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Abstract

This thesis is concerned with the problem of being able to use, or general-
ize, Birkhoft’s fundamental theorems for classes of algebras which do not form
varieties - particularly in pseudovarieties and e-varieties. After giving an intro-
duction to these areas in Chapter 1, we first look at pseudovarieties, focusing
on certain generalized varieties.

Let Com, Nil, and N denote the generalized varieties of all commutative,
nil, and nilpotent semigroups respectively. For a class W of semigroups let
L(W) and G(W) denote respectively the lattices of all varieties and generalized
varieties of semigroups contained in W. Almeida has shown that the mapping
L(Nil N Com) U {Nil N Com} — G(N N Com) given by W = W NN is an
isomorphism, and asked whether the extension of this mapping to L(Nil)U{Nil}
1s also an isomorphism.

In Chapter 2 we consider this question. In Section 2.2 we show that the
extension is not surjective. Non-injectivity is then established in Sections 2.4
- 2.6; this involves analysing sequences of words of unbounded lengths derived
from the defining identities of certain nil varieties. Results of a more general
nature are also given, in Section 2.3, involving the question of when two arbitrary
semigroup varieties possess the same set of nilpotent semigroups.

In Chapter 3 we turn to the problem of establishing analogues of Birkhoff’s
theorems for e-varieties. In Section 3.1 Auinger’s Birkhoff-style theory for locally
inverse e-varieties is expanded, to obtain a unified theory for e-varieties of locally
inverse or of E-solid semigroups - that is, for the entire lattice of e-varieties in
which nonmonogenic bifree objects exist. In addition an alternative unification,
based on the techniques used by Kadourek and Szendrei to describe a Birkhoff-
style theory for E-solid e-varieties, is given in Section 3.2.

In Section 3.3 we show that trifree objects on at least three generators exist
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in an e-variety V of regular semigroups if and only if V is locally E-solid; this
extends Kadourek’s work on the existence of trifree objects in locally orthodox
e-varieties and generalizes Yeh’s result on the existence of bifree objects.

In conclusion, a theory of “n-free” objects is outlined in Section 3.4, indi-
cating how analogues of the concept of a free object can be defined for any
e-variety.

The results presented in Sections 2.4 - 2.6 appear in [12]. The results of
Chapter 3 will appear in [13].
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Chapter 1

Introduction

The classes of finite semigroups and regular semigroups are important examples
of classes of semigroups that do not form varieties or admit free objects, and are
therefore without the direct advantages of Birkhoff’s fundamental theorems of
universal algebra relating varieties, identities, and free objects. For both cases
the definition of a variety of algebras, as a class of algebras of a given type
closed under taking homomorphic images, subalgebras and direct products, is
weakened: a pseudovariety of semigroups is a class of finite semigroups closed
under taking homomorphic images, subsemigroups and finite direct products;
and an e-variety of regular semigroups is a class of regular semigroups closed
under taking homomorphic images, regular subsemigroups and direct products.
Various theories have been developed in both cases, by considering links with
varieties, or by devising analogues of the notions of identity or free object that
allow for “Birkhoft-style” theorems.

This thesis is concerned with the problem of being able to use, or general-
ize, Birkhoft’s fundamental theorems for classes of algebras which do not form

varieties - particularly in pseudovarieties and e-varieties. We first look at pseu-



dovarieties, focusing on a link with varieties by which Birkhoff-style properties
can be used for pseudovarieties. We then turn to the problem of developing
Birkhoff-style theories for e-varieties of regular semigroups. This chapter gives
an introduction to these areas, with preliminary results.

In Chapter 2, we investigate certain generalized varieties, which are used
in the study of pseudovarieties. In [6], Ash defined a generalized variety as a
directed union of varieties, and proved that a class of algebras is a generalized
variety if and only if it is closed under the formation of homomorphic images,
subalgebras, arbitrary powers and finite direct products. Ash showed that gen-
eralized varieties provide a link between varieties and pseudovarieties: a class of
algebras is a pseudovariety if and only if it consists of the finite members of some
generalized variety. Several authors including Almeida and Reilly [4], Almeida
[1], Pastijn [31], and Pastijn and Trotter [32] have investigated pseudovarieties
and therefore generalized varieties from this point of view.

In Chapter 2 we look at this connection between pseudovarieties and varieties
in a special case. Let Com denote the variety of all commutative semigroups, let
Nil denote the generalized variety of all nil semigroups, and let A" denote the
generalized variety of all nilpotent semigroups. For any class W of semigroups
let £L(W) denote the lattice of all varieties of semigroups contained in W, and
let G(W) denote the lattice of all generalized varieties of semigroups contained

in W. Almeida [1] has shown that the mapping
L(Nil N Com) U {Nil N Com} = G(N N Com)

given by W — W NN is an isomorphism, and asked ([3, Problem 10]) whether
the extension of this mapping to L(Nil) U {Nil} is also an isomorphism.

In Section 2.2 we show that this extension is not surjective, and proceed to
consider the question of injectivity. We first give sofne more general results in

Section 2.3, involving the question of when two arbitrary semigroup varieties



possess the same set of nilpotent semigroups. The question of when two nil
semigroup varieties have the same set of nilpotent semigroups is more complex.
In Sections 2.4 - 2.6 two varieties U,V € L(Nil) are defined and used to show
that the extension described above is not injective. These varieties have a
remarkable property: there is an infinite sequence of words with unbounded
lengths, derived from the defining identities of & and V, such that for any set
X, with [ X]| > 3, the terms of the sequence constitute a congruence class of both
the fully invariant congruence on the free semigroup X* which corresponds to
U andvthe fully invariant congruence on X* which corresponds to V.

Chapter 3 deals with analogues of free objects for e-varieties of regular semi-
groups. The concept of an e-variety of regular semigroups was introduced inde-
pendently by Hall [20], and Kadourek and Szendrei [26]. Kadourek and Szendrei
used the term bivariety, and considered only classes of orthodox semigroups.
With this restriction they gave definitions of bifree objects, biidentities and bi-
invariant congruences, and were able to generalize Birkhoff’s theorems. Yeh
[43] investigated the existence of bifree objects in arbitrary classes of regular
semigroups, and proved a necessary and sufficient result; namely that non-
monogenic bifree objects exist in an e-variety V if and only if V is contained
in either the e-variety of all E-solid semigroups or the e-variety of all locally
inverse semigroups.

In [7] and [8], Auinger considered classes of locally inverse semigroups, and
was able to extend the results of Kadourek and Szendrei from [26]. In a paper.
[27] yet to appear, Kadourek and Szendrei also extended the results of [26], to
classes of E-solid semigroups. So analogues of Birkhoff’s theorems hold for the
entire lattice of e-varieties in which non-monogenic bifree objects exist. But
the two approaches are quite different. In Section 3.1 we expand Auinger’s
approach, to obtain a unified theory for e-varieties of locally inverse or of E-

solid semigroups. In Section 3.2 we give an alternative unification, based on the



techniques of Kadourek and Szendrei in [27].

In [25], Kadourek considered classes of locally orthodox semigroups. By
Yeh’s results, bifree objects do not always exist in these classes. Generalizing
the ideas used to develop the theory of bifree objects, Kadourek defined trifree
objects. He showed that trifree objects exist in every e-variety of locally orthodox
semigroups. However, he also showed that other Birkhoff-type theorems do not
hold in this context. In Section 3.3 we extend Kadourek’s work to classes of
locally E-solid semigroups. In fact we show that trifree objects exist in an
e-variety V of regular semigroups if and only if V consists of locally E-solid
semigroups.

In conclusion, a theory of “n-free” objects is outlined in Section 3.4, indi-
cating how analogues of the concept of a free object can be defined for any
e-variety.

This chapter is meant as an introduction to our subject - that is, pseu-
dovarieties of finite semigroups and e-varieties of regular semigroups, with the
underlying common theme of using or generalizing Birkhoff’s theory of vari-
eties, free objects and identities. We therefore start with a section on universal
algebra, proceeding to discuss pseudovarieties in Section 1.2, and e-varieties in

Section 1.3.

1.1 Universal algebra.

Although we will be mainly using semigroups in this thesis, sometimes we con-
sider extra operations on these semigroups, and so we begin by briefly reviewing
the definitions of subalgebra, direct product, homomorphism, and congruence
for algebras in general. This leads to the theory of varieties, identities, and
free objects, and to Birkhoff’s theorems relating these concepts. For undefined

notation and terminology see the book by Burris and Sankappanavar [11].



Throughout this section let 7 be a fixed type of algebras, with set O of oper-
ation symbols. All algebras will be considered to be of type 7 unless otherwise
stated. We fix C as a class of algebras of type 7.

For everyn > 0let O, = {f € O : f has arity n}. For every f € O we write
f# for the corresponding operation on an algebra A.

For this section let X be a nonempty set of distinct objects called variables

or letters such that X N Op = (. The set X is sometimes called an alphabet.

1.1.1 Subalgebras, direct products, homomorphisms, and

congruences.

Let A and B be two algebras. The algebra B is a subalgebra of A, written B < A,
if B C A (as sets) and for every f € O the operation f2 is the restriction of f#
to B. |
The direct product A = [];c; Ai of a family {A; : ¢ € I} of algebras is such
that
fAat,. .. a,)(3) = fA(ai(d),. .., an(2))

for all 7 € I whenever f € O, and ay,...,a, € [lic; Ai. The product A is said
to be a direct power when all the A; coincide.
An equivalence relation p on an algebra A is a congruence if whenever f € O,

and a;,b; € A satisfy (a;,b;) € p for 1 <7 < n we have

(fA(ab' . aan)afA(bh e ,bn)) c p.

The quotient algebra A/p is such that f4/%(aip,...,anp) = fA(as,...,an)p for
every aj,...,a, € Aand f € O,.
A homomorphism from A to B is a mapping o : A — B which satisfies

a1, ... an)a = fB(a1a,...,a,a) for each f € O, and a4, ..., a, € A.



Notation 1.1.1 Let A and B be two algebras. The kernel of a homomorphism
a : A — B is the congruence a o a™! = {(a,b) € A x A : aa = ba}. Given
a congruence p on A, the homomorphism A — A/p given by a — ap, a € A,
is denoted by p*. For a relation p on A let p=! = {(a,d) : (b,a) € p}. Let (p)
denote the congruence on A generated by p; that is, the least congruence on A

that contains p. O

Result 1.1.2 ([11]) Let o : A = B and B : A = C be two homomorphisms

such that 3 is surjective and fo 37! C aoa™. Then there is a homomorphism

C — B given by aff — aca, a € A. ]

1.1.2 Varieties and identities.
Recall that C is defined as a fixed class of algebras of type 7.
Definition 1.1.3 We write:
I(C) for the class of all isomorphic images of members of C;
H(C) for the class of all homomorphic images of members of C;
S(C) for the class of all subalgebras of members of C;
P(C) for the class of all direct products of members of C;
P¢(C) for the class of all finite direct products of members of C;
Pow(C) for the class of all direct powers of members of C. o
A wvariety is a class of algebras (of type 7) closed under H, S and P. Let

V(C) denote the variety generated by C, which is the intersection of all varieties

containing C. We write V(A) when C has only one member A.

Theorem 1.1.4 (Tarski) V(C) = HSP(C). O



The set T'(X) of terms (of type 7) over X is the smallest set such that
e XUOy CT(X), and
o if pi,...,pn € T(X) and f € O, then f(pi,...,ps) € T(X).

The term algebra (of type 7) over X is the algebra T(X), for which
fTX)(py,...,p,) is the term f(pi,...,pn) whenever f € O, and pi,...,pn €
T(X). So T(X) is generated by the set X.

An identity (of type 7) over X is a pair (p,q), also written p = ¢, where
p,q € T(X). We write Idx for the set of all identities over X. We may regard
Idx as being a binary relation over T'(X) or a set of equations over X.

An identity (u,v) is said to be trivial if v and v are the same element of
T(X), and nontrivial otherwise.

An algebra A satisfies an identity p = ¢ over X, written A | p = g, if
pa = ga for every homomorphism « : T(X) — A. The class C satisfies an
identity p = ¢, and we write C = p=gq,if A} p= ¢ for every A € C.

We write Idx(C) for the set of all identities satisfied by C (or Idx(A) if
C = {A}). We sometimes write simply Id(C) or Id(A). If every member of a
set & of identities is satisfied by a class C (or algebra A) we say that C (or A)
satisfies £, and write C |= 3 (or A |= X).

A congruence p on an algebra A is fully invariant if (aa, ba) € p whenever a
is an endomorphism of A and (a,b) € p. For a set ¥ of identitieslet ©(X) denote

the fully invariant congruence on T'(X) generated by £. We write ¥ |= p = ¢ if
(p,q) € O().

1.1.3 Free objects and Birkhoff’s theorems.

In this section we define free objects and state the fundamental theorems of

Birkhoff’s 1935 paper (9] connecting varieties, identities and free objects. The



first of these establishes that a class of algebras is a variety if and only if it
is equationally defined. Given a set ¥ of identities, let [£] be the class of all

algebras that satisfy X.

Theorem 1.1.5 ([9]) IfV is a variety and the set X is denumerable then V =

[Idx(V)]; and conversely, for a set ¥ of identities the class [X] is a variety. D

Notice that for a class C of algebras (of type 7) we have Idx (C) = Idx (V/(C)),
which is a fully invariant congruence on 7'(X) by the next theorem of Birkhoff.
We often write p(C) for Idx(C).

Theorem 1.1.6 ([9]) Suppose X is denumerable. The lattice of varieties of
algebras of type T is antiisomorphic to the lattice of fully invariant congruences

on T(X) (with respect to C) via the mutually inverse mappings

V = Idx (V) and p — [p]. O

An algebra F, together with a mapping ¢ : X — F, is said to have the
universal mapping property for C over X if for every S € C and mapping ¢ :
X — S there is a unique homomorphism ¢ : F' — S such that 1p = ¢.

Theorem 1.1.7 ([9]) The algebra T(X)/1dx(C), together with the natural in-
jection ¢ : X — T(X)/Idx (C), has the universal mapping property for C over
X. O

We write Fe(X) = T(X)/1dx(C), and call this algebra the C-free algebra on
X. So Fe(X) = Fy(c)(X). We usually assume that X C Fe(X).

Theorem 1.1.8 ([9]) We have F¢(X) € ISP(C). In particular, if C is a vari-
ety then Fe(X) €C. IfC isa va}'iety and X is denumerable then C = V (Fe(X).
O



Remark 1.1.9 By Theorems 1.1.7 and 1.1.8, if C is a variety then the members

of C are precisely the homomorphic images of the C-free algebras. a

A semigroup is an algebra (S5, -) of type (2) where - is associative. We write
a-b, or ab, so that a semigroup satisfies the identity z(yz) = (zy)z. An algebra
(S,-,") of type (2,1), where - is associative, is called a unary semigroup. An
algebra (S, -, s) of type (2,2), where - is associative, is called a binary semigroup.

We will use the terms “semigroup homomorphism”, “unary semigroup ho-
momorphism”, and “binary semigroup homomorphism” to distinguish homo-
morphisms between algebras of these types. We often simply use the term
“homomorphism” when the meaning is clear. The same applies to the terms

“congruence”, “variety”, “identity”, etc.

Notation 1.1.10- For any nonempty set X, let Xt denote the free semigroup
on X. We will call the members of X letters or variables, and the members of
X+ words. The free monoid X* on X is obtained by adjoining the empty word

1 to Xt as an identity. O

1.2 Pseudovarieties and generalized varieties.

Classes of finite algebras do not usually form varieties, and so a pseudovari-
ety is defined to be a class of algebras (all of the same type) closed under
taking homomorphic images, subalgebras, and finite direct products. The term
“pseudovariety” was introduced, for semigroups and monoids, by Eilenberg and
Schiitzenberger in [16]. Pseudovarieties of semigroups and monoids are funda-
mental to automata and formal language theory, and most of the early results
concerning pseudovarieties were motivated by the applications in these areas

(see Eilenberg’s book [15]).



In the 1980’s Reiterman [36] and Ash [6] began investigating pseudovari-
eties from a universal algebraic perspective. Reiterman proved an analogue for
pseudovarieties of Birkhoff’s Theorem 1.1.5, establishing that a class of finite al-
gebras is a pseudovariety if and only if it is “pseudoequationally” defined. This
result has led to a Birkhoff-style theory for pseudovarieties, which we briefly
review in Section 1.2.1.

In Section 1.2.2 we discuss Ash’s work from [6]. In this paper Ash considered
the concept of pseudovariety for algebras of arbitrary type, and described a
certain kind of connection with varieties, namely generalized varieties, which
involves the characterization of pseudovarieties in terms of nets of identities.

There are several other characterizations of pseudovarieties apart from those
already mentioned. For instance, they may be described in terms of filters of
congruences (see [37]) and varieties of languages (see [15]). See Almeida’s book

[3] as a reference for the contents of this section.

1.2.1 Pseudoidentities and free profinite algebras.

Of course pseudovarieties do not usually admit free objects, as these algebras
are usually infinite. For example, the smallest semigroup variety that contains
the pseudovariety G of all finite groups is the variety of all semigroups; and so
FG(A) = At, the free semigroup on A, for every alphabet A. So the free object
Fy(A) is often too general to be useful for the study of a pseudovariety V - for
example, a finite A-generated homomorphic image of Fg(A) need not be in G.

An alternative candidate for a concept of “free” object for pseudovarieties is
the relatively free profinite algebra. These algebras can be large and somewhat
unwieldy, but behave quite like the usual free objects, as will be seen below. For
more details concerning relatively free profinite semigroups and monoids see the

survey [5] by Almeida and Weil.

10



Throughout the remainder of this section let V be a fixed pseudovariety.

A partially ordered set [ is directed if each pair of elements has a common
upper bound. A directed system of algebras (S;)ier is a family of algebras indexed
by a directed poset I such that:

e whenever : > j in [ there exists a homomorphism ¢;; : 5; = 5
® (;; is the identity map on S;,
o ifs Z] Z k in I then Wik = Pi; © Qjk.

The projective limit of a directed system of algebras (S;):¢; is the following

subalgebra of the direct product [];c; Si:
li‘r_n(S,-),EI = {(zi)ier € HS,- LT = T whenever i > J}
1€l

We consider all finite algebras to be endowed with the discrete topology.
Then all homomorphisms of finite algebras are continuous, and all finite algebras
are compact. An algebra is said to be profinite if it is a projective limit of finite
algebras. An algebra is said to be pro-V if it is a projective limit of elements of
V. Notice that every member of V is pro-V.

Let A be a finite set. A profinite algebra S is said to be A-generated if
there exists a mapping 4 : A — S such that (Ap) is a dense subalgebra of S.
Let V4 be the class of all A-generated members of V, with isomorphic algebras
identified; thus V4 = {A%/6: 0 € ©4V}, where A* denotes the free semigroup
on A and ©4V is the set of all congruences § on A* for which A*/0 € V.

The set @4V is a directed poset with respect to D (the common upper
bound for 8,8, € ©4V is 8, N0,), and it follows that the class V4 is a directed
system of algebras. We write FA(V) for the projective limit of V4.

Of course F4(V) is usually infinite. In fact F4(V) € V if and only if V4
(or equivalently F4(V)) is finite, and in this case F4(V) = F4(V). However,

11



as the following details show, the free pro-V algebra FA(V) behaves quite like
free objects in some respects, and Birkhoff-style theorems have been proved in

this setting.

Theorem 1.2.1

(i) There exists a mapping tv : A — FA(V) such that the subsemigroup of
F4(V) generated by Awy is dense in F4(V) and is isomorphic to Fa(V).

(ii) The algebra F4(V) is the free pro-V algebra over A: if S is a pro-V
algebra and ¢ : A — S is a mapping then there exists a unique continuous

homomorphism @ : FA(V) — S such that v = ¢.

(i) A finite algebra S is in 'V if and only if S is a continuous homomorphic
image of F4(V) for some A. ]

A pro-V-identity is a pair (z,y), also written z = y, of members of FA(V)
for some A. When |A| = n we say that z = y is an n-variable pro-V-identity. If
V is the pseudovariety of all finite semigroups then pro-V-identities are called
proidentities or pseudoidentities. A pro-V algebra S is said to satisfy the pro-V-
identity z = y if za = ya for each continuous homomorphism a : F4(V) — §.

Let X be a set of pro-V-identities (not necessarily involving a bounded num-
ber of variables). A class W of pro-V algebras is said to satisfy ¥ if each element
of W satisfies each pro-V-identity in X; we write W |= . The class of all finite
algebras which satisfy ¥ is denoted by [Z]v. »

The first part of the next result is a consequence of Theorem 1.2.1. The

second is from [33].

Theorem 1.2.2

(i) If W is a subpseudovariety of V then the mapping tw induces a continuous

surjective homomorphism = : FA(V) — F4W such that W = LyT.

12



(i1) For all z,y € I:_'A(V) we have W =z =y if and only if zm = yr. O

The following result is Reiterman’s analogue of Birkhoff’s Theorem 1.1.5,
and states that pseudovarieties are exactly the “pseudoequationally” defined

classes.

Theorem 1.2.3 ([36]) Let V be a pseudovariety, and let W C V. Then W
is a pseudovariety if and only if W = [Z]v for some set ¥ of pro-V -identities.

0

Remark 1.2.4 If V is a variety we call any pair (p, q) of members of Fy(X)
a V-identity. Then Theorem 1.1.5 can be stated in the form of Theorem 1.2.3:
given a variety V, a class W C V is a variety if and only if W is defined by a

set of V-identities. 0O

Almeida gave an analogue of Birkhoff’s Theorem 1.1.6, for which we need
to consider an infinite number of variables.

If A and B are two finite sets with |A| = |B| then F4(V) and Fs(V) are
isomorphic. If the cardinality of the set A is of interest, we write Fn(V) instead
of FA(V) if |A] = n. We may assume Fn(V) - Fn+1(V) for every n > 1. Let
Fw(V) be the union (that is, inductive limit) of the topological algebras F,,V,
n > 1. Thus we may assume that any set ¥ of pro-V-identities is contained in
Fu (V) x Fy(V).

A set ¥ of pro-V-identities is said to be strongly closed if

e X is a fully invariant congruence on F,(V);

o for every u,v € F,,(V) such that uE # vY there exists a clopen union F
of classes of & for which uX C F and vZ C F,(V)\ F.

13



The set of all strongly closed sets of pro-V-identities, denoted by PIV,
is a'complete lattice (under inclusion). We write PsV for the lattice of all
subpseudovarieties of V. For a subpseudovariety W of V, let PidyW be the
set of all pro-V-identities that are satisfied by W.

Theorem 1.2.5 ([2]) The lattice PsV is antiisomorphic to PIV via the mu-

tually inverse correspondences W — PidyW and & — [X]v. m|

Remark 1.2.6 Theorem 1.2.3 was originally given in terms of implicit opera-
tions, which are defined as follows.
For a finite set A an A-ary implicit operation on a pseudovariety V is a

family m = (7s)sev such that
e 75 is a function $4 — S for each S € V;

e given any homomorphism ¢ : S — T for S,T € V, and (55)aca € 54 we

have (82)acamsp = (Sa®)acaTT.

The set of all A-ary implicit operations on V forms a topological algebra that

is isomorphic to the free pro-V algebra Fa(V). O

1.2.2 Generalized varieties.

In [6] Ash gave the name generalized varieties to classes satisfying the conditions
of the next result. A filter over a set I is a family of subsets of I closed under

taking supersets and finite intersections.

Theorem 1.2.7 ([6]) The following are equivalent for a classC of algebras (of

type T).
(i) C is closed under H, S, Py and Pow.

