
by

AH Dekker BSc (Hons)

in the Department of Electrical Engineering and Computer Science

Submitted in fulfilment of the requirements
for the degree of

Doctor of Philosophy

University of Tasmania

July 1989

This thesis contains no material which has been accepted for the award of any
other higher degree or graduate diploma in any tertiary institution. To the
best of my knowledge and belief, this thesis contains no material previously
published or written by another person, except where due reference has been
made in the text of the thesis.

I ,. /

AHDekker

ABSTRACT

This thesis describes techniques for efficiently performing polymorphic type
inference for functional programming languages in the presence of subtype
relationships. We permit subtype relationships which are based on implicit
coercion functions between primitive types or type constructors, such as
between integers and reals or between lists of arbitrary type and sets of the
same type. Coercions between different kinds of functions are also
pennitted. In particular, finite database functions can be coerced to general
functions. This makes functional languages useful as database query and
update languages.

In the first chapter we describe basic notation, and define a subtype ordering
to be a partial order on type variables and type constructors, satisfying
certain conditions which ensure that the inequalities in a subtype ordering
always have a solution. We define a number of operations for manipulating
subtype orderings, which exploit the representation of subtype orderings as
transitively reduced directed acyclic graphs. Generic operations such as
addition are given a type scheme containing a subtype ordering which
constrains the bound variables. Colouring of type variables imposes a
further constraint, which allows a type scheme to be given to the equality
function.

The second chapter defines a simple functional language and gives inference
rules which type-annotate expressions. A number of additional rules are
derived, including a rule for applying a substitution to a typing assertion. We
provide a rewrite rule semantics for typed expressions, and show that this
preserves typing information and is Church-Rosser. Since coercions produce
a unique result and commute with primitive operations, including equality,
we conjecture that type-annotating an expression is semantically
unambiguous.

In the third chapter we give a sound and complete, but naive, type inference
algorithm which is inefficient, since intermediate subtype orderings rapidly
become large. Standardisations and simplifications, which reduce the size of
subtype orderings without loss of generality, lead to a more efficient type
inference algorithm, which is quartic-time for expressions, but which we
expect to be linear for typical user programs.

The fourth chapter applies this work to database query and update, using the
Functional Data Model. A case study involving a hospital database shows the
utility of subtype inference.

ACKNOWLEDGEMENTS

] would like to thank my supervisors, Phil Collier and Clem Baker-Finch for
their advice and for discussions on parts of this work. Ben Lian, David
Wright, Andrew Martin, and especially Ed Kazmierczak also offered many·
helpful suggestions. Thanks also to the many friends who provided moral
support, and to Toni Hickey for infinite patience in typing a difficult
manuscript.

Finally I thank the Australian Computer Research Board and the Australian
Telecommunications and Electronics Research Board for their financial
support.

TABLE OF CONTENTS

INTRODUCTION
Why Type Inference?
Why Subtypes?
Subtypes and Databases
Subtype Inference :Existing Work
Extensions and Improvements
Thesis Structure

1
1
4
5
7
9

1 PRELIMINARY NOTATION 11
1.1 Type constructors 12
1.2 Introducing tl].e Subtype Ordering 13
1.3 Constant Identifiers 15
1.4 The Type Structure 16
1.5 Type Substitutions 21
1.6 Subtype Orderings 23
I. 7 Matching Types 27
] .. 8 Union of Subtype Orderings 32
I . .9 Splittings and Graphs 35
] .1 0 Operations on Subtype Orderings 38
1 .J 1 Type Schemes and Assumption Sets 45

2 A FUNCTIONAL LANGUAGE AND TYPE SYSTEM 49
2.1 The Functional Language 49
2.2 Replacements and Replications 53
2.3 The Type Inference System 55
2.4 Derived Inference Rules 60
2.5 A Rewrite - Rule Semantics 63
2.6 A Church-Rosser Result 68
2.7 Weak Head Normal Form and Bohm Trees 70
2.8 Properties of Bohm Trees 74

3 ALGORITHMS 77
3.J Type Inference Subroutines 78
3.2 A Type Inference Algorithm 80
3,3 Standardisations 85
3.4 Satisfying Subtype Orderings 91
35 Simplifications 93
3~6 An Improved Type Inference Algorithm 101
3~1 Efficiency Considerations 105

4 DATABASE APPLICATIONS 107
4 .. 1 A Subtype Hierarchy for Database Use 109
4.2 Inverses of Database Functions 110
4.3 Composition of Database Functions 111
4.4 Entities and Multiple Inheritance 112
4.5 Case Study - A Hospital Database 114
4.6 Query in Our Hospital Database 115
4.7 Update in our Hospital Database 115
4 .. 8 General Remarks 117

5 RELATED WORK 119
5.1 A Comprehensive Theory of Coercions 120
5.2 Inclusion Polymorphism with Intersection and Union 121
5.3 Subtypes and Generality 125
5.4 Subtypes and Object Oriented Languages 126
5.5 The Mitchell Approach 127
5.6 Other Approaches 131
5.7 Generic Functions, Type Classes and Coloured Types 132

6 CONCLUSIONS AND FURTHER WORK 134

7 REFERENCES 138

Appendix - Table 1 : Rewrite Rules for Programs 144

INTRODUCTION

Why Type Inference?

The benefits of static strong typing of computer programs have been known
since the advent of Algol 60. These include the encouragement of disciplined
programming, and an increase in security due to the elimination of a large class
of erroneous programs. Many recent programming languages, such as Pascal
and Modula 2, also use static typing, because its advantages are considered to
outweigh the restrictions it imposes on the programmer. In the field of
functional programming languages, the benefits of static typing were made
even more convincing by the development of a type inference algorithm by
Milner (1978), independently of earlier work by Hindley (1969).

Milner's type inference algorithm (which he called W) deduces all required
type information from the text of a program, so that the programmer need not
give explicit type information. The security of static typing is thus retained,
with the added convenience. of more concise programs. Another major
consequence of the algorithm is that the programmer can write polymorphic
functions, ie functions which operate on arguments of many different types.
For example, the function which calculates the length of a list operates on lists
of arbitrary type, and thus has an infinite number of types of the form
list r ~ nat (where nat is the type of the natural numbers). This is represented
by giving the length function the type scheme V a. list a ~ nat, and all possible
types for the function can then be obtained by substituting types for the type
parameter a. Damas and Milner (1982) provide proofs that the type schemes
inferred by Milner's algorithm are the most general ones. This lays a solid
theoretical foundation for the algorithm. The practical importance of Milner's
algorithm can be seen in the way that it has been used to great advantage in
functional languages such as ML and Miranda™.

Why Subtypes?

In spite of the obvious advantages of Milner's type inference algorithm, it still
has a number of disadvantages. One of these is the inability to use, for
example, expressions of integer type in a context where values of real type are
expected. Such an ability, involving the implicit insertion of a type coercion
function, was one of the great advantages that Algol 60 and its descendents had

2

over Fortran, allowing the programmer to write pi+ 3 instead of
pi+ float (3). Of course, mixing integer and real values in arithmetic
expressions can also be permitted by combining all numeric types into a single
type number, and using run-time tests to see what sort of value is present.
However, this alternative is not only less efficient, but decreases security, in
that some type errors may not be detected, even if a program is run many
times. We consider essential the ability to distinguish integer and real types,
and still mix integer and real values freely in arithmetic expressions.

Since the publication of Milner's algorithm, many researchers have explored
ways of loosening the restrictions that it imposes. We will examine some of
these later in the thesis. Surveys of some of this work are given by Leviant
(1983), Reynolds (1985) and Cardelli and Wegner (1985). Although the type
systems that have been proposed are not necessarily compatible, they all
involve some extension of the notion of polymorphism.

A useful classification of various kinds of extended polymorphism is given by
Cardelli and Wegner (1985), who distinguish parametric polymorphism,
inclusion polymorphism, coercion and overloading. However, these authors do
not answer the question : which of these forms of polymorphism can be
combined with type inference?

Parametric polymorphism includes the notion of polymorphism inherent_ in
Milner's algorithm, where polymorphic functions are introduced by a let
construct. Because the algorithm operates by substituting types for the type
parameters in type schemes, its suffers from the limitation that polymorphic
functions cannot have polymorphic functions as arguments. This limitation can
be removed by permitting type schemes to be substituted for type parameters.
However, this leads to the second order typed lambda calculus (Reynolds
1974), for which no type inference algorithm has yet been found.

fuclusion polymorphism is based on containment relations between types,
which leads to a notion of subtype. One type is said to be a subtype of another
if all the values of the first type also have the second type. For example, the
type nat is a subtype of int, since the natural numbers are properly contained
within the integers. fuclusion polymorphism can be combined with parametric
polymorphism by qualifying the parameters of a type scheme with inequalities.
Cardelli and Wegner (1985) refer to such a qualification of type schemes as
bounded quantification. The intention is that the types which are substituted
for the type parameters must satisfy the inequalities. For example, we can

3

express the fact that addition is defmed on integers, but that two natural
numbers added together always give a natural number, by giving the addition
operation the type scheme :

V a : nat ::::;; a s.; int. a -7 a -7 a

Unfortunately, inclusion polymorphism is not powerful enough to describe the
use of integers in contexts where real numbers are expected. In most
computers, the set of integer representations is not a subset of the set of real
number representations. Even in mathematics, formalisations of the real
numbers, by such techniques as Dedekind cuts, represent real numbers as sets
of rational numbers (Cohn 1981). In both cases, the best that we can say is that
there is an implicit coercion function from integers to real numbers. This
leads us to a notion of subtype which generalises inclusion polymorphism : one
type is a subtype of another if there is a designated coercion function between
the two types. One of the objectives of our thesis is to indicate that
polymorphic type inference can be efficiently combined with this notion of
subtype.

Implicit coercions are a powerful and useful feature. Like other powerful and
useful features, they can be abused. For example, the language Algol 68
(Lindsey and van der Meulen, 1977) allows an astonishingly large range of
implicit coercions between types, resulting in a baroque and unwieldy system.
The solution to this problem is provided by Reynolds (1980), who provides a
detailed mathematical treatment of coercions, and suggests that an implicit
coercion between two types is acceptable exactly when it commutes with all
functions defined on both the types. For example, the integer to real coercion
commutes with addition in the sense that performing an integer addition on two
numbers and coercing the result to a real gives the same result as coercing the
two numbers to reals and performing a real addition. It is essentially this
condition that permits mathematians to treat the integers as if they were a
subset of the real numbers, and to write expressions such as 1 + 2 +pi without
ambiguity. We will restrict our attention to implicit coercions which satisfy
this commutativity criterion.

The fourth, and most general, form of extended polymorphism is overloading,
which refers to any other system where an expression may have several types.
Overloading in its full generality cannot be combined with type inference, for
theoretical reasons which we will discuss later in this thesis. However,
restricted kinds of overloading are useful. In particular, the use of implicit

4

coercions requires a particular kind of overloading, which Reynolds (1980)
refers to as generic functions. Such functions are expressed using a
parameterised type, where the parameter ranges over a fixed set of primitive
types. For example, addition is parameterised on the numeric types. Our type
inference algorithm will permit those generic functions whose types can be
expressed using the notation of bounded quantification. This includes many
useful functions. For example, the function which adds together the elements
of a list, which can be written in Miranda as :

sum [] = 0
sum (x : y) = x + sum y

can be assigned the type scheme V a: nat:::; a:::; real. list a-t a. Where
coercions are not involved, we will also permit overloading of functions over a
class of 'coloured' types. This permits us to give a type to the equality
function, which often poses problems.

Subtypes and Databases

There is a second motivation for incorporating a notion of subtype into
functional languages, namely to produce an integrated functional programming
and database manipulation language, thereby applying the benefits of functional
programming to the database arena. Within database systems we have a notion
of subtype generated by containment relations between classes of real-world
entities. Cardelli and Wegner (1985) study this notion of subtype within the
framework of inheritance in object-oriented languages (Cardelli 1984, Albano
et al1985). In such languages, real-world entities are represented as tuples of
attributes. Subtypes have more attributes than their supertypes, since they
inherit attributes of their supertypes, and may have other attributes of their
own.

Our interest lies in functional rather than object-oriented languages, and we
feel that the Functional Data Model (Shipman 1981, Atkinson and Kulkarni
1984, Buneman et al1982) is a more natural model for database systems than
the object-oriented model, for reasons which we will discuss in chapter four of
this thesis. The Functional Data Model also combines neatly with functional
programming languages. It views a database as a set of entity types, which may
have containment relations between them, and a set of finite functions, which
are essentially special cases of binary relations. We can use inclusion

5

polymorphism to describe the containment relations between entity types, but
coercions are required in order to use finite functions in contexts where
general functions are expected. A novel feature of this thesis is to introduce
such coercions between different kinds of functions.

Subtype Inference : Existing Work

Having identified the subtype relationships we are interested in, and having
claimed that type inference in the presence' of such subtype relationships is
possible, we now tum to the question of a type inference algorithm. The first
steps towards a suitable algorithm were taken by Mitchell (1984), who partially
describes an algorithm in the style of algorithm V of Leivant (1983). Given an
expression, Mitchell's algorithm will infer:
• A type-annotated expression, where each binding of a type variable, and

each subexpression, is annotated with a type.
• An assumption set which assigns types to program variables, and in which

program variables occur at most once.
• A coercion set of inequalities between atomic types, which must hold if the

expression is to be well-typed.

Type-annotated expressions in which a program variable is used with a type
other than that with which it was bound, or in which an argument to a function
has a type other than that which the function is expecting, generate type
inequalities and mark places where implicit coercions would be inserted. For
example, if int ~ real, then the two type-annotated expressions

A:xint·frea/---) boo! Xreal and grea/---) boo! eint would require coercions from int to
real.

An advantage of Mitchell's (and Leivant's) style of algorithm is that
substitutions need not be passed around, but can be applied directly to objects
of interest, thus improving efficiency. Also, types for the two parts of an
application can be inferred independently, permitting parallel implementations
of the algorithm, which are of value if functional languages are to be
implemented on parallel processors (Peyton Jones 1987).

Mitchell proves his algorithm is sound (correct) and complete (most general)
with respect to a set of type inference rules. These rules are much like those of
Damas and Milner (1982) which apply to Milner's algorithm, except that type
schemes and the polymorphic let construct are not dealt with, and one new rule

6

is introduced. The new rule expresses the fact that if -r s r is a consequence of
the inequalities in a coercion set, and the expression e has type r given that
coercion set, then the expression also has type r. Put more simply, an
expression can be coerced upwards to any supertype. While a significant step
forward, Mitchell's algorithm suffers from a number of limitations, which we
shall briefly consider :

The polymorphic let construct is not handled by Mitchell, and there are
therefore no type schemes, and no bounded polymorphism. This makes the
algorithm unsuitable for an actual programming language, where polymorphic
definitions are essential (Peyton Jones 1987, Bird and Wadler 1988). There is
also no description of how types are assigned to constants such as the numerals.
This relates to the absence of type schemes, since some constants in functional
programming languages, eg the null list, are polymorphic.

Mitchell restricts himself to coercions which 'can be viewed as set
containment'. This suggests that coercions are assumed to be injective. Now,
from the fact that intis a subtype of real, we can conclude that the functional
type real~ intis a subtype of int ~ int. In other words, functions such as
round and truncate that convert reals to integers can be applied to integers
alone. However, both of these functions (and a number of others) act as the
identity function when applied to integers alone. Thus the coercion from
real ~ int to int ~ intis not injective, assuming the natural notion of
extensional equality is used. This seems to suggest that a more detailed
examination of the semantics of coercions is required. In most of Mitchell's
paper, coercions are not explicitly mentioned, and some parts seem to deal with
inclusion polymorphism only. However, the type inference algorithm itself is
very general, and will deal with non-injective coercions.

Mitchell also restricts himself to coercions which are logical consequences of
coercions between atomic types, and his coercion sets are accordingly sets of
inequalities between atomic types. Here again, his type inference algorithm is
sufficiently general to deal with other forms of coercion, and we can extend
coercion sets to other structures that induce partial orders (or preorders) on
types. For example, Stansifer (1988) gives a similar algorithm, in the style of
Milner's algorithm vV, that deals with coercion functions which delete
attributes from a tuple. Such coercion functions can describe inheritance in
object-oriented languages. Thatte (1988) gives a semi-algorithm, also in the
style of Milner's algorithm W, that deduces partial type information, in order
to deal with heterogeneous data structures. This algorithm allows any type

7

whatsoever to be coerced to an atomic type Q, which includes all values, and
thus conveys the least posible amount of type information. The general form
of Mitchell's algorithm is given explicitly by Fuh and Mishra (1988).

Another limitation of Mitchell's algorithm is that there is no notion of
consistency of coercion sets. For example, we may apply the type inference
algorithm to an expression, and deduce that it has type int, subject to a coercion
set containing the inequality real ~ int. In other words, a function accepting
only integers is applied to a real number at some point. Intuitively, one would
wish this to be considered as a type error. We would therefore want a type
inference algorithm which tested coercion sets to ensure that they were
'consistent' in some sense.

The final issue is one of efficiency. The coercion set inferred by Mitchell's
algorithm grows very rapidly with the length of the input expression, since
inequalities are added to it for each application and each use of a program
variable. Now, checking the consistency of a coercion set seems to require a
transitive closure, which is a cubic-time operation. Calculating minimal
coercion sets requires a transitive reduct which is also cubic-time. This makes
Mitchell's algorithm impractical for use in an actual language implementation.
A technique is required that will reduce the size of a coercion set while
retaining generality.

Extensions and Improvements

In this thesis we extend the work of Mitchell by addressing the limitations we
have discussed. We introduce a limited let construct. As Milner (1978)
indicates, the interaction between lambda abstractions and let constructs is the
most difficult part of type inference. This is especially so in the presence of
bounded polymorphism. For example, the type scheme V a : a~ {3. f3 ~ a
contains a free type variable, and we can apply substitutions to this type
scheme. However, for substitutions such as Sf3 = r~ 1], the result is dubious.
We therefore follow the language Miranda™ by only allowing polymorphic let
constructs at the 'top level'. We do not permit polymorphic let constructs
inside lambda abstractions, and therefore we can ensure that all type schemes
are closed. This avoids the problem of substitution, since substitutions do not
affect closed type schemes. This decision allows us to combine Mitchell's
algorithm with Milner's algorithm W. In particular, our type inference
algorithm will accept as input an assumption set containing only closed type

8

schemes, relating to enclosing let constructs, and will produce as output an
assumption set containing only types, relating to free program variables. This
combined approach retains the advantages of Leivant' s algorithm V, while
]lTOviding a simple treatment of polymorphism. We will treat constants such as
nil as being variables defmed in an enclosing let. They will thus be assigned a
type scheme. Constants such as the numerals which have atomic types are
assumed to have a least type, which is the type that we will infer for them.

We note that coercions should commute with polymorphic functions, in order
to avoid ambiguity. In particular, coercions should commute with
polymorphic equality, so that coercions must be injective on types where
equality is defined. However, we permit non-injective coercions on functions,
since equality is not defined on functions. In fact, we use an extension of the
concept 9f 'eqtype variable' in ML to ensure that applying equality to functions
is a type error. This extension is expressed using our notion of 'coloured'
types.

A major extension that we introduce is type inequalities not only on atomic
types, but on type constructors. For example, the inequality list~ set allows a
coercion from list r to set rfor any type r. Such a coercion, which would
remove duplicates and 'forget' ordering, is obviously non-injective. Its
introduction would therefore mean that the polymorphic equality operator
could not apply to lists and sets, and we would need two functions eqlist and
eqset. However, for some applications this may be a worthwhile trade-off.
Coercions of this nature are a special case of implementations in algebraic data
types (Ehrig et al1982).

We formalise coercions on type constructors by assigning a rank to type
constructors based on the number of arguments. Atomic types are assigned
rank 0, list and set are assigned rank 1, the product constructor is assigned rank
2, and the functional type constructor --7 is given the special rank *. We
extend coercion sets to families of sets of inequalities indexed on rank.
Inequalities of rank * permit coercions between different sorts of functions. In
particular, we can coerce functional types that have a finite-function
constructor to general functions, thus satisfying the requirement for integrating
functional programming languages with the Functional Data Model.
Inequalities of rank * also offer the possibility of integrating strictness analysis
(Bum et al1986) with type inference by introducing two subtypes of general
functions, namely strict and non-strict functions. This issue is examined
:ffi.Irther in Wright and Dekker (1988).

9

We restrict the predefined hierarchy of subtypes to a 'forest' of semilattices.
This does not appear to eliminate any useful examples of type hierarchies, and
permits us to define an easily checkable set of conditions necessary and
sufficient for a coercion set to be consistent. Our type inference algorithm will
check these conditions, and only return consistent coercion sets. We refer to
such consistent coercion sets as subtype orderings.

We introduce two kinds of operations on subtype orderings which simplify the
subtype ordering without loss of generality. We call these operations
standardisations and simplifications. By applying these operations during type
inference we can ensure that inferred subtype orderings grow very slowly in
size. This solves the efficiency problem of Mitchell's algorithm and makes
subtype inference feasible for actual language implementations.

Thesis Structure

The first chapter of this thesis defines basic notation and gives an example type
hierarchy: We define a subtype ordering to be a partial order on type
constructors and type variables satisfying certain conditions. These conditions
ensure that a subtype ordering is always satisfiable, in the sense that we can
find a mapping from type variables to type constructors such that the
inequalities remain true. This formalises the notion of a 'consistent'. coercion
set. We define a matching relation on types, similar to that of Mitchell, where
two types match if they have the same 'shape'. This allows us to generalise
unification to an algorithm which calculates a minimal substitution that causes
two types to match while remaining consistent with the inequalities in a
coercion set. We also define a number of other operations that manipulate
subtype orderings, exploiting the obvious representation of subtype orderings
as directed acyclic graphs. Finally we discuss type schemes, assumption sets,
and generic instances of type schemes.

Our intention is for our subtype inference algorithm to apply to a Miranda-like
language. However, for simplicity we work with a simpler functional language
involving application, lambda abstraction, a polymorphic let, and predefined
functions which perform case analysis. The techniques outlined in chapters 4
to 7 of Peyton Jones (1987) indicate how a Miranda-like language can be
translated to such a simpler form. In our second chapter, we define the syntax
of our simple language and give type inference rules which type-annotate
expressions. We give some example derivations using these rules, and derive

10

some useful new rules. We follow this with a rewrite-rule semantics, and show
that it is Church-Rosser, and preserves types. A discussion of head normal
form and Bohm trees allows us to prove that coercions produce a unique result,
are injective on equality types, and commute with polymorphic functions.
These are the required conditions for implicit coercions to be unambiguous.

Chapter three defmes two type inference algorithms for our subtyping system.
The first algorithm is not efficient, but is proved to be sound and complete.
We then introduce standardisations and simplifications, which reduce the size
of a subtype ordering without loss of generality. This leads us to an algorithm
which finds a solution to the inequalities in a subtype ordering. This acts as a
kind of abstract compilation. It also permits us to define an efficient type
inference algorithm, which is still sound and complete. Several examples
indicate that intermediate subtype orderings are small, and final subtype
orderings usually contain at most one type variable.

The fourth chapter examines database applications . We use type constructors
of rank* to distinguish finite (database) functions and injective finite functions.
This allows us to write type schemes for database operations such as inverse.
We show how to describe inheritance in the Functional Data Model, and sketch
a database query and transaction-based update language, by giving a substantial
case study. The case study involves a hospital database model, and shows that
our subtyping system allows a concise, clean and powerful functional
programming and database language.

Our fifth chapter examines related work on subtype inference in more detail,
and explores the connections with our approach. Much of this work has been
developed concurrently with the work presented here. In particular, Fuh and
Mishra (1988, 1989) also describe techniques for subtype inference based on
extending Mitchell's work, developed independently from our approach.
However, there are a number of close correspondences which suggest avenues
for further improvements, by combining the two approaches.

We close this thesis with a general conclusion. Due to the high technical
content of much of this thesis, the reader interested in a quick overview should
read the introductions to chapters 1 and 2, sections 2.3 and 2.4, the
introduction to chapter 3, and sections 3.2 and 3.6.

11

1 PRELIMINARY NOTATION

In this chapter we define basic notation relating to types, subtype orderings
and type schemes. Section 1.1 introduces type constructors and gives a
simple example of a type hierarchy which we will use throughout the thesis.
Section 1.2 introduces the concept of a subtype ordering, and gives the
restrictions which subtype orderings must satisfy. Our example type
hierarchy satisfies these conditions. Section 1.3 introduces constant
identifiers, such as numerals, which may have several types. We give
conditions which ensure that constant identifiers have least types.

In section 1.4 we define types, coloured types, and occurrences of type
variables in types. We show how coloured types allow generic functions to be
defined. Section 1.5 introduces type substitutions and defines an object X to
be minimal satisfying certain conditions if every other object satisfying those
conditions has the form SX for some substitutionS. This concept of
minimality is used throughout. Section 1.6 introduces subtype orderings
containing type variables, and gives necesary and sufficient conditions for a
subtype ordering to be satisfiable. Section 1.7 introduces the matching
relation between types and defines a substitution to be shape-consistent with
respect to a subtype ordering if it preserves matching between subtype and
supertype. This allows us to define an algorithm MATCH which finds a
minimal substitution matching two types and MA TCH2 which finds a minimal
substitution matching two types which is shape-consistent with respect to a
given subtype ordering. The algorithm MA TCH2 is closely related to the
algorithm MATCH proposed by Mitchell (1984).

Section 1.8 defines an operation UNION which combines a number of subtype
orderings, returning a substitution and a new subtype ordering. The
substitution combines cycles into a single element, so that the subtype ordering
produced is a partial order. We define minimality on subtype
ordering/substitution pairs, and show that UNION produces a minimal result.
Section 1.9 examines the implementation of subtype orderings as transitively
reduced acyclic graphs. In section 1.10 we define four operations on subtype
orderings, namely ORDER, APPLYSUBST, ENRICH and SUBEN. The
operation ORDER is defined in terms of an auxilliary operation ORDERSET,
and creates a minimal subtype ordering/substitution pair which implies an
inequality between two matching types. The APPL YSUBST operation
calculates the minimal pair resulting from applying an arbitrary substitution
to a subtype ordering (the substitution has to be extended to preserve

12

shape-consistency), and the ENRICH operation calculates the minimal pair
resulting from enriching a subtype ordering by a set of inequalities between
arbitrary types. We show that ORDER is a special case of ENRICH, and that
any sequence of ENRICH and APPL YSUBST operations can be expressed by
a. single APPL YSUBST followed by a single ENRICH. This motivates the
SUBEN operation which combines APPL YSUBST and ENRICH.

Section 1.11 introduces type schemes and assumption sets. Unlike Milner
(1978), we ensure that types and type schemes are completely disjoint, by

allowing '\/. r as a type scheme with no bound variables. This allows us to
distinguish program variables bound by let and program variables bound by
lambda abstraction. We define generic instances of type schemes to be
subtype ordering/type pairs which result from instantiating bound variables.
We also define the operation gen which produces a type scheme from a type
and a subtype ordering, provided type variables do not occur in a given
assumption set.

1.1 Type Constructors

Our type structure, as discussed above, is based on a family of disjoint sets of
type constructors !:l.r, where the rank r is a non-negative integer or *. The
type constructors of rank 2 which we will consider are product (x) and sum
(+). We will have the two type constructors list and optional of rank 1. For
each type -r, the values of type optional r can be either the constant absent, or
of the form present (v), where v is a value of type r. The type optional r is
useful for explicitly describing partially defined functions, such as
head-of-list, to which we would assign the types list r ~optional r, for each
r. We consider optional r to be a subtype of list r, with absent coercing to the
empty list, and present (v) coercing to the one-element list [v]. This provides
an example of a coercion between type constructors.

The primitive types nat, int, bool, atom and void provide examples of type
constructors of rank 0. We consider nat to be a subtype of int, and nat, int
and bool to be subtypes of atom. We provide two type constructors of rank *,
namely the usual function type constructor (~) and a type constructor for
constant functions (:::J). For example, the term A.x.e where e has type. rand x
does not occur in e, can be given both the types r ~ rand r :::J r,where r' is
any type. We consider the type r :::J'r of constant functions to be a subtype of
the type r ~ r of all functions, thus providing an example of a coercion
The tween type constructors of rank *.

13

We define the closed types to be of the form :

where 8-r is a type constructor of rank r, and 1" is a vector of closed types of
corresponding length, ie of length r if r is a non-negative integer, and of
length 2 if r = *.

We will write the type constructors x, +, -7 and::) as infix operators, with x
and+ having precedence over -7 and::), and with all four constructors
associating to the right. We also assume that list and optional bind more
tightly than other type constructors. Some example closed types are :

• int
• void+ bool
• list (nat -7 bool x int)

To each closed type r there corresponds a set of values V(1"), to be discussed
further in section 2.5. For example, V(nat) contains the natural numbers,
V(list bool) contains lists of boo leans, and V(int x bool) contains pairs whose
first component is an integer, and whose second is a boolean.

1.2 Introducing the Subtype Ordering

Definition 1.2 .1
For each r, the set !:lr of type constructors, is assumed to have a partial order
relation «r , representing the subtype relationship. We omit the subscript
when the rank r is obvious from context. We denote by «-relatedness the
family of equivalence relations generated by the reflexive, transitive,
symmetric closure of the «r.

We enforce two restrictions on the partial orders «r :

• We require that if two elements of !:1r have a lower bound, then they
have a greatest lower bound (glb), and if they have an upper bound,
then they have a least upper bound (lub).

14

We require that each «-related equivalence class has either lub or
glb defined on all pairs of its elements. In other words, it is a
semilattice, and the subtype ordering is a 'forest' of semilattices.

These two restrictions eliminate many pathological cases of subtype
hierarchies. The first restriction, which follows Reynolds (1985), ensures
that all expressions have least types. The second restriction ensures that
subtype orderings containing type variables (definition 1.6.1) will always be
satisfiable.

The family of partial orders « for our example type constructors is given in
Figure 1. For example, we will write nat« int. Note that we have six
«-related equivalence classes, namely {nat, int, bool, atom}, {void},
{optional, list}, { x}, { +} and { ::J, ---7}. The first of these has lub defined on
all pairs of its elements, while the others have both lub and glb defined on all
pairs of their elements.

Definition 1.2 .2
We extend « to the least partial order on closed types satisfying :

Dr r << 8,.' 'r ' if and only if r * *,
Dr «r D'r , and r i « r 'i for 1 ~ i ~ r,

- -
where 'r and 'r' are vectors of length r.

• & r 1 'r 2 « D'* 'r '1 r '2 if and only if
& « D'* , r' 1 « r 1 and r 2 « 'l"'2

Note that the type constructors of rank* are monotonic in their second
argument, and antimonotonic in their first argument, while other type
constructors are monotonic in all arguments. This is because functions can be
coerced either by coercing the result (giving a 'larger' result), or by coercing
the argument (accepting a 'smaller' argument). The following examples
illustrate this :

• void x nat « void x int
• boo! ::J int « boo! ---7 int
• int ---7 nat « nat ---7 nat « nat ---7 int
• optional nat « list nat« list int

RAIVk 0

I I
L·st I . -7

I
X f

I
I

I
I

I I
I

op-t/o111a { I I I

i I
i,

I
I I I

j
I

RAJJk 1.. I R AA!k 2 I I RAI.!K ~

15

Our intention is that if r « r' then there is a unique coercion function from
V(r) to V(r'). We require these coercion functions to commute with
polymorphic functions, in the sense of Reynolds (1980). This will be
discussed further in Section 2. 7.

1.3 Constant Identifiers

Definition 1.3 .I
The type constructors of rank 0 are also referred to as primitive types.
Corresponding to each primitive type rr:, there is a set K(rc) of constant
identifiers, which form part of our functional language syntax. (The
remainder of our language syntax is defined in Section 2.1).

We require two conditions :

• if two primitive types p and rr: have no glb under <<, then K(p)
and K(rr:) are disjoint.
for each primitive type rc, there is an injective function P rc from
K(;r) toV(rc).

The first condition ensures that pairs of possible types for a constant identifier
have glbs, and thus by proposition 1.3.2, all constant identifiers have a least
type. The second condition says that each constant identifier denotes a value
distinct from that of other constant identifiers.

If we make the further restriction that K(p) is contained in K(rr:) wherever
p « rc, then we can construct simple term models for our functional language,
as in section 2.5. However, this further restriction is not necessary in the
general case.

As examples, consider:

• K(nat)={0,1,2, ... }
• K(bool) = {true, false}
• K(void)= {unit}
• K(int) = { .•. , -2, -1, 0, 1, 2, ... }
• K(atom) ={true, false, ... , -2, -1, 0, 1, 2, ... }

Note that 0, 1, etc ambiguously denote either natural numbers, integers or
atoms.

16

Proposition 1.3 .2
Let c be a constant identifer such that c E K(n:i) for 1 ~is.; n. Then there is a
least 7rj such that c E K(rcj), ie there is aj, 1 ~j ~ n, such that TCj << 1Ci for all
] ~ i ~ n.

Proof: From the first condition in defmition 1.3.1 and the restrictions in
definition 1.2.1.0

1.4 The Type Structure

Definition 1.4 .1
We assume a family of disjoint sets of type variables TV r for each rank r.
We can then define types to be of the form :

where Or is a type constructor of rank r, ar is a type variable of rank r, and r
is a vector of types of corresponding length.

Note that the types which do not contain type variables are exactly the closed
types defined above. Effectively the type variables of rank 0 denote unkown
types, while the type variables of other ranks deno;e unknown type
constructors. For example, if a and f3 are type variables or rank 0, e is a
type variable of rank 1, and ¢ is a type variable of rank 2, then the following
are types :

.. a
• nat x f3
.. e (bool)

• ¢ (a, f3 + int)

We define the length I 't I of a type 't by :
• I 0,. r1 ... rn I = 1 + I r 1 I + ... + I rnl
• I ar 1:1 ••• rn I = 1 + I r1 I + ... + I rnl

For example, the lengths of the four types above are 1, 3, 2 and 5
respectively.

17

Definition 1.4.2
We also assume a set of colours, at present including only red and blue, such
that each type variable of rank 0 may be coloured with zero or more distinct
colours. These colours are used to define several useful subsets of types ,
referred to as types of a given colour. We make the restriction that if the
type r has a given set of colours, and r << r' , then r' has precisely the same
set of colours. In particular, each «-related equivalence class of rank 0
contains type constructors with exactly the same colours.

We also require that type variables can only be coloured with combinations of
colours for which ground types exist. In our case, ground types coloured
both red and blue will exist, so type variables coloured both red and blue are
permitted.

These restrictions ensures that colours are 'orthogonal' to sub typing. After a
suitable definition of substitution (definition 1.5.1), we will not have to
discuss colours explicitly for most sections of this work.

A type variable with no colours is referred to as an uncoloured type variable.

Definition 1 .4 .3
We define the basic types, or types coloured red, to be of the form:

• a or Or r or f3q r'

where a is a type variable of rank 0 which is coloured red, Or is a type
constructor of rank r 1= *, f3q is a type variable of rank q E: { 0, *}, and r,
r' are vectors of basic types of length r, q. In other words, the basic types

are exactly those types containing no type constructors or type variables of
rank *. In Standard ML, these are referred to as 'eq types', and basic type
variables are called 'eq type variables'.

The tuple types, or types coloured blue, are the types of the form:

• a or void or r x r'

where a is a type variable of rank 0 which is coloured blue, r is any type, and
r' is a tuple type. Note that by the restriction on coloured types in definition
] A.2, we must have the type constructor x incomparable to each other type

18

constructor of rank 2 under «, and void incomparable to each other primitive
type under<<. Note that some types are both basic and tuple types.

When we discuss type substitutions, we will require a coloured type variable
to be instantiated to a type with the same, but possibly additional, colours.
That is, basic type variables (coloured red) can only be instantiated to basic
types, tuple type variables (coloured blue) can only be instantiated to tuple
types, and basic tuple type variables (coloured red and blue) can only be
instantiated to types which are both basic and tuple types.

The use of coloured typed variables allows us to assign types to functions
which previously gave some difficulty. For example, the polymorphic
equality function has the type :

• r~ r~ bool

for each basic type r, and can be assigned the type scheme :

• '\Ia. a~ a~ bool

where a is a basic type variable, ie a is coloured red. This ensures that an
attempt to test two functions for equality results in a type error. Also, a
functional language implementation would only print the value of expressions
that have basic types, since functions do not usually have a printable value.

Assuming an n-element tuple type is represented by :

• r1 x ... 't'n x void

then we can assign to the tuple selector #m, as defined in FP (Backus 1978,
Dekker 1983) the type scheme :

• '\/ {31 • · · f3m Y. {31 X .. · X f3m X Y ~ f3m

where /31 , ... , f3m are not coloured, and yis a tuple type variable, ie yis
coloured blue. l}le handling of tuple types is similar to the technique used by
Collier (1987), and permits the selector #m to be used with any n-element
tuple, provided m ~ n. The reader familiar with Prolog will notice the
analogy with lists in that language.

