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PROLOGUE

; General Introduction and Summary -

- The work reported in this thesis was motivated by a desire to
develop better practical methods for linear network aqalysis. The
bractical éSpects of existing methods, together with the new methods
arising from this work, are discussed in part II of the thesis.

Part I is devoted to a theoretical foundation for the new methods.

Tﬁe énalysis method centres on network polynomials-—fthgir
relationship with network behaviour and with each other. Until recentlyl
there has been no satisfactory formal treatment of network polynomials;
they tend to be regarded as numerical conveniences arising in various

analysis methods. For example, ratios of polynomials may express network

‘transfer functions; they characterise linear dynamic systems; and their

roots determine the natural'fréquencies of networks. In particular, when
we analyse a network by inverting the nodal admittance ma£rix whose
elements have been expressed as. ratios of polynomials, the polynomials
proliferate. It is from this background that most of the tﬁeory described

here was developed.

In 196é, Dr. D.B. Pike, who had been workingAinaependently, submitted
his Ph.D. thesis on "Linkage Polynomials" to the University of Sydney.
That work, which this writer considers - to be definitive in its treatment of
many aspects of the subject, was motivated by problems in the rea;isation
of multiport networks, and_defines the polynomials by their occurrence as
minor determinants of hybrid matrices of multipoft_networks. ‘This
defiﬁition relates them diréptly to network behaviour, and their relationships

with each other are obtained from Laplace expansigns of minor determinants.

The most important contribution of Pike's thesis is concerned with the

interconnection of two multiport networks; it enunciates the relationships

‘between the polynomials of the completé netwerk and the polynomials of its

two constituent networks. 1In tha{ work the relationships are obtained with

Laplace expansions of the minor determinants of the sum of the two appropriate

hybrid matrices of the constituent networks.
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It is & Aifferent enunciation of these same rélationships which
is considered to be the most significant contribution of part I of
“this thesis. But in this work the subject of network polynomials is
approached from an altogether different point'of-view. Both the point
of view and the alternative statement of the main results have an
important Eearing on the practical implementation of the analysis methods,

and it is the intended application of the theory which dictates the form

of its presentation in part I.

The evolution of this approach may be traced from the analysis of
networks by the solution of simultaneous linear equations. The
conventional elimination techniques are satisfactorily préficient'in
solving equations with numerical coefficients but are quite clumsy when

handling coefficients represented symbolically. In the latter case,

however, application of Cramer's rule leads to a suitable expression of
the solution in the form of ratios of determinants, and it is left to the

numerical analyst to find suitable means for expanding the appropriate

determinants.

For large determinants containing symbolic entries this task is
cumbersome, and, for determinants dérived from physical structures such
as électrical networks, concludes with the cancellation of large numbers
of terms. It is to this task that the network topologist, with a
different point of view of thé‘analysis problém, makes a significant
contribution. Each term in the expansioﬁ is related to a unique set of
branches of the network graph and its value is the product of the
édmittances.of-those branches. The sets of branches associated with a
particular determinant constitute k-trees® of the nefwork graph, and the
analysis task is therefore one.of generatingy without-duplication, all
the k-trees of a graph. Unfortunately, this approéch, even with the aid
of a digital computer, is impractical for moderately-sized networks because
of the prohibitively large numbers of trees assobiatgd with them.

*A k-tree of a graph is a tree of a subgraph which, although it

includes 211 the nodes of the graphs; is in k separate parts.
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If large networks are to be analysed with topological methods,

some form of network partitioning— otherwise known as network tearing,

- or diakoptics —must he employcd For reasons discussed in chapter 1

the aporoach taken throughout thls work 1is to tear networks apart only
at internal ports. It is then convenient to view polynomials as

topological quantities (sums of branch-admittance products) of multiport

.'networks, and it is the aim of chapter 1 to present an algorithm for

comblnlng the polynomials of constituent multlport networks to form the

"polynomials of any structure of those multiport networks.

This algorithm permits the analysis of networks in terms of
topological quantities. It is the purpose of chapter 2 to relate the

topological quantities, the polynomials, to network behaviour.

- Consideration is first given to two identical networks in parallel,

and comparison of the complete network polynomials obtained by the
analysis. process with fhose deduced: from fundamental principles embodied
in'leﬁma 2.1 proves theorem 2.1. This major theorem relates all the
linkage polynomiels of an n-port netWork toannxn matrix of rational

polynomials, which is proved later, as theorem 2.3, to be the short-

circuit admittance matrix of the network.

Tﬁe second major theorem, theorem 2.2, establishes fhe relevance of
the topological duantities by asserting.their uniqueness in characterising
eetworks. Proof of this theorem is centered on a study of a star network
and its equivalent mesh network which has no internal nodes. The
equatiens fgr the latter network, when generalised and reinforced by the
two major fheorems, also prove theorem 2.3 and lead directly to the
clasalcal topologlcdl formulae which express the varlous driving p01nt

and transfer functlons of a network in terms of topologlcal quantltles.

Chapter 3 links the topological anaiysis precess with methods of
analysis based on matrix manipulation. It is shown that the application
of only two generalised polynomiai identities is sufficient to calculate
the elements of all hybrid matrices from the given elements of any one
hybrid matrix. They therefore provide a means of inverting any hybrid

network matrix, a task which is central to many analysis methods, and
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confirm the method aéopted by Downs[l?ﬂ for directly inverting a matrix
of rafional polynomials. Finally, the analysis of any multiport network
- structure by the process of chapter 1 is interbreted as the Laplace
expahsion of minor determinants of a matrix formed from the sum of
appropriate hybrid matrices rebresenting the individual constituent

networks. The main theoretical development of the thesis thus concludes

with an indication that the new analysis process could be derived solely

from a matrix point of viéw, instéad‘of from the topological point of view.

Chapter 4 opens part II of the thesis with a survey of existing
methods of linear network analysis and an introduction to a new practical
approach which is confined to structures composed only of 2-port netwérks.
An example illustrates the méthod of representing electronic‘cifcuits and -
serves to introduce two imﬁortant concepts to be deveIOpea later in the
thesis: stfucture graphs and algebraic reduction. A siﬁpler notation for
the polynomials of 2-port networks is introddced, and the general tépological
anaiysis algorithm-of chapter 1 is recast in a form better suited to the
analysis of structure graphs. Practical aspects of the analysis mefhods»
are discﬁssed, and particular attention is given to the prdblem of numerical

-accuracy and to schemes for representing polynomials.

The. course of the practical work has been largely détermined by progress
with computer programs design to prove the logic of the analysis algorithms
and to demonstrate their overall effectiveness as analytical tools.

Chapter 5 presents the results of this work in the form of two major

algorithms: one for algebraic reduction, and the other for topological

anal?sis of s%ructure graphss; they are expressed in a high-level computef

language and cover the essential aSpécts of all programs that implement the

~analysis method. The chapter also includes-a‘rigoious definition of a

language for dg§cribing networks and contiolling the analysis process. It
elaborates the concept of a network algebra and is designed to accept circuit

models and network parameters in a variety of alternative forms.

Chapter 6 assesses the analysis method in a variety of situations.

Program data and execution times are given for the frequency-response

" tabulation of a large passive filter, for a sensitivity investigation of a
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multistage amplifier, and for a symbolic analysis of an impedance~

converter circuit. A comparison is also made of two approaches to

" the analysis of a control system: it is represented for analysis both

as a signal-flow graph and, more naturally, as a structure of 2-port

networks.

Topological énalysis of large networks is repressed by the curse of

- large numbers - not only large numbers of trees in a particular set,

but large numbers of sets of trees. Responsible for this state of
affairs ére those aspects of the analysis methéd which make it’attractivé;
its thoroughness, its flexibility, and its generality. Throﬁghout the
thesis, in its progress toward a tractable analysis method, disciplines
and restrictiéns have been imposed; It is, perhaps, a sigﬁal achievement‘
thét the thesis is able t; conclude with reports of practical computer

programs possessing unique and powerful analytical facilities.
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CHAPTER 1

TOPOLOGICAL ANALYSIS OF STRUCTURES OF _MULTIPORT NETWORKS

‘

1.1 INTRODUCTION

BroadlY*speéking, network -analysis 1is a process whereby the behaviour
of a network as‘a whole 1is ascertainéd from the known behavioural characteristics
df it%-parts. For a network composed of linear, time-invariant, 2-terminal
devices, powerful methods of analysig caﬁ be deri&ed from a study of the
topology of the netwofﬁ; trees and k-trees of the network graph are enumerated,
producfS'of the branch admittances are formed for each tree, and the products
are. sumnadéver all trees in particular sets. If the branch admittances are
represented by their Laplace transforms the resulting topological quéntities
have the form of.polynomials in the Laplace Operatads%and'it can be shown
thaf ratios of the'polynomials determine the various. network functions such
as transfer functions and driving-point immittances. Thus the behaviour of the
network as a whole is directly related to the édmittances of the individual

network elements.

As powerful as these analysis methods are, they leave much to be desired.
Of prime concern is the large number of trees, associated with only moderately-
'sized newarks [25,‘32] , which are costly to enumerate and evaluate. Some
attembts have been made to alleviate this problem with various forms of |
network partitioning; and thereby directly>evaluating partiai sums of -admittance
prodgcts"without generating individual k-trees [21,'37] . But as yet there
is no report of these methods being extended to cover active netwo:ks, or of

their application in computer programs. Of secondary concern are the

" difficulties in handling mutual inductances, active devices such as controlled

- sources, degenerate devices such as ideal transformers and operational

anp}ifiers, and other 2-port devices. - Procedures have been dgveloped to
handle most of these devices [13, 14, 34, 36, 48] but at the expense of
increased complexi£§ and effort in the analysis process.‘ _The‘modelling of
transformers in a manner which preserves the isolafion between their ports is

particularly cumbersome [6] .
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Any procedure for‘tearing networks would afford an opportunity to
avoid éhe generation of ;arge numbers of trees. But by imposing the following
discipline on the mannéf in which networks may be torn, the difficulty in
mbdeliing the isolating character of trahsformer§ is also avoided. A network
port is defigéd in the conventional way; that is, a pair of terminals with

which is associated one voltage, measured between the terminals, and one

“current, which leaves the network at one terminal and re-enters through the

othef terminal. It is then stipulated that networks may only be interconnected

at their ports. Because an appropriate method for interconnecting networks

must assume that the currents in the terminals are equal and opposite, the
tearing of a network is therefore valid only if the behaviour of the network
is not altered by the introduction of isolating transformers at the inter-

connections between the subnetworks. The isolating character of transformers

and mutually coupled coils is thereby taken into account automatically by the

assumed nature of the interconnections.

With the above stipulation, the tearing procedure requires that a network
be represented as a structure of‘multiport networks, and it is for this reason
that attention is focused on the general multiport network and the topological

quantities which characterise it.

1.2 - NETWORK CHARACTERISATION

1.2.1 Network Pplynomials

Network polynomials are here defined as topological quantities: each

polynomial is associated with a set of trees (or k-trees) and is equal to the

" sum, over all trees in the set, of the products, over all branches in a tree,

of the branch admittances. This quantity is referred to as a branch-admittance-
product-sum (BAPS). °Although every polynomial is the BAPS of some set of trees,
not every BAPS which occurs in this study is necessarily a proper network

polynomial.

To define the séts of trees it is assumed that every network can be
represented by some equivalent netwerk containing only.unistors, resistors,
_aﬁd gyristors, following the method of Mason [34] . However, it will not
be necessary to construct such equivalent networks or to be concerned with

any practical difficuities, such és the need for limiting'processes on

v
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the values of some branch admittances, that mighit be entailed by this process.

Becauée ideél_isolating transformers may be inserted at thHe ports of a

network without affecting its behaviour, it is further assumed, in order to

simplify the definition of the sets of trees, that one terminal of every port

is connected to some common ground terminal. The ungrounded terminal of a

port is referred to simply as the port terminal of that pori.

The many polynomials of a network are related to various sets of k-trees
of the graph of the network. A k-tree is generally understood to be a tree

of a subgraph which is derived from the original graph by removing branches

“in such a way that the subgraph has k separate parts.  An alternative view

of the necessary modification to the original network employs the concept of
a collapsed porf:it is regarded as being short-circuited, with both terminals
tied'together to form a single térmihal; A k-tree is then a tree of the

network with k collapsed ports.

- It is important for the development of this thesis, however, that a
collapséd»port be interpreted in -a slightly different way. A collapsed port. =
is here regarded as a port for which the path from the port terminal to ground

lies not in the netwofk itself but in some external network. This external

path must be included in the trees of the network, but, when calculating a BAPS,

its branch admittances are ignored.

Definition 1.1 ("natural polynomials")

The set of natural polynomials of the_general'network N is now introduced.

The general member of the set is denoted by

agabc..
Noqr ..

It is defined as the BAPS of the set of trees of N with the ports p, q, r,..

- collapsed and the remaining ports a, b, c,.. Unaltered_(open-circuit);

Definition 1.2 ("transfer polynomials")

Natural polynomials are.only particular (zero-order) instances of the

. set of multiple-order transfer polvnomials, of which the typical member

(mth-order) is denoted by

Ny,..y,,,abc..

X1 . Xmpgr.. -«
X, Y, L rPq

Xm Ym



This polynomial is defined as the BAPS of that set of trees of N whose

ports X)sees X 3PsqsTy.. aTE collapsed, which each contazin m branch paths

from the port terminals of ports YiseosYy to the respective port terminals
xl,..; Xa This set of trees is a subset of the set associated with the

natural polynomial

Nyl..ymczbc..
Xp«-Xmpqr.. -

Because the ports XQsees X, aT€ collapsed, the m branch paths are necessarily

separate.

A pictorial representation of these polynomials highlights their

distinguishing features. With each port of a network is associated a pointer.

If a port is collapsed, its pointer is directed out of the networks otherwise,
it is directed into the network. In either case the pointer indicates the

initial direction of the branch paths from the port terminal to ground, and
!

a setting of all the pointers of a network, or pointer setting, thus determines

"the set of trees associated with a particular natural polynomial. Its

subscripts identify the ports whose pointers are directed out of the network,
and its supersrcipts identify the ports whose pointers are directed into the -

network (for example, see figure l.la).

A subset of trees which each contain m branch paths between pairs of

port terminals is represented by a set of m lines called pointer paths drawn

across the network between the respective pairs of ports; with directions
determined by the pointers (for example, see figure 1.1b). Hence, in the

representation of a multiple-order transfer polynomial the pointer setting

determines the subscripts and superscripts, while the pointer paths determine

the paiis of port indices beneath the network's base symbol.

- Definition 1.3 ("linkage polynomials")

It is left until chapter 2 to relate the network polynomials to network
behaviour and to explore the nature of the characterisation which they previde.
It will be seen that in the analysis of networks certain groups of mth-order

transfer .polynomials always occur in combination. Such combinations, which

have been called linkage polynomials by Pike [41] s are here defined in terms
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Figure 1.1 Polynomials of,a.nétwork A, and their
- © . representation. '
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of the transfer polynomials by

Vi Ymngabc.. S dm Yj -+ Yimabc..

x,..mepqr.. = (*15"28,'”m ) XNX.'.-xmpqr-- (1.1) -
17J) .
x“”m

where the summation is over all the m! permutations jl,..,jm of lyeey m,

and §is the generalised Kronecker delta which is +1 or -1 depending on

whether the permutation is even or odd.

~ The notation for linkage and transfer polynomials is made more compact
by replacing the various sets of port indices with Creek symbols. Thus the

AN
general linkage polynomial of equation 1.1 becomeso(ﬁ@ where

)= ta)e A= [om)  §={obe)

\By convention, all the remaining port indices p,q,r,.. which are not included

in the sets o, 3,¥ are assumed to be in the suffixed subscript position.

The cardinal number of a set is denoted by squaré brackets. Thus, in this

example, [o(] = [ﬁ] = m.

To ‘determine any one of the mth-order linkage polynomials of an n-port

’ network, 2m of the n ports are chosen to either originate or terminate m

pointer paths, m of these 2 m ports are chosen to terminate pointer paths,
and the pointers of the remaining. n - 2 m ports may be directed either into
or out of the network. Thus the total number of mth-order linkage

polynomials is

L(n:m‘)' _ (Zn) .(me)' 2';1—2m

This function is tabulated in table 1.1.
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m 0 1 2 3 | TOTAL
m
2 4 2 | 6
3 8 12 o 20
4 16 48 6 70
5 32 | 160 60 252
6 64 480 360 20 |- 924

. Table 1.1 The number of mth-order linkage polynomials of an n-port network.

When counting the total number of linkage polynomials of all orders
(including the natural polynomials) we note that each linkage polynomial can
be associated with a unique selection of n symbolé from 2n symbols. For
example, with a total pOpulation consistinglof n "currents" il,...,in and

N br .
n "voltages" € seees® s the general linkage polynomiagfﬁ@ may be uniquely

" associated ¥ with the selection.of n symbols which includes those voltages

‘whose indices are included in the sets 8 and ¥ and those currents whose

indices are not included in either of the setsex or § . Thus the total

number of linkage polynomials is

1zl

m=0

X

L‘(n,m) = (Znn)

1.2.1 Structures of Multiport Networks

In keeping with the multiport-network characferisation developed above,

all interconnections between networks may be made only at their ports. It

is further stipulated that a connection between ports must be characterised by

either a voltage or cur;ént which is common to all the ports, i.e. the ports

.6

are either in parallel or in series. Any connection of ports can be made to

% This association of linkage polynomials with segregations of port currents

and voltages, as occurs in the selection of a set of independent variables

with which to describe the hehaviour of .an n-port network, is actually

substantiated by the theorems of chaptef 2.
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conform to this rule by introducing simple 2-port netwofks as, for example, in
figure 1.2. AAset of multibort networks connected'together.in'this way is

- here called aAstructuré of networks. . The individual networks in a structure

are called constituent networks, and the network formed by the structure is

called the complete network.
§

When connected together, a set of ports of different constituent networks
is regarded, for identification purposes, as a single port of the structure.
If a port of the structure has connections only to constituent networks and

not to some external network, i.e. it does not correspond to a port of the

complete network, it is called an internal port. Otherwise it is called an

external port.

i

Polynomials and trees of the complete network ere called complete

polynomials and complete trees respectively; polynomials and trees of the
!

constituent networks are called constituent polynomials and constituenttrees.

The task of analysing a structure can now be simply stated as that of
calculating the complete pblynomials from the given constituént polynomials.
But before we begin this task, a fufther Eimplification is made, without loss
of generality, by considering only those structures in which all ports are of
I ' - the parallel type. Structures with ports connected in series may be converted

to equivalent'structures'containing only'parallel ports by inserting a unit

gyrator in every port which is connected in series. The effect of a unit
gyrator connected to a port is to interchange the voltage and current values,
so that whereas a series connection of ports constrains the currents to be
equal, the ports qf the equivaient structure must be connected in parallel to
constrain the voltages to be equal. It is seen in chépter.2 that cascading
a network with unit gyrators only interchanges scmé polynomials — because

‘ pﬁrts that were originallyndpen—circuit become collapéed, and vice versa —

and changes the sign of others, due to the antireciprocal nature of a gyrator.

With all the ports of a structure now of the parallel type and, if
necessary, isolated from the.constituent networks by ideal transformers, one
terminal of every port is connected to a common grdund. With each port is
assoclated a pointer which méy be directed.to any one of the constituent f

‘networks attached to that port. Because it is.possible to interpret the



. ..mu:HOAm JO WQOW#OGGCOO.HGU.QH .u.ﬂw._”..m\w.mﬂmvm . Z°1 w.wﬁm..n.m o

. . ) | - l ’ :Iwh.{!lﬁ.. .'.i - ' l '

-




1.8

direction of a pointer as indicating the initial direction of paths from the

ungrounded port terminal to ground, a setting of all the pointers of a

structure may be interﬁreted.as specifying particular polynomials of the

constituent networks, in the same way that they do for an isclated network.

Pointers of iﬁternal and external ports are called internal pointers and external

pointers respectively.
1.3 THE ANALYSIS PROCESS

1.3.1 Calculation of Natural Polvnomials

The process for analysing a complete network structure which, together
with its constituent parts, is characterised by polynomials, is based on an

analysis of the various trees of the complete network.

It is first noted that a complete polynomial is the BAPS (branch-
admiftance—product—sum) of complete trees, and the polynomial or its associated

set of complete trees is represented by a setting of internal pointers.

Attention is focused on the ungrounded terminals of both the internal
and external ports. Because each complete tree,>by definition, contains a
unique path to ground from every node in the complete network, the complete

trees are classified uniquely according to the initial direction taken by the

" paths from these port terminals to ground. The classification concerns only

" the first constituent networks through which these paths pass, and each class

is therefore represented by a setting of all the pointers.

" A pointer setting thus determines a set of constituent polynomials

and also a class or subset of complete trees associated with a complete

" polynomial. Furfhermore, every complete tree in the class is a union of

constituent trees associated with the constituent polynomials. However, not

- every union of constituent trees determined by the pointer setting is

necessarily aicomplete tree. The path from a node to g;ound eifher lies
wholly in one constituent network or passes through a port into aﬁ adjacent
constituent network. The path in the adjacent network may also pass through
another port to connect with e path in yet another constituent network, and so

on, but unless the path leads to a port already passed by itself-— and thus

forms a loop of branches-—it will eventualiy terminate at the ground node.

Hence a union of constituent trees is either a complete tree or forms one or

- more loops of branches.
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1.9
The branch loops that are formed by some unions of trees are themselves
classified according to the constituent networks traversed by the loops, and

the classes are represented by pointer loops drawn across the constituent

networks and passing through the ports in the direction of the pointers (for

'example, see figure 1.3b). The pointef loops not only represent subsets of

the unions of constituent trees, but their segments, which traverse individual

'constituent networks, also determine subsets of the constituent trees to

which the trees in the union must belong.

'To fully analyse a structuré all the possible pointer settings must be
considered. qupose that pointer settings are generated in some reéular
manner, and consider a pointer setting which defines the i-th c}ass of complete
trees associated with a particular complete natural polynomial. As;umeAthat

in this general case the pointer setting will allow many pointer loops p,q,r,..

!

to be drawn. The sets and subsets of trees and thons'of trees-afe identified

with the following symbols:

T&k; the set of trees .of the k-th constituent network

determined by the i-th setting of pointers;
szgﬂa”, the set of trees of the k-th constituent network
determined by the i-th setting of pointers and the

pointer loops p,q,r,..(note that
: P,C‘I’r"'
Tik =  Tik,
and the equality holds if and only if none of the pointer
loops traverses the k-th constituent network);
I;= {9 Fik | tik € Tik}s
. the universal set of unions;
oy o J J
L,‘:{-yrikl Fik E'Tik}v
the j-loop set of unions;
- J
J .
the tree set, i.e. the set of -all unions of constituent

trees which are complete trees.

S (Xi) is defined as the BAPS of the: trees or unions of trees in the

set X..
1
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© network 1 network 2 network 3

(a)

(b

- Figu_re 1.3 A structure of three constituent networks .
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The BAPS of all unions of trees, with one tree taken from the set for
each constituent ne'tworl;, equals the product of the BAPS's of the sets of
trees for each consti'tuient network. Hence, by Vcohsidering the sets of
constituent trees determined by the setting of po?nters and the various

combinations of pointer loops,

S(1;) Z?LT S(Tu),

S(L) =§Swm.

s(L O L) =17 S| T,
MPPanL)=§%xT&%W;aC (1.2)

The factors S(Tix), S(T,;i), S(T{"),.. are polynomials of the constituent

Gy lpeey -,
networks; S(Tik) is a natural polynomial, and S(.T;ﬁq ) is a nonzero-

. 0,a,r,..
order transfer polynomial ~ unless T,-k 45 = Tik .

The desired quantity is the BAPS of the complete trees which belong to

the class represented by the i-th pointer setting, andr is given by
S(t) = s(1) = s(ULy)
- j ; _
) = Ls() + £siNL) (1.3)
J m,n
-Lsi NN+ tanL)

P,q,r

I

’

The steps required for each setting of pointers are reviewed and

illustrated with reference to the structure of networks and setting of pointers -

shown in figure 1.3.

(a) Search for all possibi_e pointer loo@s. In the examp_le, three pointer
loops can be drawnﬁ with this, gay the i-th, sétting of po>inters.
Representation-s of the sets of tree unions Lf; and ‘L? , alone, are not
illustlrate;d; although figure 1.3b represents the set .of tree unions
L: ﬂL? and determines the sets of constituent. trees —l;;lfz R Ti’2’2 , and

1,2 '

T;3 . Figure 1.3c represe'nts the set of tree unions L3i and determines

the sets of constituent trees T” , _Ti%,' and T133"
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The BAPS's of tree unions are calculated using the equations 1.2.  Thus:

13 24 56

S(1:) KR 35 w4
‘ | al3 24
S(Li) = Rz }%35
2 13 @24 ~56
S(Li) = A B35£;4 ’
3 13 24 56
S(L) = B35 ,

237 5277 457

| 2 I3 24 56

and S(LiNL5) = AZ 35 Gg -

23 32 45 '
54

‘The sets L rwl_,,L (]Lq and therefore L; r]L,fWI_ are empty. Note

that the subscripts and superscripts, determined by the pointer setting,
are the same in each product, and that only the pairs of transfer indices

beneath the base symbols, determined by pointer paths, vary from one

product to another.

. - ¥
The BAPS of the complete trees is calculated with equation 1 3. Thus

si)=ABC-ABC-ABC-ABC+ABC.

2332 54 45 235243 23 3245
sS4

(The subscripts and superscripts have been omitted for clarity.)

Because the double-transfer polynoﬁials E% and-—EBhave the cofactor (: .
: ' 3485

32 52
54 34

N

: ‘ ‘ ' 24
they are combined as the one linkage polynomial 35-E3 and the BAPS is

expressed entirely in terms of linkage polynomials as follows:
13 56 - 3pl 2|4 56 13442 S 6
A 8 C4 _zA 35 C4 —AZSBE} 4C
Spn6
2C 7. (1.4)

In the general case, transfer polynomials of a network N which group

together into one.linkage polynomial will always have the same cofactor in
equation 1.3 because the pointer paths which complete‘poinfer loops by
traversing the networks external to N are 1ndependent of the p01nter paths
Wthh traverse N itself. The sign change manlfested by the Kronecker delta
in equation 1.1 takes {nto accountvthe'change in the anber of distinct

-pointer loops as the transfer indices are permuted.

The final stage in the calculation of a complete natural polynomial

corresponding to a particular setting of external pointers involves the

-summation of BAPS contributions obtained from every possible setting of

internal pointers; that is,

HUﬂ)='ZﬂﬂL ‘ | (1.5

{
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1.3.2 Calculation of High-Order Polynomials

A transfer polynomial of *the complete network is the BAPS of a set of

trees which all have bfanch paths between certain pairs of external ports
The trees are classified a;co?ding to the constituent networks traversed by

the paths, and the classes are represented by pointer paths drawn across the

networks and through the internal ports in the direction of the pointers. _ As
with complete natural polynomials, the trees are unions of trees of constitﬁent
networks; and, in company with the pointer settings, the segments of the pointer
pafhs determine the seté of constituent trees to which the trees in the union

must belong.  The possible existence of pointer loops elsewhere in the

structure must again be taken into account.

Rather than describe a different algorithm to calculate the high-order
transfer‘polynomials of a complete network, the concept of a clésing network

is introduced in order that the one algorithm should generate the transfer

and linkage polynomials of all orders.

The closing network is an imaginary.networkAwhich connects all the
external ports of the complete netw§rk. It may be regarded as the
environment of the complete ne{work or the complement of the complete
network in the "universal" system; it is the network into which the external -
pointérs are directed when they are directed away from the complete network.
In this sense it has the same status as a constituent network, and the
externaluports thus lose their distinction from internal ports. It is called
a closing network because if prévides imaginary paths to close the pointer

paths through the complete network and so form pointer loops.

