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Abstract 

This thesis is concerned with the problem of being able to use, or general-

ize, Birkhoff's fundamental theorems for classes of algebras which do not form 

varieties - particularly in pseudovarieties and e-varieties. After giving an intro-

duction to these areas in Chapter 1, we first look at pseudovarieties, focusing 

on certain generalized varieties. 

Let Corn, Nil, and Al denote the generalized varieties of all commutative, 

nil, and nilpotent semigroups respectively. For a class W of semigroups let 

L(W) and g (vv) denote respectively the lattices of all varieties and generalized 

varieties of semigroups contained in W. Almeida has shown that the mapping 

n Corn) U n Corn} —+ g (Al n Corn) given by W W n Al is an 

isomorphism, and asked whether the extension of this mapping to ,C(Aid)U{Ari/} 

is also an isomorphism. 

In Chapter 2 we consider this question. In Section 2.2 we show that the 

extension is not surjective. Non-injectivity is then established in Sections 2.4 

- 2.6; this involves analysing sequences of words of unbounded lengths derived 

from the defining identities of certain nil varieties. Results of a more general 

nature are also given, in Section 2.3, involving the question of when two arbitrary 

semigroup varieties possess the same set of nilpotent semigroups. 

In Chapter 3 we turn to the problem of establishing analogues of Birkhoff's 

theorems for e-varieties. In Section 3.1 Auinger's Birkhoff-style theory for locally 

inverse e-varieties is expanded, to obtain a unified theory for e-varieties of locally 

inverse or of E-solid semigroups - that is, for the entire lattice of e-varieties in 

which nonmonogenic bifree objects exist. In addition an alternative unification, 

based on the techniques used by KaClourek and Szendrei to describe a Birkhoff-

style theory for E-solid e-varieties, is given in Section 3.2. 

In Section 3.3 we show that trifree objects on at least three generators exist 
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in an e-variety V of regular semigroups if and only if V is locally E-solid; this 

extends KaClourek's work on the existence of trifree objects in locally orthodox 

e-varieties and generalizes Yeh's result on the existence of bifree objects. 

In conclusion, a theory of "n-free" objects is outlined in Section 3.4, indi-

cating how analogues of the concept of a free object can be defined for any 

e-variety. 

The results presented in Sections 2.4 - 2.6 appear in [12]. The results of 

Chapter 3 will appear in [13]. 
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Chapter 1 

Introduction 

The classes of finite semigroups and regular semigroups are important examples 

of classes of semigroups that do not form varieties or admit free objects, and are 

therefore without the direct advantages of Birkhoff's fundamental theorems of 

universal algebra relating varieties, identities, and free objects. For both cases 

the definition of a variety of algebras, as a class of algebras of a given type 

closed under taking homomorphic images, subalgebras and direct products, is 

weakened: a pseudovariety of semigroups is a class of finite semigroups closed 

under taking homomorphic images, subsemigroups and finite direct products; 

and an e-variety of regular semigroups is a class of regular semigroups closed 

under taking homomorphic images, regular subsemigroups and direct products. 

Various theories have been developed in both cases, by considering links with 

varieties, or by devising analogues of the notions of identity or free object that 

allow for "Birkhoff-style" theorems. 

This thesis is concerned with the problem of being able to use, or general-

ize, Birkhoff's fundamental theorems for classes of algebras which do not form 

varieties - particularly in pseudovarieties and e-varieties. We first look at pseu- 
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dovarieties, focusing on a link with varieties by which Birkhoff-style properties 

can be used for pseudovarieties. We then turn to the problem of developing 

Birkhoff-style theories for e-varieties of regular semigroups. This chapter gives 

an introduction to these areas, with preliminary results. 

In Chapter 2, we investigate certain generalized varieties, which are used 

in the study of pseudovarieties. In [6], Ash defined a generalized variety as a 

directed union of varieties, and proved that a class of algebras is a generalized 

variety if and only if it is closed under the formation of homomorphic images, 

subalgebras, arbitrary powers and finite direct products. Ash showed that gen-

eralized varieties provide a link between varieties and pseudovarieties: a class of 

algebras is a pseudovariety if and only if it consists of the finite members of some 

generalized variety. Several authors including Almeida and Reilly [4], Almeida 

[1], Pastijn [31], and Pastijn and Trotter [32] have investigated pseudovarieties 

and therefore generalized varieties from this point of view. 

In Chapter 2 we look at this connection between pseudovarieties and varieties 

in a special case. Let Corn denote the variety of all commutative semigroups, let 

Aril denote the generalized variety of all nil semigroups, and let Al denote the 

generalized variety of all nilpotent semigroups. For any class W of semigroups 

let r(v) denote the lattice of all varieties of semigroups contained in W, and 

let g (Iv) denote the lattice of all generalized varieties of semigroups contained 

in W. Almeida [1] has shown that the mapping 

r(Arii n Corn) u 	n coin} 	g (Al n Corn) 

given by W 	W n Ar is an isomorphism, and asked ([3, Problem 10]) whether 

the extension of this mapping to r(Ard) U {Nil} is also an isomorphism. 

In Section 2.2 we show that this extension is not surjective, and proceed to 

consider the question of injectivity. We first give some more general results in 

Section 2.3, involving the question of when two arbitrary semigroup varieties 
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possess the same set of nilpotent semigroups. The question of when two nil 

semigroup varieties have the same set of nilpotent semigroups is more complex. 

In Sections 2.4 - 2.6 two varieties U ,V E G(Aril) are defined and used to show 

that the extension described above is not injective. These varieties have a 

remarkable property: there is an infinite sequence of words with unbounded 

lengths, derived from the defining identities of U and V, such that for any set 

X, with IX I > 3, the terms of the sequence constitute a congruence class of both 

the fully invariant congruence on the free semigroup X+ which corresponds to 

U and the fully invariant congruence on X+ which corresponds to V. 

Chapter 3 deals with analogues of free objects for e-varieties of regular semi-

groups. The concept of an e-variety of regular semigroups was introduced inde-

pendently by Hall [20], and Kaaourek and Szendrei [26]. Kaaourek and Szendrei 

used the term bivariety, and considered only classes of orthodox semigroups. 

With this restriction they gave definitions of bifree objects, biidentities and bi-

invariant congruences, and were able to generalize Birkhoff's theorems. Yeh 

[43] investigated the existence of bifree objects in arbitrary classes of regular 

semigroups, and proved a necessary and sufficient result; namely that non-

monogenic bifree objects exist in an e-variety V if and only if V is contained 

in either the e-variety of all E-solid semigroups or the e-variety of all locally 

inverse semigroups. 

In [7] and [8], Auinger considered classes of locally inverse semigroups, and 

was able to extend the results of Kaaourek and Szendrei from [26]. In a paper 

[27] yet to appear, Ka sciourek and Szendrei also extended the results of [26], to 

classes of E-solid semigroups. So analogues of Birkhoff's theorems hold for the 

entire lattice of e-varieties in which non-monogenic bifree objects exist. But 

the two approaches are quite different. In Section 3.1 we expand Auinger's 

approach, to obtain a unified theory for e-varieties of locally inverse or of E-

solid semigroups. In Section 3.2 we give an alternative unification, based on the 
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techniques of Kaaourek and Szendrei in [27]. 

In [25], Kaaourek considered classes of locally orthodox semigroups. By 

Yeh's results, bifree objects do not always exist in these classes. Generalizing 

the ideas used to develop the theory of bifree objects, Kaaourek defined trzfree 

objects. He showed that trifree objects exist in every e-variety of locally orthodox 

semigroups. However, he also showed that other Birkhoff-type theorems do not 

hold in this context. In Section 3.3 we extend Kaaourek's work to classes of 

locally E-solid semigroups. In fact we show that trifree objects exist in an 

e-variety V of regular semigroups if and only if V consists of locally E-solid 

semigroups. 

In conclusion, a theory of "n-free" objects is outlined in Section 3.4, indi-

cating how analogues of the concept of a free object can be defined for any 

e-variety. 

This chapter is meant as an introduction to our subject - that is, pseu-

dovarieties of finite semigroups and e-varieties of regular semigroups, with the 

underlying common theme of using or generalizing Birkhoff's theory of vari-

eties, free objects and identities. We therefore start with a section on universal 

algebra, proceeding to discuss pseudovarieties in Section 1.2, and e-varieties in 

Section 1.3. 

1.1 Universal algebra. 

Although we will be mainly using semigroups in this thesis, sometimes we con-

sider extra operations on these semigroups, and so we begin by briefly reviewing 

the definitions of subalgebra, direct product, homomorphism, and congruence 

for algebras in general. This leads to the theory of varieties, identities, and 

free objects, and to Birkhoff's theorems relating these concepts. For undefined 

notation and terminology see the book by Burris and Sankappanavar [11]. 
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Throughout this section let T be a fixed type of algebras, with set 0 of oper-

ation symbols. All algebras will be considered to be of type 7 unless otherwise 

stated. We fix C as a class of algebras of type T. 

For every n > 0 let Or, = 	E 0 : f has arity n}. For every f E 0 we write 
fA for the corresponding operation on an algebra A. 

For this section let X be a nonempty set of distinct objects called variables 

or letters such that X n 00  = 0. The set X is sometimes called an alphabet. 

1.1.1 Subalgebras, direct products, homomorphisms, and 

congruences. 

Let A and B be two algebras. The algebra B is a subalgebra of A, written B < A, 

if B C A (as sets) and for every f E 0 the operation fB is the restriction of fA  

to B. 

The direct product A = MEI  Ai of a family {A : i E /} of algebras is such 

that 

	

fA (ai, 	• an)(i) = fAt (ai(i), • • • an(i)) 

for all i E I whenever f E On  and a l , 	, a E fJj  A,. The product A is said 

to be a direct power when all the A, coincide. 

An equivalence relation p on an algebra A is a congruence if whenever f E 

and a z , b z  E A satisfy (a t , bz ) E p for 1 < < n we have 

(fA (ai,• • • ,an), fA (b1,..• bn)) E P. 

The quotient algebra A p is such that fAIP(a i p, 	, anp) = fA (a i ,. . ., a)p for 

every a l , 	, a E A and f E O. 
A homomorphism from A to B is a mapping a : A -4 B which satisfies 

fA (a i , 	, an )a = fB  (a i a, 	, a rt a) for each f E On  and a l , 	, a E A. 
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Notation 1.1.1 Let A and B be two algebras. The kernel of a homomorphism 

a : A -4 B is the congruence a o a -1  = {(a, b) EAxA: aa = ba}. Given 

a congruence p on A, the homomorphism A —> Alp given by a 1-4 ap, a E A, 

is denoted by p . For a relation p on A let p -1  = {(a, b) : (b, a) E p} . Let (p) 

denote the congruence on A generated by p; that is, the least congruence on A 

that contains p. 0 

Result 1.1.2 ([11]) Let a : A -- B and 0 : A 	C be two homomorphisms 

such that [3 is surjective and 0 o 13 - I C a o a 1 . Then there is a homomorphism 

C 	B given by a0 1-4 aa, a E A. 	 0 

1.1.2 Varieties and identities. 

Recall that C is defined as a fixed class of algebras of type T. 

Definition 1.1.3 We write: 

/(C) for the class of all isomorphic images of members of C; 

H (C) for the class of all homomorphic images of members of C; 

S(C) for the class of all subalgebras of members of C; 

P(C) for the class of all direct products of members of C; 

P1 (C) for the class of all finite direct products of members of C; 

Pow(C) for the class of all direct powers of members of C. 	0 

A variety is a class of algebras (of type 7) closed under H, S and P. Let 

V(C) denote the variety generated by C, which is the intersection of all varieties 

containing C. We write V(A) when C has only one member A. 

Theorem 1.1.4 (Tarski) V(C) = HSP(C). 	 0 
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The set T(X) of terms (of type 7) over X is the smallest set such that 

• X U 00  C T(X), and 

• if 	E T(X) and f E On  then f(p.  ,p,,) E T(X). 

The term algebra (of type 7) over X is the algebra T(X), for which 
1T(X) 

(p1, . . . , p,) is the term f(pi,.  ,p,) whenever f E On  and p l , . . . E 

T (X). So T (X) is generated by the set X. 

An identity (of type 7) over X is a pair (p, q), also written p = q, where 

p, q E T(X). We write Id x for the set of all identities over X. We may regard 

Id x  as being a binary relation over T(X) or a set of equations over X. 

An identity (u, v) is said to be trivial if u and v are the same element of 

T (X), and nontrivial otherwise. 

An algebra A satisfies an identity p = q over X, written A 	p = q, if 

pa = qa for every homomorphism a : T(X) 	A. The class C satisfies an 

identity p = q, and we write C = p = q, if A = p = q for every A E C. 

We write Idx(C) for the set of all identities satisfied by C (or Idx(A) if 

C = {A}). We sometimes write simply Id(C) or Id(A). If every member of a 

set E of identities is satisfied by a class C (or algebra A) we say that C (or A) 

satisfies E, and write C = E (or A 1=  E). 

A congruence p on an algebra A is fully invariant if (aa, ba) E p whenever a 

is an endomorphism of A and (a, b) E p. For a set E of identities let e(E) denote 

the fully invariant congruence on T(X) generated by E. We write E= p = q if 

(p, q) E e(E). 

1.1.3 Free objects and Birkhoff's theorems. 

In this section we define free objects and state the fundamental theorems of 

Birkhoff's 1935 paper [9] connecting varieties, identities and free objects. The 
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first of these establishes that a class of algebras is a variety if and only if it 

is equationally defined. Given a set E of identities, let [E] be the class of all 

algebras that satisfy E. 

Theorem 1.1.5 ([9]) If V is a variety and the set X is denumerable then V = 

[Idx(V)]; and conversely, for a set E of identities the class [E] is a variety. 0 

Notice that for a class C of algebras (of type 7) we have Idx(C) = Idx(V(C)), 

which is a fully invariant congruence on T(X) by the next theorem of Birkhoff. 

We often write p(C) for Idx(C). 

Theorem 1.1.6 ([9]) Suppose X is denumerable. The lattice of varieties of 

algebras of type T is antiisomorphic to the lattice of fully invariant congruences 

on T(X) (with respect to C) via the mutually inverse mappings 

V 	Id(V) and p 	[I)]. 	 0 

An algebra F, together with a mapping t : X -4 F, is said to have the 

universal mapping property for C over X if for every S E C and mapping 0 : 

X —> S there is a unique homomorphism ( to : F S such that y = 0. 

Theorem 1.1.7 ([9]) The algebra T(X)IIdx (C), together with the natural in- 

jection t : X --4 T(X)IId x (C), has the universal mapping property for C over 

X. 	 0 

We write F(X) = T(X)IIdx(C), and call this algebra the C-free algebra on 

X. So Fc(X) = Fv (c )(X). We usually assume that X C Fc (X). 

Theorem 1.1.8 ([9]) We have F(X) E I S P(C). In particular, if C is a vari-

ety then F(X) E C. If C is a variety and X is denumerable then C = V(Fc(X). 

0 
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Remark 1.1.9 By Theorems 1.1.7 and 1.1.8, if C is a variety then the members 

of C are precisely the homomorphic images of the C-free algebras. 

A semigroup is an algebra (S,-) of type (2) where • is associative. We write 

a b, or ab, so that a semigroup satisfies the identity x(yz) = (xy)z. An algebra 

(8, • ) of type (2,1), where • is associative, is called a unary semigroup. An 

algebra (S, •, s) of type (2,2), where • is associative, is called a binary semigroup. 

We will use the terms "semigroup homomorphism", "unary semigroup ho-

momorphism", and "binary semigroup homomorphism" to distinguish homo-

morphisms between algebras of these types. We often simply use the term 

"homomorphism" when the meaning is clear. The same applies to the terms 

"congruence", "variety", "identity", etc. 

Notation 1.1.10 For any nonempty set X, let X+ denote the free semigroup 

on X. We will call the members of X letters or variables, and the members of 

X+ words. The free monoid X* on X is obtained by adjoining the empty word 

1 to X+ as an identity. 

1.2 Pseudovarieties and generalized varieties. 

Classes of finite algebras do not usually form varieties, and so a pseudo vari-

ety is defined to be a class of algebras (all of the same type) closed under 

taking homomorphic images, subalgebras, and finite direct products. The term 

"pseudovariety" was introduced, for semigroups and monoids, by Eilenberg and 

Schiitzenberger in [16]. Pseudovarieties of semigroups and monoids are funda-

mental to automata and formal language theory, and most of the early results 

concerning pseudovarieties were motivated by the applications in these areas 

(see Eilenberg's book [15]). 
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In the 1980's Reiterman [36] and Ash [6] began investigating pseudovari-

eties from a universal algebraic perspective. Reiterman proved an analogue for 

pseudovarieties of Birkhoff's Theorem 1.1.5, establishing that a class of finite al-

gebras is a pseudovariety if and only if it is "pseudoequationally" defined. This 

result has led to a Birkhoff-style theory for pseudovarieties, which we briefly 

review in Section 1.2.1. 

In Section 1.2.2 we discuss Ash's work from [6]. In this paper Ash considered 

the concept of pseudovariety for algebras of arbitrary type, and described a 

certain kind of connection with varieties, namely generalized varieties, which 

involves the characterization of pseudovarieties in terms of nets of identities. 

There are several other characterizations of pseudovarieties apart from those 

already mentioned. For instance, they may be described in terms of filters of 

congruences (see [37]) and varieties of languages (see [15]). See Almeida's book 

[3] as a reference for the contents of this section. 

1.2.1 Pseudoidentities and free profinite algebras. 

Of course pseudovarieties do not usually admit free objects, as these algebras 

are usually infinite. For example, the smallest semigroup variety that contains 

the pseudovariety G of all finite groups is the variety of all semigroups; and so 

FG (A) = A+, the free semigroup on A, for every alphabet A. So the free object 

Fv(A) is often too general to be useful for the study of a pseudovariety V - for 

example, a finite A-generated homomorphic image of FG(A) need not be in G. 

An alternative candidate for a concept of "free" object for pseudovarieties is 

the relatively free profinite algebra. These algebras can be large and somewhat 

unwieldy, but behave quite like the usual free objects, as will be seen below. For 

more details concerning relatively free profinite semigroups and monoids see the 

survey [5] by Almeida and Weil. 
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Throughout the remainder of this section let V be a fixed pseudovariety. 

A partially ordered set I is directed if each pair of elements has a common 

upper bound. A directed system of algebras (Si)i E i is a family of algebras indexed 

by a directed poset I such that: 

• whenever i > j in I there exists a homomorphism co ij  : 	Si , 

• cp ii  is the identity map on 

• if i > j > k in I then (pik = (Pij 0  jk • 

The projective limit of a directed system of algebras (Si ) ie / is the following 

subalgebra of the direct product {L E/  Si : 

lim(Si)i e r = {(xi)iei E H S : 	= xi  whenever i > j}. 4-- 
E 

We consider all finite algebras to be endowed with the discrete topology. 

Then all homomorphisms of finite algebras are continuous, and all finite algebras 

are compact. An algebra is said to be profinite if it is a projective limit of finite 

algebras. An algebra is said to be pro-V if it is a projective limit of elements of 

V. Notice that every member of V is pro-V. 

Let A be a finite set. A profinite algebra S is said to be A-generated if 

there exists a mapping /2 : A such that (Ait) is a dense subalgebra of S. 

Let VA be the class of all A-generated members of V, with isomorphic algebras 

identified; thus VA = {A+ 1 0 : 0 E OAV}, where A+ denotes the free semigroup 

on A and O A V is the set of all congruences 0 on A+ for which A/0 E V. 

The set OAV is a directed poset with respect to D (the common upper 

bound for 0 1 , 02  E 0AV is 0 1 1102 ), and it follows that the class VA is a directed 

system of algebras. We write FA (V) for the projective limit of VA. 

Of course PA (V) is usually infinite. In fact EA(V) E V if and only if VA 

(or equivalently FA (V)) is finite, and in this case PA (V) = FA (V). However, 
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as the following details show, the free pro-V algebra PA (V) behaves quite like 

free objects in some respects, and Birkhoff-style theorems have been proved in 

this setting. 

Theorem 1.2.1 

(i) There exists a mapping tv  : A —* PA (V) such that the subsemigroup of 

PA(V) generated by Atv is dense in PA(V) and is isomorphic to FA (V). 

(ii) The algebra FA (V) is the free pro-V algebra over A: if S is a pro-V 

algebra and co : A —> S is a mapping then there exists a unique continuous 

homomorphism : FA(V) 	S such that tv(7) = (to • 

(iii) A finite algebra S is in V if and only if S is a continuous homomorphic 

image of FA (V) for some A. 	 0 

A pro -V - identity is a pair (x, y), also written x = y, of members of PA (V) 

for some A. When IA 1 = n we say that x = y is an n-variable pro-V-identity. If 

V is the pseudovariety of all finite semigroups then pro-V-identities are called 

proidentities or pseudoidentities. A pro-V algebra S is said to satisfy the pro-V-

identity x = y if xa = ya for each continuous homomorphism o: PA(V) -4 S. 

Let E be a set of pro-V-identities (not necessarily involving a bounded num-

ber of variables). A class W of pro-V algebras is said to satisfy E if each element 

of W satisfies each pro-V-identity in E; we write W = E. The class of all finite 

algebras which satisfy E is denoted by [Ely. 

The first part of the next result is a consequence of Theorem 1.2.1. The 

second is from [33]. 

Theorem 1.2.2 

(i) If W is a subpseudovariety of V then the mapping cw  induces a continuous 

surjective homomorphism 7r : PA(V) —> PAW such that qv = tv7r. 
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(ii) For all x,y E PA (V) we have W = x = y if and only if x7r = yir. 	CI 

The following result is Reiterman's analogue of Birkhoff's Theorem 1.1.5, 

and states that pseudovarieties are exactly the "pseudoequationally" defined 

classes. 

Theorem 1.2.3 ([36]) Let V be a pseudovariety, and let W C V. Then W 

is a pseudovariety if and only if W = [E] v  for some set E of pro-V-identities. 

0 

Remark 1.2.4 If V is a variety we call any pair (p, q) of members of F(X) 

a V-identity. Then Theorem 1.1.5 can be stated in the form of Theorem 1.2.3: 

given a variety V, a class VI) C V is a variety if and only if W is defined by a 

set of V-identities. 0 

Almeida gave an analogue of Birkhoff's Theorem 1.1.6, for which we need 

to consider an infinite number of variables. 

If A and B are two finite sets with I Al = 1BI then PA (V) and ilB (V) are 

isomorphic. If the cardinality of the set A is of interest, we write P,-,(V) instead 

of PA (V) if Al = n. We may assume P(V) C P 1 (V) for every n > 1. Let 

P(V) be the union (that is, inductive limit) of the topological algebras P'7,V, 

n > 1. Thus we may assume that any set E of pro-V-identities is contained in 

P„(V) x P(V). 
A set E of pro-V-identities is said to be strongly closed if 

• E is a fully invariant congruence on 

• for every u,v E P(V) such that uE vE there exists a clopen union F 

of classes of E for which uE C F and vE C F(V) \ F. 
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The set of all strongly closed sets of pro-V-identities, denoted by P IV, 

is a complete lattice (under inclusion). We write 'PsV for the lattice of all 

subpseudovarieties of V. For a subpseudovariety W of V, let PidvW be the 

set of all pro-V-identities that are satisfied by W. 

Theorem 1.2.5 ([2]) The lattice PsV is antiisomorphic to P IV via the mu- 

tually inverse correspondences W PidvW and E 	[E]v. 	 0 

Remark 1.2.6 Theorem 1.2.3 was originally given in terms of implicit opera-

tions, which are defined as follows. 

For a finite set A an A-ary implicit operation on a pseudovariety V is a 

family 7r = (7s)sEv such that 

• 7rs  is a function SA 	S for each S E V; 

• given any homomorphism : S T for S,T EV, and (s.).EA E SA  we 

have (sa)aEA 7sCo --= (s.40 )a€A7T. 

The set of all A-ary implicit operations on V forms a topological algebra that 

is isomorphic to the free pro-V algebra PA (V). 	 0 

1.2.2 Generalized varieties. 

In [6] Ash gave the name generalized varieties to classes satisfying the conditions 

of the next result. A filter over a set I is a family of subsets of I closed under 

taking supersets and finite intersections. 

Theorem 1.2.7 ([6]) The following are equivalent for a class C of algebras (of 

type 7). 

(i) C is closed under H, S, pf  and Pow. 

(ii) C = HS PfPow(C). 
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(iii) C is the union of some directed family of varieties. 

(iv) There exists a filter F over Id x  such that 

A E C <=> Idx (A) E F 

for all algebras A (of type r). 

Remark 1.2.8 

• Note that condition (ii) of Theorem 1.2.7 implies that for every class C of 

algebras the class Gen(C) = HS PfPow(C) is the least generalized variety 

containing C. 

• For a finite class C of algebras the class HSP/(C) is the least pseudovariety 

containing C. (See [22].) 	 0 

For a class C of algebras, let C F  denote the class of all finite members of C. 