19

Remark 1.4.4
Coloured types allow other groupings of types to which a function is
applicable. For example, in our example type hierarchy, the inequality a :s; int
specifies numeric types. We could however, add unrelated types such as time
and money which would have addition defmed on them. By specifying a
colour (say orange) and colouring the types nat, int, time and money (and
appropriate type variables) with that colour, we could make addition
applicable to only those types. However, by our requirements in defmition
1.4.2, this would not be possible in the presence of a coercion from int to
atom. We therefore have generic functions in the sense of Reynolds (1980),
which are functions with types parameterised on a fixed set of 'key' types.
However, we do not permit coercions between 'key' types and other types.
On the other hand, we extend the generic functions of Reynolds by allowing
'key' type constructors. For example, we can make a function applicable to
both sums and products by assigning a colour (say green) to types of the form
-rx r or-r+ r (and of course, to appropriate type variables).

We have made the restriction that a type variable can only be col<?ured with a
combination of colours for which ground types exist. We also require that
the types for each such legal combination of colours have the form :

• a or a or br 't'r

where a is a type variable of rank 0 with the given combination of colours, a

ranges over a possibly empty set of primitive types, and for each rank r-:~; 0,
br is either a specific type constructor (such as x), or br ranges over all type
variables and type constructors of rank r, or br ranges over an empty set.
Furthermore, for each rank r, the 'X'ri range over types of a specified colour.
Comparing definition 1.4.3 shows that basic types, tuple types and basic tuple
types all satisfy this restriction. In fact, it is clear that the restriction holds
for the individual colours, it will also hold for all combinations of colours.
Making this restriction allows us to easily check that substitutions, which we

will define in the next section, are legal, and to compose substitutions. It
also makes possible an exten~ion of unification, which we will define in
section 1.7.

We thus have a general technique for defining generic functions, which is
orthogonal to our subtype system. Effectively, colouring is a way of

20

c_onstraining the bound variables in a type scheme that complements bounded
quantification. In chapter 4 we introduce a third technique for constraining
type variables. Chapter 5 will touch briefly on other techniques for generic
functions, and compare them to our colouring scheme.

Definition 1.4 .5
Following Huet (1986), we can identify occurrences of type variables and type
constructors within types with sequences of positive integers. We define these
sequences as follows, where a and b can be type variables or type
constructors:

• the empty sequence ' ' is an occurrence of a in a 'r

• if 'k1 ... km' is an occurrence of a in 'ri, then 'ik1 ... km' is an
occurrence of a in b -r .

We say that a and b have corresponding occurrences in-rand r respectively,
if there are identical sequences of positive integers representing occurrences
@fa and b. For example, in the following pairs of types, a and f3 have
corresponding occurrences :

• ax int, f3 x boot
• void~ a+ int, atom ---) f3 + nat
• a~ boot x nat, f3 ~ int

Definition 1.4.6
We define left and right occurrences of type variables and type constructors
necursively as follows :

• a occurs right in a -r
• if a occurs right (left) in some 'ri and b does not have rank *, then a

occurs right (left) in b -r
• if a occurs right (left) in 'rz and b has rank *, then a occurs right

(left) in b(-r1, -r2)

if a occurs right (left) in -r1 and b has rank *, then a occurs left
(right) in b (-r1, -rz)

Note that it is possible for a to occur both left and right in some type.
l?roposition 1.6.5 indicates that left occurrences are exactly the 'antimonotonic
positions' in a type. For example, a only occurs left, and f3 only occurs right,

21

in the following types :

• f3
• (a~{J)xf3

e (/3 ~ a) ~ a ~ f3

1.5 Type Substitutions

Definition 1.5 .1
We writeS= [t1/a1 , ... , tnl an], or more concisely S = [tl a] for the
simultaneous substitution of type variables ai by ti, where :

• if ai has rank r * 0, then ti is either a type variable or a type
constructor of rank r.
if ai has rank 0, then ti is a type with at least the same colours as

ai.

We define the application of such a substitution S to type variables, type
constructors, and types by :

• Sai = ti
• S8= 8
• S f3 = f3 where f3 is not one of the ai
• S(a-r1 ... Tn) =(Sa) (Sr1) ... (Srn)

The two restrictions in definition 1.5.1 ensure that for each type 't, Sris a
legal type, and that restrictions on instantiating coloured type variables
discussed in section 1.4 are satisfied.

Given two substitutions R and S, we writeRS for the composition of R and S,
and since:

(RS) r= R(S r)

we omit the parentheses.

A number of type substitutions are of special interest. The identity
.9.ubstitution ID is defined by ID = [], and for every type r we have :

22

ID -t= -r

A ground substitution is a substitution [tl a] such that the ti do not contain
type variables. An atomic substitution is a substitution [t/ a] such that the tt
are either type constructors or type variables. An instantiation of type

- -- -
variables a is a substitution [tl a] such that no ai occurs in t. A renaming
of type variables a is an atomic instantiation [/31 a] such that the /3i are
previously unused type variables of precisely the same rank and colouring as
the corresponding at. Note that ground atomic substitutions, ground
instantiations and ground atomic instantiations are also possible.

Definition 1.5.2
We say that a substitution S is a minimal substitution satisfying certain
conditions, if for every substitution S' satisfying those conditions, there is a
substitution R such that S' = RS.

Similarly, we say that a type -r is minimal satisfying certain conditions, if for
every type r satisfying those conditions, there is a substitution R such that
r = R-r. For example, any basic type variable is a minimal basic type.

Definition 1.5 .3
We say that two types or substitutions, X andY, are equivalent up to
renaming if there are atomic substitutions S and R such that X = SY and
Y = RX, in which case we write X ::::: Y.

It is clear from definition 1.5.2 that if X andY are both minimal satisfying
certain conditions, then X and Y will be equivalent up to renaming. More
specifically :

Proposition 1.5 .4
Let X be a minimal type or substitution satisfying certain conditions. Then Y
is minimal satisfying those conditions if and only if
X:::::Y.

Proof: For the if part, let Z satisfy the conditions and Z = SX. If X :::::f then
X= RY, so Z = SRY, and hence Y is miminal satisfying the conditions. The
only-if part is trivial, since if X= SY andY= RX, then Sand R must be
atomic. 0

23

Definition 1.5.5
If S = [t1/a1 , ... , tnf an] is any substitution, we defme :

.. Dom (S) = { a 1 , ••• , an}

.. New (S) = FV(t1) u ... u FV Ctn)

where FV(ti) is the set of type variables occurring inti.

1.6 Subtype Orderings

Definition 1.6.1
Given a family of disjoint sets of type variables W r (ie W r is a subset of the
set of type variables TV r) and a family of partial order relations -:;,r on
!lr u W r' we call the family of partially ordered sets !lr u W r' a subtype
ordering if -:;,r preserves <<r in the following sense :

.. for each Or, o'r E !lr, Or -:;,r o'r if and only if Or «r o'r
• or and o'r have a lower (upper) bound under -:;,r only when they

have a glb (lub) under «r
no two «-unrelated elements are -:;,-related (where-:;,_ relatedness
refers to the reflexive, transitive, symmetric closure of the -:;,r)
if a is -:;,-related to o of rank 0, then a only has colours possessed by
o, ie [o/a] is legal substitution.

• if a is -:;,-related to f3 of rank 0, then there exist type variables with
the colours of both a and f3 (By definition 1.4.2 this means that
there exist ground types with these colours).

If the -:;,r are preorders preserving «r, but not partial orders, then we call the
family of pre-ordered sets a semi-subtype ordering.

The five restrictions ensure that the subtype ordering is satisfiable in the sense
that there is a ground substitution S such that :

.. for a E W r, Sa E llr

.. a -:;,r b if and only if Sa «r Sb

In Section 3.4 we show how such a substitutionS can be calculated. Figure 2a
shows a subtype ordering, while Figure 2b shows a partial order which
contravenes the first three restrictions.

RAIJI<. 0

I
i
I I /s'f
I X f I

e I
I

I
Of-f/ona /

I
I

R A!Jk. i R Alv-k 1 .C?. A AI!< * j

Vot'c{

RAA.II< 0

X

l /st

e

+

RAAIK. i R.A).IK. 2

24

Section 3.4 effectively shows that our five restrictions are sufficient for the
substitution S to exist. Figure 2b shows that the first three conditions are
necessary, in that no ground types can be assigned to ;, e, lfl or ¢ such that the
give inequalities hold. It is easy to show that the last two restrictions are also
necessary.

As before, we will omit the subscript r where the rank is obvious from
context. We will also use ~ to refer to the family of partial orders ~r' and to
the family of partially ordered sets 11r u Wr if the family W of sets of type
variables is obvious from context.

We will use lower case letters a, b, ... for elements of 11r u Wr, which can
be either type constructors or type variables, and write Sa, Sb, ... for the
results of applying the substitutionS. By defipition 1.5.1, if a is type
constructor we will have Sa = a.

We will use the symbol n for the primitive subtype ordering which has each
W r = { } and ~r = «r, and we introduce the symbol 0 for the undefined
subtype ordering. We will use upper case letters X, Y, ... for possibly
undefined subtype orderings.

Definition 1.6.2
We define the application of an atomic substitutionS to a subtype ordering as
follows. Given an atomic substitutionS, we define the family of sets of type
variables SW by :

• SW =New (S) u (W- Dom (S))

If~ is a subtype ordering with family W of sets of type variables, and Sis an
atomic substitution, then let ~'be the smallest family of pre orders such that :

• <Sa ~~ S b whenever a ~b

If each ~'r preserves <<r, then we defineS(~) to be the semi-subtype ordering
~'on the family SW of sets of type variables. If some ~'r does not preserve
«r, then we defineS(~)= 0. We also define S(O) = 0. Note that if each ~'r is
a partial order, then ~· is a subtype ordering. In Section 1.10 we will define a
more useful and general form of substitution on subtype orderings.

25

Proposition 1.6.3
Let R, S be atomic substitutions. Then RS(~) = R(S(~)) for each subtype
ordering ~.

Proof: By definition 1.6.2, ~·, ~~~, ~"' are smallest such that a ~ b implies
Sa~· Sb implies RSa ~" RSb, and a~ b implies RSa ~'" RSb.
Thus ~" = ~·". 0

Definition 1.6.4
If~ is a subtype ordering (semi-subtype ordering), we extend it to a partial
order (preorder) on types in the same way that we extended « to a partial
order on closed types :

a r ~ b r' where a and b have rank r -:f:. *,a~ b, andri ~ r(for
- -

1 ~ i ~ r, where r and r' are vectors of length r.

• ar1 r2 ~ br'1 r'2, where a and b have rank*, if and only if a~ b,
r'1 ~ 'rJ, and r2 ~ r'2.

For example, if a~ f3 and nat ~ y, we have :
• nat x a ~ int x f3
• {3 ::J nat ~ a ~ r

Proposition 1.6.5
For any types rand r', r ~ r' if and only if the following two conditions
hold:

• a~ b for all a and b with corresponding right occurrences inr and
r ' respectively.

• b ~ a for all a and b with corresponding left occurrences in rand
r 'respectively.

Proof: By induction on the structure of r. 0

Corollary! .6.6
LetS be an atomic substitution. Then S(~) = ~· if and only if r ~ i implies
Sr~· Sr' for all r, r'.

Proof: By proposition 1.6.5 and definition 1.6.2. 0

26

Definition 1.6.7
We say that a subtype ordering :s; is least satisfying certain conditions if for
every subtype ordering :S:' satisfying those conditions, a :s; b implies a :S:' b. If
no subtype ordering satisfies the conditions, then we will say that 0 is least
satisfying the conditions.

Clearly the least subtype ordering satisfying given conditions is unique. For
example, IT is the least subtype ordering such that nat :s; int, while 0 is the least
subtype ordering such that boo! :s; int.

Definition 1.6.8
As in definition 1.5.3, two subtype orderings :s; and :S:' are equivalent up to
renaming, written :s; ::::: :S:', if there are atomic substitutions S and R such that
S(:S:') and :S:' = R(:S:).

Definition 1.6.9
We define the simple subtype orderings as follows:

The primitive subtype ordering TI is a simple subtype ordering.

Let :s; be a subtype ordering which contains exactly one type
variable a of rank r, ie W r = {a} for exactly one rank r, such that
a :s; Or for some type constructor 8-r, and whenever a :s; o'r then
Or s o'r, and there is no o"r such that o"r sa. Then sis a simple
subtype ordering, written [a s Or].

The subtype ordering defined as above but with the sign :s; reversed
is a simple subtype ordering, written [8r :s; a].

Let :s; be a subtype ordering which contains exactly two type
variables a and {3 of rank r, ie Wr = {a, {3} for exactly one rank r,
such that a :s; {3, and a, f3 are incomparable to all type constructors
of rank r. Then :s; is a simple subtype ordering, written [a :s; {3].

The subtype ordering where each type variable is incomparable to
all other type variables and type constructors is a simple subtype
ordering, written [W], where W is the associated family of sets of
type variables. We will refer to such type variables as isolated type
variables.

27

We will use upper case letter B, C, ... for simple subtype orderings. We note
that, like all subtype orderings, the simple subtype orderings all contain II.

Proposition 1.6.1 0
The subtype orderings [a~ 8], [8 ~ a], [a ~ fJJ are the least subtype orderings
such that the indicated inequality holds.

Proof: By definitions 1.6.7 and 1.6.9. 0

Proposition 1.6.10 indicates that the three cases of simple subtype orderings
involving inequalities on type variables can be viewed as 'atomic' objects. In
section 1.9 we will show that they correspond to edges in a directed graph
representing a subtype ordering. We will also show how a subtype ordering
~ can be split into the constituent simple subtype orderings which form the
corresponding graph. This graph has the property that there is a path from a

to b if and only if a ~ b, and it is the smallest such graph.

1. 7 Matching Types

Definition 1.7.1
We defme an equivalence relation of matching on types, extending that of
Mitchell (1984). Two types match if they have the same 'shape'.
More formally:

• a r matches b '(if a and b are type variables or type constructors
of rank r, and r, '(are vectors of types of corresponding length n,
with 1'z matching r(for 1 ~ i ~ n.

For example list (a-tint) matches f3(bool-t nat) where a has rank 0, and f3
has rank 1. Some properties of matching are given by the following
proposition :

!Proposition 1.7.2

1 If r ~ r' for some subtype ordering ~' then r matches r'.
1m If r matches r', then 111 = I r'l

Proof: By definitions 1.4.1, 1.6.4 and 1.7 .1. 0

28

Definition 1. 7.3
Let~ be a subtype ordering. Then we say that a substitutionS is
shape-consistent with respect to~ if Sa matches Sb whenever a~ b. Mitchell
(1984) uses the terminology'S respects~, for the same condition.

Proposition 1.7.4

Sis shape-consistent with respect to~ if and only if Srmatches Sr whenever
r~r.

Proof: By definition 1.7.1 and proposition 1.6.5. 0

Definition 1.7.5
We call a substitution S an expansion if S has the form :

where n ~ 0, the rz are type variables of rank 0, the ai are type constructors
or previously unused type variables of rank r =F- 0, and the /3i are vectors of
distinct previously unused type variables of rank 0, such that /3ij do not have
more colours than required for the substitution to be legal, and the ai are only
type constructors if the colouring of rz demands this.

For example, if a, f3 and yare previously unused uncoloured type variables of
rank 0, 8 is a previously unused type variable of rank 1, ¢is a previously
unused type variable of rank 2, and lfl, ~ have rank 0 and are uncoloured,
then:

• [8 (a) /lfl, ¢({3,"/J /~]

is an expansion. We will sometimes say that this substitution expands v.rand ~.

Note that if ~ had been coloured red, then by definition 1.4 .3, f3 and ywould
also have to be coloured red. If ~ had been coloured blue, ¢ would have to be
replaced by x, and ywould have to be coloured blue. Note also that 8(a) and
¢({3, y) are minimal types matching, say, list int and boo! x nat respectively.
More generally :

29

Proposition 1.7.6
LetS = [r/ a] be an expansion such that each S ai matches r'i. Then S is a
minimal substitution satisfying that condition, and the 'ri are minimal types
matching r'i.

Proof: Let '!''i match r'i. Then by induction on the structure of Ti, there
exists an R such that Rri = r''i· Also if S' satisfies the required condition then
Dom(S) c Dom(S'), and using the minirnality of "Ci, Sis minimal. 0

Corollary 1.7.7
Every type r can be expressed in the form RSa, where R is atomic and Sis an
expansion.

Proof: Construct S such that Sa is minimal matching r . Then R exists by
minimality, and must be atomic. 0

Corollary 1.7.8
LetS be any substitution. Then there is an atomic substitutionS' and an
expansionS" such that S = S'S". We refer to S'S" as afactorisation of S.

Proposition 1. 7.9
If S is an expansion, then S r = S '!'if and only if r = '!'.

Proof: By definition 1.7 .5, since S introduces distinct new type variables. 0

By proposition 1.7.9, expansions are in some sense injective, and the
factorisation result in corollary 1.7 .8 recalls epi-mono factorisations in
category theory (Herrlich and Strecker 1979), although a formal categorical
treatment of types and substitutions is beyond the scope of this work. We do,
however, use the injectivity of expansions to make the following definition :

Definition 1. 7.10
We define the application of an expansion S to a subtype ordering similarly to
definition 1.6.2. We define :

SW =New(S) u (W -Dom(s))

If~ is a subtype ordering with family W of sets of type variables, and the
expansion S is shape-consistent with respect to ~' then let -5:.' be the smallest
family of partial orders such that :

30

Sa -5.' S b whenever a -5. b

Since S only introduces distinct new type variables, -5.' is uniquely defined, and
preserves«. Hence we define S(-5.) to be the subtype ordering -5.' on the
family SW of sets of type variables.

Theorem 1.7.11 - MATCH algorithm
Let rand r 'be arbitrary types. Then there is an algorithm MATCH (r , r ')
which computes a minimal expansion S such that S r matches S r ', if such an
expansion exists, and fails otherwise.

Proof: Based on the unification algorithm (Robinson 1965, Martelli and
Montanari 1982). The required algorithm does unification with matching as
the 'equality' relation. The restrictions we have placed on coloured types in
Remark 1.4.4 and on expansions in Definition 1.7 .5 ensure that the required
expansions can be constructed. 0

Note that there are many minimal expansions S such that Srmatches Sr', but
by proposition 1.5.4, they are all equivalent up to renaming. For example, if
a, [3, y; ~ are new uncoloured type variables of rank 0, and 8, ¢ are new type
variables of rank 2, then two minimal expansions such that vrmatches
int x bool are :

• [8(a, f3) I ljf]
• [¢(y; 9 I vrJ

Definition 1.7.12 - MATCH2 algorithm
Let -5. be a subtype ordering. For arbitrary types rand r' we then define :

• MA TCH2(5., r, r') = MA TCH(a1 X .•. X an X r, b1 X ... X bn X r')
• MATCH2(0, 1:, -n fails

where a1, ... , an and b1 , ... , bn are suitably chosen type variables or type
constructors of rank 0, such that ai -5. bi for each i, 1 -5. i -5. n, and the smallest
partial order generated by the ai -5. bi together with the rank 0 portion of TI, is
the rank 0 portion of s.

31

At the end of section 1.6 we indicated that a subtype ordering could be viewed
as a directed graph. The condition we require in the above definition is that
the (ai, hi) are precisely the rank 0 edges in the directed graph corresponding
to =::; that are additional to those in the directed graph corresponding to II.
This condition ensures that whenever a type variable is expanded, all $;-related
type variables are also expanded. For example, let =::; = [a=::; f3J, and consider :

MATCH2 (=::;, a -7 ;, yx 17 -7 {3)

Clearly a must be expanded to match yx 1J, but since f3 is ~-related to a, we
must also expand [3, and hence;, so that one possible result is:

Section 1.9 discusses the directed graph correponding to a subtype ordering in
more detail.

Theorem 1.7.13
MATCH2 (~, r, r') computes a minimal expansionS, shape-consistent with
respect to~' such that Srmatches Sr', if such an expansion exists.
Furthermore the expansion is independent of the particular choice of ai and
bi.

Proof
• Sai matches Sbi by theorem 1.7.11. Since if a~ b this is implied by

the ai =::; bi, shape-consistency follows.
• Srmatches Sr'by theorem 1.7.11.
• Minimality of S follows from theorem 1.7 .11., and the fact that for

shape-consistency it is necessary that Sai match Sbi.
Independence of the choice of ai and bi follows from the fact that
any choice of ai and bi satisfying the required conditions will
provide a minimal expansion S such that S is shape-consistent with
respect to ~' and S r matches S r'.

• If no expansion S satisfying the conditions exists, then the call to
MA TCH2 will fail. 0

Note that, like MATCH, MATCH2 is a non-deterministic algorithm, which
produces one of many minimal expansions which are all equivalent up to
renammg.

32

1.8 Union of Subtype Orderings

Definition 1.8.1

Let :$;1, ••• , $;n be arbitrary subtype orderings or semi-subtype orderings, with
families of sets of type variables Wr, ... , Wn. Let W = W1 u ... u Wn, and let
~ be the smallest family of preorders on ~ u W generated by reflexivity,
transitivity, and the rule :

a:$; b if a $;i b for some i, 1 :::; i :$; n.

Let - be the family of equivalence relations on ~ u W generated by symmetry
on the family of preorders :$;, ie

• a b if and only if a :::; b and b :::; a.

Let £1, ... , Em be the equivalence classes of-. Then we define atomic
substitutions Sb ... , Sm, which map these equivalence classes to suitably
chosen respresentatives as follows :

• If Ei contains two or more type constructors then Si is undefined.

If Ei contains one type constructor and k ~ 0 type variables,
ie Ei = {8,a1, ... , ak}, then we define Si = [o!a1, ... , olak], provided
this is a legal substitution (ie if the elements of Ei have rank 0 then
no aj has more colours than 8, viewed as a type).

• If Ei contains only type variables of rank other than 0,
ie Ei = { ab ... , ak}, then we define Si = [ajlab ... , ajlak] for some
arbitrary aj E Ei.

• If Ei contains only type variables of rank 0, ie Ei = { ab ... , ak} and
some aj has all colours which occur in any of ab ... , ak, then we
define Si = [ajl a1 , ... , ajl ak].

• If Ei contains only type variables of rank 0, ie Ei = { a1, ... , ak},
but the above condition is not satisfied, then let f3 be a previously
unused type variable with precisely all the colours which occur in
Ei, and we define Si = [{3/ a1, ... , [31 ak].

33

If some Si is undefined, then we say that ~1····· ~n are incompatible, and
define:

<Otherwise we letS= S 1 ... Sm, and note that Sa~ Sb ~Sa implies Sa= Sb.
We can therefore define the partial order ~· on ~ u SW by :

Sa~· Sb if and only if a~ b.

If::;;' preserves<< as in definition 1.6.1, then ::;;• is a subtype ordering, and we
define:

Otherwise we again say that :::;1 , ••• , :s;n are incompatible, and defme

UNION (:s;b···· ~n) = 0, !D.

We also extend UNION to pqssibly undefined subtype orderings by defining:

• UNION (Xb···· Xn) = 0, ID if some Xi= 0

We note that the equivalence classes Ei in this definition are precisely the
strongly connected components of the directed graph corresponding to the
preorder ::;;, as will be discussed further in section 1.9. In order to prove the
required properties of the UNION operation, we require the following
Giefinitions of minimality and equivalence up to renaming of subtype
0rdering/substitution pairs.

Definition 1.8.2
We say that the pair ::;;, S is minimal satisfying certain conditions if for every
'5:', R satisfying those conditions, there is a substitutionS' such that :

• R = S'S
• r::;; r' implies S' r ::;;• S' r' for all r, r'

IB'y proposition 1.6.5, to verify the second requirement it is sufficient to show
mat a::;; b implies S'a ::;;' S'b for all a, b.

34

Definition 1.8.3
We say that the pairs~' Sand~·, Rare equivalent up to renaming, and write
<, S ~ ~·, R if there are atomic substitutions S' and R' such that :

• R = R'S, 5:' = R' (~)
• S = S'R, 5: = S'(5:')

and such that whenever S = R = /D, then 5: = -:;,'.

It is clear from definitions 1.5.3 and 1.6.8 that if:::;, S ~ 5:', R then S ~Rand
-:;, ::::: :::;'. The following propositions extends the result of proposition 1.5 .4.

Proposition 1.8 .4
Let:::;, S be minimal satisfying certain conditions. Then 5:', R is minimal
satisfying those conditions if and only if 5:, S::::: :::;', R.

Proof: If-:;,, Sand~·, Rare both minimal then R = S'S and S = R'R, and
S', R' must be atomic. Equivalence up to renaming follows from definition
1.8.2 and corollary 1.6.6. Conversely, if-:;,, Sis minimal,:::;, S ~ 5:', R, and
:::;", R" satisfies the conditions, then there exists S' such that R" = S'S and
a 5: b implies S'a 5:" S'b. Also there exists S" such that S = S"R and
:::; = S"(:::;'). Hence S'S" is the required substitution, and:::;', R is minimal, by
definition 1.8.2 and corollary 1.6.6.0

We can now prove the required properties of UNION by the following
theorem and corollaries :

Theorem 1.8.5

Let UNION (:::;b ... , ::;;n) = 5:', S. Then~·, Sis minimal such that -r:::;i r
implies s r :::;' s r for all r, r.

Proof: Let ~~~, R be such that a 5:i b implies Ra 5:" Rb. Let :::; be the smallest
family of preorders generated by the ::;;i· Then a:::; b implies Ra ::;;" Rb, and
hence a:::; b:::; a implies Ra = Rb. Since in definition 1.8.1, Sis constructed to
be minimal, we must haveR = S'S for someS'. Furthermore, Sa ::;;• Sb

implies a :::; b which implies Ra = S'Sa ::;;" S'Sb = Rb. The theorem follows by
corollary 1.6.5. 0

35

Corollary 1.8 .6

Let Yr, ... , Yn be a permutation of Xr, ... , Xn. Then UNION CX1, ... , Xn) ~
UNION (Yr, .. , Y n).

Corollary 1.8 .7
Let UNION (Xr, ... , Xn) =X, Sand UNION (X, SYr, ... , SY m) = Y, R.

The UNION (X r, ... , Xn, Yb···· Y m) ~ Y, RS.

Corollary 1.8.8

Let UNION (~1 , ... , ~n) = ~' S and
UNION (~r, ... , ~n' ~·r, ... , ~'m) = ~·, R. Then R = S'S for some atomicS'
and S r ~ S r' implies R r <' R r' for allr, r'.

Proof: By theorem 1.8.5, since~·, R satisfies the required conditions for the
first UNION operation. Since R is atomic, R = S'S for some atomic S', and
Sa~ Sb implies S'Sa = Ra ~· Rb = S'Sb. 0

1.9 Splittings and Graphs

Definition 1.9 .1
Recalling definition 1.6.9, we define a splitting of a subtype ordering~ as a
set of simple orderings {~r, ... , ~n} such that:

• For some i, 1 ~ i ~ n, ~i = TI or ~i = [W]

• UNION (~1 , ... , ~n) = ~' ID

We refer to the smallest such set as the least splitting of ~.

It is clear that if~ has isolated type variables (ie type variables which are not
~-related to any other type variables and type constructors), then the least
splitting of~ has the form :

where W' is the set of isolated type variables. If W' is empty, then [W1 = TI,
and the least splitting of ~ has the form :

36

At the end of section 1.6 we indicated that a subtype ordering could be viewed
as a directed graph, with simple subtype orderings as edges. Clearly a
splitting of a subtype ordering can be viewed as a directed graph in this
sense, with IT or [W] representing the edges of the form 8 « 8'. The least
splitting then represents the smallest such graph, as shown by the following
theorem.

Theorem 1.9.2
Let :::; be a subtype ordering on ~ u W. Let G be the set of directed acyclic
graphs with vertices ~ u W such that there is a path from a to b if and only if
a:::; b. Then the graphs G form a lattice under containment of sets of edges,
with greatest element the transitive closure of the graphs G, and least element
the transitive reduct of the graphs G.

Let Gred be the transitive reduct of the graphs G, and let the edges of Gred
not of the form (8, 8') be (ab b1), ... , (an, bn), and let W' be the (possibly
empty) family of isolated type variables in ~. The least splitting of~ is then
the set L defined by :

Proof

• For the first part of the theorem we refer the reader to Aho et al
(1972) and Mehlhorn (1984).

The set L clearly contains all the type variables and type
constructors~ u W. Furthermore if (c, d) is an edge in Gred· then
c ~ d in some element of the set.

• The family of preorders generated by reflexivity, transitivity, and
the rule ai ~ bi is the original subtype ordering~' since a:::; b if and
only if there is a path from a to b, and hence UNION (L) = ~JD,

ie the set L is a splitting.

The splitting is least by virtue of the leastness of the transitive
reduct. 0

The theorem indicates that we can represent subtype orderings uniquely by
their least splittings, or more concretely, by the corresponding transitively

37

reduced directed acyclic graph. We will exploit this in future by writing ~
fuoth for a subtype ordering, and for the corresponding graph. We will also
use the notation for splittings in definition 1.9.1 to denote the corresponding
subtype ordering or graph. The following corollary indicates that from the
graph (or least splitting) we can obtain the best choice of ai and bi required to
define the MA TCH2 operation in definition 1. 7 .12.

Corollary 1.9 .3
Let ~ be a subtype ordering with least splitting

where the ai, bi have rank 0, and the af, bf have rank ;I= 0. Then the smallest
partial order generated by the ai ~ bi together with the rank 0 portion of TI, is
the rank 0 portion of ~.

Remark 1.9 .4
We note that semi-subtype orderings can also be represented by directed,
possibly cyclic, graphs. The UNION operation (definition 1.8.1) can then be
viewed as an operation on graphs. A graph representing a family of
preorders can then be formed by set union of the graphs representing the
arguments. A set of equivalence classes can then be formed by a
strongly-connected components algorithm (Aho et al1974), and
representatives of each equivalence class are chosen as in definition 1.8.1. We
then perform a transitive reduction (Aho et al1972), and check that the graph
is indeed a subtype ordering (definition 1.6.1).

To check that a graph satisfies definition 1.6.1, we require the transitive
closure, which can be performed together with the transitive reduct. The
:results in Aho et al (1972) show that transitive closure and transitive reduct
a:re computationally equivalent operations, so that this does not add significant
extra cost. We also require the connected components, viewing the edges in
the graph as bidirectional. These correspond to ~-relatedness equivalence
classes. We must check that :

• the transitive closure of the graph, restricted to type constructors
only, is identical to the transitive closure of the graph for n
for each 8, 8' with no glb (lub) in IT, there is no vertex with paths to
(from) both 8, 8'

38

the connected components of the graph, restricted to type
constructors only, are identical to the connected components of the
graph for n.
no type variable in a connected component has colours not possessed
by all the type constructors in the component. (Note that by
definition 1.4.2, all type constructors in the component will have the
same colours).
if all colours in a connected component are combined, a valid
combination of colours results, ie ground types exist with that
combination of colours.

Figure 3 shows an example of UNION of graphs. The further operations we
will define in section 1.10 can also be regarded as operations on graphs in a
similar way. They will all contain a UNION operation which will perform
the transitive reduction and validity check.

1.10 Operations on Subtype Orderings

Using the UNION operation, we can now define five operations which we will
use in the type inference algorithm, namely ORDERSET, ORDER,
APPLYSUBST, ENRICH and SUBEN. We use these operations to create
subtype orderings, apply substitutions to them, and enrich them with new
inequalities.

Definition 1.1 0.1

Let-rand -r' be matching types. Then we define the set of simple subtype
orderings corresponding to the assertion -r s r as follows :

•

ORDERSET (as a)= {[a]}

ORDERSET (8s 8') = {ll} if 8 «8'

ORDERSET (as b)= {[as b]} if one or both of a, bare type
variables, and if only one is a type
variable, all of its colours are
possessed by the other

ORDERSET (a s b) = { 0} otherwise

I. a-tu..., I /c, -r ---;:, e

l/~
Vo,J

I \I
,-., -t d.. b ,,., I or~o / X + :?

