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Abstract 

We propose a broad system for reasoning by term rewriting. Our general 
aim is to capture mathematical and scientific reasoning in a coherent sys-
tem. To this end we introduce several new processes which allow concrete 
descriptions of standard notions. 

For deductive reasoning we extend traditional methods for finding canoni-
cal rewrite systems to a general method for systems involving both equa-
tions and inequations. We introduce the notion of side conditions for non-
theorems and show how they provide a new kind of meta-reasoning whereby 
an automated reasoner can determine why it failed to prove a given state-
ment. A method for the automatic proof of inductive theorems by an ana-
logue of mathematical induction is also presented. 

A new algorithm is given for inductively generating conjectures (function 
equations) from a set of observations (a rewrite database). This is a process 
of scientific induction and we prove some fundamental results linking it to 
mathematical induction. Comparisons are given with standard inductive 
learning systems, such as FOIL, to illustrate the expressive power of our 
algorithm. 

We obtain probabilistic measures of the strength of a single conjecture using 
statistical testing and an information measure. For a collection of conjec-
tures we are then able to quantify Popper's well-known falsifiability criterion 
for the strength of a theory. We also introduce a non-standard modal oper-
ator to extended our deductive reasoning to reasoning with conjectures. 

We use belief dynamics as the framework of an implementation of the rea-
soning methods. Consistency analysis, using the same canonical-form algo-
rithm introduced earlier, allows the reasoner to build a belief set from given 
knowledge and to form a working theory from the conjectures it makes. 
Again a meta-reasoning is introduced, with the reasoner then able to decide 
what experiments need to be carried out when it conjectures more than one 
consistent theory from given set of observations. 

Dialogues with the reasoner, generated by a prototype implementation of 
the work in the thesis, are given to illustrate its behaviour and the links 
between the internal language it uses and natural language. 
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CHAPTER 1 

Introduction 

Both automated reasoning and term rewriting have a rich history. However, 
much of the focus in automated reasoning has been on methods based on 
classical logic and logic programming systems. Although some applications 
of term rewriting have been considered, such as in [26], it still remains a 
small part of the field. In this work we seek to present a general and unified 
approach to automated reasoning through term rewriting. 

Our broad aims are then two-fold. Firstly we give a thorough set of algo-
rithms for reasoning by term rewriting. These include completion algorithms 
for systems of equations and inequations, and an algorithm for generating 
function equations inductively from a ground rewrite system. The second 
aim is to use this concrete system of rewriting methods as a means of defin-
ing and exploring standard notions of deductive and inductive reasoning. 
Of course these aims are intimately dependent on each other. The result 
will be a working prototype which is both motivated by and useful for rea-
soning. With this in mind we will often talk about a reasoner, meaning 
simultaneously the idealized model of reasoning and the resulting concrete 
implementation. 

We begin in Chapter 2 by giving the language in which we represent our 
knowledge and with which we reason. Term equations are a natural means 
of meeting these two needs. In order to concentrate on reasoning as much as 
term rewriting we adopt the simplest algebra of terms in which everything 
is ground (that is, variable-free), as given by Fearnley-Sander [15]. This 
language is still very expressive and also has a number of theoretical ad-
vantages, such as the decidability of termination for a given rewrite system 
[12] 

An important addition to the basic language of terms is the set constructor, 
a special instance of the potential entities described in [4]. The role of 
function terms can be quite limiting as confluence requires each function to 
have no more than one value. Sets provide a convenient method of handling 
multi-valued functions. 

Chapter 3 looks at automated deductive proof techniques. The traditional 
method of deciding whether an equation is an equational consequence of a 
system E is to find a canonical rewrite system, R, for E and reduce both 

1 
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sides of the equation with R. We call such a method proof by normalization 
and note that it is limited in a number of ways. It gives no procedure for 
generalizing to proving inequations from systems of equations and inequa-
tions, and will also fail to prove a valid equation if the initial stage of finding 
the canonical system does not terminate. 

We instead concentrate on proof by contradiction whereby we add the nega-
tion of the equation to be proved to the system and seek a canonical form of 
the extended system. If in doing so we find that the system is inconsistent 
then we say that the equation is proved. This procedure is then immediately 
semidecidable since every valid equation will eventually give such a contra-
diction if the completion algorithm maintains its system in reduced form at 
each stage. We can also immediately prove inequations, their negations now 
being equations that get added to the system of hypotheses. 

If the completion of the extended system terminates but does not find an 
inconsistency then we can interpret the result as side conditions, condi-
tions which can be added to the original hypotheses to produce a theorem 
which can be proved. This gives the automated deductive reasoner a level 
of meta-reasoning, whereby it can not only prove a valid theorem but can 
also identify why it could not prove a non-theorem. 

Related to the identification of side conditions is the process of solving a 
system of equations for an unknown. While we do not have variables in 
our term language, we can treat certain terms as being indeterminate in 
meaning. This gives a process for finding values for such unknowns which 
does not require any unification procedure. 

The algorithm used for proof by contradiction processes single equations 
and inequations only. However, we extend the proof method to a full propo-
sitional language in which the equations are the atoms. Reduction of the 
hypotheses and conclusion to disjunctive and conjunctive normal forms, re-
spectively, generates a collection of subtheorems required to prove the origi-
nal theorem. In Chapter 4 we show that this extension of the proof method 
to the propositional language gives a consequence relation, and hence forms 
the reasoning component of an AGM belief system [20]. 

Throughout we treat our language of a ground term algebra and the process 
of term rewriting as fundamental elements of reasoning. The variable-free 
language gives a trivial semantics for our proof techniques, placing the em-
phasis instead on the syntactic processing carried out by rewriting. Stan-
dard notions of classical logic, especially that of consistency, are then intro-
duced in terms of the rewriting algorithms. Similarly, rather than looking 
at questions of logical completeness, we instead progressively extend the 
basic canonical form algorithm of Knuth and Bendix [32] to mirror such 
questions. 
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In particular, we give an algorithm which is proven to give a unique reduced 
form for equivalent systems of equations and inequations. This gives rise to 
a third deductive proof technique, dubbed proof by invariance, whereby a 
conclusion is a consequence of a system if the canonical forms of the system 
and the system augmented by the (non-negated) conclusion are the same. 

The automated proofs so far have all been of deductive theorems, but we 
can also automate the proof of inductive theorems, where the conclusion is 
an inductive consequence of the hypotheses. This is the induction of mathe-
matical induction, for which proof by consistency is a well known approach. 
We formalize it in our theory of term algebras and are able to characterize 
inductive theorems and the unambiguity property of Kapur and Musser [31] 
needed for proof by consistency to be valid. 

A second kind of induction is that of scientific induction where we make 
observations and then conjecture new theorems based on the observations. 
We present an algorithm in Chapter 5 which generates function equations 
from a given rewrite system, the rewrite system capturing the observations 
made together with other general knowledge. We are then able give results 
which make concrete the relation between the mathematical induction and 
this scientific process. 

Because of our simple term language we are able to quantify notions of belief 
using probability theory. We initial look at several probability measures of 
the strength of a single conjecture, based on statistical hypothesis testing 
and on the amount of information present in the conjecture. Later when 
looking at a system of conjectures, a theory, we extend these notions to 
quantify Popper's falsifiability measure of the strength of a theory [38]. 

We also look at qualitative information about belief, particularly the consis-
tency of a belief system. In Chapter 4 we apply these ideas to systems based 
on declarative knowledge, where the reasoner is told information which it 
must then decide whether or not to believe in. We can use a close-minded 
model where any information that is inconsistent with already established 
beliefs is rejected, giving a monotonicity of belief. Alternatively, we can 
treat all declared knowledge as mutable, so if inconsistent information is 
given then we may instead reject earlier held beliefs. 

When we move to inductive reasoning we must then make similar decisions 
about our inductively generated knowledge. In this case all of our knowledge 
is contingent on the observations from which it was conjectured and so if 
the total set of conjectures is inconsistent then we must find some subset to 
take as a working theory. Another kind of meta-reasoning arises here with 
the reasoner also being able to decide what is causing the inconsistency 
between possible theories. The result is that the reasoner can decide what 
experiments should be carried out to resolve the inconsistency and establish 
a single conjectured theory. 
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These reasoning processes then involve two types of belief dynamics, the 
declarative dynamics of information given to the reasoner by an external 
source and the inductive dynamics of the reasoner's own internal conjec-
tures. These two processes are illustrated in Chapters 4 and 5, respectively, 
through the use of dialogues. These dialogues are the results from a pro-
totype implementation of the reasoner described in this work and show the 
various types of reasoning and meta-reasoning in action. 



CHAPTER 2 

Preliminaries 

2.1. Language 

The language we will use is that of variable-free terms. The first section 
here defines this algebra in terms of a generating signature. In subsequent 
sections we introduce structural relations between certain terms in the lan-
guage, capturing these relations as rewrite rules. 

2.1.1. Algebraic Definition 

A signature E is a pair (S,57 —s• x .5.) , where S is a non-empty set of sorts 
and Es* x s* is a family of sets, not necessarily disjoint, indexed by 5* x S*, 
where 5* is the set defined by 

1. ground, sentence E S*; 
2. If s E S then s E S*; 
3. If s,tES*thensxtES*; 
4. If s E S*,s ground, then {s} E S*. 

An element f of E( 	is an operator of type (a, 7), and we say f has domain 
a and codomain 7. If f has type (a, r), we will write f : a —> 7. If an 
operator f has type (ground, 7) we will also write f E T and say that f is a 
grounded term of type T. 

We additionally require that each set E 	contains the identity operator 
ia  : a —4 a, that each set E,r) contains the empty set 0 : a —> T, and that 
each 5T: —(a,ground) is a one-element set containing the erase operator !, : a —+ 
ground. 

We also identify the sort {{a}} with the sort {a}, as expressed in the struc-
tural rule S7 given in Section 2.3.3. 

A signature E generates the term algebra TE. The terms of TE are defined 
and constructed by: 

1. Each operator f E E(,, T ) is a term of type a —4 T; 

2. If f is a term of type a —> T then f is also a term of type {a} 	{7}; 

5 
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3. If t1 , 	, tr,, are terms of type a 	al , 	, a 

- 

an  then the tuple 
(t i ,... ,tn ) is a term of type a 	x • • • x an ; 

4. If t 1 , 	, 4, are terms all of type a 	T then the set {t 1 ,... ,tn } is a 
term of type a ---+ r; 

5. If t is a term of type a 	T and f is a term of type T 	then the 
application ft is a term of type a —* 11). 

If f : 	T is a term with a not ground then we call f a E-function. If f 
is term arising from 1. then we call f a E-word. 

2.1.2. Categorical Definition 

For a given S-sorted signature E, we have an associated category CE with 

• objects S*, 
• morphisms consisting of the operators in Es. x  s, 
• a function dom defined by dom(f) = a if the morphism f arose from an 

operator in 
• a function cod defined by cod(f) = T if the morphism f arose from an 

operator in 
• an identity morphism ia  for each object a, corresponding to the identity 

operator i, E E(, ,,), and 
• composition o given by term application defined above. 

Additionally the object ground is a terminal object for the category, with !, 
the unique morphism from a to ground. 

The terms of our language are now generated by composition in this cate-
gory, that is, by "following the arrows". This gives a simple pictorial way 
of describing a signature and the language it generates. We will usually use 
juxtaposition in place of o. 

The category will have products if the signature contains any operators 
of arity greater than one. Much can be achieved though with only unary 
operators. 

2.2. Predicates 

In addition to the terminal object ground, each E also has the distinguished 
object sentence. An element of sentence is to be thought of as a truth value, 
while a morphism from a sort a to sentence is a predicate on a. We always 
have the two elements True, False E sentence. 

We further extend our signature E, and the term algebra it generates, by 
introducing for each sort a the new morphism 

=,:axa-- sentence. 
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Consider the signature 

= 	
Alice, John E person, 

E  
father : person —> person 	• 

We can then represent the equality of the terms father Alice and John as the 
single term 

=person (father Alice, John). 

We can similarly define the new morphisms 0, and 	to represent inequa- 
tions and rules. We will usually write =,, 0,, and 	as infix operators. 
The a is also determined by the codomains of the equated terms (which 
naturally must be same) and so we will usually write = a  as the polymorphic 

Note that if f, g : r —> a then =, ( f, g) sentence so that dom(f = g) 
is T. In particular, if dom(f = g) is ground, as in father Alice = John, we 
call f = g a grounded equation. 

For a given E we define the sets of >J-equations, EE, and E-rules, RE, by 

EE 	{S 	S I S, t E TE, S, t : 	7} 

RE = {S 	t I S7 t E TE, S, t : 	7}. 

For any E-equation e of the form s = t we define the negation 	of e 
to be s 	t. The set of E-inequations, –,EE, is the set of negations of all 
E-equations. We Write FE = 	U —ICE for the set of all E-equations and 
E-inequations. We will call a subset F C FE a E-system. 

Note that we also have an empirical notion of equality, where we treat the 
terms as strings. In particular, for s,t E TE We write s t if s and t are 
identical (as strings), and s t if s and t are not identical. 

To express conjunctions we introduce 

and : sentence x sentence —> sentence 

so that we may, for instance, form the term 

and (father Alice True !). =person John, male father =sentence 

We similarly define or, xor, implies, and not. 

2.2.1. Entities 

We follow the fundamental work of Fearnley-Sander [15] and identify two 
important uses for grounded s-words in our variable-free language. Firstly 
we may declare that a grounded word is to represent an entity in the mod-
elled world. For example, we represent the two classical notions of truth 
as the grounded words True, False E sentence, or three different people as 



f f, 	if dom (g) = ground; 
S3: f ! g 

f if dom(g) 0 ground 
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Alice, John, Paul E person. We call such declared words the E-entities of E. 
The products and sets of entities are also automatically entities. 

The important point is that these entities are distinct. Having declared a 
collection of E-entities we implicitly require that any E-system F contains 
the inequation a 0 b for all E-entities a and b with a # b. Thus if we 
declare True and False to be E-entities then every E-system will contain 
True 0 False. We will usually declare ground words to be entities by writing 
them with an uppercase letter (reflecting the similarity with a proper noun). 

Any grounded word that is not declared to be a E-entity is called a 
indeterminate. Without Without the implicit entity inequations it is possible to have 
a consistent system with x = John, for example. Indeterminates thus serve 
the purpose of variables in the sense of solving equations, rather than in a 
unification process (see Section 3.7). 

Indeterminates should always be ordered higher than entities. For example, 
the equation x = John oriented as x -4 John makes sense as a variable 
assignment whereas John x does not conform to our notion of entity. 
It is possible to view any grounded term as an indeterminate. The rule 
father Alice ---+ John in a sense assigns the value John to the indeterminate 
father Alice. 

2.3. Structural Rules 

The structural properties of our definitions so far can be captured using 
rewrite rules. Throughout our work we will assume that the rules given in 
the following sections are available for reducing a term to normal form. 

2.3.1. Category without Products 

The only rules we require for a category without products are those for the 
identity and erase morphisms. These are given in [28] and are as follows: 

Si: i f 	f 
S2: f i —> f 

2.3.2. Category with Products 

We only add one additional rule for dealing with products: 

54: (f, 	(f h, gh) 
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The inclusion of projection operators can also help model certain reasoning 
tasks, but their use is unnecessary for our purposes. 

2.3.3. Sets 

A potential entity is an algebraic construction that models a case statement 
and their inclusion in rewriting systems greatly increases the reasoning that 
can be performed. For example, the potential entity 

cas e((a, f), (0,g), (6,h)) 

is potentially f, g, or h, depending on the value of the boolean conditions 
a, 0, and S. These general constructions, originating in [15], have a rich 
algebraic structure [4]. However, a restricted form of them motivates a 
construction for sets of terms. 

Consider the example of the function aunt which models the function that 
returns the aunt of a person. Since a person may have more than one aunt, 
this function is multi-valued and hence cannot be directly captured by a 
confluent rewrite system. Potential entities in which the boolean conditions 
are completely indeterminate may be viewed as sets. 

For example, as a potential entity we could write the function aunt as 

aunt = case((a, sister father), (0, sister mother)) 

or, using set notation instead, as 

aunt = {sister father, sister mother}. 

The elements of the set must all be of the same type o-  —> T, giving a set 
of type o-  {r}. The structural rules for sets are the same as those for 
potential entities [4], suppressing the boolean conditions: 

S5: I {gi, •••, gn} 	{fgi, •••, 
S6: fn } g 	{fig, 	fng} 
S7: {• • • , {gi, .••7gM}7 • • } 	{• • • 7 gll •••7 gM7 • • • } 
S8: {f, f7 g17 •••I gn} 	{f, gi, •••7gn} 

S9: ({fi , 	, fn }, 	{(L, g), • • • , (fn, 9)1 
S10: (f, {g i ,... , gm }) 	 , (f, gm )} 

S5 and S6 define the relationship between f : a —4 r and f : {a} —› 
The next four involve alterations to the boolean conditions in the case 
construction, but these are not explicitly of interest when looking at sets. 
Our sets are commutative since the order of terms in potential entities is 
irrelevant. 

One structural rule we do not adopt is the identification of case((True, x)) 
with x. This rules makes algorithmic sense but results in type conflict and 
some reasoning difficulties. The reduction of a term by a rewrite system 
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ought to be type-preserving, which is not the case if we replace {f} by f. 
Related to this is an ambiguity in the associated equational reasoning. If 

F = {aunt Alice = {Jenny}, aunt Alice = {Kelly}}, 

then we have {Jenny} = aunt Alice = {Kelly}, indicating that F is inconsis-
tent. If we allow {f} = f then we also have 

aunt Alice = {aunt Alice} = {aunt Alice, aunt Alice} 

= {{Jenny}, {Kelly}} = {Jenny, Kelly}, 

giving a second equational meaning of F. Hence we exclude {f} = f so 
that if Alice indeed has two aunts then we must give the single equation 
aunt Alice = {Jenny, Kelly}. The implications of this are seen again in Ex-
ample 3.33. It is possible for an implementation to invoke a preprocessor 
to convert F into F' = {aunt Alice = {Jenny, Kelly}}. A practical rea-
soner should be able to learn aunt Alice = {Jenny} and the later learn 
aunt Alice = {Kelly} without giving inconsistency, particularly under the 
assumption that its data is noiseless. However, this is a meta-reasoning and 
not part of our equational theory. 

Working with the boolean conditions of potential entities requires binary 
boolean operators, and hence products. Another advantage of the above 
structural rules is that by not manipulating the conditions, we can work 
with sets without the necessary presence of products. 

EXAMPLE 2.1 (Set reduction). As an example of the structural rules S5-S8, 
consider the signature 

Alice, John, Jill, Jenny, Kelly, Mary E person, 

= 	father : person 	person, E  
sister, aunt : person --* {person}, 
female : person --+ sentence 

and rewrite system 

/aunt —> sister {father, mother}, 
father Alice 	 ---- John, mother Alice + Jill, 

R = 	sister John 	{Jenny}, sister Jill 	{Kelly, Mary}, 	. 
female Jenny --- True, female Kelly —> True, 
female Mary 	True 

1 
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Finding the value of female aunt Alice makes use of all of the given rules not 
involving products: 

female aunt Alice 
female sister {father, mother}Alice 

-+S6 female sister {father Alice, mother Alice} 

female sister {John, Jill} 

-->S5 female {sister John, sister Jill} 
female {{Jenny}, {Kelly, Mary}} 

- 4  S7 female {Jenny, Kelly, Mary} 

- + S5 {female Jenny, female Kelly, female Mary} 

- 1=t {True, True, True} 

-+ S8 {True} 

In E the type of female is person 	sentence, but the construction of TE in- 
cluded the term female : {person} 	{sentence}. This is the morphism used 
in the term female aunt Alice. The change can be made explicitly through 
type inference, or implicitly, as above, through the rules S5 and S6. 0 

We can view equality as a binary operator so that we may write, for example, 
a term 

= (aunt, sister {father, mother}). 

This then involves a product of sets, and so is structurally reduced to the 
set of equations 

{aunt = sister father, aunt = sister mother}. 

Equations involving internal set constructors thus express (non-exclusive) 
disjunction, as opposed to the standard sets of equations, our equational 
systems, which we view as conjunctions. 

However, this structurally reduced form is less amenable to rewriting than 
that used in the R of Example 2.1. We will usually view equality and 
rewrite as being external to TE, maintaining = and at the head of term 
expressions. 

2.3.4. Term Orderings 

Let S be the set of structural rules Si-S10. A term s is in structural normal 
form if s cannot be reduced by S. A term s is the structural normal form 
of a term t if t s and s is in structural normal form. 

DEFINITION 2.1 (Length). The length 8(0 of a term t Wfth structural nor-
mal form s is the number of applications in s not occurring in a product or 
set. 
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For example, 

6(father Alice) = 2, 
6(and(male Alice, True)) = 2, 

b({Alice, Lucia}) = 1. 

Since sets distribute to both the right and the left, any term involving a set 
will have length 1. 

DEFINITION 2.2. Given an ordering > on the words of E, we extend > to 
TE by giving an ordering on terms s,t E TE in structural normal form. 

• If 6(s) 0 6(t) then s > t if and only if 6(s) > 6(t); 
• if 6(s) = 6(0 then 

— if s = (s 1 ,... , sn ),t = (s i ,. 	,sn ) and k > 0 is the first integer 
such that sk tk then s > t if and only if sk > tk; 
if s = {s i , 	, s,}, t = {s i , 	, sm } , where the si  and t2  are or- 
dered by >, then 

* if n m then s> t if and only if 11> 771; 

* otherwise if k > 0 is the first integer such that sk 	tk then 
s > t if and only if sk > tk; 

— otherwise if s = s i  • • • sn  , t = t1 • • tn, and k > 0 is the first integer 
such that sk 	tk then s > t if and only if sk > tk; 

Thus for example 

father Alice > John, 

and(male Alice, True) > and (True, male Alice), 

{father Alice, Paul} > {John, Paul}. 

Because this ordering refers to the length of terms we call it a total degree, 
or graded lexicographic, term ordering. It will be the predominant ordering 
in our work since any rewrite system based on it will preserve or reduce 
term length for every rewrite and so must be terminating. An alternative 
ordering can be obtained by dropping the length conditions and filling out 
terms with the identity (ordered below all other words) where necessary for 
comparisons. This lexicographic ordering can sometimes be more natural 
than the graded ordering, but termination then needs to be verified (either 
empirically, or by using a decision procedure such as that given in [12]). 



CHAPTER 3 

Proof Methods 

In this chapter we are primarily interested in developing a complete proof 
method for deductive theorems over the propositional language with equa-
tions as atoms and connectives V, A, ej. We find that the most 
amenable method is proof by contradiction, though an associated process, 
proof by invariance, will also play an important role. Along the way we will 
also examine the proof of inductive theorems, look at how non-theorems 
can be extended to give theorems, and finally consider how we might solve 
systems of equations in a variable-free language. 

3.1. Equational Proof 

DEFINITION 3.1. Let F be a E-system. We define the relation =F on TE 
as follows: 

Axiom: If (s = t) E F then S =F t. 
Reflexivity: S =F S for all s E T. 
Symmetry: If S =F t then t =F S. 
Transitivity: If S =F t and t =F U then S =F U. 
Application: If S =F t then SU =F tU for all u E TE with cod(u) = dom(t). 
Product: If S =F t then (... , s,...) =F (• • • ,t, • • •)• 
Set: If S =F t then {.. • ,s, • • • =F {• • • ,t, • • •}• 
Structure: If s 	t by the structural rules Si - S10 then S =F t. 

If S =F t then we write F = (s = t) and say that s = t is a consequence of 
F. 

DEFINITION 3.2. If S =F t for some (s t) E F then F is an inconsistent 
E-system, and we write F H I. Otherwise F is said to be a consistent 
system. 

A rewrite system R over TE is a subset of the rewrite rules R.E. The appli-
cation of a rule (1 —> r) E R on a term s involves replacing an occurrence of 
1 in s (if any) with r. If the resulting term is t we say that s rewrites to t 
by R and write S t. If s --+R Si —>R • • • --411 t then we write s 

13 
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If s —*R t and t cannot be rewritten by R then we say that t is an R-normal 
form of s. If there is some u such that s u and t —>*R  u then we write 
S 4-* t. 

If there is no infinite rewriting S 	S1 	• • • then we say that R is 
terminating. Termination is a decidable property for our ground language 
TE [12]. 

3.2. Proving Equations 

Our first goal is to outline three methods for proving that a specific equation 
is the logical consequence of a set of equations. These methods will then be 
used as the basis for the more general problem of proving an equation or 
inequation to be a consequence of a system of equations and inequations. 

The first method, proof by normalization, is a standard equational proof 
technique. Relying on the soundness and completeness of the Knuth-Bendix 
procedure, we prove an equational conclusion by normalizing it with respect 
to a canonical rewrite system generated from the equational hypotheses. 
This method gives no generalization to systems involving inequations, and 
will fail to prove a valid equation if the canonical system is unbounded. This 
lack of semidecidability has been addressed in [13], but here we avoid it by 
introducing a second method, proof by contradiction. For such a proof we 
augment the hypotheses with the negated conclusion and then reduce the 
resulting system. This requires an extension to the Knuth-Bendix procedure 
to process inequations. 

This extended procedure is sufficient to prove anything by contradiction 
that could be proved by normalization, in addition to allowing proof from 
hypotheses involving inequations. However, for equations alone we also have 
the strong result that two systems are equivalent if and only if their canonical 
forms are identical. This gives rise to a third technique, proof by invariance. 
Our final task is to obtain a canonical form algorithm for systems with 
inequations which has this same property. 

3.2.1. Proof by Normalization 

The standard rewrite method for determining whether F 	f is to find a 
canonical set of rewrite rules R for F and apply those rules to each side of the 
equation. Such a canonical set is generated by the Knuth-Bendix completion 
procedure ( [32], [29], [13], [7]). Since the Knuth-Bendix procedure is sound 
and complete [27], both sides have the same normal form if and only if 
F H f.  We thus call this rewrite-based method proof by normalization. 

Define 

FKE3_, -{ (/ = r) E I 1 —>*R  s 	r} . 
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The Knuth-Bendix algorithm is presented below. 

3.2.2. Basic Knuth -Bendix Procedure 

It will be useful to view completion as a function which takes a set of equa-
tions and inequations and returns a set of rewrite rules and inequations. 
Thus we define KB : P(CE U P(RE U –,EE) to be the Knuth-Bendix 
algorithm. For a system F C FE, the algorithm begins in the initial state 
(E0 , Uo , 0), where E0  = F n EE and Uo  = F n The following inference 
rules (see [13] and [26] for these with equations alone) are then repeatedly 
applied in order: 

Delete 	(E U {s = s} , U, 
Compose (E,U, RU {s t}) 
Simplify (E U{s = t} , U, R) 
Orient (E U {s = t},U, R) 
Collapse (E ,U, RU {s —› t}) 
Deduce (E,U, R) 

(E, U, R) 
(E,U, RU 	u}) 

u{s= u},U, 
(E,U, Ru Is t}) 
(E u fu = t} ,U, R) 
(E u = tl,U, R) 

if t 	u 
if t -+R u 
if s > t 
if S ->R u 
if S --+Rt 

If this process terminates in N steps with final state (EN, UN, RN) then we 
say that KB(F) = UN U RN. (EN will always be empty if the procedure 
terminates). If the process does not terminate then we say that the canonical 
system for F is unbounded. 

It is also possible for the process to fail if at some stage the rewrite rule sys-
tem Rk is non-terminating. This cannot happen when using a total-degree 
ordering but may happen for other orderings (see Example 3.2). Dauchet 
and Tison [12] give an algorithm for deciding the termination of a rewrite 
system, and this can be used if necessary to check for failure. If the proce-
dure does not fail in this way and terminates we say it is successful. 

Note that the inequations in F are unaffected by the KB procedure. That 
is U0  = UN, or alternatively 

KB(F) = KB(E0) U Uo. 
We will later extend the list of inference rules given above to process inequa-
tions as well. 
EXAMPLE 3.1 (Normalization proof). The majority of examples in this chap-
ter use a toy world described by the signature 

John, Jill, Alice, Lucia, George, Bob, Paul E person, 
father, mother, husband, wife, 
sister, fatherinlaw : person --+ person, 
male : person 	sentence 

We use this signature to represent knowledge about the family tree given in 
Figure 3.1. 
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Bob 
	

Betty 

Jenny 	John 

George 	1 	Kate 

I 	I 	i 
	 Jill 	Kelly Mary Peter --1— 

Alice 	Lucia 	 Paul 

FIGURE 3.1. Motivating family tree 

Consider the theorem 

F = {father sister = father, sister Alice = Lucia}, 

f = (father Alice = father Lucia). 