(it) C = HSPsPow(C).
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(17i) C is the union of some directed family of varieties.
(tv) There ezists a filter F' over Idy such that
AcCe& Idx(A)eF

for all algebras A (of type 7). O

Remark 1.2.8

o Note that condition (ii) of Theorem 1.2.7 implies that for every class C of
algebras the class Gen(C) = HSP;Pow(C) is the least generalized variety

containing C.

o For a finite class C of algebras the class HS P;(C) is the least pseudovariety
containing C. (See [22].) O

For a class C of algebras, let CF' denote the class of all finite members of C.
A pseudovariety V is said to be equational if V = VF for some variety V. The
pseudovariety B = [z? = z]¥ of all bands (that is, semigroups of idempotents)
is an example of a equational pseudovariety.

An example of a pseudovariety that is not equational is the class N of all
finite nilpotent semigroups. For every m > 1 the class NV, of all m-nilpotent
semigroups is the variety of semigroups with zero for which each product of m

elements is zero. So
Ny =[21. . Ty = YTy . Ty = T1 ... L),

and

N=(U Nw)" = UM

m>1 m>1

The smallest equational pseudovariety that contains N is the pseudovariety of

all finite semigroups. The same is true for the pseudovariety G of all finite
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groups, which can also be represented as a union of equational pseudovarieties:
we have G = Up,»1[2™y = yz™ = y]F.

In general, unions of equational pseudovarieties do not form pseudovarieties.
However, as will be stated in Result 1.2.9, every pseudovariety is the union of
a directed family of equational pseudovarieties. As shown by Eilenberg and
Schiitzenberger in [16] for pseudovarieties of semigroups and monoids, and Ash
in [6] for pseudovarieties of algebras of arbitrary type, if the algebraic type of
a pseudovariety V is finite then the family may be chosen to be a chain, and
there exists a sequence (€n)n>1 of identities such that V = UkZI[En :n > k|F.

The next result is Ash’s characterization of pseudovarieties as the finite
parts of generalized varieties, which thus connects varieties and pseudovarieties
via generalized varieties: a generalized variety is a directed union of varieties,
and the finite members of a generalized variety form a pseudovariety. This
construction has proved to be very useful in transferring information about
varieties to pseudovarieties; see for example Almeida and Reilly [4], Almeida
[1], Pastijn [31], Pastijn and Trotter [32].

Notice that the operators |J and ¥ commute; that is, Uyea VI = (Urea Vo)

for a family {V) : A € A} of classes of algebras.

Theorem 1.2.9 ([6]) A class V of algebras is a pseudovariety if and only if
V = VF for some generalized variety V. In particular, if V is a pseudovariety

then V = (Gen(V))F. m]

1.3 E-varieties of regular semigroups.

We begin this section on e-varieties with some preliminary notation and results
from semigroup theory. We then introduce e-varieties in Section 1.3.2. The con-

cept of an e-variety was introduced by both Hall [20] and Kadourek and Szendrei
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[26], independently. In Section 1.3.2 we discuss some of the material contained
in [20], which concerns the whole lattice of e-varieties and describes connections
with varieties of unary semigroups. In Section 1.3.3 some background infor-
mation about relevant e-varieties is given. We then review the Birkhoff-style
results obtained by Kadourek and Szendrei [26], for orthodox e-varieties alone,
in Section 1.3.4. This work involves an alternative concept of free object that
can be used for e-varieties, namely “bifree objects”. In Section 1.3.5 we dis-
cuss Yeh’s work in [43], where he established that nonmonogenic bifree objects
exist precisely in E-solid or locally inverse e-varieties; and in Section 1.3.6 we
give an account of the extensions of the results of [26] for orthodox e-varieties
to the lattices of all F-solid e-varieties and all locally inverse e-varieties, by
Kadourek and Szendrei [27] and Auinger [7, 8] respectively. Finally, in Section
1.3.7 we discuss Kadourek’s work in [25], in which he broadened the concept of
a bifree object, and thus gave partial Birkhoff-style results for locally orthodox

e-varieties.

1.3.1 Preliminaries.

As a general reference for semigroup theory, the reader is referred to the book
[23] by Howie. |

For a semigroup S without an identity, let S! denote S with an identity
adjoined. If S has an identity let S? = S.

Green’s relations on a semigroup S are given by

L = {(a,b): S'a =S},
R = {(a,b):aS" =bS'},
# = LNR,
D = LVR,
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and they are equivalence relations. For A € {£,R,H,D} and z € S we write
A, ={yeS:z Ay}

Let S be a semigroup. An element y € S is said to be an inverse of an
element z € S if zyzr = ¢ and yzy = y. We denote the set of all inverses of an
element z € S by V(z). A semigroup S is said to be regular if V(z) # 0 for
every ¢ € S.

For a subset A of S let (A) be the subsemigroup of S generated by A.

For a subsemigroup R of a regular semigroup S, let R, denote the subsemi-

group generated by the conjugates of R in S*;
R.= (zrz’:r € R,z € §',2’ € V(z)).

For n > 2 define Ren = (Rn-1).. We say that R is self-conjugate if R, C R.

Clearly R C R., and hence Rin-1 C Ren for all n > 2. So U2, R is
a self-conjugate subsemigroup of S. Moreover, it is the least self-conjugate
subsemigroup of S that contains R.

The set of idempotents of S is denoted by E(S), or simply by E. The core
of S is (E) and is denoted by C(S), or C if the context is clear. The semigroup
Unzi Cen is called the self-conjugate core of S, and is denoted by Cy(S), or
simply Co.

The next results are well known.

Result 1.3.1 ([23]) Let ¢ : S — T be a surjective homomorphism of reqular
semigroups. For every e € E(T') there exists f € E(S) such that fo =e. O

Result 1.3.2 ([23]) Let ¢ : S — T be a surjective homomorphism of reqular
semigroups. If a € T and b € V(a) then there exist ¢ € S and d € V(c) such

that a = cp and b = dp. O

Result 1.3.3 ([23]) Let p be a binary relation on a semigroup S. Ifa,b € S

then (a,b) € (p) if and only if either a = b or for some m > 0 there ezist
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ri,8; € St and (d;, e;) € pUp~! for 0 <1 < m such that a = rodySo, b = Tmemsm,

and r;_1€;_18;_1 = r;d;s; for1 <1< m. O

Result 1.3.4 ([14]) Suppose that a,b are elements of a semigroup S. Then
ab€ R,NLy if and only if RyN L, NE(S) # 0. If this is so then Hy = R, N Ly.
a

Result 1.3.5 ([23]) If H is an H-class in a semigroup S then either H*NH =
O (so H contains no idempotents) or H> = H and H is a subgroup of S.
Therefore an element a of S is in a subgroup of S if and only if a H a®. ]

Notation 1.3.6 If k lies in a subgroup H of a semigroup S then the inverse of
k in H will always be denoted by k!, and the identity of H by k°. O

We note the following well known result.

Result 1.3.7 Let ¢ : S — T be a homomorphism. If a is in a subgroup of S
then ay is in a subgroup of T, and a™'yp = (ap)™". o

We will conclude this section with some notes on the absolutely free unary

semigroup and the absolutely free group. Let X be a nonempty set.

Notation 1.3.8 Let Y denote the set X U {(,)'}. By [18], the free unary
semigroup Fy(X) on X, with unary operation ’, can be seen as the least sub-
semigroup F' of the free semigroup Yt such that X C F and (w)' € F whenever
w € F. We write w’ = (w)’ and denote the set {z' : ¢ € X} C Fy(X) by X'.
Thus the set X = X U X’ is a subset of Fy(X), and X’ is a disjoint bijective

copy of X. 0

The class of all groups, considered as unary semigroups (G, -, ) where V' (u) =
u'} for all u € G, forms a variety G of (regular) unary semigroups. We denote
g

the free object on X in this variety by (Fg(X),-, ).
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The fully invariant unary semigroup congruence p(G) on Fy(X) correspond-
ing to the variety G is the least unary semigroup congruence on F(X) contain-

ing the relation
{(u, vu'v), (v, v'uu’), (v, u), (uu’, vv') : u,v € Fy(X)}.

For a word u € Fy(X), the group-reduced form u of u is the word in the free
monoid X* obtained from u by applying the rules (vw)’ — w'v’, (v') = v, and
zz' 't — 1 for u,v € Fy(X) and ¢ € X. The set { : v € Fy(X)} of all

group-reduced words on X, together with the multiplication given by @-v = uw,

is well-known as a model for the free group Fg(X) on X, and

p(G) = {(u,v) € Fu(X) x Fyu(X) :a=1}.

1.3.2 E-varieties and regular unary semigroup varieties.

A subsemigroup of a regular semigroup need not be regular, and thus classes of
regular semigroups do not necessarily form varieties of semigroups (that is, of
type (2) algebras). In particular the class of all regular semigroups, considered
as type (2) algebras, is not a variety.

Some classes of regular semigroups have been studied as varieties; not as
varieties of semigroups as such, but of unary semigroups (that is, as varieties
of type (2,1) instead of type (2)). Examples are the varieties of groups, in-
verse semigroups and completely regular semigroups. An inverse semigroup is
a semigroup in which every element has a unique inverse. A completely reqular
semigroup is a semigroup which is a union of groups. For inverse semigroups
and groups the unary operation = — z’ takes an element z to its unique inverse.
For completely regular semigroups z’ is the group inverse of z.

In 1989-90 Hall [20], and independently Kadourek and Szendrei [26), intro-

duced the concept of an ezistence variety or e-variety of regular semigroups
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as a class of regular semigroups closed under taking homomorphic images, reg-
ular subsemigroups and direct products. Examples of e-varieties include the
class of all groups, and the classes of all regular, inverse, and completely regu-
lar semigroups. In particular, the varieties mentioned above of groups, inverse
semigroups, and completely regular semigroups coincide with the corresponding
e-varieties, since in these cases the unary operations are uniquely specified.

In [20] Hall developed links between e-varieties and varieties of regular unary
semigroups, which we will briefly outline. We write (S,") to denote a semigroup
S with a unary operation ’. A regular unary semigroup is a unary semigroup
(S,”) that satisfies the identities z2'z = z and z’z2’ = z’. A unary operation
of this kind is called an inverse unary operation. The class of all regular unary
semigroups thus forms a variety, which is denoted by RUS. For any regular
semigroup S, a unary operation ' can be selected (by the axiom of choice) such

that s’ is an inverse of s for each s € S. Thus ' is an inverse unary operation

on S, and (5,") € RUS.
Result 1.3.9 ([20]) For a given e-variety V the class
Vi={(5')eRUS: S eV}
is a variety of regular unary semigroups. ' a

Hall showed that not every subvariety of RUS is of the form V’ for an
e-variety V.

Notice that for an e-variety V and § € V there may be many copies of
S in V', each with a different inverse unary operation. In fact, in the free
regular unary semigroup Frys(X) the elements 2/, (z')', . .. are distinct for every
z € Frus(X) (see [34]). For every e-variety V of inverse semigroups we have

V' = V, as inverses are unique. There are completely regular semigroups
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however in which inverses are not unique, and so for example the e-variety CR
of all completely regular semigroups is not equal to CR'.
Let RS denote the e-variety of all regular semigroups. Hall obtained the

following analogue for e-varieties of Birkhoff’s Theorem 1.1.5.

Theorem 1.3.10 ([20]) For an e-variety V, a set ¥ of RUS-identities is a
basis for the identities of V' if and only if

V = {S € RS: there exists an inverse unary operation ' on S

such that (S)") E £}

and

V={SeRS:(S) kX for every inverse unary operation' on S}.

Under the conditions of Theorem 1.3.10 the e-variety V is said to be strongly
determined by ¥. Hall considered a regular semigroup S to satisfy a set ¥ of
RUS-identities if for every inverse unary operation / on S the regular unary
semigroup (.5,") satisfies ¥. Hall called the class [E]e = {S € RS: S = £} an
equational class. When [¥]. is an e-variety ¥ is said to weakly determine the
class [X]..

By Theorem 1.3.10 every e-variety V is an equational class, and is both
weakly and strongly determined by each basis of the identities of V'. However,

not every equational class is an e-variety, as is demonstrated in [20].

1.3.3 Some relevant e-varieties.

In this section we introduce some important e-varieties and provide background

and results.
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An E-solid (regular) semigroup is a regular semigroup such that whenever
e, f,g € E(S) satisfy e L f R g there exists h € E(S) for whiche R h L g.
By Hall (see the supplement to [42]) and Trotter [39] we have:

Result 1.3.11 The following conditions are equivalent for a regular semigroup

S:

(i) S is E-solid,

(i1) ef lies in a subgroup of S for every e, f € E(S),
(iit) C(S) is cov;zpletely regular,

(iv) Coo(S) ts completely regular. ]

Remark 1.3.12 By Result 1.3.11(ii), every E-solid semigroup S admits a par-
tial binary operation ~! given by (e, f) — (ef)™!, the H-related inverse of ef,
for all e, f € E(S). O

If S is a regular semigroup then C(S) is a regular subsemigroup of S by [17],
and for every e € E(S) the local submonoid eSe is regular. For a class V of

regular semigroups, Hall [20] defined the classes
LV ={S € RS:eSe€V for every e € E(S)}

and

CV={SeRS:C(S)eV}

Hall proved that if V is an e-variety then LV and C'V are also e-varieties.
The class B = [z = z?] of all bands is a semigroup variety, and hence an e-
variety. Therefore the class O = CB of all orthodoz semigroups is an e-variety.
By Result 1.3.11 the class ES of all E-solid regular semigroups coincides with
CCR, and thus ES is also an e-variety. The classes LI, LO and LES of all
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locally inverse, locally orthodoz and locally E-solid semigroups respectively are

also e-varieties.

Notation 1.3.13 We mostly use bold capitals to denote e-varieties, and script

capitals to denote the corresponding varieties of regular unary semigroups de-
scribed in Result 1.3.9. So for example we write LZ = (LI)’ and £S = (ES)".

o

Definition 1.3.14 The sandwich set S(a,b) of elements a, b of a regular semi-

group S is the set S(a,b) = bV (ab)a. 0
The following are due to Nambooripad [30] or are easily deduced (see {39]).

Result 1.3.15 Let S be a regular semigroup. Suppose a,b € S, a' € V(a),
b € V(b) and e, f € E(S). Then

(1) S(e, f) € V(ef)n E(S),
(it) S(a,b) = S(d’a,bl),
(tit) ¥'S(a,b)a’ C V(ab),
(w) aS(a,b)b = {ab},
(v) S(e,e) = {e},
(vi) if o : S = T is a homomorphism of regular semigroups then S(a,b)p C
S(ap,by). O
Nambooripad also proved the following characterization of locally inverse
semigroups in terms of their sandwich sets.
Result 1.3.16 ([30], Theorem 7.6) A regular semigroup S is locally inverse

if and only if S(a,b) is a singleton, denoted s(a,b), for every a,b € S. O
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The following list gives some classes of regular semigroups which form e-varieties.

Figure 1.1 arranges these as they appear in the lattice of all e-varieties.

T trivial semigroups CR completely regular semigroups
G groups LCR locally completely regular semigroups
I inverse semigroups LI locally inverse semigroups

ES  E-solid semigroups LES locally E-solid semigroups
O  orthodox semigroups LO locally orthodox semigroups

RS regular semigroups

RS

LCR

Figure 1.1: Some classes of regular semigroups which form e-varieties.
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Remark 1.3.17 By Result 1.3.16 a second binary operation s, given by (a, b) —
s(a,b), can be defined on a locally inverse semigroup S, and S becomes a type
(2,2) algebra.

By the axiom of choice, for any regular semigroup S a binary operation s
may be defined such that s(a,b) € S(a,b) for all a,b € S. Such an operation

will be called a sandwich operation. ]

Result 1.3.18 ([43]) Let ¢ : S — T be a homomorphism of locally inverse

semigroups. Then s(a,b)e = s(ap,by). O
We will need the next well-known result.

Result 1.3.19 ([23]) A regular semigroup S is inverse if and only if its idem-

potents commaute. a

1.3.4 Orthodox e-varieties.

Whereas in [20] Hall considered arbitrary e-varieties, independently Kadourek
and Szendrei considered the same concept just for classes of orthodox semi-
groups, and were able to prove analogues of Birkhoff’s fundamental theorems
for varieties. They used the term bivariety for an e-variety of orthodox semi-

groups, and developed notions of biidentities and bifree objects, as follows.

Notation 1.3.20 Let X be a nonempty set, with a disjoint bijective copy X' =
{z':z € X}. We write X = X U X". O

A biidentity over X is a pair (u,v), also written v = v, where u,v are
members of the free semigroup (X)*. The following definition was given in [26]

for orthodox semigroups.

Definition 1.3.21 ([26]) For a regular semigroup S, a mapping ¢ : X — S is

matched whenever z'¢ is an inverse of x¢ for each z € X. O
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An orthodox semigroup S is said to satisfy the biidentity v = v for u,v €
(X)" if whenever ¢ : X — S is a matched mapping, and 6 : (X)* = S is the
unique homomorphism extending ¢, we have uf = v6.

For a nonempty set X and class V of orthodox semigroups, let bldx (V)
(also written p(V,X), or simply p(V)) be the set of all biidentities over X
that are satisfied by V. Kadourek and Szendrei gave a generating relation for
bldx(O).

The original definition for orthodox semigroups of a biinvariant congruence

found in [26] is equivalent to the one given below, which is from [27].

Definition 1.3.22 ([26]) For u,p,q € (X)" and z € X let u(z — p,z’ — q)
denote the word in (7)+ obtained from u by substituting p for all occurrences

of z, and ¢ for all occurrences of z’. A congruence p on (X)+ is said to be closed

under regular substitution if

up v, pppgp, qp qpq = u(z = p,z’ = q) p v(z = p,z’ = q)

whenever u,v,p, q € (7)+ and z € X.
A congruence p on (7)+ is said to be biinvariant if p(O,X) C p and p is

closed under regular substitution. O
The following definition was originally given in [26] for orthodox semigroups.

Definition 1.3.23 ([26]) For a class V of regular semigroups, a semigroup
F € V together with a matched mapping ¢ : X — F is a bifree object on X
in V if, for any S € V and matched mapping ¢ : X — S, there is a unique

homomorphism 0 : F' — § satisfying 0 = ¢. O

Remark 1.3.24 ([43]) If S is a member of an e-variety V and A C S is such
that AN V(a) # 0 for every a € A, then there is a matched map ¢ : X — A

for some set X. Suppose that a bifree object (F,¢) on X exists for V, and let
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6 : F — S be such that «0 = ¢. Then F6 is a regular subsemigroup of S that
contains A and is contained in every regular subsemigroup of S that contains
Aj; that is, F'0 is the least regular subsemigroup of S that contains A.

Thus if an e-variety V is to admit a bifree object, then for every S € V and
A C S such that ANV(a) # 0 for all @ € A there must exist a least regular

subsemigroup of S that contains A. a

Using the next résult, Kadourek and Szendrei showed that the conclusion of

Remark 1.3.24 is true for orthodox semigroups.

Result 1.3.25 ([35]) IfS is a regular semigroup then S is orthodoz if and only
if V(a)V(b) C V(ba) for all a,b€ S. ]

Corollary 1.3.26 ([26]) IfS is an orthodoz semigroup and A C S is such that
ANV(a)#0 for every a € A then (A) is a reqular subsemigroup of S. O

From Corollary 1.3.26, Kadourek and Szendrei proved the following analogue
of Birkhoff’s Theorem 1.1.7.

Theorem 1.3.27 ([26]) Let V be a class of orthodox semigroups closed under
taking regular subsemigroups and direct products. For every nonempty set X
. there exists a bifree object F' on X in 'V, and F is isomorphic to (7)+/p(V, X).
]

Notation 1.3.28 For a class C of semigroups, let S,.(C) be the class of all

regular subsemigroups of members of C. o
Kadourek and Szendrei proved the following generalization of Theorem 1.1.4.

Theorem 1.3.29 ([26]) For a class V of orthodoz semigroups the e-variety
generated by V is the class HS,P(V). ]
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The next result contains analogues of Birkhoff’s Theorems 1.1.5 and 1.1.6.
Given a set ¥ of biidentities, we write [X], for the class of all orthodox semi-

groups that satisfy X.

Theorem 1.3.30 ([26]) A class V of orthodoz semigroups is an e-variety if
and only if there exists a set ¥ of biidentities such that'V = [Z],. If X is

denumerable then the mappings
V= p(V,X) and p = [l

define an antiisomorphism between the lattice of all e-varieties of orthodox semi-

groups and the lattice of all bitnvariant congruences on (X)+. Q

Remark 1.3.31 ([29]) We may also speak of a regular semigroup (not neces-
sarily orthodox) satisfying a set of biidentities. The proof of Theorem 1.3.30
also shows that the class of all regular semigroups which satisfy a given set of
biidentities is an e-variety. However, the converse does not hold. For example,
in [8] Auinger showed that every biidentity satisfied by the e-variety of all com-
pletely simple semigroups (that is, completely regular semigroups without zero

and with only one D-class) is also satisfied by every regular semigroup. O
Kadourek and Szendrei noted the following result.

Result 1.3.32 ([26]) A congruence p on (X)* is biinvariant if and only if
p(O, X) C p and the congruence p/p(O, X) is a fully invariant semigroup con-
gruence on (_X—)+/p(O,X). O

1.3.5 Bifree objects in e-varieties.

Yeh, using the term e-free, considered the concept of a bifree object in an

arbitrary e-variety in [43]. Recall from Remark 1.3.24 that if an e-variety V is
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to admit a bifree object, then for every S € V and A C S such that ANV (a) # 0
for all a € A there must exist a least regular subsemigroup of S that contains

A. With the following result, Yeh extended Corollary 1.3.26.

Result 1.3.33 ([43]) Suppose that S € ES U LI. Let A C S be such that
ANV(a) #0 for every a € A. Then there is a least regular subsemigroup of S

that contains A. g

The next result gives details of the constructions of these least regular sub-

semigroups.

Result 1.3.34 ([43]) Under the conditions of Result 1.3.33, let T be the least

reqular subsemigroup of S containing A. Then T = U;»o T2i41, where

To = A
Tl = (To)

Ty = Tei-i1UTy

Toiv1 = (T)

and T,,_, is defined for every ¢ > 1 as follows.

If S is E-solid then Ty;_, = {(ef)™" : e, f € E(Tai_1)} for everyi > 1; the
subsemigroup T is the closure of A under the operations - and ~!, where ~! is
the partial binary operation on S described in Remark 1.3.12.

If S is locally inverse then Ty, |, = {s(a,b) : a,b € Tai_1} for every 1 > 1;

here T is the closure of A under the operations - and s, where s is the binary

operation on S described in Remark 1.3.17. o
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The bifree object on X in V is unique up to isomorphism if it exists; we
denote it by bFy(X). In [43], Yeh gave an example of a semigroup that is
both locally completely regular and locally orthodox, for which Result 1.3.33
fails. He also showed that if S is a regular semigroup with a subset A, where
ANV(a) # 0 for all a € A, such that there is no least regular subsemigroup of
S containing A, then no e-variety that contains S admits a bifree object on any
set | X| with X > |A|. In Yeh’s example the set A has two members, and as a

consequence he proved the following remarkable result.

Theorem 1.3.35 ([43]) For an e-variety V and set X with |X| > 2 the bifree
object bFy(X) exists if and only if V C ES or V C LI. o

Monogenic bifree objects do exist in e-varieties not contained in ES or LI.
In [10] it is proved that monogenic bifree objects exist in every sub e-variety of

LCR.

Remark 1.3.36 If a class V of regular semigroups is closed under S, and P
then, by the proof of Result 1.3.9, the corresponding class ¥V = V' of regular
unary semigroups is closed under S and P. Therefore by Theorem 1.1.8 the free
object (Fy(X)," ) exists for every nonempty set X and, considered as a type (2)
algebra, is a member of V.

