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Abstract 

Interactions between phytoplankton and their associated marine microbial community are 

believed to have major effects on the growth dynamics of both bacteria and phytoplankton. 

Phytoplankton are associated with bacterial communities composed of IO's to IOO's of bacterial 

types with the potential for millions of potentially confounding interactions. This complexity 

currently hampers research to identify key bacteria and the mechanisms of interaction. To 

overcome these problems, this work investigates the behaviour and dynamics of simplified 

experimental models of bacteria-phytoplankton to examine the influence of these microbial 

interactions on the dynamics of phytoplankton growth. The basis of the experimental system was 

the toxic dinoflagellate Gymnodium catenatum, a well known causative organism of paralytic 

shellfish poisoning associated with frequent blooms around the globe. Simplified microbial 

communities in cultures were generated from surface-sterilised resting cysts germinated in the 

presence of bacteria isolated from non-axenic G. catenatum cultures (Brachybacterium sp., 

Alcanivorax sp. DG881, Marinobacter sp. DG879 and Roseobacter sp. DG874) in either uni

bacterial or mixed-bacterial experimental model systems. 

Using the simplified experimental model, a range of experimental manipulations of the 

bacterial community of G. catenatum were undertaken to examine specific hypotheses. The first 

experiment examined the hypothesis that G. catenatum has an obligate requirement for bacteria, 

using antibiotic-resistant and antibiotic- sensitive strains of marine bacteria to provide important 

negative and positive controls. Addition of antibiotics to cultures with sensitive bacteria resulted in 

a significant decline in dinoflagellate cell concentration, where as control cultures grown with 

antibiotic resistant bacteria continued to grow throughout the experiment. Importantly, this 

experiment demonstrated that removal of bacteria, rather than the action of antibiotic, caused the 

decline and death of the dinoflagellate culture. 



The influence of bacterial community composition on G. catenatum batch culture dynamics 

was examined using uni-bacterial, and mixtures containing the y-proteobacteria Alcanivorax sp. or 

Marinobacter sp. and/or the a-proteobacterium Roseobacter sp. Exponential growth rate, death 

rate, maximum cell concentration and batch culture dynamics were all influenced by the bacterial 

community composition in the experimental cultures, demonstrating that the bacterial community is 

a significant factor influencing the growth dynamics of G. catenatum. Uni-bacterial G. catenatum 

models showed that dinoflagellate grew significantly faster in the presence of Alcanivorax sp. or 

Marinobacter sp. than when grown with the a-proteobacterium Roseobacter sp. Pair-wise mixtures 

and tri-bacterial treatments displayed batch growth patterns intermediate or combined features of 

the respective uni-bacterial bacterial patterns, suggesting that bacterial community effects on 

dinoflagellate growth are additive. Epifluorescence microscopy and DAPI staining of cultures 

showed that uni-bacterial model cultures were not attached or associated with the dinoflagellate cell 

during logarithmic or stationary phase dinoflagellate growth but an increase in the proportion of 

bacteria associated with the cells wall was noted in late-stationary to death phase. During death 

phase, cultures grown with Roseobacter sp. showed a significantly higher proportion (18%) of 

bacteria associated with the dinoflagellate cell, than Alcanivorax sp. (7.9%) or Marinobacter sp. 

(11.8 %). 

Uni-bacterial G. catenatum cultures maintained for more than 6 months exhibited reduced 

exponential growth rates and low maximum dinoflagellate cell concentrations, and early onset of 

death phase. Uni-bacterial model cultures using antibiotic-resistant and sensitive-bacteria were used 

to investigate whether replacement or addition of "new" bacteria (Brachybacterium sp. or 

Marinobacter sp.) to cultures could restore or improve dinoflagellate growth. Cultures where the 

bacterial community was replaced showed improved dinoflagellate growth but long term survival 

and culture maintenance was not possible, indicating that the dinoflagellate-bacteria relationship in 

uni-bacterial model cultures may be unstable over long periods. 
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The G. catenatum model system was also used to examine whether dinoflagellate genotype or 

bacterial community composition was the dominant factor influencing G. catenatum growth 

dynamics. Two clonal parent cultures (GCDE08 and GCHUll) with markedly different batch 

growth dynamics exponential growth rates and microbial communities were compared with 

equivalent mixtures of non-clonal progeny established in the presence of microbial communities (8 

11m filtrates) from each of the parent cultures. All non-clonal progeny treatments showed similar 

growth patterns that were different to either parent culture suggesting that genotype is the dominant 

influence on growth. However, tRFLP analysis showed that, regardless of the bacterial community 

added at germination, a consistent but different bacterial community was established in all non

clonal progeny cultures. This indicates that the growth dynamics are influenced primarily by the 

bacterial community composition rather than dinoflagellate genotype, and that the bacterial 

community may be selected or modified by factors associated with the dinoflagellate genotype. 
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Chapter 1 

Introduction 

Phytoplankton are the key component of the aquatic food web (Pomeroy 1974; 1979). 

Excessive growth or sudden population increase in phytoplankton, termed blooms, occur 

periodically in coastal ecosystems (Alavi et al. 2001). These blooms are in general a natural 

phenomenon that may be influenced by human activities such as discharge of excess nutrients to 

coastal waters (Hallegraeff et al. 2003). In the past two decades reports on phytoplankton blooms 

have increased in frequency and severity across the globe. Reasons for this increase are thought to 

be increased eutrophication, climate change and improved scientific monitoring (Smayda 1990; 

Hallegraeff 1993; Carmichael et al. 2001). Harmful algal blooms (HAB) pose a serious threat to 

waterways, sustainable development of environment, coastal economy, fishery resources and 

human health. With a world wide expansion in HAB events every year, phytoplankton dynamics 

are the subject of much scientific research (Anderson 1995). 

1.1 Harmful algal blooms and phycotoxins 

HAB's are generally classified in two groups; high biomass producers and toxin producers. 

Blooms of high biomass producers are considered harmful when the algal cell concentrations 

exceed 107 cells L"1 (Marzec 2006) and can deplete dissolved oxygen content in the water leading to 

anoxygenic condition that affect water quality or kill fish. Toxin producers produce toxins that 

1 



Introduction 

may contaminate seafood and eventually affect mammals via food chain (Marzec 2006). More than 

60,000 human intoxication events are reported world wide every year (Dolah et a!. 2001). The 

ecological role of phycotoxins is poorly understood. However, recent evidence indicates that toxins 

can act as allelochemical agents that increase algal survival in various ecological niches and may 

provide chemical defence against predators (Graneli & Johansson 2003). Table 1.1: summarizes 

the major five poisoning syndromes, toxin names and causative organisms (Dolah et al. 2001) 

Table 1.1: Major poisoning syndromes caused by microalgae. 

Human health impact Toxin name (type) Causative species 

Paralytic shellfish poisoning Saxitoxin (neurotoxin) Dinophyta- Alexandrium spp., 

(PSP) Pyrodinium spp., Gymnodinium spp. 

Amnesic shellfish poisoning Domoic acid (neurotoxin) Diatom- Pseudo- nitzschia spp. 

(ASP) 

Diarrhetic shellfish poisoning Okadoic acid Dinophyta- Dinophysis spp. 

(DSP) (diarrhetic toxin) 

Neurotoxic shellfish poisoning Brevetoxin (neurotoxin) Dinophyta- Karenia brevis 

(NSP) 

Ciguatera fish poisoning (CFP) Ciguatoxin, Maitotoxin Dinophyta- Gambierdiscus spp., 

(neurotoxin) Ostreopsis spp., Prorocentrum lima 
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Dinoflagellates are responsible for many of the common marine phycotoxins (Holmes & 

Teo 2002). These single celled, eukaryotic protists belong to division Dinophyta and exhibit a range 

of unique biological phenomena such as bioluminescence, symbiosis or parasitism with 

invertebrates, and have complex life-cycles (Taylor 1987). Of the more than 4000 identified 

phytoplankton taxa, only 60 to 80 species are classified harmful. Of these, flagellates comprise 

90%, with dinoflagellates ( 45 to 60 taxa) accounting for 75% of toxic or harmful organisms 

(Smayda 1989; Anderson 1989; Smayda 1990; Hallegraeff1993; Sournia 1995). 

Paralytic shellfish toxins (PSTs) are potent neurotoxins produced by several dinoflagellate 

species: Gymnodinium catenatum, some Alexandrium species, Pyrodinium bahamense, and a range 

of Cyanobacteria. Filter feeding shellfish accumulate these toxins and consumption of the shellfish 

can poison animals at higher trophic levels in the food chain. PST's include the parent compound 

saxitoxin (STX) and 20 other chemically related derivatives (Kao 1993; Gallacher et al. 1997). In 

humans, PST intoxication leads to paralytic shellfish poisoning (PSP), a syndrome characterised by 

gastrointestinal, respiratory and neurological symptoms (Hallegraeff & Sumner 1986). PST's are a 

major health risk world wide and in particular South-east Asia (Holmes & Teo 2002). The first PSP 

outbreak in Australia occurred in 1986 when G. catenatum appeared in Huon and Derwent estuary, 

Tasmania (Hallegraeff et al. 1988; McMinn et al. 1997). Recurring incidents ofPSP were reported 

in 1987 and 1991 incurring heavy losses for the Tasmanian shellfish industry (Hallegraeff 1993). 

1.2 Factors affecting HAB dynamics 

The bloom dynamics of harmful algal blooms is complex and poorly understood. However 

with the expansion of HAB outbreaks around the globe, a thorough understanding of the factors 

influencing bloom dynamics is essential. For a long time a wide range of physical factors: 

temperature, current, salinity and macro-nutrients were believed to be the primary factors regulating 

HAB dynamics (Ferrier et al. 2002). More recently, the interaction ofHAB species with the marine 

microbial community has been considered a potentially important factor (Doucette et al. 1999; 
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Graben et al. 2000; Ferrier et al. 2002; Green et al. 2004; Pinhassi el al. 2004; Grossart et al. 2005; 

Rooney-Varga et al. 2005). 

A close spatial and temporal association is suggested to exist between bacteria and algae 

and this relationship may also play a crucial role in important oceanic processes such as carbon 

cycling and nutrient regeneration (Cole 1982; Lovejoy et al. 1998). Bacteria associated with algal 

cells may be either attached (intracellular or extracellular) or free-living (e.g. Lewis et al. 2001; 

Simon et al. 2002), and may have stimulative or inhibitory effects on the growth of algal cell. These 

interactions are now considered to be of major importance in regulation of both algal and bacterial 

populations (Simon et al. 2002). For example, some bacterial communities appear to promote the 

formation of algal blooms (Furuki & Kobayashi 1991) while other communities show algicidal 

effects and/or decompose algal blooms (Fukami et al. 1991). Bacteria potentially benefit from 

utilising phytoplankton exudates (Bell et al. 1974; Cole 1982), while phytoplankton cells may use 

bacterial metabolites such as demineralized nutrients (Golterman 1972), organic growth factors 

(Ukeles & Bishop 1975, Paerl & Pinckey 1996) or vitamins (Pringsheim 1912; Croft et al. 2005). 

Bacteria may also serve as a major source of C02 for algal growth (mainly during C02 limitation) 

(Marshall 1989), or act as parasites or pathogens by penetrating the peri plasmic space of algal host 

cells, resulting in cell lysis and death (Cole 1982; Imai et al. 1993). 

Bacterial communities associated with phytoplankton cells are typically dominated by the 

alpha and gamma-proteobacteria (Babinchak et al. 1998; Hold et al. 2001b; Green et al. 2004). 

Representatives from Cytophaga-Flavobacter group and the Planctomycetes are also present 

(Glockner et al. 1999; Hagstrom et al. 2000). The bacterial types appear to differ among 

phytoplankton genera. For example, Hold et al. 2001 b reported Roseobacter sp. as a dominant 

associate of Alexandrium spp. and Scripsiella trochoidea cultures. Similarly, Roseobacter sp. and 

Marinobacter sp. have been reported in association with Lingulodinium polyedrum blooms 

(Fandino et al. 2001). Roseobacter sp. has also been identified to dominate Prorocentrum lima 

microflora (Prokic et al. 1998). Bacterial flora can vary with different strains of same algal species 
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as at least 6 bacterial strains specific to 3 culture strains of Alexandrium spp. has been reported 

(Hold et al. 2001 b) 

The role of the bacterial community in phycotoxin production is still open to debate. A 

bacterial origin for PST was first proposed by Silva (1962, 1982) after particles similar to bacteria 

was found within dinoflagellate cells. Studies on Alexandrium tamarense have shown that presence 

of bacteria, either intracellular or attached to the dinoflagellate cells may be involved in the 

production of PST (Silva 1982; Kodama 1990). Several studies have demonstrated that bacteria 

produce compounds with biological activity similar to PSP compounds (Kodama et al. 1988; 

Franca et al. 1996; Gallacher et al. 1997), however there is, as yet, no structural data that confirm 

production of PST by marine bacteria (Martins et al. 2003). If bacteria are not directly involved in 

PST production they may be indirectly involved. For example: they may influence PST content of 

algal cultures by altering algal host-cell toxicity (Doucette et al. 1998; Hold eta!. 2001a; Uribe & 

Espejo 2003), undertake biotransformation of the PST derivatives (Smith et al. 2001) or by a 

combination of the above. The exact role-played by bacteria in PST production and toxicity is still 

unclear, however, there is clear evidence that bacteria may influence HAB population dynamics. 

This may be via stimulation of toxic algal growth (Sakami et al. 1999), promotion or inhibition of 

sexuality (Adachi et al. 1999), the production of algicidal factors (Doucette et al. 1999), or the 

suppression of resting cyst formation (Adachi et al. 2002). Little is also known about how the 

bacterial and algal communities interact at a species level. 

1.3 Simplified models of algal bacterial interaction: 

Interactions between phytoplankton and the bacterial community are highly complex. 

Natural phytoplankton communities co-exist with 100's of bacterial types many of which may 

directly or indirectly influence the algal cell in variety of ways. Even uni-algal cultures may contain 

10-40 bacterial types (Green et al. 2004) creating opportunity for millions of potential interactions. 

This wide range of confounding interactions means that identifying key bacterial types and 
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mechanisms of interaction is almost impossible. To facilitate progress in this field, simplified 

experimental models of bacterium-dinoflagellate interactions are needed to elucidate the 

significance and mechanisms of these interactions and their role and importance in HAB dynamics. 

Initial efforts to generate experimental models have focused on dinoflagellates (Bolch et al. 2002, 

2004; Green et al. 2004). The experimental models developed to date include Gymnodinium 

catenatum, Lingulodinium polyedra and Scrippsiella trochoidea. These models use surface

sterilised resting stages that are germinated in the presence of single or controlled mixtures of 

bacteria. The growth response of the established cultures with simplified bacterial communities can 

then be compared and the community manipulated to determine the dinoflagellates' response to the 

bacteria. Preliminary experiments with these three models indicate three main growth responses to 

simplified communities: (a) an algicidal response- members of Cytophaga/Flexibacter group 

caused death at or just after germination (b) slow growth-typically seen with communities 

composed solely of Roseobacter sp. and/or Rhodobacter sp. (c) growth similar to or greater than 

normal mixed bacterial controls when grown with communities composed of Alcanivorax sp. or 

Marinobacter sp. (Bolch et al. 2002; Vincent 2003; Bolch eta!. 2004; Green eta!. 2004). 

For the work presented here, Gymnodinium catenatum Graham was chosen as the model 

species for all the experiments. G. catenatum is an unarmoured (naked) chain-forming marine 

dinoflagellate (Graham 1943; Rees & Hallegraeff 1991; Oshima et a!. 1993) most notable as a 

producer of paralytic shellfish toxins (PST). Vegetative cells are seen both in temperate and tropical 

waters (Hallegraeff & Fraga 1998). G. catenatum was first associated with PSP incident in Spain in 

1976 (Estrada eta!. 1984). Further, a number ofPSP problems have been reported from Morocco 

(Tagmouti et al. 1995), Southern China (Qi et a!. 1996) the Phillipines (Fukuyo et a!. 1993), 

Argentina, Uruguay (Balech 1964; Mendez & Brazeiro 1993) and Western India (Godhe & 

Karunasagar 1996) (Fig. 1.1 (a)). 
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In Australia, blooms of G. catenatum were first reported in the mid- 1980's from Southern 

Tasmania. Benthic cyst surveys suggest that G. catenatum was completely absent from Tasmanian 

waters before 1973 and may have been introduced via ballast water from Japanese wood ship 

vessels (McMinn et a!. 1997). In Tasmanian waters, G. catenatum blooms are often seen after 

heavy rainfall with an increased influx of dissolved organic matter (DOM) from land run-off 

(Hallegraeff eta!. 1995) (Fig. 1.1 (b)). G. catenatum was chosen for this study because: (a) the life 

cycle is well known and can be easily manipulated (Fig. 1.2); (b) it has a relatively short resting 

cyst dormancy period (14-21days) allowing relatively rapid cycles of experimentation (Blackburn 

et al. 1989, 2001) (c) a high frequency of HAB events have been caused by G. catenatum in the 

past decades (Hallegraeff 1993; Hallegraeff & Fraga 1998), and (d) the economic impacts has 

classified the dinoflagellate as a significant species in a short time since it's introduction to 

Australian waters (Hallegraeff & Sumner 1986; Hallegraeff eta!. 1989, 1995). 
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dinoflagellates and can have a major influence on bloom initiation, survival and decline (Bolch et 

al. 2002). Resting cysts can survive in sediments for years until the favourable environmental 

conditions trigger germination to re-establish a vegetative population (Blackburn et al. 1989) (Fig. 

1.2; Fig. 1.3). 
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Fig. 1.2: Life cycle of G. catenatum (Blackburn et al. 1989) 
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Fig. 1.3: (A) & (B) LM and SEM image of G. catenatum resting cyst. (C) & (D) LM and SEM 

image of vegetative cells of G. catenatum showing chains. (images from Bolch 1999) 

The bacterial flora associated with G. catenatum has been comprehensively documented by 

Green et al. (2004) who used 16SrDNA sequence analysis to identify a wide range of culturable 

bacteria associated with laboratory cultures. This work laid the foundation for subsequent studies 

aiming to understand the influence of bacteria on G. catenatum growth, physiology and toxicity. 

The bacterial community associated with G. catenatum cultures is dominated by alpha and gamma 

proteobacteria (70%), with Bacteriodetes (26%) and Actinobacteria (3%) as minor components. 

The dominant alpha-proteobacteria are primarily from the Roseobacter and Rhodobacter clades, 

whereas the dominant gamma-proteobacteria are Marinobacter sp. and Alcanivorax sp., both 

capable of utilising hydrocarbon as a sole carbon source (Green et al. 2004). The role of the 

hydrocarbon-degrading bacteria on dinoflagellate growth was further investigated by Vincent 

(2003). This work demonstrated that (a) G. catenatum growth in uni-bacterial G. catenatum 

cultures is stimulated by Marinobacter sp. and Alcanivorax sp. but not by a range of other bacteria 

and (b) bacterial communities may exhibit species or group specific-effects on dinoflagellate 

growth (Vincent 2003). 
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1.4 Thesis aims and outline 

The current study aims to use the simplified experimental dinoflagellate-bacteria models to 

investigate the importance and influence of the associated bacterial community on the growth of G. 

catenatum. 

Specifically this thesis aims to: 

1. Determine whether G. catenatum has an obligate requirement for marine bacteria. 

2. Determine whether the bacterial community composition has a significant effect on 

dinoflagellate growth dynamics. 

3. Examine the spatial relationship between specific stimulatory bacteria and the dinoflagellate 

cells. 

4. Determine whether the dinoflagellate genotype or the bacterial community is the dominant 

factor influencing growth of Gymnodinium catenatum. 
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Chapter 2 

Obligate requirement of the dinoflagellate Gymnodinium catenatum for 

marine bacteria 

2.1 INTRODUCTION 

The growth of marine phytoplankton cells is generally considered to be controlled by a 

combination of physical factors such as temperature and light (Thompson 1999), the availability 

and uptake of major (C, N, P, and Si) and minor nutrients (e.g. Iron and other trace metals) (Morel 

& Hudson 1985) and the effects of predation (grazing) on the population (Turner et al. 1998). 

However, phytoplankton cells are also subject to a potentially vast array of chemical and biological 

interactions with microbes such as viruses (Cast berg et al. 2001 ), bacteria (Doucette et al. 1999) or 

other protozoans (Stone 1990), that may have a significant or controlling influence on 

phytoplankton populations. These microbial interactions are increasingly considered a major factor 

influencing phytoplankton growth and species succession (e.g. Doucette et al. 1998) 

The potential for phytoplankton to alter the bacterial community is well known. The term 

"phycosphere" was first coined by Bell & Mitchell (1972) to describe a zone around phytoplankton 

cells where microbial activity is substantially altered by 1) an increased surface area to which 
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bacteria can attach (Bidle & Fletcher 1995); 2) exuding dissolved organic compounds and complex 

polysaccharides that bacteria can utilise for growth (e.g Janse et al. 2000); or 3) anti-bacterial 

chemicals that may select for or against particular bacterial groups (e.g. Sandsladen et al. 2003). It 

is now increasingly clear that bacterial activity can also influence the phytoplankton community by: 

1) production of growth promoters that favour particular algal species (e.g. Furuki & Koboyashi 

1991); 2) production of inhibitory or algicidal substances (e.g. Doucette et al. 1999; Kodani et al. 

2002; Skerratt et al. 2002), or 3) interfering with or promoting sexual reproduction (Adachi et al. 

2003). 

Stimulation of phytoplankton growth by marine bacterial communities has been reported 

repeatedly over the past few decades (e.g. Ukeles & Bishop 1975; Mouget eta!. 1995; Sakami eta!. 

1999; Ferrier et al. 2002; Bolch et al. 2002), yet surprisingly little is known of the specificity of 

stimulation, or the mechanisms and compounds responsible for stimulation. For example, marine 

bacteria have long been known as a source ofthe essential vitamin B 12 (cyanocobalamin) for many 

phytoplankton species (Haines & Guillard 1974), yet the specific molecular basis underlying this 

interaction has only recently been elucidated (Croft et al. 2005). 

Dinoflagellate cells harbour complex bacterial communities composed of lO's to 1 OO's of 

bacterial genotypes (e.g., Hold et a!. 2001; Alavi et a!. 2001; Green et al. 2004), therefore a 

potentially vast array of alga-bacterium or bacterium-bacterium interactions may influence a 

dinoflagellate cell. For example, a specific bacterium has been shown to protect the dinoflagellate 

Karenia brevis from lysis by a normally algicidal bacterium (Mayali & Doucette 2002). This 

complexity and confounding activity currently impedes attempts to identify key bacterial types, 

define their effect/function, or elucidate the mechanisms of interaction. 

To investigate specific responses and mechanisms of interaction this chapter uses 

simplified experimental models of bacterium-dinoflagellate interactions using the toxic model 

species, Gymnodinium catenatum. G. catenatum cultures in the laboratory are typically dominated 
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by Alphaproteobacteria (40-70%), the Gammaproteobacteria (5-15%), and the Bacteroidetes 

(Cytophaga!Flexibacter, CFB) (5-15%) (Green eta!. 2004). Using the simplified models, previous 

work has tested a wide range of cultured G. catenatum-associated bacteria for their capability to 

support growth of G. catenatum in uni-bacterial dinoflagellate culture. This work has suggested the 

presence of a bacterial community may be essential for growth of G. catenatum laboratory cultures 

(Bolch eta!. 2002; Vincent 2003; Bolch eta!. 2004). 

Many studies over the last several decades have reported the growth dynamics of 

phytoplankton in the presence or absence of bacteria (e.g. Singh et al. 1982; John & Flynn 2000; 

Hold et al. 2001). These studies have often come to contradictory conclusions about the obligate 

requirement of the bacterial community for phytoplankton growth. Previous studies with G. 

catenatum in our laboratory have shown poor germination of surface sterile cysts in the absence of 

bacteria and that long term culture maintenance was impossible (Vincent 2003; Bolch et al. 2004), 

suggesting that G. catenatum requires marine bacteria for growth and that the requirement may be 

obligatory. 

This chapter uses the G. catenatum-bacteria models to establish whether G. catenatum has 

an obligate requirement for bacteria. Antibiotic-resistant and antibiotic-sensitive strains of growth

stimulating bacteria were used in combination with antibiotic treatment to investigate the obligate 

requirement of Gymnodinium catenatum for marine bacteria directly after germination and in well 

established laboratory cultures. 

2.2 MATERIALS AND METHODS 

2.2.1 Dinoflagellate culture and cyst production 

Compatible mating strains of Gymnodinium catenatum, GCHU11 and GCDE08 were 

grown at 19°C (+/- 2.5°C) in 150 mL Erlenmeyer flasks in GSe medium (Blackburn et al. 1989) 
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under white fluorescent light of90±10 f.!.moles m"2 s·1 with 12L:12D photoperiod. Late-logarithmic 

phase GCHU11 and GCDE08 cultures were crossed as described by Blackburn et al. (2001). 