In proving this by normalization we first apply KB to F to obtain the rewrite 
system 

R = father sister --+ father, sister Alice 	Lucia, 
father Alice —+ father Lucia 

The normal form of the left-hand side of f with respect to R is father Lucia, 
as is that of the right-hand side, thus proving the theorem. 0 

3.2.3. Uniqueness of Canonical Rewrite Systems 

DEFINITION 3.3. A rewrite system R is convergent for a set of equations F 
if R presents the same theory as does F, i.e. if s 	t if and only if S =F t. 

DEFINITION 3.4. A rewrite system R is reduced if for all (s 	t) E R, t is 
in normal form with respect to R and s is in normal form with respect to 
R\(s 	t). 

DEFINITION 3.5. A reduced and convergent rewrite system is said to be 
canonical. 

Huet [27] has shown that the output of KB(F) is a canonical system for F. If 
we do not have a total ordering on our terms then an equational theory may 
have more than once canonical rewrite system, as seen in [13]. If we allowed 
variables in the algebra then obtaining a total ordering may be difficult, and 
even if we had one the best we can say is that the canonical rewrite systems 
will be isomorphic [14]. By working with our ground algebra we can always 
obtain a total ordering, as given in Section 2.3.4, and furthermore we have 
the following strong result: 

THEOREM 3.1. A set of equations F, with fixed term ordering, has a unique 
canonical rewrite system. 
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PROOF. Let RI, R2 be two canonical rewrite systems for F, with R1  0 B2. 
Consider any (1 —> r) E R2 \ Ri. Since B2 is convergent we have that / =F r, 
so we must have a rewrite proof of 1 =F r from the rules in R 1 , as R1  is also 
convergent for F. 

Suppose r is not a normal form under R 1 . Then we have 1 	s <—*Ri  r, 
for some s, with 1 > r > s. Again, since R 1  is convergent for F, we have 
r =F S, so in R2 we must have r t 4—*R2  s, for some t, with r> s > t. 
This gives / --q?2  t, with r > t, which contradicts R2 being reduced. 

If r is already a normal form under R 1  then we must have 1 	s, since 
1 # r, with 1 > s. Thus 1 =F S so under R2 we have 1 	t 4— *R2  s, for 
some t, with 1 > s > t. This now gives / --4*R2  t, with 1 > t, which again 
contradicts R2 being reduced. 

Either case gives a contradiction, so we must have R 1  = B2. 

This theorem is motivated by the corresponding result for reduced Grobner 
bases [9]. Polynomial algebras share the lack of variables with our ground 
term algebras, making the completion procedures for each very similar. This 
is particularly apparent when looking at the non-commutative polynomials 
of [34]. 

The uniqueness theorem gives rise to several other results which are useful 
in formulating proof strategies. 

COROLLARY 3.1. For a given input F and fixed term ordering, the output 
of KB is independent of the order in which the equations in F are processed. 

PROOF. As mentioned above, the output of KB is a canonical rewrite sys- 
tem for F. Theorem 3.1 gives that this is then necessarily independent of 
equation ordering. 	 0 

This trivial result is not so trivial when extending KB to process inequa-
tions. We include it here for comparison with the development of KBC in 
Section 3.4.4. 

In our applications we will almost exclusively use a total degree ordering 
on our terms (see Section 2.3.4). This guarantees that at every stage of 
the Knuth-Bendix process the set of rewrite rules R is terminating. How-
ever, sometimes a lexicographic ordering is more appropriate for a particular 
problem, as in the following example: 
EXAMPLE 3.2 (Lexicographic ordering). Consider a model of the group of 
square symmetries with two generators h and r. We view these as a reflection 
and a rotation which map the corner points of a square onto its corner points, 
and so give a signature 

ED = 	h, r: point —> point . 
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(This model is presented in more detail in Section 6.4.2). Three equations 
are sufficient to define the behaviour of the two functions, giving 

FD ={ hh=i,rrrr=i, rh=hrrr 1. 

With a total-degree ordering on terms, if r > h we obtain the canonical 
system 

R 1 ={ hh—>i,rhr—>h,rrr—hrh,rrh--hrr 

while if h > r then we get the larger system 

hh--+i,rrrr-->i,hrh-4rrr, 
R2  = 1 hrr—*rrh,rhr—>h,rrrh—dir 

The real aim of finding a canonical system for FD is to be able to deter-
mine which sequences of rotations and reflections are equivalent by finding 
normal forms for them. The normal forms produced by R 1  and R2 can be 
rather strange in relation to the original model. The natural and pragmatic 
normal form would instead be a sequence of reflections followed by a series 
of rotations, and this is what we obtain with a lexicographic ordering and 
r> h: 

R3 = 	hh—+i,rrrr--i,rh—hrrr 1. 

Even though the last rule increases the length of a term, we know it is 
terminating because it moves an h to the left at every step. 

Unfortunately, lexicographic ordering is not perfect for this example, since 
if we chose Ii > r then during KB Deduce would produce a new equation 
rh r=h which is oriented as h r h r and gives a non-terminating system. 
Hence for this ordering the KB procedure fails. Since this can be detected, 
as in [14] , some form of backtracking may be useful. 0 

Given then that we may be interested in using lexicographic orderings, we 
rephrase the previous corollary as: 

COROLLARY 3.2. For a given input F and fixed term ordering, if KB suc-
ceeds then the output KB(F) is unique. 

The last result we are interested in gives an important relationship between 
equivalent equational systems and KB. Constructing an algorithm for sys-
tems with inequations with the same relationship will be our focus in Sec-
tion 3.4.4. 

DEFINITION 3.6. If F1  = e if and only if F2 j=  e then F1  and F2 are said to 
be equivalent systems of equations. 

COROLLARY 3.3. Two systems of equations Fi  and F2 are equivalent if and 
only if KB(Fi ) = KB(F2). 
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	Th 

PROOF. If F1  and F2 are equivalent then S =F1  t if and only if S =F2  t. We 
can modify the proof of Theorem 3.1, using F 1 , F2 for RI, R2, to show that 
KB(F1 ) = KB(F2 ). 

The converse holds by the soundness of KB. 	 0 

This corollary justifies proof by invariance, to be discussed in the following 
section. Also, since F and R = KB(F) are equivalent, it gives the additional 
result: 

COROLLARY 3.4. For a set of equations F and an equation f, 

KB(F U f) = KB(KB(F) U f). 

3.2.4. Proof by Invariance 

A second method of determining whether f E F is entailed by F C e is to 
apply the Knuth-Bendix algorithm KB to both the sets F and F U f. If f 
is indeed implied by F then F and FU f are equivalent, so by Corollary 3.3 
the results of KB will be the same. 

We write 

F kKB f if KB(F) = KB(F U f 

and define FKB={fETIFkKBf}. 

PROPOSITION 3.1. FKB, = FKB• 

PROOF. If f E FKB„, then by the soundness and completeness of the Knuth-
Bendix procedure we have that F H f.  Thus the two sets of equations F and 
FU f are equivalent, and hence by Corollary 3.3 we have KB(F) = KB(FUf), 
so that f E FKB. 

Conversely, if KB(F) = KB(F U f) then at some stage in the right-hand 
application of KB the inference rule Delete must have been used to remove 
f. That is the equations of F must be used to reduce both sides of f to the 
same term, so that f E FKB,. 0 

EXAMPLE 3.3 (Invariance proof). Consider again the theorem given in Ex-
ample 3.1. The canonical system for the hypotheses F is the given 

R father sister 	father, sister Alice 	Lucia, = father Alice 	father Lucia 

Depending on the order in which KB processes the equations, when finding 
the canonical system for FU f either f will be reduced to a tautology by the 
generated rule father Alice father Lucia or the same generated rule will be 
itself reduced by the oriented conclusion. Hence KB(F) = KB(F U f) so 
that F H f. 
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Note that from the earlier identity KB(F) = KB(E 0) U Uo  we can never use 
KB to prove that an inequation is the consequence of a system. 

3.2.5. Proof by Contradiction 

An alternative method of proving an equation to be the consequence of a sys-
tem is proof by contradiction. We will show that this method can prove any 
equation that could be proved by normalization or invariance. Additionally 
proof of inequations from a system of equations and inequations is imme-
diately possible, information about non-theorems can be obtained from the 
result of the contradiction method, and a contradiction proof incorporates 
a useful semidecidability (as seen in Example 3.5). 

To prove the theorem F =f by contradiction we find the canonical form of 
the system F U If it includes a contradiction then the theorem is true, 
otherwise it is false. 

To find contradictions in the system we need to extend the basic Knuth-
Bendix procedure so that inequations are processed. For the system F = 
E0  U U0 , this can simply be done by completing E0  alone and reducing the 
inequations in U0  with the result. However, this separation is somewhat 
artificial in that we would like to view F as a complete theory in itself. 
This is highlighted by a case where KB(E0) is unbounded but E0  U Uo  is 
inconsistent. Contradiction then gives a semidecidable proof procedure, as 
illustrated in Example 3.5. 

To define a proof by contradiction method we extend the set of inference 
rules for KB to obtain a new procedure, Knuth-Bendix with inequations, or 
KBI, which we can apply to the whole theory F. The two rules needed are 
the following: 

Contradiction (E U {s s} , 	1 
SimplifyU 	(E U {s t}, R) = (E U 	u} , R) if t 

These two inference rules generate no additional equations or inequations 
and so do not effect the termination of the Knuth-Bendix procedure. Specifi-
cally, if KB had terminated then the equation set given as input would have 
been reduced to the empty set. Unless a contradiction is obtained, the 
equation set in KBI will also reduce to the empty set. The number of in-
equations will be the same, but each will be in reduced form with respect 
to the generated rewrite rules. 

When trying to prove a non-theorem by contradiction these reduced inequa-
tions and the rewrite rules are useful in finding additional hypotheses which 
will give a theorem. The generating of such side conditions is discussed in 
Section 3.5. 
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Since the completion of the equations in a system F is unaffected by the 
inequations in F, we have the following simple result: 

LEMMA 3.1. For F C .F with K.131(F) 0 1, 

KBI(F) n = KB(F n e). 

With KBI : P(T) P(R, U —,£) we can introduce the corresponding notion 
of entailment. We define Hum-, by 

F kKBE, f if KBI(F U 	= 

and again put Flum-, = {f E F F Hum-, f }. 

PROPOSITION 3.2. FKB = 

PROOF. Suppose (1 = r) E FKB so that KB(FU (1 = r)) = KB(F). Then at 
some stage of KB the inference rule Delete must be invoked, so that (1 = r) 
must reduce to give an equation (s = s). But then in the application of KBI 
the corresponding inequation (1 r) will produce the inequation (s s), a 
contradiction, so that KBI(F U (1 0 r)) = 1, giving (1 = E 

The proof of the converse is similar. 

This result shows that we can prove anything that could be proved using 
KB alone. Additionally we are now able to prove theorems with hypotheses 
or conclusion in , as discussed in Section 3.4.1. 

We can now be more precise about the notions of theorem and proof. For 
F C .F and f E .7.  we call the pair (F, f) a possible theorem. If F Hum-, I 
then we call (F, f) a theorem and write F = f. If KBI(F U f) 1 we 
call (F, f) a non- theorem and write F f. We will talk about proving a 
possible theorem (F, f), the empirical act of computing KBI(F U --if), and 
say that (F, f) is proved if we find that F = f. 
EXAMPLE 3.4 (Contradiction proof). Returning again to Example 3.1, we 
want to prove the possible theorem (F, f), where 

F = {father sister = father, sister Alice = Lucia}, 
f = (father Alice = father Lucia). 

We thus apply KBI to the augmented system 

father sister = father, sister Alice = Lucia, F U f = father Alice 0 father Lucia 

Here the first two equations are used to generate the rule father Alice 
father Lucia which then reduces the single inequation to ..L. Hence (F, f) is 
a theorem, that is F 	f. 
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EXAMPLE 3.5 (Unbounded hypotheses). Consider the set of equations 

F { father Jill = George, =  fatherinlaw father = father mother J' 

from which we would like to prove the conclusion 

father mother Jill = fatherinlaw George. 

A normalization proof requires a canonical system for F but KB(F) is un-
bounded, containing the rules 

father mother ?' Jill -4 fatherinlawk  George 

for all k > 1. Hence the first part of the normalization proof cannot succeed. 

For a contradiction proof the negated conclusion leads to I with the first 
rule generated, thus terminating KBI and proving the theorem. 0 

In an implementation of KBI we must naturally try to detect an unbounded 
completion process and terminate the procedure. Since the rewrite system 
is maintained in reduced form one way of doing this is to set an arbitrary 
bound on the length of terms that can be generated, declaring a system to be 
unbounded if we ever produce a new rule involving a term of length greater 
than this bound. If we abort in this way as part of a proof by contradiction 
then we will assume that we have a non-theorem. 
EXAMPLE 3.6 (Non-theorem). Consider now 

F = {father sister = father, sister Alice = Lucia}, 

f = (father Alice = John). 

Applying KBI to F U -i f , with Alice > Lucia, gives 

{

father sister 	father, sister Alice —> Lucia, 
father Alice —> father Lucia, father Lucia 0 John 	• 

Thus F and f do not constitute a theorem since a contradiction was not 
found. However, the result of KBI can be used to determine what conditions 
need to be added to the hypotheses F to give a theorem. This process is 
considered in Section 3.5. 0 

Working with a variable-free algebra means we have a trivial semantics for 
our systems, reflected in the simple definition of consistency (Definition 3.2). 
This allows the following important result, giving a test for consistency. 

LEMMA 3.2. F C .7' is consistent if and only if KBI(F) 0 I. 

PROOF. Let E = F fl e, the equations in F. By Lemma 3.1 the rules, R, 
generated for E by KBI are a canonical system for E. Thus if F is not 
consistent then by the completeness of R there is a rewrite reduction of 
some (s E F to a contradiction, so that KBI(F) = I. Similarly, if 
KBI(F) returns I then by the soundness of R there is an equational proof 
S =E t for some (s t) E F, so that F is inconsistent. 0 
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3.2.6. Proving Compound Sentences - Conjunction and Disjunc-
tion 

So far we have only looked at proving single equations, but the process can 
be extended to general sentences. The two simplest cases are conclusions 
involving the external connectives of conjunction (A) and disjunction (V). 
Firstly, to prove a possible theorem (F, h A • • A fn ) we must try proving 
each (F, A), ,(F, Li ) in turn, obtaining a theorem only if each subproof 
was successful (i.e. finding KBI(F U -ifj) = I for each j). 
EXAMPLE 3.7 (Conjunctive conclusion). Consider the possible theorem with 

F male father = True !, father sister = father, = 
sister Alice = Lucia, father Lucia = John 

f = (male John = True) A (father Alice = John). 

We find KBI(F U {male John 0 True}) = I and KBI(F U {father Alice 0 
John}) = I, so that F = f. 

The case where the conclusion involves a disjunction, and indeed when it is 
any compound sentence in general, can be handled in a similar manner. A 
proof is attempted for each atomic sentence and then the results are com-
bined to determine whether the whole compound sentence is a consequence 
of the hypotheses. For instance, to prove a possible theorem (F, A V • • • V fn ) 
we must prove at least one of (F, ,(F, Li), requiring possibly n sep-
arate applications of KBI. 

However, for disjunction we have an alternative approach which allows proof 
in just one step by noting that - , (fi V• • •Vfn ) is equivalent to (-ifi  A • • •A--ifra ). 

Thus the negation of our conclusion is simply a conjunction of inequations, 
a set of inequations in the same way the set of hypotheses represents a 
conjunction. We can then apply KBI to F u , —ifn } to determine 
whether (F, 11  V • • • V Li ) is a theorem. 
EXAMPLE 3.8 (Disjunctive conclusion). To prove the possible theorem with 

F male father = True !, father sister = father, = 
father Lucia = John 

f = (male John = True) V (father Alice = John). 

we apply KBI to 

F U {male John 0 True, father Alice 0 John}. 

A contradiction is obtained since the hypotheses reduce male John to True, 
giving F = f. 

It is easy to see algorithmically why this works. To prove the disjunction 
we need to show at least one of the negated equations gives a contradiction. 
By adding all of the negated equations to the hypotheses then if there is at 
least one contradiction the whole system will reduce to I. 
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With this simple method for handling disjunctions we can work with any 
conclusion by expressing it in conjunctive normal form. 

3.3. Proving Inductive Theorems 

We begin this section with an example of a theorem that none of the pre-
ceding methods can prove. 
EXAMPLE 3.9 (Non-deductive theorem). Consider the signature 

= 	True, False E sentence, E  
not : sentence 	sentence 

and the possible theorem with 

F = {not False = True, not True = False}, 

f = (not not = i). 

The reason that we might think of (F, f) as a theorem is that we have com- 
plete information about the behaviour of not and know that the conclusion 
holds for all entities in its domain. Yet F has the simple canonical system 

R = {not False 	True, not True 	False}, 

which clearly cannot reduce —if to a contradiction. Hence F 	f. 

The theorems we have looked at so far and have proved have all been de-
ductive in nature. Our methods fail on this example as it is an inductive 
theorem. We will look extensively at the generation of such theorems in 
Chapter 5, but for now we give some definitions which motivate a corre-
sponding proof method. 

3.3.1. Strong Completeness 

Let .F = e U —.6. , the set of all equations and inequations between terms in 
TE. So far we have only defined s =E t for equations E; for F C .7* we write 
S =F t if s =Fne t. 

DEFINITION 3.7. Let FCY. A rewrite system R is weakly complete for F 
if whenever s =F t then s 

This is the sense in which the result of Knuth-Bendix completion is com-
plete, and (along with soundness) is the justification of our deductive proof 
methods. However, an alternative notion of completeness can be given in 
terms of consistency (see, for example, [6] and [30]). 

DEFINITION 3.8. A system F C .T is strongly, or absolutely complete if for 
any e E g that is not a theorem of F then F U e is inconsistent. 
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Hence if we have a strongly complete system then Lemma 3.2 gives a straight-
forward procedure for deciding whether a particular equation is a theorem 
of that system or not. This is the technique of proof by consistency, also 
known as "inductionless induction" because it allows the proof of inductive 
theorems without the use of standard structural induction [23], [31]. To 
apply proof by consistency we need first to define more precisely what we 
mean by a theorem and then how we may characterize strongly complete 
systems. The following discussion develops the ideas in [31] for our proof 
system. 

DEFINITION 3.9. For F C F and e E E, if KBI(F U 	= 1 then we call e 
a deductive theorem of F and write (as before) F = e. 

All of the theorems we have proved in previous sections have been deductive 
theorems, while the theorem of Example 3.9 was not. We write DF for 
the set of all deductive theorems of F. Note that if F is inconsistent then 
DF = E. We say that e E E is consistent with F if F U e is consistent, and 
write CF for the set of all equations that are consistent with F. 

DEFINITION 3.10. C C E is a consistent theory of F if C is consistent and 
VF C C (and hence F C C). C is a maximally consistent theory if it is a 
consistent theory of F and there is no e E such that C U e is consistent. 

Thus each consistent theory C of F satisfies DF C C C CF. The following 
lemma shows that DF is itself a consistent theory for F and is thus the 
smallest consistent theory. 

LEMMA 3.3. If F C .F is consistent then DF is a consistent theory for F. 

PROOF. Since F is consistent, KBI(F) I. 'Let E=FnE so that R = 
KBI(F)n7Z = KB (E). Since E = f for each f E DF, we can perform a series 
of proofs by invariance to find that KB(E U VF) = R. But F is consistent 
so we know R does not reduce any inequation in F to a contradiction, and 
hence DF is a consistent theory. Ei 

Furthermore, we can similarly show that if e E E is consistent with F then 
it is also consistent with DF. 

EXAMPLE 3.10 (Unique maximal theories). For the F of Example 3.9, the 
deductive theorems of F are 

DF = 	{not2i  False = not 2i False, not2i  False = not 2 i+ 1  True}, 
i,i>o 

where we write not° for i. The set 

= VF U {not not not = not} 
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is a consistent theory for F while 

= DFU 	{not2i  = not2i, not2i+ 1  = not23 + 1 } 
i,j>o 

is a maximally consistent theory for F. It is straightforward to see that CI 
is actually unique as a maximal theory. 0 

EXAMPLE 3.11 (Multiple maximal theories). Consider a smaller system 

F' = {not False = True}, 

with deductive theorems 

	

DFI = 	{noti  False = not i-1  True}. 
i>1 

This time both 

= DF, U {not not = i} 
and C2 = DF, U {not not = not} 

are consistent theories for F but Ci  U C2 is not consistent, since we have 

False =c, not not False =c,2  not False =F True. 

Thus we cannot have a single maximally consistent theory for F since both 
C1  and C2 can be extended to a maximal theory. Indeed we find that 

	

= DF, U 	{not 2i  = not 2i, not2i4-1 = not2j+ 1 } 

i,j>o 

	

and C = DFI U 	{not 2i  = not 2i+ 1 } 
i,i>o 

are both maximally consistent theories for F. 0 

DEFINITION 3.11. f E E is a theorem of F c .F if it is in the intersection 
of all maximally consistent theories of F. 

We use TF to denote the set of all theorems of F. Since DF is a subset of 
all consistent theories, all deductive theorems are immediately theorems of 
F. 

LEMMA 3.4. If F c .F has a unique maximally consistent theory C then 
C = CF. Conversely, if there is a consistent theory C such that C = CF 
then C is maximal and unique. 

PROOF. Suppose C CF so that there is some f E CF\ C, since C C CF. 
Then DFU f is a consistent theory for F and can be extended to a maximally 
consistent theory C' by adding elements of CF until no longer possible. This 
contradicts the uniqueness of C, since f is in C' but not in C. The converse 
holds similarly. 0 
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By the definition of a theorem, if an F has a unique maximally consistent 
theory C then the theorems of F are exactly the elements of C. We follow 
[31] and call such a system unambiguous. Conversely, if the theorems of 
F are exactly the elements of some maximally consistent theory C, then C 
must be unique. Lemma 3.4 then gives the important result: 

THEOREM 3.2 (Strong Completeness). F is unambiguous if and only if 

TF =CF7 
that is, if and only if the theorems of F are exactly the equations that are 
consistent with F. 

This statement is equivalent to saying that if F is unambiguous then CF is 
the only consistent theory for F. 

3.3.2. Inductive Theorems 

The equations we have called theorems of F are exactly those that must 
hold in any maximal and consistent theory for F. That is, if f is a theorem 
of F then in any consistent model where the equations and inequations in F 
hold, so must f.  If f is a deductive theorem then we can indeed prove this 
relationship, using proof by contradiction. The remaining, non-deductive, 
theorems will be called inductive theorems of F. 

DEFINITION 3.12. For F C .7' if e E E is a theorem of F and e DF then 
e is an inductive theorem of F. 

The discussion so far has been quite general. In this section and the next 
we make more precise statements about the nature of inductive theorems 
and unambiguous systems. 

DEFINITION 3.13. A sort a in a signature E is entity rich if there are at 
least two distinct E-entities a, b E a. A signature E is entity rich if each sort 
in E is entity rich. 

We will assume in the following two sections that we have an entity rich 
signature. Without it most of the ideas and proofs become trivial. If f : 
a —* 7 and 7 has only a single entity b, then any maximal theory must have 
fa = b and so ambiguity cannot arise. 

For our language of a term algebra we can obtain the following characteri-
zation of inductive theorems. 

THEOREM 3.3. If the only inequations in F C .T are entity inequations and 
e E E is an inductive theorem of F, then dom(e) 0 ground. 

PROOF. Suppose e is an inductive theorem of F with dom(e) = ground. 
Thus e is of the form fa = gb for some a, b E a , f,g : a —> 7. Then for 
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each a',b'E ET  with a' # b' we can construct a maximally consistent theory 
containing fa = a' and gb = b', which hence cannot contain fa = gb. But 
by assumption fa = gb is in the intersection of all maximally consistent 
theories of F and so for each such a', b' one or both of fa = a' and gb = b' 
must be inconsistent with F. This can only happen if either fa =F a" for 
some a" # a' or gb =F b" for some b" b', with such an equation needed 
for each pair a' ,b'. 

Since F is consistent, we can have only one datum fa = c in F which cannot 
exclude the constructed theories which already had fa = c. Thus F must 
also contain some gb = b", but we know that fa = gb is consistent with F 
so we must have gb =F C. Hence we have 

fa =F C =F gb 
so that e E DF, contradicting the inductive nature of e. 	 0 

The requirement that F only contain entity inequations is needed to limit 
to equations the conditions which prevent the contradictory theories in the 
above proof being constructed. By only admitting equations we were able 
to show fa =F gb. If we allow general inequations then for each a' we could 
add to F that fa 0 a', making all of the constructed theories inconsistent 
with F, but not establishing fa =F gb. The additional property we need is 
the following: 

DEFINITION 3.14. Let F C .T and f: a 	T. If whenever fa OF a' for all 
a' E ET  \ a" for some a" E E T  then fa =F a", we say that F is valuationally 
consistent. 

For example, if F is valuationally consistent and contains male Alice 0 True 
then F must also contain male Alice = False. If F is valuationally consistent 
and fa OF a' for all a' E ET  then F is inconsistent. 

Note that if F has only entity inequations then it is trivially valuationally 
consistent, so the following result is more general than Theorem 3.3. 

THEOREM 3.4. If F C Y is valuationally consistent and e E E is an induc-
tive theorem of F, then dom(e) 0 ground. 

PROOF. Suppose e is an inductive theorem of the form fa = gb for some 
a, b E a , f, g : a ---+ T. We proceed as in the proof of Theorem 3.3 by noting 
that for each pair a' ,b' E ET  with a' # b' we could extend F with fa = a' 
and gb = b' to give a maximally consistent theory which cannot contain 
fa = gb. This is not possible since fa = gb is an inductive theorem and so 
for each a', b' either fa = a' or gb = b' must be inconsistent with F. 

Since F is valuationally consistent we cannot have fa OF a' for all a' E ET . 
Suppose there is only one a" for which we don't have fa OF a", so that 
fa =F a". This still allows construction of theories with gb = b' for all 
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b' 0 a". Now if there is only only b" for which we don't have gb OF b" then 
gb =F b" and since fa = gb is consistent with F we must have b" = a". 
Thus fa =F gb, giving e E VF.  Similarly, if there is more than one b' for 
which we don't have gb OF bl , then we have theories with fa = a" and each 
such gb = b'. We must thus have gb =F b" for some b", and again b" = a" 
since fa = gb is consistent, giving e E DF. A similar argument holds for the 
case when there is more than one a' for which we don't have fa OF a'. El 

We will see in the next section that if a system F is unambiguous then it 
must be functionally complete. It is then straightforward to see that this 
property ensures F is also valuationally consistent. 

3.3.3. Characterizing Ambiguity 

In order to characterize those systems that are unambiguous, and thus allow 
proof of inductive theorems, we need to look at the entities in the system. As 
seen in the proofs of the previous section, ambiguity arises when the value of 
a function applied to an entity in its domain is unspecified. If the codomain 
of the function is not entity rich then the possible value is limited and 
ambiguity is not possible. We incorporate this into the following definition. 

DEFINITION 3.15. A E-system is functionally complete if whenever a E-
function f has an entity rich codomain then for any E-entity a E dom(f), 
there is a E-entity b E cod(f) such that fa =F b. 

THEOREM 3.5. If a E-system F is unambiguous then F is functionally com-
plete. 

PROOF. Suppose F is not functionally complete. Then there exists a func-
tion f, with entity rich codomain cod(f), and an entity a such that fa is 
not F-equivalent to any entity. Since cod (f) is entity rich we can choose 
any two b,c E cod (f) with each of fa =b and fa= c being consistent with 
F. Hence F must have at least two maximally consistent theories, one with 
fa= b and one with fa= c, contradicting the unambiguousness of F. Thus 
F is functionally complete. Li 

Of course we are more interested in a sufficient condition for a system to be 
unambiguous. It turns out that the converse of the above theorem holds if we 
restrict our attention to systems where the only inequations are the standard 
entity inequations. That is, if a system F has only entity inequations and 
is functionally complete, then it is unambiguous. The following example 
illustrates why this doesn't hold for general inequations. 
EXAMPLE 3.12 (Functional completeness with ambiguity). Consider the sig-
nature 

= 	John, Paul E person, E  
parent, father, husband : person --+ sentence 
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and system 

parent John = True, parent Paul = True, 

F = father John = True, father Paul = True, 
husband John = True, husband Paul = True, 
parent 0 father 

Then we can form one maximally consistent theory for F containing parent = 
husband and one with father = husband. These two theories must be distinct 
since together we could deduce parent = father, contradicting the inequation 
in F. Hence F is ambiguous even though it is functionally complete. 0 

The stronger property we need to obtain a sufficient condition is the follow-
ing: 

DEFINITION 3.16. A functionally complete E-system F is inductively con-
sistent if whenever (f g) E F, for E-functions f,  g, there are E-entities 
a E dorn(f), b1,b2 E cod(f), b1 b2 , such that fa =F b 1  and ga =F b2. 