Recall the assumption X C Fy(X). We write X' = {2’ : 2 € X} C Fy(X)
and X = X U X". ]

Result 1.3.37 ([43]) Suppose that V is a class of regular semigroups closed:
under P and S,, and such that V C ES or V C LI. Then the least regular
subsemigroup of Fy/(X) containing the set X is bifree on X in V. 0

Yeh proved the following result, which extends Theorem 1.3.29.

Theorem 1.3.38 ([43]) Let C be a class of E-solid or of locally inverse semi- -

groups. Then HS,P(C) is the smallest e-variety containing C. O
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1.3.6 E-solid and locally inverse e-varieties.

In this section we outline the work of Auinger in [7] and [8] on locally inverse
semigroups and Kadourek and Szendrei in [27]) on E-solid semigroups. In both
cases concepts of biidentity and biinvariant congruence were defined, and the
Birkhoff-style results previously obtained by Kadourek and Szendrei in [26] for
orthodox semigroups were generalized. So a Birkhoff-style theory holds for the
whole lattice of e-varieties that admit nonmonogenic bifree objects, but via two
very different approaches.

By Results 1.3.34 and 1.3.37, the bifree locally inverse semigroup on X is
the closure in the free regular unary locally inverse semigroup Frz(X) of the
set X under the operations - and s; and Auinger defined biidentities for locally
inverse semigroups to be formal equalities between members of Fi;,)(X), the
free type (2,2) algebra on the set X that is a semigroup with respect to one of
its operations. A locally inverse semigroup S satisfies the biidentity u = v if
uf = vf whenever ¢ : X — S is a matched mapping and 6 : Fz9)(X) — S is
the unique extension of ¢. | |

Auinger generalized all the Birkhoff-style results previously obtained for or-
thodox semigroups. In particular, he described a generating relation for the
congruence p(LI, X) on F5,)(X) which is equal to the set of all biidentities
satisfied by LI, and is such that F;4)(X)/p(LI, X) is the bifree locally inverse
semigroup. His definition of a biinvariant congruence is a direct generalization of
Definition 1.3.22, with (7)+ and p(0, X) replaced with F{3,)(X) and p(LI, X)
respectively.

We now turn to the theory for E-solid semigroups developed by Kadourek
and Szendrei in [27]). By Results 1.3.34 and 1.3.37 the bifree E-solid semigroup
is the closure in Fes(X) of X under the operations - and ~!. Let Fy(X) be the

free unary semigroup on X, with unary operation ’. Let F’'®(X) be the least
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subsemigroup U of Fy(X) such that X C U and theset {u e U :u=1}is a
unary subsemigroup of U, where @ is the group-reduced form of u. By Result
1.3.11, a regular semigroup S is E-solid if and only if the self-conjugate core of
S is completely regular, and in this setting Kadourek and Szendrei considered
a biidentity to be a pair u = v, where u,v € F'*(X). They showed that any
matched mapping ¢ : X — S, where S is an E-solid semigroup, has a (unique)
extension 6 : F'*°(X) — S, such that whenever @ = 1 the element uf lies in
the self-conjugate core of S and u/f is the H-related inverse of uf. An E-solid
semigroup S satisfies a Biidentity u = v if whenever ¢ : X — S is matched, and
6 is the extension described above of ¢ to F'*(X), we have uf = v6.
Kadourek and Szendrei also generalized all the Birkhoff-style results previ-
ously obtained for orthodox semigroups. In particular, they gave a generating
relation for the set p(ES, X) of all biidentities satisfied by ES, which is such
that F’°(X)/p(ES, X) is the bifree E-solid semigroup. Their definition of a
biinvariant congruence is also a direct generalization of Definition 1.3.22, with

(X)* and p(O, X) replaced with F*(X) and p(ES, X) respectively.

1.3.7 Locally orthodox e-varieties.

In [25], Kadourek investigated e-varieties of locally orthodox semigroups. By Re-
sult 1.3.35, bifree objects do not generally exist for these e-varieties, so Kadourek
developed a theory of trifree objects and triidentities. With bifree objects the
nonexistence of the usual free object on X is compensated for by extending the
alphabet to X. In the case of trifree objects, the alphabet is further extended
by the addition of certain sandwich elements.

Firstly, Kadourek gave an extension of Result 1.3.25, which was vital to

Kadourek and Szendrei’s origina,l work on classes of orthodox semigroups.
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Result 1.3.39 ([25]) A regular semigroup S is locally orthodoz if and only if
V(8).5(p,q)-V(a) C V(ab)
whenever p,q € S and a € Sp, b € ¢S5. a

Corollary 1.3.40 ({25]) If A, C are subsets of a locally orthodoz semigroup S
such that

(i) ANV (a)# 0 for every a € A,
(i7) C € U{S(a,b): a,be A}, and
(iit) C N S(a,b) # 0 for every a,b € A,
then the subsemigroup of S generated by AU C is régular. O

Notation 1.3.41 Recall the definition of the set X from Notation 1.3.20. Let
X1 = {s(z,y) : z,y € X} be a set of (distinct) labels disjoint from X, and let
71 — y U X1 . ‘ a

Kadourek defined a triidentity to be a pair (u,v), also written v = v, where

u, v are members of the free semigroup (X;)*.

Definition 1.3.42 ([25])

e A tied mapping is a mapping ¢ : X; = S where S is a regular semigroup,

z'¢p € V(z¢) for every z € X, and s(z,y)é € S(z¢,y¢) for every z,y € X

o A trifree object for a class V of regular semigroups is a pair (S,¢), where
t: X; — S is a tied mapping, such that for any T' € V and tied mapping
¢ : X1 — T there is a unique homomorphism # : S — T such that

0 = ¢. , a
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Kadourek proved an analogue of Theorem 1.3.27: the trifree object on X
exists in any e-variety V of locally orthodox semigroups, and is isomorphic to
(71)+/p(V,X), where p(V, X) is the congruence on (X;)* consisting of all
triidentities satisfied in V.

However, other Birkhoff-style theorems do not hold for locally orthodox
semigroups. For example, Kadourek proved that if V is an e-variety of locally
orthodox semigroups then V is exactly the class of locally orthodox semigroups
which satisfy all triidentities satisfied by V; but the converse is not true: for a set
¥ of triidentities, the class [X]; of all locally orthodox semigroups which satisfy
each member of ¥ need not be an e-variety. Moreover, Theorem 1.3.38 fails in
this setting: for a class V of locally orthodox semigroups the class HS, P(V)
" need not be an e-variety. Kadourek did prove, however, that if X is an infinite
set and V is a class of locally orthodox semigroups such that [p(V, X)]; is an
e-variety then [p(V, X)]; = HS,P(V) is the smallest e-variety coﬁtaining V.
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Chapter 2

Almeida’s Generalized Variety

Problem

2.1 Introduction.

This chapter consists of an answer to a problem posed in Almeida’s book [3],
which concerns generalized varieties of nil and nilpotent semigroups.
All varieties mentioned in this chapter will be assumed to be semigroup

varieties. Consider the following varieties:
e S, the variety of all semigroups;
e Com = [zy = yz]|, the variety of all commutative semigroups;

o Nil, = [z"y = yz"™ = z"], the variety of all nil semigroups of index n > 1;

and

o N, = [z1...20y = yTy...Ty = T;...Z,), the variety of all nilpotent

semigroups of index n > 1.
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Notice that Nil, and N, consist of semigroups with zero. For u € X+ we
write ¥ = 0 as an abbreviation of uz = zu = u where z is a variable not
occurring in u, so that for example MVil,, = [z" = 0].

Let Nil denote the class of all nil semigroups, and A denote the class of all
nilpotent semigroups. Then

Nil = | Nil, and N = [ N,.
n>1 n>1
Observe that Nil and N are generalized varieties, although they are not vari-
eties. For any class W of semigroups let £L(W) denote the lattice of all varieties
contained in W, and G(W) denote the lattice of all generalized varieties con-
tained in W.

Almeida proved the following result.

Theorem 2.1.1 ([1]) L(NiNCom)U{NilNCom} is isomorphic to G(N NCom)

via the correspondence

W WNN, We LNINCom)U{NilNCom}. O

The motivation for this result was the question of the structure of the lattice

L(Com). In [1] Almeida established an embedding
L(Com) \ {Com} — L(G NCom) x N x L(Nil N Com)

of semilattices for the meet operation, where N is the semilattice of natural
numbers under < and G = U,5[z"y = y = yz"] is the generalized variety
of all groups. The lattice £(G N Com) is isomorphic to the lattice of natural
numbers ordered by division, and so the structure of £L(Nil NCom) became of
interest. Information about G(A N Com) is known from L£(N N Com), and can
be transferred to L(Nil N Com) by Theorem 2.1.1.

As a consequence of Result 1.2.9, Almeida (also in [1]) obtained the following

information about the lattice of pseudovarieties of commutative semigroups from
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these results. Let G = G¥, N = NF, and Com = ComF denote respectively
the pseudovarieties of all finite groups, finite nilpotent semigroups and finite

commutative semigroups. There is an embedding

PsCom — Ps(G N Com) x (N U{oo}) x Ps(N N Com)

of meet semilattices (note that Vil = N, by [15, Proposition 9.2]). The lattices
G(G NCom) and Ps(G N Com) are isomorphic, as are the lattices G(IN N Com)
and Ps(N N Com) (both via the mapping V — VF), and information about
G(G NCom) is known from £(G N Com).

In 3, Problem 10], Almeida asked whether the mapping

a: W WNN, We LWNil)u{Nil},

defines an isomorphism between L(Nil) U {Nil} and G(N) - that is, whether
Theorem 2.1.1 can be extended to non-commutative semigroups.

Notice that AMil & L(Nil) as Nil is not a variety; but N € G(N). Since
N C Nil then Nila = N.

We begin by showing in Section 2.2 that o does not map onto G(N'). We then
consider the question of whether « is injective. First in Section 2.3 we give some
more general results, involving the question of when two arbitrary semigroup
varieties (not necessarily nil) have the same set of nilpotent semigroups. The

remainder of the chapter is devoted to the proof that « is not injective.

2.2 The mapping « is not surjective.
From this point onwards X will denote a fixed denumerable set.

Lemma 2.2.1 Let W = U, W,, where {W, : v € I'} is a directed family of
varieties. LetU € L(W). ThenU C W, for some vy € T.
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Proof: Let U € L(W). Then Fy(X), the free object on X in the variety U, is
a member of W, for some v € I', and this implies that &/ C W,,, by Theorem
1.1.8. o

Corollary 2.2.2 Every variety U € L(Nil) is a member of L(Nil,,) for some

m. )

We will need the next two results. Recall that for a class W of semigroups

the variety generated by W is denoted by V(W).

Result 2.2.3 ([4]) If W is a generalized variety of nilpotent semigroups then
W=V(W)NnN. 0

Result 2.2.4 ([4]) If W is a generalized variety of nilpotent semigroups such
that N N Com € W then V(W) C Nil. ' O

We can now show that o does not map onto G(N'). Recall that for a variety

V we often denote the fully invariant congruence on X* corresponding to V by
p(V).

Theorem 2.2.5 The image of the mapping a is the set

{W e gGN):NnCom € W}
Proof: Let U € L(Nil). Then U € L(Nil,,) for some m by Corollary 2.2.2. If
N NnCom CUNN then N NCom C Nily,. But NN Com = U, 5, (N NCom), so
that we now have M4 N Com C Nil,,. This means that for every z € X+
{ry™s:r,s€ X*;ye Xt} = z™p(Nil,)

C z"p(Nmt1 NCom)

= {xm}v
which is false; and so NN Com ZUNN.

Now suppose that W € G(N) is such that N NCom € W. By Results 2.2.4
and 2.2.3, we have V(W) € L(Nil) and W = V(W) NN = V(W)e. ]
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2.3 Semigroup varieties whose nilpotent parts
coincide.

The question of the injectivity of e remains of interest however. First we take
a look at the more general question of when two semigroup varieties have the
same set of nilpotent semigroups.

For u = z,...z, where z; € X, the length |u| of u is defined to be n, and
the content c(u) of u is the set {zy,...,z,}.

Suppose that U is a variety of semigroups. Let B(U) denote the set of all
words v € X* for which there exists r such that |y| < r for all y € up(U). We
say that B(U) is the set of all bounded words for U, and that the set U(U) =
X*\ B(U) is the set of all unbounded words for U. Let

Bld(Y) = {u =v e Id(U) : u € B(UU)},
the set of all bounded identities for U. For u € B(U) let
By(u) = max{|v| : v € up(U)}.

Remark 2.3.1

o Bld(Yf) = {u=v € ld(f) : u,v € B(U)}.

o If U,V are two varieties for which BId(&/) = BId(V) then B(U) = B(V),
and for every u € B(U) we have up(U) = up(V) and By(u) = By(u).

o Theset U(U) is a subsemigroup of X* that is closed under endomorphisms

of X+,
o If u € B(U) then c(v) = ¢(u) for all v € up(U).

o If u € B(U) then By(u) exists. O
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As the following theorem shows, the nilpotent part of a variety of semigroups

is completely determined by its bounded identities.
Theorem 2.3.2 Let U,V be varieties. Then
UNN =VNN & BIdU) = BId(V).

Proof: Suppose that Y NN = VN N. Then p( N N,,) = p(V N N,,) for
every m by Theorem 1.1.6. Let u = v € BId(l). Let r = By(u) + 1. Then
up(U) = upU N N;) = up(V N N,). Therefore |y| < r for all y € up(V), and
up(U) = up(V N N,) = up(V). Hence u = v € BIA(V). So BId(H) C BId(V),
and a dual argument shows that BId(Y) = BId(V).

Now suppose that BId(Z/) = BId(V). Then U(U) = U(V). Let m > 1 and
u€ Xt. Ifue UU), or if u € B(U) and By(u) > m, then

(uw,u™) € p(U N Nm) N p(V N Non);

so up(UNN;,) and up(VNN,,) are the zeros of X+ /p(UNN,,) and X+ /p(VNN,,)
respectively. Otherwise, we have u € B(U) and By(u) < m, and in this case
wp(U O Niy) = up(U) = up(V) = up(V O Nyn) (by Remark 2.3.1).

It now follows that for all m > 1 the semigroups X*/p(U N N,,) and
X+/p(V N N,,) are isomorphic, and p(if N N,,) = p(V N ). Therefore
UNN,, =VNN, for all m by Theorem 1.1.6, and hence d "N =V NN. O

By Remark 2.3.1 we have the following corollary.

Corollary 2.3.3 IfU,V are varieties such that U NN =V NN then B(U) =
B(V), and up(U) = up(V) and By(u) = By(u) for all u € B(U). O

The next result gives a useful characterization of the varieties which have

the same nilpotent semigroups as a given variety U.
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Lemma 2.3.4 Let U be a variety. A variety V satisfies UNN = VNN if and
only if for every u € U(U) there exists Q(u) C U(U) such that {|v|: v € Q(u)}

is unbounded, and
V=[BIdU)U{u=v:uecUU),ve Qu)}.

Proof: Suppose that V is a variety such that Y "N =V NN. Then UUU) =
U(V) by Corollary 2.3.3. For every u € U(U) let Q(u) = up(V). Then

{u=v:ueUld),veQu)} CIdV).
Also, BId(U) = BId(i)) C Id(V) by Theorem 2.3.2, so that
YV CBIAU)U{u=v:u e Ul),ve Qu)}.

Now suppose that u = v € Id(V). If u € B(V) then u = v € BId(V) = BId(¥).
Ifue U(V)=UU) then v € Q(u), and therefore

BlAU)U{u=v:ueUl),ve Qu)}] CV.

For the converse, suppose that for every u € U(U) we have aset 2(u) C U(U)
such that {|v|: v € Q(u)} is unbounded. Let

S =BlU)U{u=v:ueUU)ve Qu)},

and let V = [X].

Suppose that © € Xt and let V = u = v. By Result 1.3.3, for some m > 0
there exist r;,s; € X*, an endomorphism ¢; of X*, and (d;,e;) € LU 7! for
every 7, 0 < 7 < m, such that

u = ro(dowo)So,

v = Tm(emPm)Sm,

and 7;_j(€i—19i-1)si—1 = ri(dip;)s; for every i, 1 <1 < m.
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If (di,e;) € BId(U) for every i then BId(U/) E u = v, and so U = u = v.
Otherwise, let j be the least ¢ such that (d;,e;) & BId(U). So d; € U(U).

If j = 0 then u = ro(dowo)so € U() by Remark 2.3.1. If j > 1 then
BIAU) | u = rj-y(ejo1¢j-1)8;-1 = r3(d;;)s;. Since d; € U(U) then again
u € U(U).

Therefore if u € X+ and V |= v = v then eitheru € Uf) or U =u =v. So
for u € X* either u € U(U) or up(V) C up(U).

Clearly U(U) C U(V). Suppose that u € U(V). From the above observation,
either u € U(U) or up(V) C up(U). But the conditions u € U(V) and up(V) C
up(U) imply that u € U(U); so that u € U(Y) in both cases. Therefore U(U) =
U(V), and hence B(U) = B(V).

If w =v € BId(Y/4) then u € B(U) = B(V) and u = v € Id(V), so that
u = v € BId(V). Conversely, let u = v € BId(V). Since u € B(V) = B(U) then
from the observation above we conclude that up(V) C up(Y) so that u = v €
BId(). Hence BId(Y) = BId(V), and so YN A = VN A by Theorem 2.3.2. 0

For a variety U let
EU)=BldU)U{u=v:u,ve UU)}.
Let U = [2(U)).
Theorem 2.3.5 Let U be a variety. Then U NN =UNN, and

H={VeLS) :UNN=VNN}.

Proof: For every u € U(U) define Q(u) = U(U). Then
EU)=BldU)U{u=v:v e Qu),u e UU)}

so by Lemma 2.3.4 we have U NN =UNN.
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Suppose that V is a variety such that U NN =V NN. Let u = v € Id(V).
If u=v € BId(V) then u = v € BId({/4) C £(U) by Theorem 2.3.2. Otherwise
u,v € U(V) = U(U), so that u = v € E(U). Therefore Id(V) C E(U), and
hence f C V. O
We can now characterize those varieties which are such that no other variety

has the same set of nilpotent semigroups.

Theorem 2.3.6 For a variety U the following are equivalent.

o U =V whenever V is a variety such that UNN =V NN,

o U(U)=10.

Proof: Suppose that & is a variety which is such that if Y "N =V NN for
some variety V then U = V. Suppose that u € U(U). Let c(u) = {z1,...,z.},
and let Y = {yl,...,yn}. C X \ ¢(u) be such that |Y| = n. There exists an
endomorphism ¢ of X% such that z;¢ = y; for all j, 1 < j < n. Write v = u,
so that v € U(U) by Remark 2.3.1. For every w € U(U) let

Qw) = {w,w*,w,...} CUU),

again by Remark 2.3.1. Let ©¥ = BIdU) U {w =z : w € U(U),z € Qw)}. By
Lemma 2.3.4 we have UNN = [E]NN. Since u,v € U(U) then (u,v) € T(U) C
p(U). Since c(w) = ¢(z) whenever w = z € BId(U), then c(w) = ¢(z) whenever
(w, z) € p([E]), and so (u,v) € p([E]). Now U and [E] are two distinct varieties
(by Theorem 1.1.6) such that Y NN = U NN = [E]N N, contradicting our
assumption. Therefore U(U) = 0.

Conversely, suppose U is a variety for which U(4{) = 0. Then B(U) =
X+ and BIdW) = Id(U). If V is a variety such that 4 N A" = V N A’ then
BId(V) = BId() by Theorem 2.3.2. Hence B(V) = B(U) = X*, so that
1d(V) = BId(V) = Id(U). Thus U = V. 0
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Remark 2.3.7 We have shown that the mapping 8 : £(S) — G(N) given by
VB =V N N is not injective; although it is surjective by Result 2.2.3. Clearly
B respects N.

By Corollary 2.3.3 we have B(U) = B(V) C B(U V V) and BId(U) =
BId(V) C Bid(U V V). However, BId(U) need not coincide with Bid(Z/ V V), as
the following example shows. Let U = [zyz = zy?z] and V = [zyz = (zyz)?).
Then |

BId(U) = BId(V) = {(w,w) € Xt x X* : if |w| > 3 then |c(w)| = |w]|},

and so U NN =V NN by Theorem 2.3.2. Let z,y € X, where z # y. Then
zyr € UU) = U(V). It is easy to see using Result 1.3.3 that for v € X* and
z,y € X, with v # zyz, we have V = zyz = v if and only if v = zwzzz for
some w,z € X¥, and U | zyz = v if and only if v = zy*z for some k > 1.
Therefore (zyz)p(U V V) = {zyz}. So zyz € BU V V) \ B(U). Therefore
Bid(U V V) # BId(U); and hence U VV)NN £UNN = UNN)V (VN N)
by Theorem 2.3.2. That is, the mapping 3 does not respect V. ]

2.4 Nil varieties whose nilpotent parts coin-
cide.
If U € L(Nil) then U € L(Nil,,) for some m by Corollary 2.2.2, and so
UWNily) ={ra™s:z € X*,r,s € X*} CUW).

Now, by Theorem 2.3.6 there exists a variety V # U for whichid NN =V NN;
but although U(MNil,,) C U(U) = U(V) by Theorem 2.3.2, this variety V need
not be nil.

We begin with the following lemma, which shows that if a pair &,V of nil
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varieties are to satisfy Y N N =V NN they must have
{m:U e LNil,)} ={m:V e L(Nil,)}.
‘For a variety U € L(Nil), let nil(U) = min{m : U € L(Nil,,)}.

Lemma 2.4.1 Let U € L(Nil). Then min{lw| : w € UU)} = nil(d). If
V € L(Nil) is such that U "N =V NN then nil(Uf) = nil(V).

Proof: Write r = nil(i{). Let u € U(U) have |u| = min{|w| : w € UU)}.
There exists v € up(U) such that |v| > r.

Choose z € X. There exists an endomorphism ¢ of X+ such that ypo = z
for all y € X. Then uyp = z!* and vy = z”!, and consequently

U I:xlul =zM=z"=0.

That is, U € L(Nil,). So min{|w| : w € UWU)} > r = nil{lf). Conversely,
U € L(Nil,) implies that z” € U(U) for every z € X, and so

min{|w|: w € U(U)} < r = nil(Y).

Thus min{|w| : w € U(U)} = nil(H).

If V € L(Nil) is such that Y N N = V NN then we have shown that
min{|w| : w € U(V)} = nil(V). But U(U) = U(V) by Corollary 2.3.3, and so
nil(U) = min{|w| : w € U(U)} = min{|w| : w € U(V)} = nil(V). D

Notice that if & € L(Nil,, N Com) then
velUlU) o UEu=0

(if w € UU) and c(u) = c(v) for all v € up(U) then there exists a word
w € up(U) and a variable z € X that occurs at least m times in w, so that

z™ € up(U) since U is commutative; and on the other hand if u € U(U) and
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there exists v € up(U) and z € ¢(v) \ ¢(u) then we may substitute z™ for z in
v, and again obtain z™ € up(U)).
Therefore for U,V € L(Nil,, N Com) such that Y NN =V NN we have
B(U) = B(V), with
u € B(U) = up(U) = up(V)
by Corollary 2.3.3 and
welUU)=>U YV Eu=0.

As in the proof of Theorem 2.3.2, this means that Z{ = V. In view of Lemma
2.4.1, we have just shown that the mapping described in Theorem 2.1.1 is in-
jective.