Briefly, 1 mL of each strain was transferred to 55 mm polystyrene petri-dishes containing 10 mL of 

sterile nitrogen- and phosphate-deficient GSe medium, the dishes sealed with Parafilm TM and 

incubated for 3-5 weeks under 90±10 f.!.moles m·2 s·1 until sufficient resting cysts were evident in 

crosses. 

2.2.2 Surface-sterilisation of cysts 

Resting cysts were isolated from crosses using a hand-drawn glass micropipette, washed by 

micropipette transfer through a series of two to three, 55 mm petri dishes containing sterile GSe 

medium, and transferred to 1.5 mL sterile centrifuge tubes in 0.5 mL of sterile GSe medium. Cysts 

were surface-sterilised by addition of 50 fll of 6% H20 2 (Orion Laboratories Pty Ltd, Australia) to 

achieve a final concentration of 0.55% (v/v) of H20 2 • Tubes were gently mixed, wrapped in 

aluminium foil, and left for 45 mins at room temperature. Tubes were then centrifuged for 30 s at 

14000 rpm, and all but 50 f.!.l of the supernatant removed. Residual H20 2 was removed by 

resuspension of the cysts in 500 f.l.l of sterile GSe medium followed by centrifugation as above; this 

step was repeated and the cysts resuspended in sterile GSe medium (Bolch et al. 2004). All sterile 

cyst suspensions were checked for sterility by spread plating 100 f.LL of the cyst suspension onto 

modified Zebell's Marine Agar (ZM1) (Green et al. 2004) and the plates incubated in the dark for 3 

days at 24 °C. Cyst suspensions showing evidence of bacterial contamination were discarded, the 

treatments terminated and excluded from the experiment. 

2.2.3 Bacterial culture 

During preliminary trials aimed at generating uni-bacterial cultures of G. catenatum with 

either Alcanivorax sp. DG881 or Marinobacter sp. DG879, a bacterial contaminant was found to 
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support G. catenatum growth in unibacterial cultures. The colonies were yellow in colour while 

Alcanivorax sp. (Hara et a/. 2003) and Marinobacter sp. (Green et a/. 2006) generally form 

transparent and cream colour colonies (Fig. 2.1). Through isolation and sequencing of 16SrDNA, 

the bacterial isolate was identified as a Brachybacterium species. Further studies in our laboratory 

determined that Brachybacterium sp. could utilize hydrocarbons similar to Marinobacter sp. and 

Alcanivorax sp. (Green et a/. 2004). For the current study we examined the growth stimulating 

ability of Brachybacterium sp. which to our knowledge has not been reported in association with 

any phytoplankton species until now. 

A 

B c 

Fig. 2.1: Plates show (A) Brachybacterium sp. (B) Alcanivorax sp. DG881 (C) Marinobacter sp. 

DG879 growth on Zobell's marine agar 
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Cultures of the Marinobacter sp. DG879 and Brachybacterium sp. were maintained on 

either ZM1 (Appendix 2), prepared in 75% filtered seawater (26 ppt), or the same medium prepared 

at 1/10 concentration of nutrients (referred to here as ZM/1 0). ZM1 medium contained 5 gL-1 of 

bacterial peptone, 1g L"1 of yeast extract and was solidified with 15 gL-1 of Difco-Bacto™ agar. 

Both media were supplemented with autoclave sterilised 5 mL, 100 x marine supplements 

containing filter-sterilised trace elements and vitamins (Green et al. 2004). For culturing 

Brachybacterium sp., 1% sodium acetate was added as a carbon source similar to Alcanivorax sp. 

(Green et al. 2004). 

2.2.4 Generation of antibiotic strains 

To generate antibiotic resistant strains of Marinobacter sp. DG879 and Brachybacterium 

sp., the antibiotic sensitivity profile of both bacteria was determined using Kirby-Bauer disc 

diffusion tests based on National Clinical Committee Laboratory Standards (Bauer et al. 1966). The 

following antibiotic test discs were used: Erythromycin (60 ).!g), Novobiocin (30 ).!g), Cephazolin 

(30 ).!g), Pencillin (1 0 U), Streptomycin (25 ).!g) and Tobramycin (30 ).!g) (Oxoid inc., Australia). 

Bacterial inoculum was prepared by suspending bacterial cells from fresh overnight ZM1 broth 

(without agar) cultures in 3.5% saline to a turbidity equivalent to 0.5 McFarland standard. The agar 

surface was swabbed with the bacterial cell suspension to achieve an even "lawn" of bacteria. 

Antibiotic discs were aseptically transferred, one on each agar plate, and plates were incubated at 

25°C for 72 hours. The zone of inhibition (diameter) seen around antibiotic discs was measured and 

bacterial isolates were classified as sensitive (S), intermediate (I) or resistant (R) (S :2: 20 mm; I= 20 

mm; R:::; 19 mm (Fuller et al. 2007) (Table 2.1). Marinobacter sp. showed sensitivity to all the six 

antibiotics while Brachybacterium sp. showed sensitivity to all except tobramycin (intermediate) 

(Table 2.1). Two antibiotics to which each bacterial strain was sensitive were selected to induce 

resistance; streptomycin & tobramycin for Marinobacter sp., erythromycin & cephazolin for 

Brachybacterium sp. 
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Table 2.1: Sensitivity results for various antibiotics tested. 

Antibiotics Brachybacterium sp. Marinobacter sp. 
(zone diameter in mm) (zone diameter in mm) 

Erythromycin 30 31 

Novobiocin 52 39 

Cephazolin 37 53 

Pencillin 42 55 

Streptomycin 22 29 

Tobramycin 20 * 31 

* Zone of inhibition (20 mm) showed Brachybacterium sp. neither sensitive nor resistant to 

Tobramycin. 

Resistance to the selected antibiotics was induced in bacterial isolates by repeated plating 

with antibiotic discs based on Kirby-Bauer disc diffusion method (Bauer et al. 1966) as discussed 

earlier. A lawn of antibiotic sensitive Marinobacter sp. or Brachybacterium sp. cell suspensions 

prepared as previously described was spread on to ZMI plates. After 2- 3 mins of drying, 

tobramycin or streptomycin discs were transferred aseptically to plates with Marinobacter sp. and 

cephazolin or erythromycin discs to Brachybacterium sp. Plates were incubated at 25°C for five to 

six days. With increased incubation time spontaneous mutants were seen in the zone of inhibition 

near the antibiotic discs. Putative mutants were isolated with a sterile loop, spread plated and 

exposed again to antibiotic discs. Usng this procedure, the bacterial strains developed resistance to 

the respective antibiotics over passage through 5-6 transfers. Resistance was confirmed when there 

was no visible zone of inhibition seen around the disc, or bacterial growth up to the disc edge (Fig. 

2.2). 

24 



Obligate requirement of G. catenatumfor marine bacteria 

Fig. 2.2: Generation of antibiotic resistant strains based on Kirby-Bauer disc diffusion method. 

Plates show Brachybacterium sp. with cephazolin discs. (A) Clear zone of inhibition around the 

disc; (B) Bacterial growth to the edge of disc. 

2.2.5 G. catenatum cultures grown with antibiotic sensitive or resistant bacteria. 

Antibiotic sensitive or resistant bacterial strains for use in germination and growth 

experiments were grown in ZM1 broth medium (without agar), with shaking, for two days at 20°C. 

One mL of culture was transferred to 1.5 mL centrifuge tubes and the bacteria pelleted by 

centrifugation for 2 min at 13000 rpm. The supernatant was then removed and the cells resuspended 

in 800 ).11 of sterile GSe medium. This was repeated three times to remove traces of ZM1 bacterial 

medium. The bacterial cells were then resuspended in one mL of GSe medium, transferred to five 

mL of GSe medium in 20 mL McCartney bottles, and incubated at 25°C for 1 day to allow the 

bacteria to acclimatise to algal growth medium. The bacterial cell concentration was estimated by 

triplicate direct cell count using an improved Neubauer haemocytometer (Brand, Germany). 
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For the experimental set-up, 25-30 sterilised cysts were aseptically aliquoted into 36 mm 

petri dishes and the prepared antibiotic sensitive or resistant bacterial cultures added to the sterile 

resting cysts and/or controls as described in Table 2.2 (refer to Fig. 2.3 for illustration). All 

treatments, positive and negative control were carried out in triplicate. All dishes were sealed with 

Parafilm ™ and incubated at l9°C +/- 2.5°C at a light intensity of 90± 10 11moles m"2 s"1 with a 

12L: 12D photoperiod. Treatments and controls containing resting cysts were assessed every 3-4 

days, for germination using a Lieca S9 stereomicroscope under dark light illumination for 30 days 

after germination was first observed in each treatment or control. Germination(%) was determined 

based on number of empty cysts counted in replicate dishes. As a relative measure of initial post

germination growth, motile dinoflagellate cells were counted under the microscope to determine 

number of moving cells per germinated cyst. 

26 



Obligate requirement of G. catenatumfor marine bacteria 

Table 2.2: Description of treatments and controls used to establish G. catenatum cultures. All 

treatments and controls (except the media sterility control) consisted of triplicate 36 mm petri 

dishes, containing 25-30 surface-sterilised G. catenatum resting cysts in 1.9 mL of GSe medium 

with the addition of the treatments described below. All treatments and the positive control were 

subsequently used to establish 100 mL flask cultures for later experiments. 

Treatment Sterile G. catenatum resting cysts plus 

Sterility control 200 11L of sterile GSe (no resting cysts) 

Positive control 200 11L of 8 11m filtrate from mid-log phase cultures of GCDE08 and GCHU11. 

Negative control Sterile GSe medium 

Treatment 1 Brachybacterium sp. sensitive to cephazolin and erythromycin added to a final 
concentration of 105 CFU mL'1 

Treatment 2 Erythomycin resistant Brachybacterium sp. added to a final concentration of 10, CFU mL' 

Treatment 3 Cephazolin resistant Brachybacterium sp. added to a final concentration of 10, CFU mL' 

Treatment 4 Marinobacter sp. DG879 sensitive to tobramycin and streptomycin added to a final 
concentration of 105 CFU mL'1 

Treatment 5 Tobramycin resistant Marinobacter sp. DG879 added to a final concentration of 1 0' CFU 
mL'1 

Treatment 6 Streptomycin resistant Marinobacter sp. DG879 added to a final concentration of 1 O' CFU 
mL'1 

Treatment 7 Brachybacterium sp. (sensitive) and Marinobacter sp. DG879 (sensitive) added to a final 
concentration of 105 CFU mL'1 

Treatment 8 Erythromycin resistant Brachybacterium sp. and streptomycin resistant Marinobacter sp. 
DG879 added to a final concentration of 105 CFU mL'1 each. 

Treatment 9 Cephazolin resistant Brachybacterium sp. and tobramycin resistant Marinobacter sp. 
DG879 added to a final concentration of 105 CFU mL'1 each. 

Treatment 10 Erythromycin resistant Brachybacterium sp. and tobramycin resistant Marinobacter sp. 
DG879 added to a final concentration of 105 CFU mL'1 each. 
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After 30 days, treatments and the positive control were transferred to sterile 150 mL 

Erlenmeyer flasks containing 100 mL of sterile GSe medium. These cultures were grown under 

same conditions until sufficiently high cell concentration was available for additional growth 

experiments. Negative control (no bacteria added) failed to survive beyond 30 days (as expected) 

and were not included in further growth studies. The established 100 mL cultures were transferred 

to fresh sterile 150 mL Erlenmeyer flasks with 100 mL ofGSe medium. 

n HUll M Gse (+N, +P) 

Gse (-N, -P) 

Bacteria acclimatised in 
algal growth medium 

Sterilisation 
H202 

Bacteria 

105 cells mL-1 

Cysts + Bacteria 

Fig. 2.3: Diagram summarizing the approach for establishing model cultures of G. catenatum from 

surface-sterilised resting cysts. 

28 



Obligate requirement of G. catenatumfor marine bacteria 

2.2.6 Minimum inhibitory concentration (MIC) for experiments 

Preparation of antibiotic solution: Streptomycin, Erythromycin, Cephazolin and 

Tobramycin (MP Biomedicals, Australia) in powdered form were weighed and dissolved in sterile 

filtered seawater following manufacturer's instructions. Stock solutions were prepared using the 

formula. 

Weight of antibiotic= V x C x (1 000/P) 

where V= volume in mL required, C= final concentration of solution, P= potency of the antibiotic 

powder (provided by manufacturer) (Andrews 2001). 

The minimum inhibitory concentration (MIC) of each antibiotic was determined using a 

microdilution susceptibility test in 12 well polystyrene microtitre plates (Corning Incorporated, 

Corning, NY, USA). Antibiotic sensitive and resistant Marinobacter sp. or Brachybacterium sp. 

were tested to determine the effective range of antibiotic concentration (Table 2.3). Twelve 

different antibiotic concentrations (f.!g mL-1
) were tested for each antibiotic. Briefly, 1 mL of ZM1 

broth media was aliquoted in to the wells of microtitre plates and a series of 12, 50% (1 into 2) 

dilutions was created with the antibiotic solution (erythromycin 0.02-50; cephazolin 0.05-120; 

tobramycin 0.01-20; streptomycin 0.03-75) (f.!g mL-1
). Sensitive or resistant 72 hrs plate cultures of 

Marinobacter sp. or Brachybacterium sp. were mixed thoroughly with 12 mL ofGSe growth media 

and incubated overnight at 25°C. Bacterial concentration was estimated and diluted to 107 CFU 

mL-1 for each bacterial isolate by triplicate direct cell count using an improved Neubauer 

haemocytometer (Brand, Germany). One mL of the bacterial suspension was then added to each 

well in the microplate, and the plates incubated for 48 to 72 hrs at 25°C. The MIC is defined as the 

lowest concentration of antimicrobial agent at which no growth or turbidity could be detected 

visually (Andrews 2001). Wells that showed complete bacterial inhibition or no turbidity were also 
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confirmed by spread plating on Zobell's marine agar. Absence of bacterial growth on plates 

confirmed the MIC (Fig. 2.4). 
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Table 2.3: Minimum inhibitory concentrations of erythromycin and cephazolin (Brachybacterium sp.), and tobramycin and streptomycin (Marinobacter sp.). 

Bacterial isolates grown in ZMl plates were tested for effective antibiotic concentrations that would remove antibiotic sensitive bacteria and not resistant 

bacteria. 

Antibiotic added (11g mL.1
)/ 

Bacterial isolate 1st well 2nd well 3rd well 4th well 5th well 6th well 7th well 8th well 9th well lOth well 11th well 12th well 
Erythromycin 

5 2.5 1.25 0.625 0.312 0.156 0.078 0.039 0.019 0.009 0.004 0.002 

Erythromycin sensitive Brachybacterium sp. No growth No growth Less turbid Growth Growth Growth Growth Growth Growth Growth Growth Growth 

Erythromycin resistant Brachybacterium sp. Growth Growth Growth Growth Growth Growth Growth Growth Growth Growth Growth Growth 
Cephazolin 

12 6 3 1.5 0.75 0.375 0.187 0.093 0.046 0.023 0.011 0.005 

Cephazolin sensitive Brachybacterium sp. No growth No growth No growth Less turbid Growth Growth Growth Growth Growth Growth Growth Growth 

Cephazolin resistant Brachybacterium sp. No growth Growth Growth Growth Growth Growth Growth Growth Growth Growth Growth Growth 
Tobramycin 

2 1 0.5 0.25 0.125 0.062 0.031 0.015 0.007 0.003 0.002 0.001 

Tobramycin sensitive Marinobacter sp. No growth No growth Less turbid Growth Growth Growth Growth Growth Growth Growth Growth Growth 

Tobramycin resistant Marinobacter sp. No growth Growth Growth Growth Growth Growth Growth Growth Growth Growth Growth Growth 
Streptomycin 

7.5 3.75 1.875 0.937 0.468 0.234 0.117 0.058 0.029 0.014 0.007 0.003 

Streptomycin sensitive Marinobacter sp. No growth No growth Less turbid Growth Growth Growth Growth Growth Growth Growth Growth Growth 

Streptomycin resistant Marinobacter sp. Growth Growth Growth Growth Growth Growth Growth Growth Growth Growth Growth Growth 

*No growth= no visible turbidity and no bacterial growth on Zobell's marine agar plates. 
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Fig. 2.4: Example of 12 well microtitre plate used forMIC trials. Turbidity or faint yellow colour 

indicates bacterial growth. The example shown is Brachybacterium sp. sensitive to erythromycin, 

treated with erythromycin (0.002-5 ).lgmL"\ Well A2 (second in row 1) was considered MIC (2.5 

).lgmL-1
) of erythromycin. 

2.2. 7 MIC determination for G. catenatum cultures 

The MIC experiments were used to determine the range of antibiotic concentrations to be 

applied to G. catenatum cultures. A similar MIC experiment was performed using G. catenatum 

cultures at four different antibiotic concentrations (Table 2.4). One mL ofGSe media was aliquoted 

to each well. One mL of antibiotic solution was pipetted to the first well and a series of 12, 50% (1 

into 2) dilutions created. Sub-samples of G. catenatum culture (1 mL) grown with single and 

pairwise combinations of antibiotic-sensitive or antibiotic-resistant Brachybacterium sp. and 

Marinobacter sp. was added to each well and the microtitre plates were incubated at 19°C +/- 2.5°C 

at a light intensity of 90±10 ).lmoles m"2 s-1 with a 12L: 12D photoperiod. For uni-bacterial G. 

catenatum cultures, the MIC was considered to be the lowest concentration of antibiotic that 

inhibited the growth of antibiotic-sensitive strains but not the antibiotic-resistant bacteria. Spread 
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plating on to ZMl plates was used to confirm the antibiotic effect on bacteria. In G. catenatum 

cultures grown with pairwise combination of sensitive or resistant bacteria, MIC was defined as the 

lowest antibiotic concentration that inhibited growth of the targeted (sensitive) bacterial type but 

not the resistant bacterial type. For example; in G. catenatum cultures grown with cephazolin

resistant Brachybacterium sp. and streptomycin resistant Marinobacter sp., the MIC of cephazolin 

was the concentration that killed Marinobacter sp. only (Table 2.5). 

Confirmation that only the targeted antibiotic-sensitive bacterial type had been removed 

was tested by 16SrDNA sequencing of randomly selected colonies following antibiotic treatment. 

Culture samples taken on day 6 after antibiotic addition were plated onto ZMJ plates and 5-10 

random colonies selected for sequencing (section 2.3.4). 
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Table 2.4: Minimum inhibitory concentration of erythromycin and cephazolin (Brachybacterium sp.), and tobramycin and streptomycin (Marinobacter sp.). 

G. catenatum cultures grown with single bacterial type was tested for effective antibiotic concentration that would remove antibiotic sensitive bacteria but not 

the resistant bacteria. 

Antibiotic added (ptg mL-1
) I Bacterial isolate 1st well 2nd well 3rd well 4th well 

Erythromycin 5 2.5 1.25 0.625 

Erythromycin sensitive Brachybacterium sp. No growth No growth Growth Growth 
Erythromycin resistant Brachybacterium sp. Growth Growth Growth Growth 

Cephazolin 6 3 1.5 0.75 

Cephazolin sensitive Brachybacterium sp. No growth Growth Growth Growth 
Cephazolin resistant Brachybacterium sp. Growth Growth Growth Growth 
Tobramycin 2 1 0.5 0.25 

Tobramycin sensitive Marinobacter sp. No growth No growth Growth Growth 
Tobramycin resistant Marinobacter sp. No growth Growth Growth Growth 

Streptomycin 7.5 3.75 1.87 0.93 

Streptomycin sensitive Marinobacter sp. No growth Growth Growth Growth 
Streptomycin resistant Marinobacter sp. Growth . Growth Growth Growth 
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Table 2.5: Minimum inhibitory concentration of erythromycin, cephazolin (Brachybacterium sp.) and tobramycin, streptomycin (Marinobacter sp.). G. 

catenatum cultures grown with pair-wise combination of bacteria were tested for effective concentration that would remove the antibiotic sensitive bacterial 

isolate in the mixture and not the resistant bacteria. 

Treatments Antibiotic 1st well 2nd well 3rd well 4th well 5th well 
(J.I.~?; mL-1

) 

Sensitive Brachybacterium sp. + Cephazolin 6 3 1.5 0.75 0.375 
sentive Marinobacter sp. 

Brachybacterium sp. and Marinobacter sp. No Growth No Growth No Growth Growth Growth 

Erythromycin resistant Brachybacterium sp. + Erythromcyin 10 5 2.5 1.25 0.625 
streptomycin resistant Marinobacter sp. 
Brachybacterium sp. No Growth Growth Growth Growth Growth 
Marinobacter sp. No Growth No Growth No Growth Growth Growth 

Cephazolin resistant Brachybacterium sp.+ Cephazolin 6 3 1.5 0.75 0.375 
tobramycin resistant Marinobacter sp. 
Brachybacterium sp. No growth Growth Growth Growth Growth 
Marinobacter sp. No growth No growth No Growth Growth Growth 

Erythromycin resistant Brachybacterium sp.+ Tobramycin 4 2 1 0.5 0.25 
tobramycin resistant Marinobacter sp. 
Brachybacterium sp. No growth No growth No growth Growth Growth 

Marinobacter sp. No growth Growth Growth Growth Growth 

Cephazolin resistant Brachybacterium sp. + Streptomycin 7.5 3.75 1.87 0.937 0.468 
streptomycin resistant Marinobacter sp. 
Brachybacterium sp. No growth No growth No growth Growth Growth 
Marinobacter sp. No growth Growth Growth Growth Growth 

---------- ------ -- ----------- -- -- -- ------ ---------
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2.2.8 Antibiotic application to G. catenatum cultures-microtitre plate cultures. 

Prior to applying antibiotics to 100 mL G. catenatum cultures, antibiotic treatments were 

performed using 12-well microtitre plate cultures of G. catenatum. Briefly, 3 mL of GSe and 1 mL 

of G. catenatum cultures grown with single (sensitive/resistant) bacteria, or pairwise combinations 

was transferred aseptically to triplicate wells. One mL of antibiotic solution was aliquoted to the 

wells (see Table 2.6 for antibiotic concentrations used). The antibiotics are not stable for longer 

than 6 days at l9°C, hence a second dose of antibiotic was added on day 7. Microtitre plates were 

sealed with Parafilm ™ and incubated at 19°C +/- 2.5°C at a light intensity of 90± 10 ).!.moles m"2 s·' 

with a 12L: 12D photoperiod. Triplicate subsamples were withdrawn daily for 7 days to estimate 

dinoflagellate cell concentration using a Sedgwick-Rafter counting chamber (Guillard 1973), and 

bacterial cell concentration (CFU mL-1
) by serial dilution plating on to ZM1 (Buck & Cleverdon 

1960). 

2.2.9 Antibiotic application to G. catenatum cultures- 100 mL Erlenmeyer flask cultures. 

Triplicate G. catenatum cultures in 150 mL Erlenmeyer flasks were grown to mid

logarithmic phase in the presence of antibiotic sensitive or resistant Brachybacterium sp. or 

Marinobacter sp. (see Table 2.6) and treated with MIC concentrations of antibiotics at day 5 after 

subculturing. Repeated doses of antibiotics were added on day 10 and 15. Bacterial cell and 

dinoflagellate cell concentrations were estimated daily for 21 days from triplicate sub-samples 

using serial dilution plating on to ZM1 agar plates and Sedgwick- Rafter chamber counts 

respectively (as described earlier). 

To confirm that antibiotic treatment had removed only the targeted sensitive bacteria in 

mixed bacterial cultures, culture samples on day 10 were plated onto ZM 1 and 5-10 random 

colonies was selected for 16SrDNA sequence analysis. 
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2.2.10 DNA extraction, PCR and DNA sequencing 

Sub-samples of G. catenatum-bacterium cultures were passed through an 8 !lm nuclepore 

filter (Millipore, USA) to remove dinoflagellate cell biomass and 120 Ill of the filtrate spread onto 

ZM1 agar and incubated at 2sec for 24-48 hrs. Randomly selected colonies (5-10) were re

inoculated on to fresh ZMl agar and incubated until sufficient colony biomass was available for 

DNA extraction. 

Bacterial genomic DNA extraction from bacterial colonies was based on a 

cetyltrimethylammonium bromide purifictaion (CT AB) method (Ausubel et al. 1999) (see 

Appendix 4). Polymerase chain reaction (PCR) was carried out using a MJ Research PTC-200 

Thermal Cycler (MJ Research, USA). Reactions were carried out in a 50 Ill reaction volumes 

containing 0.2 mM of primer 27F (AGAGTTTGATCMTGGCTCAG) and 1492R (ACGGCTACC

TTGTTACGACTT) (Weisburg et al. 1991), 2.5 U of Taq polymerase (BioTaq, Bioline, UK), 3 

mM MgCb, 200 mM of each dNTP and Bioline ammonium buffer (160 mM (NH4)2S04, 670 mM 

Tris HCl (pH 8.8), 0.1% Tween-20). PCR cycling included an initial denaturation at 96°C for 5 

min., followed by 30 cycles of: denaturation at 95 ec for 15 s, annealing at 49ec for 30 s, extension 

at nee for 1 min; and a final polishing step at nee for 5 mins. Completed reactions were held at 

1sec until removed and stored at 4ec until later analysis. 

