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ABSTRACT 

The Antarctic Seasonal Ice Zone (ASIZ) is potentially a large contemporary sink for 

anthropogenic CO 2  due to the formation of bottom water along the Antarctic coast. 

However, south of 55°S, the lack of measurements of the fugacity of CO2 in surface 

seawater (fCO2), or the concentration and ratio of stable carbon isotopes of 

atmospheric CO2, has meant that it has been difficult to determine whether the ASIZ 

acts as a net source or sink for atmospheric CO2. This study contributes to, and is 

largely based on, new measurement programmes of oceanicfCO 2  and the 

concentration and 13 C/12C ratio of atmospheric CO2 over the region of the Southern 

Ocean between Australia and the Antarctic continent, with particular emphasis on data 

from regions of pack ice. 

Using jCO2 data from six voyages of the RSV Aurora Australis, it was estimated that 

between 1 October 1992 and 31 March 1993 the ocean south of 55°S, between 60°E 

and 150°E, sequestered 0.025 ± 0.013 Gt C over an area of ocean equivalent to 19% 

of the maximum area of open water south of 55°S. The CO2 sink was most 

pronounced west of 105°E (0.026 ± 0.013 Gt C), where it was associated with intense 

summer phytoplankton blooms following the melting of sea-ice. 

In conjunction with the sampling of oceanicfCO 2, flasks were regularly filled on the 

ship with dry air and later analysed for levels of CO2 and its 13C/12C ratio. This 

provided the opportunity to observe atmospheric variations directly forced by 

fluctuations infCO2, temperature, and the 13 C1 12C ratio of dissolved inorganic carbon 

(DIC) in the surface ocean. 

Sea surface temperature and 13C/ 12C-DIC effects are transmitted to the atmosphere by 

gross air-sea fluxes of CO 2  in the absence of net exchange. Over the ice-free region of 

the Southern Ocean between 44°S and 60°S, from 85°E to 160°E, atmospheric 

13CO2/2CO2 values were dominated by a linear dependence on sea surface temperature 

(0.0041 ± 0.0003 °/. °C -1), due to the "equilibrium" isotopic fractionation of CO2 

during air-sea exchange. During late spring and summer, over the region of the ASIZ 



south of 60°S, between 60°E and 105°E, the effect of sea surface temperature on 

atmospheric 13CO2/12CO2 values was overwhelmed by the effect of high marine 

productivity on 1302c  -DIC.  

It is demonstrated that the impact of net air-sea flux of ' 3CO2  on atmospheric ratios of 

13CO2/12CO2 can be measured more easily than the impact of net CO2 flux on 

atmospheric mixing ratios of CO2 . Long-term changes in sea surface temperature and 

productivity over the ASIZ, and therefore net ocean uptake, can be more accurately 

determined from isotopic ratios of 13CO2/12CO2 in baseline air samples from a coastal 

Antarctic station, than from mixing ratios of CO2 in the same samples. 
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NOMENCLATURE 

A' 	= area of ice-free ocean over the region of interest (m 2), 
A 	= area of open ocean over reservoir a (m2), 

= mixing ratio of CO2 sample at ambient atmospheric pressure (ppmv) 

C, 	= mixing ratio of CO2 sample in 1RGA sample cell at pressure p, (ppmv), 

Ca 	= mixing ratio of CO2 gas in the dried equilibrator air stream at 1 atm total 

pressure (ppmv), 

Cm(To) = partial pressure of CO2 in the =dried equilibrator air stream at 1 atm total 

pressure and temperature To  (patm), 

Ca 	= mixing ratio of CO2 gas in the dried atmosphere at 20 m a.s.l. and at 1 atm 

total pressure (ppmv), 

Ca(z) = mixing ratio of CO2 at height z above sea level over the sampling site 

(ppmv), 

Cb 	= CO2 mixing ratio in the atmosphere above the sampling site unaffected by 

net air-sea gas exchange (ppmv), 

= pressure in 1RGA sample cell (atm), 

= ambient atmospheric pressure (atm), 

PH2o = saturated vapour pressure of seawater in the equilibrator (atm), 

pCO2 = partial pressure of CO2 (patm), 

• = absolute temperature of seawater in equilibrator, 

T. 	= absolute temperature of the surface ocean, 

S. 	= salinity of the surface ocean (ppt), 

./t02  = fugacity of CO2 (Patm), 

6/CO2  = fm -fa (gatm), 

fm 	= fugacity of CO2 in the surface ocean (patm), 

fa 	= fugacity of CO2 in the sea level atmosphere at the sea surface temperature 

(gem), 

• = net ocean-to-air flux of CO2 (g C nf2  (1-1), 

• = net transfer of CO2 from the surface ocean to the atmosphere (g C d'') 

CD ma  = gross ocean-to-air transfer of CO2 (g C 

iv 



szton„, 	= gross air-to-ocean transfer of CO 2  (g C d4), 

= air-sea gas exchange coefficient for CO 2  (mol C M-2  C1-1  

am 	= solubility of CO2 at the sea surface temperature (mol C m 3  JJ.atm4), 

Vp 	= gas transfer piston velocity of CO2 gas across the air-sea interface (cm 10, 

X 	= proportionality factor where Vp  = X W2  (Sc/660)-1/2  (Wanninkhof, 1992), 

= 0.31 ± 0.15 for "instantaneous" 10 m wind speeds over the open ocean 

(Wanninlchof, 1992; Wanninkhof, pers. corn.), 

Sc 	= Schmidt number, 

= "instantaneous" or short-term averaged surface wind speed at a height of 10 

m a.s.l. (m s -1), 
Wship = hourly mean wind speeds measured at 32 m a.s.l. from the RSV Aurora 

Australis, and corrected to 10 m a.s.l. by multiplying by 0.92 (m S -1), 

WGASP = six-hourly surface wind speeds from the Australian Bureau of Meteorology's 

Global Assimilation and Prediction System analyses (m s 4), 

P(W) = Rayleigh probablility function for instantaneous 10 m wind speeds, 

0(W) = observed frequency distribution of wind speed W, 

Ra 	= ratio of ' 3C/I2C in atmospheric CO2 at 20 m as.!., 

R„, 	= ratio of 13 C/12C in total dissolved inorganic carbon in the surface ocean, 

Rae 	= the ratio of 13C/12C in gaseous CO2 that would be in equilibrium with the 

surface ocean 

= ((Z„al ocam)R,„ , 

aan, 	= the isotopic fractionation (kinetic) between the atmosphere and the surface 

ocean, 

arna 	= the isotopic fractionation (kinetic and thermodynamic) between the surface 

ocean and the atmosphere, 

ct.a/06n= the 13c/12—  equilibrium fractionation factor of gaseous CO2 with respect to 

total dissolved inorganic carbon in seawater 

= (0.98947 ± 0.00005) + (0.104 ± 0.003) x 10 -3  SST (Zhang et al., 1995), 

SST = sea surface temperature (°C), 



Vi 

Ea. 	= isotopic shift that occurs during air-sea exchange of CO2 due to kinetic 

fractionation 

= (awn  - 1) x 1000 (°/00), 

813C 	
(130,12 c)s  _ ( 13012 c)pcs  
	  x 1000 (°/„0), ( 13012 c)pDB  

= 813C of atmospheric CO 2  at 20 m a.s.l. above the sampling site 

= (Ra/RpDB  - 1) x 1000 (°/00), 

Sa(z) = 8'3C of atmospheric CO 2  at height z above sea level over the sampling site 

(0/00), 

8b 	= 8 I3C of atmospheric CO2 above the sampling site unaffected by gross air-sea 

gas exchange MO, 

45ae 	= 8'3C of gaseous CO2 that would be in equilibrium with the sea surface 

= [(0.98947 + 0.104 x 10-3  SST)(1 + &/1000)- 1 x 1000°/, 

= 8 13C of dissolved inorganic carbon in the surface ocean (°I.), 

13N 	= net transfer of 13CO2 gas from the ocean to the atmosphere (g 	d- '), 
'3NR = change in the atmospheric isotopic ratio, Ra, with time, due to air-sea 

exchange (d4), 

' 3N = change in atmospheric 8 13C with time, due to exchange of CO2 gas with the 

ocean (°/ d- '), 
zN 	= effective mixing height of a perturbation in atmospheric CO2  mixing ratios 

caused by net air-sea carbon exchange (m) 

= I (Ca(Z)/Ca) dz by definition, 

ZG 	= effective mixing height of a perturbation in atmospheric 8' 3c caused by 

gross air-sea carbon exchange (m) 

= I (5a(Z)/5a) dz by definition, 

Ma 	= mass of atmospheric CO2 in a volume of horizontal surface area, A, centred 

on the sampling site, and height zN  (g C), 

D(zN) = effective vertical diffusion coefficient of CO2 gas at a height zAr 

= f(N, C0  - Cb) (g C m 2  d-1  ppmv-1), 

D(zG) = effective vertical diffusion coefficient of CO 2  gas at a height zG 

= AG, Cb(3a  - 30) (g C In-2  CI-1  ppmv-1), 



VII 

G 	= ea.(f. - fa) +1.(5ae  - (5.) (V. pawl), 

H 	= effective diffusion coefficient of CO2  gas in the north-south direction 

(g C In-2  1:1-1  ppmv4), 

,6a5a  = anomaly in atmospheric 8' 3C at 20 m a.s.l. at the sampling site due to marine 

productivity 

= 5. - 5. ' el.), 
(5; 	= atmospheric 5' 3C that would be at 20 m a.s.l. at the sampling site for no 

algal production in the ocean mixed layer MO, 

Aan  = anomaly in 8'3C of total dissolved inorganic carbon in the surface ocean at 

the sampling site due to marine productivity 

= 5. - 5.' Ma), 

= 8'3C of total dissolved inorganic carbon in the surface ocean at the sampling 

site for no algal production in the ocean mixed layer (°/00). 
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CHAPTER ONE:  

INTRODUCTION 

1.1 OVERVIEW 

Over the past two hundred years anthropogenic emissions of carbon dioxide by fossil 

fuel burning, cement production, changes in land use and biomass burning have 

increased the concentration of carbon dioxide (CO2) in the atmosphere by 

approximately 80 ppm. However, the amount of CO2 remaining in the atmosphere is 

only about half of the cumulative loading due to human sources, suggesting that 

natural sinks are currently sequestering anthropogenic CO 2 . Both the oceans and 

terrestrial ecosystems can absorb CO 2  and store large quantities of carbon, but the 

amount of anthropogenic CO2 being sequestered by either system, and how future 

climatic change will affect these carbon sinks, is still unknown. These are key issues in 

estimating how the carbon cycle might respond to continued greenhouse gas emissions. 

In 1989 and 1990 approximately 7.6 ± 1.5 Gt (10 15g) of carbon per year was added to 

the atmosphere in the form of CO2 from fossil fuel combustion, cement production and 

changes in land use (Houghton et al., 1992). Global atmospheric measurements in 

1991 showed that of this amount, about 3.8 ± 0.1 Gt C yr -1  were found in the 

atmosphere as CO2, and carbon cycle models suggest about 2.0 ± 0.8 Gt C yr -1  was 

taken up by the oceans (Houghton et al., 1992). The carbon imbalance, or "missing 

sink", is estimated as 1.8 ± 1.7 Gt C yr -1 , and may be partially caused by terrestrial 

biospheric processes sequestering CO 2  via forest regeneration, and fertilization arising 

from the effects of both CO2 and nitrogen (Houghton et al., 1992). However, at the 

present time there is still considerable uncertainty over the amount of CO 2  taken up by 

the oceans (Tans et al., 1995). 



Approximately 900 Gt C resides in the surface ocean, and 36400 Gt C in the deep 

ocean, which is very large compared with the 750 Gt C residing in the atmosphere 

(Sundquist, 1993). Carbon mainly enters and leaves the ocean as CO2 gas, via 

exchange at the sea surface. The natural gross carbon fluxes into or out of the ocean 

are estimated to be about 70 Gt C yr"' (Sundquist, 1993). A further 0.3 to 0.5 

Gt C yr" 1  enters the oceans via rivers (Sarmiento and Sundquist, 1992). 

Anthropogenically produced atmospheric CO2 provides a relatively small perturbation 

to the natural cycle of air-sea gas exchange, with an estimated net flux into the oceans 

of approximately 2 Gt C yr-1  (Sundquist, 1993). 

The net flux of CO2 across the air-sea interface cannot be directly measured, but is 

estimated as a product of the air-sea exchange coefficient for CO 2, K, and the 

difference between the fugacities of CO2 in air and seawater, 4/CO2 (Section 1.3). 

Although it is generally accepted that K depends on the solubility of CO 2  in seawater, 

and on turbulence at the ocean surface, and hence on wind speed, there is currently no 

consensus on how to formulate that wind speed dependence (Subsection 1.3.1). In 

addition to this uncertainty in K, is the uncertainty in 4fCO2. Whereas the seasonal 

variability of surface waterft02  in some oceanic areas, including the North and South 

Atlantic and the North Pacific, has been measured, that of other areas, including the 

South Pacific Ocean, the North and South Indian Oceans, and the Southern Ocean, has 

not been satisfactorily documented (Tans et al., 1990; Poisson et al., 1993). 

Of particular importance to an understanding of the future global carbon budget, is the 

determination of net air-sea transfer of CO2 over the Antarctic Seasonal Ice Zone 

(ASIZ). The ASIZ has the potential to be a significant net sink for anthropogenic 

carbon over time-scales of centuries, due to the thermohaline mixing that occurs 

between the surface and deep ocean in this region, caused by salt-rejection from 

freezing of sea-ice in winter (Budd, 1980). How rapidly the ASIZ is able to sequester 

anthropogenic CO2 relies on both the rate of deep mixing and on the net flux of CO2 

across the air-sea interface. The air-sea gas exchange coefficient over ice-free regions 

of the ASIZ may be relatively high due to high solubility of CO2 (caused by low sea 

surface temperatures (Sldrrow, 1975)) and strong wind speeds (Section 1.3). It is also 
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reasonable to suspect that the fugacity of CO2 in surface waters might be relatively low 

over the ASIZ, due to spring/summer ice-edge algal blooms removing dissolved CO 2  

from surface waters (Section 1.2). A high value of K and very negative values of 

4fCO2 would result in strong net uptake of atmospheric CO2 by the ASIZ over 

seasonal time-scales. However, due to the lack of oceanic jt02 data over this region, 

particularly in areas of pack ice and during winter months (Subsection 1.3.2), it is not 

known if the ASIZ is a contemporary net source or sink for atmospheric CO 2 . The 

most appropriate formulation for the gas exchange coefficient over the ASIZ is also 

subject to uncertainty because of variable wind fetch due to the presence of sea-ice 

(Subsection 1.3.1). 

The reason for the Antarctic Seasonal Ice Zone potentially playing such an important 

role in the global carbon cycle is that over time-scales of years the mixed layer of most 

of the world's ocean is in approximate chemical equilibrium with the atmosphere 

(Broecker and Peng, 1974) and a global change in net air-sea exchange of CO2 would 

not by itself influence the long-term removal of atmospheric CO2 into the oceans. The 

removal of atmospheric CO2 due to increased solubility in the ocean mixed layer is 

limited to about 1 ppm °C 4  because of the buffering effect of the ocean carbonate 

system (Broecker and Peng, 1974; Bacastow, 1979). Over centuries, removal of 

atmospheric CO2 by the oceans must involve vertical redistribution of ocean carbon, 

either by marine biota (Section 1.2), by altered ocean circulation and ocean chemistry 

(reviewed by Broecker and Peng, 1993), or by increased wind speeds over cooling and 

sinking seawater in polar regions (Keir, 1993). 

There are only eight stations monitoring atmospheric CO 2  concentration south of 40°S 

(Figure 1.1), and this has meant that it has been very difficult to determine the size of 

the Southern Ocean carbon sink from inversions of atmospheric CO2 mixing ratios 

(e.g. Law et al., 1992; Conway et al., 1994). Conway et al. (1994) performed a two-

dimensional model analysis of the mixing ratios from the global NOAA/CMDL flask 

sampling network, which indicated that the region south of 30°S was a net sink for 

atmospheric CO2 that had increased from approximately 0.5 Gt C yr 1  during 
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1981-1988 to approximately 1.5 Gt C yr -1  during 1989-1992. However, the analysis 

used no mixing ratios from stations between Cape Grim (40.68°S, 144.69°E) and 

Palmer Station (64.92°S, 296.00°E), and the meridional gradient over the Southern 

Ocean was assumed to be nearly flat between Amsterdam Island (37.95°S, 77.53°E) 

and Palmer Station. Local anomalies in air-sea flux of CO2 around Amsterdam Island 

or Cape Grim would have had a particularly strong effect on estimates of the total net 

sink south of 30°S. Nevertheless, it would appear that the results of Conway et al. 

(1992) suggest that over the period 1981 to 1992. the Southern Ocean experienced 

large interannual variations in net ocean uptake of CO2. 

Fig. 1.1 The Southern Ocean giving the approximate location of the Antarctic 
Polar Front (dotted line) and the northern limit of the pack ice (dashed line) 
(after Treguer and Jacques, 1992). Shown here in bold type are all stations 
south of 40°S where atmospheric CO2 mixing ratios are measured from air 
samples. Of these, Atmospheric 13CO2/12CO2 ratios are measured from air 
sampled at Cape Grim, Macquarie Is., Mawson and South Pole. (Figure 
courtesy of J. Cox, Australian Antarctic Division.) 
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Although historical or interannual changes in net uptake of atmospheric CO2 by the 

Southern Ocean are beyond the scope of this thesis, it will investigate contemporary 

(1991-1994) air-sea exchange of CO2 over the region of the Southern Ocean south of 

44°S, between 60°E and 160°E, with particular emphasis on the seasonal ice zone. 

Measurements of 4fCO2, collected on six voyages into the ASIZ by RSV Aurora 

Australis, from October 1991 to February 1994, are presented in Chapter 3. The data 

represents a significant contribution to 4fCO2 values collected within areas of 

Antarctic pack ice (Section 1.3.2), and in Chapter 4 are used to calculate net air-sea 

transfer of CO2 over the region of the Southern Ocean south of 55°S, between 60°E 

and 150°E, for the months October 1992 to March 1993. Extra information on air-sea 

gas exchange over the Southern Ocean is supplied in Chapter 5 by measurements of 

the CO2 mixing ratio and 13CO2/ 12CO2 in 360 air samples collected on Southern Ocean 

cruises by the RSV Aurora Australis, from October 1992 to February 1994. 

The 13CO2/12CO2 ratios provide different information on air-sea gas exchange 

compared with the atmospheric concentrations of CO2. This is due to the fact that the 

net flux of 13CO2 gas across the air-sea interface depends not only on the net air-sea 

flux of CO2 gas, but also: (i) kinetic fractionation during gross air-to-sea exchange of 

CO2; (ii) kinetic and thermodynamic fractionation during gross sea-to-air flux of CO2; 

(iii) the ratio of 13C/12C in atmospheric CO2; and (iv) the ratio of 13 C/12C in dissolved 

inorganic carbon in the surface ocean (Section 1.4). The relationship between 

observations of atmospheric CO2 concentration and 4fCO2 is compared in Chapter 5 

with the relationship between observations of 13 c/12c  in atmospheric CO2 and sea 

surface temperature to demonstrate the difference between the effect of net air-sea gas 

exchange on the concentration of CO2 in surface air and the effect of gross air-sea 

exchange on its isotopic ratio. In particular, atmospheric measurements over a highly 

productive region of the ASIZ are used to investigate the relative impact of marine 

productivity on atmospheric CO2 mixing ratios and 13CO2/12CO2. 

The different fractionations associated with air-terrestrial biosphere and air-sea 

exchanges (Section 1.4) mean that variations in the atmospheric 13 C112C ratio can be 

used to constrain the sources and sinks of antluopogenic carbon dioxide (e.g. Pearman 
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and Hyson, 1986; Keeling et al., 1989; Enting and Mansbridge, 1991). However, 

global inversions of the concentration and 13C/12C ratio of atmospheric CO2 using 

atmospheric transport models (e.g. Enting et al., 1995; Ciais et al., 1995a) have been 

constrained in their estimates of the net Southern Ocean carbon sink, by using 

13CO2/ 12CO2 data from only two sites south of 40°S, Cape Grim and South Pole. 

Recently, Ciais et al. (1995b) added CSIRO Division of Atmospheric Research CO 2  
mixing ratio and 13CO2/12CO2 data from Macquarie Island (54.50°S, 158.95°E) and 

Mawson station (67.60°S, 62.88°E) to the data from the global NOA.A/CMDL 

sampling network, and from inverse modeling estimated that the net ocean sink south 

of 30°S was -1.1 Gt C during 1992 and -0.9 Gt C during 1993. Problems still arose 

from the lack of data from the Southern Ocean, in that their model run for 1993 

inferred a substantial terrestrial sink south of 40°S, peaking at 50°S where there is very 

little land. Ciais et al. (1995b) hypothesised that the problem might have been partly 

caused by the sparse data coverage at high southern latitudes. 

The meridional gradients in atmospheric 13CO2112CO2 presented in Chapter 5, along 

with their relationship with sea surface temperatures, will supply a valuable extra 

constraint on estimates of contemporary sources and sinks for anthropogenic carbon 

over the Southern Ocean made from inversions of the concentration and 13C/12C of 

atmospheric CO2. 

The application of simultaneous shipboard observations offCO2, sea surface 

temperature, and atmospheric CO2 concentrations and isotopic ratios to the 

investigation of air-sea exchange of carbon has only recently become feasible due to 

improvements in the measuring of 13C/12C made by the CSIRO Division of 

Atmospheric Research (Allison et al., 1994; Francey et al., 1994; Francey et al., 

1995a). The absence of any significant anthropogenic or terrestrial sources of 

atmospheric CO 2, make the ASIZ an ideal region to study air-sea gas exchange directly 

from atmospheric and ocean measurements (Section 1.4). 
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1.2 THE ANTARCTIC SEASONAL ICE ZONE 

The Antarctic Seasonal Ice Zone is the region of the Southern Ocean over which 

seasonal sea-ice melts back nearly to the coast in summer and reforms in winter. At its 

maximum extent, sea-ice covers approximately 20 x 10 12 m2  of the Southern Ocean, 

but recedes to about 4 x 10 12 m2  cover in the austral summer (Sakshaug and Skjoldal, 

1989). The ice edge is always south of the Antarctic Polar Front (Muench, 1990), 

which is defined for this study as following the 3°C isotherm at 100 m depth (Jacques 

and Fukuchi, 1994; Figure 1.1). 

The jCO2 of surface water is strongly influenced by the biological fixation of carbon 

via photosynthesis in phytoplankton. An important feature of the ASIZ affecting its 

ability to absorb atmospheric CO2 is the effect of melting sea ice on phytoplankton 

growth. Algal blooms are particularly vigorous along the melting ice edge where low 

density surface waters, arising from melting sea ice, provide a stable, nutrient-rich 

surface layer for phytoplankton growth (Sakshaug and Skjoldal, 1989). Away from 

sea ice, Southern Ocean open waters are often mixed to 75 m depth or more by strong 

winds, and the frequency of phytoplankton blooms is correspondingly low, as algae are 

mixed below the photic zone (Sakshaug and Skjoldal, 1989). 

The region of the Southern Ocean over which net air-sea fluxes were calculated in this 

study ( > 55°S, 60°-150°E) includes Prydz Bay and the Adelie Shelf and is south of the 

Polar Front (Figure 1.1). Prydz Bay is fed by the largest glacier in Antarctica, the 

Lambert Glacier. Another important feature of the study region is the distinct 

difference in maximum ice extent west of 105°E compared with east of this longitude. 

From 60°E to 105°E the average ice edge was at 58°S during September, and at 67°S 

during February (1979-87) (Parkinson, 1992). From 105°E to 150°E the average ice 

edge retreated from 62.5°S to 65°S between September and February of the same 

years (Parkinson, 1992). Hence, the study region includes two different cases of the 

seasonal ice zone, with rapid and extensive melt of the sea-ice west of 105°E each 

November and December, and little melt over the region east of 105°E. It will be 

shown in Chapter 3 that the western region ( > 55°S, 60°-105°E) has much lower 
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average JCO2 in the surface ocean (and therefore higher productivity) than the eastern 

region ( > 55°S, 105°-150°E). 

1.3 ESTIMATING NET AIR-SEA TRANSFER OF CO 2  OVER THE ASIZ 

The amount of CO2 sequestered or emitted by a body of water may be expressed as the 

net transfer of CO2  from the surface ocean to the atmosphere, N, and is given by the 

difference between larger, one-way fluxes: 

N (g C (I-1) 

= A'F 	 (1.1) 

where 

= gross air-to-ocean transfer (g C d4), 

cto. = gross ocean-to-air transfer (g C 

A' 	= area of ice-free ocean 

= net ocean-to-air flux of CO2 (g C m 2  CI-1). 

It is assumed here that there is no air-sea gas exchange over ocean which is covered by 

100% sea ice. 

The equation for the net flux of carbon dioxide from the ocean to the atmosphere, F, is 

given below (Broecker and Peng, 1982): 

F (gC 	c1-1) = 12K 4/CO2 	 (1.2) 

where 

= air-sea gas exchange coefficient for CO2 (mol C n1-2  (I"' patni i), 

4fCO2 = f.- , 
= fugacity of CO2 in the surface ocean (patm), 

f 	= fugacity of CO2 in the atmosphere at sea level and the sea surface 

temperature (.tatm). 
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The factor of 12 in equation 1.2 has been used to convert moles of carbon to grams of 

carbon. 

The "fugacity" of CO2 gas,fCO2, is numerically close to the partial pressure of CO2, 

pCO2, but takes into account the non-ideal nature of the gas (Weiss, 1974). Air is 

saturated with water vapour at the air-sea interface, and the value of atmospheric jCO 2  

used to calculate 4/CO2 is for water saturated air at the temperature of the surface 

water (Siegenthaler, 1986). The 4jCO2 determines the potential for gas flux, and the 

gas transfer coefficient, K, determines to what extent the gas transfer will actually 

occur. A negative AfCO2 indicates CO2 uptake by the ocean and a positive value 

indicates a CO2 source to the atmosphere. 

1.3.1 Air-sea gas exchange coefficient for CO2, IC 

The air-sea gas exchange coefficient is given by (Broecker and Peng, 1982): 

K 	= 0.24an, Vp 	 (1.3) 

where 

Cm 	= solubility of CO2 at the sea surface temperature (mol C 111-3  patm-1), 

Vi,, 	= gas transfer piston velocity of CO2gas across the air-sea interface 

(cm h 1 ). 