A high-order transfer polynomial can now be defined as the BAPS of
those trees which are capable of forming branch loops through the closing

network, and these trees are subject to the same classification and rules

of evaluation as tﬁé unions of trees which form branch loops through the

normal constituent networks.
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1.3.3 The Analysis Algorithm

The one algorithm which calculates the complete linkage (or transfer)

polynomials of all orders is summarised in the following steps:
(a) To the set of real constituent networks add the closing network.

(b) With each port associate a pointer which may be directed into any

nattéched constituent network (real or closing).

(c) Set the polynomials of the closing network to zero. These polynomials
will be employed as accumulating sums of products of polynomials of the
real constituent networks.

(d) Generate every possible setting of pointers once and only once.

For every setting take the following steps:

(1)  Search for all possible pointer loops.

(1i) Determine all the polynomial products given by equations 1.2.

~ For every polynomial product take the following steps:

(1) Give the product a sign as determined by equation 1.3:

if the product is represented by an even number of pointer

loops, the sign is positive; otherwise, the sign is negative.

(2) Every product will include one pdlynomial from every real
constituent network and will -also determine a polynomial
of the closing network. The polyﬁomials_of the'feal
constituent networks are multiplied togéfher and the product.

is added — or substracted, depending on the sign from step (1) —
toAthe‘accumulated polynomial of the closing network.
(e) At the completion of step (d), calculate the polynomials of the

- complete network N from the accumulated polynomials of the closing

network N with either of the equations

oy = e aNE
| ] —
or jg::== (~1) ',..jﬁﬁx .
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1.4 APPLICATION OF THE ANALYSIS PROCESS

1.4.1 General Structures

"In common with all topological methods the analysis process described
above suffers severe limitations with regard to the magnitude of its task.

As the number of constituent networks and ports is increased the analysis

task tends to grow exponentially. Even analysis of the apparently simple

structure of figure 1.3 (with ports 1 and 6 the external ports) is tedious if

done by hand: it requires attention to 26 different pointer settings, each

involving a search for pointer loops and the calculation of one or more

polynomial products.

It has not been préctical to implement the general algorithm as a
computer progfam for several reasons: for instance, one potentially difficult
problem concerns the storage and addréssing of the large numbers of polyhomials
associated with each network (see table 1.1). To_méke the algorithm more
practical, further investigation is requifed to find suitable routine; to
recogniseApointer loops, and to group together polynomial products in such a
way that sums of transfer polynomials may be replaced by their equivalent _

linkage polynomials. It seems likely, though, that a practical algorithm

" would ‘'somehow combine these two routines with a special routine for

generating the pointer settings.
Nevertheless, these practical difficulties are alleviated by the
diakoptic approach which the method'permits. Because the results of analysis

of one netwqfk-—-the linkage polynomials — can be used directly as ingredients

for the analysis of some larger network, it is poésible, and generally

advantageous, to tear a network apart into progressively smaller substructures

and‘analyse them separately, so that at any stage only a relatively simple
structure needs to be analyséd. This approach is particularly attractive
when the systems to be analysed are, irrespective of size, only loosely

interconnected.
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Unfortunately, a diakoptic approach raises the problem of specifying

and controlling the manper in which subnetworks are created and manipulated.
Experienée with other diakoptic methods, such as that of Kron [28], suggests
thaﬁ this task is better done manually than with a computef routine, and

it is notable that Ishizaki et al [27] have developed a language notation with
which to specify the algebraic manipulation of multiport networks. But,

again because of the large numbers of linkage polyncmials, this aspect of the

topological‘method has not been investigated in the general case.

1.4.2 Structures of 2-Port Networks

Limiting all networks to two ports effects a drastic simplification in
the analysis process without seriously limiting its application. Most
system éomponent; and circuit devices can be modelled directly as constituent °*
2-port networks, and two ports allow sufficient access to a complete network
to determine any transfer or driving-point immittance functions that may be

sought.

In the fbllowing analysis all networks have exactly two ports.
Consequently all networks are characterised by six polynomials, and the

organisation of polynomial storage and manipulation is comparatively simple.
(

When analfsing large structures of 2-port networks with the general
algorithm, pointer settings are best generated by setting pointers one at a
time in éﬁ order which attempts to follow the formafion of pointer paths, so
that pointer loops are détected automatically as they are formed. Becauée a
pointer determines the polynomials of the 2-port networks which it traverses,

even though pointers elsewhere in the structure may not be set, it is possible

to factorise the sum of polynomiai products associated with a pointer setfing.

Consider one setting of pointers for which there are p pointer loops.
Let tj be the produét of transfer polynomials determined by the j-th pointer

loop,

nj be the correspohding product of natural polynomials determined by

the j-th pointer loop,

and n, be the product of natural polynomial$ of networks which are not traversed

by any pointexr loop.
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From equation 1.3 the contribution to the appropfiate ciosing polynomiai is
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By calculating the factors (ni - ti) as the pointer loops are formed,
many polynomialhmanipulations and associated book-keeping chores are avoided

and some sources of numerical round-off error are eliminated.

The practical application of algorithms using the above expression in
the analysis of structures of 2-port networks has been thoroughly in?estigated

and is the subject of part II of the thesis.

1.5 CONCLUSION

.This chapter intrcduced a set of topological quantities‘ae paremeters'
to characterise multiport networks, and developed an analytical process which.
relates the parameters of a Compiete network with the parameters of its
constituent parts. The process has two important.features. First, it
permits a dlakoptlc approach to the analysis of larqe systems; and second,
because the parameters need only be multlplled together, added, or subtracted
it permlts a totally symbollc analys1s. The advantages of both features are

discussed further in chapter 4.



i ' ' CHAPTER 2

POLYNOMIALS AND NETWORK BEHAVIOUR

2.1 INTRODUCTION | ,
The process presented in chapter.i,for analysing structurés of multiport

networkg in tergs of topological quaﬁtities, is not comblete as a Qseful

énalygis theory becauée the parameters which aré used to characterise networks

have in no way been related to the observable behaviour of the networks; - The

_aim of this chapter is to establish such a relationship.

In the strict logical development of this relationship the first important
goal is to establish that the characterisation of a network by a set of linkage
- polynomials is, .in some sense, unique. But the prdof of the relevant theorem

(2.2) is supported by a special case of another theorem (2.1) that relates all

linkage polynomials to a particular subset of the linkage polynomials. Because
the proof of the latter theorem relies largely on an application of the
i analysis process, it is introduced first. Proof of the general case for theorem

.~ 2.1 must, hbwever, be reserved until theorem 2.2 is proved.

The first two theoremsconstitute the major part of the chapter. It is
~ a relatively simple step to theorem 2.3 which establisheé a connection between

the linkage polynomials and the behaviour of a network characterised by its

e e - -

short-circuit admittance matrix. Theorem 2.4 follows from another simple
application of the analysis process and provides an effective means of

N generalising any identities involving polynomials and port variables.

2.2 IDENTICAL NETWORKS IN PARALLEL

The connection of two,or more, identical multiport networks in pérallel
allbwsAéisimplé demoﬁétration‘of the.anélysis procéss_bf-chapter 1, and leads
to a theorem which~estéblishes ail the relationships between the polynomials

of a network.

lemma 2.1
For a structure of k identical n-port networks, with their corresponding
ports connected in parallel, the polynomiais of the complete network M are

related to the polynomials of thé constituent networks N by the expression
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* Definition 2.1 ("the X matrix")

- N
“and o i Pqi
N

v
N

| ﬁMK _ k[ﬂ]-%m. (N)kul.f:Nx.

Proof (for networks without internal nodes)
If the network contains no internal nodes then the natural polynomial P@
is unityAbecause, with all ports collapsed, the trees contain no branches. The

complete network M behaves as a single network N with all its branch admittances

“Lmultiplied by the factor k, and the theorem is proved for this special case by

'noting that the trees associated with the general polynomial contain b3]+-[5]

branches.

7

* Throughout this chapter a particular matrix, whose elements are ratios of
polynomials, will play a major role. It is introduced at this stage simply as
the X matrix. Its minor determihant, comprising columns a,b,c,.. and rows
pP,q,T, .., is denoted by

' )<abc..

pqr..

With this notatibn the X matrix is defined by itsAelements; as follows:
Jay.
J iN : ,

x - N

X Theorem 2.1

The geheral.linkage polynomial is related to a minor determinant of the -

X matrix by the identity laNK
o _ )(A’X
N T

Proof

The theorem will be proved by induction on e, where e = Le]ﬁ-[x].

The truth of the theorem for e = 1 is established by definition 2.1.

We now assume that the theorem is true for all e{ f, and proceed to

establish the theorem for e = f by considering two identical n-port networks N

connected in parallel.
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O If LG]-% [5] = f then by lemma 2.1 (which at this stage is proved only
for networks without internal nodes), the general linkage polynomial of the

;, complete network M is given by

b f ¥
T =2 NLIN
' ' (2.1)

The same polynomial is now calculated using—the analysis process developed

in chapter 1. The pointers of the ports denoted by B and ¥ may be directed

into either of the constituent networks, and the remaining_pointers'are
directed into the closing network. There are, therefore, a total of 2 pointer

settings to be considered. - - : e

In the typical pointer setting of those to be considered, suppose that,

of the set 4 , the subset of pointers ' are direéted into the first constit-

uent network and the remaining subset 4% are directed 'i_nto the second constit-
uent network. Let the subsets of -«¢ which correspoﬁd to ' and /3% (by virtue
of the brder of the members of « and‘/3 ) be o ando(2 respectively. Thus,
if B=A{Y -V}, o<‘—_—v{x,.'..xm} , and 4'= {y, Y5 ¥>} then

o'= {X; X3X5} . Similarly, let ¥' and ¥° denote the two subsets of ¥

~whose pointers are directed to the first and second-networks respeétively.

! The transfer polynomials cénstituting thé complete linkage polynomial are
:epregen£ed by pointer paths drawn across the structufe,_starting from the ports

, ﬁ' and 3%, and termina;cing at the ports ' and 2. The ;n‘ajo;* task is tb
find all such pointef paths and all the pointer ioops; find all the transfer-
polynomial producfs'determined by equation 1.3, an& group them together into |

products of linkage polynomials.

"It is noted that pointer loops can only be drawn through ports belonging
to the sets ¥' and ¥?, although any path from a port iﬁ,e to.a pdrt in o
may pass through any‘numbers of borts in X’ and Xzialfernately; for instance,
-a path may originate at a portAin ,6', paés‘through different ports in Y2 ;

¥', ¥%, ¥ successively, and terminate at a port in &' .

Consider a sum of products of transfer polynomials which constitute a

typical product of linkage polynomials. Suppose that in one constituent network,
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segments of pointer paths, or ioops,_originate at ports denoted by subsets X;
and X; of ¥, as well ;5,6' of B, and termiﬁate at ports denoted by

subsets | of o' ,'o<f and o(g of x?, and X,z of ¥*. S.uppose, similarly,
that in the oéhér constituént network, segments originate at ports 5? of 32,

2

as well as ﬂz of B , and terminate at a('z of ! ’ o(f of «“, and

Xé and 8; of ¥'. The subsets are chosen so that [82 = [5?], [55]5:[°<§];

and' @XL]E:_Bxf].

In this case the product of linkage polynomials may be denoted by

A ¥ XZ"NY, ¥2 B° ,in -

2 o2 21V HpeG e

1 (2.2)
¢>(I 0(,0(

’ .4
To determine the sign associated with this product, as a temm of:faﬁ .

we first consider the product of transfer polynomials for which the pattern of

transfer indices is unaltered, i.e.

. ' . ) 1 U' ﬂf 32_
_ » | | N T ijz (2.3)
.. . “: ! % ¥
. &? &
| 2 5
| %Y =2

ot et s e B i o e o -

From the definition (1.3) of linkage polynomials, the sign of this transfer

product (2.3), as a term of the linkage product, is. determined by the number of

. . (i [¥]
pairs of transfer indices, and is therefore (-1) The representa-

tion of this product contains the maximum number of pointer loops: [Ké].
‘Thereforé, as a term (in equation 1.3) of the complete transfer polynomial

1 2 xlxz
M/j a (2.4)

)

. V) , ¥! ,
the. sign of the transfer product (2.3) is (—l)[ 2] . Considering again the

definition (1.3) of linkage polynomials, the sign of the transfer polynomial

- By a¥
(2.4) as a term of the linkage polynomiakxﬁﬁ is

-0 s

o) o oG oG oky
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Hence, the sign associated with the linkage product .(2.2) is

s

{ 2 zl +xl .
oz - ()

R R AR TR - G+
o<, oF oG ¥7 ¥ ¥p ¥; 04 %y ¥3

=5

For a particular pointer setting every product of transfer polynomials

determined by equation 1.3 is contained in the expansion of one and only one

N
]
(@)

linkage polynomial product of the form 2.2, and, conversely, every term in the

expansion of every possible product of this form is a term of equation 1.3.

Hence the contribution from one pointer setting to the complete linkage polyno-

. Bl
| mlaloﬁM is

. - ' " s 2 i ' xl X'Z ﬁ
. ~ __ ( < Y28 X % b;iN ! t 2
C=T (Bt yalodos * ot o ¥ ©%ed

),

where the summation is over all sets of e, 7 (which replaces both e? and

«3 in the preceding example), 5’2' (which replaces both ¥, and X:; ), and

2.5)

b",? . To include the general term, the only ‘relationship between the sizes of

these sets is expressed by [o(é] + [X'z] = [Kﬂ + [b’,z]

(The preceding example considered the case in which [K'z] b [3,2]) . If each

. constituent network has less than f pointers directed into it then the assumed

validity of the theorem relates the polynomials -to minors of the X matrix, with

. 2 A
the result that. expression 2.5 divided by (N) is. recognised as a Laplace expan-

sion of a minor of the X matrix. That is,

c— NV Els S B0 2, XY

V2 w24l 2 1 e {2 y2 gl
Y X Xy XY, o5 o) o« oKy X7 ¥,

A By ¥?

(NS, X220,

~ (N). X273 .

X

¥ f° 3’3)
¥y o3 b X3

In this Laplace expansion the first minor bomprises columns ﬁ' and Y'

(2.6)

corresponding to the pointers directed into the first constituent network, and

the second minor comprises columns ﬁz and 23'2, corresponding to the pointers
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directed into the second constituent network. In the "diagonal" term of the

expansion, whose sign is

' ¥ ety
E&x:xloézxz - *"l

»

the first minor comprises rows ' and ¥’ , and the second minor comprises
TOowS &% and b’2 . Other terms are obtained by interchanging rows 0<'2 and X'Z .

of the first minor with row5<xf and X? of the second minor.

The contribution to the comﬁlete polynomial dete%mined by two of the
pointer settings canﬁot be expressed in this form because one of the constituent
networks has f pointers directed into if. But, for both these pqinter settings,
the other &onstifuent network has no pointers directed into it, in which case

the contribution is simply

. |
N ..fN , . (2.7)

The analysis ‘process.is completed by combining the contributions of all

2f pointer settings given by the expressions 2.6 and 2.7, whence

AMY = (-2 (N) . X2y +2.NLENT. (2.0)
Elimination of the complete polynomialZforom equations 2.1 and 2.8
establishes the theorem for e = f, and hence, by induction, for all e.
| Q.E.D.
This theorem is the key to all the relationships between the linkage poly-
nomials of a multiport network, and is used in section 2.7 to establish two

imbortant polynomialvidentities. In particular, we note the following corollary,

without proof:

Corollary 2.1

All the linkage polynomials of an n-port network may be derived from.the
set of (n2 + 1) polynomials comprising the (n + 1) natural polynomials and the

n(n - l)vsingle-transfer polynomials that eccur in the X matrix.



2.3 POLYNOMIALS OF EQUIVALENT NETWORKS

In order to relate:the pblynomialé of a network, defined as branch-
admittance—product—éums (BAPS) of trees, to the electrical behaviour of the
network observed at its ports;'we hust at some stage investigate‘thé
relationships between the voltages and currents in & network. Considering
first‘g two-terminal device by itseif, the current through it, and the voltages
between both its terminals and sohe common ground point, the observance of ‘a
linear relationship-——such agOhms Law-—is implied by the adoption of the
admittance parameter to characterise the resistors, uﬁistors and gyristors with

which we model an electrical circuit. The consequences of Kirchoff's Law,

-however, make their first appearance in this section.

The practical value of linkage polynomials, as a set of'parameters to

characterise a network, is assured by the following theorem.

Theorem 2.2

Electrically equivalent networks, i.e. networks which exhibit the same
electrical behaviour when observed at their ports, are characterised by sets of
linkage polynomials for which the’ratios between corresponding pairs of

polynomials are equal. In other words, the polynomials of equivalent networks

: are identical, except for some multiplicative constant which applies to all the

polynomials of a network.

Proof

Networks with the same behaviour but different internal topological

structures can be transformed from one to another by successively introducing

or eliminating internal nodes. Hence, to prove the theorem, it is sufficient

to show that a transformation which eliminates an internal node without changing

" the network's behaviour also preserves the ratios between network polynomials.

Suppose that a star network A with internal node r and n éxternal nodes is
replaced by an equivalent mesh network B, as in figure 2.1. In network.A the
conqection befween node r and an external node i will, in general; comprise two
unistors, one directed from node i with admittance yi, and the other directed

to node i with admittance Yy- The equivalent mesh contains unistors directed
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NETWORK A : NETWORK' B

Figure 2.1 Equivalent star and mesh networks A and B.

G
1

D

UNIT GYRATOR

A

hC  GENERAL MULTIPORT

Figure 2.2 . Cascade connection of networklA with a
unit gyrator at port c.
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from node j to node i with admittance

ey eud
Vi3 = vy /Y - L
where ‘ Y = E:yk . ' . : - (2.9)
. - | . -

That the two networks are in_faét equivalent is demonstrated by comparing

their driving-point and transfer admittances.

We define Ei to be the veoltage between node i and some common ground
point, and Ii to be the current entering the network at node i. Note that, by
definition, the current in a unistor directed from node i with admittance y1

is yl;Ei.

Applying Kirchoff's current law to the internal node of network A,

« i
I =0y, E_ - Ly E =0,
’ . N

T : i
, 3 _
.l . : ‘E-.
i.e E_ Z:v JY.E,
If all the external nodes except j are short-circuited then
- J )
Er = vy /Y . Ej’
L ==y - Fps
| and | _ I, = yj.E. -y. «» E.
- . J J J r

The short-circuit transfer and driving point admittances are_fherefore given by

-_— I E — -y ' j
Yij 1/J y:,L Y /Y
a'nd Y..=1,/E. = j. - y.-yj Y
JJ J/ J Y J /

The short-circuit transfer and driving—ﬁoint admittances of netWork B

- are giveﬁ by

iy T Yy

and Y..
JJ

Zyij ‘ o, (2.10b)
!

- They prove to be identical to those of A when the relations 2.9 are'invokéd.

To calculate the effect of this star-to-mesh transformation on the
polynomials of any network in which the star network might be embedded, the

complete network is torn in order-to isolate the star as a constituent n-port



2-9
network. For instance, the star's external node j, together with the common

ground terminal, becomes the j-th port of the constitient network. We now

compare the polynomials of networks A and B.

With all ports collapsed, the trees of network A contain a single unistor

" directed from node r to any external node i.

‘.’.Aézyi = Y. | L (2.11a)

If port j alone is not collapsed, a tree contains the unistor yJ with any other

unistor y, (i # 3).

=) y, oy = (Y-y,) . V. | "~ (2.11b)
Only one of these trees contains a path from port j to port i.
; iAE - & SR P yJ. ‘ _ (2.11c)
N
[ :
Further inspection of network A reveals that the general natural polynomial is
‘&?bc.. = [Y - (yé +,yb + yc + .;.)]. ya . yb .'yc..., (2.11d)

and the general single order transfer polynomial is

ipabc.. abc.. j b c .
‘Aa ¢ = —_A = 'Yi . yJ . ya o« Y e Y eeee (2.119)
IN] .

"f The transfer polynomials (and therefore the linkage polynomials) of order

" . greater than 1 are zero.

CZEEN

With all the ports of network B collapsed, there are no trees. = If port j
alone is not collapsed, each tree consists of a single unistor Yiy which also

provides a path from port j to port i.

~B=1, ' “ R : | - (2.12a)

- 23 Yis = (Y’Yj) . Yj/Y, . (2.12b)
and BJ =TV T T Yi; )’J‘/Y.' . (2.12¢)
) . - ’ .

Because network B has no internal nodes, its remaining linkage polynomials

may be determined byapplication of theorem 2.1. It will be proved by induction

ik

on m that Jyvdm . & N
| B =U=2y,/Y) Ty*, (1)
Jg emdi - Jg-1 Jger - - dm v '
iqB: g-1 Jg+1 ' —_ y,/Y Pzryp, _ (2.12¢)
JquEJ,-'Jq-.IJqu“Jm‘—: =0 . A . {2.12F)
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The eqﬁations 2.12b and 2.12¢ establish.2.12d.and2.12e for m=1l; equation 2.12f
is established for m=2 by considering the expansion
L XJ.JZ
- ki

CXLXT - x* :

'g B i@.kg,
~'n/Y'V-n/Y.yZ—n/Y«yfn/Y.y-
= 0. |

Expanding, about column jm+l , the minor comprising rows and columns jl,..,j

BJI-'JmH — 'X:jl"J.mH
: N

mt+l’

Jm+l
' J|--Jm Jm-” Jl JC’ Jm A Jm+l
= XJ.--JM‘XJm+l qz, X me Jm XJq
",, 'm .m_,_ J Jl‘ J - J +1 ‘Jm qu
= B g™ - LB T TB
; =W§mﬂﬁﬂybl—m/Y y I
ATV P!
=wgm/Y>gyﬁ

-which proves equation 2.l2d‘for a;l m.b 'Répeating tﬁe same expanéion, but with
row jm+l replaced by row i, |

st Ji - - J apJi-dm Jme

R = X |

jp--J Jme J j
o X7 - X)L X
- _BJ,..J,,..JT,B _ Z Jiq J,..Jq_,Jq,,..Jm‘JL.,

= =01 =5 5,/Y) JTv". /Y.yl
-Z[Y./Y TTYJP qu/y meu]

m+{

= -v/Y. Ty*,

which'pioves equation 2.12e for all m. Again repeating the expansion, but with

TOWS jm and j' replaced by rows k and i respectively,

mt+1
Im JmuB\j: ey XJz Im-19m e
ki & AN TR S _
J: Jm=1dm XJMH Jl Jm- l\jln Jm*l Z XJ' Jq J,., X‘.jm”
) J, Jm ,k . Jm 1’ Jq
_JmJI"Jm-I Imurge 4___ Jn Jm- lJmﬂ JqJ"‘ b Jq 'J‘7*" et oy
k % ) . , B | B B Z 8 "Jq B

— }’k/Y TT)/J” )’,/Y meH _ )/,/Y Tryjp Yk/Y meH -0
= 0j



which proves equation 2.12f for all m.

i

Any linkage polynomial of order greater than 2 can be expanded in terms

containing a linkage polynomial of order 2, and is, therefdre, also zero.

Comparison of the linkage polynomials (2.11) of network A with the polynomials

(2.12) of network B indicates that they are identical except for the multiplicative

‘constant Y, which applies to all the polynomials.

Because, with the analysis process of chapter'l, the polynomials of any
complete network are homogéneous functions of the polynomials of the constituent
networks, it follows that the effect of a network transformation involving a

node elimination preserves the ratios between the polynomials.

Q.E.D.

The above proof would have been shorter if corollary 2.1 could have been

applied to both networks A and Bj for'then'it would have been necessary to compare

- only the n2+ 1 polynomials which determine the respective X matrices. But this

corollary could not be applied to network A because lemma 2.1 is, at this stage,

- proved only for networks without internal nodes. However, with theorem 2.2 now

established, it is.possible to prove that the lemma, its thecrem, and its

corollary are valid for all networks.

_ Proof of Lemma 2.1

‘Because the behaviour of the structure M would not be altered if every
internal node of one network was connected to the corresponding nodes in the

other networks, the structure is equivalent to a single network P obtained

~ from N by multiplying all its branch admittances by the factor k. .If g is the

number of internal nodes then the number of branches in each tree associated
-with the general polynomial is g +-Le] +'[J], and the general polynomial of
the equivalent structure is

Ap? _ k9+[ﬁ]+[5] AN

o . 1



-1t is seen that

~Elimination ofhﬁand (K . kg) from equations 2.13 and 2.14 proves the lemma
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But, by theorem 2.2, |
By¥ _ , BeY
M=K P
for some constant, K. | . ‘
Y I 1 +[al+[¥ ¥
2. D‘M = K. k2 4] [JﬁN . (2.13)

If all the ports are collapsed then equation 2.13 becomes

M = K.k° N. | o (2.14)

v

The structure may also be analysed by the process of chapter 1, in which case

M = (N> - | (2.15)

foi all networks.

Q.E.D.
" We note an obvious corollary to theorem 2.2:

Corollary 2.2

The X matrices of equivalent networks are equal.

2.4 POLYNOMIALS AND THE SHORT-CIRCUIT ADMITTANCE MATRIX

The importance of theorem 2.2 is recognised by its contribution (in the

© form of cdrollary 2.2) to thé proof of the following theorem which is the key to

the relationship bétween a network's behaviour and its polynomials.

Theorem 2.3
The X matrix, whose elements (by definition 2.1) are ratios between linkage
polynomials of a network, is equal to the short-circuit admittance matrix of the

network.

Proof -

The theorém is first_proved for the general n—porf network B without internal
nodes, as in figure é.l. + Such a network Was discussed in the proof of theorem
2.2: its short-circuit admittances are givenvby equations 2.10b, and its
polynomials are given by.equations 2.12.  From these equations it is deduced

that its X matrix is given by
j = J ! a—
Xi - iB/B— Yj_j
and Xf = R/B- Y

[H

1./E,

Ad

(i
—
SN

4 .m
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Any network N equivalent to B will, by definition, have the same short-circuit
matrix, and, by corollary 2.2, have the same X matrix. —Thus the theorem is

proved for any network.

Q.E.D.

2.5 THE UNIT GYRATOR
In a simple application of theorem 2.3 we determine the 6 polynomials
that characterise the unit gyrator G, whose behaviour is described by the

equation

o) [ 2 | T (2.16)
For simplicity, it is assumed that the common denominator polynomial of the X

or admittance matrix is

G, =1. | ' | (2.17a)

The numerator polynomials are then equated with the elements of the admittance

matrix, i.e.

=N
(o)
|
]
~ N
t
—
-

- (2.17b)

N e
"

1

—

N
f-—

The sixth iinkage polynomial is equated with the determinant of the admittance
métrix; i.e.

G'g. = 1. . . A o ) (2.]_70)

These polynomials are required in the proof of ‘the foliowing theorem which,

incidentally, gives a further demonstration of the analysis process.

-
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Theorem 2.4
If an n-port network A is cascaded a2t port ¢ with a unit gyrator to form
a new n-port network B, the linkage polynomials of the two networks A and B
are related with the equations:
C—-
B = A,
~ c
B. = A
Cg C

CB =CA- B _ - (2.18)

The ~'pos'itions'of the indices of all ports other than ¢ are not affécted and

s

"are ‘therefore not shown in these equations.

Proof

While developing the proof the port of fhe complete network B which
.correspdnds to port c of thé constituent network A is denoted by ¢’ (see figure
2.2). The first and second ports of the unit gyrator G afe therefore-fcl and

¢ respectively, and from equations 2.17 its polynomials are

/ !

c cc
GC—G —,’

.o | e )
o - e GCIC— Cgcl A

wa G- GL=0. e

In applying the analysis probess it is noted that for every setting of

external pointérs there can be no péinter loops, and there are only two settings

of the internal pointer to consider. Therefore, if ¢/ is not among the transfer

indices,

_ Gz‘ Ac + Gcc’AC -
=G, A + G. A, . _’  (2.20a)

If a pointer path of the complete network originafes from, or terminates at,

and

_port ¢ then it must pass through the internal port c..

