

met* 12.1 ND 0.29 1.06 

phe* 35.4 33.7 ± 0.06 0.62 3.11 

thr* 19.7 ± 1.0 18.9 ± 0.13 0.80 1.73 

trp* ND ND 0.32 0.53 

val* 24.2 ± 1.3 25.5 ±0.42 0.86 2.12 

ala 11.0 ± 0.6 13.1 ±0.06 0.94 0.96 

asp 24.5 ± 0.9 30.5 ± 0.10 1.59 2.15 

cys 16.8 ND 0.26 1.47 

glu 272.9 244.0 ± 0.18 2.60 23.94 

gly 25.3 ± 3.8 19.5 ± 0.14 1.46 2.22 

pro 79.7 63.0 ± 0.31 0.92 6.99 

ser 35.7 ± 3.5 30.9 ± 0.01 0.89 3.13 

tyr 25.1 18.1 ± 0.06 0.52 2.20 

* = EAA. ND = not determined. Values are means (± se). Values for gluten were derived from one pre-
oxidised and one normal acid hydrolysis sample (n=2). N = 1 for Met and Cys. Values without errors are 
from one sample only either oxidised or normal hydrolysis. Trp values estimated from literature. Values 
for enriched gluten are from two samples subjected to normal hydrolysis. 
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Table 6.4: Percentage lysine in original, acid hydrolysed and trial lysine enriched wheat 

gluten, determined from single analysis. 

Wheat Gluten 	 Lysine (%) 

Original 	 1.15 

Acid Hydrolysed 

0.1 M HC1 
	

1.16 
0.2 M HCI 
	

1.45 

Lysine enriched gluten prepared from 0.1 M HCI hydrolysed gluten using: 

Feed Grade Lysine 	 L-lysine HC1 

pH 2.5 fraction 	 5.36 
	

5.37 

pH 4.5 fraction 	 5.77 
	

5.40 

pH 8.5 fraction 	 7.16 
	

7.32 

Lysine enriched gluten prepared from 0.2 M HCI hydrolysed gluten using: 

Feed Grade Lysine 	 L-lysine HCI 

pH 2.5 fraction 	 5.93 	 7.12 

pH 4.5 fraction 	 6.48 

pH 8.5 fraction 	 7.14 
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dialyzed (6000 - 8000 MW) at 4°C against running water for 24 hr and distilled water for 

12 h, and then freeze dried. The protein fraction precipitated at pfl = 2.5 (Table 6.4) was 

blended with unenriched gluten and used to make a series of diets of increasing lysine level, 

but with essentially unchanged levels of other EAA's. The series of diets ranged from 0% 

enriched gluten (the basal diet) to 80% enriched gluten. 

The two gluten fractions were sifted three times together, then added to a mixture 

of all other dietary ingredients that had been previously prepared. The resulting dry mix 

was thoroughly blended, then water was added and further mixing took place. The resultant 

dough was rolled into a cylinder by hand and sliced into thin sections with a razor blade. 

The sections were dried at 55 °C in a forced-draught oven overnight. All feeds were kept 

refrigerated until used. Samples of each feed were analysed for crude protein and amino 

acids as described in Chapter 3, with the exception that a coefficient of 5.75 was used to 

convert "%N" values to crude protein instead of 6.25. The former value was used as it 

more closely reflects the relationship between the nitrogen content of the feedstuff and the 

protein content, as gluten is high in glutamic acid. The relatively lower molecular weight 

of glutamic acid results in a lower coefficient (H. Bremner, Pers. Comm.). Moisture 

content was calculated by freeze-drying feed samples. 

Treatments 

The 17 treatments (two series of eight diets, plus control) were each fed to four 

replicate tanks of 10 abalone. Abalone were tagged and weighed as described in Chapter 

3 and randomly assigned to treatments. There was no significant difference in weight 

between replicates of each series at the beginning of the experiment (P > 0.05). Tanks were 

randomly distributed. 
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Aquarium system 

The aquarium system is described in Chapter 3. In this experiment the flow rate , 

was 0.2 L.min-I  and air was supplied via a single airstone at 0.5 

Feed Consumption 

On six occasions during the experiment, uneaten feed was carefully removed from 

the CEG aquaria when new feed was due to be given, oven-dried overnight at 55 °C and 

weighed. These data were used to estimate feed consumption. Uneaten feed was collected 

in the same manner on seven occasions for the FL diet treatments. 

Carcass Partitioning 

This was carried out as described in Chapter 5. 

Leaching 

Feed from the basal diet and each FL diet treatment was weighed and placed into 

six replicate aquaria with similar water and air flow rates to those containing abalone. After 

six hours, the feed was removed, oven-dried, and dry matter loss was recorded. (Six hours 

was chosen as abalone are assumed to have completed feeding within this time period.) 

The feed samples were then pooled, milled, and a representative sample analysed for amino 

acid content using the methodology described in Chapter 3. 

Statistical analysis 

Gain in body weight was expressed as specific growth rate (SGR) calculated using 

the formula given in Chapter 3. Lysine requirements of the abalone were estimated from 
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weight gain using the second-order polynomial regression analysis model (Lovell, 1989). 

All statistics were calculated using Systat® (1992). 

