
A 

TOPOLOGICAL APPROACH 

TO 

LINEAR NETWORK ANALYSIS 

Thesis Submitted in Fulfilment of the Requirements 

for the Degree of 

Doctor of Philosophy 

by 

k 
R. A. Brownell, B.Sc., B.E. 

/go hewel° A Ia....) 

Department of Electrical Engineering 

University of Tasmania 

Hobart 

July, 1973 

.00..i.v- 	1 GI 7 it 



Statement of Originality. 

This thesis contains no material which 

has been submitted for a degree of diploma at 

any university. 

To the best of the candidate's knowledge 

and belief, this thesis contains no copy or 

paraphrase of material previously published 

or written by another person. 

(R.A. Brownell) 

July, 1973. 

I. 



Acknowledgements 

The author is indebted for advice and encouragement to the 

staff of the Electrical Engineering Department and, in particular, 

to his supervisor, Mr. John H. Brodie. 

The author is also appreciative of the interest taken in his 

work by his fellow students, including those from other disciplines, 

and of the criticism of the computer programs and analysis techniques 

volunteered by the numerous users within and without the University; 

all have influenced the shape of this work. 

Grateful acknowledgement is made to General Motors-Holden 

Limited for their material support with a Post-Graduate Research 

Fellowship for the period from March, 1965 to March, 1968. The 

author was also supported with a University Research Scholarship 

from April to September, 1968. 

His present employer, Amalgamated Wireless (Australasia) 

Limited, assisted with the reproduction of the thesis. 



(i) 

CONTENTS 

Statement of Originality 

Acknowledgements 

Contents 

Figures 

Tables 

Prologue - General Introduction and Summary 

1 

1.1 

1.2 

1.3 

I 	THEORY Page 

1.1 

1.2 

1.2 
1.6 

1.8 

1.8 
1.12 
1.13 

TOPOLOGICAL ANALYSIS OF STRUCTURES OF MULTIPORT NETWORKS 

Introduction 

Network Characterisation 

Network Polynomials 
Structures of Multiport Networks 

The Analysis Process 

Calculation of Natural Polynomials 
Calculation of High-Order Polynomials 
The Analysis Algorithm 

1.4 Application of the Analysis Process 1.14 

General Structures 1.14 
Structures of 2-port Networks 1.15 

1.5 Conclusion 1.16 

2 POLYNOMIALS AND NETWORK BEHAVIOUR 

2.1 Introduction 2.1 

2.2 Identical Networks in Parallel 2.1 

2.3 Polynomials of Equivalent Networks 2.7 

2.4 Polynomials and the Short-Circuit - Admittance Matrix 2.12 

2.5 The Unit Gyrator 2.13 

2.6 Topological Formulae 2.15 

2.7 Polynomial Identities 2.17 

2.8 Conclusion 2.18 

3 ALTERNATIVE ANALYSIS METHODS 

3.1 Introduction 3.1 

3.2. Inversion of Network Matrices 3.2 

3.3 Addition of Network Matrices 3.4 

3.4 Conclusion 3.7 



4 

CONTENTS 

Page 

4.1 

4.2 

4.3 

4.6 

4.8 

II 	PRACTICE 

TOPOLOGICAL ANALYSIS OF 2-PORT NETWORKS 

	

4.1 	Introduction 

	

4.2 	Analysis Methods 

	

..4.3 	Calculation of Network Functions 

	

4.4 	Network Tearing 

	

4.5 	Structure Graphs 

4.6 	-Algebraic Reduction .  4.10 

4.7 	Polynomials of 2-port Networks 4.12 

4.8 	Analysis of 2-port Network Structures 4.13 

4.9 	Implementing the Analysis Method 4.16 

4.10 	Numerical Accuracy 4.19 

4.11 	Polynomial Representation 4.20 

i 4.12 	Conclusion 4.21 

5 ALGORITHMS FOR COMPUTER PROGRAMS 

5.1 	Introduction 5.1 

5.2 	Programming Language 5.2 

5.3 	Data Structure 5.5 

5.4 	Utility Routines 5.7 

5.5 	Algebraic Reduction 5.9 

Syntax of Network Expressions 5.10 
Semantics of Network Expressions 5.13 

• 	 Evaluation of Network Expressions 5.14 

5.6 	Topological Analysis 5:17 

Interface with the Algorithm 5.17 
Action of the Algorithm 5.19 
Application of the Algorithm 5.25, 

5.7 	Conclusion 5.28 

6 DEMONSTRATION OF COMPUTER PROGRAMS 

6.1 	Introduction 6.1 

6.2 	Large Passive Filter 6.3 

6.3 	Three-Stage IC Amplifier 6.6 

6.4 	General Converter 6.9 

6.5 	Position Control System 6.11 

6.6 	Conclusion • 6.13 

References 

Epilogue - General Conclusions 

Appendix  - Reprint of paper 

"Growing the Trees of a Graph" 



FIGURES 

1.1 Polynomials of a network A, and their representation 

1.2 - Equivalent interconnection of ports 

1.3 A structure of three constituent networks 

2.1 Equivalent star and mesh networks A and B 

2.2 Cascade connection of network A with a unit gyrator at port C 

4.1. Circuit diagram of two-stage transistor amplifier 

4.2 Network diagram highlighting small-signal behaviour  

4.3 Complete network as a structure of 2-port networks 

4.4 Sign convention of voltages and currents of a 2-port network 

4.5 Structure graph 

4.6 Complete network as an algebraically reduced structure 

4.7 Algebraically reduced structure graph 

4.8 Nine pointer settings for a paralleled pair of 2-port networks 
A and B. 

5.1 Typical arrangement of polynomials in the equivalent two-
dimensional array. Arithmetic expressions 
define the subscripts of corresponding locations 
in the actual array 

5.2 Algorithm for evaluation of network expressions 

5.3 Algorithm for topological analysis 

5.4 An equivalent 2-port network representing the general branch 

of a network graph 
5.5 Signal-flow graph 

5.6 Electrical analogue of signal-flow graph 

5.7 Structure graph corresponding to signal-flow graph 

6.1 Large passive filter and its subnetworks 

6.2 Three-stage IC amplifier: (a) circuit diagram; 
(b) transistor models; (c) structure of 
2-port networks; (d) structure graph 

6.3 General converter : (a) prototype circuit; (b) structure of 
2-port networks; (d) structure graph 

6.4 (a) Equivalent circuit for transistor; 
(b) Transformation from common base to common emitter; 
(c) Transformation from common base to common collector 

6.5 Lineprinter output for analysis of general converter 

6.6 Position control system 

6.7 Position control system: (a) system equations; (b) signal-
flow graph 

6.8 - Structure graph corresponding to signal-flow graph 

6.9 (a) Equivalent network of position control system 
(b) Structure graph of equivalent network 

Page 

1.4 

1.7 

1.9 

2.7 

2.14 

4.8 

4.8 

4.8 

4.8 

4.9 

4.11 

4.11 

4.15 

• 	 5.6 

5.14 

5.18 

5.25 
5.27 

5.27 

5.27 

6.3 

6.6 

6.9 

6.9 

6.11 

6.11 

6.11 

6.12 

6.13 



TABLES 

1.1 The number of mth-order linkage polynomials of a n-port network 

4.1 Basic 2-port networks and their polynomials 

. .4.2 Calculated frequency response of a filter complex containing. 
50 reactive components, illustrating the effect of a 
frequency transformation 

6.1 Results of two analyses of the large passive filter 

6.2 The sensitivities to parameters L and C . of the natural frequencies 
of the three-stage IC amplifier with its input short-
circuited. 

1 

1 



PROLOGUE 

;General Introduction and Summary  

The work reported in this thesis was motivated by a desire to 

develop better practical methods for linear network analysis. The 

practical aspects of existing methods, together with the new methods 

arlsing from this work, are discussed in part II of the thesis. 

Part I is devoted to a theoretical foundation for the new methods. 

The analysis method centres on network polynomials—their 

relationship with network behaviour and with each other. Until recently 

there has been no satisfactory formal treatment of network polynomials; 

they tend to be regarded as numerical conveniences arising in various 

analysis methods. For example, ratios of polynomials may express network 

'transfer functions; they characterise linear dynamic systems; and their 

, roots determine the natural frequencies of networks. In particular, when 

we analyse a network by inverting the nodal admittance matrix whose 

elements have been expressed as ratios of polynomials, the polynomials 

proliferate. It is from this background that most of the theory described 

here was developed. 

In 1968, Dr. D.B. Pike, who had been working independently, submitted 

his Ph.D. thesis on "Linkage Polynomials" to the University of Sydney. 

That work, which this writer considers to be definitive in its treatment of 

many aspects of the subject, was motivated by problems in the realisation 

of multiport networks, and defines the polynomials by their occurrence as 

minor determinants of hybrid matrices of multiport networks. This 

definition relates them directly to network behaviour, and their relationships 

with each other are obtained from Laplace expansions of minor determinants. 

The most important contribution of Pike's thesis is concerned with the 

interconnection of two multiport networks; it enunciates the relationships 

. between the polynomials of the complete network and the polynomials of its 

two constituent networks. In that work the relationships are obtained with 

Laplace expansions of the minor determinants of the sum of the two appropriate 

hybrid matrices of the constituent networks. 
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It is a different enunciation of these same relationships which 

is Considered ta be the most significant contribution of part I of 

this thesis. But in this work the subject of network polynomials is 

approached from an altogether different point of view. Both the point 

of view and the alternative statement of the main results have an 

important bearing on the practical implementation of the analysis methods, 

and it is the intended application of the theory which dictates the form 

of its presentation in part I. 

The evolution of this approach may be traced from the analysis of 

networks by the solution of simultaneous linear equations. The 

conventional elimination techniques are satisfactorily proficient in 

solving equations with numerical coefficients but are quite clumsy when 

handling coefficients represented symbolically. In the latter case, 

however, application of Cramer's rule leads to a suitable expression of 

the solution in the form of ratios of determinants, and it is left to the 

numerical analyst to find suitable means for expanding the appropriate 

determinants. 

For large determinants containing symbolic entries this task is 

. cumbersome, and, for determinants derived from physical structures such 

as electrical networks, concludes with the cancellation of large numbers 

of terms. It.is to this task that the network topologist, with a 

different point of view of the analysis problem, makes a significant 

contribution. Each term in the expansion is related to a unique set of 

branches of the network graph and its value is the product of the 

admittances of those branches. The sets of branches associated with a 

particular determinant constitute k-trees *  of the network graph, and the 

analysis task is therefore one of generating, without duplication, all 

the k-trees of a graph. Unfortunately, this approach, even with the aid 

of a digital computer, is impractical for moderately-sized networks because 

of the prohibitively large numbers of trees associated with them. 

*A k-tree of a graph is a tree of a subgraph which, although it 
includes all the nodes of the graph, is in k separate parts. 
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If large networks are to be analysed with topological methods, 

some form of network partitioning—otherwise known as network tearing, 

or diakoptics —must be employed. For reasons discussed in chapter 1 

the aporoach taken throughout this work is to tear networks apart only 

at internal ports. It is then convenient to view polynomials as 

topological quantities (sums of branch-admittance products) of multiport 

networks, and it is the aim of chapter 1 to present an algorithm for 

combining the polynomials of constituent multiport networks to form the 

'polynomials of any structure of those multiport networks. 

This algorithm permits the analysis of networks in terms of 

topological quantities. It is the purpose of chapter 2 to relate the 

topological quantities, the polynomials, to network behaviour. 

Consideration is first given to two identical networks in parallel, 

and comparison of the complete network polynomials obtained by the 

analysis process with those deduced from fundamental principles embodied 

in lemma 2.1 proves theorem 2.1. This major theorem relates all the 

linkage polynomials of an n-port network to an n x n matrix of rational 

polynomials, which is proved later, as theorem 2.3, to be the short-

circuit admittance matrix of the network. 

The second major theorem, theorem 2.2, establishes the relevance of 

the topological quantities by asserting their uniqueness in characterising 

networks. Proof of this theorem is centered on a study of a star network 

and its equivalent mesh network which has no internal nodes. The 

equations for the latter network, when generalised and reinforced by the 

two major theorems, also prove theorem 2.3 and lead directly to the 

classical topological formulae which express the various driving point 

and transfer functions of a network in terms of topological quantities. 

Chapter 8 links the topological analysis process with methods of 

analysis based on matrix manipulation. It is shown that the application 

of only two generalised polynomial identities is sufficient to calculate 

the elements of all hybrid matrices from the given elements of any one 

hybrid matrix. They therefore provide a means of inverting any hybrid 

network matrix, a task which is central to many analysis methods, and 



confirm the method adopted by Downs[19] for directly inverting a matrix 

of rational polynomials. Finally, the analysis of any multiport network 

. structure by the process of chapter 1 is interpreted as the Laplace 

expansion of minor determinants of a matrix formed from the sum of 

appropriate hybrid matrices representing the individual constituent 

networks. The main theoretical development of the thesis thus concludes 

with an indication that the new analysis process could be derived solely 

from a matrix point of view, instead,of from the topological point of view. 

Chapter 4  opens part II of the thesis with a survey of existing 

methods of linear network analysis and an introduction to a new practical 

approach which is confined to structures composed only of 2-port networks. 

An example illustrates the method of representing electronic circuits and 

serves to introduce two important concepts to be developed later in the 

thesis: structure graphs and algebraic reduction. A simpler notation for 

the polynomials of 2-port networks is introduced, and the general topological 

analysis algorithm of chapter 1 is recast in a form better suited to the 

analysis of structure graphs. Practical aspects of the analysis methods 

are discussed, and particular attention is given to the problem of numerical 

accuracy and to schemes for representing polynomials. 

The course of the practical work has been largely determined by progress 

with computer programs design to prove the logic of the analysis algorithms 

and to demonstrate their overall effectiveness as analytical tools. 

Chapter 5  presents the results of this work in the form of two major 

algorithms: one for algebraic reduction, and the other for topological 

analysis of structure graphs; they are expressed in a high-level computer 

language and cover the essential aspects of all programs that implement the 

analysis method. The chapter also includes a rigorous definition of a 

language for describing networks and controlling the analysis process. It 

elaborates the concept of a network algebra and is designed to accept circuit 

models and network parameters in a variety of alternative forms. 

Chapter  6 assesses the analysis method in a variety of situations. 

Program data and execution times are given for the frequency-response 

tabulation of a large passive filter, for a sensitivity investigation of a 
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multistage amplifier, and for a symbolic analysis of an impedance-

converter circuit. A comparison is also made of two approaches to 

the analysis of a control system: it is represented for analysis both 

as a signal-flow graph and, more naturally, as a structure of 2-port 

networks. 

Topological analysis of large networks is repressed by the curse of 

large numbers - not only large numbers of trees in a particular set) 

but large numbers of sets of trees. Responsible for this state of 

affairs are those aspects of the analysis method which make it attractive: 

its thoroughness, its flexibility, and its generality. Throughout the 

thesis, in its progress toward a tractable analysis method, disciplines 

and restrictions have been imposed. It is, perhaps, a signal achievement 

that the thesis is able to conclude with reports of practical computer 

programs possessing unique and powerful analytical facilities. 



CHAPTER 1- 

Ii 

TOPOLOGICAL ANALYSIS OF STRUCTURES OF MULTIPORT NETWORKS 

1.1 .INTRODUCTION 

Broadly' speaking, network analysis is a process whereby the behaviour 

of a network as a whole is ascertained from the known behavioural characteristics 

of its parts. 	For a network composed of linear, time-invariant, 2-terminal 

devices, *powerful methods of analysis can be derived from a study of the 

topology of the network; trees and k-trees of the network graph are enumerated, 

products of the branch admittances are formed for each tree, and the products 

are. surrmed over all trees in particular sets. 	If the branch admittances are 

represented by their Laplace transforms the resulting topological quantities 

have the form of polynomials in the Laplace operator(s), and it can be shown 

that ratios of the polynomials determine the various network functions such 

as *transfer functions and driving-point immittances. 	Thus the behaviour of 	the 

network as a whole is directly related to the admittances of the individual 

network elements. 

As powerful as these analysis methods are, they leave much to be desired. 

Of prime concern is the large number Of trees, associated with only moderately-

sized networks [25, 32] , which are costly to enumerate and evaluate. 	Some 

attempts have been made to alleviate this problem with various forms of 

network partitioning, and thereby directly evaluating partial sums of admittance 

products without generating individual k-trees [21; 37] .  But as yet there 

is no .  report of these methods being extended to cover active networks, or of 

their application in computer programs. 	Of secondary concern are the 

difficulties in handling mutual inductances, active devices such as controlled 

sources,, degenerate devices such as ideal transformers and operational 

amplifiers, and Other'2-port devices. 	Procedures have been developed to 

handle most of these devices [13, 14, 34, 36, 48] but at the expense of 

increased complexity and effort in the analysis process. 	The modelling of 

transformers in a manner which preserves the isolation between their ports is 

particularly cumbersome [6] . 
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Any procedure for tearing networks would afford an opportunity to 

avoid the generation of large numbers of trees. 	But by imposing the following 

discipline on the manner in which networks may be torn, the difficulty in 

modelling the isolating character of transformers is also avoided. 	A network 

port is defined in the conventional way; that is, a pair of terminals with 

which is associated one voltage, measured between the terminals, and one 

current, which leaves the network at one terminal and re-enters through the 

other terminal. 	It is then stipulated that networks may only be interconnected 

at their ports. 	Because an appropriate method for interconnecting networks 

must assume that the currents in the terminals are equal and opposite, the 

tearing of a network is therefore valid only if the behaviour of the network 

is not altered by the introduction of isolating transformers at the inter- 

" connections between the subnetworks. The isolating character of transformers 

and mutually coupled coils is thereby taken into account automatically by the 

assumed nature of the interconnections. 

With the above stipulation, the tearing procedure requires that a network 

be represented as a structure of multiport networks, and it is for this reason 

that attention is focused on the general multiport network and the topological 

quantities which characterise it. 

1.2 NETWORK-  CHARACTERISATION 

1.2.1 Network Polynomials  

Network polynomials are here defined as topological quantities: each 

polynomial is associated with a set of trees (or k-trees) and is equal to the 

sum over all trees in the set, of the products, over all branches in a tree, 

of the branch admittances. 	This quantity is referred to as a branch-admittance- 

product-sum (BAPS). 	Although every ,  polynomial is the BAPS of some set of trees, 

not every BAPS which occurs in this study is necessarily a proper network 

polynomial. 

To define the sets of trees it is assumed that every network can be 

represented by some equivalent network containing only unistors, resistors, 

and gyristors, following the method of Mason [34] . However, it will not 

be necessary to construct such equivalent networks or to be concerned with 

any practical difficulties, such as the need for limiting processes on 
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the values of some branch admittances, that might be entailed by this process. 

Because ideal isolating transformers may be inserted at the ports of a 

network without affecting its behaviour, it is further assumed, in order to 

simplify the definition of the sets of trees, that one terMinal of every port 

is connected to some common ground terminal. 	The ungrounded.terminal of a 

port is referred to simply as the port terminal  of that port. 

The many polynomials of a network are related to various sets of k-trees 

of the graph of the network. 	A k-tree is generally understood to be a tree 

of a subgraph which is derived from the original graph by removing branches 

in such a way that the subgraph has k separate parts. 	An alternative view 

of the necessary modification to the original network employs the concept of 

a collapsed port: it is regarded as being short-circuited, with both terminals 

tied'together to form a single terminal. 	A k-tree is then a tree of the 

network with k collapsed ports. 

It is important for the development of this thesis, however, that a 

collapsed port be interpreted in a slightly different way. 	A collapsed port 

is here regarded as a port for which the path from the port terminal to ground 

lies not in the network itself but in some external network. 	This external 

path must be included in the trees of the network, but, when calculating a BAPS, 

its branch admittances are ignored. 

Definition 1.1  ("natural polynomials") 

The set of natural polynomials  of the general network N is now introduced. 

The general member of the set is denoted by 

ki abc.. 

It is defined as the BAPS of the set of trees of N with the ports p, q, r,.. 

collapsed and the remaining ports a, b, c,.. unaltered (open-circuit). 

Definition 1.2  ("transfer polynomials") 

Natural polynomials are.only particular (zero-order) instances of the 

. set of multiple-order transfer polynomials,  of which the typical member 

(mth-order) is denoted by 

N y, . ym  a bc.. 
x,..xm pqr.. • )( I X 

X„,y,n 



This polynomial is defined as the BAPS of that set of trees of N whose 

ports x 1 ,.., xm',p,g,r,.. are collapsed, which each contain m branch paths 

from the port terminals of ports y ll •.,ym  to the respective port terminals 

X 	00 	X • 1" m This set of trees is a subset, of the set associated with the 

.4 

natural polynomial 

N Y'  -.Ym°bc..  .. x rr, pqr-. • 

Because the ports x
1, 	xm are collapsed, the m branch paths are necessarily 

separate. 

A pictorial representation of these polynomials highlights their 

distinguishing features. 	With each port of a network is associated a pointer. 

If a port is collapsed, its pointer is directed out of the network; otherwise, 

it is directed into the network. 	In either case the pointer indicates the 

initial direction of the branch paths from the port terminal to ground, and 

a setting of all the pointers of a network, or pointer  setting,  thus determines 

the set of trees associated with a particular natural polynomial. 	Its 

subscripts identify the ports whose pointers are directed out of the network, 

and its supersrcipts identify the ports whose pointers are directed into the 

network (for example, see figure 1.1a). 

A subset of trees which each contain m branch paths between pairs of 

port terminals is represented by a set of m lines called pointer paths  drawn 

across the network between the respective pairs of ports, with directions 

determined by the pointers (for example, see figure 1.1b). 	Hence, in the 

representation of a multiple-order transfer polynomial the pointer setting 

determines the subscripts and superscripts, while the pointer paths determine 

the pairs of port indices beneath the network's base symbol. 

•Definition 1.3  ("linkage polynomials") 

It is left until chapter 2 to relate the network Polynomials to network 

behaviour and to explore the nature of the characterisation which they provide. 

It will be seen that in the analysis of networks certain groups of mth-order 

transfer polynomials always occur in combination. 	Such combinations, which 

have been called linkage polynomials  by Pike [41] , are here defined in terms 

I. 

•1 



1 

A  abe 
p r 

(a) 

11/4  abc 
mpqr 
rb 
PC 	• 

(b) 

Figure 1.1 Polynomials of a network A and their 
representation. 
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of the transfer polynomials by 

..yn, rd abc.. 
pqr.. 

(_ 1  E 	.". jrnrn N 	
myj  abc 

.x,, pqr.. 
yji  

xm yjn, 

(1.1) 

where the summation is over all the m: permutations j
1m 

of 1,.., m l  

and 6 is the generalised Kronecker delta which is +1 or -1 depending on 

whether the permutation is even or odd. 

The notation for linkage and transfer polynomials is made more compact 

by replacing the various sets of port indices with Greek symbols. 	Thus the 

/41Y 
general linkage polynomial of equation 1.1 becomes IN  where oc 

= 	X,n ) , A = { y, 	) 	= b 	. 
By convention, all the remaining port indices p l q,r,.. which are not included 

in the sets c<03,6 are assumed to be in the suffixed subscript position. 

The cardinal number of a set is denoted by square brackets. 	Thus, in this 

example, [0C] = L43] = m. 

To determine any one of the mth-order linkage polynomials of an n-port 

network, 2m of the n ports are chosen to either originate or terminate m 

pointer paths, m of these 2 m ports are chosen to terminate pointer paths, 

and the pointers of the remaining n - 2 m ports may be directed either into 

I . 
	Or out of the network. 	Thus the total number of mth-order linkage 

polynomials is 

L (n, m (2nm) • 

2  n —2m 

n! 	zn — 2m 

( n —2m)!i  (rn ! ) 2  

This function is tabulated in table 1.1. 
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0 

__ 

1 2 3 TOTAL 

C \I  
C
O

 c
t
 L
C
)
 N

.C
) 

4 2 6 

8 12 20 

16 48 6 70 

32 160 60 252 

64 480 360 20 924 

I .  

Table. 1.1 The number of mth-order linkage polynomials of an n-port network. 

When counting the total number of linkage polynomials of all orders 

(including the natural polynomials) we note that each linkage polynomial can 

be associated with a unique selection of n symbols from 2n symbols. 	For 

example, with a total population consisting of n "currents" i 	' i n 
 and 

AtAb' n "voltages" e l ,...,en , the general linkage polynomialoal may be uniquely 

•associated *  with the selection of n symbols which includes those voltages 

•whose indices are included in the sets /3 and y and those currents whose 

indices are not  included in either of the setscx or 	. 	Thus the total 

number of linkage polynomials is 

ml 

E (i,
' 
rri) = 	( r)) . 

m=0  

1.2.1 Structures of Multibort Networks  

In keeping with the multiport-network characterisation developed above, 

all interconnections between networks may be made only at their ports. 	It 

is further stipulated that a connection between ports must be characterised by 

either a voltage or curxent which is common to all the ports, i.e. the ports 

are either in parallel or in series. 	Any connection of ports can be made to 

* This association of linkage polynomials with segregations of port currents 

and voltages, as Occurs in the selection of a set of independent variables 

with which to describe the behaviour of an n-port network, is actually 

substantiated by the theorems of chapter 2. 
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conform to this Idle by introducing simple 2-port networks as, for example, in 

figure 1.2. A set of multiport networks connected together in this way is 

- here called a structure of networks. 	The individual networks in a structure 

are called constituent networks, and the network formed by the structure is 

, called the complete network. 

When connected together, a set of ports of different constituent networks 

is regarded, for identification purposes, as a single port of the structure. 

If a port of the structure has connections only to constituent networks and 

not to some external network, i.e. it does not correspond to a port of the 

complete network, it is called an internal port. 	Otherwise it is called an 

external port. 

Polynomials and trees of the complete network ere called complete 

polynomials and complete trees respectively; polynomials and trees of the 

constituent networks are called constituent polynomials and constituenttrees. 

The task of analysing a structure can now be simply stated as that of 

calculating the complete polynomials from the given constituent polynomials. 

But before we begin this task, a further simplification is made, without loss 

of generality, by considering only those structures in which all ports are of 

the parallel type. 	Structures with ports connected in series may he converted 

to equivalent structures containing only parallel ports by inserting a unit 

gyrator in every port which is connected in series. 	The effect of a unit 

gyrator connected to a port is to interchange the voltage and current values, 

so that whereas a series connection of ports constrains the currents to be 

equal, the ports of the equivalent structure must be connected in parallel to 

constrain the voltages to be equal. 	It is seen in chapter 2 that cascading 

a network with unit gyrators only interchanges scme polynomials—because 

ports that were originally open-circuit become collapsed, and vice versa— 

and changes the sign of others, due to the antireciprocal nature of a gyrator. 

With all the ports of a structure now of the parallel type and, if 

necessary, isolated from the constituent networks by ideal transformers, one 

terminal of every port is connected to a common ground. 	With each port is 

associated a pointer which may be directed to any one of the constituent 

networks attached to that port. 	Because it is,possible to interpret the 
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direction of a pointer as indicating the initial direction of paths from the 

ungrounded port terminal to ground, a setting of all the pointers of a 

structure may be interreted as specifying particular polynomials of the 

constituent networks, in the same way that they do for an isolated network. 

Pointers of internal and external ports are called internal pointers and external 

pointers respectively. 

1.3 THE ANALYSIS PROCESS 

1.3.1 Calculation of Natural Polynomials 

The process for analysing a complete network structure which, together 

with its constituent parts, is characterised by polynomials, is based on an 

analysis of the various trees of the complete network. 

It is first noted that a complete polynomial is the BAPS (branch-

admittance-product-sum) of complete trees, and the polynomial or its associated 

set of complete trees is represented by a setting of internal pointers. 

Attention is focused on the ungrounded terminals of both the internal 

and external ports. 	Because each complete tree, by definition, contains a 

unique path to ground from every node in the complete network, the complete 

trees are classified uniquely according to the initial direction taken by the 

paths from these port terminals to ground. 	The classification concerns only 

the •first constituent networks through which these paths pass, and each class 

is therefore represented by a setting of all the pointers. 