The F in the above example is not inductively consistent. In this case we 
are unable to add that parent 0 father until we can give a person for whom 
these functions are different. 

Note that a system which only has entity inequations is always inductively 
consistent. The next theorem thus proves and generalizes our comments 
preceding the above example. 

THEOREM 3.6. If a E-system F is (functionally complete and) inductively 
consistent, then F is unambiguous. 

PROOF. Suppose F is ambiguous. Thus F has at least two distinct maxi-
mally consistent theories C 1  and C2. Let f = g be an equation in C 1  \ C2. 
Since f = g is consistent with F and F is functionally complete, for each 
a E dom(f) there is a b E cod(f) such that fa =F b =F ga. 

Now C2 is maximal so that the equation f = g must be inconsistent with 
C2. Thus there is some inequation h 1  h2  in F such that h1 =c2uff=g1 h2. 
Since h 1  = h2  cannot be proved from C2 alone, as C2 is consistent, f = g 
must be involved at least once in the equational proof of h 1  = h2  using a 
substitution step kfh= kgh for some terms k and h. That is, h 1  =c2U(j=9) 
k f h = kgh = c2u ( f=g ) h2 . 

But F is inductively consistent so that for some a E dom(h i ) and b 1 , b2  E 
cod(h i ), h i a =F b 1  and h2a =F b2 . Thus in C2 U (f = g) we have 
k f ha =c2u(f=g)  h ia = b 1  and kgha =c2U(f=9)  h ia = b 1 . Since F is func-
tionally complete there is some a' E cod(h) such that ha =F a', giving 
k fa' =c2  uU=s) =c2u(f=g) b 1  and kga' 	b2 . But again by functional com- 

pleteness, there is some c E cod(f) such that fa' =F C =F go' so that 

bi =c2u(f=g) kc =c, u (f=g ) b2• 
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We can repeat this argument to show that all uses of f = g in a proof are 
already implied by C2. Thus C2 is itself inconsistent and so there are no 
equations in C 1  \ C2. Since C1  and C2 were arbitrary, F must have a unique 
maximally consistent theory and is hence unambiguous. El 

EXAMPLE 3.13 (Infinite domain). Suppose we have the single E-function 
father : person person and the system F = {father Alice = John}. For F 
to be functionally complete we must then add an equation for father John, 
say father John = Bob. But then we need father Bob and so on. In this case 
functional completeness is unattainable, requiring infinite data for a set of 
entities which is conceptually finite. 0 

An important implication of this example will arise in Chapter 5. There we 
will observe that both the father of Alice and the father of John are male and 
so make the conjecture that male father = True !. But without functional 
completeness this is a conjecture that can never be proved. Compare this 
to Example 3.9 where we might similarly make the conjecture from F that 
not not = I. In that case however we can not only make the conjecture but 
can also then prove it (by consistency). 

This is the situation we have with the natural numbers. We may observe 
the sequence of the sums of the first n integers 

1, 3, 6,10, ... 

and conjecture that the nth number in this sequence is n(n + 1)/2. That is, 
we conjecture the equation 

Ei  = n(n 1) .  
2 

3 =1. 
But we are then able to prove our conjecture using mathematical induction. 
This ability comes down to the structure of the natural numbers, all of which 
can be built from the successor constructor succ. We are able to define an 
infinite number of entities succ(0), succ(succ(0)), ..., and, more importantly, 
can use this structure to completely define the functions of n in the above 
equation. This gives the functional completeness we need. 

We can produce a similar Peano structure for our family tree. In addition 
to using father as a function we can also use it as an entity constructor, 
declaring a new entity father(Alice) E person. We can then define the father 
of Alice to be the entity father(Alice). Continuing the constructing we can 
declare entities father(Alice) E person, for all n > 1, writing father 2 (Alice) 
for father(father(Alice)) and so on. The system 

F  = 	
father fatherk(Alice) = fatherk+I (Alice), 
male fatherk(Alice) = True 

k>1 

is then functionally complete since values of father and male are known for 
all entities. We can thus prove male father = True ! by consistency. 
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Of course, this construction is very strong for our modelled world. If the 
universe is finite then it is meaningless to talk about an infinite sequence of 
fathers. Both evolutionary theory and religion would say that there is some 
K such that fatherK (Alice) is no longer an element of person. The integers 
give a signature with a truly infinite number of entities whereas here the 
number is large but finite. 

An alternative approach which covers both cases is to introduce a special 
element co, for each sort a. We use it to indicate a value that is unknowable 
or meaningless. For instance, we might include equations 

father Adam = 
to indicate that we cannot know the father of Adam or 

wife Jill = w 

to say that it is meaningless to talk about Jill's wife. (This second situation 
is perhaps better handled by introducing subsorts of person). 
EXAMPLE 3.14 (Obtaining inductive truth with w). Consider then the sys-
tem 

F { father Alice = John, male John = True, =  male Alice = False, father John = 
F is then functionally complete and the equation male father = True ! is an 
inductive theorem of F. 0 

We will say more about the use of co at the end of Section 5.1.3. 

3.4. Proving Inequations 

3.4.1. Proof by Contradiction 

The proof method H<BI-,  presented in Section 3.2.5 extends immediately to 
theorems where the hypotheses F and conclusion f are drawn from F. So 
far we have only defined the proof operator 	for equations. Since this is 
equivalent to proof by contradiction using KBI for equations, we extend 
to inequations by defining 

F f if KBI(F U 	= 1. 

As before, a possible theorem (F, f) is called a theorem if in fact F 	1.  
If (F, f) is a theorem we write F = f and otherwise write F 	f and say 
that (F, f) is a non-theorem. Note that if the hypotheses F are inconsistent 
then we have a theorem F f for any f E F . 
EXAMPLE 3.15 (Contradiction proof). Consider the theorem 

F = {male father = True !, male Alice 0 True}, 
f = (father John 0 Alice). 
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In proving this by contradiction, the equation father John = Alice is added 
to the hypotheses which during KBI gives rise to the critical pair 

male Alice <— male father John —> True. 

The deduced equation then contradicts male Alice 0 True and the theorem 
is proved. 0 
EXAMPLE 3.16 (Non-theorem). Consider now 

F = {male father = True !}, 
f = (father John 0 Alice). 

Applying KBI to FU—if gives 

f male father —* True !, father John —> Alice, } 
1 male Alice 	True 

As in Example 3.6, (F, f) is a non-theorem since a contradiction was not 
found. Again the result of KBI can be used to generate the extra conditions 
needed for a theorem, as described in Section 3.5. 0 

3.4.2. Proving Compound Sentences - Implication 

In Section 3.2.6 we saw that we can easily determine whether a disjunction 
11  V • • • V f„, is a consequence of an F. Now that we have extended our 
discussion to proving inequations we can use this technique to prove an 
additional compound form. Recall that the implication f —> g is equivalent 
to —.(f A-1), in turn equivalent to —if Vg. Thus to prove a simple implication 
we add its antecedent and the negation of its consequent to the hypotheses 
and look for a contradiction. 
EXAMPLE 3.17 (Proving an implication). Consider the possible theorem 

F = {father sister = father, father Lucia = John}, 
f = (sister Alice = Lucia) 	(father Alice = John). 

Here we want to prove (sister Alice 0 Lucia) V (father Alice = John) and so 
apply KB! to 

F U {sister Alice = Lucia, father Alice 0 John}, 

obtaining 1. 0 

Note that this approach will be applicable if the antecedent of the implication 
is a conjunction f i  A • • • A fn  and the consequent is a disjunction g i  V • • •V 
since then we apply KBI to 

F U { , 	, 

For example, the consequent could be another implication, proving f 
(g 	h) by augmenting F with {f, g,—,h}. However a disjunctive antecedent 
or conjunctive consequent will not yield the required form and so must be 
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approached by expressing the implication in conjunctive normal form and 
proving each disjunction separately. 

As an example of using conjunctive normal form, consider the problem of 
proving the equivalence of two equations. We say two equations f, g are 
equivalent in a system F if F = (f --+ g) A (g 	f). This expression reduces 
to (-if V g) A 	V f) so if we want to prove the possible theorem (F, f g) 
then we need to show that both F U ff,--,g1 and F U 	reduce to I. 
EXAMPLE 3.18 (Proving an equivalence). Consider an extension of the pos-
sible theorem in Example 3.17 where now we want to prove equivalence: 

F = {father sister = father, father Lucia = John}, 

f = (sister Alice = Lucia) a (father Alice = John). 

We have already seen one of the necessary subproofs succeed above but we 
find that the other gives 

KBI(F U {father Alice = John, sister Alice 0 Lucia}) 	1, 

so F f 

To conclude this section, note that we also use the symbols —* and else-
where, for rewriting and string equality, respectively. It should be clear 
from the context when these are instead being used as the implication and 
equivalence connectives. 

3.4.3. Compound Hypotheses 

In Section 3.2.6 and the previous section we extended the conclusions we 
could prove using KBI to general sentences of propositional logic. KBI 
manipulates conjunctions of equations and inequations (as sets) and so by 
writing a conclusion in conjunctive normal form we break the proof into a 
number of subproofs, all of which must succeed to prove the theorem. Con-
junctive normal form is applicable since the negated disjunctive terms are 
then conjunctions which can be added the hypotheses for proof by contra-
diction. 

We can similarly extend our hypotheses, but this time we do not negate 
sentences before adding them and so breaking the problem into subproofs 
requires disjunctive normal form instead. For example, if our hypotheses 
were of the form f A (g V h) then we write them as (f A g) V (f A h). To 
then prove a theorem with hypotheses { f, g V h} we need to prove the two 
subtheorems with hypotheses {f, g} and {f, h}. 

Note that to prove a theorem with such disjunctive hypotheses we must 
prove all of the corresponding subtheorems, as in the case of a conjunctive 
conclusion. Since we do not know which parts of the disjunction hold we 
cannot treat the subtheorems from the disjunction as a disjunction of theo-
rems. That is, being able to prove one subtheorem is not sufficient to prove 
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the whole theorem. In Section 3.5.2 we will look at what we can say about 
a non-theorem with disjunctive hypotheses. 

Table 3.1 summarizes our extension of proof by contradiction to arbitrary 
hypotheses and conclusions by giving the disjunctive and conjunctive normal 
forms of simple sentences involving 6131 (exclusive disjunction), and 

DNF 	 CNF 
f g 	-if V g 	 -if V g 
fEl)g (f A -1) V (--if A g) (f V g) A (-4 V -ig) 
f 	Ag)V 	A-T) (fV---,g)A(-4V  

TABLE 3.1. Disjunctive and conjunctive normal forms for 

	

sentence connectives 	CD, and 

EXAMPLE 3.19 (Hypotheses with implication). Consider the simple possi-
ble theorem with 

F = {(father Alice = John) —> (male John = True)}, 
f = (male John = True). 

Here we have two subproofs to try, the first with hypotheses {father Alice 0 
John} and the second with hypotheses {male John = True}. The latter is 
trivially a theorem but applying KBI to the first gives no reduction, so 
F f. This gives a concrete model of implication since we can never prove 
the consequent of the implication until either F = (father Alice = John) or 
F (male John = True). 0 

Allowing hypotheses with implications gives a similar structure to logic pro-
gramming [33]. We can view our equational language as a first order lan-
guage without variables and with the single predicate = (actually =, for 
each E-sort a). The Herbrand universe for this language is TE without the 
internal =, , and the corresponding Herbrand base is EE, the set of all equa-
tions between terms in TE of compatible type. Thus the ground semantics 
of logic programming are very similar to ours. For example, we can express 
the single hypothesis above as the simple program 

P = l(male John = True) <— (father Alice = John) . 

The goal male John = True then requires the subgoal father Alice = John, 
which is not known, and so proof fails. An analogy of finding side condi-
tions (see Section 3.5) in this ground case would be to return all unsatisfied 
su bgoals. 
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The difference between the methods lies in the syntactic processing carried 
out during proof by contradiction. Consider a new possible theorem 

F  =_. f (male Alice 0 True) —> (father Paul 0 Alice), 

1 male father Paul 0 True 

f = (father Paul 0 Alice). 

Again we are trying to prove the consequent of an implication and so 
one of the subproofs will trivially succeed. The second, with hypotheses 
{male Alice = True, male father Paul 0 True}, also succeeds because the 
negated conclusion forms a critical pair with the first hypothesis which then 
reduces the second hypothesis to _L. Thus F =f. The corresponding 
program 

(father Paul 0 Alice) 4-  (male Alice 0 True) 
male father Paul 0 True 

is unable to prove the goal father Paul 0 Alice. To achieve this interaction 
between predicates in logic programming requires the use of variables. We 
will say more about variables at the end of Section 3.7. 

3.4.4. Minimal Systems 

As observed previously, proof by invariance using KB can never prove an 
inequation since KB does no inequation processing. The next step would 
be to extend proof by invariance to a method where KBI is used instead of 
KB. However, this cannot prove even the trivial theorem 

(father Alice 0 Paul) = (father Alice 0 Paul). 

The remedy for this particular example is straightforward (namely, extend-
ing KBI to remove duplicate inequations) but to obtain a proof method 
equivalent to proof by contradiction is much harder. This section addresses 
this problem. 

The canonical rewrite system for an equational theory E typically contains 
many more elements than E itself. A completion procedure needs to add 
new identities to express information lost when only allowing equations to be 
used in one direction. For systems with inequations the situation is different. 
To obtain a contradiction and prove a theorem F =f we need only reduce 
a single inequation to give KBI(F U = I. It may then be that some 
inequations in F are redundant for this task, giving a set of inequations 
U C F such that (F\U) =f if and only if F =f. 

We have previously defined two equational theories E 1  and E2 to be equiv-
alent if E1  =e if and only if E2 J=  e. By Proposition 3.2, E e if and only 
if E = e, and so we now extend our definition and say that F 1 , F2 C .7" are 
equivalent if F1  = f if and only if F2 f. 

P= 
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Observe that if g E F and F\g g then F and F\g are equivalent. (This 
is in fact a simple result of = being a consequence relation, as discussed 
in Section 4.1.2). We say that F is minimal (for inequations) if there is no 
such inequation g E F such that F\g = g. 

We can obtain a system with minimal inequations from a system F by 
applying the following rule: 

for each inequation f E F, 
if F\ f = f then remove f from F. 

Since equations do not interact in any way during proof by contradiction, 
this process of looking at individual inequations is guaranteed to produce 
a minimal system and need only examine each inequation once. We will 
refer to the algorithm formed by augmenting KBI with this rule as KBC, 
standing for Knuth-Bendix with contradiction, since this new rule involves 
a proof by contradiction step. We will ultimately describe this in terms of 
inference rules, avoiding the somewhat recursive use of but first we must 
see that the rule as it stands is flawed and how it should be improved. 

Our main interest is in the uniqueness of the result of this process. Firstly, 
for a given system F we would like KBC(F) to be unique in the sense 
that the result is the same for each application of KBC, independent of the 
order of the elements in F. Secondly, and more strongly, whenever we have 
equivalent systems F1  and F2 we would like to have KBC(Fi ) = KBC(F2 ), 
as we have for equational systems (see Corollary 3.3). This second condition, 
which obviously implies the first, is essential for proof by invariance and will 
be important later in our work. 

Unfortunately, for KBC as it stands we have neither form of uniqueness, as 
seen in the following example. 

EXAMPLE 3.20 (Multiple minimal systems). Consider the system 

F 
 = {

a b = b, a a = d, a d = a, 
b c 0 a, b c d 

Both of 

F1 = {a b = b, a a = d, a d = a, b c 0 a} 
F2 = {a b = b, a a = d, a d = a, b c d} 

have minimal inequations, with F1  or F2 generated by KBC depending on 
the ordering of the two inequations in F. 0 

The problem is that we cannot ensure the inequations will be processed in 
the same order. The remedy is to extend our term order to an order on 
inequations. If s i 	t1  and s2 	t2  are oriented inequations, so that s 1  > t 1  
and s2  > t2 , then (s i 	t 1 ) > (s2 	t2 ) if and only if s i  > s2 , or S i 	s2 
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and t i  > t2 . This is in fact our standard ordering where S i  s2  is written 
in prefix notation as 0 (S i , t i ) and 0 is treated as a commutative operator. 

With this ordering the above rule for KBC can be refined to 

ReduceU for each inequation f E F, 
from highest to lowest, 
if F \ f = f then remove f from F. 

This procedure then satisfies our first uniqueness conditions since for a fixed 
F the inequations will be processed in a fixed order. However, we still cannot 
satisfy the second requirement. In Example 3.20 F1  and F2 are equivalent, 
both being minimal subsets of F, but neither can be reduced by KBC and 
so KBC(Fi ) KBC(F2 ). We must add to this reduction strategy a process 
of expansion, including inequations f such that F = f in a similar way 
that Deduce is used for equational completion. There is no need to add 
inequations that are ordered higher than those in F since they would then 
be removed by Reduce U. Instead we want to add to F any inequation f 
such that F = f and f is less than the highest inequation in F. We call 
this rule Deduce U, defined by 

DeduceU for all inequations f F, 
such that f <g for some g E F, 
if F = f then add f to F. 

As with reduction, since = is a consequence relation we know for any system 
F and f such that F = f we have that F and F U f are equivalent. 

Our final KBC algorithm is then KBI together with the new rules ReduceU 
and Deduce U, all of which are repeatedly applied until no further changes 
are possible. It is clear that if the equational component of a system F is 
bounded then KBC will terminate, since ReduceU only removes inequations 
and for a given inequation g there are only finitely many f such that f < g. 
More important is the uniqueness of the result, as given by the following 
theorem. 

THEOREM 3.7 (Uniqueness). 1fF1 , F2 C .F are bounded then F1  and F2 are 
equivalent if and only if KBC(F1 ) = KBC(F2 ). 

PROOF. Suppose F1  and F2 are equivalent. Let 	= KBC(F1 ) and Fl = 
KBC(F2 ). Since the inequation processing of KBC does not effect the equa- 
tion processing, by Corollary 3.3 we have that the rewrite rules of FT and 

are equal. We must now show that the sets of inequations are also equal. 

Let fi  be the highest inequation in Fr, and f2  the highest inequation in 
F. Suppose that f2  > fi. Now Fi*= f2 , since Fr and Fl are equivalent. 
Applying DeduceU to Fl involves adding all consequences of F less than 
f2. Since fi < 12 and fi  is the highest inequation in Fi*, this includes all 
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inequations of Fp (again using the equivalence of Fp and Fn. f2  is still 
the highest term of this enlarged system and so it is the first examined by 
ReduceU. Since F = f2  it is then removed, contradicting the minimality 
of F. If fi  > f2  we obtain the same contradiction, so that we must have 
fl = f2. 

Now consider f  and  f ,  the second highest inequations in Fp and F1, and 
suppose f > ff. Again Fp= f  and applying DeduceU to F  adds all of 
Fp except fi  (since Ii = 12  > f) to F.  Assuming Fp and F1, we cannot 
then remove f1  using Reduce U, but f  is removed as before. Thus we will 
have f= f.  
This process can be continued until we have considered all of the inequations 
in one of the systems, say Fp. If the remaining inequations in the other 
system are given by G = F \ F, then for each g E G we have F = g, by 
equivalence, and so F \g = g since we have established that Fp = F \G, 
contradicting the minimality of F. Thus Fp = F. 
The converse follows from the soundness of KBC. 	 0 

This is our fundamental theorem for inequational reasoning, showing that 
KBC is a true extension of KB to systems of equations and inequations. 
It is worth reflecting here on the importance of having a total ordering on 
terms, the result of our restriction to a variable-free language. This has 
made possible both this theorem and Theorem 3.1. Here however we are 
making greater use of the signature's total word ordering by looking at the 
ordering between terms of different types. 

Theorem 3.7 has three important applications in our work. The most im-
mediate of these is to enable us to extend proof by invariance to possible 
theorems (F, f) where the conclusion f is an inequation. If indeed F =f 
then F and F U f are equivalent and so the result of applying KBC to each 
will be the same. If the results are not the same then F and F U f are not 
equivalent and so F f. 

When we apply KBI to FU—if as part of a proof by contradiction, if we do not 
obtain I then we cannot say anything about the minimality or uniqueness 
of the resulting output. The second application of this theorem will come 
in Section 3.5 when we look at finding ways of augmenting the hypotheses 
of such a non-theorem to give a new theorem. These side conditions are 
obtained from looking at the result of the unsuccessful proof. When we 
simply want a yes or no answer for a given proof then we will continue to 
use KBI since it is cheaper, but if we are interested in side conditions then 
it is preferable to use KBC because we know they will then be unique for a 
given possible theorem. 



3.4. PROVING INEQUATIONS 	 40 

The final application of the theorem is to motivate a similar process of find-
ing minimal sets for equational systems. We will loosely call this process in-
verse deduction because it undoes the completion work of the Knuth-Bendix 
procedure, throwing deductive consequences away rather than adding them. 
This will be used in Section 6.4 when discussing axioms for theoretical sys-
tems. 

We conclude this section by specifying the KBC procedure in terms of in-
ference rules, given in Table 3.2. Since a successful proof by contradiction 
involves only a single inequation we need only mention one, s i  t2 , in the 
rules ReduceU and DeduceU. ReduceU involves a similar critical pair pro-
cess to the equational Deduce, but DeduceU involves a more complicated 
search for appropriate inequations to add. This is still a simple matter for 
small signatures, since the number of lesser inequations is then small, but 
may be harder for larger problems. 

The two new rules are placed at the end of the algorithm. Unlike Contra-
diction and Simplify U, they cannot alter the termination of the algorithm 
by generating an inconsistency. It is also natural to have a canonical system 
R to use in reducing and deducing the inequations. 

Contradiction 
SimplifyU 

Delete 
Compose 

Simplify 

Orient 

Collapse 

Deduce 

ReduceU 

DeduceU 

(E U 0 R) 
(E U 0 th 

(E U = U, R) 
(E,U, RU{s–+ t}) 

(E U{s = t} , U, 

(E U = t},U, R) 

(E,U,Ru {s t}) 

(E,U,R) 

(E , U U {si 	t1,s2 	t2},R) 

J_ 
(E U 0 

if t –+R  u 
(E,U, R) 
(E,U, RU {s u}) 

if t R  u 
(E U {s = u},U, R) 

if t ->R 
(E,U, RU{s--+ t}) 

if s > t 
(E U {u = t},U, 

if s R u 
(E U 	t}, U, R) 

if S ‹-R 	t 
(E,U U{s i 	t i }, 

	

if s2  > t2  and s 1 	u -->Ru{.92 -42 } t1 
where the inequations s2  t2 

are tried from highest to lowest 

	

(E,U U {s i  t i }, R) = 	(E,U U 	t i , s2  t21, R) 
if s2  > t2 and s 1  <--Rufs2 -42 1 U —'Rufs2–+t2 } t1 

(s2  t2) < (53 0 t3), for some (s3  t3 ) E UU {Si 0 t1} 

TABLE 3.2. Inference rules for KBC 
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3.4.5. Proof by Invariance 

EXAMPLE 3.21 (Invariance proof). Consider again Example 3.15, now with 
proof by invariance using KBC. For illustrative purposes we look at the 
results from both relative orderings of male and father. Firstly, if male < 
father then KBC applied to F is simply F itself. Applied to F U f we find 
the peak 

male Alice -RI male father Alice ->RI True 

during ReduceU, where R' = {male father 	True !, father John 	Alice}. 
Thus f is removed from the system and the theorem is proved. 

Alternatively, if male > father then KBC applied to F uses DeduceU to 
generate the new inequation father John 0 Alice, from the same peak as 
above. The original inequation is not removed since we cannot deduce 
father John = Alice from 

R" = {male father —4 True !, male Alice 	True}. 

This system is then F U f and so applying KBC to the augmented system 
gives the same result, again proving the theorem. 0 

Proof by invariance can be implemented quite efficiently, even though De-
duceU is potentially complicated. Firstly, if we are trying to prove an equa-
tion then it is not necessary to examine the inequations at all since they 
cannot effect the processing of equations. (The one exception is that we 
should use the inequations to test for inconsistency). 

We will see later that in a proof by contradiction it is useful to order all 
terms appearing in the conclusion higher than those appearing only in the 
hypotheses. If we follow the same rule here then when we have a theorem 
whose conclusion is an inequation, proof by invariance using KBC will first 
remove the conclusion, since it is the highest ordered inequation. Then the 
states of KBC(F) and KBC(F U f) will be equal at some stage, and so their 
final results will be equal by uniqueness, proving the theorem. 

3.4.6. Inductive Proofs of Inequations 

In Definition 3.12 we defined the notion of an inductive theorem, where 
the inductive conclusion was an equation. For completeness we might also 
define inductive proof for function inequations. However, whereas proving 
an equation is an inductive consequence of a system involves proving it 
must hold for all possible applications of it, to prove an inequation we need 
only show that indeed the left and right sides are not equal for a single 
application. 

Specifically, to show that f g is an inductive consequence of a system F 
we need only find one E-entity a E dom(f) such that there are two distinct 
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E-entities b 1 , b2 E cod(f) with fa =F b 1  and ga =F b2. But if this is the case 
then KBI(F U (f = g)) = I. and so f 0 g is in fact a deductive consequence 
of F (using proof by contradiction). In accordance with Definition 3.12 we 
would thus say that there are no inductive theorems with an inequation as 
the conclusion. 

3.5. Theorems and Possible Theorems 

When we present a possible theorem to KBI for proof by contradiction we 
have two possibilities (assuming the procedure terminates). If the theorem 
is true then KBI will fail by meeting a contradiction. In this case there is 
nothing further to be done, and we return the result 'True'. 

The result of a successful completion of KBI (where a contradiction is not 
encountered) will be a set S* of inequations and rewrite rules (the latter of 
which can be viewed as equations). In this case the possible theorem, as 
given, is a non-theorem. However, we can interpret the S* to gain informa-
tion as to why it is not true, and from this extend the hypotheses to give a 
theorem. 

3.5.1. Side Conditions 

Our development here parallels some of that for geometry theorems ex-
pressed as rational polynomials, as described in [5]. 

Note that if (F U -If) = g then (F U -if)  U —ig reduces to a contradiction. 
Then trivially so does (F U —ig) U —if so that (F U —ig) =. f.  Hence any 
consequence of F U —if can be added to the hypotheses of the pair (F, f) to 
produce a theorem. We call such a consequence g E Y a side condition for 
(F, f), and write F : f for the set of all side conditions for (F, f). Thus we 
may write 

F:f = {gIFU—ig = f}. 

Note that for the possible theorem (F, f), any h E .F such that F = h 
will always be a side condition for (F, f). We call any such h, where h is a 
consequence of the hypotheses alone, an extraneous side condition for (F, f). 
Such conditions are of little use and we will be interested in detecting (and 
discarding) extraneous conditions in our system. 

We call a set of side conditions G for (F, f) dense if the deductive conse-
quences of G are exactly F: f.  That is, G is dense if 

{geTIGg} = {h E .T.  I (F U —i f) 	h} . 

It is obvious from this that KBI(F U —if) is a dense set of side conditions. 
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The following two lemmas give general information about proving possible 
theorems when the hypotheses consist of equations alone. 

LEMMA 3.5. For F C E and f E E, if g E E is a side condition for (F, f) 
then g is extraneous. 

PROOF. The input to KBI is F U f , where -if is the only inequation. It 
is clear from the inference rules for KBI that the equations F are processed 
independently of -if and hence any equation that is a consequence of FU -if 
must be therefore be a consequence of F. El 

From this lemma, when the hypotheses and conclusion involve only equa-
tions then the only non-extraneous side condition will be the negation of the 
conclusion, reduced by the canonical system for F generated during KBI. 
Consider the following: 
EXAMPLE 3.22 (Ordering). 

F = {father sister = father, sister Alice = Lucia}, 
f = (father Alice = John). 

The processing of F results in the critical pair deduction 

father Alice = father Lucia. 

If our ordering has Alice > Lucia then we have the useful side condition 
father Lucia = John. However, if Alice < Lucia then the (unreduced) conclu-
sion is the side condition, a less useful situation. We have from this lemma 
the general rule that all words appearing in the conclusion should be ordered 
above those appearing only in the hypotheses, allowing the conclusion to be 
reduced if possible. 0 

LEMMA 3.6. For F C E and f E 	then F f. 

PROOF. Here the input to KBI consists only of equations, and hence there 
is no way in which the inference rule Contradiction can produce I. 	El 

In this case we always have a non-theorem. Unfortunately, there is nothing 
that can be said about which of the resulting side conditions are extraneous. 
When the conclusion is an inequation then adding its negation (an equation) 
to the hypotheses can result in more complicated interactions through crit-
ical pair deduction. 
EXAMPLE 3.23 (Non-extraneous condition). 

F = { husband wife = i}, 
f = (wife John 0 Jill). 