6.3 Results 

Gluten enrichment 

Amino acid analysis of the trial lysine enriched wheat gluten using HPLC revealed 

little difference in lysine content when either 0.1 or 0.2 M HC1 were used in acid 

solubilization or when either feed grade lysine or L-lysine HC1 were used in the lysine 

enrichment reaction (Table 6.4). (Statistical analysis of these results was not possible as 

only single samples were analysed.) Hence, the large-scale reaction was carried out using 

feed grade lysine and wheat gluten (261 g) solubilized with the milder 0.1 M HC1, yielding 

99.24, 33.18 and 29.10 g of the pH 2.5, 4.5 and 8.5 fractions, respectively. Overall yield 

of the reaction was 61.9%. 

The lysine content of the large-scale lysine enriched wheat gluten was increased 4.6-, 4.3- 

and 5.9-fold over that of the original gluten, for the pH 2.5, 4.5 and 8.5 fractions, 

respectively (Table 6.5). These were similar to or lower than the 6.2-fold increase achieved 

in the pH 8.5 fraction of the initial trial using 0.1 M HC1 and L-lysine HC1 (Table 6.4). 

Examination of Table 6.5 reveals that the amino acid composition of the enriched gluten 

fractions did vary when compared to the unenriched gluten. However, these changes (eg, 

proline, glycine and tyrosine) were greatest for the pH 8.5 fraction, which was not used to 

make experimental diets. Comparison of the unenriched gluten to the pH 2.5 fraction 

reveals few changes, perhaps the most noteworthy are isoleucine and leucine. Data of the 

dry matter, crude protein and amino acid content of each CEG diet can be seen in Table 6.6. 

Dry matter content of feed was typically 96-98%, with the basal diet having the lowest dry 
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matter content of 93.9%. The lysine content of CEG diets ranged from 4.75 g.kg -1  for feed 

containing 10% enriched gluten to 12.25 g.kg -1  for feed with 80% enriched gluten. Diets 

containing 50% and 60% enriched gluten contained a lower lysine content, as a percentage 

of protein, when analysed, than anticipated. In contrast, diet 40% CEG returned a higher-

than anticipated lysine content. Generally, the (non-lysine) amino acid content of the CEG 

diet series did not change appreciably across the series, with the exception that the arginine 

content of CEG 10% diet (5.58 g.kg -I ) was considerably lower than that for other enriched 

diets (mean ± sem = 9.01 g.kg -I  ± 0.39) and that the tyrosine content of CEG diet 60% was 

considerably lower (4.44 g.kg1than that for other diets in the series (Table 6.6). - 

The lysine content of the FL diets ranged from 3.23 g.kg -1  for the basal diet to 

10.22 g.kg -1  for diet 8 (Table 6.7). 
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Table 6.5: Average amino acid composition (%) of the unenriched wheat gluten and the 

pH 2.5, 4.5 and 8.5 fractions of the large scale lysine enriched wheat gluten, determined 

from duplicate analyses. 

Amino Acid Unenriched Wheat pH 2.5 Fraction pH 4.5 Fraction pH 8.5 Fraction 
Gluten 

Cys 1.68 NR NR NR 

Asp 2.45 3.28 2.00 2.84 

Met 1.21 NR NR NR 

Thr 1.97 2.03 1.65 1.52 

Ser 3.57 3.33 3.49 2.35 

Glu 27.29 26.23 22.33 25.61 

Pro 7.97 6.78 5.68 4.22 

Gly 2.53 2.09 1.55 1.59 

Ala 1.10 1.41 1.12 1.02 

Val 2.42 2.74 2.42 2.13 

Ile 2.25 2.90 2.36 2.25 

Leu 4.64 5.56 4.36 4.28 

Tyr 2.51 1.95 1.38 1.50 

Phe 3.54 3.63 2.87 3.34 

Lys 1.14 5.26 4.95 6.75 

His 1.44 1.51 1.13 1.28 

Arg 2.60 2.71 1.97 1.32 

NR = Values for these amino acids not reported as the samples were not pre-oxidised. 
Tryptophan values were not reported. 
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Table 6.6: Amino acid profile (g.kg-I ), crude protein (%), lysine as a percentage of crude 

protein and dry matter content of CEG diets reported from duplicate analyses 

AA 10% 20% 30% 40% 50% 60% 70% 80% 

Cys 

Asp 

Met 

ND 

7.01 

ND 

ND 

7.06 

ND 

ND 

6.80 

ND 

ND 

6.70 

ND 

5.43 

7.27 

4.23 

ND 

5.79 

ND 

3.94 

6.29 

3.89 

5.37 

7.73 

3.76 

Thr 6.28 6.49 6.64 5.45 6.58 5.21 6.61 6.34 

Ser 10.63 10.59 10.60 10.05 10.13 9.56 8.93 10.73 

Glu 86.72 84.29 84.33 86.12 80.65 70.01 74.59 82.03 

Pro 23.66 23.26 23.47 25.23 22.80 18.98 17.77 19.16 

Gly 7.41 8.02 7.31 7.65 6.89 5.27 5.54 6.42 

Ala 3.63 4.02 4.12 3.80 3.82 3.91 3.52 4.01 

Val 8.56 9.09 8.84 9.20 9.56 8.19 7.44 9.62 

Ile 8.45 9.51 10.00 9.26 9.27 9.01 9.48 9.29 

Leu 14.22 15.14 14.50 16.10 15.29 13.62 15.30 16.36 

Tyr 6.74 6.47 7.36 7.75 6.81 4.44 6.74 5.92 

Phe 11.74 11.81 11.19 12.46 11.92 7.30 11.43 9.13 

His 4.87 5.18 5.32 5.97 5.95 3.85 5.01 3.97 

Arg 5.58 8.75 8.62 9.70 10.28 8.81 9.62 7.32 

Lys 4.75 5.94 7.18 8.91 8.78 9.28 11.03 12.25 

CP (%) 21.94 22.71 23.05 23.46 23.92 23.60 23.92 24.47 

% CP 2.16 2.62 3.11 3.80 3.67 3.93 4.61 5.00 

% DM 96.0 96.6 96.9 97.0 96.9 96.9 96.3 95.9 

Survival and growth 

Mortality was low; a total of eight animals died during the course of the 
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experiment. These mortalities, all during the first week of the experiment, were presumed 

