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ABSTRACT 

Biochar is a carbon-rich material produced by pyrolysis (heating in the absence of oxygen) 

of biomass to capture combustible gases and generate heat and electricity. It can be added 

to soils as a means to sequester carbon and to maintain or improve soil functions. The 

physical and chemical properties of biochars determine their function as a tool for 

environmental management. Soil changes and plant response have been analysed on 

diverse soil types under various climatic conditions, water regimes, chemo-physical 

environments and on different species. Yet, the exact mechanisms behind the effects of 

biochar application are not fully understood and productivity gains vary greatly depending 

on the type of biochar, application rates, crop species and environmental conditions. 

Producing biochar from different organic waste materials appears to be a promising 

method of achieving greater levels of certainty and flexibility for integrating carbon 

sequestration, managing waste disposal costs and introducing a new solution into soil and 

yield management in the conventional agricultural and forestry production systems. 

Biochar, however, is not widely used by farmers or foresters in Australia, mainly due to the 

lack of certainty concerning long-term consequences, yield gains and a lack of ‘know-how’ 

in the field of quality certification, transportation, logistics and cost efficiency. 

Forestry is a significant industry in Tasmania, with large scale plantations of radiata pine 

(Pinus radiata, D. Don) and Eucalyptus (E. globulus and E. nitens, H.Deane & Maiden) which 

play an increasingly important role in supplying for national and international demand for 

timber. Propagating robust seedlings for planting in the field is an important part of 

plantation establishment as it influences potential yield, while also being a significant 

budget component. As biochar has been reported to positively affect desirable soil 

characteristics (e.g. increased nutrient efficiency, improved water holding capacity or 

reduced bulk density) and enhance crop productivity, it was hypothesised that it can bring 

benefits to Eucalyptus seedling growth. 

The main objectives of this project were to investigate chemical changes of the soil, plant 

material and soil solution following biochar application; and to determine the optimum 

biochar dose required to positively influence eucalyptus growth under Tasmanian 

conditions; both in a controlled nursery environment and during establishment in the field. 

A secondary aim was to determine if commercial fertiliser rates could be reduced via 
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biochar application to the growing medium. The final assumption was that biochar can be 

profitably made from forest residues and utilized within the forest production systems of 

Tasmania.  

The macadamia shell biochar used in this research was characterised as high in potassium 

and sodium, relatively high in total carbon content and low in total nitrogen (N) and 

phosphorus (P) content relative to other biochars described in literature. Two experiments 

were conducted: a pot trial in which Eucalyptus seedlings were observed from sowing to 9 

months; and a field experiment in the Florentine valley in South West Tasmania where 

seedling establishment was monitored for 14 months. In both experiments the agronomic 

characteristics of the seedlings and trees was monitored on a regular basis. Each 

experiment had 4 sample collection periods when plant material and soil or potting mix 

samples were collected and analysed. Percolating water was collected from custom-built 

lysimeters installed in the field plantation. 

Agronomic monitoring revealed that in both experiments fertiliser combined with certain 

doses of biochar influenced the tree growth. The height of seedlings and young trees was 

comparable between full fertiliser treatment (i.e. when no biochar was applied) and 

treatments where medium biochar rates were combined with reduced fertiliser amounts. 

However, biochar application did not result in significantly taller plants. Other agronomic 

features were not influenced by biochar application in either experiment. The potting mix 

was high in organic matter and the fertiliser applied at rates reflected industry standards. 

While fertiliser rates were reduced to simulate a nutritionally poor soil, all other 

environmental parameters were optimal in the pot trial. As previous reports have indicated 

that biochar has more noticeable effects on poor quality soils, it is possible that the quality 

of the potting mix masked the efficacy of biochar in relation to agronomic productivity, 

although both soil and leachate parameters were influenced. In contrast, under field 

conditions the biochar doses were applied at rates below that at which soil and leachate 

parameters were modified in the potting experiment, thus the doses were possibly too low 

to show a significant effect. The application method could also have influenced biochar 

efficiency under field conditions. 

Chemical and physical changes in the analysed mediums used implied a number of 

different, in some cases contradictory, mechanisms. Biochar in both experiments increased 

growing medium pH and released potassium and sodium to the soil. In the plant tissues, 
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biochar induced changes, yet no clear trends were evident that macadamia biochar has any 

sizable effect on the nutritional status of E. nitens in Tasmania. In most cases, the changes 

in leaf tissue were correlated with changes in the soil with no evidence that biochar directly 

influenced plant nutrient uptake.   

Biochar did not have a clear effect on percolating water nutritional changes and the only 

thing that can be concluded with certainty is that application of biochar increased 

potassium infiltration from the soil. This is most likely connected with significant amount of 

potassium introduced to the soil when biochar was applied. 

While the mechanisms for the reported changes remain unclear, in many cases biochar was 

responsible for changes in soil and plant material chemical characteristics and a limited 

agronomic response. It appears that biochar is able to influence nutrients transformations 

in the soil and therefore influence the soil environment for the E. nitens in Tasmania. It also 

shows significant potential for reduced commercial fertiliser rates both in the forestry 

plantations and in the forest nurseries. 

The financial analysis was based on the trial outcomes and the local operating environment 

in Tasmania; including current forestry procedures used for managing plantations in 

Tasmania; and benefits resulting from biochar production and incorporation into 

Tasmanian soils. The Biochar Scenario assumed on-site biochar making, out of post-harvest 

forestry residues, and different methods of biochar utilization. The model was built in 

Microsoft Excel® with help from Forestry Tasmania experts. A number of assumptions were 

considered concerning: a) production costs, b) savings enjoyed by traditional operations 

following biochar scenario implementation and c) biochar sale. The analysis revealed a 

potential annual income of $179,514 resulting from introducing the Biochar Scenario on 

270 ha. The sensitivity analysis identified the crucial factors responsible for scenario 

profitability, namely biochar price and final product distribution.  

The findings of this work supported the hypothesis that reducing common fertiliser rates 

used for seedling establishment in forestry plantations is viable. It has also provided insight 

into changes in both soil and plant tissue following macadamia shell biochar application to 

Tasmanian soils. The financial analysis served as a solid background for the realistic 

implementation of the Biochar Scenario for forestry industry in Tasmania. 
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1. INTRODUCTION 

One of the global challenges of the 21st century is the sustainable management of natural 

resources, ideally being based on a balance between available reserves and demand for 

various products. An ongoing discussion about combining the need to protect natural 

habitats while generating adequate amounts of energy and maintaining the production 

from systems like agriculture and forestry leads to numerous concepts and ideas to 

improve sustainability while maintaining the productivity of such systems. Recently there 

has been a growing interest in biochar, a by-product of renewable energy, and its potential 

to enhance soil quality, improve crop productivity and sequester atmospheric carbon, thus 

adding sustainability to environmental production. Biochar (charcoal, agrichar, ecochar) 

refers to carbon-rich materials produced from the pyrolysis (heating with limited amount of 

oxygen) of biomass to capture combustible gases (Joseph et al., 2010). A wide range of soil 

and plant changes have been reported when biochar has been applied in agro-forestry 

systems. Similarly, the practical feasibility and financial aspects of biochar application are 

yet to be verified. 

1.1. The fundamentals of biochar 

The term biochar has previously been used in connection with charcoal production 

(Demirbas, 2004; Lehmann and Joseph, 2009b) and is often considered to be ‘the same 

thing’. Lehmann and Joseph (2009) established ‘biochar’ as the appropriate term to use for 

charred organic matter applied to soil in a deliberate manner, with the intent to improve 

soil properties and in consequence influence the nutrient composition changes in plant 

material or ground waters (Figure 1.1). This distinguishes biochar from charcoal that is used 

as a fuel for heat generation, as a filter, and for other purposes (Lehmann and Joseph 

2009). Biochar can be added to soils as a means to sequester carbon (Krull et al., 2003; 

Lehmann et al., 2006; Nguyen et al., 2009) and maintain or improve soil functions 

(Amonette and Joseph, 2009; Singh et al., 2010). It has been reported to bring positive 

changes to desirable soil characteristics but can also cause a negative or no response in 

both soil and plant material (Chan and Xu, 2009; DeLuca et al., 2009).  

The feedstock and pyrolysis conditions determine the biological, physical and chemical 

properties of biochar (Atkinson et al., 2010; Quilty and Cattle, 2011). Thus its properties are 

variable, as biochar can be produced from any type of biomass: from animal production  
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wastes (i.e. chicken litter, cow manure etc.), municipal waste (i.e. sewage sludge, 

households biodegradable wastes etc.) and agricultural products (i.e. straw) to different 

types of wooden feedstock (i.e. branches, thinning residues, macadamia shells)(Briens et 

al., 2008; Lehmann and Joseph, 2009b). Considering the great variability of feedstock and, 

very often, an opportunity to mix different feedstock types, biochars differ significantly in 

terms of their chemical and physical properties. The production conditions, especially 

operating temperature, can be tightly controlled which makes biochar a highly ‘engineered’ 

char. This adds to biochar’s characteristic variability as the process temperatures range 

from 350°C to over 700°C and the diversity in residence time and oxygen concentrations 

may also differ immensely (Amonette and Joseph, 2009; Thies and Rillig, 2009). Many 

research projects have focused on clarifying differences between biochar types and 

although some trends have been identified, many questions about biochar heterogeneity as 

a result of feedstock and production conditions remain unanswered (Roberts et al., 2010).  

Figure 1.1. Macadamia biochar; the final product (left-hand side), electron microscopy image of the 

char (right-hand side).  

Biochar has been applied under various environmental conditions both in controlled 

environments and in the field (Chen et al., 2010; Lehmann et al., 2003; Van Zwieten et al., 

2009). It has been reported to increase yield, particularly if added together with organic or 

mineral fertiliser (Lehmann and Joseph, 2009b). Other plant responses have been analysed 

on different types of soil, under various climatic conditions and on many agricultural food 

crops e.g. radish, soybean, wheat, rice and others (Asai et al., 2009; Blackwell et al., 2010; 

Major et al., 2010). Similar to biochar characteristics, the exact effects of biochar 

application on plant productivity and yield are not fully understood and require more 

detailed investigations to allow full explanation of potential mechanisms which putatively 
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are influenced by biochar application. Considering the known variability in the effects of 

biochar on soil characteristics and plant responses, a generalized approach to predict 

biochar effect on soil changes and plant growth seems a very challenging task.  

Biochar is a product of the renewable-energy focused pyrolysis technology  used to produce 

biofuels, which may to some extent,  displace fossil fuels use (Chan et al., 2007). Unlike 

fossil fuels, biomass is a renewable source of carbon and using it to produce biochar can 

release energy with virtually no sulphur or mercury and, very little nitrogen and ash waste. 

Producing biochar from various biomass waste materials appears to be a promising method 

of achieving greater levels of certainty and flexibility for integrating carbon sequestration 

accounting, managing waste disposal costs and renewable energy generation into 

conventional agricultural production, therefore assisting with moderating the climate 

change effect (Lehmann 2007, McHenry 2009). 

Due to these attributes, there has been much attention given to biochar, and numerous 

possibilities to introduce it into primary production systems are under investigation. 

Interest in biochar has generally been driven by two major global issues: mitigation of 

climate change, and realization of the need for more sustainable soil management (Chan et 

al., 2007; Chan et al., 2008; Lehmann et al., 2003). Yet, in Australia, biochar is not widely 

used by farmers, mainly due to the lack of consistent results concerning long-term 

consequences and yield gains as well as lack of ‘know-how’ in the fields of transportation, 

logistics and cost efficiency (Chan et al., 2008; Glover, 2009; Quilty and Cattle, 2011). The 

variability of the effects of biochar is also a challenging barrier to introducing commercial 

biochar use in primary productivity systems like agriculture or forestry. Case studies and 

feasibility reports based on local conditions may serve as a potential remedy to overcome 

this barrier and allow modelling on a small area scale and consequently lead to larger scale 

solutions. Therefore, a local scenario may answer the question of feasibility of introducing 

biochar on a local, Tasmanian scale but also contribute to the challenge of modelling the 

effects of biochar application on a larger scale. 

1.1. Biochar for Tasmanian Forestry 

Forestry is a significant industry in Tasmania, with large scale plantations of radiata pine 

(Pinus radiata D. Don) and Eucalyptus (E. globulus and E. Nitens H. Deane &Maiden), the 

latter playing an increasingly important role in supplying wood to meet national and 
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international demand for timber products (FT database, 2010-2013; Rothe. A, 2013). 

Propagating robust seedlings for planting in the field is an important part of plantation 

establishment,  and its success influences potential yield and thus return on a significant 

budget component.  

In most cases newly planted eucalypt seedlings require significant fertiliser input to ensure 

proper early growth, especially as many forestry plantations in Tasmania are growing on 

low to medium fertility soils. Biochar is reported to bring about a positive effect on soil 

through postulated mechanisms such as increased nutrient accumulation, improved water 

holding capacity or reduced bulk density. Therefore, biochar could be a useful organic 

amendment as a tool for soil nutrient management in seedling production procedures, 

assisting the growth of Eucalyptus seedlings. 

Biochar has potential to serve as a soil amendment enabling the decrease of fertiliser 

required for young eucalypt plantations. The application of fertilisers to forestry plantations 

in Tasmania is a significant overall cost connected with plantation establishment. 

Application of biochar to the soil of Eucalyptus plantations may increase soil nutrient 

retention, decrease chemical leaching and improve fertiliser efficiency. Therefore biochar 

may reduce costs of plantation establishment. 

Production of biochar for use in forest nurseries and during field establishment would be a 

sustainable system as forestry harvest procedures leave significant amounts of post-harvest 

residues on site. These residues are either retained or burnt to clear the site for the next 

rotation (Elliot, 2011; FT database, 2010-2013). Under current commercial procedures 

processing post-harvest residues is a cost incurred to the forestry industry. Producing 

biochar from those residues could serve as an alternative to on-site clearing burns, while 

using the biochar produced as a soil amendment could provide not only agronomic benefits 

but also financial gains.  

While the potential to support a wide range of primary production activities exists, there is 

little or no research published regarding biochar influence on pastures, fodder shrubs and 

trees (Santalla et al., 2011; Stavi, 2013; Wrobel-Tobiszewska et al., 2012b). These 

components of agriculture, agroforestry and forestry could benefit from biochar in the 

same way as some field crops have done. The possible beneficial effects of biochar on the 

production of woody biomass may also be important to the potential biomass supply for 

renewable energy and biochar production itself (Lehmann and Joseph, 2009b). Given the 
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importance of the forest industry to Tasmania’s economy and its contentious role as both a 

resource and environmental threat, this study looked at using forest residue to increase 

productivity while enhancing sustainability. 

1.2. Objectives and scope 

The project was based on two experimental trials and a cost-benefit analysis of producing 

and utilising biochar in Tasmanian forestry. A pot trial in a controlled environment and a 

field trial in a local plantation were established to monitor soil changes and agronomic 

response of young E. nitens to biochar application. As no local pyrolysis unit existed and 

eucalyptus char was unavailable, macadamia biochar was applied in both experiments 

across a range of rates commonly reported in literature; 0-100 t ha-1 (Biederman and 

Harpole, 2013; Blackwell et al., 2010; Lehmann and Joseph, 2009b). The main hypotheses of 

the project were: 

� That macadamia biochar added to Eucalypt plantation soil under Tasmanian 

conditions will improve soil nutritional traits, by either introducing nutrients to the 

soil (release from biochar surfaces) or modifying soil mechanisms to increase 

nutrient transformation to plant-available forms. 

� That macadamia biochar application to the soil will positively influence seedling 

agronomic response, resulting in better yield and greater height of the trees and 

seedlings under controlled and field conditions.  

� That the medium dose of biochar (10-20 t ha-1) is an optimum dose for seedlings 

performance, soil quality and nutrition improvements within the soil-plant system 

to Eucalyptus nitens seedlings both under controlled and field conditions.  

� That biochar added to plantation soils will decrease nutrient leaching, and 

therefore increase fertiliser application efficiency and off-site contamination. 

� That medium biochar application (10-20 t ha-1) will allow a decrease in fertiliser 

doses used for the plantations and nurseries with no yield penalty and therefore 

decrease the overall costs of plantation establishment. 

� That biochar produced on a plantation site from post-harvest residues can be used 

to generate financial benefits in Tasmanian based plantation forestry systems.   
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1.3. Research strategy 

The research objectives addressed characterisation of macadamia biochar, evaluated its 

effects on soil, plant tissues and agronomic measures, and included a financial assessment 

of the viability of biochar production and use within a Tasmanian forestry system. The 

studies included glasshouse, field and a desktop analysis. The thesis is presented in nine 

chapters, the content of which is outlined below. 

Chapter 1- Introduces the topic of biochar in relation to forestry in Tasmania, provides 

justification for the research and outlines thesis scope and objectives. Specifies the 

research questions. 

Chapter 2- Reviews existing literature about biochars effects on the environment, soil 

changes, plant agronomic performance and provides more theoretical information about 

biochar characteristics and classification; it summarizes what is already known about 

biochar. Presents background of plantation forestry in Tasmania and reviews literature 

about forestry and char use.  

Chapter 3- Presents the results of analyses on the macadamia biochar used in this research. 

Provides details on the methods used to characterise the product, and discusses the 

expected effects of biochar application to the soil based on these characteristics. 

Chapter 4- Describes methods used in the pot study and field experiment. Outlines the 

design of the experiments, tests and analyses performed; timing of analyses and detailed 

procedures are explained. 

Chapter 5- Presents and discusses results from both experiments with reference to soil 

desirable soil characteristics, such as nutritional and physical changes under biochar and 

fertiliser treatments. 

Chapter 6- Presents and discusses the results of biochar and fertiliser effects on soil 

leachate chemistry in the field experiment. 

Chapter 7- Presents and discusses results of plant tissue chemistry changes and agronomic 

response of seedlings under biochar and fertiliser treatments in the pot and field 

experiments. 
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Chapter 8- Introduces a ‘Biochar Scenario’ based on the idea of using post-harvest residues 

from forestry plantations in Tasmania to produce biochar. The chapter presents a cost-

benefit financial model and a feasibility study based on the model outcomes and the 

agronomic-chemical outcomes from earlier chapters of this thesis. The presented scenario 

assumes biochar production from plantation residues on-site and on-site soil application, 

off-site utilization in forest nurseries and, the introduction of Tasmanian biochar to the 

market. 

Chapter 9 – Summarises the outcome of this research, places the results in perspective, 

emphasizes the conclusions and identifies research pathways based on the findings of this 

work. 
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2. LITERATURE REVIEW 

2.1. Developing knowledge about biochar 

2.1.1. Introduction 

Biochar refers to carbon-rich materials produced from the pyrolysis (heating in the low 

oxygen conditions) of biomass in order to capture combustible gases and generate heat and 

electricity (Joseph et al., 2010; Lehmann and Joseph, 2009b). It can be added to soils as a 

means to sequester carbon (Joseph et al., 2010) and maintain or improve soil functions 

(Chan et al., 2007; Liang et al., 2006; Shinogi and Kanri, 2003; Singh et al., 2010) and, is a 

product of the renewable-energy focused pyrolysis technology which produces biofuel 

(Chan et al., 2007). The positive environmental impacts of biochar are recognized in various 

areas, including soil, plant tissue, water and even atmospheric changes. Biochar could 

reduce the degradation of currently used agricultural land by adding to remediation 

practices and play an important role in groundwater conservation and soil improvement in 

the future (Chen et al., 2010; Sohi et al., 2009). Due to its ability to influence soil fertility 

and improve the overall quality it has been suggested that more land would be available 

(Sarmah et al., 2010; Sohi et al., 2009) to produce food, fibre and forestry products. 

Sequestering carbon in agricultural soils creates additional benefits for farmers, retains land 

values by soil conservation, and may improve conventional yields by maintaining soil 

ecosystems (Klein et al., 2007; McHenry, 2009; Milne et al., 2007). 

The term biochar has previously been used in connection with charcoal production 

(Demirbas, 2004; Lehmann and Joseph, 2009b). Lehmann and Joseph (2009) established 

and used ‘biochar’ as the appropriate term where charred organic matter is applied to soil 

in a deliberate manner, with the intent to improve soil properties. This distinguishes 

biochar from charcoal that is used for many purposes (Lehmann and Joseph, 2009b). More 

than 40 million tonnes of biochar were estimated to be produced worldwide per year in 

2009 (McHenry, 2009). The current (2014) production intensity has not been estimated, 

mainly due to the lack in uniformity in biochar production methods, reporting and 

certification systems however, it is expected to be relatively small in comparison to global 

CO2 production. Serious biochar use for C sequestration would require a massive expansion 

in production and use. 
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While biochar-charcoal was used many centuries ago in Japan, the recent interest has been 

stimulated by the topic of ‘Terra Preta’ (Ogawa and Okimori, 2010). The Terra Preta black 

soils are found in South America and characterized by high fertility and significant microbial 

activity (Lehmann and Joseph, 2009). The origin of black soils remains unknown; some 

theories involve the activity of local volcanoes and ash sediments while others attribute 

high black earth fertility to human related procedures e.g. cooking, burning and agriculture 

over many years (Lehmann et al., 2009).  

Biochars can be produced from a range of organic materials and under different conditions 

resulting in products with a diversity of characteristics and properties (Chan et al., 2008; Lei 

and Zhang, 2013; Nguyen and Lehmann, 2004). It has been suggested that biochar 

produced in lower temperatures by the process of ‘slow’ pyrolysis brings more benefits 

regarding its chemical and physical properties when used as a soil amendment than the 

product of fast pyrolysis (Joseph et al., 2010; Lehmann, 2007; Lehmann and Joseph, 2009b; 

Sohi et al., 2009). Singh et al. (2010) performed a study analysing characteristics of biochars 

produced from different feedstock (Eucalyptus wood, poultry litter, cow manure and paper 

mill sludge) at different temperatures. The results have demonstrated various advantages 

of using biochar as a soil amendment, including maintaining fertility and improving aeration 

or water holding capacity. Biochar application to the soil has also been reported to bring 

both positive and negative effects on plants agronomic performance (Blackwell et al., 2010; 

Chen et al., 2010; Major et al., 2010). 

In the past two decades there has been much interest in biochars, which, apart from 

discovering Terra Preta, is driven by two major global issues: 1) mitigation of climate 

change and 2) the realization of the need for more sustainable soil management (Chan and 

Xu, 2009; Sarkhot et al., 2012; Vaneklaas et al., 2012). Producing biochar from organic 

waste appears to be a promising method of achieving greater levels of certainty and 

flexibility for integrating carbon sequestration accounting, managing waste disposal costs 

and renewable energy generation into conventional agricultural production(Lehmann, 

2007; McHenry, 2009). In Australia however, biochar is not widely used by farmers mainly 

due to the lack of confirmed results concerning the long-term consequences and yield 

changes as well as lack of ‘know-how’ in the field of transportation, logistics and cost 

efficiency (Chan et al., 2008; Quilty and Cattle, 2011). 
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2.1.2. Chemical, physical and biological characteristics 

One of the most important features of biochar is its ability to sequester atmospheric carbon 

in the soil. Increasing atmospheric CO2 is an important global issue of the 21st century and 

long-term storage of carbon in soil is considered a vital option to mitigate the increasing 

level of CO2 in the atmosphere (Lal, 2008; Singh et al., 2010). The conversion of biomass to 

biochar leads to sequestration of up to 50% of the initial carbon compared to the low 

amounts retained after burning (3%) and biological decomposition (10-20%)(Lehmann et 

al., 2006; McHenry, 2009). Application of charred biomass as an alternative soil amendment 

to manures or compost seems to be a promising option to maximise carbon storage in soils 

as charring significantly increases the stability of C against microbial oxidation, however up 

to approximately 10% of the biochar C can be prone to mineralisation over a few months 

after application to the soil (Baldock and Smernik, 2002; Laird et al., 2009). Diverting merely 

1% of annual net plant uptake (58 Gt year-1) into biochar would mitigate almost 10% of 

current anthropogenic C emissions (7 Gt year-1)(Lehmann and Joseph, 2009b). The ability of 

biochar to sequester carbon is related to its stability in the soil (Glaser et al., 2001; 

Lehmann et al., 2009; Lehmann and Joseph, 2009b). The long term-stability and resistance 

to oxidation is related to biochar structure and recalcitrance to microbial attack (Liang et 

al., 2008; Nguyen et al., 2009). 

The physical and chemical properties of biochars determine their effectiveness in 

environmental management (Lehmann and Joseph, 2009b). Physical properties of biochar 

are dependent on feedstock material used and pyrolysis conditions (Lehmann and Joseph, 

2009b; Lei and Zhang, 2013), while elemental composition is determined more so by the 

type of feedstock used. Biological properties and the ability of biochar to interact with soil 

biota are dependent on the type of soil as well as biochar chemical and physical features.  

The exact characteristics of biochars is a function of process conditions (e.g. temperature, 

moisture, residence time) during production as well as the biomass material used (Krull et 

al., 2009; Schmidt and Noack, 2000). Biochars are suggested to have a positive influence on 

soil and plant productivity due to two main processes: release of nutrients from biochar 

surfaces (this related to cation and anions exchange capacity of the chars), or influencing 

soil nutrient transformation mechanisms leading to better fertiliser efficiency (Atkinson et 

al., 2010; Chan and Xu, 2009; DeLuca et al., 2009; Prendergast-Miller et al., 2014; Quilty and 

Cattle, 2011). It has been suggested that biochars from feedstock consisting of or including 
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animal faeces and/or sewage sludge contain more nutrients and may, under specific soil 

conditions, release more of those nutrients to the soil than biochars made from plant 

material; this related to higher nutrient concentration in animal products in comparison to 

plant products (Lehmann et al., 2011; Lei and Zhang, 2013). Therefore biochar in some 

cases can be treated as an organic fertiliser (Chan et al., 2008; Liu et al., 2014; Major et al., 

2010). Due to different nutrient content in biochars and different nutrient availability to the 

plants after biochar application to the soil, it has been implied that the optimum dose of 

biochar may have to be determined for each soil. 

Biochar has also been proposed to improve soil quality by stimulation of changes in soil 

chemistry (DeLuca et al., 2009; Jones et al., 2012). The changes have been most often 

attributed to increased soil pH and cation exchange capacity and therefore improved soil 

quality and conditions for the plants to grow (Cheng et al., 2006; Liang et al., 2006). Some 

reports attributed increased nitrification rates (Berglund et al., 2004; Clough and Condron, 

2010; Prommer et al., 2014) or phosphorus availability in the soil to the response to biochar 

application (Cheng et al., 2006; Nelson et al., 2011). 

Apart from positive effects that biochars can bring, there are some potentially negative 

effects that can be caused by introducing biochar to the soil environment. High content of 

heavy metals have been found in some biochars made from sewage sludge and tannery 

wastes (Bridle and Pritchard, 2004; Chan and Xu, 2009; Liu et al., 2014; Muralidhara, 1982), 

and use of these could lead to build up of toxic concentration of heavy metals in soils. Such 

an outcome could render making of biochars from material with high heavy metal 

concentrations undesirable or non-viable. 

While the chemical characteristics of biochars are strongly related to feedstock and 

pyrolysis conditions, the physical features of biochar are more related to the latter. At 

temperatures above 120° Celsius organic materials start to decompose and the original 

chemical content of feedstock material has a significant influence on physical 

characteristics of the biochar produced (Downie et al., 2009). Pore structure, size 

distribution, volume; and total surface area are thus a function of this initial chemistry and 

pyrolysis conditions. Nano-porosity and macro-porosity of biochars can provide pores for 

plant root exploration, shelter for microorganisms, affect soil bulk density, porosity and 

water holding capacity and can be helpful in aeration (Downie et al., 2009; Lehmann et al., 

2009). Macropores in biochar play especially important role for plant root exploration. 
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Several studies have shown the reduction in nutrient runoff following biochar application to 

soils (Major et al., 2009; Shinogi and Kanri, 2003; Tryon, 1948), presumably because biochar 

has increased cation exchange capacity (reducing nutrient availability for dissolution in 

water) or increased water holding capacity of soil (reduces water volume for runoff).  

The porosity of biochar influences their ability to stimulate soil microorganisms, and thus 

plays an important role in whole soil ecology (Thies and Rillig, 2009). The physical and 

chemical environment of biochars strongly affect soil microbes and in consequence plant 

productivity, as it is known that microbes (i.e. bacteria, fungi, protozoa) significantly 

influence the ability of plants to acquire macro and micro nutrients (Lehmann and Joseph, 

2009b). Biochar may influence soil micro-biology by two main mechanisms: providing 

habitat for soil microorganisms and substrates for soil biota (i.e. compounds present on 

biochar surfaces may provide direct source of bacteria nourishment). The first mechanism 

is related to chars porosity while the second relates to biochar decomposition in the soil 

(Dempster et al., 2011; Steinbeiss et al., 2009; Thies and Rillig, 2009). Recent studies have 

also shown that biochar may stimulate soil microorganisms indirectly, by changing soil 

environmental conditions (Watzinger et al., 2014). 

Considering the numerous types of feedstock utilised, and the wide range of production 

conditions used, the final products vary significantly and generalization of biochar 

characteristics becomes a very challenging task. Yet, there have been attempts to classify 

biochars in order to model soil and plant response under certain products.  

2.1.3. Classification of Biochars 

As each biochar has its own properties, its introduction to soil should be preceded by an in-

depth analysis of potential consequences. Given the variety of biochars and soil types and 

the unique combination each application makes, the effects of biochar application cannot 

be fully predicted. It is, however, possible to categorise groups of biochars based on 

feedstock or the pyrolysis process used (Chan et al., 2008; Joseph et al., 2009; Lei and 

Zhang, 2013), while pyrolysis temperature and char age categorizations have also been 

proposed. There are other potential classifiers, for example liming capacity or nutritional 

properties.  

The feedstock divided biochars into two main groups – plant and animal wastes based. 

Plant-based biochars tend to have higher C content and lower concentrations of total 
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nitrogen (N), Phosphorus (P), Potassium (K), Sulphur (S), Calcium (Ca), Magnesium (Mg), 

Aluminium (Al), Sodium (Na), Copper (Cu) and cation exchange capacity (CEC) than animal-

based biochars (Chan et al., 2008; Kyoung et al., 2010; Shinogi and Kanri, 2003). Conversely 

the highest N content found to date is in biochars made from poultry litter and cow manure 

(Lang et al., 2005; Sarkhot et al., 2012). The highest calcium content was found in biochars 

made from paper sludge (Singh et al., 2010). Most wood- and nut- based biochars have high 

C/P and C/N ratios (Kookana, 2010; Krull et al., 2009). Also, biochars from woody materials 

tend to have lower cation exchange capacity than biochars made from non-woody 

materials (Chan et al., 2007; Gaskin et al., 2008; Gundale and DeLuca, 2006; Kookana, 2010; 

Major et al., 2009; Van Zwieten et al., 2010a). Wood-based chars were also reported to 

increase saturated hydraulic conductivities more than manure-based biochars (Lei and 

Zhang, 2013) which is a desirable effect in  heavy soils. 

Biochars may also be classified on age, as the chars properties change with time. ‘Aged’ 

biochars (depending on feedstock and pyrolysis conditions 1-5 years old) are characterized 

by decreased C content, increased O and H content, and higher cation exchange capacity 

(Kookana, 2010). Increased CEC is a result of oxidation which produces a greater density of 

negatively charged carboxyl, phenolic, and hydroxyl functional groups on the char surface 

(Cheng et al., 2008; Cheng et al., 2006; DeLuca et al., 2009). 

Pyrolysis temperature can be used to distinguish two main types of biochar – high 

temperature and low temperature. Biochars from high temperature pyrolysis (>550 °C) are 

usually richer in carbon and less likely to provide plant nutrients than the low-temperature 

biochars (Demirbas, 2004; Krull et al., 2009). Biochars produced in temperatures >550 °C, 

and especially those with high ash content, have intricate surface and internal properties 

that results in complex physical reactions with soil (Joseph et al., 2010; Lehmann and 

Joseph, 2009b; Shinogi and Kanri, 2003). Low-temperature pyrolysis (<500 °C), on the other 

hand, favours greater recovery of carbon (C) that is lost at higher temperatures (Joseph et 

al., 2010; Keiluweit et al., 2010). Biochar pH may increase with increasing pyrolysis 

temperature, however this is not universal, and pH has been observed to decline for 

manure based biochars.  

Production temperature can also alter the solubility of certain nutrients and other physical 

and chemical properties of biochar. The production temperatures range between 300 and 

800°C. For example, high-temp biochars tend to have a higher electrical conductivity and 
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extractable NO3
-, while low-temp biochars (≥500oC) have in general greater amounts of 

extractable P, NH4
+ and phenols (DeLuca et al., 2009; Kookana, 2010). The majority of N and 

S volatilize above 200 and 374°C respectively while K and P volatilize between 700 and 

800°C, which influences the properties of the final product (Kookana, 2010). While high-

temperature biochars tend to have greater porosity and SSA, lower temperatures chars 

may release more nutrients to the soil. 

It has been suggested that both specific surface area and microporosity of biochars increase 

with temperature. Biochars produced at 700°C sorbed more Zinc and cadmium in 

comparison to the same feedstock biochars produced at 400°C (Melo et al., 2013). In 

contrast, biochars made at lower temperatures (400-500°C) showed greater sorption of 

phosphorus in comparison to high temperature biochars (Morales et al., 2013). However, 

some authors suggest that specific surface area [m2 g-1] increases only at temperatures up 

to 700° C (Brown et al., 2006).  As this temperature is close to the upper practical limit for 

pyrolysis, the effects of higher temperatures, if any, on specific surface area will be of little 

practical importance. 

The degree of aromaticity (% of carbon in aromatic rings) is known to increase with 

increasing charring temperature, hence the C rich biochars made at high temperatures may 

have greater soil C sequestration value than the low-temperature biochars due to carbon 

being in a more stabile form (Baldock and Smernik, 2002; Nguyen et al., 2009).  

Our understanding of general biochar characteristics based on feedstock type, and 

production conditions allow us to draw broad conclusions about the potential interaction 

between char and the soil to which it will be added. However, these should be treated as a 

guide rather than prescriptive and the physical and chemical features of biochar made 

using similar methods may still differ markedly.  

