
A

TOPOLOGICAL APPROACH

TO

LINEAR NETWORK ANALYSIS

Thesis Submitted in Fulfilment of the Requirements

for the Degree of

Doctor of Philosophy

by

k
R. A. Brownell, B.Sc., B.E.

/go hewel° A Ia....)

Department of Electrical Engineering

University of Tasmania

Hobart

July, 1973

.00..i.v- 	1 GI 7 it

Statement of Originality.

This thesis contains no material which

has been submitted for a degree of diploma at

any university.

To the best of the candidate's knowledge

and belief, this thesis contains no copy or

paraphrase of material previously published

or written by another person.

(R.A. Brownell)

July, 1973.

I.

Acknowledgements

The author is indebted for advice and encouragement to the

staff of the Electrical Engineering Department and, in particular,

to his supervisor, Mr. John H. Brodie.

The author is also appreciative of the interest taken in his

work by his fellow students, including those from other disciplines,

and of the criticism of the computer programs and analysis techniques

volunteered by the numerous users within and without the University;

all have influenced the shape of this work.

Grateful acknowledgement is made to General Motors-Holden

Limited for their material support with a Post-Graduate Research

Fellowship for the period from March, 1965 to March, 1968. The

author was also supported with a University Research Scholarship

from April to September, 1968.

His present employer, Amalgamated Wireless (Australasia)

Limited, assisted with the reproduction of the thesis.

(i)

CONTENTS

Statement of Originality

Acknowledgements

Contents

Figures

Tables

Prologue - General Introduction and Summary

1

1.1

1.2

1.3

I 	THEORY Page

1.1

1.2

1.2
1.6

1.8

1.8
1.12
1.13

TOPOLOGICAL ANALYSIS OF STRUCTURES OF MULTIPORT NETWORKS

Introduction

Network Characterisation

Network Polynomials
Structures of Multiport Networks

The Analysis Process

Calculation of Natural Polynomials
Calculation of High-Order Polynomials
The Analysis Algorithm

1.4 Application of the Analysis Process 1.14

General Structures 1.14
Structures of 2-port Networks 1.15

1.5 Conclusion 1.16

2 POLYNOMIALS AND NETWORK BEHAVIOUR

2.1 Introduction 2.1

2.2 Identical Networks in Parallel 2.1

2.3 Polynomials of Equivalent Networks 2.7

2.4 Polynomials and the Short-Circuit - Admittance Matrix 2.12

2.5 The Unit Gyrator 2.13

2.6 Topological Formulae 2.15

2.7 Polynomial Identities 2.17

2.8 Conclusion 2.18

3 ALTERNATIVE ANALYSIS METHODS

3.1 Introduction 3.1

3.2. Inversion of Network Matrices 3.2

3.3 Addition of Network Matrices 3.4

3.4 Conclusion 3.7

4

CONTENTS

Page

4.1

4.2

4.3

4.6

4.8

II 	PRACTICE

TOPOLOGICAL ANALYSIS OF 2-PORT NETWORKS

	

4.1 	Introduction

	

4.2 	Analysis Methods

	

..4.3 	Calculation of Network Functions

	

4.4 	Network Tearing

	

4.5 	Structure Graphs

4.6 	-Algebraic Reduction . 4.10

4.7 	Polynomials of 2-port Networks 4.12

4.8 	Analysis of 2-port Network Structures 4.13

4.9 	Implementing the Analysis Method 4.16

4.10 	Numerical Accuracy 4.19

4.11 	Polynomial Representation 4.20

i 4.12 	Conclusion 4.21

5 ALGORITHMS FOR COMPUTER PROGRAMS

5.1 	Introduction 5.1

5.2 	Programming Language 5.2

5.3 	Data Structure 5.5

5.4 	Utility Routines 5.7

5.5 	Algebraic Reduction 5.9

Syntax of Network Expressions 5.10
Semantics of Network Expressions 5.13

• 	 Evaluation of Network Expressions 5.14

5.6 	Topological Analysis 5:17

Interface with the Algorithm 5.17
Action of the Algorithm 5.19
Application of the Algorithm 5.25,

5.7 	Conclusion 5.28

6 DEMONSTRATION OF COMPUTER PROGRAMS

6.1 	Introduction 6.1

6.2 	Large Passive Filter 6.3

6.3 	Three-Stage IC Amplifier 6.6

6.4 	General Converter 6.9

6.5 	Position Control System 6.11

6.6 	Conclusion • 6.13

References

Epilogue - General Conclusions

Appendix - Reprint of paper

"Growing the Trees of a Graph"

FIGURES

1.1 Polynomials of a network A, and their representation

1.2 - Equivalent interconnection of ports

1.3 A structure of three constituent networks

2.1 Equivalent star and mesh networks A and B

2.2 Cascade connection of network A with a unit gyrator at port C

4.1. Circuit diagram of two-stage transistor amplifier

4.2 Network diagram highlighting small-signal behaviour

4.3 Complete network as a structure of 2-port networks

4.4 Sign convention of voltages and currents of a 2-port network

4.5 Structure graph

4.6 Complete network as an algebraically reduced structure

4.7 Algebraically reduced structure graph

4.8 Nine pointer settings for a paralleled pair of 2-port networks
A and B.

5.1 Typical arrangement of polynomials in the equivalent two-
dimensional array. Arithmetic expressions
define the subscripts of corresponding locations
in the actual array

5.2 Algorithm for evaluation of network expressions

5.3 Algorithm for topological analysis

5.4 An equivalent 2-port network representing the general branch

of a network graph
5.5 Signal-flow graph

5.6 Electrical analogue of signal-flow graph

5.7 Structure graph corresponding to signal-flow graph

6.1 Large passive filter and its subnetworks

6.2 Three-stage IC amplifier: (a) circuit diagram;
(b) transistor models; (c) structure of
2-port networks; (d) structure graph

6.3 General converter : (a) prototype circuit; (b) structure of
2-port networks; (d) structure graph

6.4 (a) Equivalent circuit for transistor;
(b) Transformation from common base to common emitter;
(c) Transformation from common base to common collector

6.5 Lineprinter output for analysis of general converter

6.6 Position control system

6.7 Position control system: (a) system equations; (b) signal-
flow graph

6.8 - Structure graph corresponding to signal-flow graph

6.9 (a) Equivalent network of position control system
(b) Structure graph of equivalent network

Page

1.4

1.7

1.9

2.7

2.14

4.8

4.8

4.8

4.8

4.9

4.11

4.11

4.15

• 	 5.6

5.14

5.18

5.25
5.27

5.27

5.27

6.3

6.6

6.9

6.9

6.11

6.11

6.11

6.12

6.13

TABLES

1.1 The number of mth-order linkage polynomials of a n-port network

4.1 Basic 2-port networks and their polynomials

. .4.2 Calculated frequency response of a filter complex containing.
50 reactive components, illustrating the effect of a
frequency transformation

6.1 Results of two analyses of the large passive filter

6.2 The sensitivities to parameters L and C . of the natural frequencies
of the three-stage IC amplifier with its input short-
circuited.

1

1

PROLOGUE

;General Introduction and Summary

The work reported in this thesis was motivated by a desire to

develop better practical methods for linear network analysis. The

practical aspects of existing methods, together with the new methods

arlsing from this work, are discussed in part II of the thesis.

Part I is devoted to a theoretical foundation for the new methods.

The analysis method centres on network polynomials—their

relationship with network behaviour and with each other. Until recently

there has been no satisfactory formal treatment of network polynomials;

they tend to be regarded as numerical conveniences arising in various

analysis methods. For example, ratios of polynomials may express network

'transfer functions; they characterise linear dynamic systems; and their

, roots determine the natural frequencies of networks. In particular, when

we analyse a network by inverting the nodal admittance matrix whose

elements have been expressed as ratios of polynomials, the polynomials

proliferate. It is from this background that most of the theory described

here was developed.

In 1968, Dr. D.B. Pike, who had been working independently, submitted

his Ph.D. thesis on "Linkage Polynomials" to the University of Sydney.

That work, which this writer considers to be definitive in its treatment of

many aspects of the subject, was motivated by problems in the realisation

of multiport networks, and defines the polynomials by their occurrence as

minor determinants of hybrid matrices of multiport networks. This

definition relates them directly to network behaviour, and their relationships

with each other are obtained from Laplace expansions of minor determinants.

The most important contribution of Pike's thesis is concerned with the

interconnection of two multiport networks; it enunciates the relationships

. between the polynomials of the complete network and the polynomials of its

two constituent networks. In that work the relationships are obtained with

Laplace expansions of the minor determinants of the sum of the two appropriate

hybrid matrices of the constituent networks.

p•2

It is a different enunciation of these same relationships which

is Considered ta be the most significant contribution of part I of

this thesis. But in this work the subject of network polynomials is

approached from an altogether different point of view. Both the point

of view and the alternative statement of the main results have an

important bearing on the practical implementation of the analysis methods,

and it is the intended application of the theory which dictates the form

of its presentation in part I.

The evolution of this approach may be traced from the analysis of

networks by the solution of simultaneous linear equations. The

conventional elimination techniques are satisfactorily proficient in

solving equations with numerical coefficients but are quite clumsy when

handling coefficients represented symbolically. In the latter case,

however, application of Cramer's rule leads to a suitable expression of

the solution in the form of ratios of determinants, and it is left to the

numerical analyst to find suitable means for expanding the appropriate

determinants.

For large determinants containing symbolic entries this task is

. cumbersome, and, for determinants derived from physical structures such

as electrical networks, concludes with the cancellation of large numbers

of terms. It.is to this task that the network topologist, with a

different point of view of the analysis problem, makes a significant

contribution. Each term in the expansion is related to a unique set of

branches of the network graph and its value is the product of the

admittances of those branches. The sets of branches associated with a

particular determinant constitute k-trees * of the network graph, and the

analysis task is therefore one of generating, without duplication, all

the k-trees of a graph. Unfortunately, this approach, even with the aid

of a digital computer, is impractical for moderately-sized networks because

of the prohibitively large numbers of trees associated with them.

*A k-tree of a graph is a tree of a subgraph which, although it
includes all the nodes of the graph, is in k separate parts.

P-3

If large networks are to be analysed with topological methods,

some form of network partitioning—otherwise known as network tearing,

or diakoptics —must be employed. For reasons discussed in chapter 1

the aporoach taken throughout this work is to tear networks apart only

at internal ports. It is then convenient to view polynomials as

topological quantities (sums of branch-admittance products) of multiport

networks, and it is the aim of chapter 1 to present an algorithm for

combining the polynomials of constituent multiport networks to form the

'polynomials of any structure of those multiport networks.

This algorithm permits the analysis of networks in terms of

topological quantities. It is the purpose of chapter 2 to relate the

topological quantities, the polynomials, to network behaviour.

Consideration is first given to two identical networks in parallel,

and comparison of the complete network polynomials obtained by the

analysis process with those deduced from fundamental principles embodied

in lemma 2.1 proves theorem 2.1. This major theorem relates all the

linkage polynomials of an n-port network to an n x n matrix of rational

polynomials, which is proved later, as theorem 2.3, to be the short-

circuit admittance matrix of the network.

The second major theorem, theorem 2.2, establishes the relevance of

the topological quantities by asserting their uniqueness in characterising

networks. Proof of this theorem is centered on a study of a star network

and its equivalent mesh network which has no internal nodes. The

equations for the latter network, when generalised and reinforced by the

two major theorems, also prove theorem 2.3 and lead directly to the

classical topological formulae which express the various driving point

and transfer functions of a network in terms of topological quantities.

Chapter 8 links the topological analysis process with methods of

analysis based on matrix manipulation. It is shown that the application

of only two generalised polynomial identities is sufficient to calculate

the elements of all hybrid matrices from the given elements of any one

hybrid matrix. They therefore provide a means of inverting any hybrid

network matrix, a task which is central to many analysis methods, and

confirm the method adopted by Downs[19] for directly inverting a matrix

of rational polynomials. Finally, the analysis of any multiport network

. structure by the process of chapter 1 is interpreted as the Laplace

expansion of minor determinants of a matrix formed from the sum of

appropriate hybrid matrices representing the individual constituent

networks. The main theoretical development of the thesis thus concludes

with an indication that the new analysis process could be derived solely

from a matrix point of view, instead,of from the topological point of view.

Chapter 4 opens part II of the thesis with a survey of existing

methods of linear network analysis and an introduction to a new practical

approach which is confined to structures composed only of 2-port networks.

An example illustrates the method of representing electronic circuits and

serves to introduce two important concepts to be developed later in the

thesis: structure graphs and algebraic reduction. A simpler notation for

the polynomials of 2-port networks is introduced, and the general topological

analysis algorithm of chapter 1 is recast in a form better suited to the

analysis of structure graphs. Practical aspects of the analysis methods

are discussed, and particular attention is given to the problem of numerical

accuracy and to schemes for representing polynomials.

The course of the practical work has been largely determined by progress

with computer programs design to prove the logic of the analysis algorithms

and to demonstrate their overall effectiveness as analytical tools.

Chapter 5 presents the results of this work in the form of two major

algorithms: one for algebraic reduction, and the other for topological

analysis of structure graphs; they are expressed in a high-level computer

language and cover the essential aspects of all programs that implement the

analysis method. The chapter also includes a rigorous definition of a

language for describing networks and controlling the analysis process. It

elaborates the concept of a network algebra and is designed to accept circuit

models and network parameters in a variety of alternative forms.

Chapter 6 assesses the analysis method in a variety of situations.

Program data and execution times are given for the frequency-response

tabulation of a large passive filter, for a sensitivity investigation of a

P-5

multistage amplifier, and for a symbolic analysis of an impedance-

converter circuit. A comparison is also made of two approaches to

the analysis of a control system: it is represented for analysis both

as a signal-flow graph and, more naturally, as a structure of 2-port

networks.

Topological analysis of large networks is repressed by the curse of

large numbers - not only large numbers of trees in a particular set)

but large numbers of sets of trees. Responsible for this state of

affairs are those aspects of the analysis method which make it attractive:

its thoroughness, its flexibility, and its generality. Throughout the

thesis, in its progress toward a tractable analysis method, disciplines

and restrictions have been imposed. It is, perhaps, a signal achievement

that the thesis is able to conclude with reports of practical computer

programs possessing unique and powerful analytical facilities.

CHAPTER 1-

Ii

TOPOLOGICAL ANALYSIS OF STRUCTURES OF MULTIPORT NETWORKS

1.1 .INTRODUCTION

Broadly' speaking, network analysis is a process whereby the behaviour

of a network as a whole is ascertained from the known behavioural characteristics

of its parts. 	For a network composed of linear, time-invariant, 2-terminal

devices, *powerful methods of analysis can be derived from a study of the

topology of the network; trees and k-trees of the network graph are enumerated,

products of the branch admittances are formed for each tree, and the products

are. surrmed over all trees in particular sets. 	If the branch admittances are

represented by their Laplace transforms the resulting topological quantities

have the form of polynomials in the Laplace operator(s), and it can be shown

that ratios of the polynomials determine the various network functions such

as *transfer functions and driving-point immittances. 	Thus the behaviour of 	the

network as a whole is directly related to the admittances of the individual

network elements.

As powerful as these analysis methods are, they leave much to be desired.

Of prime concern is the large number Of trees, associated with only moderately-

sized networks [25, 32] , which are costly to enumerate and evaluate. 	Some

attempts have been made to alleviate this problem with various forms of

network partitioning, and thereby directly evaluating partial sums of admittance

products without generating individual k-trees [21; 37] . But as yet there

is no . report of these methods being extended to cover active networks, or of

their application in computer programs. 	Of secondary concern are the

difficulties in handling mutual inductances, active devices such as controlled

sources,, degenerate devices such as ideal transformers and operational

amplifiers, and Other'2-port devices. 	Procedures have been developed to

handle most of these devices [13, 14, 34, 36, 48] but at the expense of

increased complexity and effort in the analysis process. 	The modelling of

transformers in a manner which preserves the isolation between their ports is

particularly cumbersome [6] .

1.2

Any procedure for tearing networks would afford an opportunity to

avoid the generation of large numbers of trees. 	But by imposing the following

discipline on the manner in which networks may be torn, the difficulty in

modelling the isolating character of transformers is also avoided. 	A network

port is defined in the conventional way; that is, a pair of terminals with

which is associated one voltage, measured between the terminals, and one

current, which leaves the network at one terminal and re-enters through the

other terminal. 	It is then stipulated that networks may only be interconnected

at their ports. 	Because an appropriate method for interconnecting networks

must assume that the currents in the terminals are equal and opposite, the

tearing of a network is therefore valid only if the behaviour of the network

is not altered by the introduction of isolating transformers at the inter-

" connections between the subnetworks. The isolating character of transformers

and mutually coupled coils is thereby taken into account automatically by the

assumed nature of the interconnections.

With the above stipulation, the tearing procedure requires that a network

be represented as a structure of multiport networks, and it is for this reason

that attention is focused on the general multiport network and the topological

quantities which characterise it.

1.2 NETWORK- CHARACTERISATION

1.2.1 Network Polynomials

Network polynomials are here defined as topological quantities: each

polynomial is associated with a set of trees (or k-trees) and is equal to the

sum over all trees in the set, of the products, over all branches in a tree,

of the branch admittances. 	This quantity is referred to as a branch-admittance-

product-sum (BAPS). 	Although every , polynomial is the BAPS of some set of trees,

not every BAPS which occurs in this study is necessarily a proper network

polynomial.

To define the sets of trees it is assumed that every network can be

represented by some equivalent network containing only unistors, resistors,

and gyristors, following the method of Mason [34] . However, it will not

be necessary to construct such equivalent networks or to be concerned with

any practical difficulties, such as the need for limiting processes on

1.3

the values of some branch admittances, that might be entailed by this process.

Because ideal isolating transformers may be inserted at the ports of a

network without affecting its behaviour, it is further assumed, in order to

simplify the definition of the sets of trees, that one terMinal of every port

is connected to some common ground terminal. 	The ungrounded.terminal of a

port is referred to simply as the port terminal of that port.

The many polynomials of a network are related to various sets of k-trees

of the graph of the network. 	A k-tree is generally understood to be a tree

of a subgraph which is derived from the original graph by removing branches

in such a way that the subgraph has k separate parts. 	An alternative view

of the necessary modification to the original network employs the concept of

a collapsed port: it is regarded as being short-circuited, with both terminals

tied'together to form a single terminal. 	A k-tree is then a tree of the

network with k collapsed ports.

It is important for the development of this thesis, however, that a

collapsed port be interpreted in a slightly different way. 	A collapsed port

is here regarded as a port for which the path from the port terminal to ground

lies not in the network itself but in some external network. 	This external

path must be included in the trees of the network, but, when calculating a BAPS,

its branch admittances are ignored.

Definition 1.1 ("natural polynomials")

The set of natural polynomials of the general network N is now introduced.

The general member of the set is denoted by

ki abc..

It is defined as the BAPS of the set of trees of N with the ports p, q, r,..

collapsed and the remaining ports a, b, c,.. unaltered (open-circuit).

Definition 1.2 ("transfer polynomials")

Natural polynomials are.only particular (zero-order) instances of the

. set of multiple-order transfer polynomials, of which the typical member

(mth-order) is denoted by

N y, . ym a bc..
x,..xm pqr.. •)(I X

X„,y,n

This polynomial is defined as the BAPS of that set of trees of N whose

ports x 1 ,.., xm',p,g,r,.. are collapsed, which each contain m branch paths

from the port terminals of ports y ll •.,ym to the respective port terminals

X 	00 	X • 1" m This set of trees is a subset, of the set associated with the

.4

natural polynomial

N Y' -.Ym°bc.. .. x rr, pqr-. •

Because the ports x
1, 	xm are collapsed, the m branch paths are necessarily

separate.

A pictorial representation of these polynomials highlights their

distinguishing features. 	With each port of a network is associated a pointer.

If a port is collapsed, its pointer is directed out of the network; otherwise,

it is directed into the network. 	In either case the pointer indicates the

initial direction of the branch paths from the port terminal to ground, and

a setting of all the pointers of a network, or pointer setting, thus determines

the set of trees associated with a particular natural polynomial. 	Its

subscripts identify the ports whose pointers are directed out of the network,

and its supersrcipts identify the ports whose pointers are directed into the

network (for example, see figure 1.1a).

A subset of trees which each contain m branch paths between pairs of

port terminals is represented by a set of m lines called pointer paths drawn

across the network between the respective pairs of ports, with directions

determined by the pointers (for example, see figure 1.1b). 	Hence, in the

representation of a multiple-order transfer polynomial the pointer setting

determines the subscripts and superscripts, while the pointer paths determine

the pairs of port indices beneath the network's base symbol.

•Definition 1.3 ("linkage polynomials")

It is left until chapter 2 to relate the network Polynomials to network

behaviour and to explore the nature of the characterisation which they provide.

It will be seen that in the analysis of networks certain groups of mth-order

transfer polynomials always occur in combination. 	Such combinations, which

have been called linkage polynomials by Pike [41] , are here defined in terms

I.

•1

1

A abe
p r

(a)

11/4 abc
mpqr
rb
PC 	•

(b)

Figure 1.1 Polynomials of a network A and their
representation.

1.5

of the transfer polynomials by

..yn, rd abc..
pqr..

(_ 1 E 	.". jrnrn N 	
myj abc

.x,, pqr..
yji

xm yjn,

(1.1)

where the summation is over all the m: permutations j
1m

of 1,.., m l

and 6 is the generalised Kronecker delta which is +1 or -1 depending on

whether the permutation is even or odd.

The notation for linkage and transfer polynomials is made more compact

by replacing the various sets of port indices with Greek symbols. 	Thus the

/41Y
general linkage polynomial of equation 1.1 becomes IN where oc

= 	X,n) , A = { y,) 	= b 	.
By convention, all the remaining port indices p l q,r,.. which are not included

in the sets c<03,6 are assumed to be in the suffixed subscript position.

The cardinal number of a set is denoted by square brackets. 	Thus, in this

example, [0C] = L43] = m.

To determine any one of the mth-order linkage polynomials of an n-port

network, 2m of the n ports are chosen to either originate or terminate m

pointer paths, m of these 2 m ports are chosen to terminate pointer paths,

and the pointers of the remaining n - 2 m ports may be directed either into

I .
	Or out of the network. 	Thus the total number of mth-order linkage

polynomials is

L (n, m (2nm) •

2 n —2m

n! 	zn — 2m

(n —2m)!i (rn !) 2

This function is tabulated in table 1.1.

1.6

0

__

1 2 3 TOTAL

C \I
C
O

 c
t
 L
C
)
 N

.C
)

4 2 6

8 12 20

16 48 6 70

32 160 60 252

64 480 360 20 924

I .

Table. 1.1 The number of mth-order linkage polynomials of an n-port network.

When counting the total number of linkage polynomials of all orders

(including the natural polynomials) we note that each linkage polynomial can

be associated with a unique selection of n symbols from 2n symbols. 	For

example, with a total population consisting of n "currents" i 	' i n
 and

AtAb' n "voltages" e l ,...,en , the general linkage polynomialoal may be uniquely

•associated * with the selection of n symbols which includes those voltages

•whose indices are included in the sets /3 and y and those currents whose

indices are not included in either of the setscx or 	. 	Thus the total

number of linkage polynomials is

ml

E (i,
'
rri) = 	(r)) .

m=0

1.2.1 Structures of Multibort Networks

In keeping with the multiport-network characterisation developed above,

all interconnections between networks may be made only at their ports. 	It

is further stipulated that a connection between ports must be characterised by

either a voltage or curxent which is common to all the ports, i.e. the ports

are either in parallel or in series. 	Any connection of ports can be made to

* This association of linkage polynomials with segregations of port currents

and voltages, as Occurs in the selection of a set of independent variables

with which to describe the behaviour of an n-port network, is actually

substantiated by the theorems of chapter 2.

1.'7

conform to this Idle by introducing simple 2-port networks as, for example, in

figure 1.2. A set of multiport networks connected together in this way is

- here called a structure of networks. 	The individual networks in a structure

are called constituent networks, and the network formed by the structure is

, called the complete network.

When connected together, a set of ports of different constituent networks

is regarded, for identification purposes, as a single port of the structure.

If a port of the structure has connections only to constituent networks and

not to some external network, i.e. it does not correspond to a port of the

complete network, it is called an internal port. 	Otherwise it is called an

external port.

Polynomials and trees of the complete network ere called complete

polynomials and complete trees respectively; polynomials and trees of the

constituent networks are called constituent polynomials and constituenttrees.

The task of analysing a structure can now be simply stated as that of

calculating the complete polynomials from the given constituent polynomials.

But before we begin this task, a further simplification is made, without loss

of generality, by considering only those structures in which all ports are of

the parallel type. 	Structures with ports connected in series may he converted

to equivalent structures containing only parallel ports by inserting a unit

gyrator in every port which is connected in series. 	The effect of a unit

gyrator connected to a port is to interchange the voltage and current values,

so that whereas a series connection of ports constrains the currents to be

equal, the ports of the equivalent structure must be connected in parallel to

constrain the voltages to be equal. 	It is seen in chapter 2 that cascading

a network with unit gyrators only interchanges scme polynomials—because

ports that were originally open-circuit become collapsed, and vice versa—

and changes the sign of others, due to the antireciprocal nature of a gyrator.

With all the ports of a structure now of the parallel type and, if

necessary, isolated from the constituent networks by ideal transformers, one

terminal of every port is connected to a common ground. 	With each port is

associated a pointer which may be directed to any one of the constituent

networks attached to that port. 	Because it is,possible to interpret the

4-)

0
0.1

0

0
"g4
4-)
C.)

0

1

1.8

direction of a pointer as indicating the initial direction of paths from the

ungrounded port terminal to ground, a setting of all the pointers of a

structure may be interreted as specifying particular polynomials of the

constituent networks, in the same way that they do for an isolated network.

Pointers of internal and external ports are called internal pointers and external

pointers respectively.

1.3 THE ANALYSIS PROCESS

1.3.1 Calculation of Natural Polynomials

The process for analysing a complete network structure which, together

with its constituent parts, is characterised by polynomials, is based on an

analysis of the various trees of the complete network.

It is first noted that a complete polynomial is the BAPS (branch-

admittance-product-sum) of complete trees, and the polynomial or its associated

set of complete trees is represented by a setting of internal pointers.

Attention is focused on the ungrounded terminals of both the internal

and external ports. 	Because each complete tree, by definition, contains a

unique path to ground from every node in the complete network, the complete

trees are classified uniquely according to the initial direction taken by the

paths from these port terminals to ground. 	The classification concerns only

the •first constituent networks through which these paths pass, and each class

is therefore represented by a setting of all the pointers.

A pointer setting thus determines a set of constituent polynomials

and also a class or subset of complete trees associated with a complete

polynomial. Furthermore, every complete tree in the class is a union of

constituent trees associated with the constituent polynomials. 	However, not

every union of constituent trees determined by the pointer setting is

necessarily a complete tree. 	The path from a node to ground either lies

wholly in one constituent network or passes through a port into an adjacent

constituent network. 	The path in the adjacent network may also pass through

another port to connect with a path in yet another constituent network, and so

on, but unless the path leads to a port already passed by itself---and thus

forms a loop of branches---it will eventually terminate at the ground node.

Hence a union of constituent trees is either a complete tree or forms one or

• more loops of branches.

1.9

The branch loops that are formed by some unions of trees are themselves

classified according to the constituent networks traversed by the loops, and

the classes are represented by pointer loops drawn across the constituent

networks and passing through the ports in the direction of the pointers (for

example, see figure 1.3b). 	The pointer loops not only represent subsets of

the unions of constituent trees, but their segments, which traverse individual

constituent networks, also determine subsets of the constituent trees to

which the trees in the union must belong:

To fully analyse a structure all the possible pointer settings must be

considered. 	Suppose that pointer settings are generated in some regular

manner, and consider a pointer setting which defines the i-th class of complete

trees associated with a particular complete natural polynomial. 	Assume that

in this general case the pointer setting will allow many pointer loops p,q,r,..

to be drawn. 	The sets and subsets of trees and unions of trees are identified

with the following symbols:

the set of trees of the k-th constituent network

determined by the i-th setting of pointers;

TP,C1,r,• •
ik 	' the set of trees of the k-th constituent network

determined by the i -th setting of pointers and the

pointer loops p,q,r,..(note that

T k 	 ik,

and the equality holds if and only if none of the pointer

loops traverses the k-th constituent network);

U kik kik E Tik
the universal set of unions;

1 c 	ic E Tijk ,
the j-loop set of unions;

UL ' ,

the tree set, i.e. the set of -all unions of constituent

trees which are complete trees.

S (X.) is defined as the BAPS of the-trees or unions of trees in the

set X..

network 1
	

network 2
	network 3

(a)

(c)

Figure 1.3 A structure of three constituent networks

1.10

The BAPS of all unions of trees, with One tree taken from the set for

each constituent network, equals the product of the BAPS's of the sets of

trees for each constituent network. 	Hence, by considering the sets of

constituent trees determined by the setting of pointers and the various

Combinations of pointer loops,

s(i) 	= 	sc-rio ,

s(L) 	=if S(),

S(n 	=Tr s(-ri nk"),

S(L fl 	fl L) = Tr s(17r) ; etc 	-(1.2)

The factors S(Tik), 	S(T17'n),.. are polynomials of the constituent

networks; S(Tik) is a natural polynomial, and SkTik) is a nonzero-

order
.

 transfer polynomial -- unless Ti k 	= T . ik -

The desired quantity is the BAPS of the complete trees which belong to

the class represented by the i-th pointer setting, and is given by

S(ri) 	= 	S(U

= S(I i) — Es(L) + E s(cin n Lril)
mn E(L-7 n L7 ri 	n C;) p,q,r

(1.3)

The steps required for each setting of pointers are reviewed and

illustrated with reference to the structure of networks and setting of pointers

shown in figure 1.3.