The factor of 0.24 in equation 1.3 has been used to convert the gas transfer velocity 

from cm h' to m 

The solubility of CO2 in seawater is a function of sea temperature and salinity. For 

seawater at 1 atm pressure, salinity of 34 ppt, and -1°C, CO2 is twice as soluble 

compared to seawater at 20°C (Weiss, 1974). In most studies of the air-sea flux of 

CO2 it is the bulk temperature of the mixed layer which is measured, at a few metres 

below the sea surface, rather than the actual thin surface layer. The surface of the 

ocean (or 'skin') exhibits a temperature gradient within the upper 1 mm, or so, on 
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average 0.3°C cooler than the bulk mixed layer (e.g. Woodcock, 1941; Hasse, 1971). 

This cooler surface temperature results in higher CO2 solubility in the skin compared 

with the bulk mixed layer, and therefore one obtains a higher estimate of air-sea flux 

when calculating the air-sea gas exchange coefficient (equation 1.3) using the skin 

temperature than when using the bulk mixed layer temperature. Robertson and 

Watson (1992) and Van Skoy et al. (1995) have made estimates of the increase in 

global ocean uptake of CO2 due to the thermal skin effect of 0.7 Gt C yr -I  and 0.39 Gt 

C yf l , respectively. Unfortunately, skin temperatures were not available for most of 

the cruises covered in this thesis, and therefore the bulk mixed layer temperature is 

used for the sea surface temperature in all calculations. 

For moderately or slightly soluble gases, the rate of gas exchange is controlled by 

turbulence at the air-water interface (Liss and Merlivat, 1986). The gas transfer piston 

velocity can approximately be represented as a function of turbulence at the air-water 

interface by (Liss and Merlivat, 1986): 

Vp 	= Scn  fiturbulence) 	 (1.4) 

where 

Sc 	= Schmidt number,(Jahne et al., 1987a), 

n 	= -0.5 to -1.0 (Liss and Merlivat, 1986). 

The Schmidt number can be approximated by a third order polynomial in sea surface 

temperature (Mule et al., 1987a), with Sc decreasing as the temperature increases. 

For the case where n is -0.5 then Scjai  at -1°C is equal to 0.55 Se" at 20°C, which 

nearly cancels the effect of the temperature dependence of the solubility on the air-sea 

flux. 

The major source of turbulence at the air-sea interface is wind stress (Wanninlchof et 

al., 1985), and therefore the gas transfer velocity is a function of wind speed. 

However, there is considerable uncertainty regarding the most appropriate relationship 

to use (e.g. Liss and Merlivat, 1986; Takahashi, 1989; Wanninkhof, 1992). The wind-

speed dependence of the gas transfer velocity has been estimated in the laboratory 
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using wind tunnels and wind-wave tanks (e.g. Merlivat and Memery, 1983; Jane et 

al., 1987b; Wanninkhof and Bliven, 1991), in the field using conservative tracers in 

lakes or the open ocean (e.g. Wanninkhof et al., 1985; Upstill-Goddard et al., 1990; 

Wanninkhof et al., 1993), and using "C (e.g. Broecker et al., 1985) and radon gas 

measurements over the ocean (e.g. Peng et al., 1979; Smethie et al., 1985). No single 

wind tunnel study has yet managed to cover the full range of wind speeds from 0 to 20 

m s-1  (Liss and Merlivat, 1986), and there are few results from lake or ocean 

experiments which give air-sea gas transfer velocities for wind speeds exceeding 

13 m 	(Watson et al., 1991). 

Liss and Merlivat (1986) extrapolated lacustrine measurements by Watmitildiof et al. 

(1985), for an enlarged set of values of wind speed, based on knowledge obtained from 

models and wind tunnel experiments. Liss and Merlivat (1986) normalised all data to a 

Schmidt number of Sc = 600, corresponding to CO2 at 20°C in fresh water, then used 

a Schmidt Number power dependence of-2/3 for wind speeds less than 

3.6 m s-1  (smooth surface regime), and -1/2 for all higher speeds (breaking waves). 

They obtained three relationships for the gas transfer piston velocity at 20°C: 

Vp  (cm If') = 0.17 W (W. _ 3.6) 

Vp  (cm W I) = 2.85 W-9.65 (3.6 < 13) 

Vp  (cm lc) = 5.9 W- 49.3 (W> 13) (1.5) 

where 
= surface wind speed at a height of 10 m a.s.l. (m s4). 

These three relationships for Vp  are widely used in the literature to calculate the net air-

sea flux of carbon dioxide over the Southern Ocean (e.g. Murphy et a., 1991; 

Robertson and Watson, 1995; Metzl et al., 1995). 

Smethie et al. (1985) developed a relationship for gas exchange based on analyses of 

gas transfer data obtained by a radon deficit method in the Equatorial Atlantic. In this 

relationship, it is assumed that no gas transfer takes place between zero and 
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3 m s-1  wind speed (at 19.5 m height) and that gas transfer is linearly dependent on 

wind speeds greater than 3 m s-1 . Takahashi (1989) revised the Smethie et al. (1985) 

relationship to intercept the global average gas transfer velocity obtained from the 

bomb- 14C inventory in the ocean. He derived the following relationship for the CO2 

gas transfer velocity for seawater at 20°C: 

Vp  (cm If) = 0 	 (W< 3) 

Vp (cm 114) 	= 5.8 (W- 3) 	(W? 3) 
	

(1.6) 

The relationship of Takahashi (1989) has a significantly stronger dependence on wind 

speed than that of Liss and Merlivat (1986) (Figure 1.2). Wanninkhof (1992) 

accounted for some of the difference with the following argument. For a non-linear 

relationship between gas transfer and wind speed, the variance of wind speed during 

the measurement interval can have a significant influence on the calculated gas transfer 

velocity. Most experimental results suggest that the relationship has a positive 

curvature, so gas transfer velocities measured over long time periods with variable 

winds will be higher than if transfer velocities are measured instantaneously, or under 

steady wind conditions for the same average wind speed. Gas transfer velocities 

obtained with 14C correspond to average long-term winds, while gas transfer 

measurements in wind tunnels are performed under steady wind conditions. The Liss 

and Merlivat relationship is based on gas transfer velocities measured over 1-2 days on 

a small lake. Because of the short time interval of measurement, the gas transfer-wind 

speed relationship of Liss and Merlivat may yield low gas transfer values if long-term 

averaged winds over the ocean are used. On the other hand, the relationship of 

Takahashi (1989) has been fit through long-term bomb- 14C invasion rates over the 

ocean. This relationship will yield anomalously high values if used for short-term or 

steady winds. 
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Fig. 1.2 Summary of four commonly used relationships between the gas 
transfer piston velocity, Vp, and wind speed (at 10 m a.s.1.), for air-sea _ 

Wanninkhof (1992) determined two different equations for the gas transfer velocity 

from long term climatological wind speeds and short term or steady wind speeds. 

Including the Schmidt number dependence, his equation for the CO2gas transfer 

velocity for long term averaged wind speeds, Vp(av), is 

Vp(av) (cm 11 1)= 0.39 Wav2  (Sc/660)-1/2 	 (1.7) 

where 

Way 	= long term averaged wind speed at 10 m a.s.l. (m s -1), 
Sc 	= 660 for CO2 in seawater at 20°C (Jahne et al., 1987a). 

The gas transfer velocity for short term or steady winds, such as spot measurements 

using shipboard anemometers, is (Wanninkhof, 1992): 
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exchange of CO2 at 20°C. 

Vp  (cm if') 	= 0.31 W2  (Sc/660) 1r2 	 (1.8) 



Equation 1.7 yields transfer velocities close to those of Takahashi (1989) for wind 

speeds below about 13 m 	while equation 1.8 yields transfer velocities between the 

Liss and Merlivat and Takahashi estimates for wind speeds below 

15 m s-1  (Figure 1.2). 

Other factors besides wind stress can also influence air-sea gas exchange over the 

ASIZ. 

In areas of ocean partially covered by sea-ice the gas transfer velocity is affected by the 

finite distance over which a wave field can develop - the "fetch" (Wanninkhof, 1992). 

Work in wind-wave tanks has indicated that fetch has an influence on gas transfer, 

especially at lower wind speeds (Jahne et al., 1989; Wanninkhof and Bliven, 1991). 

Larger lakes also show higher average gas transfer values at a particular wind speed 

compared with smaller lakes (Wanninkhof, 1992), and the fetch dependence is most 

pronounced at higher wind speeds (Upstill-Goddard et al., 1990; Wanninkhof, 1992). 

Over parts of the ASIZ, where pack ice breaks up the ocean surface into polynyas and 

leads, it is expected that the average gas transfer velocity will be less than it would be 

over the open ocean for the same sea surface temperature and wind speed. 

Chemical enhancement of CO2  exchange occurs by reaction of CO2 with water or 

hydroxide ions in the surface boundary, increasing the concentration gradient of the 

diffusing species in the water boundary layer and, thereby, the gas transfer (Bolin, 

1960). All experimental and theoretical evidence points to negligible enhancement at 

gas transfer velocities corresponding to steady winds above 5 to 7 m s -1, especially for 

low sea surface temperatures (Broecker and Peng, 1974; Hoover and Berkshire, 1969; 

Liss, 1973; Warminkhof, 1992). For the ASIZ, where monthly mean wind speeds 

almost always exceed 5 m s"' (Appendix B: Figure B.3), chemical enhancement is 

expected to have no significant effect on the gas transfer velocities. 
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1.3.2 Measurements of oceanic fCO2 over the ASIZ 

Most of the carbon in seawater is in the form of HCO 3" and CO3 =  ions and less than 

1% is present as carbon dioxide gas. The chemical equilibria between the dissolved 

carbonate species can be written as follows (Broecker and Peng, 1982): 

CO2,aq + H20 ± CO3 *--> 2HCO3 - 	 (1.9) 

where 

CO2aq  = dissolved CO2 including H 2CO3 . 

Two parameters that can readily be measured in seawater are the total dissolved 

inorganic carbon (DIC) concentration, 

DIC = [CO] + [HCO31 + [CO31 , 	 (1.10) 

and the pressure of CO2 gas in air equilibrated with this water, 

pCO2 (gatm) = [CO24Va a 	 (1.11) 

where  

[CO2aq] = concentration of dissolved CO2 including H2CO3(mol C 

a 	= solubility of CO2 in seawater at the sea temperature 

(mol C m 3  p,atm-1). 

The parameter used in this study is the fugacity of CO2 gas, .X02, as this takes into 

account the non-ideal nature of carbon dioxide, whereas a partial pressure assumes an 

ideal gas. The difference between oceanic jCO2 and pCO2 is most pronounced in cold 

waters,fCO2 being as much as 2 patm lower than pCO2 at -1.8°C (Weiss and Price, 

1980). The fugacity of carbon dioxide is defined as 
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fCO2 (uatm) = OpCO2 	/CO2/pCO2 —*1 as p -+ 0 	(1.12) 



where 

= a function of pressure and water temperature (Weiss, 1974; 

Subsection 2.4.4), 

= total pressure (atm). 

Variations of sea surface jCO2, are controlled by dynamic processes (mixing in the 

surface layer), thermodynamic processes (variation of temperature and salinity), 

exchanges of CO2 between the atmosphere and the ocean, and biological processes 

(primary production, remineralisation). It has been possible to estimate values of sea 

surfacefCO2 over many regions of the world's oceans using monthly mean sea surface 

temperature fields (e.g. Tans et al., 1990; Metzl et al., 1995), but there is no clear 

relationship between these parameters south of about 50°S (Poisson et al., 1993; 

Takahashi et al., 1993; Metzl et al., 1995). Unless more sophisticated relationships are 

developed to determine jCO2  from not only sea surface temperature, but other 

parameters such as chlorophyll a from ocean colour maps, the most reliable method for 

determining surface ocean fugacities over the ASIZ is to sample seawater from a ship. 

Few cruises have been made south of 55°S to measure pCO2 orfCO 2, and even fewer 

have sampled in areas of pack ice. Table 1.1 presents a summary of oceanic pCO2 and 

.fC 02 measurements south of 55°S published to date. It can be seen that there is no 

published pCO2 data for the ASIZ for the months April to September. When 

comparing pCO2  data measured using various techniques, one should bear in mind that 

there are discrepancies between pCO2 measured with infra-red gas analysers and those 

calculated from titration data, as the latter depend on knowing the equilibrium 

constants for CO2. 
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Region Time Period Oceanic pCO2  
(path° 

Sampling method Reference 

570  - 62.5°S, 00  - 4°E 
(sea ice) 

Oct - Nov'81 313 - 340 titration Takahashi and 
Chipman (1982) 

550  - 66°S, 20° - 80°E Feb - Mar'93 256 - 370* equilibrator with 
gas chromatograph 

Robertson and 
Watson (1995) 

550_ 65°S, 30°- 90°E Feb'87 300 -380 equilibrator with 
gas chromatograph 

Metz.1 et al. (1991) 

55° - 69°S, 400  - 150°E Nov - Mar, 
'87-'92. 

260 - 360 equilibrator with 
infra red gas analyser 

Hashida et al. 
(1994) 

65° - 68.5°S, 63° - 78°E 
(sea ice) 

austral summer 
'79 - '80 

195 - 490 titration Milne and Smith 
(1980) 

55° - 63°S, 60° - 100°E 
GEOSECS Indian exp. 

Feb'78 310 -340 Takahashi and 
Chipman (1982) 

55° - 66°S, 62° - 87°E 4 Jan'91 - 
1 Apr'91 

315 - 355* equilibrator with 
infra red gas analyser 

Poisson et al. 
(1993) 

56.6° - 65°S, 150°E 17 Dec'93 - 13 
Jan'84 

346 - 373 equilibrator with 
infra red gas analyser 

Inoue and 
Sugimura (1988) 

63° - 65°S, 115°- 150°E 13 - 18 Jan'84 338 -366 equilibrator with 
infra red gas analyser 

Inoue and 
Sugimura (1988) 

55° - 65°S, 115°E 18 -23 Jan'84 340 - 358 equilibrator with 
infra red gas analyser 

Inoue and 
Sugimura (1988) 

55° - 70°S, 170° - 190°E 
GEOSECS Pacific exp. 

Feb - Mar'74 280 -310 Takahashi and 
Chipman (1982) 

55° - 58°S, 193° - 203°E Mar - Apr'84 undersaturated 
by > -20 i.tatm 

equilibrator with gas 
chromatograph 

Murphy et al. 
(1991) 

55° - 60°S, 235° - 256°E Feb - Mar'89 slightly 
oversaturated 

equilibrator with gas 
chromatograph 

Murphy et al. 
(1991) 

590  - 69°S, 272°E 
(to ice edge) 

5 Nov - 
17 Dec'92 

214 - 350 equilibrator with gas 
chromatograph 

Robertson and 
Watson (1995) 

60° - 63°S, 292° - 297°E 
METEOR expedition 

21 Jan - Feb'90 320 - 355 equilibrator with gas 
chromatograph 

Chipman et al. 
(1992) 

55° - 62°S, 295° - 299°E 
ANTX/1 

Nov - Dec'91 242 -346 equilibrator with 
infra red gas analyser 

Schneider and 
Morlang (1995) 

60° - 64°S, 313° - 325°E 
METEOR expedition 

Feb'90 230 -325 equilibrator with gas 
chromatograph 

Chipman et al. 
(1992) 

55° - 76°S, 290° - 360°E 
(sea ice) 

Nov - Dec, 
'83 - '90. 

220 - 390 various cruises and 
methods 

Takahashi et al. 
(1993) 

55° - 63°S, 290° - 345°E 
GEOSECS Atlantic exp. 

Jan'73 280 - 320 Takahashi and 
Chipman (1982) 

55° - 60°S, 6°W 
(sea ice) 

24 Oct -21 
Nov'92 

344 -375 equilibrator with gas 
chromatograph 

de Baar et al. 
(1995) 

60° - 70°S, 20°W - 2°E 
Atlantic Long Lines 
(AJAX) expedition 

24 Jan - 2 
Feb'84 

215 - 390 equilibrator with gas 
chromatograph 

Chipman et al. 
(1986), Takahashi  
et al. (1993) 

Table 1.1 Published oceanic pCO2 measurements south of 55°S. Numerically, 
fCO2 is close to pCO2. Where "sea ice" is entered under "Region" this means 
that at some stage pCO2  measurements were made in an area of pack ice. 
Partial pressures expressed as fugacities are marked with a *. 



1.4 NET AIR-SEA TRANSFER OF 13CO2  AND ITS EFFECT ON 

ATMOSPHERIC 13CO2/12CO2 OVER THE ASIZ 

The isotopic composition of carbon dioxide (ratio of ' 3CO2 to '2CO2) is expressed as 

the per mill difference in the isotopic ratio between a CO2 sample and a calcium 

carbonate standard, the Pee Dee Belemnite ("PDB"; Craig, 1957): 

where 

613C (°/..) 	 _ ( 1 3 012C)s — ( 1 3 C/ 12C) pm3  

( i 3 c1 2c)pm  
x 1000 	(1.13) 

(130.2c)s 	= the ratio of ' 3C to 12C in the sample of CO2 gas. 

During uptake of atmospheric CO2 by plants the fighter isotopes are preferred. The 

result of fractionation during photosynthesis is that, on average, biospheric material is 

depleted in 13C by about 17 0/. relative to air, (Craig, 1953; Farquar et al., 1982). 

There is no significant fractionation associated with the return of biospheric carbon to 

the atmosphere, either by respiration, decay or combustion, so that atmospheric 8' 3C 

becomes more negative as a result of the addition of CO2 to the atmosphere of 

terrestrial biospheric origin (Keeling, 1961). 

The other major carbon exchange on seasonal-to-century timescales involves the 

oceans. Air-to-ocean transfer of gaseous CO 2  involves kinetic fractionation of 

approximately 2 0/00, whereas ocean-to-air transfer of carbon involves kinetic and 

thermodynamic fractionation of CO2 of about -8.5 0/04)  at 20°C (Mook et al., 1974). 

The resulting influence on atmospheric 8' 3C from exchange with the ocean is therefore 

generally small compared with the effect from terrestrial biota and fossil fuel (Francey, 

1985; Peannan and Hyson, 1986). 

The region studied in this thesis - the Southern Ocean south of 44°S, between 60°E 

and 160°E, and in particular the region of the ASIZ (60° - 70°S, 60° - 150°E), is 

remote from terrestrial or anthropogenic sources of CO2. Therefore, the seasonal 

variations in 8 I3C of atmospheric CO2 over the ASIZ to be presented in Chapter 5, are 
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not a result of air-terrestrial biosphere exchange, but must be due to exchange of CO2 

with the ocean surface and to atmospheric transport of ' 3CO2 - depleted air from the 

north. 

The net transfer of ' 3CO2  from the ocean to the atmosphere, 13N, may be expressed in a 

similar fashion to the net sea-to-air transfer of CO2 in equation 1.1 (after Tans et al., 

1993): 

13N (g 13C d-1) = -ocamcD.R. + anzaOrnaRrn 	 (1.14) 

where 

awn 	= the isotopic fractionation (kinetic) between the atmosphere and the 

surface ocean (Heimann and Keeling, 1989, p. 263), 

otma 	= the isotopic fractionation (kinetic and thermodynamic) between the 

surface ocean and the atmosphere (Heimann and Keeling, 1989, p. 

263), 

Ra 	= ratio of 13C/12C in atmospheric CO2, 

Rm 	= ratio of 13C/12C in DIC in the surface ocean. 

The 13C/12C equilibrium fractionation factor of gaseous CO2 with respect to total 

dissolved inorganic carbon in seawater is defined as aeg  = anJaa. (Heimann and 

Keeling, 1989, p. 263). This equilibrium fractionation factor was empirically 

determined to be a function of sea surface temperature, SST (°C), (for 5°C < SST 

< 25°C), such that (Zhang et al., 1995): 

= (0.98947 ± 0.00005) + (0.104 ± 0.003) x 10-3  SST, 

(1.15) 

which agrees closely with the relationship obtained by Mook et al. (1974) for the 

equilibrium fractionation factor between gaseous CO2 and dissolved bicarbonate in 

seawater. 

1-19 



1-20 

Substituting equation 1.1 into 1.14 and defining R: to be the 13C/ 12C isotopic 

composition of gaseous CO 2  that would be in equilibrium with the sea surface (Tans et 

al., 1993), where 

R: 	= (a,„al aam)Rth  , 	 (1.16) 

gives 

13N (g C d"") = oca„,NRa + ocaineonia(R: - Ra) 	 (1.17) 

Equation 1.17 separates the net air-sea transfer of ' 3CO2 into an "equilibrium" flux 

(cra„,NR2) proportional to the net air-sea transfer of CO2, and a "disequilibrium" flux 

(a1(R: - Ra)) proportional to the ocean-to-air gross CO2 flux, ma, and the 

isotopic disequilibrium between the atmosphere and the ocean, R ae  - Ra  (Tans et al., 

1993; Ciais et al., 1995a). 

The net transfer of '3CO2 gas from the ocean to the atmosphere, ' 3N, cannot be 

measured directly, but the rate of change in the ratio of atmospheric 13CO2 to 12CO2 

can be measured. Therefore, following the chain rule of differentiation, 13N may be 

expressed in terms of the ratio of 13C/12C in atmospheric CO2, Ra, and the mass of 

atmospheric CO2, Ma, such that 

13N = Ma l3NR + Ra N 	 (1.18) 

where 

13NR  = the change in the atmospheric isotopic ratio, Ra, due to air-sea 

exchange (c1-1 ). 

Substituting equation 1.18 into equation 1.17, one obtains 

Ma 13NR 	= N(oran, - 1)Ra + (p.a. (Rae  - Ra) 	 (1.19) 



Equation 1.19 may be more conveniently expressed by defining 8k = [(Rk - RpDB)/Rpos] 

x 1000 '700  (as in equation 1.13) and 4= [ak - 1] x 1000 °40. After dividing through 

by RpDB/1000, and approximating the multiplicative factors a t,,,, = 0.998 and 

(8a/1000) + 1 to 1 (Tans et al., 1993), equation 1.19 may be rewritten to give the rate 

at which 8 13C changes in the atmosphere, due to exchange of CO2 gas with the ocean, 

13N 5 (4) 	d-1): 

Ma l3N 8 	= New,, + (1),.(8ae  - 8,7) 	 (1.20) 

where 

= 8 13C of atmospheric CO2 C40, 

eam 	= kinetic fractionation of CO 2  as it passes from air to seawater (°/„.) 

= -2.23 ± 0.2°40  at 5°C, and -2.02 ± 0.2°40  at 21°C (Zhang et al., 

1995), 

Oa' 	= S BC of gaseous CO2 that would be in equilibrium with the sea 

surface (700) 
= [(0.98947 + 0.104 x 10 -3  SST)(1 + 8„11000) - 1 x 1000 °/„,, from 

equations 1.15 and 1.16, 

8m 	= 8 13C of DIC in the surface ocean (V.). 

As in equation 1.17, equation 1.20 separates the change in atmospheric 8 13C due to 

air-sea exchange into a "net flux term", N 	and a "gross flux term", (1).a(45a e  - 

The net flux term reflects the relatively small kinetic fractionation in atmospheric 8 13C 

associated with net air-sea transfer of carbon (earn  -2 Vc., N oc fm  - fa). The gross flux 

term reflects the large gross flux ((1),na  oc fm), the isotopic disequilibrium between DIC 

in the surface ocean and atmospheric CO2 (Tans et al., 1993), and the temperature 

dependence of the fractionation between DIC to gaseous CO2 (equation 1.15). The 

gross flux term in equation 1.20 can become significant if 8,e - 5a  is non-zero. 

Isotopic disequilibrium between the atmosphere and surface ocean (&e  # Sa) may 

occur due to a number of factors. Globally, the average ratio of 1302c  in atmospheric 

CO2 is steadily decreasing due to the burning of fossil fuel, but because there is a finite 
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residence time for CO2 in the ocean, anthropogenic changes in globally averaged S. lag 

globally averaged Sa  (Francey et al., 1995b). In 1990, the world's atmosphere and 

surface ocean were out of isotopic equilibrium by an average of about 0.43 O/0„, (Tans 

et al., 1993). 

On a smaller scale, rapid mixing in the atmosphere prevents the establishment of 

atmosphere-ocean equilibrium. In this case, regional disequilibrium will occur due to 

the thermodynamic fractionation of CO2 as it leaves the ocean (Mook et al., 1974) and 

from any additional changes in S. unrelated to variation in az, such as marine biological 

productivity and respiration or decay (Tans et al., 1993). Algal growth results in 	' 

increased levels of 8 13C-DIC in the same waters, since carbon-12 is taken up 

preferentially by phytoplankton, with the average DIC - phytoplankton fractionation 

being -22 °/„. (Tans et al., 1993). 

Over the Southern Ocean, if 8 13C-DIC in the surface ocean is altered by factors 

unrelated to the kinetic fractionation associated with net air-sea exchange, such as 

upwelling of DIC, fractionation from algal uptake of DIC, or changes in sea surface 

temperature, then any gross air-sea exchange of CO 2  will significantly alter local levels 

of atmospheric 8 13C. It will be demonstrated in this thesis that with current 

measurement techniques it is possible to measure the impact of gross air-sea flux on 

atmospheric 8'3C more easily than the impact of net air-sea flux on atmospheric CO2 

mixing ratios. In particular, over a relatively unproductive region of the Southern 

Ocean the strong sea surface temperature dependence of atmospheric 13CO2/12CO2  will 

be measured, and over a highly productive region of the ASIZ, the effect that changes 

in 8 13C-DIC of the surface ocean may have on 8 13C of atmospheric CO2 will be 

demonstrated. 
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CHAPTER TWO:  

METHOD 

2.1 INTRODUCTION 

This chapter describes the methods and equipment used to measure the fugacity of 

carbon dioxide in the ocean and atmosphere. The instruments described in Sections 

2.2 and 2.5.1 were installed on the RSV Aurora Australis (Plate 2.1) during the austral 

winter of 1992. Sampling and analysis techniques for measuring the concentration and 

stable carbon isotopic ratio (8' 3C) of atmospheric CO2, and concentration of 

Chlorophyll a in surface waters, are also described. 