2.1.4. Soil changes under biochar application 

The application of biochar to agricultural soils has the potential to improve soil physical, 

chemical and biological conditions (Lehmann and Joseph, 2009b). Knowing the extent of 

the changes that biochar and soil itself undergo is vital for understanding the contribution 

that biochar can make to soil amelioration and its sustainable management (Lehmann and 

Joseph, 2009b; Quilty and Cattle, 2011; Shackley and Sohi, 2010). Added to the variability in 
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the properties of biochar, variability across soil types and the many soil parameters 

influenced by its application again increases the complexity of the response.   

 

Biochar as a high surface-area, porous, variable-charge organic material has the potential to 

increase soil water-holding capacity, cation and anion exchange capacity, surface sorption 

capacity and base saturation (Downie et al., 2009; Hammes and Schmidt, 2009). When 

added to soil it undergoes several chemical and physical changes, influencing the soil 

environment at the same time (Glaser et al., 2001; Lehmann et al., 2009; Liang et al., 2006). 

Hammes et al. (2007) listed the decrease of pore size as one of the most important changes 

in biochar after application. Biochar also changes chemically; it may interact with different 

mineral phases, depending on soil and biochar chemistry, and change its elemental 

composition as a result of oxidation (Krull et al., 2009; Lehmann et al., 2009). Biochar 

additions also have the potential to alter soil microbial populations, to shift functional 

groups of soil particles i.e. change soil chemistry and have the potential to reduce soil bulk 

density (Amonette and Joseph, 2009; Gundale and DeLuca, 2006). Given that biochar is a 

much stronger sorbent for neutral organic compounds than other forms of organic matter 

present in most soils, and that biochar is ubiquitous in the environment, it should be 

expected that biochar naturally present in soil would play an influential role in overall soil 

sorption properties (Chan and Xu, 2009; DeLuca et al., 2009; Krull et al., 2009). Changes and 

stability of biochar in the soil is a crucial factor in the framework of biochar use for 

environmental management. Stability determines how long carbon applied as biochar will 

remain sequestered and how long biochar can provide benefits to the soil (Lehmann et al., 

2009). 

As biochars are very porous and improve soil aggregation (Brodowski et al., 2005; Liang et 

al., 2006), their application to soils should improve soil aeration. Furthermore, improved 

water-holding capacity and reduced tensile strength have been demonstrated (Chan et al., 

2007; Downie et al., 2009). Similar to burned plant residues, biochars can contain varying 

concentrations of alkaline ash that is directly added into the soil as Ca, Mg, K and Na oxides, 

hydroxides and carbonates. This soluble form of ash in biochar can be rapidly released into 

soil and then leaches down the soil profile to ameliorate soil acidity (Gaunt and Cowie, 

2009). Increasing soil pH through biochar addition could potentially encourage the activity 

of N2O reductase enzymes of denitrifying microorganisms (Gaunt and Cowie, 2009; Yanai et 

al., 2007). The rate of biochar application, its composition and buffering capacity of the soil 
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will determine the extent of any change in soil pH. Secondary effects such as those on 

denitrifying organisms will be partially dependant on pH, but also on other soils 

characteristics such as aeration, drainage and concentration of labile organic carbon. 

Recent studies have demonstrated that the addition of biochar to surface soil may directly 

influence N transformations by several mechanisms (DeLuca et al., 2009; Van Zwieten et al., 

2010a; Wrobel-Tobiszewska et al., 2012a). Biochar has been found to increase net 

nitrification rates in temperate and boreal forest soils (DeLuca et al., 2006). There is 

however, no evidence for such an effect on grassland or agricultural soils (DeLuca et al., 

2006; Lehmann et al., 2003; Rondon et al., 2006). The rapid response of the nitrifier 

community to biochar additions in soils with low nitrification activity has led to a number of 

proposed mechanisms. Biochar may be adsorbing inhibitory compounds from the soil 

environment, which then allows nitrification to proceed (DeLuca et al., 2009). It has also 

been suggested that biochar has the potential to catalyse the reduction of N2O to N2 during 

denitrification, potentially reducing the emission of this important GHG to the atmosphere 

(Gaunt and Cowie, 2009). According to available research biochar increased N2 fixation 

when added to nodulating and non-nodulating varieties of common bean (Rondon et al., 

2006). Increases in microbial biomass, and a subsequent reduction in available N in soil 

through immobilization following biochar application can potentially occur by: a) biochar 

serving as a source of energy for microorganisms, b) providing protection from predation 

for microorganisms colonizing the pore space; and c) adsorbing labile C substrates and 

nutrients in soil, consequently increasing metabolic efficiency and growth of microbes 

proliferating on or around biochar surfaces (Thies and Rillig, 2009). 

Several studies have reported enhanced P availability and thus uptake by plants in the 

presence of biochar, however the mechanisms are not fully understood. Suggested 

mechanisms include: a) biochar being a source of soluble and exchangeable P; b) biochar 

modifying soil pH and ameliorating P complexing by the metals Al3+, Fe3+2+ and Ca2+; c) 

biochar may promote microbial activity and P mineralization (Ma and Matsunaka, 2013b; 

Nelson et al., 2011; Ojekami et al., 2011; Wrobel-Tobiszewska et al., 2012a). Hardwood 

based biochar has been shown to release P (as well as K and Mg) from its surfaces and 

providing these nutrients in a plant-available form (Angst and Sohi, 2013). By contrast, 

biochar has also been reported to adsorb P to its surfaces and lower P plant availability 

(Chintala et al., 2014). A mixed application of biochar with mineral and organic fertilisers 

has been suggested to increase nutrients availability in soil and improve crops growth 
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(Schulz et al., 2013; Widowati and Asnah, 2014). Clearly, there is diversity in findings of the 

effects of biochar on nutrient availability and thus fertiliser requirements and application 

practices, so it is not possible to provide a general recommendation on suitable strategies 

for combined use of biochar and fertiliser. 

The amount of plant-essential nutrients lost from the rooting zone in agricultural systems 

by leaching can be considerable: losses up to 80% of applied N, 172% of applied Ca and 

136% of applied Mg have been reported in the field (values greater than 100% indicate that 

nutrients other than those added were also leached)(Cahn et al., 1993; Lehmann et al., 

2003). Phosphorus and other nutrients cause euthrophication when they leach or run off 

from agricultural land into water bodies (Ojekami et al., 2011; Schachtman et al., 1998). 

Lysimeter work using a biochar amended clay soil from the Amazon showed that water 

percolation was related to crop growth: less water percolated from soil/biochar mixtures 

than pure soil, following increased crop growth (thus more transpiration) when biochar had 

been added (Lehmann et al., 2003; Major et al., 2009). It has been noted that biochar at 

high application rates (10% or 20% w/w) can effectively reduce NH4+ leaching (Lehmann et 

al., 2003). Singh et al (2010) demonstrated that while freshly added biochars had little 

effect on NH4+ leaching, upon aging in the soil (approximately 5 months) the wood and 

poultry litter-based biochars produced at 550 0 C were able to reduce  leaching of NH4
+ by 

55-65% in an Alfisol (Kookana, 2010). This can be explained by the fact that most biochars 

have been found to contain a large proportion (over 95%) of micropores (<2x10-3 

micrometer), and biochar porosity probably contributes to nutrient adsorption by the 

trapping of nutrient-containing water held by capillary forces (Major et al., 2009; Tseng and 

Tseng, 2006; Young et al., 2011).   

Recent data (reviewed by (Warnock et al., 2007)) indicate that biochar application is often 

followed by enhancement of mycorrhizal communities in the rhisosphere, coinciding with 

improved nutrient uptake by associated plants, thereby potentially reducing leaching. 

Several other mechanisms have been listed as a potential explanation for limited nutrients 

leaching from the soil e.g. direct bind or sorption of nutrients, or facilitation of the 

movement of attached nutrients when fine biochar particles are transported in percolating 

water (Major et al., 2009; Smernik, 2009). These diverse findings in relation to nutrient 

retention and release suggest that there may be positive impacts on nutrient leaching and 

thus adverse environmental outcomes such as eutrophication of water bodies. However, 
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there is insufficient evidence to make firm conclusions, and it is evident that the outcome is 

likely to be dependent on numerous soil and biochar characteristics, and soil biology. 

As summarised in this chapter biochar has been reported to induce various soil changes. 

There are numerous mechanisms suggested to be responsible for those and the 

explanations given are sometimes contradictory. Such observations can be considered a 

result of great biochar variability and a wide range of soil types and responses. Case studies 

and results from experiments allow some very general conclusions to be made about 

biochar influence on soil; however the mechanisms of such are yet to be fully understood.  

2.1.5. Effect of biochar application on plant growth, nutrient 

uptake and yield  

Positive and, to a lesser extent, negative yield responses following biochar application have 

been reported for a wide range of crops and plants in different parts of the world (Asai et 

al., 2009; Blackwell et al., 2010; Graber et al., 2010; Nigussie et al., 2012; Solaiman et al., 

2010). A number of examples with additional details are provided in Table 2.1. 

 
Only some of the positive effects of biochar application were attributed to nutrients 

supplied directly by biochar (Chan and Xu, 2009; Lehmann et al., 2003). A majority of 

studies attribute the positive plant responses to other effects of biochar on soil rather than 

as a direct supplier of nutrients (Chan et al., 2007; Lehmann et al., 2003; Van Zwieten et al., 

2010a). The positive responses due to biochar application were attributed to either nutrient 

savings (decreased leaching) or improved fertiliser-use efficiency (higher yield per unit of 

fertiliser applied) and can therefore be regarded as an indirect nutrient value of biochars 

(Blackwell et al., 2010; Chan and Xu, 2009; Chen et al., 2010; Major et al., 2009; Wrobel-

Tobiszewska et al., 2012a). Some reasons given for positive crop yield responses include 

changes in soil water holding capacity, liming effect of biochar, amelioration of pH-induced 

micronutrient deficiency, improved P, K and Ca availability and indirect effects of improving 

physical properties in hard-setting soil. 

However, biochar can also cause reduction in crop yield or no effects on growth at all, 

examples being  soybean following application of 5 and 15 t ha-1 of biochar (Kishimoto and 

Sagiura, 1985) and for common bean (Rondon et al. 2007)(Table 2.1). Nevertheless, most of 

the reported effects on yield have been positive, suggesting the negative impacts may be 

crop, biochar type or site/soil specific, and should be further investigated. An increased N, P 
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and K uptake has been reported in lettuces while reductions in any nutrients uptake have 

not been observed. 

Most data relates to horticultural and field crops, with the number of studies investigating 

the effects of biochar application on woody species being very limited (Table 2.1).   
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Table 2.1. Summary of plant responses and soil chemical changes to biochar application to the soil for 

a range of horticultural and field crops and woody species grown in a diversity of soils. 
Reference Species, soil, and 

experimental 

conditions 

Biochar Results Comments 

(Yamato et 

al., 2006) 

Maize, Cowpea, 
Peanut on highly 
weathered infertile 
tropical soils, field 
experiment (FE) 

Charcoal made of bark of 
Acacia mangium at 260-
360°C, applied at the rate of 
15 t ha-1. 

Positive effects on: root 
size, yield, 
colonialization rate of 
mycorrhizal fungi, pH 
value, total N and 
available P2O5, CEC 

 

(Chan et al., 

2007) 

Radish, alfisol, pot 
experiment (PE) 

Green waste biochar (mix of 
grass clippings, cotton trash 
and plant pruning), three 
rates: 0, 10, 50, 100 t ha-1, 
mate at 450°C. 

Yield increased 
significantly (up to 
266%) with biochar 
addition at the highest 
rate with fertiliser. 

With no fertiliser, the 
yield did not respond, 
and with the lowest 
rate of biochar the 
slight decrease in the 
yield was observed. 

(Rondon et 

al 2007) 

Common Bean, 
oxisol, PE. 

Biochar from logs of 
Eucalyptus at 350°C with 
15% of oxygen, rates: 
0,30,60,90g biochar/kg soil. 

N fixation increased and 
so did biomass 
production. 

Yield decreased when 
biochar was added at 
the rate of 90 g/kg, 
(Colombia). 

(Steiner et 

al., 2008) 

Sorghum, highly 
weathered 
Ferrosol, FE. 

Derived from secondary 
forest wood, applied at rate 
11 Mg/ha (11 t ha-1). 

Soil charcoal 
amendments improved 
fertiliser efficiency plant 
growth and doubled 
grain yield when 
combined with 
fertiliser. 

 

(Chan et al. 

2008) 

Radish, alfisol and 
chromosol, PE. 

Two biochars made of 
poultry manure and bedding 
material, at 450°C and 550°C 
(rates: 0, 10, 25, 50 t ha-1). 

Yield increase mainly 
due to the N and P 
availability. Both 
biochars are useful as 
an organic amendment. 

Yield also increased 
without fertiliser 
addition. 

(Major et al. 

2010) 

Soybean-Maize 
rotation, kaolinic 
soil, FE. 

Wood biochar (rates: 0,8,20 
t ha-1). 

The yield increased 
significantly after one 
year from application 
(not in the first harvest) 
and the nutrients 
uptake was higher. 

It is suggested that the 
yield increase due to 
higher Ca and Mg 
availability, 
(Columbia). 

(Chen et al. 

2010) 

Sugarcane , heavy 
clay, lysimeter 
experiment. 

Bagasse and biosolid 
biochars, 600 °C, rates to 
equal 1% of the total 
weight. 

Use of biochars 
decreased nitrate-N in 
percolating water by 
denitrification of the 
Nitrate-N and 
adsorption of 
ammonium-N by 
charcoal. 

Yield calculated on the 
basis of equation. 

(Van 

Zwieten et 

al. 2010) 

Wheat, Radish, 
yellow 
orthictenosol, PE. 

Biochar from whole trees 
residues produced in 600°C,  
doses of 0,5,10,20,50 t ha-1. 

Biomass increased with 
high biochar rates but 
only with low N rates. 

Biomass decreased 
with both high biochar 
and N rates. Biochar 
did not influence the 
soil C but significantly 
increased microbial 
activity. 

(Blackwell 

et al. 2010) 

Wheat, dryland, 
south-western 
Australia, FE. 

Biochar rates: 0.07-10 t ha-1. 
Feedstock: different woody 
wastes, slow pyrolysis. 

Low biochar doses 
provide positive effect 
on crops yield and 
fertiliser requirements. 

The prices of biochar 
which are profitable 
for the whole 
production were 
calculated for 
particular yield 
increases over years.  

(Graber et 

al., 2010) 

Pepper, Tomato, 
coconut fibre: tuff 
growing mix, PE. 

Nutrient poor, wood based 
biochar. 

Yield response of 
pepper improved under 
biochar. Some response 
increased in tomato but 
not the yield. 

No differences in plant 
nutrient content. 
Effect of shifts in 
microbial population 
and/or low doses of 
phytotoxic chemicals 
stimulated growth. 
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(Santalla et 

al., 2011) 

Pinus radiata, 
humic Umbrisol, FE. 

Mixed wood ash (with 
charcoal), both fly and 
bottom ash, from Pinus 

radiata bark feedstock. 
Added with or without P at 
the rate of 7.5 t ha-1 

Nutrients were more 
available for the trees 
when charcoal was 
added with P, however 
it also caused lower soil 
N mineralization.  

25 years old, second 
rotation, (Spain). 

(Zhang et al. 

2011) 

Maize, calcareous 
loamy soil, FE. 

Wheat straw biochar 
produced at350-550°C, 
rates: 0, 20 and 40 t ha-1 
with or without N 
fertilisation. 

Maize yield increased 
by 8.8% to 15.8%, total 
emissions decreased. 

Biochar also 
decreased soil bulk 
density and increased 
total N but had no 
effect on soil mineral 
N, (China).  

(Nigussie et 

al., 2012) 

Lettuces, chromium 
polluted soils, PE. 

Maize stalk biochar, rates: 0, 
5 and 10 t ha-1. 

Uptake of N, P and K 
significantly higher 
under biochar. 

Nutrients from 
biochar, ash, high 
surface area and 
porosity responsible 
for the changes. 

(Ma and 

Matsunaka, 

2013b) 

Maize, soils with 
low P, PE. 

Dead dairy cattle biochar, 
produced at 450°C, different 
form. 

Increased plant growth 
and dry matter 
production only when 
fine biochar was 
applied. 

The effect was 
promoted by N 
fertiliser application. 
Attributed to P release 
from biochar. 

(Schulz et 

al., 2013) 

Oat, washed sand 
and loamy soil, PE. 

Beech wood biochar (350-
450°C) mixed with compost. 

Biomass production 
increased with rising 
biochar and compost 
amounts. 

 

(Prendergas

t-Miller et 

al., 2014) 

Spring barley 
seedlings, sandy 
loam soil, PE. 

Miscanthus straw (700°C) 
and willow wood chips 
(450°C) biochar. 

Plants had larger 
rhisosphere zones in 
biochar-amended soils. 

Biochar as a direct 
source of nutrients 
and indirectly altering 
soil nutrient content. 

Biochars differ significantly in terms of physical and chemical conditions and therefore may 

affect soils and crops in different ways as presented in Table 2.1. More case studies, 

focusing on biochar application effects are required to investigate its local applicability. 

2.1.6. Application risk and unknown effects 

The literature identifies many benefits of biochar application to soil but there are also some 

negative implications beyond that of yield reduction e.g. reduced efficacy of agrochemicals, 

possibility of introducing toxic elements to soil and water,  accumulation and transport of 

chemicals and/or heavy metals and potential eco-toxicological impacts on soil flora and 

fauna (Liu et al., 2014; McHenry, 2009; Young et al., 2011). 

One of the most discussed topics in biochar literature is the possibility of introducing toxic 

materials, principally polycyclic aromatic hydrocarbons (PAHs), dioxins and heavy metals 

into the soil with biochar application. PAHs consist of fused aromatic rings and generally 

occur in oil, coal and tar deposits, and are by-products of burning fossil fuels and biomass. 

Dioxin is a general term for a large group of polychlorinated dibenzo-p-dioxins (PCDDs) and 

polychlorinated dibenzofurans (PCDFs). So far very little is known about the exact 

concentration of such organic toxicants in biochars. Brown et al. (2006) analysed a range of 
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biochars for PAHs content and found that the content showed a strong dependence on the 

production temperature, with decreasing amount of PAHs with increasing temperature 

over the range of 450-1000° Celsius (Brown et al., 2006). According to (Singh et al., 2010), 

who analysed 11 different biochars produced from different feedstock at temperatures 

ranging from 400 to 550° Celsius, none of the analysed biochars exceeded 0.5 mg kg-1,  the 

Australian guideline value for PAHs in the soil (Kookana, 2010). Due to the fact however, 

that hydrophobic compounds like PAHs and dioxins are easily sorbed by materials like 

biochars, more work is needed to confirm the practicality of commercial use of biochars in 

Australian soils. Re-condensation of pyrolysis vapours from biochar has been reported to 

bring toxic effects on germination of Lepidium sativum but no specific compounds were 

determined as responsible (Buss and Masek, 2014). Some biochars, especially those based 

on poultry litter and sewage sludge may contain significant amounts of heavy metals (Chan 

et al., 2008; Liu et al., 2014). Addition of such biochars to soil may result in high 

concentration of heavy metals in the soil and potentially toxic effect on plants and soil 

microorganisms (Kookana, 2010; Shackley and Sohi, 2010). 

Another potential risk connected with biochar porosity is altered bioavailability of 

agrochemicals. Incorporation of small amounts of biochar in soil has been shown to inhibit 

the microbial degradation of pesticides and thereby to increase their persistence in the 

environment (Kookana, 2010; Zhang et al., 2011). Yu et al (2009) studied the 

biodegradation and plant uptake of two insecticides (carbofuran and chlorpyrifos with 

differing hydrophobicides) on spring onions (Allium cepa) after application of biochar. They 

found that the application of biochar decreased the bioavailability of the pesticides to 

microorganisms and for a plant uptake (Kookana, 2010).  

The majority of biochar studies are based in controlled environments e.g. glasshouses or 

hothouses. It has been suggested that biochar application on a commercial scale must be 

preceded by long-term, field-based experiments as the application in controlled 

environments does not reveal all possible biochar effects (Gurwick et al., 2013). Therefore, 

field experiments are required to confirm biochar results observed in the controlled 

environment and to support the proposed feasibility of biochar application in large agro-

forestry systems. 

The literature reviewed in this section reveals that many mechanisms of biochar effects on 

soils, plants and microorganisms remain unexplained. Consequently, biochar should be 
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regarded as potentially having both positive and negative effects and these be considered 

in relation to characteristics of the soil and site to which it is to be applied. The same 

conclusion – uncertainty about biochar characteristics and effects – leaves many questions 

to be answered and mechanisms to be explained. 

2.2. Forestry in Tasmania 

Forestry is an important industry in Tasmania and its commercial history dates back to 1842 

when licences for the felling, removal and sale of timber in Tasmania were granted by legal 

acts. In the power of the State of Tasmania's Forestry Act 1920, Forestry Tasmania is 

mandated to manage 1.5 million hectares of state forest as multiple use forest. Sustainable 

yield logging is currently permitted in approximately one-half of this area. Production of 

timber, especially high quality saw logs is inseparably connected with generating significant 

amounts of woody wastes. Currently the residues are either retained on plantation sites or 

used to produce pulp wood or paper. If utilised alternatively, those wastes could be used as 

a feedstock for biochar production. The main source of wood supply in Tasmania is 

plantation based forestry and the majority of woody wastes are generated by these 

forestry systems. Therefore forestry plantations in Tasmania have very high potential as a 

feedstock for biochar production. 

2.2.1. Plantations 

Forestry plantations in Tasmania are managed in 20-25 year rotations to produce high-

quality sawlogs. The area covered by forestry plantations in Tasmania (on state land) 

exceeds 100,000 ha while plantations on private land double this number (FT database, 

2010-2013; Rothe. A, 2013). Eucalyptus nitens, Eucalyptus globulus and Pinus radiata are 

the main plantation species in Tasmania. 

A series of operations and preparations must be completed before and during plantation 

life span to ensure high quality timber production (Elliot, 2011). Plantation management 

begins with choosing a suitable site and the right species for the site. Land preparation, 

including cleaning, burning, cultivation and chemical use, significantly affect future 

plantation development through the soil conditions created in the area to be planted. 

Before planting the site must be prepared by clearing and cultivation followed by herbicide 

application to manage weeds. Seedlings about 6 months old grown in nurseries are then 

planted and fertilised. If required, fertilising might be repeated, this depending on the site 
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fertility and seedlings/trees performance (Elliot, 2011; FT database, 2010-2013; Wood et 

al., 2009). 

The total yield of forestry plantations is partly dependent on the early growth of tree 

species which is the result of adequate nutrient supply, water, available sunlight etc. 

(Duncan et al., 2006; Volker et al., 2006). During the early years, growth of the plants with 

relatively high nutrient concentration accounts for a major proportion of net primary 

productivity. This stage of growth is characterized by increasing rates of accumulation of 

nutrients, which are at a maximum about the time of canopy closure. Tree growth is most 

likely limited by the supply of nutrients in the soil because of the large demand for 

nutrients by young seedlings (Attiwill and Adams, 1996). Rapid early growth of tree 

seedlings is critical to the success of the plantation establishment (Close et al., 2010), 

therefore different methods are applied to ensure this effect. Specific management 

procedures and their timing is usually carefully adjusted to plantation location and soil type 

and quality and planted species (FT, 2013). 

Eucalyptus nitens plantations growing on former native forest sites and/or poor quality 

pasture sites require fertilising as a lack N, P, K may slow seedling growth and influence tree 

productivity (Volker et al., 2006). Given the purported benefits of biochar, its application in 

forestry plantations has a potential to facilitate soil nutrition and plantation trees early 

growth.  

2.2.2. Eucalyptus nitens 

Eucalyptus nitens H. Deane & Maiden (Myrtaceae) is a globally significant plantation species 

and more than 450,000 ha are now planted across southern Australia (Parsons and 

Davidson, 2006). E. globulus and E. nitens plantations are mainly concentrated in southwest 

Western Australia and the ‘Green Triangle’ (Tasmania) where mean annual rainfall and 

temperatures support rapid growth (Close et al., 2005). Both E. globulus and E. nitens are 

the main trees grown on forestry plantations in Tasmania. The species characteristics are 

similar, however, E. nitens is more frost tolerant than E. globulus and therefore can be 

planted at higher altitudes and in colder climate (Davidson et al., 2004). E. nitens however, 

is not tolerant to dry sites or poor nutrition (Duncan et al., 2006). 

Eucalyptus nitens is commonly known as Shining Gum and is native of Victoria and New 

South Wales in Australia to an altitude of 1,600 m with a mean annual rainfall 750-1,750 
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(Boland et al., 1992). It is considered a fast-growing species that can reach a height of 70 m 

with a trunk diameter of 1-2 m at breast height. Due to its fast growth it is very popular in 

plantation timber production and significant quantities of woody wastes are generated 

both during the plantation management practices and after harvest. Currently retained on 

site the forestry residues could be managed in an alternative manner, and be used as a 

feedstock for Tasmanian biochar production, while biochar application back into forestry 

plantations could help address the Eucalypt growth limiting factors (i.e. not sufficient water 

retention in the soil, nutrient leaching from the soil) issues.  

2.3. Summary 

Biochar use as a soil amendment is a relatively new topic and the full picture of its utility for 

different soil types and species as well as the mechanisms of changing soil, increasing crop 

yield and other positive environmental effects are still to be investigated. However, as 

discussed early in this chapter the variability in biochar products widens the range of soil 

and plant material changes to biochar application.  

When biochar is applied to soil it undergoes numerous biochemical changes and 

interactions that are likely to affect their properties over time (Kookana, 2010). Only limited 

research has focused on long-term effects of biochar on changes in the soil and crop 

response. Therefore there is a need to perform long term studies under field conditions to 

investigate biochar impact on soil biota, changes in the soil and agronomic response of the 

plants.  

Biochar has been applied under different conditions and the response of several 

agricultural species has been observed. There is however very limited knowledge 

concerning the possibility of using biochar for forestry plantations. The specifics of growing 

trees on plantation require detailed analyses of the possibilities to use biochar to manage 

soil condition and possibly enhance growth.  

Several knowledge gaps are evident when analysing the available literature concerning 

biochar use for agricultural and forestry purposes. Given the high variety of feedstock used 

and production conditions the heterogeneity of available biochars leaves wide range of 

uncertainty considering its possible use for agro-forestry purposes. The fundamental 

mechanisms by which biochar could provide beneficial function to soil and the wider 
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function of the agro-ecosystems are poorly described in terms of providing the predictive 

capacity that is required (Krull et al., unpublished data). 

Forestry Tasmania is required to make available annually a volume of 137,000 cubic meters 

of eucalypt sawlogs for the veneer and sawmilling industries as part of its multiple-use 

management of State Forests (FT, 2013). A substantial proportion of this timber volume is 

planned to come from Eucalyptus nitens plantations on State Forest. Management of 

eucalypt plantations for producing sawlogs is typically intensive, with timely application of 

value-adding operations such as fertilising, pruning and thinning to ensure the quality and 

size, respectively, of selected stems within 20-25 year rotations (Wood et al. 2009). Forestry 

Tasmania is currently focused on applying management regimes, which offer the best 

return for a site of given quality. Based on current operational costs and market 

expectations, and given the production goal of high-quality sawlogs (Wood et al. 2009) and 

alternative solutions could add to the big picture of sustainable forest management. 

Biochar effects on agricultural crops under various climatic conditions suggest that it might 

bring positive influence to soil and plant agronomic response in forestry systems. 

Establishment and management of forestry plantations involve significant costs. These 

mainly result from site preparation and chemical application for the next rotation (FT, 2013; 

FT database, 2010-2013; Lyons et al., 2006). Current knowledge about biochar 

incorporation into the agricultural systems and implications resulting from previous biochar 

experiments suggest that biochar may assist in decreasing the costs of establishing forestry 

plantations in Tasmania. Yet, in order to propose reliable biochar production and 

application scheme to unique Tasmanian soils, experimental work must be undertaken. 
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3. MACADAMIA BIOCHAR 

3.1. Introduction 

The literature contains numerous examples of different biochars made under varying 

conditions and from a diversity of feedstock (Chapter 2). Taking into account the wide 

range in the origin of feedstock material and production conditions, biochars will differ in 

porosity, surface area, chemical composition, surface chemistry and the ability to interact 

with the soil (Amonette and Joseph, 2009; Chan and Xu, 2009; Downie et al., 2009). It is 

therefore very important to understand what type of biochar is used and what possible 

outcomes may arise from biochar application in the soil. This chapter presents the 

characteristics of macadamia nut shell biochar used in this study.   

The biochar was made in South Africa from macadamia nut shells and wheat straw in 2008 

(Rainbow Bee Eater Project Pty Ltd 2008). The HTT (highest temperature treatment) was 

480° C and residence time was 180 minutes. After arriving in Australia, the biochar was 

stored in polypropylene containers and shipped to Tasmania in April 2011. Following this, 

the biochar was stored in a plastic container in a cool, dry place and applied in the pot 

experiment in May 2011 and in the field trial in September 2011. 

3.2. Analytical methodology 

Biochar was subjected to comprehensive soil and plant material tests performed at the 

CSBP Plant and Soil Analyses Laboratory in Western Australia. The tests were alike those 

performed on soil and plant material, described in full in Chapter 4.  

Gas adsorption experiments were conducted using a Micromeritics® ASAP 2020 

Accelerated Surface Area and Porosity System at the University of New South Wales, 

Australia. Before analysis each sample was degassed under vacuum at 300°C for 6 hours. 

Gas adsorption analysis was conducted using CO2 as the adsorbate at 273.16 K (0°C; ice-

water bath) over a relative pressure (P [Equilibrium pressure]/P0 [Saturated vapour 

pressure]) range of 1.0×10-5 to 0.03, where P0 is 24,000 mmHg. The CO2 adsorption raw 

data was then converted to the volume of gas adsorbed (Va; cm3g-1 of material) at standard 

temperature and pressure (STP) conditions (0°C, 760 mmHg), and an adsorption isotherm 
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was generated by plotting Va against P/P0. From this adsorption isotherm the following 

information was extracted:  

The micropore volume, calculated using the Dubinin-Radushkevich (Dubinin and 

Radushkevich, 1947) isotherm model (Equation 3.1),  

(Eq. 3.1) 
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where V0 is the micropore volume (cm3 g-1), R is the gas constant (8.3143 J K-1 mol-1), T is the 

temperature (K), β is the affinity coefficient of the adsorbate, and E is the energy of 

adsorption (J mol-1). The second form of the equation, a plot of ln(Va) versus ln(P0/P)2 

provides the Y-intercept of ln(V0), at which point the volume of gas adsorbed is equivalent 

to the micro-pore volume. 

The specific surface area, calculated using the linearized BET isotherm (Equation 3.3);  

(Eq. 3.3) 
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Where Vm is the volume of gas occupying a monolayer across the adsorbent surface (cm3 g-

1), and C is the BET constant given by:  

(Eq. 3.4) 
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where EADS is the heat of adsorption between the adsorbate and adsorbent (J mol-1), and EL 

is the heat of liquefaction (J mol-1) for the liquid adsorbate. From a plot of 

( )[ ]( ) 1
0a 1PPV −−  versus 0PP , Vm can be determined, from which the cross sectional 

area of an adsorbing CO2 molecule (0.17 nm2) can then be used to then calculate the 

specific surface area.  

Pore size distribution, estimated by first determining pore sizes from the adsorption data. 

This was calculated by fitting the Frenkel-Halsey-Hill (Hill, 1952) isotherm to the 

experimental isotherm (Equation 3.5);  

(Eq. 3.5) 
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where a and b are fitted constants of the model, determined by linear regression. The 

thickness (t; Å) of the adsorbate layer on the adsorbent surface was then determined using 

the expression: 

(Eq. 3.6) 
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where the value 3.604 relates to the size of the adsorbing CO2 molecule. Added to this is 

the radius of curvature (r; m) of the adsorbed CO2 in the pore, as determined from the 

Kelvin equation;  

(Eq. 3.7) 
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Where γ is the surface tension (Nm-1) between the adsorbing CO2 and the substrate. At this 

point the pore radius is the sum of the adsorbate thickness, plus the Kelvin radius. Plotting 

this data versus the differential of the volume adsorbed gives a pore size distribution. 
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Scanning electron microscopy (SEM) accompanied by energy dispersive spectrometry (EDS) 

was performed on both macadamia char and charcoal collected from the field, the latter 

originating from previous onsite post-harvest woody residues burns. The analyses were 

performed in the central science laboratory (CSL) at the University of Tasmania. Scanning 

electron microscopy (SEM) and EDS are closely related techniques for high-magnification 

imaging and spatially resolved chemical analysis of solid samples. The method employs a 

finely focussed electron beam exciting a variety of secondary signals: Secondary electrons 

(SE) show surface morphology, backscattered electrons (BSE) local differences in average 

atomic number, x-rays are detected by energy dispersive spectrometers (EDS) for chemical 

analysis. The samples analysed were sputter coated with carbon. The equipment used to 

carry out analyses was Hitachi® SU-70 FESEM set for 15 kV. 

Charcoal from onsite burns (2010) was collected from the soil in the experimental 

plantation in October 2013. The charcoal was most likely that of Eucalyptus nitens residues 

retained and burnt on site after the previous plantation was harvested. Charcoal was 

analysed using the SEM-EDS, under similar settings to these used from macadamia biochar 

analysis.  

C13- NMR analysis was performed on macadamia biochar in February 2014 at the NMR 

facility & Spectroscopy Lab at the University of NSW. Solid-state NMR spectra were 

acquired using a Bruker Avance III-300 spectrometer (Bruker®) operating at 75.4 MHz, and 

300 MHz for 13C and 1H respectively, with a Bruker 4-mm double air-bearing cross-

polarisation (CP) probe. The char sample was powdered and ca. 70 mg was packed into 4-

mm outside diameter zirconium rotors, and subjected to ‘magic-angle spinning’ (MAS) at 13 

kHz. The spectra were acquired by a directly polarized Hahn echo sequence (DP-echo) with 

13C 90° pulse lengths of 4 µs. The tests were run as a pair without and with 75 µs of gated 

decoupling. Ten second recycle delays were used to equilibrate the 13C magnetization and 

2000 transients (scans) were acquired for sufficient signal/noise. High-power SPINAL-64 1H 

decoupling with field strength of 72 kHz was used during acquisition. The free induction 

decays were processed with zero-filling to 8 k prior to Fourier transformation with Gaussian 

broadening. 