(a) Search for all possible pointer loops. 	In the example, three pointer

loops can be drawn with this, say the i-th, setting of pointers.

, I 	,2
Representations of the sets of tree unions Li and Li , alone, are not

illustrated, although figure 1.3b represents the set of tree unions

nr , ,2 and determines the sets of constituent trees T31 , Ii2 	, and

1,2 	 3
Ti3 	Figure 1.3c represents the set of tree unions L i and determines

,-3 	. 	n-3 the sets of constituent trees Iii , 	132, and 	133.

(b) 	The BAPS's of tree unions are calculated using the equations 1.2. 	Thus:

13 	24 	56
i) 	= A2 835 C 4 ,

S(L) 	= A?, B 2,45 C546,
23 32

S(= A1 B 5̀' C 546 ,
• 54 45

S(L?)
A13 n24 if,56

— 	11°35 L04- 23 52 4-5
34

,13 n24 r.55
• and S(Lit ni) 	/A2 035 	4-

23 32 4-5
54

The sets L, n 12, 	n LI and therefore 1..n 	L? are empty. 	Note

that the subscripts and superscripts, determined by the pointer setting,

are the same in each product, and that only the pairs of transfer indices

beneath the base symbols, determined by pointer paths, vary from one

product to another.

(c)
	

the BAPS of the complete trees is calculated with equation 1 3. 	Thus
4

s(T,)-- ABC- ABC-ABC-ABC +ABC
2332 	54 45 23 52 45 23 32 45

34 	 54-

(The subscripts and superscripts have been omitted for clarity.)

Because the double-transfer polynomials E3 and--Elhave the cofactor M:5
32 	59
54 	34

241-%
they are combined as the one linkage polynomial 35 tj and the BAPS is

expressed entirely in terms of linkage polynomials as follows:
A3 4B2 5 c6

-- 2 503 4

(1.4)

In the general case, transfer polynomials of a network N which group

together into one linkage polynomial will always have the same cofactor in

equation 1.3 because the pointer paths which complete pointer loops by

traversing the networks external to N are independent of the pointer paths

which traverse N itself. 	The sign change manifested by the Kronecker delta
-

in equation 1.1 takes into account the change in the number of distinct

.pointer loops as the transfer indices are permuted.

The final stage in the calculation of a complete natural polynomial

corresponding to a particular setting of external pointers involves the

(
1 	A13

==

S;7-i i 	P-1 2
r324 r56
10135 1/4°4

3 A 1
21°‘

•3AI
-- 211-1

240
35L19

2 04-
3 I-P5

5 r 6

4 1/4'

c56
4

-summation of BAPS contributions obtained from every possible setting of •

internal pointers; that is,

s(() 	E 	. 	 (1. 5)

1.12

1.3.2 Calculation of Hioh-Order Polynomials

A transfer polynomial of the complete network is the BAPS of a set of

trees which all have branch paths between certain pairs of external ports

The trees are classified according to the constituent networks traversed by

the paths, and the classes are represented by pointer paths drawn across the

networks and through the internal ports in the direction of the pointers. 	As

with complete natural polynomials, the trees are unions of trees of constituent

networks, and, in company with the pointer settings, the se4ments of the pointer

paths determine the sets of constituent trees to which the trees in the union

must belong. 	The possible existence of pointer loops elsewhere in the

structure must again be taken into account.

Rather than describe a different algorithm to calculate the high-order

transfer polynomials of a complete network, the concept of a closing network

is introduced in order that the one algorithm should generate the transfer

and linkage polynomials of all orders.

The closing network is an imaginary network which connects all the

external ports of the complete network. 	It may be regarded as the

environment of the complete network or the complement of the complete

network in the "universal" system; it is the network into which the external •

pointers are .directed when they are directed away from the complete network.

In this sense it has the same status as a constituent network, and the

external ports thus lose their distinction from internal ports. 	It is called

a closing network because it provides imaginary paths to close the pointer

paths through the complete network and so form pointer loops.

A high-order transfer polynomial can now be defined as the BAPS of

those trees which are capable of forming branch loops through the closing

network, and these trees are subject to the same classification and rules

of evaluation as the unions of trees which form branch loops through the

normal constituent networks.

1.13

1.3.3 The Analysis Algorithm

The one algorithm which calculates the complete linkage (or transfer)

polynomials of all orders is summarised in the following steps:

(a) 	To the set of real constituent networks add the closing network.

(b) 	With each port associate a pointer which may be directed into any

attached constituent network (real or closing).

(c) 	Set the polynomials of the closing network to zero. 	These polynomials

will be employed as accumulating sums of products of polynomials of the

real constituent networks.

(d) 	Generate every possible setting of pointers once and only once.

For every setting take the following steps:

(i) Search for all possible pointer loops.

(ii) Determine all the polynomial products given by equations 1.2.

For every polynomial product take the following steps:

(1) Give the product a sign as determined by equation 1.3:

if the product is represented by an even number of pointer

loops, the sign is positive; otherwise, the sign is negative.

(2) Every product will include one polynomial from every real

constituent network and will also determine a polynomial

	

of the closing network. 	The polynomials of the real

constituent networks are multiplied together and the product

is added— or substracted, depending on the sign from step (1)--

to the accumulated polynomial of the closing network.

(e) 	At the completion of step (d), calculate the polynomials of the

complete network N from the accumulated polynomials of the closing
. _

network N with either of the equations

A
a 6'

4e 	P4] 	 or
or 	N0(6 = (- 1)

°O /30(

1.14

1.4 APPLICATION OF THE ANALYSIS PROCESS

1.4.1 General Structures

In common with all topological methods the analysis process described

above suffers severe limitations with regard to the magnitude of its task.

As the number of constituent networks and ports is increased the analysis

task tends to grow exponentially. 	Even analysis of the apparently simple

structure of figure 1.3 (with ports 1 and 6 the external ports) is tedious if

6. done by hand: 	it requires attention to 2 different pointer settings, each

involving a search for pointer loops and the calculation of one or more

polynomial products.

It has not been practical to implement the general algorithm as a

computer program for several reasons: for instance, one potentially difficult

problem concerns the storage and addressing of the large numbers of polynomials

associated with each network (see table 1.1). 	To make the algorithm more

practical, further investigation is required to find suitable routines to

recognise pointer loops, and to group together polynomial products in such a

way that sums of transfer polynomials may be replaced by their equivalent

linkage polynomials. 	It seems likely, though, that a practical algorithm

would 'somehow combine these two routines with a special routine for

generating the pointer settings.

Nevertheless, these practical difficulties are alleviated by the

diakoptic approach which the method permits. 	Because the results of analysis

of one network --the linkage polynomials-- can be used directly as ingredients

for the analysis of some larger network, it is possible, and generally

advantageous, to tear a network apart into progressively smaller substructures

and analyse them separately, so that at any stage only a relatively simple

structure needs to be analysed. 	This approach is particularly attractive

when the systems to'beanalysed are, irrespective of size, only loosely

interconnected.

1.15

Unfortunately, a diakoptic approach raises the problem of specifying

and controlling the manner in which subnetworks are created and manipulated.

Experience with other diakoptic methods, such as that of Kron [28], suggests

that this task is better done manually than with a computer routine, and

it is notable that Ishizaki et al [27] have developed a language notation with

which to specify the algebraic manipulation of multiport networks. 	But,

again because of the large numbers of linkage polynomials, this aspect of the

topological method has not been investigated in the general case..

1.4.2 Structures of 2-Port Networks

Limiting all networks to two ports effects a drastic simplification in

the analysis process without seriously limiting its application. 	Most

system components and circuit devices can be modelled directly as constituent

2-port networks, and two ports allow sufficient access to a complete network

to determine any transfer or driving-point immittance functions that may be

sought.

In the following analysis all networks have exactly two ports.

Consequently all networks are characterised by six polynomials, and the

• organisation of polynomial storage and manipulation is comparatively simple.

When analysing large structures of 2-port networks with the general

algorithm, pointer settings are best generated by setting pointers one at a

time in en order which attempts to follow the formation of pointer paths, so

that pointer loops are detected automatically as they are formed. 	Because a

pointer determines the polynomials of the 2-port networks which it traverses,

even though pointers elsewhere in the structure may not be set, it is possible

to factorise the sum of polynomial products associated with a pointer setting.

Consider one setting of pointers for which there are p pointer loops.

Let t. be the product of transfer polynomials determined by the j-th pointer

loop,

n. be the corresponding product of natural polynomials determined by

the j-th pointer loop,

and n
o be the product of natural polynomials of networks which are not traversed

by any pointer loop.

1.16

From equation 1.3 the contribution to the appropriate closing polynomial is

S = n o n 1 ..n p - (n ot 1n2 ..n o + n o n 1 t2n3 ..n lO

+ (nt
1
t
2
n
3
..n

p
n0n 1t

2
t
3
n
4.

.n
p

...)

• (r1)Pnotit2..to

t. 	t.t.. t
i
t
2
..t

p)
E 1 4- E-1-2

12 	p

ir(1 - t i)
P 	n.

1

= no /T(n. - t.) • a. (1.7)

13ycalculatingthefactors(n.-t.) as the pointer loops are formed,

many polynomial manipulations and associated book-keeping chores are avoided

and some sources of numerical round-off error are eliminated.

The practical application of algorithms using the above expression in

the analysis of structures of 2-port networks has been thoroughly investigated

and is the subject of part II of the thesis.

1.5 CONCLUSION

This chapter introduced a set of topological quantities as paremeters

to characterise multiport networks, and developed an analytical process which

relates the parameters of a complete network with the parameters of its

constituent parts. 	The process has two important features. 	First, it

permits a diakoptic approach to the analysis of large systems; and second,

because the parameters need only be multiplied together, added, or subtracted,

it permits a totally symbolic analysis. 	The advantages of both features are

discussed further in chapter 4.

= n
o
n

. 1 p

	

n. 	n.n • 1 	1 j

CHAPTER 2

POLYNOMIALS AND NETWORK BEHAVIOUR

2.1 INTRODUCTION

The protess presented in chapter 1,for analysing structures of multiport

networks in terms of topological quantities, is not complete as a useful

analysis theory because the parameters which are used to characterise networks •

have in no way been related to the observable behaviour of the networks. 	The

aim of this chapter is to establish such a relationship.

In the strict logical development of this relationship the first important

goal is to establish that the characterisation of a network by a set of linkage

polynomials is, in some sense, unique. But the proof of the relevant theorem •

(2.2) is supported by a special case of another theorem (2.1) that relates all

linkage polynomials to a particular subset of the linkage polynothials. 	Because

the proof of the latter theorem relies largely on an application of the

analysis process, it is introduced first. 	Proof of the general case for theorem

.- 2.1 must, however, be reserved until theorem 2.2 is proved.

The first two theorems constitute the major part of the chapter. 	It is

- a relatively simple step to theorem 2.3 which establishes a connection between

the linkage Polynomials and the behaviour of a network characterised by its

short-circuit admittance matrix. 	Theorem 2.4 follows from another simple

application of the analysis process and provides an effective means of

generalising any identities involving polynomials and port variables.

2.2 IDENTICAL NETWORKS IN PARALLEL

The connection of two,or more, identical multiport networks in parallel

allows a simple demonstration of the analysis process of chapter 1, and leads

to a theorem which establishes all the relationships between the polynomials

of a network.

Lemma 2.1

For a structure of k identical n-port networks, with their corresponding

ports connected in parallel; the polynomials of the complete network M are

related to the polynomials of the constituent networks N by the expression

2-2

Proof (for networks without internal nodes)

If the network contains no internal nodes then the natural polynomial N
is unity because, with all ports collapsed, the trees contain no branches. The

complete network M behaves as a single network N with all its branch admittances

multiplied by the factor k, and the theorem is proved for this special case by

noting that the trees associated with the general polynomial contain {/3]-1- [6]

branches.

Definition 2.1 ("the X matrix")

Throughout this chapter a particular matrix, whose elements are ratios of

polynomials, will play a major role. 	It is introduced at this stage simply as

the X matrix. 	Its minor determinant, comprising columns a,b,c,.. and rows

p,q,r, .., is denoted by

v ci bc..
A pqr..

With this notation the X matrix is defined by its elements, as follows:
j skt

vpsi 	rm

and 	 N')(: " N

Theorem 2.1

The general linkage polynomial is related to a minor determinant of the

X matrix by the identity A 	a.
vg x

= A txx •

Proof

The theorem will be proved by induction on e, where e = [A]-F

The truth of the theorem for e = 1 is established by definition 2.1.

We now assume that the theorem is true for all e < f, and proceed to

establish the theorem for e = f by considering two identical n-port networks N

connected in parallel.

2-3

.. If 	[)3]+ [Zr] = f then by lemma 2.1 (which at this stage is proved only

for networks without internal nodes), the general linkage polynomial of the

complete network M is given by

M --= 21 	N
(2.1)

The same polynomial is now calculated using the analysis process developed

in chapter 1. 	The pointers of the ports denoted by /3 and 	may be directed

into either of the constituent networks, and the remaining pointers are

directed into the closing network.

settings to be considered.

There are, therefore, a total of 2
f
pointer•

In the typical pointer setting of those to be considered, suppose that,

of the set /3 , the subset of pointers /3' are directed into the first constit-

uent network and the remaining subset ,2. are directed into the second constit-

uent network. 	Let the subsets of o< which correspond to/3 1 and /32 (by virtue

of the order of the members of o(and /3) be 0< 1 andoe respectively. 	Thus

if = 6/1 yrn} = {x1 • • Xml , and /3'. fy2 X0(7) then

oe== fx2 x3 x 7) . 	Similarly, let X i and X2 denote the two subsets of X

whose pointers are directed to the first and second networks respectively.

The transfer polynomials constituting the complete linkage polynomial are

represented by pointer paths drawn across the structure,. starting from the ports

/3 1 and /3 2 , and terminating at the ports CK 1 and c<2 . 	The major task is to

find all such pointer paths and all the pointer loops, find all the transfer-

polynomial products determined by equation 1.3, and group them together into

products of linkage polynomials.

It is noted that pointer loops can only be drawn through ports belonging

to the sets Y and r 2 , although any path from a port in/3 to a port in o<

may pass through any numbers of ports in Y and X 2 alternately; for instance,

a path may originate at a port in /3 1 , pas through different ports in Y 2 ,

X I ; Y 2 , Y 1 successively, and terminate at a port in 0<1 .

Consider a sum of products of transfer polynomials which constitute a

•

typical . product of linkage polynomials. 	Suppose that in one constituent network,

2-4

segments of pointer paths, or loops originate at ports denoted by subsets Y2

and Y3 of y , as well as /3 of /3 , and terminate at ports denoted by

subsets oc; of oc i 1 oc and cx of oe , and 	of e 	Suppose, similarly,

that in the other constituent network, segments originate at ports 6f of W2 3

as well as /3 2 of /3 , and terminate at 0(12 of oK I , 	of o(2, and

X.; and 	of yf . 	The subsets are chosen so that 	=

and [o< 12]== [4.

In this case the product of linkage polynomials may be denoted by

1 /3 1 	e 42 	
,2

ski 2

c< t oc2 cx2 r2 119 • Ir; 4 	e(21
I 	3 	I

(2.2)

1

Y
To determine the sign associated with this product, as a term of 0 M

we first consider the product of transfer polynomials for which the pattern of

transfer indices is unaltered, i.e.

NAI 	N /32 r 2
• (2.3)

1 	yl Y2 	•
C41 Al U2 V

" 	6
e4 1. 13 	04 A'
zr; 	0:2

From the definition (1.3) of linkage polynomials, the sign of this transfer

product (2.3) as a term of the linkage product, is determined by the number of

pairs of transfer indices, and is therefore (-1) 	. 	The representa-

tion tion of this product contains the maximum number of pointer loops: Z(2 j .

'Therefore, as a term (in equation 1.3) of the complete transfer polynomial
4 1 /32 yi r 2

Rd 	 (2.4)

°el
2 " •

0:2

the. sign of the transfer product (2.3) is (-1) Exk] 	Considering again the

definition (1..3) of linkage polynomials, the sign of the transfer polynomial

A r
(2.4) as a term of the linkage polynomial ,x 	is

[/3] _2 2
°<I 	C;(3 V‘2. CK2 •

oc I

2-5

Hence, the sign associated with the linkage product (2.2) is

0(2

6 °‹: 	o(23 404
(H) [12] 4- D61

o 	4 4 xi, w 	0(2 	If: = 	e
1 	2 	2 ‘,../ v I 	„a l v 2 	• ot.3 0 0 0 2 03 	."2 0 2

For a particular pointer setting every product of transfer polynomials

determined by equation 1.3 is contained in the expansion of one and only one

linkage polynomial product of the form 2.2, and, conversely, every term in the

expansion of every possible product of this form is a term of equation 1.3.

Hence the contribution from one pointer setting to the complete linkage polyno-

RKAY
mial pri is ot

2 	2

ocil °el yi2 2r; cxi oc4),

(2.5)

-where the summation is over all sets of ce2 , ocf (which replaces both y(and

oc.1 in the preceding example), r2 (which replaces both)1; and /6), and

. 	To include the general term, the only relationship between the sizes of

these sets is expressed by [04] -I- 	== roK2,1 	[e].

(The preceding example considered the case in which [1 12]) [g]) . 	If each

constituent network has less than f pointers directed into it then the assumed

validity of the theorem relates the polynomials-to minors of the X matrix, with

/ks1 :2
the result that expression 2.5 divided by m) is recognised as a Laplace expan-

sion of a minor of the X matrix. 	That is,

C 	N)
2 	rf 0(2 • E(s 	2r12 zr; 	0(12

/9 1 /32 e r2
= (K2 .

(K
2

• X
r

0(y

/3' X; r; 	e /3 2 Y\
1 2 2 t 	• 	X v i °(/ 0(1 21, 	 02-2 0<2 0 2

(2.6)

In this Laplace expansion the first minor comprises columns /3 / and r
corresponding to the pointers directed into the first constituent network, and

the second minor comprises columns /32 and 1 2 , corresponding to the pointers

2-6

directed into the second constituent network. 	In the "diagonal" term of the

expansion, whose sign is

cx t c<2 21,z
S o< 1 x i oe.

the first minor comprises rows ix / and y' , and the second minor comprises

rows c<2 an d y 2 . 	Other terms are obtained by interchanging rows o<2 and X I 2

2 of the first minor with rows c< and r2 of the second minor.

The contribution to the complete polynomial determined by two of the

pointer settings cannot be expressed in this form because one of the constituent

networks has f pointers directed into it. 	But, for both these pointer settings,

the other constituent network has no pointers directed into it, in which case

the contribution is simply

N . fiN1
	

(2.7)

The analysis process is completed by combining the contributions of all

2
f
pointer settings given by the expressions 2.6 and 2.7, whence

2 f3 a
oc4= (2f 2) .(N) . X (xi + 2. N.:N Y .

Elimination of the complete polynomial l3
c
Mr from equations 2.1 and 2.8 c

establishes the theorem for e = f, and hence, by induction, for all e.

(2.8)

Q.E.D.

This theorem is the key to all the relationships between the linkage poly-

nomials of a multiport network, and is used in section 2.7 to establish two

important polynomial identities. 	In particular, we note the following corollary,

without proof:

Corollary 2.1

All the linkage polynomials of an n-port network may be derived from the

set of (n2 + 1) polynomials comprising the (n + 1) natural polynomial's and the

n(n - 1) single-transfer polynomials that occur in the X matrix.

2 - 7

2.3 POLYNOMIALS OF EQUIVALENT NETWORKS

In order to relate , the polynomials of a network, defined as branch-

admittance-product-sums (BAPS) of trees, to the electrical behaviour of the

network observed at its ports, we must at some stage investigate the

relationships between the voltages and currents in a network. 	Considering

first . a two-terminal device by itself, the current through it, and the voltages

between both its terminals and some common ground point, the observance of a

linear relationship—such asOhms Law—is implied by the adoption of the

admittance parameter to characterise the resistors, unistors and gyristors with

which we model an electrical circuit. 	The consequences of Kirchoff's Law,

however, make their first appearance in this section.

The practical value of linkage polynomials, as a set of parameters to

chafacterise a network, is assured by the following theorem.

Theorem 2.2

Electrically equivalent networks, i.e. networks which exhibit the same

electrical behaviour when observed at their ports, are characterised by sets of

linkage polynomials for which the ratios between corresponding pairs of

- polynomials are equal. In other words, the polynomials of equivalent networks

are identical except for some multiplicative constant which applies to all the

polynomials of a network.

Proof

Networks with the same behaviour but different internal topological

structures can be transformed from one to another by successively introducing

or eliminating internal nodes. 	Hence, to prove the theorem, it is sufficient

to show that a transformation which eliminates an internal node without changing

the network's behaviour also preserves the ratios between network polynomials.

Suppose that a star network A with internal node r and n external nodes is

replaced by an equivalent mesh network B, as in figure 2.1. 	In network A the

connection between node r and an external node i will, in general, comprise two

unistors, one directed from node i with admittance y
i
, and the other directed

to node i with admittance y i . 	The equivalent mesh contains unistors directed

J
NETWORK A

1

N

NETWORK B

A
GENERAL MULTIPORT

UNIT GYRATOR

Figure 2.1 	Equivalent star and mesh networks A and B.

Figure 2.2 	Cascade connection of network A with a
unit gyrator at port c.

2-8

from node jto node i with admittance

= y i±yi/y

where 	Y =

(2.9)

I .

That the two networks are in fact equivalent is demonstrated by comparing

their driving-point and transfer admittances.

WedefineE.to be the voltage between node i and some common ground

point, and I i to be the current entering the network at node i. 	Note that, by

definition, the current in a unistor directed from node i with admittance y i

is y
i .E..

1

Applying Kirchoff's current law to the internal node of network A,

I 	=Er - ::y'. E. = 0, r 	 1

l e e ,

•

Er =Ey 1/Y.E..

If all the external nodes except j are short-circuited then

E
r

= 	yj /Y . E.
J'

I. 	- y. . E ,
1 	1 	T

I. = y
j
.E. - y. .E .

J 	J 	r

The short-circuit transfer and driving point admittances are therefore given by

and

IJ
and

Y.. = I./ 	=.
1

.)/i /Y
ij 	1 j

Y.. = I./E. = yj - Y ..yj/Y JJ 	J J 	j

= (Y— Y*) • Yj/Y
J .

(2.10a)

The short-circuit transfer and driving-point admittances of network B

are given by

Y.. = -y .. i.j

and Y. = jj A (2.10b)

They prove to be identical to those of A when the relations 2.9 are invoked.

To calculate the effect of this star-to-mesh transformation on the

polynomials of any network in which the star network might be embedded, the

complete network is torn in order-to isolate the star as a constituent n-port

fyi 	, • • 	- 1 11+1 • • 	== 0

ik 6°5

on m that

I

; 	•,
B '' • • "'"

• • ici-1 ig+1 • •
VO

m 	•
11' y/ JP (2.12d)

(2.12e)

42.120

2-19

network. 	For instance, the star's external node j, together with the common

ground terminal, becomes the j-th port of the constitient network. 	We now

compare the polynomials of networks A and B.

With all ports collapsed, the trees of network A contain a single unistor

directed from node r to any external node i.

••• 	= 	= Y. 	 • 	(2.11a)

If port j alone is not collapsed, a tree contains the unistor y j with any other

unistory. i

* **N = EY-1•Yi=" (Y- .) * Yi' 	(2.11b) YJ

Only one of these trees contains a path from port j to port i.

•

•. jilk,== --,6`,1 r= -y. • yj . 	 (2.1Ic) i __ .. 3.
1,f

Further inspection of network A reveals that the.general natural polynomial is

= [NI _ (ya

	

a 	b

	

+ ...)] • Y 	• Y 	• Y

Em

 (2.11d)

and the general single order transfer polynomial is

_ 	j 	a
yi •y•y•y•y....

ij

The transfer polynomials (and therefore the linkage polynomials) of order

greater than 1 are zero.

(2.11e)

With all the ports of network B collapsed, there are no trees. 	If port j

alone is not collapsed, each tree consists of a single unistor 	which also 3.3

provides a path from port j to port i.

= (Y-yi) • yi /Y,

- y, yj/ Y.

(2.12a)

(2.12b)

(2.12c) • and j
 B - 	= -

Because network B has no internal nodes, its remaining linkage polynomials

may be determined by .application of theorem 2.1. 	It will be proved by induction

1—jci—j m

j,. 1 ..im 	•

•jrn C. a

2-10

The equations 2.12b and 2.12c establish 2.12d.and2.19e for m=1; equation 2.12f

is established for m=2 by considering the expansion

•

i t j2

k i X iii2 k i

Xjki . X Ji 2

B k

Yk/Y.

= 0 .

X j • ' X J2 i k
j, re) j2

i 	• k

Yi/ Y• y J2 - Yi/Y- Y ii- yk /Y• y i

Expanding, about column j 1114.1 , the minor comprising rows and columns j 1" • 'jni+1'

B il"jm+i il 	imi-1

= • X j 	I. -I • ' - rti-r1

-- 	Vri l • ' iM Vjf11-1-1 — 2)(JI—Jj9.—J7 	
xim+I

Ai, i

	

..h, • Aim.l 	q= I 	Ji • • 1114-1• • _MI 4 	iq

==
 - B),..J. aim+, _

J.., 	 • Jci

== (1 --t YJIY) 	YjP . (I --

m

Y,i,+,/"()
• Yin,/

P=I
m 	 -

- 9E [/Y . 	P • yi,/ Y. y jm+1
= 1 	 p= mq.1

== --2] Yjp //) 	Y jP
P=I 	 p=

-which proves equation 2.12d for all m. 	Repeating the same expansion, but with

row jm+1
replaced by row

JrnsiBji • ' Jm X -.Jr • jm im+1
A j,

Xim+ 1

	

. 	- E qz, Bi,•• im
- i D

	

rn 	rn
-- (I --): Yjp//\() 77' YjP -)/'

m • 	m 	.

[d/Y . jP . 	 // y .
. 4= 1

m+1 	•

Yd. Y 	Y
P=I

which proves equation 2.12e for all m. 	Again repeating the expansion, but with

rows jm and j m+1
replaced by rows k and i respectively,

jm 	jt "jm-
ki = A • JI• •J,,_, k i

I • •rn -I k • 	 Ji • .Jm- 	k
J,..irn 1 Jm 	44- I 	nti vjl• jq jm

. 	. 	.

X j.m+I — 	X 	— A 	k . A jg

Bjt 	4./8 	 rtjj • • ig- j9+ , • • Jl1 :in, 4
SB

qr/

= Yk/Y • TryJP y1 /Y. r-i
= 0 ,

m 	.
ri/Y. TrY jP. Yk/Y. y 1- 0

13,1

2-11

which proves equation 2.12f for all m.

Any linkage polynomial of order greater than 2 can be expanded in terms

containing a linkage polynomial of order 2, and is, therefore, also zero.

Comparison of the linkage polynomials (2.11) of network A with the polynomials

(2.12) of network B indicates that they are identical except for the multiplicative

constant Y, which applies to all the polynomials.

Because, with the analysis process of chapter 1, the polynomials of any

complete network are homogeneous functions of the polynomials of the constituent

networks, it follows that the effect of a network transformation involving a

node,elimination preserves the ratios between the polynomials.

1 	 Q.E.D.

1

The above proof would have been shorter if corollary 2.1 could have been

applied to both networks A and B; for then it would have been necessary to compare

only the n
2 1 polynomials which determine the respective X matrices. 	But this

corollary could not be applied to network A because lemma 2.1 is, at this stage,

proved only for networks without internal nodes. 	However, with theorem 2.2 now

established, it is.possible to prove that the lemma, its theorem, and its

corollary are valid for all networks.

Proof of Lemma 2.1

Because the behaviour of the structure M would not be altered if every

internal node of one network was connected to the corresponding nodes in the

other networks, the structure is equivalent to a single network P obtained

from N by multiplying all its branch admittances by the factor k. 	If g is the

number of internal nodes then the number of branches in each tree associated

with the general polynomial is g +[] + [a], and the general polynomial of

the equivalent structure is

But, by theorem 2,2,

for some constant, K.

oc M 	K k 944j-f-Dri „(N .
If all the ports are collapsed then equation 2.13 becomes

M = K. k g . N.

2-12

(2.13)

(2.14)

The structure may also be analysed by the process of chapter 1, in which case

it is seen that

(N)
k
 . 	 (2.15)

Elimination oftVi and (K . k g) from equations 2.13 and 2.14 proves the lemma

for all networks.

Q.E.D.

We note an obvious corollary to theorem 2.2:

Corollary 2.2

The X matrices of equivalent networks are equal.

2.4 POLYNOMIALS AND THE SHORT-CIRCUIT ADMITTANCE MATRIX

The Importance of theorem 2.2 is recognised by its contribution (in the

form of corollary 2.2) to the proof of the following theorem which is the key to

the relationship between a network's behaviour and its polynomials.

Theorem 2.3

The X matrix, whose elements (by definition 2.1) are ratios between linkage

polynomials of a network, is equal to the short-circuit admittance matrix of the

network.

Proof

The theorem is first proved for the general n-port network B without internal

nodes, as in figure 2.1. 	Such a network was discussed in the proof of theorem

2.2: its short-circuit admittances are given by equations 2.10b, and its

polynomials are given by equations 2.12. 	From these equations it is deduced

that its X matrix is given by

E.

and

2-13

Any network N equivalent to B will, by definition, have the same short-circuit

matrix, and, by corollary 2.2, have the same X matrix, Thus the theorem is

proved for any network.

Q.E.D.