1/
1>-.a'f

a 'to..., I /s t e

~ ~ I . I
boo{

I

I ,.., t '/ Vo/J 0(''""'"' X + --)>

~~~ 
I 

I 
nat --.......P' ? 

I 

-

/a to~ /;;, f 

I 

e 

I 
X 

!l 
int~ koo/ 'f VOt-.{ o!t''o"'"' I + I ~ 

i 

I l 
h«t :::) 

(~Oo5t!. />1-f a5 nr·~S~t1fP1ft've .(a,. <:;rc/e. 

Ulv'to!J(x, Y):::: {[o], [-7~ e]}) [,-.. .,fo<, ;.,.,./,&]. w/-t4 J~'"/t,: 

a.. to;., f:~-r e 

/~ I l 
,·.,t boo{ t vot"J.. or'(,·o ..... l X + .__,. 

I 
I 

I 
)1(.!-f =.-, 



39 

• ORDERSET (a r:::; b 1') = 
ORDERSET (a:::; b) u ORDERSET (ri:::; r'1) 
... u ORDERSET Crr ~ r'r) 
if a, b have rank r ~ {0, *} 

• ORDERSET (ar1 r2 ~ br'1 r'2) = ORDERSET (a~ b) 

u ORDERSET (r'1 ~ r1) 
u ORDERSET (r2 ~ r'2) 
if a, b have rank * 

We then define the operation ORDER which performs the UNION of this set 
to obtain a subtype ordering and an atomic substitution : 

• ORDER (r~ r') =UNION (ORDERSET (r~ 1')) 

The ORDERSET operation can be viewed as generating a directed graph, not 
necessarily acyclic. Applying a UNION operation then involves finding 
strongly connected components, choosing representatives for these, 
performing a transitive reduction, and carrying out the check described in 
remark 1.9.4. The major property of the ORDER operation is given by the 
following proposition : 

Proposition 1.1 0.2 
If 0 RD ER ( r ~ 1') = ~·, S then S r ~· S r' and ~· ,S is minimal such that this 
condition holds. 

Proof: The first part follows from definition 1.6.4 and theorem 1.8 .. 5 
Minimality follows from theorem 1.8.5. 0 

Corollary 1.1 0.3 
IfORDERSET (r~ 1') = {B1, ... ,Bn} and 
UNION (Br, ... , Bn, ~1, ... , ~m) = ~·, S then Sr ~· Sr'. 

Proof: Using corollary 1.8.8. 0 

Definition 1.10.4 
We now define an operation APPLYSUBST which applies an arbitrary 
substitution S to a subtype ordering, returning an extended substitution RS and 



40 

a. modified subtype ordering. The extended substitution may be necessary to 
ensure shape-consistency. We first define : 

• APPLYSUBST (S, 0) == 0, S 
• APPL YSUBST (ID, ~) == ~, ID 

For the case APPLYSUBST (S, ~)with S "# ID, we letS'S" be a factorisation 
0f S, ie S' is atomic and S" is an expansion. We let {Bl,. .. , Bn, Bn + b ... 
Bm} be the least splitting of~, such that the Bi for 1 ~ i ~ n are exactly the 
~ai ~ bi] involving type variables of rank 0. If n > 0, we define : 

• "C' == Sal x ... x San 
. r == Sbl X ... X Sbn 
• R' ==MATCH ("C', r) 

If n == 0, we define "C' == r ==void and R' = ID. 

We then let ORDERSET (R'"C'5,R'"C") == {C1, ... , Ck} and 
UNION (CJ, ... , Ck, S'Bn + b···' S'Bm) ==X, R". The final case for 
APPL YSUBST is then defined by : 

APPLYSUBST (S, ~)=X, R"R'S 

The major properties of APPL YSUBST are given by the following theorem 
and corollaries : 

Theorem 1.10.5 
If APPLYSUBST (S, ~) = ~·, RS then "rl ~ "r2 implies RS"C'1 ~· RS"C'2 for all 
"C'l, "r2, and ~·, R is minimal such that this condition holds. 

Proof: We need only show a~ b implies RSa ~· Rsb, and minimality. 
LetS= S'S" and R = R"R' as in definition 1.10.4. 

If a 5, b of rank"# 0 and UNION (S'Bn+b···' S'Bm) = 5,b Rb then 
by theorem 1.8.5 and corollary 1.8.8, R" = R2R 1 for some atomic 
R2, and a~ b implies R1S'a ~1 R1S'b implies R"S'a ~· R"S'b. 
Hence RSa ~~ RSb since expansions have no effect on type variables 
of rank"# 0. 



41 

If a~ b of rank 0, then ORDERSET (R'Sa ~ R'Sb) is a subset of 
{ Ct, ... , Ck} and hence by corollary 1.10.3, RSa -5::' RSb. 

For minimality, let '5:.2, R2 be such that -r-1 '5:: r2 implies 
R1 Sr1 '5::2 R2Sr2. Then R2Sa matches R2Sb whenever a~ b of rank 
0, so R2rmatches R2r' where r, rare as ill definition 1.10.4. Thus 
by theorem 1.7.11,R2=S1R'forsomeS1. Also 
S1R'r'5::2 S1R'r, and a -5:: b of rank =f:. 0 implies StR'Sa -5::2 S1R'Sb, 
so by theorem 1.8.5, S1 = S2R" for some S2 and hence 
R2 = S2R"R' = S2R, and RSr1 -5::' RSr2 implies S2RSr1 -5::2 S2RSr2.0 

Corollary 1.10 .6 
If S is shape-consistent with respect to '5::, then APPL YSUBST (S, '5::) =X, RS 
where R is atomic. 

Proof: By minimality, since no expansion is needed. 0 

Corollary 1.1 0.7 
If S is an atomic substitution, then APPLYSUBST (S, '5::) =X, RS where R is 
atomic and RS (s) = X. 

Proof: The first part follows from corollary 1.10.6 and the fact that any 
atomic substitution is shape-consistent with respect to <. The second part 
follows from definition 1.6.2, since if RS (~) = -5::', -5::' is least such that a '5:: b 
implies RSa -5::' RSb. 0 

Corollary 1.10.8 
If S is an expansion, then APPL YSUBST (S, s) =X, RS where R is an 
expansion and RS (S) =X. 

Proof: Since Sis an expansion, by proposition 1.7.9, all equivalence classes 
formed during the UNION operation in definition 1.10.4 are singletons, and 
hence: 

The second part follows from definition 1.1 0. 7. 0 

Corollary 1.10 .9 
MS = MATCH2 (s, r, r'), then APPLYSUBST (S, s) =X, SandS (s) =X. 



42 

Proof: By corollaries 1.10.6 and 1.10.8, since ID is the only atomic 
expansion. 0 

Corollary 1.1 0.10 
If S is a renaming, then APPLYSUBST (S, :S) =X, SandS (:S) =X. 

Proof: By corollaries 1.10.6 and 1.10.7, and since equivalence classes formed 
during the UNION operation in definition 1.10.4 are singletons. 0 

Corollary 1.10.11 
If APPL YSUBST (S, :S) =X, RS then APPLYSUBST (RS, :S) =X, RS. 

Corollary 1.10.12 
LetAPPLYSUBST (SJ, <) = :S1, R1S1 and 
APPLYSUBST (S2, :S1) = ~2, R2S2. Then 
APPLYSUBST (S2R1S1, :S) ~ :S2, R2S2R1S1. 

As the above theorem and corollaries indicate, APPL YSUBST generalises the 
substitution operations given in definitions 1.6.2 and 1.7.10, and allows us to 
apply any substitution to a subtype ordering. The minimality condition 
indicates that the result is, in some sense, the 'natural' result. 

Our next operation extends a subtype ordering by additional inequalities. 
This is our major operation for constructing subtype orderings, since it 
generalises ORDER and APPLYSUBST. 

Definition 1.10.13 
Let L be a sequence of assertions of the form 

or 
• L =empty 

We define the enrichment of a subtype ordering by the sequence L as 
follows: 

ENRICH(O, L) = 0, ID 

• ENRICH(X, empty) =X,ID 



43 

ENRICH (X, r1::; '!'1; ... ; 'in::; r' n) = 0, ID 
if MA TCH2 (X, r1 x ... x rn, r'1 x ... x r' n) fails 

ENRICH (X, r1 ::; r' 1 ; ... ; rn ::; r' n) = Z, RS 

where MA TCH2 (X, r1 x ... x rn, r' 1 x ... x r' n) = S 
and APPL YSUBST (S, X) = Y, S 
and ORDERSET (Sr1 x ... x Srn::; Sr1 x ... x Sr'n) = {B1, ... , Bm} 

and UNION (Y, Br, ... , Bm) = Z, R 

Note that in the above definition R is atomic and Sis an expansion. Note also 
that APPLYSUBST (S,X) = Y, S by corollary 1.10.9. The following 
theorem and corollaries give the properties of ENRICH : 

Theorem 1.10.14 
If ENRICH(::;, r1 ::; '!'1; ••• ; rn::; r' n) = ::;•, RS, then RSri ::;• RSr'i for 1 ::; i::; n, 
and r::; r' implies RSr ::;• RSr' for all r, r'. Furthermore, ::;•, RS is minimal 
such that these conditions hold. 

Proof: LetR be atomic and San expansion, as in definition 1.10.13: 

The first part follows by corollary 1.10.3 and theorems 1.8.5, 
1.10.5. 

For minimality, let ::;2, R2 satisfy the conditions. Then R2ri 
matches R2r'i, and R2 is shape-consistent with respect to::;, so by 
theorem 1.7.13, R2 = S1S for some S1. Also by theorem 1.8.5, 
since::;', R is minimal, S1Sr::;2 StSr' and S1Sri ::;2 StSr'i, we have 
S1 = S2R for some S2, and hence R2 = S2RS. Also RSrs' RSi 

implies S2RSr s2 S2RSr'. 0 

Corollary 1.10.15 
Let r, r' be matching types. Then ENRICH (II, r ::; r') ~ORDER ( r::; r'). 

Corollary 1.10.16 
Let UNION (::;r, ... , ::;n) = ::;•, R. Then there is a sequence L such that 
ENRICH (::;1, L) = ::;•, R. 

Proof: Construct L by concatenating the least splittings of ::;2, ... , ::;n· 0 



44 

Corollary 1.10.17 

LetS be any substitution, and ~ a subtype ordering. Then there is a sequence 
L such that ENRICH(~, L) = APPLYSUBST (S, ~). 

Proof: Without loss of generality, S = [-rrf a1, ... , 'rn/ an, a1/ f3b···' amf f3m], 
where the ai have rank 0, and the aj, f3} have rank"# 0. Form "C'j, r] from 
aj, f3} respectively by providing a sufficient number of replications of void as 
arguments. 
Then L = -r1 ~ a1; a1 ~ 'rl ; ... ; 'rn ~ an; an ~ 'rn; 

r1 ~ r'1; r'1 < 'r'1; ... ; 'r'm ~ r'm; r'm ~ Ym 0 

Corollary 1 .1 0.18 
Let ENRICH(~, L) = ~·, RS. Then APPLYSUBST (RS, ~) = ~", RS and 
ENRICH(~', L') z ENRICH(~", RSL; L '). In particular if L' =empty, 
ENRICH(~", RSL) =~',/D. 

Corollary 1.10.19 

Let ENRICH (~1, L1) = ~2, S1 ... ENRICH (~n' Ln) = ~n+b Sn. 
Then there exists ~' ~> L such that APPL YSUBST (R, ~1) = ~' 1, R, for 
R = Sn ... S1, and ENRICH (~'b L) = ~n+l> /D. 

Proof: By induction using corollary 1.10.18 for the basis case, and 
corollaries 1.10.18 and 1.10.12 for the induction case. 0 

Corollary 1.10.20 
Corollary 1.10.19 holds if we replace any of the initial ENRICH operations 
by an equivalent APPL YSUBST. 

Proof: Using corollary 1.10.11. 0 

The last two corollaries motivate the following definition of the operation 
SUBEN. Any sequence of APPLYSUBST and ENRICH operations can be 
replaced by one use of SUBEN, and we will therefore find SUBEN to be the 
most useful operation on subtype orderings. 

Definition 1.10.21 
If APPLYSUBST (R, ~)=~',Rand ENRICH(~', L) = ~", ID then we write 
SUBEN (R, ~' L) = <". 



45 

Having now defined all our operations for manipulating subtype orderings, 
we tum our attention to the notions of type scheme and assumption set, which 
we will require for type inference. 

1Lll Type Schemes and Assumption Sets 

Definition 1.11.1 
We obtain polymorphism by means of type schemes as in Damas and Milner 
(1982). Our type schemes will contain subtype orderings, with the intention 
that they be instantiated in such a way that the inequalities in the subtype 
0rderings are satisfied. Type schemes will have the form : 

• Y a: ::s;.r 

where a is a vector of type variables, ::.:; is a subtype ordering on type 
- -

variables a, and r is a type, and a contains all the type variables in r. In 
other words, we insist that type schemes are closed. 

If::.:; has only isolated type variables we write simply : Y a . r, and if in 
addition a is empty (in which case r must be a closed type) we write V. r. 
Hence types and type schemes are completely disjoint. 

Remark 1.11.2 
The reason we insist that type schemes be closed is to disallow expressions of 
the form: 

A.x. let y = ... x ... in ... 

Such an expression, involving an interaction between bound and free type 
variables would be very difficult to type-check with our scheme. This is 
because applying a substitution to an open type scheme involves applying an 
arbitrary substitution to a subtype ordering. This is an operation we have 
defined (APPL YSUBST), but it returns an extended substitution. Thus, when 
applying a substitution to a set of type schemes, each application could extend 
the substitution, which would in tum affect the result of applying the 
substitution to the other type schemes. Therefore applying a substitution to an 
assumption set, which can contain several type schemes, is a difficult 
<Dperation to define. We avoid this problem by insisting that all type schemes 
lbe closed. It it worth noting that in the functional language Miranda such an 



46 

expression cannot be constructed, because the true polymorphic let occurs 
only at the top level of function definition. This supports our decision, and 
indicates that we are not seriously compromising usability. 

The type inference algorithm that we will outline in chapter 3 integrates 
inference of types for non-polymorphic variables (bound by A) with direct 
use of known type schemes for polymorphic variables (bound by let). This is 
facilitated by ensuring types and type schemes are disjoint. 

Definition 1.11.3 
Since type schemes are closed, we define Sa= a for all substitutions S and 
type schemes a. 

Definition 1.11.4 
An assumption set is a set of assumptions of the form x : -r or x : a where x is 
a variable in our functional language, r is a type and a is a type scheme. We 
use A and B to denote assumption sets in the remainder of this thesis. We 
write Ax for the result of removing any assumption x : -r or x : a from A, and 
define the free type variables of an assumption set by : 

FV( {x1: a1 , ... , Xn: an, Y1 : "rb···· Ym: rm}) 
= FV(r1) u ... u FV(rm) 

We define the domain of an assumption set by : 

Dom({x1: a1 , ... ,xn: an,Y1: r1, ... ,ym: rm}) 

= {xb···· Xn, Y1, ... , Ym} 

We can then write x E A, x E A if x E Dom (A), x E Dom (A) respectively. 
We will say that two assumption sets are disjoint if their domains are disjoint. 
We define SA for substitutions S in the obvious way, applying S to the types 
and type schemes in A. 

If x : r E A we will also write A(x) = r. 
If Dom (A') c Dom (A), and A contains only types, and for some subtype 
ordering ~,A(x) ~A'(x) foreachx E Don:z (A'), then we will write A ~A'. 

Definition 1.11.5 
We will use the following initial assumption set in our examples, to give the 
type schemes for predefined primitive functions : 



A0 = {fst 
snd 
pazr 
inl 
znr 
case 
cons 
nil 
lchoose 
absent 
present 
ochoose 
fix 
plus 
neg 
and 

cond 
eq 

47 

Vaf3. ax f3 ~a, 
Vaf3. ax f3 ~ [3, 
Vaf3. a -7 f3 ~ax [3, 
Vaf3. a -7 a+ [3, 
Vaf3. f3 -7 a+ [3, 
Vaf3y. (a -7 '0 -7 ([3 -7 '0 -7 (a+ f3) -7 y, 
\Ia. a -7list a -7list a, 
\/a. list a 
V af3. f3 -7 (a -7 list a -7 [3) -7 list a -7 f3 
\Ia. optional a 
V a. a -7 optional a 
V af3. f3 -7 (a -7 [3) ~ optional a -7 f3 
\Ia. (a-7 a)~ a, 
Va:[a~int]a~ a-7 a, 
V. int -7 int 
V .bool -7 bool -7 bool 
\Ia. bool-7 a -7 a-7 a 
v~. ~ -7 ~ -7 bool} 

where a, f3, yare uncoloured type variables of rank 0, and~ is a basic type 
variable of rank 0. The behaviour of the predefined primitive functions will 
be given in section 2.5. 

Definition 1.11.6 
We say that the pair RSr, ~·is a generic instance of a type scheme 

- -
V a: ~. r if S is an instantiation of the type variables a and 
APPLYSUBST(S, ~) = <5::', RS. 

For example, the type scheme Ao (plus) has generic instances : 

.. nat -7 nat -7 nat, n 

.. int -7 int -7 int, n 
• ~ -7 ~ -7 ~' [ ~ ~ int] 

Note that as well as producing a type, as in the usual definition of generic 
instantiation (Clement et al1986), our definition also produces an altered 
subtype ordering. 



48 

Definition 1.11.7 
If A is an assumption set, ~ is a subtype ordering with type variables W, and r 
is a type, we define the corresponding type scheme gen(A, ~. r) by: 

• gen(A, ~' r) = Va1 .•• an:~'. r 

where W u FV( r) = { a1, ... , an},~, is the family of partial orders~ on 
{ a 1, ... , an}, and n ~ 0, provided that ai E FV(A) for 1 :::; i ~ n. If the 
proviso fails, gen is undefined. However, if A = {}, gen is always defined. 

This check will ensure that non-polymorphic variables are not used inside the 
let-part of let-expressions, as discussed in remark 1.11.2. 

We now have all the machinery that we require for our type inference system. 
The next sections will define a functional language, and use this machinery to 
define its type inference algorithm. 



49 

2 A FUNCTIONAL LANGUAGE AND TYPE SYSTEM 

In this chapter we use the above notation to define a simple functional 
language with implicit typing. We give a set of type inference rules for the 
language, which allow us to infer from an expression a typed expression, 
which is the original expression annotated with type information. This is 
similar to the approach given by Mitchell (1984), and in contrast to the usual 
approach (Damas and Milner 1982) where only a type is inferred. We do, 
however, extend Mitchell's approach by including type polymorphism. 

Section 2.1 defines expressions and typed expressions for our simple 
language, and distinguishes polymorphic and nonpolymorphic occurrences of 
program variables in typed expressions. Section 2.2 defines replacements of 
nonpolymorphic variables, which allow beta-reduction to be defined, and 
replications, which allow let-reduction to be defined. Section 2.3 defines the 
type inference rules for our system, and gives two example derivations of 
typed expressions using these rules. In section 2.4 we present some derived 
rules which will be useful in our inference algorithm. In particular, the 
application of APPL YSUBST, ENRICH and SUB EN operations to a 
derivation is valid. 

Section 2.5 presents a rewrite-rule semantics for our language using the 
example type hierarchy, and proves the rewrite rules preserve well-typing. 
The Church-Rosser property for these rules is proved in section 2.6. Section 
2.7 defines Bohm trees modulo extensional equality as the natural value of a 
typed expression. Section 2.8 shows that coercions in our semantics have the 
required properties of producing a unique result, being injective on equality 
types and commuting with the polymorphic primitive functions. We 
conjecture that this means that different type-annotations of an expression 
have the same value, thus ensuring that implicit coercions introduce no 
ambiguity. 

2.1 The Functional Language 

Definition 2 .1.1 
We assume a set PV of program variables. The expressions of our functional 
language are then defined as follows, using a notion of limited expression : 



50 

• if x is a program variable, then x is a limited expression. 
• if cis a constant identifier, ie c E K(n:) for some primitive type n:, 

then c is a limited expression. 
if xis a program variable and e is a limited expression, then 'Ax.e is 
a limited expression. 
if e and e' are limited expressions then (e e') is a limited expression. 

We refer to ( e e') as an application, and omit the parentheses where no 
ambiguity results, given that application associates to the left. We can now 
define expressions, which may involve the polymorphic let construct : 

• a limited expression is an expression. 
• if x is a program variable, e is a limited expression, and e' is an 

expression, then let x = e in e' is an expression. 

In general, expressions are of the form : 
let x1 = e1 in ... let xn = en in e 

where eb ... ,en, e are limited expressions, and n ~ 0. This corresponds to 
functional languages such as Miranda™, where a list of polymorphic function 
definitions is followed by an expression to be evaluated, and uses of let and 
where within that expression are not polymorphic, but are merely shorthand 
for an application of a lambda abstraction. This restriction of polymorphism 
to the top level greatly simplifies type inference, as we have already discussed, 
without seriously compromising usability. 

We may allow certain program variables to be declared as mixfix operators 
with a particular arity n, so that there will be a special syntax for xe1 ... en. 
The variables pair, case and cons in A0 might be so declared. We do not 
discuss this issue further, but refer the reader to Holyer (1986). 

Definition 2 .1.2 
We say that a program variable x occurs free in an expression e, written 
x E e, if x occurs in e, and xis not bound by an enclosing 'A or let in e. 

Unlike most typing systems, we do not attach any meaning to expressions 
before typing, but only to typed expressions which are described in the 
following definition. Section 2.3 describes how many such typed expressions 
can be inferred from an expression, but section 2.7 will show that these typed 
expressions all, in some sense, represent the same value. We can therefore still 
speak about the meaning of an expression. 



51 

Definition 2 .1.3 
The typed expressions of our language result from attaching type information 
to all subexpressions of an expression, and are defined as follows : 

if xis a program variable and r is a type, then x: r is a limited 
typed expression. 
if xis a program variable, and t11 ••• , tn are types, type constructors, 
or type variables (referred to as the type parameters of x), and r is a 
type, thenx [tb···· tn]: ris a limited typed expression. 

• if cis a constant identifier and c E K (1C), then c : 1C is a limited 
typed expression. 

• if x is a program variable, e : r is a limited typed expression, and 1:' 
is a type, then (Ax : 1:'. e : r) : 1:' ~ -rand (Ax : 1:'. e : r) : 1:' -::J r 
are limited typed expressions. 

• if e : a1:'r and e': 1:' are limited typed expressions, where a is a type 
variable or type constructor of rank*, then (e : a1:'r) (e': 1:') : r is a 
limited typed expression. 

• if e : r is a limited typed expression and 1:' is a type, then ( e : 'Z') : 1:' 
is a limited typed expression. 

• a limited typed expression is a typed expression. 
• if x is a program variable, e : r is a limited typed expression, e' : 1:' 

is a typed expression, and a 1, ••• , an are type variables, then 
(let x = [ a 1 , •• , an] e : r in e' : 1:') : 1:' is a typed expression. 

We intend x: rto represent a program variable bound by an enclosing A, and 
x [ t] : rto represent a variable bound by an enclosing polymorphic let. The 
ti are the substituted bound variables of the polymorphic type scheme after 
generic instantiation, and 1' is the substituted type. For example : 

let x =[a] (Ay : a. y : a) : a~ a 
in (x [nat] :nat ---7 nat) (3 : nat) :nat 

where x has the type scheme\:::/ a. a~ a with generic instance nat~ nat, I1. 
This example corresponds to : 

(Aa.Ay: a. y) [nat] 3 



52 

in the second-order lambda calculus (Reynolds 1985). The variable x has a 
polymorphic value which takes a type parameter (in this case nat) which is 
substituted for a to obtain a A-abstraction which expects a further argument 
~in this case 3). 

We intend ( e : r) : r to represent the coercion of the expression e of type r to 
the corresponding expression of type r'. We will therefore require r $; 1:' for 
some subtype ordering <. The typed expression c : rc represents a constant 
identifier of type rc, while the two forms of A-abstraction are used to 
construct functions of the usual kind ( ~) as well as constant functions (:=J ). 

For application, we permit both kinds of functions, as well as functional types 
formed with type variables of rank *, but the argument type of the function 
must be equal to the type of the expression it is applied to. For example : 

((Ax: boo!. 3 : nat) : boo! :=J nat) (true : boo!) : nat 

Definition 2.1.4 
If e : r is a typed expression, we write untype (e: r) for the expression that 
results by removing all type information in the obvious way. For example : 

untype (((Ax: bool. 3 : nat) : bool :=J nat) (true : bool) : nat) 

= (Ax. 3) true 

Definition 2 .1.5 

We say that a program variable x occurs polymorphically free in e : r if 
there is an occurrence of the form x[ t] : 1:' which is not bound by an 
enclosing A or let, and that x occurs nonpolymorphically free if there is an 
occurrence of the form x : 1:' which is not bound by an enclosing A or let. 

It is clear that if x occurs free (polymorphically or nonpolymorphically) in 
e: r, then x E untype (e : r). 

This distinction between polymorphic and nonpolymorphic occurrences, 
mentioned previously in remark 1.11.2, will assist us in developing the type 
inference algorithm. 

Restriction 2 .1.6 

We now make some restrictions to typed expressions that ensure that program 
variables are used in a way that corresponds to their binding : 



53 

• in (Ax : r. e : r) : r :J r, x does not occur free in e : r 

in (1\.x : r. e : r) : r ~ r, x does not occur polymorphically free 
in e : r, and all nonpolymorphic free 
occurrences are of the form x : r. 

in (let x = [ a] e : rin e': r') : r, no program variable occurs 
nonpolymorphically free in 
e : r ore': r, and all 
polymorphic free occurrences 
of x in e' : rare of the form 

- --
x[ tf] : 'r£, where [ til a] r:::: 'ri 

We assume that in future all typed expressions satisfy these restrictions. This 
ensures that beta-reduction and let-reduction will be possible. 

Definition 2.1.7 
If S is a substitution, then for each typed expression e : r we define S(e : r) to 
be the application of the substitution S to all the types in e : r with the 
exception that : 

S((Ietx = [ a] e: rin e': r'): r') 
= (let x = [ a] e: rin S (e': r')) : Sr 

Proposition 2 .1.8 
If Sis a substitution, and e : r is a (limited) typed expression, then S(e : r) is a 
(limited) typed expression. 

Proof: By induction on the structure of e. 0 

2.2 Replacements and Replications 

To permit beta-reduction and let-reduction on typed expressions, we define 
the notions of replacement and replication. We will use these in section 2.5, 
when we define a rewrite-rule semantics. 



54 

Definition 2.2 .1 
We write a replacement as Q = [e1 : r 1/x1 : r 1, .•. , en : rn/Xn : rn] where each Xi 
is a program variable and each ei : 'ri is a limited typed expression. We define 
Q( e : r) only if all free occurrences of the Xi in e : rare nonpolymorphic and 
of the form Xi: '!'j, in which case Q(e : r) is the result of replacing all such 
occurrences by e i : '!'i. 

Definition 2.2.2 
If S is a substitution, we define : 

S [el : rdxl : rl,···· en : 'rn/Xn : rnJ 
= [S(e1 : r 1)/x1 : Sr1, ... , S(en : rn)lxn : Srn] 

Proposition 2.2 .3 
If Sis a substitution and Q is a replacement, then if S(Q(e : r)) is defined, then 
so is SQ(S (e : r)), and when they are both defined they have the same value. 

Proof: By induction. 0 

Definition 2.2 .4 
For the special case that Q = [(x1 : r'1): r 1/x1 : rl>···· (xn: r'n ):rn/Xn: 'rn] and 
A= {x1 : r1, ..• , Xm: rm} u A' is an assumption set, form~ n, we define: 

Clearly if r'i ~ri for each i, and A contains only types, then QA ~. This 
operation on assumption sets will become useful in section 3.1 when we 
attempt to 'unify' assumption sets. 

The following definition allows us to define let-reduction by replacing 
polymorphic program variables : 

Definition 2.2 .5 
We write a replication as Z = [[ a] e': r'//x] where xis a program variable 
and e': r' is a limited type expression. We define Z(e : r) only if all free 
occurrences of x in e : rare polymorphic and of the form x[ ti] : 'ri for some 

- --
tz, where [ til a]r' = '!'f. In this case Z(e : r) is the result of replacing each 

such occurrence by [ ti /a] (e': r'). 



55 

2..3 The Type Inference System 

/!Jefinition 2.3 .1 
We can now present the inference rules which define the legal typed 
expressions. An assertion of the form : 

A, ::::;, e 1-- e' : 1: 

indicates that e' : 1: is a legal typed expression obtained by type-annotating the 
e'xpression e, given the assumption set A and the subtype ordering::::;. The 
inference rules are as follows : 

FV AR x : V a : s.r E A 
SUBEN (S, s, L) = s' for some L 

SA, s', x 1--x [S a] : Sr 

VAR X: 1:E A 

A,s,x 1--x :r 

CONST c E K(n) 

A, s, c 1-- c: n 

AP A, s, e1 1-- e'1 : ar'r, where a::::; -7 

A, s, e2 1-- e'2 : 1:' 

lLESS A, s, e 1-- e' : 1: 

1: s 1:' 

A, s, e 1-- (e': 1:): 1:' 



56 

ABS Axu {x: r'}, ;:;, e ~e': r 

A,;:;, A.x.e ~ (Ax : r'.e': r) : r' ~ r 

ABS2 Ax,;:;, e l-- e': r 

A,::;, A.x.e ~ (Ax : r'.e': r) : r' =:J r 

LET A,::;, e1 l-- e'1 : r where A contains only type schemes 
gen (A,::;, r) = cr = '\! a: ::;•. r 
Ax u {x: (}}, s", e2 l--e'2: r' 

A, s", let x = e1 in e2 l-- (let x = [ a] e' 1 : r in e'2: r') : r' 

We require that in the AP, LESS, ABS and ABS2 niles the derivations of the 
antecedents involve limited typed expressions only, ie they cannot be derived 
using the LET rule. We can then prove the following proposition: 

Proposition 2.3 .2 
If A, ::;, e l-- e': r, then e': .r is a typed expression satisfying restriction 
2.1.6, such that untype ( e': r) =e. Furthermore, for each program variable 
x, if A(x) = r' then all free occurrences of x in e': r are nonpolymorphic and 
of the form x : r' ; if A (x) = '\! a : s'. r' then all free occurrences of x in 
e': r are polymorphic and of the form x[ tj] : r; where [ tj/ a]r' = Tj; and if 
x 9E A then x has no free occurrences in e' : r. 

Proof: By induction on derivations. 0 

Example 2.3 .3 
Consider the following expression, representing the increment 
function : 

.. A.x. plus x 1 

with the initial assumption set Ao given in section 1.11.5, and the primitive 
s-ubtype ordering IT. We derive a corresponding typed expression below, 
where we first define A 1 and ::;1 : 



57 

1 A 1 = Ao u {x: [3} 
2 ~1 = {IT, [nat~ a],[ a~ int], [[3 ~ a]} 

Note that we have: 

3 SUBEN (/D, [a~ int], nat~ a; f3 ~a)= ~1 

The derivation then proceeds as follows, where we indicate the rules and steps 
used at the right : 

4 A 1, ~b plus ~plus [a] : a---ta---t a 

5 Ab ~b X ~X: f3 
6 A 1, ~ 1, x ~ (x : fJ) : a 
7 Ab ~1,plusx ~(plus [a] :a---t a---t a) 

( (x : [3) : a) 
:a---t a 

8 A1, ~b 1 ~ 1 :nat 
9 A1, ~b 1 ~ (1: nat): a 
10 Ab ~1,plusx 1 ~ ((plus [a]: a---t a---t a) 

((x: [3) : a) 

11 Ao, ~b 4.plus x 1 ~ 

:a---t a) 
( (1 : nat ) : a) 

:a 

(Ax : [3. ((plus [a] : a---t a ---t a ) 
((x: [3) : a 

:a---ta) 
( (1 : nat ) : a) 

:a 
):{3---ta 

(PVAR,3) 
(VAR, 1) 

(LESS, 2, 5) 

(AP, 4, 6) 
(CONST) 

(LESS, 2, 8) 

(AP, 7, 9) 

(ABS, 1, 10) 

Thus we have derived the type f3 ---t a for the given expression, given the 
constraints nat ~ a, a~ int and f3 ~ a. We could also derive the types 
nat---tint, nat ---t a, int--+ atom, etc. The type we have derived is, however, 
the 'most general' (or principle) type in the sense that if: 

then 
and 

SUBEN (S, ~1, L) = ~2 for someS, L 
S ([3 ---t a) ~2 r 

(1) 
(2) 



58 

The algorithm we will outline in section 3.2 will infer this 'most general' type 
from the expression Ax. plus x 1. 

We can derive a better type than this 'most general' type, however. In section 
2.5 we will only give a semantics for typed expressions derived with the 
primitive subtype ordering n, ie with types 'r such that equation (1) above is 
S( ~1) =II and equation (2) isS ({3 ~ a) « 'r. The only such types are nat~ 
nat, nat~ int, nat~ atom, int ~ int and int ~atom, and of these nat~ nat 
and int ~ int are most general. We therefore assert that the 'best' type for 
the given expression is a~ a with the constraints nat~ a and a~ int. From 
this type we can derive nat ~ nat and int ~ int by instantiating a, and hence 
the other three types listed. We thus have the property that if 

Ao, II, Ax. plus x 1 ~ e : r 

then Sa E {nat, int} and S(a ~a)« rfor someS 

In sections 3.3 to 3.6 we will show how such a 'best' type can be derived. 

Example 2.3.4 
As a slightly more complex example, consider the expression below, 
representing an infinite list of 1 's : 

• fix (Ax. cons 1 x) 

We define A 1 in this example by : 

1 A1=Aou{x:lista} 

We also define ~ 1 by : 
2 ~ 1 = {II, [nat ~ a] } 

The derivation then proceeds as follows : 
3 Ab ~1, cons ~cons [a]: a~ list a~ list a (PVAR, 2) 
4 A b ::;b 1 ~ (1 : nat) : a (CONST, LESS, 2) 
5 A1, ::;b cons 1 ~(cons [a]: a~ list a~ list a) 

((1: nat) : a) 
: list a~ list a 

6 Ab ::;b x ~x: list a 

(AP, 3, 4) 
(VAR) 



59 

7 Ao, :s;l, Ax. cons 1 x ~ 
(Ax: list a. ((cons [a] : a ---7list a ---7list a) 

((1: nat) : a) 
: list a ---7list a) 
(x: list a) 
:list a 

) :list a ---7 list a (AP, 5, 6, ABS, 1) 
Ao, :s;l,fix f- fzx [list a]: (list a ~list a)~ list a (PVAR) 
Ao, :s;l,fzx (Ax. cons 1 x) ~ 

(fix [list a]: (list a~ list a) ~list a) 
((Ax: list a. ((cons [a] : a~ list a~ list a) 

((1: nat): a) 

:list a 

: list a ~ list a) 
(x: list a) 
:list a 

) : list a -> list a) 
(AP, 7, 8) 

Thus we have derived the type list a for the given expression, wi.th the 
constraint nat :s; a. This is the most general type. We could also derive the 
types list nat, list int and list atom for this example, and it is clear that the 
'best' type is list nat. We will return to this example in examples 3.2.8 and 
3.6.7 to demonstrate the action of our type inference algorithms. 

Remark 2.3.5 

We have used fix as the only way of obtaining recursion. A letrec construct 
would be a more natural way of expressing recursive definitions, but has 
some problems associated with it (Mycroft 1984). The section by Hancock in 
Peyton-Jones (1987) describes a type discipline using letrec that avoids these 
:problems, which is equivalent to the use of fix. 



60 

2.4 Derived Inference Rules 

We now extend the inference system of the previous section with some 
derived rules which will be useful in our inference algorithm. In previous 
work (Dekker 1987) some of these rules appeared as part of the inference 
system itself. 

Proposition 2.4.1 
The following rule is valid : 

S·UBA A' < I ' . _, e r- e . -r 
where A' c A contains only type schemes and S is any substitution 

SA, ~' e f- e' : -r 

Proof: By induction, since SA'= A'. 0 

Proposition 2.4.2 
The following rule is valid : 

SUBEN A ~' e [--- e' : -r 
SUBEN (S, ~' L) = ~· 

SA,~·, e [--- S(e': -r) 

Proof: By induction. For the PVAR case we use corollaries 1.10.19 and 
1.10.20 with definition 1.10.21. For the LET case we use SUBA for the first 
antecedent and the induction hypothesis for the second, the result following by 
definition 2.1. 7. The other cases are trivial. 0 

We note that by corollaries 1.10.19 and 1.10.20 any sequence of 
APPL YSUBST and ENRICH operations can be combined into one SUBEN 
operation. We thus have the following corollaries : 

Corollary 2.4.3 
The following rule is valid as a special case of SUBEN : 



61 

ENRICH A < I '· , _, e r-- e . r 
ENRICH(:::;, L) = ~·, S 

SA,~', e ~ S(e': r) 

Corollary 2.4.4 
The following rule is valid as a special case of SUBEN : 

SUBST A,~' e ~ e': r 
APPL YSUBST (S, :::;) = :::;', RS 

RSA, :::;', e ~ RS(e': r) 

We now turn our attention to adding program variables to assumption sets. 

Proposition 2.4 .5 
The following rule is valid : 

ASSUMPN A, :::;, e ~ e' : r 
A'= {xi : ab ... , xn : an} 
where A' is disjoint from A and the ai are 
not used in the above derivation 

A uA', :::;, e ~ e': r 

Proof: By induction. 0 

Corollary 2.4.6 
The following rule is valid : 

,, 

ASSUMP A,~' e ~e': r 
A' is disjoint from A and contains only types 

A A' < I I. u , _, e r- e . r 

Proof: By ASSUMPN and SUBST. 0 

\Ve note that in this rule, if A contains only types, then trivially Au A':::; A. 
The following proposition gives a corresponding result for adding type 
schemes: 



62 

Proposition 2.4 .7 
The following rule is valid : 

ASSUMPS A, ::::;, e 1- e' : 'r 

A' is disjoint from A and contains only type schemes 

Au A',::::;, e 1- e': r 

Proof: By induction. 0 

Proposition 2 .4"8 
The following rule is valid, and the given replacement is defined : 

REPLACE A, ::::;, e 1- e': r 
for 1::::; i::::; n, r'i::::; 'ri and xi €:: A or A(xi) = 'ri 
Q = [xi : r' I : r1 I XI : ri , ... , Xn : r' n : rn I Xn : rn] 

QA, ::::;, e 1- e": r 

Proof: By induction, using definitions 2.2.1 and 2.2.4, and proposition 2.3.2. 
Essentially uses of V AR for the Xi are replaced by V AR and LESS. 0 

We note that if A contains only types then QA::::; A. This property will be 
useful in section 3.2. The final derived rule is the most complex, but is also 
useful in section 3.2. 

Proposition 2 .4.9 
The following rule is valid, showing that we can always perform a derivation 
using a more general type scheme : 

REPLACES Ax u {x: ai}, ::::;, e 1- e': r 

al = V a : ::::;1· rl 
a2 = V /3: ::::;2· r2 
where f3 is a vector of previously unused type variables, 
SUBEN (S, ::::;2, L) =:::;I, Dom (S) c [3, 
and Sr2 ::;I ri 



63 

Proof: By induction, using corollaries 1.10.19 and 1.10.20, definition 
1.10.21, the LESS rule, and the fact that SAx =Ax for the PVAR case. The 
Qther cases are trivial. 0 

This last, fairly complex, rule will be used in the proof of completeness for 
our inference algorithm. 

2.5 A Rewrite - Rule Semantics 

We are now in a position to give an operational semantics for a subset of legal 
typed expressions. In particular, we give a semantics for typed expressions 
e' : r such that : 

Ao, TI, e f.- e' : r 

We provide a set of rewrite rules that is non-ambiguous and left-linear .in the 
sense ofKlop (1980), and hence has the Church-Rosser and Unique Normal 
Form properties. However, we first make a further restriction to typed 
expressions : 

Restriction 2.5.1 
For the remainder of section 2, we assume that no program variable in A0 

{ie pair,fst, etc) is bound by a A or let, or occurs nonpolymorphically free. 
In other words, these program variables only occur polymorphically free in 
typed expressions. 

The restriction simplifies the rewrite rules, since we can treat program 
variables in A0 as constants. If necessary, program variables can be renamed 
to ensure that the restriction is satisfied. In the interests of readability, we 
make the following notational convention : 

Convention 2 .5.2 
When writing typed expressions, we will omit some type information where 
the context makes this unambiguous. For example, instead of : 

((plus [nat] : nat -7 nat -7 nat) (n : nat) :nat -7 nat (m : nat) :nat 
we will write : 

plus (n : nat) (m : nat) : nat 



64 

$~nee we do not permit plus to occur nonpolymorphically and since the types 
of the arguments and of the result uniquely determine the omitted type 
iinformation, no ambiguity can result. 

liJefinition 2.53 
We define a program to be a typed expression e' : -r such that : 

Ao, TI, e 1- e' : -r 

As stated above, these are the typed expressions for which we give a 
semantics. We have the following property of programs: 

Proposition 2 .5.4 
If e: -ris a program then for each subexpression e': r of e: -r, 

A <,, 1,,...1 , _, e r-- e . " 
where each program variable in A not in A0 is bound by an enclosing A. or 
let, and each type variable in:$ is bound by an enclosing [ a] in a let 
expression. In particular if e' : r does not occur inside the first part of an 
enclosing let, then : 

A, TI, e" !-e': r 

Proof: by induction on derivations, using proposition 2.3.2. 0 

Corollary 2.5.5 
If x[ t] : -r is a polymorphic occurrence of a program variable in a program, 
not occurring inside the first part of an enclosing let, then t is ground. 

Proof: By the type inference rule PV AR and the fact that the subtype 
0rdering in a type scheme contains all bound variables (definition 1.11.1). 0 

Definition 2.5.6 
We define a reduction relation:=::} on programs by the rewrite niles in 
Table 1, which appears as an appendix. All rules have the form e : -r :=::} e' : -r. 
We say that a typed expression is a redex if it is an instance of the left hand 
side of a rule and we say that a program is in normal form if it contains no 
nedexes. 

Remark 2.5 .7 
We make the following comments on the rules in Table 1 : 



65 

1~: Note that there are separate rewrite rules for plus[nat] andplus[int], 