due to the stress of tagging, measurement and transfer. Growth rate was significantly 

affected by L-lysine-HC1 supplementation (P <0.001) and increased linearly (Fig. 6.1). 

The lowest growth rate (SGR = 0.384 ± 0.039) was recorded for abalone fed the basal diet 

with no lysine supplementation. The fastest growth rate was recorded for abalone fed the 

diet with the highest level of lysine (SGR = 0.879 ± 0.087; Fig. 6.1). There was no 

significant difference in growth rates between diet FL1 and FL7 (Table 6.8). 

Growth rate was also significantly affected by supplementation with covalently-

bound lysine (P <0.001) in a curvilinear fashion (Fig. 6.2). The highest growth rate (1.134 

± 0.052) was recorded for abalone fed the diet containing 50% lysine-enriched gluten 

(lysine --- 3.67% of dietary protein; Fig. 6.2), ), although growth rates did not differ 

significantly between diets CEG 30% and 80% (Table 6.8). 
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Fig. 6.2: SGR of abalone fed diets supplemented with covalently-bound lysine. 



Table 6.7: Amino acid profile (g.kg - '), crude protein (%), lysine (percentage of crude 

protein) and dry matter content of FL diets 

AA 
Basal 
Diet FL! FL2 FL3 FL4 FL5 FL6 FL7 FL8 

Cys 

Asp 

Met 

5.11 

8.74 

3.24 

ND 

6.60 

ND 

ND 

6.32 

ND 

ND 

6.21 

ND 

ND 

6.93 

ND 

ND 

6.21 

ND 

ND 

6.12 

ND 

ND 

5.89 

ND 

ND 

5.88 

ND 

Thr 5.87 5.51 5.77 5.14 6.14 5.52 5.31 5..19 5.11 

Ser 10.40 10.06 9.74 8.86 9.93 10.16 9.40 9.34 9.27 

Glu 82.61 77.83 78.59 68.72 81.07 77.48 75.26 73.07 72.26 

Pro 22.00 21.49 21.19 20.04 20.25 22.02 21.60 20.05 18.87 

Gly 7.25 6.88 6.82 5.88 7.20 6.54 6.32 5.67 6.03 

Ala 3.84 4.19 3.97 3.52 4.15 3.65 3.83 3.44 3.48 

Val 8.68 8.86 8.65 7.77 9.31 8.69 8.08 7.59 7.93 

He 8.59 8.84 8.76 8.31 8.89 8.17 8.03 7.49 7.64 

Leu 14.54 13.43 13.52 12.19 14.26 14.02 13.03 12.48 12.27 

Tyr 3.00 4.95 5.63 4.62 5.69 5.61 5.07 5.16 4.58 

Phe 7.29 8.62 8.60 7.95 9.06 9.25 8.03 7.82 7.59 

His 3.49 3.60 3.65 3.49 3.93 3.51 3.52 3.20 3.31 

Arg 5.70 6.61 6.84 7.00 7.72 6.81 5.88 6.00 5.97 

Lys 3.23 4.20 5.24 6.53 6.97 7.81 8.56 9.25 10.22 

CP (%) 22.86 21.66 22.26 22.61 22.62 22.89 23.36 23.11 23.64 

% CP 1.41 1.94 2.35 2.89 3.08 3.41 3.66 4.00 4.32 

% DM 93.9 98.4 96.5 98.6 95.0 96.5 96.1 96.6 96.8 

AA = Amino acid; ND = Not determined (as the sample had not been pre-oxidised); CP = Crude protein 
FL 1-8 = Free lysine diets 1 -8; DM = Dry matter 
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Table 6.8: Specific growth rate (mean ± se, n = 4) of abalone fed diets supplemented 

with free-lysine or with covalently-bound lysine 

SUPPLEMENT 

FL CEG 

DIET SGR SEM SGR SEM 

Basal 0.384' 0.039 0.384' 0.039 

1 0.572" 0.062 0.593 b  0.054 

2 0.562' 0.033 0.715b  0.086 

3 0.521' 0.039 1.084' 0.089 

4 0.666bc 0.049 1.124' 0.101 

5 0.744bc 0.070 1.134' 0.052 

6 0.781 k  0.101 1.000` 0.124 

7 0.7961" 0.068 0.979' 0.077 

8 0.879' 0.087 0.885 bc 0.080 

FL = Free lysine; CEG = Covalently enriched gluten; SGR = Specific growth rate; 

SEM = Standard error of mean for 4 observations 

Values with the same superscript are not significantly different (P> 0.05) 
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Carcass Partitioning 

Meat:shell ratios (MSR) were calculated for all treatments. There was no 

relationship between MSR and dietary lysine level for animals fed FL diets (Fig. 6.3). In 

contrast, the relationship between MSR and dietary lysine level for animals fed CEG diets 

were described by a quadratic function (Fig. 6.4). 