Plate 2.1 The Australian icebreaker RSV Aurora Austrahs  in Prydz Bay. 
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2.2 MEASUREMENT OF OCEANICfCO 2  

The fugacity of CO2  in surface seawater, f,,„ was measured on RSV Aurora Australis 

by infrared analysis of air equilibrated with seawater (Plate 2.2). The technique used 

was similar to that of Takahashi (1961) and Copin-Montegut (1985), and employed a 

"Weiss" type equilibrator and a LICOR 6252 Infrared Gas Analyser (1RGA). A 

schematic of the system is shown in Figure 2.1. During a three hour cycle two 

standards, an air sample, and air equilibrated with surface waters were analysed. 

Plate 2.2 Instrumentation on the RSV Aurora Australis used for measuring 
fCO2, including an equilibrator column (right) and infra-red gas analyser (left). 
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Fig. 2.1 Schematic of system used to measure the jt02 of surface waters. 
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2.2.1 Equilibrator 

The perspex equilibrator column is similar to that designed by Dr. Ray Weiss and used 

by Butler et al. (1988). The major differences being a slightly smaller equilibration 

chamber (19 cm ID x 47.5 cm H) and a modified drain (Figure 2.2). The volume of 

water in the base of the equilibrator chamber is approximately 2.5 litres and the 

headspace in the column is about 11 litres in volume. Seawater was pumped from an 

inlet at 7.5 m depth near the bow of the ship and warmed between 0.5°C and 2°C 

before reaching the equilibrator column. A warming of 2°C only occurred when the 

ship was in pack ice. The seawater flowed into the equilibrator at 6 to 10 litre min -1  

and passed through a "shower head" (containing 232 holes of 0.5 mm diameter), 

whereupon it rained down inside the column in a dense spray and drained through the 

bottom of the equilibrator column. The interior of the column was kept at atmospheric 

pressure by venting it to outside air. Air from the equilibrator head space was 

circulated in a closed loop at 350 ml min -1  using a KNF Neuberger series NO10 

diaphragm vacuum pump. Three 4-wire platinum resistance temperature detectors 

(RTDs) were placed in the equilibrator column to measure the absolute temperature of 

the air-space, T1, waste water, T2 and spray, T3 (Figure 2.2). Foam insulation was 

wrapped around the equilibrator during normal operation to minimise heat exchange 

with the lab air. 
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WEISS EQUILIBRATOR 

	> Air flow 

	> Water flow 

Volume of air = 10.8 litre 

Volume of water in spray = 0.15 litre 

Fig. 2.2 The version of the "Weiss" type equilibrator column used on RSV 
Aurora Australis after 17 October 1992 (after Butler et al. (1988)). 
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2.2.2 Valve switching 

Every three hours, two different calibration gases (CO2 in air mixtures), and outside air, 

were dried using Dehydrite® (magnesium perchlorate) and switched into the ERGA for 

eight minutes each, by way of solenoids controlled by the Data Electronics DT50 

Datataker. All gases flowing into the 1RGA were maintained at about 350 ml 

The sequence in which the valves A to E (Figure 2.1) were activated during a three 

hour cycle is shown in Figure 2.3. 

valves 
activated 

ADE 

BDE 

CDE 

0 8 16 24 minutes 	180 188 196 204 minutes 

3 hour cycle 

Low standard (LOSPAN) - activate valves ADE, 0-8 minutes 

High standard (IIISPAN) - activate valves BDE, 8-16 minutes 

Air sample - activate valves CDE, 16-24 minutes 

Seawater - no valves activated, 24-180 minutes 

Fig. 2.3. Valve switching sequence over a 180 minute cycle. 
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2.2.3 Gas Standards 

Two CO2-in-air standards were used to quantify the CO 2  concentration in the head-

space gas and correct for drift in the infra-red gas analyser. The calibration gases were 

obtained from CIG (Commonwealth Industrial Gases Ltd) and were calibrated against 

standards which are held at the CSIRO Division of Atmospheric Research (DAR) 

(Beardsmore et al., 1995). These standards have in turn been calibrated against a suite 

of WMO X85 Secondary Standard CO 2-in-air mixtures held at CSIRO DAR. The 

calibrations were made at the beginning and end of use of the cylinders and agreement 

was typically better than 0.1 ppmv. The CO2 mixing ratios of the low and high 

concentration calibration gases used on cruises between 1 October 1991 and 8 March 

1993 were 321.4 ppmv and 351.1 ppmv; from 12 March to 8 May 1993 they were 

329.7 ppmv and 365.0 ppmv; and from 7 August 1993 to 1 March 1994 they were 

333.7 ppmv and 370.91 ppmv (D. Beardsmore, pers. corn.). 

2.2.4 Infra-red Gas Analyser 

A LI-COR 6252 non-dispersive infra-red CO2 gas analyser (IRGA) measured the 

mixing ratio of CO 2  in the dried equilibrator air. Analysis of the zero gas and various 

standards in the range of 300 to 375 ppmv agreed to within 0.3 ppmv, indicating the 

output of the lRGA was reasonably linear. 

The IRGA was run in "absolute mode". Soda lime and magnesium perchlorate were 

used to remove CO2 and H 2O vapour from the reference cell. The zero was set using 

CO2-free nitrogen and was checked periodically. The drift in the zero setting of the 

1RGA was typically less than 1 ppm over a month of field measurements. 

The manufacturers specify the noise level of the LI-6252 IRGA as being approximately 

0.2 ppmv peak-to-peak (at 350 ppmv) when using a one second signal averaging. 
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2.2.5 Control and Monitoring 

A Datataker 50 data logger (Data Electronics Pty. Ltd.) controlled the valve switching 

and recorded the output signal current of the IRGA, the differential pressure in the gas 

lines at the exit of the IRGA sample cell, and the temperatures inside the equilibrator 

column at three locations. All data were collected as four minute averages of readings 

taken every second. For each cycle the first four minutes of data for the standards, 

outside air, and air from the equilibration chamber .  were not recorded. This allowed 

time to flush the lines of gases used in the previous analysis. All averaged values 

recorded by the Datataker were output to a PC compatible computer every four 

minutes through an RS232C port. 

The pressure differential between the IRGA sensor cell and the outside air was 

measured by a Druck Model PDCR 810 differential pressure sensor located in the 

IRGA outlet gas line (Figure 2.1). The sensor was used to correct for any differences 

in the pressure of the standard gases relative to the ambient air and equilibrator 

headspace gases. The Druck pressure sensor was calibrated before each season and 

has a resolution of ±0.05 hPa and an accuracy of ±0.5 hPa. 

Changes in atmospheric pressure can result in some drift in the span of the IRGA. In 

order to minimise drift, a barometric sensor (Vaisala PTA 427) with an analog output 

was connected to an auxiliary input of the IRGA. The sensor was calibrated using a 

high precision resonant sensor barometer (Druck Model DPI 141) that has been 

calibrated against the Australian Bureau of Meteorology Barometric Standards, and 

was accurate to ±0.5 hPa. 

Platinum RTD's (4-wire, a = 0.00385 S)I°C) measured the temperature of water in the 

equilibrator. The RTD's were calibrated at a National Association of Testing 

Authorities (NATA) calibration facility located at CSIRO Division of Oceanography. 

The calibrations were used to characterise each RTD and repeated calibrations 
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indicated the temperature could be routinely measured to an accuracy of better than 

±0.03°C. 

2.3 OTHER SHIPBOARD MEASUREMENTS NECESSARY FOR 

CALCULATING OCEANIC fCO2 

Section 2.2 described the measurement of the mixing ratio of CO2 in the dried 

equilibrator air, temperatures in the equilibrator and differential pressure in the IRGA 

sample cell. However, in order to calculate the fugacity of CO 2  at the ocean surface, it 

is necessary to know the temperature and salinity of seawater at the water inlet, and the 

atmospheric pressure in the ship's laboratory. If instantaneous air-sea fluxes of carbon 

dioxide are to be determined from the oceanicfCO2 values, then it is also necessary to 

measure the absolute wind speed from the ship. 

2.3.1 Sea surface temperature 

An uncontaminated seawater supply line, with inlet located in the bow of the RSV 

Aurora Australis at 7.5 m below sea level, supplied surface water to the equilibrator. 

The temperature of the surface seawater was continuously measured using a 4-wire 

PT 100 RTD probe located at the inlet of the uncontaminated seawater line, about 150 

mm back from the ship's hull. The signal from the probe was recorded with a 

Yokogawa Model 7563 Digital Thermometer with a specified accuracy of ±0.05°C. 

These temperatures were logged with a resolution of ±0.01°C on the ship's data 

logging system (NOQALMS) at once per minute until 4 February 1993, and once every 

20 seconds after that date. Laboratory tests performed at the Antarctic Division on 27 

November 1992 indicated that the thermometer's accuracy over 24 hours was 

± 0.0005°C at 23°C with a 200 ms integration time. The temperature of the RTD was 

regularly checked against CTD temperatures measured near the inlet and agreement 

between the two measurements was typically better than ±0.03°C. 
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2.3.2 Sea Surface Salinity 

The salinity of the surface seawater was measured continuously with a 

thermosalinograph (Applied Microsystems Ltd. Model STD-12) mounted inline with 

the uncontaminated seawater supply line. The sampling rate was once every 10 

seconds with salinity values being recorded once every minute on the NOQALMS 

system until 4 Feb'93/0916 UT after which time it was logged once every 20 seconds. 

The accuracy of the thermosalinograph system, as specified by the manufacturer, is 

± 0.01 0/00• The thermosalinograph was calibrated for salinity using measurements 

made on discrete water samples taken from the uncontaminated seawater line. The 

salinity of the water samples was measured at CSIRO Division of Oceanography using 

a Yeo-Cal salinometer which was calibrated routinely against IAPSO seawater 

standards. The calibrations indicate that in January to March 1993 the maximum 

standard deviation in the thermosalinograph salinities was ± 0.1 V.. The 

thermosalinograph was calibrated on 19 July 1993 using a quantity of seawater of 

known salinity and found to have a mean standard deviation of 0.05 *4 0  (pers. corn., 

J. Reeve). 

The maximum standard deviation in our calculated fugacities from uncertainty in the 

salinity values was ± 0.005 gatm, which is negligible compared with other errors. 

2.3.3 Atmospheric pressure 

A Vaisala Pressure Transducer (Model DPA21) was situated 18 m above sea level 

beside the ship's bridge. The pressure resolution was 0.1 hPa with an accuracy of 

0.5 hPa. Logging rate on the NOQALMS system was once a minute until 4 February 

1993 after which time it was logged once every 20 seconds and spot values taken every 

4 minutes. As the ship's laboratory containing the equilibrator and IRGA was located 
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at sea level, the barometric pressure was converted from 18 m height to sea level using 

the hydrostatic equation combined with the equation of state for dry air (Gill, 1982). 

The difference in atmospheric pressures from sea level to 18 m a.s.l. was typically 2.2 

hPa. 

2.3.4 Sea Surface Wind speed 

Relative wind speed and direction were measured at 32 m above sea level by a Belfort 

Instrument Co. Model 123 HD propeller anemometer. Wind values (direction and 

speed) were vector averaged over a 10 second period to reduce effects of pitch and 

roll. The standard deviation in the relative wind speed was ± 10%, with a resolution of 

0.1 knot. The wind direction standard deviation was ±5° with a resolution of 0.1 0 . 

The true wind speed was calculated using the ship's heading (standard deviation ± 2°) 

and speed through the water (standard deviation ±10%). Hence, the wind speed 

quoted in this thesis is the wind speed relative to the ocean surface. The 10 second 

average true wind speed was logged on the NOQALMS system once a minute until 4 

February 1993 after which time it was logged once every 20 seconds. 

2.3.5 Navigational data 

A Magnavox MX 1107 GPS and Transit Satellite receiver was used to measure latitude 

and longitude to an accuracy of ±300 m. Latitude and longitude were logged every 20 

seconds to the NOQALMS system. 

2.4 CALCULATION OF OCEANIC jCO2 

The output of the IRGA is in the form of the mole fraction of CO 2  in gmol 	which 

is equivalent to the mixing ratio of CO2 in ppmv. The unit adopted in this study is the 

fugacity of CO2 in the air or seawater at one atmosphere total pressure,fCO2, 
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expressed in microatmospheres (Subsection 1.3.2). The values reported are the 

fugacities of CO2  in equilibrium with seawater at one atmosphere total pressure and at 

the sea surface temperature. 

2.4.1 Correction for pressure variation in the 1RGA cell 

The infra-red gas analyser measures mixing ratios of CO2 in the sensor cell, C, (ppmv), 

which are proportional to the partial pressure of CO2 in the cell. Applying Dalton's 

Law (Gordon, 1973), it follows that the mixing ratio of the CO2 sample at ambient 

atmospheric pressure, p (atm), is given by: 

C(ppmv) = C, 	 2.1 

where 

pi 	= pressure in IRGA sample cell (atm). 

For the measurements made in this study, the pressure in the IRGA cell was typically 

0.7 hPa greater for sample gases than for reference gases. The pressure correction was 

of the order of about 0.07 % for samples near 1 atmosphere pressure. 

The output current of the IRGA sample cell, I, (mA), is proportional to C. Following 

equation 2.1, the output current scaled to one atmosphere total pressure is given by: 

/(mA) = 
	1 	 2.2 

2.4.2 Correction for IRGA drift 

Changes in pressure and temperature cause the output signal of the infra-red gas 

analyser to drift with time. To correct for this drift, calibration gases were switched 
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into the IRGA every three hours (Subsection 2.2.3) and a linear interpolation with time 

was applied between the calibration gas analyses. Let / 1  and 12 represent the IRGA 

output current response to the two calibration gases, scaled to one atmosphere total 

pressure using equation 2.2, and corrected for the drift between calibrations. The 

maximum drift in /1  and 12 over the three hour period between calibrations was 

equivalent to a change in CO2 concentration of about 0.3 ppmv. 

The output of the IRGA being linear over the expected range of concentrations 

(Subsection 2.2.4) allowed the mixing ratio of CO2 in dried air from the equilibrator at 

one atmosphere pressure, C., to be calculated as follows: 

C.2 -  (ppmv) — 	— /1 ) + 
- 

2.3 

where 

C 1 	= CO2 mixing ratio of the lower concentration calibration gas at one 

atmosphere (ppmv), 

C2 

	

	= CO2 mixing ratio of the higher concentration calibration gas at one 

atmosphere (ppmv), 

= IRGA output current response to the mixing ratio of CO2 in dried air 

from the equilibrator corrected to 1 atm total pressure (mA). 

From a study of CO2  mixing ratios in dried air sampled under baseline conditions on the 

ship and analysed on the IRGA the maximum standard deviation in C. was estimated to 

be ± 1 ppmv. 

2.4.3 Correction for drying the air stream 

The output of the infra-red gas analyser is sensitive to water vapour as well as to CO2, 

and therefore it was necessary to remove moisture from the air stream by using a 
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drying tower filled with Dehydrite®. When water vapour is removed from the air 

stream, the concentrations of all the remaining gases are increased in proportion to the 

original water vapour pressure in the air stream, pH20  . The gas phase in the 

equilibrator is saturated with respect to water vapour, and therefore the partial pressure 

of CO2 (at 1 atm) in the undried equilibrator air stream, C,,,(T0), is given in terms of the 

corresponding dried mixing ratio, C., by (Weiss and Price, 1980): 

C,,(To ) (patm) = C 0(1 — Plip(TO) 
	

2.4 

where 

PH20 (TO = saturated vapour pressure of seawater in the equilibrator (atm), 

= absolute temperature of seawater in equilibrator. 

The seawater vapour pressure, pR20 , was calculated from the absolute temperature of 

seawater in the equilibrator, To, and salinity, S 0o) (Weiss and Price (1980)): 

lnpH20  = 24.4543-67.4509 (100 / I)-4.8489 ln(To  /100) — 0.000544 S 	2.5 

The calculated standard deviation inpH20 was less than ±0.0001 atm, which is 

negligible compared with the standard deviation in C,,,(T 0) . The standard deviation in 

Cm(To) was therefore ±1 ppmv. 

2.4.4 Conversion from pCO2 toiCO2 

An expression for the fugacity of a non-ideal gas in seawater (Weiss, 1974) was used to 

convert partial pressure values (C„,(To)) to the equivalent fugacity of CO 2  at the 

equilibrator temperature,fm(To): 

fm(T0) (p.atm) = Cm(To) exp[03(T0) + 2x(T0))pIRT0] 	 2.6 

where 
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= total pressure, which in this case is 1 atm, 

= 82.05601 cm3  atm mol l  IC1 . 

For CO2 in seawater (Weiss, 1974): 

/3(7) = —1636.75+12.0408 ro  — 3.27957 x 10 -2 70 2  + 3.16528 x 10 -5 7 3 	2.7 

x(70 )= 57.7— 0.118K 	 2.8 

The units for 0 and are both cm3 morl . For a standard deviation in Cm(To) of ±1 

gam, the corresponding standard deviation in f„,(TO was approximately ±1 

2.4.5 Correction of the measuredfCO 2  for warming of the seawater 

In the absence of external exchange, thefCO2 of seawater increases with increasing 

temperature. This variation offCO2  is due to the modification of the equilibrium 

position with temperature of the carbonate system and also of other weak acids 

systems, such as borate (Copin-Montegut, 1988). In this study, seawater warmed 

between 0.5°C and 2.0°C between the ship's inlet and the equilibrator and a correction 

had to be applied to account for the warming. 

For a change in temperature of up to 1°C, Weiss et al. (1982) proposed a relationship 

for the temperature dependence offCO 2  which is not strongly dependent on the choice 

of dissociation constants. For larger temperature variations, however, the equation of 

Weiss et al. (1982) must be integrated and in this case the deviation between/CO2 

computed from their formula andfCO2 computed from DIC and total alkalinity 

depends on the equilibrium constants used (Copin-Montegut, 1988). Copin-Montegut 

(1988) found that the Weiss et al. formula does not fit all the values offCO2  calculated 

using the dissociation constants for carbonic acid in seawater computed by Dickson and 

Miller° (1987). Copin-Montegut (1988, 1989) established a new formula to calculate 
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X02 in seawater at one temperature, given that the fugacity at another temperature is 

known, which used the dissociation constants for carbonic acid in seawater taken from 

Dickson and Miller° (1987) and ensures a smaller deviation than the Weiss et al. 

(1982) equation for any temperature variation. Therefore the Copin-Montegut (1988, 

1989) relationship is chosen in this study. 

The fugacity of CO2 at the inlet to the uncontaminated seawater supply, fn(T,,), is 

expressed in terms of the ./CO2 of seawater in the equilibrator, f,„(T.), as (Copin-

Montegut, 1988; 1989): 

a(T„,) 
in f„,(T„,) — —a(7,0 1n[f„,(T) I b(T,)]+ ln b(T,n ) 2.9 

where 

T„, 	= absolute temperature of seawater at the inlet to the ship's 

uncontaminated seawater supply, 

To 	= absolute temperature of seawater in the equilibrator (from T3 in 

Figure 2.2), 

a(T) = 1 + a (T - 273.16), 

b(7) = 1 + y(T- 273.16) + 17 (T- 273.16)2 + t (T - 273.16)3 , 

• = absolute temperature, 

= -(1127+4.75)x1e, 

= (3695+10.65)x10 -5 , 

= (375+3.4S)x10-6 , 

= (0.92-0.134S)x10 -6 , 

• = salinity (Vo(,). 

The above values of the coefficients, a, y, ri and t, were taken from Copin-Montegut 

(1989), and are appropriate for waters where the ratio of DIC to total alkalinity is in 
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the range 0.83 to 0.93. The ratios of DIC to total alkalinity were within this range in 

GEOSECS data from the Southern Ocean (Takahashi et al., 1980). 

The standard deviation infm(L) was approximately ±1 gam. 

2.5 MEASUREMENT OF ATMOSPHERIC CO2 MIXING RATIOS 

2.5.1 Air sampling on the ship 

Air samples were collected over the Southern Ocean in 0.5 litre glass flasks supplied by 

CSIRO Division of Atmospheric Research (DAR). The flasks were prepared at DAR 

by first cleaning with alcohol and distilled water, after which they were oven dried at 

110°C for 3-4 hours, then flushed for one hour with high purity cylinder air before 

sealing (Francey et al., 1995a). Subsequently, the flasks were flushed and filled with 

clean, dry air at around 80 kPa above ambient pressure before shipment to Hobart. 

The flasks were filled on RSV Aurora Australis using a DAR FPU pump unit (Plate 
2.3; Francey et al., 1995a), employing a KNF Neuberger diaphragm pump, with the air 

entering the pump via a drying tower filled with Dehydrite ®. Each flask was flushed at 
the sampling site for 10 minutes prior to filling, then the flask sealed with the air sample 

at 70 kPa above ambient pressure. Until 5 January 1993 air sampling took place with 

the pump unit located on the deck of the RSV Aurora Australis and the 2 m inlet tube 
held out over the side of the ship. The cleanest air was obtained by sampling on either 

port or starboard side of the uppermost deck, forward of the ship's stack (Plate 2.1). 

On 1 January 1993 Dekoron®  tubing was installed from either side of the uppermost 

deck, and the FPU pump unit connected to either tube via quick connects and operated 

in the laboratory immediately below this deck. The height of the air inlets above sea 

level was 20 m. Air was sampled only when the relative wind speed exceeded 5 m 

and relative wind direction was within ±135° of the ship's bow. Data from only four 

out of 360 flasks meeting these criteria had to be discarded due to contamination over 
the study period. 
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Plate 2.3 Air sampling on the RSV Aurora Australis using a CSIRO Division 
of Atmospheric Research FPU pump unit. 

2.5.2 Gas Chromatography analysis of air samples 

All atmospheric CO 2  mixing ratios used in this thesis were obtained by analysis of the 

0.5 litre flasks of air using a CARLE Series 400 gas chromatograph located at the 

CSIRO Division of Atmospheric Research Aspendale laboratories (Francey et al., 

1995a). The calibration scale used was the VVMO X85 mole fraction  scale  from a suite 

of gas standards held at CSIRO DAR. The standards are traceable to the 'WMO 

Central CO 2  laboratory operated by C. D. Keeling of the Scripps Institute of 

Oceanography, via the Climate Monitoring and Diagnostics Laboratory (CMDL) of 

NOAA. The external precision of the gas chromatograph for routine  flask  analyses was 

±0.02 % (Francey et al., 1995a). 
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2.6 CALCULATION OF ATMOSPHERICX0 2  

In order to calculate 4X02, and hence air-sea flux of CO2 (Section 1.3), it is necessary 

to determine the fugacity of carbon dioxide in the atmosphere at the air-sea interface, 

fa . Past researchers have detenninedfa  using air pumped from an inlet on the ship's 

bow and processed with the same shipboard equipment used for measurement offm. In 
this study, air was sampled from the bow of the RSV Aurora Australis every three 

hours, dried using Dehydrite®  and input into the LI6252 infrared gas analyzer in the 

same fashion as the air from the equilibrator. However, whereas the external precision 

of gas chromatograph CO2 mixing ratios from glass flasks filled with air along each 

cruise transect was approximately ± 0.07 ppmv, and the agreement between flask pairs 

typically better than 0.1 ppmv, the standard deviation in mixing ratios derived from the 

LI6252 IRGA was approximately ± 1 ppmv. Because of the much higher accuracy of 

the gas chromatograph, the atmospheric fugacity, fa, was calculated from the gas 

chromatograph atmospheric CO2 mixing ratios, Ca, averaged over each transect. The 

standard deviation in Ca  for a particular transect was at most ±0.5 ppmv which is less 

than the standard deviation in IRGA mixing ratios. Using equations 2.4 and 2.6, and 

assuming that the air at the air-sea interface was 100% water saturated air at the air-sea 

interface at the same temperature as the bulk sea surface temperature, T. (Watminkhof 

and Thoning, 1993), the following relationship is obtained for atmospheric fugacity of 

CO2  at the air-sea interface at 1 atm total pressure (Weiss, 1974): 

fa( 2 n) (Pam) = < Ca  > ( 1—  PH,o) exP[ (TO+ 2% (10)P I RT.] 
	

2.10 

where 

<Ca> = Average CO2  mixing ratio in dried air samples collected at 20 m 

above sea level, processed by the CARLE Series 400 gas 

chromatograph and converted to 1 atm total pressure (ppmv), 

= total atmospheric pressure = 1 atm. 



2-20 

The standard deviationinfa(T,,,) was at most approximately ±0.5 patm. Hence, the 

maximum standard deviation in 4JCO2 (= f„, -f°)  was approximately V05 2  +12  patm 

= ±1.1 patm. 

2.7 MEASUREMENT OF ATMOSPHERIC 813C 

After a portion of air from each 0.5 litre flask was analyzed for greenhouse gas 

concentrations by the CARLE Series 400 gas chromatograph at GASLAB, the 

remaining air was input into a Finnigan MAT MT Box-C gas preparation system in 

order to extract pure CO2 gas (Francey et al., 1995a). The pure CO2 gas was then fed 

into a MAT 252 dual-inlet isotope-ratio mass spectrometer (Finnigan MAT GmbH, 

Bremen). 

In the ion source of the mass spectrometer, CO2 molecules are ionized by an electron 

beam generated by a heated tungsten filament, and an accelerating potential propels the 

positive ions down the analyzer tube into the curved sector located in a magnetic field. 

Holding the strength of the magnetic field and the accelerating potential constant, the 

trajectory of the ions passing through the magnetic field becomes a function of the mass 

and energy of the ions. The major species of CO 2, 44 (12C160160), 45 (13c 160160, 
12C17016 

0) and 46 
(1300160,  12C17 ,-.17 u 0), are resolved into three separate ion beams 

on the basis of their mass, each striking separate Faraday cup collectors (Allison et al., 

1994). Alternating injections of the sample, and a "working" reference CO2 gas from a 

variable volume reservoir, permit accurate determination of the relative ion beam ratio 

45/44 (Francey et al., 1995a). Much of the high precision of the MAT252 mass 

spectrometer system is linked to the isotopic composition of the "working" reference 

gas being close to that of the air samples to be analysed (Allison et al., 1994; Francey et 

at, 1995a). After a number of corrections are made to the 45/44 ratio (Allison and 

Francey, 1995; Francey et al., 1995a) the ratio of 13C/ 12C in the CO2 sample is 

determined relative to the reference gas (Allison et al, 1993). 
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To allow comparison with data from other laboratories, the 5 13C values relative to the 

working reference gas were converted to the international "PDB" reference scale 

(equation 1.13). The basis of the reference scale is CO2 derived from the CaCO 3  of the 

rostrum of a Cretaceous belemnite (Belemnitella americana) collected in the Pee Dee 

formation of Southern Carolina, USA, and is no longer available (Allison et al., 1994). 