but the difference in types ensures that these rules do not interfere. 
Furthermore, plus commutes with the coercion from nat to int, 
specified by rule 20, ie : 

plus(n : nat : int) (m : nat : int) : int :=} n + m : int 
plus(n :nat) (m: nat) :nat: int :=} n + m : int 

In the general case, with types such as real and complex, the rules 
for plus would differ significantly, and commutativity would be 
more difficult to prove. In fact, in many acutal machines, 
commutativity of plus over int and real does not hold. The former 
Burroughs B6000!7000 series (Organick, 1973) is an exception in 
this respect. 

]6: The rule for fix allows recursion, and results in the possibility of 
infinite reduction sequences. 

17,18: As for plus, there are two rewrite rules for function application, the· 
first for constant functions, and the second the usual 
beta-substitution rule using replacements (definition 2.2.1). Note 
that by proposition 2.3.2.the replacement is defined, and replaces all 
free occurrences of x in e1 by e2. Application commutes with the 
coercion from constant functions to general functions, specified by 
rule 31, ie : 

((Ax : 1:. e 1 : r') : r:J r' : 1: ~ r' )( e2 : 1:) : r' :=} e 1 : r' 
((Ax: 1:. e1 : r'): r:J r') (e2: 1:): r' :=} e1 : r' 

since if the type inference rule ABS2 is applicable in the first 
example, giving the type 1: ~ r' , x does not occur free in e 1· 

If we included other functional type constructors, there would be 
other, more complex, rules for application. For example, finite 
database functions would use table lookup rather than 
beta-substitution. Strict functions would use beta-substitution, but in 
a parallel implementation (Peyton Jones, 1987), applications of the 
form: 

(e1 : 81:r') (e2 : 1:) : r' 
where 8 is the strict-function type constructor would be flagged to 
reduce e1 and e2 in parallel. For both finite database functions and 
strict functions, application would commute with coercion as for 
constant functions above. 



66 

19: The reduction rule for let is defined using replications, (definition 
2.2.5). Note that by proposition 2.3.2 the replication is defined, and 

- --
replaces each free occurrence x[ ti] in e2 by [ t/ a]e1. 

20-33: These rules define coercion rewrites on programs of the form 
e : r : r where r « r and e : r is not a redex . Rule 20 is justified by 
the restriction from definition 1.3.11hat K(p) is contained in K(rc) 

whenever p « TC. We can thus coerce n : nat : int to n : int. In the 
general case we would have more complex coercions such as int to 
real and real to complex. 

Rules 22 and 24 implement our example of a coercion between type 
constructors of rank 1, ie optional to list, while rule 31 implerpents 
our example of a coercion between type constructors of rank *, 
ie::) to~. The oilier rules allow coercions between structured 
types. Rule 32 is justified by the antimonotonicity of type 
constructors of rank *, and uses a replacement to apply a coercion 
to the argument of a function. By proposition 2.3.2 the replacement 
is defined and replaces all free occunences of x in e by x : r 1· The 
family of rules 33 creates abstractions to provide the same effect. 

34-48: These rules define the equality function eq. Note that this is defined 
only on basic ground types, but by corollary 2.5.5 and the type 
scheme for eq, all occurrences of eq in a program will be of the 
form eq[ -r], where r is a basic ground type. 

We will now show that our reduction rules map programs to programs, and 
that type information is preserved. This gives us a semantic soundness result. 
First we prove a number of lemmas : 

Lemma2.5.8 

ff Ax u {x: -r}, ~' e ~ e': r 
and A,~' e1 ~e' 1: 'r 

then A,~' [e1/x]e ~ [e' 1 : r /x: r] (e': r) 

Proof: By induction on the first derivation, replacing appropriate uses of the 
V AR rule by the second derivation. 0 



67 

Lemma2.5.9 
If A,~·, let x = e1 in e2 1-- (let x = [ a] e'1 : Tin e'2 : '() : r 
then A,~·, [e1/x] e2 1-- [[ a] e'1 : r 1/x] (e'2: '() 

Proof: By considering how the first derivation is obtained using the LET rule 
from derivations for e1 and e2. We use induction on the derivation of e2, 
replacing appropriate uses of the PV AR rule by the derived inference rule 
SUBEN applied to the derivation for e1. 0 

Lemma 2.5.10 

If A,~' (Ax.e) 1-- (A.x: r1. e': 'r2): r1 ~ r2: r1 ~ 'l"2 

then A,~' (Ax.e) 1-- (Ax: 'rl.[X: rl: 'rl/X: 'rl ]e: 'r2: r2) :rl ~ r2 

Proof: The first derivation uses ABS followed by LESS. This can be 
replaced by the derived inference rule REPLACE, followed by LESS and 
ABS.O 

We can now prove our semantic soundness theorem : 

Therorem 2.5 .11 
For each reduction rule e : 'r => e' : r in Table 1, 
if A,~' untype (e: r) 1-- e: r 

then A, ~, untype (e' : r) 1-- e' : r 
and hence programs rewrite to programs. 

(1) 

(2) 

Proof: The first part is by cases, using lemmas 2.5.8, 2.5.9, and 2.5.10 for 
the most difficult cases. For the second part, we note that a redex inside a 
program has a derivation of the form (1), and so after applying a single 
rewrite rule, we can replace the derivation (1) by a derivation of the form 
(2). We can then use induction on the number of applications of rewrite 
rules. 0 



68 

2 .. 6 A Church-Rosser Result 

To show that our reduction relation indeed defines a semantics for programs, 
we must show that the rules in Table 1 are Church-Rosser. A program will 
then have a unique value, which is the possibly infinite Bohm tree obtained by 
reducing all redexes, and replacing by the symbol j_ terms which do not have 
a weak head normal form (Peyton Jones 1987, Chapter 11). We will first 
simplify rule 19, which involves replication: 

Proposition 2 .6.1 

If rule19 in Table 1 is replaced by the pair of rules : 
- -

19A (letx= [ a] e1: rin e2: T): r'=> [[ a] q: r//x] ( e2: T) 

19B [ a] (e: r) [ t] : r' => ([ t/ a] e): r' 

where rule 19A uses a substitution of terms for program variables, and typed 
expressions are extended to include the syntax on the left-hand side of rule 
19B, then if e: r=> e': rusing rules 1-48, then e: r=> e': rusing the 
modified rules. Furthermore, the original set of rules is Church~Rosser if the 
modified set of rules is Church-Rosser. 

Proof: The first part is by definition 2.2.5 and proposition 2.3.2. For the 
second part, note that 19B-redexes are only created by rule 19 A, and only 
rewritten by rule 19B. Then (using M, N, P, Q R for typed expressions), 
if M =>Nand M => P by rules 1-48, then M => N => Q =>Rand 
M => P => Q => R where R contains no 19B-redexes. Also there are 
reductions N => R and P => R in which each use of rule 19 A is followed by 
sufficient uses of nile 19B to remove all19B-redexes, and these correspond to 
Feductions using rule 19. 0 

We prove the Church-Rosser property for the modified (and hence for the 
<Original) rules by defining a Combinatory Reduction System in the sense of 
Klop (1980), which is isomorphic to the reduction system defined by the 
modified rules. 



69 

Definition 2.6.2 
We defme the function Tr on typed expressions as follows, where Coerce, Let 
and Poly are new constants, and [x] represents variable binding : 

1!r (x: r) = x 
Tr (x [ t] : r) = x t 

Tr (c : 1r) = c n 
Tr ((A.x: r. e : r) a rr) =a r ([x] Tr (e : r)) 
T'r ((e :a rr) (e': r') : r) = (Tr (e : a rr)) (Tr (e': '()) 
Tr(e : r: r) =Coerce r r' (Tr (e : -r)) 
Tr ((let x = [ a] e: rin e': r) : r') =Let ([ a] Tr (e : r)) ([x] Tr (e': r')) 

- - -
Tr ([ a] (e : r) [ t] : r') =Poly ([ a] Tr (e : r)) t 

- -
Tr ([ a] (e: -r)) =Poly ([ a] Tr (e : r)) 

Applying Tr to both sides of the modified rewrite rules gives us a new set of 
rewrite rules. We express the substitutions in rules 18, 19A, 19B and 32 by 
using curly brackets, as in Klop (1980). Some of the translated rules are : 

14 fst ( r r') (pair ( r r) el e2) => el 
18 ~-r([x]el {x})e2=>e1 {e2} 
19A Let ([ a] e1 { a}) ([x] e2 {x}) => e2 {Poly ([ a] e1 { a})} 

- - - -
19B Poly ([ a] e { a}) t => e{ t} 

32 Coerce (rl ~ r2) (r1 ~ r2) ( ~ r1 [x] e {x})) 
=> ~ r1 [x] Coerce r2 r2 e {Coerce r1 r1 x}) 

Note that the translated rules 1, 2, 3, 20, 34, 35 specify families of rewrite 
rules. 

Proposition 2 .6.3 
0 

Wor each translated rewrite rule E => E' : 
• E begins with a constant (where program variables in Ao, such as fst, are 

treated as constants) . 
• , all metavariables e, ei, r, 'ri in E' occur already in E . 
• , if a metavariable e has arguments in curly brackets then it has the same 

number of arguments in E and E', and the arguments in E are distinct 
variables (type variables or program variables) . 

• , all variables (type variables or program variables) in E and E' are 
bound . 

• , no metavariable e in E occurs as a subterrn eE", e{x}E" ore{ a}E". 



70 

the only metavariables that occur twice in E and E' are metavariables 
corresponding to types, and these can be renamed to be distinct without 
altering the class of terms that can be rewritten by the rule. 

no left-hand side of a rule can be unified with a subtenn of E, apart from 
the trivial cases of E unifying with itself, or any left-hand side unifying 
with a metavariable. 

Hence defmition 2.6.2 specifies a regular Combinatory Reduction System in 
the sense ofKlop (1980, definition II.1.11, II.l.14 and II.l.16). 

Proof: By inspection. The sixth case uses the fact that we are dealing only 
with terms that result from applying Tr to subexpressions of programs. 0 

Corollary 2.6.4 
The reduction system in definition 2.6.2 is Church-Rosser. 

Proof: By theorem II.3.11 in Klop (1980). 0 

Proposition 2 .6.5 
There is a function Trl such that for each program e: r, 
T,-l (Tr (e : r )) = e : r, and e : r => e': rusing the modified rules or 
proposition 2.6.1 if and only if Tr ( e : r) => Tr (e' : r) using the rules of 
definition 2.6.2. 

Proof: The function Trl can be easily constructed using definition 2.6.2 and 
the type inference rules. 0 

Corollary 2.6.6 
The modified reduction system of proposition 2.6.1 is Church-Rosser, and 
hence so is the reduction system of Table 1. 

2.7 Weak Head Normal Form and Bohm Trees 

We now return to the concept of Bohm tree introduced previously. The 
concept is discussed briefly in Klop (1980, Intennezzoiii.2), and in detail in 
Barendregt (1984, Chapter 10) for the case of the pure Lambda Calculus. 



71 

Definition 2 .7.1 

We say that a typed expressionM = e: !'has weak head normal forms (whnfs) 

if there is a typed expression N = P{Qb···· Qn} such that M ~ N, and 
N ~ N' implies thatN' = P{Q'1, ... , Q'nL and for all Rb ... , Rn in normal 
form, P { R 1 , ... , R n} is also in normal form. We also say that N and N' are 
weak head normal forms (whnfs) of M, and thatN andN' are in whnf. 

Example 2.7.2 

• All normal forms are in whnf. 
.. 0!' = (fix ( (A.x: !'.X : -r) : 'r ~ -r)) : 't has no whnf, 

since Or ~ (A.x: r.x : 'r) 0-r ~ Or 
• (pair Or 0-r): -rx -ris in whnf, since pair M N is never a redex. 
• (add Onat Onat) : nat has no whnf, since, for example, 

(add (3 : nat) (3 : nat)) : nat is not in normal form 
• (Onat : int) has no whnf, since (3 : nat : int) is not in normal form 

Definition 2.73 

If M = e : r is a typed expression, then we define the Bohm tree of M by : 
• BT (M) = l.. : r if M does not have whnfs 
• BT(M) =P{BT(Q1), .... ,BT(Qn)} 

if P{Q1, ... , Qn} is a whnf of M 

It is clear, by the Church-Rosser property proved in the previous section, that 
the process of producing a Bohm tree gives a unique result. The Bohm tree 
may be finite or infinite. The following proposition characterises Bohm trees 
of programs : 

Proposition 2. 7.4 

]f M = e : r is a program, then BT(M) has one of the following forms : 
l..:r 
c: rc 
(Ax : r'.Q) : r' ~ r'' 
(A.x : r'.Q) : r' :J r'' 

Y Q1··· Qn: !' 
where n =: 0, y E {absent, nil,fst, snd,fix, neg} 
or n ~ l,y E {inl, inr,present,plus, and ,eq} 
or n ~ 2, y E {pair, cons, case, !choose, ochoose, cond} 

Proof: By induction on the derivation of programs, each whnf must be of the 
:indicated form. 0 



72 

Some examples of Bohm trees follow : 

Example 2 .7.5 
"' BT (!11:) = .l : 1: 
... BT (M), if M is in normal form 
'"' BT (fix( (Ax- : list nat. cons (1 : nat) (x : list nat) : list nat) : 

list nat ~ list nat) : list nat) 

=cons (1 : nat) (cons (1 : nat) ( ... ) : list nat) : list nat 

The Bohm tree BT(M) can be viewed as the meaning or value of the program 
M. However, more natural for our purposes is to take the value of a program 
to be an equivalence class of Bohm trees modulo extensional equality. This 
ensures that functions with the same effect will be viewed as having the same 
value. Before we can define such an equality, however, we must define 
application on Bohm trees. 

Definition 2. 7.6 

We define the typed expression E(M) corresponding to a finite Bohm tree M 
by replacing each subtree of the form .l : 1: by !11:. For infinite Bohm trees 
M we define the nth approximation Mn by replacing all subtrees at depth n by 
.l. We write M c N if M is the tree resulting by replacing zero or more 
subtrees Mi : 1:i of N by .l: 1:i. 

Proposition 2 .7.7 
For all Bohm trees M, M = Un 2:: o Mn, where the union is the obvious one 
with M u N = N if M c N. Furthermore, for finite Bohm trees, 
BT(E(M)) = M. 

Proof: By definitions 2.7.3 and 2.7.6. 0 

Definition 2. 7.8 

We define application of Bohm trees M and N by 
MN = Un 2:: o BT (E(Mn) E(Mn)), ie as the limit of application of 
approximations. 

Proposition 2. 7.9 

The limit in definition 2.7.8 exists, and furthermore, application is 
continuous. 



73 

Proof: As in section 10.2, 14.3 and 18.3 ofBarendregt (1984). This material 
generalizes readily. For example, in Dekker (1988) we apply it to 
combinatory logic. fu particular, we can distinguish the Bohm trees l. : 'r' ----7 'r 

and (Ax : r. l. : 'r) : r ---7- 1' without problems, and indeed in this respect we 
resemble combinatory logic, where l. and Kl. are distinct. 

An alternative proof would be by translating programs (or more easily, the 
translated programs of proposition 2.6.2) to the pure lambda calculus, as in 
Kazmierczak (1989). To perform this translation, we note that let-redexes 
can be reduced as part of the translation process, and that there are functions 
which perform the coercions defined by reduction rules 20-33, and the 
equalities defined by reduction rules 34-48. C<?ntinuity of Bohm tree 
application would then follow by fixpoint induction. 0 

Definition 2. 7.10 
We define extensional equality on Bohm trees as follows. For each type -rwe 
define an equivalence relation =ext by the transitive, symmetric, reflexive 
closure of the following equalities : 

• if Mi =ext Ni then P{MI··· Mn} =ext P{NI··Nn} 
• if MQ =ext NQ for all closed Bohm trees Q thenM =ext N 

Remark 2.7.11 
For each type -r, the set of values V ( -r) referred to in section 1.1 is the set of 
Bohm trees of type -r, modulo =ext· For example : 

V(nat) = {[1.: nat], [0: nat], [1: nat], ... } 
consists only of one-element equivlence classes, while for functional types we 
have more complex equivalence classes : 

V(nat ----7 nat)= ( [1.: nat ----7 nat, (Ax: nat.l.: nat) :nat ----7 nat, ... ], 
[(Ax: nat. 0 : nat) : nat ----7 nat, ... ], 
... } 

To prove properties of Bohm trees, we will use noetherian induction on finite 
Bohm trees, and use fixpoint induction to extend the result to infinite Bohrn 
trees. The latter technique is valid because application of Bohm trees is 
continuous. The former technique uses the following inequality relation: 



74 

Definition 2 .7.12 

We say that a Bohm tree e: ris simpler than a Bohm tree e': r' if: 

• I r I < I r' I or 
• I r I :::; I r' I and e : r is a subtree of e' : r' 

where I rl is the length of r (definition 1.4.1). 

Proposition 2 .7.13 
For finite Bohm trees, the relation simpler than is a partial order with no 
infinite descending chains. 

Proof: Antisymmetry, transitivity and reflexitivity are trivial, and all 
descending chains clearly terminate with Bohm trees of constant or variable 
types. 0 

2.8 Properties of Bohm Trees 

We now use the proof technique outlined in the previous section to prove 
some properties of Bohm trees of programs. Our first proposition and 
corollary show that coercions produce a unique result : 

Proposition 2.8.1 
For programs e : r that have finite Bohm trees, 
• BT ( e : r) =ext BT ( e : r: r) 
• BT (e : r: r'') =ext BT ( e : r: r': r'') 

Proof: By noetherian induction (on the relation simpler than) on BT (e: r), 
using proposition 2.7 .4. The most difficult case is 

M = (Ax: r1. e : r2) : r1 ~ r2. We haveN= (A.x : r1 [x : r1 : r1 /x: r1 ] 
e : r2 : r2) : r1 --t r2. Let P = e': r1, and by induction hypothesis 
(since I r1 I< I r1 --t r2 1), BT (e': r1 : r1 ) = BT (e': r1 ), similarly 
MP =ext NP, so M =ext N. The other equality is proved similarly. 0 

Corollary 2.8.2 
The equalities in the above proposition also hold for infinite Bohm trees. 

Proof: By fixpoint induction. 0 



75 

The following proposition and corollary show that coercion is injective on 
basic types, and hence that the equality operator commutes with coercions : 

Proposition 2.8 .3 
For programs e : r, e' : 1: that have finite Bohm trees, with r a basic ground 
type, 
• BT ( e : r) = BT ( e I : r) if 

BT ( e : T : r ) = BT ( e I : T : r) 

Proof: By noetherian induction (on the relation simpler than) on BT (e: r ), 

using proposition 2.7 .4. 0 

Corollary 2 .8.4 
The above proposition also holds for infinite Bohm trees. 

Proof: By fixpoint induction. 0 

The next proposition shows that application commutes with coercions on 
functions. 

Proposition 2 .8.5 
For all programs e : arr', with a« b, a, bE {:.:::>, -t}, and -r' « -r" 
• BT ((e : arr': brr') (e': r) : r'') 

=ext BT ((e : arr') (e': r) : r': 7:'1

) 

Proof: By cases on BT (e : arr'), using corollary 2.8.2. 0 

We are now in a position to prove the last result required in section 1.2, 
namely that coercions commute with polymorphic operations. 

Theorem 2.8.6 

If (y : V a : ~. r) E Ao, and r = r1 -t ... -t Tn -t Tn+ 1 and 
Sr= r'1 -t ... -t r'n -t 7:', Rr= r' 11 -t ... -t r''n -t r'' and r'i « r''i, 

r « r'', S(~) = R(~) = TI, then : 
• BT (y (el: 1:'1) ... (en: r'n): r': r'') 

=ext BT (y (el: r'1 : r'' 1) ···(en :r'n :r'' n): r'') 



76 

Proof: By cases for each y E Ao and n :::; 0, using corollary 2.8.4 for the case 
of eq, and proposition 2.8.5 for ochoose, lchoose and case. For plus we use 
simple case analysis on the arguments, which must have fmite Bohm trees, and 
for absent, present, nil, cons, inl, inr and pair we use rewrite rules 21-29. 
The cases cond,fst and snd are trivial, while neg, and and fix must have 
Sr= R1:, and follow by corollary 2.8.2. 0 

Remark 2.8 .7 
Theorem 2.8.6, together with corollary 2.8.2, justifies the fact that our type 
inference rules can introduce coercions in different places when typing an 
expression. If, for example Ao, 11, e ~ e' : 1: and Ao, 11, e ~ e" : 1:, then 
e' : 1: and e" : 1: will differ only in type information and coercions introduced, 
and we conjecture that, in this case, BT (e': 1:) =ext BT (e": 1:). 

In the next section we describe an algorithm TYPE, such that 
TYPE(Ao, e)= e': 1:, :::;, {} and Ao, ::::;, e ~ e': 1: for all e from which a 
program can be derived using the type inference rules. The typed expression 
e' : 1: will be the 'best' typed expression that can be derived from e, but since 
we will have in general :::; =t 11, we have no semantics for e : 1:. However, we 
can 'compile' this typed expression by finding a substitution S which satisfies 
~' ie S(::s;) = 11. The typed expressionS (e': 1:) is then a program, and has a 
semantics. For example, consider : 

(A.x : a. plus (x: a) (1 : nat : a) : a) (3 :nat: a) : a: int 

with nat:::; a:::; int. By choosing either a= nat or a= int, we choose a 
rewrite rule for plus, and we choose particular rewrites for the coercions. 
Because of the commutativity of plus with the coercion from nat to int, we 
obtain the same result (4 : int) in either case. Thus, although 'compilation' is 
not deterministic, depending on the choice of a substitution satisfying the 
given subtype ordering, the final result is independent of that choice. 



77 

3 ALGORITHMS 

We now present two type inference algorithms for the type inference system 
outlined in section 2.3. The algorithms operate by passing inwards a set of 
type schemes for polymorphic program variables as in Damas and Milner 
(1982), but returning outwards a set of types for nonpolymorphic program 
variables as in Mitchell (1984). The combination of the two approaches, 
together with the restriction from section 1.11 that type schemes be closed, 
allows us to combine subtypes and polymorphism. 

Section 3.1 describes two subroutines, A UNIFY and ARROW, which are used 
in the type inference algorithms. The first of these takes a subtype ordering::::;;, 
and two assumption sets A 1 and A2, and 'unifies' them by returning a minimal 
pair ::::;;', S and an assumption set A such that A ::::;;' SA 1 and A $;' SA2. Two 
replacements are also returned which coerce program variables from the types 
in A to the types in SA 1 or SA2. The subroutine ARROW takes two types and 
a subtype ordering, and returns a minimal pair ~·, S such that applying the 
substitution to the first type gives a functional type, and applying the 
substitution to the second type gives a type coercible to the argument type of 
the function. The functional type is also returned. In section 3.2 we give a 
naive type inference algorithm using these subroutines, prove that it is sound 
and complete, and give examples of its behaviour. 

In section 3.3 we define a standardisation of a subtype ordering::::;; to be a pair 
::::;;', S which is generated from ::::;; by APPL YSUBST and ENRICH, such that all 
atomic substitutions R which satisfy ::::;; (by consistently mapping type variables 
to type constructors) have the form R'S where R' satisfies$;'. We provide 
standardisation rules, and give an algorithm STANDARDISE which computes 
the unique maximal application of standardisation rules to a subtype ordering. 
Section 3.4 uses standardisations to obtain an algorithm which computes a 
substitution satisfying any subtype ordering, and shows how this can be viewed 
as a kind of abstract compilation. 

Section 3.5 defines simplifications which extend standardisations. The 
requirement that any R satisfying::::;; has the form R'S is relaxed, and instead we 
require that R'Sr coerces toRr for some fixed type r. We give four 
simplification rules (EQUP, EQDOWN, MOVEUP and MOVEDOWN), and 
discuss the benefits and disadvantages of the last two of these. We then give an 
algorithm SIMPLIFY which computes the unique (up to renaming) maximal 
application of EQUP and EQDOWN to a subtype ordering. 



78 

An improved type inference algorithm is given in section 3.6, which uses 
STANDARDISE and SIMPLIFY to reduce the size of intermediate subtype 
orderings. We show this improved algorithm is sound and complete. A 
number of examples demonstrate how the size of intermediate subtype 
e>rderings is kept manageable, and how the final subtype ordering typically 
cmntains at most one type variable. Section 3.7 discusses efficiency of the 
algorithm in more detail. 

J .. l Type Inference Subroutines 

<Dur first subroutine is for 'unifying' assumption sets. During type inference, 
we may infer a typed expression e1 :r1 together with the assumption {x: r I}, 
and infer e2 :r2 with the assumption {x: Y2}. To handle an expression which 
has ei :ri and e2 :r2 as subexpressions, we require a single assumption {x: r} 
with r ~ r' I' r ~ r 2 for some ~' and two replacements [x : -t : r 1 /x : r I]' 
[x: r: Y2 /x : r2]which we can apply to ei :r1 and e2 :r2 to ensure that all 
occurrences of x have the form x : r. The subroutine A UNIFY takes two 
assumption sets A 1 and A 2' and splits each of these into three parts. We then 
obtain one pair of identical assumption sets, one pair of assumption sets with 
the same domain, and one disjoint pair. For the second pair we then construct 
'lower bounds' for the two types assigned to each program variable Xi· 

Definition 3 .1.1 
Let~ be a subtype ordering, andA1, A2 be two assumption sets containing 
only types. Then we define: 

AUNIFY (Ab A2, ~)=X, S, A, Qb Q2 
where A1 =A'uA'1 uA"1 

A2 =A'uA'2 uA"2 
A'1 = {x1 : rb .. , xn: rn} 
A'2 ={XI: rb .. ,Xn: Yn} 
A',A'],A"J,A"2 are pairwise disjoint 

and /3r, ... , f3n are previously unused type variables 

L = f3l ~ r1; /31 ~ ri; ... ; f3n ~ rn; f3n ~ r'n 
X, S =ENRICH (~, L) 

A= SA' u {xi : Sf3I, ... , xn : Sf3n } u SA"1 u SA"2 
QI = [xi : S/31 : Sr1/x1 : Sr1, ... ,xn : Sf3n : Srn /xn : Srn] 
Q2 =[xi: S/31: Sr1/x1: Srb ... ,xn: Sf3n : Srn /xn: S-tn J 

Note that A= Ql SA1 u SA"2 = Q2 SA2 u SA"1 and by definition 1.11.4, 



79 

X= '5.',A '5:' SAt and A<' SAz. 

Proposition 3 .1.2 
If A UNIFY (Ab Az, '5.)= '5:', S, A, Qb Qz then Sis an expansion, and '5:', Sis 
minimal such that Sf3i <'Sri and Sf3i '5.' Sri for each i, and for r,r, r '5: r 
implies Sr-5:' Sr. Furthermore, if SUBEN (R, '5:, L ') = '5:" and A' '5:" RA1, 
A' '5." RAz, then R = S'S, SUBEN (S', '5:', L") = '5:" for some L', and 

A I '5," S'A. 

Proof: From definition 1.10.13 ENRICH ('5:, L) is constructed by MATCH2, 
APPLYSUBST, ORDERSET and UNION, and the UNION operation adds to '5: 
only pairs of inequalities of the form a '5: a, a '5: b or a '5: a, b '5: a where a is 
an otherwise unused type variable. Thus no cycles result, and S is an 
expansion. The second part follows from theorem 1.10.14. The third part 
follows from minimality .0 

Proposition 3 .1.3 
If B uAb '5:, e1 ~e'1: -r1 

B u Az, '5:, ez ~ e'z : rz 
B contains only type schemes, A1, Az only types 

and A UNIFY (A1, Az, '5:) = -5:', S, A, Qb Qz 
then B uA, '5:', e1 ~ Q1S (e'1: r1) 
and B u A, -5:', ez ~ QzS (e'z : rz) 

Proof: Using the derived inference rules ENRICH, REPLACE, and 
ASSUMP.O 

Our second subroutine deals with constructing applications, where we require 
that an appropriate coercion be introduced, and that the expression being 
applied is an appropriate function. 

Definition 3 .1.4 
Let '5: be a subtype ordering, and letr1, 1:z be types. Then we define : 

ARROW ( rb rz, :::;;) = -5:", RS, R(arr') 
where MA TCH2 (:::;;, r1, rz---7 a) = S' 

a is an otherwise unused type variable 
S = [S' {31 f3] for f3 = Dom (S')- {a} 
APPLYSUBST (S, :::;;) = :::;;•, S 
Sr1 = arr 
ENRICH ('5:', S rz :::;; r; a :::;; ---7) = :::;;", R 



80 

Note that MATCH2 (~,rl,'Z"2~ S'a) = S, and hence by corollary 1.10.9, 
APPLYSUBST (S, ~) = ~', S. Note also that, since Srz matches 'Z", R is atomic. 
The properties of ARROW are given by the following propositions: 

Proposition 3 .1.5 
If ARROW ( rb rz, ~) = <', RS, R(a'Z"r') then~~, RS is minimal such that 
RST1 = b r 1 r'z for some b, r b T'z, RSrz ~~ r' b b ~~ -t and for all 
r', r'", r' ~ r" implies RS r' ~~ RS r" 

Proof: By theorems 1.7.13, 1.10.5 and 1.10.14. 0 

Proposition 3 .1.6 

If A,~,el ~e'1: r1 

A,~' ez ~e'2: r2 

and ARROW ('Z"l, rz, ~) = ~', RS, R(arr') 
then RSA, ~', e1 ez ~ (RS (e'1: r1 )) (RS (e'2: r2): Rr) :Rr 

Proof: Using the derived inference rules SUBST and ENRICH, and the 
inference rules LESS and AP. 0 

3.2 A Type Inference Algorithm 

We now describe our first type inference algorithm and prove that it is sound 
and complete. 

Definition 3.2 .1 
Let B be an assumption set containing only type schemes. Then we define 
TYPE (B, e)= e': r, ~'A for each expression e as follows : 

TYPE (B, c)= c: ;r, n, {} where 1C is the least type such that 
c E k(n), which exists by 
proposition 1.3 .2 

TYPE (B, x) = x: a, n, {x: a} where x ~ B., and a is a previously 
unused type variable 

TYPE (B, y) = y[S a] : Sr, S(~), {} where y : V a:~. r E B and Sis a 
renaming of a (definition 1.5.1) 



81 

TYPE(B, A.x. e)= (Ax: r'. e': 'i) : r ~ 'i, s;, Ax 
if TYPE (Bx, e)= e': 'i, s;, A 
andx: rEA 

TYPE(B, A.x. e)= (Ax: a. e': 'i) : a :::) 'i, s;, A 
if TYPE (Bx, e)= e': 'i, s;, A 
andx e A 
and a is a previously unused type variable 

TYPE (B, e1 e2) = (SQ1R (e' 1 : 'ii)) (SQ2R (e'2 : 1"2) : 'i) : r, s;5, SA 
if TYPE (B, ei) = e'i: 'ii, s;i, Ai 
and UNION (s;b s;2) = s;3, ID 
and A UNIFY (At. A2, s;3) = s;4, R, A, Ql, Q2 
and ARROW (R'iJ, R'i2, s;4) = s;5, S, a'i'i' 

TYPE (B ,let x = e1 in e2) ==(let x = [ a] e'1: 'iJ in e'2: 1"2) :1"2 ,s;2, {} 

if TYPE (B, e1) = e'1: 'ii, s;b {} 

and gen ( { },:S:t. 'ii) == a== 't:l a: :s;'. 'il 
by definition 1.1 1. 7 
and TYPE (Bx u {x: a}, e2) == e'2: 'i2,s;2, {} 

Ilf any of the restrictions do not hold, then TYPE (B, e) is undefined. Note that 
if TYPE (B, e)= e': 'i, :s;, A, then A and Bare disjoint, and A will contain 
only types. Also, since only previously unused type variables are introduced 
into subtype orderings by the cases x E Bandy e B, the UNION in the case 
e1 e2 will always return the indicated result. The following theorem shows that 
this algorithm is sound : 

Theorem 3.2 .2 : Soundness 
If TYPE (B, e)= e': 'i, s;, A, where B contains only type schemes, then: 

A u B, s;, e ~ e' : 'i 

Proof: By induction on the structure of e, as follows : 
(t: by the inference rule CONST 
X byVAR 
Y' by PVAR, using corollary 1.10.10 and the fact that SB = B 
lx.e : by ABS, ABS2 
e1e2 : by the derived inference rule ENRICH (using corollary 1.10.16) and 

propositions 3.1.3 and 3.1.6. 
fet! x = e1 in e2: by the derived inference rule ASSUMP. 0 



82 

Completeness of the algorithm is shown by the next theorem, which requires a 
c:omplex proof. We first prove the following proposition. 

Proposition 3.2 .3 
If TYPE (B, e)= e': r, :::;, A, then all type variables occuring free in e': r 
occur in r, s, or free in A. 

Proof: By induction one, noting that if ARROW (rbrb :::;) = s', S, arT' then 
all type variables in Sr1, Sr2 occur in:::;' or in r'. 0 

Corollary 3.2 .4 
If TYPE (B, e) = e' : r, :::;, { } and gen ( { } , s, r) = a, then the bound variables 
of a include all free type variables in e' : r. 

Theorem 3.2.5: Completeness (Limited) 
If e is a limited expression and : 

(1) A u B, s, e ~ e': r 
where A and Bare disjoint, A contains only types, and B contains only type 
schemes, then : 

TYPE (B, e)= e": r, s', A' 
and from: 

(2) A' u B, s', e ~ e": r' 
we can derive : 

(3) A uB, s, e ~QS( e": r'): r 
by using the derived inference rules SUBEN (with SUBEN (S, :::;', L) = s), 
REPLACE (with replacement Q), and ASSUMP (with A= QSA' u A") and 
the inference rule LESS. 

Proof: By induction on the derivation (1), as follows : 

CONST 

VAR 
PVAR 

we haver= rc « p = r, S = ID, Q = [], L by corollary 1.10.16 

we haver'= a, S = [r /a], Q = [], L by corollary 1.10.16 
we haveS', L from the use of SUBEN in the PVAR rule, 
and S' = SR, where R is the renaming introduced by TYPE 



83 

AP we have TYPE (B, e1, e2) = e": r, ::;',A' 
where e": r = (R'Q'l R(e"1 : r'1))(R'Q'2 R (e"2 : 1"2): r') : r 
and by induction hypothesis we have Si, Qi, Li, A"i such that: 
SUBEN (Si, ::.;'i, Li) =::.:; 
A=QiSiA'iuA"i 
s1 r1 = br'1 1"'2::.:; a1'21:= 1'1 
S2r2::.:; r2 < r'1 

By propositions 2.2.3, 3.1.2, 3.1.3, 3.1.5, 3.1.6 and the fact that ::.:;'1, ::.:;'2 will 
share no type variables, we can findS, Q, L, A" such that: 

SUBEN (S, ::.:;•, L) =::.:; 
SR'Rr 1 = S 1 r' 1 = S(a'r'1:') = br' 1 1"'2::.:; ar2r 
SR'Rr2 = S1 r 2 = < r'1 = Sr'' 
andA = QSA'uA" 

and Au B,::.:; e1e2 ~ QS( e": 1:'): 1:since Sr::.:; r 

ABS we have TYPE (B, Ax:.e) = e": r, ::.:;•, A' 

where e": r'= (Ax.: 1"2. e"1: 1"1): ar'2r'1 
and (x e A',r'2 =a, a= :J) or (A'(x) =1"2, a=~) 
By induction hypothesis we have S1, Q1, Lb A"1· 
If X E A I we let s = [ rv a]S 1 and if X E A' we let s = s 1 
so that in either case S(ar'2r'1)::.:; r2 ~ r1 = r. 
We let Q be as for Q 1, but without affecting x. 
IfxE AweletA"=A"1 u {x:A(x)} 
and if x e A we let A"= A"1 . 

ABS2 Similarly. 
LESS By induction hypothesis. 0 

Corollary 3.2 .6 Completeness 
If e is an expression, and : 

(1) B, ::.;, e ~e': r 
where B contains only type schemes, then : 

TYPE (B, e)= e": r', ::.:;•, {} 
and from: 

(2) B, ::.;•, e ~e": r 
we can derive : 

(3)B, ::.:;, e ~S(e": 1:'): r 
by using the derived inference rule SUBEN (with SUBEN (S, :s;•, L) = :s;) and 
the inference rule LESS. 



84 

Proof: By induction, using theorem 3.2.5 if e is a limited expression, and the 
d.erived inference rule REPLACES for let-expressions. 0 

R'emark 3.2.7 
lifwe consider the case that B = Ao,:::.; =IT, then for each program e': 1' we can 
<derive a program S(e": r'): -rfrom the output of the type inference algorithm. 
By the conjecture made in remark 2.8.7, the two programs then have the same 
meaning (ie their Bohm trees are extensionally equal). 

Example 3.2.8 
We now return to example 2.3 .4 : 

fix (Ax. cons 1 x) 

and justify our assertion that the derivation in that example was the most 
general one. Following definition 3.2.1, we have: 

TYPE (Ao, cons) = cons [a] : a -7 list a -7list a, IT, {} 
TYPE (Ao, 1) = 1: nat, IT, {} 
TYPE (Ao, cons 1) =cons [a](1 :nat: a) :list a -7 list a, 

{IT, [nat:::.; a]}, {} 
TYPE (A0, x) = x: {3, IT, { x: {3} 
TYPE (Ao, cons 1 x) =cons [a] (1 :nat: a) (x: list y: list a) :list a, 

{ n, [nat:::.; a], [y:=:; a]}, {x: list y} 
= e :list a,:::;, {x: list y} 

TYPE (Ao, Ax. cons 1 x) =(Ax: list y. e :list a) : list y -7 list a,:::;, {} 
TYPE (Ao,fix) =fix [8]: (8 -7 8) -7 8 
TYPE (Ao,fix (Ax. cons 1 x)) =fix [list a] 

(((Ax :list a. cons [a] 
(1: nat: a) 
(x : list a: list a) : list a) 

: list a -7 list a ) : list a -7 list a) 
:list a, {TI, [nat:::.; a]}, {} 

By theorem 3.2.5, this is the most general derivation. Note that the typed 
expression we have produced is not identical to that in example 2.3.4, since it 
has two redundant coercions of the form e : -r: 1'. A realistic implementation 
would remove these during code generation. We also note that, as discussed in 
example 2.3.4, the 'best' type for this expression would be list nat. We 
examine this notion of 'best' type further in the following sections, but first we 
give a more complex example. 



85 

Example 3.2 .9 
Consider the factorial function : 

fzx 0/. 'Ax. cond (eq x 0) 1 (mult x(j(dec x))) 
where mult and dec have the same type schemes as plus and neg respectively. 
Figure 4 shows the result of TYPE, with the subtype orderings at each stage 
shown graphically. This shows the typical behaviour of the algorithm, which is 
to introduce coercions for each application, and by A UNIFY for multiple 
occurrences of program variables. The subtype ordering grows rapidly in 
size, until it is substantially simplified by the cycles introduced by fix. Since 
the algorithms we employ at each stage are O(n3) in the size of the subtype 
ordering, this makes the algorithm extremely inefficient. In section 3.6 we 
present an improved algorithm which ensures that the intermediate subtype 
<!lrderings remain small throughout the type inference procedure. 

3.3 Standardisations 

Recalling the discussion in Remark 2.8.7, we make the following definition : 

Definition 3.3 .1 
We say that a ground atomic substitution S satisfies a subtype ordering ~ if 
S(~) == Il. In other words : 
• for each a in ~' Sa E ~ 

• for all a, b such that a :::; b we have Sa « Sb. 

In the discussion after example 2.3.3, we indicated that, since we only give a 
semantics for programs derived with the subtype ordering Il, we are only 
interested in the types obtained by satisfying the 'most general' subtype 
ordering produced by TYPE. This leads us to the following concept of a 
standardisation ,which is a modification of a subtype ordering without loss of 
generality in satisfiability : 

Definition 3.3 .2 
A standardisation ~', S of a subtype ordering ~ is a pair such that S is atomic, 
3(~) is a subtype ordering, and: 
• ENRICH (S (~), L) == ~', ID for some L, or equivalently, 

SUBEN (S, ~' L) == :::;'. 
.. for all atomic R satisfying :::;, there is an atomic R' satisfying ~~ such that 

R =R'S. 



!nfc.tt 
e )< p.-~ss/o., 

l'ff!'A C)'(fl''eS<;r'o., 

(replt1ct'.,J e:-c::-c. hy e:'( .(o,...cft,,.:ty) 

I S ... b -fyje 1 A ss"'""'t'"" 
0../er.i;j i Set 

e:; [ ;B] (::co(: ,8} 
( 0 : l>f« f :f) : be o ( 

(o.,./ [ ?J] ( ef [ p J ( :x: c<: ;5) 
( 0: "1~>1: j) :boo/ ) 

( 1 :11at: ;t) : r~;r 

mu.f-t[lf](:cY:Ift)·. lf~r 

f (clec x) 

m/41-rx{f(cl~cx)) r-nul-t['f] (::c:¢:v:r) 

((f:e(s_f{)J 
( dec ( :;(: rp : '} : ,.., .,. ) : ,.., t : ) ) : r: 'f) ; r 

(o.,d ( ~ xo) 1 . (o.,t{ [o] ( / [fi] {:t:j: d: ;3) 
nwft :( ( f{)ecx)) I (o: ;,af: ~) : bo6/) 

{:,: ( >.J. h. 

co.,,t {/ :r o) 1 

(~>~u.(-f X 

({{.lux)))) 

( 1:.,.ft; t) 
(r>t~lr [~t-] ( ~: 5: ¢: Y: If) 

((r:eC:rr)! 
( Jec { ::(: J: ¢ : ') : ,·n t) : ,·,,: 5) 

:j-{: If) :'f: ;r} :Y 

fl< [,'nt] { )..{: i'l"f~ ,-..,t. ( \.::t ;,",f, co ... ,( [i.,t] 

(ef[fi] (:t.:ikt: oi:,A) (o:"'a-t:,5): boo!) 

( 1 : "'t! t : i~ + ) 

( ~>~u. It[,'~ t] (x: '"t) ( ({:~~to;; :~t) (,lee ( :t: ;,~): ;.,t) : int) 
: i'tt): t"lf) : (,t ~ ;.,t) : (;,f_:;/.,i) ~ ,.,t~l',f) 

! 

inf 
J 

"r 
I 
y 

I ~ 

i"+ I , e 
7 

{::(:J" 
I 

f:e(s.JA){ 

{j 



86 

In section 3.4 we will use the concept of standardisation to provide an 
algorithm for finding substitutions to satisfy subtype orderings. This means 
that if: 

TYPE (Ao, e)= e': T, s;, {} 
then~ by fmding an S satisfying s;, we obtain a program S(e' :'r) which we can 
then reduce. 

The following proposition shows that we can compose standardisations. 

Proposition 3.3 .3 
Let s;•, S be a standardisation of s; and s;", S' be a standardisation of -5::'. 
Then the composition of these standardisations, defined to be s;", S'S is a 
standardisation of s;, and such composition is associative. 

Proof: By corollary 1.10.20, S'S (s;) is a subtype ordering, and there is an L" 
such that SUBEN (S'S, :::;, L'') = s;". Also if R satisfies s;, then there is an R' 
satisfying s;' such that R = R'S, and hence there is an R" satisfying s;" such that 
R' = R"S", so R = R"S'S. Associativity is trivial. 0 

We now recall definitions 1.2.1 and 1.6.1, in which we required that each 
«-related equivalence class in I1 have either lub or glb defined on all pairs of its 
elements, and no two «-unrelated elements are s;-related by any subtype 
ordering s;. This leads us to make the following definition : 

Definition 3.3 .4 
If s; is a subtype ordering, then we say that the type variable or type 
constructor a has top (bottom) 8 ins; if the s;-related equivalence class of a 