The 16SrDNA products amplified were separated by submerged horizontal gel 

electrophoresis through 1.5% agarose/TBE gel. The PCR products were compared with 

Hyperladder 1, (Bioline, UK) as a size standard. Gels were examined for expected product size and 

purity under UV light and photographed using a UVP DigiDoc-It imaging system (UVP 

corporation, CA, USA) 

Successful PCR products were purified using Montage-PCR ultrafilters (Millipore, USA) 

based on manufacturer protocols and the DNA resuspended in MilliQ water (Millipore, USA). The 
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DNA concentration was estimated using a Turner TBS380 DNA fluorometer (Turner Designs, 

USA) according to standard protocols. Samples including purified template and primer (27F) were 

prepared and transported to the Australian Genomic Research Facility (AGRF), Queensland, 

Australia for dye-terminator DNA sequencing and electrophoresis. AGRF used a ABI 3730xl 

capillary DNA sequencer (PE Applied Biosystems, CA, USA) to elecrophorese the sequencing 

reactions. The resulting sequence electropherograms were viewed using Chromas lite 2.01 

(Technelysium Pty Ltd, Australia) and sequences corrected by manual inspection. 

Nucleotide sequence alignment and comparison was performed using BLAST (Basis Local 

Assignment Tool), accessed via to GenBank database (National Centre for Biotechnology 

Information, NCBI, (http://www.ncbi.nlm.nih.gov/BLAST/). Similar Genbank DNA sequences 

were aligned with the 16SrDNA sequences obtained using CLUSTALW (http:// 

www.ebi.ac.uk/clustalw/), a multiple alignment program for DNA. 

2.2.11 Statistical analysis 

Significant differences among treatments and controls for cyst germination and cells per 

germinated cyst (at day 30) were compared using one-way ANOVA (with Tukey's LSD post-hoc 

tests). To compare G. catenatum response to removal of co-existing bacteria, a paired sample t-test 

for dependent groups was performed. Algal cell numbers on day 0 and day 7 or 21 were compared 

for statistical significance. All statistical analysis were performed using statistical analysis software 

SPSS ver. 11.5 (LEAD technologies, Chicago, USA). 
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2.3 RESULTS 

2.3.1 Resting cyst germination and growth of G. catenatum to day 30. 

Germination of resting cysts in the presence of single bacteria or pair- wise combination of 

sensitive or resistant Brachybacterium sp. and Marinobacter sp. ranged from 24% to 39%. The 

negative control (sterile cysts with no bacteria) showed the poorest (10%) germination. The 

majority of germinated cells died within the 30 day observation period and long-term culture of 

these treatments was not possible. In contrast, germination rates in treatments with sensitive and/or 

resistant bacteria were similar to the positive control (f = 1.230; df = 12, 26; P > 0.112) and all 

treatments survived beyond 30 days allowing long term culture maintenance (Fig. 2.5). 

The number of motile dinoflagellate cells per germinated cyst at day 30 did not vary 

significantly among the treatments and positive control (f= 5.239; df= 12, 26; P> 0.996), however, 

the negative control (no bacteria) had significantly fewer moving cells at day 30 (P= 0.013) (Fig. 

2.6) 
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Fig. 2.5: Germination(%)(± standard error) in different treatments, positive and negative control. 

B= Brachybacterium sp.; M= Marinobacter sp. DG879; Ery= erythromycin; Cep= cephazolin; 

Tob= tobramycin; Str= streptomycin; S= antibiotic sensitive; R= resistant. Superscripts indicate 

significant differences (P= < 0.05) 
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Fig. 2.6: Moving cells per germinant (± standard error) in different treatments and controls at day 

30. B= Brachybacterium sp.; M= Marinobacter sp. DG879; Ery= erythromycin; Cep= cephazolin; 

Tob= tobramycin; Str= streptomycin; S= antibiotic sensitive; R= resistant. Superscripts indicate 

significant differences (P= < 0.05) 
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2.3.2 Minimum inhibitory concentrations (MIC) 

The MIC of antibiotics effective to remove antibiotic sensitive bacteria (but not the 

resistant isolate) was determined as 2.5 j.tg mL"1 of erythromycin; 6 & 1.5 j.tg mL"1 of cephazolin 

(Brachybacterium sp.) and 1 j.tg mL"1 of tobramycin and 7.5 & 1.87 j.tg mL"1 of streptomycin 

(Marinobacter sp.) (Table 2.6). The antibiotic concentrations added to cultures of G. catenatum 

grown with pair-wise combinations of resistant bacteria effectively eliminated the targeted sensitive 

bacteria without affecting the other resistant bacterial isolate in the culture (Table 2.6). For 

example, in the G. catenatum culture grown in the presence of erythromycin-resistant 

Brachybacterium sp. and streptomycin-resistant Marinobacter sp., 2.5 j.tg mL"1 of erythromycin 

eliminated only Marinobacter sp. leaving Brachybacterium sp. to support G. catenatum growth 

(Table 2.6). 
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Table 2.6: Final concentration of various antibiotics used in the experiment based on MIC assay. 

Final antibiotic 

G. catenatum grown with 
Antibiotic used concentration used 

(1J-g mL"1
) 

1 Erythromycin sensitive/resistant 
Erythromycin Brachybacterium sp. 2.5 

2 Cephazolin sensitive/resistant Brachybacterium 
Cephazolin 

sp. 6 

3 Tobramycin sensitive/resistant Marinobacter sp. Tobramycin 
1 

4 Streptomycin sensitive/resistant Marinobacter 
sp. Streptomycin 7.5 

5 Brachybacterium sp.(sensitive) + Marinobacter 
sp.(sensitive) Cephazolin 1.5 

6 Erythromycin resistant Brachybacterium sp. + 
streptomycin resistant Marinobacter sp. Erythromycin 2.5 

7 Cephazolin resistant Brachybacterium sp. + 
tobramycin resistant Marinobacter sp. Cephazolin 1.5 

8 Erythromycin resistant Brachybacterium sp. + 
Tobramycin 

tobramycin resistant Marinobacter sp. 1 

9 Cephazolin resistant Brachybacterium sp. + 
Streptomycin 

streptomycin resistant Marinobacter sp. 1.87 
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2.3.3 Antibiotic application to G. catenatum cultures - microtitre plate cultures. 

Addition of antibiotics to G. catenatum microtitre plate cultures grown with antibiotic

sensitive bacteria resulted in a dramatic and immediate reduction in bacterial concentration (Fig. 

2.7 B & D; Fig. 2.8 B & D) over days 1-5, followed by decline of dinoflagellate cell concentration 

beginning from around day 2-3. The antibiotics added were effective to remove the sensitive 

bacteria completely by day 4-5. In every case, reduction in the bacterial cell numbers (Fig. 2.7 B & 

D) was followed by significant decrease in algal cell numbers, resulting in at least a 10 fold 

reduction by day 7 (t = 24.87; df= 11; P= 0.000) (Fig. 2.7 A & C). In contrast growth of cultures 

with antibiotic resistant bacteria were unaffected by the antibiotic application (Fig. 2. 7 B & D; Fig. 

2.8 B & D). Bacterial cells survived the treatment; continued exponential growth and significantly 

higher algal cell numbers were seen on day 7 compared to day 0 (t= -9.777; df = 11; P= 0.000) 

(Fig. 2.7 A & C; Fig. 2.8 A & C). 

G. catenatum cultures grown with pair-wise combinations of sensitive bacteria showed a 

rapid reduction in bacterial cell numbers after antibiotic treatment and bacteria were completely 

removed by day 5 (Fig. 2.9 B & D). Reduction in bacterial cell concentration was followed by a 

decline in G. catenatum cell concentration from day 2 and a 10 fold significant reduction in cell 

concentration was evident by day 7 (t = 10.533; df= 2; P= 0.009). 
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Fig. 2. 7: Effect of cephazolin or erythromycin application on microtitre plate G. catenatum cultures 

grown with antibiotic-sensitive or antibiotic-resistant Brachybacterium sp. (± standard error). (A & 

C) G. catenatum cell concentration (cells mL"1
); (B & D) bacterial cell concentration (cells mL"1

). 

Arrows indicate day of antibiotic addition. 
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Fig. 2.8: Effect oftobramycin or streptomycin application on microtitre plate G. catenatum cultures 

grown with antibiotic-sensitive or antibiotic-resistant Marinobacter sp. DG879 (± standard error). 

(A & C) G. catenatum cell concentration (cells mL-1
); (B & D) bacterial cell concentration (cells 

mL-1
); Arrows indicate day of antibiotic addition. 
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Antibiotic application to G. catenatum grown with pair-wise combinations of sensitive 

bacteria, removed both bacterial types by day 5 (Fig. 2.9 B & D) followed by dramatic reduction in 

algal cell numbers (Fig. 2.9 A & C). In contrast, G. catenatum cultures grown with pair-wise 

combination of antibiotic-resistant bacterial types upon antibiotic treatment to remove one of the 

bacterial type showed a initial reduction in bacterial cell numbers until day 2 (Fig. 2.9 B & D) 

which was also reflected in algal cell concentration (Fig. 2.9 A & C). As the bacterial cell numbers 

increased from day 2-4, the algal mean cell concentration also improved. However, the increase in 

algal cell numbers at day 7 was not significantly (t = -1.084; df= 11; P= 0.301) higher from day 0 

(Fig. 2.9 A & C). 
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Fig. 2.9: Effect of antibiotic addition on G. catenatum microtitre cultures grown with pair-wise 

combinations of antibiotic-sensitive or antibiotic-resistant Brachybacterium sp. (± standard error). 

(A & C) G. catenatum cell concentration (cells mL"1
); (B & D) bacterial cell concentration (cells 

mL-1
); Underline indicates the isolate removed by the antibiotic. Arrows indicate day of antibiotic 

addition. 
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2.3.4 Antibiotic application to G. catenatum cultures- 100 mL Erlenmeyer flasks. 

The higher volume trials allowed tracking algal growth or decline for 21 days. Results 

obtained from antibiotic addition experiments performed in 100 mL flasks were similar (Fig. 2.10) 

to experiments performed in microtitre plates. G. catenatum cultures grown with single sensitive 

bacterial isolate upon antibiotic application showed a decline in bacterial cell density that was 

followed by 10 fold, significant reduction, in algal cell numbers by day 21 (t= 11.55; df= 11; P= 

0.000). In contrast, antibiotics added to G. catenatum grown with single resistant bacteria, had little 

or no effect on bacterial growth and algal cell numbers continued to increase until the experiment 

was terminated (day 21 ). Test for significance revealed significantly higher G. catenatum 

concentration on day 21 compared to day 0, (t=- 8.86; df= 11; P= 0.000) (Fig. 2.10; Fig. 2.11). 

In cultures grown with pair-wise combination of sensitive bacteria, antibiotic treatment 

removed both the antibiotic-sensitive bacteria, however the treatment did not have a significant 

effect on algal cell numbers compared to positive control on day 21 (t= 1.655; df= 5; P= 0.159). 

Similarly in G. catenatum cultures grown with pair-wise combinations of resistant bacteria, 

removal of one of the bacterial type did not show significant effect on algal cell numbers at the end 

of trial (t= 1.407; df= 11; P= 0.187) (Fig. 2.12). 
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Fig. 2.10: Effect of antibiotic application to G. catenatum 100 mL log phase flask cultures grown with 

antibiotic-sensitive or antibiotic-resistant Brachybacterium sp. (± standard error). (A & C) G. 

catenatum cell concentration (cells mL"1
); (B & D) bacterial cell concentration (cells mL"1

). Arrows 

indicate day of antibiotic addition. 
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Fig. 2.11: Effect of antibiotic addition to G. catenatum 100 mL log phase flask cultures grown with 

antibiotic-sensitive or antibiotic-resistant Marinobacter sp. DG879 (± standard error). (A & C) G. 

catenatum cell concentration (cells mL-1
); (B & D) bacterial cell concentration (cells mL-1

). Arrows 

indicate day of antibiotic addition. 
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Fig. 2.12: Effect of antibiotic addition to 100 mL G. catenatum log phase flask cultures grown with 

pair-wise combination Brachybacterium sp. and Marinobacter sp. DG879. (A & C) G. catenatum cell 

concentration (cells mL"1
); (B & D) bacterial cell concentration (cells mL"1

). Arrows indicate day of 

antibiotic addition. Standard error bars shown only for statistically compared days (0 & 21) as 

overlapping bars obscure trends of growth curve. Underlining indicates the isolate removed by the 

antibiotic. 
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2.3.5 16SrDNA sequence analysis: 

DNA sequence analysis of colonies of the bacteria remaining after antibiotic treatment in 

pair-wise combination of resistant bacterial types consistently recovered only the resistant bacterial 

type in each case. For cultures in which Marinobacter sp. was removed with erythromycin 

(treatment 6; Table 2.6), the DNA sequence recovered from colonies shared 99% sequence identity 

with Brachybacterium sp. (PSGBlO, RODSPM16, GN0406-11.4ps.b, SKJH-25, PBIO) and 

matched the sequence of the Brachybacterium sp. used in the experiment (Fig. 2.13). Cephazolin 

treatment to remove Marinobacter sp. showed (treatment 7, Table 2.6), the DNA sequence 

recovered from the remaining bacterial colonies to share 100% sequence identity with 

Brachybacterium sp. (PSGBlO, RODSPM16, GN0406-11.4ps.b, PB10). Similarly cultures to 

which tobramycin or streptomycin (treatment 8, 9; Table 2.6) was added to remove 

Brachybacterium sp., the DNA sequence recovered showed 100% sequence identity with 

Marinobacter sp. DG879 (A Y258107). 
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Brachybacterium sp . 
PSGB10 
RODSPM16 
GN0406 - 11. 4ps . b 
SKJH- 25 
PB10 

Brachybacterium sp . 
PSGB10 
RODSPM16 
GN0406 - ll. 4ps .b 
SKJH- 25 
PB10 

Brachybacterium sp . 
PSGB10 
RODSPM16 
GN0406 - 11 . 4ps . b 
SKJH- 25 
PB10 

Brachybacterium sp . 
PSGB10 
RODSPM16 
GN0406 - 11 . 4ps . b 
SKJH- 25 
PB10 

GTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTAC 60 
GTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTAC 60 
GTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTAC 60 
GTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTAC 60 
GTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTAC 60 
GTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTAC 60 
*~~***"~i{**********f**********~l*****~'****~***********''*** 

GGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGT 120 
GGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGT 120 
GGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGT 120 
GGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGT 120 
GGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGT 120 
GGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGT 120 
*'******~****'******'****~{***********'***********'********* 

GGGGGATGACGGCCTTCGGGTTGTAAACCCCTTTCAGTAGGGAAGAAGCGAGAGTGACGG 180 
GGGGGATGACGGCCTTCGGGTTGTAAACCCCTTTCAGTAGGGAAGAAGCGAGAGTGACGG 180 
GGGGGATGACGGCCTTCGGGTTGTAAACCCCTTTCAGTAGGGAAGAAGCGAGAGTGACGG 180 
GGGGGATGACGGCCTTCGGGTTGTAAACCCCTTTCAGTAGGGAAGAAGCGAGAGTGACGG 180 
GGGGGATGACGGCCTTCGGGTTGTAAACCCCTTTCAGTAGGGAAGAAGCGAGAGTGACGG 180 
GGGGGATGACGGCCTTCGGGTTGTAAACCCCTTTCAGTAGGGAAGAAGCGAGAGTGACGG 180 
******-~****** * ***********'***********'*****************'**** 

TACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGCGC 240 
TACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGCGC 240 
TACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGCGC 240 
TACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGCGC 240 
TACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGCGC 240 
TACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGCGC 240 
******'****'kl***********'******************•**************** 

Obligate requirement of G. catena/urn for marine bacteria 
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Brachybacterium sp. 
PSGBlO 
RODSPM16 
GN0406- 11 . 4ps . b 
SKJH- 2 5 
PBlO 

Brachybacterium sp . 
PSGBlO 
RODSPM16 
GN0406 - ll . 4ps .b 
SKJH- 25 
PBlO 

Brachybacterium sp . 
PSGBlO 
RODSPM16 
GN0406 - ll . 4ps. b 
SKJH- 25 
PBlO 

AAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCTTGTAGGTGGCTTGTCGCGTCTGCCGT 300 
AAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCTTGTAGGTGGCTTGTCGCGTCTGCCGT 300 
AAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCTTGTAGGTGGCTTGTCGCGTCTGCCGT 300 
AAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCTTGTAGGTGGCTTGTCGCGTCTGCCGT 300 
AAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCTTGTAGGTGGCTTGTCGCGTCTGCCGT 300 
AAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCTTGTAGGTGGCTTGTCGCGTCTGCCGT 300 
*********(****-~j•****•* *******~***************~********* ·~ 

GAAAACCCGAGGCTCAACCTCGGGCGTGCGGTGGGTACGGGCAGGCTAGAGTGTGGTAGG 360 
GAAAACCCGAGGCTCAACCTCGGGCGTGCGGTGGGTACGGGCAGGCTAGAGTGTGGTAGG 360 
GAAAACCCGAGGCTCAACCTCGGGCGTGCGGTGGGTACGGGCAGGCTAGAGTGTGGTAGG 360 
GAAAACCCGAGGCTCAACCTCGGGCGTGCGGTGGGTACGGGCAGGCTAGAGTGTGGTAGG 360 
GAAAACCCGAGGCTCAACCTCGGGCGTGCGGTGGGTACGGGCAGGCTAGAGTGTGGTAGG 360 
GAAAACCCGAGGCTCAACCTCGGGCGTGCGGTGGGTACGGGCAGGCTAGAGTGTGGTAGG 360 
****~****t4 ~**'********** ·~******************* ~-~ ******'* 

GGAGACTGGAACTCCTGGTGTAGCGGTGAAATGCGCAGATATCAG- AAGAACACCGATGG 419 
GGAGACTGGAACTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAAGAACACCGATGG 420 
GGAGACTGGAACTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAAGAACACCGATGG 420 
GGAGACTGGAACTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAAGAACACCGATGG 420 
GGAGACTGGAACTCCTGGTGTAGCGGTGAAATGCGCAGATATC AGGAAGAACACCGATGG 420 
GGAGACTGGAACTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAAGAACACCGATGG 420 
***·~~***'++~~·~·*~**'*****'****"**'•'~**''***+ '*~* ****•••* 

Obligate requirement of G. catena/urn for marine bacteria 

Fig. 2.13: ClustaiW multiple sequence alignment of Brachybacterium sp. remaining in cultures after treatment with erythromycin to remove Marinobacter sp. 

Sequence is compared with 5 Brachybacterium spp. (99% similarity) obtained from GenBank database (BLAST). 
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2.4 DISCUSSION 

The experiments presented here constitute the first conclusive evidence that G. catenatum 

has an obligate requirement for marine bacteria for long term survival. Antibiotic application to G. 

catenatum cultures grown with antibiotic sensitive bacteria showed rapid reduction of bacterial cell 

density followed by a gradual decline in G. catenatum cell numbers. In contrast G. catenatum 

grown with antibiotic resistant bacterial strains were unaffected by antibiotics providing clear 

evidence that the dinoflagellate cell decline is not a direct result of the antibiotics, but is due to the 

decline or removal of the bacteria. Previous cyst germination studies included a negative control in 

which sterile G. catenatum cysts were germinated in bacteria free medium. Cysts germinated 

without bacteria did not survive or grow and long term maintenance of cultures was not possible, 

suggesting the need for marine bacteria for algal growth (Bolch et al. 2002; Vincent 2003; Bolch et 

al. 2004). Bacteria-free controls in the present study also showed poor germination and growth and 

long term maintenance was not possible. 

Generating and maintaining axenic or bacteria-free cultures of dinoflagellates is difficult 

but widely reported in the literature (Boczar et al. 1988; Dantzer & Levin 1997; Doucette & Powell 

1998; Alavi et al. 2001; Wang et al. 2004). Although these studies report achieving axenic status, it 

is unclear whether the cultures remained bacteria free throughout the study as bacterial detection 

measures are often limited to culture media and rarely reported in detail. For example, Dantzer & 

Levin (1997) reported bacteria-free status in A. tamerense cultures using marine agar. As 95% of 

marine bacterial strains are currently considered uncultivable (Schut et al. 1993), then unculturable 

bacteria may well have been present. Doucette & Powell (1998) used both epifluorescence 

microscopy and marine agar to ensure absence of bacteria in A. lusitanicum cultures but did not 

report the frequency of monitoring, therefore the bacteria-free status throughout the experiment is 

questionable. In the current and previous studies (Bolch et al. 2002; Vincent 2003; Bolch et al. 

2004) cultivable bacteria were not detected on ZM1 agar in the bacteria-free controls. However, up 

to 40-50% bacteria in G. catenatum cultures may be unculturable (Green et al. 2008, unpublished 
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data), therefore unculturable bacteria may still have been present in the bacteria-free controls. Even 

if present, the consistent lack of growth in negative controls and antibiotic-sensitive treatments 

indicate that they were unable to support the growth of the dinoflagellate. Future studies could 

include 168 rDNA PCR using universal primers on DNA extracted from negative control cultures 

and sterile cyst germinations to confirm whether these treatments remain bacteria-free. 

It appears that not all dinoflagellates require bacteria for growth as some studies have 

reported that removal of bacteria by antibiotics has little or no effect on the growth of A. catenella 

and A. tamarense (Uribe & Espejo 2003; Ho et al. 2006). However, both these studies have not 

ruled out the presence of unculturable bacteria within the dinoflagellate cells that may have 

survived antibiotic treatment. In contrast, the present work and Geier (2003) have shown that 

removal of bacteria kills G. catenatum cells. Lush (1999) reported reduced A. minutum cell 

densities during continuous exposure to antibiotics, with cultures failing to grow beyond 20 days 

from the antibiotic addition. Intermittent antibiotic exposures with fixed periods of recovery 

allowed cultures to grow, but at a much slower rate than normal. 

Unlike previous studies, the work presented here has sufficient experimental controls to 

determine whether the death of the dinoflagellate cells is due to the antibiotics or alternatively due 

to the removal of the bacterial community. Continued dinoflagellate growth in the antibiotic 

resistant controls demonstrate quite clearly that direct antibiotic toxicity is not the cause of the 

dinoflagellate cell decline. While this work demonstrates the requirement for G. catenatum, 

observations by other workers suggest that only certain dinoflagellates may have an obligate 

requirement for bacteria to support growth both in laboratory cultures and natural blooms. 

The simplified G. catenatum-bacteria model cultures used here allows the removal of vast 

majority of bacterial community, minimising the .'likelihood of other antibiotic-resistant bacteria 

surviving the antibiotic treatment. While other unculturable bacteria may be present in the 

experimental model cultures used here, the failure of the antibiotic-sensitive cultures clearly 
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indicates that (if present) they are not capable of supporting the growth of Gymnodinium catenatum. 

This supports the concept that the bacterial requirement of Gymnodinium catenatum may be limited 

to relatively few bacteria rather than being a general feature of many marine bacteria. 

Experiments with pair-wise mixtures of bacteria where one bacterial type was removed by 

antibiotics indicate that algal cell growth is partly dependent on bacterial concentration or growth. 

The reduction of bacterial concentration in the few days following antibiotic addition is mirrored by 

a temporary cessation of dinoflagellate growth (Fig. 2.9; Fig. 2.12). One explanation for this pattern 

is that growth promotion is mediated by a factor produced only by actively growing bacterial cells 

and that the factor is utilized by the dinoflagellate. Under this scenario, a reduction of bacterial 

growth would rapidly reduce the production and concentration of growth stimulating factor and in 

turn affect growth of the dinoflagellate. It is also possible that the growth stimulating factors are 

unstable or degraded over a period of days. The subsequent recovery of algal growth indicates that 

bacterial and algal growth dynamics are strongly coupled in the experimental model cultures. 

Mouget et al. 1995 reported similar interactions between Scenedesmus bicellularis and Pseudomans 

diminuta where the stimulation of algal growth occurred only during bacterial growth phase. 