A pseudovariety V is said to be equational if V = VF for some variety V. The 

pseudovariety B = [x 2  = x ]F of all bands (that is, semigroups of idempotents) 

is an example of a equational pseudovariety. 

An example of a pseudovariety that is not equational is the class N of all 

finite nilpotent semigroups. For every m > 1 the class Arm  of all m-nilpotent 

semigroups is the variety of semigroups with zero for which each product of m 

elements is zero. So 

= 	= yx 1 ...xm  =X i  ...x,], 

and 

N(U Arm) F  = UV. 
m>i 	m>i 

The smallest equational pseudovariety that contains N is the pseudovariety of 

all finite semigroups. The same is true for the pseudovariety G of all finite 
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groups, which can also be represented as a union of equational pseudovarieties: 

we have G = Um>i [x m Y = Yxm  = Yi F  • 
In general, unions of equational pseudovarieties do not form pseudovarieties. 

However, as will be stated in Result 1.2.9, every pseudovariety is the union of 

a directed family of equational pseudovarieties. As shown by Eilenberg and 

Schiitzenberger in [16] for pseudovarieties of semigroups and monoids, and Ash 

in [6] for pseudovarieties of algebras of arbitrary type, if the algebraic type of 

a pseudovariety V is finite then the family may be chosen to be a chain, and 

there exists .  a sequence (E n ) n>1  of identities such that V = Uk>i[En : n > k] F'• 

The next result is Ash's characterization of pseudovarieties as the finite 

parts of generalized varieties, which thus connects varieties and pseudovarieties 

via generalized varieties: a generalized variety is a directed union of varieties, 

and the finite members of a generalized variety form a pseudovariety. This 

construction has proved to be very useful in transferring information about 

varieties to pseudovarieties; see for example Almeida and Reilly [4], Almeida 

[1], Pastijn [31], Pastijn and Trotter [32]. 

Notice that the operators U and F  commute; that is, UA E A VT = (UAEA VA)F 

for a family {VA  : A E A} of classes of algebras. 

Theorem 1.2.9 ([6]) A class V of algebras is a pseudovariety if and only if 

V = VF  for some generalized variety V. In particular, if V is a pseudovariety 

then V = (Gen(V)) F  . 0 

1.3 E-varieties of regular semigroups. 

We begin this section on e-varieties with some preliminary notation and results 

from semigroup theory. We then introduce e-varieties in Section 1.3.2. The con- 

cept of an e-variety was introduced by both Hall [20] and Ka sclourek and Szendrei 
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[26], independently. In Section 1.3.2 we discuss some of the material contained 

in [20], which concerns the whole lattice of e-varieties and describes connections 

with varieties of unary semigroups. In Section 1.3.3 some background infor-

mation about relevant e-varieties is given. We then review the Birkhoff-style 

results obtained by Kaaourek and Szendrei [26], for orthodox e-varieties alone, 

in Section 1.3.4. This work involves an alternative concept of free object that 

can be used for e-varieties, namely "bifree objects". In Section 1.3.5 we dis-

cuss Yeh's work in [43], where he established that nonmonogenic bifree objects 

exist precisely in E-solid or locally inverse e-varieties; and in Section 1.3.6 we 

give an account of the extensions of the results of [26] for orthodox e-varieties 

to the lattices of all E-solid e-varieties and all locally inverse e-varieties, by 

Kaaourek and Szendrei [27] and Auinger [7, 8] respectively. Finally, in Section 

1.3.7 we discuss KaCiourek's work in [25], in which he broadened the concept of 

a bifree object, and thus gave partial Birkhoff-style results for locally orthodox 

e-varieties. 

1.3.1 Preliminaries. 

As a general reference for semigroup theory, the reader is referred to the book 

[23] by Howie. 

For a semigroup S without an identity, let S 1  denote S with an identity 

adjoined. If S has an identity let 5 1  = S. 

Green's relations on a semigroup S are given by 

,C = {(a,b) : S l a = S i b}, 

7Z, = {(a,b) : aS 1  =bS 1 }, 

7-1 = n7Z, 
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and they are equivalence relations. For A E {.C,R,14,1)} and x E S we write 

Ax ={yES:xAy}. 

Let S be a semigroup. An element y E S is said to be an inverse of an 

element x E S if xyx = x and yxy = y. We denote the set of all inverses of an 

element x E S by V(x). A semigroup S is said to be regular if V(x) 0 for 

every x E S. 

For a subset A of S let (A) be the subsemigroup of S generated by A. 

For a subsemigroup R of a regular semigroup S, let R, denote the subsemi-

group generated by the conjugates of R in S'; 

R, = (xrx' : r E R, x E S l , E V(x)). 

For n > 2 define Re  = (k.-i) c . We say that R is self-conjugate if R, C R. 

Clearly R C Rc , and hence Rc.-1 C Re, for all n > 2. So Un7=1  Rc. is 

a self-conjugate subsemigroup of S. Moreover, it is the least self-conjugate 

subsemigroup of S that contains R. 

The set of idempotents of S is denoted by E(S), or simply by E. The core 

of S is (E) and is denoted by C(S), or C if the context is clear. The semigroup 

U 1  Ccn is called the self-conjugate core of S, and is denoted by C(S), or 

simply C. 

The next results are well known. 

Result 1.3.1 ([23]) Let (,o : S 	T be a surjective homomorphism of regular 

semigroups. For every e E E(T) there exists f E E(S) such that Pp = e. 	0 

Result 1.3.2 ([23]) Let cp : S 	T be a surjective homomorphism of regular 

semigroups. If a E T and b E V(a) then there exist c E S and d E V(c) such 

that a = ap and b = dc,o. 	 0 

Result 1.3.3 ([23]) Let p be a binary relation on a semigroup S. If a,b E S 

then (a, b) E (p) if and only if either a = b or for some in > 0 there exist 
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ri , si E S I-  and (di, ei) E pup' for 0 <i <m such that a = rodoso, b = rmernsm, 

and ri_ l ei_ i si_ i  = r ids i  for 1 < i < m. 	 0 

Result 1.3.4 ([14]) Suppose that a,b are elements of a semigroup S. Then 

ab E Ra  n Lb if and only if Rb n n E(s) 0. If this is so then Hai, = Ra n Lb • 

0 

Result 1.3.5 ([23]) If H is an 7-1-class in a semigroup S then either H 2  n H = 

0 (so H contains no idempotents) or H 2  = H and H is a subgroup of S. 

Therefore an element a of S is in a subgroup of S if and only if a 74 a 2 . 	0 

Notation 1.3.6 If k lies in a subgroup H of a semigroup S then the inverse of 

k in H will always be denoted by k-1 , and the identity of H by k° 	0 

We note the following well known result. 

Result 1.3.7 Let (,o : S 	T be a homomorphism. If a is in a subgroup of S 

then acp is in a subgroup of T, and a -1 c,o = (ac,o)' 	 0 

We will conclude this section with some notes on the absolutely free unary 

semigroup and the absolutely free group. Let X be a nonempty set. 

Notation 1.3.8 Let Y denote the set X U {(,)'}. By [18], the free unary 

semigroup Fu(X) on X, with unary operation ', can be seen as the least sub-

semigroup F of the free semigroup Y+ such that X C F and (w)' E F whenever 

w E F. We write w' = (w)' and denote the set {x' : x E X} C Fu(X) by X'. 

Thus the set X = X U X' is a subset of Fii (X), and X' is a disjoint bijective 

copy of X. 0 

The class of all groups, considered as unary semigroups (G,.,') where V( u ) = 

{u'} for all u E G, forms a variety g of (regular) unary semigroups. We denote 

the free object on X in this variety by (Fg (X), •,'). 
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The fully invariant unary semigroup congruence p(g) on Fu(X) correspond-

ing to the variety g is the least unary semigroup congruence on Fu (X) contain-

ing the relation 

{(u , uu'u), (u', u'uu1 ), ((u')', u), (uu', vv') : u, v E Fu(X)} 

For a word u E 	(X), the group-reduced form 'IL of u is the word in the free 

monoid X* obtained from u by applying the rules (v w)' -4 w'v', (v') 1 	v, and 

xx', xix -4 1 for u, v E Fu(X) and x E X. The set {U : u E Fu(X)} of all 

group-reduced words on X, together with the multiplication given by • T) = UT, 

is well-known as a model for the free group Fc(X) on X, and 

p(g) = {(u, v) E Fu (X) x Fu(X) : = 

1.3.2 E-varieties and regular unary semigroup varieties. 

A subsemigroup of a regular semigroup need not be regular, and thus classes of 

regular semigroups do not necessarily form varieties of semigroups (that is, of 

type (2) algebras). In particular the class of all regular semigroups, considered 

as type (2) algebras, is not a variety. 

Some classes of regular semigroups have been studied as varieties; not as 

varieties of semigroups as such, but of unary semigroups (that is, as varieties 

of type (2,1) instead of type (2)). Examples are the varieties of groups, in-

verse semigroups and completely regular semigroups. An inverse semigroup is 

a semigroup in which every element has a unique inverse. A completely regular 

semigroup is a semigroup which is a union of groups. For inverse semigroups 

and groups the unary operation xi-4 x' takes an element x to its unique inverse. 

For completely regular semigroups x' is the group inverse of x. 

In 1989-90 Hall [20], and independently Kadourek and Szendrei [26], intro-

duced the concept of an existence variety or e-variety of regular semigroups 
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as a class of regular semigroups closed under taking homomorphic images, reg-

ular subsemigroups and direct products. Examples of e-varieties include the 

class of all groups, and the classes of all regular, inverse, and completely regu-

lar semigroups. In particular, the varieties mentioned above of groups, inverse 

semigroups, and completely regular semigroups coincide with the corresponding 

e-varieties, since in these cases the unary operations are uniquely specified. 

In [20] Hall developed links between e-varieties and varieties of regular unary 

semigroups, which we will briefly outline. We write (S,') to denote a semigroup 

S with a unary operation '. A regular unary semigroup is a unary semigroup 

(S,' ) that satisfies the identities xx'x = x and x'xx' = x'. A unary operation 

of this kind is called an inverse unary operation. The class of all regular unary 

semigroups thus forms a variety, which is denoted by RU S . For any regular 

semigroup S, a unary operation' can be selected (by the axiom of choice) such 

that s' is an inverse of s for each s E S. Thus ' is an inverse unary operation 

on S, and (8,') E RUS .  

Result 1.3.9 ([20]) For a given e-variety V the class 

V' = {(S,') E RU S :8 E V} 

is a variety of regular unary semigroups. 	 0 

Hall showed that not every subvariety of RV S is of the form V' for an 

e-variety V. 

Notice that for an e-variety V and S E V there may be many copies of 

S in V', each with a different inverse unary operation. In fact, in the free 

regular unary semigroup Fs(X)  the elements x', (x')',... are distinct for every 

x E FR/43(X) (see [34]). For every e-variety V of inverse semigroups we have 

V' = V, as inverses are unique. There are completely regular semigroups 
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however in which inverses are not unique, and so for example the e-variety CR 

of all completely regular semigroups is not equal to CR'. 

Let RS denote the e-variety of all regular semigroups. Hall obtained the 

following analogue for e-varieties of Birkhoff's Theorem 1.1.5. 

Theorem 1.3.10 ([20]) For an e-variety V, a set E of 'RUS-identities is a 

basis for the identities of V' if and only if 

V = IS E RS: there exists an inverse unary operation' on S 

such that (5,' ) 1= El 

and 

V = {S E RS : (8,' ) = E for every inverse unary operation' on S}. 

0 

Under the conditions of Theorem 1.3.10 the e-variety V is said to be strongly 

determined by E. Hall considered a regular semigroup S to satisfy a set E of 

R1AS-identities if for every inverse unary operation ' on S the regular unary 

semigroup (8,' ) satisfies E. Hall called the class [E], = E RS : S 1= E}  an 

equational class. When [E], is an e-variety E is said to weakly determine the 

class [E],. 

By Theorem 1.3.10 every e-variety V is an equational class, and is both 

weakly and strongly determined by each basis of the identities of V'. However, 

not every equational class is an e-variety, as is demonstrated in [20]. 

1.3.3 Some relevant e-varieties. 

In this section we introduce some important e-varieties and provide background 

and results. 
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An E -solid (regular) semigroup is a regular semigroup such that whenever 

e,f,g E E(S) satisfy e r f R. g there exists h E E(S) for which e R. h G g. 

By Hall (see the supplement to [42]) and Trotter [39] we have: 

Result 1.3.11 The following conditions are equivalent for a regular semigroup 

5: 

(i) S is E-solid, 

(ii) ef lies in a subgroup of S for every e, f E E(S), 

(iii) C(S) is completely regular, 

(iv) C(S) is completely regular. 	 0 

Remark 1.3.12 By Result 1.3.11(ii), every E-solid semigroup S admits a par- 

tial binary operation -1  given by (e, f) i- (ef) -1  , the 94-related inverse of ef,  , 

for all e, f E E(S). 	 0 

If S is a regular semigroup then C(S) is a regular subsemigroup of S by [17], 

and for every e E E(S) the local submonoid eSe is regular. For a class V of 

regular semigroups, Hall [20] defined the classes 

LV = IS E RS : eSe E V for every e E E(S)} 

and 

CV = IS E RS : C(S) E Vl. 

Hall proved that if V is an e-variety then LV and CV are also e-varieties. 

The class B = [x = x 2] of all bands is a semigroup variety, and hence an e-

variety. Therefore the class 0 = CB of all orthodox semigroups is an e-variety. 

By Result 1.3.11 the class ES of all E-solid regular semigroups coincides with 

CCR, and thus ES is also an e-variety. The classes LI, LO and LES of all 
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locally inverse, locally orthodox and locally E-solid semigroups respectively are 

also e-varieties. 

Notation 1.3.13 We mostly use bold capitals to denote e-varieties, and script 

capitals to denote the corresponding varieties of regular unary semigroups de-

scribed in Result 1.3.9. So for example we write LI = (LI)/ and ES = (ES)'. 

0 

Definition 1.3.14 The sandwich set S(a,b) of elements a, b of a regular semi-

group S is the set S(a,b) = bV(ab)a. 	 0 

The following are due to Nambooripad [30] or are easily deduced (see [39]). 

Result 1.3.15 Let S be a regular semigroup. Suppose a,b E S, a' E V(a), 

b' E V(b) and e, f E E(S). Then 

(i) S(e, f) c V(ef) n E(S), 

(ii) S(a,b) = S(a'a,bb'), 

(iii) b'S(a,b)a' C V(ab), 

(iv) aS(a,b)b = {ab}, 

(v) S(e,e) = {e}, 

(vi) if (,o : S —> T is a homomorphism of regular semigroups then S(a,b)cp C 

S(a(p,byo). 	 0 

Nambooripad also proved the following characterization of locally inverse 

semigroups in terms of their sandwich sets. 

Result 1.3.16 ([30], Theorem 7.6) A regular semigroup S is locally inverse 

if and only if S(a,b) is a singleton, denoted s(a,b), for every a,b E S. 	0 
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LI 

LCR 

The following list gives some classes of regular semigroups which form e-varieties. 

Figure 1.1 arranges these as they appear in the lattice of all e-varieties. 

T 	trivial semigroups 	CR 	completely regular semigroups 

G 	groups 	 LCR locally completely regular semigroups 

I 	inverse semigroups 	LI 	locally inverse semigroups 

ES E-solid semigroups 	LES locally E-solid semigroups 

0 	orthodox semigroups LO 	locally orthodox semigroups 

RS regular semigroups 

RS 

Figure 1.1: Some classes of regular semigroups which form e-varieties. 
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Remark 1.3.17 By Result 1.3.16 a second binary operation s, given by (a, b) 

s(a, b), can be defined on a locally inverse semigroup S, and S becomes a type 

(2,2) algebra. 

By the axiom of choice, for any regular semigroup S a binary operation s 

may be defined such that s(a , b) E S (a , b) for all a, b E S. Such an operation 

will be called a sandwich operation. 

Result 1.3.18 ([43]) Let cio : S —> T be a homomorphism of locally inverse 

semigroups. Then s(a,b)co = s(wp,bcp). 

We will need the next well-known result. 

Result 1.3.19 ([23]) A regular semigroup S is inverse if and only if its idem-

potents commute. 

1.3.4 Orthodox e-varieties. 

Whereas in [20] Hall considered arbitrary e-varieties, independently Kadourek 

and Szendrei considered the same concept just for classes of orthodox semi-

groups, and were able to prove analogues of Birkhoff's fundamental theorems 

for varieties. They used the term bivariety for an e-variety of orthodox semi-

groups, and developed notions of biidentities and bifree objects, as follows. 

Notation 1.3.20 Let X be a nonempty set, with a disjoint bijective copy X' = 

{x' : x E X}. We write = X u X'. 

A biidentity over X is a pair (u, v), also written u = v, where u, v are 

members of the free semigroup (X) + . The following definition was given in [26] 

for orthodox semigroups. 

Definition 1.3.21 ([26]) For a regular semigroup S, a mapping 0 : 	-+ S is 

matched whenever x'0 is an inverse of xck for each x E X. 	 0 
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An orthodox semigroup S is said to satisfy the biidentity u = v for u, v E 

(X) +  if whenever 0 : X -4 S is a matched mapping, and 0 : (X)+  S is the 

unique homomorphism extending 0, we have u0 = vO. 

For a nonempty set X and class V of orthodox semigroups, let bId x  (V) 

(also written p(V, X), or simply p(V)) be the set of all biidentities over X 

that are satisfied by V. Kafciourek and Szendrei gave a generating relation for 

bIdx (0). 

The original definition for orthodox semigroups of a biinvariant congruence 

found in [26] is equivalent to the one given below, which is from [27]. 

Definition 1.3.22 ([26]) For u, p, q E (T) +.  and x E X let u(x -+ p, x' 	q) 

denote the word in (X) +  obtained from u by substituting p for all occurrences 

of x, and q for all occurrences of x'. A congruence p on (X) +  is said to be closed 

under regular substitution if 

u p v, p p pqp,  

whenever u, v,p,q E (X) +  and x E X. 

A congruence p on (X) +  is said to be biinyariant if p(0, X) C p and p is 

closed under regular substitution. 	 0 

The following definition was originally given in [26] for orthodox semigroups. 

Definition 1.3.23 ([26]) For a class V of regular semigroups, a semigroup 

F E V together with a matched mapping t : X —> F is a bifree object on X 

in V if, for any S E V and matched mapping 0 : X —> S, there is a unique 

homomorphism : F S satisfying LO = 0. 0 

Remark 1.3.24 ([43]) If S is a member of an e-variety V and A C S is such 

that A n V(a) 0 for every a E A, then there is a matched map : X -+ A 

for some set X. Suppose that a bifree object (F, t) on X exists for V, and let 
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F 	S be such that tO = 0. Then FO is a regular subsemigroup of S that 

contains A and is contained in every regular subsemigroup of S that contains 

A; that is, FO is the least regular subsemigroup of S that contains A. 

Thus if an e-variety V is to admit a bifree object, then for every S E V and 

A C S such that A n V(a) 0 for all a E A there must exist a least regular 

subsemigroup of S that contains A. 0 

Using the next result, Kaaourek and Szendrei showed that the conclusion of 

Remark 1.3.24 is true for orthodox semigroups. 

Result 1.3.25 ([35]) If S is a regular semigroup then S is orthodox if and only 

if V (a)V(b) C V(ba) for all a,b E 5. 

Corollary 1.3.26 ([26]) If S is an orthodox semigroup and A C S is such that 

A n V(a) 0 for every a E A then (A) is a regular subsemigroup of S. 

From Corollary 1.3.26, KaClourek and Szendrei proved the following analogue 

of Birkhoff's Theorem 1.1.7. 

Theorem 1.3.27 ([26]) Let V be a class of orthodox semigroups closed under 

taking regular subsemigroups and direct products. For every nonempty set X 

there exists a bifree object F on X in V, and F is isomorphic to (X) +  I p(V , X). 

0 

Notation 1.3.28 For a class C of semigroups, let Sr (C) be the class of all 

regular subsemigroups of members of C. 	 0 

Ka2c-lourek and Szendrei proved the following generalization of Theorem 1.1.4. 

Theorem 1.3.29 ([26]) For a class V of orthodox semigroups the e-variety 

generated by V is the class H Sr P(V). 
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The next result contains analogues of Birkhoff's Theorems 1.1.5 and 1.1.6. 

Given a set E of biidentities, we write [E] b  for the class of all orthodox semi-

groups that satisfy E. 

Theorem 1.3.30 ([26]) A class V of orthodox semigroups is an e-variety if 

and only if there exists a set E of biidentities such that .  V = [E] b . If X is 

denumerable then the mappings 

V 1-* p(V , X) and p 1-+ [p]b 

define an antiisomorphism between the lattice of all e-varieties of orthodox semi- 

groups and the lattice of all biinvariant congruences on (x) i- . 	 0 

Remark 1.3.31 ([29]) We may also speak of a regular semigroup (not neces-

sarily orthodox) satisfying a set of biidentities. The proof of Theorem 1.3.30 

also shows that the class of all regular semigroups which satisfy a given set of 

biidentities is an e-variety. However, the converse does not hold. For example, 

in [8] Auinger showed that every biidentity satisfied by the e-variety of all com-

pletely simple semigroups (that is, completely regular semigroups without zero 

and with only one D-class) is also satisfied by every regular semigroup. 0 

KaCiourek and Szendrei noted the following result. 

Result 1.3.32 ([26]) A congruence p on (7) +  is biinvariant if and only if 

p(0, X) C p and the congruence p I p(0, X) is a fully invariant semigroup con-

gruence on (X) +  I p(0, X). 0 

1.3.5 Bifree objects in e-varieties. 

Yeh, using the term e-free, considered the concept of a bifree object in an 

arbitrary e-variety in [43]. Recall from Remark 1.3.24 that if an e-variety V is 
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to admit a bifree object, then for every S E V and A C S such that An V(a) 0 

for all a E A there must exist a least regular subsemigroup of S that contains 

A. With the following result, Yeh extended Corollary 1.3.26. 

Result 1.3.33 ([43]) Suppose that S E ES U LI. Let A C S be such that 

A n V(a) 0 for every a E A. Then there is a least regular subsemigroup of S 

that contains A. 	 0 

The next result gives details of the constructions of these least regular sub-

semigroups. 

Result 1.3.34 ([43]) Under the conditions of Result 1.3.33, let T be the least 

regular subsemigroup of S containing A. Then T = U1>0 7121+1, where 

To  = A 

T1 = (To) 

T21 = T21-1 U 11_1 

T21-1-1 = ( 7-21 

and 71_ 1  is defined for every i > 1 as follows. 

If S is E-solid then 71_ 1  = {(ef) - I  : e, f E E(T21_ 1 )} for every i >1; the 

subsemigroup T is the closure of A under the operations • and -1 , where -1  is 

the partial binary operation on S described in Remark 1.3.12. 

If S is locally inverse then 71_ 1  = {s(a, b) : a,b E T22 _1} for every i > 1; 

here T is the closure of A under the operations • and s, where s is the binary 

operation on S described in Remark 1.3.17. 0 
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The bifree object on X in V is unique up to isomorphism if it exists; we 

denote it by bFv (X). In [43], Yeh gave an example of a semigroup that is 

both locally completely regular and locally orthodox, for which Result 1.3.33 

fails. He also showed that if S is a regular semigroup with a subset A, where 

A n V(a) 0 for all a E A, such that there is no least regular subsemigroup of 

S containing A, then no e-variety that contains S admits a bifree object on any 

set 1X1 with X > Al. In Yeh's example the set A has two members, and as a 

consequence he proved the following remarkable result. 

Theorem 1.3.35 ([43]) For an e-variety V and set X with IXI> 2 the bifree 

object bFv(X) exists if and only if V C ES or V C LI. 

Monogenic bifree objects do exist in e-varieties not contained in ES or LI. 

In [10] it is proved that monogenic bifree objects exist in every sub e-variety of 

L CR. 

Remark 1.3.36 If a class V of regular semigroups is closed under S r  and P 

then, by the proof of Result 1.3.9, the corresponding class V = V' of regular 

unary semigroups is closed under S and P. Therefore by Theorem 1.1.8 the free 

object (Fv(X),' ) exists for every nonempty set X and, considered as a type (2) 

algebra, is a member of V. 

Recall the assumption X C Fv (X). We write X' = {x' : x E X} C F(X) 

and X = X U X'. 0 

Result 1.3.37 ([43]) Suppose that V is a class of regular semigroups closed 

under P and Sr , and such that V C ES or V C LI. Then the least regular 

subsemigroup of Fv,(X) containing the set X is bifree on X in V. 0 

Yeh proved the following result, which extends Theorem 1.3.29. 

Theorem 1.3.38 ([43]) Let C be a class of E-solid or of locally inverse semi- 

groups. Then H Sr P(C) is the smallest e-variety containing C. 	 0 
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1.3.6 E-solid and locally inverse e-varieties. 