On the other hand, if 4,V € L(Nil,,) are such that Y "N = VN N then
again B(U) = B(V) and

u € BU) = up(U) = up(V);

also if u € U(U) is such that there exists v € up(U) with c(u) # c(v) then
U = u = 0. However, if c¢(u) = ¢(v) for all v € up(U) then perhaps U F u = 0.
A relevant question here then, in the noncommutative case, is this: when does
there exist a sequence of words, all with the same content, and with unbounded
lengths, that contain no subwords of the form ™, and hence are not equal to 0
under the laws of Nil,,?

We now introduce two varieties U,V € L(MNils) in order to address this
question; and we show that Y "N = VNN but & # V, so the mapping « is

not injective.

Let
U = [z° = 0,z%y2%z = (yz)’22%yz] (2.1)
and
V = [2° = 0,2%y2% = (yz)’z28yz, 2%y2%2? = (yz)’223(yz)?). (2.2)
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Then ¢ and V are members of L(Nil). Notice that for W € {U,V} we have

uw) {r(z®yz’z)s :r,s € X* and z,y,z € X*t}YUU(WNils)

= {u € X7t : there exists a nontrivial identity v = w € Id(W
Yy

such that u = rvs for r,s € X*};

and hence B(U) = B(V). Moreover, if u € B(U) then up(U) = {u} = up(V), so
that BId(&) = BId(V). Hence by Theorem 2.3.2 we have the following result.

Theorem 2.4.2 The varieties U and V as defined above satisfy

UNN=VNN. 0

Let A = {a,b,c¢} C X where a, b and c are distinct. Note that whenever
the identity #%yz3z = (yz)’zalyz (see (2.1) and (2.2)) is applied, it can be
reapplied nontrivially. Thus from the word a®bc®a we obtain first (ba)’ca®ba,
then (cba)’a(ba)’cba, (acba)’ba(chba)’acba and so on. With this in mind, we

inductively define sequences (@), and (A,), 5, in At as follows:

ap = a,

a; = ba,

a; = cba, and

@p, = Qp_3an- forn >3;
Ay = d°ba,

A; = (ba)’ca®ba, and

A, = (an)san_g(an_l)san for n > 2.
The identities which define the varieties 2/ and V can now be rewritten:

U= [.’Es = O,Ao = Al] and V = [.'1,'5 = 0, Ao = Al,Aoa = Alba].
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It follows that A, € (Ao)p(U) for every n > 0. The bulk of the proof that

U #V is concerned with showing that in fact
(Ao)p(U) = (Ao)p(V) = {An : n > 0}.

This equality is proved from the following two results. Firstly, for n > 0 the
word A, has no factor of the form z°, ¢ € A*. Some bound on the size of powers
appearing in A, is obviously needed since otherwise, regardless of the choice of
the number m such that ¢,V C Nil,,, a simple modification of the proof of
Theorem 2.4.2 would lead to the conclusion &4 = V. Secondly, it is shown that
if A, = r(2%y2%z)sforn > 2, r,s € A*and z,y,z € At thenr=s=1, z = a,,
Y = an-2 and 2z = a,_,; that is, there is only one way to reapply the identity.
(These properties of A, are actually proved for the word A; a; however, they are
obvious consequences of the corresponding results: (Aqa)p(U) = {Ana : n > 0},
Apna has no factor of the form z°, z € A*, and if A,a = r(23yz%z)s for r, s € A*
and z,y,z € At thenr =1,s =a, 2 = @y, Yy = @n—z and 2 = a,_;.) The
combination of the terms a,, a,_; and a,_, which forms A, was chosen with
this property in mind. Although for n > 0 the word a, does contain squares,
it has no factor of the form z3, z € A*. This explains the choice of the terms
(a-)® and (an_;)° in A,. There are many other cubes in A,, but the fact that
an also appears at the end of A, ensures that the correct cubes are selected,

and leaves no choice for the other terms.

2.5 The sequences (a,),5, and (4,),-

We begin by giving a number of lemmas establishing properties of the sequences
(@n)pso and (Ag),so- Most proofs require direct verification for the first few

terms of the sequence (an),,q, so for convenience the first ten terms are listed
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below.

ap = a
a; = ba

a;, = cba

a3 = acba

as = baacha

as = cbabaacba

ag = acbacbabaacba

a; = baacbaacbacbabaacba

ag = cbabaacbabaacbaacbacbabaacba

ag = acbacbabaacbacbabaacbabaacbaacbacbabaacba

For j,k > 0 and z; € X™* we write I'[f=j x; for the (noncommutative) product

zj...zk. The relative ordering of j and k will always be clear, and for notational

convenience the following rule is set: whenever such a product [[% ; i is written

in the form z (Hf;j, :ci) y for z,y € X*,
o if j < kthenj >k &I, z; =1, and
o if £ < j then k’>j’©['[f;]-,:v,-: 1.

The first result details some basic facts. For a real number r, the symbol [r]

is used to denote the integer part of r.

Lemma 2.5.1

(i) Letn >3. If2<k<n-—1 thenanz( f;f_Sai)ak.

(it) Let n > 3. If 1 <k < [n/3] then a, = an_3x (H}=k an+2_3i>.

(i17) Let m,n > 0. Then m < n & lam| < |an].
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() Let myn > 0. Then m =n (mod 3) & a, and a, have the same initial

letter.

Proof: (i) and (ii) follow easily by induction on n. Part (iii) is clear from part

(). Part (iv) is clear from part (ii) since ag = a, a; = ba and a, = cba. O

A word u € X7 is a left (respectively right) factor of v € X% if v = ww
(respectively v = wu) for some w € X*.
The next lemma gives information about words which are both left factors

of a, and right factors of a,, for some n,m.

Lemma 2.5.2 Letn > 3 and m > 0. If a, = uwv and a,, = wu for u,v € At

and w € A* then u = an_3; for some k, 1 < k < [n/3], and hence v =

1
Hi:k Qpn42-3i-

Proof: We will prove by induction on m that u = a,_s; for 1 <k < [n/3], and
then v = []}_, @nt+2-3; by Lemma 2.5.1(ii).

The cases m = 0,1,2 are easily checked. Let m > 3, and suppose that
a, = uv and @, = wu wheren > 3, u,v € A* and w € A* If w = 1 then
an = apv. Then m = n — 3k for some k, 1 < k < [n/3], by Lemma 2.5.1(iii)
and (iv), so that u = an_3; as desired. Suppose therefore that w € A*. From
WU = Gpm-3am-1 We take the following cases: (a) w = am-3z, z € A*, and (b)
m-3 = wz, T € At

Case (a): If w = a3z, z € A*, then a,,-; = zu. By the induction
hypothesis applied to a, and an,_; there exists k, 1 < k < [n/3], such that
U = Gn-3k-

Case (b): If aj—3 = wz, z € A*, then u = za,,_;. We will show that this
case cannot occur. By the induction hypothesis applied to a, = z(an-1v) and
am-3 there exists k, 1 <k < [n/3], such that £ = a,_3;. Then a3 = wa,_3,

and hence n — 3k < m — 3 by Lemma 2.5.1(iii). We consider two cases.
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(b)(1): Suppose that £ = 1. Then the inequality n — 3k < m — 3 becomes
n < m. Since a, = Tdy,-1v, from Lemma 2.5.1(iii) we obtain the contradiction
m—1<n<m.

(b)(2): Suppose that k > 2. We have a, = a,_3; (H}:k an+2_3,-) by Lemma

2.5.1(ii). Since also a,, = an-3xam-1v, then
1 1
-1V = [[ @n42-3i = @npa-3k ][] Gni2-3i- (2.3)
1=k t=k—1
Let £ = 2% + k — 1. Since m = n (mod 3) by (2.3), then ¢ is an integer.
Since k < [n/3] then ¢ < [271], and we obtain £ > 1 from n — 3k < m — 3.
Therefore am—1 = @ny2-3k [1}=p @m+1-3: by Lemma 2.5.1(ii). Eq.(2.3) then yields

(H}:e am+1_3,~) v = [I}_4_; Gn42-3;- However, this implies that m = n + 1 (mod

3), contrary to the former conclusion m = n (mod 3). O

The following lemma shows that a, has no right factor of the form z2,

T € AT
Lemma 2.5.3 Let n > 0. If a, = uwv? foru,v € A* then v = 1.

Proof: If 0 < n < 8 the result is easily verified. The proof for n > 9 is by
induction on n. Let n > 9 and suppose that a, = uv? where u,v € A*. Then

uv? = a,_3a,_,. We consider the following cases:
(a) v =wan_1, w € A¥;
(b) an-1 = wv, v =zw, w € AT, z € A*; and
(c) an_y = wv?, w € A*.

Case (a): If v = wan_1, w € A* then a,_3 = wvw = uvwa,_,w, which

contradicts Lemma 2.5.1(iii).
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Case (b): If a,—y = wv and v = zw for w,z € A* then a,_3 = uz and
an-1 = wzw. By Lemma 2.5.2 applied to a,-, = w(zw) = (wz)w we have
W = Gnp_1-3; for some k > 1.

(b)(1): If £ = 1 then w = a,—4, and hence an-y = a@n_42an_4. Since
Gp_1 = Gpn_4Qn_50n_gdn_4, then ¢ = a,_s5a,-¢ = an_g(an_e)Q. The induction
hypothesis applied to a,—3 = uz now gives the contradiction a,-¢ = 1.

(b)(2): If £ > 2 then

Iml = Ian—1| - 2lan—1—3k|
2 Ia'n—l' - 2|an—7|
= lan—7an—8an—9a'n—7an—2| - 2|an—7|

> lan—2|a

and this provides the contradiction |an-2| < |@n-3| since a,_3 = uz.

Case (c): By the induction hypothesis applied to a,—; we have v = 1. O

The next lemma plays a significant part in our investigation of the word

An = (an)3an—2 (an—l )San-

Lemma 2.5.4 Letn >5andm>1,and let n —2 < p;,q; <n for1 <1< m.

If T2, ap, = ([T ziag) x forz € A* and z; € A, 1 <1< m, then z = 1.

Proof: The proof is by induction on m. For the first step, suppose that
a, = ua,z where u,z € A*and n —2 < p,g < n. If u = 1then p = ¢ by
Lemma 2.5.1(iv), so that z = 1. We may therefore assume that u € X*. Then
qg € {p —2,p—1}. We have a,_3a,_, = ua,z, so that either (a) z = wa,_;,
w € A*, or (b) ap—1 = wz, w € AT,

Case (a): If z = wap_,, w € A*, then a,_3 = ua,w, which contradicts
Lemma 2.5.1(iii).

Case (b): If ap—1 = wz, w € A%, then a,_3w = ua,.
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(b)(1): If ¢ = p — 1 then a; = wz. Hence a, = uw:éz, and thus z = 1 by
Lemma 2.5.3.

(b)(2): If ¢ = p — 2 then a,—3w = uap—,. Either w = va,_2, v € A*, or
ap-2 = vw, v € AY.

If w =wvap_,, v € A* then a,_1 = va,_,z, and from the case ¢ = p — 1 we
obtain z = 1.

Ifa,_2 = vw, v € At, then a,_3 = uv. Therefore, since a,_; and w have the
same initial letter, Lemma 2.5.2 applied to a,—; and a,_3 gives the contradiction
p—1 = p (mod 3). This completes the case m = 1.

Suppose now that m > 2, and that [T72, a,, = ([T, z:a,,) ¢ where n — 2 <
pi,¢; < nand z; € A* for 1 <4 < m, and z € A*. Either (2') ap, = z1a,,4,
y € At or (V') z1ay, = apy, y € A%

Case (a'): If @, = z1aq,y, y € AY, the induction hypothesis applied to a,,
gives the confradiction y=1 _

Case (b'): If zyaq, = a,y, y € A*, then [12,4q, = y (12, z:a,,)z, and

z =1 by induction. O

Although the word a, does not have right factors of the form 22, z € A¥,
it does have left factors of this form. The following result concerns a particular

case.

Lemma 2.5.5 Let n,m > 0. If a, = (uv)zw and a,, = zv for u,v,w € A*

and ¢ € A* then uy # wz for all y,z € A*.

Proof: The proof is by induction on n. It is easily checked that the result holds
when 0 < n < 9. Let n > 10 and suppose that a, = (uv)2w, a,m = zv and
uy = wz where m > 0, u,v,w € A" and z,y,z € A*. Then a,_3a,_; = (uv)zw,

and we have either:

(a) w=tan-y,t € A%
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(b) @n—y =tw,uv=rt,t € AY,r € A or
(€) an—1 = tuvw, t € A*.

Case (a): If w = tan_;, t € A*, then an_3 = (uv)’t, am = zv and uy =
t(an—1z). If t = 1 then Lemma 2.5.3 gives the contradiction uv = 1. If t € A*
then the induction hypothesis is contradicted.

Case (b): If ap-y = tw and wv = rt for t,r € A* then a,_3 = rtr. By
Lemma 2.5.2 applied to a,_3 = r(tr) = (rt)r there exists k > 1 such that
r = an_3_3 and tr = [[}_; Gno1-3;.

(b)(1): Suppose first that £ = 1. Then r = a,-¢ and tr = a,_4. Since
Gn—4 = Gp_70n_gGn_¢, then t = a,_7a,_s. Hence uv = rt = ¢,_ga,_7a,_g, 0
that a, = (uv)2w = (an_san_wn_g)zw. Also, a, = ap_3a,_1 = an_g(an_4)2an_2
= an_s(an_mn_gan_e)zan_g and thus w = a,_gan_s.

Since uv = a,_an-7an—s, then either a,_¢ = us, s € A* or u = a,_gs,
s € A*. If ay_¢ = us, s € A*, then v = 5a,_7an_g = san_10(an_s)’, and Lemma
2.5.3 applied to a,, = zv provides the contradiction a,_g =1. If u = a,_gs,
s € A*, then sv = an_7an-s. Since w = a,_gan_2, the equation uy = wz gives
8Y = Gn_22. Thus a,_ and a,_7 have the same initial letter, which contradicts
Lemma 2.5.1(iv). _

(b)(2): If k > 2 then |[Ths—; @n-1-3i > lan-a| > |an-s-sk| = Ir|. Therefore,
since

1 1
tr = H Ap—1-3; = An—-1-3k H Qn—1-3i,
i=k 1=k—1

there exists s € At such that ¢t = a,,_;_3xs and
1
Sr = H Ap—1-3i- (24)
1=k—1
Then a,_; = an_1_3xsw. Since an_1 = Gn_1—_3k (H,Lk an+1_3,-), then
1

H Qp41-3; = SW. (25)
1=k
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By (2.4) and (2.5) the initial letters of a,—; and a,4; are the same, which
contradicts Lemma 2.5.1(iv).

Case (c): If ap-y = tuvw, t € A*, then a,_3t = uv. Consequently a,—; =
ta,_stw, and Lemma 2.5.4 gives the contradiction tw = 1. This completes the

proof. O

We now turn our attention to the sequence (A,),5,- The next lemma iden-

tifies the factors of the word A, = (an)san_g(an_l)e'an of the form 23, z € AT,
Lemma 2.5.6 Let 1 <{< 8 andn > 5. Let (p1,...,pe) be a subsequence of
(n1,...,n8) = (n,n,m,n—2,n—1,n—1,n—1n)
such that if py = n; then pj41 = njy; for 1 < 3 < L. Let
¢
e, = wa (2.6)
i=1
and a, = wu where w,v € A* and u,z € A*. Then either:
(i) £>3, (p1,p2,p3) = (n,n,n), w=1, = = a, and v = [I'_, ap;;
(i) £>3, (p1,p2,p3) = (n=1,n—1,n—1),w=1,z =an,_ and v = [[", ap,; |

(1) £> 5, py =n—2, = Uap_ot, Gn_g = tu and v = uan_s [[°=g a,, for some

te At;

() £>4,pp=n—2z=ut, ap,_; = tu and v = u[['_5 ap, for some t € A*;

or

(v) £ >4, pp =n—2, & = ran_4t, Gn_g = tr and v = r[['_5 a,, for some

re A*¥andt e AT.

Proof: The first step is to show that the cases £ = 1,2 contradict the assump-

tion z € A*. The case { = 1 is proved first. The case £ = 2 is then clear,
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since for every choice of (p;,p;) there exists m > 0 and y,z € A* such that

Gm = Yap, ap,2: indeed for any m > 7 we have

An = Gm_3Gpm_)
= amn_6(@m-1)’am_s
= Ap-6am-7(Cm_50m—4)am_2
= Am-6am-7(Am-5Am—7)Am_50m—2-

Suppose then that £ = 1. We prove by induction on n > 3 that if a, = wz3v

for w,z,v € A* then £ = 1. The initial cases n = 3,4, 5 are easily verified.
Let a, = wz’v where w,z,v € A* and n > 6. Then a,_3a,-1 = wz3v, and

we consider the following cases:
(a) v=yan-1,y € A%
(b) an-1 = yv,z = 2y, y € A%, z € A%
(¢) an_1y =yzv,z =2y,y € AT, 2z € A%;
(d) an—1 = yz?v, . = zy, y € A*, z € At; and
(€) an—y = yziv, y € A%

Case (a): If v = yan-1, y € A*, then a,_3 = wz3y, and hence z = 1 by
induction.

Case (b): In this case an,_3 = wz(yz)?, and Lemma 2.5.3 gives the contra-
diction yz = 1.

Case (c): In this case a,_3 = wz(yz) and a,-, = (yz)yv. Therefore yv and
an—; have the same initial letter. Hence Lemma 2.5.2 applied to a,_; and a,_3
gives the contradiction n — 1 =n + 1 (mod 3).

Case (d): We have a,_3 = wz and a,_; = (yz)’yv, so this case is contra-

dicted by Lemma 2.5.5.
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Case (e): The induction hypothesis applied to a,_; shows that z = 1.
This completes the case £ = 1.

Now suppose that 3 < ¢ < 8. Then

¢
u ] ap, = 2% (2.7)
=2

by (2.6) since a,, = wu.

Wé proceed by considering cases based on the relative lengths of the left
factors of (2.7), obtaining in each case a reduced form of the equation, for
which we then repeat the procedure if necessary. Most cases are shown to be
impossible; those that remain are identified as the cases (i)-(v) given in the
statement of the lemma.

We first distinguish the following cases, taken from (2.7):
(a) u =z%, d € A%,
(b) u=2z%d, z =de, d € A*, e € A™;
(c) u=zd,z=de,d e At , e € AT,
(d) v = z; and
(e) z=ud, d e A*.

Case (a): We have a,, = wu = wz3d, which contradicts the case £ = 1.
Case (b): We have a,, = wz’d = wd(ed)?, and Lemma 2.5.3 provides the
contradiction ed = 1.

Case (c): In this case (2.7) gives

¢
I a»: = edev, (2.8)
1=2

and we have a,, = wded. From (2.8) we take three cases:

(1) e=apf, f €A%
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(2) aP2:ef7d:fgvf€A+’g€A*; or
(3) Gp, =€df, fE A+'

(c)(1): In this case ap, = wday,, fd, and Lemma 2.5.4 gives the contradiction
fd=1.

(c)(2): We have a,, = wfgefg = wfgap,g. Thus p; < p;, and Lemma 2.5.4
shows that g = 1. Then a,, = ed, and hence [J{_3 a,, = ev by (2.8). Therefore
p2 = p3 by Lemma 2.5.1(iv). This means that p; > p, = p3, which contradicts
any choice of the sequence (pi, ..., pe).

(c)(3): In this case we obtain f[[{_;a,, = ev from (2.8), and we have
ap, = (ed)f and a,, = wd(ed). Therefore a,, and f have the same initial letter,
and Lemma 2.5.2 applied to a,, and a,, gives the éontradiction p2 = p2 + 2
(mod 3). This concludes case (c).

Case (d): In this case a,, = wz, and (2.7) gives []:., a,, = z%v. Either (1)
ap, = zd,d € A, or (2) z = a,,d, d € A*.

(d)(1): If ap, = zd, d € A*, then d[]’_sa, = zv. Therefore a,, and d
have the same initial letter, and Lemma 2.5.2 applied to a,, and a,, yields the
contradiction p; = ps + 2 (mod 3).

(d)(2): If 2 = ap,d, d € A*, then a,, = wa,,d. Thus p; < p;, and from
Lemma 2.5.4 we find that d = 1. Therefore z = a,,, so that [I’_, a,, = a,,v, and
hence p; = ps. We now have p; > p, = ps, and this implies that p; = p, = ps.
Hence (p1, p2,ps) € {(n,n,n),(n —1,n — 1,n — 1)}, and we have [, a, = v.
The definition of case (d) gives u = z, and therefore this describes cases (i) and
(i1).

Case (e): We have a,, = wu, and (2.7) gives

¢
1 ap: = d(ud)?v. (2.9)
i=2

Either:
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(1) d = ap,ape, e € A%
(2) d=ap,e, a,, =ef, e € AT, f € A*; or
(3) ap, =de, e € A*.

(e)(1): We obtain [[f'_, ap, = €(uap,ape)’v from (2.9), and we have a,, = wu.
If £ < 6 then Lemma 2.5.4 shows that a,, = 1, a contradiction. Therefore we
may assume that £ > 7. Either eu = a,,f, f € A* or a,, = euf, f € A*.
If eu = a,,f, f € A*, then [I{.5 ap, = fap,ap,ap, fay,ap,ev, and again Lemma

2.5.4 shows that ap, = 1, a contradiction. If a,, = euf, f € A*, then

¢
I ap = ap,apeuay,ap,ev. (2.10)

i=5

Observe that py < p; = ps + 1 since £ > 7. Thus |f| < |a,,| since a,, = euf,

and hence by (2.10) there exists g € A% such that a,, = fg. Therefore

¢
11 a»: = gap.cuay,apev. (2.11)

i=5
Lemma 2.5.2 applied to a,, and a,, shows that g = ha,,_; = ha,, for some
h € A*, so that |a,,| < |g|- By (2.11), there exists k, with |k| = |h|, such that
g = ap,k. Then a,, = fa, k, and Lemma 2.5.4 shows that k = h = 1. Thus
g = ap,, so that [[_ga,, = Aps UG, Gp,ev. Then p;; = pe, which is impossible,
and case (e)(1) is completed.

Cases (€)(2) and (e)(3) are clearly similar:

e in case (€)(2) we have ]I, ap = (uape)’v, a, = wu, a,, = ef and

T = uay,e where e, f € A*; and

e in case (e)(3) we have e[I¢_; a,; = (ud)’v, a,, = wu, a,, = de and z = ud

where d € AT and e € A*.

We combine these two cases to form the following case:

r II a = (ust)?v, (2.12)
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ap, = Wu, a,; = tr and z = ust where t € A*, j € {2,3} and
¢ j=2=s=1and r € A*,
¢ j=3=s=a, and r € At.

Note that the case 7 = 2 corresponds to the case (€)(3), with r = e and ¢ = d,
and the case j = 3 corresponds to the case (e)(2), withr = fand t = e.

This case is labelled (e)(4), and the following subcases are considered:
(I) r = ustuy, y € A%,
(II) r = uy, stu=yz,y € AT, z € At;

(III) r = u;

(IV) u=ry, ap,,, =yz,y € At, 2 € At; or
(V) u=ray,,,y, y € A*.

(e)(4)(I): We have a,, = wu and a,, = tustuy, and (2.12) shows that

nysz ap, = stv. If j = 2 then s = 1, so that a,, = (tu)’y and

¢
y [ ap = tv. (2.13)
e

If y = 1 then Lemma 2.5.3 applied to a,, gives the contradiction tu = 1.
Therefore y € A*. In view of (2.13), Lemma 2.5.5 is now contradicted by a,,
and a,,.
If j = 3 then s = a,,. Thus a,, = tua,,tuy, and Lemma 2.5.4 gives the
contradiction tuy = 1.
(e)(4)(II): In this case (2.12) gives
y .
II ap = zstv, (2.14)
i=j+1

and we have a,, = wu, a,; = tuy and stu = yz.
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If j = 2 then s = 1, so that tu = yz. Then a,, = tuy = yzy.. By (2.14),
ap, and z have the same initial letter. Therefore Lemma 2.5.2 applied to a,, =
y(zy) = (y2)y yields ps = p, + 2 (mod 3), which contradicts any choice of the
sequence (p,...,Pe).