Bacteria may stimulate phytoplankton growth by excreting growth-promoting secondary 

metabolites such as vitamins and other growth promoting compounds. For example Vitamin B12 or 

cobalamin deficient algae have been proved to be benefited through a symbiotic relationship with 

bacteria (Croft et al. 2005). Another possibility is that Iron (Fe), a major nutrient for marine 

phytoplankton essential for N03- utilization, cellular activities and chlorophyll biosynthesis, is 

involved in the growth stimulation. Iron-chelators (siderophores) produced by marine bacteria have 

been shown to increase the solubility of Iron in water, thereby enhancing availability to algal cells 

(Liebson et a!. 1995). The growth medium (GSe) used in the present study contains all known 

essential nutrients, trace-metals and vitamins for algal growth, including Ferric (Fe3+) ions, but rate 

of uptake by the dinoflagellate may be mediated or controlled by binding to organic chelating 

molecules. 
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Algal cells release hydrocarbons and other organic matter in the form of exudates or 

leakage from broken cells to bacteria (Azam 1998). Several reports suggest that hydrocarbons may 

affect rate of algal photosynthesis (Gordon & Prouse 1973; Nuzzi 1973; Lacaze 1974). In a similar 

study Karydis & Fogg (1980) suggested hydrocarbons affect chlorophyll a and protein content of 

algal cells. Further studies reported higher concentrations of hydrocarbons to significantly inhibit 

growth of microalgae while lower concentrations had less or no-effect on growth (Dunstan et al. 

1975; Fabregas et al. 1984; Siron et al. 1991). G. catenatum cells are rich in hydrocarbons, fatty 

acids (Hallegraeff et al. 1991). Alcanivorax borkumensis DG881 and Marinobacter sp. DG879 are 

capable of utilizing hydrocarbons (this study, Vincent 2003) and it is possible that these bacterial 

isolates may have supported growth by removing or utilizing hydrocarbons produced by G. 

catenatum cells. The finding that Brachybacterium sp. has growth stimulating activity is interesting. 

Brachybacterium sp. has not been reported in association with phytoplankton cells, and is only 

known in marine systems from a phylotype associated with arctic and antartic ice (Brinkmeyer et 

al. 2003). However, Brachybacterium sp. has been reported to utilize hydrocarbons as a sole carbon 

source (Yan 2006). Hence, it is equally possible that Brachybacterium sp. may have also enhanced 

algal growth utilizing hydrocarbons from G. catenatum cells. Safonova et al. (1999) reported 

similar algal growth promoting activity by alcanotrophic bacteria in black oil. This study identified 

bacteria to restore and stimulate growth of algal cells exposed to black oil. 

In conclusion, this work demonstrates unequivocally that G. catenatum has an obligate 

requirement for the presence of specific growth-stimulating marine bacteria. This requirement 

appears necessary directly after cyst germination and extends throughout the vegetative growth 

phase in culture-based experiments. 
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Chapter 3 

Breakdown of bacteria-dinoflagellate interaction in 

G. catenatum cultures. 

3.1 INTRODUCTION 

In the phycosphere, bacteria form an integral part of the dinoflagellate environment and 

may be considered symbionts or mutualist partners. Such mutual interactions between bacteria and 

algae have been extensively reviewed as a major factor influencing algal growth (Golterman 1972; 

Paerl & Pinckney 1996; Doucette et al. 1998; Croft et al. 2005). Bacteria may benefit from an . 
association with phytoplankton by using exudates while algal growth may be supported by bacterial 

products such as vitamins and other growth factors. While there is some understanding of the 

bacterial factors controlling phytoplankton growth, little is known about cell death or mortality in 

algal cultures (Sheldrake 1974). 

Unexplained and rapid cessation of growth (or "crashes") are a common feature of 

dinoflagellates both in bloom populations and laboratory cultures, yet such incidents are rarely 

explored and the causes remain a mystery (Fogg & Thake 1987; Usup & Azanza 1988; Heiskanen 

1993). In general a reduction in phytoplankton population size in the natural environment is due to 

grazing and sedimentation, bacterial or viral infections (Walsh 1983; Veldhuis et al. 2001). 

However, in uni-bacterial phytoplankton cultures maintained in a controlled environment with 

sufficient nutrients, temperature and light, these explanations do not apply. 

In this study, after several months of sub-culturing uni-bacterial cultures of G. catenatum 

generated with Brachybacterium sp. or Marinobacter sp. (preliminary trial studies) showed reduced 
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growth rates, reduced maximum dinoflagellate cell concentrations, and sudden reductions in 

biomass even at relatively low cell densities. One possible explanation for this phenomenon is that 

the bacterial-dinoflagellate relationship that maintains dinoflagellate growth was degrading over 

time. To test this hypothesis a controlled experiment was conducted to replace the "failing bacteria" 

with "fresh bacteria". By using combinations of antibiotic sensitive and resistant strains of 

Brachybacterium sp. and Marinobacter sp., antibiotic sensitive strains in the failing cultures could 

be supplemented or replaced with "fresh" resistant strains and subsequent growth compared to 

cultures retaining "failing bacteria". 

3.2 MATERIALS AND METHODS 

3.2.1 Preparation of bacterial filtrate from "failing" and "fresh" G. catenatum cultures 

G. catenatum "failing" (old) cultures (32 weeks) established in the presence of 

Brachybacterium sp. or Marinobacter sp., during initial trial experiments and "fresh" (new) 

cultures (16 weeks) grown with antibiotic-sensitive or antibiotic-resistant, Brachybacterium sp. and 

Marinobacter sp. (chapter 2) were maintained at 19°C +/- 2.5°C at a light intensity of 90±10 

~-tmoles m·2 s-1 with a 12L: 12D photoperiod. Replicate log-phase "failing" and "fresh" cultures 

were passed through an 8 1-lm nucleopore filter (Millipore, USA) to separate the bacterial biomass. 

3.2.2 Minimum inhibitory concentration (MIC) for experiments 

Minimum inhibitory concentration (MIC) of antibiotics for the experiment was performed 

in a 12-well microtitre plate (Corning Incorporated, Corning, NY, USA). Antibiotic solutions of 

erythromycin and tobramycin (MP Biomedicals, Australia) were prepared as described in chapter 2 

(section 2.3). A MIC experiment was performed to determine the antibiotic concentration effective 

to kill the antibiotic sensitive bacteria but not the resistant bacteria (as in chapter 2). From this 

range-finding experiment, 2.5 1-lg mL-1 of erythromycin and 1 1-lg mL"1 of tobramycin proved 
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effective to retain resistant Brachybacterium sp. or resistant Marinobacter sp. in the cultures while 

killing the respective antibiotic-sensitive bacterial types. 

3.2.3 Bacterial replacement trial in micro-well plates 

Replicate (4), unhealthy, 32 week old G. catenatum cultures grown with Brachybacterium 

sp. or Marinobacter sp. were selected. One mL of the 32 week G. catenatum culture was added to 

all wells. Bacterial filtrates (8 f.!m), antibiotics and GSe were added to the wells as described in 

Table 3.1; Table 3.2. The plates were sealed with Parafilm ™ and incubated at 19°C +/- 2.5°C at a 

light intensity of 90±10 ).tmoles m-2 s"1 with a 12L:12D photoperiod. G. catenatum cell 

concentration was estimated daily for 7 days from triplicate sub-samples using a Sedgwick-Rafter 

counting chamber (Guillard 1973). Bacterial cell concentration was estimated daily for 10 days 

from triplicate sub-samples by serial dilution-plating onto ZM-1 agar (Buck & Cleverdon 1960). A 

second dose of antibiotic was added on day 7 as antibiotics are not stable beyond 6 days at 19°C. 

3.2.4 Bacterial replacement experiments in 100 mL Erlenmeyer flasks 

After 10 days, surviving cultures from the microtitre plate experiment were transferred to 

sterile 150 mL Erlenmeyer flasks containing 75 mL of GSe medium. Repeated doses of antibiotics 

(2.5 f,!g mL"1 of erythromycin and 1 f,!g mL"1 oftobramycin) were administered aseptically on day 4 

and 10 after transfer. Dinoflagellate and bacterial cell concentration was estimated daily for 15 days 

as described earlier. 

3.2.5 Statistical analysis 

Statistical analysis software, SPSS ver. 11.5 (LEAD technologies, Chicago, USA) was used 

for all analysis. Growth rate was calculated according to the methods of Guillard (1973) and 
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expressed as instantaneous growth rate ( days-1
). ANOV A with planned-contrasts were used to test 

significant differences in growth rates between treatments to investigate specific hypotheses (see 

Table 3.1; Table 3.2 for a description of the planned contrasts). 
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Table 3.1: Bacterial replacement experiment withBrachybacterium sp. performed in 12-well microtitre plates. 

lmL of 32 week old G. catenatum culture grown with Aim of Treatment Expected outcome & 
Treatments Brachybacterium sp. + ANOV A with planned contrasts 

1 mL of 8 Jlm filtrate from new G. catenatum cultures grown with Replace old bacterial flora with new New resistant bacteria (A) supports growth different to that 
erythromycin resistant Brachybacterium sp. (105 CFU mL"1

) + 1 erythromycin resistant bacterial flora of old bacterial flora (E) 
mL of erythromycin+ 1 mL ofGSe. Planned contrast- A versus E 

A 
New resistant bacteria (A) supports dinoflagellate growth 
rate different to that of supplemented bacterial treatment (C) 
Planned contrast-A versus C 

1 mL of 8 Jlm filtrate from new G. catenatum cultures grown with New bacteria killed by erythromycin Negative growth, decline in algal cell concentration. 
erythromycin sensitive Brachybacterium sp. (105 CFU mL"1

) + 1 
B mL of erythromycin+ 1 mL of GSe. 

1 mL of 8 J.!m filtrate from new G. catenatum cultures grown with Old bacteria retained and Supplemented bacterial treatment (C) supports dinoflagellate 
erythromycin sensitive Brachybacterium sp. (105 CFU mL-1

) + 2 supplemented by new erythromycin growth rate different to that of new resistant bacteria (A) 
mL ofGSe (no antibiotics added) sensitive bacteria Planned contrast- C versus A 

c Supplemented bacterial treatment (C) supports dinoflagellate 
growth rate different to that of old bacterial flora (E) 
Planned contrast- C versus E 

1 mL of 8 Jlm filtrate from old G. catenatum cultures grown with Old bacteria killed by erythromycin Negative growth, decline Ill algal cell concentration, 

D erythromycin sensitive Brachybacterium sp. (105 CFU mL"1
) + 1 compared to cultures retaining the old bacteria (E) 

mL of erythromycin+ 1 mL of GSe Planned contrast- D versus E 

1 mL of 8 Jlm filtrate from old G. catenatum cultures grown with Retain old bacteria Old bacteria continue to support growth (E) less than that of 
erythromycin sensitive Brachybacterium sp. (105 CFU mL"1

) + 2 new bacteria replacement (A) 

E mL ofGSe (no antibiotics added) Planned contrast- E versus A 
Old bacterial flora (E) supports growth different to that of 
the supplemented bacterial treatment (C) 
Planned contrast- E versus C 
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Table 3.2: Bacterial replacement experiment with Marinobacter sp. performed in 12-well microtitre plates. 

lmL of32 week old G. catenatum culture Aim of Treatment Expected outcome & 
Treatments grown with Marinobacter sp. + ANOV A with planned contrasts 

1 rnL of 8 Jlm filtrate from new G. catenatum Replace old bacterial flora with new New resistant bacteria (A) supports growth different to that of old 
cultures grown with tobramycin resistant tobramycin resistant bacterial flora bacterial flora (E) 

A Marinobacter sp. (105 CFU rnL"1
) + 1 rnL of Planned contrast- A versus E 

tobramycin + 1 rnL ofGSe. New resistant bacteria (A) supports dinoflagellate growth rate 
different to that of supplemented bacterial treatment (C) 
Planned contrast-A versus C 

1 rnL of8 Jlm filtrate from new G. catenatum New bacteria killed by tobramycin Negative growth, decline in algal cell concentration. 
cultures grown with tobramycin sensitive 

B Marinobacter sp. (105 CFU rnL"1
) + 1 rnL of 

tobramycin + 1 rnL ofGSe. 

1 rnL of8 11m filtrate from new G. catenatum Old bacteria retained and Supplemented bacterial treatment (C) supports dinoflagellate 
cultures grown with tobramycin sensitive supplemented by new tobramycin growth rate different to that of new resistant bacteria (A) 
Marinobacter sp. (105 CFU rnL"1

) + 2 rnL of sensitive bacteria P fanned contrast- C versus A 
c GSe (no antibiotics added) Supplemented bacterial treatment (C) supports dinoflagellate 

growth rate different to that of old bacterial flora (E) 
P tanned contrast- C versus E 

1 rnL of 8 Jlm filtrate from old G. catenatum Old bacteria killed by tobramycin Negative growth, decline in algal cell concentratio~ compared to 
cultures grown with tobramycin sensitive cultures retaining the old bacteria (E) 

D Marinobacter sp. (105 CFU rnL"1
) + 1 rnL of Planned contrast- D versus E 

tobramycin + 1 rnL ofGSe 

1 rnL of8 Jlm filtrate from old G. catenatum Retain old bacteria 0 ld bacteria continue to support growth (E) less than that of new 
cultures grown with tobramycin sensitive bacteria replacement (A) 

E Marinobacter sp. (105 CFU rnL"1
) + 2 rnL of Planned contrast- E versus A 

GSe (no antibiotics added) Old bacterial flora (E) supports growth different to that of the 
supplemented bacterial treatment (C) 
Planned contrast- E versus C 
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3.3 RESULTS 

3.3.1 Brachybacterium sp. or Marinobacter sp. replacement experiment in microtitre plates. 

Failing bacteria in old G. catenatum cultures when replaced with fresh antibiotic resistant 

bacteria from new G. catenatum cultures enhanced algal growth; a 4 7%- 90% increase in cell 

numbers was evident by day 7. Similarly fresh antibiotic sensitive bacteria when added to old G. 

catenatum cultures also showed increase in algal cell numbers by day 7 (Fig. 3.1). 

Old bacteria added to G. catenatum cultures, regardless of antibiotic addition or no 

antibiotics showed rapid reduction in bacterial cell numbers followed by 39-59 % decline in algal 

cell numbers by day 7 (Fig. 3.1). 

Planned comparison analysis performed to compare exponential growth rates of various 

treatments are detailed in Table 3.3. Outcomes of both Brachybacterium sp. and Marinobacter sp. 

experiments were consistent and included in one table. 
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Fig. 3.1: Effect of replacement or addition of new Brachybacterium sp. or Marinobacter sp. 
DG879 to G. catenatum cultures showing poor growth (A) & (B) G. catenatum and bacterial cell 
concentration(± standard error) in Brachybacterium sp. replacement trial. (C) & (D) G. catenatum 
and bacterial cell concentration (± standard error) in Marinobacter sp. replacement experiment. 
Arrows indicate day of antibiotic addition. Microtitre plate experiments. 
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Table 3.3: Description of experimental outcomes and interpretation from the ANOV A with planned comparisons. 

Planned Contrast Result and si~nificance Interpretation 

A versus E Replacement new bacteria treatments (A) showed a significantly higher Cultures where new bacteria replaced old bacteria (A) were capable 
dinoflagellate growth rates compared to the treatments retaining old bacteria (E). of improving the dinoflagellate growth rate compared to cultures 

retaining only the old bacteria (E) 
(Brachybacterium sp.; t= 5.623; df= 4; P= 0.000) (Fig. 3.2) 
(Marinobacter sp.; t= 6.214; df= 4; P= 0.000) (Fig. 3.3) 

A versus C Both treatments showed positive dinoflagellate growth rates, however, growth rate Adding new bacteria to cultures containing old bacteria (C) showed 
with replacement new bacteria (A) were not significantly different from those the same positive dinoflagellate growth rate as treatments where old 
containing old bacteria supplemented with new bacteria (C). bacteria were completely replaced by new bacteria (A) 

(Brachybacterium sp.; t= -0.019 df= 4; P= 0.985) Fig. 3.2) 
(Marinobacter sp.; t= -0.788; df= 4; P= 0.443) (Fig. 3.3) 

C versus E Dinoflagellate growth rates in cultures containing old bacteria supplemented with Adding new bacteria to cultures containing old bacteria (C) showed a 
new bacteria (C) were significantly higher than cultures retaining old bacteria only positive growth rate significantly higher than cultures retaining only 
(E) the old bacterial flora (E) 

(Brachybacterium sp.; t= 5.642; df= 4; P= 0.000) (Fig. 3.2) 
(Marinobacter sp. ; t= 7.002; df= 4; P= 0.000) (Fig. 3.3) 

D versus E Both treatments failed to grow and showed negative dinoflagellate growth rates. Removing (D) or retaining the old bacterial flora (E) resulted in the 
same negative growth rate of the algal cells. 

(Brachybacterium sp.; t=- 0.758; df= 4; P= 0.460) (Fig. 3.2) 
(Marinobacter sp.; t= -0.516; df= 4; P= 0.613) (Fig. 3.3) 
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Fig. 3.2: Exponential growth rates (day-1
) of microtitre plate G, catenatum cultures after 

replacement or addition of Brachybacterium sp. 

A Old Brachybacterium sp. replaced with new antibiotic resistant Brachybacterium sp. 

B Old and new Brachybacterium sp. removed by erythromycin treatment. 

C Old Brachybacterium sp. retained and supplemented by new antibiotic sensitive 

Brachybacterium sp. 

D Old Brachybacterium sp. killed with erythromycin. 

E Old Brachybacterium sp. retained. 
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Fig. 3.3: Exponential growth rates (dai1
) of microtitre plate G. catenatum cultures after 

replacement or addition of Marinobacter sp. 

A Old Marinobacter sp. replaced with new antibiotic resistant Marinobacter sp. 

B Old and new Marinobacter sp. removed by erythromycin treatment. 

C Old Marinobacter sp. retained and supplemented by new antibiotic sensitive Marinobacter 

sp. 

D Old Marinobacter sp. killed with erythromycin. 

E Old Marinobacter sp. retained. 
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3.3.2 Flask surviving bacterial replacement treatments. 

Microtitre plate G. catenatum cultures that increased in algal cell numbers as a result of 

replacing old bacterial flora or addition of new bacteria were transferred to 100 mL Erlenmeyer 

flasks. All cultures could not be maintained beyond 15 days (Fig. 3.4). During the initial 6-8 days 

G. catenatum cells exhibited 27%- 33% increase in algal cell concentration to around days 5-8, but 

then showed 40% - 50 % reduction in algal cell numbers by day 15. 
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Fig. 3.4: Effect of replacement or addition of bacterial flora in flask cultures of G. catenatum. (A) 

& (B) G. catentum and bacterial cell concentration (± standard error) in Brachybacterium sp. 

replacement experiment. (C) & (D) G. catenatum and bacterial cell concentration(± standard error) 

in Marinobacter sp. replacement experiment. Arrows indicate day of antibiotic addition. 
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3.4 DISCUSSION 

The outcome of the experiments and analyses conducted here are consistent with the 

hypothesis that a gradual loss of growth stimulating capacity of the bacteria is the reason for the 

poor growth in uni-bacterial G. catenatum cultures in our laboratory. Bacterial strains from newly 

established uni-bacterial G. catenatum cultures appeared to stimulate algal growth in the microtitre 

plates for up to 7 days. However, surviving cultures scaled up to 100 mL flasks eventually declined 

after a further 5-9 days regardless of addition or replacement of new bacteria. This suggests bacteria 

in old algal cultures may have lost their ability to promote algal growth, and that, in this 

experiment, the growth stimulating ability, or interaction with G. catenatum cells could not be 

completely recovered. 

Microbial genes are highly dynamic and evolving whereby new genes may be acquired and 

pre-existing genes lost by mutation (Lawrence 1999; Lawrence & Roth 1999). Bacterial mutation is 

also higher in aged cultures altering physiological and other general activities of bacteria (Finkel et 

a!. 2000). The production of bacterial growth factors by the bacteria used here, may be controlled 

by only a few microbial genes and it is possible that accumulated mutations may have resulted in 

the down-regulation of genes responsible for producing algal growth factors, leading to the gradual 

decline of the uni-bacterial G. catenatum cultures over the >30 weeks of serial sub-culture. While 

this loss of production of growth factors is evident in uni-bacterial G. catenatum cultures, it appears 

to not present a problem in cultures containing a mixed bacterial community that can be maintained 

indefinitely (> 20 yrs). The strains used to establish the model cultures used here (GCHUll and 

GCDE08) were isolated in the mid-1980's (Blackburn eta!. 1989) and continue to exhibit normal 

growth dynamics in uni-algal cultures with a mixed baterial flora. It is possible that a range of 

required growth factors are produced by a range of bacteria present in cultures, and that the 

physiological effects of a lack of these factors are manifested over relatively long timescales, 

similar to vitamin deficiency (Grossart 1999). 
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Loss of cell biomass in natural phytoplankton populations is generally due to 

grazing, sinking and algal cell lysis. At the same time phytoplankton cells also lyse due to 

autocatalytic cell death pathway triggered by, physiological stress, nutrient depletion, 

bacterial or viral infections causing severe mortalities in algal cultures in the laboratory and 

natural environment (Bratbak et al. 1993; Brussard et al. 1995; Berges & Falkowski 1998; 

Kirchman 1999; Vardi et al. 1999; Segovia et al. 2003). The extent to which algal 

population may recover after a crash still remains unclear and further recovery may also 

vary with different algal species (Veldhius et al. 2001 ). In the uni-bacterial cultures used 

here, it is unknown whether a viral infection was involved in the algal cell death, however, 

replacing the bacteria restored growth initially suggesting that mortality was not entirely 

due to another factor like a viral infection or automortality by the dinoflagellate cells. 

Mutualism theory suggests co-operation may erode into parasitism in complex interaction. 

When interactions offer weak benefit to one partner there is a possibility for a shift in mutualism 

(Sachs & Simms 2006). Such a loss in mutualism may have lead to competition for micronutrients 

or inorganic compounds in this study. Algae may have evolved a inferior partner allowing bacteria 

to benefit solely from this association in course of time. This possibility could have been explored 

provided G. catenatum growth was restored with 'fresh bacteria'. 

The failure of algal cells to survive in 100 mL flasks may be due to the long term exposure 

to antibiotics (Fig. 3.4). The cells were subjected to 3 doses of antibiotics over the 15 days and 

perhaps the high concentration of antibiotics was directly toxic to the dinoflagellate cells. However, 

cultures supplemented with "fresh" bacteria without antibiotic treatment also failed to grow in 100 

mL flasks indicating that antibiotic exposure was unlikely to be the cause of the decline. All 

treatments with resistant bacteria or no-antibiotics showed normal bacterial growth, regardless of 

the response of the dinoflagellate. Clearly the algal metabolites required by the bacteria were in 
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sufficient supply for bacterial growth, yet the bacteria were unable to continue to support growth of 

the dinoflagellate. 
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Chapter 4 

Growth of G. catenatum in the presence of defined marine 

bacterial communities. 

4.1 INTRODUCTION 

The association between bacteria and phytoplankton in marine ecosystem are complex and 

are believed to influence the growth of each other (Fukami et al. 1991). However, little is known of 

how these communities interact at the species composition level (Rooney-Varga et al. 2005). 

Bacterial activity plays a predominant role in oceanic processes such as biogeochemical cycling, 

but may also influence phytoplankton growth, reproduction, cyst formation and mortality (Doucette 

et al. 1998). Interactions may range from highly specific, like symbiotic interactions (Croft et al. 

2005) through to parasitic or non-specific interactions such as competition, commensalism and 

mutualism (Grossart 1999). 

There are a number of ways in which phytoplankton and bacterial cells may interact. 

Phytoplankton may stimulate bacterial growth by supplying much of the organic matter for 

bacterial utilization and in adverse environmental conditions compete for nutrients, or produce 

antibiotics limiting bacterial growth (Cole 1982). Similarly, bacteria are known to promote algal 
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growth by production of stimulatory products like vitamins, iron and essential nutrients, and may 

also exhibit a detrimental effect on algal growth by excretion of toxic and algal lytic compounds 

(Cole 1982). Studies have also reported the potential for bacteria to influence phytoplankton 

stoichiometry by generating a switch in the nature of nutrients, limiting algal growth, and thus 

regulating HAB formation and decline (Elser et al. 1988; Danger et al. 2007). 

Species-specific interactions between algae and phytoplankton have been reviewed 

extensively, suggesting that bacteria may play a major role in phycotoxin production and bloom 

regulation (Boczar et al. 1988; Fukami et al. 1996; Dantzer & Levin 1997; Kim et al. 1998; 

Yoshinaga et al. 1998; Doucette & Powelll998; Hold et al. 2001). The broad aim of the present 

work is to examine the influence of bacteria-dinoflagellate interactions on dinoflagellate growth, 

and eventually elucidate the mechanisms and compounds that may mediate these interactions. 