In this section we outline the work of Auinger in [7] and [8] on locally inverse 

semigroups and Kaaourek and Szendrei in [27] on E-solid semigroups. In both 

cases concepts of biidentity and biinvariant congruence were defined, and the 

Birkhoff-style results previously obtained by Ka sdourek and Szendrei in [26] for 

orthodox semigroups were generalized. So a Birkhoff-style theory holds for the 

whole lattice of e-varieties that admit nonmonogenic bifree objects, but via two 

very different approaches. 

By Results 1.3.34 and 1.3.37, the bifree locally inverse semigroup on X is 

the closure in the free regular unary locally inverse semigroup FLT (X) of the 

set X under the operations • and .s; and Auinger defined biidentities for locally 

inverse semigroups to be formal equalities between members of F( 2 , 2) (X), the 

free type (2,2) algebra on the set X that is a semigroup with respect to one of 

its operations. A locally inverse semigroup S satisfies the biidentity u = v if 

u0 = v0 whenever (/) : X S is a matched mapping and 0 : F( 2 , 2)(X) S is 

the unique extension of 0. 

Auinger generalized all the Birkhoff-style results previously obtained for or-

thodox semigroups. In particular, he described a generating relation for the 

congruence p(LI, X) on F(2 , 2) (X) which is equal to the set of all biidentities 

satisfied by LI, and is such that F(2 , 2) (X)I p(LI, X) is the bifree locally inverse 

semigroup. His definition of a biinvariant congruence is a direct generalization of 

Definition 1.3.22, with (X) +  and p(0 , X) replaced with F( 2 , 2)(X) and p(LI, X) 

respectively. 

We now turn to the theory for E-solid semigroups developed by Kaaourek 

and Szendrei in [27]. By Results 1.3.34 and 1.3.37 the bifree E-solid semigroup 

is the closure in Fes (X) of X under the operations • and . Let Fu(X) be the 

free unary semigroup on X, with unary operation '. Let F'°°(X) be the least 
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subsemigroup U of Fu(X) such that X C U and the set fu E U : = 1} is a 

unary subsemigroup of U, where rt is the group-reduced form of u. By Result 

1.3.11, a regular semigroup S is E-solid if and only if the self-conjugate core of 

S is completely regular, and in this setting Ka sclourek and Szendrei considered 

a biidentity to be a pair u = v, where u, v E F''(X). They showed that any 

matched mapping 0 : X —* S, where S is an E-solid semigroup, has a (unique) 

extension 0 : F'°°(X) S, such that whenever 7.7 = 1 the element u0 lies in 

the self-conjugate core of S and u'O is the 1-1-related inverse of u0. An E-solid 

semigroup S satisfies a biidentity u = v if whenever : X --* S is matched, and 

0 is the extension described above of 0 to F'°°(X), we have u0 = v0. 

Kaaourek and Szendrei also generalized all the Birkhoff-style results previ-

ously obtained for orthodox semigroups. In particular, they gave a generating 

relation for the set p(ES, X) of all biidentities satisfied by ES, which is such 

that F'°°(X)/p(ES, X) is the bifree E-solid semigroup. Their definition of a 

biinvariant congruence is also a direct generalization of Definition 1.3.22, with 

(X)+  and p(0, X) replaced with F'°°(X) and p(ES, X) respectively. 

1.3.7 Locally orthodox e-varieties. 

In [25], KaClourek investigated e-varieties of locally orthodox semigroups. By Re-

sult 1.3.35, bifree objects do not generally exist for these e-varieties, so Ka saourek 

developed a theory of trifree objects and triidentities. With bifree objects the 

nonexistence of the usual free object on X is compensated for by extending the 

alphabet to X. In the case of trifree objects, the alphabet is further extended 

by the addition of certain sandwich elements. 

Firstly, Kaaourek gave an extension of Result 1.3.25, which was vital to 

Kaaourek and Szendrei's original work on classes of orthodox semigroups. 
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Result 1.3.39 ([25]) A regular semigroup S is locally orthodox if and only if 

V (b).S(p, q).V (a) C V (ab) 

whenever p,q E S and a E Sp, b E qS. 	 0 

Corollary 1.3.40 ([25]) If A, C are subsets of a locally orthodox semigroup S 

such that 

(i) A n V(a) 0 for every a E A, 

(ii) C CU{S(a,b): a,b E A}, and 

(iii) C n S(a,b) 0 for every a, b E A, 

then the subsemigroup of S generated by A U C is regular. 	 0 

Notation 1.3.41 Recall the definition of the set X from Notation 1.3.20. Let 

X1  = {s(x, y) : x, y E X} be a set of (distinct) labels disjoint from X, and let 

X1 = X ux1 . 	 0 

Kaaourek defined a triidentity to be a pair (u, v), also written u = v, where 

u, v are members of the free semigroup (X i ) + . 

Definition 1.3.42 ([25]) 

• A tied mapping is a mapping ck : X i 	S where S is a regular semigroup, 

x'ck E V(x0) for every x E X, and s(x, y)0 E S(x4o, yck) for every x,y E X. 

• A trifree object for a class V of regular semigroups is a pair (S, t), where 

t : X i  —> S is a tied mapping, such that for any T E V and tied mapping 

T there is a unique homomorphism 0 : S 	T such that 

= (/). 	 0 
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KaClourek proved an analogue of Theorem 1.3.27: the trifree object on X 

exists in any e-variety V of locally orthodox semigroups, and is isomorphic to 

(X1 ) 1- /p(V, X), where p(V , X) is the congruence on (TO +  consisting of all 

triidentities satisfied in V. 

However, other Birkhoff-style theorems do not hold for locally orthodox 

semigroups. For example, Kaaourek proved that if V is an e-variety of locally 

orthodox semigroups then V is exactly the class of locally orthodox semigroups 

which satisfy all triidentities satisfied by V; but the converse is not true: for a set 

E of triidentities, the class [E] t  of all locally orthodox semigroups which satisfy 

each member of E need not be an e-variety. Moreover, Theorem 1.3.38 fails in 

this setting: for a class V of locally orthodox semigroups the class HS,../3 (V) 

need not be an e-variety. Kaaourek did prove, however, that if X is an infinite 

set and V is a class of locally orthodox semigroups such that [p(V, X)i t  is an 

e-variety then [p(V, X)1 t  = HSc.P(V) is the smallest e-variety containing V. 
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Chapter 2 

Almeida's Generalized Variety 

Problem 

2.1 Introduction. 

This chapter consists of an answer to a problem posed in Almeida's book [3], 

which concerns generalized varieties of nil and nilpotent semigroups. 

All varieties mentioned in this chapter will be assumed to be semigroup 

varieties. Consider the following varieties: 

• S, the variety of all semigroups; 

• Corn = [xy = yx], the variety of all commutative semigroups; 

• Man  = [sny = yxn = xn], the variety of all nil semigroups of index n > 1; 

and 

• Al,, = [x 1 ... x ny = yx i 	xn  = 	xn ], the variety of all nilpotent 

semigroups of index n > 1. 
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Notice that Mir, and Arn  consist of semigroups with zero. For u E X+ we 

write u = 0 as an abbreviation of ux = xu = u where x is a variable not 

occurring in u, so that for example Ali = [xn = 01. 

Let Aril denote the class of all nil semigroups, and Al denote the class of all 

nilpotent semigroups. Then 

JViI = U Aran  and Al = U Arn. 
n>1 	 n>1 

Observe that Aril and Al are generalized varieties, although they are not vari-

eties. For any class W of semigroups let f(W) denote the lattice of all varieties 

contained in W, and g(vv) denote the lattice of all generalized varieties con-

tained in W. 

Almeida proved the following result. 

Theorem 2.1.1 ([1]) r(A/3/11Com)U{Ariii1Com} is isomorphic to g (A I nCom) 

via the correspondence 

n Al, W E L(Aril n Corn) U 	n Coml. 

The motivation for this result was the question of the structure of the lattice 

r(Com). In [1] Almeida established an embedding 

r(Com)\ {Com} —÷ r(g n Corn) x N x G(Aril n Corn) 

of semilattices for the meet operation, where N is the semilattice of natural 

numbers under < and g = un>i[xny = y  = yxn] is the generalized variety 

of all groups. The lattice .c(g n Corn) is isomorphic to the lattice of natural 

numbers ordered by division, and so the structure of f(Ari/ n Corn) became of 

interest. Information about (Alg n Corn) is known from £(A/ n Corn), and can 

be transferred to r(Ari/ n Corn) by Theorem 2.1.1. 

As a consequence of Result 1.2.9, Almeida (also in [I]) obtained the following 

information about the lattice of pseudovarieties of commutative semigroups from 
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these results. Let G = gF , N = ArF , and Corn = Comb' denote respectively 

the pseudovarieties of all finite groups, finite nilpotent semigroups and finite 

commutative semigroups. There is an embedding 

PsCom 'Ps(G n Corn) x (N U loon x Ps(N n Corn) 

of meet semilattices (note that Ari/F  = N, by [15, Proposition 9.2]). The lattices 

g(g nano and Ps(G n Corn) are isomorphic, as are the lattices g (N ncom) 
and 'Ps(N n Corn) (both via the mapping V i— VF ), and information about 

g(g n Corn) is known from c(g n Coin). 

In [3, Problem 10], Almeida asked whether the mapping 

a : W i— w n Ar, w E coriou {Aril}, 

defines an isomorphism between .C(Ari/) U {Aril} and g (Al) - that is, whether 

Theorem 2.1.1 can be extended to non-commutative semigroups. 

Notice that Aril ct L(Aril) as Ara is not a variety; but .N.  E g(Ar). Since 

Al C Aril then Arila = Al. 
We begin by showing in Section 2.2 that a does not map onto goo. We then 

consider the question of whether a is injective. First in Section 2.3 we give some 

more general results, involving the question of when two arbitrary semigroup 

varieties (not necessarily nil) have the same set of nilpotent semigroups. The 

remainder of the chapter is devoted to the proof that a is not injective. 

2.2 The mapping a is not surjective. 

From this point onwards X will denote a fixed denumerable set. 

Lemma 2.2.1 Let VV = U1,Er Wy , where {WI, : -y E r} is a directed family of 

varieties. Let U E L(N). Then U C WI, for some -y E F. 
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Proof: Let U E r(W). Then Fu (X), the free object on X in the variety U, is 

a member of Wy  for some -y E F, and this implies that U C W.,, by Theorem 

1.1.8. 	 0 

Corollary 2.2.2 Every variety U E r(Arii) is a member of L(Afil ni ) for some 

We will need the next two results. Recall that for a class W of semigroups 

the variety generated by W is denoted by V(VV). 

Result 2.2.3 ([4]) If W is a generalized variety of nilpotent semigroups then 

W -= V (N) n Al. 	 0 

Result 2.2.4 ([4]) If W is a generalized variety of nilpotent semigroups such 

that Al n Com ZW then V(W) C .Aril. 	 0 

We can now show that a does not map onto goo. Recall that for a variety 

V we often denote the fully invariant congruence on x+ corresponding to V by 

p(V). 

Theorem 2.2.5 The image of the mapping a is the set 

{W E goo : Ar ncom g W}. 
Proof: Let U E r(Ari/). Then U E 4A/dm ) for some m by Corollary 2.2.2. If 

A/.  n Com C U n Ar then .Ar n Com C Ari/m . But Ar n Com = Un>i (Jrn  n Com), so 

that we now have Arm+ i n Corn C Nil,. This means that for every x E x+ 

{ry's : r,s E X*,y E xl-} = xm  p(Arilm ) 

C xm p(AI;n+i  n Corn) 

= fxml, 

which is false; and so Ar n Corn g U n Al. 
Now suppose that W E (Al)g 	is such that Ar n Corn g W. By Results 2.2.4 

and 2.2.3, we have V(W) E ,C(Arii) and W = V(W) n Al . V(W)a. 	0 
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2.3 Semigroup varieties whose nilpotent parts 

coincide. 

The question of the injectivity of a remains of interest however. First we take 

a look at the more general question of when two semigroup varieties have the 

same set of nilpotent semigroups. 

For u = x i  ... xn  where x i  E X, the length u of u is defined to be n, and 

the content c(u) of u is the set {x 1 , • . • , xri}• 

Suppose that /A is a variety of semigroups. Let B(U) denote the set of all 

words u E X+ for which there exists r such that 1y1 < r for all y E up(U). We 

say that B(U) is the set of all bounded words for U, and that the set U(U) 

X+ \ B(U) is the set of all unbounded words for U. Let 

BId(U) = -Cu = v E Id(U) : u E B (U)} , 

the set of all bounded identities for U. For u E B(U) let 

B(u) = max{1v1 : v E up(U)}. 

Remark 2.3.1 

• BId(U) = {u = v E Id(U) : u,v E B(U)} 

• If U,V are two varieties for which BId(U) = BId(V) then B(U) = B(V), 

and for every u E B(U) we have up(U) = up(V) and Bu(u) = Bv (u). 

• The set U(U) is a subsemigroup of X+ that is closed under endomorphisms 

of X+ . 

• If u E B(U) then c(v) = c(u) for all v E up(U). 

• If u E B(U) then Bu(u) exists. 

40 



As the following theorem shows, the nilpotent part of a variety of semigroups 

is completely determined by its bounded identities. 

Theorem 2.3.2 Let U,V be varieties. Then 

unAr=vn.v<#. BId(U) = BId(V). 

Proof: Suppose that U n Al* = V n Al. Then p(U n Arm ) = p(V n Arm ) for 

every in by Theorem 1.1.6. Let u = v E BId(ZI). Let r = Bu (u) + 1. Then 

up(U) = up(U n Al,.) = up(V n Air ). Therefore Ii  1 < r for all y E up(V), and 

up(U) = up(V n Al,.) = up(V). Hence u = v E BId(V). So BId(U) C BId(V), 

and a dual argument shows that BId(U) = BId(V). 

Now suppose that BId(U) = BId(V). Then U(U) = U(V). Let m > 1 and 

u E X+. If u E WO, or if u E B(U) and Bu (u) > m, then 

(u, u m ) E p(U n Aim) n p(V n Aim); 

so up(LIRAirn ) and up(VnAirn ) are the zeros of X+ /p(UnAim ) and X+ I p(VnN.,,) 

respectively. Otherwise, we have u E B(U) and Bu (u) < ni, and in this case 

up(U n Arm ) = up(U) = up(V) = up(V n Arm ) (by Remark 2.3.1). 

It now follows that for all in > 1 the semigroups X+ I p(U n Arm ) and 

x+ 1,0 n Arm ) are isomorphic, and p(U n Arm ) = p(V n Arm ). Therefore 

Li n Arm  = V n Ar, for all m by Theorem 1.1.6, and hence Li fl Al = V n Ai. 0 

By Remark 2.3.1 we have the following corollary. 

Corollary 2.3.3 If U,V are varieties such that U n Ai = v n Al then B(U) = 

B(V), and up(U) = up(V) and Bu(u) = B(u) for all u E B(U). 	0 

The next result gives a useful characterization of the varieties which have 

the same nilpotent semigroups as a given variety U. 
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Lemma 2.3.4 Let U be a variety. A variety V satisfies U n = V n Ar if and 

only if for every u E U(U) there exists 11(u) C U(U) such that {Id : v E 11(u)} 

is unbounded, and 

V = [Bld(U) U {22 =v:uEU(U),v E 11(u)}]. 

Proof: Suppose that V is a variety such that /4 n Ar = V n 	Then U(U) = 

U(V) by Corollary 2.3.3. For every u E U(U) let SI(u) = up(V). Then 

fu = v : u E U(LI), v E 11(u)} C Id(V). 

Also, BId(U) = BId(V) C Id(V) by Theorem 2.3.2, so that 

V C [Bid(U) 	= v : u E U(U),v E 52(u)}]. 

Now suppose that u = v E Id(V). If u E B(V) then u = v E BId(V) = BId(U). 

If u E U(V) = U(U) then v E Si(u), and therefore 

[BId(U) U fu = v : u E U(U), v E 11(u)}] C V. 

For the converse, suppose that for every u E U(U) we have a set Si(u) C U(U) 

such that {Iv' : v E 11(u)} is unbounded. Let 

E = BId(U) U fu v : u E U(U),v E 

and let V = [s]. 

Suppose that u E x+, and let V =u = v. By Result 1.3.3, for some m > 0 

there exist ri, s 2  E X*, an endomorphism j of X+, and (d„ E E U E -1  for 

every i, 0 < i < m, such that 

ro(do(po)so, 

r„.„(em cpm )sm , 

and 	 = ri(d6oi)si for every i, 1 < i < m. 
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If (di ,e i ) E BId(U) for every i then BId(U) =u = v, and so U =u = v. 

Otherwise, let j be the least i such that (di , e,) BId(U). So dj  E U(U). 

If j = 0 then u = ro(doctoo)so E U(U) by Remark 2.3.1. If j > 1 then 

BId(U) u = r3 _ 1 (e3 _ 1 (p3 _ 1 )83 _ = r3 (d3 c,o3 )3 3 . Since d3  E U(U) then again 

u E U(U). 

Therefore if u E x+ and V u = v then either u E U(U) or Li u = v. So 

for u E x+ either u E U(U) or up(V) c up(U). 

Clearly U(U) C U(V). Suppose that u E U(V). From the above observation, 

either u E U(U) or up(V) C up(U). But the conditions u E U(V) and up(V) C 

up(U) imply that u E U(U); so that u E U(U) in both cases. Therefore U(U) = 

U(V), and hence B(U) = B(V). 

If u = v E BId(U) then u E B(U) = B(V) and u = v E Id(V), so that 

u = v E BId(V). Conversely, let u = v E BId(V). Since u E B(V) = B(U) then 

from the observation above we conclude that up(V) C up(U) so that u = v E 

BId(U). Hence BId(U) = BId(V), and so Li n Al .vnAr by Theorem 2.3.2. 0 

For a variety U let 

E(U) = BId(U) U fu = v : u, v E U(U)}. 

Let a = [E(A)]. 

Theorem 2.3.5 Let U be a variety. Thena n A = U n Al, and 

17 = nIVE.C(S):UnAr=VnArl. 

Proof: For every u E U(U) define 12(u) = U(U). Then 

E(U) = BId(U) U fu = v : v E f/(u), u E U(LI)} 

so by Lemma 2.3.4 we have U fl Al = U n 
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Suppose that V is a variety such that /A n Al = V n Al. Let u = v E Id(V). 

If u = v E BId(V) then u = v E BId(U) C E(U) by Theorem 2.3.2. Otherwise 

u, v E U(V) = U(U), so that u = v E E(U). Therefore Id(V) C E(U), and 

hence U cV. 0 

We can now characterize those varieties which are such that no other variety 

has the same set of nilpotent semigroups. 

Theorem 2.3.6 For a variety U the following are equivalent. 

• U = V whenever V is a variety such that U n Ar=vnAr. 

• u(U) = 0. 

Proof: Suppose that LI is a variety which is such that if U n Al = V n Al for 

some variety V then U = V. Suppose that u E U(U). Let c(u) = {x1, • • • , xn}, 
and let Y = {yi , 	,y,} C X \ c(u) be such that IY1 = n. There exists an 

endomorphism (,o of x+ such that xi c,o = y3  for all j, 1 < j < n. Write v = 

so that v E U(U) by Remark 2.3.1. For every w E U(U) let 

f2(w) = {w, w 2 ,w3 , ...} c U(U), 

again by Remark 2.3.1. Let E = BId(U) U {to = z : w E U(U),z E 12(w)}. By 

Lemma 2.3.4 we have Li nAr = [E]nAr. Since u, v E U(U) then (u, v) E (U) C 

p(17). Since c(w) = c(z) whenever w = z E BId(U), then c(w) = c(z) whenever 

(w, z) E p(P), and so (u, v) p([E1). Now a and [E] are two distinct varieties 

(by Theorem 1.1.6) such that EinAr=unAr=[E] fl Al, contradicting our 

assumption. Therefore U(L1) = 0. 

Conversely, suppose U is a variety for which U(U) = 0. Then B(U) = 

X+ and BId(U) = Id(t1). If V is a variety such that /4 n Al = V n Al then 

BId(V) = BId(U) by Theorem 2.3.2. Hence B(V) = B(14) = X+, so that 

Id(V) = BId(V) = Id(U). Thus U = V. 
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Remark 2.3.7 We have shown that the mapping : L(S) —+ (Al)g 	given by 

Al is not injective; although it is surjective by Result 2.2.3. Clearly 

,3 respects n. 

By Corollary 2.3.3 we have B(U) = B(V) C B(U V V) and BId(U) = 

BId(V) C Bid(U V V). However, BId(U) need not coincide with Bid(U V V), as 

the following example shows. Let U = [xyx = xy 2 x] and V = [xyx = (xyx)2 ]. 

Then 

BId(U) = BId(V) = {(w,w) E .x+ x x+ : if w > 3 then 1401 = iwi}, 

and so ti n Ar = V n Al by Theorem 2.3.2. Let x,y E X, where x y. Then 

xyx E U(U) = U(V). It is easy to see using Result 1.3.3 that for v E X+ and 

x,y E X, with v xyx, we have V =xyx = v if and only if v = xwxzx for 

some w,z E x+, and U =xyx = v if and only if v = xyk x for some k > 1. 

Therefore (xyx)p(U V V) = {xyx}. So xyx E B(U V V) \ B(U). Therefore 

Bid(L1 V V) 0 BId(14); and hence (U V V) n Ar u n (u n Ai) V (V n 

by Theorem 2.3.2. That is, the mapping 3 does not respect V. 	 0 

2.4 Nil varieties whose nilpotent parts coin-

cide. 

If U E ,C(Ard) then U E gAri/m ) for some in by Corollary 2.2.2, and so 

U(Aril m ) = {rxms : x E X + , r, s E X * } C U(U). 

Now, by Theorem 2.3.6 there exists a variety V 0 /4 for which 14 fl Al = V fl Al ;  

but although U(.Ari/m ) C U(U) = U(V) by Theorem 2.3.2, this variety V need 

not be nil. 

We begin with the following lemma, which shows that if a pair U,V of nil 
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varieties are to satisfy U n Al = V n Al they must have 

{rn :U E ,C(Ari/m )} = {m : V E r(Arilm )}. 

For a variety U E G(Aril), let nil(U) = min{m : U E L(Alilm )}. 

Lemma 2.4.1 Let U E ,C(A41). Then min{ 	: w E U(U)} = 	If 

V E L(Aril) is such that U fl Al = V n Al then nil(U) = 

Proof: Write r = nil(U). Let u E U(U) have ui = min{lwl : w E U(U)}. 

There exists v E up(U) such that lvj > r. 

Choose x E X. There exists an endomorphism cp of x+ such that y(p = x 

for all y E X. Then wp = xlul and w,o = xlvl, and consequently 

1,1 = x lul = x l v l 	x r = 0.  

That is, U E 	 So minflwl : w E U(Li)} > r = 	Conversely, 

E r(Ari/r ) implies that xr E U(U) for every x E X, and so 

min{lwl w E U(U)} < r = nil(U). 

Thus min{lwl : w E U(U)} = nil(U). 

If V E L(Aril) is such that U n Al = V n Al  then we have shown that 

: w E U(V)} = nil(V). But U(U) = U(V) by Corollary 2.3.3, and so 

nil(U) = 	: w E U(U)} = 	: w E U(V)} = nil(V). 	 0 

Notice that if U E L(Ariln, n Corn) then 

uEU(U)<#, Uu=0 

(if u E U(U) and c(u) = c(v) for all v E up(U) then there exists a word 

w E up(U) and a variable x E X that occurs at least in times in w, so that 

E up(U) since U is commutative; and on the other hand if u E U(U) and 
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there exists v E up(U) and x E c(v)\ c(u) then we may substitute xm for x in 

v, and again obtain xm E up(U)). 

Therefore for U,V E r(Arilm  n Corn) such that /A n A1 = V MA/ we have 

B(U) = B(V), with 

u E B(U) = up(U) = up(V) 

by Corollary 2.3.3 and 

u E U(U) 	LI, V u O. 

As in the proof of Theorem 2.3.2, this means that U = V. In view of Lemma 

2.4.1, we have just shown that the mapping described in Theorem 2.1.1 is in-

jective. 

On the other hand, if Li, V E .C(Ari/m ) are such that Li n Ar = V n Ar then 

again B(U) = B(V) and 

u E B(U) = up(U) = up(V); 

	

also if u E U(U) is such that there exists v E up(U) with c(u) 	c(v) then 

U = u = 0. However, if c(u) = c(v) for all v E up(U) then perhaps UV u = 0. 

A relevant question here then, in the noncommutative case, is this: when does 

there exist a sequence of words, all with the same content, and with unbounded 

lengths, that contain no subwords of the form xm, and hence are not equal to 0 

under the laws of Arum ? 

We now introduce two varieties U,V E L(Ari15) in order to address this 

question; and we show that UnN=Vn Ar but /A V, so the mapping a is 

not injective. 