. . cc « C
-~ C .
d - = . .
an_ cr.C CGSCI éAﬁC ) (2:200)

All the transfer polynomials in the expansion of any one linkage polynomial are
associated with the same gyrator‘polynomial. Therefore, after substitution
for the gyrator polynomials (2.19), the equations 2.20 relate both the transfer

and linkage polynomials, and prove the theorem.

Q.E.D.
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In effect, cascading one port of a network with a unit gyrator interchanges
the roles that its voltqge and current play in the-cﬁaractérisation of the
network's behaviour.  This property has alread? been exploited (in section 1.2)
in converting series connections of ports to equivalent paréllel connections
prior to the analysis of general structures of multiport networks. It is
exploited further in generalising any identity relating the various polynomials,

voltages, and currents of a network.

2.6 TOPOLOGICAL FORMULAE
It is established by theorem 2.3 that the transfer admittance from port j
to port i, with all other ports « short-circuited, is given by the ij-th element
of the X matrix, i.e. ‘ ,
, ) J
P 1; ib@a

3

Ei,u=0 Niju
’ : (2.21)

If the set of ports & is divided into two sets @B and ¥ , and all the ports ¥ -

. are cascaded with unit gyrators, then, with the help of theorem 2.4, we obtain

from equation 2.21 the more general identity for transfer admittances:

S Jag¥
5 N,

E. ). 4 .

: (2.22a)
Cascading ports i and j with unit gyrators, either at the.samé time or one at-a
time, yields the general identities for transfer impedances, voltage ratios, or

current ratios:

ag?” : | (2.224)
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‘The general identity for a driving-point immittance is deduced in a
similar way: : » ' j

1 . N“

Ej , ﬁéjw

Ej | ¥ -
TfE=0,14=0 Nz C (2.20)

In so far as the polynomials are defined here as topological quantities —

branch-admittance-product-sums of sets'of trees—the identities 2.22 and 2.24

embrace the classical topological formulae for all network functions.

It is also deduced fromAthese-identities that the zeros. of transmission

fromipoft j to port i, with ports 4 short-circuited and ports ¥ ‘open-circuited,
J @éx I

iNg - he zeros of the

1 _
natural polynomialﬁ%e determine the natural frequencies of the network with

are zeros of the single-order linkage polynomial

. ports /4 short-circuited and ports ¥ open-circuited, because this polynomial
is the common denominator of the hybrid matrix with which the voltages Ey and

~currents %@ are expressed as linear functions of the currents Iy and voltages

Egp -

A familiar, particular case of the identities arises when all ports are

cascaded with a unit gyrator. All port currents become port voltages and vice

versa, and the short-circuit admittance matrix (the X matrix) becomes the open-
circuit impedance matrix. The transfer and driving-point impedances from port j

follow from identities .2.21 and 2.23:

By N
I; : - ijes ‘
- I =0 : N : (2.25)
.4
E _ N |
and L 1 =0 | NM ‘  (2.26)

These identities confirm the well-known result that the common denominator

of all the open-circuit impedances is associated with the branch-admittance-product
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-sum of the trees of ihe network. With the-application of theorem 2.1 the
impedahcé of identity 2.25 is recognised as the ratié of fﬁe cofacfor of the
ji-th element of fhe admittance matrix to the determinant of the admittance
matrix, which is, of course, the ij-th element of the inverée of'the admittance

matrix.

2.7 POLYNOMIAL IDENTITIES

To further illustrate the application of theorems 2.1 and 2.4 we derive

two simple but important generalised polynomial identities.

Consider, first, the ratio of polynomials

uv
N v

Which, on expansion of the determinant, yields the identity
uv" U oagv v v S
'N .NW = NV.NU"VN.UN . _ (2.27)

This identity may be applied to a general mulfiport network, in which
case the ﬁotation ‘convention already'adoptedAimplies‘thét all port indices not:
specifically included are assumed to be in the suffixed—subécript position.
However, cascading any of these ports with unit gyrators would transfer their
indices from the sdbscript to the suberscriﬁt position.’ Therefofe, in

interpreting this (as well as any bther) identity, any missing port index may

‘be inserted in either the suffixed-subscript or superscript position, uniformly

throughout the identity.~ Thus, an instance of this identity for a 4-port

network 1is

1234 a4 Rp2? 34  2p904 3pg4
Nl .Nma_ Nm -Nm-_3Nlr2Nl
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Consider, second, the ratio of polynomials
NT o
Now "

NG O

(Now)* | WN, NG,

'which,“dn expansion of the determinant, yields the identity

‘v w Vv wo w
UN . Nuvw_ UNW . Nw WNU . UNV :

With regard to missing indices, this identity is open to the same interpretation

 as 2.27. Yet, cascading either or both of the ports u and v with unit gyrators .

results in even more identities; therefore, a more general form of the identity
is
(2.28)

These two little-known polynomial identities are sufficient to calculate

all the natural and first-order ponnomials from a given X matrix, and, as such,

'ére the basis for an alternative analysis method discussed in chapter 3.

It will be appreciated that a very large number of new polynomial identities

‘may be derived by considering any Laplace expansion of any minor of the X matrix

" and then cascéding any of the ports with unit gyrators.

2.8 CONCLUSION
This chapter completes the exposition of a theory for the topological
analysis of multiport networks. Tts aim was to validate the approach to

analysis taken in chapter 1 by building a logical bridge from the new analysis

method to. the well-established tbpological theory as it applies to the analysis

of linear networks. The new approach was begun in chapter 1 with the definition

-

of a set of polynomials as topological quantities, and with the development of

an analysis process which dealt with these polynomials.

Largely as a consequence of the analysis process, all the linkage
polynomials were related, by -theorems 2.1 and 2.3, to minors of the short-circuit

admittance matrix, and thus their relevance in describing the observable
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behaviour of a network was established. The effect of cascading a port with
a unit gyrator was investigated in theorem 2.4, and was exploited as a simple

means of generalising all results obtained from the precedihg theorems.

The main objective of the chapter was reached with the identities 2.22
and 2.24, which express the topological formulae for the various functions of

a netﬁbrk;‘ The other identities and properties of linkage polynomials derived

 throughout the chapter serve in presenting a more complete picture of the topo-

logical quantities, and demonstrate the facility with which theoretical results

" may be obtained. Although the proof of the four theorems, and the derivation

of the polynomial properties which emerge from them are unique to this

approach, the results are not new. A thorough examination of the properties

of linkage pdlynomials has been presented elsewhere by Pike [41] R
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CHAPTER 3

ALTERNATIVE ANALYSIS METHODS

3.1  INTRODUCTION

The preceding chapters present a complete theory for the anélysis of
linear networks based on an analysis proceés thch avoids the combilation and
maninIation of matrices. Although this pfocess has unique>features which
appear to give it an édvantage in performing symbolic anély;is of large qet-

works, a realistic assessment of its merits cannot be made without establish-

ing some link with other analysis methods. This chapter therefore investigates
analysis methods based on the manipulation of network matrices and, where
possible, attempts to interpret one method in terms of the other.

'
i

3.2 INVERSION OF NETWORK MATRICES

i

A common method of network analysis entails the compilation of the so-

called "nodal-admittance matrix" and its subsequent inversion. If the network
is regarded as a multi-port network, the nodal admittance matrix is recognised
as the short-circuit admittance matrix or, if all elements have a common
denominator, the X matrix of definition 2.1. The compilation of this matrix
is generally straightforward and is here taken for granted; this section
- addresses itself to the task of inverting either the X matrix or any other

hybrid matrix which relates one set of port variables (a voltage or current

from each port) to its complement set.

The inversion of an n x n matrix may be achieved in n steps, each one
involving the interchange of the voltage and current variables for one port,

and thereby forming a new hybrid matrix. Because the steps are similar in

principle, it is sufficient to detail only one such step. Further, because
the formulse concerning any hybrid matrix may be obtained, with application
of theorem 2.4, from similar formulae concerning the X matrix, this step

will be demonstrated only with the X matrix.

Suppose that the voltage and current variables of the k-th port are inter-
: - J
changed, thus forming the hybrid matrix whose ij-th element is denoted by \A!;.

If the transformation of the X matrix was achieved by cascading the k-th port
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with a unit gyrator then, by theorem 2.4,

NN

CINS/NS
NN
'N /N,
NN
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- (3.1)

‘ : _ Jk ik . . )
All the polynomials except P@ andqu are obtained directly from the X matrix.

The exceptions are calculated from polynomials of the X matrix using the

polynomial identities 2.27 and 2.28, i.e.

and

N

k

jk

(N N"= N.IN) /N
= (NN ININ) /N

(3.2)

Combination of the identities 3.1 and 3.2 with the X matrix definition (2.1)

vields expressions relating elements of the two matrices, i.e..

and

Colemanv[47]."

W,

X - XX /X

= X XX /X
= Xf‘/xt,

= -x /X,

@

W' = 1/X .

These expressions confirm the direct matrix inversion method of Shipley and

(3.3)

The complete inversion pfocess is demonstrated with a general 3-port

network. The short-circuit admittance matrix (the X matrii)'ié'given by

I

1

N,

' Nés fNa
Ny N
N N,

3

!

3




The hybrid matrix obtained‘by interchanging 13 and E3 is

3
'l%éz El

-
N,

‘N NP

2
!

N,

given by

N

l 2
'~E3j, | N, _3N1- Ny 3]

for which tﬁe new polynomials are determined by

(NL, . NS~ 3N, IN,) /N,
N = (NDONL-ONCON) /N, .
N = [Ny NG ONINGD N
N = (N, NG N, IN) /N

13
N, =

A similar step interchanges 12

more polynomials:

' T . 123 2p3  3pg2 | (o)
.Il . N IN IN . El
EIINE CEENE
123 _ZN »le _ZNI 1
. 2

' g2 2np 2|
| 3] N -—EN '_3N: le | 1

(NZ. NP = IN°UIN) /NG,

N = (N NP ONCINT/NG L
N, NN

_The final s_tep”‘inte;changes. I, and Eli' requizing calculation of another

-three polynomials; and yields the open-circuit impedance matrix:

! L 23 2,03 3.42 1 [. ]
’El ' ' .Nl' _-IN _IN 1h _
_ [ - I g3 13 3p!

Byl = @E& }.N Nz "‘zN I
: . Ine2  2p4! 12
Esl ‘ _ 'EN "E.N 'Na

ND = (N™ NG+ ONTOINT)/NT
N = (N NTSONTN)/NE
(2N, NN ING)/NE L

<

w

and E2, and requires the calculation of three
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3.4
Thus-all 20 natural and single-order linkage polynomials of .a 3-port
network are calculated in three stages, using only the identities 2.27 and

o

2.28.

Practlcal methods of network analysls based on the above process have

,:been developed by Downs [18 19, 20] . With many networks two economies

are exe101sed the symmetry of matrices of rec1procal networks is exp101ted

to save storage space’ and avoid repeated computat*on, and the use of a

common . denominator polynomial is not enforced.

In the initial compilation of the admittancevmatrix and, to a lessening
extent, in the calculation of subsequent hybrld matrlces, the use of a common
denomlnator polynomlal for all elements of the matrnx would 1ncur'the
introduction and subsequent'cancellation of many polynomial factors. Without.
a co&mon denominator polynomial.the degrees of the numerator polynomials are
generaily smaller; bnt more polynomials must be manipulated and the-computational'
algorithm is mote complicated. This aspect of the method has been studied
at length by Downs and need not be: pursued here; the purpose of the chapter 1s
served by the link between this matrix 1nver51on method and the approach to .

network analy51s which is the subJect of the thesis.

3.3 ADDITION OF NETWORK MATRICES

With a conventional approach, the analysis of a network as a whole
requires.the inversion of a network matrix as discussed in the previous section;
for a structure of separately analysed constituent networks as described in

chapter 1, the same conventional approach to analysis requires the inversion

of a matrix which is the sum of appropriate hybrid matrices representing the

- individual constituent networks. We shall develOpAan analysis method based’

on thls conventlonal approach and draw a parallel between the computatlonal

' aspects of the method with those of the topological analysls process of

chapter 1.

It was demonstrated in chapter 1 that it is sufficient to consider only

. those structures in which the constituent networks are interconnected with

their ports in parallel. In that case the appropriate hybrid matrix is the
short-circuit admittance matrix and we assuhe that the matrix of each individual

constituent network is augmented with rows and columns of zero elements, where
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necessary, so that it has a row and column corresponding to every port in the

structure.

.Throughout the structure the corrésponding port voltages of the constituent
networks are equal, and the corresponding port currents add together to produce
the port currents of the complete networks; therefore the admittance matrix of

the complete network is the sum of the admittance matrices of the constituent

- networks.

If each constituent network is fully analysed, there is known a numeratof
polynomial and a common denominafor polynomial forvevéry minor (including the
determinant and individual elgments) of its matrix. The goal of the analysis
is to calculate the numerator polynomials and common denominatér polynomi;l of

every minor of the matrix of the complete network.

Let N denote the complete network; and A,B,C.. denote generic represent-

atives of the constituent networks. Letho(refer to the X matrix of network
Y
N, let ho(pqr“ denote the column vector comprising the elements of rows
: . abec..
PsqsT,.. common to column j of N)(, and let N)(pqrx. denote the minor
determined by the columns a,b,b,.. and rows p,q,r;.. . Then the equation
NX = L AX

. A |
expresses the matrix of the complete network as the sum of the matrices of the
constituent networks. A general minor of the complete network is expanded as

follows:

b... ' b c
NXf)qf' = | NXSqr“ Nqur.. prqr.. < v e l

| b c
Bqur gCXqu e s+ o

)
B
g O b A C
‘ Apar.. éngqu:- %:CXPQF?

i

ZZ‘ ¢ I Axsqr., Bngr CX;qr ¢ e |

(3.4)
“The first observation from this expression is that every determinant in
the sum of determinants correspoﬁds to an appropriate setting of pointers..
For instance, the generic determinant of tﬁis éxpression corresponds to the
setting in which the -pointer of port a is directed into the constituent

netwoerk A, b into B, ¢ into C; etc.



i
1
{
;
i
|

TR TWARE e o TR TR T L R T R e

A particular determinant is evaluated by a Laplace expansion with the
columns contributed by the same constituent network grouped togethei.» Thus
each term in the Laplace expansion is a pfoduct of minors, one minor from each
constituent network, and correspbnds to a term in the expréssion 1.3 for the

BAPS associated with a particular pointer setting.

.All terms in the expansion of any minor of the complcte network matrix
poéséss é common denominator polynomial which is the product of the.cOmmon.
denominator polynomials bf all the éonstituent network matrices, i.e.

| N=TA
whereNandA denote the common denominator polynomialé. of the matrices of
the complete network N and the generic constituént network A. _ To méintain
this common denominator, even for terms corrésponding to poihter seftings
which leave some constituent networks without pointers directed into them, it
is convenient to conceive a minor with no célumns or rows. Because it must
have a value of unity, its numerator polynomial is equal to the common

denominator polynomial of the matrix.

The addition of matrices is illustrated with the structure of figure 1.3.

The matrices of the three networks are denoted by

A A, A, 0

0 0

A, KA 0 00

o - ,_ AA K0 0 0
A, |0 0 00 0 0}’

0 0 0 0 0 0

0 0 0 0 0 O
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: 0 0 0 0 0 0
6 0 0 0 0 0
. |0 0 0 0 0 0
K= Cse |0 0 0 CiC.C| -
0 0 0 C C.C.
Jo o 0 iC .

The pointer setting shown in the figure (1.3) corresponds to an expansion

of the determinant

by the three sets of columns {1,3} , {2,4} , and {5,6} . Due to the many
zero elements most of the terms in the expansion are zeroj for non—zerd terms

the minors determined by columns 1 and 3 must include row 1 and either

“row 2 or row 3, while the minors determined by columns 5 and 6 must include

row 6 and either row 4 or row 5. Therefore, there is a total of four non-

Zero tgrms:
§13345s - A BXEi-CX§Z
OB A BKL X
I A et o
+ §1ze A . BXIT . CXe

3l 2 56
_zA-385'C‘;+

. 2345* C‘we
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This expression agrees with the expression 1.4 obtained with the tOpdlogical

analysis method.

‘The analysis of this structure is far from complete. Fifteen more

pointer settings must be considered before all the terms in the expansion of

" the determinant of the complete network matrix are obtained. If all ports

4 4 ?

are external, a total of 22 x 3 = 324 pointer settings must be considered
before all the complete polynomials are obtained. Nevertheless, the example
demonstrates the computational equivalence of the matrix-addition and topolo-

gical analysis methods.

Although the methods are computationally equivalent, ‘the réspective

algorithms which control the computations are entirely different. The

topological analysis algorithm is admittedly quite complex but it only computes

‘terms which are, in general, non-zero. On the other hand, an algorithm to
. evaluate determinants with appropriate Laplace expansions would be comparatively

simple but, without suitable traps, would generate &ll terms; both zero and

non-zero.

In the expansion illustrated above there are a total of (6!)/(21)3 = 90 terms,

of which only 4 are non-zero. The relative merits of the methods therefore

- depend largely on the degree of interconnection between constituent netwdrks,

though it is worth remarking that the structure of figure 1.3, which in this

respect is not atypicai of electrical networks, appears to be better served

by the topological analysis method.
3.4  CONCLUSION

The link between the topological approach and the more conventional

matrix methods, which concludes the theoretical part of the thesis, places

the new method in a broader perSpéctive. It suggests an alteihative

dévelopment of the.iopological methods, starting from the matrix methods rather
than from an investigation of topological quantities, and it provides another
interpretation of the analysis process. Thus, if a network is strongly
iqterconnected, the topological analysis algorithm, which might become

préoccupied with the search for pointer loops and the collection of transfer
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polynomials to form linkage pélynomials, can be abandoned in favour of the
direct expansion of determinants-——without compromiéing either the diakoptic

approach or the facility for achieving a fully symbolic analysis.

Due to the Qparsity of non-zero elements the use of matrices, especially
those whose elements are rational.polynomials, in the analysis of most large,
electrical networks is wasteful in terms of both storage aliocatioa anq
EomputatiOnal effort. In a broad view; the topological approach is éeen to

directly exploit matrix sparsity and shouid prove superior to the conventional

sparse-matrix techniques which gain their efficiencyAfrom a purely numerical

adalysis of the matrix rather than from a knowledge of the topological features

of the real system.



CHAPTER 4

TOPOLOGICAL ANALYSIS OF 2-PORT NETWORKS

4.1 - INTRODUCTION

When it is required to predict the behaviour of any linear network, from
simple passive filters to multi-stage frequency—se@ective amplifiers.containing
many feedbaék loops, the easiest; the most“prdductiVe, and iherefofeAusuaily |

the first ehdea&our is to lump any distributed-components together, estimate the

' émall—signal behaviour characteristics of all the components, and calculate the

response of the network at many frequencies. Although only a starting point for .-
mqre'thorough investigations of network characteristics such as noise, non-linear

behaviour, transient response, and sensitivity to parameter changes, a frequency

- response analysis provides a broad insight to the performance of a network, and

presents data which can be readily corroborated with measurements on the physical

realisation of the network.

That a digital computer is an invaluable tool for the analysis of large
‘networks cannot be disputed; indeed, the importance of ac analysis is under-

scored by the large number of computer programs which have been developed to

perform this task.

<

The first generation of programs, not unnaturally, used the simplest

. formulation of the analysis problem: the nodal-admittance matrix.

Two pfograms'are typical:. ECAP, which also berformS": dc and transient
analysis,aand has been implemented oh most types of iarge computers; and ACNET,
which is wideiy known dué to its ‘support on the Honeywell Mark I computer time-
sharing service.: However, these programs are inefficient in their use of both
computer time and éomputer store—gpace. For time-shared computers which have a

limited space available in their core-store this aSpe¢£.is critical and often

‘precludes the analysis of'large networks — especially those for which a computer

analysis would be most valuable.

Beside a program's éomputatipnal efficiency and aééuracy, anothéf aépect
which influences its popularity is the form in which dafa describing the network
must be presented to it. Most programs wiil accept, in a uniform and simple
manner, networks comprising only Ry L and C pomponents,vbut few of the geheral~
purpose programs. will recognise a more complete set of network components. The
onus is then on the1program-user to model- devices such as'transisférs and
transformers with, for example, only R; L,'C and voltage-dependent current—séurce

elements.
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It is often practical to inciude extra routines in a program to either
perform this modelling directly, or'ctherwise handle an enlarged set of basic
elements which might igclude all types. of dependent sources and other two-port
devicés. However, for some anaiysis methods there still rémains a fundamental

difficulty in héndling degenerate devices such as ideal isolating transformers

and operational amplifiers.

This chapter first surveys the known methods for ac analysis of linear

‘networks, examines briefly the methods for calculating network fdnctions, and

discusses the desirability of network tearing.

The approach to network tearing introduced in chapter 1 is illusfrated
by its application to a simple 2-port amplifier circuit, and from this exercise
there emerges the concept of a structure graph, used to'descfibe any 2-port
network. It is in attempting to analyse structure graphs in the most efficient
ménner that the concept of algebraic reducfion arises, and this, too, is |

jllustrated with reference to the amplifier circuit.

A simpler notation for the‘polynomials of 2-port networks is introduced,
and the general topological analysis algorithm of chapter 1 is recast in a.form-

better suited to the analysis of structure graphs.

The remainder of the chapter discusses implementation of the analysis
method. One major problem is the loss of numerical accuracy due to truncation
errors in the polynomial coefficients, and this is tackled with the introduction

of a novel, computationally-simple frequency transformation.

" The final section discusses various forms of polyﬁomial representatioh
and their roles in the symbolic analysis of lumped parameter networks, in the
frequency—by—freduency analysis of distributed-parameter networks, and in

arameter-sensitivity analyses.
p :

4.2  ANALYSIS METHODS

If the response 1s required at a large number of frequencies it is
desirable to use lLaplace transform techniques andifirst calculéte the transfer
functions as ratios of polynomials in the complex-frequency variable s. From

these fhe response can be calculated quite simply and hence more rapidly_than

the point-by-point methods which repeat the whole analysis at each frequency.

However, in the past, the use of network polynomials has lost favour [5]

- and point-by-point methods have been improved to the extent that, after the

first analysis, much of the effort required to invert a matrix is avoided.
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Notable among the point-bv-point methods is that of Pinel and’Blostein[42]

embodied in a program called KRON, which first compilesithe nodal admittance

matrix of a tree of the network and calculates the Laplace‘transform of its
invefse. At each frequency it is only necessary to evaluate this.inversé and
adjust it, with a routine developed by Branin[4] as each-link and controlled
:sourcé is added to the free to gdmplete the network; Branin's ﬁéthod, based on
the w;fk-of'Kron[2q1by which the sglution matrix is simply'updated rather than

calculated anew when a link isladdéd, ié_aiso suited to the calculation of
sensitivities with respect to component changes.

Rational polynomials have not been favoured in the gnalysis of large
networks fb; two reasons: their coefficients are difficult to célcﬁlaée; and

the response at some frequencies can be intolerably sensitive to errors in the

coefficients. However, these two difficulties are largely overcome with the

- methods demonstrated in this thesis (chapter 6), and the many advantages of the

classical approach to analysis are more easily realised.

Besides allowing rapid calculation of frequency response, network polynomials
yield other information on the behaviour of a network. Provided that suitable
polyndmial root-finding routines are available, the zeros and poles can be

calculated to determine a network's stability and natural frequencies. Transient

. reSpodse can be calculated, either by findin@‘phépoles and their residues and

inverting the Laplace transform in the conventional manner, or by working directly
from the polynomial coefficients and thus avoiding theldifficulties associated with

muitipie roots [15,3ﬂ.Further, by analytically diffefentiating the netwdrk—function

‘polynomials, the group delay can be calculated more accurately thén by numerically

differentiating>the phase response with respect to frequency.

4.3 CALCULATIONS OF NETWORK FUNCTIONS

Methods for calculating network funtions fall into three essentially

~different classes.

The first class contains those method; which‘manipﬁlate polynomials.
Starting with.the simpler pélynomials representing individual components, the
polynomials are combined as the cohponents are interconnected until the.pOIYnomials
representing the complete network are obtaiﬁed.' An early method of this type was
that of Bashkow[ngalthough it can only gnalyse ladder structures with passive

components it achieved widespread use. A more versatile method described by
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Riordan[44] is intended to handle active components, but while its forte is =
cascaded 2-port networks, all but the sim?lest feedback péths must be
approximated. It is a general characteristic of methods of this type, however,
'that fhey provide the most rapid analfsis of those networks rés{ricted_to a

certain structural type.

The greatest danger which must be avoided with methods in this class is
the .generation of spurious common factors in the numerators and denominators of

network functions. Apart from occupying valuable store space in the computer,

 the factors are difficult to récognise and cancel, because in practice a slight

variation in polynomial coefficients due to round-off error can significantly

alter their values. This is the reasom why large matrices with rational-

‘polynomial elements cannot be inyertéd with the conventional methods such as

. -Gaussian elimination.

' )Probably the best technique‘for inverting an admittance matrix of rational -
polynomials has been developed into a practical method bvaowns[18]. The
inversion of an n x n matrix'is acﬁomplished in n similar stages, each stage
resulting‘in é different hybrid matrix‘of thg network. The degrees of polynomials
are kept within ménagéable bounds by diviaing out the predicted common factors

at every stage. Although the process is efficient for matrices of mdderate size

- it-is .reported by Neill [40] that for larger matrices a severe loss of significént

figures occurs during the division of polynomials and the increase in computing

time makes the process uneconomic.

The second class contains those methods based on topological formulae for
network functions [13,14,34,48]. Typical of this approach is a program written

by Calahan [ll]. _

As a class these methods are notable for their ability to handle component

- values either numerically or symbolically and to:thus.establish thé‘funcfional

dependence of the network functions of any set of network parameters. The

modelling of ideal isolafing transformers, mutual inductances, gyrators, and

~active components is difficult, and the methods vary from one another mainly in

fhe techniques adopted to overcome'theée difficulties. Common to all these
methbds_ié the severe limitation imposed on netwgik size by the need to generate
all the trees of a network gfaph. The number of trees tends to grow egponeﬁtially
with the nuﬁber of.hodes and branches,; so that alfhough some improvement may Be

made in the algorithms to generste trees and calculate their branch-admittance
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products, the increase in the size of networks that can be analysed is not

likely to be significant.

- Also in this class are the methods based on the signal-flow graph
techniques first develcoped by Mason [33}. Their applicatidns Have become widely
known through documentation of the several versions of the program NASAP [52].
Signal-flow gréphs have an advantage in that they represent the mathematical
relat{onship between the system variables rather than the physical interconnections
which are represented by the network graph. Consequently the handling of complex
or degenerate devices is relafi?ely straightforward, but this fécility is obtéined
at the expense of approximately doubling the size of the graph to be analysed.
The transfer functions'are'fouhd with the application of tOpoloéical formulae
requiring enumerative sche&és for loops in the graph, and these methods suffer

the same limitations on network size as.the other topological methods.

* The third clags-includes those methods which are based on the concept of
state-variables and which characterise a network by its A matrix {l]. The chief
difficulty concerns the selection of a suitable vector of state variables on
which to.base the A matrix of the general network, and it is in this regpect that
ﬁany method; differ [10,30]. The usualvanalySisbprocedufe is to calculate the
eigenvalues and eigenvectors of A by an ’iterative method; the eigenvalues are
the natufal frequeﬁcies of the nefwork and hence the poles of the transfer
functions, and the eigenvectors determine the residues of the poles in all the
transfer functions. An'alternative appréach finds the transfgr-function Zeros

as the eigenvalues of related network matrices [46]. .