In the phycosphere, lO's to lOO's of bacterial genotypes are associated with phytoplankton 

cells and hence a wide range of complex interactions may be expected (Hold et al. 2001; Alavi et 

al. 2001; Green et al. 2004 ). Laboratory cultures of G. catenatum harbour a relatively consistent but 

complex bacterial community typically dominated by alpha-Proteo bacteria 

(Roseobacter/Rhodobacter clades), the gamma-Proteobacteria and the Bacteroidetes 

(Cytophaga/Flexibacter, CFB) (Green et al. 2004). Previous work with the simplified experimental 

models of G. catenatum used here suggested that only a limited range of bacterial types can support 

the growth of G. catenatum in uni-bacterial dinoflagellate cultures. (Vincent 2003; Bolch et al. 

2004; Green et al. unpublished data) 

This chapter examines dinoflagellate and bacterial growth dynamics in G. catenatum 

cultures grown with simplified bacterial communities composed of Marinobacter sp., Alcanivorax 

sp., and/or Roseobacter sp. over a complete batch culture cycle. The subsequent batch culture 

dynamics and exponential growth rate of the dinoflagellate varied significantly with different 

composition and complexity of the bacterial community. This indicates, bacterial community may 
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be a potentially significant factor influencing the growth dynamics of Gymnodinium catenatum 

blooms. 

4.2 MATERIALS AND METHODS 

G. catenatum culture maintenance, cyst production, surface sterilisation of cysts was based 

on methods described in chapter 2 (refer to sections 2.2.1 and 2.2.2). 

4.2.1 Uni-bacterial and controlled-community G. catenatum cultures 

G. catenatum-associated bacteria, Alcanivorax cf. borkumensis DG881, Marinobacter sp. 

DG879 and Roseobacter sp. DG874 from our culture library were maintained in ZM1 agar similar 

to methods discussed in chapter 2 (refer to section 2.2.3). Further preparation of bacterial cultures 

for germination and growth experiments was also based on methods described in chapter 2 (refer to 

section 2.2.5). For culturingAlcanivorax sp. DG881, Zobell's medium was supplemented with 1% 

sodium acetate as a carbon source (Green et al. 2004). 

Sterilised resting cysts were aseptically aliquoted into 36 mm petri dishes and the prepared 

bacterial cultures added to the sterile resting cysts and/or controls as briefly described in Table 4.1. 

All treatments and positive and negative control were carried out in triplicate. Each dish contained 

30-40 surface-sterile resting cysts in 1.9 mL of sterilized GSe medium. All bacterial inoculations 

contained an estimated final concentration of 105 CFU mL-1 of each bacterial strain. All dishes were 

sealed with parafilm ™ and incubated at 19°C +I- 2.5°C at a light intensity of 90± 10 J..tmoles m·2 s"1 

with a 12L: 12D photoperiod. All treatments and controls containing resting cysts were assessed 

under Lieca S9 stereomicroscope every 3-4 days for 30 days after initial germination was observed. 

Germination (%) was determined based on number of empty cysts counted in replicate dishes. 

Motile dinoflagellate cells were also counted under the microscope to determine number of moving 

cells per germinated cyst. 
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Table 4.1: Description of treatments and controls used in germination experiment. All treatments 

and controls (except the media sterility control) consisted of duplicate 36 mm petri dishes, 

containing 30-40 surface-sterilised G. catenatum resting cysts in 1.9 mL of GSe medium with the 

addition of the treatments described below. All treatments and the positive control were 

subsequently used to establish 100 mL flask cultures for later experiments. 

Treatment Sterile G. catenatum resting cysts plus 

Sterility control 200 J.lL of sterile GSe (no resting cysts) 

Positive control 200 J.lL of 8 J.lm filtrate from mid-log phase cultures of GCDE08 
and GCHU11. 

Negative control Sterile GSe medium 

Treatment 1 
Alcanivorax sp. DG881 added to a final concentration of 10' CFU 

mL"l 

Treatment 2 
Marinobacter sp. DG879 added to a final concentration of 10' CFU 

mL"l 

Treatment 3 
Roseobacter sp. DG874 added at a final concentration of 1 0' CFU 

mL"l 

Treatment 4 
Alcanivorax sp. DG881 and Marinobacter sp. DG879 added at a 

final concentration of 105 CFU mL"1each 

Treatment 5 
Alcanivorax sp. DG881 and Roseobacter sp. DG 874 added at a 

final concentration of 105 CFU mL"1 each 

Treatment 6 
Marinobacter sp. DG879 and Roseobacter sp. DG874 added at a 

final concentration of 105 CFU mL"1 each 

Treatment 7 
Alcanivorax sp. DG881, Marinobacter sp. DG879 and Roseobacter 

sp. DG874 added at a final concentration of 105 CFU mL"
1 each 
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After 30 days, two replicates from each treatment and the positive control were transferred 

to sterile 150 mL Erlenmeyer flasks containing 100 mL of sterile GSe medium. These cultures were 

grown at 19°C +!- 2.5°C at a light intensity of90±10 jlmoles m-2 s"1 with a 12L: 12D photoperiod 

until sufficient cell concentration was available for additional growth experiments. Negative control 

(no bacteria added) failed to survive beyond 30 days and was not included in further growth studies. 

The established 100 mL cultures were transferred to fresh sterile 150 mL Erlenmeyer flasks 

containing 100 mL of GSe medium. Dinoflagellate cell concentration was estimated every 4 days 

from triplicate sub-samples by in-vivo fluorometry (Kiefer 1973) and cell counts using a Sedgwick

Rafter counting chamber (Guillard 1973). Bacterial cell concentration (CPU mL"1
) in treatments 

and controls were estimated from triplicate sub-samples by serial dilution-plating (Buck & 

Cleverdon 1960) onto ZM1 agar. 

4.2.2 Statistical analysis 

Growth and death rates were calculated according to the methods of Guillard (1973) and 

expressed as instantaneous growth rate (days"1
). Differences among duplicate treatments and 

controls for cyst germination, cells per germinated cyst (at day 30), dinoflagellate exponential 

growth rate and death rate, and maximum cell concentration (cells mL-1
) were compared using one

way ANOVA. Significant differences among treatments were determined by Tukey's LSD post-hoc 

tests. All analyses were carried out using the statistical analysis software SPSS ver. 11.5 (LEAD 

technologies, Chicago, USA). 
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4.3 RESULTS 

4.3.1 Germination and initial growth of G. catenatum 

Germination of resting cysts in the presence of different bacteria or bacterial communities 

ranged from 15% to 53% and differed significantly across treatments and controls (Fig. 4.1). 

Sterile cysts with no bacterial addition (negative control) generally showed poor germination (15%) 

and the majority of cells died within the 30 day observation period; long-term culture of these 

treatments was not possible. In contrast, all treatments where sterile cysts were geminated in the 

presence of specific bacteria or bacterial communities showed significantly higher germination 

rates than the negative control (f= 6.687; df= 8, 18; P= 0.000), survived beyond 30 days and could 

be sub-cultured long-term(> 30 weeks). 

Cysts germinated in the presence of a mixed bacterial community from the parent crossing 

strains (positive control) showed germination rates typical of non-sterilised cysts (54%) from earlier 

studies (Bolch et al. 2002; Vincent 2003). All bacterial treatments exhibited germination rates 

similar to the positive control (P> 0.066), with the exception of treatments containing only 

Roseobacter sp. (P= 0.013) and the negative control (P= 0.001) (Fig. 4.1). 

As a relative measure of initial post-germination growth, the number of moving cells per 

germinated resting cyst was recorded over the first 30 days (Fig. 4.2). No significant differences 

were observed at day 30 among the treatments and positive control (f= 4.422; df= 8, 18; P> 0.982), 

however, the negative control showed significantly fewer moving cells at day 30 (P= 0.007). 
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Fig. 4.1: Germination(%)(± standard error) in different treatments, positive and negative control. 

M= Marinobacter sp. DG879; A= Alcanivorax sp. DG881; R= Roseobacter sp. DG874; A+M+R= 

all three bacteria mixed. Superscripts indicate significant differences (P < 0.05). 
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Fig. 4.2: Moving cells per germinant (± standard error) in different treatments, positive and 

negative control. M= Marinobacter sp. DG879; A= Alcanivorax sp. DG881; R= Roseobacter sp. 

DG874; A+M+R= all three bacteria mixed. Superscripts indicate significant differences (P < 0.05). 
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4.3.2 Growth dynamics of G. catenatum in batch culture 

All cultures, other than the negative control, were cultured successfully to 100 mL volumes 

in 150 mL Erlenmeyer flasks over a period of 8 weeks. Growth curves derived from in-vivo 

fluorescence data (Appendix 5) and cell count data were found to be very similar. As fluorescence 

estimates of cell concentration are potentially unreliable estimates of cell concentration outside 

logarithmic-phase (Falkowski & Kiefer 1985; Cullen et al. 1988), only the cell count data are used 

here. Correlation analysis revealed good correlation between algal cell numbers and relative 

fluorescence in different treatments (R2= 0.9065) and parent strains GCHU11 (R2
= 0.9708); 

GCDE08 (R2
= 0.8215) during exponential phase (Fig. 4.3). 

Marked differences in dinoflagellate batch culture dynamics were evident between G. 

catenatum cultures grown in the presence of different simple bacterial communities composed of 1 

to 3 bacteria. The onset and duration of batch culture phase for all cultures are summarized in 

Table 4.2. No distinct lag-phase was evident in treatments or controls, however, the exponential 

growth phase was considerably longer and the stationary phase shorter in treatments containing 

Roseobacter sp. alone, or in combination with the other two bacteria. 
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Fig. 4.3: Relationship between algal cell numbers (cells mL"1
) and relative fluorescence in 

exponential growth phase of all treatments and parent GCHUll and GCDE08 cultures. The solid 

lines represent fitted regression equation. 
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Table 4.2: Comparison of the duration and length of growth phases in G. catenatum cultures grown 

in the presence of simple uni-bacterial, mixed bacterial communities and parent GCHUll and 

GCDE08 G. catenatum cultures. 

Growth phase (days) 

Treatments 
Exponential Declining Stationary Death 

Alcanivorax sp. 0-12 (12) 12-28 (16) 28-36 (8) 36-68 

Marinobacter sp. 0-12 (12) 12-28 (16) 12-28 (16) 40-68 

Roseobacter sp. 0-40 (40) 40-44 (4) 44-52 (8) 52-68 

Alcanivorax sp. 0-12 (12) 12-16 (4) 16-40 (24) 40-68 

+Marinobacter sp. 

Alcanivorax sp. 0-16 (16) 16-28 (12) 28-44 (16) 44-68 

+Roseobacter sp. 

Marinobacter sp. 0-24 (24) 24-36 (12) 36-44 (8) 44-68 

+Roseobacter sp. 

Alcanivorax sp. 0-20 (20) 0 (0) 20-28 (8) 28-68 

+Marinobacter sp. 

+Roseobacter sp. 

Mixed DE08/HU11 0-16 (16) 16-24 (8) 24-36 (12) 36-68 

bacteria community 

GCHU11 0-16 (16) 0 (0) 16-28 (12) 28-68 

GCDE08 0-12 (12) 0 (0) 12-44 (32) 44-68 

Figures in brackets indicate number of days 
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Cultures grown with single bacterial addition exhibited consistent growth among replicates 

but distinct dinoflagellate batch culture growth curves for each bacterial type (Fig. 4.4). Cultures 

grown with Marinobacter sp. or Alcanivorax sp. exhibited exponential growth rates (day 0-12) that 

were significantly higher than positive control containing mixed culture bacteria (f= 23.99; df= 9, 

10; P= 0.000, 0.033) and cultures containing only Roseobacter sp. (P= 0.000, 0.008) (). Cultures 

grown with Roseobacter sp. showed the slowest exponential growth rate and did not reach 

stationary phase till day 40-44 (Fig. 4.4 (c); Fig. 4.5). 

Cultures with Marinobacter sp. or Alcanivorax sp. reached maximum dinoflagellate cell 

concentrations of 2.0-2.5 x 103 cells mL·I, while cultures grown with Roseobacter sp. reached 

concentrations, 1.5 x103 cells mL-1
• However, these differences were not significant (f= 6.916; df= 

9, 10; P= 0.528; 0.371) (Fig. 4.6). Cultures grown with Roseobacter sp. exhibited a significantly 

more rapid decline during death phase than cultures grown with Marinobacter sp. (f= 19.301; df= 

9, 10; P= 0.001) or Alcanivorax sp. (f= 19.301; df= 9, 10; P= 0.000) (Fig. 4.7). 
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Fig. 4.4: Batch growth curves from replicate cultures of G. catenatum grown with single marine bacteria (a) Marinobacter sp. DG879; (b) Alcanivorax sp. 

DG881; (c) Roseobacter sp. DG874 (±standard error). Curves with closed circles indicate G. catenatum cell concentration (cells rnL-1
) and curves with open 

circles indicate bacterial algal cell concentration (cells rnL-1
). 
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Fig. 4.5: Exponential growth rates (day"1
) of replicate G. catenatum cultures grown with single 

bacteria, pair-wise combination of bacteria, cultures with synthetic communities of 3 bacteria, 

mixed bacterial communities from non-axenic parent cultures, parent GCHU 11 and GCDE08 

cultures. M= Marinobacter sp. DG879; A= Alcanivorax sp. DG881; R= Roseobacter sp. DG874; 

A+M+R= all three bacteria mixed. Superscripts indicate significant differences (P= < 0.05) 
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Fig. 4.6: Maximum algal cell concentration (cells mL-1
) of replicate G. catenatum cultures grown 

with single bacteria, pair-wise combination of bacteria, cultures with synthetic communities of 3 

bacteria, mixed bacterial communities from non-axenic parent cultures, parent GCHUll and 

GCDE08 cultures. M= Marinobacter sp. DG879; A= Alcanivorax sp. DG881; R= Roseobacter sp. 

DG874; A+M+R= all three bacteria mixed. Superscripts indicate significant differences (P= < 0.05) 
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Fig. 4.7: Death rate (day -I) of replicate G. catenatum cultures grown with single bacteria, pair-wise 

combination of bacteria, cultures with synthetic communities of 3 bacteria, mixed bacterial 

communities from non-axenic parent cultures and parent GCHUll and GCDEOS cultures. M= 

Marinobacter sp. DG879; A= Alcanivorax sp. DG881; R= Roseobacter sp. DG874; A+M+R= all 

three bacteria mixed. Superscripts indicate significant differences (P= < 0.05). 
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Cultures grown in the presence of pair-wise combinations of bacteria exhibited growth 

curves with combinations of features from that of uni-bacterial cultures (Fig. 4.8). Cultures grown 

with Marinobacter sp. andAlcanivorax sp. showed a short rapid exponential growth period (days 0-

12) similar to that of cultures grown only with Marinobacter sp., but a more gradual death phase 

similar to cultures containing only Alcanivorax sp. Similar "hybrid" growth curves are evident in 

the cultures grown with Alcanivorax sp. and Roseobacter sp., however, cultures grown with 

Marinobacter sp. and Roseobacter sp. showed a growth curve more similar to cultures containing 

only Roseobacter sp. (compare Fig. 4.4 (c) and Fig. 4.8 (c)). Mean exponential growth rates of the 

two-bacterium G. catenatum cultures were, in all cases, intermediate between the growth rates of 

the corresponding uni-bacterial cultures (Fig. 4.5). Mean maximum cell concentrations in these 

cultures were generally lower than either of the single bacterium cultures and the two-bacterium 

cultures containing Roseobacter sp. achieved a significantly lower maximum cell concentration 

than positive control (Fig. 4.6). A sharp decline after day 44 was evident in cultures grown with 

Marinobacter sp. and Roseobacter sp., however the overall rate of decline (death rate) to day 68 

was not significantly faster than the other two-bacterium combinations (Fig. 4. 7). 

Cultures grown with simple communities composed of three bacterial strains exhibited 

batch culture dynamics most similar to those of the positive control containing log-phase bacterial 

communities from HUll and DEOS (Fig. 4.9). Exponential growth rates (Fig. 4.5), maximum cell 

concentrations (Fig. 4.6) and death rates (Fig. 4. 7) were almost identical and only small differences 

were noted in the onset and length of batch culture phases (Table 4.2). Growth curves of the two 

parent strains GCDEOS and GCHUll were, however, surprisingly different from both positive 

control and cultures grown with the three bacteria (compare Fig. 4.9; Fig. 4.10). Strain GCHlJll 

exhibited a significantly higher (f= 23.99; df= 9, 10; P= 0.041) growth rate than GCDEOS (Fig. 4.5) 

although the maximum cell concentration reached by both were not significantly different (Fig. 

4.6). 
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Fig. 4.8: Batch growth curves from replicate cultures of G. catenatum grown with pair-wise combination of bacteria (a) Alcanivorax sp. DG881 

+Marinobacter sp. DG879; (b) Alcanivorax sp. DG881 + Roseobacter sp. DG874; (c) Marinobacter sp. DG879 + Roseobacter sp. DG874 (±standard 

error). Curves with closed circles indicate G. catenatum cell concentration (cells mL-1
) and curves with open circles indicate bacterial algal cell 

concentration (cells mL-1
). 
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Fig. 4.10: Batch growth curves from replicate parent cultures (a) GCHUll and (b) GCDE08 (± 

standard error). Curves with closed circles indicate G. catenatum cell concentration (cells mL-1
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4.3.3 Bacterial growth dynamics in G. catenatum cultures 

Bacterial growth followed a remarkably consistent pattern in all treatments and positive 

control established from surface-sterilised resting cysts, therefore only the mean concentration ( +/

SE) from all treatments is presented (Fig. 4.11). Similar patterns were also evident in the cultured 

mixed bacterial communities associated with parent cultures GCDE08 and GCHU11, and these are 

presented for comparison along with the mean of all treatments and positive control. Two distinct 

phases were evident in the growth ofthe bacterial communities: From day 0 to 28, bacterial growth 

was relatively slow (0.02-0.05 days"\ from day 28 onward, bacterial growth rate increased 

dramatically (0.16-0.23 days"1
). All treatments (including GCHU11 and GCDE08) exhibited 

regularly spaced periods of limited bacterial growth interspersed with rapid bacterial growth. 

Bacterial cells per dinoflagellate cell also followed a consistent pattern in all treatments and 

controls (see Fig. 4.4; Fig. 4.8; Fig. 4.9; Fig. 4.10), beginning at approximately 5 x 104 bacteria 

celr1 and decreasing steadily to approximately 1 x 104 bacteria cell"1 around days 24-28. This 

relatively stable period coincided with logarithmic-phase of the dinoflagellate in most cases. 

Bacteria per dinoflagellate cell increased sharply at or near the end of the dinoflagellate 

logarithmic-phase in all cultures coinciding with the increased bacterial growth rate (compare Fig. 

4.4; Fig. 4.8; Fig. 4.9; Fig. 4.10). At the termination of the experiment on day 68, bacteria per 

dinoflagellate cell had increased to over 108 bacteria cell"1 in all treatments. 
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Fig. 4.11: Mean bacterial concentration (cells mL"1
) of all treatments and parent GCHUll and 

GCDEOS cultures (± standard error). 
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4.4 DISCUSSION 

The lack of growth in bacteria-free control in this study is similar to chapter 2 and previous 

studies by Bolch et al. (2002); Vincent (2003) and Bolch et al. (2004). This demonstrates the 

necessity of a marine bacterial community for growth of laboratory cultures of G. catenatum. Cyst 

germination studies here, and earlier, included a negative control in which G. catenatum cysts were 

germinated in bacteria-free medium. All bacteria-free treatments showed poor germination, poor 

early growth and long term maintenance of cultures was impossible. 

Interactions existing between bacteria and phytoplankton are believed to form an intrinsic 

component of phytoplankton bloom physiology and ecology (Cole 1982). Evidence suggests that 

such interactions may play an important role in either algal bloom formation or termination 

(Doucette et al. 1998; Azam 1998). Bacterial communities may selectively promote bloom 

formation of specific algal species or may exhibit strong algicidal or detrimental activity (Furuki & 

Kobayashi 1991; Imai et al. 2001; Iwata et al. 2004 ). The distinct and significant differences in 

algal growth dynamics demonstrated by the present work supports these earlier works and the 

concept that the bacterial community can have a significant effect on algal growth dynamics. 

Altering the simplified bacterial communities, not only affected logarithmic growth rate, but also 

the onset and duration of batch culture phases indicating that the composition of the bacterial 

community has a significant influence on dinoflagellate growth and decline. 

Several alcanotrophs or hydrocarbon-utilizing bacteria are known to stimulate algal growth 

in laboratory cultures (Vincent 2003; current study). However, alcanotrophs are found in relatively 

low proportion in cultured and natural communities (Green et al. 2004) which suggests these 

bacteria, though in low proportion, may be important for algal growth. They are also reported to 

restore reproductivity and algal cell tolerance to black oil contamination, stimulating cell growth in 

both Chlorella sp. and Phormidium sp. (Safonova et al. 1999). Roseobacter spp. (a-proteobacteria) 

105 



Bacterial community influence on G. catenatum growth 

are a typically dominant group in natural dinoflagellate blooms and cultures (Alavi et al. 2001; 

Zubkov et al. 2001; Vasquez et al. 2001; Allgaier et al. 2003; Green et al. 2004 ), yet in this study 

Roseobacter sp. DG874 appears associated with only slow growth of G. catenatum cultures while a 

number of other a-proteobacteria cannot support growth in uni-bacterial culture. Dinoflagellates 

and prymnesiophytes produce major quantities of dimethylsulfoniopropionate (DMSP) by 

excretion, grazing or viral lysis that serves as a source of bacterial carbon and sulphur (Keller & 

Bellows 1996). Roseobacter sp. is a predominant degrader ofDMSP and is correlated with DMSP 

producing algal blooms (Gonzalez et al. 1999) which may explain its dominance in G. catenatum 

laboratory cultures. Roseobacter spp. are also reported to exhibit a close physical relationship 

(surface attachment) with dinoflagellates (Gallacher et al. 1997; Alavi et al. 2001; Biegala et al. 

2002). The closer association could be attributed to chemotactic responses of bacteria to DMSP as 

the latter has been identified as a chemoattractant (Faust et al. 1996; Gonzalez et al. 1999; Kiene et 

al. 2000). The increased dinoflagellate death rate associated with cultures containing Roseobacter 

sp. may be due to attachment to G. catenatum cells during stationary phase eventually parasitizing 

or lysing algal cells. Bacteria that lyse blue-green algae by attaching to cell surface have been 

previously described (see Daft & Stewart 1973). A myxobacterium (strain CP-1) that is attracted 

towards algae by chemotaxis, attaches and releases lysozyme, breaking the algal cell wall and 

exposing protoplasmic contents and lysing the algal cell. 

In the present study, bacterial growth pattern across all treatments appear to be remarkably 

consistent. All show an initial phase that appears coupled to (or limited by) dinoflagellate cell 

concentration. The bacteria may well use algal- exuded organic carbon as a primary substrate for 

growth and this initial phase is likely due to the limited exudate available for bacterial growth. 

During exponential growth, phytoplanktons tend to release only a few percent of their 

photosynthetic products directly (Wiebe & Pomeroy 1999) and thus, limited supply of organic 

carbon may limit bacterial growth. Once the dinoflagellate cells enter stationary phase the organic 
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carbon exuded may increase and no longer limit bacterial growth (Paerl 1976; Middelboe et al. 

1995; Azam et al. 1995; Simonet al. 2002). 

In the controlled mixed bacterial G. catenatum cultures, the intermediate patterns of 

growth, such as reduced log-phase growth rate and rapid death rate suggest that the different 

bacterial types can influence the growth pattern even in the presence of other bacteria. For example, 

a reduced log-phase growth rate was a consistent feature of all cultures containing Roseobacter sp., 

as was a steeper decline during death phase. It may be that the bacterial community is dominated by 

one type at particular phases, or that the effects of bacteria on dinoflagellate growth could be cell 

concentration dependent at various stages. Similarly, in the natural environment, the presence or 

dominance of different bacterial types may facilitate bloom formation, maintenance or 

decomposition. 

Mechanisms by which bacteria may influence algal cell growth are not well understood. 

One possible scenario is that bacteria release dissolved compounds that may stimulate and other 

compounds that reduce growth. The production and release of stimulators or inhibitors may be 

regulated by a number of bacterial systems, such as quorum sensing, a mechanism regulating gene 

expression in response to bacterial population concentration. Quorum sensing is modulated through 

chemical signals termed "autoinducers" whose concentration increases with increasing cell 

population (Bassler 1999). Bacteria monitor the threshold concentration of these autoinducers and 

alter gene expression and a diverse array of physiological activities. One family of signaling 

molecules are acetylated homoserine lactones (AHL). These are known to regulate secondary 

metabolite production, antibiotic production, conjugation, toxin synthesis, biofilm formation and 

exoprotease production (Bassler 1999; Eberl1999). It may be possible to detect AHL's in the uni

bacterial G. catenatum cultures, as evidence of altered gene expression that may be inducing the 

production of algicidal compounds. Bacterial secondary metabolites and algicidal compounds are 
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thought to be released during stationary and late log phase (Fukami et al. 1992; Mikhailov & 

Ivanova 1994; Lereclus et al. 2000). 