If 7 = 3 then a,, = tuy and s = a,,. Eq.(2.14) becomes

¢
I1 a»: = zap,tv, (2.15)
i=4
and we have a,,tu = yz. From the last equation we take the cases (A) a,, = yh,
h € At and (B) y = a,,h, h € A%
(e)(4)(I1)(A) If ap, = yh, h € At then z = htu and (2.15) becomes

4
I ap: = htuay,tv. (2.16)

i=4

Thus h and a,, have the same initial letter. From Lemma 2.5.2, with a,, = yh
and ap, = (tu)y, we see that py = p; + 2 (mod 3) and h = ma,,_; for some
m € A*. Sincet € At, Lemma 2.5.4 applied to (2.16) shows that £ > 5. Observe
that ps = ps + 2 (mod 3) implies that pp =n,p3 =n —2 and py = ps =n — 1.
Thus h = ma,—;, a, = yh and a,_2 = tuy, and (2.16) becomes

¢

(an_l)2 H ap, = htuaytv.

i=6
Since |an—1| < |h|, there exists 0 € A* with |o| = |m| such that h = a,_;o.
Then a, = ya,_j0, and from Lemma 2.5.4 we find o = m = 1. Thus h = a,_,,
and hence a,_; [['_g ap, = tua,tv. However, a,_, = tuy, and Lemma 2.5.1(iv)
gives the contradiction n — 1 =n — 2 (mod 3).

(e)(4)(II)(B) If y = ap,h, h € A*, then tu = hz and a,, = tua,h. Thus
p2 < p3, and h =1 by Lemma 2.5.4. Consequently y = a,, and z = tu, so that
(2.15) becomes [T', ap; = tuytv = ap,tv. Then ps = py, so that py < p3 = pa.
This means that p, =n —2 and p3 = py = ps =n — 1. Then y = a,_2, an_1 =

tuan,_o and a,_; Hf=6 ap, = tv. Thus tu = a,_4, and hence v = ua,_» [T ap,.
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Since j = 3, we have z = ua,_»t. We have now described case (iii), and this
completes case (e)(4)(II).
(e)(4)(III): We have a,, = wu and a,; = tu, and (2.12) gives
e
IT @ = stustv. (2.17)
i=j+1
If j = 2 then s = 1 and a,, = tu, and (2.17) becomes [['_; a,, = ap,tv. This
means that p, = p; = p4, and consequently py = n—2 and p; = p3 = ps =n—1.
Hence a,_; = tu, and thus u[]_5a,, = v. Since in this case z = ut, we have
described case (iv).
If j = 3 then s = a,,. We have a,, = tu, and (2.17) becomes
¢
H Ap; = Qp,Gp, Ap, TV,
i=4
Thus p; = ps and p3 = ps, which is impossible. This completes case (e)(4)(I1I).
(€)(4)(IV): In this case a,, = wry, ap; = tr and ap,,, = yz, and we obtain
ap,ytv if 7 = 2,

¢
z H ap;, = strystv = sa, ystv = o
i=j+2 Ap,Gp,Yap,tv  if 7 =3

from (2.12). Then z and a,, have the same initial letter, and hence Lemma
>2.5.2, with a,,,, = yz and a,, = (wr)y, shows that p; = p;41 + 2 (mod 3) and
that z = ma,;,, -, for some m € A*. It follows from p; = p;41 +2 (mod 3) that
either p, =n —2or pjy; =n —2.

(e)(4)(IV)(A) Let p, = n — 2. Then p3 = pjt1 = pj42 = n — 1, so that

Z = Man_2, a,_, = yz and

¢ an_oytv if 7 =2,
z H ap;, = i
i=j+2 An_20n_1Yan_otv if 7 =3.
Therefore, since |a,—2| < |z|, there exists o € A* with |o|] = |m] such that

z = @p_90. Then a,_; = ya,—20, and Lemma 2.5.4 shows that o = m = 1.
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Hence z = a,_7 and y = a,,_4, and thus

Ap_y4tv if 7 =2,

(4
H ap, =

i=j+2 Ap10p_4Gpn_otv = (an_l)ztv if 7 =3.

Therefore, since p;12 =n — 1,

tv if =2,

14
Qn-2 H ap; =

i=j43 Gn—2Gn1tv if 3 =3.

If 7 = 2 then a,—2 = a,, = tr, and we have r]'[f=5 ap;, = v. SInceu = ry = ra,_q,
then z = ra,_4t, and we have described case (v). If j = 3 then [["_sa, =
an-1tv. However, ps = n and so we obtain the contradiction n = n —1 (mod 3).

(e)(4)(IV)(B) If pj4; =n —2 then p, = p; =n and pj4o =pjza =n—1. In

this case z = ma,_3, an— = yz, a, = tr and

¢ apytv = @n_3Qn_1ytv ifj =2,
z H Gp; = 2 ep -
i=j+2 (an)yantv = ap_zan_1apyaztv if j = 3.
Therefore, since |a,_3| < |z|, there exists o € X* with |o| = |m| such that

z = an—3o. Then a,_2 = ya,_30, and Lemma 2.5.4 shows that o = m = 1.

Therefore z = a,_3 and y = a,_s5, and we obtain

an_st’U If] = 2,

I
an-1 H ap; =

i=j+4 anan_saztv if 7 =3.

This gives the required contradiction: if j = 2 then n — 1 = n — 5 (mod 3), and
if =3 then n — 1 =n (mod 3).
(e)(4)(V): We have a,, = wra,,,y and a,, = tr, and (2.12) shows that

¢

H ap; = ystrap,,,ystv = ysay,a,,,, ystv.
=542

Lemma 2.5.4 applied to a,, shows that y = 1, and hence

£

H Ap; = SAp,ap,,, StV.
=742
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If j = 2 then s = 1, and [[’_, ap, = ap,ap,tv. Thus p; = ps and p3 = ps, which
is impossible.

If j = 3 then s = ap,, and [I{_sap, = @p,ap,ap,ap,tv. As above we find
p2 = ps, which is impossible. This concludes case (e)(4), and hence case (e),

which ends the proof. )

2.6 The varieties U4 and V are distinct.
First recall the definition of the varieties &/ and V:
U =[z° =0,2%y2 = (yz)’22yz]

and
V = [2® = 0,2%2%z = (yz)’zayz, 2%y232? = (y)’223(yz)?).

Recall that A = {a,b,c} C X where X is denumerable. Since a, = an—_3an-1,
for n > 1 the identity z3yz3z = (yz)>z2%yz can be applied to the word Ana =
(an)san_g(an_l)aana in two obvious ways, giving either A,_ja or A,;1a. The
first part of the following lemma shows that there is no other way. The second
part gives the critical result that A,a contains no factor of the form z°, z € A*.

The analogues of these two results for the word A, follow as immediate

consequences:
o if A, = wa®y forn > 0and w,z,y € A* then z = 1, and

o if A, = w(z’y2Pz)uforn > 2, z,y,2 € AT and w,u € A*thenw =u =1,

T=0n, Y = an_2,and z = ap_;.

Lemma 2.6.1

(i) Suppose that n > 0. If Ana = w(z®y2®z)u for z,y,2 € A* and w,u € A*

thenw =1, u = a and:
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n=0=>z=a,y=05, and z = ¢;
n=1=>z=ba, y=c, and z = a; and

N>2=>T=an, Yy = an_g, and z = an_;.
(it) Forn >0, if Aja = wz®y for w,z,y € A* then z = 1.
Proof: (i): The cases 0 < n < 4 are easily checked. Let A,a = w(z3y23z)u

where n > 5, z,y,2z € A* and w,u € A*. Then zu = va for some v € A*, and

hence A, = wz3(yz>v). It follows from Lemma 2.5.6 that either:
(a) w=1, z =a, and y2%v = ay_z(an_1)’an;
(b) £ = a,_; and yz3v = ay;
(c) = = dap—z€, an_4 = ed and yz*v = da,_sa, for some d,e € A*;
(d) = =de, a,_; = ed and yz3v = da, for some d,e € A*; or
(e) = = dan_4€, an_y = ed and yz°v = da,_,a, for some d € A* and e € A™.

Cases (b), (c) and (d) can be combined to form case (f): z = de, a,—; = ed and
yz°v = da, for some d € A* and e € A*; so only cases (a), (e) and (f) need to
be considered.

Case (a): Lemma 2.5.6 can be applied to an_3(an_1)°a, = yz3v, and in this
case the only possibilities are the cases (ii) and (iv) given in the statement of

the lemma. We thus obtain the following cases:
(1) y = an—2, 2 = ap-y and v = a,; and
(2) z = fg’ ap-1 = gf and v = fan for f’g € A+'

(a)(1): In this case a,u = zu = va = apa, and hence v = a. This gives the

required result.
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(a)(2): We have a,u = 2u = va = fana. Since a,_; = gf then |f| < |a,|.
Therefore there exists A € At such that a, = fh, and hence a,a = hu. Thus
a, and h have the same initial letter, and from Lemma 2.5.2, with a, = fh and
an—1 = gf, we obtain the contradiction n = n + 2 (mod 3).

Case (e): In this case an_se(yz®v) = an_se(dan_1a,) = (an_1)’an, which
contradicts Lemma 2.5.6 applied to (an_1)?an.

Case (f): In this case e(yz°v) = e(da,) = a,_1a,, which contradicts Lemma
2.5.6 applied to a,_,a,. This concludes the proof.

(ii): Again the cases 0 < n < 4 are easy to check, and we assume that n > 5.
Let A,a = wz’y where w,z,y € A*, and suppose that z # 1. Then zy = ua
for some u € A*. Thus A, = wz'u = wr’(zu), and as in part (i) we obtain the

following possibilities from Lemma 2.5.6:
(a') ¢ =a, and zu = an_g(an_l)San;

(¢') ¢ = da,—q€, an_2 = ed and zu = da,_,a, for some d € A* and e € A™;

and
(f') ¢ =de, an—; = ed and zu = da, for some d € A* and e € A*.

Case (a’): We have an_g(an_l)?’an = zu = a,u, which gives the contradiction
n—2=mn (mod 3).

Case (e'): We have d(a,_sed)a, = da,_ a, = zu = (da,_s€)u, so that da,, =
u. Consequently (da,—4e)y = 2y = ua = dana, which gives the contradiction
n—4=mn (mod 3).

Case (f'): We have da, = zu = (de)u, so that a, = eu. Since a,_; = ed, we

thus obtain the contradiction n =n —1 (mod 3). O

The next result shows that the members of X* that are equivalent to the

word Apa = a3bc®a? under the laws of U are precisely the words A,a, n > 0.

67



Theorem 2.6.2 (Aga)p(U) = {Ana:n >0}

Proof: Let p(U) = {(z°,2%), (z5,y2%), (z3y2°z, (yz ) z2lyz) : 2,9,z € X},
so that p(f) is the congruence on X* generated by p(U)’. It is clear that
Ana € (Aoa)p(U) for all n > 0.

Let t € (Aoa)p(U). By Result 1.3.3, for some m > 0 there exist r;, s; € X*
and (d;,e;) € p(UU) U (p(L{)')_1 for 0 < i < m such that Aga = rodpse, t =
Tm€mSm and ri_j€i_18;_1 = r;d;s; for 1 <1 < m. We will show by induction
that r; = 1, 5; = a and (di,e;) € {(Ant1,A4n), (An, Any1) @ n > 0} for all 1,
1 <7 < m. This will imply that ¢ = A,a for some n > 0, and conclude the
proof.

Let ¢ = 0. If dp = ra®s where z € Xt and r,s € X* then Apa = ro(ra’s)so,
and Lemma 2.6.1(ii) gives the contradiction z = 1. Therefore dy = z®yz3z for
z,y,2 € Xt. Then Apa = ro(z3yz3z)so, and from Lemma 2.6.1(i) we obtain
ro = 1, s = a and dp = Ao, which implies that ey = A;.

Suppose now that 1 < 7z < m. By induction we have r;_; = 1, s, = a
and e;_; = A, for some n > 0. Then r;d;s; = A,a. As above, Lemma 2.6.1(ii)
shows thaf d; = z3yz°z for some z,y,z € X*, and Lemma 2.6.1(i) then shows

that r; = 1, s; = a, and:
n=0=z=a,y=>5,and z =¢;
n=1=z=ba,y=c,and z =a; and
n>2=>z=a,, Yy=an-2,and z = a,_;.

Thus d; = A, so that either (a) e; = A,4; or (b) n > 1 and e; = uPvw>u where

u,v,w € Xt and
n=1= ba =vu, c=w, and a = u, and

n>2=a, =0U,0,_2 = w, and a,_; = U.

68



Case (a): If &; = Anq1 then (di, e;) = (An, Ant1), as desired.
Case (b): If n = 1 then e; = uvwiu = a®bca = Ag. If n > 2 then a, =
Van_1, 50 that v = a,_3. Then e; = vdvw3u = (an_1)3an_3(an_2)3an_1 = A,_1,

and in both cases (d;, e;) = (An, An-1), as desired. 0
Corollary 2.6.3 (Ao)p(U) = (Ao)p(V) = {A, : n > 0}.

Proof: The result (Ag)p(U) = {An : n > 0} follows directly from Theorem
2.6.2. A straightforward modification of the proof of Theorem 2.6.2 establishes
(Ao)p(V) = {An : n > 0}. o

The proof that ¢/ # V can now be given.
Theorem 2.6.4 The varietiesd and V are distinct.

Proof: Clearly Ajba € (Aoa)p(V), but if Ajba € (Aoa)p(U) then Theorem
2.6.2 shows that Ajba = A,a for some n > 0. Then Ana = (ba)’ca®(ba)?, and
Lemma 2.6.1(i) shows that ba = a, which is impossible. Therefore (Aoa)p(U) #
(Aoa)p(V), and the result follows from Theorem 1.1.6. o

Remark 2.6.5

o It is also of interest to reformulate Almeida’s question in terms of semi-
groups of some fixed nil index: that is, for a given n > 1 is the mapping
W WNN, W e L(Ni,), an isomorphism onto G(N N Nil,)? In this
case it follows as in Section 2.2 that the mapping is surjective for all n > 1, |
but not injective for n > 5, as shown by the pair of varieties described

above. This question remains open concerning smaller values of n.

e A semigroup S is said to be locally finite if every finitely generated sub-

semigroup of S is finite. A class C of semigroups is said to be locally finite
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if every member of C is locally finite. It is easy to see that A is locally

finite.

The following was brought to the attention of the author by M. Volkov.
An alternative method of establishing the non-injectivity of the mapping
would be to produce a variety V € L(Nil) which, although not itself locally
finite, were such that its locally finite members form a variety ¢/. Then
UNN =V NN since N is locally finite, although ¢/ # V. However, by a -
result of Sapir [28, Theorem 3.13], the locally finite members of a finitely
based variety V € L(MNil) form a subvariety of V only if V is locally finite,

and thus this method cannot work for a finitely based variety. O
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Chapter 3
Biidentities

In this chapter we look at e-varieties. We begin in Section 3.1 by expanding the
techniques of Auinger [7, 8] for locally inverse e-varieties to provide a unified
Birkhoff-style theory for the whole lattice of e-varieties for which nonmonogenic
bifree objects exist; that is, for e-varieties contained in ES or LI.

We then give an alternative approach to this material in Section 3.2, based
on the techniques of Kadourek and Szendrei in [27] for E-solid e-varieties. When
the paper [13] was originally submitted for publication, it included the material
presented in Section 3.2. The referee made suggestions that led to this material
being replaced with the contents of Section 3.1. Both approaches have been
incorporated into this thesis, because of their substantial difference.

In Section 3.3 we consider locally E-solid e-varieties. In Section 3.3.1 we
show that the results of Kadourek [25] concerning the existence of trifree objects
in locally orthodox e-varieties can be extended: trifree objects exist in every e-
variety of locally E-solid semigroups. In Section 3.3.2 we construct an example,
modelled on the example with which Yeh [43] proved that nonmonogenic bifree
objects exist precisely in E-solid and locally inverse e-varieties, that enables us
to prove that in fact trifree objects exist in an e-variety V of regular semigroups

if and only if V consists of locally E-solid semigroups.
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Finally, in Section 3.4 we outline a theory of “n-free” objects, indicating how

analogues of the concept of a free object can be defined for any e-variety.

3.1 E-varieties of E-solid or locally inverse semi-
groups.

First, recall from Notation 1.3.6 that if an element & lies in a subgroup of a
semigroup S then the unique H-related inverse of k is denoted by k=1 and
the unique idempotent H-related to & is denoted by k°. Recall also that the

sandwich set S(a,b) of elements a, b of a regular semigroup S is the set bV (ab)a.

Lemma 3.1.1 Let S be a regular semigroup and suppose that k lies in a sub-
group of S. Then S(k,k) = {k°}. Furthermore, if T is a reqular subsemigroup
of Sandk €T then k™' k° € T and k™' Hk° Hk inT.

Proof: We have S(k,k) = S(k~'k,kk~') = S(k°,k°) = {k°} by Result
1.3.15(ii), (v).

Now consider a regular subsemigroup T of S with k € T. Let (k?) €
V(k?) N T. Then k(k?)'k € S(k, k)N T, so that k° = k(k?)'k € T. Also,

k(k,2)/k2 — k—lkz(k2)ik2 — k_1k2 — k — kZ(k2)1k2k—1 — /C2(/€2),k‘,

and hence k° = k(k*)k H kin T.
Let ¥ € V(k)NT. Then

koK' = k7 kk'kk™! = k7kk™! = k71,

so that k=1 € T. Moreover, k™' H k° in T since we also have k° = kk~! = k™ 'k.
a
We start by fixing a particular construction of the least regular subsemi-

groups in F-solid and locally inverse semigroups, taken from Result 1.3.34.
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Construction 3.1.2 Suppose that A is a subset of an F-solid semigroup U.
Let o' € V(a) for each a € A, and write A’ = {a' : a € A}. If e, f € E(U)
then ef is in a subgroup of U by Result 1.3.11; and by Result 1.3.34, the least

regular subsemigroup of U containing AU A’ is P = U;5q P2it1, where

P() = AUA,
P1 = <P0>
Py = {(ef)™ e, f € E(Pu-1)} U Py

Py = (Pu)

Let s be a sandwich operation on U (see Remark 1.3.17) such that s(u,v) =
v(uv) 'u whenever uv is a group element of U, and s(u,v) € P whenever

u,v € P. m|

Construction 3.1.3 For any locally inverse semigroup V with subset A, let
a' € V(a) for all a € A and write A’ = {a' : a € A}. Again by Result 1.3.34,

the least regular subsemigroup of V' containing AU A’ is @ = U;»o @2i41, where

Qo = AUA
Q1 = (Qo)

Q2i = {S(G,b) L a, b € Q?i—l} U Q2i—1
Qair1 = (Q2)

Remember that s(u,v) is the unique member of S(u,v) for each u,v € V; so

 the sandwich operation s is also an operation on Q. ]
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Recall that by a binary semigroup is meant a type (2,2) algebra where one
of the binary operations is associative. We will write simply (5, s) to denote a
binary semigroup (S, s).

As in Notation 1.3.20, let X be a nonempty set, with a disjoint bijective
copy X' = {¢’ : z € X}. We write X = X U X". Let (F(29(X),s) denote the
free binary semigroup on X. Recall that for a set Y éhe free semigroup and free
monoid on Y are denoted by Y+ and Y* respectively.

Every word u € F35)(X) can be factorized uniquely as
U = UgWiUq ... Wply (3.1)

where u; € (X)* for 0 < i < n, and w; = s(aq, b;) for some a;,b; € Fi3,9)(X),
1 <2< n.

The semigroup Fz2)(X) is embedded in the free semigroup F on the alpha-
bet consisting of the set X together with the symbols “s(”, “,” and “)”; and so,
given a word u € F(22)(X), we may define the length |u| of u to be the usual
length of u considered as a member of F. .

We denote the inverse unary operation on the free group Fg(X) by ~!. We
may assume X C Fg(X).

Define a sandwich operation s on Fg(X) by s(a,b) =1 for all a,b € Fg(X).
Then there is a binary semigroup homomorphism Fz2)(X) — Fg(X) extend-
ing the natural injection X — Fy(X). We denote the image under this ho-
momorphism of a word u € F(z,g)(Y) by @, so that if v = uwowiu; ... wyu,
is the factorization (3.1) of u as described above then % is the usual group-
reduced form of ug...u, € (7)+ In particular, we have s(u,v) = 1 for every
u,v € F(2,2)(X). The congruence on Fi;2)(X) associated with this homomor-
phism is the least group congruence on F;,)(X), and is denoted by o. Let

R(X) = {u € Flan(X) 7 =1}.
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We now construct a subsemigroup of Fi;2)(X) in the same manner as the

semigroups P and @ of constructions 3.1.2 and 3.1.3 respectively.

Construction 3.1.4 Let W(X) = U;»o Waiy1, where

W():X

7%} (Wo)

Wo = {s(a,b):a,be Wy 1 NR(X)} UWsy_,4

Waipr = (Wa)

O

So W(X) is the least subsemigroup W of Fi;2)(X) such that X C W and
s(u,v) € W whenever u,v € W N R(X). Let K(X) = W(X) N R(X).

Let us now define a unary operation ' on W(X), to be such that w’ = (w)™"
for every w € W(X). We use induction on |w|. For the initial case |w] = 1, we
already have w' for each w € X, and we define (w')’ = w. Suppose that |w] > 2.
If w = s(u,v) for u,v € K(X), let w' = w. Then w’ =1 = (w)~'. Otherwise,
let w = uowyu; ... whu, be the factorization of w as in (3.1). Define u € W(X)
to be u = z if ug = zy for some z € X and y € (X)*, and u = w, if up = 1.
Let v € Fi32)(X) be such that w = wv. Then u,v € W(X) and |ul, |v| < [w]
so we may assume that u/,v’ € W(X) are defined, with u'u = vv’ = 1. Now
1

s(u'u,vv’) € W(X), and we define v’ = v's(u'u, vv')u’. Clearly w' = (w)~

Consider the partial binary semigroup congruence n on W(X) generated by
p g g g
{(zz'z,2),(2'z2’,2") ;2 € X} U

{(s(u,v), s(u,v)s(u, v)), (uv, us(u,v)v), (s(u,v),vv's(u,v)u'v) : u,v € K(X)}.

That is; n respects the partial binary operation s on W(X).
y

75



Remark 3.1.5 As a binary relation on F;5)(X), the congruence 7 is contained

in the least group congruence o on Fiz2)(X). Therefore if p is a congruence on

W(X) such that n C p C o then W = 1 whenever wp € E(W(X)/p). O
The following results detail properties of the congruence 7.

Lemma 3.1.6 Let u,v € K(X). If u'n € V(un) and v*n € V(vn) for some
u*,v* € W(X) then s(u,v)n € S(u*un,vv*n).
Proof: We have

s(u,v)u*uvv*s(u,v)yp = vv's(u, v)u'u(u uvv*)ov's(u, v)u'uny

= vv's(u,v)u'uvv’s(u, v)u'un

= s(u,v)n.
Also,
wrs(u,v)u*un = vvov's(u, v)u'uutun
= vv's(u,v)u'un
= s(u,v)n,
so that
uuvv s(u,v)uuvv'n = u'us(u,v)vv'n
= u uvv .