A pointer setting thus determines a set of constituent polynomials 

and also a class or subset of complete trees associated with a complete 

polynomial. Furthermore, every complete tree in the class is a union of 

constituent trees associated with the constituent polynomials. 	However, not 

every union of constituent trees determined by the pointer setting is 

necessarily a complete tree. 	The path from a node to ground either lies 

wholly in one constituent network or passes through a port into an adjacent 

constituent network. 	The path in the adjacent network may also pass through 

another port to connect with a path in yet another constituent network, and so 

on, but unless the path leads to a port already passed by itself---and thus 

forms a loop of branches---it will eventually terminate at the ground node. 

Hence a union of constituent trees is either a complete tree or forms one or 

• more loops of branches. 
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The branch loops that are formed by some unions of trees are themselves 

classified according to the constituent networks traversed by the loops, and 

the classes are represented by pointer loops  drawn across the constituent 

networks and passing through the ports in the direction of the pointers (for 

example, see figure 1.3b). 	The pointer loops not only represent subsets of 

the unions of constituent trees, but their segments, which traverse individual 

constituent networks, also determine subsets of the constituent trees to 

which the trees in the union must belong: 

To fully analyse a structure all the possible pointer settings must be 

considered. 	Suppose that pointer settings are generated in some regular 

manner, and consider a pointer setting which defines the i-th class of complete 

trees associated with a particular complete natural polynomial. 	Assume that 

in this general case the pointer setting will allow many pointer loops p,q,r,.. 

to be drawn. 	The sets and subsets of trees and unions of trees are identified 

with the following symbols: 

the set of trees of the k-th constituent network 

determined by the i-th setting of pointers; 

TP,C1,r,• • 
ik 	' the set of trees of the k-th constituent network 

determined by the i -th setting of pointers and the 

pointer loops p,q,r,..(note that 

T k 	 ik, 

and the equality holds if and only if none of the pointer 

loops traverses the k-th constituent network); 

U kik kik E Tik 
the universal set of unions; 

1 c 	ic E Tijk , 
the j-loop set of unions; 

UL ' ,  

the tree set, i.e. the set of -all unions of constituent 

trees which are complete trees. 

S (X.) is defined as the BAPS of the-trees or unions of trees in the 

set X.. 



network 1 
	

network 2 
	network 3 

(a) 

(c) 

Figure 1.3 A structure of three constituent networks 
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The BAPS of all unions of trees, with One tree taken from the set for 

each constituent network, equals the product of the BAPS's of the sets of 

trees for each constituent network. 	Hence, by considering the sets of 

constituent trees determined by the setting of pointers and the various 

Combinations of pointer loops, 

s(i) 	= 	sc-rio , 

s( L) 	=if S( 	 ), 

S( 	n 	=Tr s( -ri nk"), 

S(L fl 	fl L) = Tr s( 	17r) ; etc 	-(1.2) 

The factors S(Tik), 	S(T17'n ),.. are polynomials of the constituent 

networks; S(Tik) is a natural polynomial, and SkTik 	) is a nonzero- 

order
. 

 transfer polynomial -- unless Ti k 	= T . ik - 

The desired quantity is the BAPS of the complete trees which belong to 

the class represented by the i-th pointer setting, and is given by 

S(ri) 	= 	S( U 

= S( I i ) — Es(L) + E s(cin n Lril ) 
mn E(L-7 n L7 ri 	n C;) p,q,r 

(1.3) 

The steps required for each setting of pointers are reviewed and 

illustrated with reference to the structure of networks and setting of pointers 

shown in figure 1.3. 

(a) Search for all possible pointer loops. 	In the example, three pointer 

loops can be drawn with this, say the i-th, setting of pointers. 

, I 	,2 
Representations of the sets of tree unions Li and Li , alone, are not 

illustrated, although figure 1.3b represents the set of tree unions 

nr , ,2 and determines the sets of constituent trees T31  , Ii2 	, and 

1,2 	 3 
Ti3 	Figure 1.3c represents the set of tree unions L i  and determines 

,-3 	. 	n-3 the sets of constituent trees Iii , 	132, and 	133. 



(b) 	The BAPS's of tree unions are calculated using the equations 1.2. 	Thus: 

13 	24 	56 
i) 	= A2 835 C 4  , 

S(L) 	= A?, B 2,45  C546,  
23 32 

S( 	= A1  B 5̀' C 546 , 
• 54 45 

S(L?)
A13 n24 if,56 

— 	11°35 L04- 23 52 4-5 
34 

,13 n24 r.55 
• and S(Lit  ni) 	/A2 035 	4- 

23 32 4-5 
54 

The sets L, n 12, 	n LI and therefore 1..n 	L? are empty. 	Note 

that the subscripts and superscripts, determined by the pointer setting, 

are the same in each product, and that only the pairs of transfer indices 

beneath the base symbols, determined by pointer paths, vary from one 

product to another. 

(c) 
	

the BAPS of the complete trees is calculated with equation 1 3. 	Thus 
4 

s(T,)-- ABC- ABC-ABC-ABC +ABC 
2332 	54 45 23 52 45 23 32 45 

34 	 54- 

(The subscripts and superscripts have been omitted for clarity.) 

Because the double-transfer polynomials E3 and--Elhave the cofactor M:5 
32 	59  
54 	34 

241-% 
they are combined as the one linkage polynomial 35  tj and the BAPS is 

expressed entirely in terms of linkage polynomials as follows: 
A3 4B2 5 c6 

-- 2 503  4 

(1.4) 

In the general case, transfer polynomials of a network N which group 

together into one linkage polynomial will always have the same cofactor in 

equation 1.3 because the pointer paths which complete pointer loops by 

traversing the networks external to N are independent of the pointer paths 

which traverse N itself. 	The sign change manifested by the Kronecker delta 
- 

in equation 1.1 takes into account the change in the number of distinct 

.pointer loops as the transfer indices are permuted. 

The final stage in the calculation of a complete natural polynomial 

corresponding to a particular setting of external pointers involves the 

( 	
1 	A13 

== 

 

S;7-i  i 	P-1 2 
r324 r56 
10135 1/4°4 

3 A 1 
21°‘ 

•3AI 
-- 211-1  

240  
35L19  

2 04- 
3 I-P5 

5 r 6  

4 1/4' 

c56 
4 

-summation of BAPS contributions obtained from every possible setting of • 

internal pointers; that is, 

s(() 	E 	. 	 (1. 5) 
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1.3.2 Calculation of Hioh-Order Polynomials  

A transfer polynomial of the complete network is the BAPS of a set of 

trees which all have branch paths between certain pairs of external ports 

The trees are classified according to the constituent networks traversed by 

the paths, and the classes are represented by pointer paths drawn across the 

networks and through the internal ports in the direction of the pointers. 	As 

with complete natural polynomials, the trees are unions of trees of constituent 

networks, and, in company with the pointer settings, the se4ments of the pointer 

paths determine the sets of constituent trees to which the trees in the union 

must belong. 	The possible existence of pointer loops elsewhere in the 

structure must again be taken into account. 

Rather than describe a different algorithm to calculate the high-order 

transfer polynomials of a complete network, the concept of a closing network 

is introduced in order that the one algorithm should generate the transfer 

and linkage polynomials of all orders. 

The closing network is an imaginary network which connects all the 

external ports of the complete network. 	It may be regarded as the 

environment of the complete network or the complement of the complete 

network in the "universal" system; it is the network into which the external • 

pointers are .directed when they are directed away from the complete network. 

In this sense it has the same status as a constituent network, and the 

external ports thus lose their distinction from internal ports. 	It is called 

a closing network because it provides imaginary paths to close the pointer 

paths through the complete network and so form pointer loops. 

A high-order transfer polynomial can now be defined as the BAPS of 

those trees which are capable of forming branch loops through the closing 

network, and these trees are subject to the same classification and rules 

of evaluation as the unions of trees which form branch loops through the 

normal constituent networks. 
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1.3.3 The Analysis Algorithm  

The one algorithm which calculates the complete linkage (or transfer) 

polynomials of all orders is summarised in the following steps: 

(a) 	To the set of real constituent networks add the closing network. 

(b) 	With each port associate a pointer which may be directed into any 

attached constituent network (real or closing). 

(c) 	Set the polynomials of the closing network to zero. 	These polynomials 

will be employed as accumulating sums of products of polynomials of the 

real constituent networks. 

(d) 	Generate every possible setting of pointers once and only once. 

For every setting take the following steps: 

(i) Search for all possible pointer loops. 

(ii) Determine all the polynomial products given by equations 1.2. 

For every polynomial product take the following steps: 

(1) Give the product a sign as determined by equation 1.3: 

if the product is represented by an even number of pointer 

loops, the sign is positive; otherwise, the sign is negative. 

(2) Every product will include one polynomial from every real 

constituent network and will also determine a polynomial 

	

of the closing network. 	The polynomials of the real 

constituent networks are multiplied together and the product 

is added— or substracted, depending on the sign from step (1)-- 

to the accumulated polynomial of the closing network. 

(e) 	At the completion of step (d), calculate the polynomials of the 

complete network N from the accumulated polynomials of the closing 
. _ 

network N with either of the equations 

A 
a 6' 

4e 	P4 ] 	 or 
or 	N0(6  = (- 1)  

°O  /30( 
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1.4 APPLICATION OF THE ANALYSIS PROCESS 

1.4.1 General Structures 

In common with all topological methods the analysis process described 

above suffers severe limitations with regard to the magnitude of its task. 

As the number of constituent networks and ports is increased the analysis 

task tends to grow exponentially. 	Even analysis of the apparently simple 

structure of figure 1.3 (with ports 1 and 6 the external ports) is tedious if 

6. done by hand: 	it requires attention to 2 different pointer settings, each 

involving a search for pointer loops and the calculation of one or more 

polynomial products. 

It has not been practical to implement the general algorithm as a 

computer program for several reasons: for instance, one potentially difficult 

problem concerns the storage and addressing of the large numbers of polynomials 

associated with each network (see table 1.1). 	To make the algorithm more 

practical, further investigation is required to find suitable routines to 

recognise pointer loops, and to group together polynomial products in such a 

way that sums of transfer polynomials may be replaced by their equivalent 

linkage polynomials. 	It seems likely, though, that a practical algorithm 

would 'somehow combine these two routines with a special routine for 

generating the pointer settings. 

Nevertheless, these practical difficulties are alleviated by the 

diakoptic approach which the method permits. 	Because the results of analysis 

of one network --the linkage polynomials-- can be used directly as ingredients 

for the analysis of some larger network, it is possible, and generally 

advantageous, to tear a network apart into progressively smaller substructures 

and analyse them separately, so that at any stage only a relatively simple 

structure needs to be analysed. 	This approach is particularly attractive 

when the systems to'beanalysed are, irrespective of size, only loosely 

interconnected. 
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Unfortunately, a diakoptic approach raises the problem of specifying 

and controlling the manner in which subnetworks are created and manipulated. 

Experience with other diakoptic methods, such as that of Kron [28], suggests 

that this task is better done manually than with a computer routine, and 

it is notable that Ishizaki et al [27] have developed a language notation with 

which to specify the algebraic manipulation of multiport networks. 	But, 

again because of the large numbers of linkage polynomials, this aspect of the 

topological method has not been investigated in the general case.. 

1.4.2 Structures of 2-Port Networks 

Limiting all networks to two ports effects a drastic simplification in 

the analysis process without seriously limiting its application. 	Most 

system components and circuit devices can be modelled directly as constituent 

2-port networks, and two ports allow sufficient access to a complete network 

to determine any transfer or driving-point immittance functions that may be 

sought. 

In the following analysis all networks have exactly two ports. 

Consequently all networks are characterised by six polynomials, and the 

• organisation of polynomial storage and manipulation is comparatively simple. 

When analysing large structures of 2-port networks with the general 

algorithm, pointer settings are best generated by setting pointers one at a 

time in en order which attempts to follow the formation of pointer paths, so 

that pointer loops are detected automatically as they are formed. 	Because a 

pointer determines the polynomials of the 2-port networks which it traverses, 

even though pointers elsewhere in the structure may not be set, it is possible 

to factorise the sum of polynomial products associated with a pointer setting. 

Consider one setting of pointers for which there are p pointer loops. 

Let t. be the product of transfer polynomials determined by the j-th pointer 

loop, 

n. be the corresponding product of natural polynomials determined by 

the j-th pointer loop, 

and n
o be the product of natural polynomials of networks which are not traversed 

by any pointer loop. 
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From equation 1.3 the contribution to the appropriate closing polynomial is 

S = n o  n 1 ..n p  - (n ot 1n2 ..n o  + n o n 1 t2n3 ..n lO 
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= no  /T(n. - t.) • a. (1.7) 

13ycalculatingthefactors(n.-t.) as the pointer loops are formed, 

many polynomial manipulations and associated book-keeping chores are avoided 

and some sources of numerical round-off error are eliminated. 

The practical application of algorithms using the above expression in 

the analysis of structures of 2-port networks has been thoroughly investigated 

and is the subject of part II of the thesis. 

1.5 CONCLUSION 

This chapter introduced a set of topological quantities as paremeters 

to characterise multiport networks, and developed an analytical process which 

relates the parameters of a complete network with the parameters of its 

constituent parts. 	The process has two important features. 	First, it 

permits a diakoptic approach to the analysis of large systems; and second, 

because the parameters need only be multiplied together, added, or subtracted, 

it permits a totally symbolic analysis. 	The advantages of both features are 

discussed further in chapter 4. 

= n
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CHAPTER 2 

POLYNOMIALS AND NETWORK BEHAVIOUR 

2.1 INTRODUCTION 

The protess presented in chapter 1,for analysing structures of multiport 

networks in terms of topological quantities, is not complete as a useful 

analysis theory because the parameters which are used to characterise networks • 

have in no way been related to the observable behaviour of the networks. 	The 

aim of this chapter is to establish such a relationship. 

In the strict logical development of this relationship the first important 

goal is to establish that the characterisation of a network by a set of linkage 

polynomials is, in some sense, unique. But the proof of the relevant theorem • 

(2.2) is supported by a special case of another theorem (2.1) that relates all 

linkage polynomials to a particular subset of the linkage polynothials. 	Because 

the proof of the latter theorem relies largely on an application of the 

analysis process, it is introduced first. 	Proof of the general case for theorem 

.- 2.1 must, however, be reserved until theorem 2.2 is proved. 

The first two theorems constitute the major part of the chapter. 	It is 

- a relatively simple step to theorem 2.3 which establishes a connection between 

the linkage Polynomials and the behaviour of a network characterised by its 

short-circuit admittance matrix. 	Theorem 2.4 follows from another simple 

application of the analysis process and provides an effective means of 

generalising any identities involving polynomials and port variables. 

2.2 IDENTICAL NETWORKS IN PARALLEL 

The connection of two,or more, identical multiport networks in parallel 

allows a simple demonstration of the analysis process of chapter 1, and leads 

to a theorem which establishes all the relationships between the polynomials 

of a network. 

Lemma  2.1 

For a structure of k identical n-port networks, with their corresponding 

ports connected in parallel; the polynomials of the complete network M are 

related to the polynomials of the constituent networks N by the expression 
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Proof (for networks without internal nodes) 

If the network contains no internal nodes then the natural polynomial N 
is unity because, with all ports collapsed, the trees contain no branches. The 

complete network M behaves as a single network N with all its branch admittances 

multiplied by the factor k, and the theorem is proved for this special case by 

noting that the trees associated with the general polynomial contain {/3]-1- [6] 

branches. 

Definition 2.1 ("the X matrix") 

Throughout this chapter a particular matrix, whose elements are ratios of 

polynomials, will play a major role. 	It is introduced at this stage simply as 

the X matrix. 	Its minor determinant, comprising columns a,b,c,.. and rows 

p,q,r, .., is denoted by 

v ci bc.. 
A pqr.. 

With this notation the X matrix is defined by its elements, as follows: 
j skt 

vpsi 	rm 

and 	 N' )(: " N 

Theorem 2.1 

The general linkage polynomial is related to a minor determinant of the 

X matrix by the identity A 	a. 
vg x 

= A txx  • 

Proof 

The theorem will be proved by induction on e, where e = [A]-F 

The truth of the theorem for e = 1 is established by definition 2.1. 

We now assume that the theorem is true for all e < f, and proceed to 

establish the theorem for e = f by considering two identical n-port networks N 

connected in parallel. 
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.. If 	[)3]+ [Zr] = f then by lemma 2.1 (which at this stage is proved only 

for networks without internal nodes), the general linkage polynomial of the 

complete network M is given by 

M --= 21 	N 
(2.1) 

The same polynomial is now calculated using the analysis process developed 

in chapter 1. 	The pointers of the ports denoted by /3 and 	may be directed 

into either of the constituent networks, and the remaining pointers are 

directed into the closing network. 

settings to be considered. 

There are, therefore, a total of 2
f 
pointer• 

In the typical pointer setting of those to be considered, suppose that, 

of the set /3 , the subset of pointers /3' are directed into the first constit- 

uent network and the remaining subset ,2.  are directed into the second constit- 

uent network. 	Let the subsets of o< which correspond to/3 1  and /32  (by virtue 

of the order of the members of o( and /3 ) be 0< 1  andoe respectively. 	Thus 

if  = 6/1  yrn}  = {x1 • • Xml , and /3'. fy2  X0(7) then 

oe== fx2 x3 x 7) . 	Similarly, let X i  and X2  denote the two subsets of X 

whose pointers are directed to the first and second networks respectively. 

The transfer polynomials constituting the complete linkage polynomial are 

represented by pointer paths drawn across the structure,. starting from the ports 

/3 1  and /3 2 , and terminating at the ports CK 1  and c<2 . 	The major task is to 

find all such pointer paths and all the pointer loops, find all the transfer-

polynomial products determined by equation 1.3, and group them together into 

products of linkage polynomials. 

It is noted that pointer loops can only be drawn through ports belonging 

to the sets Y and r 2 , although any path from a port in/3 to a port in o< 

may pass through any numbers of ports in Y and X 2 alternately; for instance, 

a path may originate at a port in /3 1 , pas through different ports in Y 2  , 

X I  ; Y 2 , Y 1  successively, and terminate at a port in 0<1  . 

Consider a sum of products of transfer polynomials which constitute a 

• 

typical .  product of linkage polynomials. 	Suppose that in one constituent network, 
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segments of pointer paths, or loops originate at ports denoted by subsets Y2 

and Y3 of y , as well as /3 of /3 , and terminate at ports denoted by 

subsets oc; of oc i  1  oc and cx of oe , and 	of e 	Suppose, similarly, 

that in the other constituent network, segments originate at ports 6f of W2 3 

as well as /3 2  of /3 , and terminate at 0( 12  of oK I  , 	of o(2,  and 

X.; and 	of yf . 	The subsets are chosen so that 	= 

and [o< 12]== [4. 

In this case the product of linkage polynomials may be denoted by 

1 /3 1 	e 42 	
,2 

ski  2 

c< t oc2 cx2 r2 119 • Ir; 4 	e(21 
I 	3 	I 

(2.2) 

1 

Y 
To determine the sign associated with this product, as a term of 0 M 

we first consider the product of transfer polynomials for which the pattern of 

transfer indices is unaltered, i.e. 

NAI 	N /32 r 2 
• (2.3) 

1 	yl Y2 	• 
C41 Al  U2 V 

" 	6 
e4 1. 13 	04 A' 
zr; 	0:2 

From the definition (1.3) of linkage polynomials, the sign of this transfer 

product (2.3) as a term of the linkage product, is determined by the number of 

pairs of transfer indices, and is therefore ( -1) 	. 	The representa- 

tion tion of this product contains the maximum number of pointer loops: Z( 2 j . 

'Therefore, as a term (in equation 1.3) of the complete transfer polynomial 
4 1 /32 yi r  2 

Rd 	 (2.4) 

°el 
2 " • 

0:2 

the. sign of the transfer product (2.3) is (-1) Exk] 	Considering again the 

definition (1..3) of linkage polynomials, the sign of the transfer polynomial 

A r 
(2.4) as a term of the linkage polynomial ,x 	is 

[/3 ] _2 2 
°<I 	C;(3 V‘2. CK2 • 

oc I 
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Hence, the sign associated with the linkage product (2.2) is 

0(2 

6  °‹: 	o(23 404 
(H) [ 12] 4- D61 

o 	4 4 xi, w 	0(2 	If: = 	e 
1 	2 	2  ‘,../ v I 	„a l v 2 	• ot.3  0 0 0 2  03 	."2 0 2 

For a particular pointer setting every product of transfer polynomials 

determined by equation 1.3 is contained in the expansion of one and only one 

linkage polynomial product of the form 2.2, and, conversely, every term in the 

expansion of every possible product of this form is a term of equation 1.3. 

Hence the contribution from one pointer setting to the complete linkage polyno- 

RKAY 
mial pri is ot 

2 	2 

ocil °el  yi2 2r; cxi oc4 ), 

(2.5) 

-where the summation is over all sets of ce2 , ocf (which replaces both y( and 

oc.1 in the preceding example), r2  (which replaces both )1; and /6 ), and 

. 	To include the general term, the only relationship between the sizes of 

these sets is expressed by [04] -I- 	== roK2,1 	[e]. 

(The preceding example considered the case in which [1 12] ) [g]) . 	If each 

constituent network has less than f pointers directed into it then the assumed 

validity of the theorem relates the polynomials-to minors of the X matrix, with 

/ks1 :2  
the result that expression 2.5 divided by m) is recognised as a Laplace expan- 

sion of a minor of the X matrix. 	That is, 

C 	N)
2 	rf 0( 2  • E( s 	2r12 zr; 	0( 12  

/9 1 /32 e r2  
= (K2 . 

(K
2 

• X 
r 

0( y 

/3' X; r; 	e /3 2  Y\ 
1 2 2 t 	• 	X v i  °(/ 0( 1  21, 	 02-2 0<2 0  2 

(2.6) 

In this Laplace expansion the first minor comprises columns /3 /  and r 
corresponding to the pointers directed into the first constituent network, and 

the second minor comprises columns /32  and 1 2 , corresponding to the pointers 
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directed into the second constituent network. 	In the "diagonal" term of the 

expansion, whose sign is 

cx t c<2 21,z 
S o< 1 x i oe. 

the first minor comprises rows ix /  and y' , and the second minor comprises 

rows c<2  an d y 2 . 	Other terms are obtained by interchanging rows o<2 and X I  2 

2 of the first minor with rows c< and r2 of the second minor. 

The contribution to the complete polynomial determined by two of the 

pointer settings cannot be expressed in this form because one of the constituent 

networks has f pointers directed into it. 	But, for both these pointer settings, 

the other constituent network has no pointers directed into it, in which case 

the contribution is simply 

N . fiN1 
	

(2.7) 

The analysis process is completed by combining the contributions of all 

2
f 
pointer settings given by the expressions 2.6 and 2.7, whence 

2 f3 a 
oc4=  (2f  2) .(N) . X (xi  + 2. N.:N Y . 

Elimination of the complete polynomial l3
c
Mr from equations 2.1 and 2.8 c 

establishes the theorem for e = f, and hence, by induction, for all e. 

(2.8) 

Q.E.D. 

This theorem is the key to all the relationships between the linkage poly-

nomials of a multiport network, and is used in section 2.7 to establish two 

important polynomial identities. 	In particular, we note the following corollary, 

without proof: 

Corollary 2.1 

All the linkage polynomials of an n-port network may be derived from the 

set of (n2 + 1) polynomials comprising the (n + 1) natural polynomial's and the 

n(n - 1) single-transfer polynomials that occur in the X matrix. 
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2.3 POLYNOMIALS OF EQUIVALENT NETWORKS 

In order to relate , the polynomials of a network, defined as branch-

admittance-product-sums (BAPS) of trees, to the electrical behaviour of the 

network observed at its ports, we must at some stage investigate the 

relationships between the voltages and currents in a network. 	Considering 

first . a two-terminal device by itself, the current through it, and the voltages 

between both its terminals and some common ground point, the observance of a 

linear relationship—such asOhms Law—is implied by the adoption of the 

admittance parameter to characterise the resistors, unistors and gyristors with 

which we model an electrical circuit. 	The consequences of Kirchoff's Law, 

however, make their first appearance in this section. 

The practical value of linkage polynomials, as a set of parameters to 

chafacterise a network, is assured by the following theorem. 

Theorem 2.2 

Electrically equivalent networks, i.e. networks which exhibit the same 

electrical behaviour when observed at their ports, are characterised by sets of 

linkage polynomials for which the ratios between corresponding pairs of 

- polynomials are equal. In other words, the polynomials of equivalent networks 

are identical except for some multiplicative constant which applies to all the 

polynomials of a network. 

Proof 

Networks with the same behaviour but different internal topological 

structures can be transformed from one to another by successively introducing 

or eliminating internal nodes. 	Hence, to prove the theorem, it is sufficient 

to show that a transformation which eliminates an internal node without changing 

the network's behaviour also preserves the ratios between network polynomials. 

Suppose that a star network A with internal node r and n external nodes is 

replaced by an equivalent mesh network B, as in figure 2.1. 	In network A the 

connection between node r and an external node i will, in general, comprise two 

unistors, one directed from node i with admittance y
i
, and the other directed 

to node i with admittance y i . 	The equivalent mesh contains unistors directed 



J 
NETWORK A 

1 

N 

NETWORK B 

A 
GENERAL MULTIPORT 

UNIT GYRATOR 

Figure 2.1 	Equivalent star and mesh networks A and B. 

Figure 2.2 	Cascade connection of network A with a 
unit gyrator at port c. 
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from node jto node i with admittance 

= y i±yi/y 

where 	Y = 
 

(2.9) 

I .  

That the two networks are in fact equivalent is demonstrated by comparing 

their driving-point and transfer admittances. 

WedefineE.to  be the voltage between node i and some common ground 

point, and I i  to be the current entering the network at node i. 	Note that, by 

definition, the current in a unistor directed from node i with admittance y i  

is y
i .E.. 

1 

Applying Kirchoff's current law to the internal node of network A, 

I 	=Er  - ::y'. E. = 0, r 	 1 

l e e , 

• 

Er =Ey 1/Y.E.. 

If all the external nodes except j are short-circuited then 

E
r 

= 	yj /Y . E. 
J' 

I. 	- y. . E , 
1 	1 	T 

I. = y
j
.E. - y. .E . 

J 	J 	r 

The short-circuit transfer and driving point admittances are therefore given by 

and 

IJ 
and 

Y.. = I./ 	=.
1

.)/i /Y 
ij 	1 j  

Y.. = I./E. = yj  - Y ..yj/Y JJ 	J J 	j 

= (Y— Y* )  • Yj/Y  
J . 

(2.10a) 

The short-circuit transfer and driving-point admittances of network B 

are given by 

Y.. = -y ..  i.j 

and Y. = jj A (2.10b) 

They prove to be identical to those of A when the relations 2.9 are invoked. 

To calculate the effect of this star-to-mesh transformation on the 

polynomials of any network in which the star network might be embedded, the 

complete network is torn in order-to isolate the star as a constituent n-port 



fyi 	, • • 	- 1 11+1 • • 	== 0 

ik 6°5  

on m that 

I 

; 	•, 
B '' • • "'" 

• • ici-1 ig+1 • • 
VO 

m 	• 
11' y/ JP (2.12d) 

(2.12e) 

42.120 
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network. 	For instance, the star's external node j, together with the common 

ground terminal, becomes the j-th port of the constitient network. 	We now 

compare the polynomials of networks A and B. 

With all ports collapsed, the trees of network A contain a single unistor 

directed from node r to any external node i. 

••• 	= 	= Y. 	 • 	(2.11a) 

If port j alone is not collapsed, a tree contains the unistor y j  with any other 

unistory.  i 

* **N = EY-1•Yi=" (Y- . ) * Yi' 	(2.11b) YJ  

Only one of these trees contains a path from port j to port i. 

• 

 

•. jilk,== --,6`,1  r= -y. • yj . 	 ( 2.1Ic) i  __  ..  3. 
1,f 

Further inspection of network A reveals that the.general natural polynomial is 

= [NI _ ( ya  

	

a 	b 

	

+ ...)] • Y 	• Y 	• Y 

Em 

 (2.11d) 

and the general single order transfer polynomial is 

_ 	j 	a 
yi •y•y•y•y.... 

ij 

The transfer polynomials (and therefore the linkage polynomials) of order 

greater than 1 are zero. 