This study uses NBS19, with an IAEA recommended value of 8 13C = +1.95 '4,3  relative 

to the hypothetical Vienna-PDB (VPDB), as the reference material through which 

measurements are related to VPDB (Allison et al., 1993). 

The external precision of the 8 13C measurements from routine flask analyses using the 

MAT252 mass spectrometer was approximately ± 0.01 Voc, (Francey et al., 1989a). 

2.8 MEASUREMENT OF CHLOROPHYLL A 

During the 19 November to 28 December 1993 cruise, a seawater sample was collected 

from the 7.5 m uncontaminated seawater inlet every four hours that the ship was 

underway. The water was then filtered through a Whatman glass tnicrofibre GF/F filter 

and stored in liquid nitrogen. Later, at the Australian Antarctic Division, the pigments 

on these filters were extracted into 3 ml of pure methanol in an ultrasonicator and 

separated from the filter material in a centrifuge (Wright and Shearer, 1984). The 

liquid was pipetted off and analysed for chlorophyll a in a GBC UV/VIS 916 

spectrophotometer. This work was performed cooperatively with Dr. Simon Wright of 

the Australian Antarctic Division. 

The chlorophyll a analyses for the 5 January to 8 March 1993 cruise were performed 

somewhat differently to the above method, although results should be comparable 

(Simon Wright, pers. cont.). The extraction medium was methanol buffered with 2% 

VN of 0.5 M ammonium acetate and the samples were analysed for all pigments, 
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including chlorophyll a, by injecting 50 IA of the sonicated and centrifuged liquid into 

an HITACHI F1000 fluorescence spectrophotometer with an excitation wavelength of 

430 nm. The output peaks were transferred to a personal computer and the peak areas 

integrated using "Maxima" software. The photometric equations used were from 

Geoffrey and Humphrey (1975). 
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CHAPTER THREE:  

AfCO2  OVER THE ANTARCTIC 

SEASONAL ICE ZONE 

3.1 INTRODUCTION 

A significant uncertainty in the global carbon budget can be attributed to our lack of 

knowledge of the role played by the Antarctic Seasonal Ice Zone (ASIZ) in the 

removal of carbon dioxide from the atmosphere (Section 1.1). The rate of exchange of 

carbon dioxide between the ocean and atmosphere is a function of sea surface 

temperature, wind speed, sea ice cover, and of the difference in fugacities of CO2 

across the interface, 4fCO2 (Section 1.3). There are few measurements of the fugacity 

of CO2 in surface seawater south of 55°S (Table 1.1), roughly corresponding to the 

most northerly extent of the Antarctic sea ice (Parkinson, 1992). Hence, it is not 

known if the ASIZ is currently a net source or sink for atmospheric CO2. 

This chapter presents 4/UO2  data collected on six voyages by the RSV Aurora 

Australis south of 55°S, between 60°E to 150°E, from 15 October 1992 to 26 

February 1994 (Tilbrook and Beggs, 1996). The measurements represent a significant 

contribution to 4/CO2 data collected within areas of Antarctic pack ice, and are used in 

Chapter 4 to estimate the monthly net uptake of atmospheric carbon dioxide by the 

region 55° - 70°S, 600  - 150°E, over the months October 1992 to March 1993. 

Relationships between 4fCO2, surface chlorophyll a concentrations and sea surface 

temperatures are investigated, in order to demonstrate the high productivity of surface 

waters south of 60°S, between 60°E and 105°E. 
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3.2 OBSERVATIONS OF 4/CO2 IN THE ASIZ 

The fugacity of carbon dioxide in surface seawater, fm, was continuously measured on 

six cruises between Hobart and Antarctica aboard the Australian icebreaker, RSV 
Aurora Australis, from 4 October 1991 to 28 February 1994 (Sections 2.2-2.4). The 

transects are shown in Appendix A: Figure A.1. Every one to three degrees of latitude 

along the transects, 0.5 litre glass flasks were filled with baseline air and later analysed 

at CSIRO Division of Atmospheric Research to obtain the mixing ratio of CO2 in air at 

20 m a.s.l. (Section 2.5). The CO2 mixing ratios in air were converted to atmospheric 

1e02,fa  (Section 2.6), and were then used to calculate the difference in fugacity of 

CO2  across the air-sea interface (4/CO2 =f„, - fa). AtmosphericfCO2 was found to 

vary by less than 1 Ratm during each cruise, and AfCO 2  changes generally reflected 

variations in the fugacity of CO 2  in surface waters. 

Figure 3.1 presents hourly averaged values of 4/CO2 collected south of 55°S, during 

the months October to April. An hourly average was chosen in order to smooth any 

short term variations in the gas analyser output on the ship. Negative values indicate a 

potential sink for atmospheric CO2, and positive values a potential source of CO2 to 

the atmosphere. 
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Fig. 3.1 Hourly averaged values of Ajt02 (oceanic fCO2 - atmospheric fCO2) 
measured from the RSV Aurora Australis along transects south of 55°S during 
(a) 15-22 October 1991, 21-28 October 1992, (b) 5-17 November 1992 and 
24-30 November 1993, (c) 1-20 December 1993, (d) 10-31 January 1993 and 
9-31 January 1994, (e) 1-28 February 1993 and 1-26 February 1994, (0 1-31 
March 1993, and (g) 1-27 April 1993. The solid grey lines denote ice shelves 
and the dashed lines represent the mean position of the ice edge for those 
particular months. 

In October and November (Figures 3.1(a)-(b)), a high proportion of AfCO2 data was 

measured in regions of up to 9/10 pack ice, and 4fCO2  values were generally between 

±25 gatm. In January and February, there was a distinct contrast between hourly 

averaged 4fCO2 values measured west of 105°E (-201 gatm < AfCO2< 23 gatm, 

mean = -43 gatm) compared with east of 105°E (-75 gatm < AfCO 2  < 32j.tatm, mean 

= 2 gatm) (Figures 3.1(d)-(e)), with a range of values in Prydz Bay (67° - 70°S, 70° - 

79°E) of -201 gatm < 4JCO2 <4 gatm (mean = -89 gatm). Instantaneous values of 

4fCO2  as low as -246 gatm (fm = 109 gatm) were measured at 69.26°S, 74.98°E on 4 

December 1993, in ice-free seas close to the Amery Ice Shelf. The same waters had a 
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sea surface temperature of -0.61°C and a relatively high chlorophyll a concentration of 
14.03 mg m-3, implying a very high phytoplankton biomass. The sea-ice in Prydz Bay 

had broken up some time between 4 and 11 November 1993. An oceanic jCO2 of 109 

liatm is lower than other reported partial pressures south of 55°S (Table 1.1), the 

lowest previous measurement being 195 tam measured during the summer of 1979- 

80 in pack-ice at 67.6°S, 62.9°E (Milne and Smith, 1980). 

The low summertime oceanic fugacities measured .in Prydz Bay and in the vicinity of 

ice shelves (shown in Figure 3.1 as solid grey lines) may be attributable to high 

phytoplankton productivity in shallow waters near continental margins (Comiso et al., 

1993). Close to the Antarctic continent, phytoplankton blooms may be enhanced by 

meltwater stratification, or possibly by dissolved trace elements such as iron derived 

from shelf sediments and glacial melt (Sullivan et al., 1993). Over the study region, 

summertime values of AfCO2  less than -25 ptatm were predominantly measured over 

the Antarctic shelf, in waters shallower than about 500 m (Figures 3.1(d)-(f)). 

North of the shelf-break, between 80°E and 105°E, the negative AfCO2 values 

measured during January and February (Figures 3.1(d) and (e)) may have resulted from 

phytoplankton blooms at the ice edge (Smith and Nelson, 1986; Sakshaug and 

Skjoldal, 1989) as it retreated during late spring and early summer (Figures 3.1(a)-(d)). 

The seasonal ice zone covered only about 3° of latitude between 120°E and 150°E, 

whereas it extended over 10° to 14° of latitude north of Prydz Bay (Figures 3.1(a)- 

(g)). From November to January, sea-ice melted over a much greater area of ocean in 

the western region (60° - 105°E), compared with the eastern half of the study region 

(105° - 150°E). Ice-edge algal blooms had a larger area over which to develop west of 

105°E, and therefore a greater probability of significant development during the 

spring/summer. The relatively negative values of 4fCO2 ( as low as -100 patm) 

measured to the north-east of Prydz Bay in the region south of 59°S, between 80°E 

and 105°E, correspond to a relatively high pigment region (0.4 to 1.2 mg m -3) on 

CZCS (Coastal Zone Colour Scanner) maps (Comiso et al., 1993). 
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Hashida et al. (1994) also report low partial pressures of CO 2  in surface waters 

(-95 gatm < 4pCO2< -5 gatm) between 82°E and 102°E, from four transects during 

February to March (1989-92) along approximately 63°S. 

3.3 RELATIONSHIP BETWEEN AjCO 2  AND CHLOROPHYLL A 

The fiigacity of CO2 in surface waters is influenced by the biological fixation of 

dissolved inorganic carbon via photosynthesis in phytoplankton. Chlorophyll a is 

present in all photosynthetic algae and the concentration of chlorophyll a is routinely 

used as a convenient measure of the current approximate abundance of phytoplankton 

in a water sample (e.g. Jacques and Fukuchi, 1994). In this study, chlorophyll a is 

used to indicate where phytoplankton blooms were present, and as a qualitative 

indication of the importance of biological production on levels offCO2 in the surface 

ocean (Schneider and Morlang, 1995). 

The relationship between observations of low oceanic jt02 and high chlorophyll a in 

the ASIZ is demonstrated in Figure 3.2, which gives the hourly averaged 4fCO2 values 

measured in the region 550  - 70°S, 600  - 126°E, plotted against values of chlorophyll a 

obtained from surface water samples (Section 2.8). The chlorophyll a concentrations 

for the period 17 January to 7 February 1993 were obtained by averaging 

measurements from water samples taken from Nisldn bottles filled at 1 m and 10 m 

depths at each site. Over this period, the depth of the mixed layer was less than 25 m, 

and the standard deviation of the difference between the 1 m and 10 m samples was 

±0.6 mg chl a IT1-3  (n = 81), from a total range of chlorophyll a concentrations of 0.002 

to 4.03 mg 111-3 . The average of the chlorophyll a measurements at 1 m and 10 m 

depths was taken to be representative of chlorophyll a concentrations in the mixed 

layer at each sampling site. Chlorophyll a concentrations for 24 November to 20 

December 1993 were measured from water samples taken from the same seawater 

intake (at 7.5 m) used to measure oceanicfCO 2 . Values were particularly elevated (up 

to 17.2 mg CM a I11-3) in the southern-most region of Prydz Bay, south of 69°S (See 

Appendix B: Figures B.4 and B.5). 
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Fig. 3.2 Hourly averaged Ajt0 2  values measured in the region south of 55°S, 
between 60°E and 126°E, plotted against concentrations of Chlorophyll a in 
surface water samples. 

Samples collected between 24 November and 20 December 1993 show 4X02 strongly 

anti-correlated with chlorophyll a concentrations (r2  = 0.72, n = 86) (Section B.4), 

with the slope of the linear regression, d(4X0 2)/d(Chl a), equaling -14 ± 1 liatm/(mg 

Chl a m-3 ). During the period 17 January to 7 February 1993, the anti-correlation was 

less strong (r2  = 0.37, n = 57), and d(4/CO2)/d(Chl a) was -23 ±4 gatm/(mg Chi a 

In-3). The stronger anti-correlation in the November/December period may result from 

more recent development of ice edge algal blooms (Sakshaug and Skjoldal, 1989) 

compared with January/February, since the sea-ice over the study region began to 

retreat in October 1993. The regression coefficient of d(6/CO2)/d(Chl a) obtained for 

the November/December period is similar to the -18 gatm/(mg CM a m-3) regression 

slope from measurements ofpCO2 and chlorophyll a taken during December 1991 in 

the South Atlantic, between 40°S and 62°S (Schneider and Morlang, 1995). 

Although negative correlations between 4fCO2 and chlorophyll a concentrations in 

highly productive regions ( > 1 mg CM a ni3) are due to the utilization of dissolved 
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inorganic carbon in surface waters by phytoplankton, low fugacity does not necessarily 

imply a high chlorophyll a content in the same waters. The fugacity of CO2 in the 

surface ocean, corrected for ocean mixing, air-sea gas exchange and changes in sea 

temperature, is a rough indicator of the total uptake of DIC in the surface water by 

phytoplankton from the start of the spring blooms. Chlorophyll a concentration, on 

the other hand, is influenced not only by vertical mixing and advection, but also by 

zooplankton grazing, sedimentation, light limitation, and the composition of the 

phytoplankton population (Schneider and Morlang, 1995). 

3.4 RELATIONSHIP BETWEEN AjCO2 AND SEA SURFACE 

TEMPERATURE 

The effect of a change in seawater temperature, on the fugacity of CO2 has been 

described in detail in Subsection 2.4.5. The fugacity is temperature dependent due to 

the temperature dependence of the dissociation constants of carbonic acid and 

solubility of CO2 in seawater (Weiss, 1974). For example, laboratory tests have shown 

that in waters with a salinity of 35 °/.0, DIC concentration of 1917 gmol kg' and 

temperatures between -2°C and 10°C, the difference between oceanic,X02 and its 

value at 20°C increases at approximately 6 ilatm °CI  (Goyet et al., 1993). 

In the complex ocean system of the ASIZ, a poor correlation exists between hourly 

mean AfCO2 and hourly averaged sea surface temperature over the region 55° - 70°S, 

60° - 150°E (Figure 3.3). During the summer months, r 2  values were 0.06 (n = 1882) 

for January 1993 and 1994, 0.30 (n = 1534) for February 1993 and 1994, and 0.005 (n 

= 384) for December 1993. During the spring months, the r 2  values were 0.03 (n = 

426) for October 1991 and 1992, and 0.005 (n = 498) for November 1992 and 1993. 

The summertime lack of correlation with temperatures less than about 2°C agrees with 

Southern Ocean studies by Poisson et al. (1993), Takahashi (1993), Robertson and 

Watson (1995) and Schneider and Morlang (1995), and is due to coastal and ice edge 

algal blooms in this region affecting oceanicfCO2 levels more strongly than 

temperature. This hypothesis is supported by the 
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strong anti-correlations shown in Figure 3.2 between 4fCO2 and chlorophyll a 

concentrations in surface waters of the ASIZ during early summer (24 November to 20 

December 1993). An increase in chlorophyll a concentration of 1 mg le resulted in a 

decrease in 41CO 2  of -14 ± 1 gatm during this period, whereas an increase in sea 

surface temperatures over the same region caused an approximate increase in AfCO2 of 

between 5 iiatm 0C-1  and 11 [tam °C-1  (Copin-Montegut, 1988; Copin-Montegut, 

1989). Therefore, strong increases in productivity would have swamped the sea 

surface temperature effect on oceanic fCO2. 

Fig. 3.3 Hourly averaged AfCO 2  values measured from the RSV Aurora 
Australis during 15 October 1991 to 26 February 1994 over the region 55 0  - 
70°S, 60° - 150°E, plotted against hourly mean values of sea surface 
temperature at the water inlet (7.5 m depth). 
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3.5 CONCLUSIONS 

Evidence was presented for a seasonal oceanic sink for carbon dioxide in the Antarctic 

Seasonal Ice Zone from 60°E to 105°E, based on measurements of the fugacity of CO 2  
in surface waters taken on six voyages from 4 October 1991 to 28 February 1994, 

covering the coast of Antarctica from 60°E to 150°E. Extensive ocean sampling 

during January to February, particularly in areas of pack ice, indicated that the region 

550  - 70°S, 60° - 105°E, experienced much lower oceanic fiigacities compared with 

the ocean to the east (55 0  - 70°S, 105° - 150°E). Hourly average AfCO2 values in the 

western region ranged from -201 gatm to 23 gatm, with a mean of -43 gatm, whereas 

over the eastern region the range was -75 gatm to 32 gatm, with an average 4/CO2 

value of 2 gatm. The zonal contrast in oceanicfCO2 values during the summer is 

partially due to the difference in the area of seasonal pack ice over the two regions. A 

larger area of ice melting during early summer provides a greater opportunity for algal 

blooms to develop. However, much of the seasonal ice zone west of 105°E 

experienced little or no depletion infCO2  of the surface ocean by late February 1993, 

in spite of the retreat of the ice edge. It would appear, then, that the retreating sea-ice 

did not generate phytoplankton blooms in all of the study region, possibly due to iron 

limitation. 

Particularly low levels of oceanicit02 (as low as 109 gatm) were measured in 

southern Prydz Bay ( > 69°S) from early December to mid-February, linked to intense 

algal blooms during that time, with measured surface chlorophyll a concentrations 

reaching 17.2 mg 111-3 . During early sunimer, over the region 55°-70°S, 60°-126°E, 

4fCO2 measurements were strongly anti-correlated with chlorophyll a (r2  = 0.72, n = 

87), but poorly correlated with sea surface temperature. Hence, phytoplankton 

productivity was the predominant cause of low filgacities in surface waters measured 

during summer over this region of the ASIZ. 
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CHAPTER FOUR:  

NET AM-SEA TRANSFER OF CO 2  
OVER THE ANTARCTIC SEASONAL ICE ZONE 

4.1 INTRODUCTION 

In this chapter the 4fCO2 data obtained in the Antarctic Seasonal Ice Zone (Chapter 3) 

are used to estimate the net rate of air-sea transfer of carbon dioxide over the region of 

the Southern Ocean south of 55°S, between 60°E and 150°E. In order to determine 

the effect that choice of wind speed data set and interpolation of 4fCO 2  data has on 

estimates of net transfer, two different methods are used to calculate net air-sea flux. 

The first uses hourly averaged surface wind speeds measured from RSV Aurora 

Australis, and the second, six-hourly "spot" surface wind speeds from the Australian 

Bureau of Meteorology's Global Assimilation and Prediction System (GASP) analyses. 

These transfer estimates are then compared against those calculated by other workers 

using similar methods. 

The net flux of CO 2  from the surface ocean to the atmosphere, F, may be defined from 

equations 1.2, 1.3 and 1.8 as 

F (g C m 2  0:14) = 2.88 cr,„ X W2  (Sc/660)-1/2  4fCO2 	 (4.1) 

where 

X 	= "proportionality factor" 

= 0.31 for "instantaneous" 10 m wind speeds over the open ocean 

(Wanninkhof, 1992). 

Wanninkhof s (1992) equation for gas transfer velocity (equation 1.8) is considered the 

most appropriate relationship for this study, as in this chapter we will use short-term 

averaged, or "spot", surface wind speeds over the open ocean. The equation for gas 



transfer velocity used by Liss and Merlivat (1986) (equation 1.5) was developed using 

data from fetch limited systems (lakes and wind-wave tanks), and if applied to the open 

ocean would lead to net flux estimates as much as 50% lower than those expected 

using the Waiminkhof (1992) equation (figure 1.2). The relationship used by Tans et 

al. (1990) (equation 1.6), a curve fitted through the long-term bomb-' 4C invasion rates 

over the ocean (Takahashi, 1989), applies to long-term averaged wind speeds and 

might yield anomalously high values if applied to short-term averaged wind speeds 

(Wanninkhof, 1992). 

In this study, the solubility of CO 2  in surface seawater, an, was calculated by 

substituting hourly averaged sea surface temperatures (Subsection 2.3.1) and salinities 

(Subsection 2.3.2) into the solubility relationship in Weiss (1974). The Schmidt 

number, Sc, was calculated using the same hourly averaged sea surface temperatures 

(Jaime et al., 1987a). 

4.2 NET AIR-SEA TRANSFER CALCULATED USING SHIPBOARD 

WIND SPEEDS 

The first method adopted to calculate the net carbon sea-to-air transfer is similar to 

that used by Robertson and Watson (1995) and Metzl et al. (1995), and follows their 

assumption that shipboard measurements of wind speed are representative of surface 

wind speeds over the study region. The values chosen in this case for Win equation 

4.1 were hourly wind speeds (Wsh,p), obtained by averaging one second measurements 

of wind speed from an anemometer mounted 32 m above sea level on the RSV Aurora 

Australis (Subsection 2.3.4). The wind speeds were corrected to 10 m a.s.l. using the 

wind profile equation for conditions of neutral stability, assuming a smooth ocean 

surface (Fleagle and Businger, 1980), by multiplying the hourly wind speeds measured 

at 32 m a.s.l. by a factor of 0.92. 

The best spatial coverage of ship data for the study region (55° - 70°S, 60° - 150°E) 

was during the months January to March (Figure 3.1), for which there were 2092 

hours of data. The rate of sea-to-air transfer of CO2 over this region was estimated for 
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the period 1 January to 31 March 1993 by first averaging all "instantaneous fluxes" 

(equation 4.1). The instantaneous fluxes were calculated from hourly mean values of 

wind speed (corrected to 10 m a.s.1.), sea surface temperature, salinity and 4X02, 

measured from the RSV Aurora Australis during 10 January to 31 March 1993 and 9 

January to 26 February 1994 in waters south of 55°S. The average of all the hourly 

fluxes was then multiplied by the mean area of open water over the study region during 

the period 1 January to 31 March 1993 to obtain an estimate for the net amount of 

CO2 transferred from the ocean surface to the atmosphere. The area of ice-free ocean 

over the study region was estimated from weekly sea-ice maps from the U.S. 

Navy/NOAA Joint Ice Center. For the three month period 1 January to 31 March 

1993 the ocean south of 55°S, between 60°E and 150°E, was a net sink for 

atmospheric CO2, with an estimated sea-to-du transfer of -15.2 x 10 Crt C/90 d 

(1 Gt C = 10 15 g C = (10 15/12) mol C) over a mean area of open ocean 6.00 ± 0.05 
10 12 m2 .  

There are a number of problems with the method used above to estimate net air-sea 

fluxes. Wanninkhof s (1992) relationship between short-term 10 m wind speeds and 

gas transfer (equation 1.8) was derived for a global wind speed distribution over the 

open ocean, approximated by the Rayleigh probability function, P(W) (Wentz et al., 

1984): 

Wexp(—W2  / 2AW2 )  
-NW) = 	2APV2 

(4.2) 

where 

A W = W.,(2/70 112, 

Way = average surface wind speed. 

Choice of a proportionality factor, X, of 0.31 to calculate net transfer (equation 4.1) 

was based on the assumption that the frequency of occurrence of hourly mean wind 

speeds measured from the ship followed a Rayleigh distribution. Although it was 

found that the distribution of shipboard wind speeds approached a Rayleigh probability 

function more closely as the number of observations increased, the shipboard wind 

speeds for the period 10 January to 31 March 1993 and 9 January to 26 February 1994 
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(1891 data points), chosen as the sampling period with greatest spatial coverage of the 

study region, did not quite approximate a Rayleigh distribution function (Figure 4.1). 

Hence, a more appropriate value of the proportionality factor to be used with the 

shipboard wind speeds, Xsho, would have been (Wanninkhof, 1992): 

Xship = 0.31 
E[P(W.thip)  Wship  2 

= 0.29 	 (4.3) 
ORhip) wslrip2  

where 

0(Wship) = observed frequency distribution of hourly mean wind speeds 

measured on the ship. 

Using X= 0.29 in equation 4.1 gives a corrected value of net sea-to-air transfer over 

the study region of -14.1 x 10-3  C.Tt C/90 d. 

There is an additional problem with estimating net transfer in the ASIZ by averaging 

instantaneous net fluxes and multiplying by the area of open water. This method gives 

equal weighting to each hourly flux value, irrespective of whether the ship at this point 

is sampling in 9/10 pack ice or open ocean, and does not take into account the length 

of time the ship is in a region. During summer months the estimate of net carbon 

transfer may be biased towards too negative a value, since ice edge algal blooms may 

cause oceanic fCO2 to be significantly lower within pack ice than in open waters north 

of the ASIZ (Chapter 3). If the ship has spent a significant amount of time within pack 

ice then averaging the hourly net fluxes over a period of time such as one month will 

overemphasise the negative 4JCO2 measured in the vicinity of melting ice. An 

alternative method for estimating net air-sea carbon transfer is used in the following 

section. 
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hourly mean wind speed (m/s) 

Fig. 4.1 Frequency of occurrence of mean hourly wind speeds measured from 
RSV Aurora Australis, and the corresponding Rayleigh distribution function, 
for the period 10 January to 31 March 1993 and 9 January to 26 February 1994 
over the region 55° - 70°S, 60° - 150°E. 

4.3 NET AIR-SEA TRANSFER CALCULATED USING GASP WIND 

SPEEDS 

The method for calculating net carbon transfer used in the previous section is 

satisfactory given sufficient spatial and temporal data coverage of the region of interest 

and no sea-ice. However, wind speed can vary on shorter time scales than oceanic 

variables such as JCO2. Thus, the spatial interpolation of hourly mean wind speeds 

measured from the ship is likely to contribute greater uncertainty to the calculated 

monthly fluxes than spatially interpolating and averaging oceanic parameters over a 

month. 

The interpolation error may be reduced by using satellite wind speed data over a fine 

grid to calculate net transfer. Unfortunately, surface wind speeds are not measured by 

the Special Sensor Microwave Imager (SSMI) or the Active Microwave Instrument 

(AMI) south of about 60°S (Halpern et al., 1994b). An alternative set of wind speeds 

over the ASIZ are the six-hourly surface wind speeds from the Australian Bureau of 
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Meteorology's Global Assimilation and Prediction System (GASP) analyses, WGASP. 

The GASP model uses spot measurements from satellites, ships and stations in the few 

hours preceding each six-hourly analysis, spatially averaged over 2.24° x 3.75° grid 

squares. The "surface" in this case corresponds to the height where atmospheric 

pressure is 0.991 times the pressure at sea level. South of 55°S, sea level pressures are 

generally below one atmosphere. Surface GASP wind speeds over our study region 

correspond to a height between sea level and 60 m a.s.1., and hence may be used to 

approximate the 10 m a.s.l. wind speeds to within an error of ± 13%, assuming an 

adiabatic atmosphere (Fleagle and Businger, 1980). 