Therefore s(u,v)n € V(v*uvv*n), and hence

s(u,v)n = vv's(u,v)utun
€ vvpV(uTuvvn)utun

= S(u"un,vv'n).

Lemma 3.1.6 gives enough information to show that W(X)/n is regular.
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Lemma 3.1.7
(2) If w € W(X) then w'n € V(wn), that is, the semigroup W(X)/n is

reqular.

(i1) Suppose that § : W(X) — S is a semigroup homomorphism such that
2'0 € V(z0) for all x € X, and s(u,v)0 € S(ub,v0) whenever u,v €
K(X). Then w'0 € V(wb) for all w € W(X), andnp C 00671,

Proof: (i) We use induction on |w|, for w € W(X). The initial case |w| = 1
is clear. Let |w| > 2. If w = s(u,v) then w’ = w by definition, and wn €
E(W(X)/n). Therefore w'n = wn € V(wn). Otherwise by definition w' =
v's(u'u, vv’)u’ where w = uv, u € XU{s(q,b): a,b € K(X)}, and u,v € W(X).

Since |ul, |v| < |w|, we have u'n € V(un) and v'n € V(vn). So by Lemma 3.1.6

s(u'u,vv')p € S(u'un,vu'n)
= vu'pV (u'vov'n)u'un.
Therefore
ww'wn € wvv'vu'nV (uuvv'n)uuu'uvy
= uwu'uvv'nV (Wvov'n)u'uvv'vy
= {uu'vvv'vy}
= {wn}.
Also, writing s(u'u, vv')n = vv'yu'un for yn € V(v'uvv'y),
w'ww'n = vvvyuuuuvv'vo'yu'uu'n
= vov'yu'uu'n
= w'n.

Thus w'n € V(wn).
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(ii) We again use induction on |w| for w € W(X). The initial case |w| = 1
is clear. Suppose that |w| > 2. If w = s(u,v) then w' = w, and wf € E(S).
Therefore w'6 = wf € V(wh). Otherwise w' = v's(u'u,vv’)u’ where w = uv,
u € XU {s(a,b):a,b€ K(X)}, and u,v € W(X). Since |u|, |v] < |w|, we have
u'0 € V(uf) and v'0 € V(vh). Now

s(u'u,vv)8 € S(u'ub,vv'd)

= S(ub,vl),

so that w6 € V(w8) by Result 1.3.15(iii). This implies that n C § 0 -1, O

The following corollary is evident from Lemma 1.3.15(ii), Lemma 3.1.7(i),

and Lemma 3.1.6.
Corollary 3.1.8 Ifu,v € K(X) then s(u,v)n € S(un,vn). O

Notice that by Lemma 3.1.7 and Corollary 3.1.8 the congruence 7 is the
least binary semigroup congruence p on W(X) such that: (i) 2’p € V(zp) for
all z € X, (ii) s(u,v)p € S(up,vp) for all u,v € K(X), and (iii) w'p € V(wp)
for all w € W(X).

The next lemma is now a natural consequence of the similarity of construc-

tions 3.1.2, 3.1.3 and 3.1.4.

Lemma 3.1.9 Let Y denote the E-solid semigroup U or the locally inverse
semigroup V of constructions 3.1.2 and 3.1.3, with A, A’ and s as given in the
constructions. Let T' denote the regular subsemigroup P or Q respectively. Let
a: Fo2)(AUA’) = Y be the binary semigroup homomorphism with respect to the
operations s such that ac = a for alla € AUA'. Then T = {wa : w € W(A)}.

Proof: Define o, to be the restriction of o to W(A) and consider constructions

3.1.2, 3.1.3 and 3.1.4. We have (AU A)ay = AUA" C T and Wya; C T.

78



Assuming that Wy,_ja; C T for 1 > 1, it follows, since s is a binary operation
on T, that Wy,oy € T. Hence W(A)a; C T.

Since a’a; € V(aay) for all a € A, and s(u,v)a; € S(uay,va;) for all u,v €
K(A), then by Lemma 3.1.7(ii) the subsemigroup W (A)a; of Y is regular. But
T is the least regular subsemigroup of Y that contains AUA’, so T = W(A)q,.0

Recall that the free regular unary E-solid semigroup is denoted by Fes(X),
and the free regular unary locally inverse semigroup is denoted by Fr7(X). (See
Notation 1.3.13 and the notation given in Remark 1.3.36.) Recall that the bifree
object on a set X in an e-variety V is denoted by bFyv(X). By Result 1.3.37
the least regular subsemigroups of Fes(X) and Fpz(X) containing the set X
are isomorphic to bFgs(X) and bFr1(X) respectively, and we therefore have the

following corollary to Lemma 3.1.9.

Corollary 3.1.10 In the statement of Lemma 3.1.9, if A = X, A’ = X', and
Y = Fes(X) or Y = Frz(X) then {wa : w € W(X)} is isomorphic to bFgs(X)
or bFpi(X) respectively. O

Therefore there exist (binary semigroup) congruences a; o a;~! on W(X)
such that W(X)/(a10a;7!) is bifree on X in ES or LI. We will introduce two

such congruences after a preliminary lemma.
For u,v € K(X), let 5(u,v) = s(z, ) where = s(u,u)vs(u,u). So3(u,v) €

W(X). Recall that o is the least group congruence on Fi;2)(X).

Lemma 3.1.11 Let p be a congruence on W(X) such that n C p C 0.
(i) B(W(X)/p) = {s(w,w)p : w € K(X)}.

(ii) Each idempotent in each local submonoid of the semigroup W(X)/p is of
the form 3(u,v)p for some u,v € K(X).
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Proof: (i) If w € K(X) then s(w,w)n € S(wn,wn) by Corollary 3.1.8. There-
fore s(w,w)p € S(wp,wp) C E(W(X)/p) by Result 1.3.15(i),(vi) since n C p.
Conversely if wp € E(W(X)/p) then w € K(X) by Remark 3.1.5, and as above
s(w,w)p € S(wp,wp). But S(wp, wp) = {wp} by Result 1.3.15(v).

(ii) Let e € E(W(X)/p), and let f € E(e- W(X)/p - e). By part (i) there
exist u € K(X) and v € W(X) such that e = s(u, u)p and f = s(u, u)vs(u, u)p.
Since f € E(W(X)/p) then s(u,u)vs(u,u) € K(X) by Remark 3.1.5. This
means that v € K(X). Thus f = s(u,u)vs(u,u)p = 5(u,v)p by part (i). O

Let pEs denote the partial binary semigroup congruence on W (X) genérated

by
n U {(w,ws(w,w)), (w,s(w,ww) : w e K(X)}
U {(s(u,v),vs(uv, uv)(uwv)'s(uv, uv)u) : u,v € K(X)},
and let pry denote the partial binary semigroup congruence on W(X) generated
by
n U {(3(u,v)s(u, w),5(v, w)3(u,v)) : u,v,w € K(X)}.

Our aim is to show that the factor semigroups W (X)/pgs and W(X)/pr1

are isomorphic to bFgs(X) and bFLi(X) respectively. We begin with some

preliminary lemmas. Recall that the self-conjugate core of a regular semigroup

S is denoted Coo(SS).

Lemma 3.1.12

(1) Coo(W(X)/prs) € {wpes : w € K(X)}.

(i1) Let 6 : W(X) — S be a semigroup homomorphism, where S is reqular and
nC 0007 Then wh € Coo(S) for every w € K(X).
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Proof: (i) Observe that pgs, considered as a binary relation on Fip4)(X), is

contained in the group congruence o. Therefore
E(W(X)/pes) = {s(w,w)pes : w € K(X)}

by Lemma 3.1.11(i), and hence C(W(X)/pes) C {wpes : w € K(X)}. In

addition, o = 1 whenever upgs € V(vpgs), and consequently
Coo(W(X)/pEs) C {wprs : w € K(X)}.

(i1) The proof is by induction on |w]|, for w € K(X). The result is trivial for
the initial case |w| = 1, so assume that |w| > 2, and that uf € C(S) whenever
u € K(X) satisfies |u| < |w|. Let w = upw;u; ... w,u, be the factorization
of w according to (3.1). Now Wg.-w, = W = 1, so if |ug...un| < |w| then
(uo...un)f € Ci(S) by the induction hypothesis, and hence w8 € C.(S).

Otherwise w = ug...u, € (X). In thiscaselet w = y; ...ym, wherey,,...,ym €

X. Then there exists i for which y; = ¢/ if y, € X, and y; = z if y, =

z' for some z € X; and 17 Hic1 = Yig1-- - Ymo1 = 1. Then (y1...y:i-1)b,
(Yig1---Ym—1)0 € Co(S) by the induction hypothesis; and hence wd € Coo(S).

O

Remark 3.1.13

(i) Lemma 3.1.12 parts (i) and (ii) together show that

Coo(W(X)/pES) = {wpEs : w € K(X)}.

(ii) Suppose that S is a regular semigroup and 6 : W(X) — S is a semigroup
homomorphism such that n C § 0 §=! and u@ lies in a subgroup of S
whenever u € K(X). Let u € K(X). Now Corollary 3.1.8 shows that
s(u,u)d € S(ub,ud), and therefore, by Lemma 3.1.1, we have s(u,u)f =
(u8)°. Thus if also v € K(X) then uvé lies in a subgroup of S, and
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s(uv,uv)d = (uvh)’. Then s(uv,uv)(uv)s(uv,uv)d = (uvd)™" by the
proof of Lemma 3.1.1, and we have proved that pgs C § 067! if and only
if s(u,v)0 = vO(uvf) ™ ub for every u,v € K(X). O

Lemma 3.1.14

(i) The semigroup W(X)/pes ts a member of ES.

(i) The semigroup W(X)/pr1 is a member of LI.

Proof: (i) If wpgs € Coo(W(X)/pEs) then w € K(X) by Lemma 3.1.12. Then
wpgs is H-related to the idempotent s(w,w)prs, so wpgs is in a subgroup of
W{(X)/pes (by Result 1.3.5). The result now follows from Result 1.3.11(iv).
(ii) By Lemma 3.1.11 a typical idempotent in W (X)/pr1 is of the form
s(u,u)prr for u € K(X), and a typical idempotent in the local submonoid

s(u, u)pL1-W(X)/pr1-s(u, u)pLr

is 3(u,v)prr for v € K(X). Therefore, by Result 1.3.19, the definition of pr1
shows that W(X)/pr1 € LI O

We should note the following.

Remark 3.1.15 If u,v € K(X) then, as in the proof of Lemma 3.1.14, uvpgs
lies in a subgroup of W(X)/pgs. Then s(u,v)pes = vpes(uvprs) 'upgs by
Remark 3.1.13. By Corollary 3.1.8, Lemma 3.1.14, and Result 1.3.18 we have

s(u,v)pr1 = s(upry, voLr). O

The main result of this section can now be proved. Recall Definition 1.3.21,

which defines a matched mapping.

Theorem 3.1.16 Let V =ES or V = LL. Let vy : X = W(X)/pv be given
by zov = zpy, z € X. Then (W(X)/pv,ev) is the bifree object in 'V on X.
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Proof: Certainly v is matched, and W(X)/pv € V by Lemma 3.1.14. Sup-
pose that S € V, and let ¢ : X — S be a matched mapping. If V = ES let
s be a sandwich operation on S satisfying s(a,b) = b(ab)”'a whenever a,b € S
are such that ab is a group element of S; if V. = LI let s be the sandwich
operation on S. Let @ : Fio9)(X) = S be the binary semigroup homomorphism
with respect to s that extends ¢. Let ¢, be the restriction of ¥ to W(X). By
Lemma 3.1.7(ii), we have n C 1 0 (¢1) .
Suppose V = LI If u,v,w € K(X) then s(u,u)p; € E(S) and

s(u, w)vs(u, u)er, s(u, u)ws(u, u)pr € s(u, u)pr.S.s(u,u)er.

Then 3(u, v)e1,3(u, w)p1 € E(s(u,u)e1.5.s(u,u)p;). Since S € LI then Result
1.3.19 shows that S(u,v)s(u, w)e; = 5(u, w)3(u,v)ps; that is, prr C @10 (1)~

Suppose V = ES. If w € K(X) then wy, € Co(S) by Lemma 3.1.12(ii),
and then we; lies in a subgroup of S by Lemma 1.3.11 since S € ES. Therefore
for u,v € K(X) the element uvep; is in a subgroup of S and so

s(u,v)e1 = s(uepr, ver) = v (uver) " up

by the definition of the operation s on S. Hence pgs C ¢ 0 (Lpl)_l by Remark
3.1.13(ii).

So pv C ¢1 0 (¢1)”', and hence (by Result 1.1.2) there is a semigroup
homomorphism ¢ : W(X)/py — S given by wpvey = we;, w € W(X). If
z € X then zivy = zpvy = z¢; = 2P = ¢, and so tvyp = ¢.

Say 6 : W(X)/pv — S is a semigroup homomorphism satisfying tv0 = d)..
We show by induction on |w| that wpv = wpve for all w € W(X). f w € X
then certainly wpv# = wpvep. Suppose that |w] > 2. If w € (X) then again
wpvl = wpve. If w = s(u,v) for u,v € K(X) then, using the induction
hypothesis,

s(u,v)pL1d = s(uprib,vprif)
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= s(upLip, vpL1Y)

= S(U: v)pLI(P

by Remark 3.1.15 and Result 1.3.18; and

s(u,v)pesf = (vpgs(uvprs) 'upgs)d
= vasﬂ(uvaSO)_lupESH
= vpese(uvpEsP)” UpESP

= s(u,v)pEsy

by Remark 3.1.15 and Result 1.3.7. Therefore, in view of the factorization of w
according to (3.1), we have wpv8 = wpyep for all w € W(X). So § = ¢, and

the result is proved. : O

Let V = ES or V = LI. By Theorem 3.1.16, for any semigroup S € V
each matched mapping ¢ : X — S extends uniquely (by the universal prop-
erty of bifree objects, and via the mapping ¢tv) to a semigroup homomor-
phism § : W(X) — S such that 6 0 6=' D py. We call § the V-extension
of ¢. In the E-solid case, if u,v € K(X) then uvé lies in a subgroup of 3,
and s(u,v)8 = v8(uvd) 'ub. In the locally inverse case, if u,v € K(X) then
s(u,v)d = s(uf,vh). (See Remark 3.1.15.)

We define a biidentity to be a pair (u,v), also written u = v, of words
u,v € W(X). Then S € V is said to V-satisfy a biidentity u = v if for any
matched mapping ¢ : X — S and its V-extension § : W(X) — S we have
uf = vf. A biidentity u = v is said to be V-satisfied by a class C C V if
v = v is V-satisfied by each member of C. For any set ¥ of biidentities, let
[£]y; denote the class of all members of V that V-satisfy all biidentities in X.

Given a class C of semigroups such that C C V, let

pv(C, X) = {(u,v) € W(X) x W(X):u =vis V-satisfied by C}.
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Then pv(C, X) is a congruence on W(X) for every C C V; and in particular
pv(V, X) =pv.
We can give a version of the definition of biinvariant congruence in this

setting. As in Definition 1.3.22, for u,p,q € W(X) and pq € R(X), let

u(z = p,z’ — q)

denote the word in F(;,)(X) obtained from u by substituting p for all occur-
rences of z, and ¢ for all occurrences of z’. A simple induction on ¢ > 1 such
that u € W41 (recall the construction 3.1.4 of W(X) C F(ng)(Y)) shows that
the condition pg € R(X) implies that u(z — p,z’ — ¢q) € W(X).

A congruence p on W(X) is said to be closed under regular substitution if
u pv,pp Pgp, 9 p qpg; and pg € R(X) imply u(z — p,2’ = ¢) p v(z = p,z’ —
q). A congruence p on W(X) is said to be V-biinvariant whenever pv C p and
p is closed under regular substitution.

As explained in Section 1.3.6, analogues of Birkhoff’s fundamental theo-
rems have been provided for e-varieties of E-solid semigroups (by Kadourek
and Szendrei [27]) and for e-varieties of locally inverse semigroups (by Auinger
(7). Theée analogues respectively rely on the very different semigroups F'"*(X)
and F{3,2)(X) in their characterizations of bifree objects, biinvariant congruences
and biidentities.

In Theorem 3.1.16 we have characterized the bifree E-solid and bifree locally
inverse semigroups on X as images of the one semigroup W(X). In the next
theorem we present further unified analogues of Birkhoff-style results for e-

varieties of E-solid or locally inverse semigroups.

Theorem 3.1.17 Let V =ES or V = LI

(1) In any class C C 'V closed under taking regular subsemigroups and direct

products there erists a bifree object on any nonempty set X, and it is

isomorphic to W(X)/pv(C, X).
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(i1) A class C C V is an e-variety if and only if there exists a set ¥ of
biidentities such that C = [E]y,. In particular, if C is an e-variety then
C= [pV(C>X)]V'

(11i) The mappings between the lattice of all e-varieties contained in V and the

lattice of all V -biinvariant congruences on W(X) that are defined by
C pv(C, X) and p = [ply

are mutually inverse order-reversing bijections. A congruence p on W(X)
is V-biinvariant if and only if pv C p and p/pv is a fully invariant
congruence on W(X)/pv, and so there are also mutually inverse order-
reversing bijections between the lattice of all e-var_ieties. contained in 'V

and the lattice of all fully invariant congruences on W(X)/pv.

Proof: The E-solid cases of parts (ii) and (iii) appear in [27] with F'*(X) used
instead of W(X); but the analogous proofs may be directly applied here, for both
the E-solid and locally inverse cases. For part (i), write py(C) = pv(C, X). A
proof analogous to the first part of the proof of Theorem 2.5 of [27] shows that
W(X)/pv(C) € C, and we need only prove that W(X)/pv(C) is bifree on X
for C.

Suppose that S € C, and let ¢ : X — S be a matched mapping. Let
0 : W(X) = S be the V-extension of ¢. Then uf = v whenever (u,v) €
pv(C), and hence (by Result 1.1.2) there is a semigroup homomorphism ¢ :
W(X)/pv(C) — S defined by wpv(C)p = wh for all w € W(X). Moreover,
we have z¢ = zpv(C)yp for all z € X. ‘

Now suppose that 9 : W(X)/pv(C) — S is a semigroup homomorphism
satisfying 2¢ = zpv(C)y for all z € X. Recall the construction 3.1.4 of W(X).

We have zpv(C)p = 2¢ = zpv(C)y for all z € X = Wy, and hence wpy (C)yp =
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wpv(C)y for all w € W,. Suppose inductively that wpv(C)y = wpy(C) for
all w € Wy;_y, where 7 > 1, and consider u,v € Wo,_; N R(X).

Since pv C pv(C), there is a semigroup homomorphism av : W(X)/pyv —
W(X)/pv(C) given by wpvay = wpv(C), w € W(X).

Now, if V = LI then s(u,v)pv(C) = s(upv(C),vpv(C)) by Remark 3.1.15.

Therefore

s(u,v)pv(Clp = s(upv(C)p,vpv(C)y)
= s(upv(C),vpv(C)y)
= s(u,v)pv(C)y

by the induction hypothesis.
Suppose that V = ES, and write @ = ags. Then

s(u,v)pes(C)e = s(u,v)pesayp
= vppsap(uvppsay) " upesay
= vpes(C)p(uvpes(C)e) " upes(C)y
= vpes(C)p(uvprs(C)¥) ' upes(C)y
= s(u,v)pes(C)Y

by the induction hypothesis.
Thus wpv(C)y = wpv(C)y for all w € Wy, and hence for all w € Wy y;
so that ¢ = . _ O

3.2 An alternative approach to e-varieties of
E-solid or locally inverse semigroups.

In this section we give an alternative unification of the methods of [7, 8] and

[27]. Instead of using F{5,2)(X), as in [7], which is better suited to the locally
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inverse case, we use the semigroup F'®°(X) of [27], which is better suited to the

FE-solid case.

Notation 3.2.1 Any inverse unary operation denoted by ~! on a regular semi-
group S will always be assumed to be such that if k lies in a subgroup of S then
kH k™. O

In this section we will be using the free unary semigroup Fz(X) (as described
in Notation 1.3.8) instead of the free binary semigroup F{3,)(X), and so we will
use some notation defined for Section 3.1 to label slightly different objects.

We need to reconsider constructions 3.1.2 and 3.1.3. Here we replace the

sandwich operations with inverse unary operations.

Construction 3.2.2 Suppose that U is an E-solid semigroup, with an inverse

1

unary operation ~! (so u™! is the H-related inverse of u whenever u lies in a

subgroup of U) and subset A. Let A™' = {a~' : a € A}. By Result 1.3.34, the

least regular subsemigroup of U containing AU A™! is P = Uiso P2i+1, where

Phb = AUuAT!
(Po)

Py

Py = {(ef)™ e, f € E(Pyu_1)}U Paicy

P2i+1 = <P2i>

0

Observe that, apart from Py = AUA™!, the construction of P is independent
of the choice of the operation ~! since (ef)™' will always be the group inverse

of ef. The same is true for the locally inverse semigroup @ constructed below.
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Construction 3.2.3 Let V be a locally inverse semigroup with inverse unary
operation ~! and subset A, and write A~! = {a™' : a € A}. Again by Result

1.3.34, the least regular subsemigroup of V containing AUA™" is Q = U;»0 Qai+1,

where
Qo = AU A_l
Q1 = (Qo)
Q2 = {s(a,b):a,b€ Qa_1}U Q2
Qaiv1 = (Q2:)

a

For u € Fy(X) let @ be the usual group-reduced form of u, as described at
the end of Section 1.3.1. Let R(X) = {u € Fy(X): 7 =1}.

Define bF(X) to be the least subsemigroup W of Fy(X) such that X C W
and W N R(X) is a unary subsemigroup of W. Then bF(X) is the semigroup
F'*(X) of [27], and can be constructed in the same manner as the semigroups

P and @ of constructions 3.2.2 and 3.2.3 respectively.
Construction 3.2.4 We have bF(X) = U;>o Fait1, where
R = X
£ = (FR)

Fy; = {u':u€Fpu N }A{(X)} U Foiq

Foiyi = (Fa)
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Let K(X) = {u € bF(X) : @ = 1}. Consider the partial unary semigroup

congruence 7 on bF(X) generated by
{(wu'u, u), (uwa’,v') : w € X U K(X)}).

(That is; 7 is the least semigroup congruence on bF(X) that contains
{(wu'u,u), (u'ue',u') : w € X U K(X)} and respects the partial unary oper-
ation ' on bF(X).)

Remark 3.2.5 As a binary relation on Fy(X), 7 is contained in the least group
congruence & = {(u,v) : @ = T} on Fy(X) (recall the discussion in Section
1.3.1). Hence if p is a congruence on bF(X) such that 7 C p C 6 then u € K(X)
whenever up € E(bF(X)/p). _ O

The next few results are exact analogues of results from Section 3.1.

Lemma 3.2.6 The semigroup bF(X)/n is regular.

Proof: If w € Fj then wi has an inversein bF(X)/7. Let i > 1 and assume that
there is an inverse in bF(X)/7 of wr) for every w € Fy;_,. Consider u € Fy,. If
u = v’ for some v € Fy;_; with ¥ = 1 then v#) € V(un), so let u = u; ...u, where
Uy, ...,Un € Fy_5. By the induction assumption we may suppose that n > 1,
and that u;% and u,7 have inverses, say u;'fj and u,'7, in bF (X)/#. Also, since
(ui'uruguy’)) is a product of idempotents then u,"ujusus’ = 1 by Remark 3.2.5
and so (u;'ujuguy’)) has an inverse, say wr, in bF(X)/H. But now (ug'wu,’)H)
is an inverse of (ujuy)7 in bF(X) /7. We may repeat the argument to show that
the product ujusus”f has an inverse in bF(X)/7, and eventually this process

leads to an inverse of u#) in bF(X)/7. 0

Lemma 3.2.7 Let W denote the E-solid semigroup U or the locally inverse
semigroup V of constructions 3.2.2 and 3.2.3, with A and ~! as given in the
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constructions. Let T' denote the regular subsemigroup P or QQ respectively. Sup-

1

pose ~' is also an inverse unary operation on T, and let o : Fy(A) = W be

-1

the unary semigroup homomorphism with respect to ~' such that aa = a for all

a€A. ThenT = {ua:u € bF(A)}.
Proof: Define a; to be the restriction of & to bF(A) and consider constructions

3.2.2, 3.2.3 and 3.2.4. We have (AU A')ay = AUA™ C T and Fio; C T.