(2.11e) 

With all the ports of network B collapsed, there are no trees. 	If port j 

alone is not collapsed, each tree consists of a single unistor 	which also 3.3 

provides a path from port j to port i. 

= (Y-yi ) • yi /Y, 

- y, yj/ Y. 

(2.12a) 

(2.12b) 

(2.12c) • and j 
 B - 	= - 

Because network B has no internal nodes, its remaining linkage polynomials 

may be determined by .application of theorem 2.1. 	It will be proved by induction 
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The equations 2.12b and 2.12c establish 2.12d.and2.19e for m=1; equation 2.12f 

is established for m=2 by considering the expansion 

• 

i t  j2 

k i X iii2  k i 

Xjki  . X Ji 2  

B k 

Yk/Y. 

= 0 . 

X j • ' X J2  i k 
j, re) j2 

i 	• k 

Yi/ Y• y J2  - Yi/Y- Y ii- yk /Y• y i  

Expanding, about column j 1114.1  , the minor comprising rows and columns j 1" • 'jni+1' 

B il"jm+i il 	imi-1 

= • X j 	I.  -I • ' - rti-r1 

-- 	Vri l • ' iM Vjf11-1-1 — 2 )(JI—Jj9.—J7 	
xim+I 

Ai, i 

	

..h, • Aim.l 	q= I 	Ji • • 1114-1• • _MI 4 	iq 

== 
 - B),..J. aim+, _  

J.., 	 • Jci 

== ( 1 --t YJIY) 	YjP . (I --   

m  

Y,i,+,/"() 
• Yin,/ 

P=I 
m 	 - 

- 9E [ 	/Y . 	P  • yi,/ Y. y jm+1 
= 1 	 p= mq.1 

== --2] Yjp  // 	) 	Y jP  
P=I 	 p= 

-which proves equation 2.12d for all m. 	Repeating the same expansion, but with 

row jm+1 
replaced by row 

JrnsiBji • ' Jm X -.Jr • jm im+1 
A j, 

Xim+ 1  

	

. 	- E qz, Bi,•• im 
- i D 

	

rn 	rn 
-- (I --): Yjp//\() 77'  YjP - 	)/' 

m • 	m 	. 

[ 	d/Y . jP . 	 // y .  
. 4= 1  

m+1 	• 

Yd.  Y 	Y 
P=I 

which proves equation 2.12e for all m. 	Again repeating the expansion, but with 

rows jm and j m+1 
replaced by rows k and i respectively, 

jm 	jt "jm- 
ki = A • JI• •J,,_, k i 

I • •rn -I k • 	 Ji • .Jm- 	k 
J,..irn .... 1 Jm 	44- I 	nti  vjl• jq jm 

. 	. 	. 

X j.m+I  — 	X 	— A 	k . A jg  

Bjt 	4./8 	 rtjj • • ig- j9+ , • • Jl1 :in, 4  
SB 

qr/ 

= Yk/Y • TryJP y1 /Y. r-i 
= 0 , 

m 	. 
ri/Y. TrY jP. Yk/Y. y 1-  0 

13,1 
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which proves equation 2.12f for all m. 

Any linkage polynomial of order greater than 2 can be expanded in terms 

containing a linkage polynomial of order 2, and is, therefore, also zero. 

Comparison of the linkage polynomials (2.11) of network A with the polynomials 

(2.12) of network B indicates that they are identical except for the multiplicative 

constant Y, which applies to all the polynomials. 

Because, with the analysis process of chapter 1, the polynomials of any 

complete network are homogeneous functions of the polynomials of the constituent 

networks, it follows that the effect of a network transformation involving a 

node,elimination preserves the ratios between the polynomials. 

1 	 Q.E.D. 

1 

The above proof would have been shorter if corollary 2.1 could have been 

applied to both networks A and B; for then it would have been necessary to compare 

only the n
2 1 polynomials which determine the respective X matrices. 	But this 

corollary could not be applied to network A because lemma 2.1 is, at this stage, 

proved only for networks without internal nodes. 	However, with theorem 2.2 now 

established, it is.possible to prove that the lemma, its theorem, and its 

corollary are valid for all networks. 

Proof of Lemma 2.1  

Because the behaviour of the structure M would not be altered if every 

internal node of one network was connected to the corresponding nodes in the 

other networks, the structure is equivalent to a single network P obtained 

from N by multiplying all its branch admittances by the factor k. 	If g is the 

number of internal nodes then the number of branches in each tree associated 

with the general polynomial is g +[] + [a], and the general polynomial of 

the equivalent structure is 



But, by theorem 2,2, 

for some constant, K. 

oc M 	K k 944j-f-Dri „( N . 
If all the ports are collapsed then equation 2.13 becomes 

M = K. k g . N. 

2-12 

(2.13) 

(2.14) 

The structure may also be analysed by the process of chapter 1, in which case 

it is seen that 

(N)
k 
 . 	 (2.15) 

Elimination oftVi and (K . k g ) from equations 2.13 and 2.14 proves the lemma 

for all networks. 

Q.E.D. 

We note an obvious corollary to theorem 2.2: 

Corollary 2.2 

The X matrices of equivalent networks are equal. 

2.4 POLYNOMIALS AND THE SHORT-CIRCUIT ADMITTANCE MATRIX 

The Importance of theorem 2.2 is recognised by its contribution (in the 

form of corollary 2.2) to the proof of the following theorem which is the key to 

the relationship between a network's behaviour and its polynomials. 

Theorem 2.3  

The X matrix, whose elements (by definition 2.1) are ratios between linkage 

polynomials of a network, is equal to the short-circuit admittance matrix of the 

network. 

Proof  

The theorem is first proved for the general n-port network B without internal 

nodes, as in figure 2.1. 	Such a network was discussed in the proof of theorem 

2.2: its short-circuit admittances are given by equations 2.10b, and its 

polynomials are given by equations 2.12. 	From these equations it is deduced 

that its X matrix is given by 

E. 

and 
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Any network N equivalent to B will, by definition, have the same short-circuit 

matrix, and, by corollary 2.2, have the same X matrix, Thus the theorem is 

proved for any network. 

Q.E.D. 

2.5 THE UNIT GYRATOR 

In a simple application of theorem 2.3 we determine the 6 polynomials 

that characterise the unit gyrator G I  whose behaviour is described by the 

equation 

1 
	 E

1  

2 
	-1 0 

	
E 	

(2.16) 

For simplicity, it is assumed that the common denominator polynomial of the X 

or admittance matrix is 

• (2.17a) 

The numerator polynomials are then equated with the elements of the admittance 

matrix, i.e. 

2   — = 0, - G2 

1, 

and G .= -G = 
2, 	2/2 

(2.17b) 

The sixth linkage polynomial is equated with the determinant of the admittance 

matrix, i.e. 

G 	= 1. (2.17c) 

These polynomials are required in the proof of the following theorem which, 

incidentally, gives a further demonstration of the analysis process. 
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Theorem 2.4 

If an n-port network A is cascaded at port c with a unit gyrator to form 

a new n-port network B, the linkage polynomials of the two networks A and B 

are related with the equations: 

= A c 

Ac  

B = CA 

B = — A. • (2.18) 

The positions of the indices of all ports other than c are not affected and 

are therefore not shown in these equations. 

Proof  

While developin the proof the port of the complete network B which 

•corresponds to port c of the constituent network A is denoted by c /  (see figure 

2.2). 	The first and second ports of the unit gyrator G are therefore -c /  and 

c respectively, and from equations 2.17 its polynomials are 

G = GC,  = 	= 	= c'cc 	cc,c 

and 
c 

G= G'= O.  (2.19) 

In applying the analysis process it is noted that for every setting of 

external pointers there can be no pointer loops, and there are only two settings 

of the internal pointer to consider. 	Therefore, if c' is not among the transfer 

indices, 

and 

B
ci 

= G A
c 	Gcc' A 

A c 

Bc ,  = G1 A Gcc,  A c • (2.20a) 

If a poihter path of the complete network originates from, or terminates at, 

port c' then it must pass through the internal port c. 

•• 	
Bc' 	Gc . 	c . c'•cc' 	

.ec 
 c 

c c ,  = pc , A . 
c' . 	c 	c .c  

All the transfer polynomials in the expansion of any one linkage polynomial are 

associated with the same gyrator polynomial. 	Therefore, after substitution 

for the gyrator polynomials (2.19), the equations 2.20 relate both the transfer 

and linkage polynomials, and prove the theorem. 

Q.E.D. 

and (2.20b) 
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(2.22c) 

( 2. 22d) 

A 
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In effect, cascading one port of a network with a unit gyrator interchanges 

the roles that its voltage and current play in the characterisationof the 

network's behaviour. 	This property has already been exploited (in section 1.2) 

in converting series connections of ports to equivalent parallel connections 

prior to the analysis of general structures of multiport networks. 	It is 

exploited further in generalising any identity relating the various polynomials, 

voltages, and currents of a network. 

2.6 TOPOLOGICAL FORMULAE 

It is established by theorem 2.3 that the transfer admittance from port j 

to port i with all other ports (X short-circuited, is given by the ij-th element 

of the X matrix, i.e. 

(2.21) 

If the set of ports c< is divided into two sets /9 and ?f , and all the ports Y • 

are cascaded with unit gyrators, then, with the help of theorem 2.4, we obtain 

from equation 2.21 the more general identity for transfer admittances: 

j t,k,x 
I  viy3  

iy=o 	• 
/3  

(2.22a) 

Cascading ports i and j with unit gyrators, either at the same time or one at a 

time, yields the general identities for transfer impedances, voltage ratios, or 

current ratios: 

 

=0 ijc< 



The general identity for a driving-point . immittance is deduced in a 
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similar way: 

ii 

 

 

Li 
(2.23) 

N/3  

(2.24) 

In'so far as the polynomials are defined here as topological quantities-- 

branch-admittance-product-sums of sets of trees---the identities 2.22 and 2.24 

embrace the classical topological formulae for all network functions. 

It is also deduced from these identities that the zeros of transmission 

from port j to port i, with ports /3 short-circuited and ports Y open-circuited, 

Y  are zeros of the single-order linkage polynomial N i 13  . 	The zeros of the 

&le 
natural polynomial NA  determine the natural frequencies of the network with 

ports ie short-circuited and pOrts Y open-circuited, because this polynomial 

is the common denominator of the hybrid matrix with which the voltages Er and 

currents I/3 are expressed as linear functions of the currents Tr and voltages 

E /3  . 

A familiar, particular case of the identities arises when all ports are 

cascaded with a unit gyrator. 	All port currents become port voltages and vice 

versa, and the short-circuit admittance matrix (the X matrix) becomes the open- 

circuit impedance matrix. 	The transfer and driving-point impedances from port j 

follow from identities 2.21 and 2.23: 

=0 (2.25) 

and (2.26) 

These identities confirm the well-known result that the common denominator 

of all the open-circuit impedances is associated with the branch-admittance-product 
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-sum of the trees of the network. 	With the application of theorem 2.1 the 

impedance of identity. 2.25 is recognised as the ratio of the cofactor of the 

ji-th element of the admittance matrix to the determinant of the admittance 

matrix which is, of course, the ij-th element of the inverse of the admittance 

matrix. 

2.7 POLYNOMIAL IDENTITIES 

To further illustrate the application of theorems 2.1 and 2.4 we derive 

two simple but important generalised polynomial identities. 

Consider, first, the ratio of polynomials 

N  u v 	
to  tJV 

N uv 

   

u v 
NNv  u 

NN 

 

Which, on expansion of the determinant, yields the identity 

N uv m  
• ivi.v = N v 

N
v 
- N N . v • 	v 	u (2.27) 

This identity may be applied to a general multiport network, in which 

case the notation convention already adopted implies that all port indices not 

specifically included are assumed to be in the suffixed-subscript position. 

However, cascading any of these ports with unit gyrators would transfer their 

	

indices from the subscript to the superscript position. 	Therefore, in 

interpreting this (as well as any other) identity, any missing port index may 

•be inserted in either the suffixed-subscript or superscript position, uniformly 

throughout the identity.- Thus, an instance of this identity for a 4-port 

network is 

N234  N 4  = N 24 
4 1  •  /23  13 	112 	

N14 . 34 2 4 

•- 2 "1 • 
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Consider, second, the ratio of polynomials 

v Nw  

 

X VW  11W 

Nuvw 

   

v Nu  wuv 

v Nw u  Nw  (N u, „,) 2  

 

 

which, on expansion of the determinant, yields the identity 

v Nw f4 •

Wj 

u = 
v 	Mww 

•- Paw 	
vNA 
wimu u 

With regard to missing indices, this identity is open to the same interpretation 

as 2.27. Yet, cascading either or both of the ports u and v with unit gyrators 

results in even more identities; therefore, a more general form of the identity 

is 

. 	== N u w Nw  - v N w N w 	• u 

(2.28) 

These two little-known polynomial identities are sufficient to calculate 

all the natural and first-order polynomials from a given X matrix, and, as such, 

are the basis for an alternative analysis method discussed in chapter 3. 

It will be appreciated that a very large number of new polynomial identities 

may be derived by considering any Laplace expansion of any minor of the X matrix 

and then cascading any of the ports with unit gyrators. 

2.8 CONCLUSION 

This chapter completes the exposition of a theory for the topological 

analysis of multiport networks. 	Its aim was to validate the approach to 

analysis taken in chapter 1 by building a logical bridge from the new analysis 

method to the well-established topological theory as it applies to the analysis 

of linear networks. 	The new approach was begun in chapter 1 with the definition 

of a set of polynomials as topological quantities, and with the development of 

an analysis process which dealt with these polynomials. 

Largely as a consequence of the analysis process, all the linkage 

polynomials were related, by theorems 2.1 and 2.3, to minors of the short-circuit 

Omittance matrix, and thus their relevance in describing the observable 
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behaviour of a network was established. 	The effect of cascading a port with 

a unit gyrator was investigated in theorem 2.4, and was exploited as a simple 

means of generalising all results obtained from the preceding theorems. 

The main objective of the chapter was reached with the identities 2.22 

and 2.24 5  which express the topological formulae for the various functions of 

a network. 	The other identities and properties of linkage polynomials derived 

throughout the chapter serve in presenting a more complete picture of the topo-

logical quantities, and demonstrate the facility with which theoretical results 

may be obtained. 	Although the proof of the four theorems, and the derivation 

11 	of the polynomial properties which emerge from them are unique to this 

approach, the results are not new. 	A thorough examination of the properties 

of linkage polynomials has been presented elsewhere by Pike [41] . 



CHAPTER 3 

ALTERNATIVE ANALYSIS METHODS 

3.1 	INTRODUCTION 

The preceding chapters present a complete theory for the analysis of 

linear networks based on an analysis process which avoids the compilation and 

manipulation of matrices. 	Although this process has unique features which 

appear to give it an advantage in performing symbolic analysis of large net-

works, a realistic assessment of its merits cannot be made without establish- 

ing some link with other analysis methods. 	This chapter therefore investigates 

analysis methods based on the manipulation of network matrices and, where 

possible, attempts to interpret one method in terms of the other. 

3.2 INVERSION OF NETWORK MATRICES 

A common method of network analysis entails the compilation of the so-

called "nodal-admittance matrix" and its subsequent inversion. 	If the network 

is regarded as a multi -port network, the nodal admittance matrix is recognised 

as the short-circuit admittance matrix or, if all elements have a common 

denominator, the X matrix of definition 2.1. 	The compilation of this matrix 

is generally straightforward and is here taken for granted; this section 

• addresses itself to the task of inverting either the X matrix or any other 

hybrid matrix which relates one set of port variables (a voltage or current 

from each port) to its complement set. 

The inversion of an n x n matrix may be achieved in n steps, each one 

involving the interchange of the voltage and current variables for one port, 

and thereby forming a new hybrid matrix. Because the steps are similar in 

principle, it is sufficient to detail only one such step. 	Further, because 

the formulae concerning any hybrid matrix may be obtained, with application 

of theorem 2.4, from similar formulae concerning the X matrix, this step. 

will be demonstrated only with the X matrix. 

Suppose that the voltage and current variables of the k-th port are inter- 

. 
changed, thus forming the hybrid matrix whose ij-th element is denoted by VII; , 

If the transformation of the X matrix was achieved by cascading the k-th port 



with a unit gyrator then, by theorem 2.4, 

j 	N j  N k  

N k  N k  
= 	N /N k  9 

j 	,/ P4 k  5 

N N k  
Jk 

All the polynomials except 	and IN j h l k 
are obtained directly from the X matrix. 

The exceptions are calculated from polynomials of the X matrix using the 

polynomial identities 2.27 and 2.28, i.e. 

	

k 	j Nik  = (N i  .N k  - i N k N) / N 

and 	jiN k 	( jiN . Nk  - ki N . jk N) / N . 	 (3.2) 

Combination of the identities 3.1 and 3.2 with the X matrix definition (2.1) 

yields expressions relating elements of the two matrices, i.e. 

and (3.3) 

These expressions confirm the direct matrix inversion method of Shipley and 

Coleman [47]. 

The complete inversion process is demonstrated with a general 3-port 

network. 	•The short-circuit admittance matrix (the X matrix) is given by 

       

1
2 

   

N 21 3 2  N 1 3 	3N 2 

2I N3 

 

N, 	
3 
2N, 

N 3 2 2N 3 	W 2 

  

 

N 123 
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, (3.1) and 



N 3  • 12 

N 3  • 12 

The hybrid matrix obtained by interchanging 1 3  and E
3 

is given by 

3-3 

	

21 N3 
	3 

I N2 

N 3  

	

1 	2 

2 
- 3N1 	N/23 

 

1 

2 

-3 

  

E
l  

for which the new polynomials are determined by 

N 13  2 = 	(N I 	1\1 .3  23 • 	12 

fm z 

2,N 3  - ( 2,N 3  

t N 3  = ( 21 N, 2  

3I

- 

N2 • / N2)/ N/23 

3N1 • 2N1) I N 123 , 
2 	3 

.N 2VN 123 9 
2 	3 

I 	3 ,

- 

N2 .,N,)/N, 23  

A similar step interchanges 1 2  and E 	and requires the calculation of three 

more polynomials: 

   

1 

E
2 

E3  

N '23 	3 N2  I 

1  
2 	N 	3  - N

3 	
3 12 	N 2 / 	

I
2 

3 
I N2 -32N 1  

W 

	

13 	13 
 

 

  

N' 23 	(N 123  . N 21 3  - 2' 143 • 21N 3 ) /N132 

N2  = ( 3,1N 2  . N21 3 - 32N1 . • N 2N3)/ N
3 

1 	12 ' 

3 23 	I 	2 
,N = 412  . N, - 2 N . ,N,)/ 

3  
N 12  

The final step interchanges I I  and E 1 
requiring calculation of another 

three polynomials and yields the open-circuit impedance matrix: 

  

I 

	

N21 3 -21 N3 3I N2 	1 

' N3  2_ 	N13 3N '  2 	2 	
I
2 

3 N2  2N '  3 	N 	
I
3 

^ 

   

E
l  

E
3 

N '23  

 

    

    

    

N'23 	
2 

N 13 + 'N 2  3N2 )/N21 3  3 

	

3 	 3 ( 2 N, . N
123 

 - ,N
21 Ki3  ) /m23 

210J p kV/ 

	

( 23 	• N '23 	'3 N 2 )/W3  

P13 

3  N )  2 

3 
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Thus all 20 natural and single-order linkage polynomials of .a 3-port 

network are calculated in three stages, using only the identities 2.27 and 

2.28. 

Practical methods of network analysis based on the above process have 

•been developed by Downs [18, 19, 20] . 	With many networks two economies 

are exercised: the symmetry of matrices of reciprocal networks is exploited 

to save storage space and avoid repeated computation, and the use of a 

common denominator polynomial is not enforced. 

In the initial compilation of the admittance matrix and, to a lessening 

extent, in the calculation of subsequent hybrid matrices, the use of a common 

denominator polynomial for all elements ,  of the matrix would incur the 

introduction and subsequent cancellation of many polynomial factors. 	Without 

a common denominator polynomial the degrees of the numerator polynomials are 

generally smaller, but more polynomials must be manipulated and the computational 

algorithm is more complicated. 	This aspect of the method has been studied 

at length by Downs and need not be pursued here; the purpose of the chapter is 

served by the link between this matrix inversion method and the approach to 

network analysis which is the subject of the thesis. 

3.3 ADDITION OF NETWORK MATRICES 

With a conventional approach, the analysis of a network as a whole 

requires the inversion of a network matrix as discussed in the previous section; 

for a structure of separately analysed constituent networks as described in - 

chapter 1, the same conventional approach to analysis requires the inversion 

of a matrix which is the sum of appropriate hybrid matrices representing the 

individual constituent networks. 	We shall develop an analysis method based 

on this conventional approach and draw a parallel between the computational 

aspects of the method with those of the topological analysis process of 

chapter 1. 

It was demonstrated in chapter 1 that it is sufficient to consider only 

those structures in which the constituent networks are interconnected with 

their ports in parallel. 	In that case the appropriate hybrid matrix is the 

short-circuit admittance matrix and we assume that the matrix of each individual 

constituent network is augmented with rows and columns of zero elements, where 
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necessary, so that it has a row and column •corresponding to every port in the 

structure. 

.Throughout the structure the corresponding port voltages of the constituent 

networks are equal, and the corresponding port currents add together to produce 

the port currents of the complete network; therefore the admittance matrix of 

the complete network is the sum of the admittance matrices of the constituent 

. networks. 

If each constituent network is fully analysed, there is known a numerator 

polynomial and a common denominator polynomial for every minor (including the 

determinant and individual elements) of its matrix. 	The goal of the analysis 

is to calculate the numerator polynomials and common denominator polynomial of 

every minor of the matrix of the complete network. 

Let N denote the complete network, and A,B,C.. denote generic represent-

atives of the constituent networks. 	LetN)(refer to the X matrix of network 

N, let NX i  p9r" denote the column vector comprising the elements of rows 
kAl abc.. 

p,q,r,.. common to column j of NX, and let INA pcir .. denote the minor 

determined by the columns a,b,c,.. and rows p,q,r,.. 	Then the equation 

NX = E AX 
A 

expresses the matrix of the complete network as the sum of the matrices of the 

constituent networks. A general minor of the complete network is expanded as 

follows: 

 X 	X 	NY NX a  N b 
pqr 	 N pqr.. 	pqr.. 	p qr.. 	• ' • I 

Axa 	E 	E cx c  pqr.. 	pqr.. 	
c 	

pqr.. A 

 

• . • 

 

  

E 	Ax pci cir.. 	BXpb ,,.. 	ECX cpcp-.. 
A 

-E 	Axa 	BX I) 	CX pci r.. 	pqr.. 	pqr.. 
ABC 

(3.4) 

•The first observation from this expression is that every determinant in 

the sum of determinants corresponds to an appropriate setting of pointers. 

For instance, the generic determinant of this expression corresponds to the 

setting in which the pointer of port a is directed into the constituent 

network A, b into B,, c into C; etc. 
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A particular determinant is evaluated by a Laplace expansion with the 

columns contributed by the same constituent network grouped together. 	Thus 

each term in. the Laplace expansion is a product of minors, one minor from each 

constituent network, and corresponds to a term in the expression 1.3 for the 

BAPS associated with a particular pointer setting. 

terms in the expansion of any minor of the complete network matrix 

possess a common denominator polynomial which is the product of the Common 

denominator polynomials of all the constituent network matrices, i.e. 

1 

N = Tr A A 
where N andA denote the common denominator polynomials of the matrices of 

the complete network N and the generic constituent network A. 	To maintain 

this common denominator, even for terms corresponding to pointer settings 

which leave some constituent networks without pointers directed into them, it 

is convenient to conceive a minor with no columns or rows. 	Because it must 

have a value of unity, its numerator polynomial is equal to the common 

denominator polynomial of the matrix. 

The addition of matrices is illustrated with the structure of figure 1.3. 

The matrices of the three networks are denoted by 

I 	2  A23 A 'A3 2 a a 

2
, 
A3 43 23A / 0 0 0 

1 

A ,23 

I A A n 2 	3 A 311A2 34 , PAI2 U 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

Bx == 

B2345 

0 	r52 3 010  5 01) 
0345204.5 . 2 3528434 CI  

2 0 re 4  D 5  0 	 D 
3 5745 Pk 45 3 025 3 41/V2 4 a  

B 0 2 E3 3 E3 	" 4 .35 4 25 	235 4 E3Z3 
3 4 

5 B23 
5 

11  0023 4 a 

0 0 0 0 0 0 
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0 0 0 

0 0 

0 0 0 

0 	0 	0 

00 	00.  

0 	0 	0 

0 0 0 Cs46 54C 6 :c 

0 	0 	0 :c6 C45-6 56  C 4 

0 0 o 4c sf, "6 

6 - 5 Aro 4- L45 

C456 

I. 

The pointer setting shown in the figure (1.3) corresponds to an expansion 

of the determinant 

A23 	A2 0 	0 	0 

A 	r12 	CI 
211'43 	D345 3 	

4 A 

	

/ 2 035 0 	0 

31 A2
2E5  

	

3 D45- A2 'a, o 	o 

0 2  B 	0 	B4 
s 

64c 4 35 	21T 4C6 

20, 
5 10034. 

40 

LJ23 C S46 
6r, 

0 	0 	0 	•0 51ft 
0.04- 	C 6  45 

by the three sets of columns {1,3} , (2,4) , and (5,6) . 	Due to the many 

zero elements most of the terms in the expansion are zero; for non - zero terms 

the minors determined by columns 1 and 3 must include row 1 and either 

row 2 or row 3, while the minors determined by columns 5 and 6 must include 

row 6 and either row 4 or row 5. 	Therefore, there is a total of four non- 

zero terms: 

c132456 AX /3 
BX 

24 
CX -T6 C/ 132456 	13 • 	24 ' 	56 

c  132456 AX 
3 BX 2.4 CX56  132 0 	5'46 	/3 	' 	4 6 

,-.132456 
+ 0 /23456 • AX13 BX' 	56  CX /2 	34- 	S6 

c.1324-5-6 

0  123546 AX 
/3 

BX 
/2 	35' • LA46 

(0'6 3 pC 2 
AI, 3 

or  2 4 r 6 ••5 

142  • U35  • 1.04 	
13 4 02 6- 	3 	2 04 

- AL2'5103. 	

6 	A/ 
4  4 B  sC 6  '3Q.5- '‘'.4 	2M '35 ' 

A,23 . 	

4  

B2345-  C456 
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This expression agrees with the expression 1.4 obtained with the topological 

analysis method. 

-The analysis of this structure is far from complete. 	Fifteen more 

pointer settiitgs must be considered before all the terms in the expansion of 

the determinant of the complete network matrix are obtained. 	If all ports 

are external, a total of 2
2 

x 3
4 

= 324 pointer settings must, be considered 

before all the complete polynomials are obtained. 	Nevertheless, the example 

demonstrates the computational equivalence of the matrix-addition and topolo-

gical analysis methods. 

Although the methods are computationally equivalent, the respective 

algorithms which control the computations are entirely different. 	The 

topological analysis algorithm is admittedly quite complex but it only computes 

terms which are, in general, non-zero. 	On the other hand, an algorithm to 

evaluate determinants with appropriate Laplace expansions would be comparatively 

simple but, without suitable traps, would generate all terms, both zero and 

non-zero. 

In the expansion illustrated above there are a total of (6!)/(2!) 3  = 90 terms, 

of which only 4 are non-zero. 	The relative merits of the methods therefore 

depend largely on the degree of interconnection between constituent networks, 

though it is Worth remarking that the structure of figure 1.3, which in this 

respect is not atypical of electrical networks, appears to be better served 

by the topological analysis method. 

3.4 CONCLUSION 

The link between the topological approach and the more conventional 

matrix methods, which concludes the theoretical part of the thesis, places 

the new method in a broader perspective. 	It suggests an alternative 

development of the topological methods, starting from the matrix methods rather 

than from an investigation of topological quantities, and it provides another 

interpretation of the analysis process. 	Thus, if a network is strongly 

interconnected, the topological analysis algorithm, which might become 

preoccupied with the search for pointer loops and the collection of transfer 
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polynomials to form linkage polynomials, can be abandoned in favour of the 

direct expansion of determinants---without compromising either the diakoptic 

approach or the facility for achieving a fully symbolic analysis.. 