Feed Consumption 

Control abalone consumed significantly less feed than all other treatments (P < 

0.001). Feed consumption increased significantly in linear fashion across the series of FL 

diets (P> 0.05) (Fig. 6.5). In contrast, feed consumption for abalone fed CEG diets (Fig. 

6.6) did not differ significantly across the series (P> 0.05). 

Leaching Losses 

Lysine loss from the basal diet after immersion for six hours was moderate (13.3%) ;  

but losses from the diets supplemented with lysine HC1 ranged from 33.7-54.5% of total 

lysine (Table 6.9). Lysine loss from the CEG diets was not investigated, but could be 

expected to be similar to that of the basal diet, as the lysine in both cases is an integral part 

of the protein. 
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Fig. 6.3: Relationship between Meat:Shell Ratio (MSR) and dietary 
supplementation with lysine.HCI. (Mean ± sem, n = 20) 
Fig. 6.4: Relationship between MSR and dietary supplementation with 
covalently-bound lysine. (Mean ± sem, n = 20) 
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Table 6.9: The effect of leaching (6 h) on a dietary supplement of lysine HC1 in FL 

diets. 

Diet Lysine Content (Intact Lysine Content (Leached Lysine Leached (% of 
Feed; g.kg-1 ) Feed; g.kg- ') original amount) 

Basal 3.23 2.80 13.3 

FL I 4.20 2.55 39.3 

FL2 4.33 2.87 33.7 

FL3 6.53 3.32 49.2 

FL4 6.97 3.27 53.1 

FL5 7.81 4.70 39.8 

FL6 8.56 4.44 48.1 

FL7 9.25 4.21 54.5 

FL8 10.22 5.31 48.0 

FL 1-8 = Free lysine diets 1-8 
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6.4 Discussion 

Gluten enrichment 

In a series of small-scale experiments carried out at the University of British 

Columbia, it was concluded that neither hydrolysis of gluten with 0.2 M HC1 nor use of 

reagent-grade L-lysine HC1 improved lysine content of modified gluten over the use of 0.1 

M HC1 or use of feed-grade lysine HC1. Consequently, the large-scale reaction used 

hydrolysis at 0.1 M HC1 and feed-grade lysine HC1 to produce enough lysine-enriched 

gluten for use in the growth experiment. The lysine-enriched gluten was precipitated at pH 

= 2.5, 4.5 and 8.5. Although the pH = 8.5 fraction was richer in lysine than the pH = 2.5 

fraction, the latter was used in all CEG diet blends as there was 96 g available, compared 

to only 28 g of the pH = 8.5 fraction. This avoided having to blend different gluten 

fractions. Unfortunately, the lysine content of CEG diets that included 40%, 50% and 60% 

enriched gluten was higher, lower, and lower, respectively, than the anticipated content 

(Table 6.6). When analysed values were converted to lysine content as a percentage of 

crude dietary protein, they shifted the diet along the X-axis of plots, such as Fig. 6.2, 

resulting in "crowding" in the range of 3.5-4.0%. Other than formulation errors or 

inconsistencies in analyses, no explanation for these deviations can be suggested. In 

general, however, their overall effect on the end result could be expected to be small. 

Growth Experiment 

The growth response of abalone to dietary supplementation with lysine HC1 was 

significant (P < 0.001), but linear within the range of the experiment. Two confounding 

factors may be responsible for this result. The first is differential uptake kinetics between 

free lysine and covalently-bound lysine, which may be explained as follows: following the 
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ingestion of feed, free lysine molecules are thought to be rapidly absorbed across the gut 

wall, resulting in a rapid increase in lysine concentration in the haemolymph. In a 

relatively short time this excess lysine is thought to be excreted, leaving the body in a 

temporary state of lysine deficiency. Protein synthesis that occurs during this time will be 

retarded by a shortage of lysine. 

The second factor is feed consumption. Comparison of Figs. 6.1 and 6.5 shows that 

they are very similar. If free lysine was an attractant to abalone, they would be expected 

to increase their feed consumption as dietary lysine supplementation increased, and show 

increased growth as a result. This explanation would not hold for the CEG diets, as lysine 

loss across the series would not be expected to increase with supplementation rate, as the 

lysine was an integral part of the dietary protein. Lysine loss from CEO diets is assumed 

to be similar to that of the basal diet. The conclusion is that the growth response to free-

lysine supplementation reflects the sum of at least two confounding factors, while the 

growth response to covalently-bound lysine reflects more accurately the effects of dietary 

supplementation of a deficient diet with the nutrient under investigation. 

The linear response of SGR to lysine FIC1 supplementation did not allow a 

prediction of optimal dietary lysine requirement to be made. Although it is clear that losses 

of lysine HC1 supplements from the FL diets due to immersion for six hours were high 

(Table 6.8), it is difficult to quantify the effect this had on the growth of the abalone. An 

assumption was made that abalone completed feeding within six hours of feed being added 

to the tanks, but this does not permit an estimate of the average lysine content of ingested 

feed to be made. The observations made here permitted the quantification of the loss of a 

lysine supplement from abalone diets, and reinforced the candidate's view that free amino 

acid supplements are unlikely to be cost-effective in commercial abalone diets and are 

unlikely to be of use in experimental diets. 