Due to the large number of data points (75600 six-hourly wind speeds), the frequency 

distribution of six-hourly surface wind speeds from GASP analyses over all grid points 

of the study region during 1 January to 31 March 1993 closely follows a Rayleigh 

probability distribution (Figure 4.2). When calculating net flux from GASP wind 

speeds over the region 55 0  - 70°S, 60° - 150°E, the appropriate value for the 

proportionality factor in equation 4.1 is therefore Wanninldior s (1992) value of 0.31. 

January - March 1993 
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Fig. 4.2 Frequency of occurrence of surface wind speeds from six-hourly 
GASP analyses and the corresponding Rayleigh distribution for the period 1 
January to 31 March 1993, over the region 55° - 70°S, 60° - 150°E. 



In order to take into account the variability of 4/CO 2  in the vicinity of sea-ice, and the 

variation in wind speed, the study region was gridded into 2.5° x 2.5° grid squares. 

Estimates of the monthly average area of open water in each grid square were obtained 

from U.S. Navy/NOAA Joint Ice Center weekly sea-ice maps (Appendix B: Figure 

B.1). The 6-hourly GASP wind speeds were transformed from the 2.24° x 3.75° grid 

to the 2.5° x 2.5° grid by a simple one-to-one correspondence for corresponding grid 

squares and linear interpolation for non-overlapping grid squares. The monthly net 

flux of CO2  over each grid square was calculated by substituting monthly averaged 

values of WGASP2, 4fCO2, sea surface temperature and salinity into equation 4.1. The 

flux was then multiplied by the area of open water in each grid square to give the net 

carbon transfer. In this case, there was sufficient data coverage of the study region to 

enable estimates of net transfer to be made for the months October 1992 to March 

1993. 

Sea surface temperature, salinity and 4fCO2  measurements from the ship were 

interpolated between grid squares for each month (Appendix B: Figure B.2). Data 

within a grid square were averaged for each month and a standard deviation calculated 

for the grid point. If no data were available for a grid point, data from adjacent months 

were used, and a standard deviation again calculated. If no data were available in 

adjacent months the data were linearly interpolated from adjacent grid points at the 

same latitude. The interpolation error attached to mean values of 4X0 2, sea surface 

temperature and salinity in each grid square was taken to be the maximum standard 

deviation for any grid square in the same 2.5° latitude band. Over the study region, the 

high spatial variability in 4fCO2 (Figure 3.1) meant that it was considered wiser to use 

a mean value for the same grid square from an adjacent month than to interpolate 

between measurements made hundreds of kilometers from the grid square. As well as 

the interpolation error, the uncertainty in net transfer calculated for each month 

includes contributions from measurement errors, and the uncertainty in the 

"proportionality factor", X (see Subsection 4.3.1). 
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For the three month period 1 January to 31 March 1993, the net sea-to-air transfer of 

atmospheric CO2, calculated from GASP wind speeds, was -14.3 ± 7(0.2) x 10 -3  (It 

C/90 d over a mean area of open ocean 6.00 ± 0.05 10 12  m2  (Table 4.1(a)). The net 

transfer estimate based on GASP wind speed data is 94% of the value calculated in 

Section 4.2 using shipboard wind speeds, or 102% of the value corrected for using a 

non-Rayleigh distribution of Wship. The relatively close agreement between the fluxes 

is not due to agreement between the wind speed data sets used to calculate the two 

transfer estimates. The average of all shipboard wind speeds (corrected to 10 m a.s.1.), 

measured during the period 10 January to 31 March 1993 and 9 January to 26 

February 1994, was 7.0 m s-1 , whereas the average of all the GASP wind speeds for 

the period 1 January to 31 March 1993 over the same study region was 8.6 m s 4 . The 

ratio of mean W0Asp2  to mean W3hup2  was 1.40, and therefore the net transfer estimate 

from GASP wind speeds should have been 140% of the net transfer calculated using 

shipboard wind speeds. The difference between the methods used to interpolate 

AfCO2, sea surface temperature and salinity appears to have counteracted the effect of 

the difference in wind speeds on net transfer. 

The calculation of monthly fluxes allows an investigation of seasonal variation in air-

sea exchange, while the interpolation of ship's data over the grid permits a study of 

zonal and meridional variations in net transfer (Table 4.1). 
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(a) 60° - 150°E 

Period 
55°-60°S 

Area of open 
water on m2) 

55°-60°S 
Net transfer 

(10 -3  GtC/period) 

> 60°S 
Area of open 

water 
(1012  m2) 

> 60°S 
Net transfer 

(10-3  GtC/period) 

October 1992 2.82 ± 0.04 -2.75 ± 1.3 (0.2) 1.00 ± 0.04 0.16 ± 0.09 (0.04) 
November 1992 2.98 ± 0.04 -5.93 ± 2.9 (0.3) 1.42 ± 0.04 -0.22 ± 0.14 (0.08) 
December 1992 2.99 ± 0.04 -2.55 ± 1.3 (0.2) 2.52 ± 0.04 0.25 ± 0.18 (0.12) 
January 1993 2.99 ± 0.04 -2.74 ± 1.3 (0.2) 2.93 ± 0.04 -2.54 ± 1.3 (0.3) 
February 1993 2.99 ± 0.04 -3.74 ± 1.8 (0.2) 3.05 ± 0.04 -1.46 ± 0.7 (0.2) 
March 1993 2.99 ± 0.04 -1.24 ± 0.6 (0.2) 3.05 ± 0.04 -2.57 ± 1.3 (0.2) 
Total 2.96 ± 0.04 -18.95 ± 9.2 (1.3) 2.33 ± 0.04 -6.38 ± 3.7 (0.9) 

(b) 600  - 105°E ("Western region") 

Period 
55°-60°S 

Area of open 
water 

55°-60°S 
Net transfer 

(10-3 GtC/period) 

_ 
> 60°S 

Area of open 
water 

> 60°S 
Net transfer 

(10-3 GtC/period) 
(1012  m2) (10 12  m2) 

October 1992 1.32 ± 0.02 -1.26 ± 0.6 (0.09) 0.17 ± 0.03 -0.14 ± 0.07 (0.03) 
November 1992 1.48 ± 0.02 -4.48 ± 2.2 (0.3) 0.50 ± 0.03 -0.58 ± 0.29 (0.07) 
December 1992 1.50 ± 0.02 -2.18 ± 1.1 (0.2) 1.21 ± 0.03 -0.76 ± 0.38 (0.08) 
January 1993 1.50 ± 0.02 -2.05 ± 1.0 (0.2) 1.51 ± 0.03 -3.65 ± 1.8 (0.3) 
February 1993 1.50 ± 0.02 -3.55 ± 1.7 (0.2) 1.57 ± 0.03 -2.36 ± 1.2 (0.2) 
March 1993 1.50 ± 0.02 -1.95 ± 1.0 (0.2) 1.54 ± 0.03 -3.03 ± 1.5 (0.2) 
Total 1.47 ± 0.02 -15.5 ± 7.6 (1.2) 1.08 ± 0.03 -10.52 ± 5.2 (0.9) 

(c) 105°  - 150°E ("Eastern region") 

Period 
55°-60°S 

Area of open 
water 

(1012  m2) 

55°-60°S 
Net transfer 

(10-3  GtC/period) 

> 60°S 
Area of open 

water 
(1012  m2) 

> 60°S 
Net transfer 

(10 -3  GtC/period) 

October 1992 1.50 ± 0.02 -1.49 ± 0.7 (0.1) 0.83 ± 0.03 0.30 ± 0.15 (0.03) 
November 1992 1.50 ± 0.02 -1.45 ± 0.7 (0.1) 0.92 ± 0.03 0.36 ± 0.18 (0.03) 
December 1992 . 1.50 ± 0.02 -0.37 ± 0.2 (0.1) 1.31 ± 0.03 1.01 ± 0.50 (0.09) 
January 1993 1.50 ± 0.02 -0.68 ± 0.3 (0.08) 1.42 ± 0.03 1.11 ± 0.55 (0.10) 
February 1993 1.50 ± 0.02 -0.19 ± 0.1 (0.09) 1.48 ± 0.03 0.90 ± 0.44 (0.06) 
March 1993 1.50 ± 0.02 0.71 ± 0.4 (0.05) 1.51 ± 0.03 0.47 ± 0.24 (0.06) 
Total 1.50 ± 0.02 -3.47 ± 2.5 (0.6) 1.24 ± 0.03 4.15 ± 2.1 (0.4) 

Table 4.1 Monthly average area of open ocean, and net ocean-to-atmosphere 
transfer of CO2 (calculated using GASP wind speeds), for the region of the 
Southern Ocean bounded by 55°-60 0S, or 60°-70°S, and (a) 60°-150°E, (b) 
60°-105°E, and (4 105°-150°E. The error is given in terms of the standard 
deviation, with the values in brackets being the standard deviation in the net 
transfer without the contribution from the error in X. 
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During October 1992 the ocean east of 105°E was a slightly greater sink compared 

with the western region (Figure 4.3(a)), due to less ice cover over the eastern region. 

Figure 4.3(b) shows the advent of the spring ice edge blooms in the increased carbon 

uptake by the ocean in the region 55° - 57.5°S, 60 0  - 100°E during November 1992. 

During December 1992 to March 1993, east of 105°E the average net sea-to-air 

transfer of CO2  was small and mainly positive, whereas west of 105°E the net transfer 

was more variable and negative, with the ocean a stronger net sink for carbon (Figures 

4.3(c)-(t)). The same pattern is evident in each of the monthly net transfer values for 

December 1992 to March 1993, presented in Table 4.1 for (b) 60° - 105°E, and (c) 

105° - 150°E. For the period 1 October 1992 to 31 March 1993 the ocean south of 

55°S, between 60°E and 105°E, was a net sink for atmospheric CO2 of-26 ± 13 x 10 -3  
Gt C/182 d (Table 4.1(b)), and a net source of 1 ± 5 x 10 -3  Gt C/182 d for 105° - 

150°E (Table 4.1(c)). The errors quoted here are one standard deviation, and were 

estimated from the root sum square of the standard deviations of the transfer estimates 

in each grid square. The calculation of errors associated with the net transfer values is 

discussed in Subsection 4.3.1. 

As well as strong zonal variation in the uptake of atmospheric CO 2  by the ocean, there 

was also high meridional variability. Net  transfer of CO2 over the latitude bands 55° - 

60°S and 60° - 70°S are compared in Table 4.1(a). The region 55° - 60°S, 60° - 

150°E, was a stronger sink for atmospheric CO2 during 1 October 1992 to 31 March 

1993 (-19 ± 9 x 10-3  Gt C/182 d) compared with the ocean to the south of 60°S for the 

same longitudes (-6 ± 4 x 10 -3  Crt C/182 d). The higher rate of carbon transfer in the 

55° - 60°S region is due to: (i) stronger wind speeds over this region compared to 

further south (Appendix B: Figure B.3); (ii) the ocean surface over the region 60° - 

700S, 105 0  - 150°E, being supersaturated with CO2 gas (Table 4.1(c)); and (iii) the 

slightly greater area of open ocean over 55° - 60°S compared with 60° - 70°S (Table 

4.1(a)). When estimating net air-sea fluxes of CO2 over the ASIZ from limited data 

sets, it is therefore important to account for the high spatial variability in 4fCO 2, and in 

particular, the disproportionately large contribution to the estimate of net transfer 

made by small errors in 6/CO2 over the region 55° - 60°S, due to strong wind speeds. 
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Fig. 4.3 Net sea-to-air transfer of CO2 for (a) October 1992, (b) November 
1992, (c) December 1992, (d) January 1993, (e) February 1993, and (f) March 
1993. The gas transfer for each 2.5°x2.5° grid square was estimated using the 
six-hourly surface wind speed outputs of the GASP analyses. Negative values 
indicate net uptake of carbon dioxide by the surface ocean. 



4.3.1 Error Estimates 

The error estimates given in Table 4.1 are the standard deviations in net transfer due to 

both analytical and interpolation errors. The analytical error includes random errors 

due to measurement and uncertainty in the equations used. Measurement errors are 

described in Sections 2.3 to 2.5. The interpolation error is the error estimate attached 

to a data value in a particular grid square from either averaging measured values over 

that grid square, or from interpolating from other grid squares or other months. In this 

study it is taken to be the maximum standard deviation for any grid square in the same 

2.5° latitude band. 

The estimated errors in the parameters used in the calculation of net transfer are listed 

in Table 4.2, with the analytical errors in bold type, and the interpolation errors in 

normal type. The area of open water is represented in Table 4.2 by A'. 

Parameter Error Estimate Units 
;stl 0

  
k
 	

cy ,
 ,
A
 ,4 

0.1A' 111
2 

((5.2 x 10-6)2  + Var(am)) 1/2  mol 111-3  gatni l  

0.15 

0.13W m s-1 

(1.12+ Var(Sc))I/2 

(1 + Var(fm))"2  gatm 

(0.022  + 0.52) 1/2  gatm. 

Table 4.2 Uncertainty in values used in equation 4.1 to calculate net carbon 
transfer. Each error is one standard deviation, with analytical errors in bold 
type, and interpolation errors in normal type. 

The uncertainty in the "proportionality factor" (0.31 ± 0.15 (Wanninkhof, pers. corn.)) 

dominates the analytical errors in net transfer. Over the ASIZ the uncertainty may be 

even larger due to the reduction in ocean turbulence by sea-ice (Subsection 1.3.1). 

The effect on air-sea flux from the reduction in wind fetch by sea-ice is discussed in 

more detail in the following subsection. 
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4.3.2 Effect on flux estimates from reduction of fetch by sea-ice 

The gas transfer velocity is affected by the wind fetch, with a lower transfer velocity 

for smaller fetch (Subsection 1.3.1). As regions of open water in the ASIZ grow with 

the summer melt, the average fetch increases and the proportionality factor appropriate 

to this region should also increase until it approaches a value for infinite fetch of 0.31 

(Wanninldiof, 1992). Even if it were possible to apply an accurate relationship 

between gas transfer velocity, wind speed and area to any one polynya, it would be 

difficult to determine a precise estimate of the total net gas flux over the grid square in 

question due to the variation in size of polynyas. Over any one grid square which has 

some sea ice coverage, there is a large variation in the areas (and fetch) of individual 

polynyas and leads, and therefore a variation in appropriate proportionality factors. 

Suppose one takes the extreme case that there is no net air-sea transfer of CO2 over a 

grid square if it is at least 50% covered by sea-ice. i.e. 

/V,(min)= 0 	if A/ < 0.5A1, 

= Ni 	if AI 
	 (4.4) 

where 

A,' 	= area of open water in the jth grid square, 

A, 	= total surface area of the jth grid square, 

N(min) = Minimum sea-to-air transfer of CO2 over the study region, taking 

into account the effect of sea-ice on the gas transfer velocities, 

= 

The effect of applying the above approximate fetch correction to net transfer estimates 

over the study region is shown in Table 4.3, which lists values of N(min). Between 

55°S and 60°S, the estimates of net transfer are not altered by applying the fetch 

correction (equation 4.4). South of 60°S, between 60°E and 105°E, net transfer 

changes from -10.52 x 10 3  Gt C/182 d (Table 4.1(b)) to -8.54 x 10 -3  Gt C/182 d 

(Table 4.3(b)), with little change over the region between 105°E and 150°E. The 

reduction in fetch by sea-ice makes very little difference to estimates of net ocean 
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uptake over the study region (55° - 70°S, 60° - 150°E), decreasing the net uptake from 

25.33 x i0 Gt C1182 d to 23.26 x 10 -3  Gt C1182 d. 

(a) 600 
 - 150°E 

Period 
55°-60°S 

Area of open. 
water 

(le m2) 

55°-60°S 
Minimum net 

transfer 
(104  GtC/period) 

> 60°S 
Area of open 

water 
(1012  m2) 

> 60°S 
Minimum net 

transfer 
(104  GtC/period) 

October 1992 2.82 ± 0.04 -2.76 1.00 ± 0.04 0.20 
November 1992 2.98 ± 0.04 -5.93 1.42 ± 0.04 -0.07 
December 1992 2.99 ± 0.04 -2.55 2.52 ± 0.04 0.64 
January 1993 2.99 ± 0.04 -2.74 2.93 ± 0.04 -1.83 
February 1993 2.99 ± 0.04 -3.74 3.05 ± 0.04 -1.19 
March 1993 2.99 ± 0.04 -1.24 3.05 ± 0.04 -2.06 
Total 2.96 ± 0.04 -18.95 2.33 ± 0.04 -4.31 

(b) 60° - 105°E ("Western Section") 

Period 
55°-60°S 

Area of open 
water 

(1012  m2) 

55°-60°S 
Minimum net 

transfer 
(le GtC/period) 

> 60°S 
Area of open 

water 
(1012  m2) 

> 60°S 
Minimum net 

transfer 
(1e GtC/period) 

October 1992 1.32 ± 0.02 -1.27 0.17 ± 0.03 0.00 
November 1992 1.48 ± 0.02 -4.48 0.50 ± 0.03 -0.37 
December 1992 1.50 ± 0.02 -2.18 1.21 ± 0.03 -0.37 
January 1993 1.50 ± 0.02 -2.05 1.51 ± 0.03 -3.04 
February 1993 1.50 ± 0.02 -3.55 1.57 ± 0.03 -2.14 
March 1993 1.50 ±0.02 -1.95 1.54 ± 0.03 -2.62 
Total 1.47 ± 0.02 -15.5 1.08 ± 0.03 -8.54 

(c) 105° - 150°E ("Eastern Section") 

Period 
55°-60°S 

Area of open 
water 

(1012  m2) 

55°-60°S 
Minimum net 

transfer 
(10-1  GtC/period) 

> 60°S 
Area of open 

water 
(1012  m2) 

> 60°S 
Minimum net 

transfer 
(le GtC/period) 

October 1992 1.50 ± 0.02 -1.49 0.83 ± 0.03 0.20 
November 1992 1.50 ± 0.02 -1.45 0.92 ± 0.03 0.30 
December 1992 1.50 ± 0.02 -0.37 1.31 ± 0.03 1.02 
January 1993 1.50 ± 0.02 -0.68 1.42 ± 0.03 1.21 
February 1993 1.50 ± 0.02 -0.19 1.48 ± 0.03 0.94 
March 1993 1.50 ±0.02 0.71 1.51 ± 0.03 0.56 
Total 1.50 ± 0.02 -3.47 1.24 ± 0.03 4.23 

Table 4.3 Average areas of open ocean, and estimates of the minimum net 
sea-to-air transfer of CO2 (calculated using GASP wind speeds), for the region 
of the Southern Ocean bounded by 55°-60°S, or 60°-70°S, and (a) 60°-150°E, 
(b) 60°-105°E, and (c) 105°-150°E. It is assumed that there was zero net flux 
over a grid square if at least 50% of it was covered by sea ice. 
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4.4 COMPARISONS WITH FLUXES FROM DIFFERENT STUDIES 

In order to compare methods for estimating air-sea gas transfer over the ASIZ, net flux 

estimates made in this and other studies are listed in Table 4.4. 

Source Period Region Area of 
open 
water 

(1012  m2) 

Net CO2 flux 
per unit area 

(10-2  gC m-2  d-1) 

Robertson and Nov. - Dec.'92, >50°S, 9.3 -7.0 ± 0.4 (W) 
Watson (1995) Feb. - Mar.'93 80°W-80°E 
(ship wind speeds) (120 days) 

This study Nov. - Dec.'92, >55°S, 5.50 -2.65 ± 0.23 (W) 
(GASP wind 
speeds) 

Feb. - Mar.'93 
(120 days) 

60°E-150°E 

Metzl et al. (1995) 
(ship wind speeds) 

Jan. - May 
('91-'93) 

>50°S, 
20°E-110°E 

,:-...- 9 -2.1 (W) 

(151 days) 

This study Jan. - Mar.'93 >55°S, 6.00 -2.65 ± 0.24 (W) 
(GASP wind 
speeds) 

(90 days) 60°E-150°E -2.57 (T) 

Takahashi (1989) Year >55°S r=,  32 -3.6 (T) 
(monthly 
climatological 
wind speeds) 

('72-'81, '84-'85, 
'88-'89) 

(365 days) 

This study Oct.'92 - Mar.'93 >55°S, 5.29 -2.63 ± 0.23 (W) 
(GASP wind 
speeds) 

(182 days) 60°E-150°E -2.43 (T) 

Tans et al. (1990) Jan. - Apr. >50°S ;-..,  45 -2.3 
(monthly 
climatological 
wind speeds) 

('72-'81, '84-'85, 
'88-'89) 

(120 days) 

(T) 

Table 4.4 Net ocean-to-atmosphere flux of CO2 per unit area over the 
Antarctic Seasonal Ice Zone. Values marked "W" were calculated using the 
relationship for air-sea gas transfer velocity from Wanninkhof (1992), and 
those marked "T" were calculated using the relationship in Takahashi (1989). 
The errors presented here were calculated without taking into account the 
uncertainty attached to using the Wanninkhof (1992) relationship. 
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Robertson and Watson (1995) calculated a flux per unit area of-7.0 ± (0.4) x 10 -2  g C 

I11-2  C1-1  (1 S.E., n = 497) for a region of the Southern Ocean south of 50°S, between 

80°W and 80°E, of area 9.3 x 10 12  m2. Their estimate was made using data from two 

cruises of the RRS Discovery during November to December 1992 and February to 

March 1993. Robertson and Watson (1995) used hourly wind speeds measured from 

the ship and Wanninkhof's (1992) relationship for gas transfer velocity to calculate the 

net flux. The error in parentheses does not include the uncertainty in the gas transfer 

velocity relationship. 

The gas flux estimate from GASP wind speeds for the region 55° - 70°S, 60° - 150°E, 

averaged over the same four months sampled by Robertson and Watson, was -2.65 ± 

1.4 (0.23) x 10 2 g m-2 .-1 a over an area of open ocean of 5.50 x 10 12  m2  (Table 

4.1(a)). This is only 38% of Robertson and Watson's (1995) flux estimate. Robertson 

and Watson's (1995) study region extended northwards to 50°S, was mainly 

westwards of our study region, and did not penetrate into pack ice. The difference 

between the two flux estimates may be due to high variability in 4JCO2 over the 

Southern Ocean, strong wind speeds between 50°S and 55°S, or to higher wind speeds 

being measured on the two cruises aboard RRS Discovery compared with those from 

GASP analyses for the same period. The mean wind speed from GASP analyses over 

the region 55° - 70°S, 60° - 150°E, for the period 1 November to 31 December 1992 

and 1 February to 31 March 1993, was 8.9 m 

Metzl et al. (1995) employed a similar method to Robertson and Watson (1995) to 

measure 4fCO2 and calculate net carbon transfer over the Southern Indian Ocean. 

They used hourly averaged ship wind speeds from 14 cruises in 1991, 1992 and 1993, 

and Wanninkhof's (1992) relationship for gas transfer velocity (equation 1.8) to 

estimate hourly net fluxes over the region from 50°S to the ice edge, between 20°E 

and 110°E. For the 15 month period January to May (1991-1993) Metzl et al. (1995) 

estimated an average net ocean-to-air flux of -2.1 x 10-2  g C m 2  d' over roughly the 

same surface area (9 x 10 12  m2) as Robertson and Watson's (1995) flux of-7.0 ± (0.4) 

x 10-2  g C m 2  d-1 . The difference between these two fluxes again implies either strong 

zonal variations in 4fCO2 south 50°S, much stronger carbon uptake by this region 



during November and December than in January to May, or that wind speeds were 

typically lower during the 15 month period studied by Metzl et al (1995) than the 4 

month period investigated by Robertson and Watson (1995). 

Over the period 1 January to 31 March 1993, the estimate of average net flux 

calculated using GASP wind speeds (Section 4.3) was -2.65 ± 1.3 (0.24) x 10-2  

g C m 2  CI-1  (Table 4.1(a)) over an area of open ocean of 6.00 x 10 12  m2 . Our estimate 

is 126% of the average flux per unit area calculated by Metzl et al. (1995) over ice-free 

waters. Neither Metzl et al. (1995) or Robertson and Watson (1995) used 4X0 2  

measurements within areas of pack ice in their flux calculations. As we have seen in 

Section 3.2, these regions may experience low levels of oceanic jCO2 during 

spring/summer months due to ice edge algal blooms. Hence, they may make a 

significant contribution to the total air-sea transfer of CO2, despite the relatively small 

area of open water. This may be part of the reason for the comparatively higher 

estimate of net carbon flux over our study region compared with the estimate made by 

Metzl et al. (1995). However, it is also possible that the average wind speed measured 

by Metzl et al. (1995) during January to May (1991-1993) was lower than the mean 

GASP wind speed over our study region for January to March 1993 (8.6 m 

Takahashi (1989) gridded ApCO 2  observations over a 2° x 2° grid and used these in 

conjunction with monthly climatological wind speeds (Esbensen and Kushnir, 1981) 

and equation 1.6 to calculate the annual net flux south of 55°S (-3.6 x 10-2 g C m 2  (1-1  

over an approximate area 32 x 1012  m2). The estimate of average net flux from GASP 

wind speeds, for the period 1 October 1992 to 31 March 1993, was -2.63 ± 1.3 (0.23) 

x 10-2  g C //1-2  (1-1  over an area of open ocean 5.29 x 10 12  m2  (Table 4.1). This flux 

estimate is 73% of Takahashi's (1989) value for annual net flux per unit area. What 

caused the difference in flux estimates? Takahashi (1989) used a different relationship 

(equation 1.6) than was used in this study (equation 1.8) to calculate gas transfer 

velocity from wind speed. However, this can account for very little of the discrepancy. 

Using Takahashi's equation to calculate gas transfer velocity from monthly averaged 

GASP wind speeds produced a net flux estimate of -2.43 x 10-2  g C m 2  d-1  over the 

period 1 October 1992 to 31 March 1993, which is similar to the estimate using 

4-19 
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Warninlchof s equation. It is most likely that the difference in flux estimates between 

the two studies is due to both the different sampling regions (Takahashi using ApCO2 

data mainly from the Atlantic Ocean and little from the Indian Ocean) and the flux 

estimate from GASP wind speeds not including values for April to September. Winter 

fluxes over the ASIZ may be significant, in spite of increasing ice cover, due to high 

wind speeds, and this may be partially responsible for Takahashi's higher flux estimate. 