contains a «-related equivalence class that has lub (glb) 8. 

Clearly if a is s;-related to some 8', then a has either a top or a bottom ins, 
and possibly both. For example, in the subtype ordering shown in Figure 5a, 
a, {3, y, I; and 11 have top atom, lflhas top and bottom void, e has top list and 
bottom optional,¢ has top~ and bottom:::::>, and~ has neither top or bottom. 

The following theorem characterises the standardisations which we will use in 
our second type inference algorithm. 



87 . 

Theorem 33.5 
The following pairs -5.:', S are standardisations of a subtype ordering -5.: : 
TOP: -5.:', S = ENRICH ('5.:, a -5.: b)where a has top 8 in -5.: 
BOTTOM : -5.:', S = ENRICH (-5.:, 8-5.: a)where a has bottom 8 in -5.: 
CTOP: S(-5.:), S where S = [/31 a], a of rank 0 has top 8 in -5.:, and f3 is 

a new type variable with all the colours of 8, provided 8 has 
more colours than a. 

CBOTTOM: 

GLB: 

LUB: 

MAX: 

MIN: 

COLOURU: 

COLOURD: 

S(-5.:), S where S = [/31 a], a of rank 0 has bottom 8 in -5.:, and f3 
is a new type variable with all the colours of 8, provided 8 has 
more colours than a. 
-5.:', S =ENRICH ('5.:, a~ 0) if a-5:. 8i for 1 -5.: i -5.: n, and 8is 

the glb of the 8i. 
~·, S = ENRICH (~, 8 ~ a) if 8i ~ a for 1 ~ i ~ n, and 8 is 
the lub of the 8i. 
~·, S =ENRICH (-5.:, a -5.: 0) if 8' -5.: a and 8 is the greatest 
element of II above 8'. 
~·, S = ENRICH (~, 8 -5.: a) if a~ 8' and 8 is the least element 
of II below 8'. 
S(~), S where S = [/3/a], a -5.: yof rank 0, and f3 is a new type 
variable with all the colours of a and y, provided f3 has more 
colours than a. 
S(-5.:), S where S = [/3/a], y-5:. a of rank 0, and f3 is a new type 
variable with all the colours of a and y, provided f3 has more 
colours than a. 

Proof: Clearly an atomic substitution results in each case, and by corollary 
1.10.18, if ENRICH ('5.:, L) = ~·, S, then SUBEN (S, ~' SL) = ~·. By definition 
1.6.1, we can easily verify that ~· is a subtype ordering in each case, and that 
all cases define standardisations, since for the cases involving 
ENRICH (-5.:, a -5.: b), we must have Ra « Rb for each R satisfying -5.:.0 

Note that if a has top 8, then the MAX rule, if applicable, produces the same 
result as the TOP rule. However, if a does not have a top, then the MAX rule 
may still be applicable. For MIN and BOTTOM, the situation is similar. We 
note the following notational conventions. 



o\ a. tow, 5 L·st ¢ .1/'/' 5 'f 1\ X + I 
'"'t oo I 

I 

.......,. 

"~+~ '5 
I. 

I I 
tlo,d or,.·'VIfl e I ~ 

I I 
I ? ft J 

/,·.,t 
I 
e 
J 

o;-tt'o"tt I 

aio.w, 

c{ / I ~ boc/ vot'A_ X + .. 
1
1 ..• 

. I 
~~t~'lf I 
ft ! 
I J l'ltd ..______ ___ _.._ _ ___.___ _ _.___ 

F'~j<.{re S - AI'\ e't:a""'fle S«fa-tl!e o~r~ey-/J aY!A_ /ts 

r e j cA I a. r- s t a. 111. A cu--d/sa 1 /a 11 



s ::::. [VOte//~ ~I q, J 
Ct"to"" 

c{/ I~ s 
I "/"' iY~t I boo/ 
I~ 

Mc;"f ,B 
I 

YJ 

Ty re Var/q/ale 

S e/ e.c.-tet{ 

£-i above 

Var-/afole 

Vlaf 1'11-t a'l'owt 
I I 

5 llot'tJ/ 

,,. "> f' 

I I 

~ 

I 

I e )(. + I 

I I I 
or-r,a .... 1 I :::; 

I 

~j below 

Vtlv-iable 



88 

Definition 3.3 .6 
We say that a standardisation rule (TOP, BOTTOM, etc) is applicable to a type 
variable a in a subtype ordering ~ if~·, S is the result of a single application 
of that rule, ~· ::f. ~, and a is the type variable referred to in the rule. We also 
say that the rule is applicable to~, and call~·, San instance of the rule. We 
say that~·, R is a regular standardisation of~ if~·, R = ~' ID or if~·, R 
results from composing one or more instances of standardisation rules, as in 
proposition 3 .3 .3. 

Figure 5b shows a regular standardisation of the subtype ordering of Figure 
5a. The following algorithm calculates the (unique) maximal regular 
standardisation of a subtype ordering, ie the regular standardisation to which 
no standardistion rule is applicable. The required property is proved in 
Theorem 3.3.12. 

Definition 3.3.7 
Let~ be a subtype ordering. Then we define the operation STANDARDISE as 
follows: 
• For each ai in~' let ai (bi) be the top (bottom) of ai respectively, if it is 

defined, and ai otherwise. 
• Let~·, S"= ENRICH(~, a1 ~ a1 ; b1 ~ a1; ... ; an~ an; bn ~an) 
• LetS' be a substitution mapping type variables of rank 0 in ~'-related 

equivalence classes with top (bottom) to new type variables with all the 
colours of their top (bottom), provided the variables have fewer colours 
than their top (bottom); and mapping type variables of rank 0 in ~'-related 
equivalence Classes with no top or bottom to new type variables with all 
the colours of the equivalence class, provided the new type variables have 
more colours than the old ones. 

• Let ~" = S'(~') 

• Let G be the least splitting of~~~, viewed as a directed graph, and let H be 
the transitive closure of G. 

• Let R = ID, initially. 
• LetT be the family of ~"-related equivalence classes of type variables in 

~"which have a top (bottom), topologically sorted in ascending 
. (descending) order. 

• If a= a, b = 8 or a= 8, b = a, let the subroutine ADD EDGE (a, b) 
perform the following action : 
• Let the /3i be such that [b ~ /3i], [/3i ~a] are in H, and let 

S = [ 8! f3b···, 8! /3m] 
• Apply S to H, and delete the /3i from T. 



• 

• 
• 

89 

Add the edge [Sa~ Sb] toG, and update H to be the transitive closure 
of the result. 

• Topologically sort the eqivalence class which contained a again. 
• Return the substitution S. 
For each a in T, chosen in order from each sorted equivalence class with 
top, do the following : 
• Let 8 be the glb of the 8i above a in H. 
• If [a~ 81 is not in H then letS 1 = ADD EDGE (a, 8), otherwise let 

s1 =ID. 
If 8' is the least element of n below 8, s1 a= a, and [8'::::; a] is not in 
H, then let Sz =ADD EDGE (8', a), otherwise let Sz =!D. 
If SzS 1 a = a, 8" is the lub of the 8] below a in H, and [ 8"::::; a] is 
not in H, then let S3 = ADDEDGE (8", a), otherwise let S3 =/D. 

• Let R := S3S2S 1R and delete a from its equivalence class. 
For each a in T, chosen in order from each sorted equivalence class with 
bottom, but not top, do the dual action. 
Let UNION (H)=~"', ID 
Define STANDARDISE(~)=::::;'", RS'S" 

Figures 5c and 5d show the action of the STANDARDISE algorithm applied to 
the subtype ordering of Figure 5a. It can be seen that the result is that shown 
in Figure 5b. The following lemmas lead to Theorem 3.3.12 which proves the 
required property of the algorithm. 

Lemma 3.3.8 
During each iteration of the loop in definition 3.3.7, standardisation rules are 
applied to the subtype ordering represented by H. Furthermore H is acylic at 
each stage, and hence the final UNION indeed returns the substitution !D. 

Proof: Each edge added involves a use of the GLB, MIN or LUB rules (or 
dually LUB, MAX or GLB rules). By theorem 3.3.5, any cycles produced will 
contain exactly one type constructor 8, and the procedure for adding edges 
equates all type variables in the cycle to 8. 0 

Lemma 3.3.9 
For each iteration of the above algorithm, no standardisation rule is applicable 
to any previously examined type variable. 



90 

Proof: The TOP, BOTTOM, CTOP, COLOURU, COLOURD and CBOTTOM 
rules are all applied initially, and clearly can only be applied once. Each 
iteration applies GLB, MIN, LUB (or LUB, MAX, GLB). Now MAX (MIN), 
which is the omitted rule, would not be applicable, since TOP (BOTTOM) has 
already been applied, Furthermore, MIN (MAX) is applied in its most general 
form, since if a::; 8i, 8 is the glb of the 8i and the least element of I1 below 8 is 
fl, then if there is a least element of I1 below any 8i, it is 8'. Now since MIN 
(MAX) is applied before LUB(GLB), no rule will be applicable to the most 
recently examined type variable. Since type variables are chosen in 
topologically sorted order, only the use of the GLB(LUB) rule could affect a 
previously examined type variable other than the most recently examined, and 
it does not do so, since if 8 is the glb of the set D, then DuD' and 
D u D' u { 8} have the same glb.D 

Lemma 3.3 .1 0 
If ::;1, S 1 and :s;2, S2 are instances of standardisation rules applied to ::;, then we 
can find :s;', S' such that for 1 ::; i :s; 2, either :s;', S' = ::;i, S i or S' = R iS i and :s;', 
Ri is an instance of a standardisation rule applied to ::;i· 

Proof: By cases. 0 

Corollary 3.3 .11 
Each subtype ordering has a unique maximal regular standardisation. 

Proof: Since the process of applying standardisation rules must terminate. 0 

Theorem 3.3 .12 
STANDARDISE (:s;) computes the unique maximal regular standardisation 
of::;, 

Proof: By lenunas 3.3.8 and 3.3.9 and corollary 3.3.11. 0 

This motivates the following definition : 

Definition 3.3 .13 
If STANDARDISE (:s;) = $;', S, we will speak of :s;' as a standardised subtype 
ordering, or as the standardised form of :s;. 



91 

In the next section we will show how to calculate, from a standardised subtype 
ordering '5:.', a substitutionR which satisfies -5:.'. If STANDARDISE ('5:.) = -5:.', S, 
then RS will satisfy '5:.. 

F'igure 6 shows the action of the STANDARDISE algorithm on the 
futermediate subtype ordering of Figure 4. Although standardisation does not 
reduce the size of this subtype ordering, it produces a more 'regular' structure. 
This is exploited in section 3.5, where simplications become possible, which 
reduce the size of the subtype ordering, and hence make possible a more 
efficient type inference algorithm. 

Remark 3.3 .14 
The STANDARDISE algorithm will execute in time O(n3), where n is the 
number of type constructors in the arguments. This follows since : 

• the ADDEDGE subroutine is O(n2) and can be applied three times for 
each type variable 

., a transitive closure is performed 

Note that forming Has the transitive closure of G can be done as part of the 
first ENRICH operation in definition 3.3.7. Note also that the ENRICH and 
UNION operations need not perform any of the checks outlined in remark 
1.9.4, since the result must be a legal subtype ordering. Indeed, the final 
UNION need only consist of a transitive reduction, since its resultant 
substitution is /D. The division into $;'-related equivalence classes can be done 
by a connected components algorithm as described in remark 1.9 .4 

3'A Satisfying Subtype Orderings 

We now show how to satisfy any standardised subtype ordering, and hence how 
to satisfy any subtype ordering, by first standardisfug it. Recall our Remark 
2.8.7, that this is a kind of 'compilation', since it maps typed expressions to 
programs, which can be reduced. It does this by 'fixing' all coercions to be 
particular coercions on ground types; fixing all polymorphic variables to have 
ground type parameters, thus choosfug particular rewrite rules for plus and eq; 
and fixing all applications to have functional constructor :::J or -t, thus 
choosfug particular rewrite rules for application. We first give the following 
p:roperty of standardised subtype orderings, which we will exploit : 



3 ato.., 
~~ ~ 

llo/) !,·s-1 -?-ivttx! ! boo/ 
/' \/1 X + /\ 7 r"" na-t d. 

I /)1 !'t or-t,.o ... a I I ~ e 

cp~ 
.5 

-

S = /D 

O.'fo>~-J 

I T~/ \"' "··' vo,·) /.·sr ....., 

I I 
I 

I /t''Y/';5 j X -t-
I 

7 r I orf/o .... e~f 
I e i i 

I !/Y~ o( 

I i I 
i I 

I I 

f~6 I 
I 

~ 
I 
I 

:5~ 
I I Yla!f 

i 

I 

J 



92 

Proposition 3.4.1 
Let a have a top in s. Then there is a type constructor 8 such that a s 8, and 
as 8' implies 8 « 8'. Dually, let a have a bottom ins. Then there is a type 
constructor 8 such that 8 s a, and 8' s a implies 8' « 8. 

Proof: By the TOP (BOTTOM) rule the required type constructor exists, and 
the second property follows from the GLB (LUB) rule. 0 

We can now define an algorithm to fmd a substitution which satisfies a 
standardised subtype ordering. 

Definition 3 .4.2 
Let s ~e a standardised subtype ordering. Then we defme the operation 
SATISFY as follows : 

Choose an arbitrary 0,. for each rank r. For example: 

~ =void 
81 =list 

~ =X 

0* =-7 

Let ab ... , an be all the type variables ins, and for each ai define Si as 
follows: 
• If ai has a bottom in s, let Oi be the type constructor existing by 

proposition 3.4.1, a:qd let St = [8ifai]. 
• If ai has a top, but not a bottom, ins, let Oi be the type constructor 

existing by proposition 3.4.1, and let Si = [Oi/ai]. 
• If ai has neither a top or a bottom ins, and ai has rank r, let Si = [0,./ai]. 

Define SATISFY (s) = S1 ... Sn. 

Proposition 3.4.3 
Let SATISFY (s) = S. Then S satisfies s. 

Proof: Clearly each type variable ins is mapped to a type constructor, so we 
need only show that as b implies Sa« Sb. If a, bare from an equivalence 
class with no top or bottom, then they are both type variables, and Sa= Sb. If 
a, b are from an equivalence class with bottom, then we have four cases : 



93 

a~ {3, and Sa, S f3 are the type constructors existing by proposition 3.4 .1. 
Then since Sa ~ {3, we have Sa « S {3 . 

., a~ 8, trivially, since Sa« a . 

., 8 ~ a, by proposition 3.4.1 

.. 8 ~ 8', trivially. 

If a, b are from an equivalence class with top, but no bottom, the proof is 
similar. 0 

Figure 7 shows the result of applying the SATISFY algorithm to the 
standardised subtype ordering of Figure 5b. 

Remark 3.4.4 
]n section 3.6 we will give an improved type inference algorithm TYPE2, such 
that: 

TYPE2 (B, e)= e': "!',~'A 
and~ is a standardised subtype ordering. In particular, for expressions e such 
that: 

TYPE2 (Ao, e)= e': "!', ~ •. {} 

SATISFY (~) = S 

we obtain a program S(e': -r) which we can reduce. Indeed, if we wish to give 
a semantics for the expression e, the Bohm tree of the program S(e': r) is a 
suitable value. 

J.S Simplifications 

Before we describe our improved type inference algorithm, we require the 
concept of a simplification of a standardised subtype ordering. The intention is 
that simplification produces a 'simpler' subtype ordering which is still 
standardised. Simplifications are closely related to standardisations, as the 
following definition makes clear. However, we relax the requirement of being 
able to satisfy the result in exactly the same ways that we could satisfy the 
argument. Instead we require that the ground types that could be obtained by 
applying the satisfying substitution to a particular type can be obtained by 
applying the new satisfying substitution and coercing. The concept of 
simplification formalizes the concept of 'best type' introduced in section 2. 



. 7a.. C ~o /ce 5 J1-'t~./e 7 
s fA lo -tr f e 0 Y" ,/ e y /J 

5A liS F Y' o"' S'fct.,..d'a,.d'"5t!'d 

-(;..o..., F :J1.1re 5' b. 

~------------------------~------~------~--------~ 

?b. Resuft of SATISFY 



94 

Definition 3 .5.1 
A simplification -5:', S of a standardised subtype ordering ::s;, with respect to a 
type r, is a pair such that Sis atomic, S(-5:) is a subtype ordering, and : 
• ENRICH (S (-5:), L) = <', ID for some L, or equivalently, 

SUBEN (S, ::s;, L) = s' 
., -5:' is standardised 
., for all atomic R satisfying -5:, there is an atomic R' satisfying ::s;' such that 

R'Sr« Rr 

Example 3.5.2 
Consider example 2.3.3, where for the expression Ax. plus x 1, we obtained the 
type [3 ---1 a and the subtype ordering { TI, [nat s a], [a -5: int], [[3 s a] } . 
Satisfying this subtype ordering and applying the satisfying substitution, we 
obtain the ground types nat ---1 nat, nat ---1 int, nat ---1 atom, int ---1 int and 
int ---1 atom. The standardised form of this subtype ordering is 
{TI, [nat s [3], [{3 sa], [a ::s; int]}, which clearly can be satisfied in exactly the 
same ways. The pair { ll, [nat s a], [as int]}, [a I f3] is a simplification of this 
standardised subtype ordering, since by satisfying we obtain the ground types 
nat ---1 nat and int ---1 int, and these can be coerced to give all the ground types 
obtained above. This is precisely what we meant by saying that a ---1 a, with 
the simplified subtype ordering, was the 'best' type for Ax. plus x 1. 

We compose simplifications in the same way as standardisation : 

Proposition 3 .5.3 
Lets', S be a simplification of s, with respect to r, and s", S' be a 
simplification of s' with respect to Sr. Then the composition of these 
simplifications, defined to be s", S'S is a simplification of s with respect to r, 
and such composition is associative. 

Proof: As for proposition 3.3 .3, noting that if R satisfies -5:, there is an R' 
satisfying s' such that R 'S r « R r, and hence there is an R" satisfying ::s;" such 
tbat R"S'Sr « R'Sr « Rr. 0 

The following theorem characteristises some useful simplifications, where we 
use the concept of left and right occurrences in a type, given in definition 
1.4.6. The intuition is that we can safely decrease the result type of an 
expression (and indeed, all type variables occurring only right), and safely 
im:crease the argument types of an expression (and indeed, all type variables 



95 

0ccurring only left). These are both ways of decreasing the overall type of the 
expression, which must lead to a 'better' type, in the sense that list nat is a 
better type for the infinite list of 1 's than list a with nat :::; a (example 2.3 .4). 

Theorem 3.5.4 
The following pairs :::;', S are simplifications of a standardised subtype ordering 
:::; with respect to a type r : 

EQUP : S (:::;), S where S = [a/a], provided that a:::; a, and 
whenever a:::; b, then a :::; b; and a does not 
occur right in r 

JEQDOWN : S(::s;), S where S =[a/a], provided that a:::; a, and 
whenever b ~ a, then b :::; a; and a does not 
occur left in r 

MOVEUP : :::;', ID =ENRICH (:::;,a:::; a) provided that there is at least one 
b ::t= a such that a~ b, and for 
all such b, a ~ b, and a does not 
occur right in r, and we do not 
already have a:::; a. 

MOVEDOWN : ~', ID = ENRICH (:::;,a~ a) provided that there is at least 
one b ::t= a such that b :::; a, and 
for all such b, a:::; b, and a does 
not occur left in r, and we do 

not already have a :::; a. 

Proof: An atomic substitution clearly results in each case. Now EQUP and 
EQDOWN can be viewed as adding a~ a and a::;; a respectively. Thus all 
four rules add an inequality c:::; d, but this has no further implications, since if 
e:::; c, d ~f, we already have e ~fin each case. In particular, the substitution 
returned for MOVEUP and MOVEDOWN is indeed ID, and the resultant 
subtype orderings in each case are standardised. We show the remaining 
condition is true for EQUP and MOVEVP, since the proof for the other two 
cases is dual : 

lEQUP: Let R satisfy::;;. Then Ra « Ra, and we can chooseR' to have the 
same effect as R on all type variables other than a. Hence by 
proposition 1.6.5, R'Sr::;; Rr. Also, R' clearly satisfies S(:s;). 



96 

MOVEUP : Let R satisfy ~' and let the bi be above a, and the Rbi have glb 8. 
Then Ra « 8 and Ra « 8, and we can chooseR' to have the same 
effect as R on all type variables other than a, and such that 
R'a = 8. By proposition 1.6.5, R'r « Rr. Also, R' satisfies~·, 
since if the Cj are below a, Rcj « Ra « 8 « Rbi. 0 

Example 3.5.5 
Figure 8 shows how by applying the simplification rules EQUP and EQDOWN 
to the standardised subtype ordering of Figure 6, with the type 
()(!;, p) --7 ~ --7 y, we can obtain a much smaller subtype ordering containing 
only one type variable. If we relax the requirement that simplifications operate 
on standardised subtype orderings, and apply the simplification rules to the 
unstandardised subtype ordering of Figure 6, we obtain the same result. 
However, in that case we must also use the MOVEDOWN rule, as shown in 
Figure 9. It is thus evident that standardisation assists the simplification 
process. 

Remark 3.5.6 
Having noted that the rules MOVEUP and MOVEDOWN were not needed in 
the above example, we tum our attention to the benefits of these two rules. 
Unlike the rules EQUP and EQDOWN, they do not decrease the number of 
type variables in a subtype ordering. However, Figure 10 shows a standardised 
subytype ordering where EQUP and EQDOWN are not applicable until after 
MOVEUP is applied. Thus MOVEUP and MOVEDOWN are potentially of 
benefit in reducing the size of subtype orderings. On the other hand, 
MOVEUP and MOVEDOWN suffer from a number of disadvantages. First, 
simplification using all four rules does not lead to unique results. This is in 
contrast to standardisations, since corollary 3.3.11 showed that standardisations 
are 'Church-Rosser'. Figure 11 shows two cases where different choices of 
simplification rules lead to different results. On the other hand, using EQUP 
and EQDOWN alone allows us to obtain simplified subtype orderings unique 
up to renaming. 

The second disadvantage of MOVEUP and MOVEDOWN is related to the fact 
that, just as MOVEUP and MOVEDOWN may make EQUP and EQDOWN 
applicable (as in Figure 10), EQUP and EQDOWN may make MOVEUP and 
MOVEDOWN applicable (see, for example, Figure 12). Thus, in calculating a 
maximal regular simplification, we will need to repeatedly re-examine type 



1Stt · Stt:l&i / ard/s eJ. 5(,( b +;'/e. Or-,/#! ;-,·1-fJ fro,., F:j t.Jre 6 
shoo..v/J a//ft'ca./o,-/;7 0 f eQlll' t:~r~.J... EGZ 004/,V 

I ~~ 
I is-( ooruw )~~ \ "'-... b~/ Vot'd 

I . I 001.<11./ 
X + II / ·~t / i g /)OW A/ 

I p,ww ') 'f ~ I op-tt"ok<~l 
I t.<P 

I /:V.w );'t cA DowN 

p,wNf~ :f 
UPS~ 

( f!:,. fo ""'~d ltt.r) Y\a t 

Cl.foM 
~ '-...,., 

L·st •'n-f boo/ Vol d._ I X + I I 

I 
I ! 

'f I 

I 

I 

I 
Jlta.1 Of"'io'1a / 

I 

~ 

l 
e up 

r 
:::::> 

._...:;,. 

I 
::;:, 

r::IJt.~t-·e <3 ~ s,7/,'{,.(C{ 1/0VJ of C( $ Tcu,dCirv/St!'/ $<1 ~~/'e 

or vier ,·J l.f s /Y £ Q U f a VI Pi E Q Do 1.v N 

I 
I 

I 

I 
I 

j 



Cfa.. UMsfct"'#(J~<-clr·:Jt'~ s~k-ty;e Ortkr·j (r,'"" F'j<Jre G 
show.·J cr///rcl(l,),f of eG.UfJ a..,,{_ eQOowA/ 

5bwM c:ton, 
I .--:-:- ~ 

Vot-..1. list />1 t 't ~ looo/ ~ 

OOivM / r.><\ / ~ 
I X -+ /\up 7 I "" hA -1 Dov AI I 

I 
I e 1/~-y off,·o..,a{ :::::> 

DWI/ cp~ I 
I 

5 
I 

-
1110>'(' 't a. 1'o..., 
bel""' i>t+ ·-···~ .. ~ " 

· . ···-y ,B b I v ·r1. I •'St X -t i 
-7 ·~-t . 00 0/ 

I X.:\ I, ........... I 
I 

't' ~ ···, .. mcwe_ ;B I 
S be!Qv '0 

I 

'"fit'o~. { ::::> 

X + 
T 

F~·JlAre cr- S/Mrl,fl/) C?V\ UvtS1411t~ct;-d/st'v{ '5<-~ioi_!tf' 
o.-der-/J : -the ""en( (o,... Hovr;.Dowl\/ 



/f\ lxf L·st X + ~ 

l I il'l f boo/ vo,Pf_ r:A ?f 

I \I Of1/o~-tq / ::::> 

I ll<!-t ft 

1/::: a<,.:. '(f -'!'> /vd-

. 

I 
a to.., rJ!)VV e rp"NN I l 

/\ I \ I 
list o( I X -t __,. 

1~1" boo f vo/J I i .\ I 
I 

(f up I 
I I Of1/o>,-rf ::::> 

haf ft r.<P 

EQ DOW/V 



"ln;t,-a/ 5 .... /, ty!~ Or-cler.~J 
( pa.-t o{ Y'a-.i. 0 suf.o..) 

ft 0 
l~/l 

:s cf..Ar 
I)< I 
e ¢ 

r .. .-t,al Subtyf~ Q,..cJe~-:"''J 

(fctrt o( rtt"k 0 $t"cft'o .. ) 

I 
! 

After al!'/;-'j ttovr=v 
(o<above If) a .. / EQDovA,/ 

Ar-ter a;;I;··"J €Qur 

(to d.) a .. tJ( E;Qf)OwA/ (tcJ) 

'x'r I l 
e ¢ 

I 

After- a!IJ'j ftOvt:.Dotv,v 

(of.. be/o~v 3) o•A. lEGJI.f /) 

A(-te,. a;tll,';.j HOVGDow~ 

Hoveul' a ... I'( eG DowN 

fi 'f' 

\I 
eX. 

1\ 
e ¢ 



lla.. A sv.b-ty1c orll'er;j 

Crart of rll~k.o secf/'OPI) 

v:t4 H.ovt:. ut ffove oowN 
/ 

l1o1 1:4// /,·cttfo!~ for 

-c~ d.-;,'j....>:;,'f-?cj>~l 

IZb. Afier o!fly;1 f!:.Qu;' 1 

Hov&.uf 1..-en::u'-'~'.S 

of/ f/ca lt,/e I 
l 

I 
¢/lfl I 
l I 

rs I 

e ¢ 

\I 
o(\ /y 

8; 



97 

variables to see if a rule is applicable. Now applicability of EQUP and 
EQDOWN can be tested in constant time, by examining a transitively reduced 
graph. However, testing applicability of MOVEUP and MOVEDOWN 
requires a test for containment of sets of vertices, ie 

{bl a::;;b} c {b!a::;;b} 

This test must be done for several possible a, so that testing applicability of 
MOVEUP and MOVEDOWN to a requires time O(n2) . Since each type 
variable can be examined O(n) times, an algorithm to calculate maximal 
regular simplifications would require time O(n4). Thus MOVEUP and 
MOVEDOWN carry with them a (small) efficiency penalty. 

Together with these two disadvantages of MOVE UP and MOVEDOWN, we 
note that their benefit is reduced by working with standardised subtype 
orderings, as shown by example 3.5.5. Indeed, we have found no examples 
where after standardising and using EQUP and EQDOWN, the simplification 
rules MOVEUP and MOVEDOWN are applicable. We therefore do not 
consider MOVEUP and MOVEDOWN in the remainder of this chapter, and 
make the following definition : 

Definition 3.5.7 
We say that ::;;', S is a regular simplification of::;; with respect to r if 
5:.', S = 5:., ID or::;;', S results from composing one or more instances of the 
simplification rules EQUP or EQDOWN only. 

It is clear from proposition 3.5.3 that all regular simplifications will have the 
form S(5:.), S where S = [ a/ a]. Figure 13 shows two maximal regular 
simplifications of the standardised subtype ordering of Figure 5b with respect 
to the type r= 8({3) ~ y. Note that they have the form~' Rand~' S where the 
subtype orderings are the same, but R =1= S. However Rr= Sr. In general, the 
subtype ordering in maximal regular simplifications is unique up to renaming, 
and so is the result of applying the substitution to the given type. The 
substitution itself, however, does not have this property. The following 
algorithm calculates maximal regular simplifications. Theorem 3.5.15 proves 
the required properties. 

Definition 3 .5.8 
Let 5:. be a standardised subtype ordering, and rbe any type. Then we define 
the operation SIMPLIFY as follows : 



afo,._, 

/'/I ~boo/ 5 
fir'~" 
;9 
I 

na-1 

5-= [a1o~/o< 1 J/'IJ /t"-:,tjeJ 
5 L. :: /,·s t jS -'!l ft 

Cl"fo"'t 

vot'd 

/ -....____"··I 5 volA. 

in -t 
I 

R= [i ... t/d., fJ/If
1 

/t"st/e] 
RT...= S-c. 

/isi ~ 

I 

I e X -+ 
I 

Of-ItO,"'~/ ~ 

I ist 

I X. + 

r:1J tU·e I 3 - Tvo Wltll""f.;""'~ f ~re;u!av-
S1ctb-J,(cr,..J/se~ s"'b-t;l/e 

StYy 1-f>cet it"o"t5 of -the 

o,-v/en"nJ (vo.,yj F'j 1-{re 5 b 

I 
J 



98 

•· Let G be the least splitting of:::.;, viewed as a directed graph, and let H be 
the transitive closure of G. 

... Let U, U' initially contain all the type variables in:::.;, which do not occur 
right in r. 

... Let D, D' initially contain all the type variables in:::.;, which do not occur 
left in r . 

., Let R = ID, initially. 
"" Let the subroutine EQUATEUP (a, a) perform the following action: 

• LetS= [a/a] 

• Delete [a:::.; a] from G 

• For all b such that [b:::.; a] isinG, and [b:::.; c] isinG for c ::t. a, and 
[c:::.; a] is in H : delete [b:::.; a] from G, and if b is in U-U' then add 
b to U' 

• Alter all r~maining [b:::.; a] in G to [b:::.; a] 

• If a is in U, and a is not in U, then delete a from U, U' 
• If a is in D, and a is not in D, then delete a from D, D' 
• If a is in D-D' then add a to D' 
• Delete a from U, U',D, D', G and H, and delete all edges containing 

afromH 
• Return the substitution S 
Let the subroutine EQUATEDOWN (a, a) perform the dual action, 
reversing inequalities and replacing U, U', D, D' by D, D', U, U' 
respectively. 

• While U' u D' is not empty, choose some a from U' u U', and: 
• if a E D' then 

• if [a:::.; a] is the only edge in G terminating at a, let 
S = EQUATEDOWN (a, a) andR := SR 

• otherwise delete a from D' 
• if a E U' then 

• if [a:::.; a] is the only edge in G beginning at a, let 
S = EQUATEUP (a, a) andR := SR 

• otherwise delete a from U' 
"' Let UNION (G)= :::.;•, ID 
•· Define SIMPLIFY(:::.;, r) = :::.;', R. 

Figure 14 shows the action of the SIMPLIFY algorithm on example 3.5.5 
(presented briefly in Figure 8). The algorithm gives priority to EQDOWN 
@Ver EQUP. The following lemmas and theroem give the properties of the 
algorithm. 



I '+t{. A c. 1/o.,_ o( StHI'L.IFY 0" 
s4¥~wt ... J tl;-st {ol.(r 

T ::::. e( s0 ) ~ 5 ~ :?' 

a-fow. 

~~I\"~,"", 
I llOIVAI ,..,t/'1 jJ 

/' r 
7 r~up l /)/ ~ 0\ 

¢ ':-::t, 5 :1 
af11if5 ~ 

., .. 1 

R-c= (s~tr) ~3~'f 

u = { ri., f~ 7, )// r? 
1 

s I 
u1 

"' { ,;, ;S 7 y r~-. 1 
I I I I I I 

D ::. t/ "' { ""', ,8 I 7 I .v, rp I .) } 

a -fow., 

OowAJ )~ \~boo/ 
I 

;.,-I ,8 Oovv 

~~IVAI J/ ~ l 
i, J )I cJ... ()owv 

~ · /bO'-'IJ/ 
lr:>o'¥V <:jJ 

L~s,,., 

~'jure 14- - The 

-ty!c 

Votd. 

I 
I 

vord I 

j 
q C -ft'ol". 

t: X t:t wtf/ ~ (".. .. ..,.. t"j u,. eo g 

v(J'r/"fb lt8s ex.:t'""/"'~"<1 

/t"s-7 -i) 

I X -f I e up Df1'o.,tt{ 

I 
? 

I is-t 
__, 

I I X -+ 
of -fio"'.a / :::> 

of SIHPLIF'( 



R -r.. = ( ,."' t --» "~") -'> 5 ~ 'f 

ll=£A. 1
::; {5} 

D::D1 = {} 

a "fo..., 

------
'-.... 

i ... t bot>{ 
I 

'f 
I 

s 
I 

1'1•1 

vo,·J I ist X -+ ~ 

[ I 
Of"tt'o"'a ( :::> 

-t I 
T 



99 

Lemma3.5.9 
During each iteration of the loop in the SIMPLIFY algorithm, an instance of 
the EQUP or EQDOWN rules is applied, or a type variable to which neither 
rule applies is deleted from D' and U'. Furthermore, at each iteration: 
" H is the transitive closure of G 
.. G is acyclic and transitively reduced, and UNION (G) = ::;, ID for some ::; 
" U(D) contains exactly the type variables in G which do not occur right 

(left) in Rr 
" U', D' are subsets of U, D respectively 

Proof: By comparing theorem 3.5.4 and definition 3.5.8. The final four 
properties can be shown trivialy from definition 3.5.8. 0 

A consequence of this lemma is that the final UNION operation is unnecessary 
if subtype orderings are represented by transitively reduced acyclic graphs, for 
then the result of the union will beG, !D. 

Lemma 3.5 .1 0 
During each iteration of the above algorithm, the type variables to which 
EQUP (EQDOWN) is applicable are all contained in U'(D'). 

Proof: By the above lemma, the type variables are clearly contained in U and 
D. Type variables are deleted from U' and D' when EQUP(EQDOWN) does 
not apply, and are restored whenever deletion of other edges can make the rule 
applicable. 0 

Lemma 3.5 .11 

The algorithm terminates in time O(n3), where n is the number of type 
variables and type constructors in ::;. 

Proof: Since EQUP and EQDOWN can be applied at most O(n) times, each 
type variable is tested for applicability at most O(n) times. Also, the 
subroutines EQUA TEUP and EQUATEDOWN take time O(n2), and are 
applied O(n) times. 0 

Lemma 3 .5.12 

If S 1 (::;), S 1 and S2 (::;), S2 are two instances of EQUP or EQDOWN applied to 
::; with respect to r, then for 1 ::; i::; 2 we can find Ri such that Ri = ID or 
RiSi (::;), RiSi is an instance of EQUP or EQDOWN applied to Si (::;)with 
respect to Sir, and such that R 1 S 1 (::;)::::; R2S2 (::;)and R 1 S 1 r::::: R2S2r. 



100 

Proof: There are two cases where interference may occur, ie where we cannot 
choose R1 = S2, R2 =S 1· 
.. b ::::;; a::::;; a where s1 =[ala] and s2 = [b/a]. 

Clearly S1(::s;) = S2(<), and since a cannot occur in -r, S1-r= S2-r. 
.. f3::::;; a where s1 = [f3/a] and s2:::: [w'f3]. 

Clearly S 1 (::::;;) ::::: S2 ( <) and S 1-r::::: S2-r. 0 

Eemma 3.5 .13 
If::::;;::::: ::::;;• such that R'(::s;) = ::::;;• and R (::::;;')=::::;;,and S(::s;), Sis a regular 
simplification of::::;; with respect to -r, where S = [ a/ a], and if S' = [R' a/R' a], 
then S'(::s;'), S' is a regular simplification of ::::;;• with respect to R'r. 
Furthermore, S(::s;):::.: S'(::s;') and S-r :::.: S'R'r. 

Proof: By induction on the number of instances of EQUP or EQDOWN 
composed to form S(::s;) = S. 0 

Corollary 3.5.14 
If S(~), Sand R(~), Rare maximal regular standardisations of~ with respect 
tor, then S(~)::::: R(:s;) and S-r~ Rr. 

Proof: By lemmas 3.5.12 and 3.5.13. 0 

Theorem 3.5.15 
SIMPLIFY(::::;;, -r) computes a maximal regular standardisation S(~), S of~ with 
respect to r, and S(~) and Sr are unique up to renaming. Furthermore, the 
algorithm takes time O(n3), where n is the number of type variables and type 
constructors in :s;. 

Proof: By lemmas 3.5.9 to 3.5.14. 0 

EJ'efinition 3 .5.16 
If SIMPLIFY(::::;;, r) = S(::s;), S, we will speak of S(~) as a simplified subtype 
@rdering with respect to r, or as a simplified form of :s; with respect to r. 

We can now present our improved type inference algorithm, which uses 
STANDARDISE and SIMPLIFY to reduce the size of subtype orderings. Since 
most of the algorithms applied to subtype orderings are O(n3), the improved 
algorithm will be much more efficient, since n will be smaller. 



101 

3:.6 An Improved Type Inference Algorithm 

We now modify the type inference algorithm of section 3.2 to use 
STANDARDISE and SIMPLIFY to reduce the size of subtype orderings. 
Recall from definition 3.5.1 that simplifications decrease a given type, where 
this is safe. Our intuition for the 'best' type of an expression is that we must 
decrease the result type and increase the argument types. We thus make the 
following useful definition : 

Definition 3 .6.1 

If A= {xi :rr, ... , xn: rn} and ris a type, then we write A~ rfor rif n = 0, 
and for r1 x ... x Tn ~ r if n > 0. 

At each point in our algorithm we will attempt to decrease A ~ r. Since we 
wish to work with simplified subtype orderings, we make the following 
definitions : 

Definition 3 .6.2 
We say that a type scheme a= '\I a : ::::;;. r is simplified if::::;; is standardised and 
simplified with respect to r. 

Definition 3 .6.3 
Let the assumption set Bo be as for Ao in definition 1.11.5, but with: 

Bo(plus) ='\I a :{TI, [nat sa], [as int]}. a~ a~ a 
where a is a basic type variable. It is clear that Bo will then only contain 
simplified type schemes. 

Definition 3 .6.4 
Let B be an assumption set containing only simplified type schemes. Then we 
define TYPE2 (B, e)= e': r, s, A as in definition 3.2.1, but with the case e1 e2 
as follows: 
1JYPE2 (B, er, e2) = (SQ1R (e'1 : r1)) (SQ2R (e'2: r2): r'): r", s7, SA 

if TYPE2(B, ei) = e'i: 'ri, Si, Ai 
and UNION (:s;r, s2) = s3, ID 
and AUNIFY (Ar,A2, s3) = s4,R,A, Qr, Q2 
and ARROW (Rrr, Rr2, ::::;4) = ::::;5, S', arr 
and STANDARDISE (ss) = s6, S" 
and SIMPLIFY (s6, S"S'A ~ S"r) = s 7, S'" 
and S = S"'S"S' 



!Example 3 .6.5 

and r'' = S"'S"r 
and r'" = S"'S"r' 

102 

:Returning to the infinite list of 1's (Example 2.3.4 and 3.2.7), consider: 
fix (Ax. cons 1 x) 

TY!Je inference is as for TYPE, with the first difference being a standardisation 
:ffor the case cons 1. At the next step we can apply a simplification so : 

ITPE2 (Bo, A.x.cons 1 x) = (A.x: list a. cons[ a] (1: nat: a) 
(x: list a: list a) 

: list a) : list a ~ list a, 
{TI, [nat< a], [a::.; atom]}, {} 

where a is a basic type variable. This is intuitively the 'best' type for this 
subexpression. After applying fix, we obtain the type list nat, which is the 
'best' type for the infinite list of 1 's : 
TYPE2 (Bo,fix (A.x. cons 1 x)) = fix [list nat] 

(((Ax : list nat. cons [nat] 
(1 : nat: nat) 
(x : list nat : list nat) 

: list nat) : list nat ~ list nat) 
: list nat ~ list nat) : list nat, 

TI,{} 

Note that we obtain three redundant coercions in the result, which could be 
removed by post-processing. 

Example 3.6.6 
Figure 15 shows the application of TYPE2 to the factorial function of Figure 
4, using the assumption set Bo, with mult and dec having the same type schemes 
as plus and neg respectively. At each stage we have a subtype ordering 
containing at most one type variable, whereas the algorithm TYPE produced 
intermediate subtype orderings with up to eleven type variables. The benefits 
of simplifications are thus obvious. After the following propositions, we will 
give some more complex examples. 



~w(f :t: { { (dec x.)) 

Co.,d._ ( ef x o) i 

(h1uf1 :t ( t (.!Pc x})). 

(,·~ (\{.h. 

co.,; { 7 ~ o) 1 

(hjulr ~(f(JPcx )))) 

T/fe.( £'i<fres>rol1 

( '>'eplaci"J e:-r:.:"t: l.y e:-c.. ) 

(011;( [o<] ( e'l [afoM] (::(:~to..,) 
· (o:"at:<tt• ... ) : b,.t) 

(1:.,-.t :o(): o<~o< 

Sub-f7~e 
Ortt'ev/., j 

II 

rn{,(!-t[/] (x:ft) '"'+ 
{( {:,~.;~!) ~ 

(dec (~}:i~t):/.,t}:/):1 !. "'~t 

(o,.J c;n ( e! [afo..., J ( :'( ·.;B: "'1o..,) . 

( 0 : v.rl : at o...,) : ~ oa /) ' 

( 1: hat; f' ) 
( h1wf-t [;€] (r :p) 

(( .(:/.,.; ~/5) 
( ~c (:1. : f : ;~ -t) : ,;.. f 
:f) : ft 

(;~ [t·.,., J ( )..-(: ,..,1..:>:> /.,f. (\:(:/.,f. 
Co ... I!{ [.;,r] (;: [ afo-, J (c tl,-+ : "to-) 

( 0: "'"f : a to..,) : l,oo/) 

( 1 : "'"' f : ,.., + ) 

( w.u/1 [i.,f] (z: ,;,; ) 
(( (: /.,'( -:> •.• .,} 

( Jfc. ( ::(: ,.,., ) : ,.,t)· i•t) 
; l'1i ) : i~"f) :iot-"J;~t) 

:(: .. ,. -3 i ... -t) ~ ;.,1-:> ..... -t ) : /,t ~ ,·..,-t 

I I 

{X :<.,-r, 

{:X: fl, 

{:i ... -t-'!Jfir 

I .( :'(: ft, 

{: /~-t~;3 f 

{} 



103 

Proposition 3 .6.7 
If B contains only simplified type schemes, and TYPE2 (B, e)= e': r, ;:;;, A 
then ;:;; is simplified with respect to A --7 r, and hence if A = { } , gen ( { } , ::::;, r) 
is a simplified type scheme. 

P'roof: By induction on the structure of e. 0 

This proposition justifies the extension of the let case in TYPE to TYPE2. 
The next proposition shows soundness. 

Proposition 3 .6.8 : Soundness 
IfB contains only simplified type schemes, and 
'L'YPE2 (B, e)= e': r, ;:;;, A then : 

Au B, ;:;;, e ~ e': r 

Proof: Since by definitions 3.3.2 and 3.5.1, STANDARDISE and SIMPLIFY 
correspond to uses of the derived inference rule SUBEN. 0 

Proposition 3 .6.9 
If B contains only simplified type schemes, and TYPE (B, e)= e': r, ::::;, A, 
then TYPE2 (B, e)= e": S'Sr, ;:;;", S'SA where ::::;•, Sis a standardisation of:::; 
and:$;", S' is a simplification of ::;;• with respect to SA --7 Sr. 

Proof: By induction on the structure of e, using propositions 3.1.2 and 3.1.5 
for the case e1 e2. 0 

Remark 3 .6.1 0 
We note that the standardisations and simplifications referred to in proposition 
3.6.9 are not necessarily regular, since applying regular standardisations and 
simplifications at each step may produce a small subtype ordering :$;" in cases 
where::;; is too complex for our rules to apply directly. 

Corollary 3.6.11 :Completeness 
If B contains only simplified type schemes, and 
B,, II, e ~ e': rthen: 
., TYPE2 (B, e)= e": r', ::::;, {} 
•· SUBEN (S, ;:;;, L) = fi for someS, L 
... Sr' « r 



104 

md hence B, TI, e [--- S(e": 1') : r. In particular, if B = Bo then 
S(e": 1') : ris a program, and if the conjecture made in remark 2.8.7 holds, it 
has the same meaning (or value) as e' : r. 

Proof: Using Corollary 3.2.6. 0 

Remark 3 .6.12 
The above corollary formalizes our notion of 'best' type introduced in section 
2.3, and shows that TYPE2 indeed produces the 'best' type for an expression. 
The algorithm TYPE2 also has the advantage that intermediate subtype 
orderings are kept small. Figure 16 shows the behaviour of TYPE2 on some 