111 



The growth response of abalone to dietary supplementation of CEG diets was also 

significant (P < 0.001), but curvilinear. The fitting of a second-order quadratic model to 

the data predicted maximal growth to occur with a lysine content of 3.9% of dietary 

protein. The lower 95% confidence interval about this point was 0.89, corresponding to 

a dietary lysine content of 2.74 g.kg-1 . Lysine content could therefore be reduced to 2.74 

g.kg -1  with only a 5% likelihood of a reduction in growth rate (Fig. 6.2). This could be 

termed the optimal dietary lysine level, and is lower than any of the published finfish lysine 

requirements (D'Mello, 1994). The maximum growth rates achieved by abalone fed CEO 

diets were greater than those of abalone fed FL diets, indicating that the covalently-bound 

lysine supplement may be available for protein synthesis for a greater length of time than 

free lysine. At levels above about 4% (CEO Diets 60%, 70% and 80%), growth began to 

decline, although not significantly. High systemic levels of lysine (indeed, any amino 

acid), may inhibit protein synthesis by competitive inhibition with other amino acids at 

binding sites of t-RNA. 

6.5 Conclusions 

The lysine content of wheat gluten was increased at least 4.6-fold when the gluten 

was hydrolysed with 0.1M HC1 and precipitated at pH = 2.5. This fraction yielded 61.4% 

of the final yield of enriched gluten. Enrichment was greater (up to 5.9-fold) for the 

fraction precipitated at pH = 8.5, but yield was lower (18%). Abalone exhibited a classic 

growth response to diets supplemented with covalently-bound lysine. This response 

enabled dietary lysine requirement to be estimated at 3.9% of dietary protein. The lysine 

content of the diet could theoretically be reduced to 2.7% with a 5% likelihood of growth 

reduction. Meat to shell ratio was also affected by dietary lysine content, when the lysine 
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supplement was covalently bound. The dietary lysine level recommended by this study 

should be met in commercial feeds by the inclusion of intact protein sources, rather than 

by supplementation of low-lysine diets with free lysine. Assuming that the bulk ingredients 

of the diet are cereal-based, the recommended lysine level may be achieved by inclusion 

of relatively high-lysine feed ingredients, such as fish- or meat-meal, ideally, on a 

digestible lysine basis. Covalent enrichment of low-lysine feedstuffs with lysine would be 

uneconomical. 

The growth response of abalone to a dietary supplement of lysine HC1 was linear 

and did not allow a dietary requirement to be estimated. The growth response was also 

confounded by feed consumption and by the different uptake kinetics between free- and 

covalently-bound lysine. Meat to shell ratio was not affected by dietary lysine HC1 

supplementation. The loss of lysine, when supplemented as lysine HC1, ranged from 33.7- 

54.5% and may partially explain the lesser growth response of abalone to this supplement. 

This experiment has clearly demonstrated that, to obtain meaningful estimates of 

dietary amino acid requirements for abalone requires a different strategy to that usually 

employed in finfish nutrition research. 

113 



CHAPTER 7 

GENERAL SUMMARY 

The nutritional requirements of abalone are generally poorly understood. The 

paucity of information in this area has hampered the production of a cost-effective 

manufactured feed for the abalone culture industry in Australia. 

A series of experiments were conducted to evaluate the protein, energy and lysine 

requirements of H. laevigata. A preliminary experiment on mineral requirements produced 

valuable results on calcium and phosphorus requirements and provided the candidate 

experience in abalone handling and husbandry (see Appendix 2). The next experiment was 

a "range-finding" experiment investigating dietary crude protein requirements of abalone. 

Following this, the model successfully used in swine nutrition research was applied. This 

model involved estimating the ability of abalone to digest protein and energy from selected 

feedstuffs. This information was then used to formulate experimental diets to investigate 

the effects of different digestible protein:digestible energy ratios on growth and body 

composition. The final experiment compared two different methods of dietary lysine 

supplementation and estimated the dietary lysine requirement of greenlip abalone. 

The preliminary experiment (see Appendix 2) demonstrated that abalone require no 

more than 0.5% calcium in a manufactured feed and that a phosphate supplement 

significantly increased growth rate. These dietary findings have been incorporated by 

South Australian abalone feed makers, resulting in the addition of a phosphate supplement 

and the deletion of a relatively large CaCO 3  supplement (30 g.kg-I ), therefore increasing the 

scope for varying the content of other feedstuffs. 
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The next experiment, aimed at estimating the optimal dietary protein level, 

demonstrated that H. laevigata grow remarkably well at relatively low protein levels (close 

to 20%). This estimate was considerably lower than almost all previously published 

estimates and may be due to the use of a balanced amino acid profile in the diets. An 

estimate was made of the optimal DP:DE ratio (14.4 g DP.M.IDE -1 ) but it was necessary 

to confirm this with a more elaborate, statistically robust experiment. 