Due to the sparsity of non-zero elements the use of matrices, especially 

those whose elements are rational polynomials, in the analysis of most large, 

electrical networks is wasteful in terms of both storage allocation and 

canputational effort. 	In a broad view, the topological approach is seen to 

directly exploit matrix sparsity and should prove superior to the conventional 

sparse-matrix techniques which gain their efficiency from a purely numerical 

analysis of the matrix rather than from a knowledge of the topological features 

of the real system. 



CHAPTER 4 

TOPOLOGICAL ANALYSIS OF  2-PORT NETWORKS 

4.1 .INTRODUCTION 

When it is required to predict the behaviour of any linear network, from 

simple passive filters to multi-stage frequency-selective amplifiers containing 

many feedback loops, the easiest, the most productive, and therefor& usually 

the first endeavour is to lump any distributed components together, estimate the 

small-signal behaviour characteristics of all the components, and calculate the 

response of the network at many frequencies. Although only a starting point for 

more thorough investigations of network characteristics such as noise, non-linear 

behaviour, transient response, and sensitivity to parameter changes; a frequency 

. response analysis provides a broad insight to the performance of a network, and 

presents data which can be readily corroborated with measurements on the physical 

realisation of the network. 

That a digital computer is an invaluable tool for the analysis of large 

networks cannot be disputed; indeed, the importance of ac analysis is under-

scored by the large number of computer programs which have been developed to 

perform this task. 

The first generation of programs, not unnaturally, used the simplest 

• formulation of the analysis problem: the nodal-admittance matrix. 

Two programs are typical: ECAP, which also performs''. dc and transient 

analysis, and has been implemented on most types of large computers; and ACNET, 

which is widely known due to its support on the Honeywell Mark I computer time-

sharing service. However, these programs are inefficient in their use of both 

computer time and computer store-space. For time-shared computers which have a 

limited space available in their core-store this aspect is critical and often 

precludes the analysis of large networks—especially those for which a computer 

analysis would be most valuable. 

Beside a program's computational efficiency and accuracy, another aspect 

which influences its popularity is the form in which data describing the network 

must be presented to it. Most programs will accept, in a uniform and simple 

manner, networks comprising only R, L and C components, but few of the general-

purpose programs will recognise a more complete set of network components. The 

onus is then on the program . user to model . ddvices such as transistors and 

- transformers with, for example, only R, L, C and voltage-dependent current-source 

elements. 



It is often practical to include extra routines in z program to either 

perform this modelling directly, or'otherwise handle an enlarged set of basic 

elements which might include all types of dependent sources and other two-port 

devices. However, for some analysis methods there still remains a fundamental 

difficulty in handling degenerate devices such as ideal isolating transformers 

and operational amplifiers. 

This chapter first surveys the known methods for ac analysis of linear 

'networks, examines briefly the methods for calculating network functions, and 

discusses the desirability of network tearing. 

The approach to network tearing introduced in chapter 1 is illustrated 

by its application to a simple 2-port amplifier circuit, and from this exercise 

there emerges the concept of a structure graph, used to describe any 2-port 

network. It is in attempting to analyse structure graphs in the most efficient 

manner that the concept of algebraic reduction arises, and this, too, is 

illustrated with reference to the amplifier circuit. 

A simpler notation for the polynomials of 2-port networks is introduced, 

and the general topological analysis algorithm of chapter 1 is recast in a form 

better suited to the analysis of structure graphs. 

The remainder of the chapter discusses implementation of the analysis 

method. One major problem is the loss of numerical accuracy due to truncation 

errors in the polynomial coefficients, and this is tackled with the introduction 

of a novel, computationally-simple frequency transformation. 

The final section discusses various forms of polynomial representation 

and their roles in the symbolic analysis of lumped parameter networks, in the 

frequency-by-frequency analysis of distributed-parameter networks, and in 

parameter-sensitivity analyses. 

4.2-  ANALYSIS METHODS 

If the response is required at a large number of frequencies it is 

desirable to use Laplace transform techniques and first calculate the transfer 

functions • as ratios of polynomials in the complex-frequency variable s. From 

these the response can he calculated quite simply and hence more rapidly than 

the point-by-point methods which repeat the whole analysis at each frequency. 

However, in the past, the use of network polynomials has lost favour [5] 

and point-by-point methods have been improved to the , extent that, after the 

first analysis, much of the effort required to invert a matrix is avoided. 
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Notable among the point-by-point methods is that of Pinel and •Blostein[42] 

embodied in a program called KRON, which first compiles the nodal admittance 

matrix of a tree of the network and calculates the Laplace transform of its 

inverse. At each frequency it is only necessary to evaluate this inverse and 

adjust it, with a routine developed by Branin[4] as each link and controlled 

.source is added to the tree to complete the network. Branin's Method, based on 

the work of Kron[29]by which the solution matrix is simply updated rather than 

calculated anew when a link is added, is also suited to the calculation of 

sensitivities with respect to component changes. 

Rational polynomials have not been favoured in the analysis of large 

networks for two reasons: their coefficients are difficult to calculate, and 

the response at some frequencies can be intolerably sensitive to errors in the 

coefficients. However, these two difficulties are largely overcome with the 

methods demonstrated in this thesis (chapter 6), and the many advantages of the 

classical approach to analysis are more easily realised. 

Besides allowing rapid calculation of frequency response, network polynomials 

yield other information on the behaviour of a network. Provided that suitable 

polynomial root-finding routines are available, the zeros and poles can be 

calculated to determine a network's stability and natural frequencies. Transient 

response can be calculated, either by finding the poles and their residues and 

inverting the Laplace transform in the conventional manner, or by working directly 

from the polynomial coefficients and thus avoiding the difficulties associated with 

multiple roots [15,31]. Further, by analytically differentiating the network-function 

polynomials, the group delay can be calculated more accurately than by numerically 

differentiating the phase response with respect to frequency. 

4.3 	CALCULATIONS OF NETWORK FUNCTIONS 

Methods for calculating network funtions fall into three essentially 

.different classes. 

The first class contains those methods which manipulate polynomials. 

Starting with the simpler polynomials representing individual components, the 

polynomials are combined as the components are interconnected until the polynomials 

representing the complete network are obtained. An early method of this type was 

that of Bashkow121; although it can only analyse ladder structures with 'passive 

components it achieved widespread use. A more versatile method described by 
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Riordan [44] is intended to handleactive.  components, but while its forte is 

cascaded 2-port networks, all.hut the simplest feedback paths must be 

approximated. It is a general characteristic of methods of this type, however, 

that they provide the most rapid analysis of those network S restricted to a - 

certain structural type. 

The greatest danger which must be avoided with methods in this class is 

the generation of spurious common factors in the numerators and denominators of 

• network functions. Apart from occupying valuable store space in the computer, 

• the factors are difficult to recognise and cancel, because in practice a slight 

variation in polynomial coefficients due to round-off error can significantly 

alter their values. This is the reason- why large matrices with rational-

polynomial elements cannot be inverted with the conventional methods such as 

Gaussian elimination. 

' Probably the best technique for inverting an admittance matrix of rational 

polynomials has been developed into a practical method by,Downs[18]. The 

inversion of an n x n matrix is accomplished in n similar stages, each stage 

resulting in a different hybrid matrix of the network. The degrees of polynomials 

are kept within manageable bounds by dividing out the predicted common factors 

at every stage. Although the process is efficient for matrices of moderate size 

it is .reported by Neill [40] that for larger matrices a severe loss of significant 

- figures occurs during the division of polynomials and the increase in computing 

time makes the process uneconomic. 

. The second class contains those methods based on topological formulae for 

network functions [13,14,34,48]. Typical of this approach is a program written 

by Calahan [11]. . 

As a•class these methods are notable for their ability to handle component 

. values either numerically or symbolically and to thus-establish the functional 

dependence of the network functions of any set of network parameters. The 

modelling of ideal isolating transformers, mutual indOctances, gyrators, and 

active components is difficult, and the methods vary from one another mainly in 

the techniques adopted to overcome these difficulties. Common to all these 

methods is the severe .limitation imposed on network size by the need to generate 

all the trees of a network graph. The number of trees tends to grow exponentially 

with the number of nodes and branches, so that although some improvement may be 

made in the algorithms to generate trees and calculate their branch - admittance 
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products, the increase in the size of networks that can be analysed is not 

likely to be significant. 

Also in this class are the methods based on the signal-flow graph 

techniques first developed by Mason [33]. Their applications have become widely 

known through documentation of the several versions of the program NASAP [52]. 

Signal-flow graphs have an advantage in that they represent the mathematical 

relationship between the system variables rather than the physical interconnections 

which are represented by the network graph. Consequently the handling of complex 

or degenerate devices is relatively straightforward, but this facility is obtained 

at the expense of approximately doubling the size of the graph to be analysed. 

The transfer functions are found with the application of topological formulae 

requiring enumerative schemes for loops in the graph, and these methods suffer 

the same limitations on network size as. the other topological methods. 

. The third class includes those methods which are based on the concept of 

state-variables and which characterise a network by its A matrix [1]. The chief 

difficulty concerns the seleation of a suitable vector of state variables on 

which to base the A matrix of the general network, and it is in this respect that 

many methods differ [10,30]. The usual analysis procedure is to calculate the 

eigenvalues and eigenvectors of A by an iterative method; the eigenvalues are 

the natural frequencies of the network and hence the poles of the transfer 

functions, and the eigenvectors determine the residues of the poles in all the 

transfer functions. An alternative approach finds the transfer-function zeros 

as the eigenvalues of related network matrices [46]. 

These methods, esipecially those which, like the program CORNAP [43],  employ 

the Q-R transformation of Francis[24,51],have been preferred for calculating the 

natural frequencies of a network because, in working with the A matrix, the 

iterated loop links the frequencies more directly to the network parameters than 

do the methods whose iterations Work with the coefficients of the characteristic 

polynomial. It is well known that round-off errors in the coefficients of a 

polynomial may strongly influence the accuracy of its roots. 

Related to the third class, with regard to their calculation of network 
_t 

poles and zeros, are those methods which apply the Mt:111er [39] routinedirectly 

to the determinant and minor of the nodal admittance matrix. Matrix inversion 

is not required, but the determinant must be evaluated at one complex frequency 

for each of many iterative steps toward successive natural frequencies. When 

used with conventional Gaussian elimination, as in the program LISA [17]. 
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computational efficiency is sacrificed fot the inherent superior accuracy; but 

when combined with a determinant evaluation procedure which uses the efficient 

row- and column-ordering scheme of a sparse matrix technique [3] as in program 

FRANK and its successor SLIC [26] it results in one of the most efficient and 

•accurate tools for the calculation of natural frequencies that is currently 

available. 

' . However, the use of an iterative routine, with its attendant problems of 

control, difficulty With pathalogical cases, and questionable accuracy, is not 

attractive for the calculation of steady-state frequency response. 

Beside the iterative methods, there are direct methods for calculating 

the coefficients of the characteristic polynomial of A, and, at the same time, 

calculating the adjoint matrix of sI - A from which the numerator polynomials of 

all the transfer functions may be obtained [38]. A reliable method of this type 

. is a .  modification by Faddeev [22] of Leverrier's method. But the storage 

requirements and tremendous computational effort involved with these methods soon 

become prohibitive. If A is an n x n matrix, the number of coefficients in the 

polynomials of the adjoint matrix is proportional to n 3 , and the number of 

arithmetic operations needed to calculate them is proportional to n
4

. 

4.4 	NETWORK TEARING 

If both computer store-space and computer time are to be used efficiently 

to permit the analysis of very large networks, it must be possible to tear a 

network apart into sub-networks, analyse them separately, and somehow combine the 

results of their separate analyses to achieve an analysis of the whole network. 

The practicability of this procedure depends entirely on the existence of 

a suitable method for combining the analyses, or solutions, of separate networks. 

The powerful techniques developed by Kron[29] for interconnecting the solutions 

of any physical systems, employ matrix methods and require the inversion of matrices; 

• it is therefore not considered feasible to adapt these methods directly to the 

rational polynomials of the Laplace transform technique. As alternatives to the 

tearing procedure, which gains its computational effectiveness by exploiting the 

sparsity of non-zero elements in network matrices, there are techniques involving 

schemes for matrix decomposition[49] but they too, for the same reason, are not 

amenable to Laplace transform teChniques. 



Before demonstrating the tearing procedure introduced in chapter 1, 

some of its expected advantages are reviewed. An advantage of any tearing 

procedure is that if a topological method is used to analyse the subnetworks 

then the total number of trees that must be found in all the subnetworks is 

considerably less than the number of trees of the complete network. 

When the effect of a network modification is required, only the analysis 

of those subnetworks containing the modified components need be repeated. If 

the modification involves a change in the admittance of a component, it can be 

effected by the addition of a similar component, with either a positive or 

. negative admittance, in parallel with the original network, and the additional 

analysis effort is concerned only with this connection. 	This feature is 

particularly useful in the analysis facility of a computer program for on-line 

. network design. 

A tearing procedure can take advantage of . a situation in which a network 

has some identical subnetworks, for a standard subnetwork .can be analysed once, 

and its solution stored and used later in interconnections with any other net-

works. A network can also be torn apart to separate those subnetworks which can 

best be analysed by different methods; for example, devices with three or more 

terminals need not be modelled with networks of two-terminal devices, as they 

must be for the topological methods, but may be represented directly as a sub- 

network." 

Probably the most significant attribute of a tearing procedure is that by 

.applying it successively to subnetworks, and their subnetworks in turn, until 

each separate network contains a single component, it becomes a method of analysis 

in itself. Characterisation of single components in a manner suited to the inter-

connection of solutions is elementary, hence all the effort of analysis is 

associated with the interconnection of solutions. 

To eliminate the difficulty in representing isolating transformers and.• 

mutually coupled coils, the tearing procedure of chapter 1 requires that a 

network be represented as a structure of multiport networks and that the ports 

may only be connected in series or in parallel. When connected together, a set 

of ports of.different networks is considered to be one port of the structure, and 

will be identified here by a number followed by the synbol s or p to indicate the 

type of connection. 
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The generality of this approach to network tearing is assured by the fact 

that any multiport network composed of 2-terminal, 3-terminal and 2-port devices 

can be represented as a valid structure of 2-port networks. The representation 

for strongly interconnected networks, although difficult to conceive, can be 

generated systematically, while the representation for many practical networks 

r is readily apparent, as will be appreciated with the following-example. 

4.5 	STRUCTURE GRAPHS 

The desired approach to network analysis, outlined above, is demonstrated 

with the two-stage transistor amplifier with current feedback that is shown in 

.figure 4.1. 

The complete network is redrawnin figure 4.2 to highlight its ac-signal 

behaviour, before being represented as a structure of 2-port constituent networks 

as in figure 4.3. 

The first point to notice is that to accomplish the representation, a 

trivial 2-port network, N9, without components, has been introduced between 

• ports 2s and 3p, whereas all the other 2-ports contain a single component. 

Because the complete network and all the constituent networks each have two ports 

it is convenient to adopt the sign convention for currents which is shown in 

figure 4.4; the arrow directed from the first port to the second port indicates 

which port is the second port and thus determines the direction of positive 

currents. 

.Figure 	Sign.  convention for voltages and currents 
of-a,2-port network. 

The representation of the amplifier by figure 4.3 is valid because 

1) the networks connected at each port share either a common•

voltage (p) or a common current (s), and • 

each port could be isolated by ideal transformers without 

affecting the behaviour of the network. 

The structure of the complete network is represented diagrammatically by 

a graph whose nodes correspond to ports of the structure and whose branches 

correspond to the constituent 2-port networks, as in figure 4.5. The first and 



Figure 4.1 Circuit diagram of two-stage transistor _ 
amplifier. 

Figure 4.2 Network diagram highlighting small-signal 
behaviour. 

Figure 4.3 Complete network as a structure of 2-port 
networks. 
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-second ports of the complete network are identified by connecting between them 

a closing branch which is shown dashed and labelled BO in the figure. It 

should be remembered that the arrows identify the first and second ports of the 

branches, as they do in figure 4.3, but do not indicate the direction of any 

signal flow. 

BO 

I. Figure 4.5 	Structure graph 

The graph of 2-port networks, here called the structure graph,  is peculiar 

to this approach and shows clearly the main signal paths of the network: For 

the amplifier network it provides a rigorous procedure for representing the main 

signal path through the amplifier and clearly identifies the two major forms of 

feedback; the voltage feedback with the emitter resistance of the second stage, 

and the current feedback around both stages. 

If at this stage we assume that a computer is programmed to interconnect 

the solutions of any number of constituent 2-port networks connected in any 

structure, and that the solutions or analyses of the constituent networks are 

available to the computer, then all that remains is to specify how the networks 

are interconnected. This could be accomplished, for example, simply by listing 

all branches of the structure graph against the pairs of nodes between which they 

are connected, as follows: 

BO: lp 5p, Ni: lp 6p, N2: 6p 7p, 

N3: 7p 8p,. N4: 8p 9p, N5: 9p 2s, 

N11: 2s 4s, N12: 4s 5p, N10: 3p 4s, 

N9: 

N7: 

2s- 3p, 

lp 10p. 

N8: 10p 3p, N6: lp . 10p, 

However, if the solution of all the constituent networks containing a 

single component were interconnected at one time, as might be implied by this one 

I. 	list of branches, there is no reason to believe that this. method of analysis- would 
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by any more efficient than the conventional methods which combine all the 

components at one time. To appreciate the value of a tearing procedure in terms 

of computational efficiency, the constituent networks should be combined in sub-

structures to form larger constituent networks, which in turn are combined in 

new structures )  until, after many such stages, -the complete network is formed. 

4.6 'ALGEBRAIC REDUCTION 

It is apparent with the amplifier network, as it is with most networks, 

that the most common (and simplest) substructure combines two 2-port networks to 

form a third 2-port network. For example, networks N6 and N7 are connected in 

parallel-parallel, and the resulting network is cascaded with N8. Because the 

result after each combination is another 2-port network, these operations may be 

specified by an algebraic expression such as 

B1 = (N6 pp NI-7) c N8 	 (4.1) 

where pp and c represent the interconnecting operations of parallel-parallel 

and cascade respectively. To complete the set, there are three more operations, 

ps, sp, and ss, representing the respective interconnections of parallel-series, 

series-parallel, and series-series. 

Substructures in another part of the network could be similarly specified 

by the expression 

82, = ((Ni c N2) c (N3 c N4)) c N5. 	 (4.2) 

The order in which the cascade operations are performed does not affect the 

result, so the brackets in this expression could be deleted. The above expressions 

are assigned to numbered blocks which serve to identify them either in a subsequent 

algebraic expression or in a list of branches of a structure graph. 

After the constituent networks have been combined according to the 

expressions 4.1 and 4.2, the complete network is said to be algebraically reduced  

and is represented by the structure shown in figures 4.6 and 4.7. Although it would 

be better, at this stage, to analyse the subnetwork consisting of networks N9, N10, 

N11, B1 and B2, and algebraically cascade the result with network N12, for the sake 

of brevity all these constituent networks are combined at one time, as specified 

by the list of branches: 

BO: 1P 5P, 	Bl: lp 3p, 	B2: lp 2s, 

N9: 2s 3p, 	N10: 3p 4s, 	N11: 2s 4s, 

N12: 4s 5p. 
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Figure 4.6 	Complete network as an algebraically 
reduced structure. 
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Figure 4.7 Algebraically reduced structure graph. 

The computational effort required to analyse a structure of 2-port networks 

is roughly proportional to the product of the degrees * of the nodes in the 

structure graph with the closing branch included. For a series branch structure 

corresponding to the cascade connection of two 2-port networks the node-degree 

- product is 8; for the simple structure with two branches in parallel the node-

degree product is 9 1  and for the structure of figure 4.7 the node - degree product 

is 162. Hence the total effort required to analyse the two-stage amplifier by 

analysing separately the seven substructures, specified by the two algebraic 

network expressions and the list of branches, is proportional to the sum of the 

node-degree products: 9 + 5x8 + 162 = 211. This is considerably less than the 

effort required to analyse the structure of figure 4.5 as a whole, which has a 

node-degree product of 10,368. 

An algebraic network expression is, in genera4..a concise specification 

of Combinations of 2-port networks which correspond, in the structure graph, to 

combinations of pairs of branches which are either in "series" or in "parallel". 

It is interesting to note that algebraic reduction as defined above is therefore 

analagous to the combination of 2-terminal impedances in series or parallel which 

simplifies the analysis of complex structures of such devices. Just as the 

combination of two impedances, either in series or in parallel presents a very 

.* the degree of a node is the number of branches connected to it. 
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simple problem of analysis and is used whenever possible to simplify a more 

difficult analysis problem, so does the combination of two branches in the 

structure graph present a comparatively simple problem with the interconnection 

of their corresponding 2-port networks, and algebraic reduction should therefore 

be used wherever possible. 

The networks with a single component could be specified by both a mnemonic 

code for the type of the network, and a number for the component value. For 

example, if T denotes a 2-port network with a single 2-terminal device placed 

in parallel with both ports, .S denotes a 2-port network with a single 2-terminal 

device in series with both ports, and R and C denote resistance and capacitance 

respectively, the expressions 4.1 and 4.2 might be rewritten for a computer as 

Bl = (SR10E3 pp SC100E-12) c SC.1E-6 	 (4.3) 

and 

B2 = TR250E3 c N2 c TR5E3 c SC.2E-6 c TR50E3 	(4.4) 

These expressions illustrate a form of network description which is easy 

to prepare and can be interpreted by a programmed computer. In comparison with 

the conventional methods of network description, using lists of branches and nodes, 

it has the advantage that it is easy to interpret mentally and mistakes are more 

likely to be recognised. A formal specification of this language for network 

description is given in section 5.5. 

POLYNOMIALS OF 2-PORT NETWORKS 

From chapter 1, the linkage polynomials. of a 2-port network are given by 
2 AA 

[LI 	1132 	{ 1 = 

1 2 	N12 1214  N 	E2  

With all networks limited to two ports the sign convention for currents is changed 

(see figure 4.4) and the notation for polynomials is simplified. The new 

polynomials are given by 
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The new and old polynomials are therefore related as follows: 

2 
Ni = 

The polynomial identity 2.27 becomes 

N3.N2 = N4.N1 - N5.N6 . 	 (4. 7) 

4.8 	ANALYSIS OF 2-PORT NETWORK STRUCTURES 

• For structures containing only pairs of 2-port networks, as occur .  in 

algebraic reductiOn, a non-topological, method of analysis using the set of six 

1 polynomials has been known for some time. Expressions relating the polynomials 

of the complete network to the polynomials of its two constituent networks have. 

beenpublished by Mathaei . [35]. 

If networks A and B are cascaded to produce a network N, the polynomial 

relationsips are: 

Ni = Al.B1 + A2.B3 

N2 = Al.B2 + A2.B4 

N3 = A3.B1 + A4.B3 

N4 = A3.B2 + A4.B4 

N5 = A5.B5 

N6 = A6.B6 	 (4.8) 

If networks A and B are connected in parallel-parallel, the polynomial 

relationships are: 

Ni = _A1.82 + A2.B1 

N2 = A2.B2 

N3 = A2.133 + A3.B2 + Al.B4 - A6.B5 + A4.B1 - A5.86 

N4 = A4.B2 + A2.B4 

N5 = A5.B2 + A2.85 

N6 = A6.82 + A2.B6 	 (4.9) 
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These two sets of expressions can be derived with the topological 

analysis algorithm, or by multiplying or adding the appropriate parameter 

matrices defined by the equations 4.5 and 4.6, and by using the identity 4.7. 

Algebraic reduction occurs so frequently in the analysis of networks that it 

pays to program these expressions directly, rather than implicitly with a 

topological analysis algorithm. They appear in an algorithm to evaluate network 

expressions which is described in section 5.5.3. 

If the topological analysis algorithm has to deal only with 2-port 

networks, polynomial products contributing to closing polynomials can be 

calculated according to the equation 1.7 rather than the equation 1.3. The 

complete algorithm is then summarised as follows: 

a) To the set of real constituent networks add the closing network. 

b) With each port associate a pointer which may be directed into any 

attached network (real or closing). 

c) Set the polynomials of the closing network to zero. These 

polynomials will be employed 'as accumulating sums of products 

of polynomials of the real constituent networks. 

Generate every possible setting of pointers once. and only once. 

For every setting take the following steps: 

. i) . Search for all possible pointer loops. 

ii) 	Determine the polynomial factors expressed in equation 1.7. 

This expression will consist of a term which includes among 

its factors a natural polynomial of the closing network, and, 

if the closing network is traversed by a pointer loop, 

another term which includes among its factors a transfer 

polynomial of the closing network. Evaluate both terms using 

the polynomials of the real constituent networks and add the 

resulting products to the appropriate polynomials of the closing 

network. 

At the completion of step (d) calculate the polynomials of the 

complete network N from the accumulated polynomials of the closing 

network N using the equations 



N1 = T4 

N2 = T3 

N3 = T2 

N4 = Ni 

N5 = -T6 

N6 = -T5 

The latter equations were derived from the equations 1.6. 

(4.10) 

Potentially the most difficult and time-consuming step is (d)(i), but 

in many respects this step is similar to the task of finding the trees of a graph. 

Indeed, an efficient algorithm -  for generating the trees of a graph {7] has been 

described using the same concept of pointers. The principal difference is that 

in the generation of trees a pointer setting which includes a pointer loop 

contributes zero to a sum of branch admittance products and is entirely disregarded; 

in the analysis of a structure graph, however, a pointer loop contributes a 

difference between two polynomial products which may not necessarily be zero. 

Although more calculation is required with each pointer setting, because poly-

nomials rather than single numerical quantities must be manipulated, the effort' 

required to generate pointer settings and detect pointer loops of a structure 

graph is the same as the effort required to generate the trees of a graph of 

- similar complexity. 

To illustrate the above algorithm it will be used to derive the expressions 

4.9 resulting from the analysis of two networks connected in parallel: 

a) The closing network N is included in the structure graph with the 

constituent networks A and B. 

b) Ports 1 and 2 both have pointers which can be directed into all 

three networks. 

- - 
c) The polynomials N1, N2, ..., N6 of the closing network are set to 

zero. 

d) All the pointer settings are generated as shown in figure 4.8. 

For the first pointer setting there can be no pointer loop and its 

polynomial expression is 17,12.A3.132. Before proceeding to the next 

pointer setting, A3.B2 is added to the current value of T2 (initially 

set to zero in (c)). With the second pointer setting a pointer loop 

can be drawn and the expression in equation 1.7 becomes 

N2.(A4.131 - A5.86). Thus two more terms are added to T2. 
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Figure 4.8 Nine pointer settings for a paralleled pair of 
2-port networks A and B... 
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d) (cont.) 

When this step is completed the polynomials of the closing network 

are represented by the expressions: 

Ni = A4.B2 + A2.B4 

-112 = A3.B2 + A4.B1 - A5.B6 + Al.B4 - A6.B5 + A2.B3 

-1113 = A2.B2 

T14 = Al.B2 + A2.B1 

-115 = -A6.132 - A2.B6 

146 = -A5.B2 - A2.B5 

e) The expressions 4.9 follow after using equations 4.10 to relate 

the polynomials of the complete network to those of the closing 

network. 

4.9 	IMPLEMENTING THE .ANALYSIS METHOD 

After the tearing procedure has been applied to a network as many times 

as are possible, all the constituent networks contain at most one component and 

are called basic networks.  The analysis of a basic network is generally straight-

forward, requiring only the assembly of its six polynomials. Because there are 

only a few different types of basic networks, and they occur frequently in many 

complete networks, it is convenient to construct a table of their polynomials, 

as in'table 4.1. It is an interesting but irrelevant exercise to find a minimum 

set of basic networks from which all other basic networks, and hence all networks, 

can be formed by interconnecting their solutions. 

With reference to table 4.1 it should be noted that it is not necessary 

for a 2-port network to have any particular admittance, impedance, or hybrid 

matrix representation to be meaningfully characterised by a set of six polynomials. 