2.5 THE UNIT GYRATOR

In a simple application of theorem 2.3 we determine the 6 polynomials

that characterise the unit gyrator G I whose behaviour is described by the

equation

1
	 E

1

2
	-1 0

	
E 	

(2.16)

For simplicity, it is assumed that the common denominator polynomial of the X

or admittance matrix is

• (2.17a)

The numerator polynomials are then equated with the elements of the admittance

matrix, i.e.

2 — = 0, - G2

1,

and G .= -G =
2, 	2/2

(2.17b)

The sixth linkage polynomial is equated with the determinant of the admittance

matrix, i.e.

G 	= 1. (2.17c)

These polynomials are required in the proof of the following theorem which,

incidentally, gives a further demonstration of the analysis process.

2-14

Theorem 2.4

If an n-port network A is cascaded at port c with a unit gyrator to form

a new n-port network B, the linkage polynomials of the two networks A and B

are related with the equations:

= A c

Ac

B = CA

B = — A. • (2.18)

The positions of the indices of all ports other than c are not affected and

are therefore not shown in these equations.

Proof

While developin the proof the port of the complete network B which

•corresponds to port c of the constituent network A is denoted by c / (see figure

2.2). 	The first and second ports of the unit gyrator G are therefore -c / and

c respectively, and from equations 2.17 its polynomials are

G = GC, = 	= 	= c'cc 	cc,c

and
c

G= G'= O. (2.19)

In applying the analysis process it is noted that for every setting of

external pointers there can be no pointer loops, and there are only two settings

of the internal pointer to consider. 	Therefore, if c' is not among the transfer

indices,

and

B
ci

= G A
c 	Gcc' A

A c

Bc , = G1 A Gcc, A c • (2.20a)

If a poihter path of the complete network originates from, or terminates at,

port c' then it must pass through the internal port c.

•• 	
Bc' 	Gc . 	c . c'•cc' 	

.ec
 c

c c , = pc , A .
c' . 	c 	c .c

All the transfer polynomials in the expansion of any one linkage polynomial are

associated with the same gyrator polynomial. 	Therefore, after substitution

for the gyrator polynomials (2.19), the equations 2.20 relate both the transfer

and linkage polynomials, and prove the theorem.

Q.E.D.

and (2.20b)

(2.22b)

(2.22c)

(2. 22d)

A

N''

j A

WI; • = 0, I r = 0

= 0 , I = 0

2-15

In effect, cascading one port of a network with a unit gyrator interchanges

the roles that its voltage and current play in the characterisationof the

network's behaviour. 	This property has already been exploited (in section 1.2)

in converting series connections of ports to equivalent parallel connections

prior to the analysis of general structures of multiport networks. 	It is

exploited further in generalising any identity relating the various polynomials,

voltages, and currents of a network.

2.6 TOPOLOGICAL FORMULAE

It is established by theorem 2.3 that the transfer admittance from port j

to port i with all other ports (X short-circuited, is given by the ij-th element

of the X matrix, i.e.

(2.21)

If the set of ports c< is divided into two sets /9 and ?f , and all the ports Y •

are cascaded with unit gyrators, then, with the help of theorem 2.4, we obtain

from equation 2.21 the more general identity for transfer admittances:

j t,k,x
I viy3

iy=o 	•
/3

(2.22a)

Cascading ports i and j with unit gyrators, either at the same time or one at a

time, yields the general identities for transfer impedances, voltage ratios, or

current ratios:

=0 ijc<

The general identity for a driving-point . immittance is deduced in a

2.-16

similar way:

ii

Li
(2.23)

N/3

(2.24)

In'so far as the polynomials are defined here as topological quantities--

branch-admittance-product-sums of sets of trees---the identities 2.22 and 2.24

embrace the classical topological formulae for all network functions.

It is also deduced from these identities that the zeros of transmission

from port j to port i, with ports /3 short-circuited and ports Y open-circuited,

Y are zeros of the single-order linkage polynomial N i 13 . 	The zeros of the

&le
natural polynomial NA determine the natural frequencies of the network with

ports ie short-circuited and pOrts Y open-circuited, because this polynomial

is the common denominator of the hybrid matrix with which the voltages Er and

currents I/3 are expressed as linear functions of the currents Tr and voltages

E /3 .

A familiar, particular case of the identities arises when all ports are

cascaded with a unit gyrator. 	All port currents become port voltages and vice

versa, and the short-circuit admittance matrix (the X matrix) becomes the open-

circuit impedance matrix. 	The transfer and driving-point impedances from port j

follow from identities 2.21 and 2.23:

=0 (2.25)

and (2.26)

These identities confirm the well-known result that the common denominator

of all the open-circuit impedances is associated with the branch-admittance-product

2-17

-sum of the trees of the network. 	With the application of theorem 2.1 the

impedance of identity. 2.25 is recognised as the ratio of the cofactor of the

ji-th element of the admittance matrix to the determinant of the admittance

matrix which is, of course, the ij-th element of the inverse of the admittance

matrix.

2.7 POLYNOMIAL IDENTITIES

To further illustrate the application of theorems 2.1 and 2.4 we derive

two simple but important generalised polynomial identities.

Consider, first, the ratio of polynomials

N u v 	
to tJV

N uv

u v
NNv u

NN

Which, on expansion of the determinant, yields the identity

N uv m
• ivi.v = N v

N
v
- N N . v • 	v 	u (2.27)

This identity may be applied to a general multiport network, in which

case the notation convention already adopted implies that all port indices not

specifically included are assumed to be in the suffixed-subscript position.

However, cascading any of these ports with unit gyrators would transfer their

	

indices from the subscript to the superscript position. 	Therefore, in

interpreting this (as well as any other) identity, any missing port index may

•be inserted in either the suffixed-subscript or superscript position, uniformly

throughout the identity.- Thus, an instance of this identity for a 4-port

network is

N234 N 4 = N 24
4 1 • /23 13 	112 	

N14 . 34 2 4

•- 2 "1 •

2-18

Consider, second, the ratio of polynomials

v Nw

X VW 11W

Nuvw

v Nu wuv

v Nw u Nw (N u, „,) 2

which, on expansion of the determinant, yields the identity

v Nw f4 •

Wj

u =
v 	Mww

•- Paw 	
vNA
wimu u

With regard to missing indices, this identity is open to the same interpretation

as 2.27. Yet, cascading either or both of the ports u and v with unit gyrators

results in even more identities; therefore, a more general form of the identity

is

. 	== N u w Nw - v N w N w 	• u

(2.28)

These two little-known polynomial identities are sufficient to calculate

all the natural and first-order polynomials from a given X matrix, and, as such,

are the basis for an alternative analysis method discussed in chapter 3.

It will be appreciated that a very large number of new polynomial identities

may be derived by considering any Laplace expansion of any minor of the X matrix

and then cascading any of the ports with unit gyrators.

2.8 CONCLUSION

This chapter completes the exposition of a theory for the topological

analysis of multiport networks. 	Its aim was to validate the approach to

analysis taken in chapter 1 by building a logical bridge from the new analysis

method to the well-established topological theory as it applies to the analysis

of linear networks. 	The new approach was begun in chapter 1 with the definition

of a set of polynomials as topological quantities, and with the development of

an analysis process which dealt with these polynomials.

Largely as a consequence of the analysis process, all the linkage

polynomials were related, by theorems 2.1 and 2.3, to minors of the short-circuit

Omittance matrix, and thus their relevance in describing the observable

2-19

behaviour of a network was established. 	The effect of cascading a port with

a unit gyrator was investigated in theorem 2.4, and was exploited as a simple

means of generalising all results obtained from the preceding theorems.

The main objective of the chapter was reached with the identities 2.22

and 2.24 5 which express the topological formulae for the various functions of

a network. 	The other identities and properties of linkage polynomials derived

throughout the chapter serve in presenting a more complete picture of the topo-

logical quantities, and demonstrate the facility with which theoretical results

may be obtained. 	Although the proof of the four theorems, and the derivation

11 	of the polynomial properties which emerge from them are unique to this

approach, the results are not new. 	A thorough examination of the properties

of linkage polynomials has been presented elsewhere by Pike [41] .

CHAPTER 3

ALTERNATIVE ANALYSIS METHODS

3.1 	INTRODUCTION

The preceding chapters present a complete theory for the analysis of

linear networks based on an analysis process which avoids the compilation and

manipulation of matrices. 	Although this process has unique features which

appear to give it an advantage in performing symbolic analysis of large net-

works, a realistic assessment of its merits cannot be made without establish-

ing some link with other analysis methods. 	This chapter therefore investigates

analysis methods based on the manipulation of network matrices and, where

possible, attempts to interpret one method in terms of the other.

3.2 INVERSION OF NETWORK MATRICES

A common method of network analysis entails the compilation of the so-

called "nodal-admittance matrix" and its subsequent inversion. 	If the network

is regarded as a multi -port network, the nodal admittance matrix is recognised

as the short-circuit admittance matrix or, if all elements have a common

denominator, the X matrix of definition 2.1. 	The compilation of this matrix

is generally straightforward and is here taken for granted; this section

• addresses itself to the task of inverting either the X matrix or any other

hybrid matrix which relates one set of port variables (a voltage or current

from each port) to its complement set.

The inversion of an n x n matrix may be achieved in n steps, each one

involving the interchange of the voltage and current variables for one port,

and thereby forming a new hybrid matrix. Because the steps are similar in

principle, it is sufficient to detail only one such step. 	Further, because

the formulae concerning any hybrid matrix may be obtained, with application

of theorem 2.4, from similar formulae concerning the X matrix, this step.

will be demonstrated only with the X matrix.

Suppose that the voltage and current variables of the k-th port are inter-

.
changed, thus forming the hybrid matrix whose ij-th element is denoted by VII; ,

If the transformation of the X matrix was achieved by cascading the k-th port

with a unit gyrator then, by theorem 2.4,

j 	N j N k

N k N k
= 	N /N k 9

j 	,/ P4 k 5

N N k
Jk

All the polynomials except 	and IN j h l k
are obtained directly from the X matrix.

The exceptions are calculated from polynomials of the X matrix using the

polynomial identities 2.27 and 2.28, i.e.

	

k 	j Nik = (N i .N k - i N k N) / N

and 	jiN k 	(jiN . Nk - ki N . jk N) / N . 	 (3.2)

Combination of the identities 3.1 and 3.2 with the X matrix definition (2.1)

yields expressions relating elements of the two matrices, i.e.

and (3.3)

These expressions confirm the direct matrix inversion method of Shipley and

Coleman [47].

The complete inversion process is demonstrated with a general 3-port

network. 	•The short-circuit admittance matrix (the X matrix) is given by

1
2

N 21 3 2 N 1 3 	3N 2

2I N3

N, 	
3
2N,

N 3 2 2N 3 	W 2

N 123

3-2

, (3.1) and

N 3 • 12

N 3 • 12

The hybrid matrix obtained by interchanging 1 3 and E
3

is given by

3-3

	

21 N3
	3

I N2

N 3

	

1 	2

2
- 3N1 	N/23

1

2

-3

E
l

for which the new polynomials are determined by

N 13 2 = 	(N I 	1\1 .3 23 • 	12

fm z

2,N 3 - (2,N 3

t N 3 = (21 N, 2

3I

-

N2 • / N2)/ N/23

3N1 • 2N1) I N 123 ,
2 	3

.N 2VN 123 9
2 	3

I 	3 ,

-

N2 .,N,)/N, 23

A similar step interchanges 1 2 and E 	and requires the calculation of three

more polynomials:

1

E
2

E3

N '23 	3 N2 I

1
2 	N 	3 - N

3 	
3 12 	N 2 / 	

I
2

3
I N2 -32N 1

W

	

13 	13

N' 23 	(N 123 . N 21 3 - 2' 143 • 21N 3) /N132

N2 = (3,1N 2 . N21 3 - 32N1 . • N 2N3)/ N
3

1 	12 '

3 23 	I 	2
,N = 412 . N, - 2 N . ,N,)/

3
N 12

The final step interchanges I I and E 1
requiring calculation of another

three polynomials and yields the open-circuit impedance matrix:

I

	

N21 3 -21 N3 3I N2 	1

' N3 2_ 	N13 3N ' 2 	2 	
I
2

3 N2 2N ' 3 	N 	
I
3

^

E
l

E
3

N '23

N'23 	
2

N 13 + 'N 2 3N2)/N21 3 3

	

3 	 3 (2 N, . N
123

 - ,N
21 Ki3) /m23

210J p kV/

	

(23 	• N '23 	'3 N 2)/W3

P13

3 N) 2

3

3.4

Thus all 20 natural and single-order linkage polynomials of .a 3-port

network are calculated in three stages, using only the identities 2.27 and

2.28.

Practical methods of network analysis based on the above process have

•been developed by Downs [18, 19, 20] . 	With many networks two economies

are exercised: the symmetry of matrices of reciprocal networks is exploited

to save storage space and avoid repeated computation, and the use of a

common denominator polynomial is not enforced.

In the initial compilation of the admittance matrix and, to a lessening

extent, in the calculation of subsequent hybrid matrices, the use of a common

denominator polynomial for all elements , of the matrix would incur the

introduction and subsequent cancellation of many polynomial factors. 	Without

a common denominator polynomial the degrees of the numerator polynomials are

generally smaller, but more polynomials must be manipulated and the computational

algorithm is more complicated. 	This aspect of the method has been studied

at length by Downs and need not be pursued here; the purpose of the chapter is

served by the link between this matrix inversion method and the approach to

network analysis which is the subject of the thesis.

3.3 ADDITION OF NETWORK MATRICES

With a conventional approach, the analysis of a network as a whole

requires the inversion of a network matrix as discussed in the previous section;

for a structure of separately analysed constituent networks as described in -

chapter 1, the same conventional approach to analysis requires the inversion

of a matrix which is the sum of appropriate hybrid matrices representing the

individual constituent networks. 	We shall develop an analysis method based

on this conventional approach and draw a parallel between the computational

aspects of the method with those of the topological analysis process of

chapter 1.

It was demonstrated in chapter 1 that it is sufficient to consider only

those structures in which the constituent networks are interconnected with

their ports in parallel. 	In that case the appropriate hybrid matrix is the

short-circuit admittance matrix and we assume that the matrix of each individual

constituent network is augmented with rows and columns of zero elements, where

• • 	•

- 3.5

necessary, so that it has a row and column •corresponding to every port in the

structure.

.Throughout the structure the corresponding port voltages of the constituent

networks are equal, and the corresponding port currents add together to produce

the port currents of the complete network; therefore the admittance matrix of

the complete network is the sum of the admittance matrices of the constituent

. networks.

If each constituent network is fully analysed, there is known a numerator

polynomial and a common denominator polynomial for every minor (including the

determinant and individual elements) of its matrix. 	The goal of the analysis

is to calculate the numerator polynomials and common denominator polynomial of

every minor of the matrix of the complete network.

Let N denote the complete network, and A,B,C.. denote generic represent-

atives of the constituent networks. 	LetN)(refer to the X matrix of network

N, let NX i p9r" denote the column vector comprising the elements of rows
kAl abc..

p,q,r,.. common to column j of NX, and let INA pcir .. denote the minor

determined by the columns a,b,c,.. and rows p,q,r,.. 	Then the equation

NX = E AX
A

expresses the matrix of the complete network as the sum of the matrices of the

constituent networks. A general minor of the complete network is expanded as

follows:

 X 	X 	NY NX a N b
pqr 	 N pqr.. 	pqr.. 	p qr.. 	• ' • I

Axa 	E 	E cx c pqr.. 	pqr.. 	
c 	

pqr.. A

• . •

E 	Ax pci cir.. 	BXpb ,,.. 	ECX cpcp-..
A

-E 	Axa 	BX I) 	CX pci r.. 	pqr.. 	pqr..
ABC

(3.4)

•The first observation from this expression is that every determinant in

the sum of determinants corresponds to an appropriate setting of pointers.

For instance, the generic determinant of this expression corresponds to the

setting in which the pointer of port a is directed into the constituent

network A, b into B,, c into C; etc.

3.6

A particular determinant is evaluated by a Laplace expansion with the

columns contributed by the same constituent network grouped together. 	Thus

each term in. the Laplace expansion is a product of minors, one minor from each

constituent network, and corresponds to a term in the expression 1.3 for the

BAPS associated with a particular pointer setting.

terms in the expansion of any minor of the complete network matrix

possess a common denominator polynomial which is the product of the Common

denominator polynomials of all the constituent network matrices, i.e.

1

N = Tr A A
where N andA denote the common denominator polynomials of the matrices of

the complete network N and the generic constituent network A. 	To maintain

this common denominator, even for terms corresponding to pointer settings

which leave some constituent networks without pointers directed into them, it

is convenient to conceive a minor with no columns or rows. 	Because it must

have a value of unity, its numerator polynomial is equal to the common

denominator polynomial of the matrix.

The addition of matrices is illustrated with the structure of figure 1.3.

The matrices of the three networks are denoted by

I 	2 A23 A 'A3 2 a a

2
,
A3 43 23A / 0 0 0

1

A ,23

I A A n 2 	3 A 311A2 34 , PAI2 U

0 0 0

0 0 0

0 0 0

0 0 0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

Bx ==

B2345

0 	r52 3 010 5 01)
0345204.5 . 2 3528434 CI

2 0 re 4 D 5 0 	 D
3 5745 Pk 45 3 025 3 41/V2 4 a

B 0 2 E3 3 E3 	" 4 .35 4 25 	235 4 E3Z3
3 4

5 B23
5

11 0023 4 a

0 0 0 0 0 0

3. 7

0 0 0

0 0

0 0 0

0 	0 	0

00 	00.

0 	0 	0

0 0 0 Cs46 54C 6 :c

0 	0 	0 :c6 C45-6 56 C 4

0 0 o 4c sf, "6

6 - 5 Aro 4- L45

C456

I.

The pointer setting shown in the figure (1.3) corresponds to an expansion

of the determinant

A23 	A2 0 	0 	0

A 	r12 	CI
211'43 	D345 3 	

4 A

	

/ 2 035 0 	0

31 A2
2E5

	

3 D45- A2 'a, o 	o

0 2 B 	0 	B4
s

64c 4 35 	21T 4C6

20,
5 10034.

40

LJ23 C S46
6r,

0 	0 	0 	•0 51ft
0.04- 	C 6 45

by the three sets of columns {1,3} , (2,4) , and (5,6) . 	Due to the many

zero elements most of the terms in the expansion are zero; for non - zero terms

the minors determined by columns 1 and 3 must include row 1 and either

row 2 or row 3, while the minors determined by columns 5 and 6 must include

row 6 and either row 4 or row 5. 	Therefore, there is a total of four non-

zero terms:

c132456 AX /3
BX

24
CX -T6 C/ 132456 	13 • 	24 ' 	56

c 132456 AX
3 BX 2.4 CX56 132 0 	5'46 	/3 	' 	4 6

,-.132456
+ 0 /23456 • AX13 BX' 	56 CX /2 	34- 	S6

c.1324-5-6

0 123546 AX
/3

BX
/2 	35' • LA46

(0'6 3 pC 2
AI, 3

or 2 4 r 6 ••5

142 • U35 • 1.04 	
13 4 02 6- 	3 	2 04

- AL2'5103. 	

6 	A/
4 4 B sC 6 '3Q.5- '‘'.4 	2M '35 '

A,23 . 	

4

B2345- C456

3.8

This expression agrees with the expression 1.4 obtained with the topological

analysis method.

-The analysis of this structure is far from complete. 	Fifteen more

pointer settiitgs must be considered before all the terms in the expansion of

the determinant of the complete network matrix are obtained. 	If all ports

are external, a total of 2
2

x 3
4

= 324 pointer settings must, be considered

before all the complete polynomials are obtained. 	Nevertheless, the example

demonstrates the computational equivalence of the matrix-addition and topolo-

gical analysis methods.

Although the methods are computationally equivalent, the respective

algorithms which control the computations are entirely different. 	The

topological analysis algorithm is admittedly quite complex but it only computes

terms which are, in general, non-zero. 	On the other hand, an algorithm to

evaluate determinants with appropriate Laplace expansions would be comparatively

simple but, without suitable traps, would generate all terms, both zero and

non-zero.

In the expansion illustrated above there are a total of (6!)/(2!) 3 = 90 terms,

of which only 4 are non-zero. 	The relative merits of the methods therefore

depend largely on the degree of interconnection between constituent networks,

though it is Worth remarking that the structure of figure 1.3, which in this

respect is not atypical of electrical networks, appears to be better served

by the topological analysis method.

3.4 CONCLUSION

The link between the topological approach and the more conventional

matrix methods, which concludes the theoretical part of the thesis, places

the new method in a broader perspective. 	It suggests an alternative

development of the topological methods, starting from the matrix methods rather

than from an investigation of topological quantities, and it provides another

interpretation of the analysis process. 	Thus, if a network is strongly

interconnected, the topological analysis algorithm, which might become

preoccupied with the search for pointer loops and the collection of transfer

3.9

polynomials to form linkage polynomials, can be abandoned in favour of the

direct expansion of determinants---without compromising either the diakoptic

approach or the facility for achieving a fully symbolic analysis..

Due to the sparsity of non-zero elements the use of matrices, especially

those whose elements are rational polynomials, in the analysis of most large,

electrical networks is wasteful in terms of both storage allocation and

canputational effort. 	In a broad view, the topological approach is seen to

directly exploit matrix sparsity and should prove superior to the conventional

sparse-matrix techniques which gain their efficiency from a purely numerical

analysis of the matrix rather than from a knowledge of the topological features

of the real system.

CHAPTER 4

TOPOLOGICAL ANALYSIS OF 2-PORT NETWORKS

4.1 .INTRODUCTION

When it is required to predict the behaviour of any linear network, from

simple passive filters to multi-stage frequency-selective amplifiers containing

many feedback loops, the easiest, the most productive, and therefor& usually

the first endeavour is to lump any distributed components together, estimate the

small-signal behaviour characteristics of all the components, and calculate the

response of the network at many frequencies. Although only a starting point for

more thorough investigations of network characteristics such as noise, non-linear

behaviour, transient response, and sensitivity to parameter changes; a frequency

. response analysis provides a broad insight to the performance of a network, and

presents data which can be readily corroborated with measurements on the physical

realisation of the network.

That a digital computer is an invaluable tool for the analysis of large

networks cannot be disputed; indeed, the importance of ac analysis is under-

scored by the large number of computer programs which have been developed to

perform this task.

The first generation of programs, not unnaturally, used the simplest

• formulation of the analysis problem: the nodal-admittance matrix.

Two programs are typical: ECAP, which also performs''. dc and transient

analysis, and has been implemented on most types of large computers; and ACNET,

which is widely known due to its support on the Honeywell Mark I computer time-

sharing service. However, these programs are inefficient in their use of both

computer time and computer store-space. For time-shared computers which have a

limited space available in their core-store this aspect is critical and often

precludes the analysis of large networks—especially those for which a computer

analysis would be most valuable.

Beside a program's computational efficiency and accuracy, another aspect

which influences its popularity is the form in which data describing the network

must be presented to it. Most programs will accept, in a uniform and simple

manner, networks comprising only R, L and C components, but few of the general-

purpose programs will recognise a more complete set of network components. The

onus is then on the program . user to model . ddvices such as transistors and

- transformers with, for example, only R, L, C and voltage-dependent current-source

elements.

It is often practical to include extra routines in z program to either

perform this modelling directly, or'otherwise handle an enlarged set of basic

elements which might include all types of dependent sources and other two-port

devices. However, for some analysis methods there still remains a fundamental

difficulty in handling degenerate devices such as ideal isolating transformers

and operational amplifiers.

This chapter first surveys the known methods for ac analysis of linear

'networks, examines briefly the methods for calculating network functions, and

discusses the desirability of network tearing.

The approach to network tearing introduced in chapter 1 is illustrated

by its application to a simple 2-port amplifier circuit, and from this exercise

there emerges the concept of a structure graph, used to describe any 2-port

network. It is in attempting to analyse structure graphs in the most efficient

manner that the concept of algebraic reduction arises, and this, too, is

illustrated with reference to the amplifier circuit.

A simpler notation for the polynomials of 2-port networks is introduced,

and the general topological analysis algorithm of chapter 1 is recast in a form

better suited to the analysis of structure graphs.

The remainder of the chapter discusses implementation of the analysis

method. One major problem is the loss of numerical accuracy due to truncation

errors in the polynomial coefficients, and this is tackled with the introduction

of a novel, computationally-simple frequency transformation.

The final section discusses various forms of polynomial representation

and their roles in the symbolic analysis of lumped parameter networks, in the

frequency-by-frequency analysis of distributed-parameter networks, and in

parameter-sensitivity analyses.

4.2- ANALYSIS METHODS

If the response is required at a large number of frequencies it is

desirable to use Laplace transform techniques and first calculate the transfer

functions • as ratios of polynomials in the complex-frequency variable s. From

these the response can he calculated quite simply and hence more rapidly than

the point-by-point methods which repeat the whole analysis at each frequency.

However, in the past, the use of network polynomials has lost favour [5]

and point-by-point methods have been improved to the , extent that, after the

first analysis, much of the effort required to invert a matrix is avoided.

4- 3

Notable among the point-by-point methods is that of Pinel and •Blostein[42]

embodied in a program called KRON, which first compiles the nodal admittance

matrix of a tree of the network and calculates the Laplace transform of its

inverse. At each frequency it is only necessary to evaluate this inverse and

adjust it, with a routine developed by Branin[4] as each link and controlled

.source is added to the tree to complete the network. Branin's Method, based on

the work of Kron[29]by which the solution matrix is simply updated rather than

calculated anew when a link is added, is also suited to the calculation of

sensitivities with respect to component changes.

Rational polynomials have not been favoured in the analysis of large

networks for two reasons: their coefficients are difficult to calculate, and

the response at some frequencies can be intolerably sensitive to errors in the

coefficients. However, these two difficulties are largely overcome with the

methods demonstrated in this thesis (chapter 6), and the many advantages of the

classical approach to analysis are more easily realised.

Besides allowing rapid calculation of frequency response, network polynomials

yield other information on the behaviour of a network. Provided that suitable

polynomial root-finding routines are available, the zeros and poles can be

calculated to determine a network's stability and natural frequencies. Transient

response can be calculated, either by finding the poles and their residues and

inverting the Laplace transform in the conventional manner, or by working directly

from the polynomial coefficients and thus avoiding the difficulties associated with

multiple roots [15,31]. Further, by analytically differentiating the network-function

polynomials, the group delay can be calculated more accurately than by numerically

differentiating the phase response with respect to frequency.

4.3 	CALCULATIONS OF NETWORK FUNCTIONS

Methods for calculating network funtions fall into three essentially

.different classes.

The first class contains those methods which manipulate polynomials.

Starting with the simpler polynomials representing individual components, the

polynomials are combined as the components are interconnected until the polynomials

representing the complete network are obtained. An early method of this type was

that of Bashkow121; although it can only analyse ladder structures with 'passive

components it achieved widespread use. A more versatile method described by

4-

Riordan [44] is intended to handleactive. components, but while its forte is

cascaded 2-port networks, all.hut the simplest feedback paths must be

approximated. It is a general characteristic of methods of this type, however,

that they provide the most rapid analysis of those network S restricted to a -

certain structural type.

The greatest danger which must be avoided with methods in this class is

the generation of spurious common factors in the numerators and denominators of

• network functions. Apart from occupying valuable store space in the computer,

• the factors are difficult to recognise and cancel, because in practice a slight

variation in polynomial coefficients due to round-off error can significantly

alter their values. This is the reason- why large matrices with rational-

polynomial elements cannot be inverted with the conventional methods such as

Gaussian elimination.

' Probably the best technique for inverting an admittance matrix of rational

polynomials has been developed into a practical method by,Downs[18]. The

inversion of an n x n matrix is accomplished in n similar stages, each stage

resulting in a different hybrid matrix of the network. The degrees of polynomials

are kept within manageable bounds by dividing out the predicted common factors

at every stage. Although the process is efficient for matrices of moderate size

it is .reported by Neill [40] that for larger matrices a severe loss of significant

- figures occurs during the division of polynomials and the increase in computing

time makes the process uneconomic.

. The second class contains those methods based on topological formulae for

network functions [13,14,34,48]. Typical of this approach is a program written

by Calahan [11]. .

As a•class these methods are notable for their ability to handle component

. values either numerically or symbolically and to thus-establish the functional

dependence of the network functions of any set of network parameters. The

modelling of ideal isolating transformers, mutual indOctances, gyrators, and

active components is difficult, and the methods vary from one another mainly in

the techniques adopted to overcome these difficulties. Common to all these

methods is the severe .limitation imposed on network size by the need to generate

all the trees of a network graph. The number of trees tends to grow exponentially

with the number of nodes and branches, so that although some improvement may be

made in the algorithms to generate trees and calculate their branch - admittance

4-5

products, the increase in the size of networks that can be analysed is not

likely to be significant.

Also in this class are the methods based on the signal-flow graph

techniques first developed by Mason [33]. Their applications have become widely

known through documentation of the several versions of the program NASAP [52].

Signal-flow graphs have an advantage in that they represent the mathematical

relationship between the system variables rather than the physical interconnections

which are represented by the network graph. Consequently the handling of complex

or degenerate devices is relatively straightforward, but this facility is obtained

at the expense of approximately doubling the size of the graph to be analysed.

The transfer functions are found with the application of topological formulae

requiring enumerative schemes for loops in the graph, and these methods suffer

the same limitations on network size as. the other topological methods.