Digestibility studies revealed that defatted soybean flour was the most cost-

effective protein and energy source among feedstuffs tested. Digestibility results were used 

in the formulation of diets with ten different levels of protein, each at two different energy 

levels in order to estimate the optimal DP:DE ratio. The abalone fed the high-energy diets 

grew poorly compared to those on the low-energy diets. The extra energy in the high-

energy diets was supplied almost entirely by lipid and it is thought that this adversely 

affected the growth of the abalone. The exact mechanism of growth suppression remains 

unknown, but two hypotheses have been advanced. The first suggests that if abalone eat 

to energy satiation, their protein intake may be too low to support fast growth on high-

energy diets. The second hypothesis is that excess dietary lipid may interfere with the 

digestion of protein and hence retard growth. Recent research has tended to support this 

hypothesis (van Barneveld et al., 1998). The effect is not permanent and stunted animals 

return to normal growth rates when returned to low-energy diets. The optimal DP:DE ratio 

was found to be in the range 12.3-17.9 g DP.M.TDE -I , confirming the earlier estimate. This 

study also showed that abalone fed diets within the above range had better meat yield than 

those fed diets with excess protein. Meat from these animals also contained less moisture 

and ash than that from animals fed high-protein diets. In conclusion, these results suggest 

a commercial diet containing about 15 g DP.MJDE -1  would promote fast growth and 
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• produce good quality meat in abalone. 

The final experiment sought to estimate the dietary requirement of H. laevigata for 

lysine. No quantitative estimates for the requirements of any of the essential amino acids 

are found in the literature for abalone. The ability of abalone to utilise free amino acid 

supplements (the traditional way of supplementing amino acids in experimental diets for 

finfish) in diets effectively, was unknown. Fortunately, recent work in the area of penaeid 

nutrition enabled a new method of amino acid enrichment (covalent attachment to intact 

protein) to be compared to the traditional free amino acid method. Although abalone 

responded to the free lysine supplements in an otherwise lysine-poor diet, the response was 

linear and did not provide enough information to calculate an optimal dietary level. 

Fortunately, the growth response to the covalently-bound lysine supplement was not only 

greater than that to free-lysine, but was curvilinear alloWing a optimal dietary lysine 

requirement to be estimated. H. laevigata appear to require 3.9% of dietary protein as 

lysine for optimal growth, in diets with a crude protein content of 22-24%. Future work 

aimed at estimating essential amino acid requirements of abalone should employ the 

covalent-enrichment methodology. 

The relatively broad "response plateau" exhibited by greenlip abalone in relation 

to both dietary protein and dietary (covalently bound) lysine (Figs. 3.1 & 3.2, and Fig. 6.2, 

respectively) suggests that there is considerable scope for manipulation of dietary 

formulations to supply these requirements. However, the response to Dunaliella sauna 

supplementation (Appendix 1) indicates that other aspects of abalone nutrition require 

further attention. 

In general, findings of this thesis are encouraging in relation to the attributes of 

greenlip abalone for aquaculture. Survival rates were excellent and growth rates of about 
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1.0%.day -I  could be achieved even with experimental diets. Most importantly, abalone can 

be grown on diets with low ingredient costs in relation to DP, DE and lysine. However, 

preparation of diets with extended water stability is a challenge and may adversely affect 

feed costs. 

To conclude, there is a need for further studies in the field of abalone nutrition, 

particularly in the areas of amino acid requirements and diet processing, particularly aimed 

at improving water stability of the diet. Improved understanding of the nutrition of these 

animals will allow cheaper, more environmentally-benign feeds to be manufactured, aiding 

the viability of the Australian abalone culture industry. 
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APPENDIX I 

THE EFFECT OF DIETARY SUPPLEMENTATION WITH Dunaliella sauna 
AND A COMMERCIAL ENZYME MIX. 

A 1.1 Introduction 

Anecdotal evidence from abalone farmers (D. Morrison, Pers. Comm.) suggested 

that inclusion of a spray-dried algal meal of Dunaliella sauna to diets acted as a 

phagostimulant and/or attractant to abalone and may result in faster growth through 

improved feed intake. An experiment was planned to test the efficacy of the algal meal. 

Commercial enzyme preparations are often routinely added to livestock rations to increase 

the digestibility of feeds. Although the true digestibility of some feedstuffs was very high 

(eg soyflour), the digestibility of others (eg fishmeal) were quite poor. It was possible that 

a commercial enzyme preparation could be beneficial to overall digestibility of a diet. A 

decision was made to also test the effect of such a supplement on an abalone diet. 

A 1.2 Materials and Methods 

Abalone 

Juvenile greenlip abalone (Haliotis laevigata) held at the South Australian Research 

& Development Aquatic Sciences Centre were used for this experiment. The animals were 

held until needed in a flow-through holding tank and fed a commercial diet. 
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Feed formulation and manufacture 

A semi-purified diet (Diet 1) was formulated (Table A1.1) containing 1% kaolin.-

Two other diets (Diets 2 and 3) were formulated to contain spray-dried microalgal meal 

("Algro", Betatene, Ltd., Cheltenham, Victoria, Australia) and a commercial enzyme 

mixture containing protease, lipase and amylase ("Ebizyme", CSR Ltd., Pyrmont, New 

South Wales, Australia), respectively, at the expense of kaolin. Diets contained 0.5% 

chromic oxide as an indigestible marker and were produced in the form of flat chips using 

a pasta machine. 