Indeed, an ideal operational amplifier has no such matrix representation, although 

it does have a forward transmission matrix as in equation (5) and is characterised 

by the polynomials 0, 0 0, 0, 1, O. All the polynomials of a network may be 

multiplied by some common factor without affecting the characterisation. 

The polynomials of a transistor specified by its h parameters are obtained 

by expressing the parameters as ratios with the common denominator of one, and 

identifying the polynomials with appropriate numerators and denominators. The 

six polynomials, in order, are 
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Alternatively, if a transistor is modelled by, say, a -  hybrid-pi network 

- then it is analysed, in the same way as any other network, by applying the 

tearing procedure until all the passive components and the controlled source 

belong to separate basic networks. 

Most passive networks such as filters with bridged or paralleled T, ladder, 

or lattice structures ("structures" used here in the conventional sense) have a 

very simple structure graph, irrespective of the number of components, and can 

be fully described by a single algebraic network expression. Networks with this 

property (the author ventures to call them algebraic networks)  are analysed with 

a rapidity which matches that of the methods in the class mentioned first in 

section 4.3. Even multistage amplifiers with many feedback loops have a 

comparatively simple structure after algebraic reduction. 

The effort required to analyse a structure of 2-port networks is of the 

same order of magnitude as that required to analyse a similar structure of 

2-terminal devices with a topological method. Comparison of a graph of 2-terminal 

devices representing the network of figure 4.2 with the algebraically reduced 

structure graph (figure 4.7) of the same network would therefore illustrate one 

of the advantages of this method over existing topological methods. In terms of 

computing time, this method imposes a penalty commensurate with a network's 

complexity (indicated by the node-degree product of its algebraically reduced 

structure graph) as distinct from a network's size (indicated by the number of 

components). 

Besides judging a computer program by its computing speed, another 

important consideration is its computer-store requirement. Programs implementing 

the various features of this approach have been written in ALGOL and run on an 

Elliott 503 computer. A basic program, which reads data in the form of algebraic 

network expressions and branch lists, assembles polynomials of basic networks, 

and calculates the polynomials of a complete network, occupies approximately 4000 

locations of 39-bit words. Over 2000 words are left in the main store for work 

space, which is consumed at the rate of approximately 16 words for every reactive 

'component. 

This last fact illustrates another advantage of the tearing procedure: 

individual components can be assimilated by an algebraic network structure as they 

are read from the input data file, and only the reactive components consume extra 

:store space because they may increase the degrees of the network polynomials. 
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Thus the size of networks that can be analysed depends mainly on the number of 

reactive components; , large passive filter complexes with 100 reactive 

components and over 200 components altogether have been successfuJly analysed 

with less than 2000 words of store space. This compares favourably with 

matrix methods of analysis which •consume store space in proportion to the 

square  of the number of nodes or the number of meshes. 

Another version of the program * written in FORTRAN has been implemented 

on a GE 265 time-shared computer which has an available core store for both 

program and data of less than 5300 words of.20 bits. Although this program will 

only accept network data in the form of algebraic network expressions, it will 

analyse networks whose polynomials have degrees of up to 40. 

Implementation of the full algorithm for analysing general structures of 

2-pOrt networks is not without its problems. At its simplest each pointer 

setting is treated independently and each polynomial product is formed from the • 

polynomials of the constituent networks. But at the expense of extra primary 

store, both the speed and accuracy of the algorithm can be improved. First, with 

a suitable method for generating pointer settings as suggested in section 1.4.2,

•intermediate polynomial products can be transferred from one pointer setting to 

the next. Second, in evaluating the expression of equation 1.7, it may be 

decided before polynomial multiplication begins that, for the j-th pointer loop, 

n. = t.
3
, in which case the expression is exactly zero. This decision not only 

J  

saves time, but---and this is more important---it eliminates a potential source 

of round-off error which would be introduced if the difference between two large 

and nominally equal polynomials was calculated. 

An optimised algorithm for topological analysis is described in section 

5.6. 

This program, called ALENA (Algebraic Linear Electrical Network 

Analysis), has become widely available through its support by 

Honeywell as a library program on their national computer time-

sharing system. 
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4.10.  NUMERICAL ACCURACY 

Use of Laplace transform techniques in a general purpose -  method of 

network analysis cannot be contemplated unless the so-called "accuracy" 

problem is overcome. This problem arises in the evaluation of a polynomial 

at a particular frequency and occurs when the exact value of the polynomial. 

is many orders of magnitude less than its constant coefficient, for then the 

difforence between two nearly-equal numbers is calculated, and their round-off 

errors, accumulated during the analysis process, are magnified. 

Clearly, the evaluation of a polynomial will be most accurate at the 

frequency for which the polynomial equals its constant coefficient. Normally 

this occurs at the zero frequency, s = 0, but if the frequency .  variable s is 

suitably scaled and the transformtion s 2  = t2  - 1 is introduced then the 

polynomial evaluation will be most accurate at any desired frequency, given. 

by. t2 = 0 or s = j. 

Thefrequency transformation need only be applied to s 2 and not to s so 

that every polynomial is represented by the coefficients of the terms t ° , st° : 

t2 st2 , t4 , st4 , etc. But it must be applied throughout the analysis process 

or the desired information at s = j - may be irrecoverably lost among the round-off 

errors. The transformation is easy to implement in the analysis process for it 

only .requires one modification to the routine for multiplying polynomials. When 

a product of terms is formed it may be split into two terms as shown: 

ast i  . bstl  = abs 2t i  

= abt
i+3+2 

- abt
i j  

The effectiveness of this frequency transformation was investigated in. 

the analysis of an actual filter complex consisting of two band-stop filters and. 

. one band-pass filter (block B7 of figure 6.1) containing, in all, 50 reactive 

components .  Between certain ports the complete network was known to exhibit a 

pronounced band-pass behaviour, but when analysed without a frequency transforma-

tion the band behaviour was completely masked by round-off error (see, the 'second 

and third columns of table 4.2). The analysis was repeated twice with frequency 

transformations chosen to give the most accurate evaluation at two slightly 

different frequencies in the pass band, so that the differences in the results 

would be entirely due to the round-off errors generated through the analysis 

process. . As expected, the results were most accurate in the pass band, but the 

effect of round-off error was satisfactorily small over the entire frequency 
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• 	FREQUENCY 

cycles/sec 

CALCULATED RESPONSE, 

without frequency 
transformation 

AMPLITUDE,  ci.b.  . 

with frequency 
transformation 

1630 10.714 .7.0398 -24.041 -24.041 

1650  . 8.3458 -4.5865 -18.747 -18.750 

1670 11.802 -5.8016 -17.226 -17.227 

1680 8.2228 -2.5088 -12.028. -12.028 

1690 11.632 -2.8737 -8.0758 -8.0757 

1700 12.284 -3.1705 -5.3857 75.3857 

1740 5.2681 .48114 -4.2088 -4.2088 

1780 10.687 - 1.9100 -.5.6543 -5.6543 

• 1800 8.5790 3.3182 -11.245 • -11.245 

'  1820 7.3544 3.9951 -20.705 -20.707 

- frequency 
.scale 1740 1741 1740 1741 

cycles/sec 

Table 4.2 	Calculated frequency response of a filter complex 

•containing 50 reactive components, illustrating the .effect -

of a frequency transformation. 

1 
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spectrum, the worst case being a loss of five out of nine significant figures 

in the response .calculation at a frequency on the edge of the pass band (see 

the fourth and fifth columns of table 4.2). 

In general, the accuracy problem is alleviated by the frequency 

transformation to the extent that, with one analysis, accurate evaluation of 

response is possible over a band of the frequency spectrum, and in very severe 

cases, such as a filter with many pass or stop bands, may the analysis have to 

be repeated several times to cover the entire frequency spectrum. 

4.11 	POLYNOMIAL REPRESENTATION 

Although the term "polynomial" implies that it be represented by a list 

of real coefficients, it may not be expedient to use this form of representation 

in the analysis of some types of networks. For example, the problem of allocating 

store locations for polynomials would be greatly simplified if they were 

represented by complex numbers, being their values at a particular frequency. 

This simpler representation becomes an attractive alternative to the frequency 

transformation discussed in the previous section if the accuracy of the polynomial 

coefficients has such a critical bearing on the response that the analysis has 

to be repeated many times with different frequency transformations. 

For networks with distributed-parameter subnetworks the complex number 

representation must be used together with some tearing technique. However, with 

the approach suggested here, the subnetworks with lumped parameters can be 

_analysed separately using the conventional polynomial representation and only in 

the last stages, when the distributed parameter subnetworks are connected, must 

the analysis be performed at each desired frequency. 

Indeed, such a combined strategy, in which polynomials are represented 

by their coefficients in the early stages of analysis and by complex numbers in 

the final stages, would be ideal for analysing large networks when accuracy was 

important. Constituent networks could be combined in subnetworks whose 

polynomials had degrees of less than, say, 10; the polynomials would be 

evaluated at discrete frequencies, and the analysis completed by combining the 

subnetworks at these frequencies. 

Because the analysis algorithm avoids polynomial division it is also 

practical to represent polynomials by lists of terms each containing _a numerical 

coefficient and a symbolic product of network parameters. In this way a network 

can be analysed with its parameters entered either numerically or symbolically. 
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For the study,of network sensitivities, however, the above polynomial 

representation is not satisfactory because the specification of a. large number 

of variable parameters leads to the proliferation of polynomial terms in unwieldy 

numbers. For a sensitivity analysis it is considered sufficient to calculate the 

partial derivatives of the polynomials with respect to each variable parameter. 

This can be achieved by extending each polynomial coefficient to include a list' 

of first derivatives as well as the constant term, and by modifying the polynomial 

multiplication routine to avoid the generation of second derivatives. 

4.12 CONCLUSION 

The approach to linear network analysis outlined in this chapter establishes 

a modus operandi for computer programs which combine, for the first time, many of 

the desirable features of existing network analysis methods. Specifically) the 

rational polynomials of the Laplace transform technique are used for computationally-

efficient calculation of frequency response; a network-tearing procedure is used 

which makes it practical to calculate the polynomial coefficients of large networks; 

and the analysis process has a topological nature, requiring routines -for polynomial' 

Multiplication and addition only. 

With regard to the wealth of accumulated experience in the application of 

a large number of computer programs for general circuit analysis it is now 

inconceivable that one method should be superior in all applications. In setting 

up computer-aided.circuit design facilities the trend is towards providing a 

varied arsenal of programs, each with unique advantages in some applications. 

• 1 	In this context, programs based on the new method provide a more economical and a 

more complete frequency analysis of most types of filters and equalisers, as well 

as many types of amplifier circuits. It might also be chosen for the ease with 

which it handles degenerate devices and active components. In designing such 

programs consideration must be given to numerous options which cover such aspects 

as input data format, a library of basic networks and common subnetworks, inter-

mediate storage ofpolynomials, provision for sensitivity analysis and Monte 

Carlo methods, polynomial representation, and frequency transformations. 

For convenience in calling up the various programs in a design facility an 

attempt is made to define a common form of circuit•description---usually based on 

• a list of branches and the nodes between which they are connected. Unfortunately 

it is in this respect that analysis programs based on diakoptic methods are at a 

disadvantage. 
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The efficiency of• such methods, and this method in particular, is 

dependent on the manner in which the network is torn into its subnetworks. For 

the more complex networks the alternatives are many, and although the tearing 

can be programmed the results could he far from optimum. - However, it is in 

analysing such strongly interconnected networks, • for which the tearing process 

is difficult, that this diakoptic method would, inherently, be less efficient 

than-.the straightforward matrix methods and therefore-would not be recommended. 

• It is widely recognised that the most exacting demands are made of analysis 

methods by programs which design circuits using optimisation techniques. The 

cost of running such programs is strongly related to the efficiency of the 

analysis method, for in each iteration of the optimisation process the analysis 

subprogram normally must calculate the response and its derivatives at many 

frequencies. But, with calculation of the network polynomial and their derivatives 

in a single analysis, it. should be practical to go further than simply, calculating 

the response at fixed frequencies, and determine those frequencies at which the 

response---either-amplitude, phase or delay---has an extreme value. The 

Optimisation process could then be designed to converge on a true equiripple 

designT'ather than a l_eastIsquares approximation at a relatively lare :  

number of predetermined frequencies. It is in these applications that this new 

-approach to network analysis shows the greatest promise.. 

Some of the dissatisfactiOn with existing analysis programs may be 

attributed to the belief of their originators that methods which are highly 

repetitive in nature are "ideally suited to a digital computer"— We can admire 

the elegantly simple formulation and small amount of programming iequired for the 

early matrix-inversion, state-space and topological methods---certainly the . 

,programs provide a successful alternative for analysing networks which an engineer 

might otherwise attempt to analyse by himself. One expects, though, that the 

second generation of programs will make better use of a computer's resources when 

analysing much larger networks. 
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ALGORITHMS  FOR COMPUTER PROGRAMS 

5.1 INTRODUCTION 

The successful implementation of the analysis method, which so far has been 

discussed only in. general terms, is critically dependent on the form of the com-

puter algorithm employed and the data structure with which it is associated. 

Much research work has been directed to the investigation and development of 

suitable algorithms and data structures, and the results of this work are felt 

to be important to an appreciation of the analysis method as a whole. 

The development of suitable algorithms is subject to three criteria. Of 

paramount importance is the need to preserve numerical accuracy throughout the 

analysis process. Of secondary importance are the requirements that the largest 

communications networks be analysed, and that analysis be economic and conven-

ient to the user. 

Unfortunately, the achievement of these goals involves a competition for a 

limited computer resource---the core store---and a reasonable trade-off must be 

made between the size of data storage areas and the size of the program. None- 

. theless, the core store of the Elliott 503 computer, on which the programs were 

run, sufficed for the development of programs with near optimum efficiency in 

their use of both processor time and core store, while allowing the programs to 

be tested on quite large networks. 

This chapter does not attempt to document any particular program.but 

presents those program elements which may be adopted profitably in any 

. implementation of the analysis. method. 

To avoid ambiguity, algorithms are described in a compiler language. 

Attention is focused on the storage and manipulation of polynomials as whole 

• entities because it is this aspect which has the greatest influence on the overall 

efficiency and the accuracy of the Method. The other details of the algorithms 

. are included for the sake of completeness and rigour, and are presented in a 

concise manner which is economic in the use of language and which makes the 

action of the algorithms as clear as possible. The generation of efficient 
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machine code is intentionally left to either an optimising compiler, or 

to a competent programmer who can interpret these algorithms and modify 

. program statements to make best use of a particular compiler. 

. Throughout this and the subsequent chapter it is understood that all 

networks are 2-port networks characterised by sets of six polynomials. 

I. 

5.2 PROGRAMMING LANGUAGE 

Computer programs employing this analysis method could conceivably be 

written in almost any computer language. 	But in practice, with limited 

time available, they could not be written in machine code or an assembly 

language, and it is even doubtful if they could have been developed to their 

present stage of refinement using FORTRAN. 

To maintain algorithms of a complex nature it is essential that they be 

expressed concisely and that most of the programming details be managed 

implicitly by the compiler. 	It is also an advantage that the action or flow 

of an algorithm be readily comprehensible, and, apart'from the liberal - use of 

comments, this can be best achieved with the avoidance of branch statements 

in the source program. 	Such is the argument against low-level, flowchart- 

like languages such as BASIC and FORTRAN. 

The two major algorithms constituting the analysis method are, by nature, 

recursive. 	This fact alone is sufficient justification for the use of a 

compiler language—such as ALGOL--which provides a mechanism for the dynamic 

allocation of storage space during program execution. 	Without this mechanism, 

stacks (arrays) of sufficient size must be declared prior to execution, and 

extra coding must be included So that every time the same code is reentered

•or completed the variables local to that code are either pushed onto, or pulled 

from, the appropriate stack. 	ALGOL is desirable also because of the precise and 

concise definition of its grammar, for the power of its statements which are 

relevent to this application, and for its wide acceptance as a programming 

language. 

1 
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However, in this application ALGOL is deficient In several important res-

pects. For instance, although not possible in ALGOL, it is convenient to group 

together the parameters of a particular 2-port network---such as the addresses 

and degrees of its six polynomials—and regard them as attributes of a single 

entity. Such an entity is then denoted by a single reference variable and may 

be included as a member of any one of a number of sets during the analysis 

process. 

Facilities for the dynamic creation, manipulation, and expiration of 

entities in this way are a natural extension of ALGOL, and have been accom-

plished with SIMULA, a compiler language designed for the simulation of discrete-

event systems. The version used here is essentially that developed by Dahl and 

Nygaard at the Norwegian Computing Centre and implemented on UNIVAC 1100-series 

computers in 1964 [50]* . 

Because SIMULA is not as widely known as ALGOL some of its basic components 

are now introduced within the context of the analysis method; other components 

of the language—e.g. the sequencing set, and operation rules for activities—

are not relevant to this application. 

A class  declaration is, in appearance, like the head of an ALGOL procedure 

declaration; it introduces an identifier for a class of similar entities and 

describes the types and number of attributes which determine a particular 

representative of the class. For example, the declaration 

"class  network (netdegree); 

integer  netdegree; 

begin integer array  npaddress, npdegree 1:6 end;" 

defines a class of entities; each is known as a "network" and has the attrib-

utes of a degree and the addresses and degrees of six polynomials. A 

• particular entity belonging to this class is created by a reference  expression 

such as "new network(10)" and expires when it is no longer referenceable. 

* The language used here differs from the referenced language in that the symbol 

activity  is replaced by the more appropriate symbol class,  as in the more-recent 

SIMULA 67. 
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The creation of an entity involves the allocation and initialisation 

of 	storage space for its attributes, as well as the generation of an element  

which refers to the entity. 	It is the element rather than the set of attributes 

which is manipulated, and it may by referenced either by an element variable or 

as the'member of a set. 	Thus with the declarations 

"element this network; 

set basic networks;" 

the statements 

"this network:- new network (10); 

include (this network, basic networks);. 

this network:- first (basic networks);" 

have the effect of creating a new "network" of degree 10 which .  is denoted by - 

the variable "this network"; of placing this element last in the set or list of 

"basic networks"; and of altering the variable to denote, instead, the first 

element of this set. 	With many other statements and expressions of this type 

we gain the benefits of a powerful list-processing facility. 

A necessary facility of the language is the connection mechanism by which 

access is gained to the attributes of a particular entity. 	For example, if it 

is desired to •assign to the integer variable "adrs" the address of the third 

polynomial of the "network" which is first in the set of "basic networks", it 

could be accomplished with the statement 

"inspect first (basic networks) when network do adis := npaddress [3] ;". 

When this statement is executed the entity referred to by the element 

expression "first (basic networks)" is inspected, and if it . is . from the "network" 

class the statement following the "do" is executed and the attributes of the 

referenced entity are made available to it. 	The connection verb "inspect" 

• may be• replaced by "extract", in which Lase the connection statement would have • 

the additional effect of removing the referenced element from the set of "basic 

- networks" to which it belonged. 

The algorithms presented in this chapter are written in SIMULA, although 

some licence is taken with the declaration of variables and specification of 
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procedure parameters. 	Unless explicitly declared or specified, all 

identifiers are assumed to be global integer variables or integer parameters. 

All parameters are assumed to be called by value unless specifically included 

in a name  list. 	Statements represented by an English description of their 

action are enclosed in diamond brackets< ›. 

5.3 DATA STRUCTURE 

The scheme adopted for the compact storage of polynomial coefficients 

during the analysis process is based on the fact that the degree of a complete 

network is not greater than the sum of the degrees of its constituent networks. 

Thus, if the polynomials of the constituent networks are stored in contiguous 

locations of the core store, the polynomials of the complete network may be overlaid 

in the same locations. 	It is a simple matter to arrange that for all pairs of 

subnetworks which are combined algebraically in the evaluation of a network 

expression, their polynomial coefficients do occupy contiguous locations. 

Six rows of a two-dimensional array are reserved solely for the six 

respective polynomials of all networks. 	When a new network is introduced into 

the analysis process its polynomials are assembled from the left of the array, 

starting in the first vacant column. 

When two networks are combined algebraically the vacant right-hand end of 

the array, starting with the first vacant column from the left, adjacent to the 

constituent polynomials, is used as temporary storage for six polynomials; the 

complete polynomials are first accumulated in these temporary areas, and finally 

assembled in the same locations occupied by the constituent polynomials. 

The polynomials of subnetworks occurring in network expressions are therefore 

overwritten and can take no further part in the analysis. 	However, if a 

subnetwork is to be used in subsequent network expressions, its self-defining 

network expression is assigned to a block, its complete polynomials remain where 

first assembled in the array, and the polynomials of subsequent 

expressions are assembled further to the right. 
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The branches of a structure graph to be analysed by the general 

topological analysis method refer to blocks already assembled from network 

expressions in the above manner. 	Analysis of a structure graph requires 

extra space for the temporary storage of a large number of intermediate 

polynoinials,and two extra rows are added to the main array solely for this 

purpose. 	Single polynomials are stacked in this area during the analysis 

of a structure, in the same recursive manner that sets of six polynomials 

are stacked in the first six rows during the evaluation of a network expression. 

A list of branches defining a structure graph is introduced as a set of 

parameters to a. basic network and may therefore appear almost anywhere in a 

network expression. 	Its complete polynomials are accumulated directly in the 

first vacant locations from the left, in the first six rows. 	Most intermediate 

polynomial products are stored in the extra.  two rows, but some intermediate 

polynomials with a special significance are stored at the right-hand end of the 

first six rows. 

A grammar for network expressions and an algorithm for their evaluation 

are discussed later, in section 5.5. 

To facilitate access to the various polynomials by universal utility 

routines the main' array is actually declared with a single dimension. 	Any 

polynomial is then located with a single number, defined as the address of that 

polynomial, which is the address or subscript of the leading coefficient of the 

polynomial in the main array. 	The address of a network is defined as a base 

address from which can be calculated •the addresses of its polynomials with a 

statement of the form 

"npaddress [px] := base address + px * r1;" 

where "rl" is the length of a row in the equivalent two-dimensional array. 

A typical arrangement of polynomials in the main array is shown in figure 

5.1. 



5.4 UTILITY ROUTINES 

The following procedures are responsible for all manipulation of poly-

nomials stored in the main array. They are described here only to the extent 

that their results, and their interface with calling algorithms, are precisely 

defined. Code for the procedure bodies could be quite simple, but because they 

perform . all the "productive" computation of the analysis process it may be 

desired to optimise them as far as possible---even to the extent of writing 

them in the assembly language of the host computer. 

In the following descriptions the expression "pol(adrs,deg)" refers to the 

unique polynomial whose address is given by "adrs" and whose degree is given by 

"deg"; "pol(adrs)", on the other hand, refers to the polynomial whose address 

is given by "adrs" but whose degree is determined by the computation process. 

procedure polclear (adrs,deg)• 

name deg; 

<depending on the polynomial representation, if the degree is fixed then 

p 1(adrs I deg):=0.0 (i.e. all coefficients are set to zero); otherwise, 

deg:=-1); 

procedure polcopy (adrel,degl l adrs2,deg2); 

name deg2; 

begin deg2:=degl; 

<pol(adrs2):=pol(adrsl,degl)› 

end; 

procedure poladd (adrsl,degl,adrs2,deg2,adrs3,deg3,sign); 

name deg3; 

begin if sign<0 

then <pol(adrs3):=p01(adrsl,deg1)-pol(adrs2,deg2)> 

else <pol(adrs3):=pol(adrsl,deg1)+pol(adrs2,deg2)>; 

deg3:=<degree of pol(adrs3)> 

end; 
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Arithmetic expressions define the subscripts of corresponding locations in the actual array. 



procedure polmtply (adrsl,degl,adrs2,deg2,adrs3,deg3,sign); 

name deg3; 

begin if sign = 0 

then<pol(adrs3):=pol(adrsl,degl)*pol(adrs2,deg2)› 

else if sign<0 

.then<pol(adrs3):=pol(adrs3,deg3)-pol(adrsl,deg1)%pol(adrs2,deg2)) 

else<pol(adrs3):=pol(adrs3,deg3)+pol(adrsl,degl)*pol(adrs2,deg2)>; 

deg3:=<degree of pol(adrs3)> 

end; 

The above procedure is used for virtually all polynomial multiplication 

and addition. The reason for combining these two functions in the one 

procedure derives from the significant saving in processor time which can be 

achieved when the degree of a polynomial product equals the degree of the 

polynomial to which it is to be added. 

If polynomials are represented by lists of numerical coefficients the 

product of a pair of polynomials involves the multiplication of every 

coefficient of the first polynomial with every coefficient of the second 

polynomial, and the addition of every such arithmetic product to an 

appropriate accumulating sum which ultimately becomes a coefficient of the 

product polynomial. Thus, the process of polynomial multiplication is 

seen to involve a large element of polynomial addition; in particular, it is 

noted that if the accumulating sums are not initially set to zero but 

• initialised with the coefficients of the polynomial to which the product is 

to be added, the desired multiplication and addition is performed 

simultaneously. The need to add a product of polynomials to an existing 

polynomial, in situ, occurs frequently in the analysis process, and with 

the above approach can be achieved with less effort than can the product 

alone. 
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. This economy of polynomial multiplication and addition (or subtraction) 

requires that the six polynomials of any network all have the same degree. 

Although, in theory, this is not always the case, it can be enforced 

computationally by the inclusion of zero coefficients without incurring a 

significant computational penalty. 	And because the degree of a network 

equals the degrees of its polynomials, there is the additional benefit • 

that most of the book-keeping associated with the calculation and storage 

of polynomial degrees can be eliminated. 

However, if polynomials are represented in a different form--such 

as a list of terms each defined by a symbolic product of network parameters, 

a power of s, and a numerical coefficient—the above economy can not be 

realised. 	The "degree" of a polynomial used in these procedures loses 

its significance as the highest exponent of s but continues to serve the 

purpose of determining the number of elements, coefficients, or terms in 

the polynomial, and therefore determines the space that must be allocated 

in the main array. 	With the latter form of polynomial representation it is 

desirable to allow the polynomials of a network to have different "degrees", 

and all the procedures and algorithms presented in this chapter have been 

designed to be applied equally-well in either situation. 	It is necessary to 

change only the bodies of the procedures comprising these utility routines. 

5.5 ALGEBRAIC REDUCTION 

The language in which a network is described to an analysis program 

has a significant bearing on the convenience of that program as an 

analytical tool. 	It should impose few constraints on the types of 

parameters, be concise, "natural", and simple to learn. 

As a means of describing a network, an algebraic network expression 

exhibits the notational economy of a mathematical formula, and, due to 

• the versatility of the many network operations, permits network parameters to 

be introduced in a wide variety of forms. 	For example, a transistor may be 

defined by any lumped parameter model, or any set of H,G,Y,Z, or transmission 

parameters; it may be defined in either a common base, common emitter, or 

common collector configuration, and have the configuration changed 
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algebraically. 	Another advantage of the network expression is that 

it can usually be arranged to reflect the natural structure of the network-- 

• the Manner in which subnetworks are cascaded or paralleled---and is 

therefore easier to comprehend and check. 

Unlike some other methods of network description, a network expression 

strongly influences the analysis process: in this case, by directing the 

order in which subnetworks are combined. 	Thus, the specification of an 

algorithm to evaluate •network expressions depends on their grammatical form. 

For this reason, and also to establish a standard network-description 

language which future analysis programs may adopt, a grammar for network 

expressions is now specified. 

5..5.1 Syntax of Network Ex  resions 

The syntax of network expressions is here .defined in Backus-Naur,Form 

• The metasymbol "::=" has the English meaning of "is 

defined as", the metasymbolt has the meaning of "or", and pairs of 

diamond brackets< > enclose characters which are to be treated as a unit. 

Numbers in the right-hand margin refer to statements which are out of 

sequence. 

(assignment statement) ::= (block) = (network) 

(block> 

1.1 <block number) 

•2 	'<network> 

::= B (block number) 

::= <integer> 

((neiWork))1 

<port interchange operator)(network>I 

<network)<clyadic operatorXnetwork>1 

<basic network) 

2.1 	<port interchange operator) 

r 

 

2.2 	(dyadic operator) 	::= <cascade operator) 

2.21 <cascade operator > 	::= c 

<parallel operator> 
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2,22 (parallel operator) 	::= <port interconnectionXport interconnection) 

2.221 <port interconnection> ::= (parallel port)I(teriet-port> 

2.2211<parallel. port) 	::=p. 