The result of applying KBI is 

{husband wife —> i, wife John 	Jill, husband Jill -4 John}. 
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The last of these three is a consequence of the hypothesis and the negated 
conclusion together, and hence is not extraneous, but in general from outside 
KBI it is hard to establish whether a new equation is extraneous or not. 0 
EXAMPLE 3.24 (Unbounded non-theorem). Even if the hypotheses of a the-
orem are unbounded, proof by contradiction will still terminate. However, if 
we have a non-theorem it is possible that the hypotheses combined with the 
negated conclusion will be unbounded and the process must be artificially 
halted. Although in this case the full set of side conditions is infinite, we can 
still obtain some information by looking at the accumulated rewrite system 
when the proof was aborted. 

Consider the possible theorem with 

F = { father Jill = George, 
fatherinlaw father = father mother J' 

f = (father father mother Jill = father Alice). 

As noted in Example 3.5, the canonical system for F consists of rules 

father motherk  Jill —> fatherinlaw k  George 

for each k > 1, none of which reduce -if to a contradiction. However, -if 
is at least partly reduced by these rules, and so on aborting KBI we obtain 
the single non-extraneous side condition 

father fatherinlaw George = father Alice. 

0 
EXAMPLE 3.25 (Impossible theorem). As a final example, consider the fol-
lowing possible theorem. 

F = {male Mary 0 True, mother Paul = Mary}, 

f = (male mother Paul = True). 

The result of applying KBI is 

{male Mary 0 True, mother Paul —> Mary}, 

the negated conclusion being reduced to male Mary 0 True and then removed 
by Delete. Thus we have no non-extraneous side conditions. This can only 
happen when the negated conclusion itself is a consequence of the hypotheses 
and so is removed during KBI. In this case there is no equation that we can 
add to the hypotheses to produce a theorem, except one that contradicts 
the hypotheses and gives a trivial theorem. We thus call such a pathological 
pair (F, f) an impossible theorem. 0 

Beyond the specific cases given above, we must use the original definition 
to identify which side conditions are extraneous. We find the reduced set 
G = KBI(F U -In and then for each g E G determine if the pair (F, g) 
constitutes a theorem. This can be done quite efficiently for all the equations 
in G since we need only find a canonical system for the equations of F and 
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then carry out a normalization proof for each equation g. A little more work 
is needed for the inequations in G as these can result in new critical pair 
deductions when their negations are added to F. However, this can also be 
kept to a minimum by adding them to KBI(F) instead. 

When implementing KBI or KBC it is also possible to keep track of which 
rules and inequations are used to generate or reduce others. Those that are 
the result of hypotheses alone are then necessarily extraneous. 

3.5.2. Side conditions for Compound Sentences 

Proving a possible theorem (F, fi A • • • A fr,) involves n applications of KBI, 
resulting in n canonical sets G i  = KBI(FU ), , GT, = KBI(FO-if). If 
each Gi is 1 then (F, f1 A.. •A Li ) is a theorem. Otherwise its side conditions 
will be the conjunction of the side conditions from each G3  0 1, each of 
which in turn is a disjunction. 

EXAMPLE 3.26 (Compound side conditions). Consider the non-theorem of 
Example 3.18 where two subproofs were required and one did not succeed. 
Although the conclusion is compound, since one part did succeed we only 
need a side condition for the remaining subtheorem. The corresponding G 
is 

= 	father sister 	father, father Lucia —+ John, G  

	

father Alice 	John, sister Alice 0 Lucia 

The last two elements of G are the unprocessed conclusion of the subthe-
orem and so the original theorem has the non-extraneous side conditions 
father Alice 0 John and sister Alice = Lucia. We can also write this as the 
single compound condition 

(father Alice 0 John) V (sister Alice = Lucia). 

0 

EXAMPLE 3.27 (Compound side conditions) We can extend Example 3.23 
to a possible theorem with 

F = {(husband wife = i) V (husband Jill = John)}, 
f = (husband Jill = John) A (wife John 0 Jill). 

Proving this requires four subproofs. For each of these Table 3.3 shows if 
it succeeds or otherwise gives the corresponding non-extraneous side condi-
tions. 

Thus the possible theorem (F, f) has the compound side condition 

	

gi  A 	V -ig2) A -ig2, 
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Hypotheses 
	

Conclusion 
	

Result 

{husband wife = i} 
{husband wife = i} 

{husband Jill = John} 
{husband Jill = John} 

husband Jill = John 
wife John 0 Jill 

husband Jill = John 
wife John 0 Jill 

husband Jill = John 
(wife John 0 Jill) V 
(husband Jill 0 John) 
True 
wife John 0 Jill 

TABLE 3.3. Results of subproofs for Example 3.27 

where gi  = (husband Jill = John) and g2  = (wife John = Jill). This can be 
readily expanded to 

((gi A —.Th.) V (gi A —12 )) A —,g2  = g i  A —.9, 2  A —,g2  

= gi A -192. 

This give the simplified side condition 

(husband Jill = John) A (wife John 0 Jill). 

Thus to prove the conclusion we need to know the conclusion. Even though 
we could prove one solution, the hypotheses in essence contain no informa-
tion about the conclusion. This is the 'I don't know' response of Example 4.3. 
0 

EXAMPLE 3.28 (Impossible conjunction). Consider a possible theorem sim-
ilar to that in Example 3.25. 

F = male Mary 0 True, wife Peter = Mary, 
husband wife = i, male husband = True ! 	' 

f = (male Peter = True) A (male wife Peter = True). 

The first part of the conjunction is proved but the second has no non-
extraneous side conditions and so is impossible. If we can never prove one 
part of the conjunction then we can never prove the conjunction itself so 
that the whole theorem is impossible. 0 

. EXAMPLE 3.29 (Hypotheses with implication (revisited)). As a final exam-
ple, recall the non-theorem of Example 3.19, with 

F = {(father Alice = John) -- (male John = True)}, 
f = (male John = True), 

where we were unable to prove the consequent of an implication. The sub-
proof with hypotheses {male John = True} was trivially a theorem, but that 
with {father Alice 0 John} gave no reduction with KBI. We thus obtain the 
single side condition father Alice = John. Even though this is a consequence 
of the hypotheses of its subtheorem, it is not a consequence of the original 
F and hence is non-extraneous. 
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In general, the possible theorem ({ f --+ g}, g) will have the non-extraneous 
side condition f.  In these terms we can view f as an abductive explanation 
of an observation g based on the knowledge that f —> g. We will expand on 
this idea in the following section. 0 

3.6. Abductive Reasoning 

We view a reasoner as having a set of beliefs F from which it seeks to prove 
a statement f. If it fails to find a constructive proof of f from F then it 
does not have any belief in f.  The side conditions of the non-theorem (F, f) 
then give conditions under which a theorem would exist. We use these in 
the next chapter with a dialogue between an oracle and the reasoner. There 
the statement f is a question from the oracle; if the reasoner cannot answer 
that f is indeed a consequence of its knowledge (or an impossibility), then 
it responds with the conditions that would make f hold. 

In this manner we view side conditions as experiments needed to answer a 
particular questions. In line with the discussion below, we call such con-
ditions abductive experiments. We will also look at experiments in other 
contexts (see Sections 4.2.4 and 6.2.3). 

Side conditions can also be viewed as abductive hypotheses [37]. The abduc-
tive inference rule says that if we know x = y and we know y, then we can 
infer x. The process of abductive reasoning then takes belief in x = y and 
belief in y to infer tentative belief in the abductive hypothesis x. In terms 
of our equational proof, if we believe F and f,  and can obtain the theorem 
(F U G) = f, then we hypothesize belief in the side conditions G. This is 
quite different from the view of theorem proving where we have no tendency 
to believe the generated conditions. 

EXAMPLE 3.30 (Diagnosis). A standard example of abductive reasoning is 
medical diagnosis [10]. The system F gives medical knowledge and perhaps 
known information about a patient, with f giving observed symptoms. The 
abductive side conditions then give possible explanations of the symptoms. 

The types of side conditions we have identified have useful interpretations 
here. An extraneous side condition corresponds to an explanation which 
does not involve the symptoms themselves and so is of little use to the 
doctor. If the only non-extraneous side conditions are simply the symptoms 
then there is no explanation for f present in F. 

Finally, an impossible theorem indicates that on the basis of F, the patient 
should not have the symptoms f, suggesting the symptoms be rechecked or 
that F be somehow revised. At the opposite extreme, we may indeed find 
F f,  so that the symptoms are expected (logically necessary) from the 
information in F. 
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In all, proof by contradiction provides an immediate logical system for ex-
amining abductive reasoning. 

Consider the signature 

/patient E Person, 
Flu, Mumps E Illness, 

E = 	True, False E Sentence, 
illness : Person 	Illness, 
sneezing : Person 	Sentence 

and the medical knowledge 

F = {(illness patient = Flu) —4 (sneezing patient = True)}. 

Making the observation f = (sneezing patient = True), we attempt a proof 
of F = f. This is equivalent to Example 3.29, resulting in the single non-
extraneous side condition illness patient = Flu. Here we interpret this condi-
tion, that the patient has flu, as an abductive explanation of the symptom, 
the sneezing patient. 0 

Cox and Pietrzykowski [10] give four conditions that a 'useful' abductive 
hypothesis should satisfy. These are indeed satisfied by our use of side 
conditions. Two of the requirements, that a hypothesis be minimal and 
basic, are immediate consequences of using the canonical form algorithm of 
KBC. 

An abductive hypothesis which is consistent with the knowledge corresponds 
precisely to our notion of a non-extraneous side condition. Selecting only 
non-trivial hypotheses, those which do not immediately imply the symp-
toms, matches our observations in Examples 3.27 and 4.3. 

Thus the procedure for generating side conditions gives an immediate system 
for abductive reasoning. However, we will continue to use side conditions 
from our original deductive viewpoint. Applications of the abductive belief 
method will be left to future work. 

3.7. Solving equational systems 

The idea behind side conditions, of finding information needed to give a 
theorem, is similar to that of solving numerical equations. In the latter, for 
example, we might have a system of equations G = {9, 1 (x) = b 1 , . . . , gn (x) = 
bn } in some variable x. If we can find an equation x = a such that G 
(x = a) then we would say that x = a is a solution of G. 

We can make a similar formulation for our term-based reasoning. Let 
F = {fi ,... ,f,} be a system of equations and inequations involving an 
indeterminate x. Then if F = (x = a) for some a then we say that x = a is 
a solution of the system F. 

1 , 
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Suppose then that g is a solution of some system FU f, where f involves an 
indeterminate. Then FUf = g and so KBI((FU 	= 1. Rearranging 
gives KBI((F U U f) = I so that F U . Thus the negation of 
g will be a side condition of the possible theorem (F, —if), so we can find a 
solution of F U f by trying to prove F = —if. If there are no indeterminates 
in F then no extraneous side condition can involve an indeterminate. The 
non-extraneous side conditions can then be used to give information about 
the solution. 

This is a somewhat artificial use of side conditions, and is limited by the 
number of equations that can involve indeterminates and the number of 
distinct indeterminates present in the system. But it shows that to solve 
a system of equations F we need only to find a canonical system for F 
using KBI. We can then look at the elements of KBI(F) which involve 
indeterminates and obtain information from them about the solution of F. 
EXAMPLE 3.31 (Solving). Consider the system 

F father sister = father, sister Alice = Lucia, = father Lucia = John, father Alice = x 

We want to find a solution for F in terms of the indeterminate x E person. 
Applying KBI to F gives only one equation, x = John, involving an indeter-
minate, the solution of the system. 0 

Note that the equation father Alice = x is a very simple equation to solve. 
We are merely finding the reduced form of father Alice under the given hy-
potheses. A much more difficult equation to solve would be father x = John. 
The left-hand side father x is not reduced by the above F and so no useful 
side conditions exist, giving no solution to the equation. The reason for this 
is two-fold, as outlined in the following examples. 

EXAMPLE 3.32 (Inverse functions). Firstly consider the simpler system 

F = {husband Mary = Peter, husband x = Peter}. 

This time the only element in the canonical system involving an indetermi-
nate is husband x = Peter. We have been unable to make any progress in 
solving the equations. This is a nice illustration of the differences between 
our functional approach and a method based on unification where we could 
have unified x with Mary. 

What we are missing here is obvious from the mathematical problem of 
finding an x such that f(x) = b. There if f has an inverse f -1  then we 
have f-1 (f(x)) = f-1 (b) so x = f-1 (b). For our problem we can extend 
the system F to similarly include information about the inverse of husband, 
giving the new 

F' = F U {wife husband = i}. 
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Completion of F' generates wife Peter 	Mary and wife Peter 	x, which 
then collapses to give x —> Mary. This new rule eliminates the original 
indeterminate equation, giving the solution x 	Mary. 

Note that, as with the motivating mathematical case, we only needed a left 
inverse of husband. 0 

EXAMPLE 3.33 (Multi-valued functions). Turning to the harder problem 

F father sister = father, sister Alice = Lucia, = father Lucia = John, father x = John 

we again require information about the inverse to find a solution. The 
natural inverse of father : person —> person is the multivalued function 
child : person {person}. But the type of the child father is then person —+ 
{person} so we cannot form an equation child father = i. The problem is 
that if the inverse is to be multivalued then the original function must have 
a multi-element domain, and so we instead look at the function father : 
{person} person. Consider firstly the modified 

F' = { father {Alice} = John, father {Lucia} = John, 
child father = i, father x = John 

In completing F' we deduce child John —› {Alice} and child John --+ {Lucia}, 
giving the contradictory {Alice} = {Lucia}, indicating that F' is inconsistent. 

This illustrates the burden imposed by confluence on the use of sets, forcing 
all entity values of a multivalued function to be explicitly defined in a single 
equation. Here we have defined values of child by giving two rules for father, 
causing inconsistency when the inverse is introduced. To make F' consistent 
we must rephrase it as 

F„ _ f father {Alice, Lucia} = John, 
— 1 child father = i, father x = John J' 

giving the solution x 	{Alice, Lucia}. The process is now identical in struc- 
ture to Example 3.32. 0 

So far we have looked at a system with only a single equation involving an 
indeterminate. The following three examples extend the simple system F 
given in Example 3.31 to illustrate the possibilities when we have a system 
of many equations in a single unknown. 

EXAMPLE 3.34 (Inconsistent system). We have already discussed the in-
consistency of a system in general and the idea is identical here. If we 
solve a system by applying KBI to it and we obtain J_ then we say the 
system is inconsistent. For example, if 

F = F 	wife father = mother, wife John = Jill, 
1 	U mother Alice = x 
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then reduction produces the two rules x —> John and x —> Jill, giving the 
contradiction John = Jill. We need not always get a contradiction in this 
way, as seen in Example 3.35. 

Note that inconsistency can arise here independent of the equations involv-
ing indeterminates, perhaps a little different to the standard notion of an 
inconsistent system of equations in mathematics. For example, the system 

1  father Alice = John, father Alice = Peter, 
mother Alice = x 

is inconsistent without the indeterminate in mother Alice = x. We will call 
a system involving indeterminates trivially inconsistent if indeed it remains 
inconsistent when all equations involving indeterminates are removed. 0 
EXAMPLE 3.35 (Redundant equations). Consider the extension 

F3 = F U {father Lucia = x}. 

Here we obtain through either equation involving x the new rule x —> 
John. This then reduces the two equations to father Alice = John and 
father Lucia = John. The latter of these is already present in F3 and so 
is deleted. Thus the canonical form of F3 is the same as the canonical form 
of F and so the additional equation is redundant. 0 
EXAMPLE 3.36 (Eliminating unknowns). Finally, consider 

F4 = F U {wife x = 

This is similar to the previous example in that we get the consistent solution 
x —> John. However the additional equation this time is not redundant, 
containing information not present in F. The result instead is a simple 
elimination of unknowns. 0 

These examples extend to system involving more than one indeterminate. 
For each indeterminate x in a system F we define a solution for x as before. 
We then say F has no solution if none of the indeterminates in F have a 
solution. The following result gives an immediate test for the solvability of 
system. 

PROPOSITION 3.3. If all equations in a system F involving an indeterminate 
have an indeterminate on both sides then F has no solution. 

PROOF. To obtain a solution the canonical form of F must contain an equa-
tion with an indeterminate on only one side. If all equations have indeter-
minates on both sides then clearly the inference rules Compose, Simplify, 
and Collapse cannot achieve this alone, since each simply replaces left with 
right. If the peak u considered by Deduce has no indeterminates then it 
similarly cannot produce a critical pair involving indeterminates on either 
side. Again if u does involve indeterminates then these cannot be removed. 
Thus F cannot be solved. El 
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EXAMPLE 3.37 (Two indeterminates). Consider the system 

father x = y, husband Jill = y, 

F = wife John = Jill, mother Alice = Jill, 
husband mother = father, husband wife = 
child father = i 

Finding the canonical form of F gives x = Alice and y = John. The above 
theorem implies that solving a system of equations essentially involves find-
ing a solution for one variable and then substituting it to find a solution for 
the next variable. 0 

We mentioned in passing that with variables and the process of unification 
we would not need the inclusion of inverses to solve equational systems. 
Indeed the two main uses of a variable is mathematics give a further il-
lustration of the differences between our rewrite-based reasoning and logic 
programming. In an equation 2x y = 4 the variables x and y take the role 
of unknowns. We seek values for these unknowns, bindings of the variables, 
which are a model for the equation. On the other hand, in an equation 
f (x) = x 2 , the variable x is merely a dummy used to define the function 
f. It is usual to abstract from this definition the function f as an object in 
itself and reason about it independently of its ground representation. This 
is the motivation for our variable-free reasoning. 

Consider the function equation 

f = (wife father = mother) 

and the two data father Alice = John and wife John = Jill. From these three 
equations we can then deduce the equation mother Alice = Jill. This is a 
syntactic deduction since in terms of the underlying category the equations 
are simply identifying morphisms. On the other hand, suppose we have the 
logic program 

wife(X, Y) 	father(Z, X), mother(Z, Y) 
P = father (alice, john) 

wife(john, jill) 

For any model of P, the last two clauses must be true and hence by the 
first clause we must also have mother(alice, jill) being true, proving the same 
result as before. 

Yet the equation f is stronger than the first clause of P, expressing an 
equality of functions rather than a unidirectional implication of predicates. 
If we instead had the two data father Alice = John and mother Alice = Jill 
we could then prove wife John = Jill, while the corresponding change in 
the unit clauses of P would not be able to prove this. We will see in the 
applications of Section 5.3 that this extra strength has a significant effect 
on our reasoning abilities. 
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The final combination of data, with wife John = Jill and mother Alice = Jill, 
shows the weakness of the functional approach. Together with f we are 
unable to prove father Alice = John, whereas the logic program 

father(X, Y) <— wife(Y, Z), mother(X, Z) 
P' = wife(john, jill) 

mother(a lice, jill) 
makes the binding X = alice and Y = john. For term reasoning we are 
asking for. the person whose father is John and, as we saw in Section 3.7, 
this requires knowledge of inverse functions, just as in mathematics. 



CHAPTER 4 

Logic and Belief 

In this chapter we formalize the notions of proof described previously, using 
standard logical constructions [44]. We again focus on proof by contradic-
tion, defining the proof operation by 

F f if and only if KBI(F U 	= 

We show that = is in fact a deductive consequence relation over the propo-
sitional language LE (to be defined below). This is then used to outline 
a belief framework, giving both a static and dynamic view of equational 
knowledge. 

In talking about beliefs we begin to describe an implementation of the proof 
techniques discussed so far. The two paradigms of equational truth to be 
presented give rise naturally to different implementations of a rewrite-based 
reasoning system. 

4.1. External Truth: Logic of Equations 

Given a set of terms TE generated by some signature E, we define the set of 
atomic sentences PE to be 

PE = ftl =  t2I ti, t2 E TEL 
The propositional language for E, denoted LE, is the pair (PE, 0), where 
the PE are the atomic sentences and 0 is the set of operators 	A, V, —> 
e,1}. The sentences of LE, which we will also denote by LE, are defined 

from the atomic sentences as follows: 

• If A is a sentence then so is 
• If A and B are sentences then so are A A B, AV B, A ---+ B, A E B, and 

A e B. 

The nullary operator 1 is necessarily a sentence. The sentence —,(t i  = t2 ) is 
the inequation we have written as t i  t2 . 

4.1.1. Quantification 

Consider the function equation f = g, with f,g 	—> T and f > g. This 
equation is oriented to give the rewrite rule f 	g, and so for any x E 

54 
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fx 	gx, giving the same normal form for both fx and gx, so that fx = gx. 
Hence the function equation f = g embodies the universal predicate 

Vx.fx = gx. 

Similarly, for the inequation f g there must be some x E a such that the 
normal forms of fx and gx are different. Thus f g corresponds to the 
existential predicate 

3x.fx  gx. 

Using these observations in reverse gives a basis for inductively generating 
equations and inequations from observed function behaviour. This process 
will be examined in Chapter 5. 

4.1.2. Consequence Relations 

We represent knowledge by a set r C LE of sentences which we know. Our 
initial knowledge ro consists of the atomic sentences s = s for all s E 
and the inequations s t for all s-entities s,t where s # t. 

This description of knowledge makes no requirement of rationality. The 
standard notion of rationality comes from a consequence relation. We will 
then combine this with knowledge to give a description of belief. 

DEFINITION 4.1. A consequence relation over a language L is a relation, 
written I-, between P(L) and L which satisfies the following properties: 

1. Inclusion: if A E r then rH A. 
2. Monotonicity: 

I- A  
PUAI-A • 

3. Cut: 

AucHA  
AurFA 	• 

If a proof by contradiction of (F, f) succeeds then we let RF denote the 
rewrite system generated by KBI at the time I was found. 

THEOREM 4.1. = is a consequence relation over the propositional language 
(PE, H)- 

PROOF. 1. If A E r, to prove F = A we are applying KBI to the set with 
both A and -.A. One of these will have the form (1 = r) so at some stage 
during KBI we must have an R such that 1 4-11  r. Thus KBI will reduce 
the other, of the form (1 r), to a contradiction. 
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2. If r 	A then KBI reduces r U 	to a contradiction. Thus the rewrite 
system Rr generated by KBI involves a rewrite proof 1 .4h which reduces 
an inequation (1 0 r). The added elements of A may create a contra-
diction with either r or 	but then we trivially still have r U A 	A. 
Otherwise, together with A the resulting rewrite system will still give 
1 4--qzr  so that again r U A= A. 

3. Since r = C, if C is of the form (1 = r) then Rr must reduce (1 r) to 
a contradiction, so that Rr 	(1 = r), i.e. Rr 	C. Thus if C is used in 
reducing AUCU to a contradiction, then rUAU will also reduce 
to a contradiction. If C is not involved then A alone is responsible, and 
again we have r U A= A. 
If C is of the form (1 0 r) then Rru-c  reduces something in r, D say, to 
a contradiction. Since A UC = A, if A is of the form (s = t) then A must 
reduce either C or 	to a contradiction. If it is 	then we immediately 
have r U A 	A; otherwise to reduce C we will have RA 
But since Rru-c  reduces D to a contradiction, Rrun, will also, giving 
F u A A. 
Finally, if A is of the form (s 	t) then Rpu-,A reduces something in 
A U C to a contradiction. If it is in A then A = A, so by monotonicity 
F u A= A. Otherwise RAu-,A == -IC so that RruAu-,A  reduces D to 
a contradiction, giving F U /. = A. 

0 

Thus the original proof by contradiction method, as given in Section 3.4.1, 
gives a consequence relation over the language of equations and inequations. 
The extension of this result to general propositions mirrors the correspond-
ing extension of the proof method. 

COROLLARY 4.1. = is a consequence relation over LE. 

PROOF. We give proofs for single instances of V and A. Algorithmically, the 
extension to general sentences involves expressing them in conjunctive and 
disjunctive normal forms, and so extended these results simply requires the 
consideration of further subproofs. 

1. If (f Vg) E F then to prove r = (fVg ) we must prove the two subtheorems 
F (f V g) U f = (Ivy) and r (f V g) U g 	(f V g). For these we 
apply KBI to I' \ (f V g) U {f, —, f,—,g} and I' \ (f V g)U 	f, —I}, both 
of which give 1. 
Similarly, if (f Ag) E r then to prove r = (f Ag) we apply KBI to r 
and r U 	again obtaining 1 for both. 

2. If r = (f V g) then KBI(I' U f, 	= 1, so we have that r = f, 
F = g, or 	is inconsistent. If this last case is true then trivially 
for any A we have I' U A 	(f V g). Otherwise for any A, by the 
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monotonicity of Theorem 4.1, we thus have F Li A = f or F U A = g, 
and so r u A = (f V g). 
If I' = (I A g) then I' = f and r = g. Again by Theorem 4.1 we have 
that F U A #..f.  and FUAg for any A, giving F U i2 = (f A g). 

3. Suppose r = ( f Vg), so again I' f or r #. g. (We ignore the case where 
f is -ig since the result is then trivial). Similarly, if A U (f V g) #. (hV k) 
then AU( fVg)#- h or AU(fVg) = k. If AU(fVg) #- h then AU f #.h 
and A U g = h, so whether r f or r #. g we have A Ur h, giving 
Aur#.(hvk). 
Similarly, if AU (fVg)#. k then Aur 	k, again giving Aur = (hvk). 
Alternatively, suppose r #. (IV g) and now A U (IV g)- (hAk). This 
second theorem requires the four subtheorems A U f = h, A U f 	k, 
A U g 	h, and A Ug 	k. Thus whether I' 	f or r 	g, we have 
AUF(hAk). 
The two cases with r #. ( f A g) hold similarly. 

0 

A consequence relation H is said to be compact if whenever r I- A there is a 
finite subset r' of r such that r H A. 

LEMMA 4.1. = is compact. 

PROOF. If r = A then proof by contradiction of the possible theorem (r, A) 
terminates in a finite number of steps, producing _L. We can then take as 
F' the sentences of r which were used by KBI. 	 0 

A consequence relation H is deductive if there is a binary operator 	in L 
such that for all sentences A and B and sets of sentences r, 

FHA--B if rum-B. 
LEMMA 4.2. #. is deductive. 

PROOF. This result is a simple consequence of the proof method for com-
pound sentences. To prove F = (A —> B) we reduce the conclusion to con-
junctive normal form, giving -, 24. V B, and then apply KBI to r u {A, -,13}. 
But this can be regrouped as (r U A) U -.13, so we are equivalently proving 
I' U A B. 0 

4.2. Belief 

The standard notion of a belief set [20] is a pair (F, F-), where r is a set of 
sentences and I- is a consequence relation. The set F must be consistent, so 
that r 1/ I, and closed, so that whenever r H f then f E F. Because of this 
second condition r will typically be infinite, making belief sets an impractical 
model for computation. Hansson and others cite a further limitation of the 

: 
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belief set model of standard AGM. Paraphrasing an example in [24], if we 
have acquired the knowledge 

F = {capital France = Paris, contents Fridge= {Milk}} 

then we must also believe 

f = (capital France = Paris) 	(contents Fridge = {Milk}), 

since F = f. As a belief set we would treat these three equations with 
equal weight. On finding that the fridge no longer contained milk we are 
forced to revise our belief set, specifically removing contents Fridge = {Milk}. 
However, we cannot also maintain both the remaining equations, since these 
together imply the removed equation. As a belief set we might then remove 
capital France = Paris, leaving belief only in the equation of which we have 
no direct experience. This suggests that for practical purposes we treat basic 
beliefs and derived beliefs separately, and only work with basic beliefs when 
incorporating new information. 

Thus we focus our attention on bases for belief sets. We say (F*, I-) is a basis 
for (F, I-) if F* 1/ 1 and for any f E r, F. f. We can view our equational 
systems of Chapter 3 as bases for implicit belief sets, where we have used 

for H (a consequence relation by Theorem 4.1). Indeed throughout this 
work we will use belief set to mean belief basis. This is justified because 

embodies a semidecision procedure which allows us to determine if a 
sentence belongs to the belief set or (usually) if it doesn't belong. 

In fact we can do much better than the simple set representation of beliefs by 
using the basis formalism. The generation of side conditions gives a measure 
of how close a non-belief is to being in the belief set. If the corresponding 
theorem is impossible then the belief set cannot be extended to include the 
non-belief. Otherwise the non-extraneous side conditions give a character-
ization of extensions to the belief set which include the non-belief. These 
principles are the basis of our use of side conditions in reasoning. 

It is worth noting the distinction between the canonical rewrite system for 
an equational theory, a basis in the mathematical sense, and a belief basis. 
Specifically, we can represent a belief basis by giving a canonical system for 
the equations and inequations it contains. This would be a natural step to 
take for determining membership of the belief set but we should not discard 
the original beliefs for reasons similar to those in the above example. As 
outlined above, when it comes to revising beliefs it is important to know 
exactly which equations are basic and which are derived. In finding the 
canonical system we generate derived beliefs and possibly remove the basic 
ones, destroying the needed information. 
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4.2.1. Implementing Belief: Dialogue and Proof 

In the case of external truth, our current knowledge is described by a belief 
set (basis) F. A reasoning system based on such truth will thus have some 
kind of belief set itself, from which it can make deductions. But how does our 
reasoner learn this knowledge? We imagine it begins with an empty belief 
set and then through dialogue with a knowledgeable entity it expands its 
belief set (the belief dynamics to be outlined below). In one direction of the 
dialogue information is given to the reasoner while in the other direction the 
reasoner can be queried as to whether something is a deductive consequence 
of the reasoner's current knowledge. 