Aquarium system 

This was is described in Chapter 3. In this experiment the flow rate was 0.2 L.min -I  

and air was supplied via a single airstone at 0.5 

Treatments 

Abalone were tagged, weighed and measured as described in Chapter 3 and randomly 

assigned to treatments. The three treatments were each fed to four replicate tanks of 10 

abalone. Feed was initially supplied at 2% of initial body weight per day thrice weekly, 
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Table A1.1: Experimental diet formulation 

Diet Ingredient 	 Inclusion Rate (g.kg-1 ) 

Soyflour 	 400 

Wheat fraction 	 372.4 

Fishmeal 	 90 

Casein 	 80 

Oil 	 20 

Sodium alginate 	 12 

Kaolin/microalga/enzyme* 	 10 

Phosphate supplement 	 5 

Chromic oxide 	 5 

Vitamin premix 	 3 

Mineral premix 	 2 

Vitamin C 	 0.5 

Vitamin E 	 0.1 

* Diet 1 contained kaolin. In Diets 2 and 3, the kaolin was replaced by microalga and enzyme, respectively. 
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and adjusted as necessary. Aquaria were randomly distributed. The experiment ran for 

80 days, with measurements and sampling at day 41, and final measurements at day 80. 

Due to reductions in animal numbers due to sampling, during the second phase of the 

experiment, animal numbers were reduced to 28 (control), 26 (algal meal treatment) and 

27 (enzyme treatment). These were distributed over four replicate aquaria per 

treatment, so the stocking density was different for the second period of the experiment. 

It was, however, equal for all three treatments. 

Digestibility 

Faecal samples were collected, dried and analysed as described in Chapter 4. 

Digestibility coefficients for both protein and energy were estimated for each diet. 

Feed intake 

On five occasions during the first 41 days, uneaten feed was removed from the 

aquaria by siphon hose, oven dried and weighed. Observations made toward the end of the 

experiment revealed that the abalone fed Diets 2 and 3 were consuming their ration on the 

first night. Their ration was increased for the last two feedings. 

Statistical analysis 

Gain in body weight was expressed as specific growth rate (SGRBW) and was 

calculated using the formula given in Chapter 3. Gain in shell length was expressed as 

SGRSL, and was calculated similarly. All statistics were calculated using Systat® (1992). 
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A 1.3 Results 

Survival and growth 

Mortality was very low; a total of only three animals died during the first 14 days. 

These deaths were presumed to be due to the stress of tagging, handling and anaesthesia. 

After 41 days, growth, expressed as SGRBW, did not differ significantly between 

treatments (P> 0.05), but SGRSL was significantly different (P < 0.05) between diets 1 

and 3 (Table A1.2). At the conclusion of 80 d, the SGRSL of the abalone from both the 

algal and enzyme treatments was not significantly different to that of the control group (P 

> 0.05). The SGRBW of the abalone from the algal treatment was significantly higher (P 

<0.05) than that of the control group. The difference amounted to an increase of 19.7%. 

In the case of the enzyme supplement, the difference was not significant (P> 0.05). 

Digestibility 

Digestibility coefficients for both protein and energy for each diet can be seen in 

Table A1.3. There was no significant difference in digestibility of either protein or energy 

between diets (P> 0.05). 

Feed intake 

Abalone fed diets 2 and 3 consumed slightly more feed than those fed diet 1 during 

the first 41 day period, but the difference was not significant (P> 0.05). Near the end of 

the experiment abalone fed diets 2 and 3 were seen to consume all of their ration on the first 

night. 'Their rations were increased for the last two feeds. 
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Table A1.2: Growth rate of abalone after 41 and 80 days 

Diet SGRSL (41 days) SGRSL (80 days) SGRBW (41 days) SGRBW (80 days) 

1 0.19P ± 0.023 0.209a ± 0.019 0.779° ± 0.083 0.692' ± 0.056 

2 0.212°± 0.019 0.237' ± 0.008 0.884' ± 0.032 0.828' ± 0.050 

3 0.228 th  ± 0.011 0.230' ± 0.005 0.855' ± 0.028 0.766a ± 0.017 

All values are mean ± sem, n = 4. 

Means with same superscript are not significantly different (P> 0.05). 

SGRSL = Specific growth rate of shell 

SGRBW = Specific growth rate of bodyweight 

Diet 1 = Control diet 

Diet 2 = Algal meal supplemented diet 

Diet 3 = Enzyme supplemented diet 
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Table A1.3: Digestibility coefficients of dietary protein and energy of experimental diets 

Diet Protein Digestibility (%) Energy Digestibility (%) 

1 79.5" ± 0.7 72.2' ± 0.9 

2 78.0' ± 1.0 71.4± 1.2 

3 78.0a ± 1.1 71.5a± 1.5 

Values given as mean ± sem, n = 3, except Diet 1 where n = 2. 

Means with the same superscript are not significantly different. 

Diet 1 = Control diet 

Diet 2 = Algal meal supplemented diet 

Diet 3 = Enzyme supplemented diet 
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A 1.4 Discussion 

Growth rates 

The addition of a supplement of 1.0% algal meal (Diet 2) increased SGR of BW 

over that of the basal diet (Diet 1), after 80 days (Table A1.2). In contrast, the addition of 

a supplement of 1% enzyme mixture (Diet 3) resulted in no significant increase in growth 

of either shell or bodyweight over that of the basal diet (P < 0.05) after 80 days. The 

incorporation of the enzyme supplement in the feed resulted in a rapid loss of pellet 

integrity. The pellets took on a "fuzzy" appearance within a few hours of immersion and 

became fragile. As farmers report a desire for increased water stability of feed pellets, it 

would appear that an enzyme supplement would be unlikely to find an application in 

abalone feed. 