2.2212<aeries,port> 	::= s 

3• 	<basic network) 	:.:=4Cblock>1 	 1 

<trivial network>l<simple network)I 

<ideal transforMer)I<mutual inductor>I 

<yoltage-controlled current,' 

<vpltage aMplifier>I 

<gyrator>I 	. 

•(general network>I . 

<network structure> 

. 	3.1 	(trivial network> 	::= <unit network>l<crass-over network)( 

, <current-inversion NI) 

3.11 <Pnit_network> 	::= U • 

3.12, (cross-over network) 	::= X 

3.13 ‹current-inversion NIC>:1= I 

3.2 (simple network> 	::= <Compcnent position)(component) 

3.21 <component position) 	::= <series position>I(shunt position> 

- 

• 

• 

• <closing .branch>,<branch>I 

<branch list>,<branch>I 

•<branch>,<branch tist> 

3.211 <Series position> 

3.2124hunt position)... 

8 

• = T 

3.3 <ideal transformer> ::= F<parameter> 5 

3.4 '(mutual inductor> ::= M<Oarameter><Parameter><parameter> 

3.5 <voltage-controlled current> 
: := Hkdegree),(polynomial>,<polynomial>1 6 

3.6 . (voltage amplifier> ::=AkdegreeMpolynomial>,<polynomial>] 

3.7 <gyrator> 	. ::= G(parameter) 5 

3.8 <general network) ::= q<degreeMpolynomialMpOlynomial>, 

<polynomial>,<polynomial>,<polynomial>, 

(polynomial)] •  6 

3.9 '(network structure> ::= *branch list)] 

3.91 <branch 1. ist> ' ::=<branch),<closing branch)! 
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3.911 (branch) 
	

<block>:<node part) 

3.9111 (node part> 
	

::= <node number><port interconnection) 

<node number)<port interconnection> 2.221 -  

3.91111<hode number> 
	

::= (integer) 

392 	<closing branch> 	::=130:<node part> 	3.9111 

4  .<component> 	::= <basic component>l<tuned component)!. 

4ompound component) 

4.1  (basic component> 	::= <resistor>l<inductor>l<capacitor> 

4.11 <resistor> 	::= R(parameter) 

4.12 <inductor) 	::= L<parameter> 

4.13 (capacitor) 	::= C<parameter> 	 5 

4.2 <tuned component> 	::= X<Parameter><parameter><parameter> 	5 

4.3 	<compound component> 	::= <second port terminationXnetwork> 	2 

4.31 <second port termination> 
• <short circuit>i<open circuit> 

4.311 <short circuit> 	::= Y 

4.312 <open circuit) 	::= Z 

5 	<parameter> 	::= <real_ number>I 

[(parameter identifier>fl 

• <parameter><multiplying operator><parameter> 

5.1 	<parameter identifier) ::= <any string of characters not containingl > • J 

5.2 (multiplying operator> ::= *1// 

6 	<polynomial> 	::= <parameter>l<parameterXpolynomial> 

6.1 • <degree> 	::= <integer> 

For programming convenience the formats for <integer> and <real number> 

comply with the respective requirements for free-format input of integers and 

floating-point numbers by the particular compiler system which implements 

the analysis algorithm. 

Blank spaces.are generally permitted anywhere in'a network .  expression 

to improve its readability. 

I .  
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If necessary, lower-case characters may be replaced by their 

corresponding upper-case characters and square bratkets[ ] may be 

replaced by round brackets( ). 

5.5.2 Semantics of Network Expressions  

In the above syntax definition a ,"network" is a 2-port network and 

a "component" is a 1-port network. 	A "component" .  may comprise a single . 

2-terminal device (a "basic component"), either a series or shunt DOR 

combination ca "tuned component"), or, in the case of a "compound - component", 

be the first port of a "network" which has its second port terminated in 

either an open circuit (Z) or a short circuit (Y). 

The many symbols that may appear in a network expression are mnemonic . 

and serve as the context by which meanings are attached to network parameters. 

- With this grammar the parameters have the following meanings : 

3:3 	F: secondary to primary turns ratio 

3.4 . M: primary inductance (henries), secondary inductance henries 

coupling coefficient 

3. 	H: numerator and denominator polynomials of the transconductance 

3.6 	A: numerator and denominator polynomials of the amplifier gain 

3.7 	G: gyration resistance (ohms) 

3.8 	N: the six polynomials which fully characterise the network 

4.11 R: resistance (Ohms) .  

4,12 L: - inductance.(henries) 

4.13 C: capacitance (farads) 

4.2 SX:,inductance (henries), resonant frequency (hertz), 

resistance •(ohms)—of a series . LCR combination 

TX: capacitance (farads), resonant frequency (hertz), 

conductance (mhos)---of a parallel . LCR combination 

The format for a polynomial depends on the form of polynomial 

representation used within the program. 	The given definition (metalanguage 

Statement 6) applies when polynomials are represented by a list of numerical 

coefficients, in which case each polynomial must include a parameter for 

every coeffiCient, beginning with the Coefficient of the highest power of 



5-14 

determined by the given "degree". 

Circuit diagrams for some basic networks are given in figure 4.1. 

5.5.3 Evaluation of Network Expressions  

The algorithm which interprets a network expression, assembles the 

polynomials of basic networks and manipulates them algebraically is shown 

in figure 5.2. 	Its right-hand margin contains statement numbers which 

are referred to in the following discussion. 

The data input to the algorithm is in the form of an ordered set of 

"significant characters" (100) which includes all except the editing 

characters-- blanks, line-feeds, etc-,- in the network expression, and 

terminates with .a statement delimiter. 	The data is processed by a single 

call (501) to the recursive prodecure "assemble network". 

• Local to the main procedure (200) is a procedure for combining two 

networks algebraically (210), and local to the latter is procedure "pma" 

(220) whose sole function is to expand a set of three polynomial - index 

parameters and call (224) the utility procedure "polmtply" with the 

appropriate.parameters. 	It multiplies polynomial "pxl" of the first 

network with polynomial "px2" of the second network and accumulates the 

. . product in the temporary polynomial "px3", according to the parameter "sign". 

The addresses of the six temporary polynomials are calculated (230,231) 

prior to combining the two networks.. 

If the polynomials of the first network the polynomials of the second 

network, and the temporary polynomials, are denoted by A,B and T respectively, 

the statements 233-235 perform the cascade operation by evaluating the 

polynomial expressions: 



set significant characters; - 	 100 

boolean expression terminated, closing bracket; 	 101 

integer array tempadrs, tempdeg [1:6]; 	 102 

element this block; 	 103 

class network (netdegree); 	 104 

integer netdegree; 	 105 

begin integer array npaddress, npdegree.[1:6] end; 
	

106 

procedure assemble network (address of this network this network, degree of last •network); 
	

200 

name this network; element this network; 
	

201 

begin integer address of second network; 
	

202 

element second network; 
	

203 

procedure combine the two networks; 
	

210 

begin procedure pma(pxl,px2,px3,sign); 
	

220 

begin inspect second network when network do 
	

221 

begin adrs 2:= npaddressfpx2]; 
	

222 

deg 2:= npdegree[px2] 
	

223 

end; 

polmtply(npaddress[px1], npdegree[pxl), adrs2, deg2, tempadrs[px3], tempdeg[px3 	sign) 	224 

end polynomial multiplication and addition; 

inspect second network when network . do base address: = address of second network + netdegree +1; 
	

230 

for j:= 1 step 1 until 6 do tempadrs[j]:= base address + j * <row length of main array)'; 
	 231 

if<cascade operation is required> 
	

232 

Figure 5.2 Algorithm for evaluation of network expressions (Page 1 of 5) 
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• 

then begin pma (1,1,1, 0) ; pma (1, 2 2, 0) ; 	pma (3, 1, 3, 0) ; 	pma (3, 2,4, 0) ; 

pma (2, 3, 1,1 ) ; pma (2, 4, 2, 1 ) ; 	pma (4, 3, 3, 1 ) ; 	pma (4, 4,4, 1 ) ; 

pma (5, 5, 5, 0) ; pma (6, 6, 6, 0) 

end 

else begin pl:= 1; 	p2:= 2; 	p3:= 3; p4:= 4; 	sign: = -1; 

233 

234 

235 

236 

if 0 irst ports are connected in series) then 	 237 

begin <swap pl and p3>; <swap p2 and p4>; sign:= -sign end ; 	 238 

if (second ports are connected in series> then 	 239 

begin <swap pl and p2>; <swap p3 and p4> ; sign: = -sign end ; 	 240 

pma (pl, p2, pl, 0) ; pma (p4, p2, p4, 0) ; pma (5, p2, 5, 0) ; pma (6, p2, 6, 0) ; 	 241 

pma (p2, pl, pl, 1) ; pma (p2, p4, p4, 1 ) ; pma (p2, 5, 5, 1) ; pma (p2, 6, 6 , 1 ) ; 	 242 

pma (p2, p2, p2, 0) ; pma (2, 3, p3, 0) ; 	pma (3, 2, p3, 1) ; 	 243 

pma (1, 4, p3, 1 ) ; 	pma (6, 5, p3, sign); pma (4, 1, p3, 1) ; pma (5, 6, p3, sign) 	 244 

end; 

for j := 1 step 1 until 6 do 	 245 

begin npaddress ]:= address of this network + j * <row length of main array> ; 	 246 

pol copy (tempadrs ), tempdeg [j] , npaddress [ j], npdegree [j] ) 	 247 

end ; 

netdegree := <maximum of npdegree j> 
	

248 

end combination of the two networks ; 

extract first (significant characters ) 	 300 

when < " (" > do 	 301 

begin assemble network (address• of this network, this network, 10000) ; 	 302 

Figure 5.2 	(Page 2 of 5) 
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if closing bracket 	 303 

then closing bracket: = false 	 304 

else print "TOO MANY OPENING BRACKETS" 	 S 	305 

end 

when <"r"> do 	 306 

begin assemble network(address of this network, this network,0); 	 307 

(interchange the pairs of polynomials{1,4) andf5,61 of "this network"> 
	

308 

end 

309 

310 

311 

.312 

When <"S" or "T'> do 

begin extract first (significant characters) 

when <"R", 	"L", 	"C", 	or "X"> do 

begin<extract and interpret the following parameter(s) which specify a component>; 

<create- a new "network" whose polynomial addresses are based on the 313 

"address of this network", and refer to it as "this networkl!>; 5 314 

<assemble the numerator and denominator of the component impedance -  315 

as the respective polynomials 1 and 3 of "this network">; 

na:= 1; 	da:= 3 

end 

316 

318 when CY" or "Z"> do 	S 

begin assemble network(address of this network, 	this network, 	0); 319 

na:= if <second port is terminated with an open circuit (Z)>then 1 else 2; 320 

da:= na + 2 

end 

321 

322 otherwise print "CHARACTER DOES NOT SPECIFY A COMPONENT"; 

Figure 5.2 	(Page 3 of 5) 



7 

if < component is to be placed in the shunt (T) position> 

then begin zx:= 2; 	nx:= 1; 	dx:= 3 end 

323 

324 

325 else begin zx:= 3; 	nx:= 2; 	dx:= 1 	end;. 

inspect this network when network do 326 

begin npaddress [ zx] := npaddress[5] ; 	npdegree [zx] .:= 	netdegree ; 327 

npaddress [nx] := npaddress [na] ; 	npdegree [nx] := npdegree [na] ; 328 

npaddress [dx] := npaddress [da] ; 	npdegree [dx) := npdegree [da] ; 329 

• npaddress [41 := npaddress [5) := npaddress [6] := npaddress 111 330 

• npdegree [4] := npdegree [5] := npdegree [6] := npdegree [1) ; 331 

polclear (npaddress [zx],  npdegree [zx] ) 

end 

332 

•end 

333 when < "A", 	"B", 	"D", 	"F", 	"G", 	"H", 	"I", 	"M", 	"N", 	"U", 	or "X" > do 	, 

q n <extract and interpret the following characters (if relevant) which . specify a basic network); .be 334 

<create a new "network" whose polynomial addresses are based on the 335 

"address of this network", and refer to it as "this network"); 336 

<assemble the polynomials of "this network" to represent the basic network> 337 

• end 

. when < statement delimiter> do 338 

begin expression terminated := true ; 339 

print "EXPRESSION IS NOT COMPLETE" -  • 340 

341 
end 

otherwise print "CHARACTER DOES NOT SPECIFY A .  BASIC NETWORK"; 	 • 

Figure 5.2 	(Page 4 of 5) 
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operation: 	 400 

if not (closing bracket or expression terminated) then 	 401 

inspect this network when network do if netdegree < degree of last network then 	 402 

extract first (significant. characters) 	 403 

when < "c", "p", or "s"> do 	 404 

begin <extract and interpret the following character (if relevant) which completes 	 405 

the specification of a dyadic network operation; 	 406 

address of second network:= address of this network + netdegree + 1; 	 407 

assemble network(address of second network, second network, netdegree); 	 408 

combine the two networks; 	 409 

got° operation 	 410 

end 

when < ")"> do closing bracket:= true 	 411 

when <statement delimiter> do expression terminated: = true 	 412 

otherwise print "CHARACTER DOES NOT SPECIFY A NETWORK OPERATION" 	 413 

end assembly of network; 

closing bracket: = false; 	 500 

assemble network ((base address of new block>, this block, 10000); 	 501 

if closing bracket then print ."TOO MANY CLOSING BRACKETS"; 	 502 

Figure 5.2 	(Page 	of 5) 
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Ti = A1.B1 + A2.B3, 

T2 = Al.B2 + A2.B4, 

• T3 = A3.B1 + A4.B3, 

T4 = A3.B2 + A4.B4, 

• T5 = A5.B5, 

•T6 = A6 . B6 . 

Statements 241-244 perform the parallel-parallel operation by evaluating 

the polynomial expressions: 

Ti = Al.B2 + A2.B1, 

T2= A4.B2 + A2.B4, 

T5 = A5.B2 + A2.B5, 

T6 = A6.B2 + A2.B6, 

T2 = A2.B2, 

T3 = A2.83 + A3.B2 + Al.B4 - A6.B5 + A4.B1 - A5.B6. 

However, if either or both of the ports are connected in series rather than 

parallel, the effect of cascading with a unit gyrator is first incorporated 

(237-240). 	When all the new polynomials have been calculated the 

Polynomial addresses of the first network are calculated (246) and the 

temporary polynomials are copied into these locations (247), thus effecting 

the assignments : 

• Al = Tl, 

A2 = T2, 

A3 = T3, 	 • 

A4 = T4, 

A5 = T5, 

A6 = T6. 	 • 

Execution of the main procedure begins with the extraction of the 

next significant character from the input file (300. 

If an opening bracket is encountered (301), a recursive call-is made 

to the same procedure (302) and a closing bracket is cancelled (304).- A 

recursive call is also made if a port-ihterchange operator is encountered, 

and the desired reversal operation is achieved simply by interchanging two 
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pairs of polynomial (306-308). 

The assembly of a simple network (309) is preceded by the assembly 

of the numerator (N) and denominator (D) polynomials of a component 

impedance, which, in the case of a compound component (318), requires 

another recursive call to the same procedure (319). 	If the component 

is placed in the shunt position, the six polynomials becone N,O,D,N,N,N; 

if placed in the series position, they become D,N,0 D,D,D. 	The 

assignment of numerator and denominator polynomials is achieved by copying 

polynomial addresses (327-331) rather than polynomial coefficients. 

After assembling a network, and finding (401) that the network 

'expression is terminated neither permanently (with a statement delimiter) 

nor temporarily (with a closing bracket), the decision to continue or 

terminate the procedure depends on the degrees of the last two networks 

to be assembled (402); by not combining two networks if the degree of the 

second is less than the degree of the first, the procedure exhibits a 

preference for combining networks of the same degree and thus minimises 

polynomial manipulation. 	By calling the procedure with a value of 0 or 

10000 in place of the parameter representing the "degree of the last 

network", this decision mechanism is used to ensure that the procedure 

terminates either as soon, or as late, as possible. 

Apart from a closing bracket (411) or a statement delimiter (412);' 

a network should only be followed by a &Odic network operator (404). 

In the latter case a base address for a second network is calculated (407), 

a recursive call is made in order to assemble a second network (408), and 

the two networks-are combined algebraically (409). 

The algorithm incorporates .  no precedence rules—such as the parallel 

operator before the cascade operator—and the user is encouraged to 

introduce pairs of brackets whenever there is doubt about the pcissible .  

execution order of network operations. 
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There.is a clear relationship between the algorithm and the syntax 

definition for network expressions: the calls to the procedure "assemble 

network" in algorithm statements 501, 302, 307, 408, and 319 correspond 

to . references to the metavariable "(network>" in their respective syntax-

definition. statements 0,2,2,2, and 4.3. 

Any program which implements this algorithm must, like any interpreter, 

output unambiguous diagnostic messages whenever a symbol can not be properly 

interpreted. Examples of diagnostic messagesoccur in statements 305, 322, 

340, 341, and 502. 	It is also desirable that . a program should attempt to 

recover from data errors ---either by skipping spurious characters or by 

making suitable assumptions—and, as far as possible, continue scanning 

•the data for further errors. 	However, the algorithm of figure 5.2 has net 

been encumbered with programming details of this nature. 

The algorithm described above is essentially an interpreter rather 

than a compiler; that is, interpretation of a network expression and 

analysis of the specified network are concomitant. 	This simpler approach, 

which requires only one pass through the input data ., is generally 

satisfactory—but in some applications it may prove costly. 	For instance, 

when a data error is discovered, the polynomial manipulation preceding the 

discovery is wasted. 	Also, if the evaluation of a network expression 

should be repeated with different network parameters, as in an iterative 

network-design program, the interpretation is repeated unnecessarily. 	In 

an alternative approach polynomials could be assembled and manipulated with 

procedures controlled by program switches. 	A compiler would interpret 

the input data file, construct a table of fixed and variable network 

parameters, and compile a sequence of program switch settings and parameter 

indices. 

.5.6 -  TOPOLOGICAL ANALYSIS - 

- 5.6.1 Interface with the Algorithm 

The analysis algorithm presented in figure 5.3 as the procedure, 

"topologic" requires that the 'topological data describing the network . 

structure and the parameters of _the individual networks be available. 
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in a particular form. 

If the structure is defined by a branch list, as defined by statement 

3.91 in the syntax definition of network expressions, 'then each branch, 

by'virtue of its positicnin the list, has a unique index number "bx" and 

is linked to corresponding elements in three arrays. 	Two, arrays, "first 

node" and'"second node", Simply list the first and second 'node numbers of 

each branch and thus completely determine the network structure in the 

conventional manner. 	The third array, "branch reference", is a list 'of 

elements referring to "branches" which are representatives of the class 

declered globally as follows: 

"class  branch (branch degree); 

ttain  integer  array bpaddress,. bpdegree, bptag[1:6] end;" 

The attributes of a "branch" determine the address, degree and a tag 

for each of the six polynomials-which characterise a 2-port network. 	The 

"branch degree" is the maximum of the individual "bpdegreeN". 	If a 

polynomial contains only a constant term and its magnitude is zero or unity, 

then its tag is set equal to the polynomials otherwise, its tag is set to +3. 

The analysis procedure assumes that each port in the structure is 

connected in parallel' ratherthan in series. 	Therefore, if a port of a 

constituent network is connected (to other networks) in series it must be 

cascaded with a. unit gyrator: if the first port is connected in series, 

the pairs of branch polynomials (1,3) and (2,4) are interchanged and the 

sign of the tag of polynomial 5 is changed; if the second' port is connected 

in series, the pairs of polynomials (1,2) and f3,4) are interchanged and 

the sign of the tag of polynomial 5 is changed. 	Finally, each transfer 

polynomial (5 and 6) is compared with its corresponding natural polynomial 

(4 and 1 respectively). 	If its tag is +3 and, except for a possible sign 

difference, the polynomial is identical to its corresponding natural 

polynomial then its tag is changed to either' +2 or, if there is a sign 

difference, to -2. 
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Procedure t000logic(nodes, branches, 	closing bx, 	first node", 	second node, branch reference, 	tempadrs, 	stack address); 100 

101 . integer array first node, 	second node, 	tempadrs; 

element array branch reference; 102. 

110 

begin 

boolean possible to extend path, 	loop includes closing branch; 

boolean array listed branch reversed, 	pointer set[1: nodes]; 	 • 111 

integer array listed node, 	listed branch[1: nodes], 	node sum of branch, 	possible pointers into branch[1: branches 112 

class polynomial(paddress, 	pdegree, 	ptag);; 113 

Class directed branch(bx., breversed); . 	boolean breversed;; 114 

116 

element unit polynomial, bb, 	extended product, 	loop polynomial; 

element array closing loop product[1:61; 
set term factors, 	loop natural polynomials, 	loop transfer polynomials; 117 

set array branch list of node[1: nodes]; 118 

- procedure set pointer(k, 	ni . pathstart, 	partial product); 200 

element partial product; 	. 201 

begin integer pptag 	nextadrs; 202 

element b; 203 

procedure 	register 	polynomial(px,bx); 210 

if bx = closing bx 211 

then begin closing npx:= px; 	closing tpx:= 0 end 212 
s 

else inspect branch reference[bx]when branch do 213 

begin tftag:= tftag * bptag(px); 214 

Figure 5.3 Algorithm for topological analysis 	(Page 1 of 8) 
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if tftag = 0 	 215 

then ,cloto next branch 	 216 

else if abs(bptagEpx)V 1 then include(new polynomial(bpaddress[px), bpdegree[px], 1?ptagroaxn, term factors)- 	217 

end; 

procedure register path (k); 	 220 

for k:= k step - 1 until pathstart do register polynomial(if listed branch reversed[k]then 1 else 4, listed branch[k)); 	221 

procedure adjust tag of all branches connected to this node by(a) . ; 

for b:- first(branch list of node[n]), , suc(b) while exist(b) do 	 231 

inspect b when directed branch do possible pointers into branch[bx]:= possible pointers into branch[bx + a; 	232 

element procedure product(polynomial factors, address, degree, tag, sign); 	 240 - 

set polynomial factors; 	 241 

begin extract(if empty(polynomial factors) then unit polynomial else first(polynomial factors)) when polynomial _do 	242 

begin adrs 1:= paddress; 	 243 

deg 1:= pdegree 	 244 

end; 

if empty(polynomial factors) 	 245 

then begin if sign = 0 	 246 

then polcopy(adrs 1, deg 1, address, degree) 	 247 

else poladd(adrs 1, deg 1, address, degree, address, degree, tag * sign) 	 248 

end 

else begin 

• Figure 5.3 	(Page 2 of 8) 
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next factor: 	extract first(polynomial factors) when polynomial do 	 250 

begin adrs 2:= paddress; 	 251 

deg 2:= pdegree 	 252 

end; 

if empty(polynomial factors) 
	

253 

then polmtply(adrs 1, degl, adrs 2, deg 2, address, degree, tag * sign) 
	

254 

else begin adrs 3:= if adrs 1 = tempadrs[1] then tempadrs[2] else tempadrs [ 1 ]; 
	

255 

• polmtply(adrs 1, deg 1, adrs 2, deg 2, adrs 3, deg 1, 0); 	 256 

adrs 1:= adrs 3; 

goto next •factor . 	 258 

end 

end; 

product:- new polynomial(address, degree, if tag = 0 then sign else tag) 
	

259 

•end product; 

inspect partial product when polynomial do 	 260• 

begin pptag:= ptag; 	. 	 261 

nextadrs:= paddress + pdegree + 1 	 262 

end; 

pointer set [n]:= true; 	 263 .• 

listed node [k]:= n; 	 264• 

adjust tag of all branches connected to this node by 	1); 	 265 

for b:- first (branch list of node [n)), suc(b) while exist(b) do 	 • 	 266 

begin possible to extend path:= false . ; 	 267• 

Figure 5.3 	(page 3 of 8) 
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tftag:= pptag; 	 268 

clear(term factors); 	 269 

if abs(tftag)/ 1 then include(partial product, term factors); 	 270 

inspect b when directed branch do 	 271 

begin possible pointers into branch[bx]:= possible pointers into. branch[bx] + 1; 	 272 

listed branch[k]:= this bx:= bx; 	 273 

listed branch reversed[k]:= breversed 	 274 

end; 

for lob:- first(branch list of node[n]), suc(bb) while exist(bb) . do 	 275 

inspect bb when directed branch do 	 276 

if possible pointers into branch[bx] = 0 then register polynomial(2, bx); 	 077 

next n:= node sum of branch[this bx] - n; 	 278 

for nx:= k-1 step -1 until pathstart do if listed node[nx1= next n then 	 279 

begin register path(nx -1); 	 080 

if nx = k -1 	 281 

then register polynomial(3, this bx) 	 282 

else begin lnptag:= ltptag:= 1; 	 283 

clear (loop natural polynomials); clear (loop transfer polynomials); 	 284 

for nx:= nx step 1 until k do 	 285 

begin this bx:= listed branch[nx1; 	 286 

if listed branch reversed[nx] 	 287 

then begin npx:= 1; tpx:= 6 end 	 288 

else begin npx:= 4; tpx:= 5 end 	 289 

if this bx = closing bx 	 290 

Figure 5.3 	(Page 4 of 8) 
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then 	closing npx:= npx; .begin 291 

292 

293 

closing tpX:= tpx: 

loop includes closing branch:= true 

end 

else inspect branch reference[this bx] when branch do 294 

begin lnptag:= lnptag * bptag[npx]; 295 

ltptag:= ltptag * bptag[tpx]; 296 

if lnptag = 0 and ltptag = 0 then goto next branch; 297 

if abs(bptag[tpx]) = 2 

then register polynomial(npx, 	this bx) 299 

else begin if lnptag / 0 and abs(bptag[npx]) / 1 then • 300 

  

end 

include (new polynomial(bpaddress[npx], bpdegree[npx 
loop natural polynomials); 

if ltptag / 0 and abs(bptag[tpx]) / I then 

include(new polynomial(bpaddress[tpx], bpdegreettpx], 

loop transfer polynomials) 

bptag[npx] ), 
301 

302 

bptag[tpx]), 

303 

end 

    

      

end; 

if loop includes closing branch 
	

• 304 

	

then begin closing loop product[closing npx1:- 	 305 

product(loop natural polynomials temPadrs[5], 0, 0, lnptag); 

	

closing loop product[closing tpx]:- 	 306 

product(loop transfer polynomials, tempadrs[6], 0, 0, ltptag); 

Figure 5.3 	(Page 5 of 8) 
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end 

. loop includes closing branch:= false 307 

308 if empty (loop natural polynomials) and empty(loop transfer polynomials) else begin 

then goto next branch; 309 

loop polynomial:- 

product(loop natural 	polynomials, 	tempadrs[3],0, 	0, 	lnptag); 

310 

if ltptag 	0 then inspect loop polynomial when polynomial do 311 

loop polynomial:- 

product(loop transfer polynomials, 	tempadrs(3), 	pdegree, 

inspect loop polynomial when 	polynomial do 

lnptag, 	- ltptag); 

312 

313 

include(loop polynomial, 	term factors); _begin 314 

tftag:= tftag * ptag 

end 

315 

end 

end; 

goto next pointer 316 
• end; 

for nx:= pathstart-..1 step-1 until 1 do if listed nodetnx 	= next 	n then 317 

• begin register path(k); 318 

poto-next pointer 319 

end;. 

possible to extend path:= true; • 320 

next pointer: 321 

if k<nodes • 322 

Figure 5.3 	(Page 6 of 8) 
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then begin if possible to extend path 323 

324 

325 

then revised path start:= path start 

else begin revised path start:= k.+ 1; 

for next n:= 1, next n + 1 while pointer set[next 	n] 	do 326 

end; 

set pointer(k + 1, next n, 	revised path start, 	product(term factors, 	nextadrs, 	0, 0, tftag) 327 

end 

else begin if closing tpx = 0 328 

' then inspect closing polynomial[closing npx]when polynomial do 329 

closing polynomial[closing 	product(term factors, 	paddress, 	pdegree, ptag, 	tftag) 330 

else begin extended product:- product(term factors, tempadrs[4], 	0, 	0, 	tftag); 331 

for px:= closing npx, closing tpx do 332 

inspect closing loop product[pxjwhen polynomial 	do if ptag / 0 then 333 

begin include(polynomial, 	term factors); 334 

include (extended product, 	term factors); 335 

lptag:= ptag; 336 

inspect closing polynomial[px]when polynomial do 337 

closing polynomial[px]:- 338 

product(term factors, 	paddress, 	pdegree, 	ptag, 	tftag * lptag) 

end 

end 

end; 

next branch: 339 

possible pointers into branch[this bx := possible pointers into branch[this bx] 	- 1 340 

Figure 5.3 	(Page 7 of 8) 
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end; 

adjust tag of all branches connected to this node by(+1) .; 	 341 
pointer set[n]:= false 	 342 

end 	set pointer; 

unit polynomial:- new polynomial (stack address, 0, 1); 	 400 

inspect branch reference[closing bx] when branch do for px:= 1 step 1 until 6 do . 	 401 

closing polynomial[0]:- new polynomial(bpaddress[px], bpdegree[px] bptag[px]); 	 402 

for bx:= 1 step 1 until.branches.do 	 403 
begin p:.= 0; 	 404 

node sum of branch[bx]:= first node[bx] + second node[bxli 	 405_ 

if <the three polynomials 3,4 and 5 of this branch are not all zero> then 	 406 

begin include(new directed branch(bx, false), branch list of node[first node[bx]]); 	 407 

p:= p + 1 	 408 

end; 

if < the three polynomials 1,3 and 6 of this branch are not all zero> then 	 409 

begin include(new directed branch(bx, true), branch list of node[second node[bx]]); 	 410 

p:= p + 1 	 411 

end; 

possible pointers into branch[bx]:= p 	 412 

end; 

for nx:= 1 step 1 until nodes do pointer set[n := false; 	 413.  

set pointer(1,1,1, unit polynomial) 	 414 

end topologic; 

Figure 5.3 	(Page 8 of 8) 
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The branch whose index is denoted by "closing bx" is the closing 

branch. 	Its polynomials must be set initially to zero, given positive 

tags, and located at addresses to which the polynomials of the new, 

complete network are to be assigned. 	If either or both of its ports 

are connected in series then its polynomials are interchnaged in the same 

way as those of any other branch. 	Then the relationship between a 

complete network and its closing network is taken into account by 

interchanging the three pairs of polynomialsf1,4), (2,3) and[5 1 6), and 

by changing the signs of the tags of both the transfer polynomials. 