Tans et al. (1990) used the Takahashi (1989) relationship for gas transfer velocity, with 

the Esbensen and Kusluir (1981) monthly climatological wind speeds, to estimate that 

the average net flux south of 50°S, over an area approximately 45 x 10 12  m2, was -2.3 

x 10-2  g C 1112  cr 1  during the period 1 January to 30 April. Over the period 1 January 

to 31 March 1993, the flux estimate from GASP wind speeds was -2.65 ± 1.3 (0.24) 

x 10-2  g C n12  c14  over an area of open ocean of 6.00 x 10 12  m2  (Table 4.1(a)), which is 

115% of the net flux per unit area calculated by Tans et al. (1990). Using Takahashi's 

equation to calculate gas transfer velocity from monthly averaged GASP wind speeds 

produced a net flux estimate of -2.57 x 10 -2  g C 1112  c1-1  over the period 1 January to 31 

March 1993, which is 112% of the Tans et al. (1990) flux estimate for the period 1 

January to 31 April over a number of years. The small discrepancy here may be 

attributed to the difference in sampling regions and of wind speeds. 

Agreement between fluxes, even from studies employing similar measurement 

techniques and equations, does not necessarily imply that anyone has yet calculated a 

sensible value for the amount of atmospheric CO2 sequestered by the ASIZ. Estimates 

of flux for May to September are particularly uncertain due to lack of 4fCO2 data 

south of 55°S (Table 1.1) and the maximum extent of the ice edge occurring in 

October. There is uncertainty in the correct wind speed dependence to use when 

calculating air-sea flux of CO2, and better techniques need to be developed for 

interpolating sparsely distributed oceanicfCO2 data over the ASIZ. In addition, 

further work needs to be done on measuring the "skin temperature effect" on air-sea 

CO2 flux (Subsection 1.3.1). Robertson et al. (1995) estimated that the skin effect 

would have contributed a further -1.8 x 10 -2  g C 1112  CI-1  to their net flux estimate of 
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-7.0 ± 0.4 x 10-2  g C 11f2  Cr 1  over their study region south of 50°S for the period 

November to December 1992 and February to March 1993 (Table 4.4). If this same 

skin effect contribution may be applied to the study region 55° - 70°S, 60 0  - 150°E, 

then it would significantly increase the net flux into the ocean from -2.65 x 10 -2  g C 1112  

d 1  to -4.45 x 10 -2  g C 111-2  d-1  over the same four month period. 

4.5 CONCLUSIONS 

Measurements of the fugacity of CO2 in surface waters, taken on six voyages of the 

RSV Aurora Australis (15 October 1991 to 26 February 1994), have been used to 

calculate the monthly net transfer of CO 2  between the ocean and atmosphere in the 

Antarctic Seasonal Ice Zone. Two different methods were employed in these gas 

transfer calculations, one using surface wind speeds measured on the ship and 

corrected to 10 m as.!., and the other using six-hourly surface wind speeds from 

GASP analyses. Both methods employed the relationship for gas transfer velocity 

from "instantaneous" or steady 10 m wind speeds formulated by Waminkhof (1992). 

Over the period 1 January to 31 March 1993 the net transfer estimates for the region 

55° - 70°S, 60° - 150°E, from ship and GASP wind speeds were -15.2 x 10 -3  
Gt C/90 d and -14.3 x 10 -3  Gt C/90 d, respectively, over an average area of open water 

of 6.00 x 1012  m2 . The close agreement between these two fluxes does not imply that 

the two different methods used here to estimate gas transfer will always necessarily 

give similar results. From the difference between the two wind speed data sets it 

would have been expected that the net transfer estimate obtained using GASP wind 

speeds would have been 140% of the transfer calculated from shipboard wind speeds. 

The observed close agreement between the two transfer estimates was due to the 

difference in data interpolation techniques almost canceling out the effect of using 

different wind speed data sets. 

Between 1 October 1992 and 31 March 1993 the ocean south of 55°S, between 60°E 

and 150°E (average area 5.29 x 10 12  m2), sequestered -25 ± 13 x 10 -3  Gt C/182 d 
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(calculated using surface wind speeds from GASP analyses). The reduction in gas 

transfer velocity by the wave-damping effect of sea-ice made very little difference to 

the total transfer value, with an estimate of-23 x 10 -3  Gt C1182 d, assuming no net flux 

over a grid square at least 50% covered by sea-ice. 

There were distinctive zonal and meridional variations in net air-sea transfer of CO2 

over the study region. The ocean sink was most pronounced west of 105°E 

(-26 ± 13 x 10-3  Crt C1182 d over an area 2.55 x 10 12  m2), where it was associated with 

summer phytoplankton blooms (Chapter 3). 

Over the northern region (55° - 60°S, 60° - 150°E: 2.96 x 1012  m2  of open water), the 

ocean sequestered -19 ± 9 x 10-3  Crt C during 1 October 1992 to 31 March 1993, and 

only -6.4 ± 3.7 x i0 Gt C south of 60°S (2.33 x 10 12  m2  of open water). During 

December 1992 to February 1993, the ocean south of 60°S was a relatively small net 

sink for atmospheric CO2  compared with the region 55°S to 60°S, mainly due to 

higher surface wind speeds over the northern region and to oceanicfCO2 generally 

exceeding atmospheric fugacities over the south-eastern region 60° - 70°S, 105° - 

150°E. 

The estimates for average air-sea flux per unit area, calculated in this study using 

GASP wind speeds, agreed relatively closely with flux estimates for the Southern 

Ocean made by Takahashi (1989), Tans et al. (1990), and Metzl et al. (1995). There 

was less agreement with flux estimates made by Robertson and Watson (1995), with 

their calculated mean flux per unit area over the ocean south of 50°S, between 80°W 

and 80°E, being nearly three times the flux estimate from GASP wind speeds for the 

same four month period (November to December 1992 and February to March 1993). 

Fluxes from GASP wind speeds were calculated using the same equations as were used 

by Robertson and Watson (1995) and Metzl et al. (1995). The higher estimate from 

Robertson and Watson (1995) may indicate that surface AfCO2 was more negative in 

their study region and/or that shipboard wind speeds measured during their two cruises 

were atypically high and did not follow a Rayleigh distribution due to the shortness of 

the sampling period. 
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Care should be taken when interpolating or extrapolating from 4fCO2 and wind speed 

data over the Antarctic Seasonal Ice Zone due to the high spatial and temporal 

variability in both parameters throughout this region. More oceanicfCO2 data is 

required south of 55°S, particularly during autumn and winter months when high wind 

speeds over areas of open water may cause strong net air-sea fluxes of CO 2 . 
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CHAPTER FIVE:  

INFLUENCE OF THE SOUTHERN OCEAN ON 

THE CONCENTRATION AND 13C/12C OF 

ATMOSPHERIC CO2 

5.1 INTRODUCTION 

South of Australia, the lack of land masses supporting significant plant, animal or 

human populations means that changes in the concentration of atmospheric CO2 and its 
Bun— ra  • no observed over the Southern Ocean must be due to either atmospheric 

transport from northern regions or to exchange with the ocean. Valuable information 

on air-sea exchange of CO2 may be obtained from a study of surface ocean 

measurements offCO 2  and temperature from the Southern Ocean, combined with 

measurements of atmospheric CO2 mixing ratios and S'3C along the same transects. 

This chapter presents measurements of atmospheric CO 2  mixing ratios and 8 13C 

obtained from six cruises by the RSV Aurora Australis between Tasmania and the 

Antarctic coast (60°E to 150°E), during the period 17 October 1992 and 28 February 

1994. Relationships between the atmospheric and oceanic observations are 

investigated and compared with theory. It will be demonstrated that the 8' 3C values 

from atmospheric samples give different information about air-sea exchange and 

oceanic parameters to that provided by the CO 2  mixing ratios from the same 

atmospheric samples. 
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5.2 OBSERVATIONS OF ATMOSPHERIC CO2  MIXING RATIOS AND 

VC OVER THE SOUTHERN OCEAN 

Since March 1991, air samples have been collected aboard RSV Aurora Australis 

(Subsection 2.5.1) and analysed for the mixing ratio and 8 13C of CO2  in the atmosphere 

(Sections 2.5.2 and 2.7). The air sampling programme is the first shipboard survey of 

8 I3C in the Southern Ocean atmosphere. The high precision of the mixing ratio and 

8' 3C data (Sections 2.5.2 and 2.7) has provided the opportunity to observe changes in 

the atmosphere directly forced by fluctuations in properties of the local ocean surface. 

In this chapter, atmospheric measurements are presented from 360 flasks filled at 

20 m a.s.l. on six cruises between Hobart and Antarctica, from 17 October 1992 to 28 

February 1994 (Appendix A: Table A.1). Sampling sites are shown in Figure 5.1. 

Values of the atmospheric CO2  mixing ratio, Ca , and 8' 3C of atmospheric CO2, Oa, used 

in this work therefore refer to spot measurements at 20 m a.s.l. Atmospheric data 

collected prior to October 1992 are not used in the analysis due to inferior data quality. 
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Fig. 5.1 Sites where baseline air was sampled from 20 m a.s.l. aboard the RSV 
Aurora Australis, during the period 17 October 1992 to 28 February 1994. 



In order to identify variations in C a  and I5a, caused by air-sea gas exchange over the 

immediate ocean, it was necessary to remove seasonal and interannual variations in 

these parameters caused by atmospheric mixing. 

Over seasonal time scales, the Southern Ocean atmospheric boundary layer may be 

considered to be well-mixed with respect to carbon dioxide (Law et al., 1992). Short-

term variations in Ca  and 5a, observed over the Southern Ocean, are therefore likely to 

be due to exchange of CO2  with the ocean. Normalising values of Ca and 5,, to 

measurements from a Southern Ocean site experiencing minimal air-sea gas exchange 

removes seasonal and interatmual variations caused by large-scale atmospheric mixing. 

In this way, measurements from transects at different times can be combined, and the 

effects of variations in the surface ocean more clearly isolated. 

The first step was to identify a latitude where seasonal variability in air-sea gas flux, 

and sea-ice influences on atmospheric CO2 and its 13C/12C ratio, are minimal. The 

latitude chosen was 55°S, since 4/CO2 was observed to be closer to zero at 55°S, and 

experience less natural variability, compared with other latitudes during the study 

period (Figure 5.2). At 55°S, there was minimal impact on atmospheric CO2 

concentrations from net exchange with the local ocean, and therefore any observed 

variation in Ca  was more likely to be due to atmospheric transport. Along the cruise 

tracks, this latitude was north of the maximum ice edge but south of the Polar Front 

(Figure 1.1), and hence was within the Permanently Open Ocean Zone (POOZ). 

Surface waters of the POOZ are less productive than the Polar Frontal Zone to the 

north or the ASIZ to the south (Treguer and Jacques, 1992). Hence, 5'3C-DIC in 

surface water at 55°S along the transects would have been relatively constant 

throughout the year. Atmospheric 5' 3C measured at 55°S was therefore less likely to 

be affected by changes in oceanic fCO2 and 13C/12C of DIC compared with other 

latitudes sampled. To a first order approximation, normalising values of Ca  and Sa  to 

55°S suppresses seasonal and interannual variations. 
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Fig. 5.2 Hourly averaged 6/CO2 values measured from the RSV Aurora 
Australis over the region 60° - 160°E, for cruises between 17 October 1992 
and 28 February 1994. 

Some smoothing was necessary to characterise the normalising value at 55°S for each 

transect. A spline (Enting et al., 1993), with 50% attenuation every 5° of latitude, was 

fitted to values of Ca  and 45a  versus latitude for each cruise. As the air samples were 

collected every one to three degrees of latitude along each transect, 5° was considered 

the optimum latitude interval to use in the splines. The results of the analysis were not 

sensitive to the attenuation latitude interval chosen. The mixing ratios and 8 13C of 

atmospheric CO2 along each transect were normalised to the spline fitted value at 

55°S, to obtain values of Ca  - C3(55°S) and 8a  - 5a(55°S). 
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Figure 5.3 presents atmospheric CO2 mixing ratios normalised to 55°S along the same 

cruise transect, Ca - Ca(55°S), to isolate the effect of net air-sea exchange. 

Measurements from the same sampling site have been averaged. Agreement between 

pairs of flasks filled at the same site was good, with the average difference between 

CO2 mixing ratio pairs being 0.09 ppmv (0.025%). The external measurement 

precision of the Carle Series 400 gas chromatograph for routine flask analyses was 

±0.02 % (Francey et al., 1995a). 

Normalised CO2 mixing ratios increased from north to south over the region from 

44°S to 55°S, between 85°E and 160°E, during all months sampled except January 

1993 (Figure 5.3). This meridional trend in Ca  - Ca(55°S) suggests net uptake of 

atmospheric CO2 by the ocean between 44°S and 55°S, with higher uptake at lower 

latitudes. 

The relationship between shipboard measurements of atmospheric CO2 mixing ratios 

and 4/CO2, over this ice-free region of the Southern Ocean, is demonstrated in Section 

5.3. 

There appears to be a wide scatter in summertime values of C a  - Ca(55°S) south of 

55°S, between 60°E and 105°E (solid symbols in Figure 5.3(b)), with high values 

during November to early January, and below average Ca  - Ca(55°S) values during 

January to February. The large variation in mixing ratios may be due to the wide 

variation in net air-sea transfer of CO2 over the same region (Figures 4.3(d) - (e)). The 

decrease in ice cover late in the summer coincided with below average levels of 

Ca - Ca(55°S) over Prydz Bay (Figure 5.3(b)). This sudden decrease in Ca  - Ca(55°S) 

agrees with the estimates of stronger net ocean uptake of atmospheric CO 2  south of 

60°S,. 60° - 105°E, during January and February 1993, compared with earlier months 

(Table 4.1(b)). 
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Fig. 5.3 Atmospheric CO2  mixing ratios obtained from flasks of air collected 
aboard the RSV Aurora Australis and normalised to 55°S along the same 
transect for (a) Spring (17 October - 22 November 1992, 2 - 8 October 1993), 
(b) Summer (5 January - 26 February 1993, 19 November -27 December 
1993, 2 January - 28 February 1994), and (c) Autumn (2 - 28 March 1993, 9 
April - 8 May 1993). The filled symbols correspond to cruises into the ASIZ to 
the west of 105°E, and the unfilled symbols denote cruises east of 105°E. 
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Figure 5.4 presents values of atmospheric 8 13C normalised to 55°S along the same 

cruise transect, 5, - 3,(55°S), to isolate the effect of air-sea exchange. As in Figure 

5.3, measurements from the same sampling site have been averaged. Excellent 

agreement was obtained between pairs of flasks filled at the same site, with the average 

difference between 6 13C pairs being 0.01 °/.., which is the external measurement 

precision ( ±0.01 °/..) of the MAT252 mass spectrometer (Francey et al., 1995a). 

From shipboard observations, the most northerly extent of sea-ice for the transects 

used in this analysis was 60°S. Between Tasmania (44°S) and 60°S, values of 

- 60(55°S) appeared to decrease from north to south (Figure 5.4). The decrease in 

atmospheric 8 13C with latitude south will be shown in Section 5.4 to be due to the 

temperature dependence of the fractionation of the stable carbon isotopes between 

gaseous CO2 and dissolved inorganic carbon (Mook et al., 1974). South of 60°S and 

east of 105°E, summertime (5a - 5„(55°S) values appeared to continue to decrease from 

north to south, whereas south of 60°S and west of 105°E, summertime 

- 6,(55°S) values increased with latitude (Figure 5.4(b)), due to a combination of 

net uptake of CO2 by the ocean in this region, and increased ratios of i3C/12C of DIC in 

the surface ocean. These phenomena will be investigated in Sections 5.3 and 5.5, 

respectively. 
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Fig. 5.4 Atmospheric '3C values obtained from air samples collected aboard 
the RSV Aurora Australis and normalised to 55°S along the same transect for 
(a) Spring (17 October to 22 November 1992, 2 to 8 October 1993), (b) 
Summer (5 January to 26 February 1993, 19 November to 27 December 1993, 
2 January to 28 February 1994), and (c) Autumn (2 to 28 March 1993, 9 April 
to 8 May 1993). The filled symbols correspond to cruises into the ASIZ to the 
west of 105°E and the unfilled symbols denote cruises east of 105°E. 

5.3 EFFECT OF JCO2 ON ATMOSPHERIC CO 2  OVER THE SOUTHERN 

OCEAN 

The net amount of CO2 that enters the atmosphere from exchange with the ocean 

surface is proportional to AfCO2 (equations 1.1 and 1.2). It is not surprising, then, that 

over ice-free areas of the Southern Ocean (44° - 60°S) there appears to be a linear 

relationship between atmospheric CO2 mixing ratios (normalised to 55°S to suppress 

seasonal and interannual variations - Section 5.2), and hourly averaged values of 

4fCO2  in the vicinity of the air sampling site, also normalised to 55°S (Figure 5.5). 
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Fig. 5.5 The deviation in atmospheric CO2 from its concentration at 55°S, 
against 4fCO2 normalised to 55°S, for transects between 44°S and 60°S during 
17 October 1992 to 28 February 1994. The dashed lines represent the linear 
regressions (Y on X and X on Y) and the solid line the geometric mean 
functional regression (Teissier, 1948; Ricker, 1973). 

A line can be fitted to the data in Figure 5.5 using a geometric mean functional 

regression (Teissier, 1948; Ricker, 1973), giving 

Ca  - Ca(55°S) = (0.012 ± 0.001)(41CO2 - 4jCO2(55°S)) + (0.05 ± 0.02) 

r2 	= 0.25, n = 82 	 (5.1) 

It is appropriate in this case to use the geometric mean functional regression since the 

variation in both atmospheric CO2 mixing ratios and 61CO2 is mostly natural, rather 

than predominantly caused by measurement error (Ricker, 1973). Note that the 

difference in linear regression coefficients (slopes of dashed lines in Figure 5.5) is an 

indication of the correlation between the two variables, Ca  - Ca(55°S) and 

4jCO2 - 4fCO2(55°S)). For a perfect correlation, both linear regressions would have 

the same slope (Ricker, 1973). 



From equation 5.1, the slope of the geometric regression is given by: 

= 0.012 ± 0.001 
d(41CO2  — 4fCO2 (55 0  S)) 

Equation 5.2 indicates that there was a definite linear relationship between atmospheric 

CO2 mixing ratios (normalised to suppress seasonal and interannual variation) and 

normalised hourly averaged 4/CO2, since the standard error in the slope (0.001) was 

only 9% of the total gradient. The usefulness of this equation can best be explored by 

setting up a simple model for carbon mass balance between the surface ocean and the 

atmosphere. 

In the Southern Ocean troposphere, atmospheric transport in the zonal direction is 

relatively rapid so that most structure is in the meridional direction (Plumb and 

Mahlman, 1987; Law et al., 1992). In the surface ocean, temperatures and fitgacities 

are also likely to vary more with latitude than with longitude. Therefore, a simple 

zonally averaged box model may be set up as illustrated in Figure 5.6, encompassing 

the region of the atmosphere affected by air-sea gas exchange (a) and the ocean mixed 

layer (m). Reservoir a is bounded to the south by reservoir s, to the north by reservoir 

n, and above by reservoir b. The box is centred on the air sampling site, and is of 

horizontal surface area, A, and "effective mixing height", zN. The effective mixing 

height of a perturbation in atmospheric CO2 caused by net air-sea exchange, zN, is 

defined here for any atmospheric profile of CO 2  mixing ratios, Co(z) (Figure 5.7), such 

that: 

I (Ca(z) - 	dz 	= (Co  - Cb)zN 	 (5.3) 

where 

Ca 	= mixing ratio of atmospheric CO2 at 20 m a.s.l. over the sample site 

mean CO2 mixing ratio in reservoir a (ppmv), 

Cb 	= CO2 mixing ratio in the atmosphere above reservoir a unaffected by 

net air-sea gas exchange (ppmv). 
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(5.2) d(Ca —Ca (55°S)) 
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Fig. 5.6 Simple zonally averaged atmosphere-ocean model of transfer of CO2  
between the ocean mixed layer and the portion of the atmosphere affected by 
net air-sea exchange, over an ice-free region of the Southern Ocean of area A, 
centred on the air sampling site. See pages 5-12 and 5-14 for an explanation of 
the symbols. 

Ca  - Cb 

Fig. 5.7 Simple illustration of the effective vertical mixing height, zN, of an 
anomaly in CO2 mixing ratio Ca  - Cb, where Cb is unaffected by net air-sea 
exchange. 
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In effect, equation 5.3 defines the effective mixing height such that a perturbation in 

atmospheric CO2  mixing ratios due to net air-sea transfer is constant ( = C - Cb) from 

sea level to the effective mixing height, and zero above this height. The rate of transfer 

of CO2 gas across the boundary between reservoirs a and b may be expressed in terms 

of an "effective  vertical diffusion coefficient", D, which depends solely on the effective 

mixing height, zN, and therefore on the vertical atmospheric profile of CO2. The 

vertical atmospheric profile in turn reflects both the source of CO2 from the ocean and 

the vertical diffusion of the gas through the atmosphere. 

Only areas of open ocean will be considered in this analysis. Atmospheric and oceanic 

data from transects between 44°S and 60°S are used, as these were through ice-free 

regions. 

The rate at which carbon accumulates in the portion of the atmosphere affected by air-

sea exchange (reservoir a), from exchange of CO 2  gas with the ocean (equations 1.1 

and 1.2), exchange of CO2 gas with the atmosphere above a (reservoir b) and from 

meridional mixing is given by 

cEtla  
dt = 1214K 4JCO2 - AD(zN) (Ca - Ca) + A,H(Ca - Ca) - AsH(Ca  - C3) 

(5.4) 

where 

Ma 	= mass of carbon in reservoir a (g C), 

A 	= an area of open water centred on the sampling site (m 2), 
= air-sea gas exchange coefficient (mol C m 2  cr i  gatm-1), 

D(zN) = reservoir a to reservoir b CO2  exchange coefficient 

= effective vertical diffusion coefficient of CO2 gas at a height zisT 

(g C 111-2  C1-1  ppmv-1), 

ZAT 	= height of reservoir a (m) 

= function of the vertical profile of atmospheric CO2 mixing ratios such 

that equation 5.3 is satisfied, 

A„ 	= vertical area of reservoir a in the zonal direction (m2), 
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= effective diffusion coefficient of CO2 gas in the N-S direction 
C m-2 d-1 ppinv i),  

G 	= mixing ratio of atmospheric CO2 in the boundary layer north of 

reservoir a (ppmv), 

= mixing ratio of atmospheric CO2 in the boundary layer south of 

reservoir a (ppmv). 

Equation 5.4 may be simplified by making the approximation that atmospheric CO2 

mixing ratios vary linearly between reservoir n and reservoir s and therefore 

Ca  = (G + C3)12, and 

dt = 12AK AfCO2 - AD(z,v) (C. - 	. 

Mixing ratios of CO2  in the region of the atmosphere unaffected by net air-sea 

exchange, Cb, are relatively constant with latitude over the Southern Ocean, compared 

with mixing ratios within reservoir a, which are affected by air-sea exchange on short 

time-scales. Making the approximation that the air-sea gas exchange coefficient, K, 

and effective vertical diffusion coefficient, D(zN), are also constant with latitude over 

the Southern Ocean, then at 55°S (from equation 5.5): 

dAda  (55°S)  
= 12AK 4/CO2(55°S) - AD(zN) (C,,(55°S) - Cb) 	(5.6) dt 

where 

Ma(55°S) = mass of carbon in the atmospheric boundary layer, over a 

horizontal area, A (g C), 

Ca(55°S) = mixing ratio of atmospheric CO2 at 20 m a.s.l. and 55°S along the 

cruise track 

mean CO2 mixing ratio in reservoir a, over a horizontal area, A, 

centred at 55°S along the cruise track (ppmv). 

cbt/la  
(5.5) 

Subtracting equation 5.6 from 5.5 gives: 
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d(Ma  — Ma (55°S))  
dt = 12AK(4/CO2 - 4fCO2(55°S)) - AD(zN)(Ca  - Ca(55°S)) 

(5.7) 

If, between 44°S and 60°S, the change in 4fCO2 - AfCO2(55°S) with time is relatively 

small compared with the change in 4jCO 2  - 4fCO2(55°S) with latitude (Figure 5.8), 

then d(Ma  - Ma(55°S))/dt is close to zero (steady state), and 

Ca  - Ca(55°S) (12KID(z0)(61CO2 - 4fCO2(55°S)) 	(5.8) 

-60 	 -55 	 -50 	 -45 	 -40 
Latitude 

Fig. 5.8 The deviation in 4fCO2 from its value at 55°S along the same 
transect. Fugacities were measured from the RSV Aurora 
Australis during 17 October 1992 to 28 February 1994. 
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Supposing that the dependence of D(zN) on surface wind speed is similar to that of K, 

then KID(zN) should be relatively constant in time and space. If this is the case, then 

when all measurements between 44°S and 60°S are combined, one expects a linear 

relationship between Ca  - Ca(55°S) and hourly mean values of 4jCO2- 4fCO2(55°S), 

as seen in Figure 5.5. The correlation (r 2) between Ca  - Ca(55°S) and 4fCO2 - 

4/CO2(55°S) was 0.25, supporting in some degree the assumption of steady state and 

equation 5.8. Hence, equations 5.1 and 5.8 imply that 

12KID(zw) 	0.012 ± 0.001, 	 (5.9) 

with the relatively small standard error indicating the natural spatial and temporal 

variation in the ratio of the air-sea gas exchange coefficient, K, to the effective vertical 

diffusion coefficient, D(zN). 

In the real world, monthly and annual mean surface wind speeds vary significantly with 

latitude over the Southern Ocean (e.g. Halpern, 1993; Halpern et al., 1994a, 1994b), 

with a peak in magnitude at around 55°S. However, it is difficult to effectively 

incorporate wind speed into the simple atmosphere-ocean model without prior 

knowledge of the appropriate time interval and area (A) over which to average the 

surface wind speeds. Attempts were made to calculate K using first hourly averaged 

shipboard wind speeds and then SSM1 10 m 1988-91 mean wind speeds (Halpern et 

al., 1994a) without any improvement in accuracy of the estimate ofK/D(zN). 

It has been shown in this section that normalised atmospheric CO2 mixing ratios 

measured at 20 m a.s.1., from cruises over the Southern Ocean north of the ASIZ, are 

dominated by net exchanges of carbon with the ocean. Equation 5.9 provides a mean 

value of the air-sea exchange coefficient over the Southern Ocean during the study 

period, provided that a value of the effective diffusion coefficient can be determined. 

Alternatively, equation 5.1 permits an average value of 4/CO2 to be determined from 

measurements of Ca  - Ca(55°S) over the Southern Ocean. 
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The following three sections demonstrate the extra information on oceanic parameters 

that may be obtained from shipboard measurements of the ratio of 13C/12C in 

atmospheric CO2. 