We illustrate this process with several dialogues. A prototype reasoner has 
been implemented using the deductive proof methods described so far. It 
uses a simple English grammar front-end to receive and impart knowledge, 
with term equations and inequations as internal representations. The dia-
logue in the first two columns is the actual interaction with the reasoner, 
with the third column showing the current belief set whenever it is changed. 

With each new fact given in the dialogue, KBI is applied to the current belief 
set together with the new information to produce a canonical system. This 
system may simply be 1, indicating that the new set is inconsistent and 
some process of belief revision is necessary (as discussed in Section 4.2.4). 
Otherwise the canonical system is kept for use in answering questions (to 
save recompleting the belief basis). 

When a question is asked a proof by contradiction is carried out by adding 
the negation of the question to the current belief set and applying KBI. If 
the result is 1 then the simple answer 'Yes' is given. Otherwise the answer is 
given in terms of the dense set of side conditions returned by KBI. (We will 
generally use KBI instead of KBC for this purpose, since it involves fewer 
steps to complete. KBC will only be necessary when the strong uniqueness 
of its result (see Theorem 3.7) is required, such as for finding a unique set 
of side conditions). 

If there are no non-extraneous side conditions then the non-theorem is in 
fact an impossible theorem (see Example 3.25) and we give the answer 'No'. 
If the only non-extraneous side condition is the conclusion then there was 
no information available to reduce the conclusion and so we answer 'I don't 
know'. Finally, if we have non-extraneous side conditions distinct from the 
conclusion then we give the conditions for a theorem as our answer. 
EXAMPLE 4.1 (Simple truth). The dialogue in Table 4.1 presents the theo-
rem used at the beginning of Chapter 3. 0 

EXAMPLE 4.2 (Side conditions). The dialogue in Table 4.2 presents a non-
theorem, the question not a consequence of the stated beliefs. Here the 
response is to interpret the side conditions found in the proof attempt. 0 
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Human 	 Reasoner Belief Set 

The father of the sister of Okay. 	father sister = father 
someone is their father. 

Lucia is the sister of Alice. Okay. 	father sister = father 
sister Alice = Lucia 

Is the father of Alice the 	Yes. 
father of Lucia? 

TABLE 4.1. Dialogue with truth (based on Example 3.1) 

Human 	 Reasoner 	Belief Set 

The father of the sister of 	Okay. 
someone is their father. 

Lucia is the sister of Alice. Okay. 

Is John the father of Alice? Only if John is the 
father of Lucia. 

father sister = father 

father sister = father 
sister Alice = Lucia 

TABLE 4.2. Dialogue with side condition (based on Example 3.22) 

EXAMPLE 4.3 (No information). In the dialogue of Table 4.3 the reasoner 
has no information to help answer the question. Of the two side conditions, 
one is a hypothesis (extraneous) and one is the conclusion. Neither provides 
a useful answer so the reasoner responds with 'I don't know'. 0 

Human 	 Reasoner 	Belief Set 

John is male. 	 Okay. 	male John = True 

Is John the father of Alice. I don't know. 

TABLE 4.3. Dialogue without answer 
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EXAMPLE 4.4 (Impossibility). In Table 4.4 the negation of the question is 
eliminated by the hypotheses. As seen in Example 3.25, there is thus no way 
of obtaining a theorem except for contradicting the hypotheses to produce 
the trivial theorem 1 = f. The reasoner thus responds with 'No'. 

Human 	 Reasoner Belief Set 

Mary is not male. 	Okay. 	male Mary 0 True 

Paul's mother is Mary. Okay. 	male Mary 0 True 
mother Paul = Mary 

Is Paul's mother male? No. 

TABLE 4.4. Dialogue with impossibility 

Compare this dialogue to the one in Table 4.5 where instead of representing 
'Mary is not male' by male Mary 0 True we use male Mary False. This 
time the negated conclusion reduces to True 0 False, an entity inequation 
that we assume is present in all hypotheses and is thus removed by KBI. 
We then give the same answer as before. 

Human 	 Reasoner Belief Set 

Mary is not male. 	Okay. 	male Mary = False 

Paul's mother is Mary. Okay. 	male Mary = False 
mother Paul = Mary 

Is Paul's mother male? No. 

TABLE 4.5. Dialogue with impossibility (revisited) 

The important logical point here is that if True and False were not declared 
to be entities then this second answer would have been the condition 'Only 
if True is False', while the first answer would still be 'No'. However since 
we typically do have True and False as entities, we will mostly use equa-
tions and rules to express negative information as this is more amenable to 
rewrite reasoning than an inequation, particularly in the inductive reasoning 
of Chapter 5. 
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Related to this is our definition of valuational consistency, a requirement 
in our proof that inductive theorems were non-grounded. For a system 
with entities True and False, and the inequation male Mary 0 True, to be 
valuationally consistent we must also have male Mary = False. 0 
EXAMPLE 4.5 (Implication). The dialogue in Table 4.6 shows how com-
pound sentences (in this case a sentence involving implication) can be used to 
ask hypothetical questions. The act of proving an implication is equivalent 
to temporarily adding the antecedent to the hypotheses and then proving 
the consequent (see Lemma 4.2). 

Compare this example to Example 4.9 involving the calculation of meaning, 
where 'exclusive or' is used instead of 'inclusive or'. 0 

Human 	 Reasoner Belief Set 

The father of the sister of 	Okay. 	father sister = father 
someone is their father. 

John is the father of Lucia. Okay. 	father sister = father 
father Lucia = John 

If Lucia is Alice's sister 	Yes. 
then is John Alice's father? 

TABLE 4.6. Dialogue with hypothetical (based on Example 3.17) 

EXAMPLE 4.6 (Local impossibility). In Table 4.7 we have a conjunction 
that is impossible because one of its components is impossible. Rather than 
just responding with 'No' we indicate what is causing the impossibility, that 
is the reduced form of the conclusion that was implied by the hypotheses. 

4.2.2. Belief Dynamics 

The emphasis in the above dialogues is on proof, answering questions from 
a given (consistent) set of beliefs. In each case new information was easily 
believed, accompanied by a simple update of the belief set. Yet this may not 
always be the case, and so we need to clarify this process of "believing". 

We are actually interested in two kinds of changing belief. The first is direct, 
where we have a belief set to which we try to add some new belief. Our main 
concern is the consistency of the new set. If it is consistent then our beliefs 
can be expanded, otherwise some kind of belief revision is necessary to obtain 
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Human 	 Reasoner 	Belief Set 

Mary is not male. 	Okay. 	male Mary 0 True 

Mary is the wife of Peter. Okay. 

The husband of a person's Okay. 
wife is that person. 

male Mary 0 True 
wife Peter = Mary 

male Mary 0 True 
wife Peter = Mary 
husband wife = i 

The husband of anyone 	Okay. 	male Mary 0 True 
is male. 	 mother Paul = Mary 

husband wife = i 
male husband = True ! 

Are Peter and the wife 	No, because Mary 
of Peter both male? 	is not male. 

TABLE 4.7. Dialogue with local impossibility (based on Ex-
ample 3.28) 

a valid belief set in light of the inconsistent information. We shall refer to 
this process as deductive belief dynamics. 

In Chapter 5 we introduce an induction algorithm IND which takes a set 
of ground equations and returns a set of equational conjectures. There we 
have a functional dependence of our conjectured belief set on the ground 
observations that we make. Our belief dynamics are thus empirical. That 
is, we are interested in the changes in the conjectured equations as our 
belief set expands, the changes in our experimental theories as we make new 
observations. We leave the discussion of such inductive belief dynamics to 
Chapter 6. 

4.2.3. Contraction 

Perhaps the simplest belief dynamic is belief contraction, corresponding to 
some element of r being removed. For the reasoner, a piece of information 
is discarded or forgotten. The dialogue in Table 4.8 illustrates one such 
possibility. 

Contraction is a simple process because of the following lemma: 
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Human 	 Reasoner 	Belief Set 

John is male. 	Okay. 	male John = True 

Is John male? 	Yes. 

Forget that John is male. Okay. 

Is John male? 	I don't know. 

TABLE 4.8. Dialogue with contraction 

LEMMA 4.3 (Hereditary). If r is consistent and F' C 1-‘ then F' is also con-
sistent. 

PROOF. Anything generated by KBI for F' is a subset of that created for r 
and so if F did not activate Contradiction then neither will 	I=1 

The hereditary nature of consistency thus ensures that we will still have a 
belief set. 

Contraction may also arise as part of the revision necessary when new infor- 
mation contradicts the existing beliefs, as discussed in the following section. 

4.2.4. Expansion and Revision 

All the dialogues in Section 4.2.1 involved a simple expansion of belief with 
a sentence being added to F. The situation is more complicated if, for 
example, we already had the belief set F = {father Alice = John} and we are 
told that father Alice 0 John. We cannot add the new information to our 
knowledge since we lose the consistency required of a belief set. 

There are then a number of alternatives as to how we should form our 
new belief set. At one extreme we have a closed-minded approach where we 
simply reject any new information that contradicts our existing beliefs. This 
has the obvious advantage of computational expediency but it also has the 
theoretical advantage of giving monotonic belief change. By never revising 
our beliefs we are assured that our knowledge at one stage will be a subset 
of our knowledge at any later stage, based on the assumption that we are 
learning about a static world. If q: is the result of a closed-minded revision 
of I' to accommodate the new sentence f then ' = F. 
At the other extreme we might have faith that information is always improv- 
ing in some way, and so we insist that our belief set must contain the newly 
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acquired information. We call this a narrow-minded approach, since it is 
focusing attention on a particular sentence. This is the process assumed 
in the AGM model of [20] and [24], and is a standard model for beliefs 
about a changing world. It will necessarily be non-monotonic and requires 
additional conditions on the belief revision, such as the principle of minimal 
change. Here if P7 is the narrow-minded revision of r to accommodate f 
then 	F , 	f Pc f 
Between these two extremes we may take the broad-minded approach where 
we treat our current belief set and the new information as a pool of knowl-
edge from which we must extract a consistent subset. Again this may not 
be monotonic and again it requires conditions for making a rational choice 
of the subset. For instance we would not want to choose the empty subset 
as our beliefs, even though it is always consistent. 

This broad-minded approach will return in Chapter 5 where it is the only 
one applicable to finding a consistent theory from a set of conjectures. There 
we similarly treat the conjectures as a pool of knowledge from which we want 
to obtain such a theory. We cannot single out a single conjecture which we 
want to include or exclude since all are contingent on observations. The 
problem is somewhat different though since the consistency of a theory is 
defined relative to the given database of observations. However, many of 
our ideas here will be applicable to the inductive case, especially the notion 
of a maximally consistent set. 

In the case of belief revision, whether it be narrow-minded or broad-minded, 
an obvious criterion for what we believe is that it should be maximal. We 
should not limit our beliefs to a particular subset when a further piece of 
knowledge can be consistently added to the subset. This is captured in the 
following definition: 

DEFINITION 4.2 (Maximal Consistency). If F C Y then C C F is a maxi-
mally consistent subset of F if C is consistent and there is no other f E F\C 
such that C U f is consistent. 

This maximality requirement may be too eager in some cases. If we have an 
inconsistency caused by two equations 

father Alice = John, father Alice = Paul, 

then it may be preferable to remove belief in both equations, even if we 
could consistently believe in one of them. By taking a maximal set we are 
essentially adopting a working system, a system from which we can make 
deductions but which is open to clarification through later revision. We 
illustrate this in Example 4.7. 

A system F need not usually have a unique maximally consistent subset, so 
this does not give a sufficient condition for choosing a new belief set. One 
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case where we do have uniqueness is as follows. Let ry be the result of a 
broad-minded revision of r to accommodate the sentence f. Then f rB 
if and only if of= r, and hence ry is unique. Equivalently, f (III if and 
only if ry 
If we are faced with multiple maximal sets then some further criteria are 
required to determine the new belief basis. Here our selection function [20] 
will be to take an arbitrary maximal set. In Chapter 5, where conjectured 
beliefs are based on observations, we can instead base our choice on the 
predictions each maximal set makes about future observations. 

EXAMPLE 4.7 (Working system). The dialogue of Table 4.9 illustrates how 
a maximal subset can be thought of as a working system, a collection of 
basic beliefs which is used for reasoning but which may subsequently be 
revised. With the third statement the basic beliefs are inconsistent and the 
reasoner must chose a maximal system from them. This is maintained until 
the final statement when new inconsistency requires a further revision. 0 

Human 	 Reasoner Belief Set 

The husband of a person's. Okay. 	husband mother = father 
mother is their father. 

Alice's father is John. 	Okay. 	husband mother = father 
father Alice = John 

Alice's father is Paul. 	Okay. 	husband mother = father 
father Alice = Paul 

Alice's mother is Jill. 	Okay. 	husband mother = father 
father Alice = Paul 
mother Alice = Jill 

Jill's husband is John. 	Okay. 	husband mother = father 
father Alice = John 
mother Alice = Jill 
husband Jill = John 

TABLE 4.9. Dialogue with a changing view 

A simple illustration of the closed-minded approach is given in Example 7.2. 



4.3. INTERNAL TRUTH: THE MEANING OF CONJUNCTION 	67 

Sattar and Ghose [45] have looked at the notion of maximally consistent sys-
tems for belief revision and the generation of experiments to resolve the con-
flict between multiple maximal systems. Such deductive experiments arise 
from the addition of new information, whereas the abductive experiments, 
related to the side conditions of Section 3.5, were the result of questions be-
ing asked of the reasoner. Our principle interest in experiments will come in 
Chapter 6 where we look at inductive experiments. There we have potential 
conflict between conjectures from a given set of data, and seek to suggest 
experiments whose results will most likely refute false conjectures. 

4.3. Internal Truth: The Meaning of Conjunction 

Until now we have represented a set of beliefs as just that, a set of equations 
and inequations from TE. However there are structures present in TE which 
allow us to discuss belief internally, without reference to sets of things. 
Specifically, the belief set 

{e l , e 2 , 	, en } 

can be expressed as the single term 

and(e l , e2 ,... , en ). 
Here and : sentence —> sentence is the (associative and commutative) boolean 
'and' function, in contrast to the external connective A. We will usually write 
and (e l , e2 , , en ) as the juxtaposition e 1 e2  • • en . 

For internal truth we no longer have a dynamic belief set from which we 
attempt to prove equations or inequations. Instead we look at the reduction 
of a single expression to normal form, where our beliefs are now part of the 
expression being reduced. Rather than giving a dialogue, an implementation 
of this internal truth is a calculator. 

4.3.1. Meaning 

Accounts of meaning and its logic are given in [16] and [17], which is an 
overview of the Definitional Reasoning system. For our purposes we view the 
meaning of a term in TE to be its normal form with respect to a confluent 
and terminating set of rules. Thus meaning can be viewed as a function 
M : TE TE from terms to terms. We may then say that two terms s and 
t have the same meaning if simply M(s) M(t), where a is term (string) 

• equality. This use of the function M can be seen as a generalization of 
using Knuth-Bendix and rewrite reduction to show equality in an equational 
system. 

Here the known rules are the structural rules given in Section 2.3, together 
with the conjunction rule and propositional rules to be given below. Ad- 
ditional rules may be added to these, as detailed in [17]. This then gives 
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a blending of external and internal truth, the external definitions refining 
knowledge by giving more and more terms the same meaning. 

The main burden of reasoning in a meaning-based system is placed on the 
processing of conjunction. The normal form of a conjunction of equations is 
the result of applying KBC to the corresponding equational system. That 
is, 

M(eie2 • • • e ri ) =KBC({e i ,e 2 ,... , en,}) 

where each ei has head =, or 0,, and where we replace —> everywhere in 
the result of KBC by = and write the set as a conjunction. If KBC gives 1 
then we say the meaning of the conjunction is False. KBC is used to ensure 
a given internal expression has a unique meaning. 
EXAMPLE 4.8 (Meanings of conjunctions). The above definitions give 

MRrnale father = True !)(father Alice = John)] 
—> (male father = True !)(father Alice = John)(male John = True), 

while 
M[father Alice = John)(father Alice 0 John)] —+ False. 

To capture additional connectives we also require the boolean addition xor : 
sentence —* sentence (exclusive disjunction). Again xor is associative and 
commutative, and we will write it in infix notation as +. Any meaning 
function M must include 

+ 	False, 
False + —4 0, 

for any 0. We then define the meaning of other operators by 

not 	+ True, 
implies (0,0) 	+ + True, 

or (0,0) — & + 9 + 00. 
These definitions give the rich logical structure of meaning, outlined in [16]. 
Our main interest here is in the implies operator. If we want to show a 
conjunction F logically implies an f E .7. , we need to show that M[Ff +F+ 
True] = True. Thus, from our rule for xor, we need to show M[F f] = M[F]. 
That is, we must show KBC(FU f) = KBC(F), which is exactly the process 
of proof by invariance. We can summarize this by the following consequence 
of Theorem 3.7: 

COROLLARY 4.2. M [implies(F, f)]. True if and only if F f. 

Hence proof by invariance plays the central deductive role for internalized 
truth that proof by contradiction has played for our external truth. We will 
thus use the infix notation = for the operator implies. 
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EXAMPLE 4.9 (Internal proof). The following calculation evaluates the mean-
ing of the theorem in Example 3.15, when male < father: 

M[F f] 
- M[(male father = True !)(male Alice 0 True) = (father John 0 Alice)] 

- M[(male father = True !)(male Alice 0 True)(father John 0 Alice) + 

(male father = True !)(male Alice 0 True) + True] 

- M[(male father = True !)(male Alice 0 True) + 

(male father = True !)(male Alice 0 True) True] 

- M[False + True] 

- M[True] 

- True 



CHAPTER 5 

Learning Equations from a Database 

So far we have discussed a rewriting-based framework for deductive reason-
ing. For example, from the equational system 

father Alice —> John 
male father 	True ! 

we are able to deduce that male John = True. In this section we give a 
procedure for inductive reasoning, so that from 

father Alice ---+ John 
male John 	True 

we may conjecture that male father = True !. We have evidence for this 
new fact since whenever we apply the function male father to a person we 
get the same result as applying True !. Of course this raises the immediate 
question as to how much belief we should put in our generalization. Making 
a conjecture and asking such questions is the basis of scientific inquiry. We 
will come to a discussion of belief, in Chapter 6, after first presenting the 
algorithm in detail. 

5.1. Induction Method 

Generalizing the above example, we would conjecture that f = g if we find 
that fx = gx for all appropriate x. This principle will be the basis for 
database induction. 

5.1.1. Facts and Conjectures 

The induction procedure IND takes a finite, complete and inductively con-
sistent set of rewrite rules A (the database) and returns a set of equations 
(the conjectures). (Note that A must be consistent as otherwise it's com-
pletion would be 1). The equations in the result will be of two kinds, facts 
and conjectures. 

DEFINITION 5.1 (Fact). A fact is a function equation f = g such that A 74> 
f = g and fa =A ga for all E-entities a E dom(f). 

70 
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That is, a fact is a function equation which holds when applied to any entity 
of appropriate type. 

DEFINITION 5.2 (Conjecture). A conjecture is a function equation f ,-, g 
such that A 0? (f = g), A # (f 0 g), A (f a = ga) for at least 
one E-entity a E dom(f) and there is no E-entity b E dom(f) such that 
A (fb 0 gb). 

A conjecture is an incomplete fact, a function equation which holds for at 
least one grounded word and is not falsified by any other grounded word. 
A conjecture is not a fact because information is absent in A about the 
meaning of the composition of one of the functions and some entity. We 
use the notation 'z_-' to indicate this lack of universal support. However, note 
that a fact is immediately a conjecture, and we will often refer to facts and 
conjectures collectively as simply conjectures. 

This illustrates well why we don't adopt a closed-world assumption. We 
instead take the scientific view that the truth of some equations may simply 
be unknown. Truth or falsity, if not the deductive consequence of a belief 
basis, can only be established by carrying out new experiments. 

The condition that A A (f  g) ensures that the conjectured f ,2-_g is not 
inconsistent with the information in A. This constraint is not necessary for 
facts, as seen in Lemma 5.1 below. 

From these definitions it is clear that facts can never produce new database 
information, capturing only truth that is already present. In this sense, a 
fact represents summative induction, the equation summarizing the com-
plete information we have about the data. Although a fact can generate no 
new data, it can be used to compress the database by eliminating data rules 
which are implied by it (see Section 6.4). 

If a conjecture is accepted as a fact, it can then produce new database infor-
mation by essentially filling in the gaps which prevented it from being called 
a fact in the first place. A conjecture is a form of ampliative induction, the 
equation providing new information and thus amplifying our knowledge [8] . 
Conjectures will be our main focus here as they have close and interesting 
parallels with scientific method. 

LEMMA 5.1. A fact from A is consistent with A. 

PROOF. If a fact f = g is not consistent with A then there must be an 
inequation h 1  0 h2  in A such that h1  =puff.,9 1 h2. As in the proof of 
Theorem 3.6, we can use the localized functional completeness of f = g and 
the inductive consistency of A to show that A is inconsistent, contradicting 
our assumption for A. Hence f = g is consistent with A. 0 
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The following two results give a concrete relationship between this inductive 
process and the inductive theorems of Section 3.3, that is, between scientific 
and mathematical induction. 

THEOREM 5.1. A fact from A is an inductive theorem of A. 

This theorem, together with its proof, is similar to our earlier characteriza-
tion of unambiguous systems in terms of functional completeness. However 
we do not need an unambiguous system to have a theorem in the sense of 
Definition 3.11. Theorem 5.1 shows that a local form of functional com-
pleteness, embodied in the definition of fact, is sufficient for an equation to 
be a theorem. This also justifies writing the equality f = g for a fact. 

PROOF. Since any fact f = g is consistent with A, by Lemma 5.1, there 
must be at least one maximally consistent theory of A containing f = g. 
Recall that a theorem of A is an equation in the intersection of all maximally 
consistent theories of A. Suppose then that f = g is not a theorem so that 
there is some maximally consistent theory, C, of A not containing f = g. 
Thus there is some inequation h 1  h2  in A such that h1  =cu{f=g } hz. 
Again we can follow the proof of Theorem 3.6 to show that C must be 
inconsistent, proving that f = g is a theorem of A. 

That f = g is inductive, rather than deductive, is simply part of the defini- 
tion of a fact. 	 0 

The converse of this result, that inductive theorems are facts, holds similarly 
provided that A is valuationally consistent (see Theorem 3.4). 

THEOREM 5.2. If gives rise to a conjecture then A is ambiguous. 

PROOF. Suppose f g is a conjecture from A. Since f = g is not a fact, 
for some entity a E dom(f) there is either no entity b E cod(f) such that 
fa =6, b or no entity c E cod(g) such that ga =6, c. In either case A cannot 
be functionally complete and so by Theorem 3.5 it is ambiguous. 0 

This second result is perhaps our "fundamental theorem". If a system is 
ambiguous then we are unable to prove an inductive theorem by consis-
tency (Theorem 3.2). Thus a conjecture can be simply characterized as an 
inductive theorem that cannot be proved. 

5.1.2. Induction Algorithm 

Let E, denote the set of all E-entities of type a and let E,771,,, denote the 
set of all E-functions with domain a and length at most n. 

For a function term f,  an ordered set of words W = {wi; i E /1, and a given 
rewrite system A, define f(W) IA to be the ordered set {ni; i E I}, with 
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each ni defined as follows: 

= s if fwi 	s for some E-entity s ni  * otherwise 

The condition that s be an entity in the first case will correspond to the 
requirement that we must have complete knowledge about the function value 
before we make any conjecture. The special term * in the second case 
indicates that no complete information is present in A about the value of 
the function for that particular word. 

Finally, for ordered subsets SI, S2 of TE U {*} having equal length, we say 
S1  = 52 if S i  and S2 are identical at each position and both are free of the 
element *. We write S i  S2 if S 1  and S2 are identical at each position 
where neither has a *. 

With these definitions, we can now present the algorithm: 

procedure IND(A, 
EP,n 
for each sort a 

for each f,g E 	tp, f # g, 
if f() 	= g(E) 1, 6, then Epo, := EA,n U {f = g} 
if f(E) 	g(E,) IA then 	:= EA, n  U 	g} 

IND := EA,n 
end. 

For each E-sort a we look at the set of E-functions with domain a, reduced 
by A. We take pairs of distinct f,g from this set and apply each of them to 
an ordered list of all grounded words with codomain a. These applications 
are then reduced by A, using * for any whose normal form is not an entity. 
If the reduced lists are free of * and identical then we add f = g as a fact. 
If they are identical at each element where neither has *, and there is at 
least one such element, then we add f = g as a conjecture (which we write 
as f g). 

In an actual implementation of the procedure there are many efficiency im-
provements that can be made to reduce the number of functions to be consid-
ered and the number of normal form reductions to be performed. In general 
though, the number of functions to be considered grows exponentially with 
n. To work with this we apply the induction algorithm iteratively. Starting 
with A i  = IND(A, 1), we evaluate 

Ai+i  

the conjectures arising from the result of induction for length j being used 
to reduce the candidate functions of length j 1. We then say that the 
result of the induction of A is the set Aoo. 
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We would like to show that A c, is finite, so that a finite set of observations 
can only support a finite number of conjectures. Let F and G be the sets 
of E-functions and grounded s-words, respectively. Let V(G) be the set of 
vectors of length IGI with components drawn from GU{*}, and let v o  E V(G) 
be the initial vector G with elements in some arbitrary order. Note that for a 
finite A, the set G is finite and thus V (G) is finite, with I V (G)I = (IG I+ 1 )IG I• 
Suppose we have a sequence f , f2 , ... of functions from F. Each /3 gives a 
map from V (G) to V (G) define by 

.6 ((ai 7 • • • 7 alGI)) = 	(a1)7 • • • 7 Man)) 
where f3(ai) is the A-normal form of f3 ai, taking value * if the normal form 
is not a word and with fi* *. Hence each fj maps a finite set into itself 
and so the sequence 

vo, f i t)°, f2 vo, • • • 7 

where fi = fifj_ i •-•fi , must eventually cycle. That is, for some K, h, 
fkvo fk+h vo  

for all k > K. Hence any function appearing beyond fK+h has the same 
image as a previous function, with equivalence identified by reducing with 

fK .  This proves the following lemma: 

LEMMA 5.2. Let F be the set of function words in a database R. Then for 
any sequence of functions 11 ,.12 ,.... from F there are only finitely many 
distinct functions f3,  where f3  = f3  f3-1  • • . f.  

This lemma is the basis of the following important result. 

THEOREM 5.3 (Termination of Induction). For a given database A there 
exists some K such that 64 = AK for all k> K. 

PROOF. Every possible function that be built from m function words is 
a node of the tree with (polymorphic) root node i and where each node 
branches into at most m child nodes, each child formed by composing one 
of the function words with the parent node, if types allow. The first two 
steps of this branching process with only two function words, f, g, is shown 
in the following figure. 

/ i \ 
f 	g 

ff gf fg gg 
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Each path in the tree is simply a sequence of function compositions, so by 
Lemma 5.2 when applied to an initial vector a cycle is found in the images of 
the functions. The conjecture will then be formed between the first functions 
with the same image, after which subsequent functions in the path can be 
reduced to earlier functions with that conjecture. Hence the reduced set of 
functions produced by that path is finite. 

This argument applies to all paths in the tree, so that the total reduced 
set of functions which could be considered for induction is finite. So by 
using previous conjectures to reduce new candidate functions, eventually 
the induction process will return nothing new. 0 

Hence from a finite amount of knowledge we can only make a finite number 
of conjectures using inductive reasoning alone. This is an interesting distinc-
tion to make in comparison to deductive reasoning where finite knowledge 
can produce infinite numbers of deductive consequences. Example 5.3 gives 
an example of the finite and infinite interaction of inductive and deductive 
reasoning. 

Even though this theorem shows the inductive knowledge will be finite, the 
number of conjectures of general length can be quite large. This is especially 
so early on in a series of experiments when many 'wild' conjectures, conjec-
tures at odds with the modelled world, often appear before being refuted by 
further observations. In most cases we will concentrate on finding IND(A, 2) 
only, conjecturing simple relationships between functions. In essence, this 
is Occam's razor at work. A single function is used to model a process 
which is conceptually basic (such as father and male). Terms of greater 
length correspond to more and more complex compound processes (such as 
male father father). By starting with IND(A, 2) we are looking initially for 
simple explanations of the data and only if we cannot find any do we search 
for more complex theories. 