Macadamia biochar was also analysed for the content of most common Polycyclic Aromatic 

Hydrocarbons (PAH). The presence and quantification of the following compounds was 

evaluated: Acenaphthylene, Acenapthene, Anthracene, Benzo-a-anthracene, Benzo-a-
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pyrene, Benzo- b&k- fluoranthene, Benzo-ghi-perylene, chrysene, dibenzo-a,h-anthracene, 

Fluoranthene, Fluorene, Indeno- 1,2,3,cd-pyrene, Naphtalene, Phenanthrene, Pyrene. 

A sample of 5 g was mixed with Hydromatrix to create a dry mix. A 100 µL of 100 µg mL-1 

surrogate standard was added (p-terphenyl-d14) to assess the extraction efficiency. Then 25 

mL of 1:1 DCM: acetone was added. The samples were extracted for 3 minutes in an 

ultrasonic bath and then for 30 minutes on a rotating wheel. The extract was decanted 

through a filter paper containing anhydrous sodium sulphate into a TurboVap evaporation 

tube. A second 25 mL 1:1 DCM: acetone extraction was performed as before. A third 

portion of 20 mL DCM (no acetone) was then used to rinse the tube and sample.  All the 

extracts were combined in the same TurboVap tube. An Internal Standard mix (100 µL of 

400 µg mL-1) was added – this contained naphthalene-d8, acenaphthene-d10, phenanthrene-

d10, chrysene-d12 and perylene-d12. The extract was concentrated to 1 mL using a TurboVap 

apparatus – this is a water bath which blows gaseous nitrogen over the samples to speed 

up evaporation. The extracts were transferred to a GC (gas chromatography) vial for 

analysis. Blanks, Blank recoveries and QC (quality check) samples were run at a rate of 1 per 

20 samples.  The blank recovery was prepared by spiking blank Hydromatrix with 100 µL of 

100 µg mL-1 spike mix (containing all 16 PAHs). Standards were prepared at 5, 10, 15 and 20 

µg mL-1. GC-MS analysis was conducted using a Varian 3800 GC connected to a Varian 

Saturn® 2000 MS.  The GC column was a Varian VF-5 ms, 30 m x 0.25 mm, 0.25 µm, with 10 

m integrated guard column.  Injection of 0.6 uL was performed using Pulsed Splitless 

technique, with the injector at 290° C, and a pressure of 40 psi for 1 min.  Column flow was 

1.3 mL min-1 helium. The MS was operated in scan mode, 90-450 m/z, 0.4 sec scan time.   

To understand the concentration of particular nutrients in the soil and the chemical 

changes over time the quantity of nutrients introduced to the soil with biochar and fertiliser 

under each biochar*fertiliser treatment was calculated. These calculations were based on 

the results of biochar chemical analyses and analytical content of the fertiliser gathered 

from the manufacturer, calculated into particular amount of biochar applied per pot 

(glasshouse experiment) or tree (field experiment).  
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3.3. Results – Biochar characterisation 

Macadamia biochar has undergone several tests to describe its properties. Both standard 

plant material methods and standard soil methods were used to determine the nutrient 

content of the char. Specific surface area, porosity and microscopic analyses were 

performed to better understand the structure of the char and therefore add to the 

understanding of biochar effects on soil. The analyses of carbon forms in the char enabled 

making conclusions about char decay in the soil. Macadamia biochar was characterized as 

having low content of nitrogen, medium carbon and phosphorus content and high porosity 

and potassium and sodium. This section presents the detailed results of the analyses. 

The chemical analyses results of the char are presented in Table 3.1. The methodology for 

performed tests is described in Chapter 4 as being specific to soil and plant material 

analyses. 
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Table 3.1. Macadamia biochar chemical characteristics (element and compounds composition). The 

methodology for all performed tests described in Chapter 4 as specific for soil and plant tissue 

samples analyses. Ex.- exchangeable 

BIOCHAR  

 

 Trait unit value 

Ammonium Nitrogen mg kg-1 2 

Nitrate Nitrogen mg kg-1 2 

Phosphorus Colwell mg kg-1 421 

Potassium Colwell mg kg-1 9,388 

Organic Carbon % 4.6 

Total carbon % 57.8 

Conductivity dS m-1 3.6 

pH Level (CaCl2) pH 8.7 

pH Level (H2O) pH 10.1 

Ex. Aluminium cmol kg-1 0.005 

Ex. Calcium cmol kg-1 1.4 

Ex. Magnesium cmol kg-1 1.2 

Ex. Potassium cmol kg-1 22.3 

Ex. Sodium cmol kg-1 2.7 

Total Boron mg kg-1 13.8 

Total Calcium % 0.4 

Total Copper mg kg-1 18.1 

Total Iron mg kg-1 1,212 

Total Magnesium % 0.2 

Total Manganese mg kg-1 108.6 

Total Phosphorus % 0.2 

Total Potassium % 2.2 

Total Sodium % 0.3 

Total Sulphur % 0.1 

Total Nitrogen % 0.4 

 

The specific surface area of Macadamia biochar was calculated at 293.1 m2 g-1 while the 

micropore volume (< 200 nm in diameter) reached 0.086 cm3 g-1. As presented in Figure 3.1 

micropores with diameters of 1.5 to 2.5 μm contributed to approximately half of the pore 

volume. 
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Figure 3.1. Pore size distribution in macadamia biochar, presenting a total volume of certain pore 

diameter (A). Calculated on Micromeritics® ASAP 2020 Accelerated Surface Area and Porosity System 

at the University of New South Wales, 2013. 

SEM-EDS analysis revealed that macadamia biochar surface and attached particles 

consisted mostly of C, Si, K, Na and Cl ( Table 3.2). 

 
Figure 3.2. Electron microscopy image of macadamia biochar. Study performed in CSL in 2013 

(Hitachi SU-70 FESEM), samples carbon coated, under a beam energy of 15kV.The distances indicated 

by arrows show pore diameter (μm). 

The pore diameter measured in a random biochar particle varied between 1.86-9.96 μm 

(Figure 3.2). However, the image presents only macropores and an assessment of 

nanoporosity was beyond the equipments capacity. 
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A B 

  
C D 

  
Figure 3.3. Scanning Electron microscope (SEM) images of macadamia biochar particles. Four 

example particles (A, B, C and D) and their chemical composition (Figure 3.4). Study performed in CSL 

2013 (Hitachi SU-70 FESEM), samples carbon coated, under beam energy of 15kV. The white-

bordered boxes represent the area where the spectrum was analysed. 

A 
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Figure 3.4. Particular spectra chemical composition in chosen particles of macadamia biochar in 

electron microscopy scanning image (Hitachi SU-70 FESEM). The spectra analysed (A-I, Spectra 

5,6,14-18, 53 and 54) are depicted in Figure 3.3. The peaks represent the approximate quantity of a 

particular element in the spectrum position. 

The images and spectra presented in Figures 3.3 and 3.4 are representative from 27 

particles and 65 spectra sample positions) and illustrate the most common elements 

identified on the surface of the macadamia biochar using SEM-EDS. The surface of the 

macadamia biochar was composed mainly of carbon but Si, K and Cl was widely present, 

especially in the lighter particles seen adhering to the chars surface (Table 3.2).  
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Table 3.2. Chemical composition spectra at random surface locations of 27 biochar particles. (SEM-

EDS images and spectra are presented in the Appendix 2.) 

Particle 

number 

Spectrum 

number 

Main 

composition 

Chemical elements present in minor 

amounts 

1 1 Si, O, Al K, C, Na, Fe 

2 2 C O, Si, Cl, K 

3 3 Cl, K Si, Al, O 

3 4 K, S, O Si, Cl, P, Na 

4 5 C Cl, K, Mg, Na, P, Si 

4 6 C Cl, K, Mg, Na, Si 

5 7 C Si, Mg, Mo, Na, K, Ca, P 

5 8 C Mg, Si, P, Cl, K, Ca, Na 

6 9 C, K P, Si, Cl, O 

6 10 C P, O, Na, K, Si, Cl 

6 11 C K, S, Cl, P 

6 13 C Si, O, P, S, Cl, K 

7 14 C, O, Si K, Cl, P, S 

7 15 O, Si, K, Cl, C Na 

7 16 K, Cl, Si, C, O Na 

8 17 C Si, Mg, O, Na, S, Cl, K 

9 18 Si, O C, K 

10 19 Si Al, O, K, C, Na 

11 21 Cl, K, C Al, Mg, Na, O, Si, S 

12 22 Fe Mn, C, O, Si, Al, K 

13 23 C Ca, O, Na, Mg, Si, P, S, Cl, K, Ca 

14 24 C O, Na, S, Cl, K 

14 25 C O, Na, Si, P, S, Cl, K 

15 32 C Cl, K, Ca, O, Na, Mo, Br, Si, P 

15 33 C Ca, O, Na, Mg, Si, P, Cl, K 

15 34 C, K, Cl Ca, O, Na, Mg, Si, P 

15 35 C Ca, O, Na, Mg, Si, P, Cl, K 

16 36 Si Co, O, K, Mg, Na, Cl 

16 37 C, Si O, Na, Mg, Cl, K 

16 38 Si C, O, Na, Mg, Al, K 

16 39 Si O, C, Na, K 

17 40 C Ca, O, Co, Mg, Si, P, K, Cl 

17 41 C O, Co, Mg, Si, Cl, K 

17 42 C O, Fe, Mg, Si, Cl, K, Fe 

17 43 C O, Fe,l Mg, Si, Mo, Cl, K, Fe, Co 

17 44 C, Si, O Al, K, Ca, Fe, Na, Mg, P, Cl 

18 45 Si C, O, Ca, Na, Mg, Cl, K, Ca 

19 46 C, Si O, Na, Mg, S, Cl, K 

19 47 Si C, O, Na, Mg, Cl, K 

19 48 Si, O Ca, Na, Mg, P, Cl, K 
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20 49 C Ca, O, Si, P, S, Cl, K, Ca 

20 50 Si C, K, O, Na, Mg, Cl 

20 51 Si C, K, O, Na, Mg, Cl 

20 52 C, Si Ca, O, Na, Mg, Cl, K, Ca 

21 53 C Ca, O, Si, P, S, Cl, K, Ca 

22 54 Si O, C, Ca, Na, Mg, Cl, K, Ca 

23 55 C O, Na, S 

24 56 C O, Na, S 

25 57 C O, Na, Mg, Si, P, S, Cl, K 

25 58 C O, Si, Na, Mg, Br, P, S, Cl, K 

26 (debris) 59 C, O, Ca, Si K, Na, S, Mg, P, Cl, Ca 

27 60 C O, Mg, Si, Cl, K 

27 61 C, Si Ca, O, Na, Mg, P, Cl, K, Ca 

27 62 K, Cl, C O, Si 

27 63 C K, Cl, O, Mg, Si, P, S 

27 64 C, K, Cl Si 

27 65 C O, Mg, Si, Mo, Cl, K 

 

The elemental composition of macadamia biochar was predominantly carbon, oxygen, 

potassium, chloride, sodium and silica. There were minimal amounts of calcium, 

magnesium, iron, lead, manganese and aluminum detected. Complete data from SEM-EDS 

analysis on both macadamia biochar and field-collected charcoal can be found in Appendix 

3 and 4. 

The C13- NMR analyses revealed single peak at 124.7 ppm (Figure 3.5). Carbon in aromatic 

rings is characterised by peak between 125-150 ppm. 
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Figure 3.5. Macadamia biochar C13 NMR spectrum acquired using a Bruker Avance III-300 

spectrometer operating at 75.4 MHz, and 300 MHz for 13C and 1H. Upper line represents spectrum 

obtained for all carbons, lower line represents spectrum of non-protonated C. 

Screening for PAHs did not detect these compounds in the biochar at concentrations of 

above 0.1 mg kg-1 on a dry matter basis. 

Nutrients in the potting mix and field soil were estimated as a concentration for each 

nutrient introduced through both biochar and fertiliser under each treatment combination 

(Table 3.3 and 3.4). As the calculations for the concentration of biochar in the field and in 

the pot experiment were done on the basis of different assumptions (i.e. incorporation 

depth, soil density) the exact amounts of nutrients introduced to growing mix under the 

same treatment in pot and field experiment do not equal but correspond to some extent. 
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Table 3.3. Concentration of nutrients introduced to potting mix in the pot experiment [mg kg
-1

] under 

different biochar and fertiliser treatments (F50-F100 representing 50% and 100% of a commercial 

fertiliser dose, B2-B100 representing biochar treatments equivalent to 2-100 t ha
-1

). 

mg kg
-1

 potting mix 

 B2 B5 B10 B20 B50 B80 B100 F50 F100 

Organic 

Carbon 

C 68.250 168.350 336.700 673.400 1683.50 2693.60 3367.00 n.a. n.a. 

Aluminium Al 0.001 0.002 0.003 0.007 0.02 0.03 0.03 n.a. n.a. 

Boron B 0.021 0.051 0.102 0.204 0.51 0.82 1.02 0.61 1.21 

Calcium Ca 5.550 13.690 27.380 54.760 136.90 219.04 273.80 1364.80 1364.80 

Copper Cu 0.028 0.069 0.138 0.275 0.69 1.10 1.38 4.54 9.04 

Iron Fe 1.817 4.483 8.965 17.930 44.83 71.72 89.65 190.27 379.27 

Magnesium Mg 2.550 6.290 12.580 25.160 62.90 100.64 125.80 408.93 450.93 

Manganese Mn 0.163 0.402 0.803 1.607 4.02 6.42 8.03 9.14 18.28 

Phosphorus P 3.600 8.880 17.760 35.520 88.80 142.08 177.60 43.36 86.69 

Potassium K 32.850 81.030 162.060 324.120 810.30 1296.48 1620.60 189.08 377.08 

Sodium Na 4.800 11.840 23.680 47.360 118.40 189.44 236.80 1.17 1.17 

Sulfur S 1.800 4.440 8.880 17.760 44.40 71.04 88.80 436.67 655.33 

Total 

Nitrogen 

N 6.450 15.910 31.820 63.640 159.10 254.56 318.20 320.86 640.86 

Zinc Zn 0.042 0.104 0.209 0.417 1.04 1.67 2.09 3.59 7.18 

 

Table 3.4. Amount of nutrients introduced to soil in the Florentine valley experiment [mg kg
-1

] under 

different biochar and fertiliser treatments (F50-F100 representing 50% and 100% of a commercial 

fertiliser dose, B2-B20 representing biochar treatments equivalent to 2-20 t ha
-1

). 

mg kg
-1

 soil 

 B2 B5 B10 B15 B20 F50 F100 

Organic 

Carbon 

C 59.150 150.150 300.300 450.450 600.600 600.000 1200.000 

Aluminium Al 0.001 0.001 0.003 0.004 0.006 n.a. n.a. 

Boron B 0.018 0.046 0.091 0.137 0.182 n.a. n.a. 

Calcium Ca 4.810 12.210 24.420 36.630 48.840 n.a. n.a. 

Copper Cu 0.024 0.061 0.123 0.184 0.246 n.a. n.a. 

Iron Fe 1.575 3.998 7.996 11.994 15.992 50.000 100.000 

Magnesium Mg 2.210 5.610 11.220 16.830 22.440 n.a. n.a. 

Manganese Mn 0.141 0.358 0.716 1.075 1.433 n.a. n.a. 

Phosphorus P 3.120 7.920 15.840 23.760 31.680 613.330 1226.670 

Potassium K 28.470 72.270 144.540 216.810 289.080 n.a. n.a. 

Sodium Na 4.160 10.560 21.120 31.680 42.240 n.a. n.a. 

Sulphur S 1.560 3.960 7.920 11.880 15.840 73.330 146.670 

Total 

Nitrogen 

N 5.590 14.190 28.380 42.570 56.760 600.000 1200.000 

Zinc Zn 0.037 0.093 0.186 0.279 0.372 n.a. n.a. 
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3.4. Discussion 

The macadamia biochar was high in potassium, silica and sodium in comparison to other 

biochars. Chemical analyses of the char also revealed that other nutrients were scarce in 

comparison to non-wood biochars, but within the same range as other wood biochars 

(Amonette and Joseph, 2009). SEM-EDS showed an abundance of K, Si and Cl element on 

biochar surfaces which suggest the possibility of potassium chloride and silica compounds 

on macadamia biochar surface. The high specific surface area results suggest that 

macadamia biochar may potentially increase soil microbial activity and positively influence 

soil air and water condition (Downie et al., 2009; Thies and Rillig, 2009). The C13 Nuclear 

Magnetic Resonance analysis presented macadamia biochar as having a moderate number 

of aromatic rings and varied surface chemistry.  

3.4.1. Nutritional characteristics 

The pH of the macadamia biochar (8.7) was in the upper range of alkalinity reported in the 

literature (pH 6.2-9.9)(Chan et al., 2008; Chan and Xu, 2009; Ma and Matsunaka, 2013b). 

This suggests that biochar added to the soil would have a liming effect and is anticipated to 

decrease soil acidity. Carbon content was in the middle of the range reported for different 

biochars (17-90.5%)(Amonette and Joseph, 2009; Krull et al., 2009). Plant available 

phosphorus in the macadamia biochar was comparatively low (421 mg kg-1) as other 

biochars may have up to 11,600 mg kg-1 (Chan and Xu, 2009). Accordingly it is expected that 

biochar contribution to P levels in the potting mix or field soil is likely to be small.  

Similar to phosphorus, this char’s nitrogen content was low when compared to the 

characterisation of other chars. This has been noticed before in biochars made from woody 

and other plant based feedstock (Chapter 2)(Chan et al., 2007; Lehmann et al., 2003; 

Rondon et al., 2006). 

The macadamia char’s K content was comparatively low with Colwell potassium levels 

reaching 9,388 mg kg-1. In the literature the range of total K in biochar is quoted between 

1,000 and 58,000 mg kg-1 which indicates this biochar is a low-potassium char (Atkinson et 

al., 2010; Quilty and Cattle, 2011; Widowati and Asnah, 2014). However, when the total K 

was compared to the range of K content in different chars, macadamia biochar appeared to 

have medium K content (Chan and Xu, 2009). In comparison to oak wood biochar, 

macadamia char had a K content approximately 75% lower (Amonette and Joseph, 2009; 
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Bourke et al., 2007). The above suggests that potassium levels in both the potting mix and 

field soil might change. 

Similarly to K content, macadamia char’s CEC is expected to bring changes in both 

experiments. Singh et al. (2010) demonstrated different exchangeable cations capacity of 

biochars depending on the feedstock material, production temperature and biochar 

activation (Singh et al., 2010). They analysed biochar made from Eucalyptus saligna wood, 

E. saligna leaves, paper sludge, poultry litter and cow manure. As macadamia biochar is a 

woody material, it might be expected to have exchangeable cation levels close to that of E. 

saligna wood, but exchangeable Mg, Na and K were higher than in E. saligna biochar used 

by Singh et al. (2010)(Ca of 27.7-138.4 mmol kg-1, mg of 1.2-2.0 mmol kg-1, Na of 4.9-13.0 

mmol kg-1 and K of 3.1-7.3 mmol kg-1).  

Not much data are available on the secondary nutrients and microelements content of the 

various biochars. In comparison to oak wood biochar analysed by Bourke et al. (2007) 

macadamia biochar had lower content of Ca (Macadamia biochar (MB) 3,700 mg kg-1, Oak 

wood biochar (OB) 350,000 mg kg-1), Fe (MB 1,211 mg kg-1 OB 3,400 mg kg-1), Mg (MB 1,700 

mg kg-1, OB 16,000 mg kg-1) and medium content of P (MB 2,400 mg kg-1, OB 5,400 mg kg-

1)(Bourke et al., 2007). Some researchers (Bridle and Pritchard, 2004) reported a high heavy 

metal (Cu, Zn, Cr, Ni) content in sewage sludge based biochars, however the level of these 

nutrients in the macadamia biochar used here was relatively low, as would be expected 

from a wood based biochar without any animal based additives (Chan et al., 2008). This 

char is also considered safe as the level of PAHs did not exceed 10 mg kg-1 which is 

considered to be non-toxic (InternationalBiocharInitiative, 2013).  

3.4.2. Surface chemistry and porosity 

The specific surface area (SSA) of Macadamia biochar was calculated at 293.1 m2 g-1, which 

is much greater when compared to switch grass biochars made under fast pyrolysis 

conditions. Surface areas of fast pyrolysed switch grass typically range between 7.7 m2 g-1 

and 7.9 m2 g-1. Other biochars have reported surface areas of 92 m2 g-1 (oak feedstock), 48 

m2 g-1 (maize hull) and 38 m2 g-1 (maize stover)(Downie et al., 2009; Zhang et al., 2004). The 

typical sands (coarse and fine) have an SSA of about 0.01-0.1 m2 g-1 while clays SSA range 

from 5 to 750 m2 g-1 (Downie et al., 2009; Troeh and Thompson, 2005). Therefore if 

macadamia biochar is added to the sandy soil it is expected to increase the SSA of biochar-

soil mixture and positively influence aeration, water holding capacity and microbial activity 
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in the soil. On the other hand when applying this biochar to loamy or clay soils the 

consequences are difficult to be estimated as the SSA of such soils are much higher and 

biochar application might not cause a significant difference.   

The pore diameter reported in the gas absorption experiments on macadamia char was 1.5-

2.5 μm and the pore diameter of a random biochar particle from SEM analysis equalled 

1.86-9.96 μm (not replicated analysis). Rouquerol et al. (Rouquerol et al., 1999) divided 

pores into three groups in terms of pore diameter: 1) micropores (less than 0.002 μm 

diameter), 2) mesopores (between 0.002 and 0.05 μm) and macropores (more than 0.050 

μm). Macropores play a vital role in soil aeration, hydrology and the movement of the roots 

in soil (Downie et al., 2009). That suggest that macadamia biochar has substantial potential 

to provide habitat for soil bacteria as its pores match bacteria diameter range (Table 3.5). 

Micopores on the other hand contribute more to the SSA of biochar (Amonette and Joseph, 

2009). As SSA of macadamia biochar was described as high it might be concluded that this 

biochar will have a high proportion of micropores. This however could not have be 

determined by either the SEM analysis or porosity tests due to equipment limitations. 

Table 3.5. Ranges in the diameter of various soil microorganisms (Thies and Rillig, 2009) 

MICROORGANISM DIAMETER RANGE (μm) 

Bacteria 0.3-3 

Fungi 2-80 

Protozoa 7-30 

Nematodes 3-30 

 

Biochars surface chemistry is often very rich elementally as the heterogeneous composition 

of feedstock and production temperatures favour this (Amonette and Joseph, 2009). 

Scanning Electron Microscopy (SEM) performed on the macadamia biochar sample 

revealed highly porous particles composed mainly of carbon with adhered potassium 

chloride and silicone particles, and other inbuilt structures were also visible on the biochar 

surfaces. The potential chemical compounds include potassium chloride (KCl) and Silicates 

(SiO). Both potassium and silica in the char may result from their content in macadamia 

nuts feedstock (Marschner, 1995) but this explanation cannot be confirmed due to 

feedstock material not being available for  analysis. It is possible that feedstock material 

was partially mixed with sand during collection process, which would explain the silica 

particles presence. In a Hawaiian report (Turn et al., 2002) investigating biomass resources 

for bioenergy use Macadamia nut shell ash was characterised as having high levels of Si and 



 46 
 

K. These have been previously attributed to soil contamination during nut sweeping harvest 

operations (Turn et al., 2002). Due to the nature of SEM-EDS analysis it was not possible to 

quantitatively estimate nutrient content in the biochar. However repeatedly observed 

potassium chloride structures inbuilt on biochar surfaces confirm the  chemical biochar 

tests results of which revealed relatively high K content in macadamia biochar.  

SEM-EDS analysis performed on charcoal samples collected from the experimental 

plantation in Florentine valley revealed a highly carbonized wood material with Si, Al and Fe 

particles. Also calcium was present on most investigated surfaces. The analysis of charcoal 

carries some amount of uncertainty. This is first due to the assumption that collected 

charcoal is made of eucalypt wood residues in the previous on-site burn (2010). 

Unfortunately it is not possible to confirm either the age or the feedstock material. Despite 

cleaning of the particles it was not possible to assess if the Al, Si and Ca particles were 

inbuilt on charcoal surfaces or originated through adhesion of soil particles. The results of 

chemical analyses did not reveal either high Al or Fe levels, which suggests that these 

cations were more likely originating from the soil rather than charcoal particles. This could 

be attributed to charcoal adsorbing these elements from the soil. Any further 

extrapolations would however be beyond what can be concluded from the results. 

3.4.3. Magnetic resonance 

NMR results revealed a single, rather wide peak at 124.7 ppm. The frequency of the peak 

suggests that most carbons in the biochar were SP2 carbon types i.e. structures in biochar 

were graphite-like carbon structures with various 1-2 bond types. The additional carbon 

analysis revealed 30% of the aromatic carbons being protonated. That means other atoms – 

not carbon – were attached to 30% of carbon in graphite-like structures (person. comm. Dr 

Thomas Rodemann, Central Science laboratory, UTAS, Tasmania, Australia). The peak 

frequency also suggests that the aromatic structures were not the majority of biochar 

carbon structures. The NMR results seem to be confirmed by the other biochar analysis 

results which revealed a variety of nutrients found on biochar surfaces (e.g. potassium, 

sodium, etc.) and the PAHs results showed that macadamia biochar PAH content is lower 

than 10 mg kg-1. It also suggests that this char will be less stable in the soil compared to 

higher temperature biochars, due to the reactivity associated with the variety of  elements 

bonded to its surface (Amonette and Joseph, 2009; Krull et al., 2009). Therefore macadamia 
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biochar may be more susceptible to chemical changes and microbial activity in comparison 

to high temperature biochars. 

3.5. Conclusions  

The calculations of the amount of nutrients introduced to the potting mix/soil with each 

fertiliser and biochar rate revealed that significant amounts of Na and K were added to the 

potting mix and soil under high biochar treatments. Due to different calculation 

assumptions nutrients amounts applied in the pot experiment do not correspond 

accurately to nutrient amounts applied in the field experiment under similar biochar 

treatments. Similarly, fertiliser used in the field trial differed from the one applied in the 

pot experiment (Chapter 4) so the nutrients introduced to growing mix were applied in 

different forms and quantities. The most likely effect of biochar application in both 

experiments is expected to be noticeable in the changes of the above nutrients level. The 

growth response of plants is usually determined by macronutrients – N, P and K (Atwell et 

al., 1999). As the only macronutrient applied with biochar in more than minor amounts was 

K, therefore the changes in plant response are not expected to be substantial. 

Macadamia biochar was found with a chemical composition contemporary with other 

biochars. One of the unique characteristics of char used in this study may have been its 

potassium content, which is most likely the result of high K level in macadamia nut shells. 

High Specific Surface area of the char suggests that positive physical changes in some soils 

might be noticeable. Comparably low level of P and N and relatively low secondary and 

micronutrients in macadamia biochar implies that this product will not release significant 

amount of these nutrients to the soil, however due to some variation of char’s surface 

chemistry differences in soil might be observed, especially in K and Na levels. The changes 

of soil characteristics in both experiments are expected to differ due to the differences in 

soil and potting mix initial properties. Biochar induced increases in nutrient availability in 

the growing mediums may possibly influence both plant nutrient uptake and chemical 

content of soil leachate. 
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4. GENERAL MATERIAL AND METHODS 

4.1. Introduction 

This chapter describes the methods used in the research reported in this thesis. The 

material presented is applicable to results presented and discussed in Chapters 5 to 7, with 

those chapters containing additional material specific to their content. The chapter 

describes methods used in a glasshouse pot trial conducted at the Horticultural Research 

Centre at the University of Tasmania Sandy Bay Campus and a field trial conducted in the 

Florentine Valley, Forestry Tasmania coupe O031Z in the South-West of Tasmania, 

Australia. Statistical analyses of both are also described. As the design of both trials applies 

to all the results presented in the following chapters, the details of the methodology will be 

presented within this chapter and mentioned briefly again, when presenting specific 

results. 

4.2. Glasshouse Pot Trial 

A pot trial was established on the 09/05/2011 in the glasshouse of the Horticultural 

Research Centre in Sandy Bay campus (Figure 4.1), University of Tasmania, and the final 

destructive harvest took place 269 days later on 02/02/2012. This study was a partial 

factorial combination of eight biochar and two fertiliser rates, arranged in a randomised 

complete block with three replicates of four sample plants. The trial did not have the 

control-biochar treatments apart from the basic control (0 fertiliser, 0 biochar). The design 

of the plot is shown in the Appendix 5. The treatments consisted of eight biochar levels (0, 

2, 5, 10, 20, 50, 80 and 100 t ha-1) combined with two fertiliser rates (50% and 100% of the 

optimum rate suggested by Forestry Tasmania nursery specialists). The seeds, potting mix 

and fertiliser for the trial were provided by Forestry Tasmania nursery in Perth, TAS. The 

seed line originated from a single open pollinated family harvested in 2008 from a native 

stand in the central Victorian highlands.  

All the pots were kept on the benches to ensure proper aeration and drainage. The 

glasshouse was equipped with an evaporative cooler and an electric fan heater with 

perforated polythene-ducting. Temperatures were approximately 20-24° C (winter) and 20-

26° C (summer). The trial was under automatic irrigation system and the seedlings received 

1.5-3 mm per day in winter and 5 mm per day in summer to match evapotranspiration. 
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Weed control was carried out regularly until the seedlings reached approximately 30 cm 

height. 

A seed raising mix was prepared by staff at the Forest Nursery (Forestry Tasmania) to 

emulate the industry standard. The base of this mix consisted of pine bark (72%), washed 

sand (18%) and peat moss (10%). The fertiliser used was a mix of Osmocote Exact® 3-4 mth 

(Everris), Osmocote Plus® 8-9 mth (Everris), dolomite lime, ferrous sulphate, Micromax® 

(Everris) and rock gypsum (Table 4.1). Fertiliser was applied to the pots at 100% and 50% 

(F50 and F100) of the prescribed rates used by forest nurseries in Tasmania.  

Table 4.1. Fertilisers applied (g per 1L potting mix) in the pot experiment, using standard forestry 

practice, and analyses of product used. The 50% treatment used half of the fertiliser amounts shown 

in column 1 (except for dolomite lime, ferrous sulphate and rock gypsum). Calculations are based on 

the content information provided by the manufacturer. 

  Fertiliser 100%, F100 (g) 

per 1 L potting mix 

Fertiliser 50%, F50 (g) per 1 

L potting mix 

Osmocote and trace 3-4 mth 1 0.5 

Osmocote 8-9 mth 2 1 

Dolomite lime fine 2.5 2.5 

Ferrous Sulphate 0.5 0.5 

Micromax 0.5 0.25 

Rock Gypsum 1 1 

Biochar, used in the pot study was provided by the Rainbow Bee Eater Project Pty Ltd and 

produced from Macadamia nut shells at a HTT (highest temperature treatment) of 450-480° 

C. Detailed chemical characteristic of the product is presented in Chapter 3. Biochar was 

evenly incorporated within the potting mix at 0, 2, 5, 10, 20, 50, 80 and 100 t ha-1 (B0, B5, 

B10, B20, B50, B80 and B100) calculated on a volumetric basis.  

Nine seeds per pot were sown on the 9/05/2011 in a 4 litre pots. The first seed germinated 

14 days after planting (DAP) and following that day the number of germinated seeds was 

counted in each pot daily for 30 days. After that newly germinated seedlings were counted 

twice a week until the end of July 2011. At 84 DAP seedlings were thinned to leave the 

strongest three per pot, and after 9 days to the most robust remaining seedling per pot. At 

93 DAP the height measurements started and all the seedlings were measured weekly until 

the end of pot trial. 
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A B 

Figure 4.1. Eucalyptus nitens glasshouse pot experiment on (A) 29
th

 Jul 2011 and (B) 05
th

 Nov 2011. 

Horticultural Research Centre, University of Tasmania, Sandy Bay campus. 

Seedlings were treated with a Previcur fungicide (Propamocarb 600g L-1, Bayer®) 

immediately after sowing and two weeks following sowing. Plants were also treated with 

insecticides Azamax (40 ml per 10L) and Eco Oil (40 ml per 10L) on 11/08/2011, 30/09/2011 

and 25/10/2011. 

Four destructive sampling harvests (H1-H4) took place at 135, 177, 219 and 268 days after 

planting (DAP). At each harvest one pot from each replicate was destructively sampled for 

soil and plant analysis. The height measurements were performed on a regular basis during 

the whole experiment. 

4.2.1. Data collection and processing 

The germination study was performed as a part of the pot trial study (on the same 

seedlings) in May and June 2011 so the main procedures were similar as presented in the 

previous sections. Seeds were put in water for 24 hours prior to sowing then sown 

manually into each pot by putting each seed 10-15 mm below the soil surface. Immediately 

after sowing all the pots were watered with a mixture of water and fungicide (Previcur 

drench (15ml per 10L) at sowing and two weeks following sowing and insecticides: Azamax 

(40 ml per 10L) and Eco Oil (40 ml per 10L) on 11 Aug (94 DAP), 30 Sep (144 DAP) and 25 

Oct (169 DAP) 2011. Emergence was defined as appearance of the cotyledons and was 

recorded in all the pots every 2 days for the first two months of the pot experiment. The 

first seedling emerged 14 days after sowing and the last one six months after sowing.  
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Plant height measurements started 93 DAP and were carried out weekly until the end of 

the pot trial. The height of each seedling was measured from the potting mix surface level 

to the stretched upwards end of first pair of juvenile leaves. 

Pots were randomly allocated to a harvest date at the beginning of the experiment. At each 

harvest leaves were stripped from the stem and the leaf area and number from each 

seedling was measured and recorded. At each harvest all leaves from each seedling were 

collected and placed on a white sheet of paper. A photo of all the leaves and including a 

scale marker was taken and then digitally processed in ImageJ® (ver. 1.47) to calculate the 

total leaf area. Fresh above and below ground biomass was recorded and the leaves and 

soil samples were sent for an analysis (CSBP Plant and Soil Laboratory) after drying at 60°C 

for 72 hrs. Dry weight was recorded and the leaves were ground before sub-samples of 3-4 

grams were packaged for analysis. Potting mix samples were air-dried at 40° C and the 

undissolved fertiliser residue manually removed from the samples before analysis.   