5.4 EFFECT OF 4fCO2 ON ATMOSPHERIC 8' 3C OVER THE 

SOUTHERN OCEAN 

In the previous section it was illustrated that a substantial proportion of the variation in 

atmospheric CO2 mixing ratios may be linked to variation in hourly mean 4fCO2 Values 

at the sampling site (Figure 5.5). It is useful to determine how much of the variation in 

atmospheric 8' 3C over the Southern Ocean (Figure 5.4) was also a result of changes in 

4/CO2. 

The component of the rate of change of atmospheric 8 13C at 20 m a.s.l. caused by 

kinetic isotopic fractionation associated with net air-sea exchange of CO2, cb50(net)Idt, 

may be given by (equation 1.20): 

where 

d(5a (net) 
 Ciao &

1
) 	

dMa(net) 
= (Cain/Ma) 

dt 	 dt 
(5.10) 

earn 	= isotopic shift that occurs during air-sea exchange of CO 2  due to 

kinetic fractionation ("7), 

dMa (net) 
	 = the component of the rate of change of the mass of atmospheric 

dt 

CO2 in reservoir a due to net air-sea exchange (g C c14) 

= N. 

Defining Ma = MaaCa, where Mai, = mass of air in reservoir a, then 

dMa (net) 	dC
a 	
(net) 

= Mau* 	. dt 	 dt 
(5.11) 



Substituting equation 5.11 into equation 5.10 gives 

a (net) 	= C am  dCa (net) 
d t 	Ca 	d t 

(5.12) 

If LC(net) represents the variation in atmospheric CO 2  mixing ratio at the sampling 

site due to net air-sea exchange over an interval At, then the variation in atmospheric 

8 13C at the same site due to fractionation associated with net exchange of CO2 with the 

ocean over the same period, A3a(net), will be given by 

A 5a(net) 	= (Cam/Ca) ACa(net) 	 (5.13) 

The maximum peak-to-peak variation in atmospheric CO2 mixing ratios, measured for 

any one transect between 17 October 1992 and 28 February 1994, was 

0.7 ± 0.2 ppmv. The maximum and minimum values were measured from samples 

collected on 29 January and 17 February 1993 while the ship was in Prydz Bay (Figure 

5.3(b)), during a period of extremely low fugacities in the surface ocean (Figures 

3.1(d) and (e)). 

Choosing a value for Cam  of -2.23 ± 0.2 7. at 5°C (Zhang et al., 1995) and C a  = 354.6 

± 0.2 ppmv (average CO2 mixing ratio from January 1993 samples), then the expected 

change in atmospheric 8 13C from fractionation linked to net air-sea exchange, 

associated with a change in the atmospheric CO2  mixing ratio of 0.7 ± 0.2 ppmv, 

would be 0.004 ± 0.013 O/00  (from equation 5.13). The difference in atmospheric 5 13C 

values in flasks of air collected on 29 January and 17 February 1993 was 0.003 ± 0.009 

`70,„ which is comparable to the 0.004 ± 0.013 °/„, expected if kinetic fractionation 

associated with net air-sea exchange alone was affecting the 13C/12C ratios. However, 

the maximum scatter in atmospheric 5 13C, observed along any one transect through the 

Prydz Bay region 60° - 70°S, 60° - 105°E, was 0.06 ± 0.01%0  (Figure 5.4(b)). This 

observed variation in i5a along one transect was a factor of 15 times greater than that 

expected from fractionation during net air-sea gas exchange alone, implying that 
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atmospheric 6' 3C is influenced by other, much stronger, factors over the Southern 

Ocean than net exchange of CO 2 . 

5.5 EFFECT OF SEA SURFACE TEMPERATURE ON ATMOSPHERIC 

813C OVER THE SOUTHERN OCEAN 

Keeling et al. (1989) predicted that there should be a meridional trend in atmospheric 

82C over the Southern Ocean, caused by the temperature dependence of isotopic 

fractionation during air-sea exchange of CO2 (Section 1.4). They used the temperature 

dependence to explain the more negative observations of atmospheric 8 13C at the 

South Pole compared with mid-southern latitude observations. In Section 5.4, it was 

shown that the effect of 4/CO2 on values of atmospheric 8 13C was weak compared 

with the total observed isotopic variation over the Southern Ocean. It is the aim of 

this section to determine the relative dependence of atmospheric S BC on sea surface 

temperature, SST, at the sampling site. 

Geometric mean functional regression was performed on values of & - &(55°S) 

against normalised SST (Teissier, 1948; Ricker, 1973) (Figure 5.9). The 

measurements were normalised to 55°S to suppress seasonal and interannual 

variations, so that all transects might be combined (Section 5.2). Between 44°S and 

60°S (ice-free waters), the geometric mean regression to 8,, - &(55°S) versus 

SST - SST(55°S) was 

& - &(55°S) = (0.0041 ± 0.0003)(SST - SST(55°S)) - (0.002 ± 0.002) 

r2  = 0.39, n = 92 	 (5.14) 
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Fig. 5.9 Atmospheric 5 I3C normalised to 55°S against normalised sea surface 
temperatures, for sampling sites between 44°S and 60°S. The dashed lines 
represent the linear regressions (Y on X and X on Y) and the solid line the 
geometric mean functional regression (Teissier, 1948; Ricker, 1973). 

Hence, between 44°S and 60°S, the meridional gradient in sea surface temperature 

changed atmospheric 5 13C at 20 m a.s.l. by 0.0041 ± 0.0003 '700  °CI . This linear 

relationship with SST has many applications in atmospheric inverse modeling of the net 

carbon sink over the Southern Ocean, where measurements of atmospheric 5' 3C from 
stations are very scarce (Chapter 1). 

The implications of equation 5.14 can be determined by setting up a similar zonally 

averaged box model for 13CO2 mass balance in the atmospheric boundary layer, as was 

set up for CO2  (Figure 5.6). Again, atmospheric and oceanic data from transects 

between 44°S and 60°S are used in the analysis. The box is centred on the air 

sampling site, and is of horizontal surface area, A, and "effective mixing height", zG. 

The height, zG, is defined as the effective mixing height of a perturbation in 

atmospheric 13CO2/12CO2 caused by fractionation during gross air-sea exchange of CO2 

(Section 1.4), and is defined for any atmospheric profile of 5 13C, Sa(z) (Figure 5.10), 

such that: 
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I (saw - 	dz = (3a - 81,)zG 	 (5.15) 

where 

3„ 	= atmospheric 8' 3C at 20 m a.s.l. above the sample site 

mean 6 13C in reservoir a, centred on the sampling site (°/), 

456, 

	

	= 5'3C in the region of the atmosphere above the sampling site that is 

unaffected by fractionation associated with gross air-sea exchange 

In effect, equation 5.15 defines the effective mixing height, zG, such that a perturbation 

in 8'3C due to fractionation during gross air-sea transfer is constant ( = 5, - 51,) from 

sea level to the effective mixing height, and zero above this height. Variation in the 

degree of fractionation associated with gross transfer of CO2 from the ocean into 

reservoir a results in a change in zG. The "effective vertical diffusion coefficient" from 

reservoir a to b in this case depends solely on zG, and therefore on the vertical 

atmospheric profile of 2CO2/12CO2, rather than the vertical profile of CO2, as was the 

case with D(zN). 

3  a 3 b 

Fig. 5.10 Simple illustration of the effective vertical mixing height, zG, of an 
anomaly in atmospheric 6 2C, 8„ - 3b, where Sb is unaffected by fractionation 
during gross air-sea exchange of CO2. 
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Assume that over the region 44 0  - 60°S, 600  - 160°E, the troposphere is well-mixed 

zonally (Plumb and Mahlman, 1987; Law et al., 1992), and temperatures, fugacities 

and 8 13C-DIC in the surface ocean vary much more with latitude than with longitude. 

The rate of change of 8 13C in reservoir a is a result of fractionation during gross 

exchange of CO2 gas with the ocean (equation 1.20) and net exchange with reservoirs 

b, n and s, and may be expressed (after equation 5.4) as 
A  dS 

dta  

+ 24,11C a(3,2  - 	-241105(50  - Ss) 	(5.16) 

where 
SaC 	= atmospheric 8 13C that would be in equilibrium with the sea surface 

= [(1 + &/1000)((0.98947 ± 0.00005) + (0.104 ± 0.003) x 10 -3  SST) 

- 1 x 1000 °/00  (from equations 1.15 and 1.16), 

= mean 8 13C-DIC in the ocean mixed layer, over a horizontal area, A, 

centred on the sampling site (°I a), 
D(zG) = effective vertical diffusion coefficient of CO2 gas at a height zG 

(g  c m-2 d-1 ppmv-1) ,  

ZG 	= height of reservoir a (m) 

= function of the vertical profile of atmospheric 8 13C (and therefore of 

fractionation associated with gross air-sea exchange) such that equation 

5.15 is satisfied, 

= 8 13C in the atmosphere to the north of reservoir a .0), 

= 8 13C in the atmosphere to the south of reservoir a (° 

Equation 5.16 may be simplified by making the approximation that atmospheric 8 13C 

varies linearly between reservoir n and reservoir s, and therefore Sa = (5,7+ 3)/2, and 

approximating Ca  with C„ then 

a if  dS 
`via dta 

where 

G 	= Eam(fm  - fa) + fm(6ae - 	(a I gatm). 

= 12AK[Ecan(f.- fa) + fm(Sae. - 6a)] - AD(zG) Ch(Sa  - Sb ) 

= 12AKG - AD(zG) Cb(3a - 3b) (5.17) 
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Isotopic ratios of CO2 in the portion of the atmosphere unaffected by gross air-sea 

exchange, ob, are relatively constant with latitude over the Southern Ocean, compared 

with values of 8 13C within reservoir a, which are affected on short time-scales by 

fractionation during gross air-sea exchange (Section 1.4). Making the approximation 

that the air-sea gas exchange coefficient, K,  and effective vertical diffusion coefficient, 

D(zG), are also constant with latitude over the Southern Ocean, then at 55°S (from 

equation 5.17): 

Ma(55°S) 
dk(550S)  = 12AKG(55°S) - AD(zG) Cb [SASS'S) -45b] 

di 
(5.18) 

where 

G(55°S) = ec,„4fCO2(55°S) +f„,(55°S) (oae(55 0S) - 455°S)). 

Subtracting equation 5.18 from 5.17 gives: 

	

M 	
dk (55°S)  

	

a 	— ma (55°S) 
di 	 di 

= 12AK(G - G(55°S)) - AD(ZG) Cb(Sa - 3„(55°S)) 	(5.19) 

One can approximate Cb by Ca(55°S), since at 55°S along any transect 4fCO 2  0 

(Figure 5.2), and therefore net air-sea transfer of CO2 was relatively small. By 

definition, Cb is the mixing ratio of atmospheric CO2 unaffected by air-sea gas 

exchange. 

If, between 44°S and 60°S, the change in G - G(55°S) with time is relatively small 

compared with the change in G - G(55°S) with latitude, then the L.H.S. of equation 

5.19 will be close to zero (steady state), and 

- az(55°S) 	(12KID(zG))(G - G(55°S))/Ca(55°S) 	(5.20) 
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Over the ice-free region of the Southern Ocean 44° - 60°S, 52° - 80°E, PC-DIC in 

the surface ocean was equal to approximately 1.8 ± 0.3 °/ 00  during early 1991 (Francois 

et al., 1993). Globally, 6 13C-DIC in the surface ocean changes relatively slowly with 

time at approximately -0.015 '700  yr4  (Francey et al., 1995b), due to the release of 

fossil fuel carbon. In the atmosphere, over the region 44° - 60°S, 60° - 150°E, during 

1992-94 3a  - 3455°S) varied more with latitude than with time or longitude (Figure 

5.4). Figure 5.11 demonstrates that SST - SST(55°S) also changed relatively little 

with time or longitude compared with its change with latitude. Therefore, 

G - G(55°S), which is predominantly a function of 6„„ 3„ and SST, changed less with 

time than with latitude. In addition, if K/D(zG) was relatively constant in time and 

space, then combining all measurements from sites between 44°S and 60°S should 

produce a linear relationship between 3,, - &(55°S) and (G - G(55°S))/Ca(55°S) 

(equation 5.20). Since G is linearly dependent on Sae, and therefore on SST, it follows 

from equation 5.20 that a, - S(WS) is linearly dependent on sea surface temperature, 

as was shown in Figure 5.9 and equation 5.14. 

Fig. 5.11 The deviation in sea surface temperature from its value at 55°S along 
the same transect. Sea surface temperatures at 7.5 m depth were measured 
from the RSV Aurora Australis during 17 October 1992 to 28 February 1994. 
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Figure 5.12 presents values of Sa  - S(SS'S) versus (G - G(55°S))/Ca(55°S) for sites 

where air was sampled between 44°S and 60°S. Values of G = ea.4X02 + f.(6.e - 3.) 
were calculated for each of these sites from atmospheric measurements of hourly 

averaged measurements off. and SST, and with an assumed value of Elm  = 1.8 °/„. 

(Francois et al., 1993), and ea. of-2.2 'Y. (Zhang et al., 1995). 

Fig. 5.12 Atmospheric 5 13C normalised to 55°S, against normalised values of 
G/Ca(55°S), from sites between 44°S and 60°S. Values of G = e2n4JCO2 + 
fm(6: - Sa) were calculated from measurements of & at each sample site, hourly 
averaged measurements off. and SST, and with an assumed value of 
Sm = 1.8 7aa, and cam  of-2.2 '700 . The dashed lines represent the linear 
regressions (Y on X and X on Y) and the solid line the geometric mean 
functional regression (Teissier, 1948; Ricker, 1973). 
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The geometric mean functional regression to the data presented in Figure 5.12 was 

- 6„(55°S) = (0.031 ± 0.003)(G - G(55°S))/C0(55°S) + (0.003 ± 0.002) 

r2  = 0.28, n = 92. 	 (5.21) 

The error in the geometric mean regression coefficient (i.e. Ca(55°S)d(8,, - 

(5.(55°S))/d(G - G(55°S))) in equation 5.21 is due to the variation ofK/D(zG) in time 

and space, and also to the variation in 5„, over the study region. As described in 

Section 5.3, attempts were again made to calculate K using first hourly averaged 

shipboard wind speeds and then SSMI 10 m 1988-91 mean wind speeds (Halpern et 

al., 1994a) without any improvement in accuracy of the estimate ofK/D(zG). The error 

in the geometric mean regression coefficient due to the uncertainty in a n  was estimated 

as follows. 

Francois et al. (1993) presented values of 8 13C-DIC in surface waters of the Southern 

Indian Ocean during the austral summer of 1991. The mean value for 8 13C-DIC over 

the region 44° - 60°S, 52° - 80°E, was 1.8 V. with a standard deviation of ±0.3 

The expected range in values of 

Ca(55°S)d(3. - Sa(55°S))/d(G - G(55°S)) over the region 44° - 60°S, 60° - 150°E, can 

be determined by substituting 3„, values of 1.5 O/ c. and 2.1 	into the relationship for 

(G - G(55°S))/Ca(55°S). 

The geometric mean functional regression to & - 8„(55°S) against 

(G - G(55°S))/Ca(55°S), where 8„, was assigned a value of 1.5 V.°, was 

8a(55°S) = (0.027 ± 0.003)(G - G(55°S))/G(55°S) + (0.005 ± 0.002) 

r2  = 0.24, n = 92. 	 (5.22) 

The geometric mean functional regression to Sa - S(WS) against 
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(G - G(55°S))/Ca(55°S), where (5,„ was assigned a value of 2.1 Va., was 

3a - 8a(55 °S) = (0.034 ± 0.003)(G - G(55°S))/C„(55°S) + (0.0006 ± 0.002) 

= 0.32, n = 92. (5.23) 

Equations 5.21 to 5.23 suggest that over ice-free regions of the Southern Ocean, 

assuming 3„, = 1.8 ± 0.3 V., then 

Ca(55°S) 
d(5 — 6

a
(55°S)) 

 = 12KID(zG) = 0.031 ± 0.006 	(5.24) 
d(G — G(55°S)) 

Equations 5.9 and 5.24 imply that on average 

D(zN)/D(zG) = (0.031 ± 0.006)/(0. 012 ± 0.001) = 2.6 ± 0.5 . (5.25) 

The effective vertical diffusion coefficient at height zw, D(zN), exceeding D(zG) 

(equation 5.25), is a direct result of the difference in atmospheric profiles of 12CO2  and 

13CO2, and indicates that the effective mixing height of an anomaly in atmospheric 5 13C 

caused by fractionation during gross air-sea exchange, zG, is higher than the effective 

mixing height of an anomaly in atmospheric CO2 mixing ratios due to net air-sea 

exchange, zN. The perturbation in concentrations of atmospheric 13CO2 at 20 m a.s.l. 

due to air-sea exchange is therefore generally greater than the perturbation of 

atmospheric CO2 mixing ratios at the same site. This implies that fractionation during 

gross air-sea exchange of CO2 has a more measurable effect on 13CO2/12CO2 at 20 m 

a.s.1., than the effect of net air-sea exchange on the atmospheric CO2 mixing ratio, due 

to the difference in signal-to-noise ratios. The following example illustrates why this is 

the case. 



5-29 

Suppose that over reservoir a, AfCO2= 0, implying that net air-sea transfer between m 

and a is zero. It follows that Co  = CI)  and zN  = 0. However, over the same region of 

ocean it is probable that zG > 0, since, provided that the wind speed is greater than zero 

and 3ae # 5a, the gross sea-to-air exchange term in equation 5.17, 1 2AK f,„(45Z - 3,,), is 

non-zero. In the case of no net air-sea transfer, the 13C/12C ratio of atmospheric CO2  is 
still strongly affected by gross sea-to-air transfer via air-sea isotopic disequilibrium and 

air-sea fractionation. Over a number of transects there will be a range of oceanic 

fugacities, f„,, but, in general, zG will exceed zN, and D(zN) will be greater than D(zG). 

How does the meridional gradient in atmospheric 8 13C measurements obtained from 

our shipboard air samples compare with results from models? Keeling et al. (1989) 

modeled the zonally averaged north-south profile of atmospheric 8 13C by assuming a 

temperature-dependent fractionation between the atmosphere and oceans (Mook et al., 

1974), a constant global average value of 8 13C-DIC in the surface ocean of 1.5512 °/,,, 

and simulating atmospheric mixing using a three-dimensional transport model. For the 

year 1980, Keeling et al. (1989) obtained a meridional gradient for annual mean 

atmospheric 8 13C between 40°S and 60°S of approximately -0.0011 V. per degree of 

latitude south, using a constant air-sea gas exchange coefficient of 7.9377 x 10 11  
g C m-2  yr-1 . Using Liss and Merlivat's (1986) relationship to calculate variable values 

of the air-sea exchange coefficient, Keeling et al. (1989) obtained a gradient of 

-0.0017 	per degree of latitude south. 

The geometric mean functional regression to 3,, - Oc,(55°S) against latitude for 

440  - 60°S was 

- 8,,(55°S) = (-0.0036 ± 0.0003) latitude(°S) - (0.199 ± 0.001) 

r2  = 0.42, n = 99. 	 (5.26) 
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For our sampling sites between 44°S and 60°S, atmospheric 8 I3C at 20 m a.s.l. 

(normalised to suppress seasonal/interannual variations) varied -0.0036 ± 0.0003 7,, e, 

per degree of latitude south, during the years 1992-94. This geometric mean 

functional regression coefficient is effectively an average value for the period 17 

October 1992 to 28 February 1994, and is a factor of 2.1 steeper than the meridional 

gradient predicted by Keeling et al. (1989) for 1980 (using a variable air-sea exchange 

coefficient) over the same latitude range. 

The difference in meridional gradient in atmospheric 8 13C between 1980 and 1992-94 

may be due to a number of causes. Keeling et al.'s (1989) estimates of air-sea gas 

exchange coefficients, using Liss and Merlivat's (1986) equation, may have been too 

low for 1980. Waminkhof s (1992) estimates for K at 20°C are, on average, 1.8 times 

Liss and Merlivat's (1986) estimates over a range of 10 m wind speeds from 3 m s to 

13 m s-1  (Figure 1.2). If the value of 8 13C in the surface ocean of 1.5512 '7., chosen 

by Keeling et al. (1989) to represent all oceans during 1980, was less than the mean 

1992-94 value of 8 13C-DIC of the surface ocean over 44°S to 60°S, then this may 

explain some of the discrepancy in meridional gradients in atmospheric 8'3C. 

5.6 EFFECT OF MARINE PRODUCTIVITY ON ATMOSPHERIC 8' 3C 

OVER THE ASIZ 

Over regions of the ocean with high phytoplankton productivity, one expects to see 

relatively high levels of 8 13C-DIC in surface waters (Section 1.4), and therefore higher 

values of SZ. Areas of ocean that have experienced strong phytoplankton growth are 

characterised by low oceanic fugacities and negative 4fCO2 values (Section 3.3). 

Equation 5.17 implies that an increase in the rate of change of atmospheric 8' 3C caused 

by an increase in 8' 3C-DIC, linked to high phytoplankton growth (via f,n(3,,e - a)), is 

accentuated by the corresponding decrease in oceanicfCO2 (via 	-fa)). 
Therefore, over highly productive regions of the Southern Ocean one expects to see 

higher levels of atmospheric 8' 3C compared with regions with similar sea surface 

temperatures but low productivity. 
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During summer, the region 60 0  - 70°S, 60° - 105°E, experienced levels of 4fCO 2  

which were significantly more negative than those measured elsewhere over the study 

region (Figures 3.1(c)-(f)). The low fugacities in the surface ocean were associated 

with very high concentrations of chlorophyll a (Section 3.3), and therefore, 

phytoplankton productivity. It is therefore to be expected that values of 15a  -  

detrended for the temperature dependence, should be enhanced over the region 60° - 

70°S, 60° - 105°E, compared with other areas. Figure 5.13 suggests that low levels of 

f„ and high levels of 8,, have resulted in higher levels of 5a  over the region west of 

105°E (filled symbols) compared with transects east of 105°E (unfilled symbols), for 

the period November to February. It appears from Figure 5.13(b) that the high 

productivity of the western region of the ASIZ during summer had a more obvious 

impact on levels of atmospheric 5 13 C than it had on CO2  mixing ratios in the same air 

samples (Figure 5.3(b)). 

It is also possible that the anomalously high values of atmospheric 5 13 C south of 60°S 

(Figure 5.13) may have partially been due to air coming off dense pack ice or the 

continent which had not recently experienced exchange with the ocean. At the edge of 

the Antarctic sea-ice or land mass, the modeling results of Keeling et al. (1989) 

indicated a sharp reversal in the decrease of surface atmospheric 5 13C with increasing 

latitude. In this thesis, the reversal in the meridional trend in 5,, occurred during 

summer at the northernmost edge of the ASIZ, rather than the actual summer ice edge 

(Figure 5.13(b)), tending to discount the possibility that the positive meridional trend 

in 5„ sout h of 60°S was wholly due to a lack of gross air-sea exchange. 
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Latitude (N) 

Fig. 5.13 Atmospheric 813C, normalised to 55°S and detrended for the effect 
of sea surface temperature (3,, - Sa(55°S) - [0.0041(SST - SST(55°S)) 
- 0.002]), during (a) Spring (17 October to 22 November 1992, 2 to 8 
October 1993), (b) Summer (5 January to 26 February 1993, 19 November to 
27 December 1993, 2 January to 28 February 1994), and (c) Autumn (2 to 28 
March 1993, 9 April to 8 May 1993). The filled symbols correspond to cruises 
into the ASIZ to the west of 105°E and the unfilled symbols denote cruises east 
of 105°E. 

An estimate may be obtained for the average increase in 8' 3C-DIC in the surface ocean 

over the region 60° - 70°S, 60° - 105°E, required to produce the anomalously high 

summertime values of atmospheric .5 13C, normalised to suppress seasonal/interarmual 

variations and changes in sea surface temperature (Figure 5.13(b)). 

Define the anomaly in atmospheric 8' 3C due to marine productivity as 

At5,, 	= 5,, - 	 (5.27) 
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where 

= atmospheric 8' 3C that would be in reservoir a for no algal production 

in reservoir m 

5a(55°S) + [0.0041(SST - SST(55°S)) - 0.002] 0/. 

(from equation 5.14). 

Making the approximation that during the summer months of the study period the 

atmosphere was in equilibrium with the ocean, then d(taa  - Sa ')/dt 0. By definition, 

oc,(55°S) = 3;(55°S), so that from equation 5.20: 

'Ja - 05a ' 	(12KID(zG))(G - G')/Ca(55°S) 	 (5.28) 

where 

G' 	= G for low marine productivity 

= eani(f.' -fa') 	(45: - 3;), with , fa' and Sae' relating to regions 

of low marine productivity. 

In areas of the Southern Indian Ocean of low marine productivity, fm' fa' Pi fa. 

Hence, G' =f;,(6ae ' - •5„'), and equation 5.28 may be rewritten as 

Sa  - öa' 	(12K/D(zG))[eam(fm  - fa) +fm(5ae  - (5a) -fa(t5a" - 6;)]1Ca(55°S) . 