5.1.3. Families and Gender 

For this section we use the following signature: 

/True, False E sentence, 
John, Peter, Alice, George, Jill, Paul E person, 

E = 	not : sentence —> sentence, 
male, female : person —> sentence, 
father, mother, fatherinlaw : person —> person 1 

EXAMPLE 5.1 (Refinement of conjectures). Consider the following database 
consisting of four rules: 

= { father Paul —* Peter, father Alice —> John, 1 A 	 . male Peter —> True, male John —> True 
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Applying IND to A gives the two conjectures 

6.2 = IND(A, 2) = {male True !, male father True !}. 

The first of these is false in the world we want to model, while the second is 
true. The reason the first appears is simply that the only people whose gen-
der is mentioned in the database are male. There are no counter-examples 
to refute the conjecture. As the breadth of data increases, fewer such false 
conjectures will be made. Consider a larger database 

= A U {male Alice —> False} 

where now 

6. 12  = IND(A', 2) = {male father True !}. 

Unless false data is included in the database, this remaining conjecture will 
persist, until complete information is given for the left and right functions 
to make it a fact. In the meantime we must decide what to do with the 
conjecture. If we assume it is true then we can deduce, for instance, that 
Peter's father is male, even though we have no information about who he is. 
But this simple idea is also dangerous - using the original A we would have 
similarly concluded that Alice was male. 0 

This process is similar to the process of making conjectures in science. The 
conjecture, and all of its deductive consequences, are assumed true until , 
a counter-example is found. A counter-example may well be present in 
the existing data. Although a single conjecture alone can never produce a 
contradiction, since it would then have never been conjectured, combinations 
of conjectures can produce new information which contradicts the known 
data. Consider the following example. 
EXAMPLE 5.2 (Consistency of conjectures). With the database 

/male Paul —> True, male Alice --> False, 
A = 	female Paul —> False, 

not False --> True, not True —> False 

we obtain the conjectures 

/female ,--' False !, not female ,--' True !, 
6,2 = IND(A, 2) = 	female :-..-_, not male, not female ,--, male, 	. 

not not = i 

The first two conjectures are not true in the world we are modelling but 
are consistent with the given data. However, by combining the second and 
fourth conjectures we are able to deduce the new conjecture male True !, 
which then implies that male Alice —> True, contradicting the information in 
A. We discuss this issue of the consistency of a system of conjectures with 
respect to the original data in section 6.2. 0 
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EXAMPLE 5.3 (Finite induction and infinite deduction). Even though The-
orem 5.3 guarantees that induction can only produce a finite number of con-
jectured equations, the following example illustrates the 'amount' of new 
information these equations can give. Consider a fresh database 

father Alice 	John, father Jill —4 George, 
= A  

mother Alice 	Jill, fatherinlaw John —+ George 	• 

We find 

6.2 = IND(A, 2) = {fatherinlaw father father mother}. 

As seen in Example 3.5, applying KB to A U A2 gives a rewrite system 
containing the rules 

father mother k  Jill —÷ fatherinlaw k  George 

for any k > 1. Thus the induction process applied to a finite database may 
result in a system with an infinite number of deductive consequences. 0 

EXAMPLE 5.4 (Recursive conjectures). Consider 

parent Alice —> {Jill, John}, 
ancestor Alice —> {George, Henry, Jill, John, Kate, Lucia}, 
ancestor Jill 	{George, Lucia}, 
ancestor John 	{Henry, Kate} 

Induction gives the conjectures 

/ancestor ':-...- {ancestor, parent}, 
A2 = IND(A, 2) = 	ancestor •-' {ancestor, ancestor parent}, 	. 

ancestor '--' {parent, ancestor parent} 

The first two capture the subset property that parent C ancestor and the 
recursive subset property that ancestor C ancestor parent. The remaining 
conjecture is the recursive definition of ancestor in terms of parent, where 
someone's ancestor is either a parent or an ancestor of a parent. (Note that 
this 'or' is not necessarily exclusive since we are using sets). 0 

EXAMPLE 5.5 (Facts from infinite domains). As described in the comments 
following Example 3.13, we cannot induce any facts involving functions of 
type person person because to do so would require an infinite regression of 
information about the function's values. For example, we can never obtain 
the fact male father = True ! because if we knew Alice's father was John and 
that John was male, then we would need to know who John's father was, 
and so on. 

We described two approaches for escaping this situation when trying to 
prove inductive theorems (corresponding here to facts). The Peano scheme 
is not very appropriate for the scientific model of making observations and 
conjecturing information from them, so we focus here on the use of the 
addition of the special element co,. 



5.1. INDUCTION METHOD 	 78 

Adam 	Eve 

Cain Able 	Seth 

FIGURE 5.1. Adam and Eve's family tree 

Consider the well-known family tree in Figure 5.1. Based on it we make the 
following observations: A 

 = 1
mother Seth ---+ Eve, male Seth --> False, 1 
male Eve -4 False, mother Eve -4 co . 

The last rule captures the observation that Eve has no mother, or that 
mother Eve is unknowable. From A we know the value of male mother for 
all elements of person in the signature 

/Eve, Seth E person, 
E = 	mother : person —> person, 

male : person —> sentence 

Hence induction gives the single fact 
IND(A, 2) = {male mother = False !}, 

Indeed it is perhaps this ability, of replacing conjectures by fact, that makes 
religion so appealing! 0 

Our use of co is quite similar to the 'special out of world constant' proposed 
for FOIL in [42]. There the concern is to eliminate spurious inductive infer-
ences caused by the closed world assumption. Anything that is not positively 
stated in the database is assumed to be false. The standard example is to 
give FOIL a database about the reverse and concatenation relations for all 
lists of maximum length three. FOIL then inductively generates the clause 
that a list is its own reverse if it can be concatenated with itself to give 
another list, which is certainly true for the given data. 

In our rewrite induction we do not use the closed world assumption. Such an 
example would simply be taken as a conjecture (part of a working theory) 
and maintained until it was falsified or it became a fact by being completely 
tested on all elements in its domain. Of course for lists, as with the sort 
person, we cannot obtain a fact because there are always lists of size one 
larger to apply the conjecture to. This is where our interest in the element 
co lies, 'completing' a database so that we may prove a conjecture in the 
sense of Section 3.3. 

However the use of co is artificial and not necessarily desirable since in the 
standard scientific induction that we are modelling facts rarely exist. Even 
though the sun has been recorded to rise on many days there is no certainty 
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that it will rise tomorrow. Furthermore, as summative knowledge, a fact 
cannot provide us with any predictions (see Lemma 6.4) and so in general 
has less practical value for us than a conjecture. 

5.1.4. Inductive Generation of Function Inequations 

The inductive process can be seen as the inverse of the quantification de-
scription given in Section 4.1.1. An inequation represents existential infor-
mation, rather than the universal information of a function equation, and 
so to induce an inequation f g we need only make one observation where 
fa 0 ga. 

However, we saw in Section 3.4.6 that this is a trivial kind of induction 
because the conjectured inequation f g is in fact a deductive consequence 
of the database, and hence does not conform to our definitions of conjecture 
and fact. Indeed simply making the observation fa 0 gb will implicitly 
imply f g in any future proof by contradiction, so explicitly adding it as 
conjectured knowledge is unnecessary. 

5.2. Language Dynamics 

As with deductive reasoning, we also have belief dynamics for our inductive 
process. As the database is extended, new conjectures may be made and 
old conjectures may be falsified. In later sections we will look at what we 
can say about these changes in the inductive beliefs, both through deductive 
measures of their consistency and through statistical assumptions about the 
world being modelled by the database. 

However, we saw in Section 3.3 that inductive theorems are also very de-
pendent on the underlying language generated by the signature E. Suppose 
we have a deductive theorem F f, with F C FE for some E. If we extend 
the signature to E', so that TE C FE/ and we now view F C FE',  then we 
will still have F f. Yet for a similar inductive theorem the extension to 
E' may destroy the functional completeness needed for its proof. For exam-
ple, the system F = {male John = True} over a signature with single entity 
John E Person gives rise to the inductive theorem male = True !. However, 
if we extend the signature by adding Paul E Person then, since we do not 
know the value of male Paul in F, male = True ! is no longer an inductive 
theorem of F. 

Correspondingly, if f = g is a fact from a database A C FE then f = g will 
not necessarily be a fact from A C FE'. Additional entities in the domain 
of f = g will reduce it to a conjecture, with further extensions to A possibly 
falsifying it. The next result gives the obvious condition for ensuring f = g 
remains a fact. 
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LEMMA 5.3 (Language Extension). Suppose f = g is a fact from some 
database A C YE and that A' C YE, is an extension of A such that 
A C A' and FE C FE'. Then f = g is a fact for A' if A' 	(f = g) 
and E dom(f =g) = fclom(f =9) .  

PROOF. For all E-entities a E dom(f), and hence for all E'-entities a E 
dom(f), fa =b, ga. Since A C A', by the monotonicity of = (Theorem 4.1) 
we must also have fa =Ai ga. Thus f = g is a fact from A'. 	0 

The requirement A' 	(f = g) will automatically be satisfied if A' consists 
only of grounded equations. 

This simple result captures a basic premise of scientific enquiry. For instance, 
if we have an inductive theorem about the natural numbers and then turn 
to make observations about the motions of planets, we are guaranteed that 
our number theorem will still hold. Extending our language in a distinct 
direction cannot effect known theorems. As noted above, this is trivially true 
for deductive theorems, and now we see it is true for inductive theorems as 
well. 

The converse of the result need not hold. Often the addition of a new entity 
is accompanied by the addition of data about the application of functions 
to the entity. This will maintain functional completeness and so give a fact 
(if it is not falsified), even though Edom(J=g) Ed1 om(f =g). However the 
converse will hold whenever A = 

We have a similar, but weaker, result for conjectures. 

LEMMA 5.4. Suppose f = g is a conjecture from some database A C 
and that E' is such that FE C FE/. Then f = g is a conjecture for A C F. 

PROOF. The result is trivial since the support for the conjecture remains 
in the extended language, and fact that the database is unchanged ensures 
that f = g is still not a deductive consequence of A. 	 0 

We say this is weaker because we cannot extend A in any way since a 
conjecture can always be falsified (assuming there is more than one entity in 
its codomain). However, the nature of the language extension itself is less 
constrained. 

An important application of this result is to use it to support language 
restriction. If A C FE and we can find a E' such that FE/ C FE and 
A C YE, then we can apply the induction process to the restricted E' and 
be assured that any conjectures we obtain will also be conjectures for the 
original language. We can further use Lemma 5.3 to determine which facts 
we find will remain facts in E. 
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This is particularly useful when dealing with infinite domains, such as the 
natural numbers. If there are an infinite number of entities a E a, for some 
sort a, then following the induction procedure strictly would require an 
infinite number of function applications to be reduced. This lemma allows 
us to restrict attention to the finite subset of entities mentioned in A. 

5.3. Applications 

Our main interest has been to develop a logical model of reasoning, rather 
than produce a computationally efficient learning system. However, the 
performance of IND on more complicated examples has been encouraging. 
We present the following applications to indicate the potential usefulness 
of equational induction, and to make some comparisons with other learning 
methods. 

BMWk [2] has been used to find recursive relations in term rewriting sys-
tems. However, FOIL [41], although based on logic programming, has more 
similarities with our approach and will thus be the main alternative we con-
sider. We believe there are indeed interesting relationships between our work 
and Inductive Logic Programming (see [35] for an overview of ILP), but our 
prime interest here is in extending our equational procedures for deductive 
reasoning to corresponding procedures for inductive learning. The detailed 
comparison with ILP will be left to future work. 

5.3.1. Classification 

One of the simplest learning tasks is classification. We illustrate the ap-
plication of equational induction to classification problems with a machine 
learning exercise for Prolog [3]. 

It is supposed that a vision system is presented with the image in Figure 5.2, 
from which it can identify individual objects and determine certain special 
properties about them. By giving a learning system this information to-
gether with a class for each object, we hope that it can associate each class 
with the corresponding properties which characterize objects within it. 

We shall use labels A, ..., L for the objects and represent the information 
about the objects using the signature 

A, ... , L E object, 
nut, key, screw, pen, scissors : object —> sentence, 

E = compact, long, otherShaped : object —> sentence, 
small, large : object —> sentence, 
noHoles, oneHole, twoHoles : object —> sentence 1 

We provide classification data with rules nut A —> True, ... and characteris-
tic data by rules small A —> True, noHoles A —> False..... 
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Ift• 

	

I 	41/4 

	

F 	** 

1111.1011ftft.. 

FIGURE 5.2. Visual data for classification (from [3]) 

From this database, rewrite induction produces 25 equations including the 
following: 

noHoles A small = screw 
twoHoles A large = scissors 

noHoles A large = pen 
oneHole A cornpact = nut 

otherShaped 	(key = small) 

long —4 (key = oneHole) 

(Here we have written p 	(q = r) for p A q = p A r). The remaining 19 
equations express other relations present in the database which are not im-
plied by these classifying equations. Such additional information can often 
be useful for intermediate proof steps in reasoning. This situation is illus-
trated in section 5.3.2. At the same time, the generation of the additional 
information is very expensive, a reflection of the non-guided approach of this 
induction method, and may well be superfluous. 

In comparison, the results given in [3] are 

nut 	[shape = compact, holes = 1], 

key 	[shape = other, size = small][holes = 1, shape = long], 

scissors = [holes = 2, size = large], 

with similar definitions possible for pen and screw. Here the learning is 
strongly guided by requesting learn(nut), learn(key), etc. 
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The output generated by FOIL is the following collection of Prolog clauses: 

nut(A) : — 
key(A) : — 
key(A) : — 

screw(A) : — 
pen(A) : — 

scissors(A) : — 

cornpact(A), onehole(A). 
onehole(A), long(A). 
other(A), small(A). 
noholes(A), small(A). 
noholes(A), large(A). 
twohole(A), large(A). 

FOIL can also be asked to generate clauses for the attributes, though this 
gives a non-terminating program. Even if this is overcome, the clause def-
initions are limited in only having one predicate on the left hand side. 
One of the addition rules generated by rewrite induction is otherShaped 
(scissors = large). Thus if we know an object is other-shaped and large 
then we can deduce it is a pair of scissors, but also if we know an object is 
other-shaped and a pair of scissors then we can deduce it is large. This bidi-
rectonal reasoning of equivalence is not possible with the clauses generated 
by FOIL. 

5.3.2. Family Relationships 

A larger example is one dealing with learning the structure of family trees. 
This was first given by Hinton [25] as an example of learning using a neural 
representation, and then by Quinlan [41] as a comparison for FOIL. The 
aim is not just to learn definitions but to learn definitions from incomplete 
data and use them to predict the missing information. 

The family trees in Figure 5.3 gives information about twelve family re-
lationships: wife, husband, mother, father, daughter, son, sister, brother, 
aunt, uncle, niece, and nephew. We represent this knowledge as a rewrite 
database with rules such as wife Marco Lucia. Multivalued functions, 
such as aunt and uncle, are expressed using the notion of set, so that 
aunt Sophia {Gina, Angela}, etc. 

In both FOIL and the neural representation of Hinton, it is necessary to give 
negative information, usually in the form of a closed world assumption. For 
instance, we would include that the mother of Penelope is not Sophia since 
it is not specified by the tree. For rewrite induction we only use positive 
information, assuming that we simply have no knowledge about unspeci-
fied function values. (Note that this is different from the implicit entity 
inequations which only give negative information about entities, not about 
function values). This can lead to some wild conjectures but such conjec-
tures are often the basis of scientific progress, and indeed in this example 
we find they help in recovering missing information (while at the same time 
producing much spurious information). 
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Christopher T  Penelope 	Andrew T  Christine 

I 	 I 	I 	I 
Margaret — Arthur 	Victoria T  James 	 Jennifer —Charles 

I 	 I 
Colin 	Charlotte 

Roberto Maria Pierro T  Francesca 

   

	

Gina — Emilio 	 Lucia T  Marco 	 Angela — Tomaso 

Alfonso 	Sophia 

FIGURE 5.3. Two isomorphic family trees (from [25]) 

The two trees in Figure 5.3 specify 104 data rules. Hinton used 100 of these 
as a training set and then tested to see if the remaining 4 relationships could 
be found by the trained network. Doing this twice he recorded 7 successes 
out of 8. Quinlan performed the same experiment twenty times and recorded 
78 successes out of 80. Repeating these twenty trials with rewrite induction, 
all 80 missing relationships were recovered. (This is perhaps lucky. If the 
two data wife Emilio Gina and husband Gina --+ Emilio, or the other 3 
equivalent pairs, are both in the 4 missing then neither can be recovered. 
The same observation applies to FOIL). 

We can repeat this comparison for smaller training sets, where instead of 
removing just 4 data, we remove 10, 20, 30, ..., 90 of the data. Testing each 
case 8 times for both FOIL and rewrite induction gave the proportions of 
recovered data presented in Figure 5.4. 

The obvious balance is in the efficiency of the two methods. As a rough 
estimate of efficiency, running FOIL on a SparcStation 10 to learn rules for 
the complete family tree takes 3.5 seconds, while the current implementation 
of IND (in LISP) requires 22.9 seconds. 
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Data Removed 

FIGURE 5.4. Predictive performance of FOIL and rewrite induction 



CHAPTER 6 

Inductive Belief 

In this chapter we turn to various issues that arise from the basic induction 
algorithm given in Chapter 5. In particular we examine measures of the 
belief we might have in our conjectures. These can be approached both 
qualitatively and quantitatively. The quality of a system of conjectures can 
be measured by the kind of predictions it makes, as we will see in Section 6.2. 
Firstly though we look at measures for the strength of an isolated conjecture. 

6.1. Numerical Measures of Conjecture Strength 

Probability theory has often been used as a tool for analyzing the validity 
of inductive reasoning, by philosophers from Pascal to Popper. Recently, 
probabilities have also been used in measuring the quality of rules generated 
by inductive learning systems, with particular emphasis on Baysian methods 
[11]. Here we present similar predictive measures, with some additional 
statistical and information theoretical methods. In each we will see that 
our typed language allows us to make assumptions which give more precise 
measures for our models than the standard Baysian approaches. 

Each of these measures look at the growing belief in a conjecture as the 
database A is expanded to include more observations. We are thus interested 
only in counting the number of supporting observations; once an observation 
is added to A that contradicts the conjecture of interest then that conjecture 
will no longer be generated by IND. 

6.1.1. Hypothesis Testing 

Suppose we have made a series of r observations which confirm a conjecture 
f ,- -' g. If there are k entities in cod(f '--' g), k possible values for f and g, 
then the probability that at random the value of each observed ga would 
match the value of fa is simply k. Thus the probability that we made the r 
confirming observations if the values of f and g were random is (D r . We call 
this the significance value, Pr , for the conjecture based on r observations 
(with respect to the database A). 

This definition is motivated by the standard statistical method for testing 
a conjecture. An untested conjecture has Pr  = 1, giving certainty that we 

86 
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could have made the (empty set of) observations we did and thus providing 
no basis for belief. As this probability decreases, so our belief in the conjec-
ture increases. Figure 6.1 shows the values of 1 — Pr  for k = 2 and k = 4. 
(We have shown 1 — Pr , where 1 now indicates total belief, for comparison 
with the following sections). Note that when k = 4 it is less likely to make 
supporting observations by chance than when k = 2 and so confidence is 
gained more quickly. 

2 
	

1 0 

FIGURE 6.1. Progression towards certainty for measure 
based on hypothesis testing, with k = 2 (lower) and k = 4 
(upper) 

Our conjecture male True ! in Example 5.1 was based on two observations. 
For each the value of male could have been either True or False and so 
the probability of making the two supporting observations is () 2  = .25. 
Similarly, the conjecture 

fatherinlaw father cy. father mother 
from Example 5.3 was based on a single observation, the application of the 
equation to Alice. This time though if we knew the value of the left-hand 
side then there were still six possibilities in E for the right-hand value, so 
the probability of the conjecture being made at random was only Thus 
we would have stronger belief in this second conjecture, based on only one 
observation, than on the first conjecture which was based on two. 

These calculations confirm empirical trials of the induction process. When 
the database is relatively small there can be a great many 'random' conjec-
tures of predicate relations, most of which disappear as more information is 
added (as in Examples 5.1 and 5.2). If we observe the value of two functions 
f, g : a —+ sentence on an entity a E a , then we will make the conjec-
ture f g with probability -1. That is, for two unrelated sentence-valued 
functions, we are just as likely to make a conjecture as to not make one. 
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Conjectures based on larger domains, such as person, appear less often and 
are more likely to remain as the database expands. 

The measure Pr  is actually a result of the Neyman-Pearson lemma [19]. Let 
be P ( f a = ga), assumed to be common for each entity a in the domain. 

Then our null hypothesis is that the result of applying g to each entity 
is independent of the result of applying f, reducing to any one of the k 
entities in cod(g) with equal probability, i.e. H o  : 9 = 1/k. The alternative 
hypothesis is that f g is true, holding for all entities in dom(f), so we 
have H1  : 9 = 1. For these simple hypotheses the lemma gives (1/k) r  as the 
best test statistic to use to decide between them. 

Suppose that there are n entities in dom(f g). Then the probability Pr  
is still meaningful when r = n but assumes that the n entities are only a 
sample from a larger universe, such as the type person. If the n entities are 
in fact the complete presentation of a finite domain, as in sentence, then we 
would somehow like to express this completeness in the value of Pr . The 
approach in the next section addresses this point. 

Finally note that we are assuming here that both dom(f) and cod(f) are 
finite. This is justified by Lemma 5.3 as our use of a finite database allows 
the restriction of language to the entities mentioned in the database. We 
will typically use this restricted size of cod(f) since it gives the observed 
size of the sort. (See Section 6.4.4 for a detailed example using an infinite 
domain.) 

6.1.2. Posterior Measures 

Another way to view the establishment of belief in a conjecture is as finding 
the probability of the conjecture being true conditional on the observations 
made. Such conditional probabilities can be calculated using the discrete 
form of Bayes's rule 

p(A1B0)P(130)  p(B01A) = Ei p(AiBi)P(Ba) 

The value we will determine is the probability that there are no falsifying 
cases in the n entities (event B o ) given that we have observed no falsify-
ing cases in a sample of r entities (event A). To calculate the conditional 
probabilities P(AlBi), the probabilities of observing no falsifying cases if 
there are j falsifying cases present, we use the model that each entity is 
either a supporting case or a falsifying case, and that dom(f g) gives a 
set of such cases. Sampling the entities is then equivalent to successively 
taking elements from the set, without replacement, and seeing whether they 
support or falsify f g. The values of P(AlBi) are then given by the 
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hypergeometric distribution 

P(AiBi) = (n r) / (
in) 

The remaining terms in Bayes's rule are the prior distribution probabilities 
P(Bi ). For these we must make an assumption about the distribution of 
the number of supporting/falsifying cases present without reference to the 
conjecture. 

A uniform prior distribution has it equally likely to find the world having 
any number j of falsifying examples, j = 0, , n, giving P(B) = 1/(n+1). 
The corresponding posterior probability of there being no falsifying examples 
having observed r supporting cases is then 

r + 1  P(B0 1A) = 

This gives a linear progression towards certainty, with unity obtained if 
all n cases are found to be supporting. Figure 6.2 illustrates the growing 
confidence in a conjecture when n = 10. 

FIGURE 6.2. Progression towards certainty for posterior 
measure based on a uniform prior distribution (n = 10) 

An alternative is to view each case as being equally likely to be supporting 
or falsifying (or perhaps supporting with probability 1/k). Then the prior 
distribution is binomial, with P(B3 ) = (7;)(1/2)n, giving posterior probabil-
ity 

P(B0 1A) = 

Again we have a progression to unity, this time along an exponential curve. 
It is most likely that half of the cases would confirm the conjecture, so we 
find that until we have examined half of the cases the certainty increases 



6.1. NUMERICAL MEASURES OF CONJECTURE STRENGTH 	90 

very slowly. Passing that point it then increases steeply to 1, as shown in 
Figure 6.3. 

FIGURE 6.3. Progression towards certainty for posterior 
measure based on a binomial prior distribution (n = 10) 

6.1.3. Predictive Measures 

The way a reasoner should behave is perhaps the inverse of that given by the 
binomial posterior measure above. Instead of waiting until it is safe to start 
establishing certainty, typically a few supporting observations are sufficient 
to give a strong feeling of truth, with subsequent observations being less and 
less 'surprising' and thus containing less information about the truth of the 
conjecture. 

We can obtain a measure with these properties using an urn model similar 
to those in [18]. Suppose a red ball represents a supporting case and a 
white ball represents a falsifying case. If there are n cases in all then we 
view the world as an urn containing n balls, each either red or white. We 
don't known how many red balls there are and so we sample the urn by 
examining the cases it contains (without replacement). A true conjecture (a 
fact) corresponds to the urn containing only supporting cases (red balls). 

For two colours there are n 1 possible urns labelled j = 0, 	, n, with 
the jth urn containing j supporting cases and n — j non-supporting cases. 
Again it is straightforward to use Bayes's rule to find a measure of truth. 
This time successive observations reduce the possibilities for which urn we 
are sampling from and so increase the probability of the next case being 
a supporting one. The worth of a conjecture is its ability to predict, and 
so we take as our belief measure the probability P(24, 4. 1 1A) that the next 
observed case is supporting given that we have observed r supporting cases. 
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The probability of 14,., finding r supporting cases, under the assumption that 
each urn is equally probably is 

1  P(Ar ) = 
n + 1 	n(n — 1) • • • (n — r + 1) • j=r 

(The probability of finding r red balls in an urn with j < r is 0). If the 
next case holds then we will have observed r + 1 supporting cases and so 
the required probability is P(Ar+11/1,) = P(Ar+i)/P(Ar ). Thus 

r + 1  
P(Ar+ilAr) = 

As the number of observations increases, so the rate of increase of belief 
decreases, as illustrated in Figure 6.4. This matches our notion of 'informa-
tion content' outline above, the later observations contributing less to our 
belief. Note that when r = 0, when no observations have been made, we 
have P(A i  IA) = Thus we can only say that the next observed case will 
be supporting or falsifying with equal probability, so that our conjecture 
contains no predictive information. This is one reason why our definition 
of conjecture (Definition 5.2) includes the requirement that there is at least 
one supporting observation. 

FIGURE 6.4. Progression towards certainty for measure 
based on predictive power 

We can make this measure more accurate by taking into account the size 
of the conjecture's codomain, as we did in the hypothesis testing of Sec-
tion 6.1.1. That is, we would like to incorporate the fact that a conjecture 
such as male father True ! is more likely to hold at random than a con-
jecture wife father mother. To do this we extend our urn model to balls 
with k possible colours, where k is the number of entities in the codomain of 
the conjecture. One of the k colours represents a supporting case, the rest 
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being falsifying cases. If we have n cases in all then N, the number of dif-
ferent urns with n balls coloured by k colours is given the by n-dimensional 
tetrahedral numbers (see [1]) 

Artf  = (k n — 1) .  

Thus Ar4g is the total number of possible states of the world, all of which 
we assume are equiprobable. The number of these states with j supporting 
cases is given by Nnkj31., so that we now have 

P(Ar  = 	Nnk—il  nj(ni 12) ......(ini rr++ 11)) 1v77  i=r 

Using Bayes's rule as before gives 

P(Ar+1 I Ar = 
r + 1 

 r 	k  • 

When k = 2 we have the same result as before, so this new formula can 
be seen as a generalization of the predictive measure from predicates to 
arbitrary function equations. 

Figure 6.5 illustrates the growth of certainty for conjectures with k = 3 
and k = 4. Since such conjectures are less likely to hold at random than 
predicates (where k = 2) there is a corresponding decrease in their predictive 
strength. When r = 0 we have P(A i  IA0 ) = I so as before an untested 
conjecture has no predictive information. 

FIGURE 6.5. Progression towards certainty for general pre-
dictive measure 
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6.1.4. Information Content 

In the previous section we described supporting observations that came later 
as being less 'surprising' than earlier ones. This was the motivation for our 
predictive measure, but surprise itself is also a central part of information 
theory [46]. We can use our predictive probability P(A r+i Or)  to calculate 
the information content of the next case being a supporting case and also 
the entropy of the next observation as a whole. 

Suppose we have made r supporting observations for a conjecture with k 
entities in its codomain. The self-information [22] of the event that the 
next observation is supporting is given by 

1 I= _ log2  P(Ar+iiAr) = log2 
(r ) 

 
r k 

Figure 6.6 shows values of e for increasing r when k = 2, 3, 4. As the num-
ber of observations grows the amount of information provided by each new 
supporting observation decreases. That is, the fact that the new observa-
tion supports the conjecture becomes less surprising, corresponding to the 
increasing predictive strength of the conjecture. Note too that for larger 
values of k the outcome is each observation is always more surprising, since 
there are more possible outcomes, and hence the self-information values are 
above those for smaller k. 