Plant material at each harvest was quantitatively analysed by Soil and Plant Analysis 

Laboratory (CSBP) for: boron (B), calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), 

manganese (Mn), phosphorus (P), potassium (K), sodium (Na), sulphur (S), total nitrogen 

(N), zinc (Zn). Soil/PM was analyzed for: ammonium nitrogen (ammonium-N), nitrate 

nitrogen (nitrate-N), Colwell phosphorus, Colwell potassium, organic carbon, electrical 

conductivity, pH (1:5 water and CaCl2) and exchangeable cations (aluminum, calcium, 

magnesium, potassium, sodium). The details of the analyses are presented in following 

sections. 

4.2.2. Plant tissue analyses 

Total Nitrogen (TN) was a measure of both inorganic and organic forms of nitrogen. Sample 

values were determined on a LECO® combustion analyser, where plant samples were 

loaded into sealed glass combustion tube (at 950˚ C) and flushed with oxygen. This process 

causes the rapid and complete combustion of the plant material. All gases generated were 

collected and measured on both an infrared detector and a thermal conductivity cell to 

measure total nitrogen (CSPB Soil and Plant Analyses Laboratory)(TruSpec). 

After complete digestion of the plant material with a combination of nitric acid and 

hydrogen peroxide at high temperatures, digests were diluted with deionised water to 

dissolve all precipitates (McQaker et al., 1978). The resulting solutions were subsequently 
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analysed using Inductively coupled plasma atomic emission spectroscopy (ICP-AES) for 

determination of the elements B, Cu, Zn, Mn, Fe, Ca, Mg, Na, K, P and S (McQaker et al., 

1978; TruSpec). 

4.2.3. Soil  analyses 

Soil nitrate nitrogen and ammonium nitrogen was extracted (shaken) with a 1M potassium 

chloride solution for 1 hour at 25° C.  After dilution the concentration of ammonium 

nitrogen was determined colorimetrically on a Lachat Flow Injection Analyzer at 420 nm 

using the indo-phenol blue reaction. Nitrate was reduced to nitrite through a copperized-

cadmium column, and measured colorimetrically at 520 nm (Quickchem; Searle, 1984). The 

Walkley-Black method (Walkley and Black, 1934) was used to determine soil organic carbon 

content. Here concentrated sulphuric acid was added to soil wetted with dichromate 

solution. The heat of the acid-based reaction was used to induce oxidation of soil OM. 

Chromic ions produced were proportional to oxidized OC and were measured 

colorimetrically at 600 nm on a MultiscanTM GO Microplate Spectrophotometer. 

The pH and electrical conductivity of the soil extract was measured using a combination pH 

electrode. Soils were extracted in deionised water for 1 hour to achieve a soil: solution ratio 

of 1:5. After water pH and EC were measured, calcium chloride solution was added and 

after thorough mixing the calcium chloride pH was determined (Rayment and Higginson, 

1992). Available P and K were measured using the Colwell method (Colwell, 1965).  Soils 

were extracted with 0.5 M sodium bicarbonate solution, adjusted to pH 8.5 for 16 hours, 

resulting in a soil: solution ratio of 1:100. The acidified extract was treated with an 

ammonium molybdate/antimony trichloride reagent and the concentration of phosphorus 

was measured colorimetrically at 880 nm a flame atomic absorption spectrophotometer. 

The concentration of potassium was determined using a flame atomic absorption 

spectrophotometer at 766.5 nm. To determine soil exchangeable cations (Al, Ca, Mg, K and 

Na) soils were extracted with 0.1M NH4Cl/0.1M BaCl2 for 2 hours. The exchangeable cations 

were determined by ICP (Rayment and Higginson, 1992). 

4.3. Field trial 

A Field trial was established on the 18/10/2011 in the Florentine Valley, south-west 

Tasmania (42°38’S, 146°27’E; Forestry Tasmania coupe FO031Z). Planting was preceded by 

site preparation, including disking, installation of field Lysimeters and mixing biochar into 
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the soil (43 days before planting). The site was a second rotation site, previously used for 

Eucalyptus plantation. The on-site burn was carried out on the 7/04/2010 and was classified 

as High Intensity Burn (Marsden-Smedley and Whight, 2011). The soil type was defined 

using the Australian soil classification system, and classed as a Brown Dermosol. The site 

was sprayed with herbicides prior to plantation establishment, on the 18/05/2012 (Glymac, 

Macspred® and Associate Agtech®). Due to high weed occurrence site was spot-sprayed 

again with herbicides on the 29/02/2012 (Roundup® from a backpack sprayer, 

concentration 360 g L-1 glysphosate as an isopropylammonium salt).  

Following fertilisation, transplanting was performed by Pottiputki with 6 month old 

seedlings acquired from a Forestry Tasmania seedling nursery in October 2011. In total 822 

seedlings were used to form a trial consisting of 3 blocks. Manual weed control occurred 

133 DAP and was followed by Round-Up® spraying (10ml per 1L water) from a backpack 

sprayer.  

4.3.1. Field site location and experimental layout 

The trial was located on the northern part of Forestry Tasmania coupe FO031Z in Florentine 

Valley. Figure 4.2 presents the exact location of the trial. Block 1 was located on the west 

side of the road while blocks 2 and 3 were located on the east side of the road. The reason 

for such location was the condition of the field, amount of waste wood left over after 

harvest and location of windrows. The stacked residue wood from previous harvest, located 

on the west side of the road enabled the placement of only one block at this location. The 

reason for locating the two remaining blocks further from the road was the terrain. The first 

part of the plantation, just next to the road (east side of the road) was steeper so the blocks 

were located further to the east to avoid the effect of water flowing downhill. 
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Figure 4.2. Aerial picture of the field experiment area. Florentine valley, Forestry Tasmania coupe 

31Z. The red rectangles show the approximate location of the blocks. 

 

 
Figure 4.3. Design of the field experiment in Florentine Valley, Forestry Tasmania coupe 31Z. Green 

dots represent seedlings, blue shaded area shows the buffer zones around the blocks, dark green 

shapes represent the location of the windrows. 

Row spacing in the trial was approximately 3 m while spacing of the seedlings within a row 

was 2 m (Figure 4.3 and 4.4). Buffer zones were organized around each block and consisted 

of two rows or two seedlings. On the southern site of blocks 2 and 3 the buffer zone 

covered only one row of seedlings, this being dictated by the location of windrows. Each 

N 

N 
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block consisted of 18 rows with treatments allocated randomly to individual rows. Due to 

not enough number of rows in block 2 and 3 one of the treatments had to be located 

perpendicularly to the location of other treatments (Appendix 5). The detailed design of an 

example block and treatments applied is presented in Figure 4.4, the design of the 

remaining two blocks is presented in Appendix 6.  

 
 
Figure 4.4. Design of block 1 in the field experimental trial in Florentine valley, Forestry Tasmania 

coupe 31Z. 

4.3.2. Soil amendments 

Biochar used for the field trial was the same to that used for the pot trial. Full specification 

of biochar is included in the Appendix 1 while the characteristics of the product used is 

discussed in Chapter 3. Biochar was applied to eight seedlings within each row at 0, 2, 5, 10, 

15 and 20 t ha-1 calculated on the basis of soil volume, assuming an incorporation depth of 

0.2 m.  Biochar was mixed by driving a metal frame (0.4 m x 0.5 m) into the soil, removing 

soil from within the frames to depth, before placement in a bucket where it was mixed with 

biochar; after thorough mixing the soil biochar solution was returned to the original 

location. Where no biochar was applied, similar volume of soil was churned up. Biochar 

application occurred directly after lysimeters installation, in September 2011. 

Phosphorus was applied after biochar incorporation as di-ammonium phosphate (DiAP) 

(ImpactFertilisers®) at 200 g per seedling (Impact Fertilisers®) in early October 2011. The 

N 
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dose was calculated on the basis of soil chemical analysis and number of previous rotations 

in the experiment coupe. Fertiliser was manually mixed into the soil in the radius of 30 cm 

from the seedling to approximately 20 cm depth. Common forestry practice normally 

requires fertiliser application by Pottiputki (PUKI) forestry tool 

(http://en.wikipedia.org/wiki/Pottiputki_(tool)), after planting. However, in this study 

fertilisation was done manually, before planting to ensure the fertiliser was distributed 

evenly through the region biochar was placed. To monitor the effects of fertilising method 

on the results one row in each block was fertilised with PUKI equipment. Fertiliser rates in 

the trial were 0, 50% and 100% of the commercial dose (200 mg per seedling). The full list 

of experimental units is presented in table 4.2. 

Table 4.2. The list of treatments applied in the Florentine Valley field experiment. 100% fertiliser rate 

equalled 200 g Di-ammonium phosphate per seedling. 

Treatment 

number 

Treatment 

code 

Fertiliser rate 

(%) 

Biochar dose 

(t ha-1) 

1 F0B0 0 0 

2 F0B2 0 2 

3 F0B5 0 5 

4 F0B10 0 10 

5 F0B15 0 15 

6 F0B20 0 20 

7 F50B0 50 0 

8 F50B2 50 2 

9 F50B5 50 5 

10 F50B10 50 10 

11 F50B15 50 15 

12 F50B20 50 20 

13 F100B0 100 0 

14 F100B2 100 2 

15 F100B5 100 5 

16 F100B10 100 10 

17 F100B15 100 15 

18 F100B20 100 20 
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4.3.3. Lysimeter installation 

Two zero-tension lysimeters were installed at random position within each treatment 

(detailed design of the equipment is presented in Appendix 7). Lysimeters were designed 

and built for the needs of the project following expert advice (Rainbow Bee Eater Pty 

Ltd)(Figure 4.5). Installation of the equipment in the field was performed with excavator 

prior to biochar and fertiliser application. In total 114 Lysimeters were installed in 

September 2011. 

  

Figure 4.5. Custom-built Lysimeter ‘LIZZIE’ used in the Florentine Valley field trial. 

4.3.4. Seasonal conditions 

The Florentine Valley has an annual average rainfall of 1,178 mm (years 1992-2011) and is 

located within the second highest rainfall region of Tasmania, the wettest month being 

August and driest January. Minimum/maximum mean temperatures in Florentine region 

average 2.4/11.1° C in winter and 8.3/21.3° C in summer. The Maydena weather station 

located approximately 20 km south from the field trial is the nearest weather station, and 

was used as a source of weather data for the trial. The use of automatic weather station 

installed in the field was not available for this project. Figure 4.6 presents the maps of total 

annual rainfall, maximum and minimum temperatures in Tasmania. 
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C 

 

Figure 4.6. (A) The total annual rainfall in Tasmania (mm), (B) maximum temperature in Tasmania 

(°C), and (C) minimum temperature in Tasmania (°C) estimated for the period 01/01/2011 – 

31/12/2011. Data acquired from the website of Australian Bureau of Meteorology (Bureau of 

Meteorology, 2012-2013). The black dot indicates the location of the field experimental plantation. 

4.3.5. Sampling and data collection 

Soil and plant material samples were collected from the field at 95, 216, 338 and 463 DAP, 

the first sampling date being three months after planting and four months after 

incorporating biochar and fertiliser into the soil.  

Soil sampling 

Each sample was prepared from the soil collected from three random sites within the row 

(one treatment). Soil was collected within the 0.2 m radius around the seedling, from 0.1-

0.2 m depth. Samples were weighed; air dried in an oven at 40 degrees Celsius and sent for 

analysis (CSBP Soil and Plant Analysis Laboratory, Western Australia). In between sample 

preparation and analysis, samples were kept in double sealed plastic bags and stored in a 

dry and dark store at room temperature. 

Plant Tissue 

The youngest fully expanded leaves (YFEL) were collected from randomly chosen seedlings 

within each row (3-5 seedlings) and bulked for analysis to avoid analysing young leaves 
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which have different nutritional composition (Close and Beadle, 2003). Samples were 

weighed and then air-dried at 60 degrees Celsius and stored similar to the soil samples. 

Seedling height 

Seedling height was measured on the 39, 87, 129, 164, 200, 236, 290, 332, 374, 409 and 

647 DAP. The height (cm) was measured from the ground to the top of the seedling/tree. 

Three randomly chosen seedlings per row were measured at each sampling event. At 647 

DAP the trunk diameters of 3 trees per treatment were measured at breast height (120 

cm).   

  

Figure 4.7. Author of the thesis with Eucalyptus nitens seedlings in the field experiment in Florentine 

valley. January 2012 (left-hand side) and January 2013 (right-hand side). 

Soil leachate sampling 

Water was pumped up from lysimeters using a drill operated bilge pump powered by a 

small generator (Figure 4.8). Water from both lysimeters was mixed together and a sample 

of 40 ml was prepared. Samples (Figure 4.9) were collected every 5-7 weeks and stored at -

18°C until the chemical analyses were performed (June-July 2012). Samples were labelled 

chronologically as A (39 DAP), B (87 DAP), C (129 DAP), D (164 DAP), E (200 DAP), G (236 

DAP), H (290 DAP), I (332 DAP), K (374 DAP) and M (409 DAP). The water sampling schedule 

is presented in Figure 4.10.  
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Figure 4.8. Equipment used for collecting water 

samples from the Lysimeters installed in the field 

experiment. 

Figure 4.9. Water samples collected from the 

field experiment in the Florentine Valley 

 

 

Figure 4.10. Water (above the season bar), plant material and soil (below the season bar) sampling 

times (presented as days after planting) in the field experiment in Florentine Valley during the 

duration of the field experiment (Spring 2011- Summer 2013). 

Immediately before the analyses were performed, samples were removed from the freezer 

and thawed. Raw samples were filtered once through Whatman no 1 paper filter. Each 

sample was filtered with a separate paper filter into a 50 ml clear tube and then analysed 

for the concentration of ammonium-N, nitrate-N, potassium, phosphorus and pH, as 

described below. 

Acidity, Ammonium and Nitrate 

Acidity was measured using a pH electrode attached to a Forston LabNavigator®; the 

electrode was calibrated against standard solutions of pH 4 and pH 7. After analysing each 

sample the electrode was rinsed with distilled water. The measurements for ammonium 

were performed with the ammonium ion selective electrode (Model: NavNH4, Forston 

Laboratories®) attached to a Forston LabNavigator®. The sensor was calibrated with a 1 mg 

L-1 (low) and 100 mg L-1 (high) ammonium standard solution before measuring the samples. 
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After each sample the electrode was rinsed with distilled water. The nitrate-N 

measurements were made using a nitrate ion sensor (Model: NavPH, Forston Laboratories®) 

calibrated with a 1 mg L-1 (low) and 100 mg L-1 (high) nitrate standard solution. 

Potassium 

The potassium measurements were performed by Flame Emission Photometric method 

using a Jenway® Flame Photometer FP7 (direct reading type). Reagents solutions were 

made prior to measuring the samples: Stock potassium solution of 1 mg K per 1 ml (1.907 g 

KCL, dried at 110o C for 1h and cooled in desiccator and transferred to 1L volumetric flask), 

intermediate potassium solution of 0.1 mg K per ml (10 ml Stock potassium solution diluted 

to 100 ml) and standard potassium solution of 0.01 mg K per ml (10 ml intermediate 

potassium solution diluted to 100 ml). The flame photometer was calibrated using distilled 

water and the potassium solution and was every 5-7 samples. 

Phosphorus 

Phosphorus measurements were performed by the Ascorbic Acid Spectrophotometric 

method using as spectrophotometer model AXIOSTAR PLUS®. Reagent solutions were 

prepared immediately prior to P measurements. A set of P standards was also prepared 

resulting in solutions concentration of 0.01, 0.1, 1 and 10 ppm/P. Samples were analysed in 

the spectrophotometer at 882 nm. The actual values were read from the graph prepared on 

the basis of standard solutions readings. 

4.3.6. Plant material  and soil analysis 

Plant and soil samples were analysed in the same manner as that described for the pot trial 

in sections 4.2.3 and 4.2.4. 

4.4. Statistical analysis 

The raw data from chemical tests of plant material, soil and percolating leachate, and the 

agronomic data (height, total biomass, leaf number etc.) water was analysed using Analysis 

of Variance (ANOVA) and Fisher’s Least Significant Difference (LSD) method as a post hoc 

test. All the Statistical analyses were completed using IBM SPSS® Statistics 19 program and 

Microsoft Excel® 2007. 
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A rate of decay analysis (performed on soil and plant tissue data) was calculated on the 

basis of estimating the parameters ‘a’ (initial quantity) and ‘c’ (decay rate) using a fitted 

exponential decay model. Analysis of variance (ANOVA) was performed on the resulting 

decay rate parameter (c). In order to check the validity of the exponential rate of decay 

model, data was transformed into linear form (using a natural logarithm conversion). The 

exponential and linear regression tests were performed, as all other tests, using IBM SPSS® 

Statistics 19 program and Microsoft Excel® 2007. The correlation between nutrients levels 

in analysed mediums was performed using Spearman’s correlation method (p≤0.05). 

The pot trial design did not include control biochar treatments (where biochar was applied 

without fertiliser) other than a basic control (without biochar or fertiliser addition). 

Therefore the results are to be compared between the treatments not to the control 

samples results.  

The approach of showing the means (across fertiliser or time) was chosen to present the 

trends of changes following biochar application.  
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5. EFFECTS OF BIOCHAR AND FERTILISER AMENDMENT 

ON THE SOIL 

5.1. Introduction 

Biochar has been suggested as a means to sequester atmospheric carbon and as a potential 

environmental tool to improve soil quality and enhance plant productivity (Lehmann and 

Joseph, 2009b). Despite numerous studies where biochar has been effective in influencing 

the desirable characteristics of horticultural soils, an understanding of the mechanisms and 

circumstances under which this occurs is still contested, and a number biochar-induced 

processes are suggested as being responsible (Biederman and Harpole, 2013; Lehmann and 

Joseph, 2009b). In part the current debate is due to the complexity of feedstock 

characteristics, pyrolysis process conditions and soil properties that essentially ensure that 

each application is a unique event. Due to great variation in biochar types as well as 

differences in the soils characteristics reported, changes after chars application vary 

broadly and suggested mechanisms influence fertility and soil chemistry in a different 

manner. 

One key soil characteristic influenced by biochar application is pH, where char addition to 

soil is known to increase alkalinity (Chan et al., 2007; DeLuca et al., 2006; Lehmann and 

Joseph, 2009a), this effect being attributed to chars having a higher pH than the soil to 

which they are admixed. Such effect may be observed in the experiments conducted within 

this research, when admixing macadamia biochar of pH 8.7 (CaCl2) to soil or potting mix 

(average 4.5-4.9 [CaCl2]). In contrast, pH may decrease, and some researchers postulate 

that this is facilitated by nitrification, through which H+ ions are released into the soil 

solution (Nelson et al., 2011; Unger and Killorn, 2011; Van Zwieten et al., 2010b). In support 

of this, accelerated nitrification has been observed in several studies (Clough and Condron, 

2010; DeLuca et al., 2009; DeLuca et al., 2006; Nelson et al., 2011). DeLuca et al. (2006) 

suggested that compounds that inhibit nitrification are sorbed to the surface, allowing the 

reaction to proceed to a greater extent. This may occur through the adsorption of 

nitrification inhibiting phenols and increased stabilization of inorganic N as proposed by 

other researchers (Clough and Condron, 2010; DeLuca et al., 2009). Chars can also provide 

an enriched microbial environment, and Nelson et al. (2011) connected this with increased 

nitrifying bacteria activity (Nelson et al., 2011). Macadamia biochar was characterized as 
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having high specific surface area (SSA) which indicates that microbial activity can potentially 

be stimulated (Chapter 3). Other proposed mechanisms altering N transformations include 

NH4
+ adsorption to biochar particle surfaces and subsequent lower ammonium-N levels in 

the soil solution (Lehmann et al., 2003; Lehmann et al., 2006; Spokas et al., 2011; Steiner et 

al., 2008; Taghizadeh-Toosi et al., 2011). This mechanism might be observed in experiments 

presented in this research as macadamia biochar had a moderate cation exchange capacity 

(CEC)(Chapter 3). 

Biochar application can increase soil phosphorus, and it has been proposed that this might 

be due to stimulation of soil microbial populations through provision of an augmented 

habitat for phosphate solubilising bacteria (Warnock et al., 2007). The elevated levels of 

available P have also been attributed to biochar adsorbing free Al3+ and Fe3+ ions to its 

negatively charged surface, therefore reducing the PO4
3- immobilization that would 

otherwise occur through the oxides often formed with these cations (Cheng et al., 2006). 

For soils that don’t have high levels of aluminium or iron, a similar effect may occur as a 

result of phosphate ions release from char surfaces, as a part of anion exchange capacity of 

biochars (DeLuca et al., 2009). Phosphorus content of macadamia biochar was identified as 

low in comparison to other biochars (Chapter 3) which suggests that potential P soil 

changes might be influenced by a direct phosphate release only to a limited extent. 

Changes in available K in soil as a result of biochar application have been observed by 

Lehmann et al. (2003), Chan et al. (2007) and Major et al. (2010) and ascribed to the release 

of K ions from the char. Similar increases in exchangeable Na were reported by (Chan et al., 

2007) but the reasons for that have not been identified. Macadamia char was described as 

having moderate CEC and high Na+ and K+ content in comparison to other chars (Chapter 3). 

Additionally both Na+ and K+ are among the cations which have low strength of attraction to 

surfaces when compared to other base cations (Ca, Mg and Al). It is therefore postulated 

that application of macadamia biochar might increase soil Na and K concentrations. 

In contrast to cations release, the adsorption of various ions to char surfaces have been 

noticed in many experiments (Guo et al., 2014; Lehmann et al., 2003; Nguyen et al., 2009; 

Tseng and Tseng, 2006; Yamato et al., 2006). Biochars effect on Ca and Mg was noted by 

Lehmann et al. (2003) in Anthrosol soils, where Ca level increased in response to biochar 

addition, the authors attributed this effect to Ca adsorption to an exchange complex 

created by the charcoal additions. Major et al. (2010) reported increases in soil Mg and Ca 



 66 
 

and uptake of these nutrients following biochar application, this effect being most likely 

connected with decreased leaching of Mg and Ca from the soil. Aluminium cation 

adsorption to biochar surfaces has been reported by Nguyen et al. (2009), where biochar 

surfaces adsorbed soil Al and Si in the first decade after biochar application, as well as by 

Yamato et al. (2006) after bark charcoal application to the soil. High surface area and 

moderate CEC of macadamia biochar imply that the adsorption of different cations might 

be observed following char application to the soil.  

Changes in the mineralization of native soil organic matter (OM) due to the addition of new 

substrates have been observed in many types of laboratory and field studies and reviewed 

by Kuzyakov et al. (2000). Most commonly, it is ‘positive priming’ that is observed, i.e. the 

accelerated mineralization of a more refractory soil OM components stimulated by the 

addition of a labile C source (Luo et al., 2011; Wardle et al., 1998; Zimmerman et al., 2011). 

Luo et al. (2011) attributed this effect to biochar providing a source of labile carbon for the 

bacterial community and resulting in a positive priming of SOM of the PMs. Zimmerman et 

al. (2011) reported a similar effect in the soils amended with biochars produced at low 

temperatures (up to 400° C) and negative priming as a result of high-temperature biochar 

application. Other negative (Kuzyakov and Domanski, 2000; Liang et al., 2008) changes or 

no effect of biochar application on soil C (Major, 2010; Major et al., 2010; Novak et al., 

2009; Spokas et al., 2011) have been presented for different biochars therefore the 

direction of macadamia biochar effect of soil C is difficult to be predicted. More changes are 

expected to be observed in the pot rather than the field trial as the amounts of carbon 

added with biochar are higher and because OM content was much higher than in the field 

dermosol. 

The characteristics of the macadamia biochar discussed in Chapter 3 suggests that there 

will be soil and potting mix (PM) changes as a consequence of char application. Significant 

amounts of Na, K and Ca were applied to the growing media under high biochar 

treatments; therefore, the most significant effect of biochar application in both 

experiments is expected to be noticeable in the changes in levels of these nutrients. Potting 

mix and soil (Chapter 4) attributes imply that the results in both experiments might differ in 

terms of post-biochar application trends. It is hypothesized that macadamia biochar added 

to Eucalypt plantation soil and forest nurseries potting mix will increase the availability of 

essential soil elements, by either introducing these nutrients to the soil (release from 
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biochar surfaces) or modifying soil mechanisms to increase nutrient transformation to 

plant-available forms. 

5.2. Method 

Two experiments were established to monitor the changes of potting mix (PM), field soil 

and plant material following macadamia biochar application (0-100 t ha-1). The details of 

experiments design were presented in Chapter 4. In the field experiment soil samples were 

collected on 4 occasions: at 95, 216, 338 and 463 days after planting (DAP) from the depth 

of 10 cm. In the pot trial PM samples were collected at 4 destructive harvests which took 

place at 135, 177, 219 and 269 DAP, from the whole volume of PM within each pot. 

Samples were analysed for nitrate-N, ammonium-N, carbon, exchangeable cations, 

electrical conductivity, Colwell potassium and phosphorus. Acidity of the soil was measured 

both in water (pHw) and in a 0.01M CaCl2 solution (pHCaCl). Adding CaCl2 to soil results in Ca2+ 

ions displacing H+ ions ionically bonded to negative surface charges of the soil particles; this 

forces hydrogen ions into solution increasing their concentration closer to that found in the 

immediate vicinity of the roots (Rayment and Higginson, 1992). As the CaCl2 method is 

favoured as more precise only the results from this method will be presented and analysed. 

The results of growing medium tests were analysed using SPSS Analysis of Variance (Sig. 

0.05) and the Rate of Decay analysis (Sig. 0.05). The details of the analyses and sample 

preparations are described in Chapter 4.   

5.3. Results 

Biochar had an effect on all nutrients and physical soil features assessed in the potting mix 

(PM) in the controlled environment (pot experiment). Under field conditions the influence 

of biochar on soil nutrient levels was limited to potassium and sodium.  

Higher rates of biochar (50-100 t ha-1) increased PM nitrate-N, P, K and Na and decreased 

the concentration of ammonium-N, organic carbon, exchangeable Al, Ca and Mg. In the 

field experiment biochar increased the concentration of potassium and exchangeable 

sodium in the soil. There was no decrease of any nutrient concentration in the soil found 

under field conditions. Biochar was suspected to influence the rate of nutrients removal 

from the soil and an exponential decay analysis (Chapter 4) was used to explore this 
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hypothesis. Using this approach, only the rate of exchangeable sodium removal from the 

potting mix (pot experiment) was influenced by biochar. Tables 5.1 and 5.2 summarize the 

results in both experiments.  

Table 5.1. Potting mix characteristics P values in response to biochar (B), fertiliser (F) application and 

time (T) in the pot experiment. Significant values at P≤0.05, n.s. = not significant (OC-organic carbon, 

ex. Al – exchangeable aluminum, ex. Ca – exchangeable calcium, ex. Mg – exchangeable magnesium, 

ex. K – exchangeable potassium, ex. Na – exchangeable sodium, P- phosphorus). 

TREATMENT B F T B*F B*F*T B*T F*T 

Ammonium-

N 

≤0.001 ≤0.001 ≤0.001 n.s n.s 0.004 ≤0.001 

OC ≤0.001 n.s. ≤0.001 n.s. n.s. ≤0.001 n.s. 

Elec. Cond. ≤0.001 ≤0.001 ≤0.001 n.s. n.s. n.s. 0.048 

ex. Al ≤0.001 ≤0.001 ≤0.001 ≤0.001 n.s. 0.006 ≤0.001 

ex. Ca  ≤0.001 ≤0.001 ≤0.001 ≤0.001 n.s. 0.02 n.s. 

ex. Mg ≤0.001 ≤0.001 ≤0.001 0.005 n.s. 0.032 0.041 

ex. K ≤0.001 n.s. ≤0.001 n.s. n.s. 0.017 0.039 

ex. Na ≤0.001 n.s. ≤0.001 n.s. n.s. ≤0.001 n.s. 

Nitrate-N ≤0.001 ≤0.001 ≤0.001 n.s. n.s. ≤0.001 ≤0.001 

pH (CaCl) ≤0.001 ≤0.001 ≤0.001 n.s. n.s. 0.039
*
 n.s. 

Colwell P ≤0.001 ≤0.001 ≤0.001 0.014 n.s. n.s. 0.002 

Colwell K ≤0.001 0.009 ≤0.001 n.s. n.s. ≤0.001 ≤0.001 

Table 5.2. Soil characteristics P values (Florentine valley field experiment) in response to biochar (B), 

fertiliser (F) application and time (T) in the pot experiment. Significant values at P≤0.05 , n.s.= not 

significant, (OC-organic carbon, ex. Al – exchangeable aluminum, ex. Ca – exchangeable calcium, ex. 

Mg – exchangeable magnesium, ex. K – exchangeable potassium, ex. Na – exchangeable sodium, P- 

phosphorus). 

TREATMENT B F T B*F B*F*T B*T F*T 

Ammonium-

N 

n.s. ≤0.001 ≤0.001 n.s. n.s. n.s. ≤0.001 

OC n.s. n.s. 0.008 n.s. n.s. n.s. n.s. 

Elec. Cond. n.s. ≤0.001 ≤0.001 n.s. n.s. n.s. ≤0.001 

ex. Al n.s. ≤0.001 ≤0.001 n.s. n.s. n.s. ≤0.001 

ex. Ca  n.s. n.s. ≤0.001 n.s. n.s. n.s. n.s. 

ex. Mg n.s. 0.019 ≤0.001 n.s. n.s. n.s. n.s. 

ex. K ≤0.001 0.003 ≤0.001 n.s. n.s. n.s. ≤0.001 

ex. Na ≤0.001 n.s. ≤0.001 n.s. n.s. n.s. n.s. 

Nitrate-N n.s. ≤0.001 ≤0.001 n.s. n.s. n.s. ≤0.001 

pH (CaCl) n.s. ≤0.001 ≤0.001 n.s. n.s. n.s. 0.012 

Colwell P n.s. ≤0.001 n.s. n.s. n.s. n.s. n.s. 

Colwell K ≤0.001 ≤0.001 ≤0.001 n.s. n.s. n.s. n.s. 
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5.3.1. Acidity 

Acidity of the PM decreased in response to high biochar rates (B50-B100)(p≤0.000), but this 

effect was transient, with pH decreasing  in time until 219 DAP (Figure 5.1.A and B).  

A B 

 
Figure 5.1. pH dynamics of the potting mix in Eucalyptus nitens pot experiment in response to: (A) 

biochar application (0,2,5,10,20,50,80 and 100 t ha
-1

) (mean across sampling times and fertiliser 

treatments), (B) time (measured at 135, 177, 219 and 269 days after planting) (mean across biochar 

and fertiliser treatments). Error bars indicate the LSD (A-0.11, B-0.16)(p≤0.05). 

5.3.2. Nitrogen, potassium, phosphorus 

Nitrogen 

Available soil nitrate-N levels were highest at biochar rates of B50-B100 with no differences 

(LSD; p≥0.05) observed below these rates (Figure 5.2.A). Biochar application diminished soil 

ammonium-N levels, the magnitude of this response increasing with rate, dropping from 

17.5 mg kg-1 with no char applied to 13.5 mg kg-1 at 100 kg char ha-1 (Figure 5.2.B). Nitrate-N 

concentration in the soil solution declined rapidly in comparison to that of ammonium-N, 

which although present in lower concentrations, declined at a slower pace (p≤0.001)(Figure 

5.2.C and D). 
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Figure 5.2. Nitrate nitrogen (A, C) and ammonium nitrogen (B, D) level [mg kg

-1
] in potting mix in 

response to 8 biochar application rates (0-100 t ha
-1

) (mean across sampling times and fertiliser 

treatments)(A, B) and time 135, 177, 219 and 269 days after planting, (C, D) (mean across biochar 

and fertiliser treatments). Error bars indicate the LSD (A-7.27, B-2.00, C-5.14, 1.41)(p≤0.05) 

 
 

A B 

  
C  

 

 

Figure 5.3. Spearman’s correlation between (A) Ammonium nitrogen and nitrate nitrogen, (B) pH and 

nitrate nitrogen, (C) pH and ammonium nitrogen in the potting mix, pooled across 8 biochar 

treatments (1-100 t ha
-1

), three fertilisation levels (0, 50 and 100% of the commercially applied dose) 

and four harvest times (135, 177, 216 and 269 days after planting), p≤0.05 
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There was a moderately strong positive correlation between ammonium-N and nitrate-N 

(Figure 5.3.A). A moderate positive correlation was also noticed between PM pH and nitrate 

while there was little statistical dependence of ammonium N (Figure 5.3.B and C).  

Under field conditions both ammonium and nitrate nitrogen did not show any dependance 

on biochar levels but were only increasing under full fertiliser application rates (data not 

presented) an effect that decreased in time (p≤0.001). 

Phosphorus 

Biochar added to PM together with 50% fertiliser increased the availability of P, at 80 and 

100 t ha-1 when compared to the control treatment (p=0.009). When biochar was combined 

with full fertiliser doses it did not elevate P level at any rate but instead decreased available 

P when biochar was added at the rates of 2, 5 and 20 t ha-1 (Figure 5.4). Full fertiliser 

application increased phosphorus levels during the whole experiment irrespective of 

biochar dose when compared to the half rate (data not presented). 

 
Figure 5.4. Phosphorus level [mg kg

-1
] in potting mix in response to 8 biochar application rates (0-100 

t ha
-1

) combined with two fertilisation rates. Error bars indicate the LSD (5.60)(p≤0.05). 

The response of phosphorus in the field experiment was limited to fertiliser only, resulting 

in increased available P under higher fertilisation levels; approximately 8 fold under F50 and 

16 fold under F100 (p≤0.001)(data not presented).  