Let 

[x 5  = 0, x 3 yz3x = (yx) 3zx 3 yx] 
	

(2.1) 

and 

	

V = [x 5  = 0,x3yz3x = (yx)3 zx3yx,x3yz32 = (yx)3zx3 (yx) 2 ]. 	(2.2) 
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Then U and V are members of L(Aril). Notice that for W E {A, V} we have 

U(W) = {r(x3 yz3x)s : r,s E X* and x,y,z E X+ } U UWi1 5 ) 

= {u E X+  : there exists a nontrivial identity v = w E Id(W) 

such that u = rvs for r,s E X * }; 

and hence B(U) = B(V). Moreover, if u E B(U) then up(U) = {u} = up(V), so 

that BId(U) = BId(V). Hence by Theorem 2.3.2 we have the following result. 

Theorem 2.4.2 The varieties U and V as defined above satisfy 

unAr=vnAr. 

Let A = {a,b,c} C X where a, b and c are distinct. Note that whenever 

the identity x3yz3x = (yx)3zx3yx (see (2.1) and (2.2)) is applied, it can be 

reapplied nontrivially. Thus from the word a 3bc3 a we obtain first (ba)3 ca3ba, 

then (cba) 3a(ba)3cba, (acba) 3 ba(cba) 3 acba and so on. With this in mind, we 

inductively define sequences (a n ) n>0  and (An ) n>0  in A+ as follows: 

ao  = a, 

a l  = ba, 

a 2  = cba, and 

an  = an _ 3 an _ 1  for n> 3; 

Ao = a3bc3 a, 

A 1  = (ba) 3 ca3ba, and 

An  = (an) 3 an_2(an-i) 3 an. for n > 2. 

The identities which define the varieties U and V can now be rewritten: 

= [x5  = 0, Ao  = Ad and V = [x 5  = 0, Ao  = A 1 , Aoa = A l ba]. 
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It follows that A n  E (Ao)p(U) for every n > 0. The bulk of the proof that 

U 0 V is concerned with showing that in fact 

(Ao)P(U) = (Ao)P(V) = {An : n > 0}. 

This equality is proved from the following two results. Firstly, for n > 0 the 

word An  has no factor of the form x 5 , x E A+. Some bound on the size of powers 

appearing in An  is obviously needed since otherwise, regardless of the choice of 

the number in such that ti, V C Aram , a simple modification of the proof of 

Theorem 2.4.2 would lead to the conclusion U = V. Secondly, it is shown that 

if An  = r(x3yz3x)s for n > 2, r, .s E A* and x, y, z E A+ then r = s = 1, x = an , 

y = an _ 2  and z = an_ 1 ; that is, there is only one way to reapply the identity. 

(These properties of A n  are actually proved for the word A n a; however, they are 

obvious consequences of the corresponding results: (A0a)p(U) = {Ana : n > 0}, 

An a has no factor of the form x 5 , x E A+, and if An a = r(x3yz3x)s for r, s E A* 

and x,y, z E A+ then r = 1, s = a, x = an , y = an _ 2  and z = an _ i .) The 

combination of the terms a n , an _ i  and an _ 2  which forms An  was chosen with 

this property in mind. Although for n > 0 the word a n  does contain squares, 

it has no factor of the form x 3 , x E A+. This explains the choice of the terms 

(an ) 3  and (an _ 1 ) 3  in A. There are many other cubes in A n , but the fact that 

an  also appears at the end of An  ensures that the correct cubes are selected, 

and leaves no choice for the other terms. 

2.5 The sequences (a n )n>0  and (A) >o . 

We begin by giving a number of lemmas establishing properties of the sequences 

(an )n>0  and (An ) n>0 . Most proofs require direct verification for the first few 

terms of the sequence (a n ) n>0 , so for convenience the first ten terms are listed 
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below. 

a0  = a 

a l  = ba 

a 2  = cba 

a3  = acba 

a4 	baacba 

a 5  = cbabaacba 

a6  = acbacbabaacba 

a 7  = baacbaacbacbabaacba 

a8  = cbabaacbabaacbaacbacbabaacba 

a0  = acbacbabaacbacbabaacbabaacbaacbacbabaacba 

For j, k > 0 and x, E X+ we write jl ik_3  xi for the (noncommutative) product 

x3  ... x k . The relative ordering of j and k will always be clear, and for notational 

convenience the following rule is set: whenever such a product fl xi is written 

in the form x 3 , xi) y for x, y E X*, 

• if j < k then j' > k' <=> Fir j , x i  = 1, and 

• if k <j then k' > j' <=> 	j , x = 1. 

The first result details some basic facts. For a real number r, the symbol [r] 

is used to denote the integer part of r. 

Lemma 2.5.1 

(i) Let n > 3. If 2 < k <n — 1 then a„ = (n`fr._3 ai) ak • 

(ii) Let n > 3. If 1 < k < [n/3] then a n  = an-3k (nLk an+2_3). 

(iii) Let rn,n > 0. Then m < n <=> laml < lank 
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(iv) Let m,n > 0. Then m n (mod 3) .#;,. am  and an  have the same initial 

letter. 

Proof: (i) and (ii) follow easily by induction on n. Part (iii) is clear from part 

(i). Part (iv) is clear from part (ii) since ao  = a, a l  = ba and a2  = cba. 	0 

A word u E X+  is a left (respectively right) factor of v E X+ if v = uw 

(respectively v = wu) for some w E X. 

The next lemma gives information about words which are both left factors 

of a n  and right factors of a m  for some n, m. 

Lemma 2.5.2 Let n > 3 and m > 0. If an  = uv and am  = wu for u,v E A+ 

and w E A* then u = a n _3k  for some k, 1 < k < [n/3], and hence v = 

nLk an+2-32• 

Proof: We will prove by induction on m that u = a n_3k for 1 < k < [n/3], and 

then v = nL k  an+2-3, by Lemma 2.5.1(ii). 

The cases m = 0,1,2 are easily checked. Let m > 3, and suppose that 

an  = uv and am  = wu where n > 3, u, v E A+ and w E A*. If w = 1 then 

an  = am v. Then m = n — 3k for some k, 1 < k < [n/3], by Lemma 2.5.1(iii) 

and (iv), so that u = a n_3k as desired. Suppose therefore that w E A+. From 

wu = am_3 am_ 1  we take the following cases: (a) w = a m _3 x, x E A*, and (b) 

am _3  = wx, x E A+. 

Case (a): If w = am_3x, x E A*, then am_ i  = xu. By the induction 

hypothesis applied to an  and am_ i  there exists k, 1 < k < [n/3], such that 

U = an-3k. 

Case (b): If am_3  = wx, x E A+, then u = xam _ i . We will show that this 

case cannot occur. By the induction hypothesis applied to a n  = x(am _ i v) and 

am _3  there exists k, 1 < k < [n/3], such that x = an_ 3k. Then (4,3 = wan-3k, 

and hence n — 3k < — 3 by Lemma 2.5.1(iii). We consider two cases. 
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(b)(1): Suppose that k = 1. Then the inequality n — 3k < m — 3 becomes 

n < M. Since an  = xa,n _ i v, from Lemma 2.5.1(iii) we obtain the contradiction 

M — 1 < 72 < 

(b)(2): Suppose that k > 2. We have an  = an-3k (rv=k  an+2_3i) by Lemma 

2.5.1(ii). Since also a, = a n_3ka,n _ i v, then 

am _ i v =H an+2 -3i = an+2 -3k H an+2 -3i • 
	 (2.3) 

i=k 	 i=k-1 

Let t = " 1 	k — 1. Since in 	It (mod 3) by (2.3), then E is an integer. 

Since k < [n/3] then e < riP], and we obtain > 1 from n — 3k < m — 3. 

Therefore arn_i = a +2-3k ilLe arn.+1 -3i by Lemma 2.5.1(ii). Eq.(2.3) then yields 

(FILi  arn+1_31) v = k- i an+2-32 . However, this implies that m n 1 (mod 

3), contrary to the former conclusion in n (mod 3). 0 

The following lemma shows that an  has no right factor of the form x 2 , 

x E At 

Lemma 2.5.3 Let n > 0. If an  = uv 2  for u,v E A* then v =1. 

Proof: If 0 < n < 8 the result is easily verified. The proof for n > 9 is by 

induction on n. Let n > 9 and suppose that a n  = uv 2  where u, v E A*. Then 

uv 2  = an _ 3 a n _ 1 . We consider the following cases: 

(a) v = wan_ i , w E A*; 

(b) an_ i  = wv, v= xw, wE A+, x E A+; and 

(c) an_ i  = wv2 , w E A*. 

Case (a): If v = wan_ i , w E A*, then an_3  = uvw = uwan_ i w, which 

contradicts Lemma 2.5.1(iii). 
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Case (b): If an_ i  = wv and v = xw for w,x E A+ then a n_3  = ux and 

= wxw. By Lemma 2.5.2 applied to a n_ i  = w(xw) = (wx)w we have 

w = an_ i _ 3k for some k > 1. 

(b)(1): If k = 1 then w = an_4 , and hence ari_i = an-4xan-4. Since 

an-i = an_ 4 a n_ 5 an_6 ari _ 4 , then x = an_ 5 an_6  = an_8 (ari _ 6 ) 2
. The induction 

hypothesis applied to a,_ 3  = ux now gives the contradiction a n _ 6  = 1. 

(b)(2): If k> 2 then 

lan_ i  I — 

> 	2 Ian-71 

= ,_n_ 7 an_8 an_9 an_ 7 an_ 2 I — 21an_7 1 

> 

and this provides the contradiction lan-21 < Ia_31 since a n_3  = ux. 

Case (c): By the induction hypothesis applied to an_ 1  we have v = 1. 	0 

The next lemma plays a significant part in our investigation of the word 

An  = (a,2 ) 3an_ 2 (an_ 1 ) 3an . 

Lemma 2.5.4 Let n > 5 and m > 1, and let n — 2 < pi , qi  < n for 1 <i < m. 

If jr_ i  apt  = (rmi  xia q,) x for x E A* and x i  E A*, 1 < i < m, then x = 1. 

Proof: 	The proof is by induction on m. For the first step, suppose that 

ap  = ua qx where u,x E A* and n — 2 < p, q < n. Ifu=1 then p = q by 

Lemma 2.5.1(iv), so that x = 1. We may therefore assume that u E X+. Then 

q E {p — 2,p — 1}. We have ap_3 ap _ 1  = ua q x, so that either (a) x = 

w E A*, or (b) ap_ 1  = wx, w E A+. 

Case (a): If x = 	w E A*, then a p _3  = ua q w, which contradicts 

Lemma 2.5.1(iii). 

Case (b): If ap_ 1  = wx, w E A+, then ap_3w = uaq . 
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(b)(1): If q = p — 1 then a q  = wx. Hence a p  = uwx 2 , and thus x = 1 by 

Lemma 2.5.3. 

(b)(2): If q = p — 2 then a p_3w = uap_ 2 . Either w = vap_ 2 , v E A*, or 

ap_ 2  = VW, v E A+. 

If w = vap_ 2 , v E A*, then a p _ 1  = vap_ 2 x, and from the case q = p — 1 we 

obtain x = 1. 

If ap_ 2  = vw, v E A+, then ap _3  = uv. Therefore, since ap_ 1  and w have the 

same initial letter, Lemma 2.5.2 applied to a p _ 2  and ap_3  gives the contradiction 

p — 1 a p (mod 3). This completes the case m = 1. 

Suppose now that rn > 2, and that 11:1 1  ap, = (M I  x t a q ,) x where n —2 < 

p„ < n and x i  E A* for 1 < i < m, and x E A*. Either (a') ap , = x i a q , y, 

y E A+, or (b') x i a q , = api y, y E A*. 

Case (a'): If ap , = x i a q , y, y E A+, the induction hypothesis applied to a p , 

gives the contradiction y = 1. 

Case (b'): If x i aq , = ap i y, y E A*, then 1171 2  a 	y (m2  xiaq,) x, and 

x = 1 by induction. 	 0 

Although the word a n  does not have right factors of the form x 2 , x E A+, 

it does have left factors of this form. The following result concerns a particular 

case. 

Lemma 2.5.5 Let n,m > 0. If an  = (uv) 2w and a, = xv for u,v,w E A+ 

and x E A* then uy wz for all y,z E A*. 

Proof: The proof is by induction on n. It is easily checked that the result holds 

when 0 < n < 9. Let n > 10 and suppose that a n  = (uv) 2w, am  = xv and 

uy = wz where in > 0, u, v, w E A+ and x,y,z E A*. Then an _3an _ 1  = (uv) 2 w, 

and we have either: 

(a) w = 	t E A*; 
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(b) an_ i  = tw, uv = rt, t E A+, r E A+; or 

(c) an_ 1  = tuvw, t E A*. 

Case (a): If w = tan_ i , t E A*, then an_3 = (uv) 2 t, am = xv and uy = 

t(an_ i z). If t = 1 then Lemma 2.5.3 gives the contradiction uv = 1. If t E A+ 

then the induction hypothesis is contradicted. 

Case (b): If an_ i  = tw and uv = rt for t, r E A+ then an_3  = rtr. By 

Lemma 2.5.2 applied to a n_3  = r(tr) = (rt)r there exists k > 1 such that 

r = an-3-3k and tr = "TIL k  an_1-32. 

(b)(1): Suppose first that k = 1. Then r = an_6  and tr = an_4 . Since 

an_ 4  = an_7an_8an_6 , then t = an_7an_8. Hence uv = rt = an_6 a n_ 7 an_8 , so 

that a, = (2/0
2

7D = (an_6an_7 an_8 ) 2
2D. Also, an  = an_3an_ 1  = an_6 (an_4 ) 2

a n-2 

= an_6(an-7an-gan-6)
2
an -2 and thus w = an_5an-2. 

Since uv = a n_6an_7an_8, then either a n_s  = us, s E A*, or u = a-ss, 

s E A+. If an_6  = us, s E A*, then v = san_ 7 an_8  = san _ lo  (an-8)27  and Lemma 

2.5.3 applied to a, = xv provides the contradiction a n_s  = 1. If u = an_6 s, 

s E A+, then sv = an_7an_8 . Since w = a n_6an_2, the equation uy = wz gives 

sy = an_ 2 z. Thus an_ 2  and an_ 7  have the same initial letter, which contradicts 

Lemma 2.5.1(iv). 

(b)(2): If k > 2 then IFILk_ i  an_1_3i1 	> an-3-3k1 = I r I. Therefore, 

since 

tr = H an- 1 -3i = an- 1 -3k H 
i=k 	 i=k - 1 

there exists s E A+ such that t = an-1-3kS and 
1 

sr = 	an-1-3i• 
	 (2.4) 

i=k-1 

Then an_ 1  = an-1-3ksw. Since a n_1 = an-1-3k (FiLk an+1-3 , then 

H an+1_31 = sw. 	 (2.5) 
i=k 
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By (2.4) and (2.5) the initial letters of an_ 1  and an+1  are the same, which 

contradicts Lemma 2.5.1(iv). 

Case (c): If 	= tuvw, t E A*, then a n_3 t = uv. Consequently an-i = 

tan_3 tw, and Lemma 2.5.4 gives the contradiction tw = 1. This completes the 

proof. 	 0 

We now turn our attention to the sequence (A n ) n>0 . The next lemma iden-

tifies the factors of the word An  = (an ) 3 an_ 2 (an_ 1 ) 3 a n, of the form x3 , x E A+. 

Lemma 2.5.6 Let 1 < < 8 and n > 5. Let (p 1 ,... ,pe) be a subsequence of 

(n 1 ,...,n 8 ) = (n,n,n,n — 2,n — 1,n — 1,n — 1,n) 

such that if p i  = n s  then pi+i  = n i+i  for 1 < j < t. Let 

H ap,= wx3v 	 (2.6) 

and ap , = wu where w,v E A* and u,x E A+. Then either: 

(i) 3, (p i  , p2 , p3 ) = (n, n, n), w = 1, x = an  and v = FIL4 ap1 ; 

(ii) 3, (p i  , p2 , p3 ) = (n — 1, n — 1, n — 1), w = 1, x = an_ i  and v = fiL4 api ; 

(iii) > 5, p2  = n — 2, x = uan_ 2 t, an_ 4  = tu and v = uan-2Ilf=6 api for some 

t E A+; 

(iv) .e 4, pi  = n — 2, x = ut, an_ 1  = tu and v = uilf=5 ap, for some t E A+; 

or 

t= 	PI (v) > 4, p2  = n — 2, x = 	an_ 2  = tr and v = r nt 5  a for some 

r E A* and t E At 

Proof: The first step is to show that the cases t = 1,2 contradict the assump- 

tion x E A+. The case t = 1 is proved first. The case = 2 is then clear, 
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since for every choice of (p i ,p2 ) there exists in > 0 and y, z E A* such that 

a, = yap1 ap2 z: indeed for any in > 7 we have 

am  = am _3am _ 1  

= am _6 (am_ 4 ) 2 am _ 2  

= am _6 a m _ 7 (am _ 5 a,_4 )am _ 2  

= arn _6 an-i _ 7 (arn _ 5a,_ 7 )am _ 5 am_ 2 . 

Suppose then that f = 1. We prove by induction on n > 3 that if a n  = wx3v 

for w, x,v E A* then x = 1. The initial cases n = 3,4,5 are easily verified. 

Let an  = wx3v where w, x, v E A* and n > 6. Then a n_3 an_ 1  = wx3v, and 

we consider the following cases: 

(a) v = yan—i, y E A*; 

(b) an_ 1  = yv, x = zy, y E A+ , z E A*; 

(c) an_ i  = yxv, x = zy, y E A+, z E A*; 

(d) an_ i  = yx 2v, x = zy, y E A+, z E A+; and 

(e) an_ i  = yx3v, y E A*. 

Case (a): If v = ya n_ i , y E A*, then an_3  = wx3y, and hence x = 1 by 

induction. 

Case (b): In this case a n_3  = wz(yz) 2 , and Lemma 2.5.3 gives the contra-

diction yz = 1. 

Case (c): In this case a n_3  = wz(yz) and an_ i  = (yz)yv. Therefore yv and 

an_ i  have the same initial letter. Hence Lemma 2.5.2 applied to a n_ i  and an _ 3  

gives the contradiction n — 1 E n + 1 (mod 3). 

Case (d): We have a n_3  = wz and an_ 1  = (yz) 2 yv, so this case is contra-

dicted by Lemma 2.5.5. 
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Case (e): The induction hypothesis applied to (2,2 _ 1  shows that x = 1. 

This completes the case e= 1. 

Now suppose that 3 < < 8. Then 

u  H a = x3v P, 
	 (2.7) 

i=2 

by (2.6) since ap, = wu. 

We proceed by considering cases based on the relative lengths of the left 

factors of (2.7), obtaining in each case a reduced form of the equation, for 

which we then repeat the procedure if necessary. Most cases are shown to be 

impossible; those that remain are identified as the cases (i)-(v) given in the 

statement of the lemma. 

We first distinguish the following cases, taken from (2.7): 

(a) u = x3 d, d E A*; 

(b) u = x 2 d, x = de, d E A*, e E A+; 

(c) u = xd, x = de, d E A+, e E A+; 

(d) u = x; and 

(e) x = ud, d E A. 

Case (a): We have a p, = wu = wx3 d, which contradicts the case .e = 1. 

Case (b): We have ap, = wx 2 d = wd(ed) 2 , and Lemma 2.5.3 provides the 

contradiction ed =1. 

Case (c): In this case (2.7) gives 

H aPi = edev, 	 (2.8) 
i=2 

and we have ap, = wded. From (2.8) we take three cases: 

(1) e = a p2  f , f E A * ; 
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(2) ap, = ef, d = fg, f E A+, g E A*; or 

(3) ap, = edf,  , f E A. 

(c)(1): In this case a pi  = wdap2 fd, and Lemma 2.5.4 gives the contradiction 

fd =1. 

(c)(2): We have a p , = wfgefg = wfgap2 g. Thus p2  < p i , and Lemma 2.5.4 

shows that g = 1. Then a p, = ed, and hence lif=3  ap, = ev by (2.8). Therefore 

P2 = p3 by Lemma 2.5.1(iv). This means that pi  > 7)2  = p3 , which contradicts 

any choice of the sequence (p1,. • • ,Pe)• 

(c)(3): In this case we obtain f FIL3 ap, = ev from (2.8), and we have 

ap2  = (ed)f and ap , = wd(ed). Therefore ap2  and f have the same initial letter, 

and Lemma 2.5.2 applied to ap2  and ap , gives the contradiction p 2  p2  + 2 

(mod 3). This concludes case (c). 

Case (d): In this case a p1  = wx, and (2.7) gives IT a :=2 Pt = x 2v. Either (1) 

ap2  = xd, d E A+, or (2) x = ap,d, d E A*. 

(d)(1): If ap2  = xd, d _E A+, then d {U=3  ap, = xv. Therefore a p2  and d 

have the same initial letter, and Lemma 2.5.2 applied to a p2  and ap , yields the 

contradiction p2  p2  + 2 (mod 3). 

(d)(2): If x = ap2 d, d E A*, then ap , = wa p2 d. Thus p2  < p i , and from 

Lemma 2.5.4 we find that d = 1. Therefore x = a p2 , so that FIL3  ap, = ap2 v, and 

hence 132  = p3. We now have p i  > p2  = p3 , and this implies that p i  = P2 = P3• 

Hence (p i , p2 , p) E {(n, n, n), (n — 1,n — 1,n — 1)}, and we have FIL 4  ap , = v. 

The definition of case (d) gives u = x, and therefore this describes cases (i) and 

(ii). 

Case (e): We have a p , = wu, and (2.7) gives 

T ap, = d (ud) 2 v. 	 (2.9) 
i=2 

Either: 
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(1) d = ap2 ap3 e, e E A*; 

(2) d = a p2 e, ap, = ef,  , e E A+, f E A+; or 

(3) ap2  = de, e E A*. 

(e)(1): We obtain FIL4  a 	e(uap2 ap3 e) 2 v from (2.9), and we have a p , = wit. 

If e < 6 then Lemma 2.5.4 shows that a p, = 1, a contradiction. Therefore we 

may assume that e > 7. Either eu = ap,f, f E A*, or ap, = euf, f E A+. 

If eu = ap, f , f E A*, then FIL 5  a fap2 ap,ap,fap2 ap3 ev, and again Lemma 

2.5.4 shows that a p3  = 1, a contradiction. If ap, = euf, f E A+, then 

fll a i  = aP2 aP3 euaP2 aP3 ev P 	 • 
i=5 

(2.10) 

Observe that p4  < p2 = 7)5 + 1 since > 7. Thus ifl  <lap 2 1 since ap, = euf, 

and hence by (2.10) there exists g E A+ such that ap, = f g. Therefore 

fl ap , = gap3 euap2 ap3  ev 	 (2.11) 
i=5 

Lemma 2.5.2 applied to ap2  and ap, shows that g = hap2 _ 1  = haps  for some 

h E A*, so that lap5 1 < g. By (2.11), there exists k, with = hi , such that 

g = a s k. Then ap2  = fap,k, and Lemma 2.5.4 shows that k = h = 1. Thus 

g = ap,, so that FIL6  a ap3 euap2 ap3 ev. Then m = p6 , which is impossible, 

and case (e)(1) is completed. 

Cases (e)(2) and (e)(3) are clearly similar: 

• in case (e)(2) we have f FIL4 ap, = (Uap2 e)
2
1), ap , = WU, ap3  = ef and 

x = uap2 e where e, f E A+; and 

• in case (e)(3) we have e fl 3  ap, = (ud) 2
V, a p1  = WU, a p2  = de and x = ud 

where d E A+ and e E A*. 

We combine these two cases to form the following case: 

r fl ap, = (ust) 2 v, 
z=j-1-1 

(2.12) 
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ap1  = wu, a p, = tr and x = ust where t E A+, j E {2,3} and 

• j= 2 s=landrEA*, 

• j = 3 = s = a 	r E A+. 

Note that the case j = 2 corresponds to the case (e)(3), with r = e and t = d, 

and the case j = 3 corresponds to the case (e)(2), with r = f and t = e. 

This case is labelled (e)(4), and the following subcases are considered: 

(I) r = ustuy, y E A*; 

(II) r = uy, stu = 	y E A+, E A+; 

(III) r = u; 

(IV) u = ry, api+ , = yz, y E A+, z E A+; or 

(V) u = rapro  y, y E A*. 

(e)(4)(I): We have ap , = wu and ap, = tustuy, and (2.12) shows that 

y 	+1  ap, = sty. If j = 2 then s = 1, so that a p2  = (tu) 2 y and 

y ri a p  = tV. 	 (2.13) 
i=3 

If y = 1 then Lemma 2.5.3 applied to ap2  gives the contradiction tu = 1. 

Therefore y E At In view of (2.13), Lemma 2.5.5 is now contradicted by a p2  

and ap1 . 

If j = 3 then s = ap,. Thus ap, = tuap2 tuy, and Lemma 2.5.4 gives the 

contradiction tuy = 1. 

(e)(4)(II): In this case (2.12) gives 

H a = zstv, Pi 
i=j+1 

and we have ap , = wu, ap, = tuy and stu = yz. 