. The third class includes those methods which are based on the concept of

state-variables and which characterise a network by its A matrix [1]. The chief

difficulty concerns the seleation of a suitable vector of state variables on

which to base the A matrix of the general network, and it is in this respect that

many methods differ [10,30]. The usual analysis procedure is to calculate the

eigenvalues and eigenvectors of A by an iterative method; the eigenvalues are

the natural frequencies of the network and hence the poles of the transfer

functions, and the eigenvectors determine the residues of the poles in all the

transfer functions. An alternative approach finds the transfer-function zeros

as the eigenvalues of related network matrices [46].

These methods, esipecially those which, like the program CORNAP [43], employ

the Q-R transformation of Francis[24,51],have been preferred for calculating the

natural frequencies of a network because, in working with the A matrix, the

iterated loop links the frequencies more directly to the network parameters than

do the methods whose iterations Work with the coefficients of the characteristic

polynomial. It is well known that round-off errors in the coefficients of a

polynomial may strongly influence the accuracy of its roots.

Related to the third class, with regard to their calculation of network
_t

poles and zeros, are those methods which apply the Mt:111er [39] routinedirectly

to the determinant and minor of the nodal admittance matrix. Matrix inversion

is not required, but the determinant must be evaluated at one complex frequency

for each of many iterative steps toward successive natural frequencies. When

used with conventional Gaussian elimination, as in the program LISA [17].

I .

4-6 •

computational efficiency is sacrificed fot the inherent superior accuracy; but

when combined with a determinant evaluation procedure which uses the efficient

row- and column-ordering scheme of a sparse matrix technique [3] as in program

FRANK and its successor SLIC [26] it results in one of the most efficient and

•accurate tools for the calculation of natural frequencies that is currently

available.

' . However, the use of an iterative routine, with its attendant problems of

control, difficulty With pathalogical cases, and questionable accuracy, is not

attractive for the calculation of steady-state frequency response.

Beside the iterative methods, there are direct methods for calculating

the coefficients of the characteristic polynomial of A, and, at the same time,

calculating the adjoint matrix of sI - A from which the numerator polynomials of

all the transfer functions may be obtained [38]. A reliable method of this type

. is a . modification by Faddeev [22] of Leverrier's method. But the storage

requirements and tremendous computational effort involved with these methods soon

become prohibitive. If A is an n x n matrix, the number of coefficients in the

polynomials of the adjoint matrix is proportional to n 3 , and the number of

arithmetic operations needed to calculate them is proportional to n
4

.

4.4 	NETWORK TEARING

If both computer store-space and computer time are to be used efficiently

to permit the analysis of very large networks, it must be possible to tear a

network apart into sub-networks, analyse them separately, and somehow combine the

results of their separate analyses to achieve an analysis of the whole network.

The practicability of this procedure depends entirely on the existence of

a suitable method for combining the analyses, or solutions, of separate networks.

The powerful techniques developed by Kron[29] for interconnecting the solutions

of any physical systems, employ matrix methods and require the inversion of matrices;

• it is therefore not considered feasible to adapt these methods directly to the

rational polynomials of the Laplace transform technique. As alternatives to the

tearing procedure, which gains its computational effectiveness by exploiting the

sparsity of non-zero elements in network matrices, there are techniques involving

schemes for matrix decomposition[49] but they too, for the same reason, are not

amenable to Laplace transform teChniques.

Before demonstrating the tearing procedure introduced in chapter 1,

some of its expected advantages are reviewed. An advantage of any tearing

procedure is that if a topological method is used to analyse the subnetworks

then the total number of trees that must be found in all the subnetworks is

considerably less than the number of trees of the complete network.

When the effect of a network modification is required, only the analysis

of those subnetworks containing the modified components need be repeated. If

the modification involves a change in the admittance of a component, it can be

effected by the addition of a similar component, with either a positive or

. negative admittance, in parallel with the original network, and the additional

analysis effort is concerned only with this connection. 	This feature is

particularly useful in the analysis facility of a computer program for on-line

. network design.

A tearing procedure can take advantage of . a situation in which a network

has some identical subnetworks, for a standard subnetwork .can be analysed once,

and its solution stored and used later in interconnections with any other net-

works. A network can also be torn apart to separate those subnetworks which can

best be analysed by different methods; for example, devices with three or more

terminals need not be modelled with networks of two-terminal devices, as they

must be for the topological methods, but may be represented directly as a sub-

network."

Probably the most significant attribute of a tearing procedure is that by

.applying it successively to subnetworks, and their subnetworks in turn, until

each separate network contains a single component, it becomes a method of analysis

in itself. Characterisation of single components in a manner suited to the inter-

connection of solutions is elementary, hence all the effort of analysis is

associated with the interconnection of solutions.

To eliminate the difficulty in representing isolating transformers and.•

mutually coupled coils, the tearing procedure of chapter 1 requires that a

network be represented as a structure of multiport networks and that the ports

may only be connected in series or in parallel. When connected together, a set

of ports of.different networks is considered to be one port of the structure, and

will be identified here by a number followed by the synbol s or p to indicate the

type of connection.

4-8

The generality of this approach to network tearing is assured by the fact

that any multiport network composed of 2-terminal, 3-terminal and 2-port devices

can be represented as a valid structure of 2-port networks. The representation

for strongly interconnected networks, although difficult to conceive, can be

generated systematically, while the representation for many practical networks

r is readily apparent, as will be appreciated with the following-example.

4.5 	STRUCTURE GRAPHS

The desired approach to network analysis, outlined above, is demonstrated

with the two-stage transistor amplifier with current feedback that is shown in

.figure 4.1.

The complete network is redrawnin figure 4.2 to highlight its ac-signal

behaviour, before being represented as a structure of 2-port constituent networks

as in figure 4.3.

The first point to notice is that to accomplish the representation, a

trivial 2-port network, N9, without components, has been introduced between

• ports 2s and 3p, whereas all the other 2-ports contain a single component.

Because the complete network and all the constituent networks each have two ports

it is convenient to adopt the sign convention for currents which is shown in

figure 4.4; the arrow directed from the first port to the second port indicates

which port is the second port and thus determines the direction of positive

currents.

.Figure 	Sign. convention for voltages and currents
of-a,2-port network.

The representation of the amplifier by figure 4.3 is valid because

1) the networks connected at each port share either a common•

voltage (p) or a common current (s), and •

each port could be isolated by ideal transformers without

affecting the behaviour of the network.

The structure of the complete network is represented diagrammatically by

a graph whose nodes correspond to ports of the structure and whose branches

correspond to the constituent 2-port networks, as in figure 4.5. The first and

Figure 4.1 Circuit diagram of two-stage transistor _
amplifier.

Figure 4.2 Network diagram highlighting small-signal
behaviour.

Figure 4.3 Complete network as a structure of 2-port
networks.

ea°
emair awiti■ mos asp4IXD. mane . MIMI! at/CO .NSIB gooNfl or.. mu...

lp
/ N1 	N2 	N3 N4 N5 2s Nil 	

4 \
\

5p

1 I

I.

4 - 9

-second ports of the complete network are identified by connecting between them

a closing branch which is shown dashed and labelled BO in the figure. It

should be remembered that the arrows identify the first and second ports of the

branches, as they do in figure 4.3, but do not indicate the direction of any

signal flow.

BO

I. Figure 4.5 	Structure graph

The graph of 2-port networks, here called the structure graph, is peculiar

to this approach and shows clearly the main signal paths of the network: For

the amplifier network it provides a rigorous procedure for representing the main

signal path through the amplifier and clearly identifies the two major forms of

feedback; the voltage feedback with the emitter resistance of the second stage,

and the current feedback around both stages.

If at this stage we assume that a computer is programmed to interconnect

the solutions of any number of constituent 2-port networks connected in any

structure, and that the solutions or analyses of the constituent networks are

available to the computer, then all that remains is to specify how the networks

are interconnected. This could be accomplished, for example, simply by listing

all branches of the structure graph against the pairs of nodes between which they

are connected, as follows:

BO: lp 5p, Ni: lp 6p, N2: 6p 7p,

N3: 7p 8p,. N4: 8p 9p, N5: 9p 2s,

N11: 2s 4s, N12: 4s 5p, N10: 3p 4s,

N9:

N7:

2s- 3p,

lp 10p.

N8: 10p 3p, N6: lp . 10p,

However, if the solution of all the constituent networks containing a

single component were interconnected at one time, as might be implied by this one

I. 	list of branches, there is no reason to believe that this. method of analysis- would

4-10

by any more efficient than the conventional methods which combine all the

components at one time. To appreciate the value of a tearing procedure in terms

of computational efficiency, the constituent networks should be combined in sub-

structures to form larger constituent networks, which in turn are combined in

new structures) until, after many such stages, -the complete network is formed.

4.6 'ALGEBRAIC REDUCTION

It is apparent with the amplifier network, as it is with most networks,

that the most common (and simplest) substructure combines two 2-port networks to

form a third 2-port network. For example, networks N6 and N7 are connected in

parallel-parallel, and the resulting network is cascaded with N8. Because the

result after each combination is another 2-port network, these operations may be

specified by an algebraic expression such as

B1 = (N6 pp NI-7) c N8 	 (4.1)

where pp and c represent the interconnecting operations of parallel-parallel

and cascade respectively. To complete the set, there are three more operations,

ps, sp, and ss, representing the respective interconnections of parallel-series,

series-parallel, and series-series.

Substructures in another part of the network could be similarly specified

by the expression

82, = ((Ni c N2) c (N3 c N4)) c N5. 	 (4.2)

The order in which the cascade operations are performed does not affect the

result, so the brackets in this expression could be deleted. The above expressions

are assigned to numbered blocks which serve to identify them either in a subsequent

algebraic expression or in a list of branches of a structure graph.

After the constituent networks have been combined according to the

expressions 4.1 and 4.2, the complete network is said to be algebraically reduced

and is represented by the structure shown in figures 4.6 and 4.7. Although it would

be better, at this stage, to analyse the subnetwork consisting of networks N9, N10,

N11, B1 and B2, and algebraically cascade the result with network N12, for the sake

of brevity all these constituent networks are combined at one time, as specified

by the list of branches:

BO: 1P 5P, 	Bl: lp 3p, 	B2: lp 2s,

N9: 2s 3p, 	N10: 3p 4s, 	N11: 2s 4s,

N12: 4s 5p.

..
MNEMONIC NETWORK

. POLYNOMIALS
2 	3 	4 	5

R
SR 0 I

• TI? . I I/R

SC. --117 s 1/c 0 5 5

TC 1 0 Cs
. - r c

• .1-

S L L 1 Ls 0 1 f 1

• T L I s 0 IL 55 5

F :In : n In 0 0 n 1 1
R

6

H elf

:4ji 0 R

0

I

=

U 1 00 .1

X I 0 -1

• I
_

Table 401 	Basic 2-port networks and their polynomials.

1

1

lp

0 	

N12
I 0

5P

B2 	 N11

45

4-11

•

IT6

3p •
 	

N10

Figure 4.6 	Complete network as an algebraically
reduced structure.

_67
/ B2 2s N11

5p

Figure 4.7 Algebraically reduced structure graph.

The computational effort required to analyse a structure of 2-port networks

is roughly proportional to the product of the degrees * of the nodes in the

structure graph with the closing branch included. For a series branch structure

corresponding to the cascade connection of two 2-port networks the node-degree

- product is 8; for the simple structure with two branches in parallel the node-

degree product is 9 1 and for the structure of figure 4.7 the node - degree product

is 162. Hence the total effort required to analyse the two-stage amplifier by

analysing separately the seven substructures, specified by the two algebraic

network expressions and the list of branches, is proportional to the sum of the

node-degree products: 9 + 5x8 + 162 = 211. This is considerably less than the

effort required to analyse the structure of figure 4.5 as a whole, which has a

node-degree product of 10,368.

An algebraic network expression is, in genera4..a concise specification

of Combinations of 2-port networks which correspond, in the structure graph, to

combinations of pairs of branches which are either in "series" or in "parallel".

It is interesting to note that algebraic reduction as defined above is therefore

analagous to the combination of 2-terminal impedances in series or parallel which

simplifies the analysis of complex structures of such devices. Just as the

combination of two impedances, either in series or in parallel presents a very

.* the degree of a node is the number of branches connected to it.

B1

lp

[11 	
1

. 	= 	N2
I.21

_ 	1
- N5

1

N4 -N6

N5 	-N1

N1 - N2

N3 	N4

and

(4. 5)

e 2- 	

(4.6)

-4-12 .

simple problem of analysis and is used whenever possible to simplify a more

difficult analysis problem, so does the combination of two branches in the

structure graph present a comparatively simple problem with the interconnection

of their corresponding 2-port networks, and algebraic reduction should therefore

be used wherever possible.

The networks with a single component could be specified by both a mnemonic

code for the type of the network, and a number for the component value. For

example, if T denotes a 2-port network with a single 2-terminal device placed

in parallel with both ports, .S denotes a 2-port network with a single 2-terminal

device in series with both ports, and R and C denote resistance and capacitance

respectively, the expressions 4.1 and 4.2 might be rewritten for a computer as

Bl = (SR10E3 pp SC100E-12) c SC.1E-6 	 (4.3)

and

B2 = TR250E3 c N2 c TR5E3 c SC.2E-6 c TR50E3 	(4.4)

These expressions illustrate a form of network description which is easy

to prepare and can be interpreted by a programmed computer. In comparison with

the conventional methods of network description, using lists of branches and nodes,

it has the advantage that it is easy to interpret mentally and mistakes are more

likely to be recognised. A formal specification of this language for network

description is given in section 5.5.

POLYNOMIALS OF 2-PORT NETWORKS

From chapter 1, the linkage polynomials. of a 2-port network are given by
2 AA

[LI 	1132 	{ 1 =

1 2 	N12 1214 N 	E2

With all networks limited to two ports the sign convention for currents is changed

(see figure 4.4) and the notation for polynomials is simplified. The new

polynomials are given by

4-13

The new and old polynomials are therefore related as follows:

2
Ni =

The polynomial identity 2.27 becomes

N3.N2 = N4.N1 - N5.N6 . 	 (4. 7)

4.8 	ANALYSIS OF 2-PORT NETWORK STRUCTURES

• For structures containing only pairs of 2-port networks, as occur . in

algebraic reductiOn, a non-topological, method of analysis using the set of six

1 polynomials has been known for some time. Expressions relating the polynomials

of the complete network to the polynomials of its two constituent networks have.

beenpublished by Mathaei . [35].

If networks A and B are cascaded to produce a network N, the polynomial

relationsips are:

Ni = Al.B1 + A2.B3

N2 = Al.B2 + A2.B4

N3 = A3.B1 + A4.B3

N4 = A3.B2 + A4.B4

N5 = A5.B5

N6 = A6.B6 	 (4.8)

If networks A and B are connected in parallel-parallel, the polynomial

relationships are:

Ni = _A1.82 + A2.B1

N2 = A2.B2

N3 = A2.133 + A3.B2 + Al.B4 - A6.B5 + A4.B1 - A5.86

N4 = A4.B2 + A2.B4

N5 = A5.B2 + A2.85

N6 = A6.82 + A2.B6 	 (4.9)

4-14

These two sets of expressions can be derived with the topological

analysis algorithm, or by multiplying or adding the appropriate parameter

matrices defined by the equations 4.5 and 4.6, and by using the identity 4.7.

Algebraic reduction occurs so frequently in the analysis of networks that it

pays to program these expressions directly, rather than implicitly with a

topological analysis algorithm. They appear in an algorithm to evaluate network

expressions which is described in section 5.5.3.

If the topological analysis algorithm has to deal only with 2-port

networks, polynomial products contributing to closing polynomials can be

calculated according to the equation 1.7 rather than the equation 1.3. The

complete algorithm is then summarised as follows:

a) To the set of real constituent networks add the closing network.

b) With each port associate a pointer which may be directed into any

attached network (real or closing).

c) Set the polynomials of the closing network to zero. These

polynomials will be employed 'as accumulating sums of products

of polynomials of the real constituent networks.

Generate every possible setting of pointers once. and only once.

For every setting take the following steps:

. i) . Search for all possible pointer loops.

ii) 	Determine the polynomial factors expressed in equation 1.7.

This expression will consist of a term which includes among

its factors a natural polynomial of the closing network, and,

if the closing network is traversed by a pointer loop,

another term which includes among its factors a transfer

polynomial of the closing network. Evaluate both terms using

the polynomials of the real constituent networks and add the

resulting products to the appropriate polynomials of the closing

network.

At the completion of step (d) calculate the polynomials of the

complete network N from the accumulated polynomials of the closing

network N using the equations

N1 = T4

N2 = T3

N3 = T2

N4 = Ni

N5 = -T6

N6 = -T5

The latter equations were derived from the equations 1.6.

(4.10)

Potentially the most difficult and time-consuming step is (d)(i), but

in many respects this step is similar to the task of finding the trees of a graph.

Indeed, an efficient algorithm - for generating the trees of a graph {7] has been

described using the same concept of pointers. The principal difference is that

in the generation of trees a pointer setting which includes a pointer loop

contributes zero to a sum of branch admittance products and is entirely disregarded;

in the analysis of a structure graph, however, a pointer loop contributes a

difference between two polynomial products which may not necessarily be zero.

Although more calculation is required with each pointer setting, because poly-

nomials rather than single numerical quantities must be manipulated, the effort'

required to generate pointer settings and detect pointer loops of a structure

graph is the same as the effort required to generate the trees of a graph of

- similar complexity.

To illustrate the above algorithm it will be used to derive the expressions

4.9 resulting from the analysis of two networks connected in parallel:

a) The closing network N is included in the structure graph with the

constituent networks A and B.

b) Ports 1 and 2 both have pointers which can be directed into all

three networks.

- -
c) The polynomials N1, N2, ..., N6 of the closing network are set to

zero.

d) All the pointer settings are generated as shown in figure 4.8.

For the first pointer setting there can be no pointer loop and its

polynomial expression is 17,12.A3.132. Before proceeding to the next

pointer setting, A3.B2 is added to the current value of T2 (initially

set to zero in (c)). With the second pointer setting a pointer loop

can be drawn and the expression in equation 1.7 becomes

N2.(A4.131 - A5.86). Thus two more terms are added to T2.

42.84. Ni

-42. 85. iC-16
Al. B4.R2

7 A6. e5. T\-J2

A2. B3. N2

A1.82.1714

- A6. 82. Fi5

A2. B1. r714

- 42. B6. N5

42.82. -N-13

"Fi

43. B2. 17\1- 2 44. B1.1\--/2 44.82. Ni

-45. 86. -1\712 -A5. 82.Fi6

Figure 4.8 Nine pointer settings for a paralleled pair of
2-port networks A and B...

4-16

d) (cont.)

When this step is completed the polynomials of the closing network

are represented by the expressions:

Ni = A4.B2 + A2.B4

-112 = A3.B2 + A4.B1 - A5.B6 + Al.B4 - A6.B5 + A2.B3

-1113 = A2.B2

T14 = Al.B2 + A2.B1

-115 = -A6.132 - A2.B6

146 = -A5.B2 - A2.B5

e) The expressions 4.9 follow after using equations 4.10 to relate

the polynomials of the complete network to those of the closing

network.

4.9 	IMPLEMENTING THE .ANALYSIS METHOD

After the tearing procedure has been applied to a network as many times

as are possible, all the constituent networks contain at most one component and

are called basic networks. The analysis of a basic network is generally straight-

forward, requiring only the assembly of its six polynomials. Because there are

only a few different types of basic networks, and they occur frequently in many

complete networks, it is convenient to construct a table of their polynomials,

as in'table 4.1. It is an interesting but irrelevant exercise to find a minimum

set of basic networks from which all other basic networks, and hence all networks,

can be formed by interconnecting their solutions.

With reference to table 4.1 it should be noted that it is not necessary

for a 2-port network to have any particular admittance, impedance, or hybrid

matrix representation to be meaningfully characterised by a set of six polynomials.

Indeed, an ideal operational amplifier has no such matrix representation, although

it does have a forward transmission matrix as in equation (5) and is characterised

by the polynomials 0, 0 0, 0, 1, O. All the polynomials of a network may be

multiplied by some common factor without affecting the characterisation.

The polynomials of a transistor specified by its h parameters are obtained

by expressing the parameters as ratios with the common denominator of one, and

identifying the polynomials with appropriate numerators and denominators. The

six polynomials, in order, are

4-17

Alternatively, if a transistor is modelled by, say, a - hybrid-pi network

- then it is analysed, in the same way as any other network, by applying the

tearing procedure until all the passive components and the controlled source

belong to separate basic networks.

Most passive networks such as filters with bridged or paralleled T, ladder,

or lattice structures ("structures" used here in the conventional sense) have a

very simple structure graph, irrespective of the number of components, and can

be fully described by a single algebraic network expression. Networks with this

property (the author ventures to call them algebraic networks) are analysed with

a rapidity which matches that of the methods in the class mentioned first in

section 4.3. Even multistage amplifiers with many feedback loops have a

comparatively simple structure after algebraic reduction.

The effort required to analyse a structure of 2-port networks is of the

same order of magnitude as that required to analyse a similar structure of

2-terminal devices with a topological method. Comparison of a graph of 2-terminal

devices representing the network of figure 4.2 with the algebraically reduced

structure graph (figure 4.7) of the same network would therefore illustrate one

of the advantages of this method over existing topological methods. In terms of

computing time, this method imposes a penalty commensurate with a network's

complexity (indicated by the node-degree product of its algebraically reduced

structure graph) as distinct from a network's size (indicated by the number of

components).

Besides judging a computer program by its computing speed, another

important consideration is its computer-store requirement. Programs implementing

the various features of this approach have been written in ALGOL and run on an

Elliott 503 computer. A basic program, which reads data in the form of algebraic

network expressions and branch lists, assembles polynomials of basic networks,

and calculates the polynomials of a complete network, occupies approximately 4000

locations of 39-bit words. Over 2000 words are left in the main store for work

space, which is consumed at the rate of approximately 16 words for every reactive

'component.

This last fact illustrates another advantage of the tearing procedure:

individual components can be assimilated by an algebraic network structure as they

are read from the input data file, and only the reactive components consume extra

:store space because they may increase the degrees of the network polynomials.

4-18

Thus the size of networks that can be analysed depends mainly on the number of

reactive components; , large passive filter complexes with 100 reactive

components and over 200 components altogether have been successfuJly analysed

with less than 2000 words of store space. This compares favourably with

matrix methods of analysis which •consume store space in proportion to the

square of the number of nodes or the number of meshes.

Another version of the program * written in FORTRAN has been implemented

on a GE 265 time-shared computer which has an available core store for both

program and data of less than 5300 words of.20 bits. Although this program will

only accept network data in the form of algebraic network expressions, it will

analyse networks whose polynomials have degrees of up to 40.

Implementation of the full algorithm for analysing general structures of

2-pOrt networks is not without its problems. At its simplest each pointer

setting is treated independently and each polynomial product is formed from the •

polynomials of the constituent networks. But at the expense of extra primary

store, both the speed and accuracy of the algorithm can be improved. First, with

a suitable method for generating pointer settings as suggested in section 1.4.2,

•intermediate polynomial products can be transferred from one pointer setting to

the next. Second, in evaluating the expression of equation 1.7, it may be

decided before polynomial multiplication begins that, for the j-th pointer loop,

n. = t.
3
, in which case the expression is exactly zero. This decision not only

J

saves time, but---and this is more important---it eliminates a potential source

of round-off error which would be introduced if the difference between two large

and nominally equal polynomials was calculated.

An optimised algorithm for topological analysis is described in section

5.6.

This program, called ALENA (Algebraic Linear Electrical Network

Analysis), has become widely available through its support by

Honeywell as a library program on their national computer time-

sharing system.

I .

I.

4-19

4.10. NUMERICAL ACCURACY

Use of Laplace transform techniques in a general purpose - method of

network analysis cannot be contemplated unless the so-called "accuracy"

problem is overcome. This problem arises in the evaluation of a polynomial

at a particular frequency and occurs when the exact value of the polynomial.

is many orders of magnitude less than its constant coefficient, for then the

difforence between two nearly-equal numbers is calculated, and their round-off

errors, accumulated during the analysis process, are magnified.

Clearly, the evaluation of a polynomial will be most accurate at the

frequency for which the polynomial equals its constant coefficient. Normally

this occurs at the zero frequency, s = 0, but if the frequency . variable s is

suitably scaled and the transformtion s 2 = t2 - 1 is introduced then the

polynomial evaluation will be most accurate at any desired frequency, given.

by. t2 = 0 or s = j.

Thefrequency transformation need only be applied to s 2 and not to s so

that every polynomial is represented by the coefficients of the terms t ° , st° :

t2 st2 , t4 , st4 , etc. But it must be applied throughout the analysis process

or the desired information at s = j - may be irrecoverably lost among the round-off

errors. The transformation is easy to implement in the analysis process for it

only .requires one modification to the routine for multiplying polynomials. When

a product of terms is formed it may be split into two terms as shown:

ast i . bstl = abs 2t i

= abt
i+3+2

- abt
i j

The effectiveness of this frequency transformation was investigated in.

the analysis of an actual filter complex consisting of two band-stop filters and.

. one band-pass filter (block B7 of figure 6.1) containing, in all, 50 reactive

components . Between certain ports the complete network was known to exhibit a

pronounced band-pass behaviour, but when analysed without a frequency transforma-

tion the band behaviour was completely masked by round-off error (see, the 'second

and third columns of table 4.2). The analysis was repeated twice with frequency

transformations chosen to give the most accurate evaluation at two slightly

different frequencies in the pass band, so that the differences in the results

would be entirely due to the round-off errors generated through the analysis

process. . As expected, the results were most accurate in the pass band, but the

effect of round-off error was satisfactorily small over the entire frequency

1

1

• 	FREQUENCY

cycles/sec

CALCULATED RESPONSE,

without frequency
transformation

AMPLITUDE, ci.b. .

with frequency
transformation

1630 10.714 .7.0398 -24.041 -24.041

1650 . 8.3458 -4.5865 -18.747 -18.750

1670 11.802 -5.8016 -17.226 -17.227

1680 8.2228 -2.5088 -12.028. -12.028

1690 11.632 -2.8737 -8.0758 -8.0757

1700 12.284 -3.1705 -5.3857 75.3857

1740 5.2681 .48114 -4.2088 -4.2088

1780 10.687 - 1.9100 -.5.6543 -5.6543

• 1800 8.5790 3.3182 -11.245 • -11.245

' 1820 7.3544 3.9951 -20.705 -20.707

- frequency
.scale 1740 1741 1740 1741

cycles/sec

Table 4.2 	Calculated frequency response of a filter complex

•containing 50 reactive components, illustrating the .effect -

of a frequency transformation.

1

1

• 1

1

4-20

spectrum, the worst case being a loss of five out of nine significant figures

in the response .calculation at a frequency on the edge of the pass band (see

the fourth and fifth columns of table 4.2).

In general, the accuracy problem is alleviated by the frequency

transformation to the extent that, with one analysis, accurate evaluation of

response is possible over a band of the frequency spectrum, and in very severe

cases, such as a filter with many pass or stop bands, may the analysis have to

be repeated several times to cover the entire frequency spectrum.

4.11 	POLYNOMIAL REPRESENTATION

Although the term "polynomial" implies that it be represented by a list

of real coefficients, it may not be expedient to use this form of representation

in the analysis of some types of networks. For example, the problem of allocating

store locations for polynomials would be greatly simplified if they were

represented by complex numbers, being their values at a particular frequency.

This simpler representation becomes an attractive alternative to the frequency

transformation discussed in the previous section if the accuracy of the polynomial

coefficients has such a critical bearing on the response that the analysis has

to be repeated many times with different frequency transformations.

For networks with distributed-parameter subnetworks the complex number

representation must be used together with some tearing technique. However, with

the approach suggested here, the subnetworks with lumped parameters can be

_analysed separately using the conventional polynomial representation and only in

the last stages, when the distributed parameter subnetworks are connected, must

the analysis be performed at each desired frequency.

Indeed, such a combined strategy, in which polynomials are represented

by their coefficients in the early stages of analysis and by complex numbers in

the final stages, would be ideal for analysing large networks when accuracy was

important. Constituent networks could be combined in subnetworks whose

polynomials had degrees of less than, say, 10; the polynomials would be

evaluated at discrete frequencies, and the analysis completed by combining the

subnetworks at these frequencies.

Because the analysis algorithm avoids polynomial division it is also

practical to represent polynomials by lists of terms each containing _a numerical

coefficient and a symbolic product of network parameters. In this way a network

can be analysed with its parameters entered either numerically or symbolically.

4-21

For the study,of network sensitivities, however, the above polynomial

representation is not satisfactory because the specification of a. large number

of variable parameters leads to the proliferation of polynomial terms in unwieldy

numbers. For a sensitivity analysis it is considered sufficient to calculate the

partial derivatives of the polynomials with respect to each variable parameter.

This can be achieved by extending each polynomial coefficient to include a list'

of first derivatives as well as the constant term, and by modifying the polynomial

multiplication routine to avoid the generation of second derivatives.

4.12 CONCLUSION

The approach to linear network analysis outlined in this chapter establishes

a modus operandi for computer programs which combine, for the first time, many of

the desirable features of existing network analysis methods. Specifically) the

rational polynomials of the Laplace transform technique are used for computationally-

efficient calculation of frequency response; a network-tearing procedure is used

which makes it practical to calculate the polynomial coefficients of large networks;

and the analysis process has a topological nature, requiring routines -for polynomial'

Multiplication and addition only.

With regard to the wealth of accumulated experience in the application of

a large number of computer programs for general circuit analysis it is now

inconceivable that one method should be superior in all applications. In setting

up computer-aided.circuit design facilities the trend is towards providing a

varied arsenal of programs, each with unique advantages in some applications.