These méthods, especially those which, like tﬁe.program>CORNAP [43],emplqy
theAQ—RAtransfofmation.of Francis[24,51];have been preferred for calculating the |
natural frequencies éf a network becauée, in working with thé A matrix; the
iterated loop links the frequencies mofe directly to the network paramefers than
do the methbds whose iterations wbrk‘with the coefficiehté of fhe cﬁaracteristic
polynomial. It is Qell known that round-off errors in the coefficients of a

polynomial may strongly influence the accurécy of its roots.

Related 1o the third class, with regard to their calculation of network

- poles and zeros, are those methods which apply the Muller [39]'routine'directly

to the determinant and minor of the nodal admittance matrix. Motrix inversion
is not required, but the determinant must be evaluated at one complex frequency
for each of many iterative steps toward successive natural frequencies. When

used with conventional Gaussian elimingtion, as in the program LISA_[17].
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computa{ional efficiency is sacrificed for the inhergnt supeiior accuracys; but
when combined with a determinant evaluation procedure which uses the efficient
row- and column-ordering scheme of a Sparse.matrix technique [3] as 1n program

FRANK and its successor SLIC [26] it results in one of the most efficient and

~accurate tools for the calculation of natural frequencies that is currently

available.

"“However, the use of an iterative routine, with its attendant problems of

control, difficulty with pathalogical cases, and questionable accuracy, is not

. attractive for the calculation of steady-state frequency~response;

Beside the iterative methods,:there are direct methods for calculating
the coefficients of the. characteristic polynomial of A, and, at the same time,
calculating the adjoint matrix of sI - A from which the numerator polynomials of -

all the transfer functions may be obtained [38], A reliable method of this type

~is a modification by Faddeev [22] of Leverrier's method. But the storage

.
requirements and tremendous computational effort involved with these methods soon

become prohibitive. If A is an n x n.matrix, the number of coefficients in the
polynomials of the adjoint matrix is proportional to n3, and the number of

arithmetic operations needed to calculate them is proportional to n4.

" 4.4  NETWORK TEARING

If both computer store-space and computer time are to be used efficiently

to permit the analysis of very large netWorks, it must be possible to tear a

network aﬁart into sub-networks, analyse them separately, and somehow combine the

‘results of their separate analyses to achieve an analysié of the whole network.

' The practicability of this procedure depends entirely on the existence of

~a suitable method for combining the anélyses, or solutions, of separate networks.

The poWerful techniques developed by Kron[29] for interconnecting the solutions

of any physical systems, empiby matrix methods ahd»req&ire the inversion of matrices;

it is therefore not considered feasible to adapt these méthods directly to the

rational polynomials of ‘the Laplace.transform technique. AAs alfernatives to the
tearing procedure, which gains its computational effectiveness by exploiting the
sparsity of non-zero elements in network matrices, there are techniques involving
schemes for mafrix decomposition[49] but they too, for the same reason, are not

amenable to Laplace transform techniques.
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Befofe demonstrating the tearing procedure introduced in chapter 1,
some of its expected advantages are reviewed.‘ An advantage'of any tearing
‘procedure is that if 5 topological method is used to analyse the subnetworks
then lhe total number of trees that must be found in all the subnetworks is

considerably less than the number of trees of the complete network.

fihen the effect of a network modification is requifed, only the analysis
‘of those subnetworks containing the modified components need be repeated. . If
~ the modification involves a change in the admittance of a component, it can be
effeeted by the addition of a similar component, with eitherva positive or
,negative admittance, in pafallel with the original network? ahd the additional
analysis effort is concerned only wlth this connection. Thls feature is
particularly useful in the analysis facility of a computer program for on-line

network design.

A teafihg procedure can fake_advantage of a sltuation in which a network
has some ideﬁtical sdbnefworks, for a standard subnetwork .can be anelysed once,
~and its solufion stored and used later in'interconnectiens with any‘other net-
works ‘A network can also be torn apart to separate those subnetworks whlch can
best be analysed by dlfferent methods, for example, devices with three or more
terminals need not be modelled with networks of two-terminal devices, as they

must be for the topological methods, but may be represented directly as a sub-

network.

Probably the mdst significant attribute of a tearing proceddre le.that by
.applying it 3uccessively to subnetworks,‘and their.subnetworks in turn,‘until'
eech separate network contains a single component, it becomes a method of analysis
Ain‘itself. Characterisafloh of single components in a manner suited to the inter-
connect1on of solutions is e]ementary, hence all the effort of analy51s is

associated with the 1nterconnect10n of solutions.

4

To eliminate the difficulty ln representind ieolating fransformere and-
mdtually coupled coils, the tearing proceddre of chapter 1 requires that a-
network ke represented as a structure of multlport networks and that the ports
may only ke connected in series ol in parallel. When connecfed tbgether,_a set
of ports of different networks is considered to be .one port of the strdctdre,.and
will be.ldentlflec here by a number followed by the synbol s or p to indicate the

type of connnctlon
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The generality of this approach to network tearing is assured by the fact

that any multiport network composed of 2-termiral, 3- termlnal and 2- port devices

~ can be represented as a valid structure ¢1 2-port networks. The repreSentation

for strOngly interconnected networks, although difficult to- conceive, can be
generated systematically, while the representation for many practical networks

is readily apparent, as will be appreciated with the folloWing-example. '

4.5  STRUCTURE GRAPHS

. The desired approach to netwcrk analysis, outlined above, is demonstrated

'with the two-stage transistor amplifier with current feedback that is shown in

.figure'4.l.

The complete network is redrawnin figure 4.2 to highlight its ac-signal

behav1our, before be1ng represented as a structure of 2-port constltuent networks

- as in figure 4.3.

. The'first point to notice is that»to accomplish the representation, a
triviai~2—port network, N9, without components, has been introduced between
ports‘2$.and 3p; whereas all the other_2-ports contain a singlelcomponent.
Because the: complete network and eil the’constituent networks each have two ports

it is convenient‘to‘adopt‘the sign convention for currents which is shown in

. figure 4.4; “the arrow directed from the first port to the second port indicates

" which port is the second port and thus determines the direction of positive

currents.
e iy
‘ O PR, S E— |
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Figure L.4 Sign convention for voltages and currents
. of - a.2-port. network

;The representatiOn of the amplifierfbylfigure 4;3‘15 ualid because:
l‘Al) the networks connected at each_port share either 3 common
voltaoe (p) or a common current.(s), and«
2) eech port could be isolated by ideal trensformers without

affecting the behaviour of the network._

The structure of the complete network is represented dlagrammatlcally by A
a graph whose nodes corresoond to ports of the structure and whose branches

correSpond to the constituent 2-port networks, as in figure 4.5. Ihe first and
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Figure 4.1 Circuit dlagram of two—stage transistor .
. amplifier. : .

Figure 4.2 Network dlagram hlghllghtlng small -signal
- behav10ur

Figure 4.3 Complete network as a structure of 2—port
o nptworkC-
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second ports of the complete network are identified‘by connecting between them

a closing branch which is shown dashed and labellied BO in the figure. It

should be remembkered that the arrows identify the first and second ports of the
‘brancﬁeé, as they do‘in figure 4.3, but do not indicate the direction of any

signal flow.

/NI N2 N3 N& N5 25 NI a5

E S N S M "
7p 8p 9p

Figure 4.5 - Structure graph

The giaph of>2—port.networks, here called the structure graph, is peculiar

- to this abproach’and shows clearly the main signal paths of the network: For

the amplifier network it provides a rigorous procedure for representing the main

'signal path through the amplifier and cleariy identifies the two major forms of
feedback; the voltage feedback with the emitter resistance of thé second Stage,

" and the current feedback around both stages.

If at this stage we assume that a computer is programmed to interconnect

the solutions of any number of constituent 2-port networks connected in any

‘structure, and that the solutions or analyses of the constituent networks are

available'to_the computer, then all that remains is to specify how the networks
are interconnected. This could be accomplished, for example,‘simply_by listing
all:branches'of the structure graph against the pairs of nodes between which they

Y

are connected, as follows:

BO: .lp 5ps Nl: 1p 6p, " N2: 6p 7ps
N3: 7p 8ps. - N4: 8p 9p, N5: 9p 2s,
_ N11: 2s 4s, N12: 4s 5p, N1O0: 3p 4s, .
N9: " 2s 3p, ~ N8: 10p 3ps  N6: lp 10p,
| N7:.»lprlOp.' o

However, if the solution of all the constituent networks containing a

single component were interconnected at one time, as might be implied by this one

list of branches, there is no reason to believe that'thislmethod of anslysis would



by any more efficient than the conventional methods which combine 2ll the

components at one time. To appreciate the value of a tearing prccedure in terms
of computational efficiency, the constituent networks should be combined in sub-

structures to form larger constituent networks, which in turn are combined in

new structures, until, after many such stages, -the complete network is formed.

4.6 '+ ALGEBRAIC REDUCTION

It is apparent with the amplifier network, as it is with most networks, .

that tﬁe most common (and simplest) substructure combines two 2-port networks to
~form a third 2-port netwofk. For example, networks N6 and N7 are connected in
parallel—parallel; and the resulting network is cascaded with N8. Because the
result after each combination is another 2-port network,‘thesé operations may be
specified by an algebraic expression such as |
CBL= (N6 pp N7) © Ng L (aa1)
whe?e pp and ¢ represent the interconnéctiné operations of parallel-parallel
" and cascade respectively. To complete the set, there are £hree more Operations,
pSs Sps and.ss, representing the respective interconnections of parallel~series,'

series-parallel, and series-series.

Substructures in another part of the network could be similarly specified
A by the expression

B2 = ((N1 ¢ N2) ¢ (N3 ¢ N4)) ¢ N5, | (4.2)
The ordér in which the cascaae operations are performed does not sffect the
result, sé the brackets in this expression could be deleted. The aone expressions
are assigned to numbered blocks which serve to identify them githe} in a subsequent

algebraic expression or in a list of branches of a structure graph.

After the constituent hetWOrks have been combined according to the

éxpressions 4.1 and 4.2, the complete network is said to be aigebraically reduced
and is'répresented‘by the structure ghowﬁ ih figﬁre§"4,6 énd 4.7. Alfhough.it would
be better, at this stage;, to analyse the subnetwork consisting of networks N9, NIO,
N11l, Bl and B2, and algebraically cascade the result with network N12, for the sake
of brevity all these constituent networks are combined at one time, as specified

by the list of branchest |

BO: 1P 5P, Bl: 1lp 3p, B2: 1p 2s,
‘N9: 25 3p, ' N10: 3p 4s, N1ll: 2s 4s,
N12: 4s 5p.
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. Table 4.1  Basic 2-port networks and their polynomials.’
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Figure 4.6 . Complete network as an algebraically
reduced structure.

/
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Figure 4.7 Algebraically reduced é{ructureAgraph."

The éomputational effort fequired to analyse a structure of 2-port networks

. is roughly propoitional to the product of the degrees * of the nodes in the

: structuré graéh with the closing bfanch included. For a series brahch.strﬁctureA-
co:rQSpénding.to.the cascade connection of two 2¥port netwarks the hode;degree
) fpfoduct is S; for the simple strhcturé with fwo branches in parallel the node-
| degree pfbducf is 9, and fdr-the structure of figure 4.7'thé node-degree pfoduct

is 162. Hence the total effort required to analyse'the two-stagé amplifier by

T N

-énalysing sepérately.the'sevén subsfructures, épecified by‘the—two algebraic
unefwork expressions and the list of branche#,-is proportional to the sum of:tﬁe
nodéedegree ﬁroducﬁs:_ 9 + 5x8 + 162 = 211. This is éonsiaerably less than the
~effort requiréd to aﬁalyse the‘stfﬁctufe of figuie 4.5 as a whole, Which‘has a

node-degree pfoduct' of 10,368. |
" An algebraic network expreésibn.is, in.generél;,va cohéise Spécification
~of Combinations of 2;§ort hetworks which correspond, in the structuie'graph, to
v¢ombinations of pairs of branéhes.which-are either in "series" or in "pafalleiﬁ;
- Ii is interesting tq note that élgebraic reduction as defined above 1is {herefore
'analaQOQS td-the coﬁbination of 2-tefminal impedances in sefies or parallél Which
~simplifies the analysis.of COmplexiétrUcfufes of such devices. Just-aé'the

combination of two impedances, either in series or in parallel, presents a very -

o s AN H

* théldegree of a node is the number of branches cdnnected to it.
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simple problem of analysis and is used‘whénever possible to simplify a more
difficult analysis prqblem, $O ddes the combination of two branches in the
st£§cture graph present % comparatively simple prdblem with the interconnectién

of their corresponding 2-port networks, and algebraic reduction should therefore

be used wherever possible.

~ The networks with a singie component; could bé specified by both a mnemonic
code fgr the type of the network, and a number fdr the component value. For
example, if T denotes a 2-port network with a sihgle 2-terminal device placed
in parallel with both ports,_SZdenotes a 2-port network with.a single 2-terminal
device in series>with bbth ports, énd R and C denote resistance énd capacitance

respectively, the expressions 4.1 and 4.2 might be rewritten for a-computer as

Bl = (SR10E3 pp SCI00E-12) ¢ SC.1E-6 ' - (4.3)

and

B2 ‘TR256E3 ¢ N2 ¢ TRSE3 ¢ SC.2E-6 ¢ TRSOE3 | (4.4)
These‘expressioﬁs illustrate a form of network description which is easy

to prepare and can be interpreted by a prégrammed computer. In comparison with

the conventional methods of network description, using lists of branches and nodes,

it has the adVantage that it is easy to interpret mentally and mistakes are more

likely to be recognised. A formél specification of this léngﬁage for network

description is given in section 5.5.

4.7 POLYNOMIALS OF 2-PORT NETWORKS

From chapter ‘1, the linkage polynomials. of a 2-port network are given by

gl 2 _
4 _ 1 N2 N 15

IR 12
L N[N N [&

With all networks limited to two ports the sign convention for currenté is changed’
(see figure 4.4) and the notation for polynomials is simplified. The new
polynomials are given by

i ~ | N4 -N6 e

oo -%5 1 (4.5)
iy "IN =Nl e,
and
el :_ 1 Nl - N2 e2 _ -
= = : _ . (4.6)
i N3 N4l |1, . .
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The new and old polynomials are therefore related as follows:
. 12 ' ' ‘
no= N
o= N,
0l2
N o= N
- g !
o= N,

N5

1
Z
N —

1

1
N =
s

gl
o = N o=-fN

The polynomial idenfity 2.27 becomes

N3.N2 = N4.Nl - N5.N6 . (4.7)

4.8  ANALYSIS OF 2-PORT NETWORK STRUCTURES

' g For structures containingonly pairs of 2-port networks, as occur in.
algébragc ?eductioh, a non-topological method of analysis using the sel of six
polynomiais ha§ beenAknown for some time. Expressions relating the.polynomials

of thebcomplete network to the polynomials of its two constituent networks have.

been published by Mathaei_[35].

If networks A and B are cascaded to produce a network N, the polynomial

relationsips are:

; o " Nl = Al.Bl + A2.B3
o N2 = AL.B2 + A2.B4
N3 = A3.Bl + A4.B3
N4 = A3.B2 + A4.B4
N5 = A5.B5
N6 = A6.B6 | o o B (4.8)

If networks A and B are connected in parallel-parallel, the polynomial

"relationships are:

NI = _Al.B2 + A2.Bl
N2 = A2.B2 | |
N3 = A2.B3 + A3.B2 + Al.B4 - A6.B5 + A4.Bl - AS.B6
N4 = A4.B2 + A2.B4
N5 = A5.B2 + A2.B5
N6 = A6.B2 -+ A2.B6 o | (4.9)

. . o . . . . . .
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These two sets of expreséions can be derived with the togological
analysis algorithm, 6r by multiplying or adaing the appropriate parameter
matrices defined by the equatibns 4.5 and 4.6, and by using the identity 4.7.
Algéb?aic reduction occurs so frequently in the analysis df networks that it
pays to program’these expressioné directly, rétherAthan imélicitly with a
to?ological analysis algorithm. They appear in an algorithm to evaluaté network

expressions which is described in section 5.5.3.

If the topological analysis algorithm has to deal only with 2-port
networks, polynomial products contributing to closing polynomials can be

calculated according to the equation 1.7 rather than the equation 173. The

-complete algorithm is then summarised as follows:

a) To the set of real constituent networks add the closing ﬁetwork.

b) With each port associate a pointer which may be dirécted into any
attached network (real or closing).

c) Set the polynomials of the closing network to zero. These

polynomials will be employed as accumulating sums of products

of polynomials of the real constituent networks.

d) ~ Generate every poséible éetting 'o_f pointers once and only once.
For eVery setting take the following steps: '
. 1) . Search for all possible pointer loops.
ii) Determine~the polynomial factors expressed in equation 1.7.
This expréésion will consist of a-term which includes among
its factors a natural polynomial 6f the c¢losing network, and,
if the closing network is traversed by a pointer loop,
another term Which includes among its faétors a transfer
bolynomial'of thekclosing network. -Evaluate both terms using
the polynomials of the real constituent networks and add the
resulting products to the appropriate polynomials of the closing
_nthork. |
e) At the completion of step (d) calculate the polynomials of the
complete network N from the accumulated polynomials of the closing

network N using the equations
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N2 = N3
N3 = N2
N = Tl

N = -N6 |

N6 = N (4.10)

The latter equations were derived from the equations 1.6.

beeﬁtially thé most difficult and timé-consuming step is (d)(i), butl
in many respects this step is similar to the task éf finding the tsees of a graﬁh.
Indeed, an efficient algorithm  for generating the frees of a graph f?]has been
described using the same concept of pointers. The principal différence is that
in the generation of trees a pointer setting which includés a»pointer‘loop

contributes zero-to a sum of branch admittance pioducts and 1is entirely disregsrded;

|
1

in the analysis of a structure graph,.however, a pointer loop contributes a
‘differegce between two polynomial products which may not necessarily be zero.
Although mqre-calculation is required with each pointer setting, because poly- _
nomials rather than single numerical quanfitiés must be manipulated, {he effort”

required to generate pointer settings and getect pointer loops of a structure

similar complexity.

To illustrate the above algorithm it will be used to derive the expressions
4.9 resulting from the analysis of two networks connected in parallel:

a)d The closing network N is included in the structure graph with the
constituent networks A and B.

b) Ports 1 and 2 both have pointers which can be directed into all
three networks. - B

c) The polynomials N1, N2, ..., N6 of the closing.network are set to
sero. | -

d) All the pointer settings are.generated as shown in figure 4.8.
For the first pointér setting there can be no pointer loop and its
polynomial egpression is N2.A3.B2. Befofe proceeding to the next
pointer setting, A3.B2 is added to the current value of N2 (initially A
set to zero in (c)). With the second pointer setting a pointer loop
can be drawn and the expression’in equation 1.7 becomes

N2.(A4.B1 - A5.B6). Thus two more terms are added to N2.

l graph is the same as the effort required to generate the trees of a graph of



A3.B2.N2 Ad4.B1.N2

—As_.. 86.N2

" A1.B4.N2 = A2.B3.N2
- A6.B5. N2

A1.B2.N4 A2.B1.N4
-A6.B2.N5 ~  -A2.B6.N5

2-port networks A and B..

AL.B2.N1
~A5.B2.N6

A2.84.N1
~A2.BS5. N6

1:2‘8 ;-2.

A2.B2.N3

Figure>4;8 Nine polnter settings for a paralleled paLr of
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.d) (cont.)

When this step is completed the polynomials of the closing network

/ .
are represented by the expressions:

N1

H

Ad.B2 + A2.B4

N2 = A3.B2 + A4.Bl - A5.B6 + Al.B4 - A6.B5 + A2.B3

N3 = A2.B2
N4 = Al.B2 + A2.Bl
N5 = -A6.B2 - A2.B6
W6 = -A5.B2 - A2.B5

“e)  The expressions 4,9 follow after using equations 4.10 to relate
the polynomials of the complete network to those of the closing

network.

4.9 IMPLEMENTING THE ANALYSIS METHOD
After the tearing procedure has been appiied to a network as many times
as are possible, all the constituent networks contain at most one component and

are called basic networks. The analysis of a basic network is generally straight-

‘forward, requiring only the assembly of its six polynomials. Because there are
only a few different types of basic networks, and they occur frequently in many

complete networks, it is convenient to construct a table of their polynomials,

" as in’'table 4.1. It is an interesting but irrelevant exercise to find a minimum

setbbf basiC'hetworks,from which all other basic networks, and hence all netwofks,

can be formed by interconnecting their.solutions.

With reference to table 4.1 it should be noted that it is not>necessary
for a 2—p6rt network to have any barticular admittance, impedance, or hybrid
matrix repreéentation to be meaningfully charactérised by a set of.six-polynomialsJ
Indeed, an ideal operational amplifier has no such matrix representation, although
it does_ha?e a forward transmission-matrix as in quation (5)3 and is characterised
by fhe polynomials O, 0, 0, O, l,‘O. All the polynomials of a-netWork may be

multiplied by some common factor without affecting the characterisation.

The polynomials of a transistor specified,byAits h parameters are obtained
by expressing the parameters as ratios with the common denominator of one, and
identifying the pclyﬁomials with appropriate numérators and denominators. The
six polynomials, in order, are | |

h.. h - h t

11 Poo = Pyp Pops Pyps oo L

“hoyo by,
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Alternatively, if a transistor is modelled by, say, a hybrid-pi network

. then it is analysed, in the same'way as any other network, by applying the

tearing procedure until all the passive components and the controlled source

belong to separate basic networks.

Most passive networks such as filters with bridged or paralleled T, ladder,
or lattice structures (”structures" used here in the conventional sense) have a
very éimp;e structure graph, irrespective of the number of components, and can

be fully described by a single algebraic network expression. Networks with this

property (the author ventures to call them algebraic networks) are analysed with

a rapidity which matches that of the mefhods in the class mentioned first in
section 4.3. Even multistage amplifiers with many feedback loopsAhavé a

comparatively simple structure after algebraic reduction.

- The effort required to analyse a structure of é-port netwofks is of the
same order of magnitude as that required to analyse a similar struéture of
2—termihal devices with a topological method. Comparison of a graph of 2-terminal
devices represeﬁting the network of figure 4.2 with the algébraically reduced
structure graph (figure 4.7) of the”same network would therefore iilustrate one
of the advantages of this method over existing topologiéal methods. In terms of

computing time, this method imposes a penalty commensurate with a network's

‘complexity (indicated by the node-degree product of its algebraically reduced

structure graph) as distinct from a network's size (indipated by the number of

components ).

Besides judging a computer program by its computing speed, another
importanf consideration is its computer-store requirement. Programs implementing
the various featUrés of'this approach have been written in ALGOL,énd run on an
Eiliott 503 computer; A basic prograﬁ, which reédsvdata in the form of algebraic
network expre;sions and branch lists, assembles polynomials of basic networks,
and calculates tﬁe polynomiais of a Coﬁplete netwofk, occubies épprdximately 4660
locafions of 39-bit worég. Over 2000 words are left in the main store for work

space, which is consuméd at the rate of approximately 16 words for every reactive

‘component.

This last fact illustrates another advantage of the tearing procedure:
individual components can be assimilated by an algebraic network structure as they

are read from the input data file, and only the reactive components consume extra

store space because they may increasec thc degrees of the network polyncmials.
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Thus the size of networks that can be analyéed depends mainly on the number of
reactive components; large passive filter complexes with 100 reactive

components and over 200 components altogether have been successfully analysed

" with less than 2000 words of store space. This compares favourably with

‘matrix methods of analysis which .consume store space in proportion to the

square of the number of nodes or the number of meshes.

Ahother version'of the program-f written in FORTRAN has been implemented
dn a GE 265 time-shared computer which hés an available core store.fdr both
progfam and data of less than 5300 words of .20 bits; Although this programiwill
only accept network data in the form of algebraic netwdrk éxpressions, it will

analyse networks whose polynomials have degrees df‘up to 40. -
Implementation‘of the fdll'algorithm for analysing general sfructures of
2—pbrt networks is not without its problems. At its simplesf each pointer

setting is treated independently and each polynomial product is formed from the

‘polynomials of the constituent networks. But at the expense of_éxtra‘primary_

store, both the speed and accdracy-of the algorithm can be improved. First, with

a suitable method for generating.pointer settings as suggested in section 1.4.2,

“intermediate polynomial products can»be}transferfed from one pointer setting to

the next. Second, in evaluating the expression of equation 1.7, it may be
decided before polynomial multiplicatioh begins that, for the j-th peinter loop,
3 3 in which case the expression 1is exactly zero. "This decision not only

saves time, but-—and this is more important-—1it eliminates a potential source

-of.round—off error which would be introduced if the difference between two large

and nominally equal polynomials was calculated.

- An optimised algorithm for topological analysis is described in section

5.6,

This program, called ALENA (Algebraic Linear Electrical Network
Analysis), has become widely available through its support by E

Honeywell as a library program on their national computer time-

sharing system.
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4,10  NUMERICAL ACCURACY
Use of Laplace transform techniques in a general purpose method of

network analysis cannot be contemplated unless the so-called "accuracy"

problem is overcome. This problem arises in the evaluation of a polynomial

at a partiéular frequency and occurs when the exact value of the polynomial
is many orders of magnitude less than 1ts constant coefficient, for then the
difference between two nearly-equal numbers is calculated, and their round-off

errors, accumulated during the analysis process, are magnified.

Clearly, the evaluation of a polynomial will be most accurate at the
frequency for which the polynomial equals its constant coefficienf. Normally =
this occurs at the zero frequency, s = O, but.if the frequency variable s is
suitably scaled and the transformation s2 =2 -1 is introduced then the
polynomial evaluation will be most accurate at any desired-frequency, given

2 _ _ . '
by t© =0 or s =j.

The frequency transformation need only be applied-to 52Aand not to s SO

that'every polynomial is represented by the coefficients of the terms tO, stO,

2.

t°, st2, t4, st4s etc. But it must be applied throughout the analySié_procéss

ofAthe desired information at s = j may be irrecoverably lost among the round-off

- errors. The transformation 1s easy to implement in the analfsis'process for it

only .requires one modification to the routine for multiplying polynomials. When
a product of terms.is formed 1t may be split into two terms as shown:

as_t1 . bstd = absz't1 3
.= abt1+J+2 - abtl+J*-
The effectiveness of this frequency transformation was investigated in

the analysis of an actual filter complex consisting of two band-stop filters and 

. one band-pass filtei (block B7 of figure 6.1) cdntaining, in all, 50 feactive

components. Between ce;tain ports the complete network was known to exhibit a
pronounced band-pass behaviour, but-when'analysed>withou£ a frequehcy trénsforma} ’

tion the band behaviour was completely masked by round-off efro: (see'the'second

and third columns of table 4.2). The analysis was repeated twice with frequency

transformations chogén to giveAthQ most accurate evaluation at two slightly
different frequencies in the pass band, so that the differences in the resdlfs
wbuld be entirely due to the round-off errors generated through thé analysis
process. As expected, the results were most accurate in the pass band, but the.

effect of round-off error was satisfactorily small over the entire frequency



FREQUENCY CALCULATED RESPONSE, AWPLITUDE, d.bs
' without:frequencyr. | >with frequency
cycles/sec ~ transformation transformation
1630 10,714 -7.0393 -24;041 24,041
1650 - || 843458 =4.5865 | -18.747 18,750
1670 11,802 ~5.3016 | =17.226 17,07
1680 || 8.2228 . -2.5088 | -12.008.  ~12.028
1690 ' 11;632 | =2.8787 | =8.0738 | ~8.0757
17oq 12,284 =3.1705 ~5.3857 ~5.3857
1740 || 5.2681  .48l14 ~4.2088 4,208
1780 | 10.687 1,910 | =5.6543 ,"55.5543
1800 8.5790 13,3182 ~11.245 . =11.245
1820 | 7.3544 | 3;9951 | - =20.705 ~20.707
>ffequency ' : : .
scale 1740 1741 1740 1741
cycles/sec : o

" Table 4.2 ) Calculated frequenéy response of a filter éomplex
- containing 50 reactive components, illustrating the effect-

of a frequency transformation.
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spectrum, the worst case being a loss of five out of nine significant figures
in the response calculation at a frequency on the edge of the pass band (sec

the fourth and fifth columns of table 4.2).