Within the context of algebraic reduction the topological analysis 

Orocedure 	is required to assemble the polynomials of a "basic network". 

The prior interchanging of closing polynomial addresses described above 

ensures that at the termination of the topological analysis the accumulated 

polynomials will represent the basic network and be stored in the correct 

locations. 

The addresses of storage space for up to six temporary polynomials 

(at the right - hand end of the first six rows of the main array) are given 

by the array "tempadrs[1:6]". 	Intermediate polynomial products are to 

be stacked behind a unit polynomial of degree zero at the address given by 

"stack address" (in the last two rows of the main array). 

- 5.6.2 Action of the Algorithm  

Throughout the course of the algorithm the three-attributes—address, 

degree and tag — of any polynomial are conveniently manipulated as a single 

entity declared as a_"polynomial" in statement 113. 	The main procedure 

commences with the creation of seven such entities representing the unit 

polynomial which heads the stack of intermediate products (400), and the 

six closing polynomials (401,402). 

The data describing the topology of a structure is more useful in 

other forms. 	When given any one node of a branch the other node is readily 

found (278) using the sum of the two node numbers. 	It is also convenient to 
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list all the branches connected to a particular node, and to record which 

ends of the branches are connected to that node. 	For this purpose the 

concept of , a "directed branch" is introduced (114); its attributes 

determine a particular "branch" (by its index "bx") and indicate whether 

the relevant node, in whose list the directed branch appears, is the first 

or se6ond node of the branch ("breversed" is "false"  or "true", respectively). 

Node numbers are summed, directed branches are created, and branch 

lists are assembled by the statements 405,407 and 410. 	Note that if all 

the polynomials that might be determined by directing the pointer of a node 

into a branch are zero, that branch is not included in the branch list of 

that node (406,409). 

Also before the algorithm commences, tags associated with each branch 

and node must be initialised: it is noted that at this stage of the 

algorithm none of the pointers are set (413), and it is therefore possible 

for any branch to have the maximum number (1 or 2) of pointers directed 

into it (412). 

The aim of the algorithm is to generate all pointer settings, and, 

• for each one, calculate a product of polynomials and add it to a closing 

polynomial as determined by equation 1.7. 	With only a partial setting of 

pointers certain factors of equation 1.7 will be determined; their product 

is calculated, stored as an intermediate polynomial, and referred to as the 

"partial product". 

The algorithm proceeds by setting pointers one at a time and is 

initiated by a single call of' the procedure "set pointer", with parameters 

specifying that the first pointer to be set is that of the first node, that 

the current pointer path commenced with the first pointer to be set, and that 

the partial product of polynomials at this stage is the unit polynomial (414). 

The setting of one more pointer determines more factors of equation 1.7. 

•As the factors are determined they are included in the set of "term factors" 
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and it is Only after all the new factors have been included, and it is 

known that none of them is zero, that the factors are multiplied together 

and a new "partial product" is formed. • 	This policy is followed throughout 

the algorithm: no manipulation of polynomials is undertaken until it is 

a”ured that such manipulation will be productive. 	At each setting of a 

single pointer three different polynomial products may need to be formed 

and three sets are allocated for this task (117). 	The tag of a prospective 

polynomial factor is inspected and if ±1 the polynomial is not included in 

, the set. 	If the tag is zero the entire set may be neglected and no further 

polynomials included. 	In this way the occurrence of zero or unit 

polynomials is exploited to the fullest extent in speeding up the algorithm. 

The element procedure "product" (240) provides the bridge between the 

polynomial manipulation requirements of the algorithm and the utility .  

routines of section 5.2. 	Its function is to multiply together all the 

.polynomials included in a specified set and to either add the resulting 

polynomial to a specified polynomial or store the product at a specified 

location. 	 Intermediate 

products are stored alternately in the space allocated for the first two 

temporary polynomials (255,256). 

The • inclusion of constituent polynomials . in the set of "term factors" 

is performed by the procedure "register polynomial" (210). 	A tag ("tftag") 

for the product of members of the set is revised (214) and if it becomes 

zero (215) the setting of the last pointer is rejected (216). 	If the 

polynomial to be registered belongs to the closing branch (211) then a.note 

is made (212) of the closing polynomial to which the full product of. 

constituent polynomials is to contribute. 

Throughout the course of the algorithm a list of the nodes whose 

pointers have been set and a list of the branches to which they are directed 

are maintained in the arrays "listed node"' and "listed branch" (112). 	The 

boolean array "listed branch reversed" (111) indicates whether the listed 

node corresponding to the listed branch is its first or second node. 
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.• When the procedure "set pointer" (200) is entered the "pointer set" , 

flag of nr,de n is raised (263) and this node becomes the k-th "listed node" 

(264). Until the pointer is actually directed to a particular branch the 

tags of all the branches connected to this node are reduced by one (265). 

The pointer is then directed in turn to each of the branches connected to 

this node (266-340). 

With each setting of this pointer the set of "term factors" is 

•initialised to include only the "partial product"(268-270). 	The branch 

to which the pointer is directed becomes the k-th listed branch (273,274) 

and its tag is increased by one (272) to cancel the adjustment made in 

.statement 265. 	All the branches connected to node n are scanned (275) 

and if it is determined that now no pointers can be directed into one of 

these branches then its . second polynomial is included in the set of "term 

factors" (277). 

Pointers are set in an order which attempts to follow the formation of 

pointer paths. 	The current pointer path, which commenced with the k-th 

listed node, where k 	"pathstart", is extended until it intersects either 

a previous path or itself. 	The next node in the current pointer path is 

indicated by "next n" (278). 	If "next n" is not among the listed nodes ' 

then it is possible to extend the pointer path (320). 	In this case (323) 

the polynomials in the set of "term factors" are multiplied together to 

form a new "partial product" and the procedure "set pointer" is called 

recursively (327). 	However, if "next n" is among the listed nodes the 

current pointer path can not be extended; therefore, before the procedure 

is called again a search must be made for a new node (326) with which to 

start a new pointer path (325). 

When all pointers have been set the product of "term factors" is 

• added to the appropriate natural closing polynomial.. (330). 	Hortever, if 

the pointer setting was such that the closing branch was traversed by some 

pointer loop then two different polynomial terms are determined and must 

be added to the appropriate natural and transfer closing polynomials. 
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1n this case the product of "term factors", which is common to both terms, 

is calculated and stored in the space allocated to the fourth temporary 

polynomial, and is referred to aS the "extended product" (331). 	The 

remaining factors of the two terms were previously calculated by the 

algorithm (305,306), stored in the space allocated to the fifth and sixth 

temporary polynomials, and each referred to as a subscripted "closing loop 

product". 	For both terms (332), the appropriate "closing loop product" 

(334) and the common "extended product" (335) are included in the cleared 

set of "term factors" and their product is added to the appropriate closing 

polynomial (338). 

If the current pointer path terminates because "next n" is found 

among the listed nodes corresponding to previous pointer paths (317), each 

branch traversed by the path contributes a natural polynomial to the set 

of "term factors". 	These polynomials are registered by a call (318) to 

the procedure "register path" -(220). 

. If "next n" is found among the listed nodes corresponding to the 

current pointer path (279) then a pointer loop is detected. 	The natural 

polynomials determined by that part of the path which is not included in 

the loop are registered by statement 280. 	If the loop includes only the 

last listed branch (281), it is not a proper pointer loop but simply a 

reversal of direction; this branch has both its pointers directed into it 

and therefore contributes its third polynomial to the set of "term factors" 

(282). 

To handle a_preper pointer loop the two sets reserved for loop 

polynomials are cleared (282, 284), the branches traversed by the loop are 

scanned (285), and the appropriate (287-289) natural and transfer polynomials 

are included in their respective loop-polynomial sets (301, 303). 

It is at this stage that as - most important decision is made which affects 

both the economy and the accuracy of the algorithm. 	If the corresponding 

natural and transfer polynomials are identical in magnitude (298), the two 
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loop products have a common factor; this factor is therefore included 

directly in the set of "term factors" (299) rather than included in both 

sets of loop polynomials. 

Normally, if the loop does not traverse ,  the closing branch, the "loop 

natural polynomials" are multiplied together, their product is stored in 

the space allocated to the third temporary polynomial, and the product is 

referred to as the "loop polynomial" (310). 	The "loop transfer polynomials" 

are then also multiplied together and the resulting product is subtracted 

• from the "loop polynomial" (312). 	The difference, representing a factor 

(n. -• t. in 'equation 1-7, is included in the set o "term factors" (314, 315). J.  

'But,  if both sets of'loop polynomials are empty (308) this setting of 

the last pointer is rejected (309). 	This situation can only occur if the'. 

corresponding natural and transfer polynomials of 'every branch in the loop 

are identical in magnitude, and in such a case the two loop products would 

be equal and their difference (n. - t.) would be zero. 	However, if both 3. 

products were computed, in practice it is likely that, due to truncation 

errors, their difference would not be exactly zero. 	The resulting products 

could be of sufficient magnitude to render the analysis results neaningless. 

If the loop does traverse the closing branch (304), the two products 

of the "loop natural polynomials" and the "loop transfer polynomials" are 

stored trmporarily '(305, 306) until the pointer setting is complete and they 

become factors (334) in two different terms (332). 

Before the pointer of node n is directed to another branch the tag of 

the current branch is reduced by one (340), to cancel the adjustment made 

in statement 272. When the,pointer has been directed to all the branches 

connected to this node their tags are increased by one (341) to cancel the 

original reduction (265); the "pointer Set" flag is lowered' (342), and the 

procedure is terminated. 
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5-.6.3 Application of the Algorithm 

The algorithm presented here is designed primarily to analyse 

general structures of general ;  constituent 2-port networks, but, 

wherever possible, the occurrence of zero or unit polynomials is 

exploited to minimise computation. 	In practice, many trivial networks 

may need to be introduced to allow a complex network to be represented 

as a structure of 2-port networks, and the occurrence of zero and unit 

polynomials is therefore common. 

Because of its ability to analyse structures of 2-port networks 

this algorithm is believed to be a significant advdhce over the existing 

topological methods of analysis, which either enumerate trees of a network 

graph or analyse signal-flow graphs. 	The power of this algorithm is better 

appreciated by noting that both network graphs and signal-flow graphs can be 

transformed, quite simply, into particular types of structure graphs and 

therefore can be analysed by this one algorithm. 

Network Graphs  

To find the trees of a graph whose branches are either resistors, 

unistors or gyristors each branch is modelled as a "simple network" with 

its component in the series position; each node becomes a parallel 

interconnection of ports. 	The equivalent structure graph is then identical 

to the network graph. 

The six polynomials of a branch are y 21,  1,0 v 	where ''12' Y12, Y21 	I v 12 

is the admittance of an equivalent unistor directed from the first to the 

second port and y21  is the admittance of an equivalent unistor directed 

from the second to the first port, as in figure 5.4. 	For a resistor, 

Y1= Y21 	for a gyristor, 
 ' Y12 = 7 Y21 .  

If node g is the "ground" node as far as the behaviour of the 

unistors is concerned, the port corresponding to this node must be 

collapsed. 	Therefore, if a complete 2-port network is defined by connecting a 

1 	closing branch from node g to any other node, it is its first polynomial 



Figure 5.4 An equivalent 2-port network representing the general 
branch of a network graph. 
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which Will correspond to the branch-admittance-product-sum of the trees 

•of the original network graph. 

The analysis algorithm has been tailored specifically to this task 

-of.generating the trees of a graph in order to investigate its effectiveness 

in comparison with other tree-finding Schemes. 

Because only one polynomial is 'required, the pointer of the "ground" 

node is directed permanently into the closing branch and the pointer a.t .  the 

other end of the closing branch is not permitted to be directed into the, 

closing branch. 	Only one polynomial, the branch admittance, need be' 

.associated with each branch and all information needed to distinguish the 

. six polynomials is contained in the polynomial tags. 

In. practice, polynomial manipulation is eliminated and the branches 

in a tree are determined by the "listed branch" array; the sign of a • 

branch-admittance-product is determined by the tag "tftag" associated with 

the set of "term factors", or may be determined from the "listed branch 

'reversed" array. 

, Because every transfer polynomial is identical to its corresponding 

natural polynomial, and the third polynomial of every .branch is zero, the 

formation of .  a pointer loop or the reversal in direction of a pointer path 

. will always result in a zero product. 	This observation is, of course,.. . 

consistent with the definition of a tree and allows a major part of the 

algorithm (280-316) to be greatly simplified. 	Further, because the second: 

polynomial of every network is unity, 511 statements related to the. . 

adjustment and interpretation of branch tags are eliminated. 

A paper describing such a simplified, tree-generating algorithm [7] 

is appended:to the thesis. 
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In the course of 5.nvestigations_by . an independent worker, the algorithm 

was evaluated in comparison with a representative selection from more 

than thirty other tree-generating methods [23]. 	The 

most promising methods were programmed in assembler for an IBM 360 

computer, and used to find the trees of a dozen representative networks 

of Varying size and complexity. 	In all cases the performance of the 

program based on this algorithm was close to the best in each particular 

test, and in five documented tests it generated all trees in the least time. 

Signal-Flow Graphs  

To analyse a signal-flow graph it is formulated as an electrical 

network with quantities represented by voltages. Branches become ideal 

voltage amplifiers with gain equal to the branch transmission and nodes 

become interconnections of ports. 

Because the amplifiers which represent the branches directed away  

from a particular node all share the same input voltage, representing the 

quantity at the node, their first ports are connected in parallel. 	But 

the branches directed toward a particular node are represented by 

amplifiers whose output voltages must be added together, and this is 

accomplished by connecting their second ports in series. 

The electrical analogue of the signal-flow graph of figure 5.5 is 

shown in figure 5.6. 	Its structure graph (figure 5.7) is similar to the 

signal-flow graph but, in general, each node of the original graph is 

replaced by both a series and a parallel node: incoming branches are 

connected to the series node, outgoing branches are connected to the 

parallel node, and the two nodes are joined by a "Unit network" directed 

from the series to the parallel node. 

When analysed by the algorithm the series ports are converted to 

parallel ports, the "amplifiers" are converted to voltage-controlled 

current sources, and the "unit networks" are converted to unit gyrators. 



Figure 5.5 	Signal-flow graph. 

Figure 5.6 Electrical analogue of signal-flow graph. 

Figure 5.7 Structure graph corresponding to signal-flow 
graph. 
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For a transmission branch its polynomials numbered 1,3,4 and 6 are all zero 

and a pointer need never, be directed to its second pbrt; consequently the 

pointers of all the series ports are directed permanently toward their 

corresponding parallel ports. 	Further organisational simplification may be 

achieved because all "loop natural polynomials" are zero. 

If the denominators (polynomial 2) of the branch transmittances are 

restricted to unity, all statements concerned with the adjustment and 

interpretation of branch tags can be eliminated (as with network graphs) and 

all path segments which are not part of some pointer loop will result in a 

zero product. 	In this case the algorithm seeks pointer loops only and 

evaluates the Shannon-Happ formula which expresses the transfer function of 

a si -gnal-flow graph in terms of its loop transmittances. 	This method •f 

detecting loops is apparently unique and certainly bears no resemblance to 

the routine used in a major version of the analysis program NASAP [45]. 

.However, there is little practical justification for adapting the general 

algorithm specifically to signal-flow graphs. 	Even if the algorithm is 

applied to signal flow graphs in its present form there is little unnecessary 

setting of pointers, no unnecessary manipulation of polynomials, and branch 

transmissions may be specified as ratios of polynomials. 	In many applications 

the existence of the general algorithm may obviate the use of a signal-flow graph 

to describe the system; the components of a control system, for example, may 

actually be 2-port devices and the complete system may be described . more 

• compactly if represented directly as a structure of 2-port networks. 	(see 

section 6.5). 

5.7 CONCLUSION 

This chapter presented those ingredients which are believed to be essential 

to any successful implementation of the new approach to linear analysis. 

Together they permit analysis On two distinct levels. 
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The lower level is designed to handle the simplest forms of 

subnetwork interconnections --whether they be series-parallel connections 

of 2-terminal networks, cascade-parallel connections of 2-port networks, 

or chains of signal-flow sub-graphs with simple feed-back loops. 	The 

language with which simple structures are described has been made highly 

versatile, largely through the adoption of algebraic concepts which permit 

the nesting of network-manipulative expressions to an almost unlimited 

extent. 	In particular, 2-terminal networks may be converted to 2-port 

networks and vice versa, and structures of 2-port networks may be analysed 

on the higher .  level and the resulting networks manipulated further on the 

lower level. 	Consequently the greater economy of analysis on the lower 

level is available at any stage in the analysis of large networks. 

The higher level concerns the analysis of any structure of 2-port 

networks using the topological method introduced in chapter 1. 	The 

computer algorithm embodying this method (section 5.6) is the most important 

contribution of part II of the thesis. 	It supersedes the conventional 

topological methods, which analyse either network graphs or signal-flow 

graphs, because it not only performs the same type of analysis but offers 

more convenience to the user and can handle larger networks. 
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CHAPTER 6 

DEMONSTRATION OF COMPUTER PROGRAMS 

6.1 INTRODUCTION 

The computer algorithms discussed in the last chapter are the culmination 

of many working computer programs which followed the evOlution of ideas and 

demonstrated the feasibility, or otherwise, of various analytical and programming 

*techniques. 	The most recent versions, which have been documented and 

maintained for general use by the Department of Electrical Engineering [8] 

were used for the demonstrations reported in this chapter. 

When coding these programs much effort was given to reducing computation 

time and saving core space. 	Although written principally in ALGOL they include 

some machine-code instructions; they calculate addresses of polynomial 

coefficients explicitly rather than with the normal subscripting process; and 

they do not call procedures recursively. 	Nevertheless, the reported execution 

times are indicative of what can be achieved and should be easily bettered with 

more modern computers. 

The coding of these programs has not been documented because of their strong 

machine -dependence, their divergence from the documented algorithms, and their 

evolutionary nature - which is responsible for the now-inappropriate choice of 

identifiers. 	The grammar of the input language has also been modified slightly 

since the programs were written, and in the following reports the actual input 

data has been altered to comply with the syntax rules of section 5.5.1. 

The Elliott 503 computer on which the programs were run is a second 

generation machine. 	It has hardware for floating-point arithmetic, 8k words 

of main core store, 16k words of core backing store, a 300 line/min. line printer 

for output, and a 1000 char/sec. paper tape reader for input. 	A single-address 

instruction for integer addition is performed in 7.2 p.S. 	With 39 bits in a 

word, floating-point numbers are represented with an accuracy of approximately 

9 decimal digits and their magnitude cannot exceed 10 77 . 	Programs were run 

under a compile-and-go operating system and had access to approxiMately 6k words 

of the main core store. 



Many aspects of the programs are outside the scope of the thesis and 

are only mentioned briefly here. 
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In all but the third demonstration the programs calculate network polynomials 

- and then evaluate them to arrive at a frequency response ,a transient response, 

or poles and zeros. 	Due to the main-store limitations of the computer; 

polynomial evaluation is performed by a separate program which follows the 

. analysis program and retrieves the polynomials from the backing store. 	The 

evaluation program has facilities for (1) cancelling common. polynomial factors, 

using an adaptation of the Euclidean Algorithm; (2) tabulating .  frequency 

response, including amplitude, phase and group delay.; (3) finding roots of 

polynomials using BairstOw's method; (4) calculating the residues of poles; and 

(5) tabulating transient response. 	A second version of the evaluation program 

tabulates frequency response and finds the roots of polynomials whose 

coefficients have been transformed according to the process described in 

section 4.10. 

An early version of the analysis algorithm was developed for repetitive 

execution within an iterative network-design program. 	Analysis was directed 

by a compiled form of the network expression and in each iteration produced the 

relevant polynomial coefficients and their first derivatives with respect to 

all the variable parameters. 	Modification of parameters was determined by a 

version of the Newton-Raphson process [12] which aimed to realise desired 

locations for poles and zeros. 

11 . 	This program demonstrated the suitability of the algebraic reduction 

process in this role, and proved to be a useful tool for network realisation. 

For example in one simple application it adjusted two independent parameters 

of a "poorly designed" oscillator circuit so that it oscillated at a specified 

frequency. 

However, in some applications, and particularly with symmetrical networks, 

the matrix of partial derivatives tended to be singular and the Newton-Raphson 

process became unstable. 	This problem was not pursued at the time but the 
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recent experience of many people, including the author [9] , suggests that the 

synthesis problem is better approached with an arsenal of general-purpose function-

minimisation routines Including, for example, steepest-descent and a conjugate- 

- gradient technique. 

6.2 LARGE PASSIVE FILTER 

The filter analysed in this example has many common subnetworks which, 

in the program data, are assigned to separate blocks as follows: 

B1 = (TC1.245E-6 c TR5E6 c TY(SL6.72E-3 c SR1)) 

ss TY(SL.796 c SR87) ss (TC.01055E-6 c TR5E8); 

B2 = (( SL3.78E-3 c SR.6) pp SZ(TC2.214E -6 c TR3E6)) 

C ((SL6.3E -3 c SR1) pp SZ(TC1.33E-6 C TR4E6)); 

B3 . B1 c B2 c (TY(SL.239 c SR26) ss (TC.0352E-6 c TR2E8)) c 32 c Bl; 

(TY(SL.951 c SR104) ss (TC.0074E-6 c TR1E9)) 

c (TY(SL1.098 c SR120) ss ( TC.0088E-6 c TR8E8)); 

B5 = SL.764 c SR83 c SZ(TC.011E-6 c TR4E8); 

36 = B4 c B5 c TY(SL3.16E-3 c SR.5) c TC2.65E-6 c TR2E6 c B5 c B4; 

B7 = (B3 c B3) pp B6; 

B8 = SR600 c B7 c B7 c TR600 c F2 

The corresponding networks are shown in figure 6.1. 

The use of compound components such as TY(SL6.72E-3 c SR1) and 

SZ(TC2.214E-6 c TR3E6), which are equivalent to (TL6.72E-3 ss TR1) and 

(SC2.214E-6 pp SR3E6) respectively, is necessary to avoid floating-point 

overflow or underf low during the analysis process. 	As a general rule it is 

preferable to introduce small impedances such as series losses in the series 

position, and large impedances such as shunt losses in the shunt position; 

their parameters then have the least effect on the magnitudes of all the 

polynomial coefficients. 

The filter was designed to separate a telegraph channel, centred on 

1740 Hz, from an audio band. 	Block 36 is a band-pass filter and B3 is a 

band-stop filter. 	•The parallel configuration of B7 is meant to be all-pass 

but some attenuation is expected at the edges.of the telegraph band. 
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For good measure two identical filters are cascaded; both ports are 

terminated with 600 ohms, and the terminated network is cascaded by an ideal 

transformer to increase the outptit voltage by a factor of 2. 	The transfer 

voltage ratio (F5/13 1) of 88 therefore directly indicates the insertion loss of 

the filter. 	Altogether, the filter includes 202 components or branches, of 

which 100 are reactive, and has 102 nodes. 

The program execution times were:- 

for analysis (HUCC program no. U1049): 

Computation 	29 

console message printing 13 

total  42 seconds; 

for evaluation of the transformed polynomials (HUCC program no. U1095/2): 

computation 	43 

console mes s age printing 	9 

total 	52 seconds. 

Intepretation and evaluation of network expressions was performed as the 

9 
data was read from paper tape and for most of the time the program was input-

bound. 	In order to assess the accuracy of the results the filter was analysed 

twice in the 29 seconds, using a frequency transformation with frequency scales 

of 1740 and 1741 Hz. 	Calculation of the two sets of polynomials of degree 100 

required a total of 81,336 coefficient multiplications. 	In 43 seconds the 

polynomial evaluation program printed the coefficients of the numerator and 

denominator polynomials of the voltage transfer function and tabulated the 

response at 50 frequencies, for both analyses. 	This program was output-bound 

at all times. 
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Samplings of the results of the two analyses are compared in table 6.1. 

FREQUENCY 
Hz 

INSERTION LOSS 
decibels 

PHASE 
degrees 

1500 7.9952 7.9987 -9.79 -9.79 

1550 9.4370 9.1801 -107.42 -106.22 

. 	1600 57.041 67.298 -48.07 -176.04 

1650 50.715 60.002 -82.75 58.71 

1700 11.712 11.713 -144.51 -144.51 

1750 8.2670 8.2671 -56.65 -54.65 

1800 22.736 22.712 27.66 28.31 

1850 59.586 63.370 -7.17 52.16 

1900 53.468 63.449 -125.65 -129.07 

1950 9.8267 9.8571 112.86 112.99 

' 2000 9.7746 9.7744 29.15 29.15 

Table 6.1. Results of two analyses of the large passive filter. 

This most severe test of the analysis program clearly indicates the 

limitations of the method. 	The results are tolerable within the pass bands 

but unacceptable at the edges of the telegraph band. 	However, with the 

longer word length or hardware double-precision offered by large computers 

such as the CBC6000 series (60-bit words), ICL System 4, IBM System 360 

(64-bit double words), and UNIVAC 1108 (72-bit double words) the results 

should in this case be acceptable at all points of interest in the frequency 

band. 	With only a ten-fold increase in processing speed the calculation of 

the filter polynomials should be completed in less than a second, and their 

evaluation at, say, 50 frequencies would take a fraction of a second. 

Such projected performance invites comparison with ECAP, the most widely 

known and oldest of the general circuit analysis programs. 	Unfortunately, 

this large filter exceeds by a wide margin the capacity of most versions of 

ECAP - even though they use at least five times the core store than does this • 

program. 	The possibility of solving 100 nodal equations at only one frequency 

in one second of processor time - whether by Crout's method or some sparse 

matrix technique - is a matter for uncertain conjecture. 
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6.3 THREE-STAGE 1C AMPLIFIER 

A three-stage integrated-circuit amplifier, together With its representation 

as a structure of 2-port networks •eind its structure graph, is shown in 

figure 6.2.. 