• 1 	In this context, programs based on the new method provide a more economical and a

more complete frequency analysis of most types of filters and equalisers, as well

as many types of amplifier circuits. It might also be chosen for the ease with

which it handles degenerate devices and active components. In designing such

programs consideration must be given to numerous options which cover such aspects

as input data format, a library of basic networks and common subnetworks, inter-

mediate storage ofpolynomials, provision for sensitivity analysis and Monte

Carlo methods, polynomial representation, and frequency transformations.

For convenience in calling up the various programs in a design facility an

attempt is made to define a common form of circuit•description---usually based on

• a list of branches and the nodes between which they are connected. Unfortunately

it is in this respect that analysis programs based on diakoptic methods are at a

disadvantage.

4-99

The efficiency of• such methods, and this method in particular, is

dependent on the manner in which the network is torn into its subnetworks. For

the more complex networks the alternatives are many, and although the tearing

can be programmed the results could he far from optimum. - However, it is in

analysing such strongly interconnected networks, • for which the tearing process

is difficult, that this diakoptic method would, inherently, be less efficient

than-.the straightforward matrix methods and therefore-would not be recommended.

• It is widely recognised that the most exacting demands are made of analysis

methods by programs which design circuits using optimisation techniques. The

cost of running such programs is strongly related to the efficiency of the

analysis method, for in each iteration of the optimisation process the analysis

subprogram normally must calculate the response and its derivatives at many

frequencies. But, with calculation of the network polynomial and their derivatives

in a single analysis, it. should be practical to go further than simply, calculating

the response at fixed frequencies, and determine those frequencies at which the

response---either-amplitude, phase or delay---has an extreme value. The

Optimisation process could then be designed to converge on a true equiripple

designT'ather than a l_eastIsquares approximation at a relatively lare :

number of predetermined frequencies. It is in these applications that this new

-approach to network analysis shows the greatest promise..

Some of the dissatisfactiOn with existing analysis programs may be

attributed to the belief of their originators that methods which are highly

repetitive in nature are "ideally suited to a digital computer"— We can admire

the elegantly simple formulation and small amount of programming iequired for the

early matrix-inversion, state-space and topological methods---certainly the .

,programs provide a successful alternative for analysing networks which an engineer

might otherwise attempt to analyse by himself. One expects, though, that the

second generation of programs will make better use of a computer's resources when

analysing much larger networks.

CHAPTER 5
	 5- 1

ALGORITHMS FOR COMPUTER PROGRAMS

5.1 INTRODUCTION

The successful implementation of the analysis method, which so far has been

discussed only in. general terms, is critically dependent on the form of the com-

puter algorithm employed and the data structure with which it is associated.

Much research work has been directed to the investigation and development of

suitable algorithms and data structures, and the results of this work are felt

to be important to an appreciation of the analysis method as a whole.

The development of suitable algorithms is subject to three criteria. Of

paramount importance is the need to preserve numerical accuracy throughout the

analysis process. Of secondary importance are the requirements that the largest

communications networks be analysed, and that analysis be economic and conven-

ient to the user.

Unfortunately, the achievement of these goals involves a competition for a

limited computer resource---the core store---and a reasonable trade-off must be

made between the size of data storage areas and the size of the program. None-

. theless, the core store of the Elliott 503 computer, on which the programs were

run, sufficed for the development of programs with near optimum efficiency in

their use of both processor time and core store, while allowing the programs to

be tested on quite large networks.

This chapter does not attempt to document any particular program.but

presents those program elements which may be adopted profitably in any

. implementation of the analysis. method.

To avoid ambiguity, algorithms are described in a compiler language.

Attention is focused on the storage and manipulation of polynomials as whole

• entities because it is this aspect which has the greatest influence on the overall

efficiency and the accuracy of the Method. The other details of the algorithms

. are included for the sake of completeness and rigour, and are presented in a

concise manner which is economic in the use of language and which makes the

action of the algorithms as clear as possible. The generation of efficient

5-2

machine code is intentionally left to either an optimising compiler, or

to a competent programmer who can interpret these algorithms and modify

. program statements to make best use of a particular compiler.

. Throughout this and the subsequent chapter it is understood that all

networks are 2-port networks characterised by sets of six polynomials.

I.

5.2 PROGRAMMING LANGUAGE

Computer programs employing this analysis method could conceivably be

written in almost any computer language. 	But in practice, with limited

time available, they could not be written in machine code or an assembly

language, and it is even doubtful if they could have been developed to their

present stage of refinement using FORTRAN.

To maintain algorithms of a complex nature it is essential that they be

expressed concisely and that most of the programming details be managed

implicitly by the compiler. 	It is also an advantage that the action or flow

of an algorithm be readily comprehensible, and, apart'from the liberal - use of

comments, this can be best achieved with the avoidance of branch statements

in the source program. 	Such is the argument against low-level, flowchart-

like languages such as BASIC and FORTRAN.

The two major algorithms constituting the analysis method are, by nature,

recursive. 	This fact alone is sufficient justification for the use of a

compiler language—such as ALGOL--which provides a mechanism for the dynamic

allocation of storage space during program execution. 	Without this mechanism,

stacks (arrays) of sufficient size must be declared prior to execution, and

extra coding must be included So that every time the same code is reentered

•or completed the variables local to that code are either pushed onto, or pulled

from, the appropriate stack. 	ALGOL is desirable also because of the precise and

concise definition of its grammar, for the power of its statements which are

relevent to this application, and for its wide acceptance as a programming

language.

1

1

5-3

However, in this application ALGOL is deficient In several important res-

pects. For instance, although not possible in ALGOL, it is convenient to group

together the parameters of a particular 2-port network---such as the addresses

and degrees of its six polynomials—and regard them as attributes of a single

entity. Such an entity is then denoted by a single reference variable and may

be included as a member of any one of a number of sets during the analysis

process.

Facilities for the dynamic creation, manipulation, and expiration of

entities in this way are a natural extension of ALGOL, and have been accom-

plished with SIMULA, a compiler language designed for the simulation of discrete-

event systems. The version used here is essentially that developed by Dahl and

Nygaard at the Norwegian Computing Centre and implemented on UNIVAC 1100-series

computers in 1964 [50]* .

Because SIMULA is not as widely known as ALGOL some of its basic components

are now introduced within the context of the analysis method; other components

of the language—e.g. the sequencing set, and operation rules for activities—

are not relevant to this application.

A class declaration is, in appearance, like the head of an ALGOL procedure

declaration; it introduces an identifier for a class of similar entities and

describes the types and number of attributes which determine a particular

representative of the class. For example, the declaration

"class network (netdegree);

integer netdegree;

begin integer array npaddress, npdegree 1:6 end;"

defines a class of entities; each is known as a "network" and has the attrib-

utes of a degree and the addresses and degrees of six polynomials. A

• particular entity belonging to this class is created by a reference expression

such as "new network(10)" and expires when it is no longer referenceable.

* The language used here differs from the referenced language in that the symbol

activity is replaced by the more appropriate symbol class, as in the more-recent

SIMULA 67.

5-4

The creation of an entity involves the allocation and initialisation

of 	storage space for its attributes, as well as the generation of an element

which refers to the entity. 	It is the element rather than the set of attributes

which is manipulated, and it may by referenced either by an element variable or

as the'member of a set. 	Thus with the declarations

"element this network;

set basic networks;"

the statements

"this network:- new network (10);

include (this network, basic networks);.

this network:- first (basic networks);"

have the effect of creating a new "network" of degree 10 which . is denoted by -

the variable "this network"; of placing this element last in the set or list of

"basic networks"; and of altering the variable to denote, instead, the first

element of this set. 	With many other statements and expressions of this type

we gain the benefits of a powerful list-processing facility.

A necessary facility of the language is the connection mechanism by which

access is gained to the attributes of a particular entity. 	For example, if it

is desired to •assign to the integer variable "adrs" the address of the third

polynomial of the "network" which is first in the set of "basic networks", it

could be accomplished with the statement

"inspect first (basic networks) when network do adis := npaddress [3] ;".

When this statement is executed the entity referred to by the element

expression "first (basic networks)" is inspected, and if it . is . from the "network"

class the statement following the "do" is executed and the attributes of the

referenced entity are made available to it. 	The connection verb "inspect"

• may be• replaced by "extract", in which Lase the connection statement would have •

the additional effect of removing the referenced element from the set of "basic

- networks" to which it belonged.

The algorithms presented in this chapter are written in SIMULA, although

some licence is taken with the declaration of variables and specification of

5-5

procedure parameters. 	Unless explicitly declared or specified, all

identifiers are assumed to be global integer variables or integer parameters.

All parameters are assumed to be called by value unless specifically included

in a name list. 	Statements represented by an English description of their

action are enclosed in diamond brackets< ›.

5.3 DATA STRUCTURE

The scheme adopted for the compact storage of polynomial coefficients

during the analysis process is based on the fact that the degree of a complete

network is not greater than the sum of the degrees of its constituent networks.

Thus, if the polynomials of the constituent networks are stored in contiguous

locations of the core store, the polynomials of the complete network may be overlaid

in the same locations. 	It is a simple matter to arrange that for all pairs of

subnetworks which are combined algebraically in the evaluation of a network

expression, their polynomial coefficients do occupy contiguous locations.

Six rows of a two-dimensional array are reserved solely for the six

respective polynomials of all networks. 	When a new network is introduced into

the analysis process its polynomials are assembled from the left of the array,

starting in the first vacant column.

When two networks are combined algebraically the vacant right-hand end of

the array, starting with the first vacant column from the left, adjacent to the

constituent polynomials, is used as temporary storage for six polynomials; the

complete polynomials are first accumulated in these temporary areas, and finally

assembled in the same locations occupied by the constituent polynomials.

The polynomials of subnetworks occurring in network expressions are therefore

overwritten and can take no further part in the analysis. 	However, if a

subnetwork is to be used in subsequent network expressions, its self-defining

network expression is assigned to a block, its complete polynomials remain where

first assembled in the array, and the polynomials of subsequent

expressions are assembled further to the right.

5-6

The branches of a structure graph to be analysed by the general

topological analysis method refer to blocks already assembled from network

expressions in the above manner. 	Analysis of a structure graph requires

extra space for the temporary storage of a large number of intermediate

polynoinials,and two extra rows are added to the main array solely for this

purpose. 	Single polynomials are stacked in this area during the analysis

of a structure, in the same recursive manner that sets of six polynomials

are stacked in the first six rows during the evaluation of a network expression.

A list of branches defining a structure graph is introduced as a set of

parameters to a. basic network and may therefore appear almost anywhere in a

network expression. 	Its complete polynomials are accumulated directly in the

first vacant locations from the left, in the first six rows. 	Most intermediate

polynomial products are stored in the extra. two rows, but some intermediate

polynomials with a special significance are stored at the right-hand end of the

first six rows.

A grammar for network expressions and an algorithm for their evaluation

are discussed later, in section 5.5.

To facilitate access to the various polynomials by universal utility

routines the main' array is actually declared with a single dimension. 	Any

polynomial is then located with a single number, defined as the address of that

polynomial, which is the address or subscript of the leading coefficient of the

polynomial in the main array. 	The address of a network is defined as a base

address from which can be calculated •the addresses of its polynomials with a

statement of the form

"npaddress [px] := base address + px * r1;"

where "rl" is the length of a row in the equivalent two-dimensional array.

A typical arrangement of polynomials in the main array is shown in figure

5.1.

5.4 UTILITY ROUTINES

The following procedures are responsible for all manipulation of poly-

nomials stored in the main array. They are described here only to the extent

that their results, and their interface with calling algorithms, are precisely

defined. Code for the procedure bodies could be quite simple, but because they

perform . all the "productive" computation of the analysis process it may be

desired to optimise them as far as possible---even to the extent of writing

them in the assembly language of the host computer.

In the following descriptions the expression "pol(adrs,deg)" refers to the

unique polynomial whose address is given by "adrs" and whose degree is given by

"deg"; "pol(adrs)", on the other hand, refers to the polynomial whose address

is given by "adrs" but whose degree is determined by the computation process.

procedure polclear (adrs,deg)•

name deg;

<depending on the polynomial representation, if the degree is fixed then

p 1(adrs I deg):=0.0 (i.e. all coefficients are set to zero); otherwise,

deg:=-1);

procedure polcopy (adrel,degl l adrs2,deg2);

name deg2;

begin deg2:=degl;

<pol(adrs2):=pol(adrsl,degl)›

end;

procedure poladd (adrsl,degl,adrs2,deg2,adrs3,deg3,sign);

name deg3;

begin if sign<0

then <pol(adrs3):=p01(adrsl,deg1)-pol(adrs2,deg2)>

else <pol(adrs3):=pol(adrsl,deg1)+pol(adrs2,deg2)>;

deg3:=<degree of pol(adrs3)>

end;

FIRST BLOCK 	 SECOND BLOCK

BASE ADDRESS
OF SECOND BLOCK

1--/ BASE ADDRESS
OF FIRST BLOCK 	

r
------ft... I BA1

CONSTITUENT NETWORKS

FIRST VACANT
COLU M NI

- -r

=I • MI MN • MI MI I= MN MI— 1111. - 	 MN II= 	MI MI OM 	.1115

7

POLYNOMIALS OF
	

POLYNOMIALS OF 	POLYNOMIALS OF LAST TWO

I1-r(

BA1 + rt 	1r4

BA1+ 2 xrt ABA2
• 7

BA1+ 3 x rt Al 4
BA1+ 4x rtAihk,11141M

BA2 + rt 	-4
1

+ 2 xrt

BA2 + 3 x rt \

mosil
rl

TEMPORARY 	2 x rt
rim

\ \ \ • , \
STORAGE

AREA WA Mill
FOR rainkl

B .A1+ 5x riAkw44,44 wawa
POLYNOMIALS

BA1 + 6 x rt
, 	, 	, , 	,

Nu
BA2 + 6 x rt\1
. 	\ 	N. 	. 	\ 	s.

•

, 	 , \\
6 x rt

1+6 x rl 	 STORAGE 	FOR 	INTERMEDIATE 	POLYNOMIALS

GENERATED 	BY 	TOPOLOGICAL 	ANALYSIS 	PROCESS 8 x ri

POLYNOMIALS No. 1

2

3

4

5

6

Figure 5.1 Typical arrangement of polynomials in the equivalent two-dimensional array.
Arithmetic expressions define the subscripts of corresponding locations in the actual array.

procedure polmtply (adrsl,degl,adrs2,deg2,adrs3,deg3,sign);

name deg3;

begin if sign = 0

then<pol(adrs3):=pol(adrsl,degl)*pol(adrs2,deg2)›

else if sign<0

.then<pol(adrs3):=pol(adrs3,deg3)-pol(adrsl,deg1)%pol(adrs2,deg2))

else<pol(adrs3):=pol(adrs3,deg3)+pol(adrsl,degl)*pol(adrs2,deg2)>;

deg3:=<degree of pol(adrs3)>

end;

The above procedure is used for virtually all polynomial multiplication

and addition. The reason for combining these two functions in the one

procedure derives from the significant saving in processor time which can be

achieved when the degree of a polynomial product equals the degree of the

polynomial to which it is to be added.

If polynomials are represented by lists of numerical coefficients the

product of a pair of polynomials involves the multiplication of every

coefficient of the first polynomial with every coefficient of the second

polynomial, and the addition of every such arithmetic product to an

appropriate accumulating sum which ultimately becomes a coefficient of the

product polynomial. Thus, the process of polynomial multiplication is

seen to involve a large element of polynomial addition; in particular, it is

noted that if the accumulating sums are not initially set to zero but

• initialised with the coefficients of the polynomial to which the product is

to be added, the desired multiplication and addition is performed

simultaneously. The need to add a product of polynomials to an existing

polynomial, in situ, occurs frequently in the analysis process, and with

the above approach can be achieved with less effort than can the product

alone.

5-9

. This economy of polynomial multiplication and addition (or subtraction)

requires that the six polynomials of any network all have the same degree.

Although, in theory, this is not always the case, it can be enforced

computationally by the inclusion of zero coefficients without incurring a

significant computational penalty. 	And because the degree of a network

equals the degrees of its polynomials, there is the additional benefit •

that most of the book-keeping associated with the calculation and storage

of polynomial degrees can be eliminated.

However, if polynomials are represented in a different form--such

as a list of terms each defined by a symbolic product of network parameters,

a power of s, and a numerical coefficient—the above economy can not be

realised. 	The "degree" of a polynomial used in these procedures loses

its significance as the highest exponent of s but continues to serve the

purpose of determining the number of elements, coefficients, or terms in

the polynomial, and therefore determines the space that must be allocated

in the main array. 	With the latter form of polynomial representation it is

desirable to allow the polynomials of a network to have different "degrees",

and all the procedures and algorithms presented in this chapter have been

designed to be applied equally-well in either situation. 	It is necessary to

change only the bodies of the procedures comprising these utility routines.

5.5 ALGEBRAIC REDUCTION

The language in which a network is described to an analysis program

has a significant bearing on the convenience of that program as an

analytical tool. 	It should impose few constraints on the types of

parameters, be concise, "natural", and simple to learn.

As a means of describing a network, an algebraic network expression

exhibits the notational economy of a mathematical formula, and, due to

• the versatility of the many network operations, permits network parameters to

be introduced in a wide variety of forms. 	For example, a transistor may be

defined by any lumped parameter model, or any set of H,G,Y,Z, or transmission

parameters; it may be defined in either a common base, common emitter, or

common collector configuration, and have the configuration changed

5-10

algebraically. 	Another advantage of the network expression is that

it can usually be arranged to reflect the natural structure of the network--

• the Manner in which subnetworks are cascaded or paralleled---and is

therefore easier to comprehend and check.

Unlike some other methods of network description, a network expression

strongly influences the analysis process: in this case, by directing the

order in which subnetworks are combined. 	Thus, the specification of an

algorithm to evaluate •network expressions depends on their grammatical form.

For this reason, and also to establish a standard network-description

language which future analysis programs may adopt, a grammar for network

expressions is now specified.

5..5.1 Syntax of Network Ex resions

The syntax of network expressions is here .defined in Backus-Naur,Form

• The metasymbol "::=" has the English meaning of "is

defined as", the metasymbolt has the meaning of "or", and pairs of

diamond brackets< > enclose characters which are to be treated as a unit.

Numbers in the right-hand margin refer to statements which are out of

sequence.

(assignment statement) ::= (block) = (network)

(block>

1.1 <block number)

•2 	'<network>

::= B (block number)

::= <integer>

((neiWork))1

<port interchange operator)(network>I

<network)<clyadic operatorXnetwork>1

<basic network)

2.1 	<port interchange operator)

r

2.2 	(dyadic operator) 	::= <cascade operator)

2.21 <cascade operator > 	::= c

<parallel operator>

5-11

2,22 (parallel operator) 	::= <port interconnectionXport interconnection)

2.221 <port interconnection> ::= (parallel port)I(teriet-port>

2.2211<parallel. port) 	::=p.

2.2212<aeries,port> 	::= s

3• 	<basic network) 	:.:=4Cblock>1 	 1

<trivial network>l<simple network)I

<ideal transforMer)I<mutual inductor>I

<yoltage-controlled current,'

<vpltage aMplifier>I

<gyrator>I 	.

•(general network>I .

<network structure>

. 	3.1 	(trivial network> 	::= <unit network>l<crass-over network)(

, <current-inversion NI)

3.11 <Pnit_network> 	::= U •

3.12, (cross-over network) 	::= X

3.13 ‹current-inversion NIC>:1= I

3.2 (simple network> 	::= <Compcnent position)(component)

3.21 <component position) 	::= <series position>I(shunt position>

-

•

•

• <closing .branch>,<branch>I

<branch list>,<branch>I

•<branch>,<branch tist>

3.211 <Series position>

3.2124hunt position)...

8

• = T

3.3 <ideal transformer> ::= F<parameter> 5

3.4 '(mutual inductor> ::= M<Oarameter><Parameter><parameter>

3.5 <voltage-controlled current>
: := Hkdegree),(polynomial>,<polynomial>1 6

3.6 . (voltage amplifier> ::=AkdegreeMpolynomial>,<polynomial>]

3.7 <gyrator> 	. ::= G(parameter) 5

3.8 <general network) ::= q<degreeMpolynomialMpOlynomial>,

<polynomial>,<polynomial>,<polynomial>,

(polynomial)] • 6

3.9 '(network structure> ::= *branch list)]

3.91 <branch 1. ist> ' ::=<branch),<closing branch)!

-

5-12

3.911 (branch)
	

<block>:<node part)

3.9111 (node part>
	

::= <node number><port interconnection)

<node number)<port interconnection> 2.221 -

3.91111<hode number>
	

::= (integer)

392 	<closing branch> 	::=130:<node part> 	3.9111

4 .<component> 	::= <basic component>l<tuned component)!.

4ompound component)

4.1 (basic component> 	::= <resistor>l<inductor>l<capacitor>

4.11 <resistor> 	::= R(parameter)

4.12 <inductor) 	::= L<parameter>

4.13 (capacitor) 	::= C<parameter> 	 5

4.2 <tuned component> 	::= X<Parameter><parameter><parameter> 	5

4.3 	<compound component> 	::= <second port terminationXnetwork> 	2

4.31 <second port termination>
• <short circuit>i<open circuit>

4.311 <short circuit> 	::= Y

4.312 <open circuit) 	::= Z

5 	<parameter> 	::= <real_ number>I

[(parameter identifier>fl

• <parameter><multiplying operator><parameter>

5.1 	<parameter identifier) ::= <any string of characters not containingl > • J

5.2 (multiplying operator> ::= *1//

6 	<polynomial> 	::= <parameter>l<parameterXpolynomial>

6.1 • <degree> 	::= <integer>

For programming convenience the formats for <integer> and <real number>

comply with the respective requirements for free-format input of integers and

floating-point numbers by the particular compiler system which implements

the analysis algorithm.

Blank spaces.are generally permitted anywhere in'a network . expression

to improve its readability.

I .

5-13

If necessary, lower-case characters may be replaced by their

corresponding upper-case characters and square bratkets[] may be

replaced by round brackets().

5.5.2 Semantics of Network Expressions

In the above syntax definition a ,"network" is a 2-port network and

a "component" is a 1-port network. 	A "component" . may comprise a single .

2-terminal device (a "basic component"), either a series or shunt DOR

combination ca "tuned component"), or, in the case of a "compound - component",

be the first port of a "network" which has its second port terminated in

either an open circuit (Z) or a short circuit (Y).

The many symbols that may appear in a network expression are mnemonic .

and serve as the context by which meanings are attached to network parameters.

- With this grammar the parameters have the following meanings :

3:3 	F: secondary to primary turns ratio

3.4 . M: primary inductance (henries), secondary inductance henries

coupling coefficient

3. 	H: numerator and denominator polynomials of the transconductance

3.6 	A: numerator and denominator polynomials of the amplifier gain

3.7 	G: gyration resistance (ohms)

3.8 	N: the six polynomials which fully characterise the network

4.11 R: resistance (Ohms) .

4,12 L: - inductance.(henries)

4.13 C: capacitance (farads)

4.2 SX:,inductance (henries), resonant frequency (hertz),

resistance •(ohms)—of a series . LCR combination

TX: capacitance (farads), resonant frequency (hertz),

conductance (mhos)---of a parallel . LCR combination

The format for a polynomial depends on the form of polynomial

representation used within the program. 	The given definition (metalanguage

Statement 6) applies when polynomials are represented by a list of numerical

coefficients, in which case each polynomial must include a parameter for

every coeffiCient, beginning with the Coefficient of the highest power of

5-14

determined by the given "degree".

Circuit diagrams for some basic networks are given in figure 4.1.

5.5.3 Evaluation of Network Expressions

The algorithm which interprets a network expression, assembles the

polynomials of basic networks and manipulates them algebraically is shown

in figure 5.2. 	Its right-hand margin contains statement numbers which

are referred to in the following discussion.

The data input to the algorithm is in the form of an ordered set of

"significant characters" (100) which includes all except the editing

characters-- blanks, line-feeds, etc-,- in the network expression, and

terminates with .a statement delimiter. 	The data is processed by a single

call (501) to the recursive prodecure "assemble network".

• Local to the main procedure (200) is a procedure for combining two

networks algebraically (210), and local to the latter is procedure "pma"

(220) whose sole function is to expand a set of three polynomial - index

parameters and call (224) the utility procedure "polmtply" with the

appropriate.parameters. 	It multiplies polynomial "pxl" of the first

network with polynomial "px2" of the second network and accumulates the

. . product in the temporary polynomial "px3", according to the parameter "sign".

The addresses of the six temporary polynomials are calculated (230,231)

prior to combining the two networks..

If the polynomials of the first network the polynomials of the second

network, and the temporary polynomials, are denoted by A,B and T respectively,

the statements 233-235 perform the cascade operation by evaluating the

polynomial expressions:

set significant characters; - 	 100

boolean expression terminated, closing bracket; 	 101

integer array tempadrs, tempdeg [1:6]; 	 102

element this block; 	 103

class network (netdegree); 	 104

integer netdegree; 	 105

begin integer array npaddress, npdegree.[1:6] end;
	

106

procedure assemble network (address of this network this network, degree of last •network);
	

200

name this network; element this network;
	

201

begin integer address of second network;
	

202

element second network;
	

203

procedure combine the two networks;
	

210

begin procedure pma(pxl,px2,px3,sign);
	

220

begin inspect second network when network do
	

221

begin adrs 2:= npaddressfpx2];
	

222

deg 2:= npdegree[px2]
	

223

end;

polmtply(npaddress[px1], npdegree[pxl), adrs2, deg2, tempadrs[px3], tempdeg[px3 	sign) 	224

end polynomial multiplication and addition;

inspect second network when network . do base address: = address of second network + netdegree +1;
	

230

for j:= 1 step 1 until 6 do tempadrs[j]:= base address + j * <row length of main array)';
	 231

if<cascade operation is required>
	

232

Figure 5.2 Algorithm for evaluation of network expressions (Page 1 of 5)

=I um 	um NE 	'11.1 mi 	mi 	 IIIIIII

•

then begin pma (1,1,1, 0) ; pma (1, 2 2, 0) ; 	pma (3, 1, 3, 0) ; 	pma (3, 2,4, 0) ;

pma (2, 3, 1,1) ; pma (2, 4, 2, 1) ; 	pma (4, 3, 3, 1) ; 	pma (4, 4,4, 1) ;

pma (5, 5, 5, 0) ; pma (6, 6, 6, 0)

end

else begin pl:= 1; 	p2:= 2; 	p3:= 3; p4:= 4; 	sign: = -1;

233

234

235

236

if 0 irst ports are connected in series) then 	 237

begin <swap pl and p3>; <swap p2 and p4>; sign:= -sign end ; 	 238

if (second ports are connected in series> then 	 239

begin <swap pl and p2>; <swap p3 and p4> ; sign: = -sign end ; 	 240

pma (pl, p2, pl, 0) ; pma (p4, p2, p4, 0) ; pma (5, p2, 5, 0) ; pma (6, p2, 6, 0) ; 	 241

pma (p2, pl, pl, 1) ; pma (p2, p4, p4, 1) ; pma (p2, 5, 5, 1) ; pma (p2, 6, 6 , 1) ; 	 242

pma (p2, p2, p2, 0) ; pma (2, 3, p3, 0) ; 	pma (3, 2, p3, 1) ; 	 243

pma (1, 4, p3, 1) ; 	pma (6, 5, p3, sign); pma (4, 1, p3, 1) ; pma (5, 6, p3, sign) 	 244

end;

for j := 1 step 1 until 6 do 	 245

begin npaddress]:= address of this network + j * <row length of main array> ; 	 246

pol copy (tempadrs), tempdeg [j] , npaddress [j], npdegree [j]) 	 247

end ;

netdegree := <maximum of npdegree j>
	

248

end combination of the two networks ;

extract first (significant characters) 	 300

when < " (" > do 	 301

begin assemble network (address• of this network, this network, 10000) ; 	 302

Figure 5.2 	(Page 2 of 5)

7 - 7

• MI EMI Mit IMO NM 	MMII IMI 	I= NM • MN MI 	NM MI MN • .1•101

if closing bracket 	 303

then closing bracket: = false 	 304

else print "TOO MANY OPENING BRACKETS" 	 S 	305

end

when <"r"> do 	 306

begin assemble network(address of this network, this network,0); 	 307

(interchange the pairs of polynomials{1,4) andf5,61 of "this network">
	

308

end

309

310

311

.312

When <"S" or "T'> do

begin extract first (significant characters)

when <"R", 	"L", 	"C", 	or "X"> do

begin<extract and interpret the following parameter(s) which specify a component>;

<create- a new "network" whose polynomial addresses are based on the 313

"address of this network", and refer to it as "this networkl!>; 5 314

<assemble the numerator and denominator of the component impedance - 315

as the respective polynomials 1 and 3 of "this network">;

na:= 1; 	da:= 3

end

316

318 when CY" or "Z"> do 	S

begin assemble network(address of this network, 	this network, 	0); 319

na:= if <second port is terminated with an open circuit (Z)>then 1 else 2; 320

da:= na + 2

end

321

322 otherwise print "CHARACTER DOES NOT SPECIFY A COMPONENT";

Figure 5.2 	(Page 3 of 5)

7

if < component is to be placed in the shunt (T) position>

then begin zx:= 2; 	nx:= 1; 	dx:= 3 end

323

324

325 else begin zx:= 3; 	nx:= 2; 	dx:= 1 	end;.

inspect this network when network do 326

begin npaddress [zx] := npaddress[5] ; 	npdegree [zx] .:= 	netdegree ; 327

npaddress [nx] := npaddress [na] ; 	npdegree [nx] := npdegree [na] ; 328

npaddress [dx] := npaddress [da] ; 	npdegree [dx) := npdegree [da] ; 329

• npaddress [41 := npaddress [5) := npaddress [6] := npaddress 111 330

• npdegree [4] := npdegree [5] := npdegree [6] := npdegree [1) ; 331

polclear (npaddress [zx], npdegree [zx])

end

332

•end

333 when < "A", 	"B", 	"D", 	"F", 	"G", 	"H", 	"I", 	"M", 	"N", 	"U", 	or "X" > do 	,

q n <extract and interpret the following characters (if relevant) which . specify a basic network); .be 334

<create a new "network" whose polynomial addresses are based on the 335

"address of this network", and refer to it as "this network"); 336

<assemble the polynomials of "this network" to represent the basic network> 337

• end

. when < statement delimiter> do 338

begin expression terminated := true ; 339

print "EXPRESSION IS NOT COMPLETE" - • 340

341
end

otherwise print "CHARACTER DOES NOT SPECIFY A . BASIC NETWORK"; 	 •

Figure 5.2 	(Page 4 of 5)

MI MI MI 	 OM 1111111 11111 1111111 	=I I= 	 1111111 MIN • IMO Mil MIMI

operation: 	 400

if not (closing bracket or expression terminated) then 	 401

inspect this network when network do if netdegree < degree of last network then 	 402

extract first (significant. characters) 	 403

when < "c", "p", or "s"> do 	 404

begin <extract and interpret the following character (if relevant) which completes 	 405

the specification of a dyadic network operation; 	 406

address of second network:= address of this network + netdegree + 1; 	 407

assemble network(address of second network, second network, netdegree); 	 408

combine the two networks; 	 409

got° operation 	 410

end

when < ")"> do closing bracket:= true 	 411

when <statement delimiter> do expression terminated: = true 	 412

otherwise print "CHARACTER DOES NOT SPECIFY A NETWORK OPERATION" 	 413

end assembly of network;

closing bracket: = false; 	 500

assemble network ((base address of new block>, this block, 10000); 	 501

if closing bracket then print ."TOO MANY CLOSING BRACKETS"; 	 502

Figure 5.2 	(Page 	of 5)

5-15

Ti = A1.B1 + A2.B3,

T2 = Al.B2 + A2.B4,

• T3 = A3.B1 + A4.B3,

T4 = A3.B2 + A4.B4,

• T5 = A5.B5,

•T6 = A6 . B6 .