other examples. Since the expressions involved are complex, we also show the 
equivalent MIRANDA definitions, some of which are taken from Bird and 
Wadler (1988). The following is our most complex example: 

Example 3.6.13 
Figure 17 a shows a complex numeric type hierarchy containing integers, reals 
and complex numbers, with non zero and non negative types distinguished. 
This allows us to give a type for division which excludes division by zero. The 
types for division, addition, multiplication and increment are shown in Figure 
I7b. We then consider the MIRANDA function : 

ex=fx2x1 
where f x n t s = if t + s = s then s 

elsefx (inc n)(x x t)!n)(t + s) 

which calculates (approximations to) ex. For the corresponding function in 
our language, shown in Figure 17 c, we derive the type : 

a -0 a where non negative real ~ a ~ complex 

In other words, the obvious definition e~tends automatically to the complex 
case. 

The largest simplified type ordering is (as usual) just before the application of 
fix, and contains 6 type variables. The largest subtype ordering before 
simplification contains 9 type variables. 

With the given type for ex, we can deduce that eO and ere have type non 
megative real, e-1 has type real, and eire has type complex. This is the best that 
we can reasonably expect from a type inference algorithm. 



r<A~c. t/o~<t ,·" HrRAVDA-m sywfGif>' 

t:li~<t,( our S'o'-f"'x. 

.tn =- YJ: f(n+ i) 

tit. ( ).J. Al1. (Ob!S n ( f (flus 11 1 ))) 

to/Jr f C< [ J = C< 

(oiJI" { C< (:x.: 7) :: fx ( (o//r fl?;) 

ti X ( AJ. A {. \ q . '>. f. 

k~"O$l" a (kJi. {.,; (Jr~~.,)) {) 

ife.,.Cfte f :x :: x : ifeyate f ( .( :x..) 

a f pe>tJ [ ] J : }' 
ctp re.-,o( (~: i) J -= :{: ( aff~'",/7 ;) 

r:,-11et I t7 fe o .. A 

s .. d:rty p e () r,/e v-,',.t:lf 
! I J 

,.d..-7Jd.. 

l I 

.f•x(>..<f.Af.AJ. , 
/choose / ('>...:t.~J.C""~ x {ai} )) f.) 

I I 

S;zeo of /drj t>st 

( s;.,..p/.{;·ud o;./~,.,..,, 

'+ ( 2) 

S (z) 

--· -··----------· ---+--------

(d..~ boo/) ~ /,-.,t d. _, //st c;; i select f [] = [] 

Selecf f (:;>(:i):: :(:5efectf1, jf fX 

= select f J, othe~"'VI'sl": 

tix('As.'>.p.Af. ! 

/ c.hoc~e ,,-{ (h. >.;. cc~.l ((X) ! 

(co .. s :c ( sp7 J) {sfp))e)j 
I 

Sort [] = [] I 
Sot-f (-:<:7) = 5o.,.t(sefert(At<.4<x)-y) I 

++ [:x..] t + I 

Sorf (sefl'c-t {>.v.v~~)1) 

{,·;.: (A 5. \f. /c~o·c,e n; I ( h.A;. O.fft"J.. 

(s (5elec+ (At.<. Is~ x)7)) ( "'!!"~,( i 

((o"'~x_.,;/) (a;;p.,,( 
( s ( sell'ct (~ v. Is :x v) ~))))).f.) 

2/ (it) 
! 

ll 



17a.. 

d/v: V c-Af: 

Ax.((Aj·j~ 2x 1) 

(tix (Af. ~x.An. \-t.As. Con,/ (ej(plus t s) s) s 
(f :X: ( ,.nc f1) { clv ( m~lt x t) f1) ( p/ws t S ))))) 



105 

Remark 3.6 .14 
In the absence of an actual implementation of our type inference algorithm, we 
have only type-checked a number of example programs. Furthermore, we 
have looked at realistic functions, rather than pathological examples. However, 
we note the following facts about the examples we have tested : 
• The final type is intuitively the 'best' type. 
•· For functions without generic arithmetic operators, our final type agrees 

with that produced by the usual Hindley-Milner algorithm, and our final 
subtype ordering is TI. 

• In all cases tested, the final subtype ordering contains at most one 
(non-isolated) type variable, which is the type parameter for the generic 
arithmetic operators used. 

.. The simplication rules MOVEUP and MOVEDOWN are not useful at any 
stage, supporting the comments we made in Remark 3.5.6. 

• The largest intermediate simplified subtype ordering is small (at most 7 
type variables for our examples), but approximately proportional to the 
size of the function. 

• The largest subtype ordering before simplication contains approximately 
twice as many type variables as the largest simplified subtype ordering. 
The exceptions (21 type variables for select and 10 for sort) occur when 
applying two expressions which share three or more variables. Such an 
application usually occurs only once in a function. 

In the next section we examine the efficiency of our algorithm in more detail. 

3. 7 Efficiency Considerations 

ill our analysis, we assume that in a 'sensible' function definition or expression, 
types are bounded in size. This is supported by the fact that, although doubly 
exponential in theory, functional language type inference is efficient in practice 
(Kanellakis and Mitchell, 1989). Examining the definitions of the algorithms 
TYPE and TYPE2, we see that the subtype ordering must then grow by a 
bounded amount at each application and at second and subsequenty uses of a 
program variable. The largest intermediate subtype ordering will then be 
linear in the length of the expression. For the algorithm TYPE2, this is 
supported by the experiments reported in section 3.6. The difference between 
the two algorithms appears to be a constant factor, although a large one. 



106 

We have already shown that our operations on subtype orderings (UNION, 
APPLYSUBST, ENRICH, SUBEN, AUNIFY, ARROW, STANDARDISE and 
SIMPLIFY) are O(n3) in the size of subtype orderings. Since these operations 
are applied a linear number of times, we conclude that the algorithms TYPE 
and TYPE2 are O(n4) in the size of expressions. This bound will hold for 
TYPE2 even in the presence of improved transitive closure algorithms such as 
that of Simon (1986), which have better than O(n3) time in the average case, 
since STANDARDISE and SIMPLIFY are also limited by other factors. 

We must now ask whether an O(n4) type inference algorithm is indeed feasible. 
We assert that it is, since 'sensible' functional language programs consist of 
many function definitions of bounded size Specifically, a typical program in 
«>ur notation will have the form : 

let x1 = e1 in ... let Xm =em in e 

where er, ... , en, e have bounded size. For such a program, type inference can 
be done in O(m) time. 

]n a language such as Miranda, it is possible that a user program will have the 
form : 

f x=e 
where gl Yl = e1 

gn Yn =en 

Such a program would normally translate to a large expression not involving 
let (since where in Miranda is not polymorphic). However, most of the gi 
will not refer to each other, and we can extract them as function definitions of 
the form: 

- -
gif x Yi = ei 

and replace uses of gi in e by gif x. This process, which is essentially a special 
case of lambda-lifting (Peyton Jones, 1987, Chapter 13), will translate Miranda 
programs into a series of nested let clauses. In fact, for most cases we need 
not make fa parameter to gi. Usually one or two program variables from x 
will suffice. 

]n conclusion then, our improved type inference algorithm TYPE2, although 
better than TYPE by a large constant factor, is still O(n4). However, we 
expect it to run in linear time for typical user programs after appropriate 
translation. 



107 

4: DATABASE APPLICATIONS 

We have already seen, in Chapter 3, how our subtype inference scheme has 
benefits in defming polymorphic functions on a hierarchy of numeric types, 
such as the exponential function. We now tum to the second major application 
of our scheme. Recall from the Introduction that our motivation for 
introducing a hierarchy of type constructors of rank * was to permit different 
kinds of functions. In particular, we suggested differentiating between finite 
database functions, which have inverses, and other functions which do not. In 
this chapter we show that we can give a type scheme for the inverse operation, 
which correctly handles the inverse of both many-to-one and one-to-one 
database functions. This allows use to do type inference on database queries 
which involve inverses of both primitive and derived database functions. 

We believe that the most natural model for database systems is the Functional 
Data Model (Shipman 1981, Atkinson and Kulkarni 1984, Buneman et al 
1982). This model views a database as a set of entity types, some of which may 
be subtypes of others, and a set of functions between them. This is simple and 
conceptually clean, and is closely related to the concept of an algebraic data 
type (Goguen et al1978) which consists of a set of sorts, and a family of 
operations on those sorts. There are also close links with the related notion of 
a category (Herrlich and Strecker, 1979). Categories in tum are closely 
related to typed lambda-calculi and functional programming languages 
(Lambek and Scott 1986, Kazmierczak 1989). This provides a theoretical 
bridge between the Functional Data Model and functional programming 
languages, which is supported by practical work such as that of Buneman et al 
(1982). However, these authors, while describing the benefits of functional 
programming and lazy evaluation, fall well short of using the full power of a 
lazy functional language. They also restrict themselves to the user-unfriendly 
syntax of FP (Backus 1978). 

In this chapter we combine a Miranda™-like language (which translates to the 
simpler language of chapters 1-13 as described in the Introduction) with the 
.Functional Data Model. Our subtyping scheme permits us to make the 
following extensions to the model : 
• Database functions can return arbitrary types, including other functions, 

as results . 
., Inverses are defined on derived as well as primitive database functions. 



108 

Higher-order functions can be defined for manipulating database 
functions, rather than relying on a fixed set of predefined higher-order 
functions as in Buneman et al (1982). 
Implicit subtype inference is possible for all expressions. In particular, 
subtype relationships allow entity types to 'inherit' the functions defined 
on all their subtypes. 

The result is a more powerful model, which is also cleaner in that the sharp 
distinction between data and programs is completely removed. 

A comparison between the Functional Data Model and other modelling 
techniques is given in Hull and King (1987). One model worth special 
consideration is the object-oriented model (Albano et al1985), since much 
recent work on inheritance, such as Stansifer (1988) has been done within that 
framework. However, we feel that the object-oriented model is too ad-hoc, for 
two reasons. First, the representation of an object as a tuple of attributes is not 
as nice conceptually as treating an object as an abstract entity. It also leads to 
the problem that objects are treated as equal whenever their attributes are the 
same. This leads to counter-intuitive situations where two objects are 
considered different as members of one entity type, but are considered identical 
as members of some supertype. Second, the object-oriented model inherently 
relies on assignment to fields of the tuples which represent objects as the 
fundamental update mechanism. In contrast, update in the Functional Data 
Model can be considered as replacing one function by another function, ie as a 
redefinition. This is neater, and means that the Functional Data Model shares 
the benefits of avoiding assignment discussed extensively elsewhere (Turner 
1979, Henson 1987). 

The first part of this chapter briefly discusses a subtype hierarchy suitable for 
database use, and gives type schemes for the inverse and composition 
operations. We then examine inheritance of functions from supertypes to 
subtypes. The remainder of the chapter is concerned with a substantial case 
study, namely a medical records database for a hospital. We develop a 
powerful but readable database manipulation language, and describe it by 
giving examples taken from the case study. 



109 

4.1 A Subtype Hierarchy for Database Use 

For use in functional databases, we introduce some new types, as follows : 
• debit credit: a signed number with two decimal places, used for 

accounting applications. The type coerces to string in the usual way, 
prefixing a dollar sign, and suffixing minus sign for negative amounts. 

• money : a subtype of debit credit restricted to non-negative values. 
• datetime : specifies the date and time of an event, coercing to a string of 

the form 'dd/mm/yyyy hh: mm'. 
• date: specifies a date only. There is a function dateofwhich extracts the 

date from a datetime. A date coerces to a string of the form 
'dd/mm/yyyy'. 
time :specifies a time only~ There is a function timeof of type 
datetime --) time, and a function event : date --) time --) datetime which 
specifies an event by combining a date and a time. A time coerces to a 
string of the form 'hh : mm'. 
checks : used for checking conditions and returning error messages. The 
possible values are ok and error s, where s is a string. These values 
coerce to string as 'OK' and 'ERROR' & s respectively, where & is a 
binary operator which concatenates two strings and inserts a space 
between them. The type bool also coerces to checks, with true andfalse 
coercing to ok and error '', respectively. 

We also introduce a new type constructor of rank 1, which we call opterror. 
The values are present x, for x a value of the parameter type, and missing s, 
for s a string. This type constructor extends optional by supplying a message 
which indicates why a value is missing, and we thus coerce absent to missing ''. 

Finally, we introduce two type constructors of rank*, as follows : 
• database functions ( =>) : these form the types of database functions which 

are, or can be, respresented by a table. Viewed another way, they are 
one-to-one or many-to-one database relations. 

.. injective database functions ( ~>) : these form subtypes of database 
functions which are injective, ie one-to-one. 

These two kinds of functions are subtypes of functions in general. We thus 
obtain the subtype ordering shown in Figure 18. (Note that the type constructor 
::J of rank* has been omitted). Figure 19 gives some useful function 
definitions using this subtype ordering. 



Checks 

tSool 

RAA/1<. 0 

or-tervoy- f,·s -t 

\I X + I 
I 

i 
I . 

I 1· or-tt"o,~l 

II RAJJk 1 RANk 2 RAJ./ K -* 



Enc."(!f: St ... "j ~ S-r.-.-...1 

D(fte or : Dl)fte. -r;;...e_ .., D. tp 

D"'(S Betwre .... : D,. te -? D" ie.. ~ T ... t 

Yea..-! l$1"-tw<'f'"t : _ Dude _, Date _, I.,..t 

Les<; Date (,;.,e : b,. te r:-....e ..,;. Dote r--..._e -7 Bo..l 

Alex-t A fte ... : d... ~ f,·.,t d -ii) o/-t'o ... ..,( o( 

/t.!extAfte ... :::c CJ :::alosP•f 

Ve"t.-t A fte..- r;J ::: a.lor;e .. t 

:( r;:y=;sJ = i..f:x=-; -/"~e ... r,e~e .. {J 
efse !Vot A fte... :x [} : J5] 

Sort Wit?... : (d.~ d.~ Soot} ~ l:st o< ..,. l·st o( 

Is C. J :::: C J 

Sort W:tl__ Is [::c: xs J .::: Sort W;t~ Is [ 'J j f <!:-- xs; Is X J] 

i{..,;'::IS;J 

,·., ft'x :x -
0 f rer-ro:r d ~ 

,· ( ,.,,.5 s/") / = 

f-t [ x] 

tf SoriV/.;4 Is [JI'f~~s; >~o-t(/sx;)J 

':, fr·j ~ Of -fi'Yro;- d., 

Ct:?5e -x. ~ 



110 

We must also note that, since database functions are those implementable by 
means of table lookup, the domain type must have an equality operator defined 
on it. Therefore in 'Z" :::::::> "C' or r ::::::> r', rmust be a basic type. In order for the 
ill.jectivity condition to make sense, r'' must also be a basic type, in the second 
cease. However, in the first case we can return functions as results, and the 
function/such thatftrue =neg andffalse =square could be represented as a 
table of type bool :::::::> (int ~ int). 

4.2 Inverses of Database Functions 

W ~ are finally in a position to give a type scheme for an inverse operation, 
which inverts only database functions. The inverse of an ordinary database 
function is multi -valued, and we indicate this using lists : 

inverse : ( r ::::::> r ) ~ ( r :::::::> list 'r) 

A more purist approach would use sets, where set was a supertype of list, and 
the coercion from list to set removed duplicate elements. Such an approach 
could be handled using our subtype scheme. However, due to the 
non-injectivity of the list to set coercion, we could not use the polymorphic 
equality operator on lists. Instead, we would need additional equality operators 
listeq and seteq. We would also need an explicit conversion function from sets 
to lists, so that the results of inverse could be processed with the usual 
list-handling operations. In the interests of simplicity, we choose to have 
inverse return a list, where the order of elements in the list is dependent on the 
order in which items were added to the database. 

The inverse of an injective database function is optional-valued (by definition 
of injectivity ), so that : 

inverse : ( 'Z" ::::::> r) ~ ( r :::::::> optional r) 

We also observe that, since the domain of a database function must be basic, 
rand r' must be basic types in both cases of inverse. Before we can give a type 
scheme for inverse which generalises the two types we have given, we need the 
following relation between functional type variables and type variables of 
rank 1 : 



111 

Definition 4.2.1 
We say that a type variable e of rank 1, and a type variable ¢ of rank * are 
analogous, written e::::: ¢,if: 
• for all subtype orderings~, optional~ e ~list and:::::>~¢~==}, 
.. for all substitutions S, se =optional if and only if S¢ = :::::>, se =list if and 

only if S¢ ===},and se = 8' if and only if S¢ =¢'and 8'::::: ¢'. 

This relationship can be implemented by merging the rank 1 and rank * 
subtype hierarchies, using context to determine whether any type variable is to 
be treated as having rank 1 or rank *. The relationship e ::::: ¢ then means 
simply that 8 and¢ represent a single type variable lfl, which satisfies the 
constraint optional ~ lfl::; list. Figure 20 shows the merged subtype hierarchy. 

Definitiol'J 4.2 .2 
We give the operation inverse the following type scheme : 

\j a{38¢: e::::: ¢. ¢(a, f3) ~ ([3 ==} 8(a)) 
where a and [3 are basic type variables. We easily verify that ground instances 
of this type scheme are of the two forms given above. 

4.3 Composition of Database Functions 

Composition of functions is a little more difficult. We have the usual type for 
composition: 

( r ~ r') --t ( 'r --t 'r') --t ( r --t r') 

Also, since we can apply a function to the second column of the table 
representing a database function, we have the type : 

( r --t r') --t ( r ==} 'r') --t ( r ==} r") 

However, to produce an injective database function as a result, we need to 
compose two injective functions, ie 

( r :::::) r') --t ( r :::::) r') --t ( r :::::) r') 

We cannot fmd a type scheme which has instances only of the thr~e given 
forms, so we are forced to define two composition operators as follows : 



tv'() t 8oo ( 

f(Afv'k 0 

X I 
T 

R.AVk 2 



112 

Definition 4.3.1 
We give the composition operator, denoted by the usual symbol, the following 
type scheme : 

V af3r<P : => ~ <P ~ ->. ({3 ~ 11 ~ <P (a, {3) ~ <P (a, 11 

We give the injective composition operator, written injcomp, the type scheme : 
Va{3y. ({3~> 11 ~(a~> {3) ~(a~> 11 

where a, {3 and rare basic type variables. 

We can easily verify that together these composition operators describe the 
three possibilities listed above. The first type scheme does not specify that if </J 

is => then a must be basic but it need not do so, since all primitive functions of 
type -r=> r will have -rbasic, and by the type scheme for inverse, we cannot 
G:onstruct any expressions of type -r => r for non-basic -r. 

The division of composition into two operators is a notational inconvenience, 
but we note that the injcomp operator is, in fact, rarely used. The injcomp 
operator is only applicable when there are two injective primitive database 
functions, where the argument type of one function is the same as the result 
type of the other. For example, in the substantial case study which we shall 
describe later in this chapter, the injcomp operator is never applicable. 

One further problem is that constructing derived database functions by 
composition alone is too restrictive. We solve this by noting that any function 
on an entity type can be turned into a database function by enumerating all the 
elements in the entity and applying the function to each in tum. We therefore 
assume that for each entity type E, there is an operator for each E with type 
scheme: 

V a.(E ~ a) ~ (E ::::} a) 

This permits us to constuct inverses of any function defined on an entity type 
«although such inverses would probably not be extremely efficient). 

4.4 Entities and Multiple Inheritance 

]n the Functional Data Model, we assume that there are a number of entity 
types, which may have subtype relationships between them. We assume that 
hierarchies of entity types are semilattices with a top element (and also 
satisfying the other conditions required of a subtype ordering). This is not a 



A A ::: g -r c 

/\ 
B C 

A A = g + c ::::;. D+E-rC 

/ ~ B .::::. D + E 

8 c s/ c ,·"'he,;t ore ... ~ 1/c ... s o., A 

/\ DE ,·.., t. p, ,· t t> / f'y- o. -Tt'o" .s o., A, B I 

D E 

A A :: B + f:" :::: DrC = D -t E + F 

/ ~ B :::: Dr E 

(_ .:::; E + I= 

8 ( 

/"\ /\ B c /..,~e .. :r- o;rra-(,',.,.5 o., A ~ 

D ,"..., he .. ,ots o/er41. -1,;,.,5 D'1 A, B 
D E F E /..,hev/-(s Offrtr l'/o ... 5 l>.., A, B ... c 

F. /..,1-,e,-:ts Ojfv.rl"•o--t.s o., AI c 



,.... I ( ) '\ I '' I'""IAe IMfCCIY :::; jt:?SO i.,e 

5fed ( i"\JCa..-) :: /OO 

Aje C;ccw) = 23 

you.r--t;-u.ck. E fY<((. k r::~.~e/ { you.r- Truck) :;; ''d.. ;'' ,ese 

<;fer-PI { you.r tr .. ck.) .:: cro 

A1e ( yor. .. -fru.ck) .::: t.r 

s rn·cl ( h:s b/ke) :;;; b 0 

A j e ( h :s Ia: ke. ) ;:; 1 



fSicvc/e.. fa : 
I 

\\ II 

Swe"'t 

Skatefooa..-/ S: 

Descv-!ff;c.,_ : Oloje.c-t ~ S-tr:,J 

Descv,/1:o"' ::<. :: Ce>se x. £f_ 

F? /cycle b : (1 A Je /, )' S r-~ e., ''ofd 11 else '\ e v'') Jk '' b:c ;c! e 

S Kc>.-te b()a.--,( s : \1
S kateb()l(~,(" 

Ca .... c. : (if. <;fn,< c. :;>roo -tht., ''(etst" el~~ ''slow") Z. 'c.:ll·'' 

lro.<ct( t: (r="e/ t) ~ 11 -t.- .. ,lc '' 

\\ II 

f"' .... t 

2 3 - Case OVlCt~s/;, Ot--t 



113 

restrictive condition, as we can always adjoin a top element to a hierarchy. 
Note that the hierarchy need not be a tree. We assume that an entity type is the 
union of its subtypes, and contains no other elements. This again is not 
restrictive, since if we desire A to be a subtype of B, we can add C as a subtype 
0f B, where C consists of those members of B not in A. Lastly we assume that 
two entity types are disjoint unless they have a common subtype, which can be 
adjoined if necessary. 

Figure 21 shows some simple example hierarchies of entity types. We note 
that, because of subtype coercions, entities inherit the operations on all their 
supertypes. Since the entity hierarchy is not necessarily a tree, this is what is 
known as multiple inheritance in the world of object-oriented languages. 
However, unlike object-oriented systems, we assume that the coercions are 
injective. For example, in Figure 22, we have two distinct items mycar and 
yourtruck which have the same attribute age. Considered as members of the 
entity type object, they cannot be distinguished by their attributes, but we are 
justified in saying mycar =t yourtruck (if you will walk outside onto the street, 
you will see that they are distinctly different objects). The same argument 
applies to distinct cars. On the other hand, since objects are not represented by 
tuples of attributes, non-injective coercions are not needed with the Functional 
Data Model. We also note that if there is an injective function from the top of 
an entity hierarchy to a primitive type such as nat or string, then we can use it 
as an implicit coercion. This is useful when there is only one sensible way of 
identifying an element of an entity type by a printable value. Our case study 
will show some examples of an entity type being coerced to string for printout. 

Finally we tum to case analysis on entity types. We assume that the case 
expression extends to entity types, by providing a list of disjoint subtypes. 
Figure 23 shows some examples, using the hierarchy of Figure 22. We also 
assume there is a predicate (eg iscar) to test membership of each subtype, and 
an optional-valued function (egforcecar: object__.., optional car) which returns 
an object viewed as being a member of a particular subtype, if that is possible. 



114 

4.5 Case Study -A Hospital Database 

As a case study, we consider a medical records database for a hospital. This is 
a complex example, even though we have simplified it by omitting several 
database functions. The complexity of the example makes it difficult to specify 
using 'fourth generation' techniques (Burroughs, 1984). 

A hospital is physically divided into a number of places in which computer 
terminals may or may not be located. Some of these places are wards which 
house patients. Organisationally, a hospital is divided into a number of units 
(which include outpatient clinics) which take responsibility for patients during 
their visit to hospital. People in the hospital fall into three overlapping 
groups :patients, staff and babies. Some staff are doctors who attend patients, 
and some staff have passwords which allow access to important database update 
transactions. Babies may be patients, or may be with a mother in hospital. 

Registered patients makes zero or more visits to hospital where they fall under 
the responsibility of a particular doctor and unit. Some visits are clinic or 
outpatient visits, while others involve an actual stay in hospital. For each stay 
we record a list of comments (dated and initialled by a staff member), and 
either the ward the patient is currently located in, or the date and time they 
were discharged from hospital. Comments may be made on a stay after the 
patients leaves hospital, as paperwork is processed. The last visit for a patient 
may be either an in-hospital stay or a planned visit with a future admission 
date. All preceeding visits must be clinic vists or discharged stays. 

Places, units, and terminals are uniquely identified by a name which is a string, 
and these entities can be coerced to string for output purposes. However, 
persons have two kinds of unique key- a unit record number for patients, and 
a string of initials for staff. There may also be a medicare number which is 
not necessarily unique. 

Visits are uniquely identified by a patient and a date/time. We also note that 
only some unit/doctor and unit/ward combinations are possible. To facilitate 
multiple operations on a patient, we would also like to (optionally) associate a 
patient with a logged-on terminal. Figure 24 shows the entity subtype 
hierarchy for our hospital database, and Figure 25 adds the primitive database 
functions. In Figure 26 we give some simple queries in our functional 
languages. The types are given for documentation purposes but note that all 





PIa( e 

1\ 



At!""' :1 : V. ·s ,...,. -=':> 0Me T,-.., e 

A.l,.,;-t ::: Sn.~" 1./h:r_t, 

t/,·s/r~ 8( p.,-1;~ .. ,-t ::::> 1/st V.:s,-.,. 

V/sifS 8( ::::- ,·..,ve.-se W4o 

A5e. : Pe .. so.,_ -')> I .... t 

AJe f :: Yl'<7r.S Be-twee.., ( Dat~tOf Alov} { Bi.-t~ D.-tt. f') 

A f.ter 

A fto-· 

La.st V,·-;.it 

LPs-r 1/,·.,.-t 

Pa f,·p,., ( => Of f,'o,..,./ {/.·5:-t 

h ea,( o DPsc [),. te $,,."( o V,·s/fs 7 

w,,...( -0 f,·<:>r f«t,-,...,-; 

w :: [ W'~ .. s / $" <::- ,:,v~>.-se Vl,e"e ""J 

Pars I.J:t~ Va ..... e : S t''"'J ~ /,·-,-r ?ert't>•d 

Pats Wit"!,. 1/tJ.,. e S ::: C o ... ca ""f { (orN! Pttiie., -1 f / p «:- /.,verse J.l.,...,e S J 



115 

these types can be inferred using our type inference algorithm, after translating 
to the simpler language of sections 1-3. 

The types of the primitive database functions do not impose all the restrictions 
we require, and so we impose a number of constraints which are checked on 
each update. These are also expressed using our functional language as 
checks-valued functions which return either ok or an informative error 
message. Note that because of the subtype relationship, boolean-valued 
functions are also acceptable. Figure 27 shows the constraints for our hospital 
example. 

4.6 Query in Our Hospital Database 

We assume that most user queries would take place using forms. A user would 
select a form by hitting an appropriate key on the terminal, and optionally 
giving a numeric or string parameter. Figures 28B and 28C show two query 
form definitions, using some general purpose definitions in Figure 28A. The 
first query lists patients in a particular ward (by default the one in which the 
terminal originating the query is located), and the second lists all patients in 
hospital being attended by a given doctor. Each form definition consists of a 
form layout, a check for the existence of the specified ward or doctor (using an 
opterror-valued expression), possibly some definitions, and expressions to 
evaluate. The results of the query are 'filled in' in boxes on the form, which 
may be scrolling windows. We assume that fields in the result may be selected 
(by mouse or cursor movements) to use as parameters to other query forms. 
Figure 28D shows an example dialogue with the system. 

4.7 Update in Our Hospital Database 

To update our database, we extend our form definitions with update operations. 
The intention is that after an optional query is performed, the user fills in some 
boxes on the form. If a given sequence of checks is satsified, and the updates 
do not violate the database constraints, then the old database is replaced by the 
updated database, and a confirmation messaged is written to the terminal. The 
following update operations are possible : 

addnew <entity type name> withfi = ei 



{oral( Per so'~ f i1 
{o;.ttl{ Pers""" f 

;{ 

(o,.<d( Pe rsc., f Cas~ 

AJe f < /$0 -;h,.., ok.. efse e Y'8r u tf<J~ -~.Jj.yw~ a;e t-::o l""~s " 

/f ... { Ad/rt'~5 ~) ~ 4- "('1,1!., oi( else evrt~;-- \I /1A'J{ 't 1,-.. .. s • f n,,/,...ss " 

He./,· ou e f of 

absP .. f : ok 

frPst"t "~ : d check:)'f;t [1
1 
7AI

1 
~ 7; 3

1
!] (;, ,1,-vto) ::: j,j ,..,pt to 

-/'~1'"1 0 k. ef~e erY'O" ";(/,.;"! M(',/(c<u·e 1"1/b.., hPI"" 

C~eck tl'fi1 

c~uk ,(,-J"f 

c J "' "' '1 

[ :::c: ::o] 11 ::: (c~eck.Ajit :t'S ("~ & to) + x ~ '1) ~ to 

f.,.al( V:vt v ; i{ 

V:s it rJ e fo,.p v ~ 

a.tosl' .. t : of( 

e(<,e e;-.-o,_ '' OVPr(a//'j v,'<;t'l"S ~ 

i'IO"\ ove..-(al' -::o:: i ::: ~ :::.:: o {: 

r .. l{o-:,1' 5 {<t fse 

Dt"<schtt ... jt'lf' J: LessD.teTt·..,e (o'~c4 ... ) (AJ ... :tl) 
L es5 (),re. l,;.,e ( A,(..,:t c) ( At!,..;t 7) 

'!~ /{os1 h if. Lrrlu w < /<:: .. ./. ~, v~e,.e 4 / "t4e'1 ok 

efse ev.-a>- ":f/py"l u .. :fj W'ttrti (c:>..vt ~. ........ {,;,.," 

D:':>c~a,.r,/A: ,of LessC.,.te-r:-...e (AJ..,,-t-1) {D/H~ ..t) -fi~ ok 

efse evJIT),.. ,, D/schC~je i'>A"';Y /,e affPv AA ... a" 

i{ ~sc r;.d..., (AA..,:t'>) (ro"""'e"rj s) -r41'vr ol( 

ef-,e error "'co...,,..,e.,ts n.tvsr /,~ ,:., ,,l'$<f"'d,'j· & .... ,(e, c<fte.- A.f..,.:r" 

whe,e D~>sc r,. • ..., d. C J ::. 'f,.., e 

Desc F'.-o""). [<c,s
1

ol.2. ):rest];; i! Lesst':afe/,;..,e J. .Jz. 'tt,,., {afse 

e{<,e . O~'sC F .. o ..... riZ ""est 



Ge-t Doc--to;-

Sta7 T .... fo 

5r/ I...fo s 

a/,st ... -t: "''H•j 

f~'l'SP•d f : fo,rf' 

...,:ss/J 

st: (oNe 

T.., ffo s /' ~ S -/'y, '"J 

,;_, /-t, ·.,/s 't £ .J 

Docto... St 

:::: /);-""' { Ldo s) ~ ft/"'"'e {wiv;s} 2..- k,".vf s 

( ~ Co ... ,.,e .. -<s 5 " { [. J : " '' 

[<c,s1 .(/:nst]: c.) 

213 A - Use~ ( 



i.f w ll () :. ,, I/ 

-thl'., {orre Va .. / ( Loart/o"' c ..... ~M-t ~~ ..... ) 
else Ge-tWa .. ,{ w.(D 

lv'Ov<"( -:;; ""' 

t1AIIJ .::: [ St"l: ... fo s / S ~ l.,ve,se WhP..-e v] 



(o!M,fo,· ... e [<w; CJ > .. ,:~st J ::;; co ... b:.,e Yt'S"f' 

Co .... l,:..,e. [<w
1 

[::c:;J> :r<'sr]:: 

["ra'ft't>>dS /., t.vt>;-,(
1

$. LV ; ':::(;? J +-!" (o....,fa,;.,e_ Yl''i.t 

213(- A {oriN\ 



Patie.,-t L·sf tor Dr. A ..,,lreo.v :r. s .... i-rh J 

pa-r,·e ... -rs ,·..., W'tt .. d_ /A 

{q 2 3 4-7 Jane s .... i-1:~ PA£D u .. ,;e ... Ob servat(•., 

10'1 4' I 2 Ale~ JO'~I"S PAeD f<.erove v•"') cr ('fp,.. Ctj'ff'...,(,·~ee-ro/ 

pa-t/e,-ts ,., ......... ~.( 7A 

l)lfq27 'Tot..., s ... :-rt.. GSu..i!G Oft'ra11ol1.. <;cl,u(.Jp,( .fo,.. /6.'30 

I$ I 2.33 /'1Pr/ Doe GHED t1edt'c.cr ito ..... t:rS ftr cl..art 

IOS'17'1 r;: .... r:( fS lo:;p G5u~G b~~<e .(o,.. d,-sct.o":fe to ...,o v .. o '-' 

1'34-127 To4'1 s ..... th G St<.<G oru-t>..-t'o" <;c h.evf., ft._.t for It: 50 

ISs'2..7{ Pe-ter 1 .. )' lo,.. GMED AJ-./"1'-t,.d -to w-a,..,( 7A 

I '0* "2.)) H.rr/ Doe GHED MeA/ra1/o..,_ as tn- c4or1 

l"!lf Z.7/ F,.e.le,.,-,k 5.,.;.tf,- Jo..,f'S Gs"'.eG (o.,dr't/ • .,_ S ret t./e 

2..~004-7 I? le~ ... ,h e D.., bot's GtteD Hed'cat/o...._ q 5 / e"" ct... ctr'( 

'2..slf'I06 Core/ 5cot1 G Sco~ G Co.,..l/t,·o,., S -taUe 

~ll 1>1o•e er.-t .. ;es 

User Cti~-1 110V "'se C'-ttrSo;- -to <;o·ol( -r~ .. ojkt e.., f,.;f''S / or 

-to sefPc-t pa-t/p.,.; !1a'( Doe qs r',.,.,/t'c CI'N! .I 
I StAff/; ,;,j /S/23j 

t<S fa,..o...., e1e;- -to 11 .. )!. t (0,...., 



116 

This operation adds a new element to the given entity type. The fi must be a 
complete list of primitive database functions defined on that entity type, and the 
ei must be appropriate values for these functions. The update fails if the 
constraints are violated. H the update succeeds, derived functions (such as who 
and admit) are also updated, if the implementation makes this necessary. 

update <object> withfi = ei 

This operation updates function values for an existing element of an entity type. 
Otherwise it behaves like addnew, except that any previous primitive database 
funcions not occuring among the fi are retained. 

delete <object> 

This deletes an element of an entity type from the database. Unlike the delete 
operation of Atkinson and Kulkarni (1984), this does not cause a cascade of 
other deletions. Instead the operation fails if there are references to the object 
other than by primitive database functions defined on it. This can be detected 
using reference-counting memory management techniques. If the operation 
succeeds, the database functions defined on the object are adjusted by deleting 
the object from the appropriate tables. 

reclassify <object> as <entity type name> withfi = ei 

This moves an element of an entity type to another entity type in the same 
component of the subtype hierarchy. Thefi must be a complete list of 
functions defmed on the new entity type but not on the old one. Any functions 
defined on both entity types are retained. 

We note that the database is only updated if all the updates specified in a given 
form can succeed. If any update would fail, the appropriate error message is 
given, and the database is not updated. To make this possible, we assume that 
all update transactions generated by users filling out forms are serialised and 
processed in a fixed order, rather than in parallel. 

Figure 29 shows some simple general-purpose defmitions, and a number of 
form definitions using them. The form definitions specify a query and an 
update to be performed after the user has filled in the form. Default values for 
a form are handled by 'filling-in' values with the query, which the user can 



Ge-t Sta ({: 

Ge-t S-taff S 

Get P/ ..... M..t Vtsit : 

Get fl""""-1 {/,·sit f =-

C«vre.,t Sr"! P4r:e., t ~ o!'"ttr,or T., !loy 

CtA.,.rl'.,t $t"l f .:: case La.~t 1/,'-,/-t 1 d 

I ~ " 4'<>SP.,t : ,.,:ss:J 11o Viv"rs. ...,,.,;8 

f""I'SP..,t /v: {oN I' T., flo sf /v .:...f...,,ss/1-
,, 

'"'0 Currt>., f 

U~.,ev- ~jye/ o ... : o;-te1-rcr Sta (f 

Use,.. ~JJe;{ 0., ::.. Ca'>e (,..,,.f~-1" le........ of" 

LoJJ"ti 0., "::( : fresP .. t {Use..- x) 

Lt':JJM Off 1/ ~ ..... .-s s:J '' re,..,;.,,tf :$ "'""~ 17J"'.t o.," 

Lf'Jal Pass wd 

LPJnl Pass w) s 

S-ta.f( ~ $ t.-:J ~ dec k.s 

i-1 E..,c~'lfH",t PW 

else ". I.,_(OYr~("( 

2 ~A- Use~ ( ((.,( M c. f/o 11. s 



-fo 

r",. 1/11( t s I!======! 
i-e ...... .-..... , ~...1 ----' Loca ·/'J'o, '----------------J 

I fv'li D St,..,·J OtA.t, tvf1£: sf,.,.., OtA-t) TEIU1: S-t-.... ·,J O .. t 
I 

LOC S-r.-:j 0/A-f, Pt.vD: s t ..... "J Sec..-e-t y..., 

QutPz: e ')(. t's 1 s M.""User::. Get St".f( I AlliS 
I 

l'"etctl'i1 /Nt!O tvi1E/ IERHI LO( -;::::: < I AI ITS /Van,e Ne..vUsev-1 I I 

Cu,.-~ ... , {e,..,.., Lo urf, ;,., C.tYNvr t ffy""' ) 
I 

c ........ e ... t Par "' a/.,se .. t 

Loyyd orr :J: recf((s~-ft f ~ LoJ:r.f o, 
.._,;14 L/ser :: /1/~1</ l/51?1' (,.1Yrf'1T f,t ::. a6sp,f 

/ 

218 - A., 



~A T I AI F 0 ( N : tv'a t ) 

u (<. 1110 

\;.) arJ. 

c,/>li'?e .. ts I I 

UR.: !Vat Q,_.f, NME: S-r":'J Ou.t, WRD: Sthj T.,Out, 

Doc : '5-tr:J o .. t I DAYS : Alat Ov.t U.(Jii: S-t;,·.,, Owt 
J ..) I 

_ (OM: St,.,.J I.., 
1 

HAIA/: k/,;,,;low 

e fse Get Pa ttf'.,t N 

S = Cu,.rewt S-t"/ f 
U 1<. IV i1 E 'v.l !< D CJ /.II 7 DoC :: < {),.,., f f./d-.e p lv'L.e .. e s k,· .. vl s D,. S > 

I / I I I fl I / 

DA It'S = D"'(5 Betwee.., { DMeOf Alov) ( Datt>Of {A,!...,;.; .S )) 

HAIA/= [cid.& J.,/ts St J <c., 5r
1
d') ~ Co""'""'"""s s J 

Uf./Ate e~/<,f5 u..,e,. ::: UsP.- ~JJ"'" o., 
2)1/sts w:: Ge-t w.,.,.,~ W~D 

i...£ w :,C '-vl.tere S -t~e"l ~;;-/"'<!. S w-<t~ lvhe,.e .-o 1.v else S K! P 

updore. 

eo.., f.· ....... -
(<.Avrewr le~""' Wt'-t4 c(.(YY('"'t Pat = fl-f!'S,{'nf t 
'',·..._fo.,..,,..,.,·o., u;d'at~;( .fo,_. '' &: NI1E 

21 c- A 



ADMIT (N:tv'a.t) 

IJRN'O 

J 

Co~~e~~s ~------------------------------------------------d 

U R : Wat OCA. t, 

:::. ~ Loyydo,, 
i..£ N::: 0 -t~e"> (u~rre"-t Pot "fer-, /(...,,-s~t'!q ".,o c/e{,,. 1-r u.-.,o 

11 

./ 

else 

retul'"! f.A fl.. I N H €1 A bD R I .. AD f1.:: < ();-,o f; /Jo ... e. f; A..'.l ..... ss f I !low> 

ret'IYI) w~ {).:: c,.se Locai/o"' -te.-.., 0 { wa .. ..( w: tv 

Update. ex./sfs ~ ::: Ge-tLt ... ·., u,vr r 
I 

e )tt's t.s A. .:: Gt:-t Doctc..- {)O( 

ex/sts tv::. Ge-f Wg,..( t.v /l D 

rfe( c .. !.1 con ~ II -thP., .::: ''ad..,t'-tt(t;( -to war.( 
11

},.. LA/ else COM 

ur.rla-~'e p 1,./;tt, Aclcl.-ess .::: A DDR 

Ca-se Gerff"'""~',( V/s!t f of IA1t'sst'J s: ~~;e. 

prese .. t fv: dele -tc fV 

\A./4t'c t, :::. < f/ A D/1 >I ki .. .l:::. f.,() . D,...:: ,(I 

v~e ... e "' w
1 

Cowt,.,r•n's .:; [ <c
1 

Lise;- "fer"'~, AD"1)] 

~t_/11te -fey"" ~ Curre.,tPa-t::: prese"'1'f 

Co.,(.·,..,W! fJHE. !x "a;(..,:-rre/ to wtm( '',k f../.(D 

2'7 D 



LoJ Ov, -fo S;s-re111 

Iv.l-ft"a/s PMI !Va.w.e [Sr. Pof,-;c'<t H. 7o•H'S J 
Tev..,.; .... { 1-r?A I L~ca-ft"ovr [ 7 A l 

UR.IVO j1<Z1233j 

AdJrt>S$!17 F=o .. e$4ore Ave.,.,e 

I Ht:<r/ooGAY"S!,/e A/St./ "31"' 7 

Paft"e"'1 1"'for-111.t:rf,"o.., Query/Utvlatf 

U.~A/0 (1S/2.Bl Aftt..,e I Ha7 Doe 
~~~----~==~--~~ 