Marinobacter sp. and Alcanivorax sp. share a common feature of hydrocarbon degrading 

ability and both support G. catenatum cyst germination and growth. Dinoflagellate cells are rich in 

hydrocarbons and fatty acids (Hallegraeff et al. 1991) and hence the ability to utilize these 

hydrocarbons is of benefit to the bacteria. When the algal cells entered declining or stationary 

phase, bacterial growth increased substantially. At this point, increasing bacterial concentration 

may trigger changes to a competitive or parasitic relationship resulting in a decline of algal cell 

numbers. Bacterial growth leading to phytoplankton cell death could also be associated with 

bacteria competing with algal cells for use of nutrients (Wheeler & Kirchmann 1986; Jumars et al. 

1989) or production of algicidal compounds by bacteria (Doucette et al. 1999). Compounds 

excreted by bacteria are believed to either stimulate or inhibit dinoflagellates. For example, a 

glycoprotein produced by Pseudomonas sp. 022 strain stimulated growth of A. glacialis (Riquelme 

1988) and 50-Kda-serine protease from Pseudomonas sp A28 exhibited algicidal properties (Lee et 

al. 2000) particularly during the stationary phase (Mitsutani et al. 2001 ). 

Green et al. (2004) characterized alphaproteobacteria, gamma proteobacteria and 

bacteroidetes to be numerically dominant in G. catenatum cultures. These bacterial representatives 

of G. catenatum have also been found associated with other dinoflagellates. For example, 

Alphaproteobacteria (Rhodobacteraceae) has been found to be a dominant phylotype associated 

with Pfiesteria sp. (Alavi et a!. 2001), Alexandrium sp. and S. trochoidea cultures (Hold et al. 

2001). Similar to G. catenatum, members of Alteromonadaceae (Marinobacter sp. andAlteromonas 

sp.) are reported in various dinoflagellate associations (Alavi et al. 2001; Hold et al. 2001; Seibold 

et al. 2001; Ferrier et al. 2002; Jasti eta!. 2005). 
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These earlier studies indicate that the bacterial communities associated with dinoflagellates 

are broadly similar between species and also between cultures and natural blooms. The model 

communities used in the current study were selected to provide a representative of the dominant and 

sub-dominant types associated with G. catenatum. Despite the simplicity of the three- bacterium 

community, the similarity of the growth dynamics to the mixed bacterial (positive) controls, these 

simple communities appear to approximate the dynamics of cultures grown with more complex 

"natural" bacterial communities. This indicates that the simplified communities used here are a 

potentially useful model system for bacterial-dinoflagellate interaction studies. 

In conclusion, this chapter demonstrated that after germination, growth and batch culture 

dynamics of G. catenatum growth in laboratory culture is strongly influenced by the make up of the 

bacterial community, supporting the idea that bacterial communities can be an important factor 

influencing dinoflagellate and phytoplankton growth dynamics. The simplified experimental 

models used here approximated phytoplankton responses to more complex bacterial communities in 

the natural environment and are beneficial in improving the available knowledge on algal bloom 

dynamics. 
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Chapter 5 

Spatial distribution of growth promoting bacteria in uni

bacterial G. catenatum cultures. 

5.1 INTRODUCTION 

Algal-bacterial interactions have recently received substantial attention as a potential factor 

influencing phytoplankton population growth and decline (Doucette et al. 1998). Phytoplankton 

excretes organic compounds, a major input to the pelagic energy flow or food web (Lancelot 1983) 

and stimulate bacterial growth (Schafer et al. 2002). In the phycosphere, bacteria can be free living, 

attached to the algal cell surface (Kogure et al. 1982; Vaque et al. 1990; Worm & Sondegaard 

1998; Simonet al. 2002) or exist as intracellular algal symbionts (Silva & Franca 1985, Lewis et al. 

2001). The presence of bacteria within dinoflagellates has been reported for decades (Silva 1962; 

Gold & Pollingher 1971; Silva 1978; Lucas 1982). However, only recently has the taxon specificity 

of bacteria and/or spatial association with the dinoflagellate cell been hypothesised to influence 

bacterioplankton interactions, population dynamics and toxicity of these algae (Doucette et al. 

1999). 

Bacteria associated with natural phytoplankton populations are not homogeneously or 

randomly distributed. Alphaproteobacteria dominate the free-living bacterial population while 

members of Cytophaga-Flavobacteria, Gammaproteobacteria and Planctomycetes dominate the 

attached bacterial population(DeLong et al. 1993, Gonzalez & Moran 1997). Several studies 
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have considered the spatial proximity of bacteria and phytoplankton cells as a regulating factor of 

toxin production (Silva 1982; Kodama et al. 1990; Franca et al. 1995; Gallacher et al. 1997). 

Higher intensity of interaction is believed to exist among phytoplankton and attached bacteria than 

with free-living bacteria (Rooney-Varga et al. 2005). Intracellular or attached bacteria have also 

been considered to influence PST production in Alexandrium tamarense (Silva 1982; Kodama et al. 

1990). Hence an understanding of the spatial relationship between bacteria and algal cells may be 

useful in determining or predicting the nature and mechanism of interaction between bacteria and 

algal cells. 

The aim of this chapter is to examine the spatial relationship of bacteria in G. catenatum

bacteria experimental model cultures without disrupting the cells, therefore a non-destructive 

technique was employed. Staining with fluorescent dyes, the most accepted technique (Fry 1990; 

Ward & Johnson 1996), was applied to estimate the number of bacteria attached to G. catenatum 

cells compared to those unattached. A wide range of stains are available currently such as TOT0-1, 

TO-PR0-1, YOY0-1, YO-PR0-1, acriflavine, bisbenzimide (and other Hoechst dyes), erythrosine, 

rhodamine, euchrysine, ethidium bromide, phenolic alanine blue, methylene blue, SYBR Green 

1+11, SYBR gold, PICO Green and Ribo Green (Zimmermann & Reil 1974; Porter & Feig 1980; 

Kepner & Pratt 1994; Yu et al. 1995; Noble & Fuhrman 1998). The most commonly used 

fluorochromes are 4', 6-diamidino-2-phenylindole (DAPI) and acridine orange (AO) (Kepner & 

Pratt 1994). DAPI and AO are both nucleic acid stains used to identify bacteria based on colour, 

size and shape. DAPI is a DNA-specific dye that produces a blue fluorescence when bound to DNA 

and excited with light at wavelength 365 nm. Unbound DAPI and DAPI bound to non-DNA 

material fluoresce yellow. AO binds to both DNA and RNA and, on staining actively growing 

bacteria, fluoresces red-orange due to RNA dominance, while inactive bacteria fluoresce green due 

to DNA dominance (Hobbie et al. 1977). Direct counting with AO is not recommended as (a) 

growth media, cell taxonomy and staining procedure may affect AO colour reaction and (b) 

particles like clay and detritus could also be stained or autofluoresce, causing difficulties in 

distinguishing bacteria and other non-living substances. While DAPI also stains some non-living 
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material, the fluorescent intensity is much higher than AO and background fluorescence is typically 

much lower (Porter & Feig 1980; Kepner & Pratt 1994). 

This chapter employs DAPI-staining coupled with epifluorescence microscopy to examine 

changes in the spatial distribution of bacteria in uni-bacterial G. catenatum model cultures at three 

points in the batch culture cycle. Intracellular or endonuclear bacteria are rare or absent in G. 

catenatum cells (Rees & Hallegraeff 1991 ), therefore we compare only the ratio of unattached to 

attached bacteria (surficial) observed in the uni-bacterial cultures generated in chapter 4. 

5.2 MATERIALS AND METHODS 

Uni-bacterial cultures of G. catenatum from chapter 4 were examined for bacterial 

distribution studies using DAPI staining. A concentrated stock solution of 1 mgmL"1 DAPI was 

prepared with filtered sterile seawater. The stock solution was diluted to 0.1 !-LgmL"1 before use 

(Porter & Feig 1980). Replicate cultures grown with Marinobacter sp., Alcanivorax sp., or 

Roseobacter sp., were sub-cultured regularly in 100 mL flasks to maintain cells in early log-phase. 

Sub-samples (1 mL) of cultures were removed at mid-exponential phase (day 9 for Marinobacter 

sp. and Alcanivorax sp. cultures and day 28 for Roseobacter sp. cultures), stationary phase (day 28 

for Marinobacter sp., Alcanivorax sp. cultures and day 42 for Roseobacter sp. cultures) and death 

phase (day 40 for Marinobacter sp., Alcanivorax sp. cultures and day 52 for Roseobacter sp. 

cultures). For staining, 1 mL of G. catenatum culture was aliquoted to 1.5 mL centrifuge tubes and 

0.1 mL of the diluted DAPI solution was added. The cells were incubated for 15 mins, mounted on 

a glass slide and viewed under epifluorescent microscope at 100 x magnification (Croft et al. 2005). 

Ten randomly selected fields of view that included a G. catenatum cell were examined and the 

number of cells closely associated with the cell surface and unattached bacteria were recorded. 
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5.2.1 Statistical analysis 

Significant changes in proportion of unattached bacteria compared to bacteria attached to 

G. catenatum cell over a batch culture cycle, was determined using a x2 test for independence (P< 

0.05). Data is depicted as bar graphs of uni-bacterial treatments studied during different batch 

culture phases. Normalized residuals were used to determine significant differences between 

observed and expected values at >±2. All analyses were carried out using the statistical analysis 

software SPSS ver. 11.5 (LEAD technologies, Chicago, USA). 

5.3 RESULTS 

All bacterial cells (100%) of all the three bacterial strains, Alcanivorax sp., Marinobacter 

sp. and Roseobacter sp. were observed to be unattached during exponential phase of G. catenatum 

culture (Fig. 5.1-Fig. 5.4) During this phase (days 0-12 for Marinobacter sp. and Alcanivorax sp. 

and days 0-40 Roseobacter sp. cultures) the bacterial cell density near algal cells was very low in 

all treatments ( <5 bacterial cells algal cell"1
). As the cultures reached stationary phase bacterial cell 

numbers increased, but 100% ofthe cells remained unattached to the dinoflagellate cell. Cultures of 

G. catenatum grown with Alcanivorax sp. averaged <15 cells algal cell-1 while cultures with 

Marinobacter sp. averaged <20 cells algal ce11"1 (Fig. 5.1; Fig. 5.2); Roseobacter sp. averaged< 30 

cells algal cel1"1 (Fig. 5.3). 

During death phase more bacteria were associated closely with dinoflagellate cell surface. 

Marinobacter sp., Alcanivorax sp. and Roseobacter sp. cultures all showed bacterial cells closely 

associated with dinoflagellate cell wall. Roseobacter sp. showed a higher proportion (18%) of 

attached bacteria compared to Alcanivorax sp. (7.9%) and Marinobacter sp. (11.6%) during death 

phase of the dinoflagellate culture (Fig. 5.1; Fig. 5.2; Fig. 5.3). A X2 independence test performed 
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for different growth phases in all three bacteria showed a significant increase in bacteria associated 

with the cell surface during death phase in all treatments (P < .006). 
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Fig. 5.1: Mean number of Alcanivorax sp. DG881 cells attached or unattached (free-floating) in 10 

different fields of view (FOV). Arrow indicates where frequency of bacterial cells close to algal cell 

surface (tested by x2 independence) was significantly less (1) than expected. 
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Fig. 5.2: Mean number of Marinobacter sp. DG879 cells attached or unattached (free-floating) in 

10 different fields of view (FOV). Arrows indicate where frequency of bacterial cells close to algal 

cell surface (tested by x2 independence) showed significantly more (t) or less (t) than expected. 
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Fig. 5.3: Mean number of Roseobacter sp. DG874 cells attached or unattached (free-floating) in 10 

different fields of view (FOV). Arrow indicates where frequency of bacterial cells close to algal cell 

surface (tested by X2 independence) was significantly more (t) or less (t) than expected. 
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Fig. 5.4: Epifluorescense microscopy images of DAPI stained G. catentaum cells with Alcanivorax 

sp. (A-C) or Marinobacter sp. (D-F) or Roseobacter sp. (G-1). Culture samples were examined 

during mid exponential phase (day 9 A, D; day 28 G), stationary phase (day 28 B, E; day 42 H) and 

death phase (day 40 C, F; day 52 1). 
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5.4 DISCUSSION 

Previous studies have identified the physiological state of phytoplankton cells to have a 

major influence upon the distribution of bacterial cells associated with algal cells (Bell & Mitchell 

1972; Fogg 1983; Albright et al. 1986; Simon et al. 2002). The results ofthis study also suggest a 

strong correlation between physical state of phytoplankton cells and the distribution of associated 

bacteria. It is well known that algal cells are the major organic substrate for heterotrophic bacteria 

(Paerl 1976; Azam et al. 1995). Bacteria are known to transform phytoplankton derived particulate 

organic carbon (POC) to dissolved organic carbon (DOC) and maintain pelagic carbon turn-over 

(Jensen 1983; Bratbak & Thingstad 1985; Cole et al. 1988; Doucette 1995). 

Bacteria begin to colonize algal cells only when POC and other nutrients are depleted in 

the environment. In this work, the exponential phase of all three algal cultures was dominated by 

free-living bacteria, suggesting that algal exudates of polymeric compounds were readily available 

in the culture medium as a major carbon source for bacterial growth (Middelboe et al. 1995). As the 

phytoplankton cells reached stationary phase, the bacterial distribution changed, with cells 

beginning to closely associate with the dinoflagellate cell surface. Several reports have shown that 

bacteria colonize phytoplankton cells only when the latter becomes more senescent (Vaque et al. 

1989, 1990; Simonet al. 2002). In this study firm bacterial attachment to the algal cell wall was 

evident only during the death phase of algal culture. 

Studies measuring changes in hydrolytic activity of bacteria have reported concentration of 

monosaccharides to decrease as bacterial concentration increases, implying that monomers are used 

for bacterial production during initial phase of blooms. Middleboe et al. (1995) observed a 

significant correlation between free-living bacterial population and chlorophyll-a concentration 

suggesting algal exudates as an important carbon source for free living bacteria. In the above study 

a significant proportion of bacterial attachment was observed only during death phase and late 

senescence. The reduced concentrations of monomers and other depleting nutrients due to algal 
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senescence may have drawn the bacterial cells more closer to algal cells in search of nutrition. 

Bacterial attachment has also been reported during initiation phase and death phase of Skletonema 

costatum and Dunaliella tertiolecta in both laboratory cultures and natural assemblages (Albright et 

al. 1986), possibly due to release of newly synthesised organic nutrients from the phytoplankton 

inducing bacterial attachment during bloom initiation. 

Various types of interactions can be expected in complex associations such as algae and 

bacteria. Earlier studies have reported antibiosis effects that alter both bacterial and algal 

physiology. Antibiotic-like substances synthesised by algae can also strongly affect bacterial 

behaviour (Berland et al. 1972; Cooper et al. 1983). The data here suggests, when the algae are 

growing exponentially, growth inhibitors such as antibiotics may keep the bacteria away from algal 

cells. In S. costatum, fatty acids are believed to have antibiotic effects and are synthesised during 

the middle to late exponential growth phase of algae (Albright et al. 1986). 

The attachment of bacteria to algal cells is clearly influenced by the physical state of the 

algal culture, but little is known of differences among bacterial types. For example, Roseobacter sp. 

which showed slower growth promoting ability in G. catenatum uni-algal cultures (Chapter 4) had 

18% of bacterial cells associated with the algal cell surface. Alcanivorax sp. and Marinobacter sp., 

which supported G. catentaum growth to a greater extent in the current and earlier studies (Vincent 

2003) showed only 7.9 and 11.8% attached cells during death phase. The rapid decline in G. 

catenatum cultures grown with Roseobacter sp. could be well related to algicidal activity by 

Roseobacter sp. Members of the genus Roseobacter are known to have algal-lytic activity when in 

close physical contact with toxic dinoflagellate Alexandrium catenella (Amaro et al. 2005). 

However, the exact mechanisms by which these bacteria can express algal-lytic properties are still 

unknown (Amaro et al. 2005). Algicidal bacteria may show direct cell to cell contact (Imai et al. 

1993) or release extracellular algicidal compounds affecting growth of phytoplankton (Jeong et al. 

2003). Hence the increased activity and closer association of Roseobacter sp. to G. catenatum cells 

may have resulted in the more rapid decline in algal cell numbers in these cultures. 
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This study suggests that in our simplified models, different bacteria exhibit varied level of 

attachment in death phase and the closer association of bacterial cells to the outer membrane of G. 

catenatum cells may have lead to the death of uni-algal cultures. Further studies on enzymatic 

activities and soluble compounds mediating algal cell lysis in cultures is essential to confirm the 

possible use of bacterial control of algal blooms. 
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Chapter 6 

G. catenatum growth - Is genetic variation or bacterial 

composition a dominant factor? 

6.1 INTRODUCTION 

Biotic and abiotic factors influencing algal growth dynamics have been widely studied and 

discussed (Morel & Hudson 1985; Hallegraeff 1993; Doucette eta!. 1999; Thompson 1999; Ferrier 

et a!. 2002). Another factor which may possibly influence phytoplankton growth is genetic 

variation, or the individual genotype of the algal cell. The effect of genotype on algal growth has 

received little attention from ecologists and physiologists studying phytoplankton growth dynamics. 

Most studies imply that there is either no genetic variability in their population, or that it has little 

influence on phytoplankton growth. Only a few studies have investigated variation in dinoflagellate 

reproductive rates due to mixed genotypes (Nelson & Brand 1979; Brand 1981). 

In chapter 4, G. catenatum non-clonal progeny cultures generated with mixed 

bacterial community from parent GCHU11 and GCDE08 (clonal) showed different growth 

patterns compared to their parent cultures (compare Fig. 4.9 (b); Fig. 4.10). The exponential 

growth rates and maximum algal cell concentrations also differed markedly among 
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the parent and progeny cultures regardless of the microbial composition. This suggested that growth 

dynamics was at least partly influenced by differences among strains (i.e. algal genotype) rather 

than the dominant bacterial community. 

This chapter uses the G. catenatum-bacteria experimental model to investigate whether 

algal genotype or bacterial community has a dominant influence on algal growth dynamics. The 

chapter compares the batch culture growth dynamics, exponential growth rate and bacterial 

community composition of two clonal parent cultures (GCHU11 & GCDE08) with non-clonal 

progeny established with bacterial communities from each of the parent cultures. Bacterial 

community composition in the experimental cultures is analysed using the Terminal Restriction 

Fragment Length Polymorphism (t-RFLP) fingerprinting technique. T-RFLP is a powerful 

technique for characterizing complex bacterial communities (Moeseneder et al. 1999). The method 

detects differences in the position of restriction sites among DNA sequences and determines the 

length of fluorescently labeled terminal restriction fragments (TRFs) by high resolution gel 

electrophoresis on an automated DNA sequencer (Avaniss-Aghajani et al. 1994; Clement et al. 

1998). The t-RFLP method has been reported to be more effective and consistent in determining 

microbial communities compared to denaturing gradient gel electrophoresis (DGGE) and 16S 

rRNA gene cloning (Moeseneder et al. 1999; Tiedje et al. 1999; Dunbar et al. 2000). 
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6.2 MATERIALS AND METHODS 

6.2.1 Cyst production 

Gymnodinium catenatum GCHU11 and GCDE08 were grown at 19°C (+/- 2.5°C) in 150 

mL Erlenmeyer flasks in GSe medium (Blackburn et al. 1989) under white fluorescent light of 

90±10 f.!moles m"2 s"1 with 12L:12D photoperiod. Cyst production and surface sterilisation of cysts 

was based on the techniques described in chapter 2 (refer sections 2.2.1; 2.2.2). 

6.2.2 Establishing G. catenatum cultures 

Surface sterile resting cysts were aliquoted into 36 mm petri dishes and 8 f.!m bacterial 

filtrates (Millipore, USA) from GCHU11 and/or GCDE08 were aseptically added to the cysts as 

described in Table 6.1. All controls and treatments were replicated 4 times. Each dish contained 

25-30 resting cysts in 1.9 mL of sterilized GSe medium. Dishes were sealed with Para:film TM and 

incubated at 19°C +/- 2.5°C at a light intensity of 90±10 f.!moles m·2 s·1 with a 12L:12D 

photoperiod. All treatments and controls containing resting cysts were monitored by 

stereomicroscope. Once significant healthy swimming cells were seen, replicates from each 

treatment and the positive control were transferred to sterile 150 mL Erlenmeyer flasks containing 

100 mL of sterile GSe medium. The established 100 mL cultures were transferred to fresh sterile 

150 mL Erlenmeyer flasks with 100 mL of GSe medium. At the same time clonal cultures of G. 

catenatum strains GCHU11 and GCDE08 were transferred for comparison studies. Triplicate 

subsamples were withdrawn from cultures every 4 days to estimate G. catenatum cell concentration 

by cell count using Sedgwick-Rafter counting chamber (Guillard 1973). Bacterial cell concentration 

(CFU mL"1
) in treatments and controls was estimated by serial dilution-plating (Buck & Cleverdon 

1960) onto ZM1 agar. 
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Table 6.1: Description of treatments and controls used in cyst germination studies. All treatments 

and controls (except the media sterility control consisted of 36 mm petri dishes, containing 25-30 

surface-sterilized G. catenatum resting cysts in 1.9 mL of Gse medium with the addition of the 

treatment described below. All treatments and the positive control were replicated 4 times. 

Treatments Sterile G. catenatum resting cysts plus 

Positive 200 f..ll of 8 f..lm filtrate from mid-log phase cultures of GCDE08 
control and GCHUll (non- clonal) 

Negative Sterile Gse medium 
control 

Cysts+ HUll 200 f..ll of 8 f..lm filtrate from mid-log phase cultures of GCHUll 
(non- clonal) 

Cysts+ DE08 200 f..ll of 8 f..lm filtrate from mid-log phase cultures of GCDE08 
(non- clonal) 

GCHUll 75 mL of log phase, GCHUll (clonal) grown in Gse 

GCDE08 75 mL of log phase, GCDE08 (clonal) grown in Gse 
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6.2.3 DNA extraction and PCR amplification 

Bacterial genomic DNA from mid-log phase G. catenatum cultures were extracted using a 

cetylmethylammonium bromide purification (CTAB) method (Ausubel et al. 1999) (Appendix 3). 

For t-RFLP analysis, primers 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 518R (5'

ATTACCGCGGGCT -GCTGG-3') (Weisburg et al. 1991) were used to amplify an approximately 

500 bp region of the SSU-rDNA from the bacterial community of experimental cultures. The 

primers were synthesized and labeled with WellRED™ cyanine-based fluorescent dyes D3 (primer 

27F) and D4 (primer 518R) by Proligo, Australia Pty Ltd. The PCR was performed using a MJ 

Research PTC-200 Thermal Cycler (MJ Research, USA). Reactions were carried out in a 50 ~-tl 

reaction volumes containing 0.2 mM of each primer, 1.25 U of Taq polymerase (BioTaq, Bioline, 

UK), 3 mM MgC12, 200 mM of each dNTP and Bioline ammonium PCR buffer (160 mM 

(NH4) 2S04, 670 mM Tris HCl (pH 8.8), 0.1% Tween -20). PCR amplification included: an initial 

denaturation at 96°C for 5 mins, followed by 30 cycles of: denaturation at 95 °C for 15 s, annealing 

at 49°C for 30 s, extension at 72°C for 1 min; and a final extension at 72°C for 5 mins. Amplified 

products were purified using Montage-PCR ultrafilters (Millipore, USA) using the manufacturer 

protocols and the DNA resuspended in MilliQ water. The DNA concentration was determined 

using a Turner TBS 380 DNA fluorometer (Turner Designs, USA) according to standard protocols. 

135 



Genotype versus bacterial community influence 

6.2.4 Restriction digestion and t-RFLP analysis 

Restriction enzymes for t-RFLP analysis were selected to discriminate the dominant 

components of the microbial community of GCDE08 and GCHUll (described by Green et al. 