In the program data the three transistors are assigned to separate 

blocks Bl to B3 for convenience, but blocks B4 to BE are necessary to describe 

the branches of the structure graph which appears as a basic network in the 

expression 'for the complete network B9: 

El = SR1E3 c ((TC6.3E-12 c TR25E3 c H[ 0,-4E-3,1 

pp SC1.5E-12) c SR150 c TC3.4E-12; 

B2 = SR450 c ((TC.7E-12 c TR12.5E3 C H[ 0,-8E-3,1] ) 

pp SC.6E-12) c SR100 c TC2.7E-12; 

B3 = SR500 c ((TC1.2E-12 c TR6.25E3 c H[0, -16E-3, 1] ) 

pp SC15E-12) c SR20 c TC4.6E-12; 

B4 = B3 pp SC [C] ; 

B5 = SR6E3 pp SC.16E-12; 

B6 = SR3E3 pp SC.08E-12; 

B7 = TR150 c ((SR470 c ((SR1E3 c SL [L] ) pp SC25E-12)) PP SR560E3); 

B8 = U; 

B9 = SR5.6E3 c D[B0:1s4p, B1:1s2p, B2:2p3p, 

B4:3p4p, B5:2p5p, B6:5p3p, B7:5p4p, B8:5p1s] ; 

Two parameters, in the expression for B4 and B7, are introduced as 

identifiers but are subsequently assigned the numerical values: 

C = 15E-12; 

L =100E3. 

This example demonstrates an analysis program designed for parameter 

sensitivity studies. 	Parameters introduced by their identifiers are regarded 

as variables and the analysis program calculates network polynomials and their 

partial derivatives with respect to the logarithms of each Variable parameter; 

that is, for each polynomial P and variable parameter k it calculates the 

polynomials 
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To do this it gives a third dimension to the main array of polynomial 

coefficients by adding extra layers which are simply the partial derivatives 

of the first layer. 	An extra layer is .added for each variable parameter: 

The only ocher major modifications to the basic program involve (1) changes 

to the procedures such as "pma" and "product" which call the utility routines, 

and (2) enlargement of the attributes of each "network" and "branch" to indicate 

those variable parameters of which it is a function. 

The complete network has 13 nodes, 30 components, 3 controlled sources, 

1 
and polynomials of degree 12. 

The program execution times were:- 

for analysis (HUCC program no. U1033): 

computation 	25 

console message printing 	-13 

total 	38 seconds; 

for evaluation of polynomials (HUCC program no. U1095):. 

computation 	13 

console message printing 	9 

total 	22 seconds 

When calculating polynomials the program was mostly input-bound. 

Algebraic reduction required only 697 coefficient multiplications, but the 

topological analysis of the structure graph required 27,620 multiplications. 

Although the maximum number of pointer settings-- the node-degree-product 

of the graph--is 324, only 205 settings resulted in nonzero polynomial products 

and only 221 products were added to the closing polynomials. 	This saving 

is due to the occurrence of zero branch polynomials as indicated by the 

following sets of tags allocated by the program to the branch polynomials: 

Bl: 3,3,3,3,-3;3 

B2: 3,3,3,3,3,3 

B4: 3,3,3,3.3 

B5: 3,3,0,3,2,2 

136: 3,3,0,3,2,2 

B7: 3,3,3,3,3,3 

138: 0,1,1,0, 	-1,1. 
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Evaluation of the polynomials was fully output-bound. 	The poles and 

zeros of the voltage transfer function were found and the sensitivities of the 

poles to both variable parameters were calculated. 

Sensitivities are calculated with the same routines used for evaluating 

a normal transfer function. 	The sensitivity of a polynomial P to a parameter k 

is obtained by evaluating the ratio of polynomials 

dP   
a ZP lnk 

dInP 	aP 	k 
alnk  

If the Laplace transform is inverted prior to calculating the transient 

response to an impulse of a system with this pseudo transfer function, the 

6pj  
calculatedresiduer.ofapoleis the pole sensitivity r. = p. is 	 a Ink' 

if, instead, the transient response to a step input is requested then the 
fripi 

residues give the sensitivities in the form r j  - 	3in k  . 

The poles and their sensitivities are .given in table 6.2. 	For example, 

comparison of the imaginary parts of the dominant pole and its sensitivities 

confirms that its frequency is almost inversely proportional to the square 

root of the inductance L (3.173E5 	0.4 * 6.327E5). 

POLE P aP SENSITIVITY 	.0 ac SENSITIVITY 02...L 
al, 

-3.622E4 

- 8.256E6 

-1.998E8 

-2.698E8 

-1.297E8 

-2.553E9 

-8.032E9 

-4.065E10 

-4.541E10 

-6.622E10 

±6.327E5j 

+4.142E7j 

. 

3.343E3 

4.113E6 

-1.493E7 

1.286E8 

1.425E8 

5.161E5 

7.331E5 

2.750E7 

1.967E8 

2.145E8 

+1.473E4j 

+7.919E6j 

4.607E2 

4.660E3 

-3.195E2 

9.783E1 

-1.066E2 

9.262E1 

4.042E1 

-3.323E4 

7.326E4 

-2.009E4 

+3.173E5j 

+3.617E2j 

Table 6.2. 	The sensitivities to parameters L and C of the natural frequencies 

of the three-stage IC amplifier with its input short-circuited. 
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The performance of this program might be assessed by comparison with 

other topological analysis programs such as CALAHAN [11] and NASAP [52] . 

Experience with tree-generating methods suggests that, even if the network for 

the amplifier was reduced to 10 nodes by the combination of 'branches in series 

and parallel wherever possible -more processing time than this 25 seconds would 

be expended in simply generating trees—without computing branch-admittance 

products, their sums, and their derivatives. 	Analysis of an equivalent 

signal-flow graph, which would have approximately twice the number of nodes, 

would be even more costly. 

6.4 GENERAL CONVERTER 

The circuit analysed in this example arose in an independent investigation 

of prototype circuits for generalised impedance converters and active 

transformers*. 	Figure 6.3 shows the prototype circuit (without biasing 

arrangements), its representation as a structure of 2-port networks, and its 

structure graph. 

All four transistors are identical. 	The model used for a transistor in 

a common base configuration is shown in figure 6.4(a) and the other configurations 

are obtained from this network by interconnecting it with trivial networks as 

shown in figure 6.4(h) and (c). 

The network expressions which specify the complete network B7 are: 

B1 = SR25 c (N [CO 3 0,0,1,.99 9 0] ss TR100); 

B2 = (X c Bl) ps U; 

B3 = (Bl c X) sp U; 

B4 = TR[R]1 c rB3 c SR[R2]; 

B5 = SR[R3] c Bl c TR[R4] ; 

B6 = U; 

B7 = D[B0:1p11p, B2:3p9p, B2:7s5s, B4:2s4s, B5:8s10s, 

B6:1p2s, B6:2s3p, B6:3p4s, B6:4s6p, B6:6p8s, 

B6:8s9p, B6:3p10s, B6:10s11p, B6:1p5s, B6:5s6p, 

B6:6p7s, 56:7s11p] . 

* This investigation was undertaken by Mr. R.S. Crocker, a contemporary 

post-graduate student in the Department of Electrical Engineering. 
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This example demonstrates a program designed for both numeric and symbolic 

analysis. 	The four parameters R1., R2, R3 and R4, introduced as identifiers 

in the expressions for 84 and B5, are manipulated as symbols rather than 

numbers throughout the analysis. 

A polynomial is represented as a list of pairs of computer words: the 

first of each pair contains a floating-point numerical coefficient and the 

second contains an integer whose bit pattern records the exponent of s and 

the exponents (0 or 1) of up to 25 symbolic parameters. 

The execution times for analysis (HUCC program no. U1068) were: 

data input and algebraic reduction 	5 

topological analysis 	46 

lineprinter output 
	

23 

console message printing 	4. 

total 	78 seconds. 

Algebraic reduction required 33 multiplications and the topological 

analysis required a further 957 multiplications. 	The following tags were 

assigned to the branch polynomials: 

B2(3p9p): 0,3,0,3,3,0 

)32(7s5s): 3,0,3,0,3 , 0 

B4: 3,3,3,3,2,3 

B5: •3,3,3,3,3,0 

B6(all 
branches): 0,1,1,0,-1,1. 

The structure graph has a node-degree product of 177147, 	but, due to the 

large number of zero branch polynomials, only 178 polynomial products Were 

added to the closing polynomials. 

To simplify the printing of polynomials and to make the presentation of 

results less cumbersome the program associates every symbolic parameter with 

a unique letter of the alphabet. For this network the program printed the 
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dictionary 

"A = 1/R1 

B = R2 

C = R3 

D = 1/R4u 

The inversion of parameters Rl and R4 indicates that in the case of resistors 

introduced in the shunt position the program regards the conductance rather 

than the resistance as the relevant parameter. 	When printing polynomials the 

program is designed to group together the terms with a common exponent of s 

but in this case the polynomials are independent of frequency. 	The lineprinter 

output is shown in figure 6.5. 

The results show that if the four variable resistances have values within 

an order of magnitude of 1000 ohms the six polynomials of the complete network 

can be roughly approximated by 

P1: 1 - CD 	= 1 - R3/R4 

P2: 0 

P3: .  0 

•P4: 1 - AB 	 = 1 - R2/R1 

P5: (1 - AB).(1 - CB) = (1 - R2/R1).(1 - R3/R4) 

P6: '1 

They confirm that with appropriate selections of parameters the network may 

be caused to behave either as a transformer, as any one of various types of 

negative-impedance converter, or as either of two types of controlled source. 

6.5 POSITION CONTROL SYSTEM 

•The position control system of figure 6.6 is represented for analysis 

in two ways: as a signal-flow graph and as a 2-port network. 	Comparison of 

the two illustrates the convenience of the new approach. 

The .signal-flow graph and the system equations it represents are shown 

in figure 6.7 	Although pedantic, the task of establishing the equations is 

separated from the task of solving them in order to clarify the procedure. 	A 

graph of this complexity could be reduced on inspection by successively eliminat-

ing nodes of degree 2 and reducing the inner loops, but, as such a process is• 
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equivalent to algebraic reduction, it is left to the computer program. 

The signal-flow graph is represented by a System of voltage amplifiers 

with the structure shown in figure 6.8. Each amplifier block corresponds 

to a path segment of the signal-flow graph and is assigned polynomials with 

one of the following expressions: 

B1 = A[0,0.1,2*3.14159/360]; /*POTENTIOMETER AND FIRST AMPLIFIER*/ 

B2 = A[1,0 2E4,5 50]; 	/*SECOND AMPLIFIER AND GENERATOR*/ 
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B3 = A[0,.812,48.8]; 

B8 = A[0,-1.25,1]; 

37 = A[1,-8E4 0,0 1]; 

B4 = A[1,0 50,1 .00143]; 

,B6 = A[0,50,1] ; 

B5 = A[1,0 1,1 Oh  

/*MOTOR TORQUE */ 

/*MOTOR BACK E.M.F.*/ 

/*MOTOR INERTIA*/ 

/*GEAR TORQUE AND LOADV 

/*GEAR SPEED*/ 

/* SPEED INTEGRATOR*/ 

B9 = A[0,-.01,2*3.14159/4 M.ACHOMETER;s/ 

B10 = A[0,-1,1]; 	/xPOSITION FEEDBACK/ 

Part of the complete structure has been analysed topologically but the 

remainder can be analysed by algebraic reduction. 	However, before blocks 

• B9 and 810 can.be  combined in series -parallel with other subnetworks, their 

ports must be interchanged to reverse the branch directions shown in the 

structure graph. 	Because of an implied sign convention applying to ports 

connected in series (the sum of second-port voltages equals the sum of first-

port voltages) an interchange of ports must be accompanied by an interchange 

of terminals of any port which is connected in series. 	Crossover networks 

are therefore introduced, and the complete structure is described by the expression 

B11 = (Bl c ((B2 c D[B0:1s4p, B3:1s2s, B4:2s4p, 

B8:3p1s, B7:3p2s, B6:4p31:;]) sp (X c rB9)) 

c B5) sp (X c rB10). 

In the alternative representation each.component of the system is modelled 

with an electrical 2-port device. 	Shaft torques and speeds are represented 



B9 

Figure 6.8 Structure graph corresponding to signal-flow graph. 
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by voltages and currents respectively, shaft inertia is represented by 

inductance, viscous friction by resistance, and the gear train by an ideal 

transformer. 	The resulting network and its structure graph is shown in 

figure 6.9. 	It could be specified with only one network expression but in 

order to clarify the specification of the major components they are here 

assigned to separate blocks: 

B1 = [0,0.1,2*3.14159/360]; 
	

/*POTENTIOMETER*/ 

B2 = A[0,1,1]; 
	

/*FIRST AMPLIFIER*/ 

83 = 40,100,1]; 
	

/*SECOND AMPLIFIER*/ 

B4 = SB50 c SL5 c 40,0,0,1,0,200,0] c SR24.4;  /*GENERATOR*/ 

B5 = SR24.4 c N[0,0,.812*1.25,1,0,.812-1.25] c SL8E-4; /*MOTOR*/ 

B6 = F50;  /*GEAR TRAIN*/ 

B7 = SL1 c SR.00143 c 41,0 0,0 0,1 0,0 0,0 1,00];  /*LOAD*/ 

B8 = N[0,0,0,2*3.14159/60,0,0,-.01] ;  /*TACHOMETER*/ . 

All the parameters of the system and the factors for conversion of units 

take their place directly in this specification without any preliminary 

processing. 

The complete system is specified by the expression 

B9 = (Bl c B2 c ((33 c B4 c B5 c 86) ss B8) c B7) sp U. 

6.6. CONCLUSION 

The four examples demonstrate the suitability of the general analysis 

method in a wide variety of situations. 	At one extreme it provides an 

extremely efficient analysis of the largest filters and, at the other, an 

efficient fully-symbolic analysis of small strongly-interconnected, active 

circuits. 	The efficiency of analysis is due largely to the diakoptic 

approach inherent in algebraic reduction, while versatility is ensured by 

the possible introduction of a topological analysis at any stage in an 

algebraic reduction. 
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EPILOGUE 

General Conclusions 

The place of this work in engineering theory and practice is in the 

gulf between the broad and complex topological theory of electrical networks, 

and its practical implementation in everyday tools for circuit analysis and 

design. To define it further, it is concerned only with linear time-invariant 

networks, and is largely independent of the state-variable approach to this 

subject. 

The work as a whole is built on quite simple concepts. The topological 

theory of part I is developed from an analytical process which itself is 

developed from the elementary concept of a tree. Network graphs constructed 

entirely of simple resistive branches, however, are necessarily reciprocal, 

and some refinement is necessary to include non -reciprocal networks within 

the scope of the theory. This is achieved by the conceptual construction of 

• network graphs with unistors---basic branch elements introduced by Mason. 

It is remarkable that, notwithstanding the initial importance of trees, in 

the topological analysis algorithm of chapter 5 the concept of a tree has no 

special significance; rather, it is the concept of a loop that plays the 

dominant role. 

Algebraic reduction is another simple but useful concept that is related 

to the series-parallel combination of resistors---although, within the context 

of 2-port networks, it may be recognised as the arithmetic combination of 

pairs of like network matrices, composed of either the A,B,C,D parameters or 

any set of hybrid parameters. The concept is developed in two stages: first, 

with the adoption of a set of six polynomials to characterise the general 

2-port network; and second, with a relationship between network polynomials 

and topological quantities that allows topological analysis methods to be 

incorporated. 

As circuits and systems become more complex, and specifications call for 

finer tolerances, the digital computer will play an increasingly important 

role as an analytical tool. Progress in this field is not dependent simply 

on the development of suitable algorithms, but on the development of better 

languages for communication at two levels: between the circuit designer and 

the programmed computer,. and between the algorithm writer and the computer. 



Analysis and design programs must become more powerful, versatile, and 

easier to use; while to facilitate the development of these programs, some 

well-structured, scientifically-oriented language such as Algol should be 

extended to handle the manipulation and analysis of networks in a more 

natural way. It is anticipated, therefore, that the most significant advances 

. in this direction will be the result of collaboration between the design 

engineer, the network theorist, and the computer scientist. 

To conclude the thesis we shall explore some possible, future applications 

and developments. 

Experience with the several versions of the analysis program has 

demonstrated the viability of a single program incorporating all the facilities 

discussed in part II. Transformation of polynomial coefficients at any scaled 

frequency would be optional, and polynomials would be represented in any of 

four ways: (1) a fully symbolic representation, with provision for parameters 

to be introduced either numerically or symbolically; (2) by numerical poly-

nomial coefficients and their partial derivatives with respect to nominated 

parameters; (3) by numerical polynomial coefficients only; and (4) by their 

complex values at a nominated frequency. Routines would be included to convert 

from one form of polynomial representation to another, evaluate polynomials, 

display frequency response, search for roots, invert Laplace transforms, and 

display transient response. Such a program would consolidate the practical 

results of this work in one powerful analytical tool. 

The most promising development would be an extension of Algol to include 

the concept of a 2-port network as a type of variable. Network variables, to 

which network expressions could be assigned, might be declared with a statement 

such as 

"network  block 1, B5, preamplifier, filter;". 

The syntax for netWork expressions defined in chapter 5 could be implemented 

with few changes; specifically, all blocks would become network variables, 

and parameters would become arithmetic expressions. Basic networks could be 

regarded as standard network procedures, and the opportunity would exist to 

define whatever basic networks were appropriate to a particular application, 

as in this example for crystal filter analysis: 



e-3 

"network procedure series crystal (frequency, Cl, CO, resistance)• 

value frequency, C1, ,CO, resistance; 

real frequency, Cl, CO, resistance; 

begin real .  omega; 

anega:= 6.283185 * frequency; 

• series crystal:= (SL(1.0/(omega * omega * Cl)) 

c SC(C1) c SR(resistance)) pp SC(CO) 

end;". 

If this approach is taken, other facilities must also be provided by the . 

language to make it workable. The algebra for networks should be accompanied 

by an algebra for polynomials-- admittingthe polynomial operations of addition 

and multiplication (but not division) and admitting parameters with either a 

literal or a numeTicalvalue. Procedures would be needed to differentiate 

polynomials with respect to symbolic parameters, to substitute real numbers for - 

symbolic parameters, and to substitute complex numbers for the symbolic frequency 

parameter. The concept of a 1-port network, or component, as a type of variable 

would also be useful, and some facility must be provided for the specification 

of branch lists of structure graphs. Although it is not the objective of this 

present work to formulate the most desirable structure for an extended language, 

it is clear that the grammar for network expressions is well suited to such a 

language and that the other necessary facilities are well within the current 

state of the compiling art. 

The association of a versatile analysis capability with the full language 

facilities of Algol would greatly assist the development of more sophisticated 

programs for circuit analysis and design. Two of the most important applications 

will be mentioned. 

In the field of statistical design the most complex relationships between 

network parameters---as occur, for example, with changes in fabrication-process 

parameters and with changes in operating temperature---could be expressed 

succinctly with arithmetic expressions and procedure calls in the place of 

network parameters. Such versatility is essential for realistic Monte Carlo 

simulations of circuits operating in various environments. In a program for 

Monte Carlo analysis the calculation of cOmplete network polynomials could be 

achieved by a single assignment statement within a controlled loop, and there would 



therefore, be no difficulty in interfacing the network analysis task with 

the remainder of the ,application program. 

In developing iterative design programs, the necessary links between 

the analysis process and suitable library procedures for function 

minimisation •could be achieved with just a few program statements. It would 

also. be  a simple matter to experiment with the error function to be minimised, 

and so realise circuits that were optimised according to various performance 

criteria. 

If embodied in a compiler for the new language, the methods of algebraic 

reduction and topological analysis would be transparent to users of the 

language. An analysis process could be incorporated with only a few program 

statements, rather than the hundreds of statements currently required to 

specify the relevant algorithms, and it could be interwoven with other program 

statements with greater flexibility than is possible with calls to Algol 

procedures or Fortran subroutines. 

With regard to the theory part.Of the thesis, it is believed that further 

development of the analysis algorithm introduction in chapter I could lead to 

. analysis methods with greater power than those of chapter 5. The admission of 

netwOrks with up to three ports might require more polynomials to characterise 

subnetworks but the amount of polynomial manipulation would be significantly 

reduced. For instance, all the networks discussed in chapter 6 could be 

'constructed by combining 3-port networks two at a time, thus avoiding . a 

topological analysis of their structures. 

Research is needed to develop an algebra for 3-port networks, and a 

satisfactory algorithm for the topological analysis of structures of 3-port 

networks. 
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I. 

Growing the Trees of a Graph 
Abstract-An algorithm is described which generates without duplica-

tion and with appropriate sign all the trees of a graph containing directed 

elements. A path-finding algorithm is extended in an application of Mason's 

method of expansion of paths. 

INTRODUCTION 

An algorithm for finding, without duplication, all the trees of a graph 
forms the heart of computer programs to analyze linear networks by top-
ological methods. This letter presents an algorithm which generates all the 
trees of a graph o ne at a time and without duplication, and determines the 
signs of trees for graphs containing directed elements. The three types of 
elements allowed in the graph are the directed unistor and gyristor l  
[denoted by the black arrow in the example shown in Fig. 1(a)] and the 
undirected resistor. The sign of a tree will normally be positive except that 
the sign will be changed for every gyristor which in the tree is directed away 
from a designated ground node and any tree containing a unistor which 
is directed away from the ground node will be neglected. The algorithm 
is based on Mason's method of expansion of paths' although similarities 
will be noticed in many other methods of expanding node determinants, 
notably that of 'Tsai.' Paths are generated by a method similar to that re-
cently published by Kroft for finding all the paths through a maze.' One 
reason for presenting what may be another version of existing tree-
finding algorithms is to show that it requires only a small extension, in 
the bookkeeping, of a path-finding algorithm. 

CONSTRUCTION 

The algorithm requires that the graph be specified by lists of the 
branches which are connected at each node, with the exception of both 
unistor branches which are not entered in the lists of the nodes to which 
they are directed and gyristor branches which are entered negatively in 
the lists of the nodes to which they are directed [as shown in Fig. 1(c)]. 

To visualize the action of the algorithm, pointers are associated with 
each node except the ground node and these may be set in the direction 
of any branch in the list of their associated nodes. The key to the algorithm 
lies in the observation that every tree corresponds to a unique combina-
tion of pointer settings that is determined by tracing, and setting pointers, 
along the unique paths from every node to the ground node. For example, 
the combination of pointer settings which corresponds to the tree CGIH 
of Fig. 1(a) is shown in Fig. 1(b). It follows that every tree will be formed 
once and once only by generating all the possible combinations of pointer 
settings. If there are n nodes in the graph a combination of pointer settings 
will determine a set of n-1 or fewer branches which may or may not be a 
tree, but the number of combinations to be tested is less than all the combi-
nations of n-1 branches. 

To ensure the generation of all combinations of pointer settings which 
are likely to determine trees, the pointers are set one at a time in such a 
way that each pointer is successively directed to all the branches in its 
node branch list. A pointer is reset either when it completes the formation 
of a loop or tree, or when the following pointer begins a new cycle through 
its branch list. The detection of loops is simplified by setting pointers in 
the order indicated by their direction, i.e., following the formation of 
paths. After each pointer is set or reset a list, which is headed by the ground 
node and contains the nodes .whose pointers have been set, is updated 
and searched to determine whether the node indicated by the pointer is 
included. The search is made in two parts: 1) the nodes in the path cur-
rently being traced—the ungrounded nodes—are scanned and if the node 
is found because a loop is about to be formed, then the last pointer is re-
set, and 2) the remaining nodes in the list are scanned and if the node is 
found because the path has terminated at a ground node then all the nodes 
in the list are considered to be grounded and the next pointer to be set may 
be chosen from any of the ungrounded nodes. To continue the generation 
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Fig. I. (a) Graph. (b) Combination of pointer settings. (c) Node branch lists. 
(d) Branch node sums. 

of a path after a pointer has been set towards a new branch, the node at the 
other end of this branch must be determined. The search that would be 
required if the graph were specified only by the node branch lists is avoided 
by calculating and storing the sums of the node numbers of each branch 
when the node branch lists are formed [Fig. 1(d)]. The number of the next 
node will therefore be obtained by subtracting the number of the last 
node from the node sum of the new branch. 

BOOK KEEPING ' 

The flow chart shown in Fig. 2 introduces only sufficient variables and 
arrays to describe the essential action of the algorithm. Additional vari-
ables are required to hold the current values of the length of the node list, 
the sign of the branch,product, and the number of grounded nodes to 
determine the-division between the grounded and ungrounded nodes in the 



Set up NBL and BNS, 
head ML with the ground 

node. 

I  START  

YES 

Change the sign of both 
and the tree branch product .  

 b 1 

10 0 9  
NO 

Add b to 181 

tree 

Search for on ungrounded 
node to become n whose 
pointer is to start a 

new path. 

Put on nextn 
NO 

Add n to NL, 
set NBP[nl to one 

1122 	 PROCEEDINGS OF THE IEEE, JUNE 1968 

Ground oil the 
nodes in NL. 

YES 

Put b. branch in NBLI.ril 
as indicated by NBPfnj 

NO 

con 
ides 

YES 

Print TBL, 
delete b from T BL 

I Increment NBP[nl, 

Delete n from NL, 

delete the last branch 

from TBL , 

put n 	last node in NL, 

return the grounded 

status of the nodes and 

the sign of the branch 

product to the condition 

existing when n was 

added to N L 

NEIL [n] is the branch list of node n . 

BNS[b] is the sum of the terminating nodes 

of branch b . 

NL is the list of nodes whose pointers 

have been set . 

NBP[n] is the position' of the branch in 

NBL(ni to which the pointer 

of node n is directed . 

D frij is the degree of node n . 

TBL is the tree branch list . 

Fig. 2. Flow chart of tree-generating algorithm. 

node list. To correct these values after a backtracking step in which a node 
is deleted from the node list, each successive value of the last two variables 
must be stored in arrays. For the purpose of choosing an ungrounded node 
to start a new path a further array is required to indicate which nodes are 
ungrounded. A run through the flow chart with the example shown in 
Fig. I should require 76 loop tests and 47 branch changes while finding the 
40 trees in the following order: 

CGIH CGIF -CGIE CGIB CEHI CEFI CEFG CEBI CEBG 
CDHI CDHG CDFI CDFG -CDEI -CDEG CDBI CDBG -CAHI 
-CA HG -CA Fl -CAFG .CAEI CAEG -CABI -CABG AGIH 
AGIF -AGIE AGIB AEHI AEFI AEFG ADHI ADHG ADFI 
ADFG -ADEI -ADEG ADB1 ADBG. 

PERFORMANCE 

The algorithm has been written in ALGOL and run on an Elliott 503 
computer with the graph of a ladder filter containing 20 branches and 10 
nodes, an example that was used by MacWilliams and Hobbs to evaluate 

their tree-finding algorithms. 4 • 5  The actual ground terminal of the filter 
was chosen as the ground node for the algorithm because it had the largest 
degree. An upper bound on the number of trees is provided by the number 
of combinations of 9 branches, 167 960, and—more appropriately for this 
algorithm—by the number of combinations of pointer settings, i.e., the 
product of the degrees of the ungrounded . vertices, 16384. The algorithm 
required 8692 loop tests and 6027 branch changes while finding the 4756 
trees. These figures indicate similarities between this algorithm and that 
of Hobbs which tested 16 384 sets of branches and that of MacWilliams 
which examined 6028 sets of branches. 

A frequent attempt at the formation of a loop will occur when a pointer 
is set to reverse the direction of a path. Therefore, by commencing the 
node search with the second-last node to be added to the node list and 
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scanning to the top of the list many loop tests will terminate after only one 
comparison. With careful attention to such programming details and by 
keeping the array accessing to a minimum the 4756 trees of the example 
were found in 29 seconds. This can be compared with times reported by 
MacWilliams and Hobbs that were of the order of five minutes on an IBM 
704 computer. 
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