Estimation of the digestibility coefficients for protein and energy for each diet 

revealed no significant differences. It is possible that the methods employed here were not 

sensitive enough to detect a difference, if one existed. It is unlikely that the observed 

increases in growth rates due to the algal supplement was due to increased digestibility of 

dietary components. The algal meal may have contributed a micronutrient that is lacking 

in the control diet. Possible candidates include vitamins or fatty acids. 

By the end of the experiment, the rations of Diet 2 and 3 had to be increased as they 

were being consumed completely on the first night. It is possible that, by this stage, there 

was a significant difference in intake rates, although this may simply be due to the larger 

size of animals fed Diets 2 and 3. 
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A 1.5 Conclusions 

Inclusion of a supplement (1% dw) of dried Dunaliella sauna increased SGR of 

abalone by 19.7% over that of controls (P < 0.05) on a bodyweight basis after an 80 day 

period. Although the mechanism of action by which it increases growth rate is unknown, 

inclusion of this supplement in abalone diets would appear to have economic merit. Due 

to the loss of pellet integrity and failure to significantly improve growth rates, an enzyme 

supplement is unlikely to be used by abalone feed manufacturers in the near future. 
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APPENDIX 2 

THE EFFECT OF DIFFERENT COMBINATIONS OF DIETARY CALCIUM 
AND PHOSPHORUS ON THE GROWTH OF JUVENILE Haliotis laevigata. 

(Reprinted from Aquaculture, 145: 267-279.) 

This Appendix is located in a pocket on the inside of the thesis back cover. 
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APPENDIX 3 

LIST OF ABBREVIATED AMINO ACIDS 

Abbreviation 	 Full Name 
Cys 	 Cysteine 
Asp 	 Asparagine 
Thr 	 Threonine 
Ser 	 Serine 
Glu 	 Glutamine 
Pro 	 Proline 
Gly 	 Glycine 
Ala 	 Alanine 
Val 	 Valine 
Met 	 Methionine 
Ile 	 Isoleucine 
Leu 	 Leucine 
Tyr 	 Tyrosine 
Phe 	 Phenylalanine 
Trp 	 Tryptophan 
Lys 	 Lysine 
His 	 Histidine 
Arg 	 Arginine 
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APPENDIX 4 

CHEMICAL COMPOSITION OF FEEDSTUFFS AND EXPERIMENTAL 
DIETS. 

Table A4.1: Crude protein (CP), gross energy (GE), ash, crude fibre (CF), crude fat 

(CFat) and dry matter (DM) of feedstuffs used in experimental diets 

Sem. Casein Soy. FM Gel. CF. FO WS 
CP 116±2.8 860±8.5 470±5.7 630±14.1 971±4.2 2.0±0.3 0 2.2±0.2 
GE 16.00 21.30 18.50 19.25 19.62 15.22 37.57 16.00 
Ash 4.6±0.7 22.5±2.1 68.7±8.5 135±12.7 0 1.0±0.1 ND 1.0±0.2 
CF 2.02 0 4.95 1.05 0 0.1 ND 0.1 

±0.14 ±2.19 ±0.07 ±0.03 ±0.02 
CFat 17.6 ±1.4 5.3 ±0.7 21 ±3.5 68±5.7 1.0±0.1 0 991 ±0.4 0 
DM 899 ±8.5 943 ±5.7 912 ±5.1 922 ±4.2 954 ±3.8 926 ±6.2 ND 931 ±5.9 

Sem. (semolina), Soy. (defatted soyaflour), FM (fishmeal), Gel. (gelatine), CF (cornflour), FO (fish oil), WS 
(wheat starch). ND = Not determined. Values (mean ± se, n = 2) in g.kg -I . N = 1 for GE. 

Table A4.2: Crude protein (CP), gross energy (GE), calculated ash and crude fat (CFat) 

of diets used in Chapter 3 

Diet 
11 10 9 8 7 6 5 4 3 2s Is 

CP 461± 418± 395± 374± 353± 323± 299± 274± 239± 188± 122± 
GE 18.92 18.70 19.02 17.35 18.73 18.08 18.32 17.99 17.96 16.96 17.29 
Ash 4.23 4.15 4.13 4.07 4.03 4.00 3.96 3.92 3.84 3.76 3.64 
CFat 3.04 2.94 2.88 2.83 2.78 2.73 2.68 2.62 2.52 2.42 2.26 

Values for CP are mean ± se, n = 2 in g.kg -I  . Crude fat and dry matter are given as percent. N = 1 for GE. 

Table A4.3: Calculated crude protein (CP), fibre and crude fat (CFat) (all g.kg 1 ) of four 

base diets used in Chapter 5 

Diet 1 Diet 2 Diet 3 Diet4 
CP 1.9 379.2 1.7 379.2 
Fibre 0.8 13.1 0.8 13.1 
Ash 101.5 34.6 205.5 139.6 
CFat 55.0 103.7 6.0 53.7 
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Table A4.4: Calculated crude fibre (Cfib), crude fat (Cfat) and ash (all g.kg -1 ) of free-

lysine (FL) diets used in Chapter 6. 

Diet 
Basal 1 2 3 4 5 6 7 	- 8 

Cfib 10 10 10 10 10 10 10 10 10 
Cfat 28 28 28 28 28 28 28 28 28 
Ash 117 115 113 110 108 106 104 102 99 

Crude protein and dry matter values were determined analytically and can be seen in Table 

6.7. 
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