\.v'a.-p(I 7A J Ot~ys '" Hosf;1.,(~ 1).,;-t [GHeO I Drn-to>- B
C I H~.l/ca1/o.,_ .rs ne,.. charr

01>1"' (.>1"/S . r

J

117

Gver-write. An example dialog with the system is also shown. Note that the
admission form in Pigue 29D is by far the most complex transaction
encountered in the hospital database, involving default values (eg for a patient
that has just been found on a query and has therefore been selected as the
<rnrrent patient), a possible change of patient address, a choice of actions
<iepending on whether the visit was previously planned, and a check for the
terminal being logged on. In spite of this the transaction is specified readably
and concisely.

4' .. 8 General Remarks

~!though we have covered the database applications of our subtype inference
scheme only briefly, we can draw a number of conclusions. Firstly, the
hierarchy of type constructors of rank* allows us to mix database functions
with general functions, while being able to infer which kind of function is
denoted by a particular expression. This permits us to treat primitive and
derived database functions in the same way. In particular, we can take the
inverse of derived database functions. We thus obtain a clean merger of a lazy
functional programming language with the Functional Data Model.

We can use the full power of a lazy functional programming language to define
higher-order functions,#queries, constraint checks and updates. We can use
recursion or list comprehensions instead of looping to iterate over entities.
This is theoretically neater, and contributes to conciseness and readability. The
ability to do type inference means that the programmer need not specify
:r;edundant type information. Should this type information be needed for
documentation purposes, it can be produced by a compiler. Our case study has
shown the usefulness of the language we propose.

The hierarchy on type constructors of rank other than * is also used throughout
our case study. In particular, the optional to opterror coercion is useful. The
coercions to string are essential for writing readable queries, as they allow us
to, write expressions of entity types, and obtain printable results. Finally, the
c.oercions between entity types provide multiple inheritance, by making
functions on supertypes available to subtypes. We do this within the Functional
lData Model, rather than the object-oriented model. However, the Functional
IData Model has conceptual advantages over other database models, which result
in its clean fit with functional programming languages.

118

We have not examined the important issues of implementation and pro gram
mptimization. However, we have shown that our subtyping scheme can lead to
a; powerful and useful database manipulation language.

119

5 RELATEDWORK

We will now examine the relationship of our work to similar work on subtypes
and especially to type inference algorithms for various notions of subtype. We
have already referred to the overviews of Leivant (1983), Reynolds (1985) and
Cardelli and Wegner (1985) in our Introduction. Reynolds discusses Milner's
type inference algorithm, the second order typed lambda calculus, and the
theory of subtypes and generic functions. His notion of subtype includes
deletion of attributes from a tuple, which models inheritance in object-oriented
languages. Reynolds then poses several questions on the relationships between
these three approaches to type structure.

.
In the past five years, there has been a flood of new work in the area of typing
which helps to answer the questions which Reynolds raised. For example,
Cardelli and Wegner (1985) follow their survey with a combination of
subtyping (without generic functions) and the second order typed lambda
calculus, resulting in bounded polymorphism. However, they do not have a
type inference algorithm. The work of Mitchell (1984), of which Reynolds
does not seem to have been aware, combines a limited form of subtype with
type inference. Our thesis also aims to answer the questions raised by
Reynolds, by extending Mitchell's work. It is therefore appropriate to examine
how our work fits into this new area of typing. Because of the recent nature of
much work in the area, some work may not be listed here. For example, we
have not been able to obtain a copy of Jategaonkar and Mitchell (1988), which
appears to be relevant.

In the first section of this chapter we will examine a comprehensive theory of
subtypes and coercions by Henson (1985). This provides a framework for
describing various approaches to subtype inference. Section 5.2 discusses
approaches based on intersection and union of types. An intersection operator
on types leads to a form of inclusion polymorphism, where r n r is a subtype
of both rand r. Similarly, rand r are both subtypes of the union r u r'.

In section 5.3 we discuss the second order typed lambda calculus, where we
have a notion of subtype based on generality. Section 5.4 discusses the notion
of subtype favoured by Cardelli and Wegner (1985) which allows deletion of
attributes from tuples, while section 5.5 re-examines Mitchell (1984) and

120

further work derived from it which is very similar to our work. In section 5.6
we discuss other approaches, and in section 5.7 we examine the relationship
between our coloured types and other notions of generic functions.

5.1 A Comprehensive Theory of Coercions

The work of Henson (1985) provides a good framework for relating together
various approaches to subtype inference. Henson permits types constructed
from primitive types, type variables, and an extensive list of operators on
types. These include union, which he calls sum, and intersection, which he
calls overloading. This is motivated by the fact that any expression of type
-r n r can be viewed as having both types rand r (using our notation for
intersection). The product (x) and function (~)type constructors which we
described in chapter 1 are also included, as is the universal quantifier (V). The
existential quantifier (3) is also listed. This quantifier is suggested by the close
relationship of types and logic (Coquand 1985, Huet 1986). The existential
quantifier is also discussed by Cardelli and Wegner (1985). It has debatable
utility in modelling type abstraction in the sense of modules or CLU clusters
(Mitchell and Plotkin 1985, Liskov et al1977). For example it deals
awkwardly with the definition of a type constructor, such as stack, and cannot
deal with the simultaneous definition of two types that have an inclusion
relation between them. MacQueen (1986) makes some other criticisms of the
use of the existential quantifier. Henson also lists afixpoint operator ().l) for
constructing recursive types, and the type abstractions and type applications of
the second order typed lambda calculus.

A curious omission in Henson's list of operators is the disjoint union(+)
operator. However it, like the product operator, can be modelled using type
abstraction (Reynolds 1985). MacQueen et al (1984, 1986) present a list of
operators similar to that of Henson, but excluding type abstractions and type
applications. There is some justification for this, since the discipline of
universal type quantification is essentially a notational variant of type
abstraction (Leivant 1983). MacQueen et al present a model for their type
system as a metric space of ideals (downward-closed sets closed under least
upper bounds of directed subsets), which makes their work suitable as a
semantics for languages such as ML and Miranda™. They do not deal with the
notion of subtype, however.

121

Henson provides a lattice model for his type system which is abstract in the
sense that it applies to any choice of primitive types. The model satisfies a very
extensive list of subtype axioms. These include the inclusion relationships
generated by intersection and union; subtype relations on primitive types,
products, and functions as in our chapter 1; currying and uncurrying of
functions; folding and unfolding of recursion; taking an instance of a
universally quantified type; forming an existentially quantified type from an
instance; and alpha-, beta-, and eta-reduction on type abstractions and
applications. The subtype relationship is a preorder, ie it is reflexive and
transitive, but not antisymmetric. In other words, there may be distinct
inter-convertible types. However, there is an obvious partial order on
equivalence classes of types. One unfortunate feature is that the least element
of the lattice is not the same as the intersection of all types (ie '1/a.a), and the
greatest element is not the same as the union of all types (ie ::Ja.a). As a result,
the intersection of all types is not a subtype of all types, which is a somewhat
counter-intuitive result.

The axiomatic treatment of subtype relationships by Henson describes most
forms of subtyping, possibly with some minor modifications. One notable
exception is the attribute-deletion coercion used to describe inheritance in
object-oriented languages. If Henson's scheme is extended by a set of type
constructors which behave like the product operator in that they are
monotonic, and a set of type constructors of rank * which share the
monotonicity/antimonotonicity properties of functions; then we can embed our
notion of subtype in that of Henson, by extending the primitive coercions to
type constructors as well as primitive types. Henson's model should therefore
provide a semantics for our typed expressions.

We will now tum to forms of inclusion polymorphism which are generated by
intersection and union operators on types.

5.2 Inclusion Polyrnorphism with Intersection and Union

One extensively studied case of Inclusion Polymorphism is the Intersection
Type Discipline for the pure lambda calculus, most recently formulated in
Ronchi Della Rocca (1988). This involves a universal type, written w, and the
function and intersection operators on types. It has axioms for intersections
and functions equivalent to those of Henson. In particular, intersection is a

122

greatest lower bound operator, and (1: ~ 1:') n (1: ~ 1:') and 1: ~ (1:' n 1:') are
inter-convertible. However, it adds axioms making m and m ~ m
inter-convertible, and making every type a subtype of m. Since m corresponds
to the type 3a.a in Henson's system (ie the union of all types), the behaviour of
m in the Intersection Type Discipline goes beyond Henson's framework.
Indeed, the equivalence between m and m ~ m is only justified by the fact that
in the pure lambda calculus, every term is a function.

A significant feature of Ronchi Della Rocca's work is the definition of an
expansion operation (unrelated to what we have called expansions in chapter 1)
and a lifting operation. These allow a notion of principal (most general) type
to be defined. She gives a semi -algorithm for unification which leads to a type
inference semi-algorithm. Since the inference algorithm can be viewed as a
reduction machine, using an ·innermost reduction strategy, the algorithm only
terminates for strongly normalising terms. However, if the algorithm
terminates, it returns a principal type. This behaviour is the best that can be
expected, since the problem is semi-decidable. A semi-algorithm is also given
for type inference in the Intersection Type Discipline without m (which falls
within Henson's framework). This system is of great theoretical interest, since
precisely the strongly normalising terms have types. However, due to the
problem of semi-decidability, it is of limited practical value.

Although type inference in the full Intersection Type Discipline is
semi-decidable, there are restrictions of the system where type inference is
decidable. Leivant (1983) shows that for the Intersection Type Discipline
without m, where intersection symbols cannot occur to the left of more than
one arrow, type inference is decidable. Leivant provides a type inference
algorithm for this system, based on his algorithm V. A corollary to his result
is that the type inference algorithm applies to the system formed by allowing
unrestricted interesection, but only first-order functions.

An interesting case of inclusion polymorphism is presented by Mishra and
Reddy (1985). This uses the intersection, union, and fixpoint operators of

Henson, with products extended to arbitrary tuples, and functions restricted to
be first-order. The restriction on functions avoids the semi-decidability
problem of the Intersection Type Discipline. Mishra and Reddy also permit an
arbitrary set of constructors. If e is a term of type 1:, and a is a constructor,
then a(e) has type a(r). This allows us to use algebraic data types without type
declarations for the constructors. For example, the type list a corresponds to

123

J!:lf3. nil u cons [a, {3]. This system allows us to define many interesting
subtypes of lists. These include lists of length zero (ie only nil), lists of length
at most one, lists of length precisely two, lists of even length, and (if Mishra
and Reddy's semantics is replaced with a lazy one along the lines of MacQueen
et al (1984, 1986)), non-finite lists. In contrast, the only subtypes of lists
involving inclusion polymorphism that can be defined in our system are the
type consisting only of nil, and the type of non-finite lists. The other cases of
subtyping can only be handled in our system by declaring new constructors and
specifying a coercion. For example, our optional type corresponds to lists of
length at most one.

In Mishra and Reddy's system, functions are defined by case analysis, and if
cases are omitted, the system can infer to which subtype the function is
applicable. For example, if we have a lazy semantics, and write :

double (cons [a, x]) =cons [a, cons [a, double (x)]]

we can infer that double is defined as non-finite lists only. Another benefit is
that constructors are overloaded on an arbitrary number of types, and that
arbitrary overloading of functions is possible using the intersection operator.
This solves the problem of assigning types to arithmetic operators. However
there are two disadvantages. The first is that type declarations are still
necessary to apply stronger type restrictions. For example, with the usual
definition of append on lists, we have append(cons [1, nil], 2) =cons [1, 2].
Most programmers would not wish the append function to apply to non-lists.
The second disadvantage is that, due to the properties of the Intersection Type
Discipline, Mishra and Reddy's system does not extend to higher-order
functional languages.

Mishra and Reddy provide a type inference algorithm for their system,
although it may not be complete. The algorithm operates by generating
inequalities on types from function definitions, and computing upper and lower
bounds for type variables. Essentially argument types are maximised, and
result types are minimised, as in our simplifications. However, there appears
to be little relation between our inference algorithm and that of Mishra and
Reddy.

124

A type system involving arbitrarily overloaded constructors generalising that
<Df Mishra and Reddy is described in Holyer (1988). Holyer represents
~possibly recursive) types defined by constructors by (possibly cyclic) directed
graphs, and provides algorithms to calculate unions, intersections, and
differences of types. One limitation is that the last two algorithms do not apply
to types containing infmite values (eg lists with a lazy semantics). Another
limitation is that the types of parameters in function definitions cannot be
reliably inferred, and hence type declarations are necessary for parameters.
However, Holyer's work suggests that graph representations of types could
usefully be employed in Mishra and Reddy's inference algorithm.

We have remarked that Mishra and Reddy's type system is unsatisfactory for
:functional languages, since it is limited to first order functions. However, its
properties make it ideal for type inference in the logic programming language
Prolog (Clocksin and Mellish 1984). This issue is examined in Mishra (1984).
The viewpoint taken is that Prolog has a 'totally defined semantics', ie there are
not type errors in the traditional sense. Instead, the type of a predicate
describes the terms for which it may succeed. The notion of 'ill-typed' is
replaced by 'definitely failing'.

There are other approaches to type systems for Prolog. For example, Mycroft
and O'Keefe (1984) provide a type system for the subset of Prolog described
by first-order logic. Their system is closely based on Milner's work, but they
do not have a type inference algorithm. Dietrich and Hagl (1988) extend this
work by allowing inclusion polymorphism. They provide a type inference
algorithm, which is subject to some restrictions, and which requires mode
information for predicates. The algorithm involves calculating upper and
lower bounds for type variables, and checking that these are consistent. The
authors are engaged in further research on decidability and efficient algorithms
for this process. Two recent systems similar to that of Mishra (1984) are given
by Kluzniak (1987) and Zobel (1987). The first of these works with a heavily
restricted language called Ground Prolog (which is almost a functional
programming language). The second of these is a more straightforward
extension of Mishra (1984), giving an inference algorithm and a proof that
ill-typed programs definitely fail.

In conclusion we may say that inclusion polymorphism obtained using type
intersections and unions is too powerful a notion of type to permit type
inference in higher-order functional languages. Since we consider

125

higher-order capabilities essential, this makes this form of inclusion
polymorphism inappropriate for the languages we are interested in. However,
this form of inclusion polymorphism is of theoretical interest, and is applicable
to logic programming languages.

5.3 Subtypes and Generality

Within the second order typed lambda calculus, we can consider a universally
quantified type to be a subtype of all its instances, and indeed this is one of the
cases considered by Henson. However, we can go beyond this, and consider r a
subtype of '1/ a. r if a does not occur in r. This makes the subtype relationship a
preorder. Mitchell (1984a) considers this notion of subtype in a study of type
inference rules for the second order typed lambda calculus. As we have
remarked earlier, no type inference algorithm is known for this calculus,
although a number of algorithms that can infer some type information are
known. Two such limited algorithms are given by McCracken (1984),
although these do not make the notion of subtype explicit.

One limited inference algorithm for an extension of the second order typed
lambda calculus Is given by Fairbairn (1986). Fairbairn calls his language
Ponder. It's main additional feature is the ability to define recursive types,
equivalent to adding a fixpoint operator on types. This adds sufficient power
to define Turing's fixpoint combinator, and hence all partial recursive
functions (Fairbairn 1985). Fairbairn provides an extensive list of subtype
relationships, including folding and unfolding of recursive types. He gives an
interesting, although complex, inference algorithm, which requires types to be
explicitly given for all bound variables. There are however, no proofs of
either soundness or completeness.

In summary, a notion of subtype is implicit in any attempt at type inference for
the second order typed lambda calculus. This calculus removes the sometimes
annoying restriction of languages with Milner's type inference algorithm, that
polymorphic functions cannot have polymorphic arguments. However, to date
this has been at the expense of being able to perform full type inference, a
penalty we feel is not worthwhile. Thus this form of subtyping is also
inappropriate for the languages we are interested in, and the algorithms in this
area are of no assistance in solving the subtype inference problems we have
examined.

126

5..4 Subtypes and Object Oriented Languages

We now tum to the form of subtyping which occurs in Object Oriented
Languages. This is motivated by the need to model inheritance of attributes.
Our subtyping system has a similar motivation, but we prefer the Functional
Data Model, for reasons we have already discussed. However, it is appropriate
to examine inference algorithms for the Object Oriented approach at this point.

In the Object Oriented approach, entities are described by tuples such as
<fuel: 'diesel', speed: 90>. Attribute selectors and attribute updates are
applicable to all tuples that contain the appropriate attributes. Wand (1987)
provides a type inference algorithm for this system, but without using a notion
of subtype. This algorithm is incomplete, and a proposed modification solves
the problem at the cost of being exponential in time (Wand 1988).