(5.29) 

Define the anomaly in 8 13C-DIC in the surface ocean due to marine productivity as 

= 	- (5n; 	 (5.30) 

Then from equation 1.15 and Sa e  = [(ama/ocam)(1 + 5„11000) - 1 x 1000 0/()) : 

Sae 	= 5ae' + A340.98947 + 0.104 x 10 -3  SST) 

(5.31) 
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Substituting equations 5.27 and 5.31 into equation 5.29 gives 

A6c, 	( 12KID(zG))[E,„„i(fn, - fa) + f„,(3a" + Aeon, - Sa ' - A8a) - fa(I5Z - IV)]/C,,(55°S) 

(5.32) 

By rearranging equation 5.32, one obtains 

RD(zG)/12K)C,,(55°S)A3a  - (earn  + 3ae ' — Sa ')(fa  - fa)]lf,„+ AS,, 

(5.33) 

The anomaly in 8 13C-DIC in the surface ocean due to marine productivity during the 

summer months, A6„„ may be determined at each air sampling site within the south-

western region 600  - 70°S, 60° - 105°E, if the mean value of 8 13C-DIC for no marine 

production, 3„,', is known. Processing of water samples from the ASIZ will result in 

future estimates of baseline 8 13C-DIC in the surface ocean, but for now let Sin ' equal 

the mean value of surface 8 13C-DIC for the Southern Indian Ocean of 1.8 ± 0.3 

(Section 5.5). Equation 5.24 gives a mean value of 12KID(zG) over the Southern 

Ocean of 0.031 ± 0.006. Substituting these values of on,' and 12KID(zG) into equation 

5.33 gives a range of summertime values for AS,, over the region 60° -70°S, 

60° - 105°E, of -0.48 °/,,o < 	< 1.77 7., with a mean of 0.72 °/„„ (n = 28). Future 

analysis of surface water samples for 5' 3C-DIC, which were collected simultaneously 

with air at all sampling sites, will indicate if the mean values of an ' = 1.8 	and 

Aan  = 0.72 °/,,„ are reasonable estimates, thereby verifying the hypothesis that the high 

summer productivity in the south-western region affects ratios of 13c/12c in 

atmospheric CO2 far more than it affects concentrations of atmospheric CO2. 
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5.7 CONCLUSIONS 

Atmospheric CO2  mixing ratios and 8' 3C values, obtained from shipboard air samples 

collected during the period 17 October 1992 and 28 February 1994, between Tasmania 

and the Antarctic coast (60°E to 150°E), have been presented. The atmospheric 

measurements exhibited distinctly different characteristics north of the approximate 

maximum ice edge at 60°S, compared with south of this latitude. 

For all months sampled (August to May), except January 1993, normalised CO2  mixing 

ratios increased from north to south over the region 44° - 55°S, 85° - 160°E, 

suggesting net uptake of atmospheric CO2 by this region of ocean. South of 55°S, 

between 60°E and 105°E, there was wide scatter in summertime values of atmospheric 

CO2  mixing ratios, normalised to remove seasonality, with high values during 

November to early January, and below average values during January to February. 

The large variation in mixing ratios may be due to the wide variation in net air-sea 

transfer of CO2 over this western region, as illustrated in Chapter 4. 

In spite of low levels of oceanic fCO2 in the ASIZ having little impact on atmospheric 

8 13C values, the high marine productivity in the vicinity of Prydz Bay (south of 60°S, 

70°E to 105°E) appears to be linked to consistently high atmospheric 13CO2/ 12CO2 
ratios, by way of higher levels of 13C/12C in dissolved inorganic carbon of the surface 

ocean. Measurements of atmospheric 8 13C, atmospheric CO2 mixing ratios, 6/CO 2  and 

sea surface temperature, together with an assumed mean value of 8 13C-DIC in the 

mixed layer of the Southern Ocean of 1.8 V oo, give a mean value for the summer 

anomaly in surface 8 13C-DIC over the region 60° - 70°S, 60° - 105°E, of 0.7 °/,„„ with 

a range of values from individual sampling sites of-0.5 Voo  to 1.8 %. This implies that 

the average summer value of 8 13C-DIC in the mixed layer of the Prydz Bay region was 

approximately 2.5 Voo  during 1992-94. The effect of the high productivity in the Prydz 

Bay region is therefore more clearly evident in the ratios of 13C/12C in atmospheric 

CO2, than it is in the CO2 concentrations. 
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Elsewhere over the study area of the Southern Ocean (south of 44°S, 105°E to 

160°E), atmospheric 5' 3C values were dominated by a linear dependence on sea 

surface temperature (0.0041 ± 0.0003 O/ c,. °C4), due to equilibrium isotopic 

fractionation of CO2 during gross sea-to-air exchange. For sample sites between 44°S 

and 60°S, where 5 13C-DIC in the surface ocean was likely to have been 1.8 ± 0.3 °/. 0, 
the meridional gradient in atmospheric 5' 3C at 20 m a.s.l. was -0.0036 ± 0.0003 °/,, o  per 

degree of latitude south. This meridional gradient is effectively an average value for 

the period 17 October 1992 to 28 February 1994, and is a factor of 2.1 steeper than 

the gradient predicted by Keeling et al. (1989) for 1980, assuming a mean 5' 3C-DIC in 

the surface ocean of 1.55 0/00 . Keeling et al. (1989) used Liss and Merlivat's (1986) 

relationship to determine air-sea exchange coefficients over the latitude range 44°S and 

60°S, which may have been partially responsible for the smaller gradient. 

The ratio of the mean air-sea gas exchange coefficient to the mean effective vertical 

diffusion coefficient (for atmospheric CO 2) over the region 44° - 60°S, 60° - 160°E, 

was estimated as 0.031 ± 0.006 from atmospheric 5' 3C data (assuming 5 13C-DIC in the 

surface ocean was 1.8 ± 0.3 */. 0), and 0.012 ± 0.001 from atmospheric CO2 mixing 

ratios. The dissimilarity between mean effective vertical diffusion coefficients for CO 2  
at two different heights, determined from measurements of 1302c and mixing  ratios of 

CO2 at 20 m a.s.1., clearly demonstrates that the vertical atmospheric profiles of ' 3CO2  
and 12CO2 were very different over the Southern Ocean. The implication is that the 

effective mixing height of an anomaly in 5' 3C due to isotopic fractionation during gross 

air-sea exchange of CO2, will generally exceed the effective mixing height of an 

anomaly in atmospheric CO2 due to net air-sea exchange. The perturbation in 

concentrations of atmospheric 13CO2 at 20 m a.s.l. due to air-sea exchange is therefore 

generally greater than the perturbation of atmospheric CO2 mixing ratios at the same 

site. It has been demonstrated that at current levels of measurement precision the 

impact on the atmosphere from air-sea exchange of CO2 can be measured more easily 

in the ratio of 13CO2/12CO2  than in the concentration of CO2. 
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CHAPTER SIX:  

SUMMARY 

The lack of in situ measurements of atmospheric and oceanic carbon dioxide over the 

Antarctic Seasonal Ice Zone and the complexity of the air-sea gas exchange system 

over the region presents challenges to gaining a more thorough understanding of the 

global carbon cycle. The hazardous conditions and inaccessibility of waters south of 

the Polar Front mean that few scientific vessels have ventured into this area. In 

particular, few measurements of the fugacity of CO2 in surface waters, necessary for 

the calculation of air-sea transfer of carbon dioxide, have been collected within areas of 

pack ice. 

The Antarctic Seasonal Ice Zone is potentially a large contemporary sink for 

atmospheric CO2 due to the formation of bottom water along the Antarctic coast, 

resulting in carbon being out of contact with the atmosphere for periods as long as 

several centuries (Maier-Reimer and Hasselmann, 1987). The amount of CO2 gas 

removed from the polar atmosphere by exchange with the surface ocean has been 

estimated on annual timescales by inverse modeling using sparse measurements of 

atmospheric CO2 concentrations (e.g. Law et al., 1992; Conway et al., 1994). The 

scarcity of 4/CO2 measurements south of 55°S has meant that these estimates of 

carbon uptake by the Southern Ocean could not be verified (Chapter 1). 

This thesis presents estimates of the net uptake of atmospheric CO2, from October 

1992 to March 1993, by a region (55° - 70°S, 60 0  - 150°E) representing approximately 

19% of the Antarctic Seasonal Ice Zone. About one half of this study region is 

influenced by coastal and ice edge algal blooms in spring and summer in the vicinity of 

Prydz Bay (60° - 105°E), while the eastern half of the region (105° - 150°E) includes 

little seasonal sea ice and a much smaller, shallow coastal zone. The calculations have 

taken into account the presence of sea-ice, and used 4fCO2 data from six voyages of 



the RSV Aurora Australis from 4 October 1991 to 28 February 1994, along with the 

Wanninkhof (1992) equation for the air-sea gas exchange coefficient. 

The net air-sea fluxes of carbon were calculated using both surface wind speeds 

measured on the ship, and also six-hourly surface wind speeds from GASP analyses. 

Over the three month period 1 January to 31 March 1993 the average net transfer 

estimates from shipboard and GASP wind speeds were -15.2 x 10 -3  Gt C/90 d and 

-14.3 x 10-3  Gt C/90 d, respectively, over an average area of open water of 6.00 x 10 12  
m2  (Note: 1 Gt C = 10 15 g C = (10 15/12) mol C). The close agreement between these 

two fluxes does not imply that the two different methods used here to estimate gas 

transfer will always necessarily give similar results. From the difference between the 

two wind speed data sets it would have been expected that the net transfer estimate 

obtained using GASP wind speeds should have been 140% of the transfer calculated 

from shipboard wind speeds. The observed close agreement between the two transfer 

estimates is due to the difference in data interpolation techniques almost cancelling out 

the effect of using different wind speed data sets. 

Over the six month period of 1 October 1992 to 31 March 1993 the ocean south of 

55°S, between 60°E and 150°E (average area 5.29 x 10 12  m2), sequestered 

-25 ± 13 x 10 -3  Gt C/182 d (calculated using surface wind speeds from GASP 

analyses). It is estimated that any reduction in gas transfer velocity, caused by the 

dampening effect of sea-ice on ocean turbulence, would have made very little 

difference to the total transfer value. The small effect of reduced wind fetch on total 

flux over the study region is due to the relatively small area of pack ice during the 

summer months and relatively low wind speeds close to the coast compared with the 

area of ocean and wind speeds north of the summer ice edge. 

Over the study region, the ocean sink was most pronounced west of 105°E (-26 ± 13 x 

10-3  Gt C/182 d over an area 2.55 x 10 12  m2), where it was associated with intense 

summer phytoplankton blooms (chlorophyll a concentrations as high as 

17 mg m-3). South of 55°S, in January and February, there was a definite contrast 

between hourly averaged 4X02 values measured west of 105°E 
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(-201 uatm < 4jCO2  <23 gam, mean = -43 i.tatm) compared with east of 105°E 

(-75 uatm <4t02 <32 patm, mean =2 gatm). 

There were distinct differences between net air-sea transfer over the northern region 

550  - 60°S, 60° - 150°E, and the southern region 60° - 70°S, 60° - 150°E. Over the 

region 55° - 60°S (2.96 x 10 12  m2  of open water), the ocean sequestered -19 ± 9 x 10 -3  

Gt C during 1 October 1992 to 31 March 1993, and only -6.4 ± 3.7 x 10 -3  Gt C south 

of 60°S (2.33 x 10 12  m2  of open water). During December 1992 to February 1993, the 

ocean south of 60°S was a relatively small net sink for atmospheric CO 2  compared 

with the region 55°S to 60°S, mainly due to higher surface wind speeds over the 

northern region and to oceanic JCO2 generally exceeding atmospheric fugacities over 

the south-western region (60° - 70°S, 105° - 150°E). 

The estimates for average net air-sea flux per unit area, calculated in this study using 

GASP wind speeds, agree relatively closely with flux estimates made by Takahashi 

(1989) and Tans et al. (1990), using climatological wind speeds, and Metzl et al. 

(1995), using shipboard wind speeds. There is less agreement with flux estimates 

made by Robertson and Watson (1995) using shipboard wind speeds, possibly due to 

their use of a relatively small wind speed data set, which could have had a 

preponderance of high wind speeds and a non-Rayleigh distribution. The frequency 

distribution of any set of wind speeds should be determined before applying equations 

for air-sea gas exchange coefficients which assume a Rayleigh distribution. Care 

should also be taken when interpolating or extrapolating from oceanicfCO 2  data over 

the Antarctic Seasonal Ice Zone due to the high spatial and temporal variability 

throughout this region. More oceanic jCO2  data is required south of 55°S, particularly 

during April to September (Table 1.1) when high wind speeds over areas of open 

water may cause strong net fluxes of CO2, and any small error in overall average jCO 2  

will cause a large error in estimated flux. 

Additional information on air-sea exchange of CO2 south of 44°S is obtained from air 

samples collected on six RSV Aurora Australis cruises in the Southern Ocean between 

17 October 1992 and 28 February 1994. Mixing ratios of atmospheric CO2 in these air 
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samples, when normalised to suppress seasonal and interannual variations, exhibited 

changes with latitude which were linked to net air-sea exchange of carbon. In contrast, 

meridional variations in normalised 8 13C values from the same air samples were 

dominated by the isotopic fractionation associated with gross air-sea exchange of 

carbon. The difference in the effect of net air-sea carbon flux on atmospheric CO 2  
mixing ratios compared with the effect of gross flux on the 13C112C ratio in atmospheric 

CO2 is demonstrated by a study of two different regions of the Southern Ocean: 44 0  - 

60°S, 85° - 160°E, and 60 0  - 70°S, 60° - 150°E. Atmospheric CO2 concentrations and 

13CO2/12CO2 ratios exhibited distinctly different characteristics north of the 

approximate maximum ice edge along the transects studied, compared with south of 

this latitude (60°S). 

For all months sampled (August to May), except January 1993, normalised CO2 mixing 

ratios increased from north to south over the region 44° - 55°S, 85° - 160°E, 

suggesting net uptake of atmospheric CO2 by the mid-latitude region to the south of 

Tasmania. South of 55°S, between 60°E and 105°E, there was wide scatter in 

summertime values of atmospheric CO2 mixing ratios, normalised to suppress 

seasonality, with relatively high values during November to early January, linked to 

relatively small net ocean uptake of carbon during this time (Table 4.1(b)), and below 

average values during January to February, linked to much stronger oceanic uptake of 

CO2 . 

Over the ice-free region of the Southern Ocean between 44°S and 60°S, from 85°E to 

160°E, atmospheric 8 13C values were dominated by a linear dependence on sea surface 

temperature (0.0041 ± 0.0003 °/„,, °C -1  - Chapter 5), due to "equilibrium" fractionation 

of CO2  during gross air-sea exchange (Chapter 1). The temperature effect was 

reflected in the observed meridional gradient in atmospheric 8 13C of -0.0036 ± 0.0003 

per degree of latitude south. This linear relationship between atmospheric 8 13C and 

sea surface temperature will be of use in inverse modeling of the net carbon sink over 

the Southern Ocean, where measurements of atmospheric 8 13C from stations are very 

scarce (Chapter 1). 
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The relatively strong net ocean uptake of atmospheric CO2 over the region 60° - 70°S, 

60° -105°E, during summer (Table 4.1(b)) is estimated to have had little impact on 

atmospheric 8' 3C values. However, the intense marine productivity in this south-

western region appears to have caused anomalously high atmospheric 13CO2112CO2 
ratios, by way of gross sea-to-air exchange transmitting the effect of high values of 

'3C/'2C in dissolved inorganic carbon of the surface ocean to the atmosphere. 

Measurements of atmospheric 8 I3C, atmospheric CO2 mixing ratios,X02 in the 

surface ocean and sea surface temperature, together with an assumed mean value of 

8 13C-DIC in the mixed layer of the Southern Ocean of 1.8 °/,„„ gave a mean value for 

the summer anomaly in surface 8 13C-DIC over the region 60° - 70°S, 60° - 105°E, of 

0.7 °I., with a range of values from individual sampling sites of-0.5 °/.. to 1.8 V oo . 

This implies that the average summer value of 8 13C-DIC in the mixed layer of the 

south-western region was approximately 2.5 O/0„, during 1992-94. Future analysis of 

8'3C-DIC in the surface water samples which were collected simultaneously with air at 

all sampling sites will indicate if the mean summer value of 8 13C-DIC was 1.8 O/G, over 

the relatively unproductive region of 60° - 70°S, 

105° - 150°E, and 2.5 *430  over the highly productive region west of 105°E. The actual 

measurements of 8 13C-DIC will verify the hypothesis that at current measurement 

precision levels the high summer productivity in the Prydz Bay region is clearly 

reflected in ratios of 13C/12C in atmospheric CO2. 

The effect of air-sea gas exchange on the concentration and 8' 3C of atmospheric CO 2  
at 20 m a.s.l. is modeled using a simple atmospheric box model and "effective  vertical 

diffusion coefficients" for CO2 at two different heights, zy and zG, reflecting the 

different vertical atmospheric profiles of CO2 and 13CO2, respectively. The ratio of the 

mean air-sea gas exchange coefficient to the mean effective vertical diffusion 

coefficient over the region 44° - 60°S, 60° - 160°E, is estimated as 0.031 ± 0.006 from 

atmospheric 8 I3C data (assuming 8' 3C-DIC in the surface ocean was 1.8 ± 0.3 V.), 

and 0.012 ± 0.001 from atmospheric CO2 mixing ratios. The ratio of the effective 

vertical diffusion coefficient for atmospheric CO2 at height zN  to that at height zG is 

thereby estimated as 2.6 ± 0.5, which implies that the effective mixing height of an 

anomaly in 8' 3C due to isotopic fractionation during gross air-sea exchange of CO2 
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(zG), will generally exceed the effective mixing height of an anomaly in atmospheric 

CO2 due to net air-sea exchange (zN). Physically, this means that the magnitude of the 

perturbation in the atmospheric concentration of ' 3CO2  at 20 m a.s.l. due to air-sea 

exchange is generally much greater than the magnitude of the anomaly in atmospheric 

concentration of CO 2 . 

Analysis of 360 air samples collected over the Southern Ocean has clearly 

demonstrated that the impact of fractionation during gross air-sea exchange of CO2 on 

atmospheric ratios of 13CO2/12CO2 can be measured more easily than the impact of net 

CO2 flux on atmospheric mixing ratios of CO2. Long-term changes in sea surface 

temperature and productivity over the ASIZ, and therefore net ocean uptake, can be 

more accurately determined from ratios of 13CO2/12CO2 in baseline air samples from a 

coastal Antarctic station (such as Mawson or Davis), than from mixing ratios of CO2 in 

the same samples. 
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APPENDIX A 

SOUTHERN OCEAN CRUISES 

Figure A.1 present the Southern Ocean transects of the RSV Aurora Australis from 4 

October, 1991, to 28 February, 1994. Atmospheric and oceanic CO2 data from these 

transects have been used in chapters 3, 4 and 5. A summary of the start/end dates for 

each transect and data collection details are given in Table A.1. 
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Fig. A.1 Southern Ocean transects on RSV Aurora Australis where oceanic 
fugacity of CO2, fm, was recorded continuously during the periods (a) 4 to 26 
October, 1991; (b) 19 October to 1 November, 1992; and 12 to 22 November, 
1992; (c) 5 to 22 January, 1993; 24 February to 8 March, 1993; (d) 15 January 
to 7 February, 1993; (e) 7 to 25 February, 1993; (f) 12 to 28 March, 1993; 9 to 
25 April, 1993; and 4 to 8 May, 1993; (g) 7 August to 8 October, 1993; (h) 19 
November to 28 December, 1993; and (i) 2 January to 1 March, 1994. Air 
samples were collected between one and three degrees of latitude along the 
cruise tracks, except in Figures (d) and (e) where air was sampled at the sites 
marked with the larger circles. 



Voyage ID Transect dates Transect 
lat/long 

No. of 
sampling 
sites 

No. air 
flasks 
filled at 
each site 

V1_92 17 Oct'92 - 1 Nov'92 44.3°S, 145.9°E - 11 2 
66.1°S, 61.5°E 

V1_92 12 Nov'92 - 22 Nov'92 68.5°S - 77.9°E - 12 2 
45.5°S, 141.2°E 

V793 5 Jan'93 -22 Jan'93 44.5°S, 145.8°E - 12 2 
68.5°S, 75°E 

V7_93 29 Jan'93 - 26 Feb'93 66°S, 70.5°E - 4 2 
63°S, 80°E 

V7_93 2 Mar'93 - 8 Mar'93 66.2°S, 109.8°E - 8 2 
45.2°S, 145°E 

V993 12 Mar'93 -28 Mar'93 44.1°S, 146.2°E - 10 2 
64.4°S, 140°E 

V9_93 9 Apr'93 - 25 Apr'93 43.3°S, 155°E - 11 2 
63.4°S, 150.7°E 

V9_93 4 May'93 - 8 May'93 65.4°S, 143.6°E - 10 2 
44°S, 147.5°E 

V1_93 7 Aug'93 -11 Aug'93 43.8°S,148°E - 8 2 
54.25°S, 158.7°E 

V1_93 13 Aug'93 -31 Aug'93 54.15°S, 147°E - 7 2 
52.6°S, 75.15°E 

V1_93 2 Sep'93 - 26 Sep'93 around Heard Is. 10 2 

V1_93 2 Oct'93 - 8 Oct'93 53.6°S, 106.4°E - 8 2 
44.1°S, 146.3°E 

V4_93 19 Nov'93 -4 Dec'93 44.8°S, 145°E - 18 2 
69.2°S, 75.6°E 

V4_93 8 Dec'93 - 27 Dec'93 68.4°S, 77.1°E - 18 2 
44.2°S, 144.2°E 

V7_94 2 Jan'94 - 7 Feb'94 44°S, 146.3°E - 28 2 
69.4°S, 76.4°E 

V794 21 Feb'94 - 28 Feb'94 66.7°S, 140°E - 11 1 
47°S, 146.4°E 

Table A.1 Summary of air samples from the &I Aurora Australis used in this 
thesis. 
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APPENDIX B  

SOUTHERN OCEAN DATA 

B.1 SOUTHERN OCEAN SEA-ICE DATA 

The area of open water in each 2.5° x 2.5° grid square over the region south of 55°S, 

between 60°E to 150°E, was estimated from U.S. Navy/NOAA Joint Ice Center 

weekly sea-ice maps. The weekly values were averaged to give an average monthly 

area of open water over the study region (Figure B.1). 
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Fig. B.1 Average area of open water in each 2.5°x2.5° grid square, over the 
region south of 55°S, between 60°E and 150°E, for (a) October, 1992; (b) 
November, 1992; (c) December, 1992; (d) January, 1993; (e) February, 1993; 
and (1) March, 1993. These values were obtained from U.S. Navy/NOAA 
Joint Ice Center weekly sea-ice maps. 

B.2 tifCO2  DATA OVER THE AS1Z 

Oceanic and atmosphericX02 values were obtained from six cruises of the RSV 

Aurora Australis between Hobart and Antarctica (Sections 2.2-2.6 and 3.2). The 

monthly averaged 4/CO2 ( = oceanicfCO2  - atmospheric jCO2) values for each 2.5° x 

2.5° grid square of the 55 0-700S, 60°-150°E, study region are presented in Figure B.2. 

(hid points without data were filled in by using average 6/CO2  values from adjacent 

months. If data were not available from adjacent months the 4jCO2 was linearly 

interpolated from known values at the same latitude (Section 4.3). The high spatial 

variability in 4/CO2 meant that it was more accurate to use a mean value for the same 

grid point from an adjacent month than to interpolate between measurements made 

hundreds of kilometers from the grid point. 
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Fig. B.2 Mean AfCO2 for each 2.5°x2.5° grid square south of 55°S, between 
60°E and 150°E, for (a) October, 1991 and 1992; (b) November, 1992 and 
1993; (c) December, 1993; (d) January, 1993 and 1994; (e) February, 1993 
and 1994; and (f) March, 1993. 
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B.3 GASP WIND SPEEDS OVER THE ASIZ 

Figure B.3 presents monthly mean surface wind speeds over the study region 55°- 

70°S, 60°-150°E, derived from 6-hourly GASP analyses (Section 4.3). The GASP 

model uses spot measurements from satellites, ships and stations in the few hours 

preceeding each six-hourly analysis, spatially averaged over 2.24° x 3.75 0  grid squares. 
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Fig. B.3 Mean GASP wind speeds for each 2.5° x 2.5° grid square south of 
55°S, between 60°E and 150°E, for (a) October, 1992; (b) November, 1992; 
(c) December, 1992; (d) January, 1993; (e) February, 1993; and (f) March, 
1993. The average monthly wind speed for each grid point was calculated 
using six-hourly surface wind speeds from GASP analyses. 

B.4 CHLOROPHYLL A, SST AND fCO 2  DATA FROM A SPRING 

SOUTHERN OCEAN CRUISE 

Surface chlorophyll a data was collected at regular intervals between Tasmania and the 

Antarctic coast on only one Southern Ocean cruise of the RSV Aurora Australis 

during the study period. From 19 November to 28 December 1993 water samples 

were collected every four hours, filtered on the ship for phytoplankton, and later 

analysed at the Australian Antarctic Division in Hobart for concentration of chlorophyll 

a in the original water sample (Section 2.8). Figure B.4 presents hourly mean values 

of temperature, chlorophyll a andfCO2, measured from the same seawater inlet at 7.5 

m depth, during the Hobart to Prydz Bay transect from 19 November to 3 December 

1993. Figure B.5 presents the same data for the Prydz Bay to Hobart transect from 4 

to 28 December 1993. 
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On the southward transect (Figure B.4), the first significantly enhanced value of 

chlorophyll a concentration was observed at 57.6°S, but was not associated with any 

change in jCO2 in the same seawater or any distinct change in sea surface temperature. 

Further south at 59°S, north of the ice edge at 60°S, the level offCO2 decreased 

sharply to a minimum of 301 p.atm, associated with a chlorophyll a concentration of 

1.50 mg In-3 . The ice edge was entered at 60°S and thereafter any increase in 

chlorophyll a concentration was immediately followed by a decrease in oceanic jt02 

values in the same waters. Chlorophyll a concentration peaked on 3 December 1993 in 

open waters in Southern Prydz Bay at 17.2 mg In-3  (69.25°S, 74.70°E, SST = -1.18°C, 

fni = 197 patm). 

On the northward transect (Figure B.5), the minimum hourly meanfCO 2  of 128 patm 

occurred on 4 December 1993 at 69.26°S, 74.95°E, in open waters (SST = -0.60°C, 

CM a = 14.0 mg m-3), with a four-minute average/CO2 recorded as low as 109 .1.atm. 

North of the ice edge (at 64.4°S), concentration of chlorophyll a was low until 57.7°S 

when it suddenly jumped to 2.56 mg In-3  fugacity dropped to 318 gam with a sudden 

rise in sea surface temperature shortly afterwards at 57.3°S (Figure B.5(a)) of 0.96°C 

to 1.36°C suggesting a link with the Polar Front. The high chlorophyll a 

concentrations from this point to 51°S may have been associated with large eddies 

throughout the Polar Frontal Zone as suggested by the variation in SST. 
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Fig. B.4 Hourly averaged surface ocean measurements of (a) sea surface 
temperature, (b) chlorophyll a concentration and (c)./CO2 from the RSV 
Aurora Australis transect 19 November to 3 December 1993. 
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Fig. B.5 Hourly averaged surface ocean measurements of (a) sea surface 
temperature, (b) chlorophyll a concentration and (c)X02 from the RSV 
Aurora Australis transect 4 to 28 December 1993. 
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