Potassium 

Biochar application from B50 to B100 increased available potassium (Colwell) content in the 

PM (p≤0.001)(Figure 5.5.A). By 269 DAP the potassium concentration had dropped by 

almost 200 mg at F100, and by 100 mg at F50 (data not presented). 
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A B 

  
Figure 5.5. Potassium level [mg kg

-1
] in potting mix  in response to (A) 8 biochar application rates (0-

100 t ha
-1

)(mean across sampling times and fertiliser treatments) and (B) time (135, 177, 219 and 269 

days after planting (mean across biochar and fertiliser treatments). Error bars indicate the LSD (A-

32.18, B-22.76)(p≤0.05). 

Biochar application increased potassium availability in the field experiment (p≤0.001), 

(Figure 5.6.A). The level of available potassium was however decreasing in time (p≤0.001), 

(Figure 5.6.B) and in response to fertilisation (p≤0.001)(data not presented). 

A B 

  
  
Figure 5.6. Potassium level [mg/kg] in Florentine Valley field experiment soil  in response to (A) 6 

biochar rates (0, 2, 5, 10, 15, 20 t ha
-1

) (mean across sampling times and fertiliser treatments), (B) 

time (95, 216, 338 and 463 days after planting) (mean across biochar and fertiliser treatments), 

linear regression (Sig. 0.000, r
2
=0.320). Error bars indicate the LSD (A-30.47, B-22.9)(p≤0.05). 

Exchangeable K in the pot experiment PM behaved similarly to Colwell K so the results will 

not be presented or discussed separately. 

5.3.3. Organic Carbon 

Organic carbon in the potting mix decreased in response to biochar application (Figure 

5.7.A) while in the field trial there were no changes in total carbon soil concentration under 

any biochar or fertiliser treatments.  

By 400 DAP, the percent carbon dropped by 2.7% in the control treatment and 1.6% under 

the B5 treatment from the initial modelled concentration. Yet the rate of decay was not 

significantly different across biochar treatments (Figure 5.7.B) indicating the final 
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concentration was determined by the initial amounts present. During the whole time of the 

experiment the highest level of organic carbon was found under no biochar treatment. 

A  

 
B 

 
Figure 5.7. Organic carbon level [%] in potting mix in response to (A) 8 biochar application rates (0-

100 t ha
-1

)(average data from 135, 177, 219 and 269 days after planting (DAP) and fertilisation at 

two levels (50 and 100% of the commercially applied dose)) and (B) Rate of decay under 8 biochar 

application rates (0-100 t ha
-1

) over time. Error bars indicate the LSD (0.74)(p≤0.05). 

5.3.4. Exchangeable cations 

Exchangeable Aluminum 

Biochar decreased exchangeable aluminum amounts in the PM. Within the same biochar 

application rate exchangeable aluminum level in PM was higher under full fertiliser 

treatment in comparison to half fertiliser treatment (p≤0.001). The differences were more 

noticeable for lower biochar treatments (B0-B20)(Figure 5.8.A). The ex. aluminum level 

increased with time under all the biochar treatments, this more noticeable at lower 

application rates (B0-B20). There was a negative correlation between the level of 

exchangeable aluminum in the PM and the mix acidity (Figure 5.8.C) and negative 

correlation (Spearman’s) between ex. Al and ex. K (Figure 5.10.D).  

No biochar effect on ex. Al was reported in the field experiment. Biochar did not influence 

the decay rate of ex. Al in either of the experiments. 
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Figure 5.8. Exchangeable aluminum level [cmol kg

-1
] in potting mix in response to (A) 8 biochar 

application rates (0-100 t ha
-1

) and fertilisation at two levels (50 and 100% of the commercially 

applied dose)(mean values across sampling times), (B) 8 biochar application rates (0-100 t ha
-1

) over 

time (135, 177, 219 and 269 days after planting (DAP)) and (C) Spearman’s correlation (rho= -0.924) 

between exchangeable aluminum and pH (CaCl2) in the potting mix. (D) Spearman’s correlation (rho= 

-0.686) between exchangeable aluminum and exchangeable potassium in the potting mix. 

Correlation data represents results from all the biochar and fertiliser treatments across time, Error 

bars indicate the LSD (0.02)(p≤0.05). 

Exchangeable Calcium 

Exchangeable calcium in PM responded to an interaction between fertiliser and biochar, 

resulting in significantly lower levels when char was applied (p≤0.001)(Figure 5.9.A); this 

trend continued over the length of the experiment. There was no other clear trend 

between any biochar treatments at any stage of the experiment. 

A B 

  
Figure 5.9. Exchangeable calcium level [cmol kg

-1
] in potting mix in response to (A) 8 biochar 

application rates (0-100 t ha
-1

) and fertilisation at two levels (50 and 100% of the commercially 

applied dose)(mean across sampling times), (B) time (135, 177, 219 and 269 days after planting) 

(mean across biochar and fertiliser treatments). Error bars indicate the LSD (A- 0.36, B- 0.26)(p≤0.05). 
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Under field conditions the exchangeable calcium decreased in time and there was no effect 

of biochar or fertiliser detected.  

Exchangeable Magnesium 

Similarly to exchangeable calcium, ex. magnesium responded to both interaction between 

biochar and fertiliser (p=0.010) and biochar levels in time (p=0.033) resulting in highest ex. 

magnesium levels under control treatment and no clear trend in between any biochar 

treatments (Figure 5.10.A).  

A B 

  
Figure 5.10. Exchangeable magnesium level [cmol kg

-1
] in potting mix in response to (A) 8 biochar 

application rates (0-100 t ha
-1

) and fertilisation at two levels (50 and 100% of the commercially 

applied dose)(means across samplind times), (B) time (135, 177, 219 and 269 days after planting) 

(mean across biochar and fertiliser treatments). Error bars indicate the LSD (A- 0.27, B- 0.19)(p≤0.05). 

Under field conditions biochar did not influence exchangeable magnesium in the soil. The 

nutrient was found to decrease in time (p≤0.001) and in response to fertilisation 

(p=0.019)(data not presented).  

Exchangeable sodium 

The effect of biochar application in time on exchangeable sodium in PM was similar to the 

effect on Colwell potassium resulting in higher levels under B50-B100 (p≤0.001)(Figure 

5.11.A). At all four harvests the level of ex. sodium was significantly lower in response to 

low biochar treatments (2-20 t ha-1) in comparison to control treatment. 
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Figure 5.11. Exchangeable sodium level [cmol kg

-1
] in potting mix in response to (A) 8 biochar 

application rates (0-100 t ha
-1

)(average data from 135, 177, 219 and 269 days after planting (DAP)) 

and (B) rate of decay under 8 biochar application rates (0-100 t ha
-1

). Error bars indicate the LSD 

(0.02) (p≤0.05). 

Exchangeable sodium was the only soil element that declined from the soil at a different 

rate depending on the amount of biochar applied (Figure 5.11.B). Under B100 and B80 

exchangeable Na was declining rapidly in comparison to other biochar treatments. Under 

B0 and B2 however, a slight increase of ex. Na levels was detected. While the exponential 

decay coefficient from the model was significantly different for biochar treatments, time as 

a predictive variable in the model only explained a small component of the variation 

(R2=0.026). 

Under field conditions ex. Na increased under B15 and B20 in comparison to control 

treatment but was no different from control under lower biochar rates, namely B2-B10 

(p≤0.001)(Figure 5.12). The changes in ex. Na, in time were significant, but not clear, 

increasing and decreasing alternatively (data not presented). 

 

 

Figure 5.12. Exchangeable sodium level [cmol kg
-1

] in Florentine Valley field experiment soil in 

response to 6 biochar application rates (0-20 t ha
-1

) (mean across sampling times and fertiliser 

treatments). Error bars indicate the LSD (0.02)(p≤0.05). 

5.3.5. Physical changes 

Soil conductivity is an indicator of the number of ions present in the soil solution. In the 

context of other results presented in this chapter it might be considered an auxiliary 
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indicator of the changes. Therefore it will only be presented and discussed briefly. In the 

pot experiment the conductivity decreased, on average by 0.05 dS m-1, when biochar was 

applied at any rate (p≤0.001), while the trends in time were not clear. Under field 

conditions EC decreased in time from 0.27 dS m-1 at 95 DAP to 0.06 dS m-1 at 463 DAP. In 

both experiments fertilisation resulted in elevated level of EC (p≤0.001). 

PM moisture content was influenced by an interaction between fertiliser and biochar 

(p=0.003) and decreased in time (p≤0.001) in the pot experiment. Regardless fertiliser level 

biochar caused decrease in water content of PM (Figure 5.13.B). 

A B 

  
Figure 5.13. Potting mix accumulated water [%] in pot experiment in response to (A) interaction 

between 8 biochar application rates (0-100 t ha
-1

) and fertilisation at two levels (50 and 100% of the 

commercial rate)(mean across sampling times), and (B) time 135, 177, 219, 269 days after 

planting(mean across biochar and fertiliser treatments). Error bars indicate the LSD (A- 3.71, B- 

2.64)(p≤0.05). 

Biochar did not influence water content in soil during the field experiment. Gravimetric soil 

water content was influenced by fertilisation in time only (p=0.038)(Figure 5.14). The 

interaction between time and fertilisation resulted in increase of soil water content 216 and 

338 DAP and a decrease at the end of experiment (463 DAP)(p≤0.001). Monthly 

precipitation recorded in a weather station in Maydena, Tasmania (20 km from the field 

plantation location) is presented in Figure 5.15. 

  
Figure 5.14. Gravimetric soil water content [%] in 

Florentine Valley field experiment soil 95, 216, 

338 and 463 days after planting (DAP) in 

response to 3 fertiliser rates (0, 50 and 100% of 

the commercially applied dose). Error bars 

indicate the LSD (3.34)(p≤0.05) 

Figure 5.15. Monthly precipitation in Maydena 

post office meteorological station (Derwent 

valley, TAS), (Bureau of Meteorology, 2012-

2013), white bars indicate the months in which 

soil samples were collected (95, 216, 338 and 

463 DAP). 
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5.4. Discussion 

Macadamia biochar added to the potting mix influenced most of the analysed elements. 

Ammonium-N, organic carbon, exchangeable magnesium, calcium and aluminum and 

conductivity levels declined in response to biochar, while nitrate-N, potassium, pH and 

exchangeable potassium and sodium increased. Phosphorus response was mixed resulting 

in a slight rise under the highest biochar treatment. In most cases the increase in nutrient 

concentration was only observed when high biochar doses were applied (B50-B100) with 

the exception of carbon, ex. Mg and ex. Ca which decreased in response to all biochar 

treatments. Biochar added to soil in the field experiment at the maximum of 20 t ha-1 

increased the level of potassium and exchangeable sodium and did not affect any other 

elements. 

The limited change observed in the field experiment soil in comparison to pot experiment is 

most likely due to a few factors. Changes in nutrients concentration in the glasshouse were, 

in most cases, observed only under high biochar application rates (above 50 t ha-1). In the 

field the highest biochar rate equaled 20 t ha-1 and is surmised to be too low to induce as 

many changes as in the pot trial. Just the same, the application method most likely 

influenced the magnitude of the results in the field experiment. Biochar was incorporated 

into known soil volume around each tree. In time however, biochar particles could have 

been transported with water out of the original region of application, resulting in lower 

than anticipated biochar concentration in the tested area and therefore reducing the 

magnitude of expected changes. It must be also acknowledged, that field variability, 

especially in a plantation replant situation would be expected to affect the results achieved, 

and may result in different findings. In the pot experiment a high content of PM organic 

matter had an effect on a few elements concentration and could have masked biochar 

influence to a certain extent. 

At biochar rates above 50 t ha-1 PM pH increased, yet the solution remained very strongly 

acidic (4.5-5.0;Rayment and Lyons, 2011). This effect is surmised to be caused by mixing 

high pH macadamia char to a lower pH PM and consequently increasing the biochar-soil 

mix pH. Such explanation appears to be the most intuitive and would be confirmed by 

repeated experiments; however other mechanisms involved in acidity changes cannot be 

disregarded. Acidity is the measure of H+ in solution but Al3+ plays an important role in soils 

as between pH 3.2 and 5.2 (CaCl2), where Al3+ reacts with water molecules forming AlOH2+, 
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and Al(OH)2
+, releasing extra H+ ions. Under high biochar application rates the Al3+ ions 

decreased, this effect being most likely related to Al3+ ions sorbed to biochar surfaces. Such 

mechanism would decrease the Al3+ ions concentration and therefore limit the range of said 

reaction leading to less H+ free ions in the soil solution and therefore decreased acidity. 

The increased availability of nitrate-N and decreased concentration of ammonium-N in 

response to biochar application suggest that biochar might have stimulated the process of 

ammonium nitrification. Similar effect reported by other scientists has been attributed to 

phenols adsorption on biochar surfaces (Clough and Condron, 2010; DeLuca et al., 2009) or 

increased soil porosity and facilitated environment for bacteria (DeLuca et al., 2006; Nelson 

et al., 2011). The addition of biochar to PM is suspected to have increased the porosity, this 

supported by decreased soil gravimetric water content, which makes the second 

mechanism likely to be in place in the pot experiment. Biochar post-trial and pre-

application analyses would be required to confirm the suggested phenol adsorption 

mechanism. 

Lower levels of ammonium-N may be also related to adsorption of NH4
+ to biochar particle 

surfaces (Lehmann et al., 2003; Lehmann et al., 2006; Spokas et al., 2011; Steiner et al., 

2008), as a result of bonding with organic acidic functional groups on char surfaces (Spokas 

et al., 2010; Spokas et al., 2011). This mechanism however does not explain increased 

nitrate PM concentrations and stays in contradiction with the observed correlation 

between nitrate-N and ammonium-N. Nitrate-N decline in time might either be connected 

with leaching of this nutrient or uptake by plants, the latter mechanism appearing more 

likely when considering seedlings early growth stage and high nitrogen requirements. 

Biochar did not induce any changes of ammonium-N or nitrate-N when applied to the field 

soil. It is concluded that biochar rates in the field experiment were too low to stimulate 

nitrification, or cause any other effect, as in the pot experiment. 

The quantity of potassium applied with biochar to PM equalled 32.85- 1,620.6 mg (B2-

B100) which is significantly higher in comparison to K applied in the fertiliser: 189 (F50) to 

377 (F100) mg. Therefore the effect on PM K concentration is most likely due to K release 

from biochar surfaces, which was also observed in case of lower K chars (Biederman and 

Harpole, 2013; Chan et al., 2007; Lehmann et al., 2003; Major et al., 2010). Even though the 

maximum biochar dose applied in the field was much lower than in the pot trial, increased 

K concentration was also observed in this experiment. The theory of K release from char 
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surfaces was supported in the field experiment, where applied fertiliser did not contain any 

potassium and could not have been a direct K source. The only other than biochar source of 

K in the field experiment could have been soil itself. Here, the control soil samples (not 

amended by either biochar or fertiliser) analysed during the experiment did not show large 

concentration of potassium, which makes the theory of soil being a K source highly unlikely. 

The theory of biochar releasing K from its surfaces is supported by biochar SEM-EDS 

analyses (Chapter 3) which revealed large amounts of KCl particles on the surface of 

macadamia biochar.  

The SEM-EDS analysis showed considerable concentration of sodium in various compounds 

on macadamia biochar surfaces (Chapter 3). Both in the pot and field experiments 

exchangeable sodium levels increased in response to high biochar application rates. 

Similarly to K, this effect can be explained by the amounts of Na introduced with biochar: 

4.8- 236.8 mg kg-1 in the pot experiment (B2- B100) and 4.10-42.24 mg kg-1 in the field 

experiment (B2-B20)1; and the release of Na+ ions to the soil solution. The analysis of 

exchangeable sodium changes in time in the pot experiment (rate of decay parameter) 

shows that biochar application at high rates (B80-B100) stimulated exchangeable Na 

decline from the PM. This effect is most likely connected with high initial values of ex. Na in 

the PM and possibly with biochar increasing the porosity of PM and resulting in elevated 

leachate of certain nutrients, this supported by decreased water content of PM after 

biochar application. Literature shows sodium as one of the cations which will leach the first, 

a result of weak strength of attraction to the surfaces of soil or biochar (Manoa, 2014). 

Sodium decline in time may therefore be a result of leaching from PM, however an 

increased plant Na uptake cannot be discounted. Leachate and plant material sodium 

analyses would support this hypothesis. 

Biochar increased plant available P in the PM when added at the rates of 50-100 t ha-1. The 

total quantity of phosphorus contained in the macadamia biochar increased with the 

application rate from 3.6-177.6 mg P kg-1 PM, compared to total P applied by fertiliser of 43 

mg P kg-1 (F50) and 86 mg P kg-1 (F100) PM. The increased level of available P in PM under 

high biochar rates is most likely explained by soluble P release from biochar (Lehmann and 

Joseph, 2009). However, decreased immobilization of PO4
3- due to the reduced availability 

of with Al3+ and Fe2+, may have also contributed to increased availability. Similar effect has 

                                                      
1Biochar treatments in the pot experiment and field experiment are not corresponding in terms of 
nutrients applied to the soil with biochar. This is a result of biochar volume calculations vs. soil 
volume to which it is applied (see chapter 4).  
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been noticed by Cheng (2006) and the decreased concentration of Al3+ when high biochar 

doses were applied supports such explanation. The mechanism of increased P 

concentration due to stimulated soil micro-organisms activity, cannot be confirmed or 

denied in the case of this study as no microbial analyses have been performed in any of the 

experiments.  

In contrast to K, P and Na, exchangeable magnesium and calcium levels were significantly 

lower at all rates of biochar application. Both Ca and Mg are among the cations which are 

sorbed to negative surfaces in the first order (Lehmann et al., Wales, 2007) and tend to 

behave similarly as both are divalent, alkali earth metals with small hydrated radius and in 

functional group 3 (Sigel and Sigel, 1990). The effect of Mg and Ca retention by biochar in a 

similar manner has been reported by Lehmann et al. (2003) and Major et al. (2010). In this 

experiment the decrease of these cations supports strong adsorption to biochar surfaces at 

the beginning of pot experiment. No differences in ex. Mg and Ca soil levels between 

biochar treatments suggest that biochar effect on these cations was independent of 

biochar quantity. This postulate is supported by increases in soil K and Na availability at 

higher biochar rates. In the pot experiment there were no significant changes in time while 

under field conditions both exchangeable cations were decreasing which suggest that they 

were gradually exiting the soil solution either due to the adsorption to biochar surfaces or 

as a result of plant uptake or leaching. 

Similarly to ex. Ca and ex. Mg, ex. Al level was lower under high biochar application rates. 

Soil aluminum is strongly related to soil pH (Kookana, 2010). The pH increases were shown 

before to be accompanied by significant reduction in ex. Al  by >50% at the higher rates of 

biochar application due to the adsorption of this cation to char surfaces (Chan et al., 2007). 

This effect, related to lower concentrations of both Al3+ and H+, has been explained when 

discussing pH changes in the PM and supported by a negative correlation between pH and 

Al3+ in the PM. Looking at the changes in time though it is clear that aluminum levels in soil 

were increasing which suggests that biochar could have adsorbed the Al cations but started 

releasing them in time, this effect possibly caused by adsorption of different cations to 

biochar surfaces. One of these cations could have been K as the level of potassium 

decreased in time. This effect has not been observed in any other study, but the results of 

correlation between exchangeable aluminum and potassium seem to support this theory 

(Spearman’s correlation, rho=-0.686). 



 82 
 

The effect of biochar adsorbing Al cations was not noticed in the field experiment as ex. Al 

increased in response to higher fertilisation and in time only. It might be speculated that 

although fertiliser did not contain any aluminum it had an indirect effect on ex. Al increase 

by elevating soil acidity. More H+ and Al3+ ions were present in the soil solution, which 

resulted in biochar not being able to adsorb all of them and compensate for that effect. 

The level of organic carbon in the pot experiment decreased following biochar application. 

The decay rate, however, was not statistically different among biochar treatments. Organic 

carbon level decreasing in the PM may be related to a positive priming effect. Such effect, 

result of soil OM mineralization following the application of labile C source to the growing 

medium, has been reported in other studies when biochar was applied (Luo et al., 2011; 

Wardle et al., 1998; Zimmerman et al., 2011). The chemical analyses of macadamia biochar 

quantified organic carbon at 4.55% which suggests most of the carbon was in a stabile 

form. The C13 – NMR analyses, however, showed one main peak at 124 ppm (Chapter 3) 

which is normally attributed to carbon in comparatively less stable alkene compounds (115-

140 ppm). The peaks characteristic for carbon in the aromatic rings is usually between 125 

and 150 ppm which implies that macadamia biochar did not have much of the latter. The 

mechanism of positive priming might be more complex and involve both soil and biochar 

changes (Luo et al., 2011). It is not clear if biochar enhances the loss of soil organic carbon 

or whether the soil organic content increases the loss of biochar from the soil. High PM 

organic matter content and carbon analyses in macadamia biochar suggest that both of 

these mechanisms most likely contributed to decreased organic C levels.  

Alternatively, OC drop following biochar application may be related to low biochar OC 

content in comparison to soil organic carbon and the effect of OC dilution. Consequently 

the lack of OC changes in the field experiment would be a result of both lower soil organic 

matter content in comparison to PM and low biochar application rates. 

5.5. Conclusions 

Biochar applied together with fertiliser both in the pot and field experiment influenced soil 

nutrient content and physical characteristics, however much more so in the glasshouse 

experiment. This is concluded to be related to higher biochar rates applied in the pot 

experiment and biochar incorporation method. The main mechanism involved in soil 

nutritional changes is directly related to biochar ability to adsorb ions and consequently 
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influence the ion concentration in the soil solution. It is therefore surmised that biochars 

selective sorption properties resulted in the displacement of K, Na cations by Mg, Ca, Al and 

H on macadamia biochar surfaces, the last two correlated with soil acidity decrease. 

Decreased electrical conductivity in response to biochar supports the fact that less ions 

were released from biochar than adsorbed. The release of cations was probably 

accompanied by anions release, namely phosphate but no evidence was found to support 

this hypothesis. Lowered soil moisture content in the pot experiment suggests the 

possibility of increased leachate of some ions, namely Na, Ca and Mg. Stimulated 

nitrification following biochar application was most likely responsible for lower ammonium-

N and increased nitrate-N levels. Biochar incorporation may have caused a positive priming 

effect which is potentially related to interaction and both-way mineralization of soil OM 

and macadamia biochar. Ideally, biochar would have to be retrieved and analysed after the 

end of the experiments to confirm proposed mechanisms. Most of the changes were 

observed only at the beginning of the experiment and beneficial results from biochar 

application (i.e. increased K soil concentration) did not continue till the end of the 

experiments. The magnitude of soil changes suggests that agronomic performance 

differences will be more evident in the controlled environment. Analysis of plant nutrient 

uptake following biochar induced changes would add to the understanding of macadamia 

biochar induced changes 
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6. PERCOLATING WATER ANALYSIS 

6.1. Introduction 

Biochar can have a positive influence on the physical and chemical soil environment 

(Amonette and Joseph, 2009; Chan and Xu, 2009; Downie et al., 2009; Krull et al., 2009). 

Differences reported in the soil environment following biochar application are mainly 

attributed to a) biochar having an influence on chemical transformations in the soil, b) 

biochar affecting soil physical properties e.g. porosity, bulk density, water holding capacity 

etc., c) stimulation of soil microbes (Lehmann and Joseph, 2009b; Major et al., 2009; Troy et 

al., 2014). 

Some changes are however related to decreased leaching or alterations in the chemical 

composition of the leachate following biochar application (Altland and Locke, 2012; 

Lehmann et al., 2003). Various types of charred biomass applied to the soil have been 

demonstrated to affect the leachate, mainly by increasing water holding capacity of the 

soils and limiting nutrients movement (Altland and Locke, 2012; Guo et al., 2014; Lehmann 

et al., 2003; Sika and Hardie, 2014; Zhao et al., 2009). These effects have been attributed to 

biochar increasing soil macro- and nano- porosity and enlarging soil SSA, consequently 

increasing fertilizer efficiency; as well as direct nutrient release from biochar surfaces 

(Major et al., 2009; Sika and Hardie, 2014). Various, often contradictory, mechanisms have 

been proposed to explain changes in nutrient content of leachate. 

A decrease in acidity following biochar application has been observed and in most cases 

attributed to biochar adsorbing both H+ and Al3+ ions and therefore reducing the soil 

solution pH (Chan et al., 2007; DeLuca et al., 2006; Ma and Matsunaka, 2013b; Nelson et 

al., 2011). Different chars have been also reported to increase nitrate-N soil concentration, 

this effect observed by Lehmann et al. (2003) in Ferrosol and Anthrosols when manure 

based charcoal was applied. Such effect has been ascribed to nitrate-N sorption to biochar 

surfaces as a result of positive charge sites present on chars surfaces and then nitrate-N 

release to the leachate as opposed to nitrate being immediately taken up by plants. A 

similar mechanism for a different effect was proposed by (Altland and Locke, 2012), who 

found that biochar application decreased nitrate-N leachate and suggested that NO3
- was 

bound to biochar surfaces, resulting in slower release to soil solution leachate. Analogous 

explanation was suggested by (Chan and Xu, 2009; Guo et al., 2014; Lehmann et al., 2003; 
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Major et al., 2009; Zhao et al., 2009). Nitrate-N leaching increased in sandy soils and 

decreased in silty soil after beech wood biochar application as a result of soil changes 

porosity (Borchard et al., 2012). Clearly, there are different propositions in the literature. 

These differences may be attributed to the type of biochar used, thus differing properties. 

Therefore different outcomes are likely to occur and the results be specific to biochar-soil 

combinations used i.e. results are situation specific, and perhaps no general consensus will 

emerge. Macadamia biochar added to field plantation soil did not induce any changes in 

either acidity or nitrate-N soil concentration (Chapter 5) yet the earlier studies suggest that 

it could conceivably alter movement through bulk flow. 

Limited ammonium leachate following biochar application was observed by (Lehmann et 

al., 2003; Sika and Hardie, 2014) and explained by vast increase in sandy soil SSA following 

pine wood biochar application. On the contrary (Bruun et al., 2012) reported slightly 

increased ammonium-N leachate when straw and wood based biochars were analysed in  

repacked sandy soil columns, this effect attributed to reduced nitrification rates, possibly 

due to toxic compounds in the biochar. This is unlikely to occur from addition of this 

macadamia biochar for two reasons. There were no signs of toxicity observed in either of 

the experiments (Chapter 5) and although no N concentration changes were observed in 

the field trial soil, in the pot experiment stimulated nitrification was proposed as a reason 

for N changes (Chapter 5). As the field experiment soil ammonium-N changes were not 

observed under biochar application it is unlikely that the leachate NH4
+ will change in 

response to biochar. 

Significant increases in K leachate were observed by Lehmann et al. (2003) when manure 

biochar was applied to two different soils. This effect was attributed to K ions release from 

biochar surfaces and evidenced by high K content of manure-based biochar; a similar 

mechanism was postulated by (Altland and Locke, 2012). As biochar application to the PM 

increased K content, it is expected that soil leachate K concentration may rise as well, this 

also supported by the fact that K+ ions have a weak attraction to biochar surfaces and are 

easily displaced by other base cations. Phosphorus concentration in soil leachate has been 

reported to both increase (Guo et al., 2014) and decrease (Altland and Locke, 2012; 

Borchard et al., 2012). Phosphorus level in the forest soil was not influenced by biochar 

application therefore the differences in soil leachate are not likely. It must be 

acknowledged though that field variability, especially in a plantation replant situation (as in 
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Chapter 5) would be expected to affect the results achieved, and that sampling from 

different locations may result in different findings 

Taking into account the range of mechanisms proposed to be involved in various leachate 

changes it is challenging to predict macadamia biochar induced leachate differences. 

Macadamia char admixed to field plantation soil resulted in only some elements 

concentration changes. The availability of potassium and exchangeable sodium increased 

when biochar was applied at the high rates, while other elements stayed at the same level, 

regardless of biochar doses. In this study it was hypothesized that macadamia biochar 

added to brown dermosol field experiment will reduce nutrients leachate mainly due to its 

high SSA and increased water holding capacity.  

6.2. Method 

In the field experiment, percolated water was collected in 114 custom-built Lysimeters (LIZ) 

installed in the E. nitens field plantation in Florentine Valley (South-West Tasmania). Two 

LIZs were installed per biochar*fertilizer treatment and replicated in 3 blocks. The 

equipment was installed at 1 m (bottom) depth prior to biochar application to the soil, in 

September 2011. Following transplanting LIZs were emptied every 5-7 weeks for 13 months 

and in total 10 batches of samples were collected. Samples were stored in the freezer (-18° 

C) and analysed in the Agricultural Science laboratory at the University of Tasmania. The 

design of Lysimeters and detailed schedule for sample collection, maintenance as well as 

the analyses methodology are presented in Chapter 4. 

6.3. Results 

Macadamia biochar increased soil leachate K concentration when added at the high rates. 

An interaction between the char and fertilizer affected nitrate-N, ammonium-N and pH but 

the results did not reveal clear trends. Phosphorus concentrations were unaffected by 

biochar or fertilizer application. 

6.3.1. Acidity 

Biochar at the rates of 2, 5, 10 and 15 t ha-1 increased soil solution pH when combined with 

F50. When full fertilization was combined with biochar applied at B2, B10 and B20, pH of 

the leachate decreased (Figure 6.1.A)(p=0.024). Within each biochar level, fertilization in 
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general increased acidity. pH changes in time showed no apparent trend, other than 

variability increased markedly after the first 100 DAP ( Figure 6.1.B). 

A B 

 
 

 

Figure 6.1. Soil leachate acidity in Florentine Valley field experiment in response to (A) interaction 

between 6 biochar application rates (0-20 t ha
-1

) and fertilization at 3 levels (0, 50 and 100% of the 

commercial rate)(mean across sampling times); (B) changes in time, 39, 87, 129, 164, 200, 236, 290, 

332, 374 and 409 days after planting (mean across biochar and fertilizer treatments). Error bars 

indicate the LSD (0.24)(p≤0.05). 

6.3.2. Nutrition 

Nitrate-N, ammonium-N and phosphorus in the soil water samples did not change in 

response to biochar application; however both nitrate-N and ammonium-N were influenced 

by the interaction between biochar and fertilizer (ANOVA, p≤0.05, B*F interaction). Of the 

elements tested, only the concentration of potassium increased when biochar had been 

applied.  

Nitrogen 

Biochar interacted with applied fertilizer, influencing the soil water concentration of the 

negatively charged nitrate concentrations. When 50% fertilizer was applied biochar 

decreased nitrate concentration at B5 and, when full fertilization was in place the highest 

biochar dose (B20) also resulted in nitrate decrease (p≤0.001)(Figure 6.2.A). Fertilization at 

both levels increased water nitrate concentration under B0, B2, B10 and B15, but not B20 

treatments. Nitrate concentration in water raised with time until 236 DAP and then started 

diminishing gradually, reaching values close to zero at 374 DAP (p≤0.001)(Figure 6.2.B). 
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A B 

Figure 6.2. Nitrate nitrogen level in soil leachate [mg L
-1

] in Florentine Valley field experiment in 

response to (A) interaction between 6 biochar application rates (0-20 t ha
-1

) and fertilization at 3 

levels (0%, 50% and 100% of the commercial rate)(mean across sampling times); (B)changes in time 

39, 87, 129, 164, 200, 236, 290, 332, 374 and 409 days after planting (mean across biochar and 

fertilizer treatments). Error bars indicate the LSD (A-13.38, B-14.81)(p≤0.05). 

Biochar did not influence ammonium level when no or 50% fertilizer was applied. Under full 

fertilization biochar increased concentration of the positively charged ammonium ions 

when added at the rates of 2 t ha-1, 10 t ha-1 and 20 t ha-1 (p=0.004)(Figure 6.3.A).  

Ammonium concentration in percolating water was rising in time, peaking earlier than 

nitrate at 164 DAP and then lessened to initial levels (p≤0.001)(Figure 6.3.B) i.e. near zero. 
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Figure 6.3. Ammonium nitrogen level in soil leachate [mg L
-1

] in Florentine Valley field experiment  in 

response to (A) interaction between 6 biochar application rates (0-20 t ha
-1

) and fertilization at 3 

levels (0%, 50% and 100% of the commercial rate) (mean across sampling times); (B) changes in time 

39, 87, 129, 164, 200, 236, 290, 332, 374 and 409 days after planting (mean across biochar and 

fertilizer treatments). Error bars indicate the LSD (A-0.38, B-0.41)(p≤0.05). 

Potassium 

Biochar application increased leachate concentration (by approximately 2.5 mg L-1) of the 

comparatively less mobile potassium ions when added at the rate of 20 t ha-1 (p≤0.001). At 

50% fertilization biochar added at 2 t ha-1 and 20 t ha-1 increased potassium concentration 

while at full fertilization potassium level was similar at all biochar rates (p≤0.001)(Figure 
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6.4.A). The peak in concentration in time, as for phosphorus and ammonia, was noticed at 

164 DAP (Figure 6.4.B). 

A B 

Figure 6.4. Potassium level in soil leachate [mg L
-1

] in Florentine Valley field experiment in response to 

(A) interaction between 6 biochar application rates (0-20 t ha
-1

) and fertilization at 3 levels (0%, 50% 

and 100% of the commercial rate)(mean across sampling times); (B)changes in time 39, 87, 129, 164, 

200, 236, 290, 332, 374 and 409 days after planting (mean across biochar and fertilizer treatments). 

Error bars indicate the LSD (A- 2.48, B-2.74)(p≤0.05). 

Phosphorus 

Phosphate concentration in percolating water changed in time and was not influenced by 

other factors (biochar or fertilizer application). Similar to ammonium, concentrations 

peaked at 164 DAP; the levels at all other measurement times were similar (p≤0.001)(Fig 

6.5). 

 

Figure 6.5. Phosphorus level in soil leachate [mg L
-1

] in Florentine Valley field experiment  in response 

to time of sampling 39, 87, 129, 164, 200, 236, 290, 332, 374 and 409 days after planting (mean 

across biochar and fertilizer treatments). Error bars indicate the LSD (0.35)(p≤0.05). 

6.4. Discussion 

Biochar increased K leachate content and when combined with fertilizer it influenced 

ammonium-N, nitrate-N and leachate acidity. Although counter-intuitive, in most cases 

observed changes did not follow the ones recorded in the soil. This effect might be related 

to the methodology of soil and soil leachate analyses. The analysis methods used for 
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analysing soil leachate were different from the ones applied to analyse soil samples and 

therefore could have shown the changes which were not detectable in the soil samples. 