Stansifer (1988) provides a type inference algorithm which uses the notion of
subtype provided by Cardelli and Wegner (1985). This is that a tuple type is a
subtype of all tuple types with fewer attributes, so that we essentially have a
coercion that deletes attributes. Stansifer' s algorithm also deals with a dual
notion of subtypes for variants. The algorithm is sound and complete, but since
it does not check the consistency of sets of inequalities, it will return a type for
expressions which intuitively are ill-typed. Another limitation is that the
polymorphic attribute update function which Wand would write as
(Ax. x withfuel :='gasoline') is not handled. The type inference algorithm is
closely related to that of Mitchell (1984), but is simpler. The reason for the
simplicity is that if one type is a subtype of another then either the two types
are identical, or they are both tuple types, or they are both variant types.
Stansifer therefore has inequalities on row expressions (which represent the
contents of tuple brackets) rather than on types, and can mark inequalities as
referring to either tuples or variants. This avoids the need for some of the
machinery that we define.

Remy (1989) also uses a notion of subtype to deal with the Object Oriented
approach. However, rather than deleting attributes, he assumes that all
attributes are (potentially) present and have an applicability marker. He thus
has a coercion which marks attributes as inapplicable. This approach leads to a
very simple type inference algorithm, which is sound and complete, and

127

handles the polymorphic attribute update function. However, the algorithm
generates large sets of inequalities, and no algorithms are provided to simplify
them, or to check consistency.

One interesting feature of Remy's work is that it shows how the Object
Oriented notion of subtype can be considered as part of our type system.
Assume there is a fmite set of attribute labels a1, ... an. Then tuples can be
considered as type constructors of rank n, forming a lattice with least element
<a1 :_, ... ,an:_> and greatest element the empty tuple<>. We can then give
type schemes to attribute selectors and attribute deletion functions, although not
to attribute update functions. For example, in the case of two attributes, we
have four possible tuples, namely <a:_, b: _>,<a:_>, <b: _>and<>.
Selection of the a attribute has the type scheme V a. <a : a> ~ a, while
deletion of the a attribute then has type scheme :

V af381J : { e ::.:; ¢, <b : _> ::.:; ¢}. 8(a, [3) ~ ¢(a, [3)

The type scheme V af38 : { 8 ::.:; <a : _>}. 8(a, [3) ~ a~ 8(a, [3) could be
assigned to the function which updates the attribute a, but this will apply only
to tuples where the attribute a is already present, and does not have Wand's
intended meaning of adding the attribute if it was absent.

In conclusion, we have found that Stansifer's work is in theory a special case of
ours, although the large type hierarchy required would probably make our
algorithm very inefficient, unless tuples were considered as a special case.
More promising is that our notions of standardisation and simplification may
also be applicable to the algorithms of Stansifer and Remy. In summary,
although our motivation was to exclude the Object Oriented approach, our
notion of subtype is powerful enough to encompass this form of subtyping also.

5.5 The Mitchell Approach

We have introduced our work as an extension of that of Mitchell (1984).
Although our basic operations on subtype orderings differ somewhat from his,
we have essentially followed his approach. We have permitted a polymorphic
let construct, limited to top-level polymorphism, as in the functional language
Miranda™. We have allowed coercions to be non-injective, as long as they
(i:.ommute with polymorphic functions. We have extended type coercions to

128

type constructors, which permits us to distinguish different kinds of functions,
and to model inheritance in both the Functional Data Model and the Object
Oriented approach. Finally, we have ensured that subtype orderings are always
consistent.

At this point, it is appropriate to consider whether we have succeeded in
making our type inference algorithm more efficient than that of Mitchell.
Comparison of Mitchell's algorithm with ours indicates that our naive
algorithm TYPE is less efficient than that of Mitchell, since it produces subtype
orderings which may be double in size. However, our use of simplifications
ensures that the improved algorithm TYPE2 produces subtype orderings which
are never larger than those produced by Mitchell's algorithm. All three
algorithms are quartic-time, assuming types are bounded in size. However, our
algorithm TYPE2 produces much smaller subtype orderings in practice, with
the final subtype ordering containing only one type variable. For a typical user
program consisting of many small polymorphic function defmitions, our
algorithm TYPE2 can process each defmition independently, thus running in
linear time.

We have not been alone in considering Mitchell's work the most promising
basis for work on subtype inference. The work of Fuh and Mishra (1988,
1989), developed independently from our work, also takes this direction. We
have taken the approach of defining a subtype ordering to be a partial order on
type variables and type constructors, satisfying a number of conditions which
guarantee consistency. We have then defmed basic operations on subtype
orderings, and built our way upwards to an efficient type inference algorithm.
In contrast, Fuh and Mishra (1988) begin by expressing Mitchell's type
inference algorithm in its most general form, such that any preorder on types
is permitted. Recall that we remarked in our Introduction that such an
extension was possible. Fuh and Mishra express their general algorithm using
the general functional letters of Leivant (1983). This has the advantage of
requiring only one type inference rule in place of rules for lambda abstraction,
application, if-then-else, etc. Interestingly, their algorithm is in the style of
Milner's algorithm W, rather than the parallel style of Leivant's algorithm V,
for which the functional-letter notation was designed. Because of its
generality, their algorithm encompasses not only our type system, but all the
notions of subtype inference discussed in this chapter. However, this generality
is at the cost of efficiency. Furthermore, the large set of inequalities produced
may not be consistent.

129

Filh and Mishra follow their general type inference algorithm by considering
the case of subtyping examined by Mitchell, namely subtype relations generated
by coercions on atomic types. They do not make our extension to coercions on
type constructors, although making this extension to their work would not be
clifficult. On the other hand, they permit the subtype relationship to be a
preorder, ie there may be distinct types whcih are inter-convertible. This may
be useful, although it is difficult to fmd examples where it is essential. One
example that could be suggested is polar and rectangular versions of complex
numbers, but this would be of dubious utility.

Since Fuh and Mishra permit any preorder of primitive coercions, not just our
forest of semilattices, sets of inequalities are not necessarily consistent. Their
notion of consistency is essentially the same as our notion of satisfiability, and
they provide algorithms for checking the consistency of a set of inequalities.
Unfortunately, correctness of a key algorithm (CONSISTENT) is not proved.
Checking the consistency of a set of inequalities can be done in quadratic time,
assuming that set intersection can be done in constant time. This assumption is
dubious in the general case, but like us, Fuh and Mishra (1989) provide
algorithms for reducing the size of sets of inequalities. Some realistic upper
bound can thus be placed on the size of sets, and constant-time bit-string set
implementations can be used. One disadvantage of Fuh and Mishra' s algorithm
is that consistency checking is performed once only, at the end of type
inference. Errors are thus detected, but not localised. However, there is no
reason why consistency checking should not be done repeatedly, together with
the algorithms for reducing the size of sets of inequalities.

The first work of Fuh and Mishra (1988) permits sets of inequalities on
arbitrary, not just atomic types. This has the advantage that polymorphic type
inference with an unrestricted let construct is easy. This is because, given a
substitutionS such that S/3 = r--} 17, we can apply the substitution to a type
scheme\:/ a: {a ~{3}. f3---} a without problems. The result will be
\:/a: {a~ y--} 17} .(y--} 17)---} a. However, in their later work (Fuh and
Mishra 1989) they lose this advantage by restricting themselves to sets of
inequalities on atomic types only. We will follow Mitchell (1984) in referring
to such sets of inequalities on atomic types as coercion sets. They do not discuss
polymorphism in this restricted system, but we would suggest that their
algorithm would require the same restrictions on let that we have proposed.

130

The work of Fuh and Mishra (1989) converges closely to our work, although
with a more concise terminology. A notion of 'lazy' instance on type assertions
is given, which corresponds to uses of our derived inference rules SUBEN,
REPLACE, ASSUMP and LESS. As a result, Fuh and Mishra's completeness
theorem is simpler to state and prove than our Theorem 3.2.5. An interesting
additional result is a notion of 'minimal' typing and a very inefficient
algorithm for computing such minimal typings. However, the 'minimal' type is
n:ot necessarily the same as our 'best' type. For example, consider the
following assertion :

{x: a}, [a-5:: f3],pair xx ~pair (x: a) (x: a: fJ): ax f3

This appears to be 'minimal' in Fuh and Mishra's terminology, but clearly the
'best' type would involve equating a and {3. (We remark as an aside that Fuh
and Mishra's type inference rules only infer types, not typed expressions, but
the extension to typed expressions would be trivial).

Fuh and Mishra's algorithm for calculating 'minimal' types is not intended for
practical use, although they prove it gives a result unique up to renaming.
They do, however, provide two practical techniques for reducing the size of
coercion sets, which they call G-subsumption and S-subsumption. The
technique of G-subsumption applies to type variables which do not occur in an
assumption set or type, and is exactly equivalent to using our simplification
rule MOVEUP together with the rule EQDOWN (or MOVEDOWN with
EQUP). The efficiency criticism we make for MOVEUP and MOVEDOWN is
countered by observing that bit-string set operations can be used, making an
algorithm for performing G-subsumptions cubic-time, rather than
quartic-time. The technique of S-subsumption is exactly equivalent to using
our simplification rules EQUP and EQDOWN. Because G-subsumptions use
MOVEUP and MOVEDOWN in a very restricted way, combining
G-subsumptions and S-subsumption permits a unique result. Furthermore, this
result can be obtained by performing all the G-subsumptions first, and all the
S-subsumptions afterwards. We note that if bit-string set operations are used,
our algorithm SIMPLIFY can be considerably simplified, since it would not
need to maintain a transitively reduced graph.

Fuh and Mishra do not have our concept of standardisation, and this may
reduce the effectiveness of S-subsumption in complex examples. By a converse
argument to our Remark 3.5.6, we could argue that the presence of

131

<G-subsumptions reduces the need for standardisations. However, if we
<ronsider our exponential function (Example 3.16.13), there are no opportunites
fur G-subsumption, and a lack of standardisations would increase the size of the
largest intermediate (simplified) coercion set from 9(6) to 12(9). Clearly what
iS; required is an approach combining standardisations with simplifications
which include both G-subsumptions and S-subsumptions.

lin summary, by unifying our approach with that of Fuh and Mishra, we can
construct a better extension of Mitchell's work. We would choose Fuh and
Mishra' s elegant notation for instances of typing assertions, their use of
bit-string set operations, their algorithm for checking consistency of a coercion
set (provided a correctness proof can be found), and their notion of
G-subsumption. We would choose our extension of subtypes to type
constructors, our treatment of polymorphism, our use of coloured types, our
notions of standardisation and simplification, and our overall style of inference
algorithm, which permits parallelism. If a correctness proof cannot be found
for Fuh and Mishra's consistency-checking algorithm, we would retain our
restrictions on primitive coercion sets, which make consistency-checking
trivial. We believe that such a unified approach would combine the best
features of both approaches.

5.6 Other Approaches

One interesting case of subtyping we have briefly referred to in our
Introduction is that of Thatte (1988). This work uses the universal type of the
Intersection Type Discipline (written in uppercase), and subtype relationships
generated by the inequality Q ~ 'C. The motivation for this is to deal with
heterogenous data structures, such as the list [1, 2, true] which has type list Q.

This is later combined with a notion of statically generated dynamic type
checks which allow operations to be performed on the elements of
heterogenous data structures. Thatte gives an inference algorithm, which is an
instance of the general algorithm given by Fuh and Mishra (1988), together
with a semi-algorithm for checking the consistency of sets of inequalities on
types. Thus it seems that even this restriction of the Intersection Type
Discipline suffers from the problem of semi-decidability.

On a different note, the issue of subtype inference in a first order functional
]anguage is treated by Collier (1987). Collier suggests that his work can be

132

viewed as a form of overloading, which makes it a special case both of our
work and that of Mishra and Reddy (1985). The language used is FP (Backus
]978, Dekker 1983), and the example subtype hierarchy is a special case of
ours, with int and bool being subtypes of atom. The algorithm relies on
:flagging type variables with the atomic types to which they can be instantiated.
The algorithm reduces the size of the set of inequalities produced, although the
technique for doing so is complex and inefficient. There are no proofs of
soundness, completeness, or that the algorithm is polynomial-time. However,
earlier versions of this work helped motivate our search for an efficient
subtype inference algorithm.

5. 7 Generic Functions, Type Classes and Coloured Types

Although bounded polymorphism can assign type schemes to many functions,
there are some functions to which a single type scheme cannot be assigned.
One such example is the addition of types date and time to our example type
hierarchy, with the intention that addition is defined on nat, int, date and time.
This problem can be solved in our system by the use of coloured types,
defining a new colour, say orange, which includes the types nat, int, date and
time, as well as orange type variables. All types coloured orange will also be
basic types (ie coloured red). However, this solution is at the cost of
abandoning the coercion between int and atom. A second problem is the
exponentiation function in a type hierarchy involving nat, int and real. This
has the type scheme \::/a. a ~ real. a -7 nat -7 a and also the type
real -7 real -7 real. A similar problem was experienced with the composition
function in section 4.3, and the only solution in our system is to define two
functions with different names. A third case which cannot be solved with
bounded polymorphism is the type of the equality function, which we have
solved using coloured (basic) types. In this section we will examine two other
approaches to assigning types to these three cases of functions.

In his treatment of implicit coercions and generic functions, Reynolds (1980)
describes 'category-sorted algebras'. These consist of a category of types and a
family of function symbols, where the types of the function symbols are given
by a functor from tuples of types to types. The commutativity of functions
with coercions is expressed by the condition that the interpretation of function
symbols as functions be a natural transformation. Although this approach is
first-order, the very general framework suggests that an extension to

133

higher-order functions is possible, using cartesian closed categories (Lambek
and Scott 1986). However, the extension to hierarchies of type constructors
may be more difficult. There is also no type inference algorithm. On the
positive side, the framework appears to be sufficiently general to deal with all
the functions that can be typed using bounded polymorphism (at least on
primitive types), as well as the first two problems we raised in the previous
paragraph.

Another approach to assigning types to difficult functions is the type classes of
Wadler and Blott (1989). This solves the first and third of our three problems,
although it is not clear if a type can be given to exponentiation. Type classes
are a way of grouping types, and appear to be very similar to our colours.
Wadler and Blott present a very elegent type inference algorithm and
translation method for resolving the overloading inherent in type classes. This
permits a value to be assigned to a function such as :

double x = mult 2 x

In contrast, in our scheme the 'code' for double will depend on how it is later
used, since the appropriate typed expression contains a polymorphic use of
mult, and a coercion:

(Ax: a. mult [a] (2 :nat: a) (x: a) : a) : a~ a

The natural notion of 'code' for this function would be to take the actual value
of mult and the actual value of the coercion as parameters to be supplied where
double is used. The technique of Wadler and Blott may provide a more
efficient alternative, if it can be adapted to our system.

Wadler and Blott also permit definitions of new type classes by the
programmer, which is an issue that we have not addressed. However, the cost
of their approach is that all type coercions must be explicit, so that we must
write, for example pi+ (float 3). This return to the notational inconvenience
of Fortran is too high a price, in our opinion. We have shown that implicit
coercions and grouping of types can be combined, using our notion of coloured
types, with only minor restrictions on allowable coercions. Such a combined
approach seems preferable to that of Wadler and Blott.

134

6 CONCLUSIONS AND FURTHER WORK

fu this thesis, our main objectives have been to extend and improve the subtype
inference algorithm of Mitchell (1984), in order to create a more efficient and
powerful system, and to apply this to an integrated functional programming
and database manipulation language. We will now examine to what extent our
objectives have been attained, and to look at areas which would benefit from
further extension and improvement.

Chapter one introduced our basic notation and operations. We extended the
coercion sets of Mitchell (1984) to include inequalities on type constructors,
but restricted primitive (variable-free) coercion sets to be a forest of
semilattices. This restriction allowed easily checkable conditions for
consistency of a set of inequalities, which we formalised by satisfiability. It
also made possible standardisations, which can reduce the size of a subtype
ordering, and create a more regular structure which assists the simplification
procedure in further reducing size. The SATISFY algorithm, which provides
a kind of abstract compilation by finding a substitution satisfying a subtype
ordering, also relies on the restriction. However, the restriction is sufficiently
weak that most useful subtype hierarchies do not seem to be excluded. We
introduced the term subtype ordering for the partial order generated by a
consistent coercion set.

We then defined a series of operations for manipulating subtype orderings, and
gave correctness proofs for them which exploited the concept of minimality.
The concept of splitting provided a link between subtype orderings and their
representation as transitively reduced acyclic graphs, and our operations on
subtype orderings can thus be implemented by graph operations. The
alternative approach of Fuh and Mishra (1988, 1989) may have led to
somewhat simpler operations. This approach uses constant-time set operations
to calculate transitive closures in linear time, to avoid the need for using the
transitive reduct, and to check consistency in quadratic time (by an algorithm
unfortunately not proved correct). Constant-time set operations are possible if
some upper bound can be set on the size of subtype orderings, and the use of
standardisations and simplifications, together with a programming style using
many small function definitions, appears to make this possible. A combination
of our work with that of Fuh and Mishra (1988, 1989) is one promising avenue
for further research.

135

By using quantification, we permitted a large class of useful generic functions.
The notion of coloured types allowed other generic and overloaded functions to
be given a type scheme. The equality operator was one such function. By
ensuring that all type schemes be closed, we avoided the problem of applying a
substitution to a type scheme. This was at the cost of restricting polymorphism
to the top level, but experience with Miranda ™ has shown this suffices for
most applications. Apart from being essential for programming in functional
languages, polymorphism has the added benefit that it prevents the subtype
orderings inferred for functions from being merged. This encapsulation helps
reduce the size of subtype orderings.

In chapter two, w~ defined an example functional language, and gave a set of
type inference rules with type-annotate expressions. The V AR, AP, ABS and
LESS rules were essentially those of Mitchell (1984), but we added PVAR and
LESS to handle polymorphism, and ABS2 to introduce a second kind of
function. We then derived some useful additional inference rules. In
particular, combining the derived inference rules SUBEN, REPLACE, and
ASSUMP with the inference rule LESS was equivalent to the notion of 'lazy
instance' in Fuh and Mishra (1989).

We gave a semantics for typed expressions, rather than the usual approach of
giving a semantics for untyped expressions. This was because type inference in
the presence of implicit coercions can best be viewed as reconstructing the
terms of a typed language, by inserting omitted type information and calls to
coercion functions, rather than as selecting a subset of terms from an untyped
language which do not 'go wrong'. Thus rather than proving semantic
soundess of type inference rules in the usual way, we showed that our semantics
was Church-Rosser and preserved well-typing. We also showed that coercions
were injective on equality types, gave a unique result, and commuted with
primitive functions. We conjectured that this was sufficient to guarantee that
different type-annotations of an expression were equivalent, if they had the
same over-all type. Since expressions have principal types (defined by our type
inference algorithm), this conjecture would make it possible to speak of the
meaning of an untyped expression.

136

In chapter three we gave a naive type inference algorithm, and proved it sound
and complete. We then defined standardisations and simplifications. We gave
four simplication rules (EQUP, EQDOWN, MOVE UP and MOVEDOWN) of
which we only used the first two, in order to ensure a unique result. The
G-subsumptions of Fuh and Mishra (1989), which are essentially combinations
of EQUP and MOVEDOWN, could also have been included as simplification
rules, while retaining a unique result. The use of standardisations and
simplifications allowed the definition of a more efficient type inference
algorithm which was still sound and complete. The algorithm (like that of Fuh
and Mishra (1989)) was quartic time, assuming types of bounded size. This
assumption is justified by the good performance of Milner's type inference
algorithm in practice. For typical user programs involving many small
polymorphic function definitions, the algorithm would be linear. If necessary,
local function definitions could be 'lifted' to the top level to achieve this. The
algorithm produces a final type which is intuitively the 'best' type, and a final
subtype ordering which usually contains at most one type variable.

Chapter four applied our work to the database arena, using subtypes to describe
inheritance in the Functional Data Model. We defined a hierarchy of three
kinds of functions, namely injective database functions, general database
functions, and general functions. The notion of analogous type variables made
possible a type scheme for the inverse operation, which was essential in writi!lg
database queries. No unique type scheme could be given for composition, and
so two composition operators were defined. However, the second of these was
never used in our case study. This case study involved a hospital database, and
our language proved to be sufficiently powerful for writing a selection of
queries and update transactions.

In summary, we have attained our main objectives. We combined subtype
inference, including subtype relationships on type constructors, with a limited
but sufficient form of polymorphism. This allowed us to mix different kinds
of numbers in arithmetic expressions, and to define a powerful and useful
database manipulation language. The introduction of standardisations and
simplifications to reduce the size of subtype orderings ensured a relatively
efficient type inference algorithm, making subtype inference feasible for
practical use.

137

Further development of this work would require actual implementations of the
algorithms, and a study of many substantial examples. Such implementation
would benefit from a combined approach incorporating features of the work of
Fuh and Mishra (1988, 1989). Compilation of user programs also requires
attention. While the SATISFY algorithm provides a kind of abstract
compilation, in practice we would wish to generate code for function
definitions by extracting coercion functions and generic arithmetic or equality
operations as additional parameters. The possibility of user-defined types,
which may be subtypes of primitive types, is also a promising area for further
work. In the database area, there are a host of questions on implementation
and optimisation which deserve attention. On the theoretical front, our
conjecture on the equivalence of different type-annotations of an expression
requires proof. The relationship between this work and the approach to
strictness analysis by type inference in Wright and Dekker (1988) is also an
interesting avenue for further study, since it too involves subtype relationships
on different kinds of functions.

138

1 REFERENCES

Aho AV, Garey MR and Ullman JD (1972) The Transitive Reduction of A
Directed Graph, SIAM J. Comput, Vol1 No 2 pp 131-137

Aho A V, Hopcroft JE and Ullman JD (197 4) The Design and Analysis of
Computer Algorithms, Addison Wesley

Albano A, Cardelli L and Orsini R (1985) Galilee : A Strongly-Typed,
Interactive Conceptual Language. ACM Transactions on Database
Systems, Vol 10 No 2 pp 230-260

Atkinson MP and Kulkarni KG (1984) Experimenting with the Functional
Data Model. Databases-Role and Structure, Stocker PM et al eds,
Cambridge University Press pp 311-338

Backus J (1978) Can Programming Be Liberated from the von Neumann
Style? A Function Style and its Algebra of Programs. Comm ACM,
Vol21 No 8 pp 613-641

Barendregt HP (1984) The Lambda Calculus :Its Syntax and Semantics
(Revised Edition) North-Holland, Amsterdam

Bird Rand Wadler P (1988) Introduction to Functional Programming
Prentice-Hall International

Buneman P and Nikhil R (1981) A Practical Programming System for
Databases. Proceedings of the 1981 ACM Conference on Functional
Programming Languages and Computer Architecture pp 195-201

Buneman P, Frankel RE and Nikhil R (1982) An Implementation
Technique for Database Query Languages. ACM Transactions on
Database Systems Vol7 No 2 pp 164-186

Burn GL, Hankin CL and Abramsky S (1986) Strictness Analysis for
Higher-Order Functions. Science of Computer Programming Vol 7
No 3 pp 249-278 ,

Burroughs (1984) Medilinc Programming Manual. Item PAC0-166,
Burrough Ltd, Australia

Cardelli L (1983) ML under Unix. Bell Laboratories Technical Report.
Murray Hill, NJ

CCardelli L (1984) A Semantics of Multiple Inheritance. Semantics of
Data Types, Springer-Verlag LNCS 173, Berlin, pp 51-67

Cardelli L and Wegner P (1985) On Understanding Types, Data
Abstraction and Polymorphism. Computing Surveys Vol17 No 8 pp
471-522

<Clement D, Despeyroux J, Despeyroux T and Kahn G (1986) A Simple
Applicative Language: Mini- ML, Proceedings of the 1986 ACM
Conference on LISP and Functional Programming pp 13-27

139

Clocksin WF and Mellish CS (1984) Programming in Prolog (Second
Edition). Springer-Verlag, Berlin

Cohn PM (1981) Universal Algebra. DReidel, Dordrecht, Holland
Collier PA (1987) Type Inference in the Presence of a Basic Type

Hierarchy. Aetas de la VII Conferencia de la Sociedad Chilena de
Ciencia de la Computacion, Santiago, pp 87-96

Coquand T (1985) Sur I' Analogie entre les Propositions et les Types.
Combinators and Functional Programming Languages, Springer­
Verlag LNCS 242, Berlin, pp 71-84

Damas L and Milner R (1982) Principal Type-schemes for Functional
Programs. Conference Record of the Ninth Annual ACM
Symposium on Principles of Programming Languages, pp 207-212

Dekker AH (1983) Implementation of a Backus FP System. Honours
Thesis. Information Science Department, University of Tasmania

Dekker AH (1987) A Type Inference System for Subtype Hierarchies.
Technical Report R87 -8, Department of Information Science,
University of Tasmania

Dekker AH (1988) Output as Reduction in Functional Programming
Languages. Technical Report R88-11, Department of Electrical
Engineering and Computer Science, University of Tasmania

Dietrich Rand Hagl F (1988) A Polymorphic Type System with Subtypes
for Prolog. ESOP (88 :2nd European Symposium on Programming,
Springer-Verlag LNCS 300, Berlin, pp 79-93

Ehrig H, Kreowski H-J, Mahr B and Padawitz P (1982) Algebraic
Implementation of Abstract Data Types. Theoretical Computer
Science, Vol 20 pp 209-263

Fairbairn J (1985) Design and Implementation of a Simple Typed
Language Based on the Lambda-Calculus. Technical Report no 75,
Computer Laboratory, University of Cambridge

Fairbairn J (1986) A New Type-Checker for a Functional Language.
Science of Computer Programming, Vol6 pp 273-290

Fuh Y-C and Mishra P (1988) Type Inference with Subtypes.
ESOP (88: 2nd European Symposium on Programming,
Springer-Verlag LNCS 300, Berlin, pp 94-114

Fuh Y-C and Mishra P (1989) Polymorphic Type Inference :Closing the
Theory-Practice Gap. TAPSOFT (89: Volume 2, Springer-Verlag
LNCS 352, Berlin, pp 167-183

140

Gogaen JA, Thatcher JW and Wagner EG (1978) An Initial Algebra
Approach to the Specification, Correctness, and Implementation of
Abstract Data Types. Current Trends in Programming Methodology
IV, Y eh R ed, Prentice Hall

Henson MC (1985) A Comprehensive Theory of Types and Coercions.
Internal Report, Department of Computer Science, University of
Essex

Henson MC (1987) Elements of Functional Languages. Blackwell
Scientific Publications, Oxford

Herrlich H and Strecker GE (1979) Category Theory :An Introduction,
Heldermann Verlag, Berlin

Hindley R (1969) The Principal Type-scheme of an Object in
Combinatory Logic. Transactions of the American Mathematical
Society, Vol146 pp 29-60

Holyer I (1988) Practical Programming in a Functional Language.
Technical Report R86-6, Information Science Department, University
of Tasmania

Holyer I (1988) Types and Sets in Functional Languages. Technical
Report CS-88-11, Computer Science Department, University of
Bristol

Huet G (1986) Deduction and Computation. Fundamentals of Artificial
Intelligence, Springer-Verlag LNCS 232, Berlin pp 39-74

Hull Rand King R (1987) Semantic Database Modelling :Survey,
Applications, and Research Issues. ACM Computing Surveys, Vol19
No 3 pp 201-260

Jategaonkar LA and Mitchell JC (1988) ML with Extended pattern
Matching and Subtypes. Proceedings of the 1988 ACM Conference ·
on LISP and Functional Programming

Kanellakis PC and Mitchell JC (1989) Polymorphic unification and ML
typing. Conference Record of the Sixteenth Annual ACM
Symposium on Principles of Programming Languages, pp 105-115

Kazmierczak EA (1989) Algebraic Reasoning in Lambda Calculi. Draft
PhD thesis, University of Tasmania

Klop JW (1980 Combinatory Reduction Systems. Mathematical Centre
Tracts 127, Mathematisch Centrum, Amsterdam

Kluzniak F (1987) Type Synthesis for Ground Prolog. Logic
Programming :Proceedings of the Fourth International Conference,
Volume 2 pp 788-816

142

Mitchell JC and Plotkin GD (1985) Abstract types have existential type.
Conference Record of the Twelfth Annual ACM Symposium on
Principles of Programming Languages, pp 37-51

Mycroft A (1984) Polymorphic Type Schemes and Recursive Definitions.
International Symposium on Programming, 6th Colloquium.
Springer-Verlag LNCS 167, Berlin, pp 217-288

Mycroft A and O'Keefe RA (1984) A Polymorphic Type System for
Prolog, Artificial Intelligence, Vol 23 pp 295-307

Organick EI (1973) Computer System Organization :The B5700!B6700
Series. Academic Press, New York

Peyton Jones SL (1987) The Implementation of Functional Programming
Languages. Prentice-Hall International.

Remy D (1989) Type checking records and variants in a natural extension
of ML. Conference Record of the Sixteenth Annual ACM
Symposium on Principles of Programming Languages, pp 77-87

Reynolds JC (1980) Using Category Theory to Design Implicit
Conversions and Generic Operators. Semantics-Directed Compiler
Generation. Springer-Verlag LNCS 94, Berlin, pp 211-258

Reynolds JC (1984) Towards a Theory of Type Structure. Programming
Symposium: Proceedings, Colloque sur la Programmation,
Springer-Verlag LNCS 19, Berlin pp 408-425

Reynolds JC (1985) Three Approaches to Type Structure. Mathematical
Foundations of Software Development. Springer-Verlag LNCS 185,
Berlin, pp 97-138

Robinson JA (1965) A machine-oriented logic based on the resolution
principle. Journal of the ACM, Vol12 No 1 pp 23-41

Ronchi Della Rocca S (1988) Principal Type Scheme and Unification for
Intersection Type Discipline. Theoretical Computer Science, Vol 59
pp 181-209

Shipman DW (1981) The Functional Data Model and the Data Language
DAPLEX. ACM Transactions on Database Systems, Vol6 No 1 pp
140-173

Stansifer R (1988) Type Inference with Subtypes. Conference Record of
the Fifteenth Annual ACM Symposium on Principles of
Programming Languages.

Thatte S (1988) Type Inference with Partial Types. Automata,
Languages and Programming: 15th Colloquium, Springer-Verlag
LNCS 317, Berlin, pp 615-629

Turner DA (1979) Aspects of the Implementation of Programming
Languages. D Phil thesis, University of Kent

143

Wad1er P and Blott S (1989) How to make ad-hoc polymorphism less ad
hoc. Conference Record of the Sixteenth Annual ACM Symposium
on Principles of Programming Languages, pp 60-76

Wand M (1987) Complete Type Inference for Simple Objects.
Proceedings of the Second Annual IEEE Symposium on Logic in
Computer Science, pp 37-44

Wand M (1988) Corrigendum: Complete Type Inference for Simple
Objects. Proceedings of the Third Annual IEEE Symposium on
Logic in Computer Science, p132

Wright DA and Dekker AH (1988) Strictness Analysis and Type
Inference for the A-calculus (Summary). Technical Report R88-9,
Department of Electrical Engineering and Computer Science,
University of Tasmania

Zobel J (1987) Derivation of Polymorphic Types for Prolog Programs.
Logic Programming :Proceedings of the Fourth International
Conference, Volume 2 pp 817-838

144

Table 1 : Rewrite Rules for Programs

1 plus (n : nat) (m : nat) : nat => n + m : nat
2 plus (n : int) (m : int) : int => n + m : int

3 neg (n : int) : int => -n : int

4 cond (true : boo!) (el : r) Ce2 : 7:) : 1: => e1 : 7:

5 cond (false : boo!) (el : r) Ce2 : r) : 1: => e2 : 7:

6 and (true: boo!) (e : bool): boo!=> e: boo!
7 and (false : bool) (e : bool) : boo! => false : boo!

8 ochoose (el : r) (e2 : 1: ~ r) (absent: optionalr) : 1' :=} q : r'
9 ochoose (el : r') (e2: 1: ~ 1') (present (e3 : r) : optionalr) : 1' :=}

(e2 : 1: ~ r') (e3 : 7:) : 1'

10 !choose (el : 7:') (e2 : 1: ~list 1: ~ 7:') (nil : list r) : 1' => e1 : 1'
11 !choose (el : r') Ce2 : 1: ~list 1: ~ 7:')

(cons (e3 : 1:) (e4 : list r) : list 1:) : r' =>
(e2 : 1: ~ list 1: ~ 7:') (e3 : r) (e4 : list 1:) : 1'

12 case (el: 7:~ r') (e2: 1' ~ 1'') (inl (e3: 7:): 7:+ 1'): r'' :=}

(el : 1: ~ r'') (e3 : 7:) : r'
13 case (el: 7:~ r'') (e2: 1' ~ 1'') (inr (e3: 1'): 7:+ 1'): r' :=}

(e2 : 1:' ~ 1'') (e3 : 1') : 7:''

14 fst(pair(el: 7:) (e2: 1'): 7:X 1'): 7::=} e1: 1:

15 snd (pair (el : 7:) (e2 : 1') : 1: x 1') : r' :=} e2 : 1'

16 fix (e : 1: ~ 1:) : r :=} (e : 1: ~ 7:) (fix (e : 1: ~ 1:) : 7:) : 1:

17 ((Ax : 7:'. e1 : 7:) : r' :::> 7:) (e2 : r') : 1: :=} e1 : 1:

18 ((Ax: r. el : 7:) : r' ~ 7:) (e2: 1') : 1: => [e2 : 1:'/x: r'] (el : 7:)

19 (Ietx = [a1, ... , an] (el: 7:) in e2: r'): 1' :=}

[[ar, ... , an] (el : 7:)//x] (e2 : 7:')

145

20 c: p: rc=? c: rc, c e K(p)

ZI (absent : optional r) : optional r :=:? absent : optional r
22 (absent: optional r) :list r :=:?nil: list r

23 (present (e3 : 1') : optional't") :optional r :=:?
present ((e3 : 1') : "() :optional r

24 (present (e3 : r) : optional r) :list r :=:?
cons ((e3 : r) : "() (nil : list"() : list r

25 (nil : list r) : list r :=:? nil : list r
26 (cons (e3 : r) (e4 : list r) : list r) : list t :=:?

cons ((e3 : r) : "() ((e4 : list r) :list"() : list r

27 (inl (e3 : r) : r+ r) : r' + t" :=:? inl ((e3 : r) :r') :r' + r"
28 (inr (e3 : "() : r + "() : r' + "(" :=:? inr ((e3 : "() : r") : r'' + r'"

29 (pair (e 1 : r) (e2 : "() : r x "() : r'' x r'" :=:?
pair ((e1 : r) : r'') ((e2 : "() : r'") : r'' x r'"

30 ((Ax : r'. e 1 : r) : r -:::) r) : r'" -:::) r'' :=:?
(A.x : r'". (e1 : r) : r'') : r'" -:::J r''

31 ((A.x : r'. e 1 : r) : r -:::J r) : r'" -7 r'' :=:?
(A.x : r'". (e1 : 1') : r'') : r'" -7 r''

32 ((Ax: r'. e1 : r) : r -7 1') : r'" -7 r'' :=:?
(Ax: r".[(x: r''') : t/x: t_] (er : r): t') : r'" -7 r''

33 (y (e1 : r1) ... (en : rn) : r' -7 r) : r'" -7 r'' :=:?
(A.x: r'". (y (el : r1) ... (en : rn) : r' -7 r)
(x : r'" : r) : r : r'') : r'" -7 r''

where n = 0, y E ffst, snd, inl, inr, present,fix, neg}
or n::;; 1, y E {pair, cons, plus, and, eq}
or n::;; 2, y E {case, !choose, ochoose, cond}

3~ eq (c : n) (c : n) : bool :=:?true : boo!, c E K(rc)
3;5 eq (c : n) (c': n) : bool :=:?false : boo!, c, c' E K(n), c i= c'

146

36 eq (absent : optional r) (absent : optional r) : bool => true : bool
37 eq(absent: optional r) (present (e3 : r) : optional r) : boo/=>

false: bool

38 eq (present (e1 : r) : optional r) (absent: optional r) : bool =>
false: bool

39 eq (present (e1 : r) : optional r) (present (e3 : r) : optional r) : bool =>
eq (el : r) (e3 : r) :boo/

40 eq (nil : list r)(nil : list r) : bool => true : bool
41 eq (nil: list r)(cons (e3 : r) (e4: list r) :list r) : bool =>false : bool
42 eq (cons (el : r) (ez : list r) : list r) (nil : list r) : bool =>false : bool
43 eq (cons (e1 : r) (ez : list r) : list r)

(cons (e3 : r) (e4 : list r) : list r) : bool =>
and (eq (e1 : r) (e3 : r) : bool)
(eq (ez : list r)(e4 :list r) : bool) : bool

44 eq (inl (e1 : r) : r + '() (inl (e3 : r) : r + r') : bool =>
eq (e1 : r) (e3 : r) : bool

45 eq (inl (e1: r): r+ '() (inr (e3: r'): r+ r'): bool =>false: bool
46 eq (inr (e 1 : r') : -r + '() (inl (e3 : r) : r + r') : bool => false : bool
47 eq (inr(el: r'): r+ '() (inr (e3: '(): r+ r'): bool =>

eq (el : '() (e3 : '() : bool

48 eq (pair (el : r) (ez: r') : rx '()(pair (e3: r) (e4: r') : rx r') : bool
=>and (eq (el : r) (e3 : r) : bool)
(eq (ez : '() (e4 : '() : bool) : bool)