A

In general, the accuracy problem is alleviated by the frequency .
transformation to the extent that, with one analysis, accurate evaluation of
response is possible over a band of the frequency spectrum, and in very severe

caseg, such as a filter with many pass or stop bands, may the analysis have to

be repeated several times to cover the entire frequency spectrum.

4.11  POLYNOMIAL REPRESENTATION

Although the term "polynomial" implies that it be represented by a 1list

~of real coefficients, it may not be éxpedient to use this form of representation

in the analysis of some types of networks. For example, the problem of allocating
store locations for polynomials would be greatly simplified if they were

représented by complex numbers, being their values at a particular frequency.

This‘simplér representation becomes an attractive alternative to the frequencyi
transformation discussed in the previous section if the accuracy of the polynomial
coefficients has such a critical bearing on the response that the analysis has

to be repeated many times with different frequency transformations.

For networks with distributed-parameter subnetworks the complex number
representation must be used together with somé tearing technique. However, with

the approach suggested here, the subnetworks with lumped parameters can be

.analysed separately using the conventional polynomial representation and only in

the last stages, when the distributed parameter subnetworks are connected, must

the analysis be performed at each desired frequency.

Indeed, such a combined strategy, in which polynomials are represented
by their coefficients in the early stages of analysis and by complex numbers in

the final étages,.wouid be ideal for analysing 1afge networks'whén.aCCUracy was

~ important. Constituent networks could be combined in subnetworks whose

polyndmials had degrees of less than, say, 103 the polynomials would be
evaluated at discrete frequencies, and the analysis completed by combining the

subnetworks at these frequencies.

Because the analysis algorithm avoids polynomial division it is also

practical to represent polynomials by lists of terms each containing a numerical

coefficient and a symbolic product of network parameters. In this way a network

can be analysed with its parameters entered either numerically or symbolically.
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For the study.of network sensitivities, however, the above polynomial

representation is not satisfactory because the specification of a large number

of variable parameters leads to the proliferation of polynomial terms in unwieldy

numbers. For a sensitivity analysis it is considered sufficient to calculate the
partial derivatives of thé polynomials with respect to each .variable parameter.
This can be achieved by extending each'polyhOmial coefficient to include a list

of first derivatives as well as the constant term, and by_médifying the polynomial

multiplication routine to avoid the generation of second derivatives.

4,12 CONCLUSION

The approach to linear network analysis outlined in this chapter:éstablishes.
é_modus operandi fo;»computer proéfams‘which‘combine, for the first tiﬁe, many of
the desirable features of existing network analysis methods. Specifically, the

rational polynomials of the Laplace transform technique are used for computationally-
efficient calculation of frequency response; a hetworkfteafing procedure is used
which makes it_practical to calculate the.polynomial coefficients of large netwérks;
and the analysis'process has a tOpological nature, requiring routines-for pqunomial'

mUltiplication and addition only.

With régafd to.the wealth of accumulated'experienée in the_applicatién of
a large number of computer programs for genefal circuit analysis it,ié now
ipconceivable'that_one method should be superior in all applications. In settiﬁg
up computer—aided»circﬁit deéigh facilities the trend is towards providing a
varied ar;enal of programs; each with unique advantages in some apblicatiqnsf

In this context, programs based on the new method provide'a more economical and a

more complete frequency analysis of most types of filters ahd-equalisers, as well

as many types of aﬁplifier circuits. It might also be chosen for the ease wifh
which it handles degenerate devicés,and'acfive components. In designing such
prdgrams_consideration:muét be given-tb numerous Optidns which eover such aSpecté
as input data format;va’library of basic networks and common subnetworks, inter-
ﬁediate storage of polynomials, provision for sensitivity analysisAand'Monte

Carlo methods, polynomial representation, and frequency transformations.

For convenience in calling up the vérious programs in é design facility an
atfempt is made to define 2 common form of qichit‘description-—~usuélly bésed on
a list of branches ané the nodes between which they are connected. Unfortuhately
i£ is in this respect that analysis programs based on diakop%id methéds'are at a

disadvantage.
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The efficiency of such methods,.and this method in particular, is
dependent on the manner in which the network is torn into its subnétworks. for
the more complex networks the alternatives are many, and although the tearing
can'bé programmad the results could be far from optimum. -However, it is ig
analys;ng such étrongly interconnected networks, for which the tearing process
is difficult, that this diakoptic method would, inherently, be less efficient

than.the straightforward matrix methods and therefore-would not be recommenced.

- It is widely recognised that the most exacting demands are made of analysis
methods by programs which design circuits using optimisation techniques. The

cost of running such programs is strongly related to the efficiency of the

'analysis method, for in each iteration of the optimisation process the analysis
subprogram normally must calculate the réSponse and its derivatives ét many
Vfrequenciés. Bﬁt, with calculation of the network polynomial and their derivatives
“in a single analysis, it.should be pracfical to go further than simply_calculaiing
the response at fixed‘frequencies, and determine those frequencies at which the
réspbnse——-either~amplitude, phase or delay-—has an e#treme value. The
optimisation process could then}be designed to converge on a true equiripple
deSignSfather:£hah a Least{squarqs approximation at_a relatiyeiy large.

~ number of predetermined frequencies. It is in these applications that this new

" approach to network analysis shows the greatest promise.

Sohe of the dissatisfaction with existing analysis programs may.be
attributed to the belief of their originators that methods which are.highly
repetiti;e in nature are "ideall; suited to a digitél computer". . We can'admire
the elegantly simple fofmulation and small amount of programming quuiréd for the
early matrix-inversion, state-space and topological methods —certainly the
‘pfograms provide é éuccessfﬁi alfernative for analysing networks which an engineer
might otherwise attempt to analysé‘by himself. One eXpecté, though, that the
second generétion of prdgrams wiil make bétter use -of a.combuter's resources wheh

analysing much lafger'networks.
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CHAPTER 5 - -1

ALGORITHMS FOR COMPUTER PROGRAMS
5,1  INTRODUGTION
The successful implementation of the analysis method, which so far has been

discussed only:im'general terms, is critically dependent on the form of the com-

. buter algorithm employed and the data structure wifh,which it is associated.

- Much research work has been directed to the investigation and development of

suitable algorithms and data structures, and the results of this work are felt

to be important to an appreciation of the analysis method.as a whole.

The development of suitable algorithms is subject to three cxiterié. Of
paramountlimportance ie the need to preserve numerical accuracy throughout the
anal?sie.process."Of secondary importance are the requirements that the largest
communications networks be analysed, and that analysis be economic and conven-

ient to the user.

Unfortunately, the achievement of these goals involves a competition for a -

limited computer resource — the core store —and a reasonable trade-off must be .

‘made between the size of data storage areas and the size of the program. None-

- theless, the core store of the Elliott 503 computer, on which the programs were -

run, sufflced for the development of programs with near optlmum efflclency in

their use of both processor time and core store,.while allowing the proglams to

be tested on quite large networks.

This chapter does not attempt to document any particular program.buf-“*

presents those program elements which may be adopted profitably in ahy

'implementation of the analysis method.

To avoid ambiguity, algorithms-are described in a compiler language.
Attention is focused on the storage and manipulation of polynomials as whole

entities because it is this aspect which has the greatest influence on the overall

efflclency and the accuracy of the meuhod The other details of the algorithms

are ‘included for the sake of completeness and rigour, and are presented in a

concise manner which is economic in the use of language and which makes the

action of the algorithms as clear as possible. The generation of efficient
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machine code is intentionally left to either an optimising compiler, or
to a competent programmér who can interpret these algorithms and modify

program statements to make best use of a particular compiler.

‘Throughout this and the subsequent chapter it is understood that all

networks are 2-port networks characterised by sets of six polynomials.

5.2 PROGRAMMING LANGUAGE

_ CQmputer programs employing this analysis ﬁéthod could conceivably béA
written in almost any computer languaée. But in practice, with limited
time available, they could not be written in machine code or an aésembly
language, and it is even doubtful if they .could have been developed to‘their

present stage of refinement using FORTRAN.

- To maintain algorithms of a complex nature it is essential that they be
expressed.concisely and that mosf of. the programming details be’managed
implicitly by the compiler.. It.is also an advantage that the action or flow
of an algorithm be readily comprehensible, and, apart-from theé libéral-usé of -
comments, this»can be best achieved with the avoidancé of branch.statements
iﬁ the‘source program. . -Such is the argumenf agaiﬁst low-level, flowéhart-.

like languages such as BASIC and FORTRAN.

The two major algb;ithms constituting the analysis method are, by ﬁatUre,
recursivé. This‘féct alone is sufficient justificafion for  the uée of a
compiler lahguage-——such as ALGOL—which provides a mechanism for thé dynamic
éllocatiqn of storage spéce‘during prdgram execution.» :Without this mechanism,
stacks {(arrays) of sufficient size must be declaréd prior to execution, and

extra coding must be included so that every time the same code is reentered

~or completed the variables local to that code are either pushed onto, or pulled

from, the appropriate stack. ALGOL is desirable also because of the precise and
concise definition of its grammar, for the power of its statements which are
relevent to this application, and for its wide acceptance as a programming

language.
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Howevér,_in this application ALGOL is deficient in several ihportant res-
pects. 'For instance, aléhough not possible in ALGOL, it is convenient to group
togethef the parameters of a particulér 2—portbnetwork-~such as the addresses
and degrees of its six polynomials ~~ and regard them as attributes of a single
éntity. Such an entity is then denoted by a single reference variable and may

be included as a member of any one of a number of sets during the analysis

process.

Facilities for the dynamic creation, manipulation, and expiration of
entities in this way are a natural extension of ALGOL, and have been accom-
plished with SIMULA, a compiler language designed for the simulation of discrete-

event systems. The version used here is essentially that developed by Dahl and

_Nygaard‘at the Norwegian Computing Centre and implemenfed on UNIVAC 1100-series

!
computers in 1964 [50]*.

Because SIMULA is not as widely known as ALGOL some of its baéic components -
are now introduced within the context of the analysis method; other components

of the language —e.g. the sequencing set, and operation rules for activities—

""are not relevant to this application.

A class declaration i§, in appearance, like the head of én ALGOL groceduré
declaration; it introduces an identifier for a class of siﬁilar entities and
deécribes'the types and number of attributes Which determine a particular
representative of the class. For example, the declaration

"class network (netdegree);

integer netdegree;

. beqgin integer array npaddréss, npdegree 1:6 end;"
definés a class of entities; each is known ‘as a."netwoikﬁ and has the attrib;
utes of a degree and éhe addresses and degrees of six polyhomials. A
particular entity belonging to this class is.created by a reference expre;sion

such as "new network(10)" and expires when it is no longer referenceable.

* The language used here differs from the referenced language in that the symbol

activity is replaced by the more appropriate symbol class, as in the more-recent

~ SIMULA 67.
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The creation of an entity involves the allocation and initialisation
of storage space for its attributes, as well as the generation of an element

which refers to the entity. It is the element rather than the set of attributes

Which is manipulated, and it may by referenced either by an element variable or
asbthe’member of a set. Thus with ﬁbe declarations o
”elehent this network;
set basic networks;"
the statements
"this network:- new network (10)
include (this network, basic networks);
this network:- first (basip networks) ;"
have the effect df creating a new "network" of degree iO_thch.;s:denoted by
“the Qariable "this network"; of placing this element last in the set or list of

"basic networks"; and of altering the variable to denoté, instead, the first

element of this set. With many other statements and expressions of this type

.we gain the benefits of a powerful list-processing facility.

: A nebessary facility of the zlanguége is the connection mechanism'by which

access is gainéd to the attributes of a particular entity. For example, if it

is desired to assign to the integer variable "adrs" the address of the third

polynomial of the "ne@work" which is first in the set of "basic networks", it

could be accomplished with the statement

"ih§pect first (basic networks) when network do adrs := npaddress [3] 3",

When this statemenf is executed the entity referred to by the element
expression_"fiiézz(basicAnetwbrks)" iS‘inSpthed, and if it'is'frph-the "nefwork"
classvfhevstatement following the "gé" is executed and the attributes of’the
referenced entity'are hade avéiléble to it. The conpectioﬁ verb "inspect"
may be. replaced by "extract", iﬁ which case the connection sfatement would haVé

the additional effect of removing the referenced element from the set of "basic

~networks" to which it belonged.

The algorithms presehted'ih this chapter are written in SIMULA, although

some licence is taken with the declaration of variables and specification of
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procedure parameters. Unless explicitly declared or specified, all

identifiers are sssumed to be global integer Variables‘or integer parameters.

A1l parameters are assumed to be called by value unless specifically included

in a name list. Statements represented by an English description of their

action are enclosed in diamond brackets{ ).

5.3 DATA STRUCTURE
- The scheme adopted for the compact storage of polynomial coefficients

ddring the analysis process is based on the fact that the degree of a complete

network is not greater than the sum of the degrees of its constituent networks.

Thus, if the polynomials of the constituent networks are stored in contiguous
locations of the core store, the polyndmials ;f the complete netwdfk may be overlaid
in the same locationé. .It is a simple matter to arrange that for all pairs of
subnetworks which are combined algebraically in the evaluation of a network

expression,. their polynomial coefficients do occupy contiguous locations.

Six rows of a two-dimensional array are reserved solely for the six

»réspective polynomials of all networks. When a new network is introduced into

the analysis process its polynomials are assembled from the left of the array,

starting in the first vacant column.

When two networks are combined algebraically'the vacantAfight;hand end of

the array, starting with the first vacant column from the left, adjacent to the

constituent polynomials, is used as temporary storage for six polynomialé; the
completé polynomials are firsf accumulated in these temporary areas, and finally

assembled in the same locations occupied by the constituent polynomials.

The polynbmials of subnetworks occurring in network expressions are therefore
overwritten énd can take no further part in the analysis. However, if a
subneﬁwork 1s to be used in subsequent network expressions, its self-defining
network expression i1s assigned to a block, its complete polynomials remain where

first assembled in the array, and the polynomials of subsequent

~expressions are assembled further to the right.
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The branches: of a/structure graph to be analysed by the general
topoloéical analysis method refer to blo;ks already assembled from network
expressions iﬁ'tﬁe above manner. Analysis of a structuré graph requires
.extra space for the temporary storage of a large number of intermediate
polynomials, and two extra rows are‘added to the main array sﬁlely for this
purpose. ’Single polynomials are stacked in this area during the analysis
of a structure, in the same recursive manner that sets of six polynomials

are stacked in the first six rows during the evaluation of a network expression.

A list of branches defining a structure graph is introduced as a set of
pérameters to ‘a-basic network and may therefore appear almost anywhere in a

netWork éxpression; Its complete polynomials are accumulated directly - in the

first vacant locatioqs from the left, in the first six rows. Most intermediate

polynomial products are stored in-fhe extra two rows, but some intermediate
polynomials with a special significance are stored at the right-hand end of the

first six rows.

A grammar for network expressions and an algorithm for their evaluation

. are discussed later, in section 5.5.

To facilitate access to the various polynomials by universal utility

_ routines the main array is actually declared with a single dimension. Any

polynomial is.thén located with a single number,_defined as the addresé of thét
polynomial, which is thé address or éubscript of fhe leading coefficient of the
polynomial in the main array. The address of a network is defined as a base
address from-which-can be célculatedgtheAaddresses of its polynomials with a
stateﬁent of the form . | )

"npaddress [px] := base address + px ¥* rl;"

where "rl" is the length of a rowlin the equivalent two-dimensional array.

A typiéal arrangement of polynomials in the main array is shown in figure
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5.4 UTILITY ROUTINES -

/

The.following proéedures are responsible for all manipulation of’poly-
nomialsfstored in the main arfay. 'They are‘deécribéd here only to the extent |
that their results, and their interface with calling aigorithms, are precisely
defined. Code for the procedure bodies could be quite simple, buf_because they
pérformfall the "p:oductive" computation ofithe'analysis piocess, it may bé
desired-toloptimise them as far as pdssible-f-even to the extent of writing

them in the assembly language of the host compdtei.

In the following'descriptions the expression "pol(adrs,deg)" referé to the

unique polynomial whose address is given by "adrs" and whose degree'is given by

"deg"; “pOI(adrs)", on the other hand;.refers to'the'polynomial whose address

is given by "adrs" but whose degree is determihed by the computation process{

procedure polclear (adrs,deg);
name . degs
(depending on the polynomial representation, if the dégree is fixed then

pol(adrs,deg):=0.0 (i.e. all coefficients are set to zero); otherwise,

- degi=-1>;

' procedure polcopy (adrsl,degl,adrs2,deg2);

name deg?;

begin de92:=degl; ,
{pol(adrs2):=pol(adrsl,degl)d

end;

procedure poladd (adrsl,degl,adrsQ,dégQ,adrs3,deg3,sign);

néme deg3;

. begin if sign{0

then { pol(adrs3):=pol(adrsl,degl)-pol(adrs2,deg2) >
else { pol( adrs3 )_:=pol(adr'sl ,degl)+pol(adrs2,deg2)?;

deg3:={degree of pol(adrs3)>

end;
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Typical arrangement of polynomials in the equivalent two-dimensional array.
Arithmetic expressions define the subscripts of corresponding locations in the actual array.



procedure polmtply (adrsl,degl,adrsQ,degQ,adrs3,deg3,sign);
name deg3; o | ‘ | _ 0
begin if sign = O

ﬁggg(pol(adISS)::pol(adrsl,degl)*pol(adrs2,de92))

else if sign{0

“then(pol(adrSB):=pol(adr53,de93)-pol(adrsl,degl)*pol(adrs2,de92)>
elsedpol(adrs3):=pol(adrs3,deg3)+pol({adrsl,degl)xpol(adrs2,deg2)d;

deg3:={degree of pol(adrs3)?

The above procedure is used for virtually all polynomial multiplication

and addition. The reason for combining these two functions in the one

~ procedure derives from the significant saving in processor time which can be

achieved when the'degree of a polynomial product equals the degree of the

polynomial to which it is to be added.

If polynomials are represented by_iists of numerical coefficients the
product of a pair of polynomials involves the multiplication of every
coefficient of the first polynomial with every coefficient of the second

polynomial, and. the addition of every such arithmetic product to an

- appropriate accumulating sum which ultimately becomes a qoefficiént of the

product poiynomial. Thus, the process of polynomial muitiplication is

seen to iﬁvélve a large elément of polyhomial addition; in particular, it is
noted'that if the:accumulating sums are not initially set 'to zero but-.
initialised with the coefficieﬁts of the polynomial fo which thé prodﬁct is
to be added, the desired multiplication and addition is perfdrmed
simultaneouslyf The need to add a prodUct of polynomials to-én-existing
polynomial, in situ, Qccurs'frequently in the analysi§ prdcess, and with

the above approach can be achieved with ;ggé effort thén can the prdduct

alone.
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This economy of polynomial multiplication and addition (or subtraction)
requires that the six polynomials of any network all have the same degree.
Although, in theory,'this is not always the case, it can be enforced
computationally by tbe inclusion of zero coefficients,-without incurring a

siénificant computational penalty. And because the degree of a network

- equals the degrees of its polynomials, there is the additional benefit

that most of the book-keeping associated with the calculation and storage

of polynomial degrees can be eliminated.

.

However, if polynomials are represented in a different form-——such

~as a list of terms each defined by a symbolic product of network parameters,

a power of s, and a numerical coefficient —the above economy can not be.
!

" realised. The "degree" of a polyncmial used in these procedures loses

its significance as the highest exponent of s but continﬁes to serve the
purpose of determining the number of elements, coefficients,.or terms in

the polynomial, and therefore determines the space- that must be allocatgd

in the main afray. .With the latter form of polynomial representation it is
desiréble to allow the polynomials of a ﬁetwork to have different "degrees",
and éll the procédures and algorithms presented in this chapter have been
designed to be applied equally-well in either situation. .It is necessary to

changé only the bodies of the procedures comprising these Qtility}routines.

5.5 ALGEBRAIC REDUCTION.
The language in which a network is described to an analysis program

has a significant bearing on the convenience of that program as an

‘analyticql‘tool. It should impose few constraints on the'types>of

. parameters, be concise, "natural", and simple to learn.

As a means of describing a network, an algebraic network expression

exhibits the notational economy of a mathematical formula, and, due to

- the versatility of the many network operations, permits network parameters to

be introduced in a wide variety of forms. For example, a transistor may he
defined by any lumped parameter model, or any set of H,G,Y,Z, or transmission
parameters; it may be defined in either a common base, common emitter, or

common collector configuration, and have the cenfiguration changed
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algebfaicallyt Another advantage of the network expression is that

it can usually be arranged to reflect the natural structure of the network—

the manner in which subnetworks are cascaded or paralleled—and is

therefore easier to .comprehend and check.

. .
Unlike some other methods of network description, a network. expression
strongly influences the analysis process: in this case, by directing the

order in which subnetworks are combined. Thus, the specificatibn of an

‘algorithm to'evaluate’network expressions depends on-their grammatical form.
: For-this reason, and also to establish a standard network-description

AlangUage which future analysis programs may adopt, a grammar for network

expressions is now specified.

it

5.5.1 Syntax of Network Expressions

The syntax of network expressions is here ‘defined in Backus-Naur -Form

-[:3].' . o The metasymbol "::=" has the English meanihg of "is

defined as", the metaSymbol" " has the meaning of "or", énd_pairs of

diamond brackets { > enclose characters which are to be treated as a unit.

Numbers in the right-hand margin refer to statements which are out of

sequence.

{blocky) = {network)

B {block humber)

(integef)

i

((netﬁérk$),
: (port inferéhange.opérator$(netw§rk)l |
-<netwqu)(dyadic operator)<netWOrk)|

' - {basic network) = | o  ‘ '3
2.1 ¢port interchange operatord L | |

HEES o

i

2.2 <(dyadic operator) {cascade operator}l(parallel operator)

C

2.213'(céscéde ope:ator}
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2.22 (parallel operator)

2.221 {port interconnection) ::

2.2211¢parallel. port)

2.2212¢series.port)

3~ {basic network)d

3.1 {trivial network)

3.11 {unit. networkd -

3.12  {cross-over network)

- 3.13 ,(current-inversibn NIC)::

3.2 (simple network)
3.21 {component position>-
3.211 <§eries position)
3.212v<shunt positiog);.
3.3 <ideai fransforﬁer)

3.4 {mutual inductor)

3.5 {voltage-controlled current)

3.6 - {voltage amplifier)
3.7 <{gyratord

3.8 {general network)

3.9 ‘{network structured

'3.91 <branch listd

si= T

{parallel port)|{series portd

1= g

:2= {block)]

{trivial network}l(simpie network>|
{ideal transforme:)l<mutual in&uctor}l
-(voltage-controlled cﬁrrent)l
<Y9Ltage:amplifief)|

<gyrétor>|

'  {general netwogk)l

~ {network structure)

::= {unit network)l(qross-ovef hetWork)-

{current-inversion NIC)

1= U e

X

1

1

<bomponent posifibn)(pomponent)

{series position)’(shunt position)

S

F{pérémeter)

M(parameter)(barameter)(parameter)

H[(degree),(polynomial),(pélynomial)]

A [(degiee>,( polynomial),{ polyhomial}]

G{parameter) |

N[(degree),(polynomial),(pblynomial},

{port interconnectiond{port interconrection)

o

{polynomialp,{polynomiald,{polynomial),

: (polynomiai)]

::= D[{branch 1istd)
::=¢branch,{closing branch)l

<plosingvbranch>,(bfanch)|

* {branch list>,(branch>|

:<branch>,(branch list)



- 4.31 {second port termination

5.2  {multiplying oﬁerator) o

5-12

3.911 {branch) ' ::= {blockd:{node part) - ]
3.9111 {node part) - te= (nodé number)(port interconnecfion) 1

{node number){port interconnection) 2.221

L

3.91111<¢hode numberd {integer)

1

3.92 (closing branch) 'BO:{node part) 5 : 39111

4 '.<c6mponent> {basic component)l(tuned COmponent>|

§compound component)

4,1 ¢basic component) ' '(reéiétor}l(inductor)l(capacitof)

.4:11. {resistor) = R¢parameter) i . 5
4,12 <{inductor) = L(paréﬁeter)» ' . - 5
4,13 <papa¢itor) = C(paraﬁeter) R ._f. 5
4,2 <iun¢d component) = X(parameter)(parameteﬁ)éparameter} 5
‘4.3 <pompouhd component) = {second port férminafion)(network) 2

{short circuit)](open circuit)

4.311 (short.circuit) Y

© 4,312 {open circuit) - 1= 7

1

5 . ‘{parameter) ‘(reélunumber>|".
. | [Kparameter identifier>]| |
(pa:ameter)(multiplying operator){parameter)
5.1 {parameter idéntifier).::= (any striné of characters pot containigg] >.

|/

(parameter)l(parametér)(polynomial)

6 {polynomial)

i

6.1 {degree) ::= {integer)

For programming convenience the formats for (integer}-ahd'(réai number)

comply with the respective requirements for,frée-formét'inﬁut 6f‘integers and

floatithpoint numbers by the particular compiler system which~impleménts

thé ahalysis algorithm.

Blank spaces.are genefally permitted anyWhere in'a network expression .

" to improve ité readability.



" If necessary, lower-case characters may be replaced by their
corresponding upper-case characters, and square brackets[ ] may be

replaced by round brackets( ).

5.5;2 Semantics of Network Expré§sions
| Ih,the'abdve synfax definition a."ﬁetworkﬁ ié a 2-porfinetwork“and
a “pémponent" is a l-port network;‘: A_"Eémponentf_may comprise a single
2-terminal.deyice-(a "basic component"),'éither a-séries of shunt LCR
_'cbmb{natibn (a."tuned éompénent"), or, in-the case of a.“bompqund'cémponent",
rbe the fir;t port ofvé "network"'which has its sécond porf'te:mihatéd in.
.eitﬁer ah opeh circuit (Z) or.a short ci;cuit'(Y).' | |
EThe many symbols that may apbear in é network gxpressioﬁ aré hnemonic
: énd'éerve ésithe cantextvbvahich meanings -are a{tached fo'network parameters.

- With this grammar the parameters have the following meénings

3.3 F: secondary to primary turns ratio

3.4 - M: primary inductance (henries), secondary inductance (henries),

L : "coupiing'coefficiénti

o S P e S U

3.5 'H; numérafor and denominator polynomials of the tfanscéndugtance
f'3.6 A: nﬁmerator and denominator polyhomials‘of theAamplifier.géinl
- L 3.7 Gt gy%ation resistance (ohms) |

3.8 N: the éix polyhomial§ Which fully characterise the network

'4;11‘ R: resistance (ohms)

4.12 L:iinducfanceA(henries)

';4.13 C: capaciﬁénceA(farads)
4;2 éx;‘indubtanéé (henries), resonant‘frquency (hertz),
;esistaneé (ohms) — of a éeriés‘LCR combination
TX: capacitéﬁce:(farads), resohant‘freéuencY'(hertz);

conductance (mhos)— of a parallél:LCR»cbmbinatioh

The format for a polynomial depends on the form of poiynomial
A representation used within the progrém.* ‘Thé given definition (metalanguage

statement 6) applies when polynomials are represented by a list of numerical

coefficients, in which case each polynomial must include a parameter for

every coefficient.. beginning with the Coefficiént of the highest ﬁowér of .