~1 is an inverse unary

Assuming that Fy_ya; C T for 1 > 1, it follows, since
operation on T, that Fya; C T. Hence bF(A)ay C T. Again since ~! is an
inverse unary operation on T, for each v € A U R(A) we have w'a; € V(uay).
Therefore, by Lemma 3.2.6, bF'(A)a; is a regular subsemigroup of T'. But T is
the least regular subsemigroup of W' that contains (AU A")ay, s0 T = bF(A)en.

O

By Result 1.3.37 we have the following corollary.

Corollary 3.2.8 In the statement of Lemma 3.2.7, if A = X and W = Fes(X)
or W = Frz(X) then {ua : u € bF(X)} is isomorphic to bFgs(X) or bFri(X)

respectively. O

Le£ pEs denote the partial unary semigroup congruence on bF'(X) generated
by
AU {((«), ), (uu', u'v) : u € K(X)}.
Note that if u € K(X) then upgs lies in a subgroup of bF(X)/jgs (by Result
1.3.5), and (upgs)”' = u'pEs.
The next result is a consequence of Remark 2.5(a) and Lemma 1.2(ii) of [40].

For a congruence p on a regular semigroup S we write

kerp = [ J{ep : e € E(S)}.
Result 3.2.9 ([40]) Let ¢ denote the least group congruence on Fes(X). Then

keré = Coo(Fes(X)). m]
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The following theorem is due to Kadourek and Szendrei [27, Theorem 2.5].
Since our proof is straightforward, is quite different to that of [27], and is con-

sidered later in the text, we present it here.

Theorem 3.2.10 The semigroups bFgs(X) and bF(X)/pgs are isomorphic.

Proof: Let ! be an inverse unary operation on Fes(X) as used in construction
3.2.2 for Corollary 3.2.8. Let o : Fy(X) — Fes(X) be the unary semigroup
homomorphism with respect to ~! such that za = z for each z € X. By
Corollary 3.2.8, Lemma 3.2.7 gives bFgs(X) = {ua : u € bF(X)} = P, where
P is the regular subsemigroup of Fes(X) as constructed in 3.2.2, with A = X.

Recall that the natural inverse unary operation on Fes(X) is denoted by ’,
and the fully invariant congruence on Fz(X) corresponding to the variety £S
is denoted by pgs. Let 0 : (Fes(X),’) — (Fg(X),’) be the unary semigroup
homomorphism such that z6 = z for all z € X. So 60 8~! is the least group
congruence on Fgs(X), and upesfd = @ for all v € Fy(X). By Result 3.2.9 we
have ker 0 = Coo(Fes(X)).

Now let u € fE(X) Then upgs = 1, and hence upgs € ker 8 = Coo(Fes(X)).
Therefore by Result 1.3.11 the element upes is in a subgroup of Fes(X). Since4
(Fes(X),") is the free regular unary E-solid semigroup and Fy(X)a € €S, we
have pgs C @oa™!. Result 1.3.5 now shows that ua is in a subgroup of F(X)e.
By the definition of the operation ~! on Fgs(X), this means that u'a = (ua)™!
is the H-related inverse of ua in Fy(X)a. This implies that pgs C a o a7 !,
and consequently (by Result 1.1.2) there is a semigroup homomorphism ¢ :
bF(X)/pes — P given by (upgs)y = ua for all u € bF(X).

By Remark 3.2.5, whenever upgs,vpes € E(bF(X)/pEs) we have uv €
K (X). The definition of pgs then shows that uwvpgs lies in a subgroup of
bF(X)/pEs, and thus bF(X)/pgs € ES by Lemma 1.3.11. Therefore there is a

semigroup homomorphism 9 : P — bF(X)/pgs such that z¢ = zpgs for each
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z € X.

Recall the construction 3.2.4 of bF(X). Let T be the least regular subsemi-
group of bF(X)/prs containing {zpgs : * € X}, constructed as in 3.2.2. Then
wpes € T for every w € F} = (X). Let : > 1 and suppose inductively that
wpgs € T for every w € Fy;_;. Consider u € Fy;_; N I;’(X). Then upgs is in a
subgroup of bF(X)/pgs, and v'pgs = (upgs) . By Lemma 3.1.1 the element
upgs is in a subgroup of T, and v/pgs € T. So wpgs € T for every w € Fy;y;.
Thus bF(X)/pes = T. Now both bF(X)/pEs and P have the form of the
semigroup of construction 3.2.2, and consequently, in view of Result 1.3.5, the

homomorphisms ¢ and ¥ are mutually inverse. O
Notation 3.2.11 For u,v € K(X) write s(u,v) = v(uv)u. Let 3(u,v) =

s(w,w) where w = s(u, u)vs(u,u). 0

Note that s(u,v)7 € S(u#,vi) for every u,v € K(X). We have the following

analogue of Lemma 3.1.11.

Lemma 3.2.12 Let p be a congruence on bF(X) such that n Cp C 6.
(i) E(bF(X)/p) = {s(u,u)p :u € K(X)}.

(it) Each idempotent in each local submonoid of the semigroup bF(X)/p is of
the form 3(u,v)p for some u,v € K(X).

Proof: : (i) If up € E(bF(X)/p) then u € K(X) by Remark 3.2.5. Since
s(u,u)n € S(un,un) then s(u,u)p € S(up,up) = {up} by Result 1.3.15(v),(vi).
The result easily follows.

(i) See the proof of Lemma 3.1.11(ii). O

Corollary 3.2.8 indicates the existence of congruences p on bF(X) such that
bF(X)/p is isomorphic to bFr1(X); but these congruences rely on the choice of

inverse unary operations on Frz(X), and are not easily described.
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Consider the partial unary semigroup congruence jr; on bF(X) generated
by

71U {(s(a,p)5(a,9),5(a,9)3(a,p)) : ¢, p, ¢ € K(X)}.

Lemma 3.2.13 We have bF(X)/pr1 € LI. Hence s(u,v)pr1 = s(upri,vpri)
for every u,v € K(X).

Proof: Since by Result 1.3.19 a semigroup S is inverse if and only if the
idempotents of S commute, Lemma 3.2.12 shows that bF(X)/pr; € L1. ]

It appears that bF(X)/pr1 might be isomorphic to bFr1(X), but in fact it
can be shown that for every u € K(X) the class u/pr; is not a member of the
least regular subsemigroup of bF(X)/pr1 that contains the set {zprr: z € X},
constructed as in 3.2.3. However, we construct below a subsemigroup W (X)
of bF(X) which is isomorphic to the semigroup W(X) of the previous section
and, when used instead of bF(X), provides results analogous to those obtained
above. In particular, W(X)/pEVS is isomorphic to bFgs(X), where plg is the
restriction of pgs to W(X). Moreover, W(X)/p% is isomorphic to bF1(X),

where p¥ is the restriction to W(X) of the congruence pr1 defined above.

Construction 3.2.14 Let W(X) = Uixo Wg,-ﬂ, where

W():X

A

W, = (W)

Wy = {s(a,b):a,be Waii N K(X)} U Wai_,
Woip1 = (W%)

94



Note that W(X) C bF(X), and that in light of the next Lemma the state-
ments of Lemma 3.2.7 and Corollary 3.2.8 remain true when bF(X) is replaced
with W(X).

If p is a congruence on bF(X) then p* will denote pN (W (X) x W(X)). Of
course W(X)/p" is embedded in bF(X)/p. As previously mentioned, we will

write pl¥ and p¥% for the restrictions to W(X) of pgs and jr1 respectively.

Lemma 3.2.15 The semigroup W(X)/7% is regular.

Proof: If w € W, then wi" has an inverse in W(X)/7". Let i > 1 and
assume that there is an inverse in W(X)/ﬁw of wh" for every w € Woi_o.

Consider u € Wy If u = s(a,b) for a,b € Wai_1 then up®” € V(up"), so let

U = u...u, where u;,...,u, € Wz,-_z. By the induction assumption we may
suppose that n > 1, and that u;7" and 24" have inverses, say u;'" and

u?W, in W(X)/7%. Then
(w'ur)@", (uau )™ € E(W(X)/7")
o u1'u; = upuy’ = 1 by Remark 3.2.5. Therefore s(u;'u;, uquy’) € W(X) But
s(ur'uy, ugup”) € S(ur'urf, ugug'n) = S(uif), uah)
by Result 1.3.15(ii), so that
ups(ur'ur, ugup )uin € V(ujuan)

by Result 1.3.15(iii). Thus wu}s(u'u;, ugus’)uid" is an inverse of (u uq)?" in
W(X)/4". This argument may be repeated to show that ujuzusH" has an
inverse in W(X)/#", and eventually this process leads to an inverse of /" in

W(X)/3". 0

Since (uv) ¢ W(X) for u,v € W(X), the next statement is not immediately

obvious.
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Lemma 3.2.16 Ifu,v € K(X)NW(X) then s(u,v)?" € S(up",vi").

Proof: Let u,v € K(X)NW(X). By Lemma 3.2.15 there exist u*,v* € W(X)
such that u*A" € V(ui") and v*3" € V(v4"). Then

s(u,v)p = v(uv)un
= vv*v(uv) uutun
= vv's(u,v)u un.
Since s(u,v)n € S(un,vn) then v*s(u,v)u*i € V(uvi) by Result 1.3.15(iii); and
hence v*s(u, v)u*d" € V(uvi’). Therefore
s(u,0)f" € o™V (woi™ yun”

= S(ui", o).

We now have the following analogue of Lemma 3.2.12.

Lemma 3.2.17 Let p be a congruence on W(X) such that 3% C p C 6%
(i) E(W(X)/p) = {s(w,w)p : w € K(X) N W(X)}.

(ii) Each idempotent in each local submonoid of the semigroup W(X)/p is of
the form 3(u,v)p for some u,v € K(X) N W(X). ]

The next observation will be needed presently.

Remark 3.2.18 Let u € K(X). Then upgs is in a subgroup of bF(X)/pEs

and (upgs)™! = v/pEs.

Suppose that upgs = wpgs for some w € W(X) Since {ypes : y € W(X)}
is a regular subsemigroup of bF(X)/pgs then by Lemma 3.1.1 the element
wpls is in a subgroup of W(X)/p%% and there exists w* € W(X) such that

wpgs = (wpgs) ™! and u'pps = (upes)™' = w*PEs. )
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The next result states, as was previously indicated, that both W (X)/pl
and bF'(X)/pgs are bifree E-solid semigroups on X.

Theorem 3.2.19 The semigroups W(X)/pgs, bF(X)/pEs and bFgs(X) are
isomorphic.

Proof: Recall the constructions 3.2.4 and 3.2.14, of bF(X) and W(X) re-
spectively. We show by induction on ¢ that for every u € F,;;; there exists
w € W(X) such that upgs = wpgs. For the first step, we have W, = F..
Suppose that 7 > 1, and let v € Fyp1 N K(X). Then upgs = wpgs for
some w € W(X ) by the induction hypothesis. Therefore Remark 3.2.18 shows
that there exists w* € W(X) such that u/pgs = w*pgs. It now follows that

for every u € Fy;41 there exists w € W(X) such that upgs = wpgs. Thus
W(X)/pls = bF(X)/pEs, and the result follows from Theorem 3.2.10. o

Before moving on, we note the following information.

Lemma 3.2.20 If u,v € K(X) N W(X) then uvpl lies in a subgroup of
W(X)/pBs, and s(u,v)plts = volis(uvpls)” upks.
Proof: If u,v € K(X) N W(X) then uv € K(X). As in Remark 3.2.18 the
element uvpgs lies in a subgroup of bF(X)/pgs, and uvphg lies in a subgroup
of W(X)/p¥s. Also, there exists w* € W(X) such that (vvpgs)™ = w*pgs and
(uoplle) ™" = wplls. Then
s(u,v)pes = v(uv)'upgs
= vpes(uvpes)  upEs
= vwupEs,

1 :
and hence s(u,v)pgs = vw upks = vpgs(uvpgs) upgs. =

Let us now consider the bifree locally inverse semigroup. Recall the congru-

ence pr.
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Theorem 3.2.21 The semigroups bFry(X) and W(X)/p¥ are isomorphic.

Proof: Let ~! denote the inverse unary operation on Frz(X) as used in con-

struction 3.2.3 for Corollary 3.2.8, and let a : Fy(X) — Frz(X) be the unary

semigroup homomorphism with respect to this operation such that za = z for -

each = € X. The proofs of Corollary 3.2.8 and Lemma 3.2.7 hold when W (X)

is substituted for bF(X), so we have bFi(X) 2 {wa : w € W(X)} = Q, where

@ is the regular subsemigroup of Frz(X) constructed as in 3.2.3, with A = X.
Notice that for u,v € R(X) we have

s(u,v)a = v(uv)ua
= vo(uva) lua

€ S(ua,va).
So if a,p,q € K(X) then s(a,a)a € E(Frz(X)) and
3(a,p)a,3(a,q)a € E(s(a,a)a - Frz(X) - s(a, a)a).

Now Result 1.3.19 shows that pr; € a o a™! since Fy(X)a € LZ, and hence
(by Result 1.1.2) there is a semigroup homomorphism W (X)/pl; — Q given
by wp¥ — wa, w € W(X).

Since 7" C pW, then W (X)/p} is isomorphic to a regular subsemigroup of
bF(X)/pr1, which is a member of LI by Lemma 3.2.13, and hence W(X)/p¥ €
LI. Therefore there is a semigroup homomorphism Q — W(X)/p¥ such that
T = :z:p%, zeX.

Recall the construction 3.2.14 of W(X). The inductive method used to show
that the least regular subsemigroup of bF(X)/pgs that contains {zpgs : ¢ € X}
is bF(X)/pEs itself can be used to show the analogous result for W(X)/p¥, as
follows. 1

Let T be the least regular subsemigroup of W(X )/p¥; containing the set
{zp% : = € X}, constructed as in 3.2.3. Then wply € T whenever w € W; =
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(X). Suppose that wpli € T for every w € Wai_1, where i > 1, and let
a,be ng_l N K(X). Let v € W(X) be such that vp¥ € V(abp¥). Then

buapyy € S(aplt, bpry) = {s(aphy, bolD)}

so that bvap¥ € T by the definition of T since ap¥i, bp¥y € T by the induction
hypothesis. Further, we have bvaprr = s(apr1,bpr1) = s(a,b)pr1, and hence
s(a,b)p¥ = bvapl € T. Thus W(X)/p¥ = T, and by an argument analogous
to that used in the proof of Theorem 3.2.10 it now follows that bFLi(X) =
W(X)/plr- D

We can proceed exactly as in Section 3.1 to describe a Birkhoff-style theory in
this setting, as follows. Let V = ES or V = LI. The (partial) unary semigroup
homomorphism (,o{,v)ﬂ maps W(X) onto bFyv(X). So for any semigroup S € V,
each matched mapping ¢ : X — S extends uniquely (by the universal property
of bifree objects) to a semigroup homomorphism 8 : W(X) — S such that
006! D p¥. In the E-solid case, if u,v € K(X) N W(X) then uvf lies in a
subgroup of S, and s(u,v)0 = v(uv)ud = vf(uvh) 'ud by Lemma 3.2.20. In
the locally inverse case, if u,v € K(X) N W (X) then s(u,v)8 = s(uf, vd) (since
s(u,v)p¥y = s(up¥y, vp¥) by the last paragraph in the proof of Theorem 3.2.21).

With the obvious changes, all the theory set out in Section 3.1 can be du-
plicated, and an analogue of Theorem 3.1.17 also holds in this context. The
advantage of the approach of Section 3.1 over that given in this section is clear:
here we cannot explicitly give generators of the congruences relating to the bifree

objects, but must rely on the restrictions of congruences on bF(X).

3.3 E-varieties of locally E-solid semigroups.

Recall that LES denotes the e-variety of all locally E-solid semigroups. In

[25] Kadourek established that trifree objects exist in all e-varieties of locally
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orthodox semigroups. In Section 3.3.1 we establish the existence of trifree ob-
jects in e-varieties of locally E-solid semigroups, and show in Section 3.3.2 that
trifree objects on at least three generators exist in an e-variety V if and only
if V.C LES. This also generalizes Yeh’s result {43] which states that bifree
objects on at least two generators exist in an e-variety V if and only if V C ES

or VCILI

3.3.1 The existence of trifree objects in locally FE-solid
e-varieties.

First we generalize Kadourek’s results, which we have stated in Section 1.3.7,
to classes of locally E-solid semigroups.
A semigroup S without zero is said to be completely simple if S is completely

regular and has only one D-class.

Result 3.3.1 ([19],Theorem 7) For every locally E-solid semigroup S there
ezists a least congruence p on S such that S/p is locally inverse. For every

e € E(S) the class ep is a completely simple subsemigroup of S. O

Recall from Notation 1.3.6 that if k£ is a member of a subgroup of a semigroup
S then k° denotes the unique idempotent H-related to k.

We have the following characterizations of locally E-solid semigroups.
Theorem 3.3.2 For a regular semigroup S the following are equivalent:
(z) S is locally E-solid,
(it) if e € E(S) and f,g € E(eSe) then S(fg, fg) NV (gf) #0,
(iit) if e € E(S) and f,g € E(eSe) then S(fg, fg) C V(gf), and
(iv) ifa € Sz and b€ yS forz,y € S then V(b)S(k, k)V(a) C V(ab) for every

k € bV(b)S(z,y)V(a)a.
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Proof: (i) = (iv): Let S € LES. Suppose that a € Sz and b € yS for
z,y € S, and let & = bb'ua’a where u € S(z,y), a’ € V(a) and &' € V(b).
Consider v € V(ab) and h = bva € S(a,b), and let p be the least locally inverse
congruence on S. Then hp € S(ap,bp) = {s(ap,bp)}. But (b'ua’)p € V(abp) by
Result 1.3.39, so

kp = (bb'ud'a)p
€ bpV(abp)ap
= S(ap,bp)
= {hp}.
Hence h and k lie in the same completely simple subsemigroup D of S By
Result 3.3.1. This means that every H-class of D is a group and that the

elements h, k, hk° hk°h € D are all D-related in S. Now by Result 1.3.4 we
have h ‘H hk°h. Since khk = bb'ua’a(bva)bb'ua’a = bb'ua’abb'ud’a = k*, then

(hk°h)? = hk°hk°h = hk~'khkk™'h = hk™'k?k~'h = hk°h.

Therefore h = hk°h since h and hk°h are H-related idempotents. Note that
ahb = ab by Result 1.3.15(iv). Also, if a* € V(a) and b* € V(b) then bb*k =
k = ka*a, and hence bb*k° = bb*kk~! = k° = k°a*a, so that

ab(b*k°a”)ab = ahb(b’k°a*)ahb = ahk®hb = ahb = ab

and b*k°a*(ab)b*k°a™ = b"k°a*. Therefore b*k°a* € V(ab); so that we have
V(b)S(k,k)V(a) C V(ab), as required, since S(k, k) = {k°} by Lemma 3.1.1.
(iv) = (iii): Let e € E(S) and f,g € E(eSe). Note that

S(fg,fg) = fS(fg, f9)g

and

fg=feg= ffegg € fV(f)S(e,e)V(g)g,
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so that, since g € Se and f € €S, we have

S(fg,fg9) = fS(fg,f9)g S V(f)S(fg,fg)V(g) C V(gf).

(i) = (ii) trivially.

(i1) = (i): Let'e € E(S) and f,g € E(eSe). Then S(fg,fg) NV(gf) # 0
and S(gf,gf) N V(fg) #0, s0 we may choose w € V((fg)?) and = € V{(gf))
such that u = fgwfg € V(gf) and v = gfzgf € V(fg). Then

af

gfugf

= g9f(fgwfg)gf

= g(fgvfg)w(fgvfg)f

= gfgvuvfgf

= gfg(gfzgf)ulgfzg9f)fgf
€ (9f)°S(9f),

so that gf H (gf)?. Therefore eSe € ES by Result 1.3.11(i). a

Corollary 3.3.3 Let S € LES. Ifa € Sz and b € yS for z,y € S, and
k € bV(b)S(z,y)V(a)a, then k lies in a subgroup of S and S(k, k) = {k°}.

Proof: The proof that (i) implies (iv) of Lemma 3.3.2 shows that & lies in a
subgroup of S, and so S(k, k) = {k°} by Lemma 3.1.1. O

Recall that by Result 1.3.5 an element k of a regular semigroup S is in a
subgroup of S if and only if k¥ H k2%, and that in this case the unique H-related
inverse of k is denoted k~!.

The next result gives the existence of least regular subsemigroups in locally
E-solid semigroups. Note that the subsemigroup R is the closure of AUC in S

under the operations of multiplication and taking group inverses.
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Lemma 3.3.4 Let S be a locally E-solid semigroup. Suppose that A,C C S are

such that
(i) ANV (a)# 0 for every a € A,
(ii) C C U{S(a,b): a,be A}, and
(iii) C N S(a,b) # O for every a,b € A.

Then the semigroup R = U;>o Rait1 1s the least regular subsemigroup of S con-

taining AU C, where

Ry = AuC
R = (Ro)

Ry = {T—l re Rzi—n?"?‘f 7‘2} U Rai1

Roivi = (Ry)

Proof: We first prove by induction that for every r € R we can find a,b € A
such that » € aRN Rb. If r € C then r = aub for some ¢,b € A and u € V(ba),
so that the result holds for all r € AU C and hence for all r € R, = (AUC).
Now assume that ¢ > 1 and that if » € Ry;_; then r € a RN Rb for some a,b € A.
If r € Ry; then either r € Ry, or 7 = s7! = s573s for some s € Ry;_; with
s H s2. In both cases r € a RN Rb for some a‘, be A by the induction hypothesis,
and hence the same holds for all 7 € Rzi11 = (Rai).

The members of AU C have inverses in AU C. Assume inductively that the

members of Rj;_, have inverses in R, where ¢« > 1, and consider 7 € Ry;. If
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r=s"!for s € Ry;_; with s H s®> then s € V(r)NR. Solet r =7, ...7r, where
T1y...yTn € Rai_9; if n =1 then r has an inverse in R. Suppose that n > 2 and
that if¢y,...,¢p—1 € Roi_othen V(¢; ... ¢, 1)NR #0. Lett =r;...7,_; and let
t' e V(t)NR and r, € V(r,)N R. We may assume ¢t € Ra and r,, € bR for some
a,b € A. Let k = r,r]ct't, where ¢ € S(a,b) N C. Then k € R, and Corollary
3.3.3 shows that k lies in a subgroup of S and S(k,k) = {k°}. Consequently
k= € R, so that k° € R, and hence 7,k°t' € V(r)N R by Lemma 3.3.2. Thus R
is regular, and is clearly the least regular subsemigroup of S containing AU C.
0

For the next part we recall X and X as given in Notation 1.3.20, and X,
as given in Notation 1.3.41. The following definition is Definition 1.3.42, given

again for convenience.