Statements 241-244 perform the parallel-parallel operation by evaluating

the polynomial expressions:

Ti = Al.B2 + A2.B1,

T2= A4.B2 + A2.B4,

T5 = A5.B2 + A2.B5,

T6 = A6.B2 + A2.B6,

T2 = A2.B2,

T3 = A2.83 + A3.B2 + Al.B4 - A6.B5 + A4.B1 - A5.B6.

However, if either or both of the ports are connected in series rather than

parallel, the effect of cascading with a unit gyrator is first incorporated

(237-240). 	When all the new polynomials have been calculated the

Polynomial addresses of the first network are calculated (246) and the

temporary polynomials are copied into these locations (247), thus effecting

the assignments :

• Al = Tl,

A2 = T2,

A3 = T3, 	 •

A4 = T4,

A5 = T5,

A6 = T6. 	 •

Execution of the main procedure begins with the extraction of the

next significant character from the input file (300.

If an opening bracket is encountered (301), a recursive call-is made

to the same procedure (302) and a closing bracket is cancelled (304).- A

recursive call is also made if a port-ihterchange operator is encountered,

and the desired reversal operation is achieved simply by interchanging two

5-16

pairs of polynomial (306-308).

The assembly of a simple network (309) is preceded by the assembly

of the numerator (N) and denominator (D) polynomials of a component

impedance, which, in the case of a compound component (318), requires

another recursive call to the same procedure (319). 	If the component

is placed in the shunt position, the six polynomials becone N,O,D,N,N,N;

if placed in the series position, they become D,N,0 D,D,D. 	The

assignment of numerator and denominator polynomials is achieved by copying

polynomial addresses (327-331) rather than polynomial coefficients.

After assembling a network, and finding (401) that the network

'expression is terminated neither permanently (with a statement delimiter)

nor temporarily (with a closing bracket), the decision to continue or

terminate the procedure depends on the degrees of the last two networks

to be assembled (402); by not combining two networks if the degree of the

second is less than the degree of the first, the procedure exhibits a

preference for combining networks of the same degree and thus minimises

polynomial manipulation. 	By calling the procedure with a value of 0 or

10000 in place of the parameter representing the "degree of the last

network", this decision mechanism is used to ensure that the procedure

terminates either as soon, or as late, as possible.

Apart from a closing bracket (411) or a statement delimiter (412);'

a network should only be followed by a &Odic network operator (404).

In the latter case a base address for a second network is calculated (407),

a recursive call is made in order to assemble a second network (408), and

the two networks-are combined algebraically (409).

The algorithm incorporates . no precedence rules—such as the parallel

operator before the cascade operator—and the user is encouraged to

introduce pairs of brackets whenever there is doubt about the pcissible .

execution order of network operations.

5-17

There.is a clear relationship between the algorithm and the syntax

definition for network expressions: the calls to the procedure "assemble

network" in algorithm statements 501, 302, 307, 408, and 319 correspond

to . references to the metavariable "(network>" in their respective syntax-

definition. statements 0,2,2,2, and 4.3.

Any program which implements this algorithm must, like any interpreter,

output unambiguous diagnostic messages whenever a symbol can not be properly

interpreted. Examples of diagnostic messagesoccur in statements 305, 322,

340, 341, and 502. 	It is also desirable that . a program should attempt to

recover from data errors ---either by skipping spurious characters or by

making suitable assumptions—and, as far as possible, continue scanning

•the data for further errors. 	However, the algorithm of figure 5.2 has net

been encumbered with programming details of this nature.

The algorithm described above is essentially an interpreter rather

than a compiler; that is, interpretation of a network expression and

analysis of the specified network are concomitant. 	This simpler approach,

which requires only one pass through the input data ., is generally

satisfactory—but in some applications it may prove costly. 	For instance,

when a data error is discovered, the polynomial manipulation preceding the

discovery is wasted. 	Also, if the evaluation of a network expression

should be repeated with different network parameters, as in an iterative

network-design program, the interpretation is repeated unnecessarily. 	In

an alternative approach polynomials could be assembled and manipulated with

procedures controlled by program switches. 	A compiler would interpret

the input data file, construct a table of fixed and variable network

parameters, and compile a sequence of program switch settings and parameter

indices.

.5.6 - TOPOLOGICAL ANALYSIS -

- 5.6.1 Interface with the Algorithm

The analysis algorithm presented in figure 5.3 as the procedure,

"topologic" requires that the 'topological data describing the network .

structure and the parameters of _the individual networks be available.

5-18

in a particular form.

If the structure is defined by a branch list, as defined by statement

3.91 in the syntax definition of network expressions, 'then each branch,

by'virtue of its positicnin the list, has a unique index number "bx" and

is linked to corresponding elements in three arrays. 	Two, arrays, "first

node" and'"second node", Simply list the first and second 'node numbers of

each branch and thus completely determine the network structure in the

conventional manner. 	The third array, "branch reference", is a list 'of

elements referring to "branches" which are representatives of the class

declered globally as follows:

"class branch (branch degree);

ttain integer array bpaddress,. bpdegree, bptag[1:6] end;"

The attributes of a "branch" determine the address, degree and a tag

for each of the six polynomials-which characterise a 2-port network. 	The

"branch degree" is the maximum of the individual "bpdegreeN". 	If a

polynomial contains only a constant term and its magnitude is zero or unity,

then its tag is set equal to the polynomials otherwise, its tag is set to +3.

The analysis procedure assumes that each port in the structure is

connected in parallel' ratherthan in series. 	Therefore, if a port of a

constituent network is connected (to other networks) in series it must be

cascaded with a. unit gyrator: if the first port is connected in series,

the pairs of branch polynomials (1,3) and (2,4) are interchanged and the

sign of the tag of polynomial 5 is changed; if the second' port is connected

in series, the pairs of polynomials (1,2) and f3,4) are interchanged and

the sign of the tag of polynomial 5 is changed. 	Finally, each transfer

polynomial (5 and 6) is compared with its corresponding natural polynomial

(4 and 1 respectively). 	If its tag is +3 and, except for a possible sign

difference, the polynomial is identical to its corresponding natural

polynomial then its tag is changed to either' +2 or, if there is a sign

difference, to -2.

1111 1111 1111 . 1111 '1111 0111 1111 1111 1111 . 1111 1111 1111 1111 1111 1111 1111 1111 1111 .1111
- .

Procedure t000logic(nodes, branches, 	closing bx, 	first node", 	second node, branch reference, 	tempadrs, 	stack address); 100

101 . integer array first node, 	second node, 	tempadrs;

element array branch reference; 102.

110

begin

boolean possible to extend path, 	loop includes closing branch;

boolean array listed branch reversed, 	pointer set[1: nodes]; 	 • 111

integer array listed node, 	listed branch[1: nodes], 	node sum of branch, 	possible pointers into branch[1: branches 112

class polynomial(paddress, 	pdegree, 	ptag);; 113

Class directed branch(bx., breversed); . 	boolean breversed;; 114

116

element unit polynomial, bb, 	extended product, 	loop polynomial;

element array closing loop product[1:61;
set term factors, 	loop natural polynomials, 	loop transfer polynomials; 117

set array branch list of node[1: nodes]; 118

- procedure set pointer(k, 	ni . pathstart, 	partial product); 200

element partial product; 	. 201

begin integer pptag 	nextadrs; 202

element b; 203

procedure 	register 	polynomial(px,bx); 210

if bx = closing bx 211

then begin closing npx:= px; 	closing tpx:= 0 end 212
s

else inspect branch reference[bx]when branch do 213

begin tftag:= tftag * bptag(px); 214

Figure 5.3 Algorithm for topological analysis 	(Page 1 of 8)

IIIIIII 	• • I= =I MI IIIII 	INN 	 IIIIIII 	=I AIM

if tftag = 0 	 215

then ,cloto next branch 	 216

else if abs(bptagEpx)V 1 then include(new polynomial(bpaddress[px), bpdegree[px], 1?ptagroaxn, term factors)- 	217

end;

procedure register path (k); 	 220

for k:= k step - 1 until pathstart do register polynomial(if listed branch reversed[k]then 1 else 4, listed branch[k)); 	221

procedure adjust tag of all branches connected to this node by(a) . ;

for b:- first(branch list of node[n]), , suc(b) while exist(b) do 	 231

inspect b when directed branch do possible pointers into branch[bx]:= possible pointers into branch[bx + a; 	232

element procedure product(polynomial factors, address, degree, tag, sign); 	 240 -

set polynomial factors; 	 241

begin extract(if empty(polynomial factors) then unit polynomial else first(polynomial factors)) when polynomial _do 	242

begin adrs 1:= paddress; 	 243

deg 1:= pdegree 	 244

end;

if empty(polynomial factors) 	 245

then begin if sign = 0 	 246

then polcopy(adrs 1, deg 1, address, degree) 	 247

else poladd(adrs 1, deg 1, address, degree, address, degree, tag * sign) 	 248

end

else begin

• Figure 5.3 	(Page 2 of 8)

MO • MO • MIMI • 11111 IIIIII 	• • • I= • =I 	• 	• •

next factor: 	extract first(polynomial factors) when polynomial do 	 250

begin adrs 2:= paddress; 	 251

deg 2:= pdegree 	 252

end;

if empty(polynomial factors)
	

253

then polmtply(adrs 1, degl, adrs 2, deg 2, address, degree, tag * sign)
	

254

else begin adrs 3:= if adrs 1 = tempadrs[1] then tempadrs[2] else tempadrs [1];
	

255

• polmtply(adrs 1, deg 1, adrs 2, deg 2, adrs 3, deg 1, 0); 	 256

adrs 1:= adrs 3;

goto next •factor . 	 258

end

end;

product:- new polynomial(address, degree, if tag = 0 then sign else tag)
	

259

•end product;

inspect partial product when polynomial do 	 260•

begin pptag:= ptag; 	. 	 261

nextadrs:= paddress + pdegree + 1 	 262

end;

pointer set [n]:= true; 	 263 .•

listed node [k]:= n; 	 264•

adjust tag of all branches connected to this node by 	1); 	 265

for b:- first (branch list of node [n)), suc(b) while exist(b) do 	 • 	 266

begin possible to extend path:= false . ; 	 267•

Figure 5.3 	(page 3 of 8)

11111 	11111 	NM 11111 MN 11111 	 11111 1111 	MIN 	111111 11111 MO 1E1 11111

tftag:= pptag; 	 268

clear(term factors); 	 269

if abs(tftag)/ 1 then include(partial product, term factors); 	 270

inspect b when directed branch do 	 271

begin possible pointers into branch[bx]:= possible pointers into. branch[bx] + 1; 	 272

listed branch[k]:= this bx:= bx; 	 273

listed branch reversed[k]:= breversed 	 274

end;

for lob:- first(branch list of node[n]), suc(bb) while exist(bb) . do 	 275

inspect bb when directed branch do 	 276

if possible pointers into branch[bx] = 0 then register polynomial(2, bx); 	 077

next n:= node sum of branch[this bx] - n; 	 278

for nx:= k-1 step -1 until pathstart do if listed node[nx1= next n then 	 279

begin register path(nx -1); 	 080

if nx = k -1 	 281

then register polynomial(3, this bx) 	 282

else begin lnptag:= ltptag:= 1; 	 283

clear (loop natural polynomials); clear (loop transfer polynomials); 	 284

for nx:= nx step 1 until k do 	 285

begin this bx:= listed branch[nx1; 	 286

if listed branch reversed[nx] 	 287

then begin npx:= 1; tpx:= 6 end 	 288

else begin npx:= 4; tpx:= 5 end 	 289

if this bx = closing bx 	 290

Figure 5.3 	(Page 4 of 8)

11==I M 	II= MINI 	 =I .11=

then 	closing npx:= npx; .begin 291

292

293

closing tpX:= tpx:

loop includes closing branch:= true

end

else inspect branch reference[this bx] when branch do 294

begin lnptag:= lnptag * bptag[npx]; 295

ltptag:= ltptag * bptag[tpx]; 296

if lnptag = 0 and ltptag = 0 then goto next branch; 297

if abs(bptag[tpx]) = 2

then register polynomial(npx, 	this bx) 299

else begin if lnptag / 0 and abs(bptag[npx]) / 1 then • 300

end

include (new polynomial(bpaddress[npx], bpdegree[npx
loop natural polynomials);

if ltptag / 0 and abs(bptag[tpx]) / I then

include(new polynomial(bpaddress[tpx], bpdegreettpx],

loop transfer polynomials)

bptag[npx]),
301

302

bptag[tpx]),

303

end

end;

if loop includes closing branch
	

• 304

	

then begin closing loop product[closing npx1:- 	 305

product(loop natural polynomials temPadrs[5], 0, 0, lnptag);

	

closing loop product[closing tpx]:- 	 306

product(loop transfer polynomials, tempadrs[6], 0, 0, ltptag);

Figure 5.3 	(Page 5 of 8)

MN • MI OM • 	1=11 MN 	IM 	I= 	MIM I= IM • .10111I

end

. loop includes closing branch:= false 307

308 if empty (loop natural polynomials) and empty(loop transfer polynomials) else begin

then goto next branch; 309

loop polynomial:-

product(loop natural 	polynomials, 	tempadrs[3],0, 	0, 	lnptag);

310

if ltptag 	0 then inspect loop polynomial when polynomial do 311

loop polynomial:-

product(loop transfer polynomials, 	tempadrs(3), 	pdegree,

inspect loop polynomial when 	polynomial do

lnptag, 	- ltptag);

312

313

include(loop polynomial, 	term factors); _begin 314

tftag:= tftag * ptag

end

315

end

end;

goto next pointer 316
• end;

for nx:= pathstart-..1 step-1 until 1 do if listed nodetnx 	= next 	n then 317

• begin register path(k); 318

poto-next pointer 319

end;.

possible to extend path:= true; • 320

next pointer: 321

if k<nodes • 322

Figure 5.3 	(Page 6 of 8)

=11 	 IM 	MI I= =I 	111•111 IIIIIII Mil ME Mil I= =I

then begin if possible to extend path 323

324

325

then revised path start:= path start

else begin revised path start:= k.+ 1;

for next n:= 1, next n + 1 while pointer set[next 	n] 	do 326

end;

set pointer(k + 1, next n, 	revised path start, 	product(term factors, 	nextadrs, 	0, 0, tftag) 327

end

else begin if closing tpx = 0 328

' then inspect closing polynomial[closing npx]when polynomial do 329

closing polynomial[closing 	product(term factors, 	paddress, 	pdegree, ptag, 	tftag) 330

else begin extended product:- product(term factors, tempadrs[4], 	0, 	0, 	tftag); 331

for px:= closing npx, closing tpx do 332

inspect closing loop product[pxjwhen polynomial 	do if ptag / 0 then 333

begin include(polynomial, 	term factors); 334

include (extended product, 	term factors); 335

lptag:= ptag; 336

inspect closing polynomial[px]when polynomial do 337

closing polynomial[px]:- 338

product(term factors, 	paddress, 	pdegree, 	ptag, 	tftag * lptag)

end

end

end;

next branch: 339

possible pointers into branch[this bx := possible pointers into branch[this bx] 	- 1 340

Figure 5.3 	(Page 7 of 8)

MI • • 	 111•1 	MI OM OM NMI MI NM OM 	• •

end;

adjust tag of all branches connected to this node by(+1) .; 	 341
pointer set[n]:= false 	 342

end 	set pointer;

unit polynomial:- new polynomial (stack address, 0, 1); 	 400

inspect branch reference[closing bx] when branch do for px:= 1 step 1 until 6 do . 	 401

closing polynomial[0]:- new polynomial(bpaddress[px], bpdegree[px] bptag[px]); 	 402

for bx:= 1 step 1 until.branches.do 	 403
begin p:.= 0; 	 404

node sum of branch[bx]:= first node[bx] + second node[bxli 	 405_

if <the three polynomials 3,4 and 5 of this branch are not all zero> then 	 406

begin include(new directed branch(bx, false), branch list of node[first node[bx]]); 	 407

p:= p + 1 	 408

end;

if < the three polynomials 1,3 and 6 of this branch are not all zero> then 	 409

begin include(new directed branch(bx, true), branch list of node[second node[bx]]); 	 410

p:= p + 1 	 411

end;

possible pointers into branch[bx]:= p 	 412

end;

for nx:= 1 step 1 until nodes do pointer set[n := false; 	 413.

set pointer(1,1,1, unit polynomial) 	 414

end topologic;

Figure 5.3 	(Page 8 of 8)

5-19

The branch whose index is denoted by "closing bx" is the closing

branch. 	Its polynomials must be set initially to zero, given positive

tags, and located at addresses to which the polynomials of the new,

complete network are to be assigned. 	If either or both of its ports

are connected in series then its polynomials are interchnaged in the same

way as those of any other branch. 	Then the relationship between a

complete network and its closing network is taken into account by

interchanging the three pairs of polynomialsf1,4), (2,3) and[5 1 6), and

by changing the signs of the tags of both the transfer polynomials.

Within the context of algebraic reduction the topological analysis

Orocedure 	is required to assemble the polynomials of a "basic network".

The prior interchanging of closing polynomial addresses described above

ensures that at the termination of the topological analysis the accumulated

polynomials will represent the basic network and be stored in the correct

locations.

The addresses of storage space for up to six temporary polynomials

(at the right - hand end of the first six rows of the main array) are given

by the array "tempadrs[1:6]". 	Intermediate polynomial products are to

be stacked behind a unit polynomial of degree zero at the address given by

"stack address" (in the last two rows of the main array).

- 5.6.2 Action of the Algorithm

Throughout the course of the algorithm the three-attributes—address,

degree and tag — of any polynomial are conveniently manipulated as a single

entity declared as a_"polynomial" in statement 113. 	The main procedure

commences with the creation of seven such entities representing the unit

polynomial which heads the stack of intermediate products (400), and the

six closing polynomials (401,402).

The data describing the topology of a structure is more useful in

other forms. 	When given any one node of a branch the other node is readily

found (278) using the sum of the two node numbers. 	It is also convenient to

5-20

list all the branches connected to a particular node, and to record which

ends of the branches are connected to that node. 	For this purpose the

concept of , a "directed branch" is introduced (114); its attributes

determine a particular "branch" (by its index "bx") and indicate whether

the relevant node, in whose list the directed branch appears, is the first

or se6ond node of the branch ("breversed" is "false" or "true", respectively).

Node numbers are summed, directed branches are created, and branch

lists are assembled by the statements 405,407 and 410. 	Note that if all

the polynomials that might be determined by directing the pointer of a node

into a branch are zero, that branch is not included in the branch list of

that node (406,409).

Also before the algorithm commences, tags associated with each branch

and node must be initialised: it is noted that at this stage of the

algorithm none of the pointers are set (413), and it is therefore possible

for any branch to have the maximum number (1 or 2) of pointers directed

into it (412).

The aim of the algorithm is to generate all pointer settings, and,

• for each one, calculate a product of polynomials and add it to a closing

polynomial as determined by equation 1.7. 	With only a partial setting of

pointers certain factors of equation 1.7 will be determined; their product

is calculated, stored as an intermediate polynomial, and referred to as the

"partial product".

The algorithm proceeds by setting pointers one at a time and is

initiated by a single call of' the procedure "set pointer", with parameters

specifying that the first pointer to be set is that of the first node, that

the current pointer path commenced with the first pointer to be set, and that

the partial product of polynomials at this stage is the unit polynomial (414).

The setting of one more pointer determines more factors of equation 1.7.

•As the factors are determined they are included in the set of "term factors"

5-21 •

and it is Only after all the new factors have been included, and it is

known that none of them is zero, that the factors are multiplied together

and a new "partial product" is formed. • 	This policy is followed throughout

the algorithm: no manipulation of polynomials is undertaken until it is

a”ured that such manipulation will be productive. 	At each setting of a

single pointer three different polynomial products may need to be formed

and three sets are allocated for this task (117). 	The tag of a prospective

polynomial factor is inspected and if ±1 the polynomial is not included in

, the set. 	If the tag is zero the entire set may be neglected and no further

polynomials included. 	In this way the occurrence of zero or unit

polynomials is exploited to the fullest extent in speeding up the algorithm.

The element procedure "product" (240) provides the bridge between the

polynomial manipulation requirements of the algorithm and the utility .

routines of section 5.2. 	Its function is to multiply together all the

.polynomials included in a specified set and to either add the resulting

polynomial to a specified polynomial or store the product at a specified

location. 	 Intermediate

products are stored alternately in the space allocated for the first two

temporary polynomials (255,256).

The • inclusion of constituent polynomials . in the set of "term factors"

is performed by the procedure "register polynomial" (210). 	A tag ("tftag")

for the product of members of the set is revised (214) and if it becomes

zero (215) the setting of the last pointer is rejected (216). 	If the

polynomial to be registered belongs to the closing branch (211) then a.note

is made (212) of the closing polynomial to which the full product of.

constituent polynomials is to contribute.

Throughout the course of the algorithm a list of the nodes whose

pointers have been set and a list of the branches to which they are directed

are maintained in the arrays "listed node"' and "listed branch" (112). 	The

boolean array "listed branch reversed" (111) indicates whether the listed

node corresponding to the listed branch is its first or second node.

5-22

.• When the procedure "set pointer" (200) is entered the "pointer set" ,

flag of nr,de n is raised (263) and this node becomes the k-th "listed node"

(264). Until the pointer is actually directed to a particular branch the

tags of all the branches connected to this node are reduced by one (265).

The pointer is then directed in turn to each of the branches connected to

this node (266-340).

With each setting of this pointer the set of "term factors" is

•initialised to include only the "partial product"(268-270). 	The branch

to which the pointer is directed becomes the k-th listed branch (273,274)

and its tag is increased by one (272) to cancel the adjustment made in

.statement 265. 	All the branches connected to node n are scanned (275)

and if it is determined that now no pointers can be directed into one of

these branches then its . second polynomial is included in the set of "term

factors" (277).

Pointers are set in an order which attempts to follow the formation of

pointer paths. 	The current pointer path, which commenced with the k-th

listed node, where k 	"pathstart", is extended until it intersects either

a previous path or itself. 	The next node in the current pointer path is

indicated by "next n" (278). 	If "next n" is not among the listed nodes '

then it is possible to extend the pointer path (320). 	In this case (323)

the polynomials in the set of "term factors" are multiplied together to

form a new "partial product" and the procedure "set pointer" is called

recursively (327). 	However, if "next n" is among the listed nodes the

current pointer path can not be extended; therefore, before the procedure

is called again a search must be made for a new node (326) with which to

start a new pointer path (325).

When all pointers have been set the product of "term factors" is

• added to the appropriate natural closing polynomial.. (330). 	Hortever, if

the pointer setting was such that the closing branch was traversed by some

pointer loop then two different polynomial terms are determined and must

be added to the appropriate natural and transfer closing polynomials.

5-23

1n this case the product of "term factors", which is common to both terms,

is calculated and stored in the space allocated to the fourth temporary

polynomial, and is referred to aS the "extended product" (331). 	The

remaining factors of the two terms were previously calculated by the

algorithm (305,306), stored in the space allocated to the fifth and sixth

temporary polynomials, and each referred to as a subscripted "closing loop

product". 	For both terms (332), the appropriate "closing loop product"

(334) and the common "extended product" (335) are included in the cleared

set of "term factors" and their product is added to the appropriate closing

polynomial (338).

If the current pointer path terminates because "next n" is found

among the listed nodes corresponding to previous pointer paths (317), each

branch traversed by the path contributes a natural polynomial to the set

of "term factors". 	These polynomials are registered by a call (318) to

the procedure "register path" -(220).

. If "next n" is found among the listed nodes corresponding to the

current pointer path (279) then a pointer loop is detected. 	The natural

polynomials determined by that part of the path which is not included in

the loop are registered by statement 280. 	If the loop includes only the

last listed branch (281), it is not a proper pointer loop but simply a

reversal of direction; this branch has both its pointers directed into it

and therefore contributes its third polynomial to the set of "term factors"

(282).

To handle a_preper pointer loop the two sets reserved for loop

polynomials are cleared (282, 284), the branches traversed by the loop are

scanned (285), and the appropriate (287-289) natural and transfer polynomials

are included in their respective loop-polynomial sets (301, 303).

It is at this stage that as - most important decision is made which affects

both the economy and the accuracy of the algorithm. 	If the corresponding

natural and transfer polynomials are identical in magnitude (298), the two

5-24

loop products have a common factor; this factor is therefore included

directly in the set of "term factors" (299) rather than included in both

sets of loop polynomials.

Normally, if the loop does not traverse , the closing branch, the "loop

natural polynomials" are multiplied together, their product is stored in

the space allocated to the third temporary polynomial, and the product is

referred to as the "loop polynomial" (310). 	The "loop transfer polynomials"

are then also multiplied together and the resulting product is subtracted

• from the "loop polynomial" (312). 	The difference, representing a factor

(n. -• t. in 'equation 1-7, is included in the set o "term factors" (314, 315). J.

'But, if both sets of'loop polynomials are empty (308) this setting of

the last pointer is rejected (309). 	This situation can only occur if the'.

corresponding natural and transfer polynomials of 'every branch in the loop

are identical in magnitude, and in such a case the two loop products would

be equal and their difference (n. - t.) would be zero. 	However, if both 3.

products were computed, in practice it is likely that, due to truncation

errors, their difference would not be exactly zero. 	The resulting products

could be of sufficient magnitude to render the analysis results neaningless.

If the loop does traverse the closing branch (304), the two products

of the "loop natural polynomials" and the "loop transfer polynomials" are

stored trmporarily '(305, 306) until the pointer setting is complete and they

become factors (334) in two different terms (332).

Before the pointer of node n is directed to another branch the tag of

the current branch is reduced by one (340), to cancel the adjustment made

in statement 272. When the,pointer has been directed to all the branches

connected to this node their tags are increased by one (341) to cancel the

original reduction (265); the "pointer Set" flag is lowered' (342), and the

procedure is terminated.

5-25

5-.6.3 Application of the Algorithm

The algorithm presented here is designed primarily to analyse

general structures of general ; constituent 2-port networks, but,

wherever possible, the occurrence of zero or unit polynomials is

exploited to minimise computation. 	In practice, many trivial networks

may need to be introduced to allow a complex network to be represented

as a structure of 2-port networks, and the occurrence of zero and unit

polynomials is therefore common.

Because of its ability to analyse structures of 2-port networks

this algorithm is believed to be a significant advdhce over the existing

topological methods of analysis, which either enumerate trees of a network

graph or analyse signal-flow graphs. 	The power of this algorithm is better

appreciated by noting that both network graphs and signal-flow graphs can be

transformed, quite simply, into particular types of structure graphs and

therefore can be analysed by this one algorithm.

Network Graphs

To find the trees of a graph whose branches are either resistors,

unistors or gyristors each branch is modelled as a "simple network" with

its component in the series position; each node becomes a parallel

interconnection of ports. 	The equivalent structure graph is then identical

to the network graph.

The six polynomials of a branch are y 21, 1,0 v 	where ''12' Y12, Y21 	I v 12

is the admittance of an equivalent unistor directed from the first to the

second port and y21 is the admittance of an equivalent unistor directed

from the second to the first port, as in figure 5.4. 	For a resistor,

Y1= Y21 	for a gyristor,
 ' Y12 = 7 Y21 .

If node g is the "ground" node as far as the behaviour of the

unistors is concerned, the port corresponding to this node must be

collapsed. 	Therefore, if a complete 2-port network is defined by connecting a

1 	closing branch from node g to any other node, it is its first polynomial

Figure 5.4 An equivalent 2-port network representing the general
branch of a network graph.