FIGURE 6.6. Declining self-information of supporting obser-
vations as r increases, showing k = 2 (lower), k = 3, and 
k = 4 

Self-information gives the amount of information contained in a supporting 
observation, but what can we say about the observation in general? A 
standard way of measuring the certainty we have in the outcome of the next 
observation is to look at the entropy of the observation. When entropy, 
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the expected self-information for all outcomes, is 0 we have total certainty 
about the result. For larger entropies our corresponding certainty is less. If 
we suppose that each of the k — 1 non-supporting outcomes is equally likely 
then after r supporting observations the entropy of the next observation is 

1 — P Hrk  = —(P log2  P) — (1— P) log2  k 	_ 1  , 

where P = P(Ar+ilAr) is the probability that the next observation is sup-
porting. 

Figure 6.7 shows the decreasing entropy for k = 2, 3, 4. As before larger 
values of k imply greater uncertainty and so give higher entropy values. 
Note also that for an untested conjecture we have no predictive information 
about the next observation and so the self-information and entropy values 
coincide. 

0 	2 
	

4 
	

6 
	

8 
	

10 

FIGURE 6.7. Declining entropy of observations as r in-
creases, showing k = 2 (lower), k = 3, and k = 4 

To conclude this section it is worth noting that in practice we will not make 
any use of these measures. Conjectures are typically not made in isolation, 
but rather as part of a conjectured theory of function equations. However, 
the ideas here will form the basis of our discussion of such theories, par-
ticularly the null assumption of a function's result being randomly drawn 
from the entities of its codomain. Furthermore, the graphs in the preceding 
figures give a good illustration of the growth of belief in conjectured knowl-
edge. For varying k we see the general number of observations we must 
make to achieve a given certainty. In statistical terms, this gives the sample 
size needed for a given k to achieve such certainty. 
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6.2. Consistency and Experiments 

6.2.1. Closure 

We define the closure, CE(A), of a database A with respect to a set of 
function equations E to be the set of all data that can deduced from E and A. 
This operation is similar to the Knuth-Bendix completion procedure except 
that we look for all grounded consequences, rather than just a reduced set. 

In forming the closure we implicitly have the entity inequations a 0 b for 
all E-entities a, 6, with a # b, in the same sort a. The closure process 
may then generate data which contradict the original data, as happened in 
the database A in Example 5.2. We then say the closure failed and write 
CE(A) = 1. The corresponding E is said to be inconsistent with respect to 
the database A. If CE(A) 0 1 then we say E is consistent with respect to 
A. 

Note that CE(A) need not be finite. If 

A = {not True —› False, not False 	True} 

and E = cb then, for example, the datum not 2k True True can be deduced 
from E U A for any k > 1. Thus in defining the closure process we fix 
attention on data with a fixed function length, as we did for the induction 
process itself. 

Let R = KBI(E U A). If R is I then E is inconsistent with A and the 
closure failed. Otherwise the closure of A of length m with respect to E is 
given by 

CP(A) = {fa = b I  8(f) = m,a E dom(f), b E cod( f), fa ->R b}. 

If E is finite then we immediately have that C(z) is finite since there are 
only finitely many functions f of length m. Thus for fixed m the closure 
process will terminate. However, as noted above, we may have CV(L)  0 0 
for any M. 

Our main interest will be in the case when m = 1. Then the closure gives 
all known and predicted values for processes represented by single functions 
in E. We will use CE(A) for CPA). 

The following two lemmas are trivial consequences of the above definition 
but give important properties of the closure. 

LEMMA 6.1. If C is consistent with respect to A then 

C Cc(A)* 

PROOF. By the monotonicity of = (Theorem 4.1), any consequence of A is 
a consequence of C U A. 	 El 
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LEMMA 6.2 (Hereditary). If C is consistent with respect to A and C' CC 
then C' is also consistent with respect to A 

PROOF. Anything generated by KBI for C' is a subset of that created for 
C and so if C did not activate Contradiction then neither will C'. 	0 

The hereditary property of Lemma 6.2 gives some indication that the con-
sistent sets for a database A may be the independent sets of a matroid [36]. 
However, the matroid exchange property is not satisfied, as shown in the 
following: 
EXAMPLE 6.1 (Consistent subsets). Consider again the database A in Ex-
ample 5.2. We found the five conjectures 

/ female ,-' False !, not female ''.' True !, 
C = 	female fL-' not male, not female L-2 male, 

not not = i 

The subsets of C which are consistent with respect to A are 

(/), {not not = 
{female 	False !}, {not female 	True !}, 
{female not male}, {not female male}, 
{not not = i, female 	False !}, 
{not not = i, not female True !}, 
{female 	False !, not female :sm. True !}, 
{not not = i, female not male}, 
{not not = i, not female male}, 
{female not male, not female male}, 
{not not = i, female 	False !, not female 	True !}, 
{not not = i, female not male, not female cs2 male}. 

A collection of sets I satisfy the exchange property if for any I,J E I with 
III = IJI -I- 1 we can choose an eE I\J such that J U {e} is in I. For the 
above collection of sets consider 

/ = {not not = i, female False !, not female True !}, 

J = {not not = i, not female male). 

Neither female False ! nor not female True ! is consistent with J and so 
the collection does not satisfy the exchange property. 0 

Lemma 6.2 has an important application in that, because they are hered-
itary, we can express the above list of all consistent subsets by giving just 
the maximally consistent subsets. This will be our topic in the next section. 
The fact that the subsets don't constitute a matroid means that there is no 
simple way of finding these maximal subsets, by using a greedy algorithm 
[36], and so we will need some combinatorial approach. 
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Note that a set E of conjectures and facts is necessarily consistent since it 
contains only function equations and so cannot produce any ground equa-
tions to contradict declared entity inequations. Thus KBI(E) is never 1 
and so we can use KB(E) as a canonical form of our conjectures. 

LEMMA 6.3. A set C is consistent with respect to A if and only if KB(C) 
is consistent with respect to A. 

PROOF. Since = is a consequence relation, C U A and KB(C) U A are 
equivalent. 	 I=1 

Reducing a set of conjectures is not always desirable, especially in the pres-
ence of erasing conjectures such as male True !. In particular it excludes 
the selection of working theories from the conjectures since one theory may 
destroy another theory in the process. (This is the case with the conjec-
tures of Example 5.2.) The conjectures should only be reduced if they are 
consistent with the data and hence constitute a theory in themselves. 

A final definition to consider in relation to closure is the motivation for the 
whole exercise. 

DEFINITION 6.1. If E is consistent with respect to A then we define the 
predictions, PE(A), of E with respect to A as 

PE(A) = CE(LX) \ D. 

That is, the predictions are the data implied by E and A which are not 
already known. Predictions will play an important role in describing exper-
iments and providing a qualitative measure of the strength of a system of 
conjectures. 

Until now we have allowed our database A to be quite general in the type 
of equations it contains. However, much of our interest lies in databases 
which model the making of observations about particular processes, where 
a process is represented by a single function. Each datum will thus involve 
only a single function, such as the observation father Alice John about 
the process father. We capture this kind of database with the following 
definition. 

DEFINITION 6.2 (Simple Database). If every datum fa —> b in a database 
A has a s-word f then we say that A is simple. 

Simple databases also give rise to useful results, such as the following char-
acterization of facts in terms of their predictions. 

LEMMA 6.4 (Summative Induction). If f = g is a fact from a simple data-
base A then P( f=9)(A)  =C b. 
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PROOF. Suppose ha = b is in C( f=g )(A), so A U (f = g) 	ha = b, and that 
A 	(ha = b). Thus a proof of ha = b requires the use of f = g in at least 
one proof step. That is, for some h 1 , h2 , and c, 

ha =Au ( f=g ) h i  fh2 c = h 1 gh 2 c =pu(f=g ),  b. 

To reduce h 1 gh2 c to b we must know the value of h2 c, since A is simple. 
Suppose h2 c = c'. Then h i  fc' =6, h igc', since f = g is a fact from A, and 
so the use of f = g was unnecessary in this proof step. This holds for all 
uses of f = g and so ha =,n, b, contradicting our assumption. Hence there 
is nothing in the closure of A with f = g that is not a consequence of A, 
giving P( f=g)(A) = 4. 0 

To see that the simplicity requirement is necessary, consider the database 

= 	male John 	True, tall John 	True, A  
male father John 	True, not tall father John 	False J' 

from which we induce the single fact male = tall. We can then use this fact 
to predict not True = False using the the two non-simple data in A. 

This lemma justifies referring to facts as a form of summative, rather than 
ampliative, induction. This may be somewhat unfair however, since a fact 
may arise simply because the underlying signature has not been completely 
defined. As seen in Lemma 5.3, a language extension may downgrade a fact 
to a conjecture, possibly giving predictions for the newly added entities. 

6.2.2. Competing Theories 

DEFINITION 6.3. A subset C' C C is maximally consistent in C with respect 
to A if C' is consistent with respect to A and there is no e E C \ C' such 
that C' U e is consistent with respect to A. 

When the A is clear we will say simply that C' is a maximally consistent 
subset of C. 

LEMMA 6.5. Suppose C is the result of induction on A. Then if C is in-
consistent with respect to A, C contains at least two maximally consistent 
subsets. 

PROOF. Any single conjecture c 1  E C must be consistent with respect to A, 
since it was the result of induction on A. Hence there must be a maximally 
consistent C 1  c C containing e l , obtained by successively adding conjectures 
to Ica from C until no longer consistently possible. Since C is not consistent 

• there exists another c2  E C \ C1 , and similarly there must be a maximally 
consistent C2 C C containing c2 . Since c2  C1 , C1  and C2 are two distinct 
maximally consistent subsets of C. 0 
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Hence if a set of induced beliefs are inconsistent, there are at least two 
smaller belief sets which are consistent. We can view these smaller sets as 
competing theories for explaining the data. 

DEFINITION 6.4. The theories,Tc (A), of a set of conjectures C with respect 
to a database A, is the set of maximally consistent subsets of C with respect 
to A. The theories of a database A is the set T(A) = TIND(A)(A). 

Hence a set of conjectures C is consistent with respect to A if and only if 
irc(A)i = 1. 

EXAMPLE 6.2 (Competing theories). Consider again the database A in Ex-
ample 5.2. We found the five conjectures 

1 female ,--' False !, not female '--' True !, 
C = 	female '--' not male, not female '--' male, 

not not = i 

Obtaining maximally consistent subsets gives 

{not not = i, female 	False !, not female 	True !}, 
Tc (A) = 	{not not = i,female-- not male, not female male} 

The two subsets correspond to two differing theories about the function 
female. One theory says that every person is female, while the other says 
that to be female is to not be male. A reasoner must chose one of these as 
a working theory. 0 

EXAMPLE 6.3 (Three competing theories). The example we have used so 
far looks at functions with results in sentence, either True or False, but 
inconsistency can obviously arise for arbitrary functions. Consider the larger 
database 

mother Paul -4 Mary, 
grandfather Paul 	Bob, daughter Bob -4 Mary, 
wife Peter -4 Mary, father Paul 	Peter, 

A = 	aunt Paul 	Jill, sister Jill 	Mary, 
grandfather Alice —> George, daughter George —+ Jenny, 
father Alice 	John, wife John 	Jill, 
aunt Alice 	Mary, sister Mary 	Kelly 

The first seven data use incomplete information to teach the reasoner three 
different ways of finding a person's mother. The last six then play on the 
incompleteness to give inconsistency in the predictions of Alice's mother. 
We have 

/ daugher grandfather ''-' mother, 
C = IND(A, 2) = 	wife father '-. mother, 

sister aunt --. mother 
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giving three competing theories 

/{daugher grandfather ne mother}, 
Tc(A) = 	{wife father ,-, mother}, 	 . 

{sister aunt:_-_-' mother} 

As mentioned previously, without noise the only cause of inconsistency in 
an inductive belief set is incomplete information. We thus take the scientific 
approach and seek to make further observations to remove the inconsistency 
and so establish one of the competing theories as the only consistent theory. 
This is our subject in the next section. 

6.2.3. Inductive Experiments 

In the case of deductive reasoning, we saw in Section 3.5 that when a pos-
sible theorem was a non-theorem we were able to generate certain side con-
ditions which could be added to the hypotheses to give a theorem. This 
is a meta-reasoning for deduction whereby the reasoner is not only able to 
prove theorems but is also able to say what is wrong when it fails to prove 
a theorem. 

The analogous meta-reasoning for induction is the generation of experiments. 
Given a database, the reasoner attempts to induce a belief set from the 
information it contains. If the resulting set of conjectures is consistent with 
respect to the database then we would say the reasoner has been successful 
in establishing a set of beliefs. However if inconsistency is present in the 
conjectured set then the result of the inductive process is unsuccessful, with 
belief to be given to one of possibly many maximally consistent subsets. 

In this case the reasoner needs to be able to decide between the potential 
belief sets, and the scientific approach to resolving inconsistent theories is 
experimentation. Like the generation of side conditions, the reasoner needs 
to generate experiments that, when carried out, it thinks will result in a 
single consistent set of conjectured belief. 

DEFINITION 6.5. An experiment is a composition of a function term f : 
a 7 and an entity a E a. The result of an experiment fa is an equation 
fa = b for some entity b E T. 

We are interested firstly in choosing an experiment to perform and then 
being able to make some comments about the change that adding the result 
to the database will have on the generated theories. Of course these two 
questions are closely related since ideally we want to choose experiments 
that reduce the number of competing theories. 
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DEFINITION 6.6 (Crucial experiments). Suppose T(A) = {C1, 	,C}. If 
there is some experiment fa such that (fa = b) E Pc3  (A) and (fa = E 
Pck  (A) for some b# c, then fa is a crucial experiment for A. 

The motivation for this definition is obvious. If Cj U A = (fa = b) and 
Ck U z = (fa = c) then the result of fa must contradict Cj or Ck, or 
possibly both. The intrinsic belief dynamics of applying IND to the new 
database will then revise C.; and Ck, finding a maximal subset of each which 
is consistent with the result of fa. Both will decrease in size and ultimately 
one or both will disappear. 
EXAMPLE 6.4 (Conflicting predictions). Consider again the database 

/ male Paul .— True, male Alice .-.- False, 
A = 	female Paul 	False, 	 . 

not False 	True, not True 	False 

We have two maximally consistent beliefs sets 

C1  = {female --' False !, not female ':'_-' True !, not not = i}, and 
C2 = {female ,--' not male, not female_^_-' male, not not = i}. 

Generating the closures of both sets with respect to A we find that 

Pc, (A) = {female Alice .— False}, and 

	

Pc, (A) = {female Alice 	True}. 

Hence have the single crucial experiment female Alice. Following the experi-
ment we will have a single consistent theory, either C1  or C2 for Alice being 
either male or female, respectively. 0 
EXAMPLE 6.5 (Three conflicting predictions). For the three competing the-
ories given in Example 6.3, we find three different predictions for the mother 
of Alice: 

mother Alice -- Jenny, mother Alice --4 Jill, mother Alice —+ Kelly. 

The crucial experiment to consider is mother Alice. 0 

The situation is not always as straightforward as in these examples. The 
presence of competing theories does not always imply the presence of crucial 
experiments, as we will see later in some extended examples, and so we 
cannot guarantee the reduction of the theories. However, it is still valuable 
to look at the predictions of the theories for a source of experiments. Each 
prediction is essentially an opportunity for falsification, a notion we will 
return to in Section 6.2.4. We make a null hypothesis that the result of 
fa is equally likely to be any of the b E cod(f), all but one of which will 
falsify the theory. Thus it is better to try experiments with large codomains 
first (such as person) rather than those with small codomains (such as the 
boolean sentence). 
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One special class of non-crucial experiments is worth considering. In Sec-
tion 3.5 we identified certain side conditions as being extraneous, specifically 
those which were consequences of the hypotheses alone and thus would give 
a theorem for any conclusion. An analogous notion exists for inductive rea-
soning. 

DEFINITION 6.7 (Extraneous Result). Suppose that for a database A we 
have the theories 

T(A) = {C1, C27 • • • 7 C}- 
If (fa = b) E 	(A) for some k and there is no j and c 	b such that 
(fa = c) E Pc  (A) then the experimental result fa = b is said to be 
extraneous. 

EXAMPLE 6.6 (Extraneous result). We introduce a new person, George, to 
the discussion of Example 6.4, adding to A that George is male to give 

/male Paul —> True, male Alice —> False, 
= 	male George -4 True, female Paul —> False, 	. 

not False —> True, not True —> False 

We have the same consistent sets C I  and C2 as before but this time we find 

Pc, (A') = {female Alice —> False, female George —> False}, and 

Pc2  (CV) = {female Alice -4 True, female George --> False}, 

so the experimental result female George = False is extraneous. 0 

The observation of an extraneous result will not distinguish between theories 
but may still result in new conjectures. 

We cannot talk about extraneous experiments since if all competing theories 
make the same prediction for the result of an experiment and, instead of 
being extraneous, the result differs from the common prediction, then the 
result has a drastic effect on the inductive beliefs. 

DEFINITION 6.8 (Anomalous Result). Suppose that for a database A we 
have the theories 

T(A) = 	C2, • • • , CO. 
If (f a = b) E 	(A) for some k and there is no j and c 	b such that 
(f a = c) E 	(A) then the experimental result fa = c is said to be an 
anomalous experimental result. 

6.2.4. Falsifiability 

For a database which gives competing inductive theories the practical ques-
tion then arises as to which should be used. That is, which set of conjectures 
should we adopt as an extension to our belief set. 
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One well known approach to this question is to look at the falsifiability of 
each theory [38]. The theory is then stronger if it is more likely to be falsified. 
Einstein's theory of gravitation, the standard example of this, made many 
bold and observable predictions, opening it to being easily falsified were it 
incorrect. 

We have a pragmatic use for this idea here. If our reasoner is faced with a 
number of competing theories then we would like to carry out experiments 
to decide between them, ultimately falsifying all but one. By taking the 
theory which is most falsifiable as a working theory we in a sense maximize 
the chance of this happening. 

DEFINITION 6.9. Let C be a set consistent with respect to a database A. 
If (f a = b) E Pc(A) and the result of the experiment fa is fa = c, b # c, 
then we say that C is falsified. 

Without any additional information about the domain, the chance of a the-
ory being falsified according to this definition is thus proportional to the 
number of predictions it makes, and the quality of those predictions. A the-
ory which makes no predictions can never be falsified and so is less useful 
than one which does make predictions and so can be tested. Furthermore a 
theory which makes, for example, a prediction about the result of a sentence-
valued experiment is more likely to be right, and less likely to be falsified, 
than one making a prediction for a person-valued experiment. We capture 
these ideas in the following definition. 

DEFINITION 6.10. Let C1  and C2 be two theories for a database A. Then 
C1  is a stronger theory then C2 if 

(1_ H 	1  ) 

I 	
> (1 	IT 	1  

I 	• 
eEPG'i (A)

cod(e)I 	
eE77c2 (A)

cod(e)1) 

We frequently have conjectures only between predicates, in which case the 
the codomain consists of True and False and so has constant size 2. The 
above condition then becomes 

(1— 
eEPci  (A) 

Tr  1) > ( 1 	rr  1) 
11  2 	11  2 

e€Pc2  (A) 
or (1/2) 11'c1( 6 ) 1  < (1/2) 11'c2(A)I, 

giving the following simple result: 

LEMMA 6.6. Let C1  and C2 be two theories for a database A with every 
element of C 1  and C2 a predicate. Then C 1  is a stronger theory than C2 if 

1Pc1 (6 )1 > PC2(6)1. 
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Our definition of theory strength is based on probabilities but there is one 
situation where we can be certain that a theory is stronger than another, 
captured in the following definition. 

DEFINITION 6.11. A theory C 1  is strictly stronger than theory C2 if any 
prediction of C2 is also a prediction of C 1 , and not conversely. 

That is if C1  is strictly stronger than C2 then Pc2 (A) C Pc, (A) so that 
1 	 1  H 	'cod (e) I < 	'cod (e) I 

eEPc2  (A) 	eEPci  (A) 

giving the natural relationship between 'stronger' and 'strictly stronger': 

LEMMA 6.7. Let C1 and C2 be two theories for a database A. If C1  is 
strictly stronger than C2 then C1  is stronger than C2. 

The following examples illustrate the calculation of falsifiability and show 
that the converse to this lemma does not hold. 
EXAMPLE 6.7 (Predicate theory strength). Consider the three functions 

male, father, tall : person 	sentence 

for which we have a database about one generation of our family tree, given 
by 

/father John .— True, father Peter —> True, 
A = 	male Peter —+ 	male Mary ---+ False, 	• 

tall John —+ True, tall Mary 	True 

Induction results in the two maximally consistent sets of conjectures 

C1  = {father '-.' male, tall ,-.., True !}, 

C2 = {tall --. father, father '--' True !, tall cs2 True !}, 

from which we obtain the predictions 
_ , _{ father Mary 	 -- False, male John 	True, } 
Pci  la) — 	 , tall Peter 	True 

Pc, (A) = { father Mary 	True, tall Peter 	True }. 

Hence we would say that C1  is a stronger theory than C2. Specifically, if 
Mary, John, and Peter are the only entities in person then for the three 
functions we have nine possible experiments, six of which we already have 
the results for in A. If we supposed that C 1  was not a valid theory and 
that its predictions were simply random, then each of the remaining three 
experiments would support it with probability 1. Thus the probability of 
it being falsified by the remaining experiments is 1 — (1) 3  = 0.875. On 
the other hand, the outcome of male John has no effect on C2 and so its 
probability of being falsified is only 1 — (1) 2  = 0.75. We hence say that C1  
is stronger than C2. 0 
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EXAMPLE 6.8 (Equal theory strength). The two maximally consistent C1 
and C2 in Example 6.4 both give a single prediction and so we would say 
that they are equally strong. 0 
EXAMPLE 6.9 (Multi-sorted theory strength). As an example which doesn't 
involve predicates, consider the following signature: 

Alice, John, Jill, Jenny, Kelly, 
Paul, Peter, Mary E person, 

E = 	Blue, Brown, Green E colour, 
eyeColour : person 	colour, 
father, mother, wife, sister : person —4 person 

We make the observations A about our families: 
father Alice —+ John, father Paul 	Peter, 
wife John —> Jill, wife Peter 	Mary, 
mother Alice 	Jill, sister John 	Jenny, 
sister Jill 	Mary, sister Mary —> Kelly, 
eyeColour Alice 	Blue, eyeColour John 	Brown, 
eyeColour Jill 	Blue, eyeColour Paul —> Green, 
eyeColour Jenny 	Brown 

We have three maximally consistent sets of conjectures 

= {eyeColour mother eyeColour, wife father mother}, 

C2 = {eyeColour sister eyeColour, wife father mother}, 

C3 = {eyeColour mother eyeColour, eyeColour sister eyeColour}, 

with corresponding predictions 

Pc i  (A) = {eyeColour Mary --+ Green, mother Paul 	Mary}, 

pc2 (A\  = f eyeColour Mary 	Blue, eyeColour Kelly 	Blue, , 

1 mother Paul 	Mary 

Pc, (A) = {eyeColour Kelly 	Blue, eyeColour Mary 	Blue}. 

With three elements in colour, the probability of C3 being falsified is 1 — 
(A) 2  = 0.889. Eight elements in person gives the probability of C 1  being 
falsified as 1— (i)() = 0.958 and of C2 being falsified as 1— (A) 2 (i) = 0.986. 
We thus take C2 as the strongest theory. 

Note that C2 is in fact strictly stronger than C3, though only stronger than 
Cl. 0 

Our considerations here, particularly in looking at the size of a conjecture's 
codomain, are similar to our numerical measures based on hypothesis test-
ing and predictive strength (see Section 6.1). This kind of analysis is not 
available in standard logic programming where all statements are predicates 
and the notion of a codomain is not present. Treating the equations in the 
previous example in this way, we would not have been able to distinguish 
between the theories C1 and C2 

1 
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Finally, note that the problem of finding the theory of an arbitrary set of 
conjectures is likely to be computationally hard and a complete analysis 
of its complexity, in terms of the number of consistency checks required, 
is beyond the scope of this work. Our present interest is in the reasoning 
itself, rather than in the practicalities of efficient implementation. How-
ever, obtaining a single maximally consistent set is linear in the number of 
consistency checks required since any conjecture can be extended to a max-
imal set by successively adding conjectures which retain consistency until 
all conjectures have been tried. That is, with N conjectures we can find a 
maximally consistent set with N tests for consistency. Thus for large sys-
tems of conjectures we can also make use of our falsifiability criterion by 
taking a small sample of maximally consistent sets, generated by extending 
each of a collection of conjectures, and selecting the strongest of those as the 
working theory. Choosing the conjectures to extend from those not already 
in a generated maximal set can result in a good approximation to the full 
theory of the conjectures. 

6.3. Blocks World 

The well-known blocks world ([43], [21]) provides us with a graphical il-
lustration of our reasoner's inductive beliefs. Rather than questioning the 
reasoner to find out what it believes, as in previous dialogues, at each stage 
now the reasoner draws a picture of its beliefs to show what it thinks. 

We represent the blocks world by the signature 

/ A, B, C, D, E E block, 
E = 	below, above : block --4 block, 	. 

table : block —› sentence 
For example, we use below B = A to say that A is below B and table A = True 
to say that A is on the table. 

The reasoner uses values of table and below to draw a picture of its beliefs. 
(We have deliberately not used above since it leaves the reasoner to figure 
out below values from given information about above. Note also that using 
above for table-up building requires the solution of equational systems, as 
described in Section 3.7.) For each block A, B, C, D, E, the reasoner first 
consults its declared knowledge to determine if the block is on the table or 
on a block which it knows the location of. If successful it draws a block in 
its place in the world. If the declared knowledge is not sufficient then it tries 
to determine the same information using its inductive conjectures. If this is 
successful the block is also drawn, but is shaded to indicate it is based on 
conjectured information. If no information is available then the block is not 
shown. 
EXAMPLE 6.10 (Simple learning). Figure 6.8 illustrates this process with a 
simple sequence of increasing information. 
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TA-1 	FD1  
(a) 	 (b) 
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(c) 	 (d) 

A 

(e)  

A 

(f) 

FIGURE 6.8. Growing knowledge in a blocks world 

The reasoner begins with no knowledge about the position of the blocks, 
giving the empty table in Figure 6.8(a). The remaining arrangements are 
the result of the following statements. 

(b) 'A is on the table.' The reasoner makes the conjecture table 	True !, 
guessing that this property holds for all blocks. A is drawn with certainty 
on the table, with the remaining blocks also positioned on the table but 
shaded to indicate that their position is only a conjecture. 

(c) 'A is below B.' The reasoner makes the additional conjecture table below 
True !, that everything below something is on the table. However, this 
conjecture doesn't provide any new information. 

(d) 'B is not on the table.' The initial conjecture that everything is on the 
table is falsified and blocks C, D, and E are removed. 

(e) 'C is below D.' The reasoner now knows where D is in relation to C but 
doesn't yet know the location of C. However from earlier information it 
is able to conjecture that C is on the table, so placing both C and D. 

(f) 'C is on the table.' Complete information is now available about the 
position of C and hence of D. 

This was the first example tried after implementing this blocks world rea-
soner. We were quite surprised when C and D appeared in Figure 6.8(e), an 
encouraging sign that the reasoner can out-reason its creator. 0 
EXAMPLE 6.11 (Working theories). The world drawn in Figure 6.9 intro-
duces the above function and in doing so makes necessary consistency anal-
ysis to find a strongest working theory. 
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1-71 	M 	FE7  
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(0 	 (g) & (h) 

FIGURE 6.9. A blocks world with multiple theories 

The first three statements are the same as in the previous example: 'A is on 
the table,' A is below B,' and 'B is not on the table.' Figure 6.9(e) is the 
result of stating 'B is above A.' Physically, this tells us nothing new since 
we already had below B = A. However, the four conjectures generated are 
inconsistent, resulting in the maximally consistent subsets given in Table 6.1. 
None give any predictions and so each is unfalsifiable, leaving us unable to 
choose a strongest theory. We arbitrarily choose the first as a working theory. 
In our blocks world this is in fact redundant: with no predictions we will 
not see any results of the reasoner's conjectures. 

Conjectures 	Predictions Falsifiability 
below above i 
	

0.0 
above below 

- 

I 
below above 

- 

i 
	

0.0 
table  above 	False ! 
above below True ! 0.0 
table below True  !  
table below True ! 0.0 
table above2-2 False ! 

TABLE 6.1. Maximally consistent sets for Figure 6.9(e) 



6.3. BLOCKS WORLD 	 109 

Figure 6.9(f) incorporates 'C is below D,' resulting in the same maximally 
consistent sets but this time with associated predictions, as shown in Ta-
ble 6.2. The third theory is most falsifiable and so we choose it as a working 
theory. The prediction table C = True allows the reasoner to conjecture the 
positions of C and D on the table. Even though it knows D is to be drawn 
on top of C, D is shaded since it is uncertain where C is. 