Alternatively the design of Lysimeters and consequently the fact that soil leachate 

remained in the LIZs for an extended period of time before it was collected could have 

influenced the leachate nutritional content, particularly N, which might have changed its 

form. Similarly to biochar induced soil changes it might be assumed that unclear results 

were a consequence of low biochar rates and application method (Chapter 4 and 5) but also 

of site-soil-rainfall-biochar specifics, and perhaps site variability. The differences in the 

magnitude of soil/PM response to biochar application between pot and field experiments 

(Chapter 5) suggest that much clearer results could have been obtained when analysing pot 

experiment leachate.  

The peak in ammonium-N, phosphorus and potassium concentration in time (164 DAP) is 

most likely connected with the sampling time. This sampling event was at the end of a very 

dry season and the amount of water in the LIZs at the time of sampling was estimated 100 

times less than usual (Chapter 4), therefore it is surmised that higher concentration of 

these elements was a result of lower water availability due to low rainfall and water 

transpiration. Ideally the concentration would be converted to total amounts using the 

volume of water extracted from the LIZs. This was not possible due to the nature and 

design of the lysimeters. 

The application of biochar increased pH when combined with F50 but resulted in more 

acidic leachate when F100 was applied. This effect is clearly related to fertilizer acidic 

nature but also possibly connected with biochar ability to adsorb H+ and Al3+ to its surfaces, 

reducing concentration of these ions in the soil solution and therefore buffering a decrease 

in pH, a similar explanation proposed for PM pH changes in the pot experiment (Chan et al., 

2007; DeLuca et al., 2006). Even though this effect was not observed when analysing field 

soil pH (Chapter 5) it is surmised that the methods used for analysing the leachate were 

more precise and revealed this result. Ideally, similar methods would be used for the soil 

and leachate tests. The increased leachate acidity when biochar was combined with full 

fertilization might be related to increased nitrification following biochar application to the 

soil. Stimulated nitrification after chars application has been reported  by (Clough and 

Condron, 2010; DeLuca et al., 2009; DeLuca et al., 2006; Nelson et al., 2011) and concluded 

to be responsible for elevated nitrate-N and decreased ammonium-N soil levels in the pot 

experiment in this study. It is construed that when fertilizer was applied at the full rate 
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biochar doses were too low to adsorb all extra hydrogen and compensate for its elevated 

availability in the leachate. Significantly lower leachate pH at 164 DAP supports the 

explanation connected with very low water level  and thus – the high concentration of all 

nutrients. 

Nitrate concentrations in soil water decreased when biochar was applied at 20 t ha-1 with 

fertilizer applied at the full rate and B5 combined with F50. As proposed by Altland and 

Locke (2012) part of nitrate-N could have been adsorbed to positively charged sites on 

biochar surfaces, yet this process would have to be confirmed by biochar post-experiment 

particle analyses. Intuitively, decreased nitrate concentration in the soil solution leachate 

should be accompanied by increases in nitrate-N concentration in the soil. However this 

effect was not observed which can be explained either by different soil analysis methods or 

by increased plant NO3
- uptake. E. nitens trees have been described as more likely to uptake 

nitrogen from the soil in the form of NH4
+ rather than NO3

- which makes the mechanism 

rather unlikely (Garnett and Smethurst, 1999). Apart from eucalypt seedlings the 

infestation of weeds in the field plantation was significant. It is therefore suspected that the 

elevated levels of nitrate-N in the soil could have been compensated by other species 

uptake, consequently not detectable in the leachate. Weed performance analysis would 

have to be performed to support or decline this hypothesis. 

Biochar added at any rate increased the concentration of ammonium-N in the leachate 

when combined with full fertilizer, and at 20 t ha-1 a 3 fold increase was observed. Brunn et 

al. (2012) reported slight increases in ammonium-N soil solution leachate concentration 

and attributed this effect to reduced nitrification rates, following the addition of toxic 

compounds with biochars application. This explanation is unlikely in the case of this 

experiment as no signs of macadamia biochar toxicity were observed; this supported by the 

analysis of PAH levels (Chapter 3). The effect of higher ammonium-N concentration is 

possibly related to the high amount of NH4
+ that was introduced to soil with fertilizer 

(Chapter 4) and increased soil porosity when char was incorporated. Biochar has been 

presented before as having the ability to increase the porosity of the soil, which in some 

cases results in better soil nutrients holding capacity (Major et al., 2009). In the other cases 

it might result in increased leaching as the soil acquires better aeration and water 

movement capabilities, so down-movement and in consequence leaching of some nutrients 

may be a result of that (Major et al., 2009; Tryon, 1948). The increasing concentration of 

ammonia under higher biochar rates was most likely the result of fertilizer application (high 
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NH4
+ input) combined with a slight porosity increase, and the fact that such effect was 

observed only when full fertilizer was applied supports this explanation. The porosity of the 

soil was not analysed but high SSA as a result of micro-porosity was one of the main 

characteristics of macadamia biochar (Chapter 3).  

Similarly to ammonium-N, leachate potassium levels increased in response to a combined 

influence of both fertilizer and biochar, and raised in response to most biochar application 

rates. Biochar used in this experiment was rich in potassium and the maximum dose 

applied per plant equaled 289.08 mg (Chapter 3). The effect of increased soil Colwell K in 

both pot experiment and field trial was explained by K ions release from macadamia 

biochar surfaces (Chapter 5) and is suggested as the most likely explanation of K 

concentration increase in collected leachate. 

Of significance is that the fertilizer did not contain any potassium so leachate K 

concentration increase in response to fertilization must have been a result of more complex 

mechanisms. As the only source of potassium in this experiment was biochar, the 

application of fertilizer must have triggered potassium release from biochar surfaces. Such 

stimulation could have been an indirect result of high levels of ammonium-N introduced to 

the soil with fertilizer. Nitrification process in the soil is connected with increased 

concentration of the H+ ions in the soil leachate. These however were concluded to be 

adsorbed in the biochar surfaces and connected with biochar availability to decrease soil pH 

(Chapter 5). Adsorption of H+ ions to char surfaces is connected with other cations release 

from said surfaces and in the case of this experiment the released cations were K+ and Na+ 

(Chapter 5). Therefore the magnitude of ammonium-N application by the fertilizer is likely 

to be mirrored by K increase in the leachate.  

Phosphorus concentration in the leachate did not change in response to either biochar or 

fertilizer application. Surface runoff is generally regarded as the main pathway for the loss 

of P from the soil as P has been classified as relatively immobile within the soil (Sims et al., 

1998). This is because P is known to strongly interact with both organic and inorganic 

components resulting in low soil solution P with reduced risk of loss by leaching.  

Fertilizer applied in the field contained phosphorus and its application increased P levels in 

the soil but not in the collected leachate. It appears that PO4
3- from fertilizer must have 

been taken up by plants and some of P might have runoff. The lack of phosphorus changes 

can be explained by low P content of biochar and low biochar rates applied in the field 
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experiment, as well as P tendency to be subject to surface runoff rather than infiltration 

(Chapter 3 and 5).  

6.5. Conclusions 

Changes in soil leachate acidity were attributed to increased nitrification process in the soil 

and biochar abilities to adsorb H+ ions resulting in increased pH when F50 was applied and 

more acidic leachate under full fertilizer treatment. Elevated ammonium-N was most likely 

related to high amounts of NH4
+ introduced to the soil with fertilizer and increased soil 

porosity after biochar application while release of K+ from char surfaces was surmised to be 

the reason for increases of this element in the leachate. The reasons for decreased nitrate-

N leachate were not determined, however the mechanism for nitrate-N uptake by the 

weeds was proposed. The lack of P changes was attributed to low biochar P content and 

biochar application rates. In total little leached nutrients changes were detected, which is 

surmised a result of site variability, supported by large statistics LSD values.  It is suspected 

that biochar application method as well as design of lysimeters played a crucial role in the 

limited biochar effect on nutrients leachate, however the lack of clear trends in the data 

due to biochar having had limited effect on soil leachate cannot be disregarded. The results 

of leachate analysis did not follow changes in the soil in most cases which was ascribed to 

different methods used to analyze these mediums and/or design of LIZs and leachate 

residence time before it was collected. Mechanisms attributed to leachate changes would 

have ideally be confirmed in a column leaching study where the full volume of treated soil 

and soil leachate can be analyzed. 
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7. EFFECTS OF BIOCHAR AND FERTILISER ON GROWTH 

RATE AND PLANT NUTRITION 

7.1. Introduction 

Different types of charred materials have varied effects on soil quality and plant agronomic 

performance when added as a soil amendment. The results are influenced by the 

geographical location of experimental trials, types and quality of soils to which biochar was 

applied and, the plant species analysed; both increases and decreases in final yield have 

been reported (Major et al., 2010; Van Zwieten et al., 2010a; Yamato et al., 2006; Zhang et 

al., 2011). Possible explanations for biochars positive effect include their potential to a) 

raise soil pH, b) increase soil porosity and therefore increase water holding capacity of the 

soil, and c) mediate nutrient exchange processes, or d) introduce nutrients to the growing 

media (Chen et al., 2010). Some of these processes are known to influence transformation 

of one of the world’s most important supplemental elements, nitrogen. Nigussie et al. 

(2012) found increased N in lettuce leaf tissue following application of a maize stalk 

biochar. Similarly Van Zwieten et al. (2010) and Chan et al. (2008) reported the effect of 

biochar on N uptake, in wheat and radish (Chan et al., 2008; Nigussie et al., 2012; Winkler 

et al., 2009). In these studies, the increase in tissue N was attributed to a high 

concentration of N in the applied biochar and partly to the stimulation of nitrification in the 

soil. A meta-analysis performed by Biederman and Harpole (2013) demonstrates most 

biochars increase above ground yield and plant tissue K concentration across various crops. 

Increased K, also one of the most commonly applied crop nutrients, has been observed in 

response to the application of char with soybean (Major et al., 2010) and cowpea (Lehmann 

et al., 2003). For phosphorus, both a reduction and elevation of plant P concentrations have 

been reported following biochar application in radish and maize (Chan et al., 2007; Ma and 

Matsunaka, 2013b). Reductions in tissue concentrations have been attributed to growth 

dilution when high doses of fertiliser were applied while elevated concentrations have been 

attributed to phosphate ions release from biochar surface and a subsequent increase in 

uptake (Ma and Matsunaka, 2013a). From these studies it is clear that depending on the 

soil type, biochar traits and plant species, char application may affect plant tissue chemical 

composition and plant growth in a different manner. 
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While biochar induced leaf tissue changes and proposed mechanisms to explain these vary 

greatly across different species, in case of eucalyptus leaf tissue analyses, other sources of 

variation in chemical composition must be considered as well. Close et al. (2005) showed 

variation in leaf chemical content when whole plant leaves were analysed and suggested 

that variation between seedlings was higher than variation between treatments (Close et 

al., 2005). Similarly, Lambdon and Hassall (2005) suggested that changes in chemical 

composition of leaf tissue with age can be more variable than that between particular 

plants. These sources of variability must be considered when attributing eucalypt leaf tissue 

changes in these experiments to biochar related processes. 

Changes in soil chemistry following biochar application to the potting mix used in this 

project revealed increased P, nitrate-N, K, Na and pH. In the field soil, K and Na 

concentrations were elevated when compared to the zero biochar treatment (Chapter 5). It 

was expected that these changes would be reflected in increased growth of the E. nitens 

seedlings and young trees, particularly under reduced fertiliser rates, resulting in greater 

height, better yield and increased leaf tissue nutrient concentration, under both glasshouse 

and field conditions. The investigation also aimed to determine if medium biochar 

application rates (10-20 t ha-1) could supplement fertiliser used in both plantations and 

nurseries while still providing seedlings of equal quality as under full fertiliser application 

with no biochar addition. 

7.2. Method 

Two experiments were conducted to determine growth and leaf tissue chemical changes in 

E. nitens in response to biochar applied at up to 100 t ha-1. A basic emergence study was 

performed on seedlings in a pot trial as an additional experiment. Details concerning data 

collection were presented in Chapter 4. In both pot and field experiments seedling height 

was measured on a regular basis and leaf tissue of the youngest fully expanded leaves 

(YFEL) analysed on four occasions. Total biomass, leaf number, leaf area, leaf water content 

and below ground biomass were recorded at 4 destructive harvests in a glasshouse pot 

experiment. The field trial design was a full factorial with 6 levels of biochar (0, 2, 5, 10, 15 

and 20 t ha-1), 3 levels of fertiliser (0, 50, 100% of the recommended rate), replicated 3 

times, with each experimental unit containing 8 sample plants. The pot trial was an 

unbalanced factorial design of 8 biochar rates (0, 2, 5, 10, 20, 50 80 and 100 t ha-1) with 3 

replicates of 4 sample plants but no biochar control treatments (biochar combined with no 
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fertiliser) were included. Tables 7.1 and 7.2 summarise macadamia biochars effect on 

changes in leaf tissue concentrations. Details of the chemical analyses and experimental 

trials are presented in Chapter 4. 

7.3. Results 

The effect of biochar was more substantial in the pot experiment, where leaf tissue 

concentrations of P, K, Na and B all increased. A decrease in leaf tissue Ca was the only 

effect observed in response to biochar application in the field experiment. In most cases 

the results are presented as average values across time and fertiliser treatments to 

emphasize the trends rather than solitary changes. 

7.3.1. Emergence 

The emergence of the seedlings in the pot experiment was not influenced by either biochar 

or fertiliser applied at any rate. 

7.3.2. Seedling growth 

Growth of the eucalypt seedlings in the pot experiment was mostly unaffected by biochar 

application except, when measured as height. The major changes were observed in 

response to full fertilisation. In comparison to the controls (B0F50, B0F100), biochar 

application decreased seedling height when fertiliser was applied at half the commercial 

rate and, when applied at the highest biochar rates (B50-B100) under full fertilisation 

(p≤0.05). Seedling growth was not influenced by biochar application when measured as leaf 

area, leaf number, above ground biomass or root mass (data not presented). 

In the field experiment, biochar application up to 20 t ha-1 did not affect seedling growth or 

the success of establishment (Fig 7.2). 
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Figure 7.1. Mean height [mm] of E. nitens seedlings in the pot experiment in response to interaction 

between 8 biochar application rates (0-100 t ha
-1

) and fertilisation at two levels (50 and 100% of the 

commercial rate)(mean across sampling times), error bars indicate LSD (15.77)(p≤0.05). 

 

 
Figure 7.2. E. nitens tree height in Florentine Valley field experiment (mean values from 93-647 days 

after planting ) in response to an interaction between 3 fertiliser rates (0% [F0], 50% [F50] and 100% 

[F100] of the optimum dose) and 6 biochar rates (0-20 t ha
-1

)(mean across sampling times). Error 

bars indicate the LSD (52.57)(p≤0.05). 

While there was an overall trend for char to decrease plant height in the pot trial, and no 

response pattern in the field, two anomalies to this were noted (B10F50 in the pot 

experiment and B15F50 in the field experiment). 

7.3.3. Changes in plant tissue elemental composition 

A greater response was observed in the pot trial, with only one leaf tissue element 

concentration changing when biochar was applied in the field. 

Of the major nutritional elements (N, P, K, S) only phosphorus and potassium tissue 

concentrations were influenced by biochar application, with the level of both nutrients 

increased. While biochar application increased nitrate-N in the potting mix this did not 

result in higher leaf tissue total N concentration (data not shown). The concentration of the 

minor nutritional element sodium and the trace element boron increased when biochar 

was applied, while that of calcium, magnesium and manganese decreased (pot 

experiment)(table 7.1 and 7.2). 
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Table 7.1. P values of the Eucalyptus nitens leaf tissue elemental composition changes in response to 

biochar (B), fertiliser (F) application and time (T) in the pot experiment. Significant values at P≤0.05, 

n.s. = not significant.  
 B F T B*F B*F*T B*T F*T 

N n.s. ≤0.001 ≤0.001 n.s. n.s. n.s. ≤0.001 

P ≤0.001 n.s. ≤0.001 0.018 n.s. ≤0.001 0.033 

K ≤0.001 n.s. ≤0.001 ≤0.001 0.019 ≤0.001 n.s. 

Ca ≤0.001 n.s. ≤0.001 n.s. n.s. n.s. 0.004 

Mg  ≤0.001 0.032 ≤0.001 n.s. n.s. n.s. n.s. 

S n.s. ≤0.001 ≤0.001 n.s. n.s. n.s. n.s. 

Na ≤0.001 0.014 ≤0.001 n.s. 0.013 ≤0.001 0.013 

Mn ≤0.001 n.s. ≤0.001 n.s. n.s. n.s. ≤0.001 

Fe n.s. ≤0.001 ≤0.001 0.018 n.s. n.s. ≤0.001 

Cu n.s. n.s. ≤0.001 n.s. n.s. n.s. n.s. 

B 0.022 ≤0.001 ≤0.001 n.s. n.s. n.s. n.s. 

Zn n.s. 0.016 ≤0.001 n.s. ≤0.001 n.s. 0.004 

 

Table 7.2. P values of the Eucalyptus nitens leaf tissue elemental composition changes in response to 

biochar (B), fertiliser (F) application and time (T) in the field experiment. Significant values at P≤0.05, 

n.s. = not significant.  

 B F T B*F B*F*T B*T F*T 

N n.s. 0.044 ≤0.001 n.s. n.s. n.s. 0.002 

P n.s. ≤0.001 ≤0.001 n.s. n.s. n.s. n.s. 

K n.s. ≤0.001 ≤0.001 n.s. n.s. n.s. ≤0.001 

Ca 0.016 n.s. ≤0.001 n.s. n.s. n.s. n.s. 

Mg  n.s. n.s. ≤0.001 n.s. n.s. n.s. n.s. 

S n.s. 0.009 ≤0.001 n.s. n.s. n.s. ≤0.001 

Na n.s. n.s. ≤0.001 n.s. n.s. n.s. n.s. 

Mn n.s. ≤0.001 ≤0.001 n.s. n.s. n.s. n.s. 

Fe n.s. n.s. ≤0.001 n.s. n.s. n.s. 0.038 

Cu n.s. ≤0.001 ≤0.001 n.s. n.s. n.s. ≤0.001 

B n.s. ≤0.001 ≤0.001 n.s. n.s. n.s. 0.03 

Zn n.s. ≤0.001 ≤0.001 n.s. n.s. n.s. 0.04 

 

Phosphorus in pot trial leaf tissue 

Incorporation of phosphorus into the leaf tissue increased at the highest rates of biochar 

application (p≤0.001), with this response greatest where fertiliser was applied at half the 

full rate (p=0.018; B80-B100)(Figure 7.3. A). The level of plant leaf phosphorus decreased 

over time (p≤0.001)(Figure 7.3. B). 

A B 
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Potassium in the pot trial leaf tissue 

Leaf potassium increased when biochar was applied (p≤0.001) with the magnitude 

determined by the rate at which fertiliser was added and the time that had elapsed since 

application (p=0.003). Potassium leaf concentrations were greater than the zero biochar 

controls (B0F50, B0F100) at biochar rates of 50 to 100 t ha-1, with these higher rates 

increasing the response at half fertilisation; this response was similar to phosphorus (Figure 

7.4. A and B). Leaf tissue K concentration was positively correlated to Colwell K in the 

potting mix (Spearman’s concentration rho=0.501, p ≤0.05)(Figure 7.4.C)  

  

  
Figure 7.3. Phosphorus concentration [%] in leaf tissue of Eucalyptus nitens seedlings in the pot trial 

in response to: (A) fertilisation at two levels (50% and 100% of the commercial rate) in partial 

factorial combination with 8 biochar application rates (0-100  t ha
-1

)(average data from 4 harvests: 

135, 177, 219 and 269 days after planting, (B) Days after planting, at 135, 177, 216 and 269, (mean 

across biochar and fertiliser treatments). Error bars indicate the LSD (A- 0.03, B-0.02)(p≤0.05). 
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A B 

  
C  

 

 

Figure 7.4. Potassium concentration [%] in leaf tissue of Eucalyptus nitens seedlings in the pot trial in 

response to: (A) fertilisation at two levels (50% and 100% of the commercial rate) in partial factorial 

combination with 8 biochar application rates (0-100 t ha
-1

)(means across sampling times), (B) Days 

after planting, 135, 177, 219 and 269, (mean across biochar and fertiliser treatments). Error bars 

indicate the LSD (p≤0.05). (C)Spearman’s correlation between Colwell potassium level [mg kg
-1

] in the 

potting mix and total potassium leaf concentration [%] in E. nitens seedlings in the pot experiment (A- 

0.09, B- 0.07)(p≤0.05). 

Calcium and Magnesium in the pot trial leaf tissue 

Calcium in the leaf tissue decreased in response to biochar application of 10 t ha-1 or more 

(p≤0.001)(Figure 7.5.A). Magnesium concentration was also lowered under high biochar 

treatments, namely B80 and B100 (p≤0.001)(Figure 7.5.B). Both Mg and Ca decreased in 

time (p≤0.001)(data not presented). 

A B 

Figure 7.5. (A)Calcium and (B)Magnesium concentrations [%] in leaf tissue of Eucalyptus nitens 

seedlings in the pot experiment in response to 8 biochar application rates (0-100 t ha
-1

) (mean across 

sampling times and fertiliser treatments). Error bars indicate the LSD (A-0.04, B- 0.02)(p≤0.05). 
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Micronutrients in the pot trial leaf tissue 

Sodium 

Sodium concentration responded to biochar application, increasing under higher biochar 

treatments (B50-B100)( p≤0.001)(Figure 7.6.A). The Na level decreased until 219 DAP and 

did not change after that (Figure 7.6.B). The level of Na was lower under F100 in 

comparison to F50, but this effect was noticed only at the beginning of the experiment (135 

DAP)(Figure 7.6.B). 

A B 

  

Figure 7.6. Sodium concentrations [mg kg
-1

] in leaf tissue of Eucalyptus nitens seedlings in response to 

(A) 8 biochar application rates (0-100 t ha
-1

) in the pot experiment (mean across sampling times and 

fertiliser treatments), (B) fertilisation  (50% and 100% of a commercial dose) in time (135, 177, 216 

and 269 DAP) in pot experiment (means across biochar rates). Error bars indicate the LSD (A- 0.008, 

B-0.006)(p≤0.05). 

Manganese 

The concentration of plant Mn decreased in response to medium and high biochar doses 

(B20-B100)(p≤0.001) but within each application rate, the concentrations increased over 

time (rate of decay analysis)(Figure.7.7. A and B). 

A B 

Figure 7.7. Manganese concentration [mg kg
-1

] in leaf tissue of Eucalyptus nitens seedlings in the pot 

experiment in response to (A) 8 biochar application rates (0-100 t ha
-1

) (mean across sampling times 

and fertiliser treatments) and (B) Rate of decay under biochar treatments (B0-B100 – 0-100 t ha
-1

). 

Error bars indicate the LSD (75.45)(p≤0.05). 
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Boron 

Boron concentration in plant material of the pot experiment only increased under B50 in 

comparison to control treatment (p=0.022) (Figure 7.8. A). A higher concentration of boron 

was also found under the half fertiliser treatment rather than at the full rate and, similar to 

manganese, increased over time (data not presented)(Figure 7.8.B).  

A B 

  

Figure 7.8. Boron concentration [mg kg
-1

] in leaf tissue of Eucalyptus nitens seedlings in the pot 

experiment in response to (A) 8 biochar application rates (0-100 t ha
-1

) (mean across sampling times 

and fertiliser treatments), (B) Days after planting (135, 177, 216 and 269 DAP) (mean across biochar 

and fertiliser treatments). Error bars indicate the LSD (A-2.02, B-1.44)(p≤0.05). 

Calcium in the field trial leaf tissue 

Biochar applied at any rate decreased calcium concentration in the plant tissue 

(p=0.016)(Figure 7.9.A), with a comparable response across all rates. Contrary to the pot 

trial, leaf tissue calcium in the field increased with time (p≤0.001)(Figure 7.9.B).  

A B 

  
Figure 7.9. Calcium concentrations [%] in leaf tissue of Eucalyptus nitens trees in Florentine Valley 

field experiment in response to (A) 8 biochar application rates (0-20 t ha
-1

) (mean across sampling 

times and fertiliser treatments) and (B) Days after planting (95, 216, 338 and 463 DAP) (mean across 

biochar and fertiliser treatments). Error bars indicate the LSD (A- 0.05, B- 0.04) (p≤0.05). 

7.4. Discussion 

Biochars are known to change the nutrient content of plant tissue, and this effect has been 

attributed to improved soil physical and nutritional characteristics and a subsequent 



 103 
 

increased uptake by plants (Major et al., 2010; Nigussie et al., 2012; Yamato et al., 2006) 

following biochar application. Variations in nutrient concentration in leaf material have 

been reported both to result in increased crop yield and, to have had no effect on a plants 

agronomic performance (Blackwell et al., 2010; Ma and Matsunaka, 2013b; Schulz et al., 

2013). In this pot experiment phosphorus, potassium, boron and sodium leaf concentration 

increased after biochar application while calcium, magnesium and manganese 

concentrations decreased. Under field conditions biochar decreased leaf calcium only. Both 

in the pot and field experiments the analysis of E. nitens growth revealed some biochar and 

fertiliser effects, however in most cases the changes were limited to 1-4 biochar rates and 

revealed clear trends only in case of some nutrients concentrations. 

More changes were observed in the pot experiment than under field conditions and this is 

most likely due to methodology. The rates of biochar applied in the pot experiment were 

higher than in the field trial, and most of the observed changes in PM occurred under the 

higher biochar doses (B50-B100). In the field biochar was applied within a limited area and 

depth around the plants, and the eucalypt roots would have outgrown the treated soil 

volume, where biochar potentially influenced nutrient uptake. The concurrent effect of 

these factors may have resulted in limited nutritional changes under field conditions, but 

could not have affected the response in the pot experiment seedlings. 

A limited collection of work has reported both rises in and, inhibition of germination, this 

varying greatly and dependent on the soil type and pyrolysis conditions associated with the 

biochars production (Kookana, 2010). Some experimental outcomes indicate that biochars 

may contain phytotoxic compounds that can decrease plant germination and growth 

(Rogovska et al., 2012). Paper mill waste biochar added at 10 kg ha-1 has been shown to 

improve wheat germination but not that of radish or soybean on a Ferrosol soil in NSW, 

Australia, however the same char added to a Calcarosol had no influence on the 

germination of all three species (Van Zwieten et al., 2010a). On the contrary, negative 

results on germination have been observed by Kwapinski et al. (2010) who showed that 

Miscanthus biochar made at 400 °C inhibited the growth of maize (Zea mays L.). The 

application of the macadamia shell biochar used in this study did not influence seedlings 

emergence and given the high rates used, indicates that this char did not contain phytoxic 

compounds. Although increased concentrations of P and K were observed in plant tissues 

early in the experiment, these interactions between this char and the growing media used 

did not provide any measured advantage to the success of seed germination.   
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Biochar application in the pot experiment increased plant K uptake, and this phenomena 

following the application of charcoal has been reported for soybean (Major et al., 2010) and 

cowpea (Lehmann et al., 2003), though the mechanisms of this effect have not been fully 

understood. In the pot trial, increased available potassium in the PM correlated 

(Spearman’s correlation) with increases in leaf potassium. Consequently, it would seem 

increased availability of K in the soil solution through release from biochar was the main 

mechanism leading to changes in the leaf tissue. Both chemical and SEM-EDS analyses 

showed a high concentration of potassium in the macadamia biochar (Chapter 3), thus K 

release into the potting mix and a consequent increase in leaf tissue under high char 

application rates appears a reasonable explanation. This effect was however not observed 

in the field experiment, despite soil exchangeable K levels increasing, which is most likely a 

result of roots outgrowing the biochar application region, discussed before (Chapter 5). 

Cation release from biochar surfaces might also partly explain the increased uptake of Na 

and B by the plants.  

Similarly to potassium, sodium leaf tissue concentration in the pot experiment increased 

under high biochar rates. Sodium was introduced to the potting mix at 236.8 mg kg-1 PM 

when biochar was applied at the rate of 100 t ha-1 with SEM-EDS analysis revealing a large 

amount of Na in various compounds on the biochar surfaces (Chapter 3). The increase in 

leaf tissue Na suggests that as with K, increased sodium availability in the PM due to release 

from biochar surfaces increased availability and elevated the leaf tissue content. Analysis of 

the rate of decay in the field experiment revealed a significant difference under one of the 

treatments (B5) while no changes were observed for other biochar rates. An analysis of the 

ln transformed exponential model revealed a poor fit (R2=0.282) which suggests that the 

rate of decay model did not represent this particular data set well, and that elevated Na 

concentration of the leaves was determined by initial quantities of sodium introduced with 

the biochar, rather than biochar induced transformations.  

In the same way, the initial quantities of boron introduced to the soil with biochar and 

subsequently increased availability to the root systems is the most likely reason for 

increased leaf concentrations of this element. Even though the quantity of boron applied to 

the soil with biochar was not large, a maximum of approximately 1 mg kg-1 (B100), this 

could have been enough to increase plant tissue B concentration (Sakya et al., 2002), 

especially given the increase was not large and observed only under one biochar rate. An 



 105 
 

uptake calculation based on the total plant weight and total tissue boron concentration 

would have to be carried out to support this explanation.  

The increase in leaf boron could however have been driven simultaneously by a separate 

mechanism. Similarly to other nutrients, much of the soil available B lies within the root 

zone where mycorrhizas are common (Sakya et al., 2002). Different types of biochar have 

been reported to increase mycorrhizal activity in the soil (Solaiman et al., 2010; Warnock et 

al., 2007) and this activity might be connected with increased boron uptake following 

biochar application. Mycorrhizas changing the B uptake capacity of other genus species, 

silver birch (Betula pendula)(Lehto et al., 2004) have been observed. Similar effect would 

have to be explored in Myrtaceae family to determine if there is a relationship between 

mycorrhiza, boron uptake and eucalypt. The fact that boron increase was relatively small 

and observed only under B50 implies that there were no clear trends or basis for further 

speculations. 

For the other elements analyzed, net availability in the growing mix did not explain changes 

in leaf tissue. For these elements other mechanisms such as ionic charge may have played a 

role. Concentrations of the divalent calcium and magnesium decreased in the pot 

experiment leaf tissue, and in the field, leaf Ca was diminished. To maintain balanced 

charge following the release of K, Na and B, other cations such as Mg and Ca and Mn could 

have been adsorbed to char surfaces to compensate for the positively charged ions release 

(Chapter 5). Additionally, various biochars have been reported to adsorb Mg and Ca 

through electro-static attraction to their negatively charged surfaces (Lehmann et al., 

2009). The results presented in this study showed decreased levels of exchangeable Mg and 

Ca in the potting mix (Chapter 5). The decrease of leaf tissue Ca and Mg concentration 

suggests that plant uptake could have mirrored the decreased growing mediums availability 

following biochar application. While the results of both experiments support this 

conclusion, as with boron, other mechanisms cannot be discarded. If plants have abundant 

supplies of potassium at their disposal, their  magnesium content will be relatively low 

(Bear, 1965; White, 2012), this mechanism postulated to result from a reduction in net 

translocation of Mg rather than decreased uptake of Mg by root cells (Sigel and Sigel, 

1990). As soil Colwell K increased under high biochar doses this mechanism may well have 

lowered leaf Mg concentration, root cells analyses would be required to confirm that. 
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The decrease in Mn leaf concentration in response to biochar application has not been 

reported before, and again, may be a result of more than one mechanism. Organic soils are 

more likely to show manganese deficiencies as this metal ion is readily chelated by organic 

molecules, making it less available (Broadley et al., 2012; Hong et al., 2010). Biochar has 

been reported to be an excellent adsorber of organic molecules through the chelation of 

various metal ions (Al3+, Fe3+, Ca2+)(DeLuca et al., 2009; Zimmerman et al., 2011). In this 

experiment, the potting mix contained large amounts of organic matter and application of 

biochar could have resulted in increased chelation on biochar surfaces, decreasing 

availability, and consequently leaf Mn concentration. This explanation fits the observations 

of the field experiment, where organic matter soil content was lower in comparison to 

potting mix; here the effect of Mn decrease was not observed. Detailed post-application 

biochar analyses and paired experiments in the controlled environment would have to be 

carried out to confirm this hypothesis.  

Manganese not chelated would have been present as an exchangeable fraction of the soil 

solution in the same way as other cationic nutrients (Peverill et al., 1999) and as with other 

ions, this may have influenced availability. Manganese, being usually a divalent cation is 

likely to behave in this case similarly to Ca and Mg (Hong et al., 2010; White, 2012). The 

decreased Mn concentration under moderate and high doses of biochar may therefore be 

connected with both chelation and biochars capacity to sorb Mn cations to its surface, 

therefore making it less available for plant uptake.  

As with other nutrients, the increased P concentration in plant material may have resulted 

from elevated PO4
3- availability in the potting mix following biochar application. This has 

previously been attributed to adsorption of Al3+ and Fe2+ cations at the interface of the 

biochar surface, subsequently limiting their ability to immobilize phosphate (Chapter 5). On 

the other hand, phosphate uptake by plants is stimulated by mycorrhizal fungi (Schachtman 

et al., 1998). Since various chars have been reported to stimulate mycorrhizal root 

colonialization, it can be hypothesised that the increased leaf tissue P concentration is 

partly caused by this effect. Although biochar increased leaf P levels, its application did not 

influence above or below ground seedling biomass, nor the leaf area or seedling growth. 

This effect is possibly explained by plan cell phosphorus storage. Veneklaas et al. (2012) 

suggested that the inorganic orthophosphate form of P may be stored in vacuoles by plants 

to buffer changes of P concentration in cytoplasm (Schachtman et al., 1998). Vacuoles are 

not responsible for cell expansion and it is possible that higher levels of phosphorus in leaf 
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tissue were buffered by vacuoles. Detailed leaf tissue microscopy analyses would add to the 

understanding of this effect. 