I .
5-26

which Will correspond to the branch-admittance-product-sum of the trees

•of the original network graph.

The analysis algorithm has been tailored specifically to this task

-of.generating the trees of a graph in order to investigate its effectiveness

in comparison with other tree-finding Schemes.

Because only one polynomial is 'required, the pointer of the "ground"

node is directed permanently into the closing branch and the pointer a.t . the

other end of the closing branch is not permitted to be directed into the,

closing branch. 	Only one polynomial, the branch admittance, need be'

.associated with each branch and all information needed to distinguish the

. six polynomials is contained in the polynomial tags.

In. practice, polynomial manipulation is eliminated and the branches

in a tree are determined by the "listed branch" array; the sign of a •

branch-admittance-product is determined by the tag "tftag" associated with

the set of "term factors", or may be determined from the "listed branch

'reversed" array.

, Because every transfer polynomial is identical to its corresponding

natural polynomial, and the third polynomial of every .branch is zero, the

formation of . a pointer loop or the reversal in direction of a pointer path

. will always result in a zero product. 	This observation is, of course,.. .

consistent with the definition of a tree and allows a major part of the

algorithm (280-316) to be greatly simplified. 	Further, because the second:

polynomial of every network is unity, 511 statements related to the. .

adjustment and interpretation of branch tags are eliminated.

A paper describing such a simplified, tree-generating algorithm [7]

is appended:to the thesis.

5-27

In the course of 5.nvestigations_by . an independent worker, the algorithm

was evaluated in comparison with a representative selection from more

than thirty other tree-generating methods [23]. 	The

most promising methods were programmed in assembler for an IBM 360

computer, and used to find the trees of a dozen representative networks

of Varying size and complexity. 	In all cases the performance of the

program based on this algorithm was close to the best in each particular

test, and in five documented tests it generated all trees in the least time.

Signal-Flow Graphs

To analyse a signal-flow graph it is formulated as an electrical

network with quantities represented by voltages. Branches become ideal

voltage amplifiers with gain equal to the branch transmission and nodes

become interconnections of ports.

Because the amplifiers which represent the branches directed away

from a particular node all share the same input voltage, representing the

quantity at the node, their first ports are connected in parallel. 	But

the branches directed toward a particular node are represented by

amplifiers whose output voltages must be added together, and this is

accomplished by connecting their second ports in series.

The electrical analogue of the signal-flow graph of figure 5.5 is

shown in figure 5.6. 	Its structure graph (figure 5.7) is similar to the

signal-flow graph but, in general, each node of the original graph is

replaced by both a series and a parallel node: incoming branches are

connected to the series node, outgoing branches are connected to the

parallel node, and the two nodes are joined by a "Unit network" directed

from the series to the parallel node.

When analysed by the algorithm the series ports are converted to

parallel ports, the "amplifiers" are converted to voltage-controlled

current sources, and the "unit networks" are converted to unit gyrators.

Figure 5.5 	Signal-flow graph.

Figure 5.6 Electrical analogue of signal-flow graph.

Figure 5.7 Structure graph corresponding to signal-flow
graph.

5-28

For a transmission branch its polynomials numbered 1,3,4 and 6 are all zero

and a pointer need never, be directed to its second pbrt; consequently the

pointers of all the series ports are directed permanently toward their

corresponding parallel ports. 	Further organisational simplification may be

achieved because all "loop natural polynomials" are zero.

If the denominators (polynomial 2) of the branch transmittances are

restricted to unity, all statements concerned with the adjustment and

interpretation of branch tags can be eliminated (as with network graphs) and

all path segments which are not part of some pointer loop will result in a

zero product. 	In this case the algorithm seeks pointer loops only and

evaluates the Shannon-Happ formula which expresses the transfer function of

a si -gnal-flow graph in terms of its loop transmittances. 	This method •f

detecting loops is apparently unique and certainly bears no resemblance to

the routine used in a major version of the analysis program NASAP [45].

.However, there is little practical justification for adapting the general

algorithm specifically to signal-flow graphs. 	Even if the algorithm is

applied to signal flow graphs in its present form there is little unnecessary

setting of pointers, no unnecessary manipulation of polynomials, and branch

transmissions may be specified as ratios of polynomials. 	In many applications

the existence of the general algorithm may obviate the use of a signal-flow graph

to describe the system; the components of a control system, for example, may

actually be 2-port devices and the complete system may be described . more

• compactly if represented directly as a structure of 2-port networks. 	(see

section 6.5).

5.7 CONCLUSION

This chapter presented those ingredients which are believed to be essential

to any successful implementation of the new approach to linear analysis.

Together they permit analysis On two distinct levels.

5- 29

The lower level is designed to handle the simplest forms of

subnetwork interconnections --whether they be series-parallel connections

of 2-terminal networks, cascade-parallel connections of 2-port networks,

or chains of signal-flow sub-graphs with simple feed-back loops. 	The

language with which simple structures are described has been made highly

versatile, largely through the adoption of algebraic concepts which permit

the nesting of network-manipulative expressions to an almost unlimited

extent. 	In particular, 2-terminal networks may be converted to 2-port

networks and vice versa, and structures of 2-port networks may be analysed

on the higher . level and the resulting networks manipulated further on the

lower level. 	Consequently the greater economy of analysis on the lower

level is available at any stage in the analysis of large networks.

The higher level concerns the analysis of any structure of 2-port

networks using the topological method introduced in chapter 1. 	The

computer algorithm embodying this method (section 5.6) is the most important

contribution of part II of the thesis. 	It supersedes the conventional

topological methods, which analyse either network graphs or signal-flow

graphs, because it not only performs the same type of analysis but offers

more convenience to the user and can handle larger networks.

I.

CHAPTER 6

DEMONSTRATION OF COMPUTER PROGRAMS

6.1 INTRODUCTION

The computer algorithms discussed in the last chapter are the culmination

of many working computer programs which followed the evOlution of ideas and

demonstrated the feasibility, or otherwise, of various analytical and programming

*techniques. 	The most recent versions, which have been documented and

maintained for general use by the Department of Electrical Engineering [8]

were used for the demonstrations reported in this chapter.

When coding these programs much effort was given to reducing computation

time and saving core space. 	Although written principally in ALGOL they include

some machine-code instructions; they calculate addresses of polynomial

coefficients explicitly rather than with the normal subscripting process; and

they do not call procedures recursively. 	Nevertheless, the reported execution

times are indicative of what can be achieved and should be easily bettered with

more modern computers.

The coding of these programs has not been documented because of their strong

machine -dependence, their divergence from the documented algorithms, and their

evolutionary nature - which is responsible for the now-inappropriate choice of

identifiers. 	The grammar of the input language has also been modified slightly

since the programs were written, and in the following reports the actual input

data has been altered to comply with the syntax rules of section 5.5.1.

The Elliott 503 computer on which the programs were run is a second

generation machine. 	It has hardware for floating-point arithmetic, 8k words

of main core store, 16k words of core backing store, a 300 line/min. line printer

for output, and a 1000 char/sec. paper tape reader for input. 	A single-address

instruction for integer addition is performed in 7.2 p.S. 	With 39 bits in a

word, floating-point numbers are represented with an accuracy of approximately

9 decimal digits and their magnitude cannot exceed 10 77 . 	Programs were run

under a compile-and-go operating system and had access to approxiMately 6k words

of the main core store.

Many aspects of the programs are outside the scope of the thesis and

are only mentioned briefly here.

6-2

In all but the third demonstration the programs calculate network polynomials

- and then evaluate them to arrive at a frequency response ,a transient response,

or poles and zeros. 	Due to the main-store limitations of the computer;

polynomial evaluation is performed by a separate program which follows the

. analysis program and retrieves the polynomials from the backing store. 	The

evaluation program has facilities for (1) cancelling common. polynomial factors,

using an adaptation of the Euclidean Algorithm; (2) tabulating . frequency

response, including amplitude, phase and group delay.; (3) finding roots of

polynomials using BairstOw's method; (4) calculating the residues of poles; and

(5) tabulating transient response. 	A second version of the evaluation program

tabulates frequency response and finds the roots of polynomials whose

coefficients have been transformed according to the process described in

section 4.10.

An early version of the analysis algorithm was developed for repetitive

execution within an iterative network-design program. 	Analysis was directed

by a compiled form of the network expression and in each iteration produced the

relevant polynomial coefficients and their first derivatives with respect to

all the variable parameters. 	Modification of parameters was determined by a

version of the Newton-Raphson process [12] which aimed to realise desired

locations for poles and zeros.

11 . 	This program demonstrated the suitability of the algebraic reduction

process in this role, and proved to be a useful tool for network realisation.

For example in one simple application it adjusted two independent parameters

of a "poorly designed" oscillator circuit so that it oscillated at a specified

frequency.

However, in some applications, and particularly with symmetrical networks,

the matrix of partial derivatives tended to be singular and the Newton-Raphson

process became unstable. 	This problem was not pursued at the time but the

6-3

recent experience of many people, including the author [9] , suggests that the

synthesis problem is better approached with an arsenal of general-purpose function-

minimisation routines Including, for example, steepest-descent and a conjugate-

- gradient technique.

6.2 LARGE PASSIVE FILTER

The filter analysed in this example has many common subnetworks which,

in the program data, are assigned to separate blocks as follows:

B1 = (TC1.245E-6 c TR5E6 c TY(SL6.72E-3 c SR1))

ss TY(SL.796 c SR87) ss (TC.01055E-6 c TR5E8);

B2 = ((SL3.78E-3 c SR.6) pp SZ(TC2.214E -6 c TR3E6))

C ((SL6.3E -3 c SR1) pp SZ(TC1.33E-6 C TR4E6));

B3 . B1 c B2 c (TY(SL.239 c SR26) ss (TC.0352E-6 c TR2E8)) c 32 c Bl;

(TY(SL.951 c SR104) ss (TC.0074E-6 c TR1E9))

c (TY(SL1.098 c SR120) ss (TC.0088E-6 c TR8E8));

B5 = SL.764 c SR83 c SZ(TC.011E-6 c TR4E8);

36 = B4 c B5 c TY(SL3.16E-3 c SR.5) c TC2.65E-6 c TR2E6 c B5 c B4;

B7 = (B3 c B3) pp B6;

B8 = SR600 c B7 c B7 c TR600 c F2

The corresponding networks are shown in figure 6.1.

The use of compound components such as TY(SL6.72E-3 c SR1) and

SZ(TC2.214E-6 c TR3E6), which are equivalent to (TL6.72E-3 ss TR1) and

(SC2.214E-6 pp SR3E6) respectively, is necessary to avoid floating-point

overflow or underf low during the analysis process. 	As a general rule it is

preferable to introduce small impedances such as series losses in the series

position, and large impedances such as shunt losses in the shunt position;

their parameters then have the least effect on the magnitudes of all the

polynomial coefficients.

The filter was designed to separate a telegraph channel, centred on

1740 Hz, from an audio band. 	Block 36 is a band-pass filter and B3 is a

band-stop filter. 	•The parallel configuration of B7 is meant to be all-pass

but some attenuation is expected at the edges.of the telegraph band.

-239

.0352
81 82 82

200M

B3

2G

	0

.---0
•7G4H

•011)AR

• 400M
• 83 -\A"/'

BS

B7 BAND PASS

E3 -7

B8

GOO
0-V<A/`-

27
0 	

	0

B6

3.1GrrH165, F

-70

85

85

-0

BAND STOP

Figure 6.1 Large passive filter and its subnetworks.

6-4

For good measure two identical filters are cascaded; both ports are

terminated with 600 ohms, and the terminated network is cascaded by an ideal

transformer to increase the outptit voltage by a factor of 2. 	The transfer

voltage ratio (F5/13 1) of 88 therefore directly indicates the insertion loss of

the filter. 	Altogether, the filter includes 202 components or branches, of

which 100 are reactive, and has 102 nodes.

The program execution times were:-

for analysis (HUCC program no. U1049):

Computation 	29

console message printing 13

total 42 seconds;

for evaluation of the transformed polynomials (HUCC program no. U1095/2):

computation 	43

console mes s age printing 	9

total 	52 seconds.

Intepretation and evaluation of network expressions was performed as the

9
data was read from paper tape and for most of the time the program was input-

bound. 	In order to assess the accuracy of the results the filter was analysed

twice in the 29 seconds, using a frequency transformation with frequency scales

of 1740 and 1741 Hz. 	Calculation of the two sets of polynomials of degree 100

required a total of 81,336 coefficient multiplications. 	In 43 seconds the

polynomial evaluation program printed the coefficients of the numerator and

denominator polynomials of the voltage transfer function and tabulated the

response at 50 frequencies, for both analyses. 	This program was output-bound

at all times.

6.5

Samplings of the results of the two analyses are compared in table 6.1.

FREQUENCY
Hz

INSERTION LOSS
decibels

PHASE
degrees

1500 7.9952 7.9987 -9.79 -9.79

1550 9.4370 9.1801 -107.42 -106.22

. 	1600 57.041 67.298 -48.07 -176.04

1650 50.715 60.002 -82.75 58.71

1700 11.712 11.713 -144.51 -144.51

1750 8.2670 8.2671 -56.65 -54.65

1800 22.736 22.712 27.66 28.31

1850 59.586 63.370 -7.17 52.16

1900 53.468 63.449 -125.65 -129.07

1950 9.8267 9.8571 112.86 112.99

' 2000 9.7746 9.7744 29.15 29.15

Table 6.1. Results of two analyses of the large passive filter.

This most severe test of the analysis program clearly indicates the

limitations of the method. 	The results are tolerable within the pass bands

but unacceptable at the edges of the telegraph band. 	However, with the

longer word length or hardware double-precision offered by large computers

such as the CBC6000 series (60-bit words), ICL System 4, IBM System 360

(64-bit double words), and UNIVAC 1108 (72-bit double words) the results

should in this case be acceptable at all points of interest in the frequency

band. 	With only a ten-fold increase in processing speed the calculation of

the filter polynomials should be completed in less than a second, and their

evaluation at, say, 50 frequencies would take a fraction of a second.

Such projected performance invites comparison with ECAP, the most widely

known and oldest of the general circuit analysis programs. 	Unfortunately,

this large filter exceeds by a wide margin the capacity of most versions of

ECAP - even though they use at least five times the core store than does this •

program. 	The possibility of solving 100 nodal equations at only one frequency

in one second of processor time - whether by Crout's method or some sparse

matrix technique - is a matter for uncertain conjecture.

1

6 - 6

6.3 THREE-STAGE 1C AMPLIFIER

A three-stage integrated-circuit amplifier, together With its representation

as a structure of 2-port networks •eind its structure graph, is shown in

figure 6.2..

In the program data the three transistors are assigned to separate

blocks Bl to B3 for convenience, but blocks B4 to BE are necessary to describe

the branches of the structure graph which appears as a basic network in the

expression 'for the complete network B9:

El = SR1E3 c ((TC6.3E-12 c TR25E3 c H[0,-4E-3,1

pp SC1.5E-12) c SR150 c TC3.4E-12;

B2 = SR450 c ((TC.7E-12 c TR12.5E3 C H[0,-8E-3,1])

pp SC.6E-12) c SR100 c TC2.7E-12;

B3 = SR500 c ((TC1.2E-12 c TR6.25E3 c H[0, -16E-3, 1])

pp SC15E-12) c SR20 c TC4.6E-12;

B4 = B3 pp SC [C] ;

B5 = SR6E3 pp SC.16E-12;

B6 = SR3E3 pp SC.08E-12;

B7 = TR150 c ((SR470 c ((SR1E3 c SL [L]) pp SC25E-12)) PP SR560E3);

B8 = U;

B9 = SR5.6E3 c D[B0:1s4p, B1:1s2p, B2:2p3p,

B4:3p4p, B5:2p5p, B6:5p3p, B7:5p4p, B8:5p1s] ;

Two parameters, in the expression for B4 and B7, are introduced as

identifiers but are subsequently assigned the numerical values:

C = 15E-12;

L =100E3.

This example demonstrates an analysis program designed for parameter

sensitivity studies. 	Parameters introduced by their identifiers are regarded

as variables and the analysis program calculates network polynomials and their

partial derivatives with respect to the logarithms of each Variable parameter;

that is, for each polynomial P and variable parameter k it calculates the

polynomials

(a)

1

T1 T2 T3

rbb 1K 450 500

rsc 150 100 20
Cbi c 1•5pF -GpF 15pF

Cs 3.4pg 2•7pF 4•GpF
G•3pF •7pF 1.2pF

rrrf 25K 12•5K 6.25K
9m 4mA/v 8mA/v 1GmA/v

b)

Figure 6.2 Three-stage IC amplifier : (a) circuit diagram
(b) transistor models

'BO

Bi 2p B2 3p B4 	
4

B8
5p

(d)

(C)

Figure 6.2 	Three-stage IC amplifier. : (c) structure of 2-port
networks

(d) structure graph.

6-7

To do this it gives a third dimension to the main array of polynomial

coefficients by adding extra layers which are simply the partial derivatives

of the first layer. 	An extra layer is .added for each variable parameter:

The only ocher major modifications to the basic program involve (1) changes

to the procedures such as "pma" and "product" which call the utility routines,

and (2) enlargement of the attributes of each "network" and "branch" to indicate

those variable parameters of which it is a function.

The complete network has 13 nodes, 30 components, 3 controlled sources,

1
and polynomials of degree 12.

The program execution times were:-

for analysis (HUCC program no. U1033):

computation 	25

console message printing 	-13

total 	38 seconds;

for evaluation of polynomials (HUCC program no. U1095):.

computation 	13

console message printing 	9

total 	22 seconds

When calculating polynomials the program was mostly input-bound.

Algebraic reduction required only 697 coefficient multiplications, but the

topological analysis of the structure graph required 27,620 multiplications.

Although the maximum number of pointer settings-- the node-degree-product

of the graph--is 324, only 205 settings resulted in nonzero polynomial products

and only 221 products were added to the closing polynomials. 	This saving

is due to the occurrence of zero branch polynomials as indicated by the

following sets of tags allocated by the program to the branch polynomials:

Bl: 3,3,3,3,-3;3

B2: 3,3,3,3,3,3

B4: 3,3,3,3.3

B5: 3,3,0,3,2,2

136: 3,3,0,3,2,2

B7: 3,3,3,3,3,3

138: 0,1,1,0, 	-1,1.

6-8

Evaluation of the polynomials was fully output-bound. 	The poles and

zeros of the voltage transfer function were found and the sensitivities of the

poles to both variable parameters were calculated.

Sensitivities are calculated with the same routines used for evaluating

a normal transfer function. 	The sensitivity of a polynomial P to a parameter k

is obtained by evaluating the ratio of polynomials

dP
a ZP lnk

dInP 	aP 	k
alnk

If the Laplace transform is inverted prior to calculating the transient

response to an impulse of a system with this pseudo transfer function, the

6pj
calculatedresiduer.ofapoleis the pole sensitivity r. = p. is 	 a Ink'

if, instead, the transient response to a step input is requested then the
fripi

residues give the sensitivities in the form r j - 	3in k .

The poles and their sensitivities are .given in table 6.2. 	For example,

comparison of the imaginary parts of the dominant pole and its sensitivities

confirms that its frequency is almost inversely proportional to the square

root of the inductance L (3.173E5 	0.4 * 6.327E5).

POLE P aP SENSITIVITY 	.0 ac SENSITIVITY 02...L
al,

-3.622E4

- 8.256E6

-1.998E8

-2.698E8

-1.297E8

-2.553E9

-8.032E9

-4.065E10

-4.541E10

-6.622E10

±6.327E5j

+4.142E7j

.

3.343E3

4.113E6

-1.493E7

1.286E8

1.425E8

5.161E5

7.331E5

2.750E7

1.967E8

2.145E8

+1.473E4j

+7.919E6j

4.607E2

4.660E3

-3.195E2

9.783E1

-1.066E2

9.262E1

4.042E1

-3.323E4

7.326E4

-2.009E4

+3.173E5j

+3.617E2j

Table 6.2. 	The sensitivities to parameters L and C of the natural frequencies

of the three-stage IC amplifier with its input short-circuited.

6-9

The performance of this program might be assessed by comparison with

other topological analysis programs such as CALAHAN [11] and NASAP [52] .

Experience with tree-generating methods suggests that, even if the network for

the amplifier was reduced to 10 nodes by the combination of 'branches in series

and parallel wherever possible -more processing time than this 25 seconds would

be expended in simply generating trees—without computing branch-admittance

products, their sums, and their derivatives. 	Analysis of an equivalent

signal-flow graph, which would have approximately twice the number of nodes,

would be even more costly.

6.4 GENERAL CONVERTER

The circuit analysed in this example arose in an independent investigation

of prototype circuits for generalised impedance converters and active

transformers*. 	Figure 6.3 shows the prototype circuit (without biasing

arrangements), its representation as a structure of 2-port networks, and its

structure graph.

All four transistors are identical. 	The model used for a transistor in

a common base configuration is shown in figure 6.4(a) and the other configurations

are obtained from this network by interconnecting it with trivial networks as

shown in figure 6.4(h) and (c).

The network expressions which specify the complete network B7 are:

B1 = SR25 c (N [CO 3 0,0,1,.99 9 0] ss TR100);

B2 = (X c Bl) ps U;

B3 = (Bl c X) sp U;

B4 = TR[R]1 c rB3 c SR[R2];

B5 = SR[R3] c Bl c TR[R4] ;

B6 = U;

B7 = D[B0:1p11p, B2:3p9p, B2:7s5s, B4:2s4s, B5:8s10s,

B6:1p2s, B6:2s3p, B6:3p4s, B6:4s6p, B6:6p8s,

B6:8s9p, B6:3p10s, B6:10s11p, B6:1p5s, B6:5s6p,

B6:6p7s, 56:7s11p] .

* This investigation was undertaken by Mr. R.S. Crocker, a contemporary

post-graduate student in the Department of Electrical Engineering.

5s B2 7s

p

41.1.■

l ip

(c)

(b)

(a)

Figure -6.3 General converter : (a) prototype circuit
CIO - structure of 2-port

networks
(b) structure graph

25

Bi

(a)

(b)

B3

(c)

Figure 6.4 	(a) Equivalent circuit for transistor
(b) Transformation from common base to common

emitter
(c) Transformation from common base to common

collector

6-10

This example demonstrates a program designed for both numeric and symbolic

analysis. 	The four parameters R1., R2, R3 and R4, introduced as identifiers

in the expressions for 84 and B5, are manipulated as symbols rather than

numbers throughout the analysis.

A polynomial is represented as a list of pairs of computer words: the

first of each pair contains a floating-point numerical coefficient and the

second contains an integer whose bit pattern records the exponent of s and

the exponents (0 or 1) of up to 25 symbolic parameters.

The execution times for analysis (HUCC program no. U1068) were:

data input and algebraic reduction 	5

topological analysis 	46

lineprinter output
	

23

console message printing 	4.

total 	78 seconds.

Algebraic reduction required 33 multiplications and the topological

analysis required a further 957 multiplications. 	The following tags were

assigned to the branch polynomials:

B2(3p9p): 0,3,0,3,3,0

)32(7s5s): 3,0,3,0,3 , 0

B4: 3,3,3,3,2,3

B5: •3,3,3,3,3,0

B6(all
branches): 0,1,1,0,-1,1.

The structure graph has a node-degree product of 177147, 	but, due to the

large number of zero branch polynomials, only 178 polynomial products Were

added to the closing polynomials.

To simplify the printing of polynomials and to make the presentation of

results less cumbersome the program associates every symbolic parameter with

a unique letter of the alphabet. For this network the program printed the

6-11

dictionary

"A = 1/R1

B = R2

C = R3

D = 1/R4u

The inversion of parameters Rl and R4 indicates that in the case of resistors

introduced in the shunt position the program regards the conductance rather

than the resistance as the relevant parameter. 	When printing polynomials the

program is designed to group together the terms with a common exponent of s

but in this case the polynomials are independent of frequency. 	The lineprinter

output is shown in figure 6.5.

The results show that if the four variable resistances have values within

an order of magnitude of 1000 ohms the six polynomials of the complete network

can be roughly approximated by

P1: 1 - CD 	= 1 - R3/R4

P2: 0

P3: . 0

•P4: 1 - AB 	 = 1 - R2/R1

P5: (1 - AB).(1 - CB) = (1 - R2/R1).(1 - R3/R4)

P6: '1

They confirm that with appropriate selections of parameters the network may

be caused to behave either as a transformer, as any one of various types of

negative-impedance converter, or as either of two types of controlled source.

6.5 POSITION CONTROL SYSTEM

•The position control system of figure 6.6 is represented for analysis

in two ways: as a signal-flow graph and as a 2-port network. 	Comparison of

the two illustrates the convenience of the new approach.

The .signal-flow graph and the system equations it represents are shown

in figure 6.7 	Although pedantic, the task of establishing the equations is

separated from the task of solving them in order to clarify the procedure. 	A

graph of this complexity could be reduced on inspection by successively eliminat-

ing nodes of degree 2 and reducing the inner loops, but, as such a process is•

.- GENERAL CONVERTER . .._. 1
2

4
5

MULT = 33 	 6
0 3 0 3 0 .. 3 33 3 2.3. 3 33 3.3 D. 0 1 1 0 - 1 1 . • 0 1 t 0 - 1 1 0 1 1 0 - 1 1 0 11 0 - 1 17
1 . 1 0-1 1 0 . 1 1 0 - 1 1 . 0 1 1 071 1 - 0 - 1 1 0-1 1 0 1 1 0-1 1 0 1 . 1 0-1 1 '. 0 1 1 0-1 is

e) ROW LENGTH IS 59' •
LTHESIS EXAMPLE 3 .
, A =- 1/R1 •

' .B = R2
..0 =. R3
D '-= 1/R4 ,

c)• 'TOPOLOGICAL ANALYSIS,

0 3 0 33 0 3
0 1 1 0-1 1 . 0

26
27 	,

29 	
•

MI • MN 	- 	 - 	- MI • MI OM I= • OM •

6 555344435335 5 555 34 3 55 53444 3334444333344344334343433433344455543443535555345511111111111166611116661111666111166666666666 9 -
L6 66 611f1111111116666662222222222222222222222-2222222222222

178 POLYNOMIALS WERE SUMMED, MULT = 990

LineRrinteroutput foxiAnAlysis of general converter. 	

3i1
c_..)

413
,•11
42: •

1•'•

45.20000010-09*BD +1.35200010-05*ABD +2.65200010-07*CD 41.35200010-05*ACD +1.00000010-10*BCD +2.60000010-07*ABCD)
POLY 	3: 	4(+1 	U0001910-12A 	+1.998401w-14*D 	+2.67'852010-07*AD 	+1.99999916-12*ABD 	+1.00000010-10*ACD)
POLY 	4: 	+(-9.703970m-09 	+5.1230400-07*A 	+9.80200010-09*AB 	-2.522000w-09*D 	+7.03040010-06*AD 	+5.20000010-09*ABD

POLY 	5: 	4(-9.604970m-09 	+5.0710400-07*A 	+9.70200010-09*AB 	+5.12278010-07*D 	-1.32496010-05*AD 	-5.14800010-07*ABD

	

-9.80000Cm-11*CD 	+1.80000010-09*ACD 	+1.00000010-10*ABCD)

	

+9.80200010-09*CD--5.122000w-07*ACD 	-9.90Q00010-09*ABCD)
7, 	POLY 	6: 	+(-9.703970w-09 	+2.6000540-11*A 	-2.52200010-09*D 	+6.8276000-06*4D 	-9.80000010-'11*CD 	+2.600000w-09*ACD) _

•

:.••• 	 '

33 	•

35
36
37

•

' . MULT = 990 '
POLY 1: +(-9.604970w-09 +2.60000110-11*A 5.17530010-07*D +6.9628001-06*AD +2.00000010-12*BD +5.2000000-09*ABD_

9.80200010-09*CD +2.60000010-09*ACD) 15
POLY 2: - +(+2.574780w-07 +1.35200010-07*A +9.999992w-13*B +2.600000w-09*AB +1.3122800-05*D +5.27280010-04*AD

17
) 6
19
20
2 	'

23

,

• e m
1m t m , m

AMPLIFIER

K a

AMPLIFIER 	GENERATOR

K b 	Rf Lf K g R g

MOTOR 	 GEAR TRAIN

: R m Km 	• m 	1n

LOAD

J t 	F t

K P
	 K t

POTENTIOMETER
	

TACHOGENERATOR

POTENTIOMETER Kp 1 VOLT/10 ° MOTOR

TACHOGENERATOR K t = •01 VOLTS/ R.P.M.
AMPLIFIER GAIN K a = 1
AMPLIFIER 	GAIN K b = 100

GENERATOR FIELD RESISTANCE R f = 50n. GEAR
FIELD INDUCTANCE Lf 5H LOAD
E.M.F. K g = 200 VOLTS/AMP
ARMATURE RESISTANCE R g =

ARMATURE RESISTANCE R m = 24. 4.rt

BACK E.M.F. 	 K e = 1.25 VOLTS/RAD/SEC

TORQUE 	 K m = •812 FT. LIB/AMP
INERTIA 	 J m 	8x10 - 4

SLUG FT

RATIO • 	 = 50

INERTIA 	 J 	1 SLUG FT.2

VISCOUS FRICTION 	F 	•00143 FT. LB/RAD/SEC t

Figure 6.6 	Position control system

""•41111'

REFERENCE 	POSITION- .

FIRST 	AMPLIFIER 	INPUT:

SECOND 	AMPLIFIER 	INPUT

FIELD -.VOLTAGE .
•FIELD 	CURRENT

- GENERATOR 	,

MOTOR 	BACK •

e r
ea =

ef
. i f

e 	- 9 - e rn ;

RADIANS

•(e r -et) Kp VOLTS.