2004). Both communities are dominated by Roseobacter/Rhodobacter genotypes but with different 

SSU-rDNA genotypes dominating each culture. From comparison of the dominant SSU-rDNA 

sequences in each culture, the enzymes Hhal and Bfal were selected due to the differing restriction 

sites between the representative Roseobacter/Rhodobacter species. Approximately 100 ng of the 

purified PCR amplicons were digested in a total volume of 20 f-ll for 4 hrs with restriction enzymes 

Hhal (20 U), Bfai (5 U), (New England Biolabs Inc, Massachusetts, USA) according to 

manufacturer instructions. Following digestion, the enzymes were heat-inactivated according to 

manufacturer recommendations. For t-RFLP analysis, fluorescently labeled fragments were 

separated on a CEQ™ 8000 genetic analysis system (Beckman Coulter™, Fullerton, CA, USA), by 

adding 25 f-ll of Beckman Sample Loading Solution (SLS) and 0.25 f-ll Beckman 'WellRED' size 

standard (600 bp) (Beckman Coulter, Fullerton, CA, USA) to 1 f-ll of digested product. The 

fragment patterns were visualized and sized by comparison with size-standards using Beckman

Coulter CEQ™ 8000 genetic analysis software (version 8.0) (Beckman Coulter, Fullerton, CA, 

USA). 
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6.2.5 Phylogenetic analysis 

The TRF size matrices generated by the genetic analysis software were examined and 

scored manually to produce presence/absence matrix of homologous fragments from both forward

and reverse-labeled t-RFLP traces for each replicate of all culture treatments. Fragments differing 

by < 1 bp in size were binned by manual inspection, and by reference to the electropherograms, and 

recorded as present (1) or absent (0) for each fragment in each sample. The matrix was then 

exported to the phylogenetics software program PAUP 4.0* (version 4.0b 10, Swofford 1998) for 

further analysis. The presence/absence matrix (Appendix 7) was used to calculate a pairwise 

distance matrix among all treatments and replicates using the mean distance metric of PAUP 4.0*. 

The mean distances were subjected to unweighted pair-group mean-average (UPGMA) cluster 

analysis and support for clusters assessed by performing 1000 bootstrap randomizations of the 

dataset. 

6.2.6 Statistical analysis 

Dinoflagellate growth rates were calculated according to the methods of Guillard (1973) 

and expressed as instantaneous growth rate (days-1
). Growth rates and maximum algal cell numbers 

were analysed using one-way ANOV A with planned contrasts to test for significant differences 

(Table 6.2). All analyses were carried out using the statistical analysis software SPSS ver. 11.5 

(LEAD technologies, Chicago, USA). 
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Table 6.2: Description of planned contrasts of non-clonal progeny cultures grown with GCHUll or 

GCDE08 bacterial community, compared with parent GCHUll & GCDE08 cultures. Possible 

outcomes and interpretation are described. 

Planned Contrast Possible Outcomes Interpretation 

Cysts+ HUll bacteria Significant difference in growth Supports hypothesis that 
Versus rates or maximum algal cell genotype is the dominant 
Clonal HUl 1 culture numbers (P<=O.OS) influence on growth rate 

No difference in growth rate or Supports hypothesis that 
maximum algal cell numbers bacterial community is 
(P>O.OS) the dominant influence 

on growth rate 
Cysts+ DE08 bacteria Significant difference in growth Supports hypothesis that 
Versus rates or maximum algal cell genotype is the dominant 
Clonal DE08 culture numbers (P<=O.OS) influence on growth rate 

No difference in growth rate or Supports hypothesis that 
maximum algal cell numbers bacterial community is 
(P>O.OS) the dominant influence 

on growth rate 
Cysts+ HUll bacteria Significant difference in growth Supports hypothesis that 
Versus rates or maximum algal cell bacterial community is 
Cysts+ DE08 bacteria numbers (P<=O.OS) the dominant influence 

on growth rate 
No difference in growth rate or Supports hypothesis that 
maximum algal cell numbers genotype is the dominant 
(P>O.OS) influence on growth rate 

Cysts+ HUll bacteria Significant difference in growth Supports hypothesis that 
Versus rates or maximum algal cell bacterial community is 
Cysts+ HU11/DE08 bacteria numbers (P<=O.OS) the dominant influence 

on growth rate 
No difference in growth rate or Supports hypothesis that 
maximum algal cell numbers genotype is the dominant 
(P>O.OS) influence on growth rate 

Cysts+ DE08 bacteria Significant difference in growth Supports hypothesis that 
Versus rates or maximum algal cell bacterial community is 
Cysts+ HU11/DE08 bacteria numbers (P<=O.OS) the dominant influence 

on growth rate 
No difference in growth rate or Supports hypothesis that 
maximum algal cell numbers genotype is the dominant 
(P>O.OS) influence on growth rate 
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6.3 RESULTS 

Cyst germination and cells moving/germinant data is not included in this study as there was 

no significant difference seen among non clonal cultures, similar to results obtained in chapter 2 

and chapter 4 and are not presented here. Negative control (cyst germinated in the absence of 

bacteria) showed poor germination and survival similar to earlier chapters (2 & 4). 

6.3.1 Algal growth dynamics in clonal and non clonal G. catenatum cultures 

Clonal and non-clonal cultures of G. catenatum showed growth curves similar to patterns 

obtained in chapter 4. Growth curves obtained from all non-clonal progeny cultures were more 

similar to each other and less similar to either clonal parent culture. Both GCHU11 and GCDE08 

clonal cultures showed a short exponential phase, entering stationary phase on day 12, while non

clonal cultures showed an extended growth phase and more gradual declining growth phase, with 

some cultures not reaching stationary phase until day 20 (Fig. 6.1). The onset of death phase (day 

44) was similar for all cultures. 

Exponential growth rates and maximum algal cell concentrations varied among clonal and 

non-clonal cultures. Growth rate of non-clonal cultures ranged from 0.07- 0.09 day"1 while clonal 

GCHU11 and GCDE08 cultures showed 0.11 day"1 and 0.06 day"1 respectively (Fig. 6.2). 

Maximum dinoflagellate cell concentrations in non-clonal cultures of G. catenatum ranged from 4.8 

- 8.4 x 103 cells mL"1 while clonal GCHU11 and GCDE08 cultures showed 9.4 x 103 cells mL"1 and 

3.5 x 103 cells mL"1 respectively (Fig. 6.3). Statistical support for significant differences among 

clonal and non-clonal cultures are discussed in Table 6.3 (growth rate) and Table 6.4 (maximum 

algal cell concentrations). 
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Fig. 6.1: Algal growth dynamics from replicate (4) G. catenatum cultures (non-clonal cultures) 

grown with bacterial communities from non-axenic parent cultures, parent GCHUll and GCDE08 

(clonal cultures). 
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Fig. 6.2: Exponential growth rates (day"1
) from replicate (4) G. catenatum cultures (non-clonal 

cultures) grown with bacterial communities from non-axenic parent cultures and parent GCHUll 

and GCDE08 (clonal cultures). Superscripts indicate significant differences (P= < 0.05) 
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Table 6.3: Interpretation of ANOVA with planned contrasts comparing exponential growth rates of 

non-clonal progeny cultures with clonal parent GCHUll and GCDE08 cultures. 

Planned Contrast Outcome Interpretation 

Cysts+ HUll bacteria Significantly different growth Supports hypothesis that genotype 
Versus rates (t= -3.537; df= 4; P= has a dominant influence on 
Clonal HUll culture 0.003) growth rate 

Cysts+ DE08 bacteria Significantly different growth Supports hypothesis that genotype 
Versus rates (t= 3.405; df= 4, 15; P= has a dominant influence on 
Clonal DE08 culture 0.004) growth rate 

Cysts+ HU 11 bacteria No difference in growth rate Supports hypothesis that genotype 
Versus (t= -1.393; df= 4; P= 0.184) has a dominant influence on 
Cysts+ DE08 bacteria growth rate 

Cysts+ HU 11 bacteria No difference in growth rate Supports hypothesis that genotype 
Versus (t= 2.032; df= 4; P= 0.060) has a dominant influence on 
Cysts+ HU11/DE08 growth rate 
bacteria 
Cysts+ DE08 bacteria No difference in growth rates Supports hypothesis that genotype 
Versus (t= 3.425; df= 4; P= 0.054) has a dominant influence on 
Cysts+ HU11/DE08 growth rate 
bacteria 
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Fig. 6.3: Maximum algal cell concentration (cells mL"1
) in replicate G. catenatum cultures (non

clonal cultures) grown with bacterial communities from non-clonal progeny cultures and parent 

GCHUll and GCDE08 (clonal cultures). Superscripts indicate significant differences (P= < 0.05). 
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Table 6.4: Interpretation of ANOV A with planned contrast comparing maximum algal cell 

concentration of non-clonal progeny with that of clonal parent GCHUll and GCDE08 cultures. 

PlannedContrast Outcome Interpretation 

Cysts+ HUll bacteria Significant difference in Supports hypothesis that 
Versus maximum algal cell numbers genotype has a dominant 
Clonal HUll culture influence on algal cell numbers 

(t= -3.829; df= 4; P= 0.002) 
Cysts+ DE08 bacteria Significant difference in Supports hypothesis that 
Versus maximum algal cell numbers genotype has a dominant 
Clonal DE08 culture influence on algal cell numbers 

(t= 11.142; df= 4; P= 0.000) 
Cysts+ HUll bacteria No significant difference in Supports hypothesis that 
Versus maximum algal cell numbers genotype has a dominant 
Cysts+ DE08 bacteria influence on algal cell numbers 

(t= -1.457; df= 4; P= 0.166) 
Cysts+ HUll bacteria Significant difference in Supports hypothesis that 
Versus maximum algal cell numbers bacterial community has a 
Cysts+ HU11/DE08 dominant influence on algal cell 
bacteria (t= 6.583; df= 4; P= 0.000) numbers 

Cysts+ DE08 bacteria Significant difference in Supports hypothesis that 
Versus maximum algal cell numbers bacterial community has a 
Cysts+ HU11/DE08 dominant influence on algal cell 
bacteria (t= 8.040; df= 4; P= 0.000) numbers 
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6.3.2 Bacterial growth dynamics in clonal and non-clonal G. catenatum cultures 

Bacterial growth dynamics followed a similar pattern across clonal and non-clonal 

treatments. Progeny, non-clonal HUll and DE08 cultures and their parent, clonal GCHUll and 

GCDE08 cultures had > 10 7 cells mL"1 on day 0 and reached > 10 11 cells mL-1 on day 68. In 

contrast, progeny HUll/ DE08 mixed bacterial culture alone started with a higher bacterial cell 

concentration (>10 8 cells mL-1
) on day 0 and reached >10 11 cells mL"1 on day 68 (Fig. 6.4) 
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Fig. 6.4: Bacterial growth dynamics from replicate G. catenatum cultures (non-clonal progeny 

cultures) grown with bacterial communities from non-axenic parent cultures, parent GCHUll and 

GCDE08 (clonal cultures)(± standard error). 
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6.3.3 t-RFLP analysis of bacterial communities 

The t-RFLP fragment electropherograms from replicate culture treatments were highly 

reproducible. Representative examples of TRF patterns obtained from parent GCHU11, GCDE08 

and progeny DE08 cultures are shown in Fig. 6.5; Fig. 6.6 and Fig. 6.7. One replicate ofthe cysts 

+ HU11/DE08 bacteria treatment produced a weak and noisy TRF trace for both the forward and 

reverse labeled TRFs. Scoring the fragments was difficult and unreliable therefore this replicate 

was not included in the cluster analysis. 

T-RFLP profiles from clonal, GCHUll and GCDE08 cultures showed that 16S rDNA 

patterns varied markedly between the parent cultures. Hhal digestion of GCHU11 (Fig. 6.5) 

cultures showed TRF's at 58, 60, 67, 69, 71, 79, 80, 84, 113, 115, 146, 192, 230 (bp) whereas 

GCDE08 cultures showed TRF's at 77, 118, 121, 137, 141, 151, 182, 210 (bp) (Fig. 6.6). Similarly 

Bfal digestion of GCHU11 cultures showed TRF's at 72, 73, 74, 81, 82, 112, 131, 143 (bp) while 

GCDE08 cultures showed TRF's at 70, 77, 126, 128, 133, 134, 155, 162 (bp) 
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Fig. 6.5: t-RFLP traces from replicate cultures of GCHUll. A and B = Forward primer labeled 

(27F, dye D3) fragment traces from two independent replicate cultures. C and D =Reverse primer 

labeled (518R, dye D4) fragment traces from two independent replicate cultures. The PCR 

amplified 16S rRNA genes were digested with restriction enzyme Hhal and fluorescent labeled 

fragments were separated on CEQ ™ 8000 genetic analysis system. Fragment size in base pairs is 

shown on the x-axis. 
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Fig. 6.6: t-RFLP traces from replicate cultures of GCDE08. A and B = Forward primer labeled 

(27F, dye D3) fragment traces from two independent replicate cultures. C and D =Reverse primer 

labeled ( 518R, dye D4) fragment traces from two independent replicate cultures. The PCR 

amplified 16S rRNA genes were digested with restriction enzyme Hhal and fluorescent labeled 

fragments were separated on CEQ ™ 8000 genetic analysis system. Fragment size in base pairs is 

shown on the x-axis. 
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Comparison of the t-RFLP patterns from non-clonal progeny cultures and parent cultures 

indicated that the non-clonal progeny cultures were more similar to each other than to either clonal 

parent culture. Non-clonal progeny treatments that received a GCHU11 bacterial community shared 

TRF's with treatments receiving the GCDE08 bacterial community and treatments receiving a mix 

of GCHU11 and GCDE08 bacteria, but TRF's from these treatments differed markedly from those 

of the parent cultures GCHU11 and GCDE08. For example, after cleavage with Hhal, all progeny 

cultures showed TRF's of 63, 79, 80, 83, 89, 91, 94, 97, 133, 146 (bp) that were absent from the 

parent cultures from which the bacterial community was substituted. Parent cultures and progeny 

cultures shared very few common TRF's (79, 80, 145 bp) with the majority of the TRF's in parent 

cultures being unique (67, 69, 71, 77, 112, 113, 118, 120 bp) and not present in any ofthe progeny 

cultures. Similarly, digestion with Bfal also showed that progeny cultures shared more TRF's in 

common with each other than with either of the clonal parent cultures. For example, fragments 61, 

67, 71, 77, 79, 117, 118, 119, 133, 134, 144, 174, 180 (bp) were common among progeny 

treatments but absent in both clonal parent cultures. Parent cultures possessed unique fragments of 

73, 121, 126, 128, 132, 140, 143, 155, 156, 162, 201 (bp) and only 4 TRF's in common with 

progeny cultures (113, 133, 134, 145, 146 bp). 

The t-RFLP approach using restriction enzymes Hhal and Bfal both showed 1.8 to 2.1 

times the number of TRF's from the non-clonal progeny cultures compared to the non-clonal parent 

cultures. Hhal cleaved 16S rDNA from non-clonal progeny cultures on an average showed 44.6 

TRF's, while Bfai digested 16S rDNA from progeny cultures averaged 43.7 TRF's. Clonal parent 

cultures GCHU11 and GCDE08 showed an average of 21.7 TRF's on digestion with Hhal and 24.5 

TRF's on digestion with Bfal. 
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Fig. 6.7: t-RFLP traces from replicate progeny cultures of cysts + DE08 bacteria. A and B = 

Forward primer labeled (27F, dye D3) fragment traces from two independent replicate cultures. C 

and D = Reverse primer labeled (518R, dye D4) fragment traces from two independent replicate 

cultures. The PCR amplified 16S rRNA genes were digested with restriction enzyme Hhal and 

fluorescent labeled fragments were separated on CEQ ™ 8000 genetic analysis system. Fragment 

size in base pairs is shown on the x-axis. 
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The UPGMA cluster analysis (Fig. 6.8) of t-RFLP data clearly grouped the bacterial 

community of all progeny cultures together in one cluster. The replicate parent cultures are present 

as outliers to this main cluster. The consistency of t-RFLP patterns among replicate cultures is 

evident by the clustering of replicates together in the analysis. 
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Fig. 6.8: UPGMA cluster analysis constructed from TRF presence/absence matrix of Bfal and Hhal 

cleaved 16SrDNA amplicons from non-clonal progeny cultures grown with either GCDE08 or 

GCHUll bacterial communities, and clonal parent GCHUll and GCDE08 cultures. The tree was 

constructed from PAUP mean distances and support for clusters assessed by bootstrap re-sampling 

with 1000 replicates. 
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6.4 DISCUSSION 

This study is the first to systematically compare the influence of algal genotype with the 

influence of the bacterial community on algal cell growth dynamics. The working hypothesis for 

the chapter was that bacteria were the dominant source contributing markedly different batch 

culture dynamics between the non-clonal progeny cultures and parent clonal cultures GCHUll and 

GCDEOS. Using the G. catenatum- bacteria model, the experimental aim was to compare and 

generate a consistent genetic background composed of a mix of non-clonal progeny against which it 

would be possible to assess the influence of bacterial communities substituted from either or both 

the clonal parent cultures. If the bacterial community has a dominant influence, then the growth 

dynamics of the non-clonal progeny cultures receiving a GCDE08 bacterial community 

( cysts+DEOS bacteria) should closely match that of the clonal GCDEOS culture. Similarly growth 

dynamics of progeny cultures receiving GCHUll bacteria should match that of the clonal GCHUll 

culture. Assuming that the effect of the bacterial community on growth is approximately additive 

(as suggested in Chapter 4), then treatments receiving a mix of GCDE08 and GCHUll bacteria 

might reasonably be expected to show an intermediate growth pattern. 

In this experiment, the mixed-progeny cultures showed exponential growth rates and 

maximum cell densities intermediate between those of the clonal parents. While this effect is 

consistent with either genetic or bacterial influences on growth dynamics, there were notable 

exceptions among the maximum cell concentrations. All non-clonal progeny cultures exceeded the 

low maximum cell concentrations attained by clonal HUll cultures despite the bacterial 

community added to the germinating cysts at the beginning of the experiment. 

One possible explanation for the similarity of growth dynamics among the non-clonal 

progeny is that these cultures are effectively populations of multiple related genotypes; equivalent 

to a collection of "brother/sisters" for a single set of parents. Under the culture conditions used 

here, this "population" may be subject to selection of individuals, making the non-clonal cultures 
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more able to adapt to culture conditions than the single clonal parent cultures GCDEOS and 

GCHUll (Bulmer 1980). In effect, the overall growth response approximates the average response 

of the population whereas the parent cultures are constrained and potentially extreme response of 

single individuals under the conditions used in the experiment. 

The planned contrast analysis of the batch culture dynamics presented here showed that 

non-clonal progeny cultures exhibited growth patterns more similar to each other than either clonal 

parent cultures regardless of the bacterial community added to the resting cysts prior to 

germination. Given the working hypothesis, this supports the hypothesis that dinoflagellate cell 

genotype is the dominant factor responsible for the different growth dynamics of the G. catenatum 

strains GCDEOS and GCHUll used in this experiment. 

The t-RFLP analysis of non-clonal progeny cultures provides a means to compare the 

bacterial community composition established in each of the treatments. This approach proved to be 

a highly discriminatory and powerful tool that could clearly discriminate the bacterial communities 

of both clonal parent cultures and establish whether the same or similar communities were 

established in the non-clonal progeny. The t-RFLP analysis clearly showed that, despite the 

addition of either GCHUll or GCDEOS or a mixture at the time of germination, the community 

composition of the established non-clonal progeny cultures were consistently more similar to each 

other than either parent culture (see Fig. 6.8), and also more complex (more t-RFLP fragments) 

than either parent culture. The similarity of growth patterns among the non-clonal progeny can now 

be seen largely as a function of the bacterial community associated with each culture. This finding 

supports earlier work presented in this thesis (Chapters 2-4), that the bacterial community has a 

major influence on the growth dynamics of G. catenatum. However, this finding forces a 

reinterpretation of the algal cell growth dynamics data. 

The more complex TRF patterns obtained from the bacterial community associated with all 

the non-clonal progeny cultures indicates a more diverse bacterial composition in non-clonal 
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cultures than in clonal parent cultures. This suggests that a low level bacterial community may have 

survived the initial cyst-sterilisation when progeny cultures were originally established. In this 

experiment, sub-samples of the sterile cyst suspensions were routinely plated onto marine agar at 

establishment and no bacteria were detected at this time, indicating that the external bacterial 

community had been removed by surface-sterilisation. However, it is possible that bacteria have 

survived treatment within the resting cyst and contributed to the community of bacteria established 

by addition of GCDE08 and/or GCHU11 bacteria. As additionally as much as 95% of marine 

bacterial strains are considered to be uncultivable (Schut et al. 1993), it is possible that internal or 

external bacteria that survived the sterilization process were not detected by growth on marine agar. 

The establishment of a more diverse bacterial community in progeny cultures may make a 

wider range of bacterial metabolites readily available for algal growth. Grossart & Simon (2007) 

reported algal growth to greatly depend on the presence of bacterial communities. Bacterial 

exudates such as re-mineralised nutrients (Golterman 1972), vitamins (Croft et al. 2005), 

phospholipids (Kimura & Ishida 1989), glycopeptides (Riquelme et al. 1988) and other growth 

factors are well-known to stimulate algal growth. Bacterial community associated with 

phytoplankton and diatoms species have been documented by various authors using phylogenetic 

studies (Schafer et al. 2002; Green et al. 2004; Jasti et al. 2005). All these studies have revealed 

different phytoplankton species to have highly specific associations with different bacterial species. 

For example, Jasti et al. (2005) reported bacterial community to differ among non-toxic 

phytoplankton and Alexandrium sp. cultures. Accordingly, S. costatum, Thalassiosira gravida, N 

granulate, Prorocentrum minimum shared no bacterial isolates with Alexandrium sp. cultures. 

The establishment of remarkably similar bacterial communities, in the progeny cultures (as 

evidenced by the t-RFLP data), regardless of which parent community was added at germination, is 

surprising and difficult to explain. One explanation is that the dinoflagellate genotype may play a 

role in selecting the bacterial community. Microalgae exude a wide range of complex organic 

carbon molecules during growth (lipids, sugars, polysacharrides, fatty acids, sterols etc) that are 
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utilised by the marine bacterial community (Bell & Mitchell 1972). For example, G. catenatum is 

rich in fatty acids, sterols, lipids and oils (Hallegraeff et a!. 1991) and may select or favour growth 

of bacteria capable of utilizing complex carbohydrates and hydrocarbons (e.g. Marinobacter sp. and 

Alcanivorax sp.; Green et a!. 2004). On the other hand algae may also require specific bacterial 

products and hence may only support the growth of bacteria releasing such products. For e.g 

vitamins (Haines & Guillard 1974), chelated iron from siderophores (Soria-Dengg eta!. 2001) or 

cytokinins (Maruyama et al. 1986). 

The differing bacterial communities associated with different strains of microalgae have 

traditionally been considered a combination of artifacts of isolation (e.g. the random subset of co

contaminants present after isolation) and selection by the growth medium and culture environment 

(Jasti et al. 2005). However, it is also possible that different dinoflagellate genotypes may express 

some metabolic activities and pathways at different levels, leading to subtle differences in the 

mixture of metabolic by products exuded into the growth medium. This may provide substrate

selective conditions for the bacterial growth, leading to establishment of different bacterial 

communities with different dinoflagellate genotypes. In this experiment, the mixed genotype 

progeny represent an "average" of the two parent genotypes. A similar "average" organic carbon 

profile exuded into the growth medium by these cultures, compared to the more divergent single 

genotype cultures of the parents, provides a substrate selection mechanism by which different 

dinoflagellate genotypes could select different bacterial communities. 

In conclusion, this chapter reinforces the importance of the bacterial community composition 

as a major factor influencing dinoflagellate growth dynamics in laboratory cultures. The data 

presented, indicate that variation in growth dynamics among different G. catenatum strains is likely 

a result of interaction with or modulation by the bacterial community. The potential interaction of 

genotypic selection of bacterial communities provides further evidence of the dynamic complexity 

of interactions among phytoplankton cells and the bacterial community. 
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Chapter 7 

Summary and conclusion 

Global expansion, frequent episodes and economic impacts of harmful algal blooms 

demand deeper knowledge and understanding of factors influencing algal growth (Landsberg 

2002). Both biotic and abiotic factors are believed to control HAB' s (Barlaan et al. 2007). Among 

biotic factors bacterial interactions with algae have been widely cited as a potential factor 

controlling phytoplankton community. 

Studies of interactions among algae and bacteria are currently hampered by the 

complexity and diversity of the bacterial community associated with algal cells and 

populations. The simplified Gymnodinium catenatum experimental model of bacteria

phytoplankton interactions removes this complexity and simplifies studies on influence of specific 

bacteria on growth of the dinoflagellate. The range of experiments presented in Chapters 2 to 6 

demonstrate the flexibility of the experimental model as a tool to address specific hypotheses 

relating to the interaction of Gymnodinium catenatum with marine bacteria. Using the model, this 

thesis has shown that marine bacteria are essential to the growth of the dinoflagellate and that the 

compositon of the bacterial community has a direct and significant effect on the growth rate and 

dynamics of Gymnodinium catenatum in laboratory cultures. Furthermore, the bacterial community 

appears a more important factor than any variation associated with the individuals' genotype of the 
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dinoflagellate. There is ample evidence that similar interactions can influence natural dinoflagellate 

(and other algal) populations (Keshtacher-Liebson et al. 1995; Doucette et al. 1998; Kim et al. 

1998; Hold et al. 2001), thus providing a mechanism driving the observed coupling of algal and 

bacterial populations in the world's oceans. The specific outcomes and implications of each 

experimental chapter are summarised in the following sections. 