Definition 3.3.5 ({25])

o A tied mapping is a mapping ¢ : X; — S where S is a regular semigroup,

z'¢ € V(z¢) for every z € X, and s(z,y)¢ € S(zd,yd) for every z,y € X.

o A trifree object for a class V of regular semigroups is a pair (S,¢), where
t:X; — S is a tied mapping, such that for any T € V and tied mapping
¢ : X1 — T there is a unique homomorphism 6 : S — T such that

0 = ¢. )

As we have seen, the construction of the least regular subsemigroup of a
locally E-solid semigroup containing sets of the form A U C, as described in
Lemma 3.3.4, is not as simple as that for locally orthodox semigroups, where
the subsemigroup (A U C) is itself regular. This gives rise to complications; for
example, in the locally orthodox case tied mappings can be naturally extended

to the free semigroup 71+, but for locally E-solid semigroups we require a more
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artificial setting. There is a semigroup T'(X) for which some of the results of Sec-
tions 3.1 and 3.2 can be reproduced, with triidentities being equations between
members of T'(X), but we do not discuss triidentities here. The description is
complicated, and Kadourek’s proof that there is no Birkhoff-type theorem con-
necting e-varieties of locally orthodox semigroups with sets of triidentities also
shows that there is no such theorem for e-varieties of locally E-solid semigroups.
Instead, we construct trifree objects in e-varieties of locally E-solid semigroups
as subsemigroups of the free objects in certain varieties.

When Yeh constructed the bifree locally inverse and FE-solid semigroups
as subsemigroups of the corresponding free regular unary semigroups, he used
paired mappings instead of matched mappings. As stated in Definition 1.3.21,
a mapping ¢ : X — S, where S is a regular semigroup, is said to be matched
if 2’¢ € V(z¢) for every z € X. A mapping ¢ : X — S, where S is a
regular semigroup, is said to be paired if it is matched and z'¢ = y'¢ whenever
z¢ = y¢pfor z,y € X. The extra condition was required in order to obtain unary
semigroup homomorphisms into S extending ¢, via an inverse unary operation
on S. But Hall (private communication, see [24]) has shown that the two
definitions are equivalent for classes of regular semigroups closed under taking
finite direct products. This follows from the fact that if ¢ : X — S is matched
then the mapping ¢ : X — S x S given by z¢ = (z4, z'p), 2'¢p = (z'¢,z¢),
z € X, is paired.

The material presented in this section appears in [13]. In the version of
this paper that was first submitted for publication, a generalization of the con-
cept of a paired mapping was used to define tied mappings for locally E-solid
semigroups, for the purpose of locating trifree objects as subsemigroups of the
- corresponding free regular unary semigroups. The referee offered the idea of us-
ing semigroups with many unary operations, which allows the use of Kadourek’s

definition (3.3.5) of a tied mapping.
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Definition 3.3.6 Let A be a set and V an e-variety. By a regular A-unary
semigroup is meant a semigroup S together with a set {zy : A € A} of inverse

unary operations on S. O

The variety of all regular A-unary semigroups is denoted RUS*. A straight-
forward generalization of the proof of Result 1.3.9 shows that for an e-variety
V the class

{(S, (ix)rea) € RUS* : S € V}

is a variety of regular A-unary semigroups; we denote it by VA,

Consider a fixed A = X U 72, and write LES = LES®. Let

(FLES(X)> (x)a:eX’ (yz)y,zef)

be the free object on X in LES; here P denotes the unary operation u — u?,
u € Fres(X), for all 'p ceXuX’. |

Here we redefine X;. Let I(X) = {z° : 2 € X} C Fres(X). Then X'
can be identified with I(X) by writing ' = z” for each = € X, and we also
write X = X U I(X). Let s(y,z) = z(yz)*y for all y,z € X, and write
X =XU{s(y,2):y,2 € X}.

Suppose that V is a sub e-variety of LES, and write V = VA, Let

(FV(X)a (I)xe)p (yz)y,zef)

be the free object on X in V. Then Fy(X) € LES so by Lemma 3.3.4 there is
a least regular subsemigroup R of Fy(X) such that X; C R, constructed as in
(6). Let ¢ : X; — R be the natural injection. Then ¢ is a tied mapping.

Theorem 3.3.7 The semigroup R, together with the mapping ¢, is the trifree
object on X in V.

Proof: Let S € V, and let ¢ : X; — S be a tied mapping. Let ¢' be the

restriction of ¢ to X. For every x € X choose an inverse unary operation * on
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S satisfying (z¢)° = z%¢. Now for every y,z € X we have s(y, 2)¢ = 2¢w,.yé
for some w,, € V(ypz4). So for every y,z € X we can choose an inverse unary

operation ¥ on S such that (y¢z¢)** = w,,. Then

*_9- = (57 (I).’L‘GX’ (yz)y,zéy) € V’

so there is a A-unary semigroup homomorphism ¢’ : F)(X) = S extending
¢'. Let ¢ be the restriction of ¢’ to B. Then ¢ extends ¢: if ¢ € X then
o =20’ = 2¢' = z¢ and % = 2%’ = (z¢')” = (z¢)” = 2°¢; and if y, 2 € X

then

s(y,2)e = s(y,z)¢’
= (z(y2)"y)¢’
= z¢'(y2¢")" yy’
= 2¢(ydz¢)" yé
= ZMWW '
= s(y,2)¢.

It remains to show the uniqueness of ¢. Suppose that § : R — S is a semigroup
homomorphism extending ¢. Then up = uf for every u € X,. = Ry, and hence
for every u € R; = (Ro). Let 7 > 1, and assume inductively that uy = uf for
every u € Ry;_;. Let u € Ry;. If u € Ry then up = uf by the induction
assumption. Otherwise, u = r~! for some r € Ry;_; with » H 72, and in this
case T = rf so that up = uf (by Result 1.3.7). Thus ue = uf for every
u € Roip1 = (Rai), and the proof is completed. O

Remark 3.3.8 For an e-variety V C ES or V C LI, it is easy to see that
the least regular subsemigroup T of Fy(X) containing X is isomorphic to the

least regular subsemigroup of Fy/(X) containing X (recall Result 1.3.9 for the
notation V'), and is therefore bifree in V by Result 1.3.37. If V C ES then
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for z,y € X the element s(z,y) € Fya(X) is not necessarily a member of T,
and in this case the bifree and trifree objects in V on X are not isomorphic.
However if V is contained in LI then the bifree and trifree objects in V on X

are 1somorphic. ]

3.3.2 Only locally FE-solid e-varieties admit trifree ob-
jects.
The aim in this section is to show that trifree objects on three or more generators

exist in an e-variety V only if V C LES.

Let Cy denote the Rees matrix semigroup

1 11}/
M°((1),2,2, ).
10

Result 3.3.9 ([21]) For an e-variety V we have V C ES if and only if C; ¢

V. m
The next result is well-known, and the proof is easy.

Result 3.3.10 For an e-variety V we have V C LI if and only if V does

not contain R', the two element right (equivalently, left) zero semigroup with

adjoined identity. m]

For a class C of regular semigroups let V(C) be the e-variety generated by

In [43], Yeh constructed a regular semigroup in V(C3, R') with a subset A =
{e, f}, where e and f are idempotents, which has no least regular subsemigroup
containing A. Yeh used this together with Results 3.3.9 and 3.3.10 to prove
that non-monogenic bifree objects exist in an e-variety V if and only if V C ES

or VCILIL

108



Following Yeh’s method, we now proceed to establish an analogous result for
LES. First we extend Result 3.3.9 by showing that for an e-variety V we have
V C LES if and only if C,' € V, where C,' is C, with an identity adjoined.
We then construct a regular semigroup in V(Cy', R!) = V(C,') with subsets
A, C that satisfy the conditions of Lemma 3.3.4, but which has no least regular
subsemigroup containing A U C. As a consequence of these results we prove
that trifree objects on three or more generators exist in an e-variety V if and
only if V C LES.

For an e-variety V, let Vs be the e-variety generated by the monoids of V.

Lemma 3.3.11 For an e-variety V we have

Vi = {S:S is a regular subsemigroup of a monoid of V}
= {SeRS:S'eV}

Proof: Let W = {S : S is a regular subsemigroup -of a monoid of V}. Then
{S € RS : S' € V} C W. Conversely, if S € W then there is a monoid
T € V, with identity e € T, such that S is a regular subsemigroup of 7. But
then S U {e} is a monoid in V, so that W C {S € RS : §* € V}; and thus
W={SeRS:S'eV}

Clearly W is closed under taking regular subsemigroups, and also W C V.
Suppose that f : S — U is a surjective homomorphism, for S € W. If § = S!
then U is a monoid in V, and hence U € W. If § is not a monoid but is a
subsemigroup of a monoid 7" € V|, with identity e, then f may be extended to
f1: 8" = U! where S' = SU{e} with e as identity and U! = UU{f!(e)} with
f1(e) as identity. Since S' € V then U! € V, and therefore W is closed under
homomorphisms.

Now let {S; : ¢ € I} be a family from W. For each ¢ € I let ¢; be the identity
for S}. Then [1;c; S! is a monoid in V, with identity (e;);c;. But [T;e; S: is a
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regular subsemigroup of [];c; S}, and is therefore a member of W. Hence W is

an e-variety, and it follows that W = V. a

Corollary 3.3.12 An e-variety V € LES if and only if Cy' € V.

Proof: Recall from Section 1.3.3 that the class
LV ={Se€RS:eSeeV for all e € E(5)}

is an e-variety. Note that LLV = LV. Clearly V ¢ LES if and only if
LV ¢ LES.

If S € LV \ LES then eSe € V \ ES for some e € E(S), and so eSe €
Vu \ ES. Thus LV ¢ LES implies Vay € ES; conversely Vyy € ES implies
V Z ES, and hence LV € LES. Therefore V € LES if and only if V)s € ES.
Finally, Vas € ES if and only if C; € Vi, and C; € V), if and only if. Clev
by Lemma 3.3.11. m]

Recall from Notation 1.1.10 that for a nonempty set X the free semigroup
and free monoid on X are denoted X* and X* respectively.

We no§v introduce the example. Let A = {a,b,c,d, e, f} be a set of distinct
variables. Let A* U {0} be the free semigroup A* with an adjoined zero. So
z-0=0-z=0for all z € A*.

Define

T = {0,a,b,c,d,db,ad,ab,e,ec,ae, ac, f, b, fc, fe,af,
afb,afc,afe,df,dfb,dc,de,adf,adfb, adc,ade} (3.2)
C {a,b,c,d, e,f}Jr U {0}.

It can be routinely checked that T is the subsemigroup of A* U {0} generated
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by {a,b,¢,d,e, f,0} subject to the relations

aa=a bf=0 cf=f ee =e adb = ab
ba=0 ca=0 da=d ef=f aec=ac
bb=b =0 dd=d fa=f dec=dc
bc=0 cc=c ea=e fd=f dfc=dc
bd=d c¢d=0 eb=0 ff=f dfe=de
be=0 ce=e ed=0 fec = fe

This semigroup has been constructed with significant help from J. Almeida and
his computer program for constructing semigroups from their presentations.
Given that T is a semigroup we easily see that T is a regular combinatorial
semigroup of order 28, with 7 D-classes as pictured below (the * denotes that

an element is an idempotent).

*b *a *c

*d | *db *e | *ec

*ad | ab *ae | ac

*f fb | *fc | *fe
*af | afb | afc | *afe
*df | *dfb | dc | de

*adf | adfb | adc | ade

*0

111



Our first aim is to show that T € V(C;'). To this end we need some
preliminary results.
A semilattice is a commutative semigroup of idempotents. A semigroup S

is a local semilattice if eSe is a semilattice for every e € E(S5).

Result 3.3.13 ([21]) The e-variety generated by C; is precisely the class of all

regular local semilattices. a

See Trakhtman in [38, Theorem 20.4] or Trotter [41] for a proof of the fol-

lowing well known result.

Result 3.3.14 A basis of identities for the semigroup variety generated by C,
is given by

2® = 22, z(yz)’ = zyz, Tyzzz = T2y, O

Let X be a nonempty set, with Y C X. For a word u € X* define uy € Y'*
to be the word obtained from u by deleting all occurrences of variables not in
Y.

For an e-variety V let VM = V({S! : § € V}). The proof of [3, Lemma

7.2.1] is easily generalized to give the next result.

Lemma 3.3.15 Suppose that V is an e-variety and X is a nonempty set. Let
u,v € X*. Then the class VM satisfies the (semigroup) identity u = v if and
only if V satisfies the (semigroup) identity uy = vy for every subset Y of X.

a

We now give the main lemma of this section.

Lemma 3.3.16 The semigroup T is a member of V(C3').
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Proof: It follows from Lemma 3.3.11 that V(C;) C V(C,'),,, and that there-
fore any W € V(C,) is such that W! € V(C,'). Hence

V(G = VW' : W € V(Co)}) = V(C)M.

Let X be a denumerable set of variables. By Lemma 3.3.15, an identity u = v
on X 1s now valid in the e-variety V(C’zl) if and only if the identity uy = vy
holds in the e-variety V(C;) for any set ¥ C X.

By Result 3.3.13, the e-variety V(C,) is precisely the class of all regular local
semilattices. By Result 3.3.14 a basis of identities for the semigroup variety

generated by C; is given by

3 _ .2 2 _ _
z° =z°,z(yz)” = zyz,zyrze = TzaYT.

Conversely, it is easy to see that any regular semigroup that satisfies these iden-
tities is locally a semilattice. Hence these identities form a basis of biidentities
for V(C;). In particular, if u = v is a semigroup identity for V(C;), where

Uu=2y...cpandv=y;...yy for z;,...,Zn,Y1,...,ym € X, then the following

are true:
® T =Y,
® Tn = Ym,

o {z1,...,2.} ={y1,.-.,Ym}, and
o {z;z;41:1<i<n—-1}={ypin:1 <t <m-—1}L

Suppose that T & V(C3'). Then there is a semigroup identity u = v, where
U=2o1...2p and v = Yy ...y, for z1,..., 20, Y1,-..,ym € X, that is satisfied

by C,' but not by T. Let ¢ : Xt = Thea semigroup homomorphism such
that u¢ # vo.
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Observe that Dy U {0} is an ideal of T, where D; is the D-class of f, and
that T/(Dy U {0}) and T \ {a,b,c} are regular local semilattices. Therefore
the semigroups T/(Dy; U {0}) and T \ {a,b,c} satisfy the identity v = v, and
consequently {a,b,c}N{z1¢,..., 2.0, 10, ..., Ymd} # 0 and up,vp € D;U{0}.
We may assume u¢ # 0.

Notice that if the variable a occurs in ¢ € T, as displayed in (3.2), then
t = as for some s € T such that a does not occur in s. Let ¢ : Xt — T be

the semigroup homomorphism given by

xz¢ if a does not occur in z¢
TP =

w if z¢=aw

for all z € X.

Notice that
z if z€{a,de, f}
za =
0 -if ze€{bc},
and so there is no pair z;, ;4 for which z,,,¢ begins with a and z;¢ ends with

b or c. Hence

B aup if a appearsin z,¢
v = { uyp if a does not appear in z,¢.

Therefore ui # 0, and hence if vy = 0 then uyp # vip. If vé # 0 then we may
repeat the above for v; and then, since z; = y;, we have u¢ = ut if and only
if v = vp. Consequently uyp # vip. Otherwise, v = 0 and vip # 0. Since
{z1,...,zn} = {y1,---,ym}, then y;¢ # 0 for all 7. It follows that y;¢ ends with
b or ¢, and y;y1¢ begins with a for some 1. But y;yiy1 = z;2;4 for some j, so
this is a contradiction. Thus in all cases we have u # vi.

Therefore, if Y = {z € X : 2¢ # a}, then uy = vy is an identity satisfied by
V(C,') and ¢ : X* — T is a homomorphism such that uy ) = u) # v = vye;

and so we may assume that the range of ¢ excludes a.
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Observe also that
z if ze€{bd}
br =
0 if z€{a,cef}

and

z if ze€{ce f}
cr =
0 if ze€d{a,bd}.

By a dual of the above argument we may assume the range of ¢ also excludes
b and c. But then ¢ maps into T\ {a,b,c} € V(C;), and this provides the

contradiction since u = v is satisfied by V(C,). ]

Consider the following subsets of T':
O = {a,b,d,db,ad,ab},
U = {0,c,eec,ae, ac, fc,afc,de,ade, fe,afe,de,ade},
V. = {0, f,af,df,adf, fb,afb,dfb,adfb}.

Let R = {u,v} be a right zero semigroup (so R satisfies the identity zy = y)

and consider the regular subsemigroup
P= {(x,l),(y,u),(z,v) 1T € O,y € Uu V,Z < V}

of T'x R!. Let @ = P/I, where I is the ideal {(0,u), (0,v)} of P. The D-classes
of ) are given below in Figure 3.1.

It follows from Lemma 3.3.11 that R! € V(C,'), and therefore Q € V(C,')
by Lemma 3.3.16. Consider the subsets

A ={(e,1),(b,1),(c,u)} and C = {(d, 1), (e, u),0}

of Q. Observe that (d,1) € S((a,1),(b,1)) and (e,u) € S((a,1),(c,w)); and
that S(p,q) = {0} for all (p,q) € (A x 4)\ {((a,1), (5,1)), (1), (¢,u))} with
p # q. Then A and C satisfy the conditions of Lemma 3.3.4 (with Q in place
of S).
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*(b,1) *(a,1) *(c,u)
*(d,1) | *(db,1) *(e,u) | *(ec,u)
*(ad,1) | (ab,1) *(ae,u) | (ac,u)

*(Hv) | (by) | *(fu) | (fbu) | *(fe,u) | *(fe,u)

*(af,v) | (afb,v) | *(afu) | (afb,u) | (afe,u) | *(afe,u)

*(df,v) | *(dfb,v) | *(dfju) | *(dfb,u) | (dc,u) | (de,u)

*(adf,v) | (adfb,v) | *(adf,u) | (adfb,u) | (adc,u) | (ade,u)
*0

Figure 3.1: The D-classes of the semigroup Q.

Lemma 3.3.17 There is no least reqular subsemigroup of Q) that contains AUC.

Proof: Let
Ty =A{(z,1),(y,u): 2 €0,y e UUV}

and

T, = {(z,1),(y,u),(z,v): 2 € O,y e U,z € V}.

Write @, = 71/ and Q2 = T2/I. Then Q; and Q, are regular subsemigroups

of () containing AU C. However,
hNT,={(z,1),(y,u):z € O,y € U}

so that (de,u) € Q1N Q2; but the inverses of de in T are f, fb,af,afb, and none

116



of these is a member of U. Therefore (), N Q) is not regular. 0O

We conclude this section with the main result.

Theorem 3.3.18 Suppose that V is an e-variety and X is a set with | X| > 3.
There is a trifree object in 'V on X if and only if V C LES.
Proof: Suppose V € LES. Then C,' € V by Corollary 3.3.12, aﬁd hence
@ € V. Suppose there is a trifree object (F,¢) on X in V. Let z,y,z be
distinct members of X. We may consider a mapping ¢ : X; — @Q which is tied
and satisfies
(¢,1) if w=¢
o wp =w'p=s(w,w)p =s(w,w)p=1{ (b1) if w=y
(c,u) if w=z2
o s(z,y)p = s(z',y)p = (d,1); s(z,2)p = s(a’,2")p = (e, u)
o s(w,t)p =0 for all other w,t € {z,y,z2,2',y,2'}.
Let ©: FF — @ be the unique homomorphism satisfying (@ = ¢. Then F@ is
a regular subsemigroup of @) containing A U C; moreover, the above argument

shows that any regular subsemigroup of @ that contains A U C also contains

F%. This contradicts Lemma 3.3.17. a

Remark 3.3.19 In [25] Kadourek claimed, without proof, the statement of
Theorem 3.3.18. ]

3.4 A theory of n-varieties.

The theory for locally E-solid semigroups that was developed in the previous
section can be extended in such a way as to obtain a suitable notion of a “free
object” for every e-variety. Given a regular semigroup S and 3 < n < oo, we

say that subsets Az, As,..., A, of S satisfy property (*,) if
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(1) A2NV(a) # 0 for all a € Ay, and
(i) A C ... C Ay;
and iffor3<j3<n

(iii) every a € A; is a member of S(u;...ug,v;...v¢) for some k,£ < j and

Upy .., Uk, V1,...,0 € Aj_1, and
(iv) S(uy...uk,v1...v)NA; # 0 for every uy,...,uk,v1,...,v € Aj_1, where
k.l <.
If subsets A, As, ... of a regular semigroup S satisfy property (*,) for every n,

3 < n < oo, then define A, = U,>3 A, and say that Az, As, . .. satisfy property
(*oo)-

For every n, 3 < n < oo, let V,, be the class of all regular semigroups S
for which the following is true: whenever A,, As,..., A, ar'e subsets of S that
satisfy property (*,), the closure of A, under the operations of multiplication

and taking group inverses is a regular subsemigroup of S.

Lemma 3.4.1 Suppose that S is a reqular semigroup, with subsets A,, Aa, ...

which satisfy property (*,). Then (Ac) ts regular.

Proof: Let a = a;...a, where ay,...,a, € Ay. Notice that V(a;) N A # 0
for each 7, 1 < i < m. Suppose that a} € V(a;) N Aes. If m = 1 then
aj; € V(a) N Aw, so assume that m > 2 and proceed by induction. There exists
b € V(az...am) N (Aw). Let n > m — 1 be such that a,,...,an € A,. Then
there exists ¢ € S(a1,az...am) N Any1, and bca] € V(a) N (Ay) by Lemma
1.3.15(iii). ]

By Lemma 3.4.1, the class V,, contains all regular semigroups, and hence
V. = RS. So for each e-variety we can obtain an analogue of a free object, as

follows.
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Recall the Definition 3.3.6 of a regular A-unary semigroup, and the discussion

which follows. Let ', = X x X, and for all n > 3 let
L= {(ur...ug,v1...v0) s uy,...,ug,v1,...,0 € [y_y and k€ < n}UT,_;

and A, = X UT,. Let (Frysan(X), (*),exs(")qer,) be the free object on X in
the variety RUS™". Asin Section 3.3.1, we identify the set I(X) = {z* : z € X}
with X’. Let X; = X U I(X). Forn > 3 let

Xn =Xno1 U{s(ur... ug,v1...0¢) : Uy..., Uk, V1,...,00 € Xpoy and k, £ < n},

where s(uy ... Uk, V1 ... 0p) = U1 .. Vp(Ug o URVY . 0g) IRy g

Definition 3.4.2 Let n > 3. A mapping ¢ : X,, — S, where S is a regular

semigroup, will be called n-tied if
(i) 2'¢ € V(z¢) for every z € X, and

(ii) s(uy...ug,v1...00)¢ € S(u1@...urp,v1d...ve¢) for every k,¢ < n and

ul...Uk,’Ul...'UgGXn_l. O

Let 3 < n < oo. By an n-free object for a class V of regular semigroups
is meant a pair (S5,¢), where ¢ : X,, — S is an n-tied mapping, such that for
any T' € V and n-tied mapping ¢ : X, — T there is a unique homomorphism
6 : S — T such that 0 = ¢.

Let V be a class of regular semigroups closed under taking regular subsemi-
groups and direct products, and contained in V, for some 3 < n < co. Then
F, the free object on X in the variety VA~ exists. As usual, we assume that
Xn € F. Let « : X, = F be the natural injection. Then R, the closure of
X, in F under multiplication and taking group inverses, is the least regular
subsemigroup of F' containing X,; and a straightforward modification of the
proof of Lemma 3.3.7 shows that R, together with the mapping ¢, is the n-free
object in V on X.
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Remark 3.4.3 When n = 3 the notions of n-tied mappings and n-free objects
coincide with the notions of tied mappings and trifree objects as described in

Section 3.3.1. O
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