The combination of high biochar rates (B80-B100) and full fertiliser resulting in lower P and 

K plant concentrations when compared to F50, suggests that there must have been another 

factor mitigating the uptake of these ions. It is counter-intuitive that at the same rate of 

char application, P and K concentration would be greater at F50 than at F100. The pattern 

in P and K leaf accumulation did not reflect that of the soil at high biochar rates, which 

suggests that char application could have influenced uptake mechanisms at the root soil 

interface. Decreased uptake in both cases could be related to concentrations above 

sufficiency for these nutrients in plant material and the risk of toxicity. This however seems 

unlikely as K and P leaf concentrations were optimal or close to optimum according to 

published literature (Reuter and Robinson, 1997). This was observed during the whole 

experiment and no signs of limited seedling growth or toxicity were observed. Chan et al. 

(2007) reported lower P concentrations in radish plant tissue in the presence of N fertiliser 

when compared to nil fertiliser treatments, relating this to P dilution by the larger dry mass 

(DM) production (growth dilution). This explanation can be disregarded in the experiment 

presented here as the differences in DM production by seedlings under different biochar 

treatments were not significant (p>0.05) at any time. More detailed analysis focused on 

anionic P and cationic K uptake would be required to determine a mechanism responsible 

for these changes. 

In both experiments certain doses of biochar combined with halved fertilisation resulted in 

similar or greater seedlings height as under full fertiliser treatment with no biochar added. 

However, there were no clear trends and this was only noticed with B15 in the field 

experiment and B10 in the pot trial, which does not allow drawing any definite conclusions. 

Even though more nutritional changes were observed in the pot trial they were obviously 

not mitigating the reduction of fertiliser as effectively as in the field experiment. It suggests 

that an unaccounted factor was at work affecting seedlings growth. Nevertheless, observed 

similarities in height suggests lower fertiliser doses can be used in forest plantation 

establishment while still sustaining seedlings quality, providing more detailed experiments 

are carried out to present clear trends in both leaf nutrition and seedlings growth. 

In general the limited leaf tissue nutrient content changes in E. nitens following biochar 

application are most likely a result of direct nutrient release and adsorption to biochar 
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surfaces. This explanation is supported by the fact that the Rate of Decay analysis did not 

reveal significant changes in the nutrient leaf concentration. Observed results suggest that 

biochar has a potential to assist forest plantations nutritional management and productivity 

but more experimental results are required to determine the exact mechanisms of biochar 

effects and the possible changes in forestry procedures.  

7.5. Conclusions 

The results of both pot and field experiments show that the addition of macadamia biochar 

to growing mix together with fertiliser affected seedlings and young trees leaf chemical 

composition. Biochar did not increase plants growth when added to growing medium at 

any dose, with the exception of two isolated treatments. This effect did not reveal any clear 

trends but suggests it may be possible to reduce commercial fertiliser rates while 

maintaining seedlings agronomic quality if further experiments are established to 

investigate biochar-eucalypt productivity pattern. Increased plant K, Na and B uptake was 

most likely related to ion release from biochar surfaces and increased soil availability and 

plant uptake of these ions. Lower concentration of eucalypt leaf tissue Mg, Ca and Mn was 

attributed to decreased soil availability of these cations due to biochar sorption properties, 

however in both increase and decrease of nutrient concentration in leaf tissue further 

experimental work would be required to support the above explanations. Elevated 

concentration of tissue P was related to increased phosphate availability, resulting from 

different mechanisms, but did not at any point increase plant growth. Chemical changes in 

leaf tissue are mainly attributed to elevated or decreased availability of particular cations in 

the growing mediums, however, alternative mechanisms in case of P, B, Mn and Mg were 

proposed as being partly responsible for the chemical changes. The limited response to 

biochar application in the field was related to lower biochar rates, application method and 

soil type. Biochar post experimental analyses and further experimental work would allow 

establishing greater understanding of discussed mechanisms. 
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8. ECONOMIC ANALYSIS OF BIOCHAR SYSTEM 

IMPLEMENTATION ON PLANTATION FORESTRY 

8.1. Introduction 

The development of forestry plantations on State owned land in Tasmania commenced in 

the early twentieth century with Pinus radiata (Don, 1836). The goal was to secure a source 

of softwood timber for doors, windows and other building uses, as local hardwoods were 

considered unsuitable for these purposes and large quantities of softwood timber were 

being imported into the State (Elliot, 2011). The first hardwood plantations were 

established in the late 1930’s, mainly in the north-west of the State. Most of these were 

small Eucalyptus plantings within patches of native forest as a trial to evaluate species 

performance. Today, there are over 100,000 hectares of plantations on State forest land in 

Tasmania, with approximately 53,000 ha of soft woods and 56,000 ha of hardwoods. These 

plantations are used to supply timber to local and interstate industries. The current 

hardwood plantation estate comprises two main species: E. nitens (85%) and E. globulus 

(15%). 

The post harvest residues from eucalyptus plantations are currently retained or burned on-

site. An alternative use of these residues, namely biochar production, will be investigated in 

this chapter. This will be done on the basis of presenting a financial model, built to estimate 

costs and benefits connected with introducing biochar systems into plantation forestry in 

Tasmania. The model described in this thesis assumes using post-harvest residues to 

produce biochar on-site and different methods of dealing with the product e.g. immediate 

application to the soil, storage, use in nurseries or sale. The background and rationale for 

model implementation are presented in the next sections, while the detailed assumptions 

of the model are discussed in section 9.4. The results of the model are then presented and 

discussed. The whole cycle of plantation production and insight into current knowledge 

about char application to forestry systems will be addressed, with an emphasis in the 

residue management, and this necessitates a brief description of standard (current) 

practices and assessment of costs of them, as a basis on which to consider changes on the 

introduction of biochar into the system as well.  
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8.2. Wood char for forestry plantations, examples 

from literature 

Biochar has been presented earlier (Chapter 2) as a potential soil conditioner, improving 

both soil nutrient and water retention leading to increased productivity. It has also been 

suggested as a practical means to manage nutrition of the soil and a potential solution for 

decreasing fertiliser input for forestry plantations (Chapters 5, 6, 7). Despite the dominant 

use of biochar in agriculture only few studies have investigated its utilisation in forestry and 

other tree-based systems (Stavi, 2013). There are however, a number of papers that discuss 

the effects of wildfires on forest soils and can be used as indicators for biochar influence on 

forest soils (Bell, 1994; DeLuca et al., 2006). Although this topic has been investigated in 

Chapter 2 of this thesis, some more examples of char application in forestry systems are 

presented in Table 8.1. Increased shoot-to-root ratio in Silver birch (Betula pendula) and 

Scots Pine (Pinus sylvestris) as an effect of charcoal from wildfires mixed with substrates 

from microhabitats has been reported in a glasshouse study in north Sweden (Wardle et al., 

1998). De Luca et al. (DeLuca et al., 2006) reported increased nitrification rates in the soil 

after application of wildfire-produced charcoal mixed with ammonium salts. The results 

differ significantly and are dependent on multiple factors, such as soil pH, texture, climate 

and char specifics. The summary of these and other results are presented in table 8.1.  
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Table 8.1. A summary of the results of studies performed on wildfire-produced charcoal influence on 

the soil (Stavi, 2013) 

LOCATION CLIMATE SOIL 

TYPE 

TREE 

SPECIES 

RESULT EFFECT 

ON 

TREES 

SOURCE 

Sweden cold Various Silver birch, 

Scots pine 

charcoal stimulated 

microbial biomass in 

some cases and 

affected litter 

decomposition 

Increased 

shoot-to-

root 

ratio, 

greater 

growth 

of silver 

birch 

(Wardle et 

al., 1998) 

USA 

(Montana) 

temperate Typic 

Dystrocr

yepts 

Ponderosa 

Pine 

Charcoal mixed with 

ammonium increased 

nitrification rate 

decrease

d 

solution 

concentr

ations of 

plant 

phenolics 

(DeLuca et 

al. 2006) 

USA 

(Montana) 

temperate Lithic 

Dystrust

ept 

Ponderosa 

pine 

Charcoal increased 

sorbing of litter-

phenols and 

augmented litter 

nitrification 

  (MacKenzi

e and 

DeLuca, 

2006) 

Sweden cold ? Scots pine Charcoal mixed with 

humus increased mass 

loss of humus through 

either respiration or 

leaching of soluble 

compounds 

  (Wardle et 

al., 2008) 

USA (Idaho) temperate ? Ponderosa 

pine, 

douglas-fir 

Charcoal mixed in 

mineral soils 

augmented abundance 

of ammonia-oxidizing 

bacteria and increased 

nitrification rates 

  (Ball et al., 

2010) 

Switzerland temperate Cambiso

l 

various Charcoal mixed with 

organic materials in 

mineral soil did not 

increase 

decomposition rate of 

litter 

  (Abiven 

and 

Andreoli, 

2011) 

Russia cold Brown 

taiga 

Gmelin larch Charcoal increased soil 

pH, water content and 

available P 

increased 

germinati

on of 

Scots 

Pine 

(Makoto et 

al., 2011) 

 

Although biochar has been shown earlier in this thesis to be not a significant factor in 

improving Eucalyptus nitens growth, its potential to reduce fertiliser inputs in a plantation 
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remains an important characteristic. The productivity of the young forestry plantations 

(expressed as seedling height, total biomass and stem diameter) remained at the same 

level under full fertiliser treatment with no biochar added, as the treatments receiving 

combined fertiliser and biochar application.  

Similarly, there is a potential to use biochar produced from forestry residues for different 

purposes. For example it might be returned to the site in order to condition the soil, 

improve water retention and possibly decrease the rates of required fertilisation. Some 

biochar can be used in forest nurseries as a growing medium/additive to growing medium 

for seedling production and/or replace the organic matter content (usually bark) used 

currently in the forest nurseries growing mixes. Biochar can also be stored for an extended 

period as well as sold immediately after production. However, the biochar market is still in 

the development stage and there may not be many wholesalers in operation.  

8.3. Current forestry management practices and 

costs 

There are approximately 56,000 ha hardwood plantations on Tasmanian State forest 

(Figure 8.1). The typical plantation is being managed for 25 years to produce high value 

pruned logs for industry. Within the next five years (2014 – 2019) it is expected that an 

average area of 2000 hectares will be harvested and replanted each year. Approximately 

75% of the replanting will occur in the north of the state (FT, 2013). Eucalypt plantations 

are managed primarily for the production of high-value pruned logs for industry and export; 

however, unpruned saw logs, peelers, poles, posts and pulp are also produced. The 

standard management unit is the plantation coupe and management practices are adjusted 

according to conditions on the coupe, such as soil type and fertility, location and terrain, 

species and silviculture regime.  
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Figure 8.1. Map of forestry plantations on State forest land, Tasmania, black areas represent location 

of plantations (FT database, 2010-2013). 

Plantations have been established on sites that were previously native forests (ex-native 

forest), on cleared agricultural land (ex-agriculture), or following a previous plantation crop 

of the same or different species (second rotation, 2R). Replacement of native forests by 

plantations (native forest conversion) is no longer practiced. Typical maintenance 

procedures to prepare the ground for plantation establishment include: harvesting and 

clearing the slash (harvest residues) from previous plantation rotation, soil cultivation and 

chemical application (i.e. herbicides and insecticides).  

Clearing the harvest residues on a coupe can be done by a number of methods depending 

on the volume and size of residues, the soil type and quality, location of the coupe and 

slope. Typically, the residues are windrowed by gathering all the course woody residues 

into large rows with an inter row distance ranging from 15-60 m. The large windrows are 

normally associated with ex-native forest sites where large volumes of residues (not utilised 

by industry) needed to be arranged on-site in uniform rows to allow machinery access for 

establishing the plantation crop. These windrows were usually burnt to reduce their size 

and allow seedlings to be planted within them. Now, when second rotation plantations are 

established on sites that have these existing large windrows, the harvest residues are 

usually re-stacked in the old windrows, and they are crushed and burnt again. This reduces 

the size of the windrows even further. On sites that do not have these large windrows, it is 

a standard practice to arrange the harvest residue into small windrows spaced 10 – 15 m 



 114 
 

apart and these are left unburnt on-site and gradually decompose. Burning is avoided 

where possible in order to conserve organic matter. 

Soil cultivation is traditionally done by a mound cultivator, pulled behind a tractor which 

creates continuous mounds on top of which the seedlings are planted (Figure 8.2). There is 

however a new method being implemented now. The method utilises spot cultivation 

which is combined with waste transport to the existing windrows and formation of waste 

wood heaps in between windrows (Figure 8.3). The waste heaps might be burnt in order to 

clear the site and condition soil with ash and burnt organic matter. Burning across the site 

(broadcasting) is not a preferred method in the current practices. 

Prior to planting the ground is usually sprayed with herbicide to avoid extensive 

competition from weeds. Spraying is done either by ground-based machines or aerially and 

might be repeated at later stages if required.  

Seedlings are grown in the nursery until they are about six months old then they are 

transported to the coupes for planting in spring (Sept – Oct) using the Pottiputki forestry 

tool (described in Chapter 4). Planting is followed by manual fertilisation (spot fertilisation) 

4 – 6 weeks later, with the application rate determined by the soil fertility and rotation. A 

new spot cultivator however, might be equipped with a mounting suitable for automatic 

fertilisation.  

Management of plantation after the establishment (2 years) includes operations such as 

additional fertilising where needed, insect and browsing monitoring and control, refill 

planting (if required), pruning and thinning. The production of high-value pruned logs 

  

Figure 8.2. Bracke mound cultivator used in 

forest plantations (FT database, 2010-2013). 

Figure 8.3. Bandicoot spot cultivator used in forest 

plantations (FT database, 2010-2013). 
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involves high pruning to 6.4 m between age 3 to 5 years followed by production thinning, 

typically between age 8 to 12 years. The timing and intensity of these operations is adjusted 

to local conditions and requirements. The estimated costs of plantation establishment and 

management during the 20 – 25 year rotation are presented in Table 8.2, which also 

provides an indication of practices, and therefore costs, that are likely to change in a system 

using biochar. Costs associated with these items are reassessed later in this chapter. 

Table 8.2. List of major plantation forestry establishment and maintenance operations and items 

generating costs in Tasmania (source: Forestry Tasmania staff personal communication). Star 

indicates the cost groups that are likely to change under proposed biochar scenario. 

ITEM/SERVICE COST [$] PER UNIT COST [$] PER HA 

Seedling� 0.15-0.20/seedling 190 

Planting 160/ha 160 

Herbicide spraying 100/ha 100 

Site prep- windrowing � 800/ha 800 

Site prep- cultivation � 500/ha/mean from spot and 

mound 

700 

Fertilisation � 80-120/ha labour 100 

Fertiliser � 
2220/ha 220 

Browsing monitoring 48/hour 25 

Insect monitoring 46/hour 10 

Shooting 48.43/hour 200 

Maintenance costs 40/ha/4 years 200 

Pruning 1.70/tree/lift (3 lifts) 1530 

ADDITIONAL OPERATIONS 
3
Site prep- burning � 100/ha 100 

4
Post-plant herbicide spraying � 102/ha 102 

5
 Infill planting costs � 36/hour 80 

TOTAL COST OF ESTABLISHING AND MANAGING PLANTATION PER HECTARE       $4229 

(Plus additional costs of $282/ha) 

  

                                                      
2200g of Di-Ammonium Phosphate per seedling 

3
Burning is not the preferred method of managing harvest slash because the aim is to conserve organic matter to 

protect the productive capacity of each site after harvest. However, where slash loads are very heavy and impede 
operations broadcast burning may be warranted; or where old windrows are to be re-burnt by re-packing with 
harvest slash, then windrow burning may be carried out. Of the 47 coupes planted over the 3 years site preparation 
operations that included burning occurred in approx. 70% of the coupes.  
4
Post plant herbicide spraying is done where it is required and currently occurs on 9% of plantations on average. 

5Re-planting is only done if 85% or more of the planted seedlings do not survive the first 6 months of growth. During the last 
years (2011-2014) replanting was done only on 3% of all the plantations in Tasmania. 
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8.3.1. Residue management 

Currently residues from plantation harvest are used in two ways. They are either stacked 

within the existing windrows and burnt onsite to produce charcoal and ash which is 

considered to condition the soil or, they are left on site (without burning) to decay and 

contribute to the soil organic matter. These two methods and the actual residue volume 

dedicated for each use can be combined and adjusted depending on site requirements.  

 

Figure 8.4. Bracke mounder machine in the Forestry Tasmania coupe 

Residue management is influenced by cultivation method chosen for the site depending on 

the volume of residue onsite, the slope and terrain, and whether row orientation is to be 

changed from the previous crop (FT, 2013). The current range of methods for managing 

post-harvest residues enables proper site clearance and preparation for planting of next 

rotation seedlings (Figure 8.4). Nutrients from residue wood are returned to soil when the 

residues are left on site to decay. Ash from on-site burns of windrows and heaps can 

condition soil as has been recognized in forestry and agriculture for centuries (FT, 2013; 

Greaves and May, 2012; Rothe. A, 2013).  

In the next chapters however, an alternative method for dealing with post-harvest residues 

while preparing the site for the next rotation planting will be presented and discussed. 
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8.4. Scenario background and assumptions 

8.4.1. Outline of biochar production and use scenario 

The scenario proposed in this analysis assumes using post-harvest residues and a mobile 

unit to perform the process of pyrolysis of woody residues on-site in order to produce 

biochar which can be applied to the site. The scenario assumes three uses of the final 

product: (a) on-site application, (b) use in the forest nurseries and (c) commercial sale of 

the char. Figure 8.2 presents a graphical explanation of the proposed biochar scenario. Fifty 

percent of the harvest residue is retained on site at time of harvest. The other fifty percent 

is used to make biochar, with 60% of this biochar returned to the site, 30% sold onto the 

open market and 10% made available for use in plant nurseries. 

 

Figure 8.5. Diagram of the biochar scenario indicating the flow of forestry primary and secondary 

products.  

The amount of post-harvest residues retained on site varies depending on the site 

productivity, age of trees at harvest and machinery used for harvesting. On average it has 

been estimated (Sadanandan Nambiar, CSIRO, pers. comm.) that the amount of organic 

residues, specifically slash (coarse and fine woody debris) and litter, vary between 10 and 
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70 t ha-1. For the modeling purposes an average value of 30 t woody residues per hectare 

has been assumed. 

Typical residues retained on site after harvest consists of branches and small logs not 

exceeding 200 mm diameter with lengths less than 2.4 m (FT, 2013). Stumps and root 

systems are also retained on-site after harvest. It is very difficult to estimate waste material 

moisture content as it is dependent on weather conditions at the time of harvest and in 

months following. Typical freshly cut wood moisture content oscillates around 30%. When 

left on site and air-dried for several months it is likely to decrease to approximately 12% 

(FT, 2013; Greaves and May, 2012). At this moisture content (12%) wood residues are 

considered suitable to be burnt on site or in a kiln to produce energy (Rothe. A, 2013). 

In the current site clearing and preparation process heavy machinery e.g. excavators, 

tractor mounted cultivators and /or mounders are widely used to move and stack residue 

wood. This machinery could also be used to transport the target residues from within the 

coupe to the edge where a mobile pyrolysis plant could be located. Additionally, the 

harvest method could be modified to deliver appropriate residues to the coupe edge for 

later collection for processing by pyrolysis. 

8.4.2. Mobile pyrolysis unit 

There are different mobile pyrolysers available on the market. In this analysis the 

CharMaker MPP20 mobile pyrolysis plant from the Earth Systems® was considered as the 

most suitable for the proposed scenario. 

The mobile pyrolysis unit is designed for low cost disposal of woody materials in remote 

areas. The unit is designed around a standard 6 m (20 feet) shipping container and can be 

easily transported on a truck or trailer. The unit is intended to operate on large pieces of 

material (up to 2 m length) in order to by-pass the need for on-site chipping of large 

volumes of woody matter. The CharMaker MPP20 is equipped with primary heating and 

emission control (after-burner) systems supplied by diesel oil during start-up. It can operate 

unattended and has the potential to sequester several kilo-tonnes of carbon dioxide 

equivalent (CO2e) per annum through char production (EarthSystems, 2013).  
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Figure 8.6. Unloading the mobile pyrolyser 

(MPP20) (EarthSystems, 2013) 

Figure 8.7. Loaded mobile pyrolyser (MPP20) 

(EarthSystems, 2013) 

The unit can process up to 4 tonnes of waste wood (moisture content up to 35%) per batch 

and produce approximately 1 tonne of biochar after 4 hours operation. The process 

temperature ranges between 350 and 600°C. The CharMaker normally operates on 3 

batches per day. Assuming that only 50% of waste wood will be used for making biochar it 

leaves the State with approximately 30,000 tonnes of waste wood to be processed per year 

and resulting 7,500 tonnes6 of biochar made a year. 

After biochar is made in the mobile unit it can be left on site until arrangements are made 

to apply it into the soil. The most suitable solution for that seems to be incorporation of 

biochar to the soil during cultivation. The two current cultivation methods could 

accommodate a hopper and delivery device for applying the biochar and have been 

presented and discussed in the previous sections. Detailed assumptions and the model for 

cost-benefit analysis are presented in section 8.5. 

8.4.3. Determination of scenario costs and benefits 

Plantation management inputs and costs were presented and discussed in section 8.1 

(Table 8.1). This section is aimed at presenting and analysing costs and benefits resulting 

from proposed biochar scenario. While some of the costs and benefits are easily estimated, 

others – especially environmental and social benefits, can only be discussed in concept 

terms, as it is difficult to quantify the monetary values for these in a financial model. Table 

8.3 presents identified costs and benefits arising from the proposed biochar scenario.  

  

                                                      
6Assuming 56,000ha of plantation forestry in Tasmania (Eucalyptus), 2,000ha harvested annually, 4:1 
wood :biochar production rate. 
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Table 8.3. List of potential costs and benefits resulting from biochar scenario implementation. The 

items in italics were not incorporated into the model. 

COSTS 

Pyrolyser capital and operating costs 

Feedstock collection 

Feedstock preparation 

Labour costs for pyrolyser operation 

Biochar application/transport and storage 

Chemical treatment of the site 

BENEFITS 

Savings resulting from minimised clearing of the site 

Decreased fire risk 

Decreased cost of windrowing 

Decreased fertiliser amounts in the field 

Carbon sequestration 

Biochar use in the nurseries – decreased cost of seedlings production 

Better seedlings resistance to drought 

Limited costs of second fertilising 

Revenue from biochar sale 

Community approval and new jobs 

 

Potential benefits from the scenario such as carbon sequestration, less fertiliser use for 

plantation establishment, drought management or lowered site clearance costs are 

presented as monetary values and implemented into the model. There is however another 

group of benefits which cannot be quantified in monetary terms; these include community 

approval and decreased fire risk which will be discussed in the last section of this chapter. 

Pyrolyser costs are estimated on the basis of technical information provided by one of the 

manufacturers (Earth Systems®, Australia). Feedstock collection, preparation and biochar 

application back to the site is calculated on the basis of equipment, heavy machinery and 

labour costs. Detailed assumptions are presented in the following section while formulas 

used in the model are listed in Appendix 8.  

8.5. Base Scenario specific assumptions  

For the purpose of estimating the costs and benefits from the biochar scenario a model was 

built in Microsoft Office Excel® (ver. 2007) and a set of assumptions made to meet the 

specific conditions of this analysis. For the cost modeling purposes some base assumptions 

for the pyrolyser, operating costs and forestry coupes have been made and incorporated 

into the model. The detailed assumptions are presented further in this chapter. 
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The model consists of several formulas (Appendix 8) calculating the assumed values into 

the total annual benefit. The total benefit calculated by the model is based on three main 

components:  

1) savings on standard operations, calculated on the basis of decreased costs connected 

with the need for in-fill planting, fertilisation, site clearing/preparation after plantation 

harvest and requirements for herbicide spraying following biochar application,  

2) potential benefits or disadvantages arising directly from biochar production and 

application calculated with respect to carbon prices, current market prices of biochar and 

financial benefits of using biochar in the forest nurseries and; 

3) facility and process costs associated with incorporation, namely pyrolyser capital cost, 

operating costs and costs involved in handling feedstock and biochar.  

Pyrolyser 

The lifespan of the pyrolyser was estimated to be 10 years and the annual maintenance 

costs were assumed to equal 4% of the capital cost. More detailed assumptions are 

presented in Table 8.4.  This type of equipment was chosen mainly due to its mobility and 

the fact that it can be easily transported between forestry coupes. 
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Table 8.4. Assumptions for the Pyrolyser capital, operational costs and technical characteristics used 

in the model. 

Pyrolyser Assumption Justification 

Mobile pyrolyser capital cost $250,000 Including the delivery 

Mobile pyrolyser useful life 10 years Assumed as advised by manufacturer 

Finance interest rate per annum 10% Standard financial assumptions 

Labour cost per batch $30/hour The costs of a tractor operator 

Diesel used per batch 10 L Following manufacturer 

recommendations 

Diesel ($/L) $0.8 An average price for bulk purchases 

Pyrolyser maintenance ($/year) 4% capex Following manufacturer 

recommendations 

Machine hire to feed pyrolyser $15/t of 

feedstock 

Standard prices and time required to load 

the pyrolyser 

Cost of moving pyrolyser between 

example -coupes 

$300 Labour involved in loading pyrolyser onto 

the truck and transport over 20 km 

(average distance in between example 

coupes) 

Operation per year 330 days Based on the holidays and annual leave of 

the employees, assuming some days off-

duty for  maintenance purposes 

Average number of batches per 

day 

3 Manufacturer’s recommendations 

 

A set of assumptions has been made for the feedstock amount and processing methods, 

the assumptions are listed and explained in Table 8.5.  

Table 8.5. Assumptions for the feedstock material used in the model. 

Feedstock and area Assumption Justification 

Model coupe size 30 ha Estimated in co-operation with Forestry 

Tasmania  

Waste wood per hectare 30 t Estimated in co-operation with Forestry 

Tasmania  

Waste wood pyrolysed per 

hectare 

15 t Based on wood moisture and limitations 

in terms of waste wood required to be 

left over for the soil nutrition purposes 

Average batch size 4 t Pyrolyser capacity 

Cost of delivering waste to the 

edge of coupe 

$10/tonne Assumed with regards to machinery 

operation and time required 

Waste wood moisture content 

after seasoning 

15% Estimated in co-operation with Forestry 

Tasmania  

Feedstock to produced biochar 

ratio 

4:1 Average from available technologies and 

the manufacturer’s recommendation 

Equivalent tonnes of CO2 stored 

in one tonne of biochar applied 

in the soil 

3 Assumed on the basis of available 

literature(Rothe. A, 2013) 
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Assumptions concerning agronomic benefits have been made with respect to the rate of 

biochar applied to the soil and potential benefits/costs arising from it. Different values were 

used for the benefits connected with raising seedlings, site preparation, fertilisation and 

post-planting herbicide spraying (Table 8.6). Detailed formulas describing the relationship 

used in the model can be found in Appendix 8.   

Table 8.6. Model assumptions for the agronomic benefits based on results from previous chapters. 

Products and agronomic 

benefits 

Assumption Justification 

Raising seedlings saving $10/ha Biochar application rate of 1-5 t ha-1, 

supporting the early growth of seedlings 

and increased drought resistance 

resulting in lower seedlings mortality 

Site preparation savings $200/ha ≥15 t wood processed per hectare 

Fertilisation savings $45/ha Application rate of 1.5-3 t ha-1 

Post-plant spraying effect -$10/ha Application rate of 1.5-3 t ha-1 

Final product distribution  

(onsite : nurseries : sale) 

60% : 10% : 30% Based on the forestry needs and market 

demand 

Price for CO2 $10/tonne Assumed price 

Biochar : CO2 1 : 3 Estimated on the basis of available 

literature of CO2 equivalents 

Nurseries savings $50/t biochar Considers the costs of raising seedlings 

in the nurseries, potting mix 

composition and fertiliser required, 

based on agronomic results from 

previous chapters 

Biochar price $1000/t Current average biochar price in 

Australia 

Distance from the coupe to 

biochar collection site 

100km Plantation distribution in Tasmania 

(average) 

Extra costs of incorporating 

biochar to the field 

$30/coupe Biochar incorporation into the soil will 

be done during cultivation. Extra time 

might be needed to reload biochar 

containers, unblock blockages 

 

A sensitivity analysis was performed to determine the effect of particular assumptions on 

the total benefit of the scenario. To keep the analysis simple only the influence of a single 

factor change was investigated at the time. The influence of biochar production scale 

(pyrolyser capacity, pyrolyser number, and amount of processed wood) and external 

factors (prices per 1 tonne of biochar and 1 tonne of CO2 storage) were investigated and 

discussed. 
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8.6. Results 

The model was run with the assumptions outlined in section 8.5 showing a net annual 

benefit of $179,514.  

It is considered that due to the innovation of the discussed scenario costs and benefits may 

vary significantly depending on many factors. In order to understand the relationship 

between the total net benefit and particular assumptions as well as to determine the 

critical factors for the total benefit of the proposed scenario, a sensitivity analysis was 

performed. Table 8.7 presents the results of total benefits when changing assumptions of 

the model. Even though no down-ward scenarios were directly analysed, certain factors, 

e.g. production capacity, biochar price, carbon price were thoughtfully investigated and the 

pessimistic outcomes presented (later in this section). 

Table 8.7. Different variants of the proposed scenario (MPP40 stands for a CharMaker (Earth 

Systems®) with a greater capacity to process feedstock (up to 10 t ha
-1

).  

No Scenario Total benefit Change to base 

0 Base assumptions $179 514 - 

1 Bigger pyrolyser (MPP40, capacity of up to 

10 t/batch)(capital cost $350 000) 

$375 029 $195 515 (117%) 

2 Working  days increased to 350 $197 414 $24 850 (14%) 

3 Final product distribution  

70 :10 :20 

$83 284 -$96 230 (52%) 

4 Increasing amount of processed wood/ha 

to 30 t 

$179 514 - 

5 Increasing carbon price to $20 $ 189 844 $10 330 (10%) 

6 Biochar price $2000 $ 460 546 $281 032 (167%) 

7 3* MPP40 $1 124 270 $944 756 (552%) 

 

Scenario 1 presumes the use of a larger pyrolyser, capable of processing up to 10 tonnes of 

feedstock per batch instead of 4 tonnes per batch in the base scenario. The capital costs 

and operating costs increase but the total benefit from implementing this scenario rises as 

well, which is connected with the cost per unit processed wood and biochar produced. 

Increasing the number of operating days per year (scenario 2) raises the total benefit of the 

venture by 15%. Changes presented in scenario 3 include differences in production 

distribution, increasing field application by 10% with a corresponding decrease in sale 

distribution and in consequence decrease the total benefit of implementing the project to 

$83,284. Increasing the quantity of processed waste wood by 100% did not change the 
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benefits of implementing the scenario which is connected with increasing costs of 

feedstock processing (Table 8.7, Figure 8.8.A). Increases in carbon price as well as the price 

per tonne of biochar would lead to significant increases in the total economic benefits (10 

to 166%). The last scenario presents the benefit achievable when three pyrolysers of a 

bigger size (MPP40, capable of processing 8 tonnes of wood per batch)) are used to process 

waste biomass. 

A 

 

B 

 

C 

 

Figure 8.8. Total benefit of biochar scenario implementation ($) in relation to A) amount of waste 

wood processed per ha of plantation, B) carbon price per tonne of CO2  stored, C)  price per tonne of 

biochar. 
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As presented in Figure 8.8.A. the optimum amount of residue wood to be processed per 

hectare, under assumptions used in the model equals 20 tonnes. Lower or higher amounts 

result in a decreased total benefit. Figures 8.8.B and 8.8.C present a strong linear 

dependence of total benefit of the project on the price of carbon and biochar. Figure 8.8.B 

however, reveals that if carbon price equals zero, the total benefit of the project will equal 

$155,300, which suggests that the carbon price is not a crucial factor for project financial 

feasibility under current assumptions. Figure 8.8.C shows a linear, steep dependence of 

total project benefit to biochar market price. Biochar net benefit per tonne of $600 more, 

comparing to base scenario, doubles the benefits of the project while biochar price falling 

to less than $400 per tonne results in negative economic returns.  

 

Figure 8.9. Total benefit of the proposed scenario and biochar amount dedicated for sale in relation 

to percent of total produced biochar, dedicated for sale. Assuming biochar price of $400/tonne. 

Figure 8.9 presents the total benefit of the scenario and the total amount of biochar for 

sale, assuming a different final product distribution (between nurseries, field application 

and sale) and a constant biochar price of $400 per tonne. The total benefit of the project 

increases rapidly when a larger share of biochar is dedicated for sale. Depending on the 

biochar production scale total amount of biochar produced to enter the market varies 

between 288 and 966 tonnes per annum. 

8.7. Discussion 

Tasmania has a sustainable supply of forest biomass for different use of at least 3 M green t 

y-1, which would be sourced predominantly from plantations, with a smaller fraction coming 

from native forest re-growth harvest (Rothe. A, 2013). The biochar scenario proposed in 

this study has been shown to have potential to provide financial benefits under specific 
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assumptions. The most crucial factor for scenario feasibility was found to be biochar market 

price. Therefore the developing biochar market in Australia has to be investigated in details 

prior to scenario implementation.  

8.7.1. Sensitivity 

The sensitivity analysis determined which factors were critical to the scenario and how 

stabile the scenario was in terms of financial feasibility. Both scenarios assuming the use of 

a larger capacity pyrolyser (10 t per batch) are connected with significant increase in 

biochar production and consequently more final product to make use of. The base scenario 

assumes production of biochar exceeding 1000 t per year for the sale. The increased 

capacity pyrolyser scenario doubles this amount while the scenario of using more feedstock 

to produce biochar (scenario 4) assumes biochar production six times greater than the base 

scenario. Introducing such quantities of biochar to the Australian market may be difficult in 

terms of finding potential purchasers (Glover, 2009; Joseph, 2009; McCarl et al., 2009) and 

would have to be preceded by more detailed market studies to ensure that there will be 

enough interest from traders and purchasers (Glover, 2009).  

Increasing the number of operation days per year (scenario 2) and presuming higher price 

for tonne of CO2 stored (scenario 5) did not change the total project benefit significantly 

(+/- 15% of the base scenario benefits) which means neither the number of days nor the 

carbon price qualifies as highly influencing factors comparing to biochar price or pyrolyser 

capacity. Similarly assuming the number of operation days to be 280 per year decreased 

the total benefit of the project by 20% (data not presented). The linear relationship 

between the total benefit of the project and biochar price per tonne can be assumed to be 

critical for the project feasibility. Therefore the early development stages of biochar market 

in Australia and Worldwide must be considered when preparing the scenario for the 

implementation on a commercial scale (Glover, 2009).  