P )
g b 2 Mee s e W T e e e e e e LR R
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¢ determined by the given "degree".

Circuit diagrams for some basic networks are given .in figure 4.1,

v

5.5.3 EQaluation of Network Expressions

Thg algorithm which‘interprets a network exbresgioh, asSembies the
polYnomiéls of‘basic ﬁetworks and'manipulates them algebraically is shown
in figure 5;2. It; right-hand margin contains-stétement number§ which

are referred to in the following discussion.

The_data.input to the algorithm is in the form-of.an ordered set of
"51gn1flcant charactnrs" (100) which includes all except the edltlng
'characters-— blanks, line-feeds, etc — lP the network expre551on, and-

C N termlnates with a statement delimiter. The data is processed by a 51ngie

call (501) to the recursive prodecure "assemble network". : » s

Local to the main_procedure (200) is a procedureifor combining two

*;‘ e networks algebraically (210), and local to the latter is procedure "pmaﬁ

et

(220) whose sole function is to expand a set of three polynomial-index

parameters and call (224) thé utility'procedure ﬁpolmtply" with the

appropriate.parameters. It multiplies polynomial "pxl" of the first
" network with polynomial "px2" of the second network and accumulates the

- product in the temporary polynomial "px3", accordihg to the parameter "sign".

The addresses of the-six temporary polynomials afe_célculated (230,231)
~ prior to combining.the two networks.
If the polynomials of the first network, the polynomials of the second
nefWofk, and the temporary polynomials are denéted by A,B and T respectively;
the:statements 233-235 perform the cascade operation by evaluating the

polynomial expressions:

ld

Aot
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get significant characters; .~ : S , o L ' , . ' ' , 100

boolean expression terminated,_closing bracket; - ' o o ] : o N _ » '101

integer array tempadrs, tempdeg [1:6]; - ' -,_ . . | o - . 102

element this block; o ' = o - _ | ' 103

- class network (nefdegree); o o | o : AU : : _ 104

integer netdeoree,» : . : d ' | _ o ' 105
begin integer array npaddress, npdegree [l 6] end; ' ' - x S ' 106 :
g“ocedure assemble network (address of this network, this network, degree of last network); - o - : © 200 f
"name this network; element this network C L o SR ' - 201 3
begin integer address of second network; ' o f ' ’ | 202 E
element second networkg ' . ' E o ’ : : :203 ' ;

procedure combine the two networks; | | ' ' : ; . ’ 210

begin_procedure pma (px1,px2,px3,sign); . S _ o ‘ : 220

beqin‘inspeet second network when network do o : _ 221

begin adrs 2:= npaddress[px2]; = E — ) - . 222

deg 2:= npdegree[px2] ' o , - ' . _“1 o 223

end; ' - .
: polmtply(npaddress[pxl], npdegree[pxl], adrsz, deg?2, tempadrs[px3], tempdeg[pxs], 51gn) ' 224

.end polynomlal multlpllcatlon and addltlon,

inspect second network when network do base address address of second network + netdegree +1; o 230

for j:= 1 step 1 until 6 do tempadrs[j]:= base address + j ¥ <row length of main array>; , 231
1£<cascade'operation is required) : _ : : ‘ . v ' ' 232

Figure 5.2 - Algorithm for_evaluation of network expressions (Page 1 of 5)
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then Qggig pma (1,1,1, 0); pma(1,2,2,0); pma(3,1,3,0); pma(3,2,4,0)5 . N 533
- pma(2,3 1,1); pma(2,4,2,1); pma(4,3,3,l); pma(4,4,4,1); ' R v . 234
pma (5,9,5,0); pma(6,6,6,0) o | e - - 235
else begin pL:=-i; p2:= 2; 'p3:= 35 pd:= 43 sign:= -1j o o N . _ . 236
iﬁ(first ports are connected in éerie§>then : I B : ' . - '-237
begin <swap pl and p3); <swap p2 and p4>, 51gn = -sign end; 1 - : . 238
’1f<second ports are connected in serles> then . o oo ' 239
- ' begin (swap pl and p2); <swap p3 and pd>; sign:= -51gn end; : . - - ‘ L 240
- Pma(Pl,p2,P1:Q), pma (p4,p2,p4,0); pma(5,p2,5,0); pma (6,p2,6,0) ; ‘ 4~‘ ‘ ' _ | 241
vpma(p2Qpl,pl,l); pma (p2,p4,p4,1); - pma(p2,5,5,1); pma(p2,6,6,1)3 o o | 242
pma (p2,p2,p2,0)5 pma(2,3,p3,0);  pma(3,2,p3,1); - A . o 243
pma(1,4,p3,1); ; pmé(6,5,p3,$ign)§ pma(4,1,p3,1); pma(5,6,p3,sign) A ‘ o 244
for j:=1 step 1 until 6 do | . ’ . - o ..245 | ‘ ffj
. _ggig npaddress[J] address of thls network + 3 * Lrow length of main array), . ‘ : o 246 , ;
polcopy(tempadrs[;], tempdeg[J], npaddress[J], npdegree[J]) ‘ . o . 1_'f ' o 247 o
en; A , - :
netdegree:= {maximum ofAnpdégiée[j]> : - R A' ‘ ‘ ' s : » = 248

end combination of the two networks;

exffact first(significant phéracters) ' ’ L ' o o _ o ; .300
' when<"(">do ' ' . o - = ' - BT L 301
begln assemble network(address of thls network, this network, ]OOOO), R ' R _ . 302

Figure 5.2 (Page 2 of 5)
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if closing bracket y o ' - . 303

then c1051ng bracket:= false v o . . S - ) '_ 304

- else print "TOO MANY OPENING BRACKETS" : o | . N .. 305
when <"'r"> do 2 : | ~ ‘ : : e ' 306
begin assemble network(address of thls network, thls network, 0)3; . - ' S 307 #
<1nterchange the palrs of polynomlals{l 4} and{s 6) of "this network") . o 308 :

“when ¢"S" ‘or "T") do. | A . o | 309

begin extract first (significant characters) . , ' ' . R 310

| ‘»M <"R", "L", "C", or "X">do ' - ' ' _ ' _ .i S 311

begin{extract and interpret the following parameter(s) which-specify a component>; 312

{create a new "network” whose polynomial addresses are besed on the g E o | 313

"address of this network", and refef to it as "this nétwork?); . ., 314

{assemble the numerator and denominator of the component impedance- k _ 315

. as ‘the reepectiVe polynomials 1 and 3 of "this network"); - . o | 316

‘na:= 1; da:= 3

end " ' , . ‘ ‘ , ‘
when ¢"Y" or "Z") do | - ~ o S o 318
begin assemble network(address of this network, this network, O), C : | | _ 319
na:= if <second port is terminated with an open circuit (Z))then 1 else 2,_ '. - o 1320
"~ dat=na + 2 ‘ _ 321
_ Otherwise print. "CHARACTER DOES NOT SPECIFY A COMPONENT"; : ‘ 322

Figure 5.2 (Page 3 of 5)
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if <bpmponent’is.to be placed in the shunt (T) posiﬁion) : b_' v ' o - | . . 323 ' : f%
then begin zx;; 2; nx:= 13 dx:= 3 end | ' : ) | : - » 324 .E
else begin zx:= 3; nx:= 2; dx:= 1 end;. “ : ' o R : 325 g
inspect this network when network do L . B | : A _ R 326 |

begin npaddress [ zx]:= npaddress[5]; npdegree[zx]):= netdegree; . - : _ 327

: _npaddresélnx]:= npaddress[na], npdegree [nx] := npdegree[na}g. : o o | : 328 :
npaddress[dx) := npaddress [da} ; npdegree [dx) i= npdegree[da]; o : - - 329 . 1}
" npaddress [4):= npaddress[5):= npaddress[6]:= npaddress{1]; | : . - : , . 330 5
npdegree [4}:= npdegree[5]:= npdegree [6]:= npdegree [1); , ' . 331 -
'Polcléar(npaddress[zx]; npdegree [zx]}) B \ I ' 332
ggg Fer . _ .

when "A", "B", "D, "E", "G", "H®, "Iv, "MW, UN", "U", or "X"> do S T - 333

gggu;_<extract and interpret the following characters(lf relevant) Wthh specify a ba51c network), : 1334
<create a new "network" whose polynom1a1 addresses are based on the o ' o 335 R 'jg
"address of.thls network", and refer to it as "this network"»; . ' ' . 336 .
{assemble the polynomials of "this network" to represent the basic network) ‘ | >> o E 337 ' - TE
vggg - | - | | | .. _ .-v , e o | | . .
-when ¢ statement delimiter do ' | . | | o .- 33 3

begin expression terminated:= true; - ' L o 2 339
| print "EXPRESSION IS NOT COMPLETE" . o o D , , 7340 i
otherwise print "CHARACTER DOES NOT SPECIFY A BASIC NETWORK"; | S e | 341 |

Figﬁre-S.Z (Page 4 of 5)
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~operation: - : a o | o . o : v S 400
if'not (closing bracket or expre551on termlnated) then ' ‘ S o : : 401
inspect this network when network: do 1f netdegree < degree of last network then - _ . .. 402 |
extract first (significant characters) = . _ . - B _ Lo , o . 403 ?
when £ "c¢", "p", or "s">.$_> | ' o o ' ' ; . ' S o 404
begin {extract and’interpret the folloWing cnaracter (if relevant) Wthh completes - | _ : | 405 :j
the specification of adyadlc network operation; o t ' V ' - : 406 . 4
‘address of second network:= ,address of this network + netdegree + 1; T ' ' I | 407 N ﬂf
assemble network (address of second network, second network, netdegree); . . R . .- 408 ° -
combine the two networksj : : ' ‘ o B | . L 409
goto operation , B o R o ' ' E o | 4 410
end . 4 . , ‘ | . ) | , L
when<(")")fdo closing bracket:= true | . o _ . . S o Tan
when <statement dellmlter> do expression termlnated true ' : ’ _ | o o o 412
otherwise print "CHARACTER DOES NOT SPECIFY A NETWORK 'OPERATION" - - o - ' 413

*/end assembly of network

closing bracket:= false; - o | , T y | 500
assemble network (Kbase address of new block), this block, 10000); . ' - S A - : 501 ;]
if closing bracket then print "TOO MANY CLOSING BRACKETS"; | N - A 502

'Figure 5.2 (Page .5 of 5) o "_ } ' o | : - - _%
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Tl = Al.Bl + A2.B3,

T2 = AL.BD + A2.B4,
T3 = A3.B1 + Ad.B3, |
T4 = A3.B2 + A4.B4, f
TS5 = A5.85, -
‘ATé-:bAé.B6.

Statements 241-244 perform the’parallélAparallel,operation by evaluating
the polynomial expressions:
. Tl = AL.B2 + A2.Bl,

T2

A4.B2 + A2,B4, -

T5

A5.B2 + A2.BS,.
T6 = 26.B2 + A2.B6,

T2

n

A2.B2,

A 3 . - e
T3 =-A2.B3 + A3.B2 + Al.B4 - A6.B5 + A4.Bl - A5.B6.

However, if either or both of the ports are connected in series rather than -

parallel, the effect of cascading with a unit gyraﬁor is first incorporated

(237f240). “When all the new poiynomialé have been calculated the

polynomial addresses of the first network are calculated (246) and the

temporary polynomials are copied into these locations (247), thus effecting

_the assignmehts :

AL=TL, -
A2 = T2,
A3 = T3,
A4 = T4, :
A5 = 15,
a6 = T6.

-

Execution of the main procedure begins with the ‘extraction of the ‘

: next’signifibant charabter from the input file (300).

If an opening bracket is encountered (301), a recursive call.is made

. to the same procedure (302) and a closing bracket is.cancelled (304).- A

~recursive call is also made if a port-interchange operator is encountered,

~ and the desired reversal operation is achieved simply by interchanging two
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pairs of polynomialg (306-308).

The éssembly of a simple netWork (309) is brecedéd by the assembly
of the numerator (N) and dénominator (D) pdlynomials of a.component
impedance, which, in the case of é compoﬁhd component (318), requires
anéthe; recursive cail to the same proceduré (319). If the componeﬁt
_is pléced in the shﬁnt position, the six polynomials becone N,O,D,N,N,N;
.if.placed in the series-pdsifion, they become D,N,O,D;D,D. .TheA
aésignment of .numerator and denominétor polynomiéls is athieved.byiéopying

.. polynomial addresses (327-331) rather'fhan polynomial coefficients.

After assembling a network, and finding (401) that the network -
Expression is terminated neither permanently (with a stafémgnt delimifer)
nor temporariiy (with a clbsing bracket), the decision ,to‘continue or
terminate the prﬁcedure depends on the dégrees of the last two networks
to Eg ésﬁembled (402); by not combining two ﬁetwofks if the degrée of the
second is iess»than the degree of the first, the procedure exhibits a

.'preference for combining petworks_of the.same degree and. thus minimises

polynomial manipulation._ By calling the procedure with a value of 0 or

S SV SN .

- 10000 in'hlace of the parameter represehting the'"degree of the lasf
network", this decision mechanism is used to ensure that the procedure

terminates either as soon;‘or'as late, as possible.

: Apart frow a élosing brackef‘(4i}) or a statement delimiter'(4l2j;
.é nétwork should 6n;§ beAfollowed Sy a d?adic netwbrk.oberatorA(4O4j;
‘Inbthé latter case a base éddress‘fo; a'second.network is éaicdlated (407),
a recursive call isAméde in order to assemble auseéﬁnd‘ﬁetwork (408);_and

the two netwdrks-arehcombined algebraically (409). .

The algorithm incorporates no prebedence rules — such as the pafallel
operator before the cascade operator-——ahd the user is encouraged to
introduce pairs. of brackets whenever there is doubf about'theipdssibleA

execution order of network operations.
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There . is aAclear relatiOnship*between the.algorithm and the syntax
definition for network expressiohs: the calls to the proceddre‘"assemble
network" in algorithmistatements.501, 302, 307, 408, and 319 oorrespond
to~references‘to the metavariable "(hetwork)" invtheir'respective syntax-

definition statements 0,2,2,2, and 4.3.

Any program which implements this algorithm must, like any interpreter,
output'unambiguous'diagnostic messages whenever a symbol can not be properly
interpreted. Examples of diagnostic-messages occur in statements 305, 322,

340, 341, and 502. It is also desirable that a program should attempt to

recover from data errors-—-elther by skipping spurlous characters or by

'maklng su1table assumptlons-——and, as far as p0551ble, contlnue scanning

’the data for further errors. However, the algorithm of figure 5.2 has nct

been encumbered with programming details of this nature.

. _The4algorithm'described above is essentially anAinterpreter rather

than a compiler;. that is, interpretation of a network expression and

7

analysis of the specified network are concomitant. This simpler approach,

- which requires only one pass through the input data, is generally
' satisfaotory-—-but.in some applications it may prove costly. For'instance,
when’a data error is discovered, the polynomial manipulation preceding the .

'discovery is wasted. Also, if the evaluation of a:network expression'

should be repeated w1th dlfferent network parameters, as in an iterative

. network de51gn program, the 1ﬁterpretat10n is repeated unnecessarlly. In
' an alternative approach polynomlals could be assembled ‘and manrpulated with

:.prooedures controlled by program switches. A compiler would interpret

the input data file; construct a table of'fixed and variable network

Lparameters, and compile a sequence of program switch settings ahd parameter

indices.

5.6° TOPOLOGICAL ANALYSIS

5.6.1 Interface with the Algorithm

Z'Thefanalysis algorithm presentedﬁin_figurc 5.3 as the procedure
"topologic" requires that the ‘topological data describing the network

structure and the parameters of ;the>individual networks be available.
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‘

in a particular form.

If the structure is_défined_by a braﬁch list, as defined by statement
3.91 in the syntax definition of network expressions;'then.each branch,
by'virtﬁe of its positimin the lisf, has a unique index numbexr "bx" and
is linked to corregponding elements in three arrays. Two. arrays, "first
node" and "second node", simply list the first and second node nﬁmbers of
each branch, and thus completely determine the network structgre in the
conventional manner. The third array, "branch reference", i§ a list of

elements referring to "branches" which are representatives of the class

declered globally as follows:

“"class branch (branch degree);

begin integer array. bpaddress, bpdegree, bptag[l:6j end;"

The attributes of a "branch" determine the address, degree, and a tég
for each of the six polynomials'which characterise a 2-port network. The
"branch degree" is the maximum of the individual‘"bpdegree[j]V. If a

polynomial contains only a constant term and its magnitude is zero or unity,

then its tag is set equal to the polynomialg otherwise,>its tag is set to +3.

The analysis prbcédure assumes that each port in the structure is
connected in parallel- rather than in series. Therefore, if a port of a

constituent network is connected (to other networks) in series it must be

~cascaded with a unit gyrator: if the first port is connected in series,

the pairs.df branch polynomials {1,3} and {2,4} are interchanged and the

_-sign of the tag of polynomial 5 is changed; 1if the second port is connectéd

in series, the pairs of polynomials {1,2} and {3,4} are interchanged and

the sign of the £ag of polynomial 5 is. changed. ‘Finally, each transfer

polynomial (5 and 6) is compared with its correspénding natural polynomial

(4 and 1 respectively). If its tag is %3 and, except for a possible sign

difference, the polynomial'is identical to itsléorresponding natural

polynomial then its tag is changed to either 42 br, if there is a sign

difference, to -2.



procedure topologié(nodes, branches,.closing bx, first node, second node,.branch reference; tempadrs, stack address); 100
integer array first node, second node, tempadrs; L ' . . - .'_' | R ' _ . - 101
element array branch reference, , - ) " . | _ ' g ’ o o ) ' :' - 102.

begin | | | | : . . -

' boolean possible to extend path, loop includes closing branch; o : - - E o - 'b_ : ' 110 ;
boolean array listed branch reversed, pointer set[1l: nodes]; . S o _— ' _ o » 111 :
integer array listed node, listed branch[l: nodes], node sum of branch, possible pointers into branch[1: brancnes]} - 112 .j
£;§§§gpolynomiai(paddréss, pdegree, ptag);; ' : S | : v : 113 ;
class directed branch(bx, breversed); boolean breversed;; - ‘ o "" - o | 114 °

- element unit polynomial, bb, extended prodoct, 100p”polynomial; - o ) o ' | ' ' - ' 115
element array closing loop product[l: 6], _ o | c ‘ . _ S ' 116
sét term factors, loop natural polynomlals, loop transfer polynomlals, - : B | o 117

T oset ggggx'branch list of node[l nodes], : o B o ) ' ' S | ' 118

“orocedure set p01nter(k, ny pathstart, partlal product), | ' A L _ S . o : v - 200 l

- element partial product, o o ~ ' : - . : o v n l | - . 201
begin integer pptag, . nextadrs, o H _ S o - - - : 202

~ element b; - . - - S ' Co _. . [ . 203
Qrocedur reglster polynomlal(px,bx), L e R R K L . . 210
1f bx = closing bx ~ . - - .d’v B o - o o , S 211
then begin closing nox:='px; closing tpx:= 0 end o o - o R 212
else inspect branch reference[bx]when branch do S . - - ' - - o 213
- begin tftag:= tftag * bptagtpx];- - -e , B o N .; R R 214 p
Figure 5.3 Algorithm for topological analysis (Page 1 Aof_8),
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if tftag = 0
then goto next branch

else if abs(bptag[px] )# 1 then 1nc1ude(new polynomlal(bpaddress[px], bpdegree[px], k)ptaglpx]), term factors)-

end;

procedure reglster path (k); ,
for k:= k step - 1 until pathstart do reglster polynomlal(lf llsted branch reversed[k]then 1l else 4, listed branch[k]),

Qrotedure adjdst‘fag of’all branches connected to this node by(a);
for bi- first(branch list of node[n]), suc(b) while exist(b) do

inspect b when‘directed branch do possible pointers into branch[bx]:i possible pointers into branch[bx]‘+ a;

element procedure prbduct(polYnomial factors, address, degree, tag, sign);

set polynomial factors;‘

begin extract(if empty(polynomial factors) then unit polynomial else jirgg(poiynomial»factore)) when polynomial co
l begin adrs 1:= paddress; : | A ’ - '
| deg 1:= pdegree
 if empty(polynomial factors)
' then _gglg if sign = 0
then polcopy(adrs 1, deg 1, address, degree)

else poladd(adrs 1, deg 1, address, degree, address, degree, tag * 51gn)

Figure 5.3 (Page 2 of 8)
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'next factor:_

" end product;

[P -

‘extract flrst(polynomlal factors) when polynom1a1 do

begin adrs 2:= paddress;
deg 2:= pdegree
end; |
if gmg;x(polynomlal factors) v .
then polmtply(adrs 1, degl, adrs 2, deg 2, address, degree, tag # 51gn)

 else begin adrs 3:= if adrs 1 = tempadrs[1] then tempadrs[2] else tempadrs (1];

polmtply(adrs 1, deg 1, adrs 2, deg 2, adrs 3, deg 1, 0);

C : adrs l:= adrs 3;

goto next factor

‘end

produet:- new polynemial(address, degree, if tag =0 then'sign else tag)

1nsgee part1a1 product when po1vnom1al do

_jala_ pptag:=

nextadrs:=

end;

pointer set [n]:
listed node [k]:

il

ptag; v :
paddress + pdegree + 1

true;

nj

adjustvteg of all branches conneeted'fo.thie node bye(-i);
for b:- first (branch list of node fn]), suc(b) while exist(b) do

begin possible to extend path:; falsey; -

Figure 5.3 . (page 3 of 8)
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tftag:= pptagy . = : ,_' T 4 ‘ - . ' ‘ . 268

clear(term factors), o : o : U : ‘ B . 269
if abs (tftag)# 1 then 1nclude(part1al product, term factors) L o - . _ L T | . 270
inspect b when dlrected branch do . o - . ' - ‘ . ' . 271
begin possible pointers into branch [bx] := poésible pointefs into;branchlbx] + 1; - ) ' 272
listed branch[k]:= this bx:= bx; _; ' » o ' 273
listed branch reversed[k] := breversed _ ' o ' "_' : - - 274
end; ' ' | ~ o - ] . | _ V,
for bbi- first(branch list of node[n}), suc(bb) while exist(bb) do o ; T a1
in spect bb when directed branch do : : : : - - 276
if p0551ble pointers into branch[bx] = 0 then register polynom1a1(2, bx); . ' ‘ . | - 277
next n:= node sum of branch[this bx] - n; o o . - ' 278
for nx:= k-1 step -1 until pathstart do if listed node[nx]= next n then o T . 279
_ggig register path(nx -1); A ’ o T _ : 280
; if nx =k -1 - : - - N S : : ."_'281'
a » o .viggg register polynomial (3, this bx) - o - ' ' . 282 i
| else begin lnptag:= ltptag:= 1; : g - | ' o - 283 :
' clear (loop natural polynomials); glgg; (loop transfer polynomials); - - 284
for nx:= nx step 1 until k do | ' - ' ' : | 285
begin ‘this bx:= listed branch[nxﬂ, ' ' o . _ 286
if llsted branch reversed[nx] - v ) B , - o 287
" then begin npx:= 1; tpx:= 6 end | L i ” " 288
else begin npx:= 4; tpx:= 5 end . | . . 289
if this bx = closing bx . : " - S . ' 290

Figure 5.3 (Page 4 of 8) -




then begin cloéing npx:= npx; ' - _ , ' . - 291

closing tpx:= tpx: ' ] I - _ 292 _H f%
loop .includes closing branch:= true . ) c ' B - 293 E
else inspect branch reference[this bx] when branch do : : S 204 _ i
begin lﬁpfag:zvlnptég # bptag[npx]; : - ' . ’ S 295 . 
ltptag:= ltptag * bptag[tpx]; S _ . ' 296 ' j@
| if lnptag = O and ltptag = 0 then goto next branch; | - 297 B
P [ - if abé(botag[tpx] = ' o , . 598
' then register polynomlal(npx, this bx) _ | v 299
‘else begin if lnptag # 0 and abs(bptag[npx]) # 1 then ' ' 300
include (new polynomial (bpaddress[npx], bpdegree[npx], bptag[npx]} ),
loop natural polynomials); _ 301
if ltptag # O and abs(bptag[tpx]) # 1 then | - 302
blnclude(new polynomlal(bpaddress[tpx], bpdegree[tpx] bptag[tpx]
N 1oop transfer polynomials) 303 .
end | |
end
end; E |
if 1oop includes closing branch . - _ v ' 304
then begin closing loop product[c1051ng npx] - : ’ o .. 305

product (loop natural polynomials, tempadrs[5], O, 0, lnptag),
c1051ng loop product[closing tpx] :- : ... 306
_product(loop transfer polynomials, tempadrs[6], 0, O, l1tptag);

‘Figure 5.3 (Page 5 of 8)
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loop includes closing brandn;i'false

end

else begin if empty (loop natural polynomials) and empty(loop transfer polynomials)

then goto next branch; :
loop polynomial:-

prodﬁct(loopAnaturaI polynomials,.tempadrs[3] O,'O,‘lnptag)-

if ltptag # O then 1nspect loop polynom1a1 when polynomial do

"~ loop polynomial:- ' ,
product(loop transfer polynomlals, tempadrs[3], pdegree, lnptag, - 1tptag),

inspect loop polynomial when polynomial do

~begin include (loop polynomial, term factors);
tftag:= tftag #* ptag

end

end

o v ~end;
P ) o goto next p01nter

end;

' 22333 register path(k);

v goto-next pointer
possible.to extend path:= true;

hext pointer:

if k<nodes

Figure 5.3
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PSR R, —_——

then Qggig if possible to extend path
| ;ggﬁ revised path start:= path start
else begin revised path start:= k. + 13
for next n:= 1, next n + 1 while pointer set[next n] do
end; o - -
set p01nter(k + 1, next n, rev1sed path start, product(term fac:tors, nextadrs, O, O, tftag)
else Qggié ij_closing tpx = 0

' then inspect closing polynomial[closing npx]when polynomial do

closing'polynomial[closing npx) :- product(term factors, paddress, pdegreé; ptag,‘tftag)
else Qggig extended product:-. product (term factors, tempadrs[4], 0, O, tftag)
for px:= closing npx, closing tpx do
inspect closing loop product[px]ﬂggg pol?nomial do if ptag #£0 then

begin include (polynomial, term factors);

include (extended product, term factors ) ;

lptag:= ptag; '

1nsgect closing polynomial{px]when polynomlal do
closing polynomlal[px] - |

product(term factors, paddress, pdegree, ptag, tftag * lptag)

o
=
Q.

end S - ' : ' _ N o

_end;
next branch:

possible pointers info branch[this'bx]:= possible pointers into branch{this bx]

Figure 5.3 (Page 7 of 8)
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end

end; _ , :
adjust tag of all branches. connected to this node by(+1)}
pointer set{n):= false

set pointer;

unit polynomial:- new polynomial (stack address, O, 1);

inspect branch reference(closing bx] when branch do for px:= 1 step 1 until 6 do

closing polynomial[px]:- new polynomial (bpaddress{px], bpdegree [px], bptag[px]);.

for bx:= 1 step 1 until -branches do

- begin p:= 0;

o
Q.

na;

- for

node sum of branch[bx]:= fiist node[bx]} + second node[bx];
if (the three polynomials 3,4 and 5 of this branch are not all zero) then

begin include(new directed branch(bx, false), branch list of node[first node[bx]]);

p::ip + 1

. end;

.;j‘(the three polynomial$v1,3 and 6 of this branch are not all zero) then

begin include(new directed branch(bx, true), branch list of node[second node[bx]}]);

“pi=p +1
end; '

possible pointers into-branch{bx}:= p

nx:= 1 étep 1 until nodes do pointer set{nx]:= false;

set pointer(l,1,1, unit polynomial)

end topologic;

Figure 5.3 (Page 8 of 8)
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‘

The branch whose index is denoted by "closing bx" is the closing
branch. .Its polynomials must be set initially to zero;_given.positive
tags, and located at addresses to which the polynomials of.the new,
complete network are to be assigned. If either or bbth'of its ports
are connected inléeries then its polynomials are interchnaéed in fhe same
way as those of any other branch. Then the relationship between a
complete network and its closing network is taken _into account by
interchanging the three pairs of polynomials{l,4}, {2,3} and{5,6}, and

by changihg the signs of the tags of both the transfer polynomials.