(2.14) 
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If j = 2 then s = 1, so that tu = yz. Then ap2  = tug = yzy. By (2.14), 

ap3  and z have the same initial letter. Therefore Lemma 2.5.2 applied to a p, = 

y(zy) = (yz)y yields p 3  p2 + 2 (mod 3), which contradicts any choice of the 

sequence (p 1 , , pi)). 

If j = 3 then a p, = tug and s = a 2 . Eq.(2.14) becomes 

H ap, = zap2tv, 	 (2.15) 
t=4 

and we have ap,tu = yz. From the last equation we take the cases (A) a p, = yh, 

h E A+, and (B) y= a p2 h, h E A*. 

(e)(4)(II)(A) If ap, = yh, h E A+, then z = htu and (2.15) becomes 

11 ap  = htuap2 tv. 	 (2.16) 
i=4 

Thus h and ap, have the same initial letter. From Lemma 2.5.2, with a p2  = yh 

and ap, = (tu)y, we see that p4  p2  + 2 (mod 3) and h = map,_ i  for some 

m E A*. Since t E A+, Lemma 2.5.4 applied to (2.16) shows that .e > 5. Observe 

that p4  p2  + 2 (mod 3) implies that p2  = n, p3  = n — 2 and p4  = p5  = n — 1. 

Thus h = man _ i , a = yh and a n _ 2  = tug, and (2.16) becomes 

(an_i) 2 H a = htuan tv. 
i=6 

Since lan_d < h , there exists o E A* with o = m such that h = a n _ i o. 

Then a, = yan_ i o, and from Lemma 2.5.4 we find o = m = 1. Thus h = 

and hence a n _ I FIL6  a tuantv. However, an _ 2  = tug, and Lemma 2.5.1(iv) 

gives the contradiction n — 1 n — 2 (mod 3). 

(e)(4)(II)(B) If y = a p2 h, h E A*, then tu = hz and ap3  = tua p2 h. Thus 

P2 < p3, and h = 1 by Lemma 2.5.4. Consequently y = a p, and z = tu, so that 

(2.15) becomes j1L 4  a tuytv = ap,tv. Then p3  = p4 , so that 7) 2  < 3  = p4 . 

This means that 7, 2  = n —2 and p3  = p4  = p5  = n —1. Then y = an_2, an-i = 

tuan .... 2  and an-1 FIL6 = tv. Thus tu = an_ 4 , and hence v = ua n _ 2 flf=6  ap,. 
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Since j = 3, we have x = uan _ 2t. We have now described case (iii), and this 

completes case (e)(4)(II). 

(e)(4)(III): We have a p1  = wu and a p, = tu, and (2.12) gives 

ll a = tustv. pt 	s  
i=j+1 

(2.17) 

If j = 2 then s = 1 and ap, = tu, and (2.17) becomes FIL 3  apt  = a p2 tv. This 

means that p 2  = p3  = p4 , and consequently p i  = n-2 and 132  = p3  = p4  = n-1. 

Hence an_ i  = tu, and thus u FIL 5  apt  = v. Since in this case x = ut, we have 

described case (iv). 

If j = 3 then s = ap2 . We have a p, = tu, and (2.17) becomes 

H a s =aP2 aP3 aP2 tv .  P ' 
i=4 

Thus p2  = p4 and p3 = 1)5 , which is impossible. This completes case (e)(4)(III). 

(e)(4)(IV): In this case a pi  = wry, ap, = tr and a 	= yz, and we obtain 

z 	ap, = stryst v = sapi  ystv = 
i=j+2 

ap2 ytv 	if j = 2, 

ap2 ap3 yap2 tv 	if j = 3 

from (2.12). Then z and ap, have the same initial letter, and hence Lemma 

2.5.2, with a 	= yz and ap1  = (wr)y, shows that p 2  pH. '  + 2 (mod 3) and 

that z = mapi+i _ i  for some in E A*. It follows from p 2  E 	+ 2 (mod 3) that 

either p2  = n — 2 or p3+1  = n — 2. 

(e)(4)(IV)(A) Let 132  = n — 2. Then p3  = p3+1  = p3+2 = n — 1, so that 

z = man-2, an-i = yz and 

z fJ  ap, = 
i=j+2 

an _ 2 ytv 	if j = 2, 

an _ 2 an_ i yan _ 2tv if j = 3. 

  

Therefore, since an-21 < Izl
, 

there exists o E A* with oI = Im l such that 

z = an_ 2 o. Then an _ i  = yan_ 2 o, and Lemma 2.5.4 shows that o =772 = 1. 
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Hence z = an_ 2  and y = an_ 4 , and thus 

fl 	 an_ 4 tv 	 if j =2, 
ap,={ 

i=j+2 	an_ 1 an-4 an_ 2 tv = (an_ i ) 2tv if j = 3. 

Therefore, since pj+2 = n — 1, 

tv 	if j = 2, 
an-2 H aP = 

i=j+3 	an_ 2 an_ 1 tv if j = 3. 

If j = 2 then an_ 2  = a 2  = tr, and we have r rif=5  ap, = v. Since u = ry = ra n_ 4 , 

then x = ran_ 4 t, and we have described case (v). If j = 3 then iff=6  ap, = 

an_ i tv. However, p6  = n and so we obtain the contradiction n E n — 1 (mod 3). 

(e)(4)(IV)(B) If p3+1  = n —2 then /3 2  = pi  = n and pj+2 = Pj+3 = n — 1. In 

this case z = man_3 , an_ 2  = yz, a n  = tr and 

{anytv 
z 	= 

i=3+2 	(an,) 2 yan tv  

an_3an_ 1 ytv 	if j = 2, 

an_3an_ i anyantv if j = 3. 

Therefore, since 	<z, there exists o E X* with 1 0 1 = mj such that 

z = an_3o. Then a n_2 = yan_ 3o, and Lemma 2.5.4 shows that o = m = 1. 

Therefore z = an_ 3  and y = a n_ 6 , and we obtain 

an_, 	ap, = 
i=j+4 

an_ 6 tv 	if j = 2, 

anan_ontv if j = 3. 

This gives the required contradiction: if j = 2 then n — 1 n — 5 (mod 3), and 

if j = 3 then n —1 =- ri (mod 3). 

(e)(4)(V): We have ap , = wrapi+ ,y and ap, = tr, and (2.12) shows that 

ft a 	ystrapj+ ,ystv = ysapj ap, + ,ystv. 
2=3 +2 

Lemma 2.5.4 applied to ap , shows that y = 1, and hence 

n a t = sa a stv P Pj P3+1 • 
i=j+2 
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If j = 2 then .9 = 1, and FIL 4  a 	ap2 ap3 tv. Thus p2  = p4  and p3  = p5 , which 

is impossible. 

If j = 3 then s = a p2 , and fiL5  a 	As above we find 

P2 = p5 , which is impossible. This concludes case (e)(4), and hence case (e), 

which ends the proof. 	 0 

2.6 The varieties U and V are distinct. 

First recall the definition of the varieties U and V: 

= [x 5  = 0, x3yz3x = (yx) 3 zx3yx] 

and 

V = [x 5  = 0,x3yz3x = (yx)3 zx3yx,x3yz3x 2  = (yx)3 zx3 (yx)2 ]. 

Recall that A = {a,b,e} C X where X is denumerable. Since a n  = an _3 an_ 1 , 

for n > 1 the identity x3yz3x = (yx)3 zx 3yx can be applied to the word A n a = 

an ) 3 an_ 2 (an_ i ) 3ana in two obvious ways, giving either A n _ i a or An+l a. The 

first part of the following lemma shows that there is no other way. The second 

part gives the critical result that A na contains no factor of the form x 5 , x E A+. 

The analogues of these two results for the word A, follow as immediate 

consequences: 

▪ if An  = wx 5 y for n > 0 and w,x, y E A* then x = 1, and 

• if An, = w(x3yz3x)u for n > 2, x, y, z E A+ and w,u E A* then w = u = 1, 

x = an , y = an _ 2 , and z = an_ 1 . 

Lemma 2.6.1 

(i) Suppose that n > 0. If Ana = w(x3yz3x)u for x,y,z E A+ and w,u E A* 

then w =1, u = a and: 
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n = 0 x = a, y = b, and z = c; 

n = 1 = x = ba, y = c, and z = a; and 

n > 2 	x = an , y = a n_2 , and z = an-i• 

(ii) For n > 0, if Ana = wx 5y for w,x,y E A* then x =1. 

Proof: (i): The cases 0 < n < 4 are easily checked. Let Ana = w(x3yz3 x)u 

where n > 5, x,y,z E A+ and w,u E A*. Then xu = va for some v E A*, and 

hence An  = wx3 (yz3v). It follows from Lemma 2.5.6 that either: 

(a) w = 1, x = an  and yz3 v = an-2(an-1)3an; 

(b) x = an_ i  and yz3v = an ; 

(c) x = dan_ 2 e, an_4  = ed and yz3v = dan_ 2 an  for some d, e E A+; 

(d) x = de, an_ i  = ed and yz3v = clan  for some d,e E A+; or 

(e) x = da n_ 4 e, an_ 2  = ed and yz3v = dan_ i a n  for some d E A* and e E A+. 

Cases (b), (c) and (d) can be combined to form case (f): x = de, a n_ 1 = ed and 

yz3v = da m  for some d E A* and e E A+; so only cases (a), (e) and (f) need to 

be considered. 

Case (a): Lemma 2.5.6 can be applied to an_2(an_i) 3an = yz3v, and in this 

case the only possibilities are the cases (ii) and (iv) given in the statement of 

the lemma. We thus obtain the following cases: 

(1) y = an_ 2 , z = an_ i  and v = an ; and 

(2) z = f g, an -1 = gf and v = fa n  for f , g E A. 

(a)(1): In this case au= 	va = an a, and hence u 	a. This gives the = xu 	 = 

required result. 
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(a)(2): We have au = xu = va = fan a. Since an _ i  = g f then If < 

Therefore there exists h E A+ such that an  = fh, and hence a ri a = hu. Thus 

an  and h have the same initial letter, and from Lemma 2.5.2, with a n  = fh and 

• = g f, we obtain the contradiction n E n + 2 (mod 3). 

Case (e): In this case a n _4 e(yz3v) = an _ 4 e(dan _ i an ) = (an _ i ) 2 an , which 

contradicts Lemma 2.5.6 applied to (an-1) 2 an• 

Case (f): In this case e(yz 3v) = e(dan ) = an _ i  an , which contradicts Lemma 

2.5.6 applied to a n _ i an . This concludes the proof. 

(ii): Again the cases 0 < n < 4 are easy to check, and we assume that n > 5. 

Let Ana = wx 5 y where w, x, y E A*, and suppose that x 1. Then xy = ua 

for some u E A*. Thus An  = wx 4 u = wx3 (xu), and as in part (i) we obtain the 

following possibilities from Lemma 2.5.6: 

(a') x = an  and xu = an_2(an-1) 3 an; 

(e') x = dan_ 4 e, an_ 2  = ed and xu = dan _ i an  for some d E A* and e E A+; 

and 

(f) x = de, a n_ 1  = ed and xu = da n  for some d E A* and e E A+. 

Case (a'): We have an_2(an-1) 3an = xu = au, which gives the contradiction 

n — 2 E_ n (mod 3). 

Case (e'): We have d(a n —i ed)a n  = da n _ i  an  = xu = (da n _4 e)u, so that da n  = 

u. Consequently (da n _4 e)y = xy = ua = da na, which gives the contradiction 

n — 4 n (mod 3). 

Case (f): We have dan = xu = (de)u, so that an  = eu. Since an _ i  = ed, we 

thus obtain the contradiction n n — 1 (mod 3). 	 0 

The next result shows that the members of X+ that are equivalent to the 

word Aoa = a3bc3 a 2  under the laws of U are precisely the words A n a, n > 0. 
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Theorem 2.6.2 (Aoa)P(U) = {Ana : n 01: 

Proof: Let p(lA)' = {(x5 , x 5y), (x 5  ,yx 5 ),(x3yz3x, (yx)3 zx3yx) : x, y, z E X+}, 

so that p(U) is the congruence on X+ generated by p(14) /  . It is clear that 

An a E (Aoa)P(U) for all n > 0. 

Let t E (Aoa)p(U). By Result 1.3.3, for some m > 0 there exist ri,si E X* 

and (d, c) E P(U) i  U (P(U) i ) for 0 < i < m such that A oa = rodoso , t = 

rm eni s, and r l ei_ i si_ i  ridi s i  for 1 < i < m. We will show by induction 

that r i  = 1, s i  = a and (di, ei) E {(An+1, An), (An, A n+1) : n > 0} for all i, 

1 < i < m. This will imply that t = Ana for some n > 0, and conclude the 

proof. 

Let i = 0. If do  = rx's where x E X+ and r,s E X* then Aoa = ro(rx5 s)so, 

and Lemma 2.6.1(ii) gives the contradiction x = 1. Therefore do  = x3yz3x for 

x,y,z E X+. Then Aoa = ro (x3yz3x)so , and from Lemma 2.6.1(i) we obtain 

7-0  = 1, s o  = a and do = Ao , which implies that eo  = 111. 

Suppose now that 1 < i < m. By induction we have r i _ i  = 1, s i _ i  = a 

and ei_ i  = An  for some n > 0. Then ridi s i  = Ana. As above, Lemma 2.6.1(ii) 

shows that di  = x3yz3x for some x,y,z E X+, and Lemma 2.6.1(i) then shows 

that r i  = 1, = a, and: 

n = 0 x = a, y = b, and z = c; 

n = 1 	x = ba, y = c, and z = a; and 

n >2 = x = an , y = an _ 2 , and z = 

Thus di  = An , so that either (a) e i  = An +1 or (b) n > 1 and e i  = u3vw3u where 

u, v, w E X+ and 

n = 1 ba = vu, c = w, and a = u, and 

n > 2 = a n  = vu, an,-2 = w, and an _ i  = u. 
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Case (a): If e i  = An+1  then (d i , e) = (A n , An+1 ), as desired. 

Case (b): If n = 1 then e i  = u3vw3u = abc3a = Ao . If n > 2 then an = 

va n _ i , so that v = a n _ 3 . Then e = u 3 vw3u = (an_i) 3 an-3(an-2) 3
an-1 = An-17 

and in both cases (di , e,) = (An , An_1), as desired. 0 

Corollary 2.6.3 (A0)p(U) = (Ao )p(V) = {A n  : n > 0}. 

Proof: The result (Ao )p(U) = {An  : n > 0} follows directly from Theorem 

2.6.2. A straightforward modification of the proof of Theorem 2.6.2 establishes 

(A0)P(V) = {An : n 0}. 	 0 

The proof that U V can now be given. 

Theorem 2.6.4 The varieties U and V are distinct. 

Proof: Clearly Alba E (Aoa)p(V), but if Alba E (Aoa)p(U) then Theorem 

2.6.2 shows that Alba = A n a for some n > 0. Then A n a = (ba) 3ca3 (ba) 2 , and 

Lemma 2.6.1(i) shows that ba = a, which is impossible. Therefore (A0 a)p(U) 

(A0a)p(V), and the result follows from Theorem 1.1.6. 

Remark 2.6.5 

• It is also of interest to reformulate Almeida's question in terms of semi-

groups of some fixed nil index: that is, for a given n > 1 is the mapping 

1-4 W fl jV, W E L(Ni/n ), an isomorphism onto g(Ar fl Ara n )? In this 

case it follows as in Section 2.2 that the mapping is surjective for all n > 1, 

but not injective for n > 5, as shown by the pair of varieties described 

above. This question remains open concerning smaller values of n. 

• A semigroup S is said to be locally finite if every finitely generated sub-

semigroup of S is finite. A class C of semigroups is said to be locally finite 
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if every member of C is locally finite. It is easy to see that Ar is locally 

finite. 

The following was brought to the attention of the author by M. Volkov. 

An alternative method of establishing the non-injectivity of the mapping 

would be to produce a variety V E r(Aril) which, although not itself locally 

finite, were such that its locally finite members form a variety U. Then 

unAr=vnA/ since Al is locally finite, although U V. However, by a 

result of Sapir [28, Theorem 3.13], the locally finite members of a finitely 

based variety V E r(Afii) form a subvariety of V only if V is locally finite, 

and thus this method cannot work for a finitely based variety. 
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Chapter 3 

Biidentities 

In this chapter we look at e-varieties. We begin in Section 3.1 by expanding the 

techniques of Auinger [7, 8] for locally inverse e-varieties to provide a unified 

Birkhoff-style theory for the whole lattice of e-varieties for which nonmonogenic 

bifree objects exist; that is, for e-varieties contained in ES or LI. 

We then give an alternative approach to this material in Section 3.2, based 

on the techniques of Kadourek and Szendrei in [27] for E-solid e-varieties. When 

the paper [13] was originally submitted for publication, it included the material 

presented in Section 3.2. The referee made suggestions that led to this material 

being replaced with the contents of Section 3.1. Both approaches have been 

incorporated into this thesis, because of their substantial difference. 

In Section 3.3 we consider locally E-solid e-varieties. In Section 3.3.1 we 

show that the results of Ka sciourek [25] concerning the existence of trifree objects 

in locally orthodox e-varieties can be extended: trifree objects exist in every e-

variety of locally E-solid semigroups. In Section 3.3.2 we construct an example, 

modelled on the example with which Yeh [43] proved that nonmonogenic bifree 

objects exist precisely in E-solid and locally inverse e-varieties, that enables us 

to prove that in fact trifree objects exist in an e-variety V of regular semigroups 

if and only if V consists of locally E-solid semigroups. 

71 



Finally, in Section 3.4 we outline a theory of "n-free" objects, indicating how 

analogues of the concept of a free object can be defined for any e-variety. 

3.1 E-varieties of E-solid or locally inverse semi-

groups. 

First, recall from Notation 1.3.6 that if an element k lies in a subgroup of a 

semigroup S then the unique 71-related inverse of k is denoted by k - 1  and 

the unique idempotent 94-related to k is denoted by k°. Recall also that the 

sandwich set S(a,b) of elements a, b of a regular semigroup S is the set bV(ab)a. 

Lemma 3.1.1 Let S be a regular semigroup and suppose that k lies in a sub-

group of S. Then S(k,k) = {k°}. Furthermore, if T is a regular subsemigroup 

of S and k E T then k -1 ,k° E T and k -1  9-1k° 9-1k in T. 

Proof: We have S(k,k) = S(k -1 k,kk -1 ) = S(k°,k°) = {k°} by Result 

1.3.15(ii),(v). 

Now consider a regular subsemigroup T of S with k E T. Let (k 2 )' E 

V(k 2  ) fl T. Then k(k 2 ) 1 k E S(k, k) n T, so that k° = k(k 2 )' k E T. Also, 

k(k 2 )/k 2  = k-l k 2 (k2 )'k2  = k -1 k2  = k = k 2 (k2 ) 1 k 2 k -1  = k 2 (k 2 )'k, 

and hence k° = k(k 2 )'k 9-1 k in T. 

Let k' E V(k) n T. Then 

k°1A° = k-l kkikk -1  = k -1 kk -1  = k -1 , 

so that k -1  E T. Moreover, k- 1  9-1 k° in T since we also have k° = kk- 1  = k- lk. 

0 

We start by fixing a particular construction of the least regular subsemi-

groups in E-solid and locally inverse semigroups, taken from Result 1.3.34. 

72 



Construction 3.1.2 Suppose that A is a subset of an E-solid semigroup U. 

Let a' E V(a) for each a E A, and write A' = {a' : a E A}. If e, f E E(U) 

then e f is in a subgroup of U by Result 1.3.11; and by Result 1.3.34, the least 

regular subsemigroup of U containing A U A' is P = Ui>o P2,+1, where 

Po = A U A' 

P2i = {(ef) -1  : e, f E E(P2i-1)} U P2i-1 

2i+1 = (P2i) 

Let s be a sandwich operation on U (see Remark 1.3.17) such that s(u,v) 

v(uv) -1  u whenever uv is a group element of U, and s(u,v) E P whenever 

u,v E P. 	 0 

Construction 3.1.3 For any locally inverse semigroup V with subset A, let 

a' E V(a) for all a E A and write A' = {a' : a E A}. Again by Result 1.3.34, 

the least regular subsemigroup of V containing AU A' is Q = H s_wz>0 Q22-1-11 where  

Qo = AU A' 

Qi = (Q0) 

cd2i = {s(a, b): a, b E Q2i-j} U Chi-1 

Q2i-F1 = (Q21) 

Remember that s(u, v) is the unique member of S(u, v) for each u, v E V; so 

the sandwich operation s is also an operation on Q. 	 0 
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Recall that by a binary semigroup is meant a type (2, 2) algebra where one 

of the binary operations is associative. We will write simply (8,$) to denote a 

binary semigroup (S, • , s). 

As in Notation 1.3.20, let X be a nonempty set, with a disjoint bijective 

copy X' = {x' : x E X}. We write X = X U X'. Let (F( 2 , 2 )(X), s) denote the 

free binary semigroup on X. Recall that for a set Y the free semigroup and free 

monoid on Y are denoted by Y+ and Y* respectively. 

Every word u E F( 2 , 2 )(X) can be factorized uniquely as 

U = U0tV1U1 • • • Wnlin 
	 (3.1) 

where u, E (X)* for 0 < i < n, and w i  = s(ai,b,) for some a„b, E F(2,2)(X), 

1 < i < n. 

The semigroup F( 2 , 2 )(X) is embedded in the free semigroup F on the alpha-

bet consisting of the set X together with the symbols "s(" , "," and ")"; and so, 

given a word u E F( 2 , 2 )(X), we may define the length 1721 of u to be the usual 

length of u considered as a member of F. 

We denote the inverse unary operation on the free group Fc (X) by 	We 

may assume X C Fc(X). 

Define a sandwich operation s on Fc (X) by s(a,b) = 1 for all a, b E Fc (X). 

Then there is a binary semigroup homomorphism .F( 2 , 2) (X) --+ Fc (X) extend-

ing the natural injection X --+ Fc (X). We denote the image under this ho-

momorphism of a word u E F( 2 , 2 )(X) by 11, so that if u = uowiui • • • WnUn 

is the factorization (3.1) of u as described above then 'it is the usual group-

reduced form of u o  E (X) + . In particular, we have s(u, v) = 1 for every 

u, v E F( 2 , 2 )(X). The congruence on F( 2 , 2 )(X) associated with this homomor-

phism is the least group congruence on F(2 , 2 )(X), and is denoted by a. Let 

R(X) = fu E F( 2 , 2 )(X) : 71= 11. 
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We now construct a subsemigroup of F (2 , 2)(X) in the same manner as the 

semigroups P and Q of constructions 3.1.2 and 3.1.3 respectively. 

Construction 3.1.4 Let W(X) = U2>0 W22-1-1) where  

w0 = 
= (We) 

W21 =  {s(a, : a, b E W22_i n R(X)} U W22-1 

W2i+1 = (W2i) 

So W(X) is the least subsemigroup W of F( 2 , 2 )(3.0 such that X C W and 

s(u, v) E W whenever u, v E Wn R(X). Let K (X) = W (X) n R(X). 

Let us now define a unary operation ' on W(X), to be such that w' = (T)' 

for every w E W(X). We use induction on 114  For the initial case w = 1, we 

already have w' for each w E X, and we define (w')' = w. Suppose that 1w1 > 2. 

If w = s(u, v) for u, v E K(X), let w' = w. Then w' = 1 = (7.0 -1 . Otherwise, 

let w = uow -021...wnun be the factorization of w as in (3.1). Define u E W(X) 

to be u = x if uo  = xy for some x E X and y E (X)*, and u = w i  if uo  = 1. 

Let v E F( 2 , 2 )(X) be such that w = uv. Then u, v E W(X) and ui ,  v < 1w1 

so we may assume that u', v' E W(X) are defined, with u'u = vv' = 1. Now 

s(u'u, vv') E W(X), and we define w' = v's(u'u, vv')u'. Clearly w' = (17) -1 . 

Consider the partial binary semigroup congruence 77 on W(X) generated by 

{(xxix, x), (xixx', x') : x E X} 

{(s(u, v), s(u, v)s(u, v)), (uv, us(u, v)v), (s(u, v), vv's(u, v)u'u) : u, v E K (X)} . 

(That is; 77 respects the partial binary operation s on W(X).) 
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Remark 3.1.5 As a binary relation on F(2 , 2) (X), the congruence ri is contained 

in the least group congruence a on F(2,2)(X).  Therefore if p is a congruence on 

W(X) such that ri CpCo-  then i7v = 1 whenever wp E E(W(X)I p). 	0 

The following results detail properties of the congruence 

Lemma 3.1.6 Let u,v E K(X). If u*77 E V(uq) and v*Ti E V(vi) for some 

u*,v* E W(X) then s(u,v)77 E S(u*uq,vv*71). 