Similarly, the change in production distribution, presented in scenario 3 also reveals a 

significant difference in total project benefits in comparison to base scenario (52%). This 

effect is most likely connected with benefits arising from biochar application to the field 

being not commensurable to benefits arising from biochar sale. 

The sensitivity analysis performed within this model was based only on one factor-change 

at the time. To fully understand the effect of particular factors and the benefits resulting 
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from different scenarios a more detailed sensitivity analysis, including simultaneous factors 

values fluctuations, would have to be performed (Pearce et al., 2006). 

8.7.2. Unaccounted factors 

The model presented in this thesis required some simplifications dictated by the objectives 

of the thesis and the chapter. The model was aimed at investigating the financial 

possibilities for incorporating biochar as standard forestry practice however more complex 

financial analyses would be required to confirm the outcomes of this model on a wider 

industrial scale. One of the main simplifications used in the model was the assumption that 

only post-harvest residue wood is used for biochar production. Other available residues 

include: 

� Plantations that do not grow as expected during the first years and are terminated 

to be replaced by other species or dedicated for other purposes, 

� Thinning residues, a common residue in plantation management (currently used for 

pulpwood production), 

� Private forestry plantations resources, 

� Wood processing industry (i.e. Sawmill waste), 

� Native forests management practices residues. 

(Greaves and May, 2012; Rothe. A, 2013) 

The scenario of biochar on-site production is one of the possible solutions of processing 

woody residues but its main disadvantage is the lack of pyrolysis gases recovery and 

consequently missed opportunity on generating energy. The choice of mobile pyrolyser to 

be included in the proposed biochar production scenario was based on the simplicity of this 

equipment and avoided feedstock transportation logistics and costs. Stationary systems, 

based on residues delivery from the vicinity are under research and pilot implementations 

have been investigated in Australia. Some of these systems assume combined production, 

focused rather on renewable energy generation (heat and syngas) treating biochar more as 

a by-product. Some of the currently researched systems are based on local conditions and 

placed next to facilities, where all of the pyrolysis process products can be used 

immediately (in example glasshouse using heat for heating purposes, biochar as growing 

media and syngas to produce electricity used in the glasshouse laboratory)(data 

confidential).  
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When considering the feasibility of pyrolysing forest residues, of importance are factors 

that may provide possible benefits that could not be considered in the model. These 

include benefits resulting from community approval to limited on-site burns, decreased fire 

risk and reduced smoke disruption to local communities (Greaves and May, 2012; Rothe. A, 

2013). 

On-site burns in the plantations to process post-harvest residues are always performed very 

carefully but even when preserving all the safety measures the fire risk of an open-

controlled fire must be considered (Marsden-Smedley and Whight, 2011; Wood et al., 

2009). Currently, Forestry Tasmania staff prepares fire risk assessments according to the 

conditions and site location. Regardless of the diligence in performing these burns there is 

always some risk of fire burning out of control. Pyrolysis is a controlled and contained 

process carrying a much lower fire risk and can be terminated at any point if necessary. 

Thus it can be argued that combustion in a mobile pyrolyser involves a lower risk of 

uncontrolled fire and should be considered even though it is not possible to reliably 

transform this effect into monetary value. 

Many forestry operations have opponents in the local communities and more general 

society. Protests are often connected with harvesting natural forests which is not directly 

joined with the topic of forestry plantations. However, the objections also rise to the on-

site burns and smoke which is being produced and affects local communities (Pearce et al., 

2006). In the proposed scenario the effects of smoke produced during on site burns will be 

significantly reduced or avoided as waste wood will not be burnt on site but in the pyrolyser 

in the controlled, clean process, during which the smoke and exhaust gases are managed 

and let into the atmosphere in a controlled manner. The community approval might be also 

expressed due to the fact that a sustainable, environmentally friendly approach is being 

taken as biochar is produced from the residues and returned to the soil. Similarly, it has 

been suggested that in addition to its environmental benefits, the practice of biochar 

application to the soil could also lead to economic and social advantages by establishing 

new businesses, opening new job positions and in consequence facilitating small, rural 

communities (Joseph, 2009; Ogawa et al., 2006). 

The aspects mentioned above, together with an overall community approval connected 

with producing environmentally sustainable product and an environmental method of 

dealing with residue wood should be considered when assessing the scenario feasibility. 
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Again, similarly to the case of two previous factors it is not possible to transform these 

benefits into actual value to be included in the model. Taking into consideration current 

public protests about some forest operations in Tasmania, the above should be accounted 

for when making a decision about the implementation of the scenario. 

While the potential benefits discussed above may be difficult to quantify monetarily, many 

of these issues, such as controlled and uncontrolled burns, are of immense importance to 

the forest industry and community and therefore should be considered along with the 

measurable benefits resulting from the biochar scenario. 

8.7.3. Potential changes 

It is important to note that the assumptions used in this model were average from data 

available about plantations, management, growth response and local conditions in 

Florentine valley. The model is environmentally sensitive and the resulting cost and benefits 

values are expected to change in regards to micro-climate, soil type and other similar 

factors (Joseph, 2009). 

Fertilising operations on forestry plantations in Tasmania are currently under 

transformation in order to utilize a new generation and better efficiency fertiliser type. The 

agronomic data used within this model was based on fertilising the plantations with 

standard di-ammonium phosphate (DiAP)(Chapter 4). It must be considered that the new 

fertiliser type is likely to interact with applied biochar unlike DiAP and result in significantly 

different final outcome (trees height, nutrient efficiency from fertiliser). A pilot 

experimental trial would be required to estimate expected results of new type of fertiliser 

in combination with biochar.  

Equally, the topic of increasing nutrients release from biochar would be interesting to 

investigate. Certain organic additives (i.e. chicken litter, farm animals manure) have been 

shown to increase biochar ability to introduce nutrients to the soil (Sarkhot et al., 2012). An 

opportunity to collect animal manure and litter from local farms and its addition to woody 

feedstock during the pyrolysis process might decrease fertiliser rates required for the 

plantations and could be used on a wider scale as a nutrient-application method in the 

future. In northern Tasmania there is a large scale dairy industry which could provide 

interesting possibilities for making biochar enriched by animal manure.  
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Tasmania has been presented as an Australian state with a significant potential to use 

forest residues for generating bio-energy and bio-products (Greaves and May, 2012; Rothe. 

A, 2013). With the current production of 300,000 m3 (Wood et al., 2009) of eucalypt sawlog 

and other forestry-related industries the potential arising from primary and secondary 

forests products and residues cannot be overestimated. Biomass estimating reports 

however, are based on woody residues used mainly for energy generation purposes while 

biochar has been discussed very briefly in proposed solutions. Co-operating with other 

authors and working on the basis of already existing biomass reports but introducing 

biochar scenario on a wider scale could provide interesting solutions for proceeding woody 

residues under Tasmanian conditions. 

8.8. Conclusions 

The evaluation of this model shows that biochar production from forest residues may be 

feasible dependent on receiving a minimum of $400 per tonne when 30% of the produced 

char is sold into a commercial market.  The proposed operation was most sensitive to the 

market biochar price and the amount of biochar dedicated to enter the market, which are 

both considered highly changeable in the developing Australian biochar market. Model 

assumptions included only one source of residues, namely plantation post-harvest residue 

wood while other sources of biochar feedstock (i.e. thinnings and native forest woody 

residues) could enlarge the scale of biochar scenario incorporation, if considered in the 

analysis. Similarly, the opportunities connected with pyrolysis gasses production were not 

considered in the model due to the type of pyrolyser used. Other unaccounted benefits 

include community advantages resulting from creating new jobs or environmental benefits 

like decreased fire risk or on-site burns smoke management. The results of this scenario 

would be best confirmed by a practical biochar production and utilisation system based in 

Tasmania. 
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9. FINAL DISCUSSION AND CONCLUSIONS 

9.1. Introduction 

The objectives of this research were to test the agronomic and financial feasibility of 

biochar application to Tasmanian soils and forestry plantations. Two experiments (pot and 

field experiments) were established and monitored in order to gather data to support 

hypotheses that macadamia biochar can bring beneficial effects to soil quality, plant 

nutrition and agronomic response in E. nitens seedlings as well as allow decreasing 

common fertiliser rates used in forestry plantations (Chapter 1). Results from the 

experimental analyses were incorporated into the financial model, along with market 

assumptions and local economic and environmental suppositions, to investigate financial 

feasibility of producing and incorporating biochar on Tasmanian-based forestry plantations.  

The results have shown initially increased availability of potassium, sodium, nitrate-N and 

phosphorus; elevated pH in the potting mix and higher concentration of sodium and 

potassium in the field plantation soil (Chapter 5), though over time the effect was 

diminished. The leaf tissue concentration in response to biochar in both experiments 

revealed P, K and Na increase in the pot trial and in some, although not all cases, some 

clear trends were evident (Chapter 7). Biochar application in the field increased potassium 

leachate which was attributed to higher K availability in soil following biochar application 

(Chapter 6). Char application did not result in significantly taller trees or greater biomass 

production in general, but two biochar application rates combined with halved fertilisation 

resulted in seedlings of similar quality (height) to the ones produced under full fertiliser 

rate with no biochar applied (Chapter 7). These results indicated a potential of decreasing 

fertiliser rates commercially used in forestry plantations in Tasmania if supported by further 

research. 

The financial model based on the idea of on-site biochar production from the post-harvest 

residues revealed a potential annual income of nearly $180,000 based on processing post-

harvest residues from 270 ha (Chapter 8). The sensitivity analysis showed that a critical 

factor for model financial feasibility is biochar market demand and price, which is presently 

unstable in the developing biochar market in Australia.  
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9.2. Agronomic and chemical changes 

9.2.1. Soil 

While in some cases the trends in nutrients levels were consistent with existing theory and 

explicable (Colwell potassium, pH, and exchangeable sodium, magnesium, aluminium and 

calcium), some of the nutrient dynamics could not be clearly related to any particular 

known mechanism.  

Some changes in the soil were less noticeable than anticipated. Macadamia biochar did not 

have an effect on soil electrical conductivity or pH under field conditions. The EC in the 

potting mix was lowered by biochar application, which was concluded to be an effect of 

cation adsorption from the soil solution to biochar surfaces. Some evidence of accelerated 

nitrification in the PM and increased potassium content in the field soil suggested that 

macadamia biochar influenced both the direct release of nutrients and affected nutrient 

transformation mechanisms (Chapter 5). The high SSA of macadamia biochar (Chapter 3) 

was suspected to influence soil microbial activity and result in readily noticeable changes in 

bacteria- related nutrient levels (mainly N and P), especially in the field experiment. 

Stimulated microbial activity could have been a case in this experiment, however, as it was 

not analysed and there were few changes in soil that would allow any conclusion about its 

potential importance, this aspect must remain unresolved and possibly be the subject of 

further research. 

Biochar influence was much more evident in the pot experiment in comparison to the field 

trial changes. This is most likely the effect of the comparatively low biochar rates used in 

the field study. The highest biochar rate applied in the glasshouse equalled 100 t ha-1 while 

in the field the maximum dose was equivalent to 20 t ha-1. Most of the PM changes in the 

controlled environment were reported for high biochar rates (50-100 t ha-1) which provides 

a potential explanation that low char rates applied in the field were responsible for the lack 

of substantial effects of biochar.  

The positive influence of biochar on soil condition and plant growth is sometimes related to 

the effect of biochar aging in soil (Nguyen et al. 2009, Atkinson et al. 2010). As biochar ages, 

its overall chemical and physical characteristics change, including surface charges and bulk 

density and others (Chapter 2). It is possible that the duration of both pot and field 

experiments were too short to reveal the differences resulting from long-term biochar 
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induced changes in soil. However, the extractable nutrient concentrations decline to close 

to initial values in around 1 year suggests that there are likely to be limited long term 

effects. Despite this, a longer-term study with higher rates of biochar application would 

help to understand changes to soil nutrient availability and transformation mechanisms as a 

result of biochar application.   

Although biochar induced changes were the most noticeable in the potting mix the full 

extent of potential transformations in growing media may have been mitigated by this 

mix’s inherent properties. The PM used in the experiment contained a large proportion of 

organic matter (Chapter 4) and might have masked the effects of biochar application. For 

instance, the high proportion of peat in the potting mix would have imbued an already 

substantial CEC capacity before the char was added. This observation might be extended to 

hypothesis that biochar may be used in the commercial potting mix for growing Eucalypt 

seedlings and replace, to some extent, pine bark or other high organic matter components 

of growing mixes. Further research would however be required to formulate firm 

recommendations. 

9.2.2. Plant material and agronomic response 

Although biochar application did not result in higher trees or increased biomass production 

by Eucalyptus nitens, two treatments bucked the trend (or lack thereof) where biochar 

combined with decreased fertiliser inputs resulted in similar or greater seedlings height as 

full fertilisation with no biochar addition. Even though not showing a clear trend or 

repeatability under more than one biochar rate (10 t ha-1 in the pot and 15 t ha-1 in the 

field) this result might be considered very important from practical point of view as it 

implies a possibility of reducing commercial fertiliser application rates with no negative 

effect on wood quality. As discussed in Chapter 9 establishing forestry plantations is 

inevitably connected with significant expenses and can only be supported by a financial 

effectiveness. The possibility of substantially reducing commercial fertiliser rates on a big 

scale would considerably decrease the costs connected with plantation establishment and 

early management. The results of this research revealed that producing seedlings of similar 

quality under biochar application can be achievable in the early stages of E. nitens growth. 

However, to confirm these conclusions similar experiments using a range of growth media 

and soil types would be required. 
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Biochar rate and application method may have been responsible for the lack of response in 

the field trials – the highest rate (20 t ha-1) had little effect in the glasshouse trial, hence it 

was probably inadequate in the field. The application of biochar to a restricted volume of 

soil, though increasing the effective rate of application, may mean that it was not present in 

the volume of soil explored by eucalypt roots. Additional research would be needed to 

explore this possibility. Alternatively, the possibility that the site was simply unresponsive 

has to be recognised.  

The differences in seedlings height between full fertilizer treatments and half- fertilizer 

treatments combined with biochar rates, however limited to two biochar application rates, 

suggests that even though biochar did not stimulate trees growth or resulted in greater 

biomass production, its application has a potential to decrease fertilisation rates used in the 

commercial forest plantations. The analysis of leaf tissue nutrient concentration did not 

reveal many significant differences either, which suggests that half-fertilisation combined 

with biochar results in similar nutrient uptake by E. nitens trees as full fertilization 

treatment. That supports the hypothesis concerning biochar having a high potential for 

decreasing commercial rates of fertiliser. On the contrary, the full rate of fertiliser may have 

been a luxury rate, or compensatory supplies of nutrients arose from the biochar. Though 

unlikely, as the biochar had little available nutrient (other than potassium and sodium) is it, 

it may be a contributor, especially at high rates of biochar addition.  

9.2.3. Leachate 

The increase in soil leachate potassium in the field experiment when biochar was applied 

was attributed to K release from surface deposits on the biochar surfaces and subsequently 

an increased concentration of this cation in the soil. On the contrary to results observed in 

this experiment, various biochars have been reported to decrease runoff of soil nutrients, 

this effect being attributed to increased SSA in soil-biochar mixture, and mostly reported 

mainly for sandy soils. The soil in the field experiment most likely did not benefit from 

increased SSA to an extent sandy or loamy soils would, as clay soils are in general 

characterised by high SSA (Chapter 6). Therefore it is concluded that biochar added on its 

own may not have caused any positive changes in terms of better holding of nutrients to 

soil and biochar surfaces in our field experiment. It might however be speculated that the 

same biochar added to the plantations with sandy soils could limit nutrients runoff, thus 
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raising questions about biochar application suitability on different soil types and plantation 

species in Tasmania. 

9.2.4. Summary 

Although biochar applied to the soil in combination with fertiliser induced some changes, 

specific trends were not always evident. Biochars ability to serve as a direct source of 

nutrients was possibly responsible for increased levels of K, P and Na in the soil and K in the 

soil leachate. The adsorption of cations was most likely the mechanism responsible for 

decreased Mg, Ca and Al concentrations, post-experimental biochar analyses and specific 

studies using growing mixes in a laboratory setting would support this explanation. Other 

changes in the soil and leaf tissue were thought to result from an increased growing 

medium pH, its influence on solubility of various ions in co-operation with a group of 

different mechanisms resulting from biochar properties (Chapters 3, 5 and 6) as well as the 

effect of agronomic variability (field experiment) and other unaccounted factors.  

In general, in comparison to what was expected, a few factors were concluded to 

contribute to biochar limited effects. The potting mix and soil characteristics (organic 

matter content and high surface area, respectively) were most likely responsible for limited 

biochar influence on stimulating soil transformations. Low application rates and biochar 

application methods in the field experiment may have contributed to the limited plant 

response. With  both experiments, the relatively short time-frame would not have detected 

later changes that may occur as a result of the char properties changing with age, as 

reported in some studies (Cheng et al., 2008; Qian and Chen, 2014). It is unfortunate that 

biochar, due to its form (dust) could not have been analysed after retrieving from the 

soil/potting mix since hypotheses concerning nutrient adsorption to its surfaces or 

microbial activities could have been confirmed.  

9.3. Financial aspects 

9.3.1. Potential implications of biochar production and use 

The financial model was run under assumptions presented and discussed in Chapter 9, 

including a) direct revenues from biochar utilisation, b) savings arising from changed 

traditional forestry operations and c) capital and operating costs of biochar production 

machinery and equipment. While the model was built based on a case study and E. nitens 
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plantations, the number of assumptions and the outcomes of sensitivity analysis clearly 

show that particular segments of the model can be adjusted to suit local conditions and 

demand. Assumptions concerning agronomic benefits or transport-related costs can be 

changed to fit different plantation scenarios, including area, location, soil type, response to 

biochar and species. 

The model was based on the case scenario of a Forestry Tasmania coupe, located on 

Permanent Timber Production Zone Land (PTPZL). Apart from Forestry Tasmania there are 

other forestry based industries, and significant portion of the State’s plantations are 

located on private land in Tasmania. While this project has only considered State forest 

plantations operations, the model could be expanded to include other Tasmanian-based 

wood industries. With the large volume of forest residues generated in Tasmania, cross-

industry opportunities related to biochar production would be an interesting subject for 

exploration.  

Biochar type might play an important role in the feasibility equation. The agronomic 

assumptions used in the model were based on the results of macadamia biochar influence 

on forestry plantations, which provided little agronomic advantage. In the proposed 

scenario however, Eucalypt-based biochar is planned as the main char product. While both 

macadamia and eucalypt chars, being wood-based biochars, are expected to have similar 

general characteristics, it is not possible to predict the exact effects of eucalypt biochar on 

forestry plantations and an experimental approach would have to be employed to assess 

the effects of eucalyptus biochar under realistic field conditions.  

The total project benefit was calculated on the basic assumption of making only one 

product, namely biochar. One of the scenario’s main components is the employment of a 

mobile pyrolyser to produce biochar on site, potentially reducing the costs connected with 

residue transport. The pyrolysis process also generates significant amounts of heat and 

gases which could be utilised for different purposes. This however, cannot be done with 

current mobile equipment and a stationery pyrolyser would have to be considered. From 

one perspective, such solution would certainly increase the feedstock transport-related 

expenses, but the benefits of for instance capturing the emitted gases and their sale could 

potentially compensate for that. A pyrolyser type and local market focused analysis would 

add to the investigation of these issues. 
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9.3.2. Commercial implementation 

The total financial outcome of the model implementation was found to be strongly 

dependant on the amount of biochar produced for sale and biochar market price. The 

developing biochar market in Australia and Worldwide does not guarantee either a stabile 

price or demand for biochar. Therefore the most crucial factors of the assumed scenario 

are also the most unpredictable, elevating the risks associated with biochar production and 

use. It is important to mention that the Tasmanian or Australian demand for biochar was 

not investigated, to make assumptions within the proposed scenario and only the supply 

side was considered. A detailed exploration of demand, especially based on local needs 

would certainly add to the models reliability.  

An analysis of potential sites locations and logistic issues in Tasmania would allow 

minimization of the risk when applying the scenario in practice. Considering the diversity of 

plantations location, soil types, species and nutritional needs, the inevitable variation in 

response to biochar, as well as local and national supply-demand relations, the model can 

be adjusted to be applicable under different environmental and market conditions. 

9.4. Where to from here? 

The research results presented here answer some questions surrounding biochar 

applicability on Tasmanian soils, but also leave questions to be answered. Biochar 

application for forestry purposes has not received much attention in the past, nor has 

application of biochar in Tasmania and the results of this research contribute to filling both 

gaps.  

A number of issues remain unsolved or incompletely resolved and would require more 

attention to be supported. Biochar characteristics could be investigated further to 

determine its physical and chemical properties to a greater detail. As mentioned before, 

Tasmanian eucalypt biochar would need to undergo thorough analyses to assess the level 

of its suitability for particular regions in Tasmania. Some of the soil changes following 

biochar implementation could not be attributed to particular mechanisms and more 

research would be required to understand processes that occur. 
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Many environmental benefits were mentioned within this project but not investigated 

deeply. The GHG emissions reduction resulting from biochar application to the soil has 

been reported before. This topic has not been explored within the scope of this research, 

however could add significant environmental profits to the big picture of biochar 

production and application in Tasmania. Carbon sequestration potential has been included 

in the cost-benefit analysis model, but the assumptions were general and not based on soil 

types or particular biochar carbon content and in consequence its ability to sequester 

carbon. Detailed topic-based studies would be needed to provide more information about 

the potential of carbon sequestration in Tasmania.  

The timeframe of the experiments was limited in relation to biochar stability in the soil as 

well as the changes chars undergo in the soil environment (Chapter 2). This aspect is also an 

important factor when considering the forestry plantation rotation timeframe. The results 

of this research focused on the establishment stage of plantations, both in the nurseries 

and under field conditions. The long-term effects of biochar and use of multiple 

applications arise as possibilities for further research. 

Although forestry practices and methods to manage harvest residues have been practiced 

for decades, there is a growing interest in alternative use of forestry and agricultural 

residues in Tasmania, and elsewhere. From the practical point of view several actions could 

be taken following a dissemination of the results from this study. A demonstration trial, 

involving mobile pyrolyser and eucalypt biochar production could prove the practicability of 

the proposed scenario and feasibility of biochar generation and use in Tasmania. Gradual 

implementation of the scenario in different regions of Tasmania would ensure the model 

development as it would be adjusted to local conditions and changing financial 

circumstances.  

The results of this research allow me to conclude that wood-based biochar may serve as a 

potential environmental and forestry tool in Tasmania, if manufactured and used according 

to needs and requirements dictated by local conditions. However, more information is 

needed to be able to make strong recommendations on its use. 
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APPENDICES 

Appendix.1. Full specification of Macadamia shells biochar used in pot and field trials. 

Biochar full specification 

test unit result 

Temp made C degrees 450-
480 

Electrical Conductivity mS/cm 0.59 

Water holding 

capacity 

  77.00 

pH(H2O)   8.76 

pH(CaCl2)   8.07 

CEC-pH7  CEC/100g 
C 

3.03 

CEC-pH7  CEC/100g 2.38 

Nitrogen % 0.57 

Carbon % 57.76 

Organic carbon % 4.5 

C/N Ratio   136.00 

NH4-N  mg/L 3.5 

NOx-N  mg/L 0.1 

Mineral N mg/L 3.6 

LOI %  97.9 

Al mg/kg 165 

As mg/kg < 10 

B mg/kg 11.4 

Ca mg/kg 1380 

Cd mg/kg < 10 

Co  mg/kg < 10 

Cr mg/kg < 10 

Cu mg/kg 11.2 

Fe mg/kg 786 

K mg/kg 2430 

Mg mg/kg 597 

Mn mg/kg 98.7 

Mo mg/kg < 10 

Na mg/kg 1620 

Ni mg/kg < 10 

P mg/kg 424 

Pb mg/kg 6.34 

S mg/kg 457 

Zn mg/kg 33 

Acenaph- thylene mg/kgDMB <0.10 

Acenaphthene mg/kgDMB <0.10 

Anthracene mg/kgDMB <0.10 

Benzo[a] anthracene mg/kgDMB <0.10 

Benzo[a] pyrene mg/kgDMB <0.10 
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Benzo[b&k] 

fluoranthene 

mg/kgDMB <0.10 

Benzo[ghi] perylene mg/kgDMB <0.10 

Chrysene mg/kgDMB <0.10 

Dibenzo[a,h] 

anthracene 

mg/kgDMB <0.10 

Fluoranthrene mg/kgDMB <0.10 

Fluorene mg/kgDMB <0.10 

Indeno[1,2,3-

cd]pyrene 

mg/kgDMB <0.10 

Naphthalene mg/kgDMB <0.10 

Phenanthrene mg/kgDMB <0.10 

Pyrene mg/kgDMB <0.10 

 

Appendix.2. Macadamia biochar Electron Microscopy spectra sites (SEM-EDS), refer to Chapter 

3 for element composition.  
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Appendix. 3 Charcoal derived from the soil on the plantation in Florentine valley (2013) 

chemical composition following the SEM-EDS analysis. The charcoal was most likely produced 

during onsite burn of the residues after Eucalyptus plantation harvest (2005). 

Spectrum 

number 

Main 

composition 

Chemical elements present in 

minimal amount 

1 C Al, Ca, K, Mg, P, Fe, O 

2 C Al, Ca, K, Mg, Fe, O 

3 C Al, Ca, K, Mg, Fe, O 

4 C Al, Ca, K, Mg, Fe, O 

5 Si, O, Al, C Na, Mg, Fe, Ca, K,  

6 Si, O, Al, C Mg, Fe, Ca, K, 

7 C O, Si, Na, Fe, Al, Mg, Mn, Ca, K,  

8 Si, O, C Ca 

9 Si, O Al, Mg, Fe, C, K 

10 Si, K Al, O, C, Fe, Ti,  

11 Si, K C, O, Al, Fe 

12 C O, Fe, Ca, Br, Si,  

13 C, O Ca, Fe, Al, K 

14 C, O Ca, Fe, Al, Si, K 

15 C, O Ca, Fe, Al, Si, K 

16 C, O Ca, Fe, Al, Si, K 

17 Fe, C O, Ca, Al, Si, K 

18 C O, Mg, Na, Fe, Ca, Al, P, Si, K 

19 C, Fe O, Si, K, Al 

20 C, O Ca, Fe, Al, Si, K 

21 O Mn, C, Si, P, Al, Pb, K 

22 C O, Mg, Na, Fe, Ca, Al, K 

23 Si, Al, O C, Fe, Mg, Ti, Ca, K 

24 C O, Ca, Fe, K 
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25 C O, Ca, Mg, Al, K 

26 Mn, O C, P, Si, Al, Pb, K 

27 C O 

28 C O, Na 

29 C O, Na 

30 C O, Na 

31 C Ca, O 

32 C Ca, O, Mg, Al, Si 

33 O, C Si, Al, Fe, K, Ca, Mg 

34 C O, Ca, Al, Si, Fe, K 

35 C O, Fe, Ca, Al, Si, K 

36 C, O Si, Al, Fe, K, Ca, Mg 

37 Fe K, Ca, C, O, Si 

38 C O, Cl 

39 C O, Cl 

40 C O, Cl 

 

Appendix 4. Electron Microscopy spectra sites (SEM-EDS) of charcoal derived from forestry 

coupe 31Z in Florentine Valley. Analysed in Central Science Laboratory, UTAS, 2014. 
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Appendix. 5. Spatial design of treatments in the Eucalyptus nitens pot trial, May 2011 
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Appendix 6. Spatial design of block 2 and 3 in the experimental plantation of E. nitens in 

Florentine Valley, September 2011. 
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Appendix 7. Design of zero-tension Lysimeter ‘Lizzie’ installed in the field experiment in Florentine 
Valley. 
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Appendix 8. Major formulas in the Microsoft Excel financial model presented and discussed in 

Chapter 8. 

1. Number of coupes per annum (M17) = number of operating days per year * number of 

tones processed per year / total tones processed in example coupe 

2. Diesel cost per coupe (E16) = example coupe number batches * diesel used per batch in 

litres * cost of diesel per litre 

3. Pyrolyser maintenance cost per annum (E19) = unit capital cost * maintenance cost per 

annum as % of capex 

4. Seedling raising saving per hectare (E26) = if biochar is applied at the rate of 10 t ha-1 or 

more it equals $20, if biochar is applied at the rate of 5-10 t ha-1 it equals $15, if biochar is 

applied at the rate of 1-4 t ha-1, it equals $10, if the application rate is lower there is no 

saving. 

5. Site preparation savings per ha (E27) = If tones of wood processed per hectare is 30 or 

more, it equals $400, If tones of wood processed per hectare is 20-29, it equals $300, If 

tones of wood processed per hectare is 15-19, it equals $200, If tones of wood processed 

per hectare is 10-14, it equals $100, if there is less than 5 tonnes processed there is no 

saving.    

6. Fertilisation savings per hectare (E28) = if biochar is applied in the field at the rate of 3 t ha-

1 or more, it equals $90,  if biochar is applied in the field at the rate of 1.5-2.9 t ha-1, it 

equals $45, If biochar is applied at the lower rate than 0.5 t ha-1 there are no savings. 

7. Second spraying effect per ha (E29) = if biochar is applied in the field at the rate of 3 t ha-1 

or more, it equals -$20, if biochar is applied in the field at the rate of below 3 t ha-1, it 

equals -$10. 

8. Total savings per hectare (E30) = sum of: a)seedlings raising saving per hectare (E26), b)site 

preparation, windrowing, clearing etc (E27), c)fertilisation saving per hectare (E28), second 

spraying effect per hectare (E29). 

9. Tonnes of biochar in the field per hectare ( M30) = tonnes of wood processed in example 

coupe * biochar produced per tonnes of wood processed * onsite % distribution of 

production / number of hectares in example coupe. 

10. Tonnes of biochar made in coupe for transport and sale/storing (M32) = number of hectares 

in example coupe * tonnes of wood processed per hectare * biochar produced per tonnes 

of wood processed * (to nursery distribution of production +sales distribution of 

production) 

11. Total biochar produced per year (M37) = example number coupes per annum * tonnes 

processed in example coupe * biochar produced per tonne of wood processed. 
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12. Total biochar for sale per year (M38) = total biochar produced per year * sales distribution 

of production 

13. Example coupe on site revenue (E38) = tonnes processed in example coupe * biochar 

produced per tone of wood processed * onsite distribution of production * onsite biochar 

price * tonnes of CO2 in 1 tonne of biochar. 

14. Example coupe nurseries revenue (E39) = tonnes processed in example coupe * biochar 

produced per tonne of wood processed * to nursery distribution of production * to nursery 

biochar price. 

15. Example coupe commercial revenue (E40) = tonnes processed in example coupe * biochar 

produced per tonne of wood processed * for sale distribution of production * market 

biochar price. 

16. Annual revenue (G43) = total example coupe revenue * number of coupes harvested per 

annum. 

17. Savings enjoyed by traditional operations per annum (G46) = total savings per hectare * 

number of hectares in an example coupe * number of coupes harvested per annum. 

18. Annual costs all coupes (G53) = total operating and capital costs of biochar production per 

coupe * number of times pyrolyser is moved between example number of coupes per 

annum. 
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Appendix. 9. Interface of the Excel cost-benefit scenario model with base assumptions 

 

  

Biochar Economics - direct biochar process costs and revenues plus biochar induced coupe savings

Assumptions

Mobile pyrolyzer capital cost $250,000 Number of ha's in example coupe 30

Number of years useful life 10 Tonnes of wood processed per ha 15

Finance interest rate p.a. 10% Tonnes processed in example coupe 450

Principal + interest repays p.a. $39,836 Average batch size in tonnes 4

Number of batches in example coupe 113

Mobile pyrolyzer operating costs:

Example coupe number batches 113 Number of operating days per year 330

Person cost per batch $30 Number of tonnes processed per day 12

Labour cost per coupe $3,375

Cost of delivering waste to coupe 

Diesel used per batch in litres 10 edge per tonne $10

Cost of diesel per litre $0.80

Diesel cost per coupe $900 Number of times pyrolyzer moved in

example number coupes per annum 9

Maintenance cost p.a. As % of capex 4.0% Pyrolyzer transport cost per move $300

Maintenance cost per annum $10,000

Biochar produced per tonne of wood

Machine hire to feed pyrolyzer per t $15 processed 0.25 tonnes

Tonnes of CO2 in 1 tonne of biochar 3

number of batches processed per day 3

Savings enjoyed by traditional operations

with biochar operating, derived from comparative table: Market: Commercial

Seedling raising saving per ha $10 On site To Nurseries Sales

Site prep, w'rowing, clearing etc per ha $200 % distribution of production 60% 10% 30%
Fertilisation saving per ha $45 Sales price per tonne $10 $50 $1,000

Second spraying effect per ha -$10.00 (carbon price) (at forest) (at forest)
Total saving per ha $245.00 tonnes of biochar in the field per ha 2.25

45

$40

Biochar Economics - direct biochar process costs and revenues plus biochar induced coupe savings

Revenue total biochar produced per year [t] 990

Example coupe on site revenue $2,025 total biochar for sale per year 297

Example coupe nurseries revenue $563

Example coupe commercial revenue $33,750

Total example coupe revenue $36,338

Number of coupes harvested per annum 9

Annual Revenue $319,770

Savings enjoyed by traditional operations per annum

Derived from $ savings per ha, ave coupe size & qty of $64,680

Costs - biochar operating and capital

Labour cost per coupe $3,375

Diesel cost per coupe $900 1

Total costs per coupe $4,275

Annual costs all coupes $37,620

Annual maintenance costs of capex $10,000

Annual cost to deliver waste to coupe edge $39,600

Annual machine hire to feed pyrolyzer $59,400

Annual cost of moving pyrolyzer $2,640

Annual finance cost of pyrolyzer $39,836

Annual cost of biochar transport $15,840

Net annual benefit in cost/benefit analysis $179,514

tonnes of biochar made in coupe for 

transport

cost of biochar transport per tonne per 

100 km
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