Within the context of algebraic reduction the topological analysis

procedure is required to assemble the polynomials of a "basic network".

 The prior interchanging of closing polynomial addresses described above

ensures that at the termination of the topological analysis the accumulated

" polynomials will represent the basic network and be stored in the correct

locations.

The addresses of storage space for up to six temporary polynomials

(at the right-hand end of the first six rows of the main array) are given

by the array "tempadrs[l:6}"., Intermediate polynomial products are to

be stacked behind a unit polynomial of degree zero at the address given by

"stack address" (in the last two rows of the main array).

- 5,6.2 "Action of the Algorithm

Throughout the course of the algorithm the three attributes — address,

- degree and tag — of any polynomial are conveniently manibulated as a single

entity declared as a."polynomial" in statement 113. The main procedure
commences with the creation of seven such entities representing the unit
polynomial which héads the stack of intermediate products (400), and the

six closing polynomials (401,402).

The data describing the topology of a structure is more useful in

other forms, When given any one node of a branch the other node is readily

found (278) using the sum of the two node numbers. It is also convenient to
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list all the branches connected to a particular node, and to record which
ends of the branches are connected to that node. For this purpose the

concept of.-a "directed branch" is introduced (114); its attributes

~determine a particular "branch” (by its index "bx") and indicate whether

the relevant node, in whose list the directed branch appeafs,'is the first

or second node of the branch (ﬁbreversed” is "false" or "true", respectively).

Node numbers are summed, directed branehes are created, and_branch
lists are assembled by the statements 405,407 and 410. Note that if all
the polynomials thet might be determined by directing the pointer of a node
ieto a branch are zero, that branch is not included_in the braneh list of

that node (406,409).

Also before the algorithm commences, tags associated with each branch
and node must be initialised: it is noted that at this stage of the

algorithm none of the pointers are set (413), and it is therefore possible

 for any branch to have the maximum number (l or 2) of pointers directed

into it (412).

" The aim of the elgorithm is to generate all pointer settings, and,
for each one, calculate a product of polynomials and add it to a closing
polynomial as determined by equation 1.7. With only a partial setting of
pointers certain factors of equation 1.7 will be determined; their proddct

is- calculated, stored as an intermediate polynomial, and referred to as the

"partial product".

The algorithm proceeds by setting pointers one at a time and is
initiated by & single call of the procedure "set pointer", with parameters

specifying that the first pointer to be set is that of the first node; that

the current pointer path commenced with the first'pointei to be set, and that

the partial product of polynomials at this stage is the unit polynomial (a14).

~ The setting of one more pointer determines more factors of equation 1.7.

As the factors are‘determined they are included in the set of "term factors"
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and it is only after all the new factors have been included, and it is
known that none of them is zero, that the factors are multiplied together
and a new "partial product" is formed.. This policy is followed throughout

the algorithm: no manipulation of polynomials is undertaken until it is

asgured that such manipulation will be productive. At each setting of a

single pointer three different polynomial products may need to be formed

and three sets are allocated for this task (117). The tag of a prospective

polynomial factor is inspected and if £l -the polynomial is not included in

- the set. If the tag is zero the entire set may be neglected and no further

polynomials included. In this way the occurrence of zero or unit

polynomials is exploitedbto the fullest extent in speeding up the algorithm}

The element proéedure "product" (240) provides the bridge between the

polynomial manipulation requirements of the algorithm and the utility

‘routines of section 5.2. - Its function is to multiply together all the

_.polynomialsiincluded in a specified set and to either add the resulting

polynomial to a specified polynomiél or store the product at a specified
location. ) o » ST o : - Intermediate
products are stored alternately in the space allocated for the first two

temporary polynomials (255,256).

The inclusion of constituent polynomials in the set of “"term factors"
is performed by the procedure "register polynomial" (210). A tag ("tftag")
for the product of members of the set is revised (214) and if it becomes

zero (215) the setting of the last pointer is:rejected (216). If the

polynomial to be registered belongs to the closing branch (211) then a.note

is made (212) of the closing polynomial to which the full product of

constituent polynomials is to contribute.

Throughéut the course of the algorithm a list of the nodes whose
pointers have been set and a list of the branches to which they are directed
are maintained in the arrays "listed node" and "listed branéh” (112). The
boolean array "listed pranch reyersed” (111) indicates whether the listed

node corresponding to the listed branch is its first or second node.
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When thé procedure "set pointexr" (200) is entered the "pointer set" .
flag of nede n is raised (263) and this node becomes the k-th "listed node"
(264). Until the pointer is actually directed to a particular branch the
taés of all the branches connected to this node areAreduced by one (265).
Thé pointer is then directed in turn to.each of the branches connecfed to

this node (266-340).

With each setting of this pointer the set of "term factors" is

- initialised to include only the "partial product”(268—270). The branch

to which the pointer is directed becomes the k-th listed branch (273,274)

and its tag is increased by one (272) io cancel the adjustment made in

.statement 265. All the branches connected to node n are scanned (275)

and if it is determined that now no pointers can be directed into one of
these branches then its 'second polynomial is included in the set of '"term

factors" (277).

Pointers are set in an order which attempts to follow the formation 6f
pointer paths. The current pointer path, which commenced with the k-th
listed node, where k = "pathstart", is extended uﬁtil it intersects either
a previous path or itself. The next node in the curreﬁt‘pointer path is
indicéted by "next n" (278). If "next n" is not among the listed nodes
then it is bossible to extend the pointér path (320). In this case (323)
the polynomials in the set of "term factors" are multiplied together to
form a new Jpa}tial product" and the.brocedure "set pointer" is called
recursively (327). However, if "next n" is among the listed nodes the
current pointér path“can not be extended; therefore, before the procedure
is called again_a search must be made for a new noae (326) with which to

start a new pointer path (325).

When all pointers have been set the product of "term factors" is

: added to the appropriate natural closing polynomia% (330). Hovrever, if

the pointer setting was such that the closing branch was traversed by some

pointer loop then two different polynomial terms are determined and must

be added to the appropriate natural and transfer closing polynomials.



In this case the product of ”térm factors", Which is common to both‘terms;
i; calculated and stored in the space allocated to the fourth temporary
polynomial, and is referred to as the "extended product" (331). The
remaining‘factbrs of the two terms were previously calculated by the
aléorithm (305,306), stored in the spacé allocated to the fifth and sixth
temporary polynomials, and each referred to as a subscriptéd "cloéing loop
product". For both terms (332), the appropriate "closing loop product”
(334) and the common "extended product" (335) are included in the cleared
set of "term factors" and their product is'édded to the appropriate closing

polynomial (338). y

If the current pointer path terminates because ”next‘n" is found
among the listed nodes corresponding to previous pointer paths (317), each
branch'traversed by . the péth contributes a natural polynomial to the set
of "term factors". These polynomials are registéfed by a call (318) to

the procedure "register path" (220).

If "next n" is found among the listed nodes corresponding to the
current pointer path (279) then a pdinter loop is detected.A The .-natural
polynomials determined by that part of the path which is not included in

the loop are registered by statement 280. If the loop includes only the

last listed branch (281), it is not a proper pointer loop but simply a

reversal of direction; this branch has both its pointers directed into it
and therefore contributes its third polynomial to the set of "term factors"

(282).

To handle a proper pointer loop the two sets reserved for loop
polynomials are cleared (282, 284), the branches traversed by the loop are
scanned (285), and the appropriate (287-289) natural and transfer polynomials

are included in their respective loop-polynomial sets (301, 303).

It is at this stage that a"most important decision is made which affects

both the economy and the accuracy of the algorithm. If the corresponding

natural and transfer polynomisls are identical in magnitude (298), the two
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loop products have é common factor; this factor is therefore included

directly in the set of "term factors" (299) rather.than'included in both

sets of loop polynomials.

Normally, if the loop does not traverse the c1051no branch, the "loop :

',natural polynomlals" are multiplied together, their product is, stored in

the space allocated to the. third temporary polynomlal, and ‘the product is
referred to as the "loop polynom1al">(310) Theb"loop transfer polynomlals" 3

are then also multiplied together and the resulting product is $ubtractedi

" from the "loop polynomial" (312).. The dlfference, representing a factor :

(n,

i ti) in equatlon 1. 7, is included in the set of "term factors" (314 31%5).

" But, if'both sets of loop polynomials are empty (308)'this setting of

the last pointer is rejected (309-). ‘This situation can onlvy occur if the.

corresponding natural and transfer polynomials ofleveryvbrancn'in-the loopi
are identical in-magnitude,vand in such a case"tne two loop prodUCts would
be equal'and tneir difference (ni - ti) would: be zero. Homever,'if botn |
products were computed, in practice it is likely that, due to truncation
errors, their difference would not be exactly zero.i» The resulting products

could be of sufficient magnitude to render the analysis resu1ts neaningless.

If the loop does traverse the closing branch (304), the two products
of the "loop natural polynomials" and the "loop transfer polynomlals" are

stored trmporarily (305, 306) until the p01nter setting is complete and they

become factors (334) in two diffelent terms (332 .

Before the pointer of node.n is directed to another branch the:tag of
the current branch is reduced by one (340), to cancel the. adjustment made

in statement 272. = When the pointer has been directed to all the branchee

connected to this node theirAtags are increased by one (341) to cancel the

~original reduction {265), the "pointer set" flag is lowered (342), and the

procedure is terminated.
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5.6.3 Application of the Algorithm

| The algorithm presented here is.designed primarily to analyse
general structures of general, constituent 2-port networks, but,
wherever possible, the ocqurrence'of Zero oi unit polynomials is
exploited to minimise computation. ‘In practice; many trivial networks.
may need to be introduced to allow a complex network to be represented
as a structure of 2-port networks, .and the occurrence of zero ‘and unit.

polynomials is therefore common.

Because of its ability to analyse structures of 2-port networks

this algorithm is believed to be a significant advdnce over the existing

topological methods of analysis, which either enumerate trees of a"network

~graph or analysé signal-flow graphs. The power of this algorithm is better

appreciated by noting that both network graphs and signal-flow graphs can be

transformed, quite simply, into particular types of structure graphs and

4

therefore can be analysed by this one algorithm.

Network Graphs

- To find the frees of a graph whose branches are either resistors,
unistors 6r gyrigtors each branch is modelled as a'fsimple network" with
its component in the seriés position; each nodevbecomes a parallel
intérconnection of ports. The equivalent structure graph is then!identical

to the network graph.

The six polynomials of a branch are You l’o’le’yl? y21 where Y10
b : 3] : oot

is the admittance of:ah equivalent unistor directed from the first to the

¢

second port and Yo1 is the admittance of an equivalent unistor directed

from the second to the first port, as in figure 5.4, For a resistor,

yl2 = Y2l; fOI‘ a gyri;stor, Y12 = 'Y2l'

If node g is the "ground" node as- far és the behaviour of the
unistors is concerned, the port corresponding to this node must be

collapsed. Therefore, if a complete 2-port network is defined by connecting a

closing branch from node g to any other node, it is its first polynomial



Figure 5.4

An: equlvalent 2-port network representlng the general
branch of a network graph.
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Wthh will correcpond to the oranch admlttance product sum of the trees

of the orlgwnal network oraph

N The analysis algorithm has been tailored specifically to this_task

-of.generating the trees of a graph in order to investigate its effectiveness

in comparison with other tree-finding schemes.

Because only one polynomlal is requ1red the pointer of the "ground"p
" node is directed permanently into the closing branch and the pointer at the
otber end of the closing branch is not permltted to be d1rected 1nto the
closing branch. °~ Only one poiynomial, the»branch admittanoe, need be
,associated_with each branch and all information needed to distinguish the

- six polynomials is contained in the polynomial tags.

In=practiee,.polynomial manipulation is eliminated and the branches
in a tree are determined by the "listed branch"™ array; thebsign of a
'brancnfadmittance—product-is»determined'by the"tag»"tftag"tassociated with

the set of "term factors", or may be determined from the "listed branch

‘reversed" array.

e e a

. Because every‘transfer polynomial is identicai to its_oorresponding
natural.pOlynomial,land the thirdtpolynomia‘.of every oranch is zero, the
formatlon of a p01nter loop or the reversal. in dlrectlon of a polnter path

: wlll always result in a zero product. This observatlon is, of course,,f.
»con51stent w1th the deflnltlon of a tree and allows a major part of the
»algorithm (280-316) to be greatly 51mp11f1ed »Further, because the second-
polynomlal of every network is unlty. 311 statemen+s related to the -

.adjnstment‘and 1nterpretat10n of branch tags are eliminated.

' A paper deocrlblng SUPh a simplified, tree- generatlng algorlthm [7]

1s appended to the thesis.
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In the courée of' investigatioﬁs_by_an'independeﬁt worker, the algoritmn
was evaluated in'comparison'with a representative selection from more
than thirty other tree-generating methods .[23]. The . -
maét promising methods were programmed in assembler for an IBM 360
computer, and used to find the trees of a dozen representative networks
of yarying size and complexity. In all cases the perfofmance of'the-

program based on this algorithm was close to the best in each partichlar

test, and in five documented tests it generated all trees in the least time.

Signal-Flow: Graphs
To analyse a signal-flow graph it is formulated as an electrical
network with quantities represented by voltages. Branches.become ideal

voltage‘amplifiers with gain equal to the branch transmission and nodes

become interconnections of ports.

Because the amplifiers which represent the branches directed away

~ from a particular node all share the same ihput voltage, representing the

quantify at the node, their first ports are- connected in parallel. But

the branches directed toward a particular node are represented by

.amplifiers whose output voltages must be added together, and this is

accomplished by connecting their secopd ports in series,

The_eleétrical analogue of the signal-flow graph of figure 5(5‘is

shown in figure 5.6. Its structure graph (figure'5.%)Ais similar to the

* signal-flow graph but, in genefal,'eaéh node of . the original graph 1is

replaced by both a series and a parallel node: incoming branches are

connected to the series node, outgoing branches are connected to- the

'parallel node, and the two nodes are joined by a "init network" directed

from the series to the parallel node.

When analysed by the algorithm the series ports are converted to

parallel ports, the "amplifiers" are converted to voltage-controlled

current sources, and the "unit networks" are converted to unit gyrators.
X a

1



Figure 5.5

Figure 5.7

Signal-flow graph.

Structure graph corresponding to signal-flow

~graph.
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For a transmissioﬁ branch its polynomials numbered 1,3,4 and 6 are all zero
and a pbinter need never, be directed to its second port; 'cgnsequently the
pointers of all the series ports‘are directed permanently toward their
corresponding parallel ports. Further organisational simplificgtion may be

achieved because all "loop natural pelynomﬁals" are zero.

If the denominators (polynomial 2) of the branch transmittances are
restricied to unity, all statements concerned with the adjustment and
interpretation of branch tags can be eliminated (as with network gfaphs) and
allvpath segménts which are not part of some pointer loop will result in a
zero product. In this case the algorithm seeks pointer ioops only and
evaluétes the Shannon-Happ formula which expresses the transfer function of
a signal-flow graph in terms of its .loop transmittances.‘l This method of
detecting loops is apparently unique and certainly bears no fesemblance to

the routine used in a major version of the analysis program NASAP [45].

. However, there is little practical jugtification for adapting the general
algorithm specifically to signal-flow graphs. Even if the algorithm is

applied to signal flow graphs in its present form there is little unnecessary

" setting of poihters, no unnecessary manipulation of polynomials, and branch

transmissions may be specified as ratios of poiynomials. In many applications
the existence of tﬁe general algorithm may obviate the use of a signal—flow.graph
to describe the system; the components of a control system, for example, may
actually be 2-port.devices and the complete system may be described'moreb
compactly’if.represented directly as a structure of 2-p§rt nétworks. (see

section 6.5).

5.7 CONCLUSION

This chapter presented those ingredients which are believed to be essential
to any successful implementation of the new approach to linear analysis.

Together they permit analysis on two distinct levels.
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The lower level is designed to handle the simplest forms of

subnetwork interconnections —whether they be series-parallel connections

of 2-terminal networks, cascade-parallel connections of 2-port networks,
or chains of signal-flow sub-graphs with simple feed-back -loops. The
language with which simple structures-are described has been made highly

versatile, largely through the adoptioh of algebraic concepts which permit

the'nesting of network-manipulative expressions to an almost unlimited

extent. In particular, 2-terminal networks may be converted to 2-port
networks and vice versa, and structures of 2-port networks may be analysed
on the higher level and the resulting networks manipulated further on the
lbwe: level. Consequently the greater economy of analysis on the lower

level is available at any stage in the analysis of large networks.

The higher level concerns the analysis of any:structﬁre of 2-port
networks using the topoiogical method introduced in chapter 1. The
computer algorithm embodying this mefhbd (section 5.6) is the most important -
éontribution of part II of the thesis. It supérsedes the conventional
topological methods, which analyse either network graphs or signal-flow
graphs, because it not only performs the same type of analysis but offers

more convenience to the user and can handle larger networks.



CHAPTER 6

DEMONSTRATION OF COMPUTER PROGRAMS

6.1 INTRODUCTION

The computer algorithms discussed in the last chapter are the culmination
of many working computer programs which followed the evolution of ideas and

demonstrated the feasibility, or otherwise, of various analytical and programming

“techniques. The most recent versions, which have been documented and

maintained for general use by the Department of Electrical Engineering [8] ,

were used for the demonstrations reported in this chapter.

When coding.these programs much effort was given to reducing computation.
time and saving core space.  Although written principally in ALGOL, they include
some machine-code instructions; they calculate addresses of polynomial

coefficients explicitly rather than with the normal subscripting process; and

they do not call procedures recursively. Nevertheless, the reported execution

times are indicative of what can be achieved and should be easily bettered with

more modern computers.

The coding of these programs has not been documented because of their strong

_hachine;dependence, their divergence from the documented algorithms, and their

evolutionary nature - which is responsible fbr the now-inappropriate choice of
identifiers. The grammar of the input language has also been modified slightly.

since the programs were written, and in the folldwing reports the actual input

data has been altered to comply with the syntax rules of section 5.5.1.

The Elliott 503 cdmputer on which the programs were run.is a second

~generation machine. It hashhardware for floating-point arithmetic, 8k words

of ﬁain core sfore,-lék words.of core backing store, a 300_line/min. line printer
for output, and a 1000 char/sec. paper tape reader for input. A single-address
instruction forAinteger addition is pérformed in 7.2 pS.  With 39 bits in a
word, floating—point-numbers are represented with an'accuracy of approximately

9 decimal digits and their magnitude cannot exceed 1077. Programs were run

under a compile-and-go operating system and had access to approximately 6k words

of the main core store.
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Many aspects of the programs are outside the scope of the thesis and

are only mentioned briefly here.

In all but the third demons*ratlon uhe programs calcula+e network polynomlals

~and then evaluate tnem to arrive at. a frequency response, a transient response,

~or poles and zeros. Due to the main-store limitations of the computer,

polynonial evaluation is performed by a separate program which follows the

analysis program and retrieves the polynomials from the backing store. The

evaluation program has facilities-for (l) cancelllng common. polynomlal factors,

using an adaptatlon of the Euclidean Algorlthm (2) tabulatlng‘frequency
response, 1nclud1ngAamp11tude, phase and group delay; (3) finding roots of
polynomials using Bairstow's method- (4) calculatind the residues~of poles; and”
(5) tabulating transient -respohse; A second version of the evaluatlon program
tabulates frequency response and flndS the roots of polynomials whose

coeff1c1ents have been transformed accordlng to the prooess described in

section 4.10.

An early version of the analysis algorithm was developed for repetitive
execution within an iterative netwdrk—design program. Analysis was directed

by a compiled form of the networkueXpression and in each iteration produced'the

" relevant polynomial coefficients and their first derivatives with respect to

all the variable parameters.. Modification of parameters was determined by a

version of the Newton-Raphson process [12] which aimed to realise desired.

- locations for poles and zeros.

Thls program demonstrated the suitability of the algebralc reductlon
process in this role, and proved to be & useful tool for network realisation.
For example, in one simple application it adjusted twodindependent.paraneters :
of a "poorly designed" oscillator circuit so that it oscillatedlat-a_speoified”

frequency.

However, in some applications, and particularly with symmetrical netWorks,,. |

. the matrix of partial derivatives tended to be singular and the Newton-Raphson

process became unstable. This problem was not pursued at the time butrthe
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recent experience of many people, including the author [9] , suggests that the
synthesis problem is bettér approached with an arsenal of general-purpose function-

minimisation routines including, for example, steepest-descent and a conjugate-

- gradient technique.

6.2 LARGE PASSIVE FILTER
The filter analysed in this example has many common subnetworks which,

in the program data, are assigned to separate blocks as follows:

Bl

H

(TC1.245E-6 ¢ TRSEG ¢ TY(SL6.72E-3 ¢ SR1))
ss TY(SL.796 ¢ SR87) ss (TC.01055E-6 ¢ TRSES);
B2 = (( SL3.78E-3 ¢ SRF.6) pp SZ(TC2.214E-6 ¢ TR3E6))
"¢ ((SL6.3E-3 ¢ SR1) pp SZ(TC1.33E-6 ¢ TR4E6));
B3 = Bl ¢ B2 ¢ (TY(SL.239 ¢ SR26) ss (TC.0352E-6 ¢ TR2E8)) ¢ B2 ¢ Bl;
. B4 = (TY(SL.951 ¢ SR104) ss (TC.0074E-6 ¢ TR1E9))
¢ (TY(SL1.098 ¢ SR120) ss (TC.0088E-6 ¢ TREES));
B5 = SL.764 c SR83 ¢ SZ(TC.011E-6 ¢ TR4E8);
B6 = B4 ¢ B5 ¢ TY(SL3.16E-3 ¢ SR.5) ¢ TC2.65E-6 ¢ TR2E6 ¢ BS c B4;
B7 = (B3 ¢ B3) pp B6; | |

- B8 = SR600 ¢ B7 ¢ B7 ¢ TR600 ¢ F2

The corresponding networks are shown in figure 6.1.

The use of compound components such as TY(SL6.72E-3 c SR1) and

- 52(TC2.214E-6 ¢ TR3E6), which are equivalent to (TL6.72E-3 ss TR1) and

(SC2.214E-6 pp SR3E6) respectively, is necessary to avoid floating-point

overflow or underflow during the analysis process. As a general rule it is

preferable to introduce small impedances such as series losses in the series

"position, and lafge impedances such as shunt losses in the shunt ‘position;

their parameters then have the least effect on the magnitudes of all the

polynomial coefficients.

The filter was designed to separate a telegraph channel, centred on
1740 Hz, from an audio band. Block B6 is a band-pass filter and B3 is a
band-stop filter. The parallel configuration of B7 is meant to be all-pass

but some attenuation is expected at the edges.of the telegraphbband.
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Figure 6.1 ‘L_arge passive filter -and its subnetworks.
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For good measure two identical filtefs are cascaded; both ports are
terminated with 600 ohms, and the terminated network-is cagcaded by an ideal
transfqrmer to increase the output voltage by a factor of 2. The transfer
voltage ratio (P5/Pl) of B8 therefore directly indicates the insertion loss of
the filter. Altogether, the filter includes 202 components or branches, pf

which 100 are reactivé, and has 102 nodes.

The program execution times were:-
for analysis (HUCC program no. Ul049):

Computation . 29

console message printing 13

| total 49 secdnds;
: for evaluation of the transformed polynomials-(HUCC program no. Ul095/2):
computation 43
conéole meséage printing _9

total 52 seconds.

Intepretation and evaluation of network expressions was performed as the

data was read from paper tape and for most of the time the p;ogram was input-

bound. In order to assess the accuracy of the results the filter was analysed
“twice in the 29 seconds, using a frequency transformation with frequency scales

of 1740 and 1741 Hz. Calculation of the two sets of polynomials of degree 100

required é total of 81,336 coefficient multiplicatiohs. In 43 seconds the
polynomial evaluation program printed the coefficients of the numerator and
denominator polynomials of the voltage transfer function and tabulated the
response at 50 freduencies, for_both ahalyses.. This program wasAoutpuf;bgund

at all times.
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Samplings of the results of the two analyses are compared in table 6.1.

FREQUENCY INSERTION LOSS PHASE

" Hz decibels degrees
1500 7.9952 7.9987 -9.79 -9.79
1550 9.4370 9.1801 -107.42  -106.22
1600 57.041 67.298 -48.07 -176.04
1650 . 50.715 60.002 -82.75 58.71
1700 11.712 11.713 -144.51 = -144.51
1750 8.2670 8.2671 56,65  -54.65
1800 | 22.736 22,712 27.66 28.31
1850 59,586 63.370 717 52.16
1900 53.468 63.449 -125.65  -129.07
1950 9.8267 9.8571 112.86 112.99
2000 | 9.7746 9.7744 29.15  29.15

Table 6.1. Results of two analyses of the_large passive filter.

This most severe test of the anélysis program clearly indicates the
limitations of the method. The results are tolerable within the pass bands

but unacceptable at the edges of the telegraph band. However, with the

. longer wdrd length or hardware double-precision offered by large computers

such as the CDC6000 series (60-bit words), ICL System 4, IBM System 360

(64-bit double words), and UNIVAC 1108 (72-bit double words) the results

should in this case be acceptable at all points of interest in the frequency
band.  With only a ten-fold increase in processing speed the calculation of
the filter polynomials should be completed in less than a second, and their

evaluation at, say, 50 frequencies would take a fraction of a second.

Such projected performance invites comparison with ECAP, the host wideiy
known and oldest of %he general circuit analysis programs. . Unfortunately,'
this large filter exceeds by a wide margin the capacity of most versions of
ECAP — even though they use at least five times the core store than does this

program. The poséibility of solving 100 nodal equations at only one frequency

in one second of processor time— whether by Crout's method or some sparse -

matrix technique — is a matter for uncertain conjecture.
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6.3 THREE-STAGE 1C AMPLIFIER
| A three-stage integrated-circuit amﬁlifier, together with ité representation
as a structure of 2-port networks pnd its gt;ucture graph, 1s shown in

figufe 6.2.

In the program data the three transistors are assigned to separate
blocks Bl to B3 for convenience, but blocks B4 to B8 are necessary to describe
the branches of the structure graph which appears as a basic network in the

expression for the complete network B9:

Bl = SR1E3 ¢ ((TC6.3E-12 ¢ TR25E3 ¢ H[ 0,-4E-3,1] )
pp_sc1.5E-12) ¢ SR150 ¢ TC3.4E-12;
B2 = SR450 ¢ ((TC.7E-12 ¢ TR12.5E3 ¢ H[ 0,-8E-3,1] )
pp SC.6E-12) ¢ SR100 ¢ TC2,7E-12;
B3 = SR500 ¢ ((TC1.2E-12 ¢ TR6.25E3 ¢ H[ 0, -16E-3, 1] )
" pp SC15E-12) ¢ SR20 ¢ TC4.6E-12; - |
B4 = B3 pp SC [C] ;
L o B5 = SRG6E3 pp SC.16E-12;
| B6 = SR3E3 pp SC.08E-12;

B7 = TR150 c ((SR470 ¢ ((SR1E3 ¢ SL [L]) pp SC25E-12)) pp SRS60E3);

B8 = U;

e e B rem s st e on s e e

B9 = SR5.6E3 ¢ I)[BO:ls4p, Bl:1s2p, B2:2p3p,

B4:3p4p, BS5:2pSp, B6:5p3p, B7:5pdp, B8:Spls] ;

Two parameters, in the expression for B4 and B7, are introduced as

_identifiers but are subsequently assigned the nmerical values:

"

C = 15E-12;

L

1

“100E3. .