Proof: We have 

s(u, v)euvv*s(u, v)ri = vv's(u, v)u'u(u*uvv*)vv's(u, v)u'u77 

vv is(u, v)u'uvv's(u, v)u'uq 

Also, 

vv* s(u, v)u* uq 	vv*vv's(u, v)u'uu*uri 

vv' s(u, v)u'uq 

s(u,v)q, 

so that 

u*uvv*s(u, v)u*uvv*ri = u*us(u, v)vv*ri 

* 	* U uvv 

Therefore s(u, v)77 E V(u*uvv*77), and hence 

s(u, v)77 = vv*s(u, v)u*uri 

E vv*77V(euvv*7])u*ug 

= S(u*u77,vv*77). 

0 

Lemma 3.1.6 gives enough information to show that W(X)I 77 is regular. 
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Lemma 3.1.7 

(i) If w E W (X) then w'ri E V (wq); that is, the semigroup W (X)177 is 

regular. 

(ii) Suppose that 0 : W(X) -÷ S is a semigroup homomorphism such that 

x 1 0 E V(x0) for all x E X, and s(u,v)0 E S(u0,v0) whenever u,v E 

K (X). Then w'0 E V(w0) for all w E W (X), and ri C 0 o 0 -1  . 

Proof: (i) We use induction on lwl, for w E W(X). The initial case 1w1 = 1 

is clear. Let 1w1 > 2. If w = s(u, v) then w' = w by definition, and wr/ E 

E(W (X)177). Therefore w'ri = wri E V(wri). Otherwise by definition w' = 

v's(u'u, vv')u' where w = uv, u E X- U {s(a,b) : a,bE K (X)} , and u, v E W(X). 

Since lul, Ivl < 14 we have u'ri E V(uri) and v'ri E V(tni). So by Lemma 3.1.6 

s(u'u, miii E S(u'un, vv /77 ) 

= vv'nV(u'uvvVu'uq. 

Therefore 

ww'wq E uvv ivv'T/V(u'uvu'Ou'uu'uvri 

= uu'uvv iriV(u'uvvVu'uvv ivri 

= fuu'uvv'vril 

Also, writing s(u'u, vvi)ri = vv'yu'un for yri E V(u'uvv'r/), 

w'ww'71 = v'vv'yu'uu'uvv ivv iyu'uu'n 

, 	1 	, = v vv yu uu ,  77 

= W'77. 

Thus w'r/ E V(wri). 
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(ii) We again use induction on 1w1 for w E W(X). The initial case iwi = 1  
is clear. Suppose that lw 1 > 2. If w = s(u, v) then w' = w, and w0 E E(S). 

Therefore w'0 = w0 E V(w0). Otherwise w' = v's(u'u, vv')u' where w = uv, 

uEXU {s(a,b) : a,b E K(X)}, and u,v E W(X). Since lul,Ivi < iwl, we have 

u'O E V(u0) and v'0 E V(v0). Now 

s(u'u, vt/0 E S(u'uO, vv iO) 

= S(uO, v0), 

so that w'0 E V(w0) by Result 1.3.15(iii). This implies that ri C 0 o 0 -i . 	0 

The following corollary is evident from Lemma 1.3.15(ui), Lemma 3.1.7(i), 

and Lemma 3.1.6. 

Corollary 3.1.8 If u,v E K(X) then s(u,v)77 E S(uq,v77). 	 0 

Notice that by Lemma 3.1.7 and Corollary 3.1.8 the congruence n  is the 

least binary semigroup congruence p on W(X) such that: (i) x'p E V(xp) for 

all x E X, (ii) s(u, v)p E S(up,vp) for all u, v E K(X), and (iii) w'p E V(wp) 

for all w E W(X). 

The next lemma is now a natural consequence of the similarity of construc-

tions 3.1.2, 3.1.3 and 3.1.4. 

Lemma 3.1.9 Let Y denote the E-solid semigroup U or the locally inverse 

semigroup V of constructions 3.1.2 and 3.1.3, with A, A' and s as given in the 

constructions. Let T denote the regular subsemigroup P or Q respectively. Let 

a: F(2 , 2) (AU A') —> Y be the binary semigroup homomorphism with respect to the 

operations s such that aa = a for all a E AU A'. Then T = {wa : w E W (A)} . 

Proof: Define a l  to be the restriction of a to W(A) and consider constructions 

3.1.2, 3.1.3 and 3.1.4. We have (A U A')a i  = A U A' C T and Wi a i  C T. 
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Assuming that W22 _ 1 a 1  C T for i > 1, it follows, since s is a binary operation 

on T, that W21a 1  C T. Hence W(A)a l  C T. 

Since a'a i  E V(aa i ) for all a E A, and s(u, v)ai  E S(ual , va l ) for all u, v E 

K(A), then by Lemma 3.1.7(ii) the subsemigroup W(A)a i  of Y is regular. But 

T is the least regular subsemigroup of Y that contains AU A', so T = W(A)a1. 0  

Recall that the free regular unary E-solid semigroup is denoted by Fes (X), 

and the free regular unary locally inverse semigroup is denoted by FLi(X). (See 

Notation 1.3.13 and the notation given in Remark 1.3.36.) Recall that the bifree 

object on a set X in an e-variety V is denoted by bFv(X). By Result 1.3.37 

the least regular subsemigroups of Fes(X) and FLT(X)  containing the set X 

are isomorphic to bFEs(X) and bFLI(X) respectively, and we therefore have the 

following corollary to Lemma 3.1.9. 

Corollary 3.1.10 In the statement of Lemma 3.1.9, if A = X, A' = X', and 

Y = Fes (X) or Y = FL2-(X) then {wa : w E W(X)} is isomorphic to bFEs (X) 

or bFLI(X) respectively. 	 0 

Therefore there exist (binary semigroup) congruences a l  o a l ' on W(X) 

such that W(X)/(a i  o a l ' ) is bifree on X in ES or LI. We will introduce two 

such congruences after a preliminary lemma. 

For u, v E K(X), let 3(u,v) = s(x, x) where x = s(u,u)vs(u,u). So .(u, v) E 

W(X). Recall that a is the least group congruence on F( 2 , 2 )(X). 

Lemma 3.1.11 Let p be a congruence on W(X) such that iiCpC a. 

(i) E(W(X)I p) = {s(w,w)p : w E K(X)}. 

(ii) Each idem,potent in each local submonoid of the semigroup W(X)/p is of 

the form .(u,v)p for some u,v E K(X). 
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Proof: (i) If w E K(X) then s(w, w)7/ E S(mq, w77) by Corollary 3.1.8. There-

fore s(w,w)p E S(wp,wp) c E(W(X)1 p) by Result 1.3.15(i),(vi) since riC p. 

Conversely if wp E E(W(X)I p) then w E K(X) by Remark 3.1.5, and as above 

s(w, w)p E S(wp,wp). But S(wp,wp) = {wp} by Result 1.3.15(v). 

(ii) Let e E E(W(X)I p), and let f E E(e W(X)I p • e). By part (i) there 

exist u E K(X) and v E W(X) such that e = s(u,u)p and f = s(u,u)vs(u,u)p. 

Since f E E(W(X)I p) then s(u, u)vs(u, u) E K(X) by Remark 3.1.5. This 

means that v E K(X). Thus f = s(u,u)vs(u,u)p =.7(u,v)p by part (i). 

Let pEs  denote the partial binary semigroup congruence on W(X) generated 

by 

U {(w,w8(w, w)), (w,s(w,w)w) : w E K(X)} 

U {(s(u,v),vs(uv ,uv)(uv)'s(uv ,uv)u) : u,v E K(X)}, 

and let jou  denote the partial binary semigroup congruence on W(X) generated 

by 

U {(.7(u, v)(u, w), .7(u, w).-§(u, v)) : u, v, w E K(X)}. 

Our aim is to show that the factor semigroups W(X)/pEs  and W(X )/ ALI 

are isomorphic to bFEs(X) and bFLI(X) respectively. We begin with some 

preliminary lemmas. Recall that the self-conjugate core of a regular semigroup 

S is denoted COO (S). 

Lemma 3.1.12 

cao(w(x)/pEs ) g {wpEs : w E K(X)}. 

(ii) Let 0 :W(X) 	S be a semigroup homomorphism, where S is regular and 

C 0 0— i . Then w0 E C00 (S) for every w E K(X). 
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Proof: (i) Observe that pEs, considered as a binary relation on F( 2 , 2)(X), is 

contained in the group congruence u. Therefore 

E(W(X)/PEs) = fs(w,w)PEs : w E K(X)} 

by Lemma 3.1.11(i), and hence C(W(X)/pEs) ç {wPEs : w E K(X)}. In 

addition, z-775 = 1 whenever upEs E V(vpEs ), and consequently 

C(W(X)/PEs) c {wpEs : w E K(X)}. 

(ii) The proof is by induction on jwl, for w E K(X). The result is trivial for 

the initial case lwl = 1, so assume that lwl > 2, and that 720 E Coo (S) whenever 

u E K(X) satisfies juj < jwl. Let w = uowiui • • • WnUn be the factorization 

of w according to (3.1). Now u0... u n  = = 1, so if juo • • •uni < iwl then 

(uo  ...un )0 E CC(S) by the induction hypothesis, and hence wO E C(S). 
Otherwise w = u 0  un E (X). In this case let w = y i  ym , where y i , , E 

X. Then there exists i for which yi = y,i' if ym  E X, and yi = x if ym, = 

x' for some x E X; and yi . • • yi - 1 =Yi+i • • • ym - i = 1. Then (y i  

(yi+1 	ym _ 1 )0 E C(S) by the induction hypothesis; and hence wO E C(S). 
0 

Remark 3.1.13 

(i) Lemma 3.1.12 parts (i) and (ii) together show that 

Cc„(W(X)/PEs) = {wPEs : w E K(X)}. 

(ii) Suppose that S is a regular semigroup and 0 :W(X) 	S is a semigroup 

homomorphism such that iC0 o 0' and u0 lies in a subgroup of S 

whenever u E K(X). Let u E K(X). Now Corollary 3.1.8 shows that 

s(u, u)0 E S(u0,u0), and therefore, by Lemma 3.1.1, we have s(u, u)0 = 

(u0) ° . Thus if also v E K(X) then uvO lies in a subgroup of S, and 
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s(uv,uv)0 = (uvO) ° . Then s(uv,uv)(uv)/s(uv,uv)0 = (uv0) -1  by the 

proof of Lemma 3.1.1, and we have proved that pEs C 0 o 0 - 1  if and only 

if s(u, v)0 = v0(uv0) -1 /10 for every u, v E K(X). 	 0 

Lemma 3.1.14 

(i) The semigroup W(X)I pEs is a member of ES. 

(ii) The semigroup W(X)I NJ is a member of LI. 

Proof: (i) If wpEs E C(W(X)/pEs) then w E K(X) by Lemma 3.1.12. Then 

wPEs is '14-related to the idempotent s(w, w)pEs, so wpEs is in a subgroup of 

W(X)/pEs (by Result 1.3.5). The result now follows from Result 1.3.11(iv). 

(ii) By Lemma 3.1.11 a typical idempotent in W(X)I pm is of the form 

s(u, u)p LI  for u E K (X), and a typical idempotent in the local submonoid 

s(u, u)PLI•W (X) p .s(u , u)pLI  

is .3(u,v)pu for v E K(X). Therefore, by Result 1.3.19, the definition of AL,' 

shows that W(X)IpLi E LI. 	 0 

We should note the following. 

Remark 3.1.15 If u, v E K(X) then, as in the proof of Lemma 3.1.14, uvpEs 

lies in a subgroup of W(X)/pEs. Then s(u, v)pEs = vpEs(uvpEs) l upEs by 

Remark 3.1.13. By Corollary 3.1.8, Lemma 3.1.14, and Result 1.3.18 we have 

s(u, v)PLI = s(upu, vPLI)• 

The main result of this section can now be proved. Recall Definition 1.3.21, 

which defines a matched mapping. 

Theorem 3.1.16 Let V = ES or V = LI. Let tv  : X -4 W(X)I pv be given 

by xtv  = xpv, x E X. Then (W(X)I pv,tv) is the bifree object in V on X. 
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Proof: Certainly tv is matched, and W(X)/pv E V by Lemma 3.1.14. Sup-

pose that S E V, and let ck : X S be a matched mapping. If V = ES let 

s be a sandwich operation on S satisfying s(a,b)= b(ab) i  a whenever a, b E S 

are such that ab is a group element of S; if V = LI let s be the sandwich 

operation on S. Let 3: F( 2 , 2 )(X) S be the binary semigroup homomorphism 

with respect to s that extends 0. Let (p i  be the restriction of to W(X). By 

Lemma 3.1.7(ii), we have 77 g (pi 0 ((pi) 1 . 

Suppose V = LI. If u, v, w E K(X) then s(u, 	E E(S) and 

s(u, u)vs(u, u)co l , s(u, u)ws(u, u)(p i  E s(u, u)co i .S.s(u,u)(,ol. 

Then .(7t, v)(p i ,(uw)(p i  E E(s(u,u)(p i .S.s(u,u)(p i ). Since S e LI then Result 

1.3.19 shows that -s-(u, v)(u, w)coi = 	wMu, v)(Pi; that is, pLI 	(pi 0 ((pi) 1 . 

Suppose V = ES. If w E K(X) then w(p i  E C(S) by Lemma 3.1.12(ui), 

and then w(,o 1  lies in a subgroup of S by Lemma 1.3.11 since S E ES. Therefore 

for u, v E K(X) the element ump i  is in a subgroup of S and so 

s (u, v ) (toi = s(u(p i , v(701) = v(70 1 (u w,01) -1 u4.0 1 

by the definition of the operation s on S. Hence pEs C (pi 0 (cp i ) -1  by Remark 

3.1.13(ii). 

So pv C 	0 ((,o 1 ) -1 , and hence (by Result 1.1.2) there is a semigroup 

homomorphism : W(X)/pv 	S given by wpvc,o = w(p 1 , w E W(X). If 

x E X-  then xtv(p = xpv(p = x(Th = x(7 = x(/), and so /Arco = 

Say 0 : W(X)I pv -+ S is a semigroup homomorphism satisfying tv0 = ç. 

We show by induction on lwl that wpv0 = wpv(p for all w E W(X). If w E X 

then certainly wpv0 = wpv(p. Suppose that 1w1 > 2. If w E (X) then again 

wPv0 = wpv(p. If w = s(u, v) for u, v E K(X) then, using the induction 

hypothesis, • 

s(u,v)pm0 = s(uPLI O , vPLIO ) 

83 



. s(u P Lica , v P LW) 

=( 	1 s ,u , v , p Li cp 

by Remark 3.1.15 and Result 1.3.18; and 

s(u, v)pEs0 = (VpES(UVPES)
-i 

 UPES)0 

= VpEsO(UVpEs0) -1 UpEs0 

\ -1 = VpEs(p(UVpE S (P) UPES (P 

= s(u, OpEs(,0 

by Remark 3.1.15 and Result 1.3.7. Therefore, in view of the factorization of w 

according to (3.1), we have wpv0 = wpvcio for all w E W(X). So 0 = (p , and 

the result is proved. 	 0 

Let V = ES or V = LI. By Theorem 3.1.16, for any semigroup S E V 

each matched mapping 0 :iT --. S extends uniquely (by the universal prop-

erty of bifree objects, and via the mapping tv) to a semigroup homomor-

phism 0 : W (X) —>. S such that 0 o 0 -1  D pv. We call 0 the V - extension 

of 0. In the E-solid case, if u, v E K(X) then uv0 lies in a subgroup of 5, 

and s(u, v)0 = v0(uv0) 1 u0. In the locally inverse case, if u,v E K (X) then 

s(u, v)0 = s(u0, v0). (See Remark 3.1.15.) 

We define a biid entity to be a pair (u,v), also written u = v, of words 

u, v E W(X). Then S E V is said to V -satisfy a biidentity u = v if for any 

matched mapping (/) : A' S and its V-extension 0 : W (X) -- S we have 

u0 = v0. A biidentity u = v is said to be V-satisfied by a class C C V if 

u = v is V-satisfied by each member of C. For any set E of biidentities, let 

[Ely  denote the class of all members of V that V-satisfy all biidentities in E. 

Given a class C of semigroups such that C C V, let 

Pv(C, X) = {(u, v) E W(X) x W(X) : u = v is V-satisfied by Cl. 
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Then pv (C, X) is a congruence on W(X) for every C C V; and in particular 

pv(V, X) = pv. 

We can give a version of the definition of biinvariant congruence in this 

setting. As in Definition 1.3.22, for u, p, q E W(X) and pq E R(X), let 

u(x 	p, 	q) 

denote the word in F( 2 , 2 )(X) obtained from u by substituting p for all occur-

rences of x, and q for all occurrences of x'. A simple induction on i > 1 such 

that u E W22-F1 (recall the construction 3.1.4 of W(X) C F( 2 , 2 )(X)) shows that 

the condition pq E R(X) implies that u(x p, x' —> q) E W(X). 

A congruence p on W(X) is said to be closed under regular substitution if 

u p v, p p pqp, q p qpq, and pq E R(X) imply u(x —> p, x' q) p v(x p, x' 

q). A congruence p on W(X) is said to be V -biinvariant whenever pv  C p and 

p is closed under regular substitution. 

As explained in Section 1.3.6, analogues of Birkhoff's fundamental theo-

rems have been provided for e-varieties of E-solid semigroups (by Kaaourek 

and Szendrei [27]) and for e-varieties of locally inverse semigroups (by Auinger 

[7]). These analogues respectively rely on the very different semigroups F'°°(X) 

and F( 2 , 2 )(X) in their characterizations of bifree objects, biinvariant congruences 

and biidentities. 

In Theorem 3.1.16 we have characterized the bifree E-solid and bifree locally 

inverse semigroups on X as images of the one semigroup W(X). In the next 

theorem we present further unified analogues of Birkhoff-style results for e-

varieties of E-solid or locally inverse semigroups. 

Theorem 3.1.17 Let V = ES or V = LI. 

(i) In any class C C V closed under taking regular subsemigroups and direct 

products there exists a bifree object on any nonempty set X, and it is 

isomorphic to W(X)I pv(C, X). 
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(ii) A class C C V is an e-variety if and only if there exists a set E of 

biidentities such that C = [E]v . In particular, if C is an e-variety then 

C = [pv(C, X)Jv . 

(iii) The mappings between the lattice of all e-varieties contained in V and the 

lattice of all V -biinvariant congruences on W (X) that are defined by 

C pv(C, X) and p 	[PINT 

are mutually inverse order-reversing bijections. A congruence p on W (X) 

is V -biinvariant if and only if pv  C p and p I pv is a fully invariant 

congruence on W(X)1 pv  , and so there are also mutually inverse order-

reversing bijections between the lattice of all e-varieties contained in V 

and the lattice of all fully invariant congruences on W (X)I Pv • 

Proof: The E-solid cases of parts (ii) and (iii) appear in [27] with F'°°(X) used 

instead of W(X); but the analogous proofs may be directly applied here, for both 

the E-solid and locally inverse cases. For part (i), write pv(C) = pv(C, X). A 

proof analogous to the first part of the proof of Theorem 2.5 of [27] shows that 

W(X)/pv(C) E C, and we need only prove that W(X)/pv(C) is bifree on X 

for C. 

Suppose that S E C, and let : 	S be a matched mapping. Let 

0 : W(X) ---> S be the V-extension of 0. Then u0 = v0 whenever (u, v) E 

Pv(C), and hence (by Result 1.1.2) there is a semigroup homomorphism : 

W(X)/pv(C) —> S defined by wpv(C)( to = w0 for all w E W(X). Moreover, 

we have xcb = xpv(C)(p for all x E X. 

Now suppose that 77b : W(X)/pv(C) 	S is a semigroup homomorphism 

satisfying x0 = xpv(C)0 for all x E X. Recall the construction 3.1.4 of W(X). 

We have xpv(C)(p = xq = xpv(C)0 for all x E = Wo , and hence wpv(C)(p = 
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wPv(C)0 for all w E W1 . Suppose inductively that wpv(C)co = wpv(C)0 for 

all w E W2t-1, where i > 1, and consider u,v E W22 -1 n R(X). 

Since pv C pv(C), there is a semigroup homomorphism av : W(X)/Pv 

W(X)/pv(C) given by wpvav = wpv(C), w E W(X). 

Now, if V = LI then s(u, v)pv(C) = s(upv(C), vPv(C)) by Remark 3.1.15. 

Therefore 

s(u,v)pv(C)(P 	s(upv (c ) (p,vpv(c)(P) 

s (upv(C)0, vPv(C)0) 

s(u,v)pv(C)'11) 

by the induction hypothesis. 

Suppose that V = ES, and write a = aEs. Then 

s(u, v )PEs (C )(P = s (u, v )pEsa (p 

vpEsaco(uvpEsaco) l upEsayo 

vpEs(C)co(uvPEs(C)(1,0) -1 uPEs(C)S0 

vpEs(C)0(uvPEs(C)0) -1 uPEs(C)0 

= s(u, v)pEs(C)0 

by the induction hypothesis. 

Thus wpv(C)co = wpv(C)//) for all w E W2i, and hence for all w E W2i+1; 

so that co = 	 0 

3.2 An alternative approach to e-varieties of 

E-solid or locally inverse semigroups. 

In this section we give an alternative unification of the methods of [7, 8] and 

[27]. Instead of using F( 2 ,2)(X), as in [7], which is better suited to the locally 
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inverse case, we use the semigroup F'°°(X) of [27], which is better suited to the 

E-solid case. 

Notation 3.2.1 Any inverse unary operation denoted by -1  on a regular semi-

group S will always be assumed to be such that if k lies in a subgroup of S then 

k 7-1 

In this section we will be using the free unary semigroup Fu(X) (as described 

in Notation 1.3.8) instead of the free binary semigroup F( 2 , 2)(X), and so we will 

use some notation defined for Section 3.1 to label slightly different objects. 

We need to reconsider constructions 3.1.2 and 3.1.3. Here we replace the 

sandwich operations with inverse unary operations. 

Construction 3.2.2 Suppose that U is an E-solid semigroup, with an inverse 

unary operation -1  (so u -1  is the 94-related inverse of u whenever u lies in a 

subgroup of U) and subset A. Let A -1  = {a -1  : a E A}. By Result 1.3.34, the 

least regular subsemigroup of U containing A U A1 1  P = Ut>o P22-1-11 where 

Po = A U A -1  

= (Po) 

P2i = {(ef) : e, f E E(P2i-1)} U P2i-1 

P2i+1 =  (P2i) 

Observe that, apart from P0  = AU A -1 , the construction of P is independent 

of the choice of the operation -1  since (ef) -1  will always be the group inverse 

of ef. The same is true for the locally inverse semigroup Q constructed below. 
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Construction 3.2.3 Let V be a locally inverse semigroup with inverse unary 

operation -1  and subset A, and write A" = {a -1  : a E A}. Again by Result 

1.3.34, the least regular subsemigroup of V containing AUA' is Q = U:>o Ch2+1) 

where 

Qo = A U A -1  

Qi = (Qo) 

Q2i = {S(a, b) : a, b E Q22_i} U Ch2-1 

Q2i+1 = (Chi) 

0 

For u E Fu(X) let rt be the usual group-reduced form of u, as described at 

the end of Section 1.3.1. Let fe(x) = fu E Fu (X) : = 11. 

Define bF(X) to be the least subsemigroup W of Fu(X) such that X c W 

and W n R(X) is a unary subsemigroup of W. Then bF(X) is the semigroup 

F'°°(X) of [27], and can be constructed in the same manner as the semigroups 

P and Q of constructions 3.2.2 and 3.2.3 respectively. 

Construction 3.2.4 We have bF(X) = U2 >0 F2 i+1, where 

Fo  = X 

= (F0) 

F2i = {t ' : U E F2i-1 n f?(X)} U F21-1 

F21+1 = (F2i) 

0 
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Let k(X) = {u E bF(X) : = 1}. Consider the partial unary semigroup 

congruence 7) on bF(X) generated by 

{(uu'u, u), (u'utt', u') :uEXU 

(That is; i is the least semigroup congruence on bF(X) that contains 

{(uu'u, u), (u'uu', u') :u E XU k(X)} and respects the partial unary oper-

ation 'on bF(X).) 

Remark 3.2.5 As a binary relation on Fu(X), '7) is contained in the least group 

congruence er = {(u, v) : ii = 11 on F(X) (recall the discussion in Section 

1.3.1). Hence if p is a congruence on bF(X) such that 7) C p C "6-  then u E k(X) 

whenever up E E(bF(X)I p). 

The next few results are exact analogues of results from Section 3.1. 

Lemma 3.2.6 The semigroup bF(X)17) is regular. 