7.1 G. catenatum requires bacteria for growth 

Although bacterial interactions with algae are believed to affect phytoplankton growth, 

studies have reported removal of bacteria with antibiotics to have less or no effect on growth of 

dinoflagellate cultures (Ho et al. 2006; Uribe & Espejo 2003). To investigate whether the presence 

of bacterial community is essential for growth of G. catenatum, surface-sterile G. catenatum cysts 

were germinated in the presence of antibiotic sensitive or resistant Brachybacterium sp. or 

Marinobacter sp. treated with antibiotics and examined both bacterial and algal growth dynamics. 

The removal of antibiotic-sensitive bacteria with antibiotics significantly reduced G. catenatum cell 

numbers while cultures grown with antibiotic resistant bacteria were unaffected by antibiotics, 

demonstrating that the reduction in G. catenatum was not due to antibiotic toxicity. The results 

confirmed that G. catenatum has an obligatory requirement for marine bacteria to support growth in 

the laboratory. 

7.2 Breakdown of bacteria- dinoflagellate interaction in G. catenatum cultures 

Bacterial influence controlling phytoplankton dynamics is well-known (Mouget et al. 1995; 

Sakami et al. 1999; Ho et al. 2006; Grossart & Simon 2007), while cell death or mortality in algal 

cultures still needs more attention (Sheldrake 1974). Rapid decline in algal cell numbers does occur 

in a healthy environment where growth promoting bacteria and other nutrients are available, 

however not many studies have drawn attention towards exploring such incidents (Fogg & Thake 

1987; Usup & Azanza 1988; Heiskanen 1993). G. catenatum cultures grown with Brachybacterium 
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sp. or Marinobacter sp. showed reduced dinoflagellate cell concentrations after several months of 

sub-culturing suggesting that the bacterial-dinoflagellate relationship may have degraded over time. 

To test this hypothesis, "failing bacteria" were replaced with "fresh bacteria" and subsequent 

growth was studied. The addition of "fresh bacteria" appeared to stimulate algal growth initially, 

however, the "rescued" cultures scaled up to 1 OOml volumes gradually declined even in the 

presence of fresh bacteria, suggesting a gradual loss in algal growth stimulating activity by the 

bacteria over several months. 

7.3 Bacterial community composition influences G. catenatum growth dynamics. 

Interactions between algae and bacteria are highly specific and stimulation or inhibition of 

algal growth may vary depending on the associated bacterial taxa (Doucette eta!. 1998). This study 

also showed bacteria isolated from G. catenatum cultures to have varied responses on the growth of 

the phytoplankton. Marinobacter sp. DG879, Alcanivorax sp. DG881 and Roseobacter sp. DG874 

showed distinct differences in algal growth patterns with varying onset and duration of growth 

phases. Marinobacter sp. and Alcanivorax sp. supported growth to a greater extent comparing 

Roseobacter sp. Roseobacter sp. also caused a rapid decline in algal cell numbers. These results, 

indicate that bacterial community composition has a strong influence on G. catenatum growth. The 

growth dynamics seen in cultures grown with "synthetic communities" composed of three bacterial 

types were similar to that of cultlures grown with a typical mixed bacterial community, indicating 

that the simplified experimental model provides a good approximation of bacteria and 

phytoplankton interactions of more complex bacterial communities associated with natural 

populations. 

7.4 The physical association of bacteria to G. catenatum cells. 

Chemotactic responses of bacteria to algal exudates may draw bacteria closer to algal cells 

resulting in strong physical attachment to external membranes of algal cells (Bell & Mitchel11972; 

Kogure et a!. 1982; Albright et a!. 1986). Ageing algal cultures generally release higher amount of 
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exudates (Fogg 1983) which suggests bacteria may become closely attached during stationary or 

death phase. This study supports the above suggestions as G. catenatum cultures showed bacterial 

attachment only during the death phase of algal cultures. Roseobacter sp. showed higher percentage 

of attachment to G. catenatum cells compared to Alcanivorax sp. or Marinobacter sp.. The rapid 

decline of G. catenatum cell concentration during death phase when grown with Roseobacter sp. 

(Chapter 4) may be related to direct algicidal attack by Roseobacter sp., perhaps through changes in 

bacterial metabolism induced by quorum-sensing. 

7.5 G. catenatum growth: Is genotype or bacterial composition a dominant factor? 

This thesis and earlier studies have established that algal growth is significantly influenced 

by the associated bacterial community. However, whether this influence is more or less important 

than genotypic variation is not clear. The G. catenatum experimental model was used in this chapter 

to examine the growth response of equivalent non-clonal cultures established from resting cysts. 

Cysts germinated in the presence of bacterial community from either of the parent cultures showed 

growth patterns more similar to each other than to either parent clonal culture, regardless of the 

bacterial community added during culture establishment. While the culture dynamics suggested 

genotype as the dominant influence, a molecular analysis of the bacterial communities of the 

cultures (using tRFLP) showed that the bacterial communities established with the non-clonal 

progeny cultures were more similar to each other than to either parent culture. The combined data 

supports the hypothesis that the bacterial community is the primary influence on culture dynamics 

and growth. The establishment of similar communities in progeny cultures suggests that the algal 

genotype (or mix of genotypes) may select for particular bacterial community structure possibly 

through subtle differences in metabolism that affect the type and amount of of complex carbon 

released by the dinoflagellate cells. 
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7.6 Key aspects for future research 

To improve the existing knowledge regarding bacterial effects on harmful algal species the 

following key aspects of the complex interaction needs to be addressed. 

1. Using simplified experimental models, investigate whether the requirement for marine 

bacteria is widespread among dinoflagellates. 

Currently, only a few dinoflagellates have been reported to have an obligate requirement 

for marine bacteria. The current model could be applied for other dinoflagellate species to 

identify similar requirement for marine bacteria. This will widen existing knowledge on 

mechanism of bacteria-algae interactions. Further, it would be interesting to determine 

whether dinoflagellate requirement for bacteria is linked to the bio-availability of micro

nutrients such as iron, other trace metals, or vitamins. With such models it is easier to 

control and manipulate both physical and biological factors influencing dinoflagellate 

growth in laboratory cultures than in natural environment reducing the complexity 

associated with similar studies. 

2. Other bacterial types associated with G. catenatum cultures need to be tested for growth 

stimulating activity. 

This study has established experimental models based on few bacterial types that have 

already been identified to influence G. catenatum growth. However, other bacteria 

associated with G. catenatum should be studied for growth promoting activity to determine 

specific characteristic features of bacteria enhancing growth. This study also identified 

Brachybacterium sp. to support growth which has not been reported in association with 

algal cells till date. Further studies could include Brachybacterium sp. as a possible growth 

supporting bacteria and identify biochemical factors enhancing interaction. Further this 
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model can also be developed to include toxicity studies. 

3. Does bacterial dominance change during different stages of growth? 

This study has examined changes in the spatial distribution of bacteria with respect to algal 

cell. Future work could develop primers or probes for use in real-time PCR and in situ 

hybridization techniques to precisely locate and determine relative abundance of bacterial 

cells in the dinoflagellate environment. This would give clues to the mechanisms 

underlying growth stimulation. Probes could also be developed to identify bacterial types 

dominating various growth phases in relation to proximity to the dinoflagellate cell. This 

would deepen knowledge on whether contact mediated factors are important for the 

interaction between bacteria and algae. 

4. Is it possible to interrupt the interaction? 

G. catenatum-bacteria model is a flexible and tractable model for examining algal bacterial 

interactions. Future studies could focus on physiological responses of these interactions and 

the influence on growth dynamics at biochemical and molecular level to determine if these 

interactions could be interrupted and provide a means to control growth of specific 

dinoflagellate species. Finally samples from natural environment could be modified similar 

to our models to identify if the developed models approximate interactions in the natural 

environment. Using our models, it is possible to identify key bacterial types that may be 

algicidal. With this effort quantitative methods for using algicidal bacteria in controlling 

algal populations could be developed. 
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7. 7 Conclusions 

This thesis confirms the need for growth stimulating bacteria in G. catenatum cultures and 

the bacterial composition to have a strong influence on algal growth dynamics. Further the 

simplified experimental models approximate phytoplankton responses to more complex bacterial 

communities. 

167 



Summary and Conclusion 

7.8 REFERENCES 

Albright, L.J., McCrae, S.K., May, B.E., 1986. Attached and free-floating bacterioplankton in 
Howe Sound, British-Columbia, a coastal marine Fjord-embayment. Applied and 
Environmental Microbiology 51, 614-621. 

Barlaan, E.A., Furukawa, S., Takeuchi, K., 2007. Detection of bacteria associated with harmful 
algal blooms from coastal and microcosm environments using electronic microarrays. 
Environmental Microbiology 9, 690-702. 

Bell, W., Mitchell, R., 1972. Chemotactic and growth responses of marine bacteria to algal 
extracellular products. Biological Bulletin 143, 265. 

Doucette, G.J., Kodama, M., Franca, S., Gallacher, S., 1998. Bacterial interactions with harmful 
algal bloom species: bloom ecology, toxigenesis, and cytology. In: Anderson, D.M., Cembella, 
A.D., Hallegraeff, G.M. (Eds.), Physiological Ecology of Harmful Algal Blooms. Springer
Verlag, Berlin, 619. 

Fogg, G.E., 1983. The ecological significance of extracellular products of phytoplankton 
photosynthesis. Botanica Marina. 26, 3-14. 

Fogg, G.E., Thake, B., 1987. Algal cultures and phytoplankton ecology. Uni.Wisconsin Press, 126. 

Grossart, H.P., Simon, M., 2007. Interactions of planktonic algae and bacteria: effects on algal 
growth and organic matter dynamics. Aquatic Microbial Ecology 47, 163-176. 

Heiskanen, A.S., 1993. Mass encystment and sinking of dinoflagellates during a spring bloom. 
Marine Biology 116, 161-167. 

Ho, A.Y.T., Hsieh, D.P.H., Qian, P.Y., 2006. Variations in paralytic shellfish toxin and homolog 
production in two strains of Alexandrium tamarense after antibiotic treatments. Aquatic 
Microbial Ecology 42,41-53. 

Hold, G.L., Smith, E.A., Birkbeck, T.H., Gallacher, S., 2001. Comparison of paralytic shellfish 
toxin (PST) production by the dinoflagellates Alexandrium lusitanicum NEPCC 253 and 
Alexandrium tamarense NEPCC 407 in the presence and absence of bacteria. FEMS 
Microbiology Ecology 36, 223-234. 

Keshtacher-Liebson, E., Hadar, Y., Chen, Y., 1995. Oligotrophic bacteria enhance algal growth 
under iron deficient conditions. Applied and Environmental Microbiology. 61, 2439-2441. 

Kim, M.C., Yoshinaga, I., Imai, I., Nagasaki, K., Itakura, S., Ishida, Y., 1998. A close relationship 
between algicidal bacteria and termination of Heterosigma akashiwo (Raphidophyceae) 
blooms in Hiroshima Bay, Japan. Marine Ecology-Progress Series 170, 25-32. 

Kogure, K., Simidu, U., Taga, N., 1982. Bacterial attachment to phytoplankton in sea water. 
Journal of Experimental Marine Biology and Ecology 56, 197-204. 

Landsberg, J.H., 2002. The effects of harmful algal blooms on aquatic organisms. Reviews in 
Fisheries Science 10, 113-390. 

Mouget, J.L., Dakhama, A., Lavoie, M.C., Noue, J., 1995. Algal growth enhancement by bacteria: 
Is consumption of photosynthetic oxygen involved? FEMS Microbiology Ecology. 18, 3-5. 

168 



Summary and Conclusion 

Sakami, T., Nakahara, H., Chinain, M., Ishida, Y., 1999. Effects of epiphytic bacteria on the growth 
of the toxic dinoflagellate Gambierdiscus toxicus (Dinophyceae ). Journal of Experimental 
Marine Biology and Ecology 233 (2), 231-246. 

Sheldrake, A.R., 1974. The ageing, growth and death of cells. Nature, 250, 381-385. 

Uribe, P., Espejo, R.T., 2003. Effect of associated bacteria on the growth and toxicity of 
Alexandrium catenella. Applied Environmental Microbiology 69 (1), 659-662. 

Usup, G., Azanza., R.V., 1988. Physiology and bloom dynamics of the tropical dinoflagellate 
Pyrodinium bahamense. In: Cembella, A.D., Hallegraeff, G.M. (Eds.), Physiological 
Ecology of Harmful Algal Blooms, Springer Verlag, Heidelberg, 81-94. 

169 



Appendix 1 

Medium GSe Preparation method 

1. Sea water 

Autoclave filtered seawater in 1000 mL Teflon bottles. 

2. Distilled water 

Autoclave distilled water to sterilise. 

3. Stock Solution 

3. Vitamins 

Biotin 

Vitamin B12 

Thiamine HCl 

4. PII Metal Mix 

Na2EDTA 

FeCb. 6 H20 

H3B03 

MnCb.4 H20 

ZnCh 

CoCb. 6 H20 

0.2 mg 100 mgL"1 H20 

0.1 mg 100 mgL"1 H20 

100.0 mg 100 mL"1 H20 

6.0 gL"1 H20 

0.29 gL"1 H20 

6.85 gL"1 H20 

0.86 gL"1 H20 

0.06 gL"1 H20 

0.026 gL"1 H20 

Make up each stock solution separately and add (adjust pH to 7.8-8.0 with NaOH) 
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4. Nutrient solution 

To prepare Gse medium, solution of nutrients is made up for 100 mL mix. 

Nitrate stock 

Phosphate stock 

Vitamin stock 

PII Metal Mix 

Selenium stock 

Make up to 200mL with distilled water. 

20mL 

10mL 

10mL 

50mL 

10mL 

Nutrient solution was autoclaved in Schott, then filter sterilised using 0.22 j.!m filter. 

5. To prepare final GSe medium 

In sterile 1 litre Teflon bottle the following were added. 

900 mL sterile filtered sea water (1) 

1 00 mL sterile distilled water 

20 mL nutrient solution ( 4) 

Modification of GSe medium 

GSe medium without extracted soil was used in culture flasks. GSe -N-P was also used in 

this study that contains same amount of nutrients but without nitrate and phosphate. 
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Bacterial Agar 

Zobell marine agar (ZMl) 

5 g Bacto Peptone 

1 g Yeast extract (Difco) 

15g Bacto-Agar (omit for broth) 

750 mL 0.2 f-Lm filtered sea water 

250 mL MilliQ water 

* For Alcanivorax sp. and Brachybacterium sp. add 1% Na- acetate 

5 mL 100 x Marine Supplement (see below) 

Zobell Marine Agar (ZMlO) 

0.5 g Bacto Peptone 

0.1 g Yeast extract (Difco) 

15 g Bacto-Agar (omit for broth) 

750 mL 0.2 f-Lm filtered sea water 

250 mL MilliQ water 

* For Alcanivorax sp., and Brachybacterium sp. add 1% Na- acetate 

5 mL 100 x Marine Supplement (see below) 

100 x Marine Supplement 

1 mL 10 x Trace elements 

10 mL 2 mgL"1 Na2Se03 

84 mL Milli Q water 

Prepare and autoclave the above stock. Once cool add 5 mL 0.2 f-Lm filter sterile 2 x vitamin stock. 

Store in the dark at 4 oc 
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10 x Trace elements (100 mL) 

4.36 g Na2EDTA 

3.15 g FeCh. 6 H20 

0.022 g ZnS04.7 H20 

0.01 g CoCh. 6 H20 

0.18 g MnCh. 4 H20 

0.0063 g Na2Mo04. 2 H20 

Combine and filter sterilise. Store in the dark at 4 °C 

2 x Vitamin mixture (100 mL) 

0.0005 g Cyanocobalamin (B 12) 

0.1 g Thiamine HCI (B 1) 

0.0005 g Biotin 

Combine and filter sterilise. Store in the dark at 4°C 
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Bacterial Genomic DNA isolation from G. catenatum cultures. 

Lysis Buffer 

100 mM Tris -HCl pH 8.0 

150 mM NaCl 

10 mM EDTA 

Lysozyme 

50 mg mL-1 in Lysis Buffer 

Add lysozyme to a sterile 15mL tube and dissolve in the appropriate amount of sterile lysis buffer. 

0.2 ~-tm filter sterilise and dispense 500-1000 ~-tl volumes and store at -20°C. Stock can be 

freeze/thawed a couple of before it needs to be chucked. 

CTAB/NaCI 

0.7MNaCl 

10% CTAB 

Prepare stock by adding 4.1 g NaCl to a 200 mL bottle and dissolve in 80 mL MQ-dH20. Add a 

magnetic stir-bar and autoclave. While the solution is still hot or pre-heat to ca. 60-70°C, 

progressively add small quantities of the 10 g CTAB (ca. 1 g) to the solution with stirring and 

heating to dissolve. Autoclave. Warm to ca. 60°C before use, as it is very viscous. 

1. Pellet cells from 1-5 mL G. catenatum culture by centrifugation at 13,000 x rpm for 15-20 s 

in a sterile 1.5 mL centrifuge tube. Immediately remove as much of the supernatant as 

possible. Repeat to pellet all cells. 

2. Resuspend the cell pellet in 4 70 ~-tl of Lysis buffer. Add ca. 52 ~-tl 50 mg mL"1 lysozyme in 

lysis buffer. Mix and incubate for 30 min at 37"C. 

3. Add 28 ~-tl 10% SDS (0.5% final concentration) and 10 ~-tl 20 mg mL-1 Proteinase K (in 

lOmM Tris-HCl, pH 8.0; 374 1-1g mL"1
). Mix and incubate at 56°C for 30 min. 

4. Add 70 ~-tl 5M NaCl and mix thoroughly (to make solution 0.7 M NaCl final 

concentration). Add 70 ~-tl CT AB/NaCl solution (to 1% CTAB). Mix and incubate at 65°C 

for 10 min. Final volume at this point should be 700 ~-tl. 
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5. Add an equal volume ofChloroform:Isoamyl alcohol (24:1), mix by repeated inversion for 

30 sand centrifuge for 5 min at 13,000 x rpm. 

6. Remove the aqueous phase to a new tube (the interface can be removed with a toothpick 

if it interferes with removal of the aqueous phase). 

7. Add an equal volume of Phenol:Chloroform:Isoamyl alcohol (25:24:1), mix by 30 s 

inversion and centrifuge for 5 min. 

8. Remove the aqueous phase to a new tube and add 0 .. 6 vol. 100% isopropanol alcohol and 

mix by inversion and incubate at room temperature for 15-30 mins. Collect precipitate by 

centrifugation at 13,000 x rpm for 15 mins. Wash once with 70% ethanol. 

9. Resuspend DNA in dH20 at approximate 50-150 fll. Store at -20°C. 

Quantitative DNA by fluorometry 

10. For the PCR, use 1 fll per 50 fll reaction with 2.0mM Mg2
+. 
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CTAB DNA extraction protocol for bacterial genomic DNA (1.5 mL) 

Reagents 

1. 1 x TE buffer 

10 mM Tris- HCl pH 8.0 

1 mMEDTA 

2. 10% SDS 

3. 20 mg mL"1 Proteinase K 

Store at -20 oc 
4. 5 MNaCl 

5. CTAB/NaCl 

0.7 MNaCl 

10% CTAB 

Prepare stock by adding 4.1 g NaCl to a 200 mL bottle and dissolve in 80 mL MQ-dH20. Add a 

magnetic stir-bar and autoclave. While the solution is still hot or pre-heat to ca. 60-70°C, 

progressively add small quantities of the 10 g CT AB (ca. 1 g) to the solution with stirring and 

heating to dissolve. Autoclave. Warm to ca. 60°C before use, as it is very viscous. 

6. Chloroform: Isoamyl alcohol (24: 1) 

7. Tris buffered phenol. Store in the dark at 4°C 

* Buffered phenol more than 2months old can damage DNA 

8. 100% isopropanol alcohol. Store at -20°C 

9. 70% Ethanol. Store at -20°C 
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Method 

1. Label tubes and add 567 i-!L 1x TE Buffer. Using an inoculating loop under sterile 

conditions (laminar flow chamber, flame, etc.) remove a good streak of cell material from 

agar and suspend in TE buffer. Vortex suspensions thoroughly until no 'clumps' can be 

seen in the solution. 

2. Add 30 i-!L 10% SDS and mix thoroughly by shaking. Add 3 i-!1 20mg mL-1 Proteinase K. 

Mix thoroughly by shaking, incubate at 56 oc for 60 min. 

3. Add 100 i-!L 5M NaCl and mix thoroughly. Add 80 i-!1 CTAB/NaCl solution, mix by 

shaking and incubate at 65 oc for 30 min. 

-------------------------Perform steps 5-9 in FUMEHOOD---------------------------------------------------

4. Add an equal volume ofChloroform:Isoamyl alcohol (24:1) (should be about 780 i-!L), mix 

thoroughly, holding cap on with finger, and centrifuge for 5 min at 13,000 rpm. 

5. Remove the aqueous phase (should be the top layer) to a new tube making sure to get none 

of the interface or organic phase. 

6. Add an equal volume oftris buffered phenol to the aqueous phase, mix thoroughly, holding 

cap on with finger, and centrifuge for 5 min at 13,000 rpm. 

7. Remove the aqueous phase (should be the top layer) to a new tube making sure to get none 

of the interface or organic phase. 

Repeat step 4. 

8. Remove the aqueous phase to a new tube and add 1: 1 volume cold isopropanol alcohol and 

mix thoroughly by repeated inversion. A visible precipitate should for. Centrifuge to 15 

min at 13,000 rpm. 

9. Remove supernatant by tipping out and wash pellet by adding 400 i-!L 70% ethanol, making 

sure not to dislodge pellet. Centrifuge for 5 min at 13,000 rpm. 

10. Remove supernatant. Resuspend DNA in 50-200 i-!L TE buffer. 

Store at - 20°C. Extract can then be quantified for concentration or dilute approximately 1:10 with 

MQ H20; 2.5-5 i-!L of dilute should be used in a 25 i-!L. 
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Fig. 1: In-vivo chlorophyll fluorescence of G. catenatum cultures grown with single bacterial types 

(A) Marinobacter sp. DG879 (B) Alcanivorax sp. DG881 (C) Roseobacter sp. DG 874. (±standard 

error). Growth curves obtained from in-vivo fluorescence and dinoflagllate cell count data appeared 

similar (Fig. 4.4) 
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Fig. 2: In-vivo chlorophyll fluorescence of G. catenatum cultures grown with pair-wise 

combination of bacteria. (A) Alcanivorax sp. DG881 and Marinobacter sp. DG879 (B) Alcanivorax 

sp. DG881 and Roseobacter sp. DG874 (C) Marinobacter sp. DG879 and Roseobacter sp. DG874. 

(± standard error). Growth curves obtained from in-vivo fluorescence and dinoflagllate cell count 

data appeared similar (Fig. 4.8) 
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Fig. 3: In-vivo chlorophyll fluorescence of mixed G. catenatum grown with (a) synthetic 

communities of all three bacteria; (b) mixed bacterial communities from non axenic 

GCHU11/GCDE08 cultures (c) parent GCHUll and GCDE08. (±standard error). Growth curves 

obtained from in-vivo fluorescence and dinoflagllate cell count data appeared similar (Fig. 4.9; Fig. 

4.10) 
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Fig. 1: t-RFLP traces from replicate progeny cultures of cysts + HU11 /DE08 bacteria. Forward 

primer labeled (27F, dye D3) fragment traces from three independent replicate cultures. The PCR 

amplified 16S rRNA genes were digested with restriction enzyme Hhal and fluorescent labeled 

fragments were separated on CEQ ™ 8000 genetic analysis system. Fragment size in base pairs is 

shown on the x-axis. 
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Fig. 2: t-RFLP traces from replicate progeny cysts+ HU11/DE08 bacteria. Reverse primer labeled 

(518R, dye D4) fragment traces from three independent replicate cultures. The PCR amplified 16S 

rRNA genes were digested with restriction enzyme Hhal and fluorescent labeled fragments were 

separated on CEQ ™ 8000 genetic analysis system. Fragment size in base pairs is shown on the x

axis. 
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Fig. 3: t-RFLP traces from replicate progeny cultures of cysts + HUll bacteria. Forward primer 

labeled (27F, dye D3) fragment traces from four independent replicate cultures. The PCR amplified 

16S rRNA genes were digested with restriction enzyme Hhal and fluorescent labeled fragments 

were separated on CEQ TM 8000 genetic analysis system. Fragment size in base pairs is shown on 

the x-axis. 
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Fig. 4: t-RFLP traces from replicate progeny cultures of cysts + HUll bacteria. Forward primer 

labeled (27F, dye D3) fragment traces from four independent replicate cultures. The PCR amplified 

16S rRNA genes were digested with restriction enzyme Hhal and fluorescent labeled fragments 

were separated on CEQ ™ 8000 genetic analysis system. Fragment size in base pairs is shown on 

the x-axis. 
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