This example demonstrates an analysis program designed for parameter
sensitivity studies. Parameters introduced by their identifiers are regarded -
és variables ahd the analysis program calculates network polynomials and their
partial derivatives with respect to the logarithms of each variable parameter;
that is, for each polynomial P and variable-parameter k it calculates the

polynomials

Y
= 22 .k

.
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To do this it gives a third dimension to the main array of polynomial
coefficients by adding extra layers which are simply the partial derivatives

of the first layer. An extra layer is added for each variable parameter.

‘The only ocher major modifications to the basic program involve (1) changes
to the proceddres such as "pma" and "product" which call the utility routines,
and (2) eniargement of the attributes of each "network" and "branch" to indicate

those variable parameters of which it is a function.

The complete network has 13 nbdes, 30 components, 3 controlled sources,

and polynomials of degree 12.

The program execution times were:-

for analysis (HUCC program no. U1033):

computation 25
console message printing -13
total : 38 seconds;

for evaluation of polynomials (HUCC program no. Ul095):.

computation 13
console message printing 9
total  22 seconds

When calculating polynomialslthe program was mostly input-bound.
Algebraic reduction required only 697 coefficient multiplications, but the

topological analysis of the structure graph required 27,620 multiplications.

Although the maximum number of pointer settings— the node-degree-product

“of the graph—is 324, only 205‘settihgsArésulted in nonzero polynomial products

and only 221 products were added to the closing polynomials. This saving
is due to the occurrence of zero branch polynomials as indicated by the
following sets of tags allocated by the program to the branch polynomials:

Bl: 3,3,3,3,-3,3
B2: 3,3,3,3,3,3
B4: 3,3,3,3,3

B5: 3,3,0,3,2,2
B6: 3,3,0,3,2,2
B7: 3,3,3,3,3,3
B8: 0,1,1,0, -1,1.



. e

Evaluation of the polyromials was fully output-bound. The poles and
zeros of the voltage transfer function were found and the sensitivities of the

poles to both variable parameters were calculated.

Sensitivities are calculated with the same routines used for evaluating
a ncrmal transfer function. The sensitivity of a polynomial P to a parameter k

is'obtéined by evaluating the ratio of polynomials

>P _ ahP
dInk ////P ( T 2k

b_P_.k_)
ok P/ -
If the Laplace transform is inverted prior to calculating the transient

response to an impulse of a system with this pseudo transfer function, the

| | _ 3p;
calculated residug rj of ; pole pj is the pole sensitivity rj = - 3 ﬁ?k ;4
if, instead, the transient response to a step input is requested then th

‘ 0 In pj '
residues give the sensitivities in the form T, = Efﬁfﬁg .

The péles and their sensitivities are;given in table 6.2. For example,
comparison of the imaginary parts of the dominant pole and its sensitivities
confirms that its frequency is almost invefsely proportional to the square

root of the inductance L (3.173E5 =~ 0.4 % 6.327E5).

|

POLE 'P SENSITIVITY gic) .lC SENSITIVITY g—i— L
-3;622E4 +6.327E57 - 3.343E3 +1.473E4j 4.60752 ~ +3.173E5j
_-8.256Eé +4.142E73 4.11386  +7.919E6j 4.660E3  +3.617E2j
-1.998E8 ~1.493E7 -3.195E2
-2.698E8 1.286E8 9.783E1
-1.297E8 ' 1.425E8 A -1.066E2
-2.553E9  5.161E5. 9.262E1
-8.032E9 7.331E5  4.042E1
-4.065E10 2.750E7 ~3.323E4
-4.541E10 1.967E8 7.326E4
~6.622E10 2.145E8 -2.009E4

Table 6.2. The sensitivities to parameters L and C of the natural frequencies

of the three-stage IC amplifier with its input short-circuited.
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The performance of this program might be assessed by comparisonlwith
other topological analysis programs sucﬁ as>CALAHAN [11] and NASAP [52] .
Experience with tree-gen;rating‘methods sugéests>that, even if the network for
the anﬁlifier Wag reduced to 10 nodes by the combination of branches in series
and parallel wherever possible, more processing time than this 25 seconds would
be expended in simply generating trees— without computing branch-admittance
producfs, their sums, and their derivatives. Analysis of an equivalent
‘-signal—flow graph, which would have approximately twice the number of nodes,

would be even more costly.

6.4 GENERAL CONVERTER

The circuit analysed in this example arose in an independent investigation
of prototype circﬁits for generaliséd impedance cqnverters and active
tran§formers*. Figure 6.3 shows the prototype circuit (without biasing
arrangements), its representation as a structure of 2-port networks, and its

structure graph.

All four transistors are identical. The model used for a_transiétor in
a common base configuration is shown in figure 6.4(a) and the other configurations

" are obtained from this network by interconnecting it with trivial networks as

“shown in figure 6.4(b) and (c).

The network expressions which specify the complete network B7 are:
Bl = SR25 ¢ (N[ 0,0,0,0,1,.99,0] ss TR100);

B2 = (X ¢ Bl) ps Us

B3 = (Bl c.X)‘spAU;

B4 = TR[R1] ¢ B3 ¢ sr[R2];

B5 = SR[R3) ¢ Bl ¢ TR[Rq];

B6 = Uj

B7 = D[BO:1pllp, B2:3p9p, B2:7s5s, B4:2s4s, B5:8s10s,
B6:1p2s, B6:2s3p, B6:3pds, B6:4s6p, B6:6p8s, -
B6:8s9p, B6:9pl0s, B6:10sllp, B6:1p5s, B6:5sép,

B6:6p7s, B6:7sllp] .

3*

This investigation was undertaken by Mr., R.S. Crocker, a contemporary

post-graduate student in the Department of Electrical Engineering.
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(c) Transformation from common base to common
collector C
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This example demonstrates a program designed for both numeric and symbolic

analysis.  The four parameters Rl, R2, R3 and R4, iﬁtroduéed as identifiers .
in the expressions for B4 and BY, are manibulatedbas-symbols rather than

numbers throughout the analysis.

A polynomial is represented as a list of pairs of computer words: the
first of each pair contains a floating-point numerical coefficient and the
second contains an integer whose bit pattern records the exponent of s and

‘the-exponents (0 or 1) of up to 25 symbolic parameters.

The execution times for analysis (HUCC program no. Ul068) were:

data input énd algebraic reduction 5

j topological analysis 46
, ~lineprinter output » ] 23
console message printingv 4.

totél . 78 seconds. -

Algebraic: reduction required 33 multiplications and the topological
analysis required a further 957 multiplications; The following tags were .

‘assigned to the branch polynomials:

B2(3p9p) : 0,3,0,3,3,0
B2(755s) 3 '3,0,3,0,3,0
B4: 3,3,3,3,2,3
B5: -3,3,3,3,3,0
B6(all

branches): 0,1,1,0,-1,1.

The structure graph has a node—degrée product of 177147, Ibut, due to the

‘large number of zero branch polynomials, only 178 polynomial products were

added to the closing polynomials.

To simplify the printing of polynomials and to make the presentation of
results lese cumbersome the program associates every symbolic parameter with

a unique letter of the alphabet. For this network the program printed the



o A s e dmrs = b 2

: . N H . . - ... Y

6-11

'dictionary-
"A = 1/Rl1
B = R2
C = R3
D = 1/R4"

The inversion of parameters Rl and R4 indicates that in the case of resistors

introduced in the shunt position the program regards the conductance rather

than the resistance as the relevant parameter.  When printing polynomials the
program is designed to group together the terms with a common exponent of s
but in this case the polynomials are independent of frequency. The lineprinter

output is shown in figure 6.5.

The results show that if the four variable resistances have values within
an order of magnitude of 1000 ohms the six poiynomials of the complete network

can be roughly approximated by‘

Pl: 1 - CD =1 - R3/R4
P2:_ 0
P3:. 0
P4: 1 - AB =1 - R2/R1

P5: (1 - AB).(1 - CB)

(1 - R2/R1).(1 - R3/R4)

P6: "1 |
-They confirm that with appropriate selections of parameters the.network may
be caused to behave either as a transformer, as any 6ne of various types of

negative-impedance converter, or as either of two types of controlled source.

. 6.5 POSITION CONTROL SYSTEM

The position control system of figure 6.6 is represented for analysis
in two ways: as a signal-flow graph and as a 2-port network. _Comparison of

the two illustrates the ;onvenience of the new approach.

The signal-flow graph and the system equations it represents are shown
in figure 6.7  Although pedantic, the task of establishing the equations is
‘sepérated from the task of solving them in order to clarify the'procedure. A
graph of this complexity could be reduced on inspection by successively eliminat-

ing nodes of degree 2 and reducing the inner lcops, but, as such a process is
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equivalent to algebraic reduction, it is left to the computer program.

The signal-flow graph is represented by a system of voltage amplifiers
with the structure shown in figure 6.8. Each amplifier block corresponds
to a path segment of the signal-flow graph and is assigned polynomials with

one of the following expressions:

Bl = A[0,0.l,2*3.l4159/360]; /*POTENTIOMETER AND FIRST AMPLIFIER:/ -
B2 = A[1,0 2E4,5 50] 5 /*SECOND AMPLIFIER AND GENERATOR:/

B3 = A[0,.812,48.8]; /*MOTOR TORQUE*/

Bg = A0,-1.25,1]; /*MOTOR BACK E.M.F.%/

B7 = A[1,-884 0,0 1] ; - /<MOTOR INERTIA%x/

B4 = A[l,o 50,1 .00143]; /*GEAR TORQUE AND LOAD:/
B6 = A[0,50,1] ; /*GEAR SPEED/

B5 = A[l,o 1,1 o]; | /#*SPEED INTEGRATOR:/

B9 = A[0,-.01,2%3.14159/60); /*TACHOMETERs/

B10 = Af0,-1,1] ; /*POSITION FEEDBACK:/

Part of the complete structure has been aﬁalysed topologically but the
Vremainder-can be analysed by algebraic reduction. 'However, before blocks
B9 and B10 can.be combined in series-parallel with other subnetworks, their
'ports must be interchanged to reverse the branch directions shownrin the
structuredgraph. Because of an implied sign_convenfion applying to borts
connected in series (the sum of second-port voltages equals the sum of first-
port voltages) an interchange of ports must be accompanied by an interchange
- of terminals of‘anf port which is connected in.series. : Crossover networks

are therefore intfoduced, and the complete structure is described by the expression
B1l = (Bl ¢ ((B2 ¢ D[BO:1s4p, B3:1s2s, B4:2sdp,
‘B8:3pls, B7:3p2s, B6:4p3p|) sp (X c rBY))

¢ B5) sp (X ¢ rBl0o).

In the alternative representation each component of the system is modelled

with an electrical 2-port device. Shaft torques and speeds are represented
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by voltages and currents respectively, shaft inertis is represented by
inductance, viscous friction by resistance, and the gear train by an ideal
transformer. The resulting network and its structure graph is shown in
figure 6.9. It could be specified with only one netﬁork ekpression but in
order to clarify’the specification of  the major components they are here

Vassigned to separate blocks:

Bl =‘A[o;o.1,2*3.14159/36o]; | , /*POTENTIOMETER:/

B2 = Al0,1,1]; | | ' /*FIRST AMPLIFIEé*/
B3 = A[0,100,1]; | ~/*SECOND AM?L;FIER*/
B4 = SR50 c SL5 é N[o,o,o,l,o,zoo,o] c SR24.4; _ /*GENERATOR:/

BS = SR24.4 ¢ N[0,0,.812¥1.25,1,0,.812-1.25] c SL8E-4; /*MOTORs/

B6 = F50; - : /*GEAR TRAIN:/
B7 = SL1 ¢ SR.00143 ¢ N[1,0 0,0 0,1 0,0 0,0 1,0 0]; /%LOADs /
'B8 = N[0,0,0,2%3.14159/60,0,0,-.01] ; /+*TACHOMETER»/ .

‘All the parameters of the system and the factors for conversion of units
take their place direcfly in this specification without any preliminary

processing.

The complete system is specified by the expression

B9 = (Bl ¢ B2 ¢ ({B3 ¢ B4 ¢ B5 ¢ B6) ss B8) ¢ B7) sp U.

6.6. CONCLUSION

The four examples demonstrate the suitability of the general analysis
method in a wilde variety of situations. . At one éxtreme it provides an
extremely efficient analysis of the larges£_filters and, at the other, an
efficient fﬁlly-symbolic anélygis of -small, strongly-interconnected, active
circdits. The efficiency of anal?sis is due largely to the diakbpﬁic
approach inherént in‘algebraic reduction, while versatilify is ensured by
the possible introduction of a topological analysis at any stage in an

algebraic reduction.
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EPILOGUE

‘ General Conclusions

The place of this work in engineering thecry and practice is in the
gulf betwééb the broad and complex topological theory of electrical networks,
and ifs practical implementation in everyday tools for circuit analysis and
design; To define it further, it is concerned only with linear time-invariant
networks, and is largely independent of the state-variable approach to this

subject.

The work as a whole is built on quite simple conecepts. The topological
theory of part I is developed from an analytical process which itself is
developed from the elementary concept of a tree. Network gfaphs constructed

entirely of simple resistive branches, however, are necessarily reciprocal,

and some refinement  is necessary to include non-reciprocal netwdrks within
the scope of the theory. This is achieved by the,conceétual construction of
network graphs with unistors-— basic branch elements introduced by Mason,
It is remarkable that, notwithstanding the initial importance of trees, in
the topological analysis algorithm Qf chapter 5 the concept of a tree has no

special significance; rather, it is the concept of a loop thaf plays the

" dominant role.

Algebraic reduction is another simple but useful concept that is related
to the.series—parallei combination of resistors—although, within the context

of 2-port networks, it may be recognised as the arithmetic combination of

" pairs of like network matrices, composed of either the A,B,C,D parameters or

any set of‘hybr;d parameters. 'Thé concept is developed in two stages:‘ first,
with the adoption of a set of six.polynomials to characterise the éenéral
2-port network; 'and second, with a relationship between network polynomials
and topologicél quantities tﬁat'aliows topblogicai analysis ﬁéthdds td be

incorporated.

As circdits and systems become more complex, and Specificétions call for
finer tolerances, the digitel computer will play an increasingly important
role as an analytical tool. Progress in this field 1is nbt deﬁéndent simply
on the development of suitable algorithms; but on the development of better
1anguagés for communication at twoAlevels: between the circuit designer and

the programmed computer,. and between the zlgorithm writer and the computer.
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Analysis and design programs must become more powerful, versatile and
easier to use; whilg to facilitate the development.of these ﬁrograms, some
well-structured, scientifically-oriented language such as Algol should be
extended tq’handlefthe manipulation and analysis of netwbrks in a more

natural way. It is anticipated, therefore, that the most significant advances

. in this direction will be the result of collaboration between the design

engineer, the network theorist, and the computer scientist.

To conclude the thesis we shall explore some possible, future applications

and developments.

Experience with the several versions of the analysis program has

demonstratea the viability of a single program incorporating all the facilities
discussed in pait I1. Transformation of polynomial coefficienfs at any scaled
frequency would be optional, and pblynomials would be represented in any of
four ways: (1) a fully symbolié representation, with provisidn for pérameters
to be introduced either nunerically or symbolically; (2) by numeribal poly-
nomial coefficients and their partial derivatives with respect to nomiﬁated
parameters; (3) by numerical polynomial coefficients only; and (4) by their

complex values at a nominated frequency. Routines would be included to convert

- from one form of polynomial representation to another, evaluate polynomials,

display frequency response, search for roots, invert Laplace transforms, and

‘display transient response. Such a program would consolidate the practical

results‘of this work in one powerful analYtical tool.

The most promising development would be an extension of Algol to include
the concept.of a%2—port network as a type of variable. Networkivariables, to
which network expressions could be assigned, might be declared with a statement
such as |

"network.block 1, BS, pfeamplifier, fiiter;".

The syntax for netwbrkbexpressions defined in chapter 5 could be implemented
with few changeé; specifically, all blocks would become ﬂetwork variables,

and parameters would become arithmetic expressions. Basic networks could be

regarded as standard network procedures, and the opportunity would exist to

define whatever basic networks were éppropriate-to a particular application,

as in this example for crystal filter analysis:
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"network procedure series crystal (frequency,ACl, CO, resistance);_
value frequénoy, Cl, CO, resistance;
real frequency, Cl, CO, resistance;
begin real omegaj;
omega:= 6.283185 * frequency;
series crystal:= (SL(1.0/(omega * omega f cl))

¢ SC(C1l) ¢ SR(resistance)) pp SC(CO)

end;".

If this approach is taken, other.facilities must also be provided by the

language to make it workable. Thé algebra for networks should be accompaniéd

by an algebra for polynomials—-admitting the polynomial operations of addition

. and nultiplication (but not division) and admitting parameters with either a

literal or a numerical value. Procedures would be needed to differentiate
polynomials with respect toc symbolic parameters, to subétitute real numbers for -
symbolic parameters, and to substifute complex numbers for the symbolic.frequency~i
parameter. The concept of a l-port network, or component, as a type of variable )
would aiso be useful, and some facility must be provided for the specification
of branch-iists of'structuré graphs. Although it is not the objective of this
present work to formulate the most desirable sfructure for an extended language, ‘
it 1is cléar that the grammar for network expressions is well suited to such a

language and that the other necessary facilifies are well within the current

state of the compiling art.

The association of a versatile analysis capability with the full language
facilities of Algol would greatly assist the development of more sophisticated .

programs for circuit analysis and design. Two of the most important applications

will be mentioned.

In the field of statistical design the most complex relationships between
network parameters——-éé occurs, for example, with changes in fabrication~process

parameters and with cﬂénges in operating temperature— could be expressed

succinctly'with arithmetic expressions and procedure calls in the place of

network parameters. Such versatility is essential for realistic Monte Carlo

simulations of circuits operating in various environments. In a program for

Monte Carlo analysis the calculation of complete network polynomials could be

achieved by a single a;sigmnént statement wiihin a controlled loop, and there woulc

y
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therefore, be no difficulty in interfacing the netwofk analysis task with

the remainder of the application program.

In developing iterative design procgrams, the necessary links between

the analysis process and suitable library procedures for function

minimisation could be achieved with just a few program statements. It would

also. be a simple matter to experiment with the error function to be minimised,
and so realise circuits that were optimised according to various performance

criteria.

If embodied in a compiler for the new language, the methods of algebraic

reduction and topological analysis would be transﬁarent to users of the
ianguage. An analysis process could be incorporated with only a few program
sta£ements, rather than the hundreds of statements currently required to
specify the relevant algorithms, and 1t could be interwoven with other program
statements with greater flexibility than is possible with calls to Algol

procedures or Fortran subroutines.

With regard to the theory part.of the thesis, it is believed that further

development of the analysis algorithm introdhction in chapter 1 cbuld lead to

_analysis methods with greater power than those of chapter 5. The admission of

networks with up to three ports might require more polynomials to characterise
subnetworks but the amount of polynomial manipulation would be significantly

reduced. For instance; all the networks discussed in chapter 6 could be

"constructed by combihingAS—port networks two st a time, thus avoiding a

topological analysis of their structures.

Research is needed to develop'an algebra for 3-port networks, and a

satisfactory algorithm for the topological analysis of structures of 3-port

networks.
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PROCEEDINGS LETTERS

Growing the Trees of a Graph

Abstract— An algorithm is described which generates without duplica-
tion and with appropriate sign all the trees of a graph containing directed
elements. A path-finding algorithm is extended in an application of Mason’s
method of expansion of paths.

INTRODUCTION

An algorithm for finding, without duplication, all the trees of a graph

forms the heart of computer programs to analyze linear networks by top-
ological methods. This letter presents an algorithm which generates all the
trees of a graph one at a time and without duplication, and determines the
signs of trees for graphs containing directed elements. The three types of
elements allowed in the graph are the directed unistor and gyristor!
[denoted by the black arrow in the example shown in Fig. I(a)} and the
undirected resistor. The sign of a tree will normally be positive except that
the sign will be changed for every gyristor which in the tree is directed away
from a designated ground node and any tree containing a unistor which
is directed away from the ground node will be neglected. The algorithm
is based on Mason’s method of expansion of paths' although similarities
will be noticed in many other methods of expanding node determinants,
notably that of T'sai.? Paths are generated by a method similar to that re-
cently published by Kroft for finding all the paths through a maze.* One
reason for presenting what may be another version of existing tree-
finding algorithms is to show that it requires only a small extension, in
the bookkeeping, of a path-finding algorithm.

CONSTRUCTION

The algorithm requires that the graph be specified by lists of the
branches which are connected at each node, with the exception of both
unistor branches which are not entered in the lists of the nodes to which
they are directed and gyristor branches which are entered negatively in
the lists of the nodes to which they are directed [as shown in Fig. 1(c)].

To visualize the action of the algorithm, pointers are associated with
each node except the ground node and these may be set in the direction
of any branchin the list of their associated nodes. The key to the algorithm
lies in the observation that every tree corresponds to a unique combina-
tion of pointer settings that is determined by tracing, and setting pointers,
along the unique paths from every node to the ground node. For example,
the combination of pointer settings which corresponds to the tree CGIH
of Fig. I(a) is shown in Fig. 1(b). It follows that every tree will be formed
once and once only by generating all the possible combinations of pointer
settings. If there are n nodes in the graph a combination of pointer settings
will determine a set of n— | or fewer branches which may or may not be a
tree, but the number of combinations to be tested is less than all the combi-
nations of n—1 branches.

To ensure the generation of all combinations of pointer settings which
are likely to determine trees, the pointers are set one at a time in such a
way that each pointer is successively directed to all the branches in its
node branch list. A pointer is reset either when it completes the formation
of a loop or tree, or when the following pointer begins a new cycle through
its branch list. The detection of loops is simplified by setting pointers in
the order indicated by their direction, i.e., following the formation of
paths. After each pointer is set or reset a list, which is headed by the ground
node and contains the nodes ‘whose pointers have been set,’is updated
and searched to determine whether the node indicated by the pointer is
included. The seafch is made in two parts: 1) the nodes in the path cur-
rently being traced-—the ungrounded nodes—are scanned and if the node
is found because a loop is about to be formed, then the last pointer is re-
set, and 2) the remaining nodes in the list are scanned and if the node is
found because the path has terminated at a ground node then all the nodes
in the list are considered to be grounded and the next pointer to be set may
be chosen from any of the ungrounded nodes. To continue the generation

Manuscript received February 13, 1968.

' S. J. Mason, “Topological analysis of linear nonreciprocal networks,” Proc. IRE,
vol. 45, pp. 829-838, June 1957.

2 W.-K. Chen, ‘*Topological network analysis by algebraic methods.” Proc. IEE
(Correspondence) (London), vol. 114, pp. 86-88, January 1967. )

3 D. Kroft, “All paths through a maze,” Proc. IEEE (Letters), vol. 55, pp. 88-90,
January 1967.
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Fig. 1. (a) Graph. (b) Combination of pointer settings. (¢) Node branch lists.

. (d) Branch node sums. !

of a path after a pointer has been set towards a new branch, the node at the
other end of this branch must be determined. The search that would be
required if the graph were specified only by the node branch lists is avoided
by calculating and storing the sums of the node numbers of each branch
when the node branch lists are formed [Fig. 1(d)]. The number of the next
node will therefore be obtained by subtracting the number of the last
node from the node sum of the new branch.

BOOKKEEPING -

The flow chart shown in Fig. 2 introduces only sufficient variables and
arrays to describe the essential action of the algorithm. Additional vari-
ables are required to hold the current values of the length of the node list,
the sign of the branch product, and the number of grounded nodes to
determine the-division between the grounded and ungrounded nodes in the
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Set up NBL ond BNS,
head NL with the ground
node.

Search for on ungrounded
node to become n whose
pointer 15 to start a

new path.
I
Iy
Add n to NL,
set NBP[n] to one.
4

Put b= branch in NBL{n]
as indicated by NBP{a).

?

Is b negative

Put a=z nextn,

N
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L Ground all the I
+ Lnodes in NU. 7

Is nextn omonq the
qrounded nodes in NL?

Chonge the sign of both b
and the tree braonch product.

Is nextn among the
ungrounded nodes in
CNL?

YES

Does NL conigin
oll the nodes 7

Add b to TBL.

Print TBL,

Increment NBP[n].

Is NBP[n]> D[n]?
bronch change

Delete n from NL,
delete the lgst branch
N from TBL,
put n = last node in NL,
- . return the grounded
a status of the nodes and
the sign of the branch
product to the condition
existing when o was
¢ added to NL.

Is there- only one
node in NL?

delete b from TBL.

NBL([n} is the branch list of node n.

BNS[b] is the sum of the termingting nodes
of branch b.

NL is the tist of nodes whose pointers
have been set.

NBP[n]) is the position of the branch in
NBL(n] to which the pointer
of node n i directed.

D{n] is the degree of node =n .

TBL is the tree branch list.

Fig. 2. Flow chart of tree-generating algor'i!hm.

node list. To correct these values after a backtracking step in which a node
is deleted from the node list, each successive value of the last two variables
must be stored in arrays. For the purpose of choosing an ungrounded node
to start a new path a further array is required to indicate which nodes are
ungrounded. A run through the flow chart with the example shown in
Fig. 1 should require 76 loop tests and 47 branch changes while finding the
40 trees in the following order:

CGIH CGIF -CGIE CGIB CEHI CEFI CEFG CEBI CEBG
CDHI CDHG CDFI CDFG -CDEI -CDEG CDBI CDBG -CAHI
-CAHG -CAFI -CAFG .CAElI CAEG -CABI -CABG AGIH
AGIF -AGIE AGIB AEHI AEFI AEFG ADHI ADHG ADFI
ADFG -ADEI -ADEG ADBI ADBG.

PERFORMANCE

The algo?ithm has been written in ALGOL and run on an Elliott 503
computer with the graph of a ladder filter containing 20 branches and 10
nodes, an example that was used by MacWilliams and Hobbs to evaluate

their tree-finding algorithms.*-* The actual ground terminal of the filter
was chosen as the ground node for the algorithm because it had the largest
degree. An upper bound on the number of trees is provided by the number
of combinations of 9 branches, 167 960, and—more appropriately for this
algorithm—by the number of combinations of pointer settings, i.e., the
product of the degrees of the ungrounded vertices, 16 384. The algorithm
required 8692 loop tests and 6027 branch changes while finding the 4756
trees. These figures indicate similarities between this algorithm and that

. of Hobbs which tested 16 384 sets of branches and that of MacWilliams

which examined 6028 sets of branches. .

A frequent attempt at the formation of a loop will occur when a pointer
is set to reverse the direction of a path. Therefore, by commencing the
node search with the second-last node to be added to the node list and

*J. MacWilliams, “Topological network analysis as a computer program,” IRE
Trans. Circuit Theory (Correspondence), vol. CT-S, pp. 228-229, September 1958.

*E. W. Hobbs and F. J. MacWilliams, ““Topological network analysis as a computer
program,” IRE Trans. Circuit Theory (Correspondence), vol. CT-6, pp. 135-136, March
1959.
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scanning to the top of the list many loop tests will terminate after only one
comparison. With careful attention to such programming details and by
keeping the array accessing to a minimum the 4756 trees of the example
were found in 29 seconds. This can be compared with times reported by
MacWilliams and Hobbs that were of the order of five minutes on an IBM
704 computer.
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