Proof: If w E F0  then w7) has an inverse in bF(X)Ii). Let i > 1 and assume that 

there is an inverse in bF(X)//'/ of tv7) for every w E F22-2. Consider u E F2i . If 

u = v' for some v E F2i-1 with 7C) = 1 then v7) E V(4), so let u = u 1  ...un  where 

.. • , u E F2i_2. By the induction assumption we may suppose that n > 1, 

and that u 1 7) and u 2 7) have inverses, say 74'7) and u 2 11), in bF(X)P7). Also, since 

(u l 'u l u 2 u2 ')1) is a product of idempotents then u 1 1 u 1 u 2 u2 1  = 1 by Remark 3.2.5 

and so (u l 'u l u2 u 2 ')i) has an inverse, say un), in bF(X)/7). But now (u 2'wu i ') 

is an inverse of (u i u 2 )1) in bF(X)/7). We may repeat the argument to show that 

the product u 1 u2 u37) has an inverse in bF(X)/7), and eventually this process 

leads to an inverse of ui) in bF(X)111. 

Lemma 3.2.7 Let W denote the E-solid semigroup U or the locally inverse 

semigroup V of constructions 3.2.2 and 3.2.3, with A and —1  as given in the 
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constructions. Let T denote the regular subsemigroup P or Q respectively. Sup-

pose -1  is also an inverse unary operation on T, and let a : Fu (A) W be 

the unary semigroup homomorphism with respect to -1  such that aa = a for all 

a E A. Then T = {ua : u E bF(A)}. 

Proof: Define a l  to be the restriction of a to bF(A) and consider constructions 

3.2.2, 3.2.3 and 3.2.4. We have (A U A')a i  = A U C T and Fi ai  C T. 

Assuming that F21 _ i a l  C T for i > 1, it follows, since -1  is an inverse unary 

operation on T, that F2ja i  C T. Hence bF(A)a i  C T. Again since ' is an 

inverse unary operation on T, for each v E AU k(A) we have u'a i  E V(ua l ). 

Therefore, by Lemma 3.2.6, bF(A)a i  is a regular subsemigroup of T. But T is 

the least regular subsemigroup of W that contains (Au A')a l , so T = bF(A)cti. 

By Result 1.3.37 we have the following corollary. 

Corollary 3.2.8 In the statement of Lemma 3.2.7, if A = X and W = F Es (X) 

or W = FLI (X) then {ua : u E bF(X)} is isomorphic to bFEs(X) or bFL I (X) 

respectively. 	 0 

Let ks denote the partial unary semigroup congruence on bF(X) generated 

by 

U {((u')',u), (uu', u'u) : u E A (X)}. 

Note that if u E k(X) then uks lies in a subgroup of bF(X)/ks  (by Result 

1.3.5), and (uks) -1  = u'l6ES• 

The next result is a consequence of Remark 2.5(a) and Lemma 1.2(ii) of [40]. 

For a congruence p on a regular semigroup S we write 

kerp = U{ep : e E E(S)}. 

Result 3.2.9 ([40]) Let e denote the least group congruence on Fes(X). Then 

ker e = Co,o (Fes(X)). 	 0 
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The following theorem is due to Kadourek and Szendrei [27, Theorem 2.5]. 

Since our proof is straightforward, is quite different to that of [27], and is con-

sidered later in the text, we present it here. 

Theorem 3.2.10 The semigroups bFEs(X) and bF(X)/ PiEs are isomorphic. 

Proof: Let -1  be an inverse unary operation on Fes(X) as used in construction 

3.2.2 for Corollary 3.2.8. Let a : Fu(X) Fes(X) be the unary semigroup 

homomorphism with respect to -1  such that xa = x for each x E X. By 

Corollary 3.2.8, Lemma 3.2.7 gives bFEs(X) {ua : u E bF(X)} = P, where 

P is the regular subsemigroup of Fes(X) as constructed in 3.2.2, with A = X. 

Recall that the natural inverse unary operation on Fes(X) is denoted by ', 

and the fully invariant congruence on Fu(X)  corresponding to the variety ES 

is denoted by pes. Let 0 : (Fes (X),') ---+ (Fg(X),' ) be the unary semigroup 

homomorphism such that x0 = x for all x E X. So 0 o 0 -1  is the least group 

congruence on Fes(X), and upes0 = rt for all u E Fu(X). By Result 3.2.9 we 

have ker 0 = Coo (Fes(X)). 

Now let u E MX). Then upes0 = 1, and hence up s  E ker 0 = Coo (Fes(X)). 

Therefore by Result 1.3.11 the element upes is in a subgroup of Fes(X). Since 

(Fes(X),') is the free regular unary E-solid semigroup and Fu(X)a E ES, we 

have pes  C a o a -1 . Result 1.3.5 now shows that ua is in a subgroup of Fu (X)a. 

By the definition of the operation -1  on Fes(X), this means that u'a = (ua) -1  

is the '14-related inverse of ua in Fu(X)a. This implies that ks Ca 0 a -1 , 

and consequently (by Result 1.1.2) there is a semigroup homomorphism : 

bF(X)I ks P given by (uks)co = ua for all u E bF(X). 

By Remark 3.2.5, whenever uks, vks E E(bF(X)I ks) we have uv E 

k(X). The definition of 13Es then shows that uvks lies in a subgroup of 

bF(X)/ks, and thus bF(X)/ks E ES by Lemma 1.3.11. Therefore there is a 

semigroup homomorphism zi) : P ---+ bF(X)I ks such that xlk = xhs for each 
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x E X. 

Recall the construction 3.2.4 of bF(X). Let T be the least regular subsemi-

group of bF(X)/ks  containing {43Es : X E X}, constructed as in 3.2.2. Then 

W;OES E T for every w E F1  = (X). Let i > 1 and suppose inductively that 

WhS E T for every w E F2i-1. Consider u E F2i-1 fl kpo. Then uks is in a 

subgroup of bF(X)/ks, and u'l6ES = (UkS) -1 . By Lemma 3.1.1 the element 

uks  is in a subgroup of T, and u'i3Es E T. So whs E T for every w E F22+1 .  

Thus bF(X)/ks = T. Now both bF(X)/ks and P have the form of the 

semigroup of construction 3.2.2, and consequently, in view of Result 1.3.5, the 

homomorphisms (to and 7,/, are mutually inverse. 

Notation 3.2.11 For u, v E k(X) write s(u, v) = v 	. Let 3(u,v) = 

s(w, w) where w = s(u,u)vs(u,u). 

Note that s(u, v)i) E S(ui?, vii) for every u, v E k(X). We have the following 

analogue of Lemma 3.1.11. 

Lemma 3.2.12 Let p be a congruence on bF(X) such that ijCpCer. 

(i) E(bF(X)I p) = {s(u,u)p : u E k(X)}. 

(ii) Each idempotent in each local submonoid of the semigroup bF(X)I p is of 

the form -.9-(u,v)p for some u,v E k(X). 

Proof: : (i) If up E E(bF(X)I p) then u E k(X) by Remark 3.2.5. Since 

s(u,u)li E S(ui),u0 then s(u,u)p E S(up,up) = {up} by Result 1.3.15(v),(vi). 

The result easily follows. 

(ii) See the proof of Lemma 3.1.11(ii). 	 0 

Corollary 3.2.8 indicates the existence of congruences p on bF(X) such that 

bF(X)I p is isomorphic to bFLI(X); but these congruences rely on the choice of 

inverse unary operations on FL/ (X), and are not easily described. 
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Consider the partial unary semigroup congruence j)Li  on bF(X) generated 

by 

a , p, q E k(X)}. 

Lemma 3.2.13 We have bF(X)Iki E LI. Hence s(u,v)ki = s(uki,v13L1) 

for every u, v E k(X). 

Proof: Since by Result 1.3.19 a semigroup S is inverse if and only if the 

idempotents of S commute, Lemma 3.2.12 shows that bF(X)ii6LI E LI. 

It appears that bF(X)/hi  might be isomorphic to bFLI(X), but in fact it 

can be shown that for every u E k(X) the class u'i5LI  is not a member of the 

least regular subsemigroup of bF(X)/ki  that contains the set {x3LI : x E X}, 

constructed as in 3.2.3. However, we construct below a subsemigroup W(X) 
of bF(X) which is isomorphic to the semigroup W(X) of the previous section 

and, when used instead of bF(X), provides results analogous to those obtained 

above. In particular, W(X)/pVs  is isomorphic to bFEs(X), where pVs  is the 

restriction of 1OES to ii/(X). Moreover, W(X)/p n is isomorphic to bFLI (X), 

where pn is the restriction to W(X) of the congruence I5L1  defined above. 

Construction 3.2.14 Let W(X) = L.12>o W2i+1) where 

Wi  = (W0) 

W2i = { s(a,b) : a, b E W2i. l  n k(x)} u 

W2i+1 = (W2) 

0 
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Note that W(X) C bF(X), and that in light of the next Lemma the state-

ments of Lemma 3.2.7 and Corollary 3.2.8 remain true when bF(X) is replaced 

with W(X). 

If p is a congruence on bF(X) then pw will denote pn (W(x) x W(x)). Of 

course W(X)/pw  is embedded in bF(X)I p. As previously mentioned, we will 

write P's  and pn for the restrictions to W(X) of /5ES and ()LI respectively. 

Lemma 3.2.15 The semigroup W(X)/I?' is regular. 

Proof: If w E Wo then wflw has an inverse in W(X)/r. Let i > 1 and 

assume that there is an inverse in W(X)/17 w  of tv73 1'v for every w E W21-2. 

Consider u E W2i. If u = s(a,b) for a, b E g722-1 then ufiw  E V(727-7 w ), so let 

u = u 1  ur, where u l , , un  E W2i-2. By the induction assumption we may 

suppose that n > 1, and that u i liw  and u 2 fiw  have inverses, say u l 'ijw  and 

u 2 '7) w , in W(X)/ w . Then 

(u 1 'u i )ijw ,(u2u2')ijw  E  

so ul'u l  = u2 u 2' = 1 by Remark 3.2.5. Therefore s(u 1 'u 1 ,u 2 u 2 1 ) E W(X). But 

s(u l 'u l  , u2u2')/^7 E 	u2u2 1 ) = S(1,11177 u2)) 

by Result 1.3.15(ii), so that 

E V(uiu217) 

by Result 1.3.15(iii). Thus u'2s(u 1 'u i ,u 2 u 2 ')u'I fi w  is an inverse of (u i u 2 )fiw  in 

W(X)/r. This argument may be repeated to show that u 1 u2 u3 liw has an 

inverse in W(X)/f', and eventually this process leads to an inverse of u'n w  in 

W(X)//r. 

Since (uv)/ W(X) for u,v E W(X), the next statement is not immediately 

obvious. 
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Lemma 3.2.16 If u,v E k(X) n W(X) then s(u,v)iiw  E 

Proof: Let u, v E k(X)n W(x). By Lemma 3.2.15 there exist u*, v* E W(X) 
such that u*/) 147  E V(ur) and v*Ij w  E V(v). Then 

= v(uv)/ufi 

= vv*v(uv)'uu*u7) 

vv*s(u, v)u*u7). 

Since s(u, v)i) E 	vi)) then v*s(u, v)u*ij E V(uv7)) by Result 1.3.15(iii); and 

hence v*s(u, v)u*r E V(uvr). Therefore 

s(u,v)i)w  E vrV(uvi)w )uljw  

= S(ui/w ,vi)w ). 

0 

We now have the following analogue of Lemma 3.2.12. 

Lemma 3.2.17 Let p be a congruence on W(X) such that filv  C p C 

(i) E(W(X)I p) = {s(w,w)p : w E k(X) n W(x)}. 

(ii) Each idempotent in each local submonoid of the semigroup W(X)/p is of 

the form -s-(u,v)p for some u,v E k(X) fl W(X). 	 0 

The next observation will be needed presently. 

Remark 3.2.18 Let u E k po. Then uks is in a subgroup of bF(X)/ks 

and (uks) -1  = UlijES• 

Suppose that uhs = 4ES for some w E W(X). Since {yks : y E W(X)} 
is a regular subsemigroup of bF(X)/16Es then by Lemma 3.1.1 the element 

w ioLvs  is in a subgroup of W(X)/Js  and there exists w* E W(X) such that 

w*PLvs = (wpVs ) -1  and Wks = (u/5Es) -1  = w*hS• 0 
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The next result states, as was previously indicated, that both l' 7 (X)/p' s  

and bF(X)/ks are bifree E-solid semigroups on X. 

Theorem 3.2.19 The semigroups W(X)/p, bF(X)I iriEs and bFEs(X) are 

isomorphic. 

Proof: Recall the constructions 3.2.4 and 3.2.14, of bF(X) and W(X) re-

spectively. We show by induction on i that for every u E F2+1  there exists 

w E W(X) such that uks = WfiES. For the first step, we have W1  = Fi. 

Suppose that i > 1, and let u E F2i-1 n k(X). Then uks = wfiEs for 

some w E W(X) by the induction hypothesis. Therefore Remark 3.2.18 shows 

that there exists w* E W(X) such that u'fiEs = efiEs• It now follows that 

for every u E F2i-}-1 there exists w E W(X) such that uks = WfiES. Thus 

W(X)/p ts  bF(X)/ks, and the result follows from Theorem 3.2.10. 

Before moving on, we note the following information. 

Lemma 3.2.20 If u, v E k(X) n W(x) then uvplvs  lies in a subgroup of 

l' 7 (X)/p, and s(u,v)plvs  = vplvs (uvpVs ) -luplvs . 

Proof: If u, v E k(X) n W(x) then uv E k 	. As in Remark 3.2.18 the 

element uv ioEs  lies in a subgroup of bF(X)/16Es , and uvpVs  lies in a subgroup 

of W(X)/p'. Also, there exists w* E W(X) such that (uviiE s ) -1  = w*fiEs  and 

(uvpVs ) -1  = tv*Avs . Then 

s(u, v)ks  = v(uV) /U 'fiES 

= VI3Es ( UIVEs ) UPES 

* - = VW UPES, 

and hence s(u, v)pVs  = vw* 	io uplvs  = vlvs (uvpVs ) -1 uplvs . 	 0 

Let us now consider the bifree locally inverse semigroup. Recall the congru-

ence fit ' . 
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Theorem 3.2.21 The semigroups bFL I (X) and W(X)1411  are isomorphic. 

Proof: Let -1  denote the inverse unary operation on FL,r (X) as used in con-

struction 3.2.3 for Corollary 3.2.8, and let a : --+ FL/(X) be the unary 

semigroup homomorphism with respect to this operation such that xa = x for 

each x E X. The proofs of Corollary 3.2.8 and Lemma 3.2.7 hold when W(X) 

is substituted for bF(X), so we have bFL,i (X) {wa : w E W(X)} = Q, where 

Q is the regular subsemigroup of FLAX) constructed as in 3.2.3, with A = X. 

Notice that for u, v E R(X) we have 

s(u, v)a = v(uv) /ua 

va(uva) -lua 

E S(ua,va). 

So if a , p, q E k(X) then s(a , a)a E E(FLI(X)) and 

3(a , p)a,3(a , q)a E E(s(a, a)a • FLI(X) s(a, a)a). 

Now Result 1.3.19 shows that pLi  C c o ot-1  since Fii (X)a E LI, and hence 

(by Result 1.1.2) there is a semigroup homomorphism l'/(X)/p Q given 

by wpr:/  wa, w E W(X). 

Since i) 147  C NS then W(X)/pifi  is isomorphic to a regular subsemigroup of 

bF(X)/ki, which is a member of LI by Lemma 3.2.13, and hence W(X)/p lvi  E 

LI. Therefore there is a semigroup homomorphism Q 1 -4/(X)I pn such that 

X spIL x E X. 

Recall the construction 3.2.14 of W(X). The inductive method used to show 

that the least regular subsemigroup of bF(X)/ks that contains {xiiEs : x E X} 

is bF(X)//oEs itself can be used to show the analogous result for W(X)/p, as 

follows. 

Let T be the least regular subsemigroup of W(X)/pri  containing the set 

{xplvi  : x E X}, constructed as in 3.2.3. Then wpIvi  E T whenever w E W1  = 
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(X). Suppose that wpn E T for every w E W2i_1, where i > 1, and let 

a, b E 	n k(x). Let v E W(X) be such that vpn E V (abpn). Then 

bvapn E S(apn,bpn) = {s(apLwi ,bpn)}, 

so that bvapn E T by the definition of T since apn,bpn E T by the induction 

hypothesis. Further, we have bvaki = s(aki,biOLI) = s(a,b)ki, and hence 

s(a,b)pn= bvapn E T. Thus W(X)/p = T, and by an argument analogous 

to that used in the proof of Theorem 3.2.10 it now follows that bFLI (X) 

W(x)/1014,71. 
	 0 

We can proceed exactly as in Section 3.1 to describe a Birkhoff-style theory in 

this setting, as follows. Let V = ES or V = LI. The (partial) unary semigroup 

homomorphism (4) 4  maps W(X) onto bFv(X). So for any semigroup S E V, 

each matched mapping 4) : X 	S extends uniquely (by the universal property 

of bifree objects) to a semigroup homomorphism 0 : Vii(X) 	S such that 

0o0' D 4. In the E-solid case, if u, v E K(X) 1-1 W(X) then uv0 lies in a 

subgroup of S, and s(u, v)0 = v(uv)'uO = v0(uv0) i u0 by Lemma 3.2.20. In 

the locally inverse case, if u, v E k(X) n W(x) then s(u, v)0 = s(u0, v0) (since 

s(u, v)pn = s(upn, vpn) by the last paragraph in the proof of Theorem 3.2.21). 

With the obvious changes, all the theory set out in Section 3.1 can be du-

plicated, and an analogue of Theorem 3.1.17 also holds in this context. The 

advantage of the approach of Section 3.1 over that given in this section is clear: 

here we cannot explicitly give generators of the congruences relating to the bifree 

objects, but must rely on the restrictions of congruences on bF(X). 

3.3 E-varieties of locally E-solid semigroups. 

Recall that LES denotes the e-variety of all locally E-solid semigroups. In 

[25] KaCiourek established that trifree objects exist in all e-varieties of locally 
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orthodox semigroups. In Section 3.3.1 we establish the existence of trifree ob-

jects in e-varieties of locally E-solid semigroups, and show in Section 3.3.2 that 

trifree objects on at least three generators exist in an e-variety V if and only 

if V C LES. This also generalizes Yeh's result [43] which states that bifree 

objects on at least two generators exist in an e-variety V if and only if V C ES 

or V C LI. 

3.3.1 The existence of trifree objects in locally E-solid 

e-varieties. 

First we generalize Kaaourek's results, which we have stated in Section 1.3.7, 

to classes of locally E-solid semigroups. 

A semigroup S without zero is said to be completely simple if S is completely 

regular and has only one D-class. 

Result 3.3.1 ([19],Theorem 7) For every locally E-solid semigroup S there 

exists a least congruence p on S such that SI p is locally inverse. For every 

e E E(S) the class ep is a completely simple subsemigroup of S. 

Recall from Notation 1.3.6 that if k is a member of a subgroup of a semigroup 

S then k° denotes the unique idempotent 94-related to k. 

We have the following characterizations of locally E-solid semigroups. 

Theorem 3.3.2 For a regular semigroup S the following are equivalent: 

(i) S is locally E-solid, 

(ii) if e E E(S) and f,g E E(eSe) then S(fg, fg) n V(gf) 0, 

(iii) if e E E(S) and f,g E E(eSe) then S(fg, fg) g V(g f), and 

(iv) if a E Sx and b E yS for x, y E S then V (b)S(k, k)V (a) c V(ab) for every 

k E bV (b)S (x , y)V (a)a 
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Proof: (i) 	(iv): Let S E LES. Suppose that a E Sx and b E yS for 

x, y E S, and let k = bb'ua'a where u E S(x,y), a' E V(a) and b' E V(b). 

Consider v E V(ab) and h = bva E S(a,b), and let p be the least locally inverse 

congruence on S. Then hp E S(ap,bp) = {s(ap,bp)}. But (b'ua')p E V(abp) by 

Result 1.3.39, so 

kp 	(bb'ua'a)p 

E bpV(abp)ap 

S(ap,bp) 

{hp}. 

Hence h and k lie in the same completely simple subsemigroup D of S by 

Result 3.3.1. This means that every 71-class of D is a group and that the 

elements h, k, hk° , hk° h E D are all D-related in S. Now by Result 1.3.4 we 

have h 1-1 hk°h. Since khk = bb'ua'a(bva)bb'ua'a = bb'ua'abilua'a = k 2 , then 

(hk°h) 2  = hiehk°h = hk -l khkk-l h = hk -1 k 2 k -1  h = hk° h. 

Therefore h = Wiz since h and Melt are Ii-related idempotents. Note that 

ahb = ab by Result 1.3.15(iv). Also, if a* E V(a) and b* E V(b) then bb*k = 

k = ka*a, and hence bb*k° = bb*kk -1  = k° = k°a* a, so that 

ab(b*k°a*)ab = ahb(b*k°a*)ahb = ahk° hb = ahb = ab 

and b* k° a* (ab)b*k° a* = b* k° a* . Therefore b*k° a* E V (ab); so that we have 

V (b)S (k , k)V (a) C V (ab), as required, since S(k,k) = {k°} by Lemma 3.1.1. 

(iv) = (iii): Let e E E(S) and f,g E E(eSe). Note that 

S(fg,fg)= fS(fg,fg)g 

and 

fg = feg = ffegg E fV(f)S(e,e)V(g)g, 
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so that, since g E Se and f E eS, we have 

S(fg,fg) = fS(fg,fg)g c V(f)S(fg,fg)V(g)C V(g f). 

(iii) = (ii) trivially. 

(ii) 	(i): Let ,  e E E(S) and f,g E E(eSe). Then S(fg,fg)nV(gf) 	0 

and S(gf,gf)n V(fg) 0, so we may choose w E V((fg) 2 ) and z E V((gf) 2 ) 

such that u = fgwfg E V(g f) and v = gfzgf E V(fg). Then 

gf = g fug f 

gf(fgwfg)gf 

= g(fgvfg)w(fgvfg)f 

= gfgvuvfgf 

gfg(gfzgf)u(gfzgf)fgf 

E (gf) 2 S(gf) 2 , 

so that gf 71 (gf) 2 . Therefore eSe E ES by Result 1.3.11(i). 	 0 

Corollary 3.3.3 Let S E LES. If a E Sx and b E yS for x,y E S, and 

k E bV(b)S(x, y)V(a)a, then k lies in a subgroup of S and S(k,k) = {k°}. 

Proof: The proof that (i) implies (iv) of Lemma 3.3.2 shows that k lies in a 

subgroup of S, and so S(k, k) = {k°} by Lemma 3.1.1. 	 0 

Recall that by Result 1.3.5 an element k of a regular semigroup S is in a 

subgroup of S if and only if k '1-t k2 , and that in this case the unique 74-related 

inverse of k is denoted k'. 

The next result gives the existence of least regular subsemigroups in locally 

E-solid semigroups. Note that the subsemigroup R is the closure of A U C in S 

under the operations of multiplication and taking group inverses. 
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Lemma 3.3.4 Let S be a locally E-solid semigroup. Suppose that A,C C S are 

such that 

(i) A n V(a) 0 for every a E A, 

(ii) C c U{S(a,b) : a,b E A}, and 

(iii) C n S(a,b) 00 for every a,b E A. 

Then the semigroup R =Ui>o R2i+i is the least regular subsemigroup of S con-

taining AU C, where 

Ro  = A U C 

1121 = 	: r E R21-17 r 1-1 r2 } U 1121-1 

R21+i = (R21) 

Proof: We first prove by induction that for every r E R we can find a, b E A 

such that r E aR n Rb. If r E C then r = aub for some a, b E A and u E V (ba), 

so that the result holds for all r E AUC and hence for all r E R I  = (A U C). 

Now assume that i > 1 and that if r E R2 1 _1 then r E a Rn Rb for some a, b E A. 

If r E R2 1  then either r E 112 2 _ 1 , or r = 3 -1  = ss -38 for some s E R2i-1 with 

s s 2 . In both cases r E a Rn Rb for some a, b E A by the induction hypothesis, 

and hence the same holds for all r E 1121+1 = (R21). 

The members of A U C have inverses in A U C. Assume inductively that the 

members of R21_2 have inverses in R, where i > 1, and consider r E R2 2 . If 

103 



r = .5 -1  for s E 	with s 	3 2  then s E V(r) n R. So let r = r i  _7- 7, where 

r i , 	,r, E R2t-2; if n = 1 then r has an inverse in R. Suppose that n > 2 and 

that if t i , ,t_ 1  E R2i-2 then V(t i  4_ 1 ) n R 0. Let t = r 1  r,,_ i  and let 

t' E V(t) n R and r7, E V(r) fl R. We may assume t E Ra and rn  E bR for some 

a, b E A. Let k = rnr t, where c E S (a, b) n C. Then k E R, and Corollary 

3.3.3 shows that k lies in a subgroup of S and S (k, k) = {k°}. Consequently 

E R, so that k° E R, and hence r k° t' E V (r) n R by Lemma 3.3.2. Thus R 

is regular, and is clearly the least regular subsemigroup of S containing A U C. 

0 

For the next part we recall X and X as given in Notation 1.3.20, and X1 

as given in Notation 1.3.41. The following definition is Definition 1.3.42, given 

again for convenience. 