Conjectures 	Predictions 	Falsifiability 
below above i 
	

above C = D 	0.8 
above below i 
below above a' i 
	

0.0 
table above 	False ! 
above below True ! table C = True 0.9 
table below True ! above C =  D  
table below True ! table C = True 0.5 
table above 	False ! 

TABLE 6.2. Maximally consistent sets for Figure 6.9(f) 

The approximate equivalence between falsifiability and the number of pre-
dictions has an obvious practical meaning here. If more predictions are made 
then the reasoner will be able to describe the location of more of the blocks 
so that the strongest theory will be the best at completing the reasoner's 
world. 

In Figure 6.9(g) we have added that `B is below E', falsifying two of the 
previous competing theories. The remaining two and their predictions are 
given in Table 6.3. Note that we lose the prediction table C = True and 
hence can no longer show C and D, even though we know C is below D. 

Conjectures 	Predictions 	Falsifiability 
below above i 
above below i 
below above i 
table above False ! 

above B = E 
above C =  D  

0.96 

 

0.0 

TABLE 6.3. Maximally consistent sets for Figure 6.9(g) 

The remaining dilemma here is quite subtle. The three conjectures generated 
all seem natural and so it is strange that there is an inconsistency. The 
problem lies in the equation above below i which in fact is not valid in the 
physical world we are modelling. Applying below to A can never give a block 
and so we can never obtain the right-hand identity. To capture this we add 
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that 'There is nothing below A,' encoded in the equation below A = 0. We 
then have the unique maximal theory given in Table 6.4. 0 

Conjectures 	Predictions Falsifiability 
below above i 
	

0.0 
table above sl-2. False ! 

TABLE 6.4. Unique maximally consistent set for Figure 6.9(h) 

6.4. Theoretical Systems 

6.4.1. Data Compression and Axioms 

One important application of summative knowledge, and a very important 
motivation of inductive learning, is to reduce the amount of data that needs 
to be known. For example, in finding a law that governs the motion of a 
planet around the sun we can then discard most of our observations of it's 
motion since they can be generated from the law and some initial conditions. 

We might call this process 'inverse deduction'. In contrast to Knuth-Bendix 
completion which deduces all possible data from a given equational system, 
here we want to find a minimal equational system from which we could 
deduce all known data. The obvious inference rule for this process then is 
simply the inverse of the Deduce rule used by KB: 

Compress Ru {s —> t} = R if s RVs-q) U R\(8-44) t 

This single inference rule applied successively will take an initial rewrite 
system Ro  and remove all rules that are deductive consequences of remaining 
rules. If Ro  is finite then this procedure must always terminate with some 
R„, since a rule is removed at each step of the algorithm. The initial Ro  will 
be the known database A together with the canonical form of the accepted 
facts and conjectures from IND(A). 

This process is identical to the task of finding a minimal system for inequa-
tions, examined in Section 3.4.4. As we saw there, the result of this process 
can be effected by the ordering of the rules in R and so we again refine the 
process. Specifically, (s i  t1 ) > (s2  t2 ) if and only if S i  > s2 , or s 1  E s2  
and t 1  > t2 . We then have 

Compress RU {s —> t} = R if s 	U -4RVs-+t) t 7 

s —> t examined from highest to lowest. 

The result for a given system is then uniquely determined. We could follow 
the development of minimal systems and provide a procedure whereby two 
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equivalent systems would have the same compressed form. This is straight- 
forward but unnecessary here since we are only looking at isolated systems. 

This compression algorithm can also be approached from the viewpoint of 
theoretical systems. Popper [39] defines a set of axioms for a system to be 
a set satisfying the following properties: 

1. The axioms must be consistent; 
2. No axiom should be the consequence of other axioms; 
3. Every statement in the system should be a consequence of the axioms; 
4. Every axiom is necessary for describing the system (equivalently, there 

are no consequences of the axioms that are not in the original system). 

It is clear that if the conjectures are consistent with respect to A then the 
result of the compression procedure will satisfy all of these conditions with 
respect to the closure of A. Thus we call the final set of rules R7, with --+ 
replaced by = a set of axioms for the closure of A. If IND(A) contains any 
conjectures, rather than just summative facts, then we more specifically say 
it is a set of conjectured axioms 
EXAMPLE 6.12 (Conjectured axioms). Consider the database 6.2 in Exam-
ple 5.1 from which we conjectured that male father ,--' True !. To find the 
axioms for A we apply the above compression procedure to 

/father Paul —> Peter, father Alice —> John, 
Ro  = 	male Peter ---> True, male John --> True, 	. 

male Alice ---> False, male father —> True ! 
The two data involving male are each the consequence of the corresponding 
father information together with the conjecture relating male to father. This 
gives the conjectured axioms 

R = father Paul = Peter, father Alice = John, 
male Alice = False, male father = True ! 	• 

0 

Note that we also have a relationship here with the theory of prime impli-
cants [40]. Viewing the Ro  and R above as conjunctions of equations, R is 
then a prime implicant of R o  since it is equivalent to R o  but would cease to 
be so if any further equations were removed from it. 

Finally, if the conjectures E are not consistent with respect to the data A 
then we cannot axiomatize the closure of E with respect to A. However 
we can still attempt to find a compressed system. Suppose in the above 
example that our conjecture was that male father False !. Then during 
compression we would have the critical pair 

male Peter 4-- male father Paul —> False 
which does not match the known datum male Peter —> True and so Compress 
cannot be applied. Thus an interesting empirical measure of the consistency 
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of a set of conjectures with a database is how well its canonical form com-
presses that database. 

6.4.2. Toy Physics 

Having described the induction procedure in detail, we now give an illus-
tration of it in terms of scientific discovery. Consider a toy world consisting 
of a square with vertices A, B, C, D. We are interested in the behaviour of 
two physical processes, h and r, which can be applied to the square, moving 
each vertex into a new position. The only experiment we can perform is to 
focus on a particular vertex, apply one of the processes, and record which 
vertex ours replaces. 

A 

FIGURE 6.10. A simple physical system 

To model this world we use the signature 

= f A, B, C, D E point, 1 
1 h, r: point 	point f 

with entities {A, B, C, D}. 

6.4.3. Theories Concerning Points 

We begin with two preliminary experiments to try and determine the be-
haviour of h, giving an initial database 

D = {h A D, h B --+ C}. 
IND (D) is empty for all function lengths and so we cannot make any conjec-
tures. We turn our attention to r, making observations for the same entities 
to give the extended 

D i  =DU{r A —+ B, r B C}. 

Now we are able to make our first conjecture, 

IND(Di ) = {r r h r}, 

since r r A —› C +— h r A. The term ordering chosen by the reasoner has h < 
r, trying to reduce new terms encountered, such as r, to known terms, in this 
case h. KBI(D i  U (r r = h r)) is then unbounded, containing r hkC 	hk+1C 
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for all k > 1, but we are still able to use proof by contradiction to look for 
predictions, in this case finding none. 

A further observation gives D2 = D1 U {r.  C 	D}, resulting in the larger 

h, IND(D2 ) = 

	

	 rrr  rhrh, rrr ,2:•rhr 
and giving our first predictions 

P(D2 ) ={h C = D, h D = C, r D = C}. 
It is interesting to note, from a scientific viewpoint, how additional obser-
vations about one physical process can allow us to make predictions about 
the behaviour of another process. 

Continuing this path we make the final possible observation for r, with D3 = 
D2 U{rD 	A}. This falsifies the previous theory and gives 

rrrhrh, rhr ,- -'h, 1 6,3 = IND (D3 , 3) = hrha-,_h,rhra, hrh 
There are now also conjectures of term length 4 to consider, including the 
fact r rr r= i, but we firstly see what we can say from the restriction to 
length 3. A3 is inconsistent with the data; Table 6.5 shows the analysis of 
6,3 in terms of maximally consistent subsets. 

Conjectures Predictions Falsifiability  
rrrhrh hC=B 
rhrh 	hD=A 
hrhch 	hD=C 
rhrf.-_-hrh (/) 

0.9375 

0.75 
0.0 

TABLE 6.5. Maximally consistent sets from D3 

Two of the competing theories again give predictions about process h from 
observations of process r, the strongest theory giving predictions for all ap-
plications of h. Taking this C = {rrr hr h , rhr ,- -'h} as a working 
theory we have the axiomatization 

h B = C, r A = B, r B = C, r C D, r D = A, 
1 rrr=hrh, rhr=h 

dropping the observation h A 	D. This introduces an alternative notion 
of theory strength, since adopting {hrh 	h} instead of C results in no 
compression of the data. Rather than looking at the predictive power of a 
theory, we could say a theory is stronger if it better explains the existing 
data, measured here by the degree of compression it achieves. These defini-
tions are distinct; for example, the theories {h r h h} and {r h r h r h} 
both give zero compression, but based on predictions we would say that 
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{h r h 	h} is stronger than {r h r 	h r h}. Since our main application of 
induction lies in prediction, it makes sense for us to use this latter measure. 

To avoid considering all 16 conjectures of length 4 it would be useful to know 
if the fact r r r r=i is a consequence of our conjectured theory C. Applying 
proof by contradiction to the possible theorem 

({rrrhrh,rhr ,- -'h},rrrr=i) 

shows it is not a consequence, but has the single side condition h h = i. The 
predictions of this condition, {h C = B, h D = A}, are the same as those for 
C and so if we verify these predictions for C we are supporting r r rr=i as 
a consequence of our working theory. 

Returning then to h, the last two observations indeed match these predic-
tions, giving D4 = D3 U{h C= B, h D = A}. With all possible applications 
observed, any induced equation will now be a fact. For term lengths of at 
most 3 we have C' = IND(D4 , 3) consisting of 9 facts. These are consistent 
with D4 and include h h = i so that rrr r = i is a consequence of C'. In 
fact all 44 facts of length 4 are consequences of C' by invariance, since 

— 	1 KB(Ci) = KB(IND(D4 , 4)) = 	hh-4 i,rrh 	hrr,  

Our final axiomatization is 

h D = A, r B = C, r C = D, r D = A, } 
1 hh=i,rrr=hrh,rhr=h 

eliminating half of the eight observations. 

6.4.4. Theories Concerning Numbers 

Having completed our study of the processes h and r on points, we now turn 
our attention to a new domain. We extend our language to a signature 

/ 1, 2, 3, ... E number, 
E' = E U 	succ, double : number 	number, 	. 

odd, even : number -- sentence 

Whereas point contained only a finite number of entities, here we have an 
infinite collection from which to choose the objects of our experiments. This 
means from the start that we will be unable to obtain any facts from a finite 
database of observations. (Compare this to the discussion following Exam-
ple 3.13 where a Peano scheme of constructors allowed the finite description 
of infinite databases and hence the establishment of facts). 

We begin by making a complete series of observations for the processes succ, 
odd, and even when applied to the sample 1, 2, 3, and 4 from number. This 
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gives the database 

succ 1= 2, odd 1= True, even 1 = False, 
succ 2 = 3, odd 2 = False, even 2 = True, 
succ 3 = 4, odd 3 = True, even 3 = False, 	' 
succ 4 = 5, odd 4 = False, even 4 = True 

augmenting the earlier observations in D4. The extension of E to E' satisfies 
the conditions of Lemma 5.3 and so we are guaranteed that the facts obtained 
for D4 will remain facts for the extended N. Furthermore N C FEn, where 

/ 
1,2,... ,8 E number, 

	

Ell  = E U 	succ, double : number —> number, 
odd, even : number —* sentence 

is a finite restriction of E'. By Lemma 5.4 we can thus treat N as having 
signature E" for the purposes of induction, guaranteed that any conjectures 
we obtain will be conjectures for N with the original E'. Here we find 

A2 = IND(N, 2) = {even succ ,--' odd, odd succ •-' even}. 

With these we obtain the conjectured axiomatization 

I even succ = odd, odd succ = even, 
succ 1= 2, succ 2 = 3, 
succ 3 = 4, succ 4 = 5, 
odd 1 = True, odd 2 = False 

Turning to the process double, a single observation gives 

= NU {double 1 = 2}. 

There are many conjectures of term length 2 over E", summarized in the 
consistency analysis of Table 6.6. Only one theory makes predictions about 
the behaviour of double, in addition to predictions for odd and even, and is 
thus the natural choice for the working theory in terms of falsifiability. 

There are no crucial experiments and so we take for our next observation an 
experiment corresponding to one of the predictions of the working theory. 
This gives 

N2 = N1 U {double 2 = 4}, 

with 

/even succ ,2_-' odd, odd succ ,--' even, 

	

A2 = IND(N2, 2) = 	even double --• True !, odd double ,-, False !, 	. 
double double ,- .-' double succ 

With double > succ, KBI(N2  U 6, 2 ) is unbounded, containing a rewrite rule 
double succk5 —> double 3 for each k > 1. As with proof by contradiction we 
halted KBI before obtaining 1, suspecting the result was unbounded. We 

N = D4 Li 1 
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thus assume that 6, 2  is consistent with N2. We no longer get predictions 
about double, leaving 

P(N2) = {even 5 = False, odd 5 = True). 
Thus we have no guidance in choosing the next experiment for double, so 
we apply it to an arbitrary entity to give 

N3 = N2 U {double 3 = 6}. 
This gives the same conjectures of length 2 as for N2, but now there are 
many predictions: 

/double 4 = 6, double 5 = 6, double 6 = 6, 
P(N3) = 	even 5 = False, odd 5 = True, 	 . 

even 6 = True, odd 6 = False 
Here we begin to see the scientific rewards of studying the process double. 
Our observations of it now provide new information about the original pro-
cesses odd and even. For this particular example it is interesting to note 
that the new information is correct even though the predictions make for 
double itself are not. 

Emboldened by this discovery, we make the final in our series of observations 
of double (this time suggested by the predictions from N3 ), giving 

N4 = N3 U {double 4 = 8). 
The conjectures of length 2 are now 

even succ'-.-' odd, odd succ '-.' even, 
6.2 = IND(N4, 2) = even double ,--' True !, odd double c-2 False ! 

with final predictions 

even 5 = False, odd 5 = True, 
P(N4) = / even 6 = True, odd 6 = False, 1 . 

even 8 = True, odd 8 = False 
Again, observations of double have given new information about the earlier 
processes. It is not surprising then that we obtain an axiomatization of the 
closure which is free of the original data for odd and even: 

1 even succ = odd, odd succ = even, 
even double = True !, odd double = False !, 
succ 1 = 2, succ 2 = 3, 
succ 3 = 4, succ 4 = 5, 
double 1 = 2, double 2 = 4, 
double 3 = 6, double 4 = 8 

Here we have only looked at conjectures of maximum length 2. For N4 there 
are 50 conjectures of length 3, inconsistent as a whole with the data. As 
in science, when looking at the more complicated conjectures it is generally 
necessary to make more observations to obtain a single consistent theory. 

1 , 
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Conjectures 	Predictions 	Falsifiability 
double succ 	 double 2 = 3 

	
0.998 

even succ odd 	double 3 = 4 
odd succ even 	double 4 = 5 
even double odd 	even 5 = False 
even double even succ odd 5 = True 
odd double even 
odd double odd succ 
succ double succ succ 
even succ a,  odd 
odd succ even 
even doublef.--2 True ! 
odd double  a,  False ! 
even succ odd 
odd succ even 
even double True ! 
odd double even 
odd double odd  succ 
even succ odd 
odd succ even 
even double odd 
even double even succ 
odd double  a,  False ! 
even succ odd 
even double True ! 
odd double odd succ 
succ double succ succ 

even 5 = False 	0.75 
odd 5 = True 

even 5 = False 	0.75 
odd 5 = True 

even 5 = False 	0.75 
odd 5 = True 

even 5 = False 	0.5 

odd succ even 
even double_^.1' even succ 
odd double 	False ! 
succ double succ succ 

odd 5 = True 	0.5 

even double a,  True ! 
odd double False ! 
succ double2-2 succ succ 
even double True ! 
odd double fL- even 
succ double succ succ 
even double -2-2. odd 
odd double 	False ! 
succ double succ succ 

0.0 

0.0 

0.0 

TABLE 6.6. Maximally consistent sets from N1 
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6.5. Reasoning with Conjectures 

So far we have looked at the process of making conjectures from a database 
of information, and at how we might choose from these a conjectured belief 
set, a working theory that is consistent with the database. 

The next issue then is how we should reason with these extended beliefs. 
The simplest approach is to accept all conjectures f g as equations f = g, 
giving a standard system for which we can use the deductive reasoning meth-
ods of Chapter 3. Of course this is a very large leap of faith, assigning the 
tentative knowledge the same strength of belief as our ground observations. 

6.5.1. Modal Operators 

Ideally when reasoning with both declared and conjectured knowledge we 
should be aware of the role the tentative information has in our deductions. 
Specifically, if we try proving a possible theorem with hypotheses containing 
both equations and conjectures then we want to know if any of the conjec-
tures are involved in the proof (or in generating side conditions). If we have 
a theorem F = f involving conjectures in its proof we might then say that 
(F, f) is probably a theorem, or that F = f is probably true. 

Here we have an obvious connection with modal logic. The standard pos-
sibility operator 0 can be applied to an equation f = g to indicate the 
equation is possible, 0(f = g). By possible we mean that f = g is not 
impossible. For our equational reasoning we would say an equation f = g is 
impossible for some system F if F = (f g). Thus 

F =0(f = g) if and only if F 	(f g). 

However the notion of possibility is weaker than our notion of conjecture. 
A conjecture is certainly possible, by definition, since it can admit no falsi-
fying instances. Yet a possible equation need not be a conjecture since we 
additionally require a conjecture to have a least one validating instance. 

This has obvious parallels in science. For any situation a scientist is faced 
by an infinite number of possible theories. The natural first step in finding 
the 'best' theory is to look only at those theories which are suggested by 
observations. As shown in Theorem 5.3, for our world of term equations this 
then reduces the task to examining a finite collection of conjectures. 

We have also seen, in Section 6.1.3, that a possible equation which is not a 
conjecture essentially contains no information. The probability Pr  of a con-
jecture based on r supporting observations holding when applied to another 
entity was 

r -I- 1 
= r -I- 2 
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Without any confirming observations we have Po  = so that the possible 
equation is equally likely to be right or wrong when applied to any new 
entity in its domain. Because of this we can have no belief in its predictions, 
making it worthless as a conjecture. 

To discuss our conjectures we thus need a new modal operator. Define A to 
be the probability operator (not to be confused with the database notation 
A), and read F ,L(f = g) as it is probable that f = g under F, or that 
F =(f = g) is probably true. Our collection of equations that are probably 
true will contain the conjectures from F. That is, 

if (f g) E IND(F) then F = A(f = g). 
We can use the consequence relation = to deduce additional probable the-
orems from this initial set, as we will see in the next section. 

Facts give an even stronger sense of probability, and we can similarly define 

F = A*(f = g) if (f = g) E IND(F) 

and read F = A* ( f = g) as that F =(f = g) is certainly true. 

The final operator worth defining is the standard necessity operator 0, which 
we will view by reading F = 0(f = g) as F =(f = g) is definitely true. 
We use 'definitely' to reflect that (f = g) is a deductive consequence of the 
definitions captured in F. That is, 

F = 0(f = g) if and only if F =(f = g). 
Note that we have the standard equivalences 

0( f = g) -r0.(f g), 

0(f = g) -.0(f g). 

If we write Fs = {f = g IF = S(f = g)} for any modal operator S then 
we have the sequence 

Fo  C Fp* C Fp C Fo. 

6.5.2. Reasoning with Probability 

DEFINITION 6.12. Let AF ={f =g If g E IND(F)}. We say that 
f = g is a probable theorem of F if F U AF (f = g) and F5$ (f = g). If 
f = g is a probable theorem of F we write F = A( f = g). 

The condition that f = g is not already a deductive consequence of F 
is reminiscent of our definition of a side condition being non-extraneous. 
Here we might similarly say that F = A(f = g) is an extraneous probable 
theorem if in fact F (f = g). 
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EXAMPLE 6.13 (Probable truth). Consider the database D I  in Section 6.4.2, 
given by 

D i  = {h A —> D, h B 	C, r A B, r B 	C}. 

We found that AD].  = {r r = h r}, so we have, for example, 

DI 	A(rrr=rhr), 

D i  -A(rrC=hrC), and 
Di 	A(rrA=hrA), 

since we already have D I  = (rrA=hrA).0 

EXAMPLE 6.14 (Probable answers). In this example we give a better in-
dication of how we implement the probable reasoning. Suppose we have 
beliefs 

F { father Alice = John, female John = False, =  
female Alice = True 

giving AF = {female father = False !}. Now (F, female father John = True) 
is a non-theorem and has no non-extraneous side conditions apart from 
the conclusion itself. Thus we have no information about the truth of the 
conclusion from F. We then turn to the possible theorem 

(F U AF, female father John = True), 

finding that it is actually impossible. Normally in a dialogue we would then 
answer 'No', as in Example 4.4, but since it is the probable theorem that 
is impossible we instead answer 'No, I don't think so'. This indicates the 
dependence of the answer on the conjectured beliefs. 

If we instead had F' = F U (father John = Bob), the possible theorem 
(F', female father John = True) would have the side condition female Bob = 
True. The answer is then more complicated because we are certain that the 
theorem is true if female Bob = True but at the same time we conjecture 
that it is impossible. A diplomatic response may thus be 'No, I don't think 
so, though it would be so if Bob was female.' 0 



CHAPTER 7 

Conclusion 

7.1. Dialogue with a Scientist 

We conclude our work by revisiting the dialogues introduced in Section 4.2.1. 
Now we can extend the deductive reasoning used in those dialogues by the 
inductive procedures presented in the previous two chapters. We call the 
reasoner thus empowered a scientist. 

Each time •the scientist's (deductive) belief set is enlarged or revised we 
apply IND to the corresponding canonical rewrite system (which needs to 
be generated in establishing consistency). From the resulting conjectures 
we form an additional set of conjectured beliefs as either the conjectures 
themselves, if they are consistent with the original belief set, or a maximally 
consistent subset of the conjectures. The choice of the maximal subset is 
made by the falsifiability criterion of Definition 6.10. 

For compactness, at each stage of the dialogue we only give newly declared 
beliefs, rather than repeating the whole belief basis. Whenever the belief 
basis changes we additionally give the resulting set of conjectured beliefs, 
although in practice this need only be generated when a question is asked 
of the reasoner. 

EXAMPLE 7.1 (Simple answers). The first dialogue gives a simple illustra-
tion of the growing knowledge of the reasoner, both deductively and induc-
tively, using questioning to see what it believes. 

When asked a question there are now five simple possibilities (that is, those 
not involving side conditions) for the answer that can be returned. Let r 
be the declared belief basis, C the set of conjectured beliefs obtained from 
F, and let f be the equation or inequation representing the question. Then 
the reasoner may answer 

• 'Yes', if the question is a deductive consequence of the declared belief set, 
i.e. r = f; 

• 'No', if the question is not a deductive consequence of the declared belief 
set and the corresponding theorem is impossible, i.e. F 

• 'Yes, I think so', if the question is not a deductive consequence of the 
declared belief set but is a consequence of the belief set combined with 
the conjectured beliefs, i.e. F 	f and r u c = f; 
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• 'No, I don't think so', if the question is not a deductive consequence 
of the declared belief set and the theorem with the belief basis and the 
conjectured beliefs as hypotheses is impossible, i.e. r 	f and r u c 

• 'I don't know', if the question is not a deductive consequence of the de-
clared belief set and the only non-extraneous side condition is the original 
question itself. 

The dialogue in Table 7.1 involves all five of these simple answers. 

EXAMPLE 7.2 (Crucial experiments). The dialogue in Tables 7.2 and 7.3 
involves competing theories in the reasoner's conjectured beliefs. Now when 
asked a question, the simple answers which rely on conjectures are aug-
mented by requests for the results of any crucial experiments. 

The inconsistency arises when told 'The not of False is True'. Table 7.1 
shows the two competing theories and their predictions. The theories dis-
agree on the prediction for female Alice and so it is suggested as a crucial 
experiment. Meanwhile the strongest theory is taken as the working set of 
conjectured beliefs. 

We also include in this example an illustration of the closed-minded approach 
to belief revision. The response to the contradictory 'John is Paul's father' 
is simply 'I can't believe that', quite literally indicating that the statement 
cannot be added to the current belief set. 0 

7.2. Concluding Remarks 

In this work we have presented a broad system of rewrite based reasoning, 
through primary algorithms for deduction and induction. 

Central to our deductive process was proof by contradiction, and the use 
of it in an equational framework motivated the extension of the standard 
Knuth-Bendix algorithm to a procedure for systems involving inequations. 
The culmination of this was a uniqueness theorem for the result of applying 
the algorithm to equivalent systems of equations. This then lead to an 
alternative proof method based on invariance. 

We also presented the notion of a side condition to give an interpretation 
to a failed proof by contradiction, and saw it also suggested how to solve 
equations in a variable-free algebra. The side conditions additionally had 
an application as abductive hypotheses, but we have left to future work the 
task of using these as part of a reasoning system. 

We introduced an induction algorithm for generating inductive theorems and 
conjectures from a database of rewrite rules. By assuming a finite database 
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Human 	Reasoner 	Belief Set 

John is Alice's father. Okay. 	 father Alice = John 
father 	John ! 

Is John the father 
of Alice? 	 Yes. 
Is John the father 
of George? 	Yes, I think so. 
George is the father 
of Mary. 	 Okay. 	 father Mary = George 
Is John the father 
of George? 	I don't know. 
Is John the father 
of Mary? 	No. 
John is male. 	Okay. 	 male John = True 

male father 	True ! 
male True ! 

Is John male? 	Yes. 
Is George male? 	Yes, I think so. 
Is Alice male? 	Yes, I think so. 
Mary is not male. 	Okay. male Mary = False 

male father True ! 
Is Alice male? 	I don't know. 
John is not female. 	Okay. 	 female John = False 

male father True ! 
female father 	False ! 
female 	False ! 

Alice is female. 	Okay. 	 female Alice = True 
male father :se True ! 
female father 	False ! 

Is the father 
of John female? 	No, I don't think so. 

TABLE 7.1. Dialogue with simple answers 

we showed that the result of this algorithm would also be finite. By further 
assuming that the language of the database came from a finite signature, we 
were able to quantify measures of belief both in isolated conjectures and in 
systems of conjectures. These latter systems, inductive theories, were then 
examined in terms of inductive belief change. 



7.2. CONCLUDING REMARKS 	 124 

Human 	 Reasoner 	Belief Set 

Peter is male. 

Peter is Paul's father. 

Is Alice's father male? 
John is Paul's father. 
John is Alice's father. 

Is John male? 
Peter is not female. 

Alice is not male. 

Is Paul male? 
Is Paul female? 

Okay. 

Okay. 

Yes, I think so. 
I can't believe that. 
Okay. 

Yes, I think so. 
Okay. 

Okay. 

I don't know. 
No, I don't think so. 

male Peter = True 
male True ! 
father Paul = Peter 
male father 	True ! 
male True ! 

father Alice = John 
male father True ! 
male True ! 

female Peter = False 
male father True ! 
male True ! 
female father 	False ! 
female 	False ! 
male Alice = False 
male father 	True ! 
female father 	False ! 
female 	False ! 

TABLE 7.2. Dialogue with crucial experiments 

To achieve our broad view of reasoning we have usually restricted our atten-
tion to a simple language involving only linear terms, terms without prod-
ucts and their associated n-ary functions. However, except where noted, the 
algorithms and theorems presented have been given for the general term lan-
guage of Section 2.1. In future work we will look at using the power of this 
richer language to approach larger applications present in the literature. 
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Human 	Reasoner 	 Belief Set 

The not of True 
is False. 	Okay. 

The not of False 
is True. 	Okay. 

not True = False 
male father True ! 
female father 	False ! 
female 	False ! 
not male female 
not male False ! 
not 	False ! 

not False = True 
male father True ! 
female father 	False ! 
female 	False ! 
not female True ! 
not not = i 

Is Paul male? 
Is Paul female? 

Alice is female. 

I don't know. 
No, I don't think so, 
but it would be useful to 
know if Alice is female. 
Okay. female Alice = False 

not male female 
not female male 
female father 	False ! 
male father True ! 
not not = i 

Is Paul female? I don't know. 

TABLE 7.3. Dialogue with crucial experiments (continued) 
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Conjectures 	Predictions 	Falsifiability 
not not = i 
female 	False ! 
not female a' True ! 
female father 	False ! 
male father True ! 

female Alice = False 
female John = False 
male John = True 
female Paul = False 

0.9375 

not not = i 
not male female 
not female male 
female father 	False ! 
male father True ! 

female Alice = True 
female John = False 
male John = True 

0.875 

TABLE 7.4. Competing theories from the dialogue in Ta-
bles 7.2 and 7.3 
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