K a e a - K t e t VOLTS

K b e b VOLTS
e f /(L f s + R) AMPS

K g i f VOLTS

K e e m VOLTS

ARMATURE , CURRENT

MOTOR SPEED

MOTOR TORQUE

LOAD 	TORQUE
LOAD SPEED

LOAD 	POSITION

(e g -e rn)/(R g +R rn)AMPS

n , o t RAD/SEC

K m i m -J m s e rn FT. LB

nt m FT. LB

ti(J t s +F t) RAD/SEC

els RADIANS

(a

-K t

(b)

Figure 6.7 Position control system : Cal system equations, WI signal-flow graph.

equivalent to algebraic reduction, it is left to the computer program.

The signal-flow graph is represented by a System of voltage amplifiers

with the structure shown in figure 6.8. Each amplifier block corresponds

to a path segment of the signal-flow graph and is assigned polynomials with

one of the following expressions:

B1 = A[0,0.1,2*3.14159/360]; /*POTENTIOMETER AND FIRST AMPLIFIER*/

B2 = A[1,0 2E4,5 50]; 	/*SECOND AMPLIFIER AND GENERATOR*/

6-12

B3 = A[0,.812,48.8];

B8 = A[0,-1.25,1];

37 = A[1,-8E4 0,0 1];

B4 = A[1,0 50,1 .00143];

,B6 = A[0,50,1] ;

B5 = A[1,0 1,1 Oh

/*MOTOR TORQUE */

/*MOTOR BACK E.M.F.*/

/*MOTOR INERTIA*/

/*GEAR TORQUE AND LOADV

/*GEAR SPEED*/

/* SPEED INTEGRATOR*/

B9 = A[0,-.01,2*3.14159/4 M.ACHOMETER;s/

B10 = A[0,-1,1]; 	/xPOSITION FEEDBACK/

Part of the complete structure has been analysed topologically but the

remainder can be analysed by algebraic reduction. 	However, before blocks

• B9 and 810 can.be combined in series -parallel with other subnetworks, their

ports must be interchanged to reverse the branch directions shown in the

structure graph. 	Because of an implied sign convention applying to ports

connected in series (the sum of second-port voltages equals the sum of first-

port voltages) an interchange of ports must be accompanied by an interchange

of terminals of any port which is connected in series. 	Crossover networks

are therefore introduced, and the complete structure is described by the expression

B11 = (Bl c ((B2 c D[B0:1s4p, B3:1s2s, B4:2s4p,

B8:3p1s, B7:3p2s, B6:4p31:;]) sp (X c rB9))

c B5) sp (X c rB10).

In the alternative representation each.component of the system is modelled

with an electrical 2-port device. 	Shaft torques and speeds are represented

B9

Figure 6.8 Structure graph corresponding to signal-flow graph.

6-13

by voltages and currents respectively, shaft inertia is represented by

inductance, viscous friction by resistance, and the gear train by an ideal

transformer. 	The resulting network and its structure graph is shown in

figure 6.9. 	It could be specified with only one network expression but in

order to clarify the specification of the major components they are here

assigned to separate blocks:

B1 = [0,0.1,2*3.14159/360];
	

/*POTENTIOMETER*/

B2 = A[0,1,1];
	

/*FIRST AMPLIFIER*/

83 = 40,100,1];
	

/*SECOND AMPLIFIER*/

B4 = SB50 c SL5 c 40,0,0,1,0,200,0] c SR24.4; /*GENERATOR*/

B5 = SR24.4 c N[0,0,.812*1.25,1,0,.812-1.25] c SL8E-4; /*MOTOR*/

B6 = F50; /*GEAR TRAIN*/

B7 = SL1 c SR.00143 c 41,0 0,0 0,1 0,0 0,0 1,00]; /*LOAD*/

B8 = N[0,0,0,2*3.14159/60,0,0,-.01] ; /*TACHOMETER*/ .

All the parameters of the system and the factors for conversion of units

take their place directly in this specification without any preliminary

processing.

The complete system is specified by the expression

B9 = (Bl c B2 c ((33 c B4 c B5 c 86) ss B8) c B7) sp U.

6.6. CONCLUSION

The four examples demonstrate the suitability of the general analysis

method in a wide variety of situations. 	At one extreme it provides an

extremely efficient analysis of the largest filters and, at the other, an

efficient fully-symbolic analysis of small strongly-interconnected, active

circuits. 	The efficiency of analysis is due largely to the diakoptic

approach inherent in algebraic reduction, while versatility is ensured by

the possible introduction of a topological analysis at any stage in an

algebraic reduction.

I= ow I= =I 	 AN Ns NE ow am NE 	 m

POTENTIOMETER AMPLIFIER 	AMPLIFIER 	GENERATOR MOTOR

0

ter
r.

:0 •

b 1 I Rf

f=1■11 	 1•111•11MIED

1 =
=K g

R g 1 I R m

L 11111111■1 M11111•1•111 	 MNMONO.

= 1 K e 2
e 2 =K rn i i

• GEAR
TRAIN 	 LOAD

-1 r 7:n t, E
— &S1J-IVV.\-- 77-6--e

I I 	I -1 	Ft 	= Se 2

I I_
TACHOGENERATOR •

(a)
Figure 6.9(a) 	Equivalent network of position control system

B8

b

Figure 6.9 (b) 	Structure graph of equivalent network

REFERE,NCES

1. Bashkow, T:R.: "The A Matrix, New Network Concept", IRE Transactions

on Circuit Theory, vol. CT-4, pp.117-119, September 1957.

2. .Bashkow, T.R.: "Network Analysis", Mathematical Methods for Digital

Computers, chap. 26, pp. 280-290, editors A. Ralston and H.S. Wilf,

Wiley, 1960.

3. Berry, R.D.: "An Optimal Ordering of Electronic Circuit Equations

for a Sparse Matrix Solution", IEEE Transactions on Circuit Theory,

vol. CT - 18, no. 1, pp. 40 -50, January 1971.

4. Branin, F.H. Jr.: "The Relation Between Kron's Method and the

, Classical Methods of Network Analysis", IRE WESCON Convention Record,

Part 2-Circuit Theory, pp. 3-28, 1959.

5. Branin, F.H. Jr.: "Computer Methods of Network Analysis", IEEE

Proceedings, vol. 55, no. 11, pp. 1787 - 1801, November 1967.

6. Brayshaw, G•S.: "Representation of the Ideal Transformer Topological

• Graph by Means of a New Constraint Operator Q", IEEE Proceedings, vol.

55, no. 3, pp. 454-455, March 1966.

7. 'Brownell, R.A.: "Growing the Trees of a Graph", IEEE Proceedings . ,

vol. 56, no. 6, pp.1121-1123, June 1968.

8. Brownell, R.A.: "Computer Programs for Linear Network Analysis",

University of Tasmania, Electrical Engineering Dept., internal report,

September 1968.

9. Brownell, R.A.: "Design of Group Delay Equalising Networks by Function

Minimisation", IREE Aust, Abstracts of Circuit Theory Colloquium on

Filter & Integrated Circuit Design, pp. 2-5, September 1969.

10. Bryant, P.R.: "The Explicit Form of Bashkow's A Matrix", IRE

Transactions on Circuit Theory, vol. CT-9, no. 3, pp.303-306, September,

1962.

11. Calahan, D.A.: "Linear Network Analysis and Realisation Digital

Computer Programs: An Instruction Manual", University of Illinois

Bulletin, vol. 62, no. 58, February, 1965.

, 12. 	Calahan, D.A. 	"Computer Design of Linear Frequency Selective

Networks", IEEE Proceedings, vol. 53, no. 11, pp. 1701-1706,

:November 1965.

13. Chen, Wai-Kai: "Topological Analysis for Active Networks", IEEE

Transactions on Circuit Theory, vol. CT-12, no. 1, pp.85-91, March

1965.

14. Coates, C.L.: "General Topological Formulas for Linear Network

Functions", IRE Transactions on Circuit Theory, vol. CT-5, pp. 30-

42, March 1958.

15. Corrington, M.S.: "Simplified Calculations of Transient Response",

IEEE Proceedings, vol. 53, no. 3, pp. 287-292, March 1965.

16. Dahl, O-J. & Nygaard, K.: "SIMULA 67 Common Base Definition",

Norwegian Computing Centre, Oslo, June 1967.

17. Deckert, K.L. & Johnson, E.T.: "LISA 360—A Program for Linear

Systems Analysis", IBM Program Information Dept. Hawthorn, New York,

1966.

18. Downs, T.: "Symbolic Evaluation . of Transmittances from the Nodal

Admittance Matrix", Electronics Letters, vol. 5, pp. 379-380,

7th August, 1969.

19. Downs, T.: "Inversion of the Nodal Admittance Matrix in Symbolic

Form", Electronics Letters, vol. 6, no. 3, pp. 74-76, 5th February,

1970.

20. Downs, T.: "Inversion of Nodal Admittance Matrix for Active Networks

in Symbolic Form," Electronics Letters, vol. 6, no. 22, pp. 690-691,

29th October, 1970.

21. Dunn, W.R. Jr., & Chan, S.P.: "Topological Formulation of Network

Functions Without Generation of K-trees", Proceedings of Sixth Allerton

Conference on Circuit and Systems Theory, pp. 822-831, October 1968.

22. Faddeev, D.K. & Faddeeva, V.N.: Computational Methods of Linear

Algebra, Freeman 8. , Co., 1963.

23. Fernandez, E.B. 	"An Evaluation of Tree Generation Methods", 12th

Midwest Symposium on Circuit Theory, Austin, Texas, April 1969.

24. 'Francis, J.G.: "The Q-R Transformation", Computer Journal, vol. 4, ,

no. 3, pp. 2657271, October 1961, and no. 4, pp. 332-345, January,

1962.

25. Hobbs, E.W.: "Topological Network Analysis as a Computer Program",

IRE Transactions on Circuit Theory, vol. CT-6, no. 1, pp. 135-136,

•March 1959.

26. Idleman, T.E., et al: "SLIC —A Simulator for Linear Integrated

Circuits", IEEE Journal of Solid-State Circuits, vol. SC-6, no. 4,

pp. 188-203, August, 1971.

27. Ishizaki, Y., et al: "An Algebraic Manipulation Method for Network

Analysis", Proceedings of Fourth Allerton Conference on Circuit and

Systems Theory, pp. 61-69, October 1966.

28. G.: "A Set of Principles to Interconnect the Solutions of

Physical Systems", Journal of Applied Physics, vol. 24, no. 8,

pp. 965-980, August 1953.

29. Kron, G.: Diakoptics: The Piecewise Solution of Large-Scale Systems,

MacDonald & Co., 1963.

30. Kuh, E., & Rohrer, R.: "The State -Variable Approach to Network

Analysis", IEEE Proceedings, vol. 53, no. 7, pp. 672-686, July 1965.

31. Liou, M.- L.: "A Novel Method of Evaluating Transient Response", IEEE

Proceedings, vol. 54, no. 1, pp. 20-23, January 1966.

32. MacWilliams, J.: "Topological Network Analysis as a Computer Program",

IRE Transactions on Circuit Theory, vol. CT-5, no. 3, pp. 228-229, '

September 1958, and vol. CT-6, no. 1, p. 136, March 1959.

33. Mason, S.J.: "Feedback Theory— Some Properties of Signal Flow Graphs",

IRE Proceedings, vol. 41, no. 9, pp. 1144-1156, September 1953.

34. . Mason, S.J.: "Topological Analysis of Linear Non-reciprocal Networks",

IRE Proceeding's, vol. 45, pp. 829-838, June 1957.

35. Matthaei, G.L.: "Some Simplifications 'for Analysis of Linear Circuits",

IRE Transactions on Circuit Theory, vol. CT-4, no. 3, pp. 120-124,

September 1957.

36. Mayeda, W.: "Topological Formulas for Active Networks", International

Technical Report, University of Illinois, January 1958.

37. Mayeda, W.: "Reducing Computation Time in the Analysis of Networks

by Digital Computer", IRE Transactions on Circuit Theory, vol. CT-6,

no. 1, pp. 136-137, March 1959.

38. Morgan, B.S. Jr.: "Sensitivity Analysis and Synthesis of Multi-

variable Systems", IEEE Transactions on Automatic Control, vol. AC-11,

no. 3, pp. 506-512, July 1966.

.39. 	Muller, D.E.: "A Method for Solving Algebraic Equations Using an

Automated Computer", Mathematical Tables Other Aids Computers, vol.10,

pp. 208-215, 1956.

40. Neill, T.B.M.: "Techniques for Circuit Analysis (Part Two)", Computer

Aided Design, vol. 2, no. 2, pp. 29-43, Winter 1970.

41. Pike, D.B.: "Linkage Polynomials---The Polynomials of Minor

Determinants of Matrices of Linear Lumped Finite Time-Invariant Net-

' works", Ph.D. thesis, University of Sydney, School of Electrical

Engineering,' June 1968.

42. Pinel, J.F., & Blostein, M.L.: "Computer Techniques for the Frequency

Analysis of Linear Electrical Networks", IEEE Proceedings, vol. 55,

no. 11, pp. 1810-1819, November 1967.

43. Pottle, C.: "A 'Textbook' Computerized State-Space Network Analysis

Algorithm", IEEE Transactions on Circuit Theory, vol. CT-16, pp. 566-

568, November 1969.

44. Riordan, R.H.S.: "The Analysis of Multistage Transistor Amplifiers",

IREE Aust. Proceedinos, vol. 29, no. 3, pp. 70-78, March 1968.

45. Russel, E.C. et al: "Instrumentation of a NASAP Subroutine", IEEE

Transactions on Education, vol. E-12, no. 4, pp. 243-250, December 1969.

46. Sandberg, I.W. & So, H.C.: "A Two-Sets-of-Eigenvalues Approach to the

Computer Analysis of Linear Systems", IEEE Transactions on Circuit

Theory, vol. CT-16, no. 4, pp. 509-517, November 1969.

47. Shipley, R.B. & Coleman, D.: "A New Direct Matrix Inversion Method",

AIEE Transactions, Part 1, vol. 78, pp. 568-572,. November 1959.

48. Talbot, A.: "Topological Analysis of General Linear Networks", IEEE

Transaction on Circuit Theory, vol. CT-12, no. 2, pp. 170-180, June 1965.

49. Tinney, W.F., & Walker. J.W. 	"Direct Solutions of Sparse Network

Equations by Optimally Ordered Triangular Factorization", IEEE

. Proceedings, vol. 55, no. 11, pp. 1801-1809, November 1967.

50. Univac: "SIMULA Programmers Reference Manual", Univac Division of

Sperry Rand Corporation, manual UP-7556, 1967.

. 51. 'Wilkinson, J.H.: 	The Algebraic Eigenvalue Problem,Oxford University •

Press, .1965.

52. Zobrist, G.W.: "Signal Flow Graphs as an Aid in Network Analysis",

IEEE Transactions on Education, vol. E-12, no. 4, pp. 235-242.

December 1969.

53. Naur, P. et al: "Report on the Algorithmic Language ALGOL 60",

ACM Communications, vol. 3, p. 299, 1960.

I i

e-1

EPILOGUE

General Conclusions

The place of this work in engineering theory and practice is in the

gulf between the broad and complex topological theory of electrical networks,

and its practical implementation in everyday tools for circuit analysis and

design. To define it further, it is concerned only with linear time-invariant

networks, and is largely independent of the state-variable approach to this

subject.

The work as a whole is built on quite simple concepts. The topological

theory of part I is developed from an analytical process which itself is

developed from the elementary concept of a tree. Network graphs constructed

entirely of simple resistive branches, however, are necessarily reciprocal,

and some refinement is necessary to include non -reciprocal networks within

the scope of the theory. This is achieved by the conceptual construction of

• network graphs with unistors---basic branch elements introduced by Mason.

It is remarkable that, notwithstanding the initial importance of trees, in

the topological analysis algorithm of chapter 5 the concept of a tree has no

special significance; rather, it is the concept of a loop that plays the

dominant role.

Algebraic reduction is another simple but useful concept that is related

to the series-parallel combination of resistors---although, within the context

of 2-port networks, it may be recognised as the arithmetic combination of

pairs of like network matrices, composed of either the A,B,C,D parameters or

any set of hybrid parameters. The concept is developed in two stages: first,

with the adoption of a set of six polynomials to characterise the general

2-port network; and second, with a relationship between network polynomials

and topological quantities that allows topological analysis methods to be

incorporated.

As circuits and systems become more complex, and specifications call for

finer tolerances, the digital computer will play an increasingly important

role as an analytical tool. Progress in this field is not dependent simply

on the development of suitable algorithms, but on the development of better

languages for communication at two levels: between the circuit designer and

the programmed computer,. and between the algorithm writer and the computer.

Analysis and design programs must become more powerful, versatile, and

easier to use; while to facilitate the development of these programs, some

well-structured, scientifically-oriented language such as Algol should be

extended to handle the manipulation and analysis of networks in a more

natural way. It is anticipated, therefore, that the most significant advances

. in this direction will be the result of collaboration between the design

engineer, the network theorist, and the computer scientist.

To conclude the thesis we shall explore some possible, future applications

and developments.

Experience with the several versions of the analysis program has

demonstrated the viability of a single program incorporating all the facilities

discussed in part II. Transformation of polynomial coefficients at any scaled

frequency would be optional, and polynomials would be represented in any of

four ways: (1) a fully symbolic representation, with provision for parameters

to be introduced either numerically or symbolically; (2) by numerical poly-

nomial coefficients and their partial derivatives with respect to nominated

parameters; (3) by numerical polynomial coefficients only; and (4) by their

complex values at a nominated frequency. Routines would be included to convert

from one form of polynomial representation to another, evaluate polynomials,

display frequency response, search for roots, invert Laplace transforms, and

display transient response. Such a program would consolidate the practical

results of this work in one powerful analytical tool.

The most promising development would be an extension of Algol to include

the concept of a 2-port network as a type of variable. Network variables, to

which network expressions could be assigned, might be declared with a statement

such as

"network block 1, B5, preamplifier, filter;".

The syntax for netWork expressions defined in chapter 5 could be implemented

with few changes; specifically, all blocks would become network variables,

and parameters would become arithmetic expressions. Basic networks could be

regarded as standard network procedures, and the opportunity would exist to

define whatever basic networks were appropriate to a particular application,

as in this example for crystal filter analysis:

e-3

"network procedure series crystal (frequency, Cl, CO, resistance)•

value frequency, C1, ,CO, resistance;

real frequency, Cl, CO, resistance;

begin real . omega;

anega:= 6.283185 * frequency;

• series crystal:= (SL(1.0/(omega * omega * Cl))

c SC(C1) c SR(resistance)) pp SC(CO)

end;".

If this approach is taken, other facilities must also be provided by the .

language to make it workable. The algebra for networks should be accompanied

by an algebra for polynomials-- admittingthe polynomial operations of addition

and multiplication (but not division) and admitting parameters with either a

literal or a numeTicalvalue. Procedures would be needed to differentiate

polynomials with respect to symbolic parameters, to substitute real numbers for -

symbolic parameters, and to substitute complex numbers for the symbolic frequency

parameter. The concept of a 1-port network, or component, as a type of variable

would also be useful, and some facility must be provided for the specification

of branch lists of structure graphs. Although it is not the objective of this

present work to formulate the most desirable structure for an extended language,

it is clear that the grammar for network expressions is well suited to such a

language and that the other necessary facilities are well within the current

state of the compiling art.

The association of a versatile analysis capability with the full language

facilities of Algol would greatly assist the development of more sophisticated

programs for circuit analysis and design. Two of the most important applications

will be mentioned.

In the field of statistical design the most complex relationships between

network parameters---as occur, for example, with changes in fabrication-process

parameters and with changes in operating temperature---could be expressed

succinctly with arithmetic expressions and procedure calls in the place of

network parameters. Such versatility is essential for realistic Monte Carlo

simulations of circuits operating in various environments. In a program for

Monte Carlo analysis the calculation of cOmplete network polynomials could be

achieved by a single assignment statement within a controlled loop, and there would

therefore, be no difficulty in interfacing the network analysis task with

the remainder of the ,application program.

In developing iterative design programs, the necessary links between

the analysis process and suitable library procedures for function

minimisation •could be achieved with just a few program statements. It would

also. be a simple matter to experiment with the error function to be minimised,

and so realise circuits that were optimised according to various performance

criteria.

If embodied in a compiler for the new language, the methods of algebraic

reduction and topological analysis would be transparent to users of the

language. An analysis process could be incorporated with only a few program

statements, rather than the hundreds of statements currently required to

specify the relevant algorithms, and it could be interwoven with other program

statements with greater flexibility than is possible with calls to Algol

procedures or Fortran subroutines.

With regard to the theory part.Of the thesis, it is believed that further

development of the analysis algorithm introduction in chapter I could lead to

. analysis methods with greater power than those of chapter 5. The admission of

netwOrks with up to three ports might require more polynomials to characterise

subnetworks but the amount of polynomial manipulation would be significantly

reduced. For instance, all the networks discussed in chapter 6 could be

'constructed by combining 3-port networks two at a time, thus avoiding . a

topological analysis of their structures.

Research is needed to develop an algebra for 3-port networks, and a

satisfactory algorithm for the topological analysis of structures of 3-port

networks.

PROCEEDINGS LETTERS 	 1121

I.

Growing the Trees of a Graph
Abstract-An algorithm is described which generates without duplica-

tion and with appropriate sign all the trees of a graph containing directed

elements. A path-finding algorithm is extended in an application of Mason's

method of expansion of paths.

INTRODUCTION

An algorithm for finding, without duplication, all the trees of a graph
forms the heart of computer programs to analyze linear networks by top-
ological methods. This letter presents an algorithm which generates all the
trees of a graph o ne at a time and without duplication, and determines the
signs of trees for graphs containing directed elements. The three types of
elements allowed in the graph are the directed unistor and gyristor l
[denoted by the black arrow in the example shown in Fig. 1(a)] and the
undirected resistor. The sign of a tree will normally be positive except that
the sign will be changed for every gyristor which in the tree is directed away
from a designated ground node and any tree containing a unistor which
is directed away from the ground node will be neglected. The algorithm
is based on Mason's method of expansion of paths' although similarities
will be noticed in many other methods of expanding node determinants,
notably that of 'Tsai.' Paths are generated by a method similar to that re-
cently published by Kroft for finding all the paths through a maze.' One
reason for presenting what may be another version of existing tree-
finding algorithms is to show that it requires only a small extension, in
the bookkeeping, of a path-finding algorithm.

CONSTRUCTION

The algorithm requires that the graph be specified by lists of the
branches which are connected at each node, with the exception of both
unistor branches which are not entered in the lists of the nodes to which
they are directed and gyristor branches which are entered negatively in
the lists of the nodes to which they are directed [as shown in Fig. 1(c)].

To visualize the action of the algorithm, pointers are associated with
each node except the ground node and these may be set in the direction
of any branch in the list of their associated nodes. The key to the algorithm
lies in the observation that every tree corresponds to a unique combina-
tion of pointer settings that is determined by tracing, and setting pointers,
along the unique paths from every node to the ground node. For example,
the combination of pointer settings which corresponds to the tree CGIH
of Fig. 1(a) is shown in Fig. 1(b). It follows that every tree will be formed
once and once only by generating all the possible combinations of pointer
settings. If there are n nodes in the graph a combination of pointer settings
will determine a set of n-1 or fewer branches which may or may not be a
tree, but the number of combinations to be tested is less than all the combi-
nations of n-1 branches.

To ensure the generation of all combinations of pointer settings which
are likely to determine trees, the pointers are set one at a time in such a
way that each pointer is successively directed to all the branches in its
node branch list. A pointer is reset either when it completes the formation
of a loop or tree, or when the following pointer begins a new cycle through
its branch list. The detection of loops is simplified by setting pointers in
the order indicated by their direction, i.e., following the formation of
paths. After each pointer is set or reset a list, which is headed by the ground
node and contains the nodes .whose pointers have been set, is updated
and searched to determine whether the node indicated by the pointer is
included. The search is made in two parts: 1) the nodes in the path cur-
rently being traced—the ungrounded nodes—are scanned and if the node
is found because a loop is about to be formed, then the last pointer is re-
set, and 2) the remaining nodes in the list are scanned and if the node is
found because the path has terminated at a ground node then all the nodes
in the list are considered to be grounded and the next pointer to be set may
be chosen from any of the ungrounded nodes. To continue the generation

Manuscript received February 13,1968.
S. J. Mason, "Topological analysis of linear nonreciprocal networks," Proc. IRE,

vol. 45, pp. 829-838, J une 1957.
W.-K. Chen, "Topological network analysis by algebraic methods, - Proc. FEE

(correspondence) (London). vol. 114, pp. 86-88. January 1967.
D. Kroft, "All paths through a maze," Proc. IEEE (Letters), vol. 55, pp. 88-90.

January 1967.

la)

2

G

3 H \ 4
1

\C

5 I

(b)

NBL(n)

—
 N

I ro
 .4-

C A
G E D -A
H F -E 8
I G

(Cl

I b 	IIA 	8 	C D E 	F G 	HI

13NStid 1, 3 4 6 7 5 8 6 7 9

151

Fig. I. (a) Graph. (b) Combination of pointer settings. (c) Node branch lists.
(d) Branch node sums.

of a path after a pointer has been set towards a new branch, the node at the
other end of this branch must be determined. The search that would be
required if the graph were specified only by the node branch lists is avoided
by calculating and storing the sums of the node numbers of each branch
when the node branch lists are formed [Fig. 1(d)]. The number of the next
node will therefore be obtained by subtracting the number of the last
node from the node sum of the new branch.

BOOK KEEPING '

The flow chart shown in Fig. 2 introduces only sufficient variables and
arrays to describe the essential action of the algorithm. Additional vari-
ables are required to hold the current values of the length of the node list,
the sign of the branch,product, and the number of grounded nodes to
determine the-division between the grounded and ungrounded nodes in the

Set up NBL and BNS,
head ML with the ground

node.

I START

YES

Change the sign of both
and the tree branch product .

 b 1

10 0 9
NO

Add b to 181

tree

Search for on ungrounded
node to become n whose
pointer is to start a

new path.

Put on nextn
NO

Add n to NL,
set NBP[nl to one

1122 	 PROCEEDINGS OF THE IEEE, JUNE 1968

Ground oil the
nodes in NL.

YES

Put b. branch in NBLI.ril
as indicated by NBPfnj

NO

con
ides

YES

Print TBL,
delete b from T BL

I Increment NBP[nl,

Delete n from NL,

delete the last branch

from TBL ,

put n 	last node in NL,

return the grounded

status of the nodes and

the sign of the branch

product to the condition

existing when n was

added to N L

NEIL [n] is the branch list of node n .

BNS[b] is the sum of the terminating nodes

of branch b .

NL is the list of nodes whose pointers

have been set .

NBP[n] is the position' of the branch in

NBL(ni to which the pointer

of node n is directed .

D frij is the degree of node n .

TBL is the tree branch list .

Fig. 2. Flow chart of tree-generating algorithm.

node list. To correct these values after a backtracking step in which a node
is deleted from the node list, each successive value of the last two variables
must be stored in arrays. For the purpose of choosing an ungrounded node
to start a new path a further array is required to indicate which nodes are
ungrounded. A run through the flow chart with the example shown in
Fig. I should require 76 loop tests and 47 branch changes while finding the
40 trees in the following order:

CGIH CGIF -CGIE CGIB CEHI CEFI CEFG CEBI CEBG
CDHI CDHG CDFI CDFG -CDEI -CDEG CDBI CDBG -CAHI
-CA HG -CA Fl -CAFG .CAEI CAEG -CABI -CABG AGIH
AGIF -AGIE AGIB AEHI AEFI AEFG ADHI ADHG ADFI
ADFG -ADEI -ADEG ADB1 ADBG.

PERFORMANCE

The algorithm has been written in ALGOL and run on an Elliott 503
computer with the graph of a ladder filter containing 20 branches and 10
nodes, an example that was used by MacWilliams and Hobbs to evaluate

their tree-finding algorithms. 4 • 5 The actual ground terminal of the filter
was chosen as the ground node for the algorithm because it had the largest
degree. An upper bound on the number of trees is provided by the number
of combinations of 9 branches, 167 960, and—more appropriately for this
algorithm—by the number of combinations of pointer settings, i.e., the
product of the degrees of the ungrounded . vertices, 16384. The algorithm
required 8692 loop tests and 6027 branch changes while finding the 4756
trees. These figures indicate similarities between this algorithm and that
of Hobbs which tested 16 384 sets of branches and that of MacWilliams
which examined 6028 sets of branches.

A frequent attempt at the formation of a loop will occur when a pointer
is set to reverse the direction of a path. Therefore, by commencing the
node search with the second-last node to be added to the node list and

J. MacWilliams, "Topological network analysis as a computer program," IRE
Trans. Circuit Theory (Correspondence), vol. CT-5, pp. 228-229, September 1958.

E. W. Hobbs and F. J. MacWilliams, "Topological network analysis as a computer
program," IRE Trans. Circuit Theory (Correspondence), vol. CT-6, pp. 135-136, March
1959.

PROCEEDINGS LETTERS 	 1123

scanning to the top of the list many loop tests will terminate after only one
comparison. With careful attention to such programming details and by
keeping the array accessing to a minimum the 4756 trees of the example
were found in 29 seconds. This can be compared with times reported by
MacWilliams and Hobbs that were of the order of five minutes on an IBM
704 computer.

R. A. BROWNELL
Dept. of Elec. Engrg.

University of Tasmania
Hobart, Tasmania, Australia

Reprinted from the PROCEEDINGS OF THE IEEE
VOL. 56, NO. 6, JUNE, 1968

pp. 1121-1123
COPYRIGHT © 1968—THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

PRINTED IN THE U.S.A.