Definition 3.3.5 ([25]) 

• A tied mapping is a mapping 0 : X i 	S where S is a regular semigroup, 

x/0 E V(x0) for every x E X, and s(x, y)0 E S(x0,0)) for every x,y E X. 

• A trifree object for a class V of regular semigroups is a pair (5, t), where 

—> S is a tied mapping, such that for any T E V and tied mapping 

: X 1 	T there is a unique homomorphism 0 : .8 	T such that 

tO = 0. 	 0 

As we have seen, the construction of the least regular subsemigroup of a 

locally E-solid semigroup containing sets of the form A U C, as described in 

Lemma 3.3.4, is not as simple as that for locally orthodox semigroups, where 

the subsemigroup (A U C) is itself regular. This gives rise to complications; for 

example, in the locally orthodox case tied mappings can be naturally extended 

to the free semigroup X 1 + , but for locally E-solid semigroups we require a more 
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artificial setting. There is a semigroup T(X) for which some of the results of Sec-

tions 3.1 and 3.2 can be reproduced, with triidentities being equations between 

members of T(X), but we do not discuss triidentities here. The description is 

complicated, and Kaaourek's proof that there is no Birkhoff-type theorem con-

necting e-varieties of locally orthodox semigroups with sets of triidentities also 

shows that there is no such theorem for e-varieties of locally E-solid semigroups. 

Instead, we construct trifree objects in e-varieties of locally E-solid semigroups 

as subsemigroups of the free objects in certain varieties. 

When Yeh constructed the bifree locally inverse and E-solid semigroups 

as subsemigroups of the corresponding free regular unary semigroups, he used 

paired mappings instead of matched mappings. As stated in Definition 1.3.21, 

a mapping 0 : X S, where S is a regular semigroup, is said to be matched 

if x'q5 E V(xcb) for every x E X. A mapping cb : X -4 S, where S is a 

regular semigroup, is said to be paired if it is matched and xick = y'ck whenever 

xq = yO for x,y E X. The extra condition was required in order to obtain unary 

semigroup homomorphisms into S extending 0, via an inverse unary operation 

on S. But Hall (private communication, see [24]) has shown that the two 

definitions are equivalent for classes of regular semigroups closed under taking 

finite direct products. This follows from the fact that if : X —> S is matched 

then the mapping : X -÷ S x S given by xck = (x, x'), = (x', x), 

x E X, is paired. 

The material presented in this section appears in [13]. In the version of 

this paper that was first submitted for publication, a generalization of the con-

cept of a paired mapping was used to define tied mappings for locally E-solid 

semigroups, for the purpose of locating trifree objects as subsemigroups of the 

corresponding free regular unary semigroups. The referee offered the idea of us-

ing semigroups with many unary operations, which allows the use of Ka sclourek's 

definition (3.3.5) of a tied mapping. 
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Definition 3.3.6 Let A be a set and V an e-variety. By a regular A-unary 

semigroup is meant a semigroup S together with a set {i A  : A E A} of inverse 

unary operations on S. 0 

The variety of all regular A-unary semigroups is denoted RUS A . A straight-

forward generalization of the proof of Result 1.3.9 shows that for an e-variety 

V the class 

{(S,(iA) ), EA ) E RUSA  : S E V} 

is a variety of regular A-unary semigroups; we denote it by VA . 

Consider a fixed A = X U72 , and write LES = LESA . Let 

(FLes (x) , (x).Ex , (Yz),,zET) 

be the free object on X in LE'S; here P  denotes the unary operation u 1—+ uP, 

u E FLes(X), for all pe XU 72 . 

Here we redefine Xi . Let I(X) = {xx : x E X} C FLES(X).  Then X' 

can be identified with I(X) by writing x' = xx for each x E X, and we also 

write X = X U I(X). Let s(y, z) = z(yz)zy for all y, z E X, and write 

X-1  = X U Is(y,z) : y,z E XI. 

Suppose that V is a sub e-variety of LES, and write V = VA. Let 

(Fv(x), (x)xE ,y, (Yz) 7) 

be the free object on X in V. Then F(X) E LES so by Lemma 3.3.4 there is 

a least regular subsemigroup R of F(X) such that X i  C R, constructed as in 

(6). Let t : X i  —> R be the natural injection. Then t is a tied mapping. 

Theorem 3.3.7 The semigroup R, together with the mapping t, is the trifree 

object on X in V. 

Proof: Let S E V, and let 0 : X 1  —> S be a tied mapping. Let 0' be the 

restriction of 0 to X. For every x E X choose an inverse unary operation x on 
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S satisfying (xck)x = xxqS. Now for every y,z E X we have s(y, z)(1) = zOwyz ycb 

for some wy, E V(yrkz0). So for every y,z E X we can choose an inverse unary 

operation Yz on S such that (yOzO) Yz  = wyz . Then 

757  = (SI ( x )sex, ("),Ex) E V, 

so there is a A-unary semigroup homomorphism (p' : Fv(X) -4 3 extending 

01 . Let cp be the restriction of cio' to R. Then cp extends 0: if x E X then 

x(p = x(,o' = xek' = xck and xxcp = xx(p' = (x(to') x  = (x(¢)x  = xx0; and if y,z E X 

then 

s(y,z)(p = s(y, z)co' 

= (z(Yz)Yz  

Z.°1  (YZ 1 )Yz  Y49 ' 

zO(YOzOr z Y0 

= zckwyz y0 

s(y, z)0. 

It remains to show the uniqueness of (,o. Suppose that 0 : R 	S is a semigroup 

homomorphism extending c/). Then w,o = u0 for every u E X i t = Ro , and hence 

for every u E R1 = (R0). Let i > 1, and assume inductively that w,o = u0 for 

every u E R22-1. Let u E R22 If u E R21-1 then wp = u0 by the induction 

assumption. Otherwise, u = r -1  for some r E R22-1 with r r 2 , and in this 

case rcp = r0 so that UCt.9 = UO (by Result 1.3.7). Thus wp = u0 for every 

u E R2 2 +1 = (R2 1 ), and the proof is completed. 

Remark 3.3.8 For an e-variety V C ES or V C LI, it is easy to see that 

the least regular subsemigroup T of FvA (X) containing X is isomorphic to the 

least regular subsemigroup of Fv,(X) containing X (recall Result 1.3.9 for the 

notation V'), and is therefore bifree in V by Result 1.3.37. If V C ES then 
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for x, y E X the element s(x, y) E Fvn(X) is not necessarily a member of T , 

and in this case the bifree and trifree objects in V on X are not isomorphic. 

However if V is contained in LI then the bifree and trifree objects in V on X 

are isomorphic. 0 

3.3.2 Only locally E-solid e-varieties admit trifree ob-

jects. 

The aim in this section is to show that trifree objects on three or more generators 

exist in an e-variety V only if V C LES. 

Let C2 denote the Rees matrix semigroup 

(1 1\ 
((1), 2,2, 	). 

1 0 

Result 3.3.9 ([21]) For an e-variety V we have V C ES if and only if C2 

The next result is well-known, and the proof is easy. 

Result 3.3.10 For an e-variety V we have V C LI if and only if V does 

not contain R', the two element right (equivalently, left) zero semigroup with 

adjoined identity. 

For a class C of regular semigroups let V(C) be the e-variety generated by 

C. 

In [43], Yeh constructed a regular semigroup in V(C2 , .11 1 ) with a subset A = 

{e, f}, where e and f are idempotents, which has no least regular subsemigroup 

containing A. Yeh used this together with Results 3.3.9 and 3.3.10 to prove 

that non-monogenic bifree objects exist in an e-variety V if and only if V C ES 

or V C LI. 
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Following Yeh's method, we now proceed to establish an analogous result for 

LES. First we extend Result 3.3.9 by showing that for an e-variety V we have 

V C LES if and only if C2 1  ct V, where C2 1  is C2 with an identity adjoined. 

We then construct a regular semigroup in V(C 2 1 , R 1 ) = V(C2 1 ) with subsets 

A, C that satisfy the conditions of Lemma 3.3.4, but which has no least regular 

subsemigroup containing A U C. As a consequence of these results we prove 

that trifree objects on three or more generators exist in an e-variety V if and 

only if V C LES. 

For an e-variety V, let Vm  be the e-variety generated by the monoids of V. 

Lemma 3.3.11 For an e-variety V we have 

Vm = {S: S is a regular subsemigroup of a monoid of V} 

= 	E RS : S 1  E V}. 

Proof: Let W = {S : S is a regular subsemigroup of a monoid of V}. Then 

{S E RS : S E V} C W. Conversely, if S E W then there is a monoid 

T E V, with identity e E T, such that S is a regular subsemigroup of T. But 

then S U {e} is a monoid in V, so that W C {S E RS : S I  E V}; and thus 

W = IS E RS : SI E V}. 

Clearly W is closed under taking regular subsemigroups, and also W C V. 

Suppose that f : S U is a surjective homomorphism, for S E W. If S = 5 1  

then U is a monoid in V, and hence U E W. If S is not a monoid but is a 

subsemigroup of a monoid T E V, with identity e, then f may be extended to 

fl : where 5 1  = S U {e} with e as identity and U 1  = UU {Re)} with 

f 1 (e) as identity. Since 5' E V then U' E V, and therefore W is closed under 

homomorphisms. 

Now let {S, : i E /} be a family from W. For each i E I let e, be the identity 

for Se'. Then ME/  Si- is a monoid in V, with identity (e 2 ) 2E1 . But mei  si  is a 
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regular subsemigroup of njE , , and is therefore a member of W. Hence W is 

an e-variety, and it follows that W = Vm . 	 0 

Corollary 3.3.12 An e-variety v g LES if and only if C2 1  E V. 

Proof: Recall from Section 1.3.3 that the class 

LV = {S E RS : eS e E V for all e E E(S)} 

is an e-variety. Note that LLV = LV. Clearly V g LES if and only if 

LV LES. 

If S E LV \ LES then eSe E V \ ES for some e E E(S), and so eSe E 

Vm \ ES. Thus LV g LES implies vm  g ES; conversely Vm  ES implies 

V g ES, and hence LV g LES. Therefore V LES if and only if Vm  g ES. 

Finally, Vm g ES if and only if C2 E Vm, and C2 E Vm if and only if C2 E V 

by Lemma 3.3.11. 0 

Recall from Notation 1.1.10 that for a nonempty set X the free semigroup 

and free monoid on X are denoted X+ and X* respectively. 

We now introduce the example. Let A = {a, b, c, d, e, f} be a set of distinct 

variables. Let A+ U {0} be the free semigroup A+ with an adjoined zero. So 

x • 0 = 0 • x = 0 for all x E At 

Define 

T = {0,a, b, c, d,db, ad, ab, e, ec, ac, ac, f,  fb, f c, f e, a f , 

a fb, a f c, a f e,df , dfb, dc, de, adf,  , adfb, adc, ade} 
	

(3.2) 

C fa ,b, c, d, e,f}±  U {0}. 

It can be routinely checked that T is the subsemigroup of A+ U {0} generated 
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by {a ,b, c, d, e, f,  0} subject to the relations 

aa = a b f = 0 cf = f 	ee = e 	adb = ab 

ba = 0 ca = 0 da=d ef = f 	aec = ac 

bb = b 	cb = 0 	dd = d f a = f dec = dc 

bc = 0 	cc = c 	ea = e f d = f 	df c = dc 

bd = d cd = 0 	eb = 0 ff = f df e = de 

be = 0 	ce = e 	ed = 0 	 f ec = f c 

This semigroup has been constructed with significant help from J. Almeida and 

his computer program for constructing sernigroups from their presentations. 

Given that T is a semigroup we easily see that T is a regular combinatorial 

semigroup of order 28, with 7 D-classes as pictured below (the * denotes that 

an element is an idempotent). 

*b 

 

*a 

 

*c 

*d *db *e *ec 

*ad ab *ae ac 

*f fb *fc *fe 

*af afb afc *afe 

*df *dfb dc de 

*adf adfb adc ade 

*0 
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Our first aim is to show that T E V(C2 1 ). To this end we need some 

preliminary results. 

A semilattice is a commutative semigroup of idempotents. A semigroup S 

is a local semilattice if eSe is a semilattice for every e E E(S). 

Result 3.3.13 ([21]) The e-variety generated by C2 is precisely the class of all 

regular local semilattices. 	 0 

See Trakhtman in [38, Theorem 20.4] or Trotter [41] for a proof of the fol-

lowing well known result. 

Result 3.3.14 A basis of identities for the semigroup variety generated by C2 

is given by 

x3  = x2 ,x(yx)2  = xyx,xyxzx = xzxyx. 	 0 

Let X be a nonempty set, with Y C X. For a word u E X+  define uy E Y* 

to be the word obtained from u by deleting all occurrences of variables not in 

Y. 

For an e-variety V let Vm = V({S1  : S E V}). The proof of [3, Lemma 

7.2.1] is easily generalized to give the next result. 

Lemma 3.3.15 Suppose that V is an e-variety and X is a nonempty set. Let 

u,v E X+ . Then the class V m satisfies the (semigroup) identity u = v if and 

only if V satisfies the (semigroup) identity u y  = vy  for every subset Y of X. 

0 

We now give the main lemma of this section. 

Lemma 3.3.16 The semigroup T is a member of V (C2 1 ). 
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Proof: It follows from Lemma 3.3.11 that V(C 2 ) C V(C2 1 ) m , and that there-

fore any W E V(C2) is such that W 1  E V(C2 1 ). Hence 

V(C2 1 ) = V({W 1  W E V(C2)}) = V(C2) m . 

Let X be a denumerable set of variables. By Lemma 3.3.15, an identity u = v 

on X is now valid in the e-variety V(C 2 1 ) if and only if the identity uy  = vy  

holds in the e-variety V(C 2 ) for any set Y C X. 

By Result 3.3.13, the e-variety V(C2 ) is precisely the class of all regular local 

semilattices. By Result 3.3.14 a basis of identities for the semigroup variety 

generated by C2 is given by 

X3 = x 2 ,x(yx) 2  = xyx, xyxzx = xzxyx. 

Conversely, it is easy to see that any regular semigroup that satisfies these iden-

tities is locally a semilattice. Hence these identities form a basis of biidentities 

for V(C2 ). In particular, if u = v is a semigroup identity for V(C 2 ), where 

U = x i  ... xn  and v = ym  for x i, , x„,, y i, ym  E X, then the following 

are true: 

• x i  = 

• x n  — ym, 

• {x 1 ,.. • ,xn} = {y1)• • • 'Y.}, and 

• 

Suppose that T V(C2 1 ). Then there is a semigroup identity u = v, where 

u = x i  ... xn  and v = 	ym  for x i , 	, xn, Yi, 	,Ym E X, that is satisfied 

by C2 1  but not by T. Let 0 : X+ 	T be a semigroup homomorphism such 

that u0 v0. 
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Observe that Df U {0} is an ideal of T, where Df  is the D-class of f, and 

that T/(Df  U {0}) and T \ {a,b,c} are regular local semilattices. Therefore 

the semigroups T/(Df  U {0}) and T \{a,b,c} satisfy the identity u = v, and 

consequently {a, b, c} CI {x10, • • , xricb, Y10, • • Yni0} 0 0 and ucb, vq5 E Df U {0}. 

We may assume uck 0 0. 

Notice that if the variable a occurs in t E T, as displayed in (3.2), then 

t = as for some s E T 1  such that a does not occur in s. Let 0 : X+ —> T' be 

the semigroup homomorphism given by 

1  x0 if a does not occur in x0 

w if x0 = aw 

for all x E X. 

Notice that 
if x E {a, d, e, f} 

xa 
0 	if x E {b, c}, 

and so there is no pair x i , x 2+1  for which x i+i ck begins with a and xi ck ends with 

b or c. Hence 

uck = 
{

a.u0 if a appears in x10 

u0 if a does not appear in x i ck. 

Therefore u0 0 0, and hence if v0 = 0 then tri,b 0 v0. If vcb 0 0 then we may 

repeat the above for v; and then, since x 1  = y i , we have uq5 = zak if and only 

if v0 = v0. Consequently u0 	u0. Otherwise, v0 = 0 and v0 0 0. Since 

{x 1 , , xn } = ly i , , ynj, then yick 0 0 for all i. It follows that y i ii) ends with 

b or c, and yi+l ei) begins with a for some i. But yiy, ±1  = x 3 x3+1  for some j, so 

this is a contradiction. Thus in all cases we have u0 0 v0. 

Therefore, if Y = {x E X : x(/) a}, then uy = vy is an identity satisfied by 

V(C2 1 ) and 0 : X+ –+ T is a homomorphism such that uy 0 = u0 0 v0 = vy 0; 

and so we may assume that the range of cl) excludes a. 
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Observe also that 

bx = 
	if x E fb, 

0 if x E {a, c,e, f} 

and 

cx = 
	x if x E {c, e, f} 

0 	if x E {a, b,d}. 

By a dual of the above argument we may assume the range of cb also excludes 

b and c. But then maps into T \ {a,b,c} E V(C2 ), and this provides the 

contradiction since u = v is satisfied by V(C2)• 

Consider the following subsets of T: 

0 = {a,b, d, db, ad, ab}, 

U = {0, c, e, CC, ae, ac, f c, a f c, dc, adc, f e, a f e, de, ade}, 

V = {0, f,  a f , df,  , adf,  , fb, a fb, dfb, ad! b}. 

Let R = {u, v} be a right zero semigroup (so R satisfies the identity xy = y) 

and consider the regular subsemigroup 

P = {(x,1),(y,u),(z,v):x E 0,y EU UV,z EV} 

of Tx R 1 . Let Q = PII, where I is the ideal {(0, u), (0, v)} of P. The D-classes 

of Q are given below in Figure 3.1. 

It follows from Lemma 3.3.11 that R 1  E V(C2 1 ), and therefore Q E V(C2 1 ) 

by Lemma 3.3.16. Consider the subsets 

A = f (a, 1), (b,1),(c,u)} and C = f(d, 1), (e,u),0} 

of Q. Observe that (d, 1) E S((a,1),(b, 1)) and (e, u) E S((a,1),(c,u)); and 

that S (p, q) = {0} for all (p, q) E (A x A) \ {((a,1), (b, 1)), ((a,1), (c, u))1 with 

p q. Then A and C satisfy the conditions of Lemma 3.3.4 (with Q in place 

of S). 
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*(b,1) 

 

*(a,1) 

  

  

*(c,u) 

    

*(d,1) *(db,l) 

*(ad,l) (ab,l) 

*(e,u) *(ec,u) 

*(ae,u) (ac,u) 

*(f,v) (fb,v) *(f,u) (fb,u) *(fc,u) *(fe,u) 

*(af,v) (afb,v) *(af,u) (afb,u) (afc,u) *(afe,u) 

*(df,v) *(dfb,v) *(df,u) *(dfb,u) (dc,u) (de,u) 

*(adf,v) (adfb,v) *(adf,u) (adfb,u) (adc,u) (ade,u) 

*0 

Figure 3.1: The D-classes of the semigroup Q. 

Lemma 3.3.17 There is no least regular subsemigroup of Q that contains AUC 

Proof: Let 	

= {(x, 1), (y, u) : x E 0, yEvu 

and 

T2 = {(x, 1), (y, u), (z, u) : x E 0, y E U, z E Vl. 

Write Q i  = TO and Q2 = T2/I. Then Q i  and Q2 are regular subsemigroups 

of Q containing A U C. However, 

fl T2 = {(X, 1 ), (Y, 11 ) X E 0,y E 

so that (de, u) E Qi n Q2; but the inverses of de in T are f, fb,af,afb, and none 
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of these is a member of U. Therefore Q i  n Q2 is not regular. 	 0 

We conclude this section with the main result. 

Theorem 3.3.18 Suppose that V is an e-variety and X is a set with XI > 3. 

There is a trzfree object in V on X if and only if V C LES. 

Proof: Suppose v g LES. Then C2 1  E V by Corollary 3.3.12, and hence 

Q E V. Suppose there is a trifree object (F, t) on X in V. Let x, y, z be 

distinct members of X. We may consider a mapping co : Q which is tied 

and satisfies 

(a, 1) if w = x 

• wcp = w'co = s(w,w)cp = s(w' , tv')co = 	(b,l) if w = y 

(c, u) if w 	z 

• s(x , y)(,o = s(x' , y')co = (d, 1); s(x , z)(p = s(x' , z')c,o 	(e, u) 

• s(w,t)(p = 0 for all other w,t E {x, y, z,x', y', 

Let co : F —> Q be the unique homomorphism satisfying tc75 = co. Then F(7.3 is 

a regular subsemigroup of Q containing A U C; moreover, the above argument 

shows that any regular subsemigroup of Q that contains A U C also contains 

F7,5. This contradicts Lemma 3.3.17. 0 

Remark 3.3.19 In [25] Kaaourek claimed, without proof, the statement of 

Theorem 3.3.18. 	 0 

3.4 A theory of n-varieties. 

The theory for locally E-solid semigroups that was developed in the previous 

section can be extended in such a way as to obtain a suitable notion of a "free 

object" for every e-variety. Given a regular semigroup S and 3 < n < co, we 

say that subsets A2, A3, .. , An  of S satisfy property (*n ) if 
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(i) A2 n V(a) 0 for all a E A2, and 

(ii) A2 	An ; 

and if for 3 < j <n 

(iii) every a E Ai is a member of S(u i 	uk, v1... vt) for some k, < j and 

, U, 	, ye E A3 _1, and 

(iv) S(u i 	uk, ul • • • ye) n A3 	0 for every ui, • • , uk, vi, • • , ye E Aj-1, where 

k,i < j. 

If subsets A2, A3, ... of a regular semigroup S satisfy property (* n ) for every n, 

3 < n < oo, then define Ao0 = U> 	and say that A2, A3,. .. satisfy property U>3 An,  

(*co). 

For every n, 3 < n < oo, let Vn  be the class of all regular semigroups S 

for which the following is true: whenever A2, A3, ... An  are subsets of S that 

satisfy property (*n ), the closure of An  under the operations of multiplication 

and taking group inverses is a regular subsemigroup of S. 

Lemma 3.4.1 Suppose that S is a regular semigroup, with subsets A2, A3,... 

which satisfy property (*). Then (A oo ) is regular. 

Proof: Let a = a l  ... am  where a l , ..., am  E A. Notice that V(ai)n A c, 0 

for each i, 1 < i < m. Suppose that a'1  E V(a i ) fl A. If m = 1 then 

a' E V(a) fl A,) , so assume that m > 2 and proceed by induction. There exists 

b' E V(a2  ... am ) n (A). Let n > m — 1 be such that a i , 	, am  E A. Then 

there exists c E S(a i , a 2 ... am ) n An+i , and b'cal E V(a) n (A,,o ) by Lemma 

1.3.15(iii). 

By Lemma 3.4.1, the class Voc, contains all regular semigroups, and hence 

Vc.3  = RS. So for each e-variety we can obtain an analogue of a free object, as 

follows. 
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Recall the Definition 3.3.6 of a regular A-unary semigroup, and the discussion 

which follows. Let 1'2  = X x X, and for all n > 3 let 

= {(1t 1 	uk, v 1 ... vi ) : u i , ...,u k , v 1 , 	, vt E r„_, and k, < 72} U rn-i 

and An  = X U F. Let (FraisA n  (X), (x)x, ()Er)  be the free object on X in 

the variety RUS An. As in Section 3.3.1, we identify the set 1(X) = {xx : x E X} 

with X'. Let X2 = X U 1(X). For n > 3 let 

Xn  =X_ 1  U {s(ul 	uk, 	ve) : ui, 	, uk, 	, vi E Xn_ i  and k, i< n} , 

where s(u i 	uk, v 1  ... vt) = v 1  . ve (u i 	ukv i 	verl- ku , v •••ut„, • • • uk• 

Definition 3.4.2 Let n > 3. A mapping 0 : Xn 	5, where S is a regular 

semigroup, will be called n - tied if 

(i) x'0 E V(x0) for every x E X, and 

(ii) s(u i 	uk, v1 • • • ve)0 E S(u10 	ukck, v 1 0 	veck) for every k, < n and 

711 	.7.1k,V1 ...Ve E Xn-1• 

Let 3 < n < oo. By an n -free object for a class V of regular semigroups 

is meant a pair (8, t) , where t : Xn 	S is an n-tied mapping, such that for 

any T E V and n-tied mapping q: Xn 	T there is a unique homomorphism 

: --+ T such that tO = 0. 

Let V be a class of regular semigroups closed under taking regular subsemi-

groups and direct products, and contained in Vn  for some 3 < n < oo. Then 

F, the free object on X in the variety VAn, exists. As usual, we assume that 

Xn  C F. Let t : Xn  --+ F be the natural injection. Then R, the closure of 

X,, in F under multiplication and taking group inverses, is the least regular 

subsemigroup of F containing Xn ; and a straightforward modification of the 

proof of Lemma 3.3.7 shows that R, together with the mapping t, is the n-free 

object in V on X. 
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Remark 3.4.3 When n = 3 the notions of n-tied mappings and n-free objects 

coincide with the notions of tied mappings and trifree objects as described in 

Section 3.3.1